Lattice 8086/8088 C Compiler
Ml

PRy
qgg-proqgssor,Features
Arithmetic Objects
Derived Objects
Storageiflasses
ééope of IdentlfxerSj
Initializers -
Expressfon Evaluatiom-
3 Cbnttoh*?low ‘”‘

\lO\U‘J‘AUNH

2.2
2.2
2.2
2.2,
2.2.
2.2,
2.2,
2.2.

2.3 Amendﬂgﬁts to rthe. C Refe:eﬁbe Mantak

o N

Section 3 Portable bera:y Funq;xons-’,

3.1 Menory AllacagxcgyFunctxong

1.
1.
1

.

3.
3.
3.

3.2 1/0 and System Functions

1
2:Level 1 1/0 Functions
3
4 Program Exit Functions
3.3 Utility Functions and Macros

3.3.1 Memory Utilities
3.3.2 Character Type Macros
3.3.3

String Utility Functions

Appendix A Error Messages

Appendix B Compiler Errors

Appendix C Conversion of CP/M Programs

1 L#vgt ¥ Mem@ry*Allo tion
2 Leve¢l Z:Memory Allodation
3 Level 1 Memory Allocatlon

Level 2 I/O Functions and Macros

Direct Console I/0 Functions

EﬁlNloh)?ldh)N
HWOONAVWNW
o

N

]
A
.-

314

3= 2

3‘6 ’
3-12

3-15
3=-1%

3-39
3-48
3-54

3-57
3-57

3-61
3-62

SECTION 1 The MS-DOS Implementation

The Lattice 8086/8088 C compiler runs under Microsoft”’s MS-DOS
operating system. It accepts programs written in the C
ptogrammlng language (the full language -- not a subset) and
produces relocatable machine code in Intel’s 8086 object module
format, suitable for use by Microsoft’s program linker. The
library defines a comprehensive set of I/0 subroutines which
implement under MS-DOS most of the UNIX-compatible standard
functions described in the text by Kernighan and Ritchie.

The 8086 instruction set is well-suited to the implementation of
a high level language like C, and the Lattice compiler generates
machine code which takes full advantage of its features.
Althouoh the 8086 architecture supports up to 1 megabyte of
addressable memory, it lacks the ‘ability to address this memory
directly and efficiently. This implementation therefore
restricts the size of C programs to a maximum of 64K bytes of
program section (functions), plus a maximum of 64K bytes of data
section (including static data, auto or stack data, and
dynamically allocatable memory). Even with tnis restriction,
programs of considerable complexity and power (including the
compxle: itself) can be developed. :

1.1 Operating Instructions

The Lattice compiler is supplied under MS DOS as a package
consisting of the following files:

LCl.EXE C compiler - (phase ‘1)

LC2.EXE - © C compiler (phase 2)

FXU.EXE : Function extract utility

C.OBJ C program entry/exit module

LC.LIB Run~-time and I1/0 library"

LC¢BAT Batch file to execute phases 1 and 2
STDIO.H Standard I/0 header file

CONIO.H Console 1/0 header file

CTYPE.H - String macro header file

FTOC.C Fahrenheit-to-Celsius sample program
CAT.C File concatenate sample program
SIEVE.C Eratosthenes sieve sample program
I0.ASM Sample &ssembler program

#

These disk files take up about 160 kilobytes of disk
storage. Each phase of the compiler itself has about 50K bytes
of program section, and each requires a minimum of an additional
14K bytes of data area. Thus, the compiler needs about 64K bytes
of working memory ‘in addition to that taken up by MS-DOS itself,
and additional memory will be needed to compile large source
files. (On the MS-DOS system used to develop the compiler, the
MS-DOS components required slightly more than 16K bytes.)

1-1

Lattice 8086/8088 C Compiler The MS-DOS Implementation

LCl1 and LC2 make up the actual compiler. Each performs a
portion of the compilation process and must be ihvoked by
separate commands; LCl does NOT automatically load LC2 when it
completes its processing. Normally, UC2 should be executed
immediately after LCl if there are no errors in the source file.
The batch procedure file LC.BAT is provided to execute LCl and
LC2 in succession, using the same file name (the normal
sequence). The compilation process can be diagrammed as follows:

file.C -> LCl -> file:Q
file.Q -> LC2 -> (file.OBJ

LC1 reads a C source file, which MUST have a .C extension,
and (provided there are no fatal errors) produces an intermediate
file of the same name with a .Q extension, LC2 reads an
intermediate file creatad by LCl and produces ar.object file of
the same name with a .0BJ extension. : The .Q file is deleted by
LC2 when it completes its processing. Each phase normally
~reates its output file on the same drive as the input file.
Note that if a source file defines more than one function, so
does its resulting object file. Individual functions cannot be
broken out from the object file when a ptog:am is ltnked, see
Section 1.3.2 for more information. . Lo

The .0BJ file must be supplied as input‘to,the linket»in
order tc produce an executable program file. Two special files
must also be involved in the linking process, in addition to any
.OBJ files created by the user, The linking process can be
aiagrammed as follows:

C.OBJ + user.0BJ + ... + LC.LIB -> LINK -> user.EXE

The special files required are C.O0BJ and LC.LIB. First, the
file C.OBJ must be specified as the FIRST module on the LINK
execution command; this module defines the execution entry and
exit points for any program. generated- using the Lattice C
compilecr. Second, the file LC.LIB must be specified as the
library; this file defines all of the run-time and 1/0 library
functions included as part of the Lattice C package._ The user
must also specify at link time the names of any .OBJ files which
are to be included, as well as the name of th» .EXE file which
will be created by the linker. -

To illustrate the proqram generation sequence, here are the
commands necessary to compile, link, and execute the Fahrenheit-
to-Celsius sample program. This example assumes that all of the
.EXE files (LCl, LC2, and LINK) reside on.the same disk. The.
cummands will be shown in upper case, although lower case .
commands will work just as well. (Note: the linker prompts
described here are those for Version 1.10 of the Microsoft
linker; consult Microsoft’s documentation if they are different

for the version you have. Generally, the default responses are
correct.)) ‘ s

STEP 1: Execute the first phase of the compiler by typing

1-2

LC1 FTOC<CR>

Note that the .C extension is not supplied (although
the command will work properly even if it is).

STEP 2: When the MS-DOS prompt is issued after LCl has
completed its processing, execute the second phase of
the compiler with

LC2 FTOC<CR>
4 .
Again, no extension is specxfxed, LC2 supplies the .Q
extension,

STEP 3: When the prompt is issued after LC2 has completed its
processing, execute the linker -by typing

LINK C FTOC<CR>

Note that C (meaning C.OBJ) is specified as the FIRST
object module on the LINK command; this is required for
the linking of any C program. 'Then FTOC (meaning
FTOC.OBJ, which was just produced- by LC2) is specified
as an additional object module. Respond to the other
linker prompts as follows:

Run File [C.EXE): FTOC<CR>
List File [NUL.MAP]: <CR>
Libracies |[. LIB] LC<CR>;

These tesponses cause the’run flle to be named
.FTOC.EXE, skip the generation of a l'ink map, and cause
LINK to search LC.LIB for external teferences.

STEP 4: Execute.the .EXE fxle by typxng
' FTOC<CR>

A list of Fahrenheit temperature values and thext
..Celsius eguivalents will be wrxtten to the user’s
console.

Note that the fxrst two steps could have been accomplished
with the single command
7

" LC FTOC<CR>

which uses the LC.BAT batch file to execute LCl and LC2 in
succession. Note also that the Exle FTOC. OBJ still exists and
should probably be erased.

Detailed instructions for compiling, linking, and executing
programs are presented. in the following sections. See Section
1.3 for a detailed discussion of the processing performed by the

~

1-3

Lattice 8086/8088 C Compiler The MS-DOS Implementation

compiler phases.

In presenting the various command line formats, the term
"field" will be used to describe a sequence of non-white-space
characters in the command line. Optional fields will be shown
enclosed in square brackets ([()); the brackets are NOT to be
included when the actual command is typed. Study the examples at
the end of each section to see how actual commands should look.

1.1.1 Phase 1

The first phase of the compiler reads a C source file and
produces an intermediate file of logical records called
quadruples, or qguads. See Section 1l.3.1 for a more detailed
discussion of the processing performed. The format of the
command to invoke the first phase of the compiler is

LC1 [=stack] ([>listfile] filename [options]<CR>

Tne various command line specifiers are shown in the order they
must appear in the command, Optional specifiers are shown
2nclosed in brackets. The first two options are part of the
general command lxne ~options for all C programs (see Section
1.1.4).) o

=stack The first option is used to override the number of
bytes reserved for the stack (see Section 1.4 for a
complete description of the structure of C programs).
The default is 2048 (decimal) bytes, which is
sufficient for most programs. 1f present, the stack
size override field must be the first field after the
name of the first phase (LCl), It is specified as an
equals sign followed by a decimal .number (for example,
=4096 specifies a value of 4096 decimal bytes). ' Since
the compiler uses recursion to process C statements,
heavily nested statements cause the compilac to use
more stack space than straightforward, 1linear
sequences. If a source program with a lot of embedded
statements (ifs within ifs within ifs, etc.) causes the
first phase to die mysteriously in the middle of a
compilation, or to complain of errors which don’t
exist, or to exhibit other unusual behavior, increasing
the stack size MAY solve the problem. On the other
hand, you may simply have discovered a compiler bug;
see Appendix B for the procedure used to report such
problems. On systems which are cramped for memory, the
stack size may be trimmed down in an attempt to
eliminate a "Not enough memory" erroc;. there is no
guarantee, however, ‘that the compilation will be
successful, particularly if the stack sxze is reduced
below 1024 bytes.

>listfile The second option is used to direct the ' first phase

messages to a specified file, These messages include
the compiler signon message and any etror or ‘warning

1-4

S~

filename

options

-a

messages which may be generated. The full filename
must be specified, including extension. If the file
already exists, it is truncated and reused. This
option is useful for reviewing long lists of error
messages.

This is the only command line field which MUST be
present; it specifies the name of the C source file
which is to be compiled. The file name should be
specified without the .C extension; the first phase
supplies the extension automatically. Note that only
files with a .C extension can be compiled; if some

~ other extension is specified, the compiler ignores it

and tries to find "name.C". (#include files, on the
other hand, must be fully specified with extensions.)
The default drive is used unless some other drive is
specified; the quad file is created on the same drive
as the source file unless the -o option is used (see
below). Alphabetic characters may be either upper or
lower case in file names.

Compile time options are specified as a minus sign
followed by a single letter. The letter must be typed

“in lower case; the corresponding upper case option will

have no effect. "“Each option must_be. specified
separately, with a separate minus sign and letter (that

‘i's, they cannot be combined as they can for certain

UNIX programs). Current options include:

Causes the compiler to assume worst-case aliasing, that

_is, to ‘abandon any optimizations based on favorable

assumptions about pointers. Normally, the compiler
assumes that objects referenced through pointers are
not the same as objects being referenced directly in
the same section of the program; this option cancels
that assumption., The -a option is almost never
required unless the programmer is doing something
tricky with pointers; see Section 1.3.4 for more

= information.

-C

- Forces byte alignment for all offset calculations. The

first phase normally aligns all objects which are not
"char" on a word boundary. This insures efficient data
fetches on an 8086 (fetching a word on an odd byte
boundary on the 8086 p-ocessor requires four additional
clock periods). This option is provided to allow space

"efficient programs for the 8088 processor. It is also

useful for-certain structure declarations where word
items muost be placed at odd byte offsets in order to
conform to specific record layouts (for example, the
FCB structure used in MS-DOS contains a long integer
which falls on an odd byte boundary).

Causes comments to be processed without nesting. The
Lattice compiler normally assumes that comments may be

. ' 1-5

Lattice 8086/8088 C Compiler The MS-DOS Implementation

nested; this allows large sections of code to be
commented out very easily. This option allows the user
to force the compiler to the standard, non-nesting mode
of operation.

-4 Causes debugging information to be included in the quad
file. Specifically, line separator records are
interspersed with the normal gquads. This allows the
second phase to produce a table of information relating
input line numbers to program section offsets. If this
option is used, the quad file is NOT deleted by the
second phase. (Note: this option is not implemented
on some earlier versions of the compiler.)

-od Creates the output file (the quad file) on drive "ad",
where "d" is a single alphabetic character, either
upper or lower case, specifying a disk drive ("a" for
A:, "b" for B:, etc.). The drive letter must be
adjacent to the "-o" (no intervening blanks).

-X Changes the default storage class for external
declarations (made outside .the body of a function) from
"external definition" to. "external reference”. The
usual meaning:-of an external declaration for which an
explicit storage class is not present is to define
storage for the object and make it visible in other
files: external definition. The -x option causes such
declarations to be treated as if they were preceded by
the "extern” keyword, that is, .the object being
declared is present in some other file. The option is
provided for use on programs wcitten for the BDS C
compiler; see Appendix C for more information.

EXAMPLES

LCl XYZ -ob =-x

Execute the first phase of the compiler using file XYZ.C as
input, <creating file XY¥Z.Q on B:, and interpret all external
declarations without a storage class as being "extern"
declarations.

lcl =4096 >tns.err tns

Execute the first phase of the compxle: using file TNS.C as
input, cteatxng file TNS.Q on the currently logged-in disk; set
the stack size to 4096 decimal bytes, and create a file TNS.ERR
to contain all of the messages generated by the compiler.

1.1.2 Phase 2
The second phase of thércbmpilez reads a quad file created

by the first phase and creates an object file in the standard
MS-DOS format. See Section 1l.3.2 for a more detailed discussion

1-6

of the processing performed. The format of the command to invoke
the second phase of the compiler is

LC2 filename [options]<CR>

The command format is very similar to that for the first phase.
The stack size override and listfile options can also be used,
but they are generally less useful and will not be described here
in any detail. Note that neither phase of the compiler does any
processing of the standard input, so the < option has no effect
on either phase (see Section 1l.1.4 for the general C program
execution options).

filename This field must be present; it specifies the name of
the intermediate file for which code is to be
generated. This intermediate file is a quad file with
a .Q extension, created by the first phase of the
compiler. The file name should be specified without
the .Q extension; the second phase supplies the
extension automatically. Alphabetic characters may be
supplied in either upper or lower case. The default
drive is used unless some other drive name is
specified, and the object file is created on the same
drive as the guad file unless the -o option is used
(see below). o

options Compile time options are specified as a minus sign
followed by a single ‘letter. The letter must be typed
in lower case; the corresponding upper case option will
have no effect. Each option must be specified
separately, with a separate minus sign and letter (that
is, they cannot be combined as they can for certain
UNIX programs). Current options include:

-f Causes code for floating point operations to be
generated using the B087 numeric data processor. Note
that this option must be used for all functions which
perform any f£loating point operations which are to be
included in a program, that is, functions compiled with
the -f option ‘cannot beé combined with (floating point)
functions compiled without the -f option. (Note: this
option is not implemented on some earlier versions of
the compiler.))

-od - ‘<¢reates the output file (the object file) on drive "d",
where "d" is a single alphabetic character, either
upper or lower case, specifying a disk drive ("a" for
A:, "b" for B:, etc.). The drive letter must be
adjacent to the "-o" (no intervening blanks).

EXAMPLES '

LC2 A:NXF -f

Execute the second phése of the compiler using file A:NXF.Q as

1-7

Lattice 8086/8088 C Compiler The MS-DOS Implementation

input, creating file NXF.OBJ on drive A:, and generate code for
all floating point operations to use the 8087 floating point
processor.

1c2 u790 -oc

Execute the second phase of the compiler using file U790.Q as
input, creating file U790.0BJ on drive C:,

1.1.3 Program Linking

After all of the component source modules for a program have
been compiled, they must be linked together to form an executable
program file, This step is necessary for several reasons.
First, the object file produced by the second phase of the
compiler is not in a state suitable for execution. Second, most
programs make use of functions not defined in the current module;
before such programs can execute, they must be "connected"” with
those other modules. These external functions may be defined by
the user, in which case they must be compiled and be available as
.0BJ files, or they may be defined in the library supplied with
the compiler. (The portable functions are described in Section
3; others defined only under MS-DOS are described in Section
l.SJ Third, although C normally defines the function called
"main" to be the execution point of a C program, there is usually
a considerable amount of system-dependent processing which must
be performed before "main" is actually called; the module to
perform this processing is integrated into the program when it is
linked.

Although the usual concept of linking involves external
function calls, C also permits functions to access data locations
defined in other modules. This kind of reference is possible
because the external linkage mechanism supported by the object
code associates an external symbol with a memory location; this
symbol is the identifier used to declare the object in a C
program, The programmer must be careful to declare an object
with the same attributes in both the module which defines it and
the module which refers to it, because the linker cannot verify
the type of reference made -- it simply connects memory
references using external symbols. The use of include files for
common external declarac;ons will usually prnvent thxs kind of
error.

The linking process in a general sense requires that all of
the components of a program be specified, elther directly or
indirectly, as input to the linker, Three types of input are
required.,

1. The file C.0BJ must be specified as the first module
included by the linker. This file defines the MS-DOS entry

point for all C programs compiled using the Lattice C
compiler.

2. Functions generated by the user must be specified as

additional modules to be included. These modules include
the main module, as well as any additional functions defined
in other source modules,

3. The file LC.LIB must be specified as the library to
be searched during linking,

In the case of the Microsoft linker supplied with MS-DOS, these
inputs are specified by:

1. Making "C" the first module on the "LINK" command.

2. Including the names (without the .OBJ extension) of
the user”s object files on the "LINK" command, after the "C"
specification,

3. Typing "LC" in response to the "Libraries" prompt
from the linker.

Note that for step (2), one of the files included on the "LINK"
command must be the main module.

1f the linker cannot find one of the .0BJ files mentioned on
the "LINK" command, it will stop processing without creating a
.EXE file. Another error condition can arise if the linker
cannot find all of the external items referred to in the ,0OBJ
files specified. 1In this case, you will get a message to the
effect that "Unsatisfied external reference(s)" exist, followed
by a list of the external names which were not satisfied. DO NOT
ATTEMPT TO EXECUTE A PROGRAM WITH UNSATISFIED EXTERNAL REFERENCES
unless you are guite sure that the missing functions will never
actually be called. ,

See Section 1.2.2 for a discussion of external names, See
Section 1.4 for a technical description of the object code
features used in this implementation. 1If the version of the
linker supplied with your system has different prompts than those
illustrated here, consult Microsoft’s documentation. Generally,
the default responses to other prompts are correct. If your
linker allows generation of a public symbol map, you may want to
create a .MAP file and look at the components present in the
resulting load module,

EXAMPLE

LINK C XYZ QRS
Run File [C.EXE]: XYZ<CR>
List File [NUL.MAP]: <CR>
Libraries [.LIB): LC<CR>

Execute the linker, producing XYZ.EXE as an executable program,
and include files XYZ.OBJ and QRS.OBJ in the program.

Lattice 8086/8088 C Compiler The MS-DOS Implementation

1.1.4 Program Execution

when a C program is executed, the function "main®™ is called
to begin execution. Two important services are performed for it
before it ever receives control.

1. The command which executed the program is analyzed, and
information from the command line is supplied as parameters to
"main®". The analysis performed and the nature of the parameters
supplied will be discussed in detail below. This feature is
designed to make it easier to process command line inputs to the
program,

2. The buffered text files "stdin" (standard input),
"stdout®” (standard output), and "stderr" (standard error) are
opened and thus available for use by the program. Normally, all
three units are assigned to the user”s console, but "stdin" and
"stdout" may be assigned elsewhere by command line options
described below. This £feature allows flexibility in the use of
orograms which work with text file input and output using the
standard "getchar" and "putchar” macros.

The simplest way to execute a C program is just to type the
name of the .EXE file (without the .EXE extension), followed by a
return., Since the command line provides-a convenient way to
supoly input to a program, a program execution request will often
contain other information. The general format of the command
line to execute a C program is

pgmname [=stack] [<infile} (>outfile] ([args] <CR>

Everything after "pgmname" is optional, as the brackets indicate.
The various additional items, if present, must be specified in
the order shown,

pgmname . This field names the program to be executed; it is the
name of the .EXE file created when the program was
linked. It must be specified without the .EXE
extension, i

=stack The first optional field is used to specify a decimal
number of bytes to be reserved for the stack when the
program executes, The default value used if this field
is not present is 2048 bytes, The stack size is
specified as a decimal number immediately preceded by
an equals sign., All objects declared "auto" are
allocated from the stack, but the memory used for these
allocations is freed when the function in which they
are declared returns to its caller, The dynamic nature
of this allocation makes it generally difficult to
predict how much stack space is actually needed for a
particular program, The stack size option on the
command line allows the user to adjust the amount of
memory reserved for the stack without having to
recompile the program. The memory reserved for the

1-10

<infile

>outfile

args

stack affects the amount of memory available for
dynamic allocation by the various library functions
described in Section 3.1, See Section 1.4 for more
information about the structure of C programs.

The second optional field names a file or device to
which the standard input ("stdin") is to be assigned.
This option is useful only if the program being
executed actually uses the standard input (that is, it
processes text input using "getchar" or "“scanf" or
makes explicit "getc" or "fscanf" calls using "stdin").
The file or device name must be immediately preceded by
a < character; if a file, the full name including
extension, if any, must be specified. See Section
1.5.2 for a list of valid device names. The file must
exist, or the program will be aborted with the error
message "Can”t open stdin file".

The third optional field names a file or device to
which the standard output ("stdout") is to be assigned.
This option is useful only if the program being
executed actually uses the standard output (that is, it
generates text output using "putchar" or "printf" or
makes explicit "putec" or "fprintf" calls using
"stdout"). The file or device name must be immediately
preceded by a > character; if a file, the full name
including extension, if any, must be specified. See
Section 1.5.2 for a list of valid device names. The
file is opened as a new file, which discards its
previous contents if it already existed and creates an
empty file., If the filename specified is invalid or
not enough directory space is available to create the
new file, the program is aborted with the error message
"Can’t create stdout file",

If two > characters are used instead of one, the file
is opened for appending, and any output is added on to
the end of the file. This option is useful for
accumulating logging information. The file.is created
if it does not exist. -

Any additional fields beyond the program name and the
three optional fields are extracted and passed to the
function "main" as two arguments:

main(argc, argv) s
int argc; /* number of arguments */
char *argv(l]:; /* array of ptrs to arg strings */

Each arg string is terminated by a null byte. On most
systems which support C, "argv(0]" is the name by which
the program was invoked. Unfortunately, under MS-DOS
the program name is not readily available, aithough all
of the other information from the command line is. A
dummy "argv[0]" is therefore supplied (all programs are

1-11

Lattice 8086/8088 C Compiler The MS-DOS Implementation

named "c" according to "argv(0]"™) but subsequent
elements of "argv" are defined properly. Arguments
appear in "argv" in the same order in which they were
found on the command line, Note that the optional
stack and file specifiers are NOT included in the
"argv” list of strings.

Although all of the above features are intended as a
convenience for writing utility programs under MS-DOS, many of
the library I/0 functions are forced to be a part of the program
because of this processing (specifically, the opening of the
buffered input and output files). For programs which were going
to use the buffered I/0 functions anyway, this does not present a
problem, even though these functions add a substantial number of
bytes of code to the size of the linked program. Users who must
be concerned about program size and who are not using these
functions can avoid including the extra modules by supplying a
special version of "_main", the library function which calls
"main®. See Section 1.5.4 for details,

EXAMPLES
CPROG =8000 <INPUT.R PQP 12

Execute CPROG.EXE, setting the stack size to 8000 decimal bytes,
with "stdin" connected to file INPUT.R. The "main" function will
be supplied an "argc" value of 3, with strings "c¢", "PQP", and
"12" in the "argv" array.

errlog >>errors.log data

Execute ERRLOG.EXE with "stdout" connected to ERRORS.LOG for
appending (adding to the end of file). The "main" function will
be supplied with an "argc" value of 2, with strings "c" and
"data" in the "“argv" array. -

1.1.5 Function Extract Utility

Because the compiler generates a single, indivisible object
module for all of the functions defined in a source file, the
function extract utility program FXU.EXE is provided so that
groups of small functions may be kept in a single source file and
object modules produced for them individually. The utility
operates by extracting the source text for a specified function
and creating a single source module which can then be compiled to
produce an object module. The format of the command to invoke
the utility is as follows:

FXU filename function <CR>

where "filename"™ is the name of the file containing several
functions and "function” is the name of the particular function
to be extracted. The first £ile name must be specified WITH an
extension, if one is defined; the second name (that of the
function) should be specified without any extension. If the

1T _vra

named function is found, a file of the same name with a .C
extension is created; otherwise, an error message is generated.
The following limitations of the utility should be noted:

1. The function name must be specified exactly as it appears
in its definition; if alphabetic characters are lower case in the
source file, they should be lower case in the command. The name
of the file created, however, will have all lower case letters
converted to upper case.

2. The user must be careful not to specify a function with
the same name as the original source file, that is, if "xyz" is
being extracted from XYZ.C the original contents of the file will
be lost.

3. The text extracted consists of all the characters between
the closing brace of the previous function, up to and including
the closing brace of the extracted function. Obviously, there
are problems with functions that refer to external data locations
defined in the source module; in general, FXU should be used only
for groups of functions which do not refer to any external data
iocations defined in the same module.

4. The program counts braces defined in the body of the
function in order to determine when it has reached the end of
that function. Although it recognizes comments and will not make
the mistake of counting any braces which might be enclosed in
them, it assumes that comments can be nested, which is the same
assumption normally made by the compiler. The compiler, however,
can be reguested by command line option to process comments as if
they did not nest; FXU has no such option.

-

EXAMPLE
txu sfuncs.c movstr

Extract the function called "movstr"™ fcrom the text file
"SFUNCS.C", and create a'new file "MOVSTR.C" to contain the text
of that function.

1.2 Machine Dependencies

The C language definition does not completely specify all
aspects of the language; a number of important features arce
described as "machine-dependent.” This flexibility in some of
the finer details permits the language to be implemented on a
variety of machine architectures without forcing code generation
sequences that are elegant on one machine and awkward on another,
This section describes the machine-dependent features of the
language as implemented on the 8086. Sece Section 2 of the manual
for a description of the machine-independent features of the
Lattice implementation of the language.

1-13

Lattice 8086/8088 C Compiler The MS-DOS Implementation

1.2.1 Data Elements

The standard C data types are implemented according to the
following descriptions. All data elements are normally aligned
on a word boundary, with the exception of "char" variables; as
noted in Section 1l.1.2, this alignment can be disabled by a
compile time option. 1In all cases, regardless of the length of
the data elenent, the low order (least significant) byte is
stored first, followed by successively higher order bytes. This
scheme is consistent with the general byte ordering used on the
8086, and with the memory formats expected by the 8087 numeric
data processor. The following table summarizes the
characteristics of the data types:

Type Length in Bits Range

char 8 0 to 255 (ASCII character set)
int 16 -32768 to 32767

short 16 -32768 to 32767

unsigned 16 0 to 65535

long 32 -2 X 10**9 to 2 x 10**9

float 32 +/= 10**=37 to +/- 10**38
double 64 +/- 10**-307 to +/- 10**308

"char" defines an 8-bit unsigned integer. Text characters are
generated with bit 7 reset, according to the standard ASCII
format,

"int" defines a 16-bit signed integer; “"short” and "short int"
are synonyms,

"unsigned®” or "unsigned int" defines a 16-bit unsigned integer,
Note that in this implementation, "unsigned” is not a modifier
but a separate data type.

"long” or "long int" defines a 32-bit signed integer.

"float" defines a 32-bit signed floating point number, with an 8-
bit biased binary exponent, and a 24-bit fractional part which is
stored in normalized form without the high-order bit being
explicitly represented. The exponent bias is 127. This
representation is equivalent to approximately 6 or 7 decimal
digits of precision.

"double” or "long float"™ defines a 64-bit signed floating point
number, with an ll-hit biased binary exponent, and a 53-bit
fractional part which is stored in normalized form without the
high-order bit being explicitly represented. The exponent bias
is 1023. This representation is equivalent to approximately 15
or 16 decimal digits of precision.

Pointers to the various data types consist of the 16-bit
offset of the low order (least significant) byte of the data
element. Since the combined size of the data elements in a C
program cannot exceed 64K bytes, the address of an item is fully

1-14

——

specified 1n 16 bits. Pointers to runctions COonsist Or tne i1o-=
bit offset of the first byte of the code defining the function.
Again, since the combined size of all the functions in a C
program cannot exceed 64K bytes, the address of the function is
fully specified in 16 bits.

1.2.2 External Names

External identifiers in the MS-DOS implementation differ
from ordinary identifiers in one important respect: the MS-DOS
linker treats upper and lower case letters as if they were the
same. This means that, although the compiler will consider
"main®™ and "MAIN" to be two different functions, the linker will
not. External names may be up to 8 characters in length, and the
underscore is a valid character. Since the compiler always
assumes that external names have the same characteristics as
ordinary identifiers, programmers must be careful not to define
external names which the compiler believes are different but
which the linker will interpret as the same name. A safe rule is
to use lower case letters only for all externally visible items,
including functions and data items which are to be defined for
reference from functions in other source files.

A user may define external objects with any name that does
not conflict with the following classes of identifiers:

#xxxkx* Certain library functions and data elements (defined in
modules written in C) are defined with an initial
underscore.

CX**xx Run-time support functions (written in assembly
language) which implement C language features such as
long integer multiply and divide, floating point
arithmetic, and the like are defined with "CX" as the
first two characters.

XCrarn Low-level operating system interface functions (written
in assembly language) are defined with "XC" as the
first two characters.

The likelihood of collision with library definitions is
remote, but users should be aware of these conventions and avoid
applying these types of identifiers to external, user-defined
functions and data.

1.2.3 Include File Processing

Include files may be specified as

$include "filename.ext"
or

¢include <filename.ext>

The two forms have exactly the same effect. The name between the

- 1-15

Lattice 8086/8088 C Compiler The MS-DOS Implementation

delimiters is taken at face value; the extension must be
specified if one is defined for the file.. The usual convention
is to use .H for all header files, as do the header files
included with the compiler package. Alphabetic characters in a
file name may be specified in either upper or lower case. The
file must be present on the currently logged-in disk unless a
drive specifier is included in the file name (not recommended),
The file name is retained internally by the compiler for error
reporting (see Section 1.3.3).

1.2.4 Arithmetic Operations and Conversions

Arithmetic operations for the integral types (floating type
operations are discussed in the next section) are generally
- performed by in-line code. Integer overflows are ignored in all
cases, although lé-bit signed comparisons correctly include
overflow in determining the relative size of operands. Division
by zero generates an interrupt which is processed by 15-DOS; on
the operating system used to develop the compiler, the message
"Integer overflow” is generated and execution of the offending
program aported. Division of negative integers causes truncation
toward zero, just as it does for positive integers, and the
remainder has the same sign as the dividend. Right shifts are
arithmetic, that is, the sign bit is copied into vacated bit
positions, unless the operand being shifted is “"unsigned®"; in
that case, a logical (zero-fill) right shift is performed.

Function calls to library routines are generated only for
long integer multiplication, division, and comparison. Product
overflow is ignored. Division by zero yields a result of zero,
The sign of the remainder is the same as the sign of the
dividend. Comparison is signed but does not take account of
overflow,

Conversions are generated according to the "usual arithmetic
conversions” described in Kernighan and Ritchie, and are
generally well-behaved. The following should be noted.

1. "char” objects are unsigned in this implementation. Sign
extension is NOT performed during expansion to "int"; instead,
the high byte is simply set to zero. Code sequences such as

char 1i;

for (i=8; i >= 0; i--)
will not work (in this case, the loop never terminates).

2. Conversion of "int" or "short" to "long" causes sign
extension. The inverse operation is a truncation; the result is
undefined if its absolute value is too large to be represented.

3, Conversions from integral to floating types are fairly
straightforward. The inverse conversions cause any fractional
part to be dropped. :

1-16

4. Conversion from "float" to "double" is well-defined, but
the inverse operation may cause an underflow or overflow
condition since "double" has a much larger exponent range,
Considerable precision is also lost, though the fraction is
rounded to its nearest "float" eguivalent.

1.2.5 Floating Point Operations

In accordance with the language definition, all floating
point arithmetic operations are performed using double precision
operands, and all function argquments of type "float" are
converted to "double" before the function is called. The formats
used are identical to the "short real" and "long real” formats
expected by the 8087 numeric data processor (the formats are
described in Section 1.2.1). Legal floating point operations
include simple assignment, conversion to other arithmetic types,
unary minus (change sign), addition, subtraction, multiplication,
division, and comparison for equality or relative size. Note
that, in contrast to the signed integer representations, negative
floating point values are not represented in two’s complement
notation; positive and negative numbers differ only in the sign
bit. This means that two kinds of zero are possible: positive
and negative. All floating point operations treat either value
as true zero and generally produce positive zero, whenever
possible. Beware, however, of code which checks "float" or
"double" objects for zero by type punning (that is, examining the
objects as if they were "int" or some other integral type); such
code may consider (falsely) negative zero to be not zero.

As noted in Section 1.1.2, a compile time option selects
whether code is generated to perform floating point operations
using the 8087 co-processor. The default option generates calls
to library functions for arithmetic and comparison operations,
Note that the two classes of code generation cannot be combined
in the same program; in other words, all functions in the same
program which use floating point variables must be compiled with
one option or the other. Combining functions compiled with
different floating point options will have disastrous results.

Otherwise, the calculations performed by either option
should be very nearly equivalent, The library functions used if
the 8087 is not present perform arithmetic calculations using 64
fraction bits and a 16 bit exponent, just as the 8087 does.
Intermediate results, however, must be converted back to the
"double" representation, while on the 8087 they can be left in
the more precise "temporary real” format. This may cause some
loss of precision in certain cases. For example, in the seguence

double a,b,c;

a=a*b/ c;
the intermediate "a * b" result remains in the expanded temporacy
format on the 8087 register stack but requires conversion back to

1-17

Lattice 8086/8088 C Compiler The MS-DOS Implementation

"double” in the default case. Please note that the library
functions which perform the arithmetic operations without using
the 8087 were coded for accuracy, not speed, using
straightforward, unsophisticated algorithms. 1If the speed of
floating point arithmetic is a major consideration, the user
should obtain a system with the 8087 co-processor and use the =-f
option for compiling floating point modules. (Note: this option
is not implemented on some earlier versions of the compiler.)

Floating point exceptions are processed by a library
function called CXFERR that is called according to the following
convention:

CXFERR (errno) ;
int errno;

where "errno® can be

invalid operation (8087 only)
underflow

overflow

divide by zero

wn O

won oo

Note that "invalid operation”" is detected only for 8087
operations, and signals that an operand was a NAN or a result
indeterminate,

The standard version of CXFERR supplied in LC.LIB simply
ignores all error conditions, The user may write a different
version (in either C or assembly language), if desired, to print
out an error message and terminate processing, or take any other
action. If CXFERR returns to the library function which called
it, each exception is processed as follows:

Underfliow Non-8087: set the result equal to zero. 8087:
denormalize the result.

Overflow Set the result to plus or minus infinity.

Zerod{vide Non-8087: set the result equal to zero. "8087: set

the result to plus or minus infinity.

Consult the 8087 description for more information about the
floating point formats and the other special features of the
8087, :

1.2.6 Bit Fields

Bit fields are fetched on a word basis, that is, the entire
word containing the desired bit field is loaded (or stored) even
if the field is 8 bits or less in size. Bit fields are assigned
from left to right within a machine word; the maximum field size
is 15 bits. Bit fields are considered unsigned in this
implementation; sign extension is NOT performed when the value of
a field is expanded in an arithmetic expression. - If a structure

1-18

is declared

struct {
unsigned x : 5;
unsigned y : 4;
unsigned z : 3;

a;

then "a" occupies a single 16-bit word, "a.x" resides in bits 15
through 11, "a.y" in bits 10 through 7, and "a.z" in bits 6
through 4. Because of the way bytes are ordered on the 8086,
this results in "a.y" being split between the low and high bytes.

1.2.7 Register Variables

The current version of the compiler does not implement
register variables, although declarations using "register® are
accepted if properly made. Storage is reserved for these objects
as 1if they had been declared "auto". Future versions of the
compiler may elect to support register variables,

1.3 Compiler Processing

The Lattice C compiler under MS-DOS is implemented as two
separate executable programs, each performing part of the
compilation task. This section discusses the structure of the
compiler in general terms, and describes the processing performed
by both phases. Special sections are devoted to a discussion of
the topics of error processing and code generation,

1.3.1 Phase 1

The first phase of the compiler performs all pre-processor
functions concurrently with lexical and syntactical analysis of
the input file., 1Tt generates the symbol tables, which contain
information about the various identifiers in the program, and
produces an intermediate file of logical records called
quadruples, which represent the elementary actions specified by
the program. The intermediate file (also called the quad file)
is reviewed as it is written, and locally common subexpressions
are detected and replaced by equivalent results., When the entire
source program has been processed (assuming there are no fatal
errors), selected symbol table information is written to the quad
file, for use by the second phase. The first phase is thus very
active as far as disk I/0 is concerned. Generally, if the disk
activity stops for more than a few seconds, it“s a pretty safe
bet that the compiler has crashed. Consult Appendix B for the
compiler bug reporting procedure if this happens.

Wwhen the first phase begins execution, it writes a signon
message to the standard output, unless (1) the specified source
file could not be found or (2) a gquad file with a .Q extension
could not be created (due to lack of directory space). This
message identifies the version of the compiler which is being
executed. No other messages are generated unless the source file

1-19

Lattice 8086/8088 C Compiler The MS-DOS Implementation

contains errors; see Section 1.3.3 for information about error
processing. Note that the quad file is deleted if any fatal
errors are detected.

1.3.2 Phase 2

The second phase of the compiler scans the quad file
produced by the first phase, and produces an object file in the
intel 8086 format. This object code supports all of the
necessary relocation and external linkage conventions needed for
C programs (see Section 1.4 for details). A logical segment of
code specifying the 8086 machine language instructions which make
ap the executable portion of the program is generated first,
followed by a segment of data-defining code for all static items.
Jnlike the first phase, the code generator is not always actively
oserforming disk I/0. Each function is constructed in memory
pefore its object code is generated, so there may be fairly
s3izable pauses during which no apparent activity is taking place.
in general, these delays should not persist more than several
seconds. Anything longer than a thirty second delay can safely
oe assumed to be a crash; see Appendix B for information about
reporting compiler problems. .

When the second phase begins execution, it writes a signon
message to the standard output, unless (1) the specified quad
f£ile could not be found or (2) an object file with a .0BJ
2xtension could not be created (due to lack of directory space).
When code generation is complete, the second phase writes a
message of the form

Module size P=pppp D=dddd

to the standard output (usually the user”s console). "pppp”
indicates the size in bytes of the program or executable portion
>f the module generated, and "dddd" indicates the size in bytes
of the data portion; both values are given in hexadecimal. These
sizes include the requirements for all of the functions included
in the original source file. Note that the sizes define the
amount of memory reguired for the module once it is loaded (as
part of a pnrogram) into memory; the .0BJ file requires.more space
because it contains additional relocation information.

As noted in the introduction to Section 1.1, the code
generator produces a single .0BJ module for a given source
module, regardless of how many functions were defined in that
module, These functions (if more than one is defined) cannot be
separated at link time; if any one of the functions is needed,
1ll of them will be included. Functions must be separated into
individual source files and compiled to produce separate object
modules if it is necessary to avoid this collective inclusion. A
special utility program (FXU.EXE) is provided so that multiple
functions may be stored in a single .C file and extracted
individually for compilation; see Section 1.1.5.

1-20

1.3.3 Error Processing

All error conditions (with the exception of internal
compiler errors) are detected by the first phase. As soon as the
first fatal error is encountered, the compiler stops generating
guads and deletes the quad file. This prevents the second phase
from attempting to generate code from an erroneous guad file, in
the event that it is executed next (as in the procedure LC.BAT).
When the compiler detects an error in an input file, it generates
an error message of the form

filename line Error nn: descriptive text

where "filename" is the name of the current input file (which may
not be the original source file if #include files are used);
"line" is the line number, in decimal, of the current line in
that file; "nn" is an error number useful for obtaining an
expanded explanation of the error from Appendix A; and "ercor
message text" is a brief description of the error condition. All
error messages are written to the standard output, which is
normally the user”s console but can be directed to a file if
desired (see Section 1.1.1). A message similar to the one above
but with the text "Warning" instead of "Error” is generated for
nor-fatal warnings; in this case, generation of the quad file
continues normally. 1In some cases, an error message will be
followed by the additional message

Execution terminated

which indicates that the compiler was too confused by the error
to be able to continue processing. The compiler uses a very
simple-minded error recovery technigue which may cause a single
error to induce a succession of subsequent errors in a sort of
"cascade" effect. 1In general, the programmer should attempt to
correct the obvious errors first and not be too concerned about
error messages for apparently valid source lines (although all
lines for which etrors are reported should be checked).

Error messages which begin with the text "CXERR"™ are
internal compiler errors which indicate a prohlem in the compiler
itself, Refer to Appendix B for the compiler error reporting
prtocedure, The compiler generates a few other error messages
that are not numbered; they are usually self- explanatoty. The
most common of these is the "Not enough memory" message, whxch
means that the compiler ran out of working memory.

1.3.4 Code Generation

The code generation phase reads the quad file and builds an
image of the instructions for each function in working memory,
before writing the instructions to the object file, This implies
that at least as much working memory must be present as is
required by the largest function in the source file; actually,
considerably more memory {as much as several times that size) is
required because of the additional overhead used by the compiler,

1-21

Lattice 8086/8088 C Compiler The MS-DOS Implementation

Since the compiler is subject to the same 64K byte data space
limitation as are all C programs generated by the Lattice
compiler, there is a definite limit to the size of a function
which can be compiled even when the maximum amount of memory is
available. Nonetheless, all of the compiler®s own source modules
-- some of which contain very large functions -- can be compiled
without difficulty. In any case, C is a language which
encourages modularity; most programs consist of numerous
functions, most of them small, It is therefore doubtful that the
function size limitation will prove to be a problem.

One of the sources of the extra overhead in buffering the
function in memory derives from the fact that branch instructions
are not explicitly represented in the function image. 1Instead,
they are represented by special structures denoting the type and
target of each branch. When the function has been completely
defined, the branch instructions are analyzed and several
important optimizations are performed.

1. Any branch instruction which passes control directly to
another branch instruction is re-routed to branch directly
to the target location.

2. The combination of a conditional branch instruction which
branches over a single unconditional branch is replaced by a
single conditional branch instruction of the opposite sense.

3. Sections of code into which control does not flow are
detected and discarded.

4. Each branch instruction is coded in the smallest possible
machine language Sequence required to reach the target
location.

Most of these optimizations are applied iteratively until no
improvement is obtained.

The code generator also makes a special effort to generate
efficient code for the "switch" statement. Three diffarent code
sequences may be produced, depending on the number and range of
the case values.

1. Tf the number of cases is three or fewer, control is
routed to the "case" entries by a series of test and branch
instructions.

2. 1f the case values are all positive and the difference
between the maximum and minimum case values is less than
twice the number of cases, the compiler generates a branch
table which is directly indexed by the "switch" value. The
value is adjusted, if necessary, by the minimum case value
and compared against the size of the table before indexing.
This construction requires minimal execution time and a
table no longer than that required for the sequence
descriped next.

1-22

3. Otherwise, the compiler generates a table of [case value,

branch address] pairs, which is linearly searched for the
"switch" value.

All of the above sequences are generated in-line without function
calls because the number of instruction bytes is small enough
that little benefit would be gained by implementing them as
library functions.

Aside from these special control flow analyses, the compiler
does not perform any global data flow analysis or any loop
optimizations. Thus, values in registers are not preserved
across regions into which control may be directed. The compiler
does, however, retain information about register contents after
conditional branches which cause control to leave a region of
code. Throughout each section of code into which control cannot
branch {although it may exit via conditional branches), values
which are loaded into registers are retained as long as possible
so as to avoid redundant load and store operations, The
allocation of registers is guided by "next-use" information,
obtained by analysis of the local block of code, which indicates
which operands will be used again in subsequent operations. This
information also assists the compiler, in analyzing binary
operations, in its decision whether to load both operands into
registers or to load one operand and use a memory reference to
the other. Generally, the result of such an operation will be
computed in a register, but sequences like

i+= 3;

will load the value of "j" into a register and compute the result
directly into the memory location for "i" (but only if "i" is not
used later in the same local block of code).

The hardware registers AX, BX, CX, and DX are used as
general purpose accumulators, while SI and DI (along with BX) are
used for access to indirect operands. BP is used to address the
current stack frame; see Section 1.4.3 for more information.

In order to generate the most efficient code for the largest
number of source language constructions, the compiler usually
makes a favorable assumption about pointer variables,
Specifically, it assumes that the actual objects accessed using
pointer variables are not the same as other objects wnich can be
accessed directly. This allows the compiler to avoid discarding
register contents (thus forcing them to be reloaded, perhaps
unnecessarily, at a later time) whenever a result is assigned
using a pointer. Consider the following example:

int i, j, k, *pi;

+2
J
4

XK %y
e}

LIS I
el B

e we e

*

1-23

Lattice 8086/8088 C Compiler The MS-DOS Implementation

In the general case, it is quite possible that "pi" might
actually point to "i", which would change the value assigned to
"k" in the next statement. In the vast majority of C programs,
however, "i" will be a local variable to which it is not possible
for "pi" to point. The compiler normally makes this assumption,
that is, that "*pi" cannot be equivalent to "i", and therefore
can retain the value computed in the first statement for "i" in a
register, which saves having to reload it to perform the multiply
operation in the third statement.

On the other hand, there are rare cases where this

assumption is not wvalid. C programmers almost never code
sequences such as

pi = si;
*pi = 12;

but more subtle cases of pointer overlap can occur, particularly
when both the pointer and its target are externally defined. For
these cases, the "-a" compile time option is provided; this
forces the compiler to assume worst-case aliasing (which is the
compiler jargon for this pointer overlap we have been discussing)
when generating code. We have designed the compiler to operate
this way because we believe that the cases of overlap are more
the exception than the rule. Thus, rather than default to worst-
case assumptions that produce correct code in all cases and
unnecessary inefficiencies in most cases, the compiler normally
makes a favorable assumption that produces efficient code which
works correctly in all but a few cases. The "-a" option is then
provided for use on programs which violate that assumption.

One final note on this subject: even when the "-a" option
is used, the compiler assumes that only objects of the pointed-to
type can be changed in pointer assignments. Thus, if an “int”
pointer is used in an indirect assignment, only registers
containing "int" values will be discarded.

1.4 Run-time Program Structure

This section describes the structure of C programs under the
8086/8088 MS-DOS implementation of the Lattice C compiler. Some
knowledge of the architecture of the 8086 processor and of the
8086 object code and linkage concepts is required in order to
understand much of the information presented. Readers who are
not interested in the precise technical details of the hardware
implementation may safely skim through or skip over this section;
it is primarily intended for programmers who must provide an
interface between C and assembly language.

Without mention of the specific object code details used to

Create it (which will be divulged in subsequent sectionsl, the
general structure of a C program is illustrated by the following
diagram.

1-24

-

1.4.1 Object Code Conventions

The object file created by the second phase is in the
standard MS-DOS object code format, which is compatible with the
Intel 8086 object module format. The object file defines the
instructions and data necessary to implement the module specified
oy the C source file, and also contains relocation and linkage
information necessary to guarantee that the components will be
addressed properly when the module is executed or referenced as
cart of a linked program. In order to force the parts of the
module into the proper locations after linking, the object file
defines two logical segments which are marked for concatenation
with other segments of the same name.

PROG is the segment which includes the instructions which
perform the actions specified by any functions defined in the
source file,

DATA is the segment which includes all static data items
which are defined in the source file. This includes not only
“hose data items explicitly declared "static" but also items
declared outside the body of a function without an explicit
storage class specifier, string constants, and double precision
constants, (Auto data items are simply allocated on the stack at
run time and are not explicitly defined in the object file.)

Both segments are defined to be combinable with other
segments of the same name. PROG segments combine with byte-
alignment, that is, as closely as possible; DATA segments combine
with word-alignment. Thus, no space is wasted when functions are
combined during linking, and the word alignment of elements
within a particular DATA segment is preserved after combination.
This alignment of data items is important for efficient data
fetches on the 8086, where word fetches from an odd byte address
require an additional four clock periods. Note that although a
compile~time option (described in Section 1l.l1.1) allows the
alignment reguirement for data items within a particular module
to be relaxed, the word alignment of DATA segments during linking
is not affacted.

The net effect of these segment definitions is to force, at
link time, all functions to be collected together and all static
data items to be similarly combined. This achieves the most
important part of the program structure diagrammed above. The
segment dJdirectives needed to combine assembly language modules
with C modules are shown in Section 1l.4.4.

1.4.2 Linkage Conventions

In order to guarantee that both the program and data
portions of the final linked program do not exceed 64K bytes, two
groups are . defined in the object code,

PGROUP = BASE segment + PROG segment

1-26

Lattice 8086/8088 C Compiler The MS-DOS lmplementat

DGROUP = DATA segment + STACK segment

The PROG and DATA segments are obtained from the C modules in !
program, as discussed in the previous section. The other t
segments are defined in the module C.0BJ, which must be the £i
module encountered during linking. The BASE segment serves !
purposes: (1) it forces PGROUP lower in memory because it is
first segment within C.OBJ, and (2) it contains text wh
identifies the current compiler revision number. The lati
feature allows programs to be examined with the debugger
determine the revision of the library used when the program 1
linked. The STACK segment has a dual role as well: (1)
defines the base of the stack and dynamic memory portion of !
data section of the program, and (2) it satisfies the linke
need for a segment of type STACK (if one is not encountered,
linker generates a warning message), With these gr¢
definitions, the address of a function is its offset from
base of PGROUP, and the address of a data element is its off:
from the base of DGROUP.

The module C.O0BJ also defines its own PROG and D?
segments. The PROG segment defines the initial execution addr
of the linked program. The segment registers are initializ
and the amount of memory remaining above the STACK segment
determined. The stack pointer is adjusted to its maximum val
as noted in the discussion at Section l.4. In the DATA segmi
of C.0BJ, the address of the stack base and top are saved for
by the memory allocation functions. At the top of the stack,
address of the program segment prefix is saved so that an orde
return to MS-DOS can be made when the program terminates.
characters from the command line which executed the program
transferred from the program segment prefix to the stack.
pointer to this copy of the command line is then passed to !
function "_main”", which begins execution of the program (:
Section 1.5.4).

As noted in Section 1.2.2, external names differ fi
ordinary identifiers in C in that upper and lower case lett:
are egquivalent. The relocation information in the object c«¢
defines all external names relative to either PGROUP (functio
or DGROUP (data). All external names are defined as
unspecified type, that is, there is no set of attribut
associated with the name; it is simply an offset within one
the other of the two defined groups. It is therefore an errcor
define two items with the same external name in the same progr
Tt is the programmer’s responsibility to prevent this occurre
and also to make sure that programs refer to external names i
consistent way (i.e., a function should not refer to "xyz"
"long" when it 1is actually defined as "int" in some otl
module). External definition and creference from asseml
language modules are discussed in Section l.4.4.

Consult the appropriate linker documentation for informat
as to how to obtain a public symbol map for a linked program,
a convenience, the DGROUP segments are defined with class n:

DATA and the PGROUP segments with class name PROG.
1.4.3 Punction Call Conventions »

When a C function makes a call to another function, it first
pushes the values of any arguments onto the stack and then makes
a call to that function. A near call (which changes IP but not
C3) is used because all functions are defined within 64K bytes,
The argument values are pushed in reverse (right-to-left) order
because the stack grows downward on the 8086; this allows the
called function to address the arguments in the natural left-to~-
right (low-address-to-high-address) order. The first actions
taken by the called function are:

1. The BP register is pushed onto the stack; this saves
the value of BP used by the callerc.

2. The stack pointer SP is reduced (i.e., a value is
subtracted from it) by the number of bytes of stack space
regquired by the called function. This value is rounded to
the nearest word so that the stack pointer is always word-
aligned. The stack space includes all "auto" data elements
declared in the function, and also may include additional
space for the temporary storage locations which are often
required during expression evaluation. If no "auto" items
or temporaries are needed, this step is skipped; SP is
unchanged. .

3. The stack pointer SP is moved into BP to allow
addressing of the elements on the stack: function
arguments, "auto" storage, and temporaries.

The offsets of the various components are indicated by the
following diagram. Note that of the registers used by the
calling program, only BP is saved.

High ~mmmm-cmeemese-----| <= Caller’s BP
arguments

es e

e emm emm ammm® -

return address

caller”s saved BP

auto data items

temporaries
Low = |eeeeeescmccceccnaao <- BP, SP

During execution of a C function, BP and SP normally contain
the same value. The temporaries are allocated closest to BP,
followed by the "auto" elements declared, in the order of their
declaration., This addressing scheme has the disadvantage that

1-28

e e e - —— e 4 s T o S e e e - Sa-ma s 2 8 = =

——————

Lattice 8086/8088 C Compiler The MS-DOS Implementat

the arguments supplied to the function are at an off
‘determined in part by the amount of “auto" storage declared.
the function declares more than about 124 bytes of "au
storage, the arguments require an additional offset byte in
instructions which refer to them. ,

The compensating advantage to this mechanism appears whe
function calls another function and supplies it with argun
values, Because a C function may in special cases hav
variable number of arguments ("printf" is the classic examp
the called function cannot de-allocate the stack space usec
pushing the argument values; the calling function must do so.
retaining the normal SP value in BP, Lattice C functions
restore the stack pointer after a function call with the two-t
instruction

MOV SP,BP

If BP is not set up in this way, a value must be explicitly ac
to SP, which requires a three- or four-byte instruction.

A second advantage to this technique is that it is eas:
implement assembly language functions (to be called from C)
a variable number of arguments. Since the caller”s BP cont:
the value in SP before argument values were pushed (as
diagram shows), it defines the upper limit for the address of
arguments. In other words, only the space between the s:
return address and the address in the caller’s BP register
contain arguments,

When a function returns to its caller, it first loads
function return value, if any, into predefined registers,
size of the value returned determines the register(s) used:

16 bits AX register
32 bits (AX,BX) register pair
64 bits (AX,BX,CX,DX) register guadruplet

In the multiple register returns, AX contains the high order |
of the value. Double precision functions compiled with the
option return the function value as the top of the 8087 regi:
stack.

After the return value is loaded, the function adds tc
the same value that was subtracted on entry. Then BP is pop
restoring the caller’s base pointer, and a near creturn
executed, The calling function now regains control, and n
restore SP if any argument valces were pushed.

1.4.4 Assembly Language Interface

Programmers may write assembly language modules
inclusion in C programs, provided that these modules adher«
the object code, linkage, and function call conventions descr]
in the preceding sections. An assembly language module wt

. Lattice 8086/8088 C Compiler The MS-DOS Implementation

defines one or more functions to be called from C must begin with
the statements

PGROUP GROUP PROG
PROG SEGMENT BYTE PUBLIC “PROG”
ASSUME CS:PGROUP

followed by PUBLIC declarations of the function(s):

PUBLIC AFUNC

AFUNC PROC NEAR

The function itself must be declared NEAR, as shown above, and
must conform to the conventions detailed in the preceding
section. If a value is to be returned by the function, it must
pe placed in the appropriate register(s).

A module may similarly define data locations to be accessed
{using "extern" declarations) in C programs by defining a DATA
segment, as in the following example:

DGROUP GROUP DATA

DATA SEGMENT WORD PUBLIC “DATA”’
ASSUME DS:DGROUP
PUBLIC DX1,DX2,DX3

DX1 DW 4000H

DX2 DW 8000H

DX3 DB ‘Text string”
DATA ENDS

Note that if the address of an item is to be defined, the name
must be pr2fixed with the group name if it is used as the operand -
of the OFFSET operator or of the DW or DD statements. If DX4 is
used to define the address of DX1 in the example above, it must
be coded

DX4 DW DGROUP: DX1

Otherwise, a segment-relative offsa2t is generated, which will not
oe the actual address of the item as it is defined within the
context of a C program, (Note: the prefix is not required for
the LEA instruction, which refers to the current ASSUME
directive.)

To call a C function from assembly language, an EXTRN
declaration €or the function must be included after the SEGMENT

directive, and the caller must supply any expected arguments in
the proper order (see Section 1.4.3).

1-30

EXTRN CFUNC:NEAR

CALL CFUNC

Similarly, to refer to data elements defined in a C module,
include appropriate EXTRN statements:

EXTRN XD1:WORD,XD2:BYTE

MOV AX,XD1

Note that any EXTRN statements for data elements must be defined
within a DATA segment declaration like the one shown previously.
The BYTE attribute must be used for external "char" items, If an
element is larger than a word, a STRUC can be used to define it,
or its offset can be loaded into an index and used to fetch its
component parts. The same caution about addresses requiring a
yroup prefix applied to external reference:

DW DGROU?P: XD1
must be used to define the address of XDl.

Remember that upper and lower case letters for external
names (and for all symbols within assembly language modules) are
equivalent, so an assembly language function "XYZ" can be called
from C as either "XYZ" or "xyz".

The following example (a portion of one of the operating
system interface routines used in the MS-DOS implementation)
illustrates many of the regquirements discussed above, and shows
how a STRUC may be used to address elements on the stack.

BDOS_OPEN EQU OFH ;Open existing file
BDOS_CREATE EQU 16H ;Create new file

PGROUP GROUP PROG

; Dynamic storage layout for XCMAKE, XCFIND

DYNS STRUC '
DB ? ‘
INTNO DB ? ;Save BDOS interrupt number here
OLD_BP DW ? ;Caller”s BP save
RETN DW ? ;Return address from call
ARGl DW ? ;¥irst argument
ARG2 DW ? ;Second argument
ARG3 DW ? ;Third argument

DYNS ENDS

;Size of storage to be allocated

nN

DYNSIZE EQU

1-31

- Lattice 8086/8088 C Compiler The MS—-DOS lmplementation

name XCMAKE ~-- create new file

synopsis iret = XCMAKE (filename, pmode, area);

int iret; return code: 0 if successful

char *filename; file to be created

int pmode; access privilege mode bhits

int *area; for return of file pointer data
;description This function is called by "creat" to create
a new file, The access privilege mode bits are
ignored in this implementation. The "area"
pointer gets a pointer to a device or file block
for the new file, It is then supplied to XCIOS
when the connect call is made.

“e Se NS Ne Se se we ~e we

returns iret = 0 if file successfully created
= -1 if error

U ~e v e we Se na we me Se

0
o
Q

SEGMENT BYTE PUBLIC “PROG”
PUBLIC XCMAKE,XCFIND

EXTRN XCFINT:NEAR, XCFTRM:NEAR
ASSUME CS:PGROUP

XCMAKE PROC NEAR :

PUSH BP

SuUB SpP,DYNSIZE

MOV BP,SP .

MoV (BP] . INTNO,BDOS_CREATE

MOV AX, (BP] .ARG3 ; MOVE AREA ARG TO ARG2

MOV [BP] .ARG2,AX

JMP SHORT XCF01l
nanme XCFIND -- find existing named file
synopsis iret = XCFIND(filename, area);

int iret; return code: 0 1f successful
char *filename; file to be found
int *area; for return of file pointer data

and returns a pointer to the file block or device
block for it., Except for the privilege mode
bits, the arguments have the same meaning as for
XCMAKE.

r

H
H
; * .
; description This function finds an existing file (or device)
:
; teturns same as XCMAKE

;

XCFIND PROC NEAR

PUSH BP
suBs SP,DYNSIZE
MOV 8P,SP
MOV (BP] .INTNO,BDOS_OPEN
XCF0l: PUSH (BP] .ARG1 ;PASS FILE NAME TO XCFINT

CALL XCFINT ;GET FILE/DEVICE BLOCK PTR

MOV SP,BP
TEST AX,AX ;TEST RETURN VALUE FROM XCFINT
JNZ XCF02 ;BRANCH IF POINTER NOT NULL
NOT AX
JIMP SHORT XCFO05 ;RETURN -1
XCF02: MOV BX,AX
MOV DI, [BP] .ARG2
MOV AL, [BX) ;GET FIRST BYTE OF BLOCK
TEST AL, 80H
JNZ XCFO04 ;BRANCH IF DEVICE
MOV DX, BX ;FCB -ADDRESS INTO DX
MOV AH, [BP] .INTNO
INT 21H ;OPEN/CREATE FILE
TEST AL,AL
Jz XCF04 ;BRANCH IF SUCCESSFUL
PUSH BX
CALL XCFTRM ;FREE THE FILE ACCESS BLOCK
MOV Sp,BP
MOV AX,-1
JIMP SHORT XCFO0S
XCF04: MOV {p1},BX sRETURN PTR TO BLOCK
XOR AX,AX ;SET GOOD STATUS
XCF05: ADD SP,DYINSIZE
POP BP
RET ;RETURN TO CALLER
XCFIND ENDP
XCMAKE ENDP
END

1.5 Library Implementation

Although the portable library functions described in Section
3 of this manual define a general purpose interface to the
typical environment provided for C programs, there are inevitably
many details and variations which are system-dependent. In this
section, some of the details of the MS-DOS linrary implementation
are presented in order to clarify the peculiarities of this
particular environment. Fortunately, MS-DOS supports a number of
powerful features which allow a full implementation of the
standard file 1/0 functions, although the representation of text
files presents a minor problem; Section 1.1.5 discusses file I/0.
Several standard device names are also supported by MS-DOS, and
the Lattice C I/0 interface processes these in special ways, as
explained in Section 1l.5.2. The structure of Lattice C programs
(see Section 1.4) allows the full set of memory allocation
functions, although care must be taken to provide sufficient
space for the stack, as Section 1.5.3 warns., The basic progranm
entry and exit functions are described in Section 1.5.4, and some
special functions unique to the MS-DOS implementation are
presented in Section 1.5.5. As additional functions will
probably be provided as the compiler evolves, the programmer
should check the addendum for the current version of the
compiler,

1433

Lattice 8086/8088 C Compiler The MS-DOS Implementation

1.5.1 Pile I/0
File names are specified according to the following format:
d:filename.ext

where "d:" is an optional drive specifier, "filename®” is the name
of the file, and ".ext"™ is the file extension. If the drive
specifier is omitted, the currently logged-in disk is used. The
file name is specified without trailing blanks, if less than 8
characters, and the extension (including the ".") must be omitted
if one is not defined for the file. Alphabetic characters may be
supplied in either upper or lower case; actual file names use
upper case letters only. Only those characters which are legal
for file names under MS-DOS are acceptable; consult the MS-DOS
documentation for details. Certain names are recognized as
devices rather than files; see the next section.

When a file is opened using "open” or "creat", a file access
block is allocated using "getmem", and library functions which
process read and write calls use this block to transfer data
vetween the file and the caller’s area. The file access block
contains information such as the current file position and the
logical end of file position; it also includes a 128-byte buffec
which is used for MS-DOS read and write functions on the file.
Because the relative block number is kept as a l6-bit unsigned
integer, the maximum size of a file which can be accessed using
the "read" and “"write"” functions in this implementation is 65535
X 128, or about 8 megabytes. Note that the file I/0 functions
maintain an exact end-of file, even though portions of the file
are accessed in 128-byte blocks. When data is written to the
Eile, it is copied into the block buffer and not actually written
to disk until the buffer is full, the file position changed to
another block, or the file is closed. The memory used for the
file access block is released (via "rlsmem") when the file is
closed.

Note that all of the standard 1/0 functions -ultimately call
“open", "creat", "read", and "write", so the above description
applies to "printf", "scanf", "putchar", "getchar”", and all the
other upper level functions (if used for file I/0). Programs
with open files cannot use the "rstmem" or "rbrk" functions (see
Section 3.1) because the file I/0 system allocates the file
access block from the same memory pool. This restriction does
not ‘apply to open files whicn are actually devica2s (see next
section), because a file access block is not allocated for device
1/0. Note that the level 2 functions are subject to a separate
out similar restriction because "fopen" allocates a buffer using
"getmenm", ’

In the MS-DOS implementation, both the level 2 ("fopen",
"putc”, "getc", "fclose") and the level 1 ("open", “creat"®,
"read”, "write", "close") 1/0 functions are limited to 16 open
files, including devices, and including the three (stdin, stdout,
stderr) which are automatically opened for the "main® program.

1-34

The portable library provides a system-dependent option when
afile is opened or created; the programmer may select one of two
modes of 1/0 operation while a file is open. On some systems the
modes are in fact the same, but in the MS-DOS implementation they
differ in some important details.

Translated or text mode is the default. In this mode, the
line terminator normally used by C programs (a single newline
character, “\n” or 0x0A) is translated to the MS-DOS line
terminator, which consists of the two characters carriage return
and linefeed (0x0D followed by O0x0A). This translation is
performed when the file is written using calls to the "write"
library function; the inverse translation is performed when the
file is read using the "read” library function. Programs which
use the higher level I1/0 functions ("putchar", "getchar",
"orintf", etc.) are usually not affected, but programs which call
"read” and “write" directly must beware of these translations.
On "read"” calls, thne count returned may be less than the actual
number of bytes by which the file position was advanced (because
of CR deletions). On "write" calls, the count returned may be
greater than the number of bytes specified in the count argument
(because of CR insertions), Note that on read operations
translation is performed only if the CR is immediately followed
by an LF character; isolated carriage returns are not affected.
Similarly, con write operations translation is performed only if
the LF is NOT preceded by a CR.

Untranslated or binary mode is an option which can be
selected when the file is opened or created. By adding 0x8000 to
the mode for the "open” call or to the access privilege mode word
for the "creat" call, the programmer indicates that read/write
operations on the file are to be performed without translation.
In this mode, bytes are transferred between the caller’s area and
the file without modification. This option must be used for
files containing binary data, since otherwise data bytes which
happen to take on CR and LF values will be translated
incorrectly. Since the high-level 1/0 routines call "open" or
"creat" themselves, these routines cannot be used on files in the
untranslated mode; they always operate in text mode.

In addition to the file I/0 modes discussed above, two other
functions should be clarified under the heading of file 1/0., The
“creat" function gets a system-dependent argument, the access
privilege mode bLits; these are ignored under the MS-DOS
implementation, except for bit 15 (the 0x8000 bit) which-if set
causes the file to be accessed in untranslated or hinary mode.
The "lseek" function has an offset mode, not always implemented,
which specified an offset relative to the end of file. Because
MS-DOS retains an exact end of file in its directory, this mode
can be and is implemented in this version.

1-35.

Lattice 8086/8088 C Compiler The MS-DOS Implementation

1.5.2 Device I/0

Several special "file" names are checked for by the Lattice
I1/0 interface under MS-DOS, and processed using single character
reads and writes. These device names may be specified in either
upper or lower case, with or without a trailing ":". The
following table lists the devices and the corresponding BDOS
functions used for read and write operations, in translated and
untranslated modes.

Device Translated Mode Untranslated Mode
Name Read FN Write FN Read FN Write FN
CON 1 2 7 6

AUX 3 4 3 4
COM1 3 4 3 4

PRN - 5 - S
LPT1 - 5 - S

NUL - - - -

a "-" for the function number indicates that the corresponding
operation is not supported for that device. The "read" function
ceturns end of file (count = 0) if read is not supported. If
write is not supported, the "write" function returns a normal
count indicating success, but does not actually send the data.
An additional special device name, specified by a null string
("*, which consists of just a “\0°), is recognized and processed
as if "CON" had been specified.

In translated mode, a newline (0x0OA) on output is converted
to a carriage return/linefeed sequence. A carriage return on
input is converted to a newline, and terminates the read
operation even if the byte count is not satisfied. In
untranslated mode, characters are sent without modification, and
read operations do not terminate until the requested number of
characters has been received. Note that a read operation to the
console in untranslated mode does not echo the characters
received.

Programmers may also perform direct single character I/0
operations using the "bdos™ function, and several additional
functions support diresct I/0 to the console. See Section 1l.5.5
for details.

1f one of these devices is opened for access using "fopen*,
output is normally buffered, which means that no data is actually
sent to the device until 512 bytes have accumulated or the file
is closed. The buffer can be flushed using "fflush”™ or the file
can be changed to the line-buffered mode using "setnbf"; see
Section 3.2.2 for more information.

1-36

1.5.3 Memory Allocation

The full set of memory allocation functions described in
Section 3.1 is provided under MS-D0S, The following cautions
should be noted:

1. The reset functions "rstmem” and "rbrk"™ cannot be used if
any of the standard 1/0 functions are also being used on
currently open files, Note that only disk files allocate a
file access block using "getmem"; the reset functions may be
used if the only open files are actually connected to
devices., (They also cannot be used if either files or
devices are open through the level 2 I/0 functions; see
Section 3.2.) A file may be closed, then re-opened after
the reset function is called; however, any file descriptors
or file pointers must be updated if this is done, because
there is no guarantee that the same value will be returned
when the file is opened again.

2. The dynamic memory used by the memory allocation
funztions is the same memory used for the run-time stack.
Programs must be careful to provide enough space for the
stack to prevent its collision with the dynamic memory pool,
either by getting an override value from the command line
(see Section 1.1.4) or by defining an external "int"
location called "_stack” and initializing it with a desired
value. For example, the statement

int _stack = 10000;

will provide for 10000 bytes of stack space. (Note: in
order to qualify as an external definition, this statement
must appear OUTSIDE the body of any function defined in the
same module.) The default value for "_stack" (supplied from
the library) is 2048. See Section 1.4 for information about
the structure of programs.

3. Programmers who wish to implement their own memory
allocation functions can refer to the locations in C.OBJ
which define the total stack space available:

extern char *_base;

contains the offset (from DS) of the lowest portion of the
stack, which is the same as the highest offset of the static
data items in the program (see diagram at Section 1.4),.

extern char *_top;

contains the offset of the top of the stack, either X°FFF0°’
or whatever was determined to be the highest usable offset.
As noted above, the external location "_stack" contains the
default or specified stack size desired; user-written memory
allocators may wish to make use of that value, as a
convenience,

1-37

Lattice 8086/8088 C Compiler The MS-DOS Implementation

1.5.4 Program Entry/Exit

The C.O0BJ module calls "_main" to begin execution - of a C
program, and passes to it a copy of the command line which
executed the program. Actually, because MS-DOS does not save the
program name portion of the command, the command line passed to
* main" consists of the characters "c " (lower case “c” followed
by a blank) immediately followed by all of the characters typed
after the program name, The standard version of " main" supplied
in LC.LIB analyzes the command line for all of the elements
described in Section 1l.1.4, and then passes the command-line
arguments to "main”, If the stack override and file specifier
features are not needed, the following function may be used
instead. Note that the function must be compiled and the
resulting object file included as one of the .OBJ files named on
the LINK command.,

$include "STDIO.R"
#include "CTYPE.H"
¢define MAXARG 32 /* maximum command line arguments */

_main(line)
char *line;

static int argec = 0;
static char *argv{MAXARG];

while (isspace(*line)) line++; /* find program name */
while (*line != “\0°) _ '
/* get command line parametecs */
if (argc == MAXARG) break; .
argviargc++] = line;
while (*line != “\0° && isspace(*line) == 0) line++;
if (*line != “\0°) *line++ = “\0°;
while (isspace(*line)) line++;

main(argc,argv); /* call main function */
exit(0);

The program exit functions "exit" and "_exit", described in
Section 3.3, are implemented under MS-DOS but the error code and
error message arguments are both ignored.

1.5.5 Special Functions 4
The functions discussed in this section provide serial 1/0
capanbilities at various levels, At the lowest level, the
function :
v = inp(p);

int v;
int p;

1-38

returns the 8-bit value "v* (expanded to 16 bits by padding with
zero) from input port "p", while the function

outp(p,V);

sends the 8-bit value "v" to output port "p". These functions
perform the equivalent of the assembly language instructions

IN AL,P
our P,AL

The functions can be used to perform I/0 directly from C.
Access to the BDOS function entries of MS-DOS is provided by

iret = bdos(fn, dx);

int iret; value returned in AL by BDOS function
(expanded to 16 bits by zero padding)

int fn; the BDOS function number

int dx; (optional) value to be placed in DX

Obviously, not all of the BDOS functions can be called with this
interface; still, a sizable number of them are accessible,
including all of the single character I1/0 functions. The "bdos"
function is used to implement the special function

iret = kbhit();
int iret; 0 if a character was typed,
non-zero otherwise

which returns a value indicating whether or not a character has
been typed at the user’s console.

Some of the most frequent I/0 requests on any system which
supports C are to the user”’s terminal, where it is often
necessary to perform character I1I/0 on a single-character basis.
Two library functions provide this capability.

c = getch();
int ¢;

returns the ("int"-expanded) character from the console. The
character is NOT echoed or checked for the program interrupt
character (control-C or control-BREAK) .

”

putch(c);

sends the specified character directly to the console, Program
interrupt is also NOT checked for by this function.

Since the standacrd 1/0 functions are buffered even when
"stdin" and "stdout" are the user’s console, mixing "putch” calls
with "printf" or "puts" calls can cause definite problems
(similar problems occur on input). These problems can be avoided
by using the direct console I1/0 functions described in Section

139

Lattice 8086/8088 C Compiler The MS-DOS Implementation

3.2.4, along with the special header file "CONIO.H"., Note that
the "putchar®™ and "getchar” functions used in these modules are
the same as the "putch®” and "getch" functions described above;
they do not echo characters received on input or check for the
program interrupt character. If this presents a problem, the
aser can define local versions of "putch" and "getch" (inside one
of the user”s modules) which send and receive characters using
some different mechanism (such as the BDOS functions 1 and 2,
which can be called with the "bdos" function described above),

Two special console I/0O functions are provided for input and
output of text strings. The function

p = cgets(s);
char *p; returned string pointer
char *s; buffer for input string

uses the BDOS function 10 to get an input string. The first byte
{charactecr) of "s" must be initialized by the caller to contain
the number of bytes, minus two, in "s". The string pointer
returned - is "s+2", whicn is the first byte of input data. The
carriage return (which the user at the console must type to
terminate the operation) is replaced by a null byte. Note that
"s+1" will contain the number of characters in the string.
Characters typed are echoed, and the full range of editing
capabilities (such as backspacing, etc.) are available to the
user,

Text string output can be performed using

cputs(3);
char *s; string to be output

which uses the.BDOS function 9 to write to the console. A
carriage return or linefeed is NOT appended; they must be
included in the string, if desired. This function locates the
terminating null byte, changes it to a “$” (0x24), then changes
it back to the null byte before returning., This points out the
function’s two limitations: (1) the string to be printed cannot
itself contain a “$” and (2) the string to be output cannot
reside in read-only memory (ROM).

1-40

SECTION 2 Language Definition

The Lattice C compiler accepts a program written in the C
programming language, determines the elementary actions specified
by that program, and eventually translates those actions into
machine language instructions. Although the final result of
these processes is highly machine-dependent, the actual language
accepted by the compiler is for the most part independent of any
system or implementation details. This section presents the
language defined by the Lattice portable C compiler using the
Kernighan and Ritchie text as a reference point. Since this
language conforms closely to that described in the text, only the
major differences are first presented. The major features of the
language are then discussed, not in any attempt at completeness
but simply for the sake of showing them from a different
perspective, Finally, the C reference manual is "amended" to
show more precisely how the language differs from the standard.

2.1 Summary of Differences

Deviating from a standard has its own peculiar set of perils
and rewards. On the one hand, the differences create problems
for those who have conformed to the standard in the past; on the
other, they may make life easier for those who take advantage of
them in the future. Most of the differences listed below were
prompted by a desire to make the language both more portable and
more comprehensible. The vast majority of programs will not run
afoul of these potential troublespots; those that do will in most
cases be improved by adjusting to conform to them., Here, then,
is a summary of the major differences:

o Comments normally can be nested in the Lattice compilecr; in
the standard, they cannot. A compile-time option forces the
compiler back to the standard non-nesting mode.

o Pre-processor macro substitution using arguments must be
specified on a single line; for example, when "max(a,b)" is
used, the invocation text from "max" to the final closing
parenthesis must be defined within a single input line.

o The dollar sign ($) is permitted as an embedded (i.e., not
the first) character in identifiers.

o ‘Identically written string constants refer to the same
static storage locations, that is, only one copy of the
string is generated by the compiler., This is in contrast to
the statement in Kernighan and Ritchie that all strings are
distinct, even when written identically.

o Multiple character constants are accepted by this compiler;
in the standard, only a single character enclosed in single
quotes is legal. The resulting value may be "short" or
"long®, and its exact value is machine-dependent.

- ~ | 2-1

Lattice 8086/8088 C Compiler Language Definition

o In processing structure and union member declarations, the
compiler builds a separate list of member names for each
structure (or union). Thus, identical names may be used for
members in different structures, even though both the offset
and the attributes may be different in each declaration,
The specific structure being referenced determines which
member name (and therefore which offset and set of
attributes) is meant. The typing rules for structure member
references are strictly enforced so that the particular list
of valid member names can be determined. 1In other words,
the expression in front of the "." or "->" operators must be
identifiable by the compiler as a structure or pointer to a
structure of a definite type.

] Implicit pointer conversion (by assignment) is legal but
generates a warning message; this occurs whenever any value
other than a pointer of the same type or the constant zero
is assigned to a pointer. A cast operator can be used to
eliminate the warning. A more stringent requirement is
enforced for initializers, where the expression to
initialize a pointer must evaluate to a pointer of the sanme
type -or to the constant zero; any other value is an error.

o If a structure or union appears as a function argument
without being preceded by the address-of operator (&), the
compiler generates a warning message and assumes that the
address of the aggregate was intended.

o An array name may be preceded by the address-of operator (&)

in this implementation; the meaning, however, is not that of

- a pointer to the first element but of a pointer to the

array. This construct allows initialization of pointers to
arrays.

o The maximum size of any declared object is the largest
positive integer which can be represented as an "int". This
implies a maximum size of 32767 for 1l6-bit "int" machines.

o The maximum value of the constant expression defining the
size of a single subscript of an array is 32767.

A more systematic and detailed explanation of the above
differences is presented in Section 2.3, but some of the most
important items above deserve some immediate clacification, P

The intent behind making the structure and union member
names a separate ciass of identifiers for each structure is
twofold., First, the flexibility of member names is greatly
increased, since now the programmer need not worry about a
possible conflict of names between different structures. Second,
the requirement that the compiler be able to determine the type
of the structure being referenced generally improves the clarity
of the code, and disallows such guestionable constructs as

int *p;

o=>xXyz = 4;

which is considered an error by this compiler. Those who grumble
about this restrictiorn should note that one can accomplish the
equivalent sequence in Lattice C by using a cast:

((struct ABC *)p)=->xyz = 4;

The parentheses are required since the "->" operator binds more
tightly than the cast. The idea is not that such code should be
prohibited unconditionally but that any such constructs should be
clearly visible for what they are; the cast operator serves this
purpose nicely.

Exactly the same intent is present in the pointer conversion
warning. By using a cast operator, the programmer can eliminate
the warning; the conversion is then explicitly intentional, and
not simply the result of sloppy coding. 1In addition, there is a
more important reason for the warning. Although many C programs
make the implicit assumption that pointers of all types may be
stored in "int" variables (or other pointer types) and retrieved
without difficulty, the language itself makes no guarantee of
this. On word-addressei machines, in fact, such conversions will
not always work properly; the warning message provides a gentle
(and non-fatal) reminder of this fact.

Finally, the warning generated when a structure or union is
used as a function argument without the address-of operator is
intended to remind programmers that this compiler does not allow
an aggregate to be passed to a function -- only pointers to such
objects.

2.2 Major Language Features

The material presented in this section is meant to clarify
some of the language features which are not always fully defined
in the Kernighan and Ritchie text, These are features which
depend on implementation decisions in the compiler itself or on
interpretations of the language definition. Those language
features which are specifically machine dependent are described
elsewhere in this manual.]

2.2.1 Pre-processor Features
!

The Lattice C compiler supports the full set Oof pre-
processor commands described in Kernighan and Ritchie, but some
of the characteristics of the commands depend on how the compiler
is implemented. Most implementations perform the pre-processor
commands concurrently with lexical and syntactic analysis of the
source file, because an additional compilation step can be
avoided by this technique. Other versions of the compiler
incorporate a separate pre-processor phase in order to reduce the
size of the first phases of the compiler, 1In either case, the

Lattice 8086/8088 C Compiler Language Definition

analysis of the pre-processor commands is largely independent of
the compiler®s C language analysis. Thus, #define text
substitutions are not generally performed for any of the pre-
processor commands, although nesting of macro definitions is
possible since substituted text is always re-scanned for new
j$define symbols. The exception occurs with the $if command,
which is processed differently depending on whether pre-processor
functions are performed concurrently or in a separate phase. In
the former case, the pre~processor module "borrows" the
compiler”s expression analyzer to evaluate the #if expression, so
that #define substitutions are performed and the "sizeof”
operator can be used. If evaluated during a separate pre-
processor phase, #if expressions are more restricted; #define
substitutions are not performed, and the "sizeof" operator cannot
be used because the pre-processor phase has no knowledge of
declared objects. To be safe, one should keep #if expressions as
simple as possible; better still, avoid $if altogether and use
$ifdef or ¢ifndef.

The 3define command, as noted in Section 2.1, has the
limitation that the macro invocation text must all be contained
on a single input line. Because the compiler uses a text buffer
of £ixed size, a particularly complex macro may occasionally
cause a line buffer overflow condition; usually, however, this
error occurs when more than one macro reference occurs in the
same source line, and can be circumvented by placing the macros
on different lines. Circular definitions like

$define A B
tdefine B A -

will be detected by the compiler if either A or B is ever used,
as will more subtle loops. Like many other implementations of C,
the Lattice compiler supports nested macro definitions, so that
if the line /

tdefine XYZ 12
is followed later by
$define XYZ 43

the new definition takes effect, bhut the old one is not
forgntten. 1In other words, after encountering

tundef XYZ ,
the former definition (12) is restored. To completely "undefine"”
XY¥%2, an additional #undef is regqguired. The rule is that each

tdefine must be matched by a corresponding $undef before the
symbol is truly forgotten.

2.2.2 Arithmetic Objects

Six types of arithmetic objects are supported by the Lattice
compiler; along with pointers, these obJects represent the
entities which can be manipulated in a C program. The types are:

"short"™ or "short int"
“char"

"unsigned®™ or "unsigned int"
"long" or "long int"

"float"

"double"” or "long float"

Note that in thnis implementation, "unsigned” is not a modifier
but a separate data type.

The "natural” size of integers for the target machine (the
machine for which code is being generated) is indicated by a
plain "int" type specifier; this type will be identical to either
"short" or "long", depending on the architecture of the target
machine. Although the size of all these objects is technically
machine dependent, the Lattice compiler assumes the target
machine has an 8-bit, 16-bit, or 32-bit architecture and that the
fundamental storage quantity is an 8-bit byte,. Only in
connection with bit fields does this assumption ever become
immportant.

The compiler follows the standard pattern for conversions
between the various arithmetic types, the so-called "usual
arithmetic conversions” described in the Kernighan and Ritchie
text., The only exception to this occurs in connection with byte=-
oriented machines, where expansion of "char" to "int" may be
avoided if both oparands in an expression are "char", and the
target machine supports byte-mode arithmetic and logical
operations. -

2.2.3 Derived Objects

The Lattice C compiler supports the standard extensions
leading to various kinds of dJderived objects, including pointers,
functions, arrays, and structures and unions. Declarations of
these types may be arbitrarily complex, although not all
declarations result in a legal object. For example, arrays of
functions or functions returning aggregates are illegal. The
compiler checks for tihese kinds of declarations and also verifies
that structures or unions do not contain instances of themselves,
Objects which are declared as arrays cannot have an array length
of zero, unless they are formal parameters or are declared
"extern" (see Section 2.2.4). All pointers are assumed to be the
same size =-- usually, that of a plain "int" -- with one
exception, On word-addressed machines, pointers which point to
objects which can appear on any byte boundary are assumed to
require twice as much storage as pointers to objects which must
be word-aligned.

Lattice 8086/8088 C Compiler Language Definition

Note that the size of aggregates (arrays and structures) may
be affected by alignment requirements. For example, the array

struct {
short 1i;
char c¢;
} x{10];

will occupy 40 bytes on machines which require "short" objects to
be aligned on an even byte boundary,

2.2.4 Storage Classes

Declared objects are assigned by the compiler to storage
offsets which are relative to one of several different storage
hases. The assigned storage base depends on the explicit storage
class specified in the declaration or on the context of the
declaration, as follows:

(1) External. An object is classified as external if the
"extern" keyword is present in its declaration, and the object is
not later defined in the source file (that is, it is not declared
outside the body of a function without the "extern” keyword).
Storage is not allocated for external items because they are
assumed to exist in some other file, and must be included during
the linking process that builds a set of object modules into a
load module.

(2) Static. An object is classified as static if the
"static® keyword is present in its declaration or if it is
declared outside the body of a function without an explicit
storage class specifier. Storage is allocated for static items
in the data section of the object module; all such locations arce
initialized to zero unless an initializer expression is included
in the declaration (see Section 2.2.6). Static items declared
outside the body of a function without the "static" keyword are
visible in other files, that is, they are externally defined.
Note that string constants are allocated as static items, and are
treated as unnamed static arrays of "char”®.

(3) Auto.. An object is classified as auto if the "auto"
keyword is present in its declarationor if it is declared inside
the body of a function without an explicit storage class
specifier (it is illegal to declare an object "auto" outside the
body of a function). Storage is presumably allocated for auto
items using a stack mechanism during execution of the function xn
which they are defined.

"(4) Formal. An object is classified as formal if it is a
formal parameter to one of the functions in the source file.
Storage is presumably allocated for formal it2ms when a function
call is made during execution of the program.

Note that the first phase of the compiler makes no
assumption about the validity of the "register" storage class

2-6 -

declarator. Items which are declared "register" are so flagged,
but storage is allocated for them anyway against either the auto
or the formal storage base. The implementation of "register® is
machine dependent and may not be supported at all in some cases.

Note also that if the "-x" option is used, the implicit
storage class for items declared outside the body of a function
changes from "static”" to "extern". This allows a single header
file to be used for all external data definitions. When the
"main® function is compiled, the "-x" option is not used, and so
the various objects are defined and made externally visible; when
the other functions are compiled, the "-x" option causes the same
declarations to be interpreted as references to objects defined
elsewhere,

2.2.5 Scope of ldentifiers

The Lattice compiler conforms almost exactly to the scope
rules discussed in Appendix A of the Kernighan and Ritchie text
(pp. 205-206). The only exceptionh arises in connection with
structure and union member names, where as noted in Section 2.1
the compiler keeps separate lists of member names for each
structure or union; this means that additional classes of non-
conflicting identifiers occur for the various structures and
unions. Two additional points are worth clarification.

First, when identifiers are declared at the beginning of a
statement block internal to a function (other than the first
block immediately following the function name), storage for any
auto items declared is allocated against the current base of auto
storage. When the statement block terminates, the next available
auto storage offset is reset to its value preceding those
declarations. Thus, that storage space may be reused by later
local declarations. Rather than generate explicit allocate and
deallocate. operations, the compiler uses this mechanism to
compute the total auto storage reguired by the function; the
resulting storage is allocated whenever the function is called.
With this scheme, functions will allocate possibly more storage
than will be needed (in the event that those inner statement
blocks are not executed), but the need for run-time dynamic
allocation within the function is avoided.

Second, when an identifier with a previous declaration is
redefined locally in a statement block with the "extern" storage
class specifier, the previous definition is superseded in the
normal fashion but the compiler also verifies compatibility with
any preceding "extern" definitions of the same name. This is
done in accordance with the principle expressed in the text,
namely that all functions in a given program which refer to the
same external identifier refer to the same object. Within a
source file, the compiler also verifies that all external
declarations agree in type. The point is that in this particular
case -- where a local block redefines an identifier as "extern®
-- the declaration effectively does not disappear upon
termination of the block, since the compiler now has an

~

-7

Lattice 8086/8088 C Compiler Language Definition

additional external item fzr which it must verify equivalent
declarations.

2.2.6 Initializers

Objects which are of ths “"static” storage class (as defined
in Section 2.2.4) are guarar:zed to contain binary zeroes when
-he program begins execution, :nless an initializer expression is
1sed to define a different i::tial value, The Lattice compiler
supports the full range of :.zitializer expressions described in
Xernighan and Ritchie, bu: restricts the initialization of
pointers somewhat. An aritrra2tic object may be initialized with
an expression that evaluates =o an arithmetic constant which, {f
anot of the appropriate type., is converted to that of the target
object. As noted in Sec:.on 2.1, the expression used to
initialize a pointer is more -sstricted: it must evaluate to the
"int" constant zero or to a psinter expression yielding a pointer
of exactly the same type as :2e pointer being initialized. This
oointer expression can inclLude the address of a previously
leclared "static" or "exte:=" object, plus or minus an "int"
constant, but it cannot inzsrporate a cast (type conversion)
operator (because pointer zonversions are not evaluated at
compile time), This res:t-iction makes it impossible to
rnitialize a pointer to an arzay unless the & operator is allowed
to be used on an array name, zecause the array name without the
oreceding & 1s automatically zonverted to a pointer to the first
2lement of the array. Accoriingly, as noted in Section 2.1, the
Lattice compiler accepts the : operator on an array name so that
Jeclarations like

int a(s], (*pa)[S] = sa;

can be made. Note that if a sointer to a structure (or union) is
oeing initialized, the structire name used to generate an address
must be preceded by the & operator,

More complex objects (arrays and structures) may be
initialized by bracketed, omma-separated lists of initializer
expressions, with each expression corresponding to an arithmetic
or pointer element of the agszregate. A closing brace can be used
o terminate the list early; see Appendix A of Kernighan and
Ritchie for examples. Unions may not be initialized under this
1mplementation, although the first part of a structure containing
a union may be initialized :f the expression list ends before
zeaching the union. A character array may be initialized with a
string constant which need nc: be enclosed in braces; this is the
only exception to the rule ceguiring braces around the list of
initializers for an aggregate,

Initializer expressions for “auto” objects can only be
applied to simple arithmetic or pointer types (not to
aggregates), and are entirely equivalent to assignment
Statements.

Lattice 8086/8088 C Compiler Language Definition

2.2.7 Expression Evaluation

All of the standard operators are supported by the Lattice
compiler, in the standard order of precedence (see p. 49 of
Kernighan and Ritchie). Expressions are evaluated using an
operator precedence parsing technique which reduces complex
expressions to a sequence of unary and binary operations
involving at most two operands. Operations involving only
constant operands (including floating point constants) are
evaluated by the compiler immediately, but no special effort is
made to re-order operands in order to group constants. Thus,
expressions such as

o -

c=-"A"+ “a

must be parenthesized in order for the compiler to evaluate the
constant part:

c + (4a‘ - ;Aa)

If at least one operand in an operation is not constant, the
intermediate expression result is represented by a temporary
storage location, usually just called a temporary. The temporary
is then "plugged into" the larger expression and becomes an
operand of another binary or unary operation; the process
continues until the entire expression has been evaluated. The
lifetime of temporaries and their assignment to temporary storage
locations are determined by a subroutine internal to the first
phase of the compiler. This subroutine recognizes identically
generated temporaries within a straight-line block of code and
eliminates recomputation of equivalent results. Thus, common
subexpressions are recognized and evaluated only once. For
example, in the statement .

ali+l] = b[i+l];

the expression "i+1" will be evaluated once and used for both
subscripting operations., Expressions which produce a result that
i5 never used and which have no side effects, such as

i+j;
are discarded by this same subroutine.

Within the block of code examined by the temporary analysis
subroutine, operations which produce a temporary result are noted
and remembered so that later equivalent operations may be
deleted, as noted above. Two conditions (other than function
calls, which may have undetermined side effects) cause the
subroutine to discard an operation and no longer check for the
equivalent operation later: (1) if either of its operands appear
directly as a result of a subsequent operation; or (2) if a
subsequent operation defines an indirect (i.e., through a
pointer) result for the same type of object as one of the
original operands. The latter condition is based on the

2-9

Lattice 8086/8088 C Compiler Language Definition

compiler’s assumption that pointers are always used to refer to
the correct type of target object, so that, for example, if an
assignment is made using an "int" pointer only objects of type
"int" can be changed. Only when the programmer indulges in "type
punning® -- using a pointer to inspect an object as if it were a
different type -- is this assumption invalid, and it is hard to
conceive of a case where the common subexpression detection will
cause a problem with this somewhat dubious practice. Such
inspections are generally better left to assembly language
modules in any case.

Wwith the exception of this common subexpression detection,
which may replace an operation with a previous, eguivalent one,
expressions are evaluated in strict left-to-right order as they
are encountered, except, of course, where that is prevented by
operator precedence or parentheses. It is best not to make any
assumptions, however, about the order of evaluation, since the
code generation phase is generally free to re-order the sequence
of many operations, The most important exceptions are the
logical OR (||) and logical AND (&&) operators, for which the
language definition guarantees left-to-right evaluation. The
code generation phase may have other effects on expression
evaluation; usually, some favorable assumptions about pointer
assignments are made, though these can be shut off by a compile
time option. Check the implementation section of this manual for
full details. :

2.2.8 Control Plow

C offers a rich set of statement flow constructs, and the
Lattice compiler supports the full complement of them, Some
minor points of clarification are noted here. First of all, the
. compiler does verify that "switch" statements contain (1) at
least one case entry; (2) no duplicate case values; and (3) no
more than one "default" entry., In addition, the first phase of
the compiler recognizes certain statement flow constructs
involving constant test values, and may discard certain portions
of code accordingly. (Even those portions ultimately discarded
are fully analyzed, lexically and syntactically, before being
eliminated.) If an "if" statement has a constant test value,.
only the code for the appropriate clause (the "then" or "else"
"portion) is retained; "while"”, "do", and "for" statements with
zerc test values are entirely discarded.

The code generation phase generally makes a special effort
to generate efficient sequences for control flow. In particular,
the size and number of branch instructions is kept to a minimum
by extensive analysis of the flow within a function, and "switch"
statements are analyzed to determine the most efficient of
several possible machine language constructs. Check the
implementation section of this manual for the details regarding
this particular code generator,

2-10 =

Lattice 8086/8088 C Compiler Language Definition

2.3 Amendments to the C Reference Manual

The most precise definition of the C programming language
generally available is Appendix A of the Kernighan and Ritchie
text, which is entitled "C Reference Manual.®” This section
presents, in the same order defined in the text, a series of
amendments Or annotations to that manual; this commentary
explicitly states any deviations of the Lattice C language
implementation from the features described. Because this
implementation is very close to that standard, many of the
sections apply exactly as written; these sections will not be
commented upon. Any section not listed here can be assumed to be
fully valid for the language accepted by the Lattice C compiler,

CRM 2.1 Comments

The Lattice compiler allows comments to be nested, that is,
each /* encountered must be matched by a corresponding */ before
the comment teérminates. This feature makes it easy to “"comment
out" large sections of code which themselves contain comments,
The compile time option "-c" forces the compiler to process
comments in the standard, non-nesting mode.

CRM 2.4.3 Character constants

Two extensions to character constants are provided. First,
more than one character may be enclosed in single gquotes; the
result may be "int" or "long", dependiny on the number of
characters, and its value is machine dependent. Second, if the
first character following the backslash in an escape seguence is
"x" (lower case X), the next one or two digits are interpreted as
a hexadecimal value. Thus,

“\x£9”
generates a character with the value 0xP9,
CRM 2.5 Strings

The Lattice compiler recognizes identically written string
constants and only generates one copy of the string. (Note that
strings used to initialize "char" arrays -- not "char *" -- are
not actually generated.) The same "\x" cdonvention described
above can be employed in strings, where it is generally more
useful (especially for those of us who have never understood how
octal came to be used on 1l6-bit machines),

CRM 2.6 Hardware characteristics

See the implementation section of this manual for hardware
characteristics.

2-11

Lattice 8086/8088 C Compiler Language Definition

CRM 7.1 Primary expressions

The Lattice compiler always enforces the rules for the use
of structures and unions, for the simple reason that it cannot
otherwise determine which list of member names is intended.
Recall from Section 2.1 that the Lattice compiler maintains a
separate list of members for each type of structure or union.
Therefore, the primary expression preceding the "." or "->*
operator must be immediately recognizable as a structure or
pointer to a structure of a specific type.

CRM 7.2 Unary operators

The requirement that the & operator can only be applied to
an lvalue is relaxed slightly to allow application to an array
name (which is not considered an lvalue). Note that the meaning
of such a construct is a pointer to the array itself, which is
quite different from a pointer to the first element of the array.

CRM 7.6 Relational operators

When pointers of different types are compared, the right-
hand operand is converted to the type of the left-hand operand;
comparison of a pointer and one of the integral types causes a
conversion of the integer to the pointer type. Both of these are
operations of questionable value and are certainly machine
dependent.)

CRM 7.7 Equality operators
The same conversions noted above are applied.
CRM 8.1 Storage class specifiers

The text states that the sc-specifier, if omitted from a
declaration outside a function, is taken to be "extern"., This is
somewhat misleading, if not plainly inaccurate; in fact (as the
text points out in CRM 11l.2), the presence or absence of "extern®
is critical to determining whether an object is being defined or
referenced, As noted in Section 2.2.4 of this document, if
"extern" is present, then the declared object either exists in
some other file or is defined later in the same fil2; if no sc-
specifier is present, then the declared object is being defined
and will be visible in other files. If the "static" specifier is
present, the object is also defined but i3 not made externally
visible. The only exception to these rules occurs for functions,
where it 1s the presence of a defining statement body that
determines whether the function is being defined.

The Lattice compiler can be forced to assume "extern" for
all declarations outside a function by means of the "-x" compile

time option. Declarations which explicitly specify "static" or
"extern" are not affected. '

2-12

Lattice 8086/8088 C Compiler Language Definition

CRM 8.5 Structure and union declarations

The Lattice compiler treats the names of structure members
quite differently. The names of members and tags do not conflict
with each other or with the identifiers used for ordinary
variables. Both structure and union tags are in the same class
of names, so that the same taq cannot be used for both a
structure and a union. A separate list of members is maintained
for each structure; thus, a member name may not appear twice in a
particular structure, but the same name may be used in several
different structures within the same scope.

CRM 8.7 Type names

Although a structure or union may appear in a type name
specifier, it must refer to an already known tag, that is,
structure definitions cannot be made inside a type name. Thus,
the sequence :

(struct { int high, low; } *) x
is not permitted, but
struct HL { int high, low; };
(struct BL *) x
is acceptable.
CRM 10.1 External function definitions
As noted in the text, formal parameters declared "float" are
actually interpreted as "double"; similarly, formals declared
"char" or "short" are read as "int". For consistency, the
Lattice compiler applies the same rules to functions: a function
declared to return "float" is assumed to return “"double®, and
"char" ocr "short" functions to return "int".
CRM 10.2 External data definitions
The Lattice compiler applies a simple rule to external data
declarations: if the keyword "extern” is present, the actual
storage will pe allocated elsawhere, and‘'the declaration is
simply a reference to it. Otherwise, it is interpreted as an
actual definition which allocates storage (unless the "-x"option
has been used; see the comments on CRM 8.1).
CRM 12.3 Conditional compilation
As noted in Section 2.2.1 of this document, the constant

expression following $if may not in all cases contain "sizeof",
depending on the compiler implementation.

2-13

Lattice 8086/8088 C Compiler Language Definition

CRM 12.4 Line control

Although the file name for $line is denoted as "identifier”,
it need not conform to the characteristics of C identifiers. The
compiler takes whatever string of characters is supplied; the
only lexical requirement for the file name is that it cannot
contain any white space.

CRM 14.1 Structures and unions

The escape from typing rules described in the text is
explicitly not allowed by the Lattice compiler. 1In a reference
to a structure or union member, the name on the right MUST be a
memcer of the aggregate named or pointed to by the expression of
the left., This implementation, however, does not attempt to
enforce any restrictions on reference to union members, such as
reguiring a value to be assigned to a particular member before
allowing it to be examined via that member.

Future versions of the compiler will probably support
structure assignment, but the value of other operations (such as
passing aggregates directly to or returnlng them from functions)
seems questionable,

2-14

Lattice 8086/8088 C Compiler Portable Library Punctions

SECTION 3 Portable Library Punctions

In order to provide real portability, a programming environment
must provide -- in a machine-independent way -- not only a well-
defined language but a library of useful functions as well. The
portable library provided with the Lattice C compiler attempts to
supply that need. Although not all of the features of these
functions can be implemented on every system supported by the
compiler, all systems must be able to provide the basic functions
of memory allocation, file input/output, and character string
manipulation; otherwise, the compiler itself could not be
implemented. An important benefit of presenting the functions
from a machine-independent viewpoint is that it helps the
programmer think of them in this light, as well.

When referring to the function descriptions presented in this
section, remember that the compiler assumes a function to return
an "int" value unless it is explicitly declared otherwise., Don’t
forget to declare any functions which return other kinds of
values BEFORE you call them.

3.1 Memory Allocation Functions

The standard library provides memory allocation capabilities
at several different levels. The higher level functions call the
lower levels to perform the work, but provide easier interfaces
in exchange for the extra overhead. The actual amount of memory
available is system dependent and usually depends on the size of
the program. In most systems the memory made available for
dynamic allocation by these functions is the same memory used for
the run-time stack (used for function calls and auto variables),
On these systems a default number of bytes is reserved for the
stack, and the remainder of the memory is used by the memory
allocation functions. In order to allow programs to adjust the
amount of memory reserved for the stack (and thus the amount
available for dynamic allocation), the main program usually
supports a special "=n" option to override the default stack
size; alternatively, a program may define the size internally.
Chech the implementation section of the manual for details. The
user 1is cautioned that on many systems there is no check against
the stack overrunning its allotted size and‘destroying portions
of the memory pool.

All of the memory allocation functions return a §9inte:
which is of type "char *" but is guaranteed to be sufficiently
aligned to store any object.

Lattice 8086/8088 C Compiler Portable Library Punctions

3.1.1 Level 3 Memory Allocation

The functions described in this section provide a UNIX-
compatible memory allocation facility. The blocks of memory
obtained may be released in any arbitrary order, but it is an
error to release something not obtained by one of these
functions. Because these functions use overhead locations to
keep track of allocation sizes, the "free" function does not
require a size argument. The overhead does, however, decrease
the efficiency with which these functions use the available
memory. If a lot of small allocations are requested, the level 2
functions will be considerably more efficient.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
malloc -- UNIX-compatible memory allocation

SYNOPSIS
p = malloc(nbyzes);
char *p; block pointer
unsigned nbytes; number of bytes requested

DESCRIPTION
Allocates a blzck of memory in a way that is compatible with
UNIX. The pr:mary difference between "malloc" and "getmem"
is that the fsrmer allocates a structure at the front of
each block. This can result in very inefficient use of
memory if you make lots of small regquests.

RETURNS
p = NULL if nc: enough space available)
= pointer to zlock of "nbytes" of memory otherwise

CAUTIONS

Return value nust be checked for NULL. The function should
be declared "zhar *" and a cast operator used if defining a
pointer to somre other kind of object, as in

char *malloc():;
int *pi;

pi'.'(in: *)malloc(N);

Lattice 8086/8088 C Compiler Portable Library Functions

JAME

calloc == allocate memory and clear

SYNOPSI1S

p = calloc(nelt, eltsiz);

char *p; block pointer
unsigned nelt; number of elements
unsigned eltsiz; element size in bytes

DESCRIPTION

Allocates and clears (sets to all zeroes) a block of memory.
The size of the block is specified by the product of the two

parameters; this calling technique is obviously convenient.

for allocating arrays. Typically, the second argument is a
"sizeof™ expression.

RETURNS

p = NULL if not enough space available
= pointer to block of memory otherwise

CAUTIONS

Return value must be checked for NULL. The function should
be declared "char *" and a cast used if defining a pointer
to some other kind of object, as in

struct buffer *pb;

ob = (struct buffer *)calloc(4, sizeof(struct buffer));

N

-~

()

N\

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
free -- UNIX-compatible memory release function
SYNOPSIS
ret = free(cp):
int ret; return code
char *cp; block pointer
DESCRIPTION
Releases a block of memory that was previously allocated by
"malloc” or "calloc". The pointer should be "char *" and is
checked for validity, that is, verified to be an element of
the memory pool.
RETURNS
ret = 0 if successful
= -1 if invalid block pointer
CAUTIONS

Check the return code; if -1, it could help you track down a
coding problem. Remember to cast the pointer back to "char
*", as in

char *malloc();

int *pi;

pi = (int *) malloc(N);

if (free((char *)pi) t=0) { ... erroc ... }

3-5

Lattice 8086/8088 C Compiler Portable Library Punctions

3.1.2 Level 2 Memory Allocation

The functions described in this section provide an efficient
and convenient memory allocation capability. Like the level 3
functions, allocation and de-allocation requests may be made in
any order, and it is an error to free memory not obtained by one
of these functions. The caller must retain both the pointer and
the size of. the block for use when it is freed; failure to
provide the correct length may lead to wasted memory (the
functions can detect an incorrect length when it is too large,
but not when it is too small). An additional convenience is
provided by the "sizmem" function, which can be used to determine
the total amount of memory available.

The level 2 functions maintain a linked list of the blocks
of memory released by calls to "rlsmem”, called the free space
list. Initially, this list is null, and "getmem" acquires memory
by calling the level 1 memory allocator "sbrk". As blocks are
released by the program, the free space list is created; when a
block adjacent to one already on the list is freed, it is
combined with any adjacent blocks. Thus, the size of the largest
nlock available may be smaller than the total amount of free
memory, due to breakage.

3-6

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
getmem -- get a memory block
SYNOPSIS
P = getmem(nbytes);
char *p; block pointer
unsigned nbytes; number of bytes requested
DESCRIPTION
Gets a block of memory from the free memory pool. 1If the
pool is empty or a block of the requested size is not
available, more memory is obtained via the level 1 function
"sbrk”.
RETURNS
p = NULL if not enough space available
= pointer to memory block otherwise
CAUTIONS

Return value must bhe checked for NULL. The function should
be declared "char *" and a cast used if defining a pointer
to some other kind of object, as in

char *getmem();
struct XYZ *px;

ox = (struct XYZ *)getmem(sizeof (struct XYZ)):

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

rlsmem -- release a memory block

SYNOPS1IS
ret = rlsmem(cp, nbytes);
int ret; return code
char *cp; block pointer to be freed
unsigned nbytes: size of block
DESCRIPTION

Releases the memory block by placing it on a free block
list. If the new block is adjacent to a block on the list,
they are combined.

RETURNS
ret = 0 if successful
= -1 if supplied block not obtained by "getmem®", or overlaps
one of the blocks on the list

CAUTIONS

Return value should be checked for error. If the correct
size is not supplied, the block may not be freed properly.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
allmem -- allocate all available memory
SYNOPSIS

ret = allmem();
int ret; return code

DESCRIPTION

Uses the level 1 function "sbrk"™ to get all available
memory and attach it to the memory pool used by "getmen”,

RETURNS

ret = =1 if first "sbrk™ fails
= 0 if successful

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

sizmem -- get memory pool size
SYNOPSIS ‘

words = sizmem();

unsigned words; number of words (sizeof(int))
DESCRIPTION

Returns the number of unallocated words (i.e., number of
units of size "sizeof(int)") in the memory pool used by
"getmem”, Note that "getmem" dynamically expands the pool
by calling "sbrk" whenever a request cannot be honored,
Therefore, the value returned by "sizmem" does not
necessarily indicate how much memory is actually available.
1f used after calling "allmem", however, the actual memory
pool size WILL be returned. .

RETURNS

words = (unsigned) number of "int" objects in memory pool

CAUTIONS

3-10

Note that the value returned is in words, not bytes,

N/

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
rstmem -- reset memory pool
SYNOPSIS
rstmem();
DESCRIPTION
Resets the memory pool used by "getmem” and "rlsmem® to its
initial state. All previously allocated memory is released,
and the maximum amount of memory is once again available.
CAUTIONS

This function cannot be used if any files are open and being
accessed using any of the level 2 1/0 functions, because
these functions use "getmem” to allocate buffers. On some
systems, this restriction applies to the level 1 I/0
functions as well; check the implementation section of the
manual to see if this caution is valid for this system,
Note that "sizmem” will return a value of zero after
"rstmem" is called.

Lattice 8086/8088 C Compiler Portable Library Punctions

3.1.3 Level 1 Memory Allocation

The two functions defined at the lowest level of memory
allocation are primitives which perform the basic operations
needed to implement a more sophisticated facility:; they are used
by the level 2 functions Zor that purpose. "sbrk"” treats the
total amount of memory available as a single block, from which
portions of a specific size may be allocated at the low end,
creating a new block of smaller size. ™"rbrk"™ merely resets the
block back to its original size. Do not confuse the "break
point™ mentioned here witx the "breakpoint” concept used in
debugging; this term simply refers to the address of the low end
of the block of memory manipulated by "sbrk"”.

3-12

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
sbrk -- set memory break point
SYNOPSIS
p = sbrk(nbytes);
char *p; points to low allocated address
unsigned nbytes; number of bytes to be allocated
DESCRIPTION

Allocates a block of memory of the requested size, if
possible. Thnis function is the basic UNIX memory allocator.
The first time it is called, it will allocate the largest
available block of high memory. Then the regusted number of

bytes is lopped off the low end of the block for use by the
caller.

RETURNS

p = -1 if request cannot be fulfilled
= pointer to low address of block if successful

CAUTIONS

For consistency with the UNIX function, "sbrk"” returns -1 if
it cannot satisfy the request, although the rest of the
memory allocators return NULL. The function should be
declared "char *" and a cast used if defining a pointer to
some other kind of object.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
rbrk -~ reset memory break point

SYNOPSIS
cbrk();

DESCRIPTION
Resets the memory break point back to its original starting
point. This effectively returns all memory to the free
space block.

CAUTIONS

Like "rstmem” above, this function cannot be used if any
files are open and being accessed using the level 2 I/0O
functions. On some systems, the same restriction applies to
use of level 1 I/0 functions.

Lattice 8086/8088 C Compiler Portable Library Functions

3.2 I/0 and System Functions

The standard library provides 1/0 functions at several
different levels, with single character "get" and "put" functions
and formatted I1/0 at the highest levels, and direct byte stream
1/0 functions at the lowest levels. The major system dependency
arises in connection with text files, where some systems perform
certain translations to accommodate the particular text file
representation used in the local environment. Although the
translation is generally transparent at the higher levels, I/0 at
the lowest levels, particularly 1/0 involving binary data, must
be aware of the translation. Check the implementation section of
this manual for the details appropriate to this system.

Three general classes of I/0 functions are provided. First,
the level 2 functions define a buffered text file interface which
implements the single character I/0 functions as macros rather
than function calls. Unlike the corresponding functions under
UNIX, these functions are buffered even when performing I/0 to
and from the user’s console (although they are buffered on a line
basis, rather than the 512-byte block buffering used for disk
files). Second, the level 1 functions define a byte stream
oriented file interface, primarily useful for manipulation of
disk files, though most of the same functions are applicable to
devices (such as the user”s conscle) as well. Finally, since one
of the most common I/0 interfaces is with the user”s console, a
special set of functions allow single character I/0 directly to
the user”s terminal, as well as formatted and string 1/0.

The system functions discussed in this section are concerned
with program exit. Additional system functions are described in
the implementation section of the manual.

3.2.1 Level 2 1/0 Functions and Macros

These functions provide a buffered interface using a special
structure, manipulated internally by the functions, to which a
pointer called the "file pointer" is defined. This structure is
defined in the standard I/0 header file (usually called "stdio.h"
on most systems) which generally must bs included (by means of a
g¢include statement) in the source file where level 2 features are
being used. The file pointer is used to specify the file upon
which operations are to be performed. Some functions require a
file pointer, such as

FILE *£p;

to be explicitly included in the calling sequence; others imply a
specific file pointer. In particular, the file pointers "stdin"”
and "stdout" are implied by the use of several functions and
macros; these files are so commonly used that on most systems
they are opened automatically before the main function of a
program begins execution. Other file pointers must be declared
by the programmer and initialized by calls to the "fopen"
function. Note that a file pointer may be used to read a file or

~-

Lattice 8086/8088 C Compiler Portable Library Functions

to write a file, but it is not legal to perform both operations
on the same file.

The level 2 functions are designed to work primarily with
text files. The usual C convention for line termination uses a
single character, the newline (“\n”), to indicate the end of a
line. Unfortunately, many operating environments use a multiple
character seguence -- usually carriage return/line feed, but
occasionally even more exotic delimiters. In order to allow all
C programs to work with text files in the same way, the Lattice
functions support the standard newline convention but may =--
depending on the system -- perform a "text mode"™ translation so
that end of line sequences will conform to local conventions.
This translation is usually beneficial and transparent but may
cause problems when working with binary files. Normally, all
files accessed through the level 2 functions are opened in the
text, or translated mode, but the programmer may override this
mode by defining the external location

int _fmode = 0x8000;

in one of the functions in the program (this statement must
appear outside the body of the function itself in order to be
considered an external definition). The value at " fmode" is
passed to the level 1 function "open" or "creat” when the file is
opened. If zero, the file is opened in the text mode; if 0x8000,
the file is opened in the binary, or untranslated mode. Note
that if "_fmode" is defined as above, the "stdin", "stdout”, and
"stderr" files opened for the main function will also be opened
in the binary mode. 1If this is undesirable, "_fmode"” can be
initialized with zero and then set to 0x8000 before specific
"fopen" calls are made; in this way, different files may be
opened in different modes. <Check the implementation section of
this manual for more information about the file access modes.

The actual I/0 operations are performed by the level 2
functions by calls to the level 1 I/O functions described in the
next section. The normal mode of buffering, designed to support
sequential operations, performs read and write functions in 512-
byte blocks; a buffer of that size is allocated (using "getmem")
when the file is opened. The buffering technigue allows single
character 1/0 operations to be implemented efficiently as macros,
and reduces the number of actual I1/0 requests. Since output is
buffered, a file that is being written must be closed so that the
data in the buffer is actually written to the file, A different
buffering scheme is used for devices such as the user”s terminal,
The same buffer is allocated, but the read operation which fills
the buffer terminates on a newline, and the write operation which
flushes the buffer is initiated when a newline is received. This
scheme manages to reduce the I/0 overhead while at the same time
performing the I/0 in a more timely fashion. The line buffering
scheme is enabled using the "setnbf" function described in this
section, which simply sets the _IONBF flag for the file (note:
of the various flags defined in the standard I1/0 header file,
only this one is-currently implemented). Line buffering is also

Lattice 8086/8088 C Compiler Portable Library Functions

the mode set up for "stderr®", and for "stdin" and "stdout" in the
event that they default to the user”s terminal. See Section
3.2.3 for information about the direct, unbuffered interface to
the user’s terminal.

In the descriptions below, some of the function calls are
actually implemented as macros; these are noted explicitly. The
reason the programmer should be aware of the distinction is
because most macros involve the conditional operator and may,
under certain conditions, evaluate an argument expression more
than once. This can cause unexpected results if that expression

involves side effects, such as increment or decrement operators
or function calls.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAMB
fopen -- open a buffered file
SYNOPSIS
fp = fopen(name, mode):;
FILE *fp; file pointer for specified file
char *name; file name))
char *mode; access mode
DESCRIPTION
Opens a file for buffered access; the translated mode is the
default mode but may be overridden as described in the
introduction to this section. The null-terminated string
which specifies the file name must conform to local naming
conventions. The access mode is also specified as a string,
and may be one of the following:
“r" to read a file
"w" to write a file
"a" to append to a file
The mode character must be specified in lower case. The “a"
option adds to the end of an existing file, or creates a new
one; the "w" option discards any data in the file, if it
already exists. On most systems, no more than 16 files
(including "stdin", "stdout”, and "stderr", if those are
opened for "main") can be opened using "fopen".
RETURNS
fp = NULL if error
= file pointer for specified file if successful
CAUTIONS

The return code must be checked for NULL; the error return
may be generated if an invalid mode was specifed, the file
was not found, could not be created, or too many files were
already open.

3-118

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
freopen -- reopen a puffezed file
SYNOPSIS
fpr = freopen(name, mode, fp);
FILE *fpr; file pointer after re-opening
char *name; file name
char *mode; access mode
FILE *fp; current file pointer
DESCRIPTION

Reopens a buffered file, that is, attaches a new file to a
previously used file pointer. This function is useful for
programs which must open several files, but only one at a
time; this avoids using up file pointers unnecessarily. The
previous file is automatically closed before the file
pointer is reused. The name and mode arguments are the same
as those for "fopen".

RETURNS

fpr = NULL if error
= fp if successful

CAUTIONS

The return code should be checked for NULL; the same errors
as defined for "fopen" may occur,

Lattice 8086/8088 C Compiler , Portable Library Punctions

NAME

fclose -- close a buffered file
SYNOPSIS

ret = fclose(fp);

int ret; return code

FILE *£fp; file pointer for file to be closed
DESCRIPTION

Completes the processing of a file and releases all related
resources, If the file was being written, any data which
has accumulated in the buffer is written to the file, and
the level 1 "close" function is called for the associated
file descriptor. The buffer associated with the file block
is freed. "fclose" is automatically called for all open
files when a program calls the "exit" function (see Section
3.2.4) or when the "main" program returns, but it is good
programming practice to close your own files explicity. As
the last buffer is not written until "fclose" is called,
data may be lost if an output file is not properly closed.

RETURNS

3-20

ret = -1 if error
= 0 if successful

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
getc/getchar -~ get character from file
SYNOPSIS
¢ = getc(fp);
c = getchar();
int c; next input character or EOF
FILE *fp; file pointer
DESCRIPTION
Gets the next character from the indicated file ("stdin", in
the case of "getchar”). The value EOF (-1) is returned on
end of file or error.
RETURNS
¢ = character
= BOF if end of file or error
CAUTIONS

These are implemented as macros, so beware of side effects.
Remember that for devices (such as the user”s console) input
is buffered on a line basis, that is, the read operation
that fills the buffer does not terminate until a newline is
received. See Section 3.2.3 if direct single character 1/0
to the console is needed.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
putc/putchar -- put character to file

SYNOPSIS
r = putc(c, £p);
r = putchar(c); .
int t; same as character sent, or error code
char c; character to be output
FILE *£p; file pointer

DESCRIPTION

Puts the character to the indicated file ("stdout”, in the
case of "putchar"). The value EOF (-1) is returned on end
of file or error.

RETURNS

r = character sent if successful
= EOP if error or end of file

CAUTIONS

These are implemented as macros, so beware of side effects,
Remember that output for devices (such as the user”’s
console) is buffered on a line basis, that is, the write
operztion that flushes the buffer is not actually performed
until a newline is sent. See Section 3.2,3 if direct single
character 1/0 to the console is needed.

3-22

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

fgetc/fputc -- get/put a character
SYNOPSIS

r = fgetc(fp);
r = fputc(c, fp);

int r; return character or code
char c¢; character to be sent ("fputc®)
FILE *fp; file pointer

DESCRIPTION

These functions get (fgetc) or put (fputc) a single
character to the indicated file. Since they are functions,
they may be used in placed of the corresponding macros (getc
and putc) in the event that a lot of calls are made, and the
programmer is concerned about the memory used up in the
macro expansions. The tradeoff is the usual one: the macro
is more efficient timewise because it saves a function call,
but the function is more efficient spacewise since its code
is present in the program only once.

RETURNS

r = character if successful (c, for "fputc")
= EOF if error or end of file

3-23

Lattice 8086/8088 C Compiler Portable Library Punctions

NAMBE
ungetc -- push character back on input file

' SYNOPSIS
r = ungetc(c, £p); :
int r; return character or code
char c; character to be pushed back
FILE *fp; file pointer

DESCRIPTION

Pushes back a character to the specified input file. The
character supplied must be the character most recently
obtained by a "getc" (or "getchar", in which case fp should
be supplied as "stdin") invocation,

RETURNS

3-24

r = character if successful
= EOF if previous character does not match

Lattice 8086/8088 C Compiler

Portable Library Functions

NAME
gets/fgets -- get a string

SYNOPSIS
p = gets(s);
p = fgets(s, n, fp);
char *p; returned string pointer
char *s; buffer for input string
int n; number of bytes in buffer
FILE *fp; file pointer

DESCRIPTION

Gets an input string from a file. The specified file
("stdin", in the case of "gets") is read until a newline is
encountered or "n-1" characters have been read ("fgets®
only). Then, "gets" replaces the newline with a null byte,

while "fgets" passes the newline through with a null byte
appended.

RETURNS

p = NULL if end of file or error
= s if successful

CAUTIONS

For "gets"™, there is no length parameter, so the input
buffer had better be large enough to accommodate the string.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
puts/fputs -- put a string
SYNOPSIS
r = puts(s);
r = fputs(s, fp):
int r; return code
char *s; output string pointer
FILE *fp; file pointer
DESCRIPTION
Puts an output string to a file. Characters from the string
are written to the specified file ("stdout", in the case of
"fputs”) until a null byte is encountered. The null bhyte is
not written, but "puts" appends a newline.
RETURNS
r = EOF if end of file or error
CAUTIONS

Remember that output to a device (such as the user’s
console) is buffered on a line basis, that is, the write
operation that flushes the buffer is not performed until a
newline is sent. See Section 3.2.3 for an equivalent to
"puts" that sends characters directly (without buffering) to
the user”s console,

3-26

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

scanf/fscanf/sscanf -- perform formatted input conversions
SYNOPSIS

n = scanf(cs, ...ptrs...);

n fscanf (fp, cs, ...ptrs...);

n = sscanf(ss, ¢s, ...ptrs...):

int n; number of input items matched, or EOF

FILE *fp; file pointer ("fscanf" only)

char *ss; input string ("sscanf" only)

char *cs; format control string

——==- ...ptrs...; pointers for return of input values
DESCRIPTION

These functions perform formatted input conversions on text
obtained from (1) the "stdin" file ("scanf"); (2) the
specified file ("fscanf"); or (3) the specified string
("sscanf"). The control string contains format specifiers
and/or characters to be matched from the input; the list of
pointer arguments specify where the results of the
conversions are to go. Format specifiers are of the form

$*nlX

where (1) the opticonal "*" means that the conversion is to
be performed, but the result value not returned; (2) the
optional "n" is a decimal number specifying a maximum field
width; (3) the optional "1" (the letter ell) is used to
indicate a "long int" or "long float™ (i.e., "double")
result is desired; and (4) "X" is one of the format type
indicators from the following list:

d -- decimal integer
-- octal integer
-- hexadecimal integer
-- short integer

single character

-- character string

-- floating point number

mNnoTxo0
]
1

The format type must be specified in 'lower case. White
space characters in the control string are ignored;
characters other than format specifiers are expected to
match the next non-white-space characters in the input. The
input is scanned through white space to locate the next
input item in all cases except the "c" specifier, where the
next input character is returned without this initial scan,
See the Kernighan and Ritchie text for a more detailed
explanation of the formatted input functions.

_ ' 32

Lattice 8086/8088 C Com:.ler . Portable Library Punctions

N

RETURNS

n = number of inpi:z items successfully matched, i.e., for
which valid :-2xt data was found; this includes all
single charac:2r items in the control string

= EOF if end of f£i.2 or error during scan

CAUTIONS

All of the input ralues must be POINTERS to the result
locations., Make zire that the format specifiers match up
properly with thz result locations. I1f the assignment
suppression featu:zz ("*") is used, remember that a pointer
must NOT be suppl.zZ for that specifier.

3-28

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

printf/fprintf/sprintf -- generate formatted output
SYNOPSIS

printf(cs, ...args...);

fprintf(fp, cs, ...args...);
n = sprintf(ds, cs, ...args...):

int n; number of characters ("sprintf" only)
FILE *fp; file pointer ("fprintf")

char *ds; destination string pointer ("sprintf")
char *cs; format control string

-—-- ...args...; list of arguments to be formatted

DESCRIPTION >&=—

These functions perform formatted output conversions and
send the resulting text to (1) the "stdout" file ("printf");
(2) the specified file ("fprintf"); or (3) the specified
output string ("sprintf"}, The control string contains
ordinary characters, which are sent without modification to
the appropriate output, and format specifiers of the form

$-m,.plX

where (1) the optional "-" indicates the field is to be left
justified (right justified is the default); (2) the optional
"m" field is a decimal number specifying a minimum field
width; (3) the optional ".p" field is the character °".°
followed by a decimal number specifying the precision of a
floating point image or the maximum number of characters to
be printed from a string; (4) the optional "1" (letter ell)
indicates that the item to be formatted is "long"; and (5)
“X" is one of the format type indicators from the following
list:

-- decimal siqgned integer

-- decimal unsigned integer

-- hexadecimal integer

-- octal integer)

character string

-- single character

-- fixed decimal floating point

-- exponential floating point

-- use "e" or "f", whichever is shorter ’

uaomMmomoXxXco
]
1

The format type must be specified in lower case. Characters
in the control string which are not part of a format
specifier are sent to the appropriate output; a % may be
sent by using the seguence &%. See the Kernighan and

Ritchie text for a more detailed explanation of the
formatted output functions.

3

Lattice 8086/8088 C Compiler Portable Library Punctions

RETURNS

n = number of characters placed in "ds" ("sprintf" only),
not including the null byte terminator

CAUTIONS

For "sprintf", no check of the size of the output string
area is made, so it had better be large enough to contain
the resulting image, In all cases, make sure that the

format specifiers match up properly with the supplied values
for formatting.

30 -

WDEATRERE, Hordy ¢ S

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

fseek -- seek to a new file position

SYNOPSIS
ret = fseek (fp, pos, mode);
int ret; return code
FILE *fp; file pointer
long pos; desired file position
int mode; offset mode
DESCRIPTION

Seeks to a new position in the specified file. See the
"lseek" function description (Section 3.2.2) for the meaning
of the offset mode argument.

RETURNS

ret = 0 if successful
= -1 if errort

CAUTIONS

The file position may be affected by text mode translation,
since the translation may change the number of actual data
bytes read or written.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
ftell -- return current file position.
SYNOPSIS
pos = ftell(fp);
long pos; current file position
FILE *fp; file pointer
DESCRIPTION
Returns the current file position, that is, the number of
bytes from the beginning of the file to the byte at which
the next read or write operation will transfer data.
RETURNS

pos = current file position (long)
CAUTIONS

The file position returned takes account of the buffering
used on the file, so thz file position returned is a logical
file position rather than the actual position. Note that
text mode translation may cause an incorrect file position
to be returned, since the number of characters in the buffer
is not necessarily the number that will be actually read or
written because of the translation.

3-32

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
ferror/feof -- check if error/end of file
SYNOPSIS

ret = feof (fp);
ret = ferror(fp);

int ret; return code
FILE *fp; - file pointer
DESCRIPTION

These macros generate a non-zero value if the indicated
condition is true for the specified file.

RETURNS

ret = non-zero if error ("ferror") or end of file ("feof™)
= zero if not

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

clrerr -- clear error flag for file
SYNOPSIS

clrerr(£fp):

FILE *fp; file pointer
DESCRIPTION

Clears the error flag for the specified file. Once set, the
flag will remain set, forcing EOF returns for functions on
the file, until this function is called.

3-34

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
fileno -- return file number for file pointer
SYNOPSIS
fn = fileno(£fp);
int fn; file number associated with file pointer
FILE *fp; file pointer
DESCRIPTION
Returns the file number, used for the level 1 1/0 calls, for
the specified file pointer.
RETURNS
fn = file number (file descriptor) for level 1 calls
CAUTIONS

Implemented as a macro.

~ , SRRl 3-35

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
rewind -- rewind a file
SYNOPSIS

rewind (fp);
FILE *fp; file pointer

DESCRIPTION

Resets the file position of the
beginning of the file.

CAUTIONS

Implemented as a macro.

3-36

specified file to the

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
fflush -- flush output buffer for file
SYNOPSIS
fflush(fp);
FILE *fp; file pointer
DESCRIPTION
Flushes the output buffer of the specified file, that is,
forces it to be written, .
CAUTIONS

This macro must be used only on files which have been opened
for writing or appending.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

setnbf -- force line buffering for file .

SYNOPSIS

setnbf (fp):
FILE *fp; file pointer

DESCRIPTION

Changes the buffering mode for the specified file pointer
from the default S512-byte block mode to the line buffering
mode used for devices (including the user”s console), 1In
this mode, read operations to fill the buffer terminate when

a newline is read, and write operations to flush the buffer
are initiated whenever a newline is received.

CAUTIONS

Although the line-buffered mode may be used without
difficulty on files, the standard buffering mode is
generally more efficient, so this function should only be

used for those "files"” which are definitely known to be
devices.

3-38

Lattice 8086/8088 C Compiler Portable Library ?unctions

3.2.2 Level 1 1/0 Functions

These functions provide a basic, low-level 1/0 interface
which allows a file to be viewed as a stream of randomly
addressable bytes. Operations are performed on the file using
the functions described in this section; the file is specified by
a "file number" or "file descriptor,® such as

int f4;

which is returned by "open" or "creat" when the file is opened.
Data may be read or written in blocks of any size, from a single
byte to as much as several kilobytes in a single operation. The
concept of a file position is key: the file position is a long
integer, such as

long fpos;

which specifies the position of a byte in the file as the number
of bytes from the beginning of the file to that particular byte.
Thus, the first byte in the file is at file position OL. Two
distinct file positions are maintained internally by the level 1
functions. The current file position is the point at which data
transfers take place between the program and the file; it is set
to zero when the file is opened, and is advanced by the number of
bytes read or written using the "read" and "write" functions,
The end of file position is simply the total number of bytes
contained in the file; it is changed only by w-ite operations
which increase the size of the f£ile. The current file position
can be set to any value from zero up to and including the end of
file position using the "lseek” function, but it is illegal to
seek to a position beyond the end of file. Thus, to append data
to a file, the current file position is set to the end of the
file using "lseek" before any write operations are performed.
When data is read from near the end of file, as much of the
regquested céunt as can be satisfied is returned; zero is returned
gpf attempts to read when the file position is at the end of
ile,

The level 1 functions operate in one of two mutually
exclusive modes: the text or translated mode, and the binary or
untranslated mode. On some systems the two modes are identical,
The desired mode is specified when the file is opened or created,
and remains in effect until the file is closed. The two modes
are provided so that any reguired translation of text file end of
line sequences can be performed automatically even by the lowest
level operations ("read" and "write" functions), while at the
same time a program may disable the translation, as needed, when
working with binary files. The problem is that not all systems
use the standard C end of line delimiter, the newline (\n”); the
translated mode converts the newline to whatever the local
delimiter may be. Since this may involve expansion or
contraction of the number of bytes read or written, the count
returned by "read” or "write" may not correctly reflect the
actual change in the file position. 1In the binary mode, this

Lattice 8086/8088 C Compiler Portable Library Punctions

problem does not occur since no translation is performed.

Although the level 1 functions are primarily useful for
working with files, they can be used to read and write data to
jevices (including the user’s terminal), as well. The exact
nature of the I1/0 performed is system dependent, but it is
jenerally unbuffered and may have different effects depending on
whether the translated or untranslated mode is in effect. The
"lseek™ function has no effect on devices, and usually returns an
2rror status. Direct I/0 to the user’s terminal may also be
performed using the functions described in Section 3.2.3.

The actual I/0 operations on disk files are buffered, but at
3 level that is generally transparent t6 the programmer. The
ouffering makes close operations a necessity for files that are
nodified. On some systems, the buffers used for the level 1
Zunctions are allocated using "getmem®", which restricts the use
>f the memory allocation functions "rstmem” and "rbrk". Check
zhe implementation section of the manual to determine whether
this restriction applies, for information about the translated
and binary modes, and for the details of device I/O on this
particular system, :

3-40

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

open -- open a file

SYNOPSIS

file = open(name, rwmode);

int file; file number or error code

char *name; file name

int rwmode; read/write mode, where O=read, l=write,
~ 2=read/write, and bit 15 indicates the

- desired mode (text=0, binary=1l)

DESCRIPTION

Opens a file for access using the level 1 I/0 functions.
The file name must conform to local naming conventions. The
mode word indicates the type of I/0 which will be performed
on the file, The low order bits specify whether read or
write operations (or both) are to be allowed, as follows:

0 = read only access
1l = write only access
2 = read/write access

If pit 15 (the 0x8000 bit) of the mode word is set, then all
operations will be performed without text file translation
(if such translation is normally performed for the system).
If this bit'is resst (the default mode used by the level 2
functions), some translation of data may occur, the exact
nature of which is system Jdependent. The current file
position is set to zero if the file is successfully opened.
On most systems, no more than 16 files (including any which
are being accessed through the level 2 functions, such as
"stdin", "stdout", etc.) can be open at the same time.
Closing the file releases the file number for use with some
other file,

RETURNS

file = file number to access file, if successful
= -1 if error :

CAUTIONS

’

Check the return value for error. "open" can be used only
on existinjy files; use "cr22t" to access a new file.

Lattice 8086/8088 C Compiler Portable Libta:y_?unctions

NAME
creat -- create a new file

SYNOPSIS
file = creat(name, pmode):;
int file; file number or error code
char *name; file name
int pmode; access privilege mode bits; bit 15 has

same meaning as for "open"

DESCRIPTION
Creates a new file with the specified name and prepares it
for access via the level 1 I/0 functions. The file name
must conform to local naming conventions. Creating a device
is eguivalent to opening it. The access privilege mode bits
are system dependent and on some systems may be largely
ignored; however, bit 15 is interpreted in the same way as
for "open": if set, operations are performed on the file
without translation, If the file already exists, its
contents are discarded. The current file position and the
end nf file are both zero (indicating an empty file) if the
function is successful,

RETURNS
file = file number to access file, if successful
= -1 if error

CAUTIONS

3-42

Check the return value for error. "creat” should be used
only on files which are being completely rewritten, since
any existing data is lost.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

unlink =-- remove file name from file system

SYNOPSIS
ret = unlink(name);
int ret; return code: 0 if successful
char *name; name of file to be removed
DESCRIPTION

Removes the specified file from the file system. The file
name must conform to local naming conventions. The
specified file must not be currently open. All data in the
file is lost,

RETURNS

ret = 0 if successful
= -] if error

CAUTIONS

Should be used with care, since the file, once removed, is
generally irretrievable,

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

read -- read data from file

SYNOPSIS
status = read(file, buffer, length); .
int status; status code or actual length
int file; file number for file
char *buffer; input buffer
int length; number of bytes requested
DESCRIPTION

Reads the next set of bytes from a file. The return count
is always equal to the number of bytes placed in the buffer
and will never exceed the "length" parameter, except in the
case of an error, where -1 is returned. The file position
is advanced accordingly.

RETURNS

status = 0 if end of file
= -1 if error occurred
= number of bytes actually read, otherwise

CAUTIONS

If fewer than the requested number of bytes remain between
the current file position and the end of file, only that
number is transferred and returned. The number of bytes by
which the file position was advanced may not equal the
number of bytes transferred if text mode translation
occurred.

3-44

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

write -- write data to file

SYNOPSIS
status = write(file, buffer, length);
int status; status code or actual length
int file; file number
char *buffer; output buffer
int length; number of bytes in buffer
DESCRIPTION

Writes the next set of bytes to a file. The return count is
equal to the number of bytes written, unless an ercor
occurred., The file position is advanced accordingly.

RETURNS

status = -1 if error
= numper of bytes actually written

CAUTIONS

The number of bytes written may be less than the supplied
count if a physical end of file limitation was encountered.
If text mode translation occurs, the returned count may be
greater than the supplied count due to the addition of
characters during translation. The returned count is always
the same as the number of characters by which the file
position was advanced.

Lattice 8086/8088 C Compiler Portable Library FPunctions

NAME

lseek -~ seek to specified file position

SYNOPSIS
pos = lseek(file, offset, mode);
long pos; returned file position or error code
int file; file number for file
long offset; desired position
int mode; offset mode:

0 = relative to beginning of file
1 = relative to current file position
2 = relative to end of file

DESCRIPTION

Chéﬁges the current file position to a new position in the
file., The offset is specified as a long int and is added to
the current position (mode 1) or to the logical end of file
(mode 2), Not all implementations support offset mode 2.

RETURNS

pos = =1L if error occurred
= new file position if successful

CAUTIONS

The "offset” parameter MUST be a "long" quantity, so don’t
forget to indicate a "long" constant when supplying a zero.
In most cases, the return code should be checked for error,
which indicates that an invalid file position (beyond the
end of file) was specified. Note that the current file
position may be obtained by

long cpos, lseek():;
ép&s.a lseek(file, 0L, 1l);

which will never return an error code.

3-46

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

close -- close a file

SYNOPSIS
status = close(file);
int status; status code: 0 if successful
int file; file number

DESCRIPTION

Closes a file and frees the file number for use in accessing
another file. Any buffers allocated when the file was -
opened are released.

RETURNS

status = 0 if successful
= -1 if error

CAUTIONS

This function MUST be called if the file was modified;
otherwise, the ené of file and the actual data on disk may
not be updated properly.

Lattice 8086/8088 C Compiler Portable Library Punctions

3.2.3 Direct Console I/0 Punctions

These functions provide a direct I1/0 intecrface to the user’s
console., Because there is no buffering of characters, the
functions are particularly useful for applications which use
cursor positioning to define special screen formats or which
implement special single character responses to program prompts.
In order to distinguish these functions from the corresponding
level 2 functions, different names are used for them. This
allows programs to make use of both kinds of 1/0, if desired.
Programs which perform console I/0 exclusively can use the
console I/0 header file (called "conio.h" on most systems) which
defines several of the level 2 functions in terms of the direct
console functions, a feature which is most convenient for
programs written for other C environments where I/0 to the user’s
terminal is always unbuffered. The equivalencies defined by
"conio.h" are

getchar = getch
putchar = putch
gets = cgets
puts = cputs
scanf = cscanf
printf = cprintf

The functions on the right side of the equals signs are described
in this section. '

A couple of system dependencies arise in connection with the
direct console functions. Whether or not characters are echoed
as they are input is system dependent but there is usually a
mechanism to enable or disable the echo. On some systems the
characters that are typed when the program is not actually
waiting for input are saved, and then presented to the "getch”
function when it requests input. Often only one character is
saved, but some systems may save none while others retain
several. The presence of "type-ahead," as this feature is
usually called, rarely affects the program itself, although its
absence may be a source of irritation to users who have to
communicate with the program. Check the implementation section
of the manual for more information about console 1/0.

-

3-48

TTTTTY

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

getch/putch -- get/put character directly from/to console
SYNOPSIS

c = getch();

putch(c);

int ¢; character received/sent to console

DESCRIPTION

These functions get ("getch") or put ("putch") single
characters from or to the user”s console.

RETURNS
c = character received ("getch®)

CAUTIONS

There is no notion of an end of file or error status, but
some systems may implement EOF (-1) as an error return.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
ungetch -- push character back to console
SYNOPSIS
r = ungetch(c);
int r; return code
char ¢; character to be pushed back
DESCRIPTION
Pushes the indicated character back on the console. Only a
single level of pushback is allowed. The effect is to cause
"getch" to return the pushed-back character next time it is
called. '
RETURNS

r = EOF if a character has already been pushed back
= ¢ if successful

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
cgets =-- get string directly from console

SYNOPSIS
P = cgets(s); :
char *p; returned string pointer
char *3; input string buffer

DESCRIPTION
Gets a string directly from the user’s console. Characters
are input until a system-dependent terminator (usually CR,
0x0D) is encountered. On some systems, the first byte of
"s" must be initialized to contain some kind of byte count
indicating the size of the buffer.

RETURNS -
p = pointer to string received, which may or may not
(depending on the system) include the terminating carriage
return

CAUTIONS

Check the implementation section of the manual for details
of the operation of this function.

Lattice 8086/8088 C Compiler Portable Library Punctions

AME
cputs -- put string directly to console
:YNOPSIS

cputs(s):
char *s; string to be output

:ZSCRIPTION
Puts a string directly to the user”s console, On some
systems an additional character (usually CR, 0x0D) is
appended. '

CAUTIONS

Check the implementation section of this manual for details
of the operation of this function.

:=52 e

Lattice 8086/8088 C Compiler . Portable Library Punctions

NAME
cscanf/cprintf - formaited I/O directly to console

SYNOPSIS
same as "scanf" and “printf"

DESCRIPTION
These functions perform the equivalent of ®“scanf”™ and
"printf", but characters are sent directly to or received
directly from the console.

RETURNS
n = number of input items matched ("cscénf')

CAUTIONS

"cscanf” performs its I/0 directly using "getch", so there
are none of the usual input conveniences such as back
spacing or line deletion, If "cgets" provides some of these
conveniences, it may be better to call "cgets" and then use
"sscanf" to decode the resulting string.

Lattice 8086/8088 C Compiler Portable Library Functions

3.2.4 Program Exit Functions

The program entry mechanism, that is, the means by which the
main function gains control, is sufficiently system dependent
<hat it must be described in the implementation section of this
wanual. Program exit, however, is somewhat more general,
zlthough not without its own implementation dependencies.

The simplest way to terminate execution of a C program is
Zor the "main" function to execute a "return"” statement, or --
2ven simpler =-- to "drop through" its terminating brace. In many
cases, however, a more flexible program exit capability is
~eeded; this is provided by the "exit" and "_exit" functions
iescribed in this section. 'They offer the advantage of allowing
zny function -- not just "main" -- to cause termination of the
srogram, and in some systems, they allow information to be passed
=0 other programs,

3-54

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

exit -- terminate execution of program and close files

SYNOPSIS

exit(errcode| ,message]);

int errcode; exit error code

char *message; exit message (optional)
DESCRIPTION

Terminates execution of the current program, but first
closes all output files which are currently open through the
level 2 1/0 functions. The error code is normally set to
zero to indicate no error, and to a non-zero value if some
kind of error exit was taken. The optional exit message may
not be implemented on some systems.

CAUTIONS

Note that "exit" only closes those files which are being
accessed using the level 2 functions., TFiles accessed using
the level 1 functions are NOT automatically closed.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

_exit -- terminate execution immediately -
SYNOPSIS

_exit(errcode [,messagel);

int errcode; exit error code

char *message; exit message (optional)
DESCRIPTION

Terminates execution of the current program immediately,
without checking for open files. The arguments are the same
as for "exit" (which calls "_exit" after checking the level
2 files).

-84

Lattice 8086/8088 C Compiler Portable Library Functions

3.3 Utility Functions and Macros

The portable library provides a variety of additional
functions useful for many of the common data manipulations
performed by C programs. Three utilities provide fast memory
transfers; a set of macros allow quick testing of character
types; and several utility functions facilitate character string
handling. Almost none of these functions are system dependent.

3.3.1 Memory Utilities

The three utility functions described here are usually
implemented in machine language for maximum efficiency. These
are the equivalent of the almost universal FILL and MOVE
subroutines defined in other languages.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
setmem -- initialize memory to specified "char" value
SYNOPSIS
setmem(p, n, ¢);
char *p; base of memory to be initialized
unsigned n; number of bytes to be initialized
char ¢; initialization value
JESCRIPTION '
Sets the specified number of bytes of memory to the
specified byte value. On many systems a hardware "block
fi1l1l1" instruction is used to perform the initialization.
This function is useful for the initialization of "auto
char™ arrays.
ZAUTIONS

3-58

Some systems may distinguish between "char *" pointers and
pointers of other types, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the "p" argument,

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

movmen -- move a block of memory

SYNOPSIS

movmem(s, 4, n);

char *s; source memory block

char *d; destination memory block

unsigned n; number of bytes to be transferred
DESCRIPTION

Moves memory from one location to another. The function
checks the relative locations of source and destination
blocks, and performs the move in the order necessary to
preserve the data in the event of overlap. On many systems
a hardware "block move" instruction is used to perform the
transfer.

CAUTIONS

Some systems may distinguish between "char *" pointers and
pointers of other types, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the "s" and "d" arguments,

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

repmem ~-- replicate values through memory

SYNOPSIS
repmem(s, v, lv, nv);
char *s; memory to be initialized
char *v; template of values to be replicated
int lv; number of bytes in template
int nv; number of templates to be replicated
DESCRIPTION

Replicates a set of values throughout a block of memory.
This function is a generalized version of "setmem", and can
be used to initialize arrays of items other than "char”,
Note that the replication count indicates the number of
copies of "v" which are to be made, not the total number of
bytes to be initialized.

CAUTIONS

3-60

Some systems may distinguish between "char *" pointers and
other types of pointers, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the "d" and "v" arguments.

Lattice 8086/8088 C Compiler Portable Library Punctions

3.3.2 Character Type Macros

The character type header file, called "ctype.h" on most
systems, defines several macros which are useful in the analysis
of text data. Most allow the programmer to determine quickly the
type of a character, i.e., whether it is alphabetic, numeric,
punctuation, etc. These macros refer to an external array called
"_ctype” which is indexed by the character itself, so they are
generally much faster than functions which check the character
against a range or discrete list of values. Although ASCII is
defined as a 7-bit code, the "_ctype" array is defined to be 257
bytes long so that valid results are obtained for any character
value. This means that a character with the value 0xbl, for
instance, will be classified the same as a character with the
value 0x31l. Programs who wish to distinguish between these
values must test for the 0x80 bit before using one of these
macros. Note that " _ctype" is actually indexed by the character
value plus one; this allows the standard EOF value (-1) to be
tested in a macro without yielding a nonsense result. FEOF yields
a zero result for any of the macros: it is not defined as any of
the character types,

Here are the macros defined in the character type neader
file "ctype.h". Note that many of these will evaluate argument
expressions more than once, so beware of using expressions with
side effects, such as function calls or increment or decrement
operators. Don”t forget to include "ctype.h" if you use any of
these macros; otherwise, the compiler will generate a reference
to a function of the same name.

isalpha(c) - non-zero if ¢ is alphabetic, 0 if not

isupper (c) non-zern if ¢ is upper case, 0 if not

islower (c) non-zero if ¢ is lower case, 0 if not

isdigit(c) non-zero if ¢ is digit, 0 if not

isxdigit(c) non-zero if ¢ is a hexadecimal digit, 0
if not (0-9, A-F, a-f)

isspace (c) non-zero if ¢ is white space, 0 if not

ispunct (c) non-zero if ¢ is punctuation, 0 if not

isalnum(c) non-zero if ¢ is alphabetic or digit

isprint(c) non-zero if ¢ is printabple (including
blank)

isgraph(c) non-zecto if ¢ is graphic (excluding
blank) .

iscntrl (c) non-zero if ¢ is contiol character

isascii (¢) non-zecto if ¢ is ASCII (0-127)

iscsym(c) non-zerto if valid character for C
identifier

iscsymf (c) non-zero if valid first character for C
identifier

toupper (¢) converts c to upper case, if lower case

tolower (c) converts ¢ to lower case, if upper case

Note that the last two macros generate the value of "c” unchanged
if it does not qualify for the conversion.

Lattice 8086/8088 C Compiler Portable Library Punctions

3.3.3 String Utility Functions

The portable library provides several functions to perform
many of the most common string manipulations, These functions
all work with sequences of characters terminated by a null (zero)
byte, which is the C definition of a character string. A special
naming convention is used, which works as follows., The first two
characters of a string function are always "st", while the third
character indicates the type of the return value from the
function:

"stc"” indicates the function returns an "int" count
"stp" indicates the function returns a character pointer
"sts" indicates the function returns an "int" status value

Thus, the name of the function shows at a glance the type of
value it returns.

For compatibility with other C implementations, four of the
most common functions are provided with "str"™ names; these are
the functions mentioned Ln Kernlghan and Ritchie: “strlen”,

"strcpy”", "strcat” and "strcmp”

A9

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
strlen/stclen -- measure length of string
SYNOPSIS
length = strlen(s);
length = stclen(s);
int length; number of bytes in "s" (before null)
DESCRIPTION
Counts the number of bytes in "s" before the null
terminator. The terminator itself is NOT included in the
count.
RETURNS

length = number of bytes in string before null byte

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
strcpy/stccpy -- copy one string to another

SYNOPSIS
strcpy (to, from);
actual = stccpy(to, from, length);
int actual; actual number of characters moved

("stcecpy” only)

char *to; destination string pointer
char *from; source string pointer
int length; sizeof (to) ("stccpy" only)

DESCRIPTION
Moves the null-terminated source string to the destination
string. "strcpy" does not get a length parameter, so all of
the source string is copied unconditionally., For "stccpy®,
if the source is too long for the destination, its rightmost
characters are not moved. The destimation string is always
null-terminated. i

RETURNS
actual = actual number of characters moved, includiag the

null terminator ("stccpy” only)
CAUTIONS

As noted above, "strcpy" does not get a length parameter, so
the destination string had better be large enough., Use
"stccpy" if this causes problems,

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

strcat -- concatenate st:ings

SYNOPSIS
strcat(to, from);
char *to; string to be concatenated to
char *from; string to be added
DESCRIPTION

Concatenates "from” to the end of "“to". The result is
always null-terminated.

CAUTIONS

No length parameter is present, so the destination string
had better be large enough to receive the combined result,

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

strcmp/stscmp” -- compare :wo strings

SYNOPSIS

status = strcmp(s, t);
status = stscmp(s, t);

int status; result of comparison

>0 if s>t, 0 if s==t, <0 if s<t
char *s; first string to compare
char *t; second string to compare

DESCRIPTION

Compares two null-terminated strings, byte by byte, and
returns an "int" statcs indicating the result of the
comparison. I£f zero, the strings are identical, up to and
including the terminat:ng byte. If non-zero, the status
indicates the ra2sult of the comparison of the Eirst pair of
bytes which ware not equal.

RETURNS

status =) if strings match
< 0 1f first st-ing less than second string
> 0 if ficst string greater than second string

CAUTIONS

The result of the comparison may depend on whether
charactecs are considered signed, if any of the characters
are greater than 127.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

stcu_d -- convert unsigned integer to decimal string

SYNOPSIS .
length = stcu_d(out, in, outlen);
int length; output string length (excluding null)
char *out; ocutput string
unsigned in; input value
int outlen; sizeof (out)
DESCRIPTION

Converts an unsigned integer into a string of decimal digits
terminated with a null byte. Leading zeroes are not copied
to the output string, and if the input value is zero, only a
single “0° character is produced.

RETURNS

length = number of characters placed in output string, not
including the null terminator

CAUTIONS

If the output string is too small for the result, only the
rightmost digits are returned.

R

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stci_d -- convert signed integer to decimal string

SYNOPSIS

length = stci_d(out, in, outlen);

int length; output string length (excluding null)
char *out; output string
int in; input value
int outlen; sizeof (out)
DESCRIPTION

Converts an integer into a string of decimal digits
terminated with a null byte. If the integer is negative,
the output string is preceded by a “-’. Leading zeroes are
not copied to the output string,

RETURNS

length = number of characters placed in output string, not

including the null terminator

K prials 1=
"

b
S - a-991
I1f the output string is too small for the result, the

returned length may be zero, or a partial string may be
returned.

CAUTIONS ’4\

a r,a

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stch_i -- convert hexadecimal string to integer

SYNOPSIS
count = stch_i(p, r);)
int count; number of characters scanned
char *p; input string
int *r; result integer
DESCRIPTION

Performs an anchored scan of the input string to convert a
hexadecimal value into an integer. The scan terminates when
a non-hex character is found. Valid hex characters are 0-9,
A-F, and a-f.

RETURNS

count = 0 if input string does not begin with a hex digit
= number of characters scanned

CAUTIONS

No check for overflow is made during the processing.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stcd_i -~ convert decimal string to integer

SYNOPSIS
count = sted_i(p, r);
int count; number of characters scanned
char *p; input string
int *r; result integer
DESCRIPTION

Performs an anchored scan of the input string to convert a
decimal value into an integer. The scan terminates when a
non-decimal character is found. Valid decimal characters
are 0-9. The first character may be “+° or “=7,

RETURNS
count = 0 if input string does not begin with a decimal

digit

= number of characters scanned

CAUTIONS

No check for overflow is made during processing.

3-70

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

stpblk -- skip blanks (white space)
SYNOPSIS

q = stpblk(p);

char *q; updated string pointer

char *p; initial string pointer
DESCRIPTION

Advances the string pointer past white space characters.
RETURNS

q = updated string pointer (advanced past white space)
CAUTIONS

Must be declared "char *", as the "stp" prefix indicates.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
stpsym -- get a symbol from a string
SYNOPSIS
p = stpsym(s, sym, symlen);
char *p; points to next character in "s®
char *s; input string
char *sym; output string
int symlen; sizeof (sym)
DESCRIPTION
Breaks out the next symbol from the input string. The first
character of the symbol must be alphabetic (upper or lower
case), and the remaining characters must be alphanumeric.
Note that the pointer is NOT advanced past any initial white
space in the input string. The output string is the null-
terminated symbol.
RETURNS
p = pointer to next character (after symbol) in input string
CAUTIONS

Must bDe declared "char *", as the "stp" prefix indicates.
If no valid symbol characters are found, "p" will equal "s",
and "sym"™ will contain an initial null byte.

3-72

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

stptok -- get a token from a string

SYNOPSIS
p = stptok(s, tok, toklen, brk);
char *p; points to next char in "s*
char *s; input string
char *tok; output string
int toklen; sizeof (tok)
char *brk; break string
DESCRIPTION

Breaks out the next token from the input string. The token
consists of all characters in "s" up to but not including
the first character that is in the break string. In other
words, the break string defines a list of characters which
cannot be included in a token. Note that the pointer is NOT
advanced past any initial white space characters in the
input string. The output string is the null-terminated
token.

RETURNS

p = pointer to next character (after token) in input string

CAUTIONS

Must be declared "char *", as the "stp" prefix indicates.
If no valid token characters are found, "p" will equal "s",
and "tok" will contain an initial null bhyte.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

stpchr -- find specific character in string

SYNOPSIS
p = stpchr(s, ¢);
char *p; points to "c¢c" in "s" (or is NULL)
char *s; points to string being scanned
char c¢; character to be located
DESCRIPTION

Scans the specified string to find the first occurrence of
the specified character. 1If the null terminator byte is hit
ficst, a NULL pointer is returned.

RETURNS

p = NULL if "c" not found in "s"
= pointer to first "c" found in "s" (from left)

CAUTIONS

Must be declared "char *", as the "stp" prefix indicates,

3-74 =

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
stpbrk -- find break character in string
SYNOPSIS
p = stpbrk(s, b);
char *p; points to element of "b" in "s"
char *s; points to string being scanned
char *b; points to break character string
DESCRIPTION

Scans the specified string to find the first occurrence of a
character from the break string "b". 1In other words, "b" is
a null-terminated list of characters being sought. 1€ the
terminator bhyte for "s" is hit first, a NULL pointer is
returned.

RETURNS

p = NULL if no element of "b" is found in "s"
= pointer to first element of "b" in "s" (from left)

CAUTIONS

Must be declared "cnar *", as the "stp" prefix indicates.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stcis/stcisn -- measure span of a character set

SYNOPSIS

length = stcis(s, b);
length = stcisn(s, b);

int length; span length in bytes

char *s; points to string being scanned

char *b; points to character set string
DESCRIPTION

These functions compute the number of characters at the
beginning (left) of "s" that come from a specified character
set. Por “"stcis", the character set consists of all
characters in "b", while for "stcisn", it consists of all
characters NOT in "b".

RETURNS

3-76

length = number of characters from the specified set which
appear at the beginning (left) of "s"

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
stcarg -- get an argument

SYNOPSIS)
length = stcarg(s, b); -
int length; number of bytes in argument
char *s; text string pointer
char *b; break string pointer

DESCRIPTION
Scans the text string until one of the break characters is
found or until the text string ends (as indicated by a null
character). While scanning, the function skips over partial
strings enclosed in single or double quotes, and the
backslash is recognized as an escape character.

RETURNS

length = number of bytes (in "s") in argument
= 0 if not found

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

stcpm -- pattern match (unanchored)

SYNOPSIS

length = stcpm(s, p, g);

int length; length of matching string

char *s; string being scanned

char *p; pattern string

char **q; points to matched string if found
DESCRIPTION

Scans the specified string to find the first substring that
matches the specified pattern. The pattern is specified in
a simple form of regular expression notation, where

? matches any character
s* matches zero Oor more occurrences of "s"
s+ matches one or more occurrences of "s"

The backslash is used as an escape character (to match one
of the special characters ?, *, or +). The scan is not
anchored, that is, if a matching string is not found at the
first position of *s™, the next position is tried, and so
on. A pointer to the first matching substring is returned
at "*g".

RETURNS

length = 0 if no match
= length of matching substring, if successful

CAUTIONS

Note that the third argument must be a pointer to a
character pointer, since this function really returns two
values: a pointer to and the l2ngth of the first matching
substring.

L

3-78

Lattice 8086/8088 C Compiler ‘Portable Library Punctions

NAME
stcpma -- pattern match (anchored)
SYNOPSIS
length = stcpma(s, p):; .
int length; length of matching string
char *s; string being scanned
char *p; pattern string
DESCRIPTION
Scans the specified string to detecmine if it begins with a
{ substring that matches the specified pattern. See the
description of "stcpm" for a specification of the pattern
format,
RETURNS

length = 0 if no match
= length of matching substring if successful

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
stspfp -- parse file pattern

SYNOPS1S
error = stspfp(p, n);
int error; return code: -1 if error
char *p; file name string
int n[l6]; node index array

DESCRIPTION
Parses a file name pattern which consists of node names
separated by slashes., Each slash is replaced by a null
byte, and the beginning index of that node is placed in the
index array. For example, the pattern "/abc/de/f" has three
nodes, and their indexes are 1 for "abc", S for "de”", and 8
for "f£°". Note that the leading slash, if present, is
skipped. Note also that a slash that is part of a node name
(usually unwise) must be preceded by a backslash. The
last entry in the node array "n" is set to -1 (in the
example above, this causes "n[3]" to be -1).

RETURNS

3-80

errot = 0 if successful
= -1 if too many nodes or other error

Lattice 8086/8088 C Compiler Brror Messages

APPENDIX A Error Messages

This appendix describes the various messages produced by the
Eirst and second phases of the compiler, Error messages which
pegin with the text "CXERR" are compiler errors which are
described in Appendix B.

A.l1 Unnumbered Messages

These messages describe error conditions in the eavironment,
rather than errors in the source file due to improper language
specifications.

Can“t create object file

The second phase of the compiler was unable to create the
.0BJ file. This error usually results from a full directory
on the output disk.

Can“t create quad file

The first phase of the compiler was unable to create the .Q
file. This error usually results from a full directory on
the output disk.

Can“t open quad file

The second phase of the compiler was unable to open the .Q
file specified on the LC2 command, usually because it did
not exist on the specified (or currently logged-in) disk.

Can”t open source file

The first phase of the compiler was unable to open the .C
file specified on the LCl command, usually because it did
not exist on the specified (or currently logged-in) disk.

File name missing

A file name was not specified on the LCl or LC2 command.

Intermediate file errorc

The first phase of the compiler encountered an ecrror when
writing to the .Q file. This error usually results from an
out-of-space condition on the output disk,

Invalid command line option

An invalid command line option (beginning with a "-") was
specified on either the LCl or the LC2 command. Sce
Sections 1l.l.1 and l.1.2 for the valid command line options.
The option is ignored, but the compilatisn is not otherwise
affected. 1In other words, this error is not fatal.

Lattice 8086/8088 C Compiler ‘Brror Messages

Not enough memory

This message is generated when either phase of the compiler
uses up all the available working memory. The only cure for
this error is either to increase the available memory on the
system, or (if the maximum is already available) reduce the
size and complexity of the source file. Particularly large
functions will generate this error regardless of how much
memory 1s available; break the task into smallecr functions
if this occurs.

Object file error

The second phase of the compiler encountered an error when
writing to the ,OBJ file. This error usually results from
an out-of-space condition on the output disk.

A.2 Numbered error messages

These error messages describe syntax or specification errors
in the source file; they are generated by the first phase of the
compiler. A few are warning messages that simply remark on
marginally acceptable constructions but do not prevent the
creation of the gquad file, See Section 1.3.3 for more
information about error processing.

1 This error is generated by a variety of conditions in
conneztion with pre-processor commands, including specifying
an unrecognized command, failure to include whit2 space
between command elements, or use of an illegal pre-processoc
symbol (note that “$° is valid for ordinary identifiers but
not for pre-processor symbols).

2 The end of an input file was encountered when the compiler
expected more data. May occur on an #include file or the
original source file, In many cases, correction of a
previous error will eliminate this one.

3 The [ile name specified on a #include command was not found
on the currently logged-in disk.

4 An unrecognized element was encountered in the input file
that could not be classified as any of the valid lexical
constructs (such as an identifier or one of the valid
expression operators). May occur if control characters,; or
other garbage is detected in the source file, May also
occur if a pre-processor command is specified with the "§"
not in the first position of an input line.

5 A pre-processor $define macro was used with the wrong number
of arguments,

6 Expansion of a #define macro caused the compilecr’s line
- buffer to overflow, May occur if moce than one lengthy

Lattice 8086/8088 C Compiler Error Messages

10

11

12

13

14

15

16

17

13

macro appears on a single input line.

The maximum extent of $§include file nesting was exceeded;
the current version of the compiler supports #include
nesting to a maximum depth of 4.

An invalid arithmetic or pointer conversion was specified.
Usually results when an attempt is made to convert something
into an array, a structure, or a function,

The named identifier was undefined in the context in which
it appeared, that is, it had not been previously declared.
This message is only generated once; subseguent encounters
with the identifier assume that it is of type "int" (which
may cause other ertors).

An error was detected in the expression following the " ("
character (presumably a subscript expression). May occur if
the expression in brackets is null (not present).

The length of a string constant exceeded the maximum allowed
by the compiler (256 bytes)., Will occur if the closing " is
omitted in specifying the string.

The expression preceding the "." or "->" structure reference
operator was not recognizable by the compiler as a structure
or pointer to a structure. May occur for constructions
which are accepted by other compilers; see Section 2,1,

An identifier indicating the desired aggregate member was
not found following the "." or "->" operator.

The indicated identifier was not a member of the structure
or union to which the "." or "->" referred. May occur for
constructions which are accepted by other compilers; see
Section 2.1.

The identifier preceding the “(" function call operator was
not implicitly or explicitly declared as a function,

A function argument expression specified following the " ("
function call operator was invalid, May occur if an
argument expression was omitted. N

During expression evaluation, the end of an expression was
encountered but more than one operand was still awaiting
evaluation. May occur {f an expression contained an
incorrectly specified operation.

During expression evaluation, the end of an expression was
encountered but an operator was still pending evaluation.

May occur if an operand was omitted for a binary operation.

Lattice 8086/8088 C Compile: Error Messages

19

20

21

22

24

25

26

27

28

29

The numbers of oper.ng and closing parentheses in an
expression were not er:al. May occur if a macro was poorly
specified or improperly used, but is generally due to the
obvious error.

An expression which Zid not evaluate to a constant was
encountered in a contzxt which required a constant result,
May occur if one of :-e operators not valid for constant
expres;igns was preser: (see Kernighan and Ritchie, Appendix
A, p.).

An identifier declareZ as a structure, union, or function
was encountered in 2t expression without being properly
qualified (by a str.cture reference or function call
operator).,

{non-fatal warning) An :dentifier declared as a structure or
union appeared as a fu-ztion argument without the preceding
& operator. Express.:n evaluation continues with the &
assumed (i.e., a points:z to the aggregate is generated).

The conditional operat:z: was used erroneously. May occur if
the ? operator is prssent but the : was not found when
expected.

The context of the ex:tression required an operand to be a
pointer. May occur if the expression following "*" did not
evaluate to a pointer.

The context of the exz:ession required an operand to be an
lvalue. May occur if zhe expression following "&" was not
an lvalue, or if the 12£ft side of an assignment expression
was not an lvalue.

The context of the ex3dression required an operand to be
arithmetic (not a poin:er, function, or aggregate).

The context of the expression required an operand to be
either arithmatic or z pointer. May occur for the logical
OR and logical AND operators.

During expression eval:ation, the end of an expression was
encountared but not =2nough operands were available fort
evaluation. May occu:z if a binary operation is improperly
specified.
’

An operation was specified which was {avalid for pointer
operands (sucn as one of the arithmetic operations othec
than addition).

Lattice 8086/8088 C Compiler Error Messages

30

31

32

33

34

35

36

37

38

39

40

(non-fatal warning) In an assignment statement defining a
value for a pointer variable, the expression on the right
side of the = operator did not evaluate to a pointer of the
exact same type as the pointer variable being assigned,
i.e., it did not point to the same type of object., See
Section 2.1 for an explanation of the philosophy behind this
warning. Note that the same message becomes a fatal error
if generated for an initializer expression.

The context of an expression required an operand to be
integral, i.e., one of the integer types ("char", "int",
"short", "unsigned", or "long").

The expression specifying the type name for a cast
(conversion) operation or a sizeof expression was invalid.
See Kernighan and Ritchie, Appendix A, pp. 199-200 for the
valid syntax,

An attempt was made to attach an initializer expression to a
structure, union, or array that was declared "auto". Such
initializations are expressly disallowed by the language.

The expression used to initialize an object was invalid.
May occur for a variety of reasons, including failure to
Sseparate elements in an initializer list with commas or
specification of an expression which did not evalute to a
constant. May require some experimentation to determine the
exact cause of the error.

During processing of an initializer list or a structure or
union memper declaration list, the compiler expected a
closing right brace but did not find it. May occur if too
many elements are specified in an initializer expression
list or if a structure member was improperly declared.

This implementation does not allow initializer expressions
to be used for unions.

The specified statement label was encountered more than once
during processing of the current function,

In a body of compound statements, the numbers of opening
left braces ({) and closiny right braces (}) were not equal.
May occur if the compiler got "out of phase" due to a
previous error. ’

One of the C language reserved words appeared in an invalid
context (e.3., as a variable name),. See Kernighan and
Ritchie for a list of the reserved words (p. 180). Note
that "entry" is reserved although it is not implemented in
the compiler.

A "break” statement was detected that was not within the
scope of a "while", "do", "“for", or "switch" statement. May
occur due to an error in a preceding statement,

~

Lattice 8086/8088 C Compiler Error Messages

41

12

43

14

e
(81}

37

+8

19

A "case" prefix was encountered outside the scope of a
"switch" statement. May occur due to an error in a
preceding statement,

The expression defining a "case" value did not evaluate to
an "int" constant.

A "case" prefix was encountered which defined a constant
value already used in a previous "case" pr2fix within the
same "switch" statement.

A "continue” statement was detected that was not within the
scope of a "while", "do", or "for" loop. May occur due to
an error in a preceding statement,

A "default" prafix was encountered outside the scope of a
"switch" statement. May occur due to an error in a
preceding statement,

A "default” prefix was encountered within the scope of a
"switch" statement in which a preceding “"default” prefix had
already been encountered.

Following the body of a "do" statement, the "while"” clause
was expected but not found. May occur due to an error
within the body of the "do" statement.

The expression defining the looping condition in a "while®
or "do" loop was null (not present)., 1lndefinite loops must
supply the constant 1, if that is what is intended.

An "else" keyword was detected that was not within the scope
of a preceding "if" statement. May occur due to an ercdr in
a preceding statement.

A statement label following the "goto" keyword was expected
but not found. .

The iudicated identifier, which appeared in a "goto"
Statement as a statement label, was already defined as a
variable within the scope of the current function.

The expression following the "if" keyword was null (not
present). ’

This error is generated when the expression following the
"return" keyword could not be legally converted to the type
of the value returned by the function. May be generated if
that expression specifies a structure, union, or function,

The expression defining the value for a "switch" statement
did not define an "int" value or a value that could be
legally converted to "int".

-—

Lattice 8086/8088 C Compiler Error Messages

55

56

57

58

59

60

61

62

63

64

65

The statement defining the body of a "switch" statement did
not contain at least one "case" prefix.

The compiler expected but did not find a colon (:). May be
generated if a "case" expression was improperly specified,
or if the colon was simply omitted following a label or
prefix to a statement,

The compiler expected but did not find a semi-colon (;).
This error generally means that the compiler completed the
processing of an expression but did not find the statement
terminator (;). May occur if too many closing parentheses
are included or if an expression is otherwise incorrectly
formed.

A parenthesis required by the syntax of the current
statement was expected but not found (as in a "while" or
"for" loop). May occur if the enclosed expression is
incorrectly specified, causing the compiler to end the
expression early.

In processing external data or function definitions, a
storage class invalid for that declaration context (such as
"auto" or "register") was encountered. May occur if, due to
preceding errors, the compiler begins processing portions of
the body of a function as if they were external definitions.

A storage class other than "register” appeared on the
declaration of a formal parameter.

The indicated structure or union tag was not previously
defined, that is, the members of the aggregate were unknown.

& structure or union tag has been detected in the opposite
usage from which it was originally declared (i.e., a tag
originally applied to a "struct" has appeared on an
aggregate with the "union"™ specifier). The Lattice compiler
dzfines only one class of identifiers for both structure and
union tags. R
The indicated identifier has been declared more than once
within the same scope. This error may be generated due to a
preceding error, but is generally the result of improper
declarations,

A declaration of the membess of a structure or snion did not
contain at least one member name,

An attempt was made to define a function body when the
compiler was not processing external definitions. May occur
if a3 preceding error caused the compiler to "get out of
phase® with respect to the declarations in the source file,

Lattice 8086/8088 C Compiler Error Messages

66

67

68

69

70

71

72

73

74

75

The expression defining the size of a subscript in an array
declaration did not evaluate to a positive "int" constant,
May also occur if a zero length was specified for an inner
(i.e., not the leftmost) subscript.

A declaration specified an illegal object as defined by this
version of C. Illegal objects include functions which
return aggregates (arrays, structures, or unions) and arrays
of functions. :

A structure or union declaration included an object declared
as a function. This is illegal, although an aggregate may
contain a pointer to a function.

The structure or union whose declaration was- just processed
contains an instance of itself, which is illegal, May be
generated if the "*" is forgotten on a structure pointer
declaration, or if (due to some intertwining of structure
definitions) the structure actually contains an instance of
itself,

A function’s formal parameter was declared illegally, that
is, it was declared as a structure, union, or function. The
compiler does not automatically convert such references to
pointers, which is what is usually intended.

Reserved for expansion. Check the latest addendum to see if
this error has been newly defined; otherwise, treat it as a
compiler error and report it accocrding to the directions in
Appendix B.

An external item has been declared with attributes which
conflict with a previous declaration. May occur if a
function was used earliear, as an implicit "int" function,
and was then declared as returning some othar kind of value.
rfunctions which return a value other than "int™ must be
declared before they are used so that the compiler is aware
of the type of the function value,

In processing the declaration of objects, the compiler
expected to find another line of declarations but did not in
fact £ind one. This error may be generated if a preceding
error caused the compiler to "get out of phase™ with respect
to declaratioans, :

During processing of extecnal declarations, an attempt was
made to define a function, but it was not the ficst
identifier declared on the input line.

An attempt was made to define the same function more than
once within the same soucce module.

Lattice 8086/8088 C Compiler Error Messages

76

x

78

79

80 .

8l

The compiler expected, but did not find, an opening left
brace in the current context. May occur if the opening
brace was omitted on a list of initializer expressions for
an aggregate.

In processing a declaration, the compiler expected to find
an identifier which was to be declared. May occur if the
prefixes to an identifier in a declaration (parentheses and
asterisks) are improperly specified, or if a sequence of
declarations is listed incorrectly.

The indicated statement label was referred to in the
previous function in a "goto" statement, but no definition
of the label was found in that function.

In processing a list of declared items, the compiler
expected a separator (comma or semi-colon) but did not find
one. Usually rvtesults from an improperly specified list of
names being declared, or from an attempt to initialize an
object for which initialization is not permitted (such as an
"extern" object).

The number of bits specified for a bit field was invalid.
Note that the Lattice compiler does not accept bit fields
which are exactly the length of a machine word (such as 16
on a l16-bit machine); these must be declared as ordinary
"int" or "unsigned" variables.

The current input line contained a reference to a pre-
processor symbol which was defined with a circular
definition, or loop. See Section 2.2.1 for an example,.

Lattice 8086/8088 C Compiler Compiler Brro
APPENDIX B Compiler Errors

This appendix describes the procedure to be used for reporti
compiler errors. These are errors that result not from t
user’s incorrect specifications but from the compiler itse
failing to operate properly. There are four general kinds

errors which can occur:

1. The compiler generates an error message for a sour
module which is actually correct.

2. The compiler fails to generate an error message for
incorrect source module,

3. The compiler detects an internal error condition a
generates an error message of the form

CXERR: nn
where "nn" is an internal error number.

4. The compiler dies mysteriously (crashes) while compili
a source module,

5. The compiler generates incorrect code for a corre
source module,

The last type of error is of course the most difficult
determine and the most vexing for the programmer, who has
indication that anything is wrong until snmething inexplicab
doesn’t work and only concludes that the compil2c is at fau
after a long and painstaking study of his or her own code.

We would like to know about and repair any compiler erco
as soon as possible, sSo please help us out by reporting a
problems promptly. The difficulties you suffer may be spared t
next programmer if you do so. In order to maintain a mo
precise record of the bugs that are discovered, we would like a
problms to be reported in writing. You can send the probl
reports to Lifeboat, but the problem will be attended to mo
Juickly {f you send it to Lattice directly at .this address:

Lattice, Inec,

P. 0. Box 3072

Glen Zllyn, Illinois ’
60138

In all rcases, include the following items of information
your package: .

1. A listing of the source module for which the errc
occurred. Don’t forget to include listings of any #include Eil
used (and watch out for #include file nesting; don”t focrget t
inner files as well). Supplying the source on disk will possib

Lattice 8086/8088 C Compiler Compiler Errors

save us some typing, but there’s no guarantee we“ll be able to
read it (unless it°s IBM PC format), and if you don”t want to
spare a disk just send listings,

2. The revision of the compiler and when it was purchased.

3. Your name and address and, if you’re willing to talk
about the problem with a technical person, a phone number with
the times you will be available,

4. A description, brief or lengthy as it suits you, of the
problem, along with any other information you think may be
helpful. Obviously, errors of type 3 (see above) don’t need
anything morte than a terse "Causes CXERR 23." 1If you“ve
investigated the problem yourself to some extent, let us know
what you found,

Once you have determined that there is a definite compiler
problem, put together a problem report and ship it off to us.
We“ll try to get to it as soon as possible, and we are attempting
to institute a liberal update policy, especially for those who
report bugs. Meanwhile, try coding around the problem; if that
doesn’t work, mutter a few curses directed at "lousy compiler
writers" and work on something else. Remember, Lattice is in the
business of supplying portable C compilers and we use them for
our own development work, so we’re well motivated to fix any
problems you find,

A\
J

Lattice 8086/8088 C Compiler Conversion of CP/M Progr
APPENDIX C Conversion of CP/M Programs

Because of its similarity to CP/M, it is reasonable to exp
that C programs written for that operating system will
transported to MS-DOS without a great Jdeal of difficulty. T
appendix attempts to point out some of the pitfalls likely to
encountered when moving source from CP/M to MS-DOS
compilation with the Lattice C compiler,.

The least amount of trouble lies in store for those who h
written programs for the BDS C compiler. At the source ¢
level, every effort has been made to be compatible. While
Lattice compiler is a little stricter in some things, genera
the correction is accepted by the BDS compiler as well, wh
facilitates keeping one set of source for both systems.
example, 2 sequence like

char *cp;

cp = cfunct(i);
char *cfunct(n)
int n;

¢ s e

will cause the Lattice compiler to complain about a mismatch
external attributes, because "cfunct" is used implicitly as "i
before it is defined as "char *"., Inserting

char *cfunct():

prior to the first use of "cfunct” eliminates the ercor, and
acceptable to the BDS compiler as well., As for othecr cod
constructions, the warning generated for structures supplied
function arguments without a preceding & was inclu
specifically for 8DS C programs. The problem of extecnal d
definitions posed by the BDS implementation”s lack of stor
class specifiers is solved by the -x compile time option. H
are the rules for using it on BDS C programs:

l. When compiling the main module, do NOT specify the
option. The various external declarations are interpreted
definitions of the objects, and storage is actually allocated
them,

2. When compiling any of the other modules, specify the
option on the LCl command, The various external declarations
then interpreted as references to objects defined elsewh
(presumably in the main module),

Be careful not to compile more than one of the modules
the program without using the -x option; otherwise, the lin
will inform you that multiple definitions of the external it

Lattice 8086/8088 C Compiler Conversion of CP/M Programs

were encountered,

At the library level, there are other, more serious
difficulties. Although the BDS library does a good job of
supplying most of the standard functions described in the
Kernighan and Ritchie text, the details of their operation are
different from the Lattice functions in a number of small ways.
In particular, "putchar" and "getchar" are direct console I/0
functions under BDS C, whereas they are implemented as macros in
Lattice C. This problem can be avoided by using the console 1/0
functions described in Sections 1.5.5 and 3.2.3. In general, it
is best to review all of the functions supplied in both libaries
with a view toward locating potential trouble spots. Many of the
more specialized CP/M functions have not yet been provided in the
Lattice library, but check the latest compiler addendum; others
will probably be added as newer versions of the compiler are
released.

Users of the Whitesmiths C compiler are not likely to
encounter any problems with source language compatibility, but
the library is for the most part completely different. Still,
judicious use of #d=2fines may eliminate some problems,

Lattice 8086/8088 C Compiler

INDEX

Inc

Note: index references containing punctuation (such as funct:
names, which are enclosed in double quotes, as in "printf®) ¢
listed at the beginning of the references for each letter.
sure to check the entire list for each letter when searching |

a particular reference.

8087 numeric data processor

8088 processor

"allmem” function
"auto" data elements
-a option

address-of opecator
aliasing

alignment requirements

amendments to the C Reference Manual

arguments

arithmetic
arithmetic
arithmetic

conversions
objects
operations

"1-7, 1-14, 1-17, 1-18

1-5

3-9
1-28
1-5, 1-24
2-2, 2-12
1-5, 1-24
2-6

2-11

1-28

1-16

2-5

1-16

array name
ASCII

assembly language interface

auto storage class

"bdos” function

-b option

BDOS function entcies
binary mode

bit fields

branch instructions
buffecring

byte alignment

byte ordaring

"calloc" function
"cgets™ function
"close" function
"clrerr™ function
"cprintf® function
"cputs" function
"creat"™ function
"cscanf" functicn
"_ctype" array
-c option
C.0BJ
character constants
character type macros
code generation
command line arguments
comments

common Ssubexpressions

2-2,
3-61
1-29
2-6.

1-39

1-5

1-39
1-35,
1-18
1-22
3-16,
1-5
1-14

3-4
1-40,
3-47
3-34
3-53
1-40,
3-12
3-53
3-61
1-5,
1-2,
2-11
3-61

‘1-21

1-11,
1‘5 ’
2-9

2-12

3-16, 3-39

3-40

3-51

3-52

2-11
-8, 1-27
2-11

1-38

2‘1; z’ll

Lattice 8086/8088 C Compiler

compiler errors
compiler processing
conditional compilation
console I/0 functions
constant operands
constant test values
control flow

control flow analysis
conversions

CTYPE.H

CXERR error message
CXFERR library function

$¢define command
-d option

data elements
data formats
DATA segment
debugging
derived objects
devize 1/0
device names
DGROUP group
jifferences from standard language
division by zero
dollar sign
double precision

"exit" function
"extern” storage class’
¥_exit" function

echo

equality operators
error messages

error processing

escape character
expression evaluation

extarnal
external
extarnal
external
external

"fclose"

data definitions
declarations
function definitions
names

storage class

function

"feof" macro

"ferror"
“fflush"
"Egetc”

macro
macro

function

"fgets™ function
"fileno" macro
“fopen" function
"fprintf" function
“fputc* function
“fputs" function
"free" function

Index

1-21

1-19

2733, 3-a -
= ’ - .
2-9)
2-10

2-10

1-22

1-16

3-61

1-21

1-18

2-4
1-6
1-14
1-14
1-26
1-6
2-5
1-36
1-36
1-27
2-1
1-16
2-1
1-17 \

3-55
2-7
3-56
3-48
2-12
1-21
1-21
3-77, 3-78
2-9
2-13
1-6
2-13
1-15
2-6

3-20

3-33

3"33 ’”

3-37

3-23 .

3-25 “-

3-35

= -
3-29

3-23

3-26

3-5

Lattice 8086/8088 C Compiler

"freopen®" function
"fscanf" function
"fseek™ function
"frell™ function

" _fmode"” flag word
-f option

file access mode
file descriptor
file 1I/0

file names

file number

file pointer

file position

floating point exceptions
floating point formats
floating point operations
formal storage class
formatted input

formatted output

function arguments
function call conventions
function extract utility
function return value
FXU.EXE

"getc"” macro
"getch®™ function
"getchac®™ macro
"getmem" function
"gets" function
qgroups

hardware characteristics
nardware reqgisters

"inp" function
"isalnum® macro
*isalpha®™ macro
"isarcii® macro
"iscntrl” macro
"iscsym® macro
"iscsymf" macro
"isdigit" macro
"isgraph" macro
"islower® macro
"isprint®™ macro
"ispunct" macro
"isspace” macro
" isupper"” macro
*isxdigit" macro
$if command

1/0 and system functions
include files
initialization

3-19

3-27

3-31

3-32

3-16

1-7

3-18

3-39, 3-41
1-34

1-34

3-39, 3-41
3-15, 3-18
3-31, 3-32,
3-45, 3-46
1-18

1-14

1-17

2-6

3-27, 3-53
3-29, 3-53
1-28

1-28

1-12

1-29

1-12

3-21
1-39, 3-49
3-21
3-7
3-25
1-26

1-14
1-23

1-38
3-61
3-61
3-61
3-61
3-61
3-61 °
3-61
3-61
3-61
3-61
3-61
3-61
3-61
3-61
2-4, 2-13
3-15
1-15
2-8

3-39,

In

3-44

Lattice
initial
integer
"kbhit”

"lseek"

8086/8088 C Compiler
izers

overflow

function

function

$line command

languag
LC.BAT

LC.LIB

level 1
level 1
level 2
level 2
level 3
library
library
library
line bu
line co
linkage
linking
local 4
logical
lvalue

“main®
"malloc
“movmem
" _main"
machine
macros
maximum
maximum
maximum
member
memory
memory
memor y
MS-DOS

“open"
"outp”
& opera
-0 opti

e definition

1/0 functions
memory allocation
1/0 functions
memory allocation
memory allocation

functions
implementation
E€ering
ntrol
conventions

eclarations
end of file

function

" function

" function
function
dependencies

size of a file

size of declared object
subscript-length
names

allocation

allocation functions
utilities

function
function
tor

on

object code conventions
object code format
object module

operating instructions
operating system
operators

optimization

order of evaluation
overflow

Index

2-8
1-16

1-39 : f*~)
{

3-46 -

2-14

2-1

1-2

1-2, 1-9

3-39

3-12

3-15

3-6

3-2

3-1

3-1

1-33

3-16, 3-38

2-14

1-26.

1-8

2-7

3-39, 3-46

2-12

1-8, 1-10 ‘\

. 3-3 p g

3-59

1-38

1-13

3-17

1-34

2-2

2-2

2-2, 2-12, 2-13, 2-14
1-25, 1-37
3-1

3-57

1-1, 1-33

3-41 .
1-39

2-2, 2-12
1-6, 1-7
1-26

1-26

1-20

1-1 (
2-9 R
1-22

2-10

1-18

S 1-1 ,.)

Lattice 8086/8088 C Compiler

"printf" function
"putc" macro
"putch” function
"putchar" macro
"puts” function
PGROUP group

phase 1 command line options
phase 1 execution

phase 1 processing

phase 2 command line options
phase 2 execution

phase 2 processing
‘pointer conversion warning
pointer overlap

pointers

pointer variables

portable library functions
pre-processor features
pre-processor macro substitution
primary expressions
program entry/exit

orogram execution

program exit functions
program generation

program linking

program structure

PROG segment

quad file
quadruples

"rbrk®™ function

"read" function

"register"™ storage class
"repmen” function

"rewind" macro

"rlsmem® function

“rstmem” function

register allocation
registers

register variables

regular expression notation
relational operators
run-time program structure

"sbrk" function

"scanf" function

"setmem" function
"setnbf" function
"sizeof" operator
"sizmem" function
"sprintf® function
"sscanf" function
"stcarg"” function
"stccpy” function

3-29

3=-22

1-39, 3-49
3-22

3-26
1-27

1-5

1-4

1-19

1-7

1-6

1-20

2-2, 2-3
1-24

1-14, 2-5, 2-8, 2-12
1-23

]
—

’-‘P‘HP‘MV"HNNN\J
OO U - WH W
> O 0N

1-19, 1-21
1-19

3-14
3-44
2-7
3-60
3-36
3-8
3-11
1-23
1-28, 1-29°
1-19
3-78
2-12 -
1-24

3-13 !
3-27

3-58

3-38

2-4, 2-13

3-10

3-29

3-27

3-77

3-64

Ind

Lattice 8086/8088 C Compiler

"stcd_i" function
"stch_i" function
"stcis" function
"stcisn"™ function
"stci_d" function
"stclen™ function
"stcpm" function
"stcpma" function
"stcu_d" function
“stderr”

"stdin"

"stdout"

"stpblk"™ function
“stpbrk" function
"stpchr" function
“stpsym” function
"stptok™ function
"strcat" function
"strcmp" function
"strcpy" function
"strlen" function
"stscmp” function
"stspfp" function
"switch" statement
scope of identifiers
segment definitions
Segment registers
shift operations

sign extension

size of C programs
special functions
stack

stack pointer SP
stack size

standard error
standard input
standard output
static storage class
storage classes
storage class specifiers
string constants
strings

string utility functions
structur2 and union declarations
Structure memper refecences
structures and unions

“tolower" macro
"toupper"™ macro

tags

temporaries
terminating execution
text mode

total program size
translated mode

1-6

Index

3-70

3-69

3-76

3-76 .-
3-68 N}
3-63 .
3-78

3-79

3-67

1-10, 3-16

1-10, 1-11, 3-15

1-10, 1-11, 3-15

3-71

3-75

3-74

3-72

3-73

3-65

3-66

3-64

3-63

3-66

3-80

1-22

2-7

1-26 -
1-25 : L
1-16 -_;)
1-16, 1-18

1-1

1-38

1-28, 1-37, 3-1

1-25, 1-28

1-4, 1-10

1-10

1-10, 1-11

1-10, 1-11

2-6

2-6

2-12

2-1, 2-11

2-11

3-62

2-13

2-2, 2-12

2-1, 2-12, 2-14 ’

3-61

3-61 e
2-13 !)
1-28, 2-9 N
3-54

1-35, 3-16, 3-39

1-25

1-35, 3-16, 3-39

Lattice 8086/8088 C Compiler

type-ahead
type names
type punning

"ungetc" function

"ungetch" function

*unlink function

$undef command

unary operators

undecrflow

unions

unsatisfied external :-eferences
untranslated mode

utility functions ancé macros

"write® function
warning message

-x option

zerodivide

In¢

3-48
2-13
2-10

3-24

3-50

3-43

2-4

2-12

1-18

2-8, 2-14

1-9

1-35, 3-16, 3-39
3-57

3-45
2-2

1-6, 2-7, 2-12
1-18

Lattice 8086/8088 C Compiler Supplement for Version 2.00

‘Lattice 8086/8088 C Compiler
MANUAL SUPPLEMENT FOR VERSION 2.00 OF COMPILER
1.0 DIFFERENCES FROM PREVIOUS VERSIONS

The following list summarizes the most important differences
between Version 2.00 and previous versions for users who are
upgrading their compiler. For complete information about the new
features, refer to the latest manual and supplement.

1.1 Compiler Differences

The meaning of some previously defined compile time flags has
been changed, and several new options have been added.

1.1.1 Effect of the -a flag

The effect of the -a flag has been extended so that it forces all
assignment statements (that is, the actual store operation) to be
performed before the execution of the next statement. This is
important only in (1) unions, where a value is stored and then
immediately inspected or passed to a function via another member;
(2) real-time processing where shared data values are used as
"lock"™ words, and immediate execution of an assignment statement
is critical to subsequent actions; and (3) memory-mapped I/0
assignments, where values must be stored repeatedly in the same
“"memory" location. .

1.1.2 Alignment of data elements

The alignment of storage for arithmetic objects has been changed.
Now, the only data elements which force alignment to a word
offset are pointers, structures, and unions. (In previous
versions of the compiler, all objects except simple "char"
variables were word-aligned.) The -b flag still has the effect
of dropping alignment requirements for all objects.

1.1.3 Extensions to -i flag

The -i option has been generalized to accept a prefix which is to
be prepended to file names from #include statements; up to 4 -{
options may be specified. Note that the current directory is
always searched first before the -i options are checked. R

1.1.4 Optional long identifiers flag

A special -n option has been added which, if used, forces the
compiler to retain up to 39 characters for all identifiers
(including pre-processor $define symbols).

Lattice 8086/8088 C Compiler Supplement for Version 2.00

1.1.5 Stack overflow checkiag

The compiler now, by defaul:z, generates code at the beginning of
each function to check fo:r stack overflow. The code for stack
overflow detection can be eliminated by compiling your source
module with the new =-v c:ztion on LC2. Library functions are
supplied with stack overfl:cw detection included.

1.1.6 Expanded memory addressing

The -m and -s flags on LCI are new compile time options used for
the new expanded memory acizessing feature of the compiler. Pour
different memory "models® are supported, allowing a range of
addressing capabilities fc: compiled programs. Note that a sin-
gle program must be compilz2< and linked according to one and only
cne of the memory models, zhat is, functions compiled according
to different memory model: may not be combined in a single pro-
gram.

1.1.7 Code group and segme=z name override

Two-new flags (-g and -s) =n LC2 allow the user to specify code
group and segment names in the generated object file.

1.2 Run-time and Library D:fferences

In addition to new versicas of the library to support the new
memory addressing capabili:zies, the implementation of many of the
library routines has been .aproved, resulting in some differences
in their operation. :

1.2.1 Processing of =, <, and > specifiers on command line

The special command line specifiers "=", "<", and ">" are now
processed by C.OBJ instead of " main", and must appear before all
other command line argumenzs following the program name.

1.2.2 New version of stdic.h and level 2 1/0 functions

The level 1 and level 2 I/0 functions have been upgraded but are
compatible with the old functions; however, any program using
level 2 1/0 (i.e., any that #included "stdio.h") must be
recompiled because the stdio.h definitions have changed.

- 1.2.3 Extensions to “open®” and "fopen" functions
7

The level 1 I/0 "open" function has been extended to Support a
number of new flags, defined in the new header file "fcntl.h”,
The level 2 I/0 "fopen" function has been extended to accept a
"+" after the mode character to indicate that both reads and
writes are allowed on the file. TO switch from one mode to the
other, you must execute "fseek"” or "rewind" on the file pointer.

Lattice 8086/8088 C Compiler Supplement for Version 2.00

1.2.4 Implementation of level 2 I/0 buffering

The level 2 I1/0 functions now perform I/0 for all devices (inclu-
ding the console) in true unbuffered fashion. The old "line
buffered" mode supported by the previous version has been
scrapped, so that "printf" to the console sends its characters
immediately, whether or not a newline is sent. Similarly, input
from devices is also normally unbuffered, but buffered console
input is supported and processed using the BDOS function. The
new version of "_main” sets up "stdin" to be buffered, so back-
space and line cancel features will now work on reads from
"stdin" when assigned to the console.

1.2.5 Implementation of level 1 1/0 buffering

The level 1 I/0 functions (open, read, write, lseek, close) do
not acquire buffers via the level 2 memory allocator, as they did
in previous versions. This means that you no longer have to
worry about messing up files when you do a"rstmem”, and that the
"_block"™ external is no longer supported. Under MS-DOS, buffer-
ing is now performed by the operating system itself, resulting in
improved performance for large read/wtite data transfers.

1.2.6 Support for MS-DOS Version 2.0

The compiler and library for MS-DOS Version 2.0 supports the new
path names available under that operating system. Your programs
should not require any changes unless they are sensitive to the
file name format. I/0 redirection now works properly under DOS
Version 2 for programs compiled using this new library.

1.2.7 Extensions to level 2 memory allocation

The memory allocation functions have been extended to support the
new extended addressing capabilities of the compiler. In
particular, the "sizmem" function has been changed to return a
"long" integer, and two new functions ("getml"™ and "lsbrk") have
been added which support a "long" integer requested block size.
The other functions are compatible with the old versions.

1.2.8 New utility functions

Several new utility functions have been added to the library
which allow access to all of the features of the 8086/8088
processors, including (1) software interrupts (useful for making
direct ROM BIOS calls); (2) BDOS functions; (3) access to segment
register contents; (4) inter-segment memory transfers; and (5)
"peek" and "poke"” functions for examining and setting any memory
locations,

Lattice 8086/8088 C Compiler Supplement for Version 2.00

2.0 MANUAL ERRATA

Please note the following errors in the original version of the
manual.

2.1 Missing ENDS statement

On page 1-33 of the manual, the last four statements of the
assembly language example should read as follows:

XCFIND ENDP

XCMAKE ENDP
PROG ENDS
END

Inclusion of the ENDS statement is critical; if omitted, the
linker will produce an invalid EXE file when the module is
linked. Note that the assembly language interface is slightly
different for each of the memory models; see below.

2.2 Call "_exit", not "exit"

On page 1-38 of the manual, a short version of " main” is presen-
ted; however, the final statement before the closing brace should
read:

_exit(0);

If "exit" is called, the level 2 I/0O functions are included in
the program. Note that the correct version of this function has
now been supplied as TINYMAIN.C,

2.3 "kbhit" function described incorrectly

Page 1-39 of the manual describes a function called "kbhit",
which returns a status indicating whether a character has been
typed at the user”s console. Please note that the action of the
function as described in the manual is exactly opposite to its
actual characteristics: it returns zero if a character has NOT
been typed at the keyboard, and non-zero if a character is wai-
ting input.

Lattice 8086/8088 C Compiler Supplement for Version 2.00

3.0 MAJOR NEW FEATURES

The most important new features present in Version 2.00 of the
compiler are (1) expanded memory addressing capabilities; (2)
run-time stack overflow checking; and (3) support for MS-DOS
Version 2.0.

3.1 Expanded memory addressing

The compiler now supports program and data spaces greater than
64K bytes. Four different "memory models" are defined, as
follows:

Model Program Address Space Data Address SPAce

s 64K 64K
P up to 1M) 64K
D 64K up to 1M
L up to 1M up to 1M

The D and L models use four-byte pointers, and the P and L models
generate FAR calls and returns, None of this requires you to
change any of your C code if you have played by the rules. The
main pitfall is any assumption that a pointer will fit into an
integer, since integers are still only two bytes under all mo-
dels.

In all of the models, a single DATA segment is used to contain
all statically allocated data within the program, thus restric-
ting the combined total of static data to 64K bytes or less.
Similarly, the stack segment where "auto" data elements are
allocated can never be greater than 64K, In the D and L models,
however, dynamic memory can be allocated without restriction, and
pointers can be used to access any location in memory.

3.1.1 Choosing the memory model

All of the functions in a single program must be compiled and
linked according to one and only one of the available memory
models. In other words, you may not combine functions compiled
for different models, It becomes important, therefore, to choose
the right memory model for your application. The tradeoff
involved is between efficiency and memory addressability. There
are two choices that must be made. ’

(1) Will the combined size of the functions in your program be
greater than 64K bytes? If not, select one of the models
that uses NEAR calls (the S or D models), which are faster
and require less ¢ode. Otherwise, you must select a model
that supports FAR calls (the P or L models), unless your
application is suitable for program section overlays, which
can be created using the Phoenix Software Associates PLINKS86.

(2) Does your application require more than 64K bytes of data

~

Lattice 8086/8088 C Compiler Supplement for Version 2.00

storage? 1If not, selec: one of the models that uses 2-byte
data pointers (the S or P models), because pointer operations
are performed much more efficiently in these models. 1If you
simply need access to specific memory locations beyond the
program”’s 64K address space, you can probably use the new
library functions "peek" and "poke" and retain the efficient
2-byte pointers., Otherwise, if data storage in excess of 64K
bytes is a must, you must select a model that uses the 4-byte
data pointers (the D or L models) and pay the price of
somewhat less efficient code.

3.1.2 Compiling for the memory models

Generation of code for the various models is controlled by a new
compile time option specified on the first phase (LCl) of the
compiler. The -m option must be followed immediately (no spaces,
please) by a letter (either lower- or upper-case) specifying the
desired memcry model. The model may also be specified as a
single numeric digit from 0 to 3. 1If no -m option is present,
code is generated for the S model,

S model: LCl filename) (no flags)
’ LC1l filename -ms
LC1 filename -m0

//\-_
P model: LC1 filename —mp>

LCl filename -ml

D model: LCl filename -md
LCl filename -m2 .
L model: LC1l filename -ml

LC1 filename -m3
3.1.3 Linking programs

When using the various memory models, you must be careful to link
with the appropriate library (LCS.LIB, LCP.LIB, LCD.LIB or
LCL.LIB). The compiler generates code segments with different
names for each model, which allows you to examine the LINK map
and determine if you have erroneously mixed code for different
models. Only one of the following segment names should appear on
the link map.

S model: PROG {code group PGROUP)

P model: _CODE ,
D model: CODE (code group CGROUP)

L model: _PROG

Note that for the P and L”models, several segments with the name
_CODE (or _PROG) will be anlgded (one for each separately com-~
Piled module containing functions).

Lattice 8086/8088 C Compiler Supplement for Version 2.00

3.1.4 Run-time program structure

Two different memory layouts are now used. For the small data
case, the layout remains exactly as described in the manual. For
the large data cases, the stack resides immediately above the
static data area, and the free memory pool (allocated by "sbrk")
is above the stack. DS is the base of the static data, SS is the
base of the stack, and ES is undefined. The public symbol
" base" still contains the base of the stack relative to DS (it
specifies the number of static data bytes). The symbol "_top”
contains the top of the stack relative to SS (it contains the
number of bytes allocated for the stack).

It is important that your programs reserve sufficient stack space
in the large models, since there is no free space to absorb stack
overflows, (Stack overflow checking is now a default option; see
below,) If you define a public unsigned integer called "_stack",
that value will be used as the number of bytes in the stack.
Note that the stack can be as large as 64K bytes in the D and L
models.

3.1.5 Code generation for pointer operations

The code generated by the D and L models uses four-byte pointers
and can therefore address any location in memory. These pointers
are stored as an offset portion in the low two bytes, followed by
2 base portion in the high two bytes (the format expected by the
machine language instructions LDS and LES). Objects are ad-
dressed from these pointers by loading the base portion into the
extra segment register ES, the offset portion into an index
register, and using the segment override prefix for ES to force
the indexed operation to refer to the correct memory location.
Since there is only one ES register, such common operations as
copying from one pointer to another require ES to be reloaded for
each step in the copying process. Pointer references are there-
fore much more efficient in the 2-byte memory models, and if your
application can live with a 64K data space, use the S or the P
model,

The four-byte pointers used in the D and L models are manipulated
according to the following rules:

(1) Pointer arithmetic is performed by adding or subtracting a
32-bit offset to the pointer, using a call to a library
routine. Thus, dynamically allocated arrays (addressed by
subscripting a pointer variable) may be larger than 64K, and
address manipulations work properly for all offset values.
Note that, since the compiler requires statically declared
arrays (extern, static, or auto) to be less than 64K bytes in
size, only a 16-bit offset is used in accessing elements of
these arrays, resulting in more efficient code. The compiler
also performs pointer arithmetic for constant offsets which
fit in 16 bits by performing the operation on the offset
portion of the pointer, and then adjusting the base portion
by 1000H if overflow occurs.

Lattice 8086/8088 C Compiler Supplement for Version 2.00

(2) When two 4-byte pointers are subtracted, a library routine is
called which returns a "long" result.

(3) Conversions between long integers'and 4-byte pointers are
automatically performed, again by calling library routines,

(4) Comparison of pointers for equality or relative rank is
performed by calling a library routine which converts the
pointers to normalized (canonical) form before comparing.
Thus, two pointers which have different base and offset
portions but which actually point to the same location will
be recognized as equal.

(5) Any function which returns a pointer as its return value
calls a library routine which converts that pointer to nor-
malized (i.e., offset in the range 0 to 15) form.

3.1.6 The -s option for four-byte pointers

While the above rules provide complete generality in the use of
four-byte pointers, the additional overhead of library routine
calls can be inefficient if a significant amount of pointer
manipulation is being performed. A special compile time option
(specified on LCl) is provided for knowledgeable users who are
willing to work within certain restrictions. Adding the =-s flag
to LC1l causes the following changes in the above rules:)

(1) Pointer arithmetic is performed by adding or subtracting a
l6~bit offset to the pointer. Thus, no single object may be
greater than 64K bytes in size,

(2) Pointer arithmetic affects only the ocffset portion of the
pointer (not the base). When pointers are compared for
equality, an exact match of both base and offset portions is
required. When compared for relative rank, only the offset
portions are compared, 8o the comparison is meaningful only
if they are pointers to the same array.

(3) When two pointers are subtracted, only the offset portions
participate in the operation, and the result is a "short”®,

(4) Pointers and long integers are not converted when one is
assigned to the other; instead, a simple copy operation is
performed.

’

(5) The return value from a function which returns a pointer is
not normalized.

We expect that most functions can be safely compiled with the =-s
option, with the result of improved code generation quality. 1In
fact, all of the library functions written in C supplied in our
libraries are compiled with the -s option, except for the memory
allocation functions. Note that the -s flag has no effect on the
S and P models.

Lattice 8086/8088 C Compiler Supplement for Version 2.00

3.1.7 Assembly language interface

While C functions can be adapted for a memory model simply by
changing a compile-time switch, assembly language functions pre-
sent a bigger problem, because you must change your code to
process long pointers or use FAR linkages or both. The pointers
can be handled in the following way:

S/P model: MOV BX, [BP].ARGl ;get a pointer arg
MOV AX, [BX] juse it

D/L model: LES BX, [BP].ARGl ;get offset and base
MOV AX,ES:[BX] suse it

As noted above, DS always points to the base of static storage
for any of the memory models, so assembly language functions must
be careful not to change DS. In the S and P models, ES must also
be preserved (but not in the D and L models).

The use of PAR linkages requires the PROC statements to be
changed. Note also that the position of any EXTRN statements for
external funétions is critical. Por FAR linkages, they must
appear before the SEGMENT definition for the code segment, while
for NEAR linkages, they must appear after the code segment defi-
nition. These rules can be summarized in the following example:

S/D model: define code segment
) EXTRN XYZ:NEAR, ...
ABC PROC NEAR
P/L model: EXTRN XYZ:FAR, ...
define code segment
ABC PROC FAR

To deal with this messy problem, we’ve put conditional statements
into our assembly language functions. This keeps a single source
file for each function, and it is then re-assembled with a dif-
ferent macro library for each model. Our libraries (SM8086.MAC,
DMB086.MAC, PMB086.MAC, and LM8086.MAC) are included and should
be s~lf-explanatory. We put the following statement at the
beginning of each assembly language module:

INCLUDE DOS.MAC . -

Then, we merely copy the appropriate library to DOS.MAC before
assembling for a particular model. The source Jiles for .C.ASM

and I1I0.ASM, which are supplied, illustrate the use of these
macros,

3.1.8 Special cautions on using the D and L models

As noted above, the biggest potential problem when converting
code to use the four-byte pointers of the D and L models is that
pointers and integers are no longer the same size. While you may

Lattice 8086/8088 C Compiler Supplement for Version 2.00

think that your code does not depend in any way on this fact, you
may find that the assumption has crept into your implementation
without your being aware of it. Be alert for problems that might
relate to this, Here are three other important cautions you
should take note of:

(1) wWhen supplying pointer arguments to C functions, it is common
practice to supply a null pointer (i.e., one that does not
point to anything) as the #define constant NULL, which is
defined as 0 by "stdio.h". If you compile code for the D or
L models, you MUST change NULL to be OL so that the null
pointer value supplied to functions is the same size as the
pointer argument. If you fail to do this, the called
function will not correctly address its parameters, and all
sorts of chaos will result.

(2) The "sbrk"™ memory allocator is supposed to return a value of
-1 when no more memory is available (for compatibility with
other implementations). Under the D and L models, the result
of casting -1 into a character pointer depends on whether the
-s option was used (see sections 3.1.5 and 3.1.6). Since the
library function was compiled WITHOUT the -s option, the =1
gets converted to the four-byte pointer format. The result
is that a function compiled WITE the -s option cannot
properly test for the -1 value! Avoid all of these problems
by using the library function "lsbrk", which accepts a long
integer number of bytes and returns zero if no more space is
available (see section 5.3 of this supplement).

(3) The four-byte pointers implemented under the D and L models
allow direct access to all of the memory on the machine,
This can be extremely useful, but it can also be extremely
dangerous. Memory on the 8086 and 8088 processors is not
protected, and storing values via an uninitialized pointer
can crash the system -- or worse. MS-DOS stores a number of
very important system elements in lower memory; we have
already heard one horror story about a user who destroyed the
File Allocation Table for his hard disk by using a garbage
pointer to set up a structure. All we can do is caution you
to be extremely careful. Our advice to beginning C users is
to stick with the S and P models, where uninitialized poin-
ters are much less likely to access critical locations,

-

3.1.9 Creating an array greater than 64K bytes

L4
Since static data ir all of the memory models is limited to a
maximum of 64K bytes, the only way to create an object of greater
31ze 1is through the memory allocation functions. A quick check
of the manual, however, shows that the allocation functions only
accept a size argument of "unsigned" type, which has a maximum
value of 64K. We have overcome this shortcoming by adding two
1ew allocation functions which accept a size argument which is a
"long” integer. These functions are described in more detail in
section 5.3 below, but an example here will illustrate the use of
one of them.,

10

Lattice 8086/8088 C Compiler Supplement for Version 2.00

Suppose that we must allocate an array of 10,000 double precision
values; 80,000 bytes of storage will be required for such an
array. First, declare a pointer which will contain the array’s
address after allocation:

double *4d;

Note that a simple "double™ pointer is all that is needed,
despite the fact that it will actually point to an array. Next,
declare the memory allocation function:

char *getml():;

Note that you MUST declare the memory allocation function to
return a pointer; otherwise, the compiler will assume it returns
an "int" and the cast operation shown below will not work
correctly. The only difference between "getml™ and "getmem" is
that "getml” gets an argument which is a "long"” integer. The
array is then allocated by the expression:

d = (double *) getml(80000L);

Note the "L" specifier on the constant. The size could also be
specified as "(10000L * sizeof(double))". (Special note: 1if you
compute the size argument for "getml” using a multiplication
expression, be sure that one of the operands is a long constant
or is cast to a long BEFORE the multiplication; otherwise, the
compiler will perform the multiplication in "short" arithmetic
and obtain an incorrect result, 1If the example above is written
as "((long) (10000 * sizeof(double))", the size argument is
incorrectly computed as 144641!)

The returned pointer, of course, must be checked for NULL (zero)
before use; NULL is returned if there is not enough memory
available for the requested allocation. The variable "d" can now
be subscripted as if it were an array, i.e., d{12]) will address
the thirteenth element of "d", etc. 1In this example, the number
of elements in the array is less than 64K, so ordinary "int"
variables can be used as subscripts; if we had allocated a "char"
array, "long" integers would be needed to subscript an array of
this size. One final note: since we are addressing an object
with a size greater than 64K, the =-s option cannot be used.

3.2 Stack overflow checking
,

The compiler now, by default, generates code at the beginning of
each function to check for stack overflow. The cost in code size
for each function is 9 bytes for the S and D models, and 1l bytes
for the P and L models. The benefit is elimination of a very
nasty class of errors which can be very difficult to find. When
stack overflow is detected, the error message

STACK OVERFLOW *#*#

11

Lattice 8086/8088 C Compiler Supplement for Version 2.00

is written to the console, and the program terminates immedi-
ately.

Stack overflow occurs when the program fails to supply sufficient
storage for the run-time stack. The number of bytes of storage
for which the stack is set up is defined in the external location
"_stack", and can be changed when the program is executed by the
"=nnn” option on the command line. The size of the stack can
thus be set in any of three ways:

(1) If no definition for "_stack"” is found in the user”s object
modules during linking, the Lattice C library provides a
definition of "_stack" containing 2048 (2K). Thus, the
default stack size is 2048 bytes,

(2) If one of the user’s object modules includes a definition for
" _stack", that value will be used. All that is required is
that a statement like

int _stack = 4096;

appear outside the body of a function. That value then
becomes the default stack size.

{(3) Either one of the above methods can be overridden at
execution time (after linking) by executing the program with
a command like

PROQVAME . =8000

The decimal value after the equals sign becomes the stack
size during execution of the program,

Unfortunately, there is no hard and fast rule for determining how
much stack space a program will need. You will need at least as
much storage as the largest amount of "auto"” storage in any of
the functions included in the program (i.e., if one of your
functions has an "auto" array of 4000 bytes, you will need at
least that much stack space, because "auto" data items are
allocated on the stack). Since C functions typically call other
functions, the storage needed by the called function must be
added to that needed by the caller, and so on. Our intention in
supplying the various setting mechanisms described above is to
make the stack size easily adjustable.

The code for stack overflow detection can be eliminated by com-
piling your source file with the -v option on LC2. Library
functions are supplied with stack ovarflow detection included.

3.3 Support for MS-DOS Version 2

If you specified DOS Version 2 when you ordered the compiler, you
received a version of the compiler and library set up for that
operating system. The compiler and the programs generated will
execute only under DOS Version 2.

~—

12

Lattice 8086/8088 C Compiler Supplement for Version 2.00

3.3.1 Compiler support for MS-DOS Version 2

The compiler now recognizes the full Version 2 path names for all
file names, The name can be specified on the command line, as in

LCl b:\lowlevel\file

(which specifies b:\lowlevel\file.c for compilation), or it can
be specified in #include statements, as in

$¢include "b:\headers\stdio.h"

The ~i option has been extended to support an alternative form of
the above, where the command line might specify, for example:

LCl xyzfile -ib:\headers\
and the tinclude statement could then read
¢include "stdio.h"

Note that the trailing backslash must be suppiied on the prefixv
attached to the -i flag; it is not automatically supplied by the
compiler, .

A maximum of 4 -i prefixes may be specified on the LCl command.
When an #include statement is encountered naming a file that is
not already prefixed by a drive or directory specification, the
current directory is searched first for the file; if not found,
each -i prefix (in the same order specified on the LCl command)
is prepended to the #include file name and searched for, in turn,
until the file is located. An error message is produced if none
of the searches is successful. No spaces, please, between the -i
and the desired text to be used for prepending.

The -o option for both LCl and LC2 has been similarly extended,
allowing the output file to be written directly to another direc-
tory, if desired. .

Special versions of the utility programs FXU and OMD for MSDOS
Version 2 have also been provided.

3.3.2 Library support for MS-DOS Version 2

The main change in the library for MS-DOS Versior. 2 is thdt the
1/0 functions recognize path names because they use the new UNIX-
like file interface provided in Version 2. Your programs should
not require any changes unless they are sensitive to the file
name format. The I/0 redirection mechanism has been adjusted to
work properly for Version 2 programs. The "exit" and "_exit"
functions pass the exit code back to the operating system, and
the value can be tested in a batch file command such as

if errorlevel "value"

—

Lattice 8086/8088 C Compiler Supplement for Version 2.00

4.0 COMPILER AND RUN-TIME CHANGES

The following items are new or substantially changed, as compared
to the descriptions in the manual., Some minor changes to the
language accepted by the compiler are not remarked upon if they
were not explicitly mentioned in the manual (or unless they are
incompatible with previous versions).

4.1 Compile time options for LCl

Here are the new or changed compile time options on the first
phase of the compiler.

-a Same as in previous version, but additionally forces
all assignment statements to be performed (i.e., the
actual store to memory) before execution of the next
statement. Normally, the code generated for assignment
causes a value to be loaded to a register, but it may
not be stored immediately; the -a flag now forces the
store operation. This is important only in (l) unions,
where a value is stored and then immediately inspected
or passed to a function via another member; (2) real-
time processing where shared data values are used as
"lock" words, and immediate execution of an assignment
statemen is critical to subsequent actions; and (3)
memory-mapped I/0 assignments, where values must be
stored repeatedly in the same "memory"” location. ’

-d Causes debugging information to be included in the quad
file. Specifically, line separator quads are inter-
spersed with the normal quads. This allows the second
phase to collect information relating input line num-
bers to program section offsets. If this option is
used, the object file produced will contain line num-
ber/offset records, and can be processed by the object
module disassembler to produce an intermixed source
code and machine code listing (see 6.1 below). Note
that the =-d option does not affect the size of the
function itself, only the object file.

-iprefix Specifies that #include files are to be searched for by
prepending the file name with the string "prefix®,
unless the file name in the #include statement is
already prefixed by a drive or directory identifier,
If "prefix™ is a single character, a colon is added;
thus, -ia causes prepending with "a:". Up to 4 dif-
ferent -i strings may be specified., Note that un-
prefixed #include file names are searched for first in
the current directory, and then by prepending with the
prefixes specified in -i options, in the same left-to-
right order as they were supplied on the command line.

14

Lattice 8086/8088 C Compiler) Supplement for Version 2.00

-mM

-n

-oprefix

Causes the compiler to generate code for the specified
memory model. The model can be specified as a single
letter, either upper- or lower-case, naming the model;
or a numeric indicator from 0 to 3 may be used (S=0,
P=1l, D=2, L=3). The model specifier must be adjacent
to the "m" (no intervening blanks).

Causes the compiler to retain up to 39 characters for
all identifier symbols, including #define symbols. The
default symbol retention length is 8 characters.

Specifies that the output (.Q) file name is to be
formed by prepending the input file name (the .C file
which is being compiled) with "prefix". If “"prefix” is
a single character, a colon is added; thus, -ob causes
prepending with "b:". Any drive or directory prefixes
attached to the input file name are discarded before
the prepending is performed.

Changes the way code is generated for four-byte poin-
ters in the D and L models; .see section 3.1.6.

4.2 Compile time options for LC2

Here are the new or changed compile-time options on the second
phase of the compiler,

-f

-ggroup

-oprefix

-ssegment

-v

This option, described in the manual, has not yet been
implemented. 8087 support will be provided in a future
release of the compiler.

Specifies that the name "group" is to be used for the
code group in the ,0BJ module. "“group” must be 15 or
fewer characters in length, and must be adjacent to the
"-g" (no intervening blanks),

Specifies that the output (.OBJ) file name is to be
formed by prepending the quad file name (the .Q file
which is being processed) with "prefix". If "prefix”
is a single character, a colon is added; thus, =-ob
causes prepending with "b:", Any drive or directory
prefixes attached to the quad file-name are discarded
before the prepending is performed.

’
Specifies that the name "segment® is to be used for the
code segment in the .0BJ module.- "segment" must be 15
or fewer characters in length, and must be adjacent to
the "-s" (no intervening blanks).

Causes the code generator toomit the code at the entry
to each function which checks for stack overflow.

The -g and -s options for LC2 are provided to override the
default code group and segment names. Only users who need to
interface to very specialized applications (other languages,

.18

Lattice 8086/8088 C Compiler Supplement for Version 2.00

etc.) will need to make use of these options.
4.3 Alignment of data elements

The alignment of storage for arithmetic objects has been changed.
Now, the only data elements which force alignment to a word
coffset are pointers, structures, and unions. The -b flag still
has the effect of dropping alignment requirements for all ob-
jects.

4.4 Language definition: arbitrary limitations

This section attempts to clarify some of the limitations of the
compiler which are omitted or not clearly defined in the manual.
Although the definition of a programming language is an idealized
abstraction, any real implementation is constrained by a number
of factors, not the least of which is practicality, The Lattice
compiler imposes the following arbitrary restrictions on the
language it accepts:

[} The maximum size, in bytes, of any declared object is the
largest positive integer which can be represented as an
"int", This implies a maximum size of 32767 bytes for 16-
bit "int" machines. The total size of all objects declared
with the same storage class is also subject to the same
restriction.

o The maximum value of the constant expression defining the
size of a single subscript of an array is one less than the
largest positive "int"™ (32766 for a l6-bit "int").

o The total size of the formal parameters for any function is
limited to a maximum of 256 bytes., Thus, the maximum number
of formal parameters depends on their sizes.

) The maximum size of a string constant is 256 bytes.

o Macros with arguments are limited to a maximum number of 8
arguments.
o The muximum level of #include file nesting is 4.

These limitations are imposed because of the way objects are
represented internally by the compiler; our hope is that they are
reasonably large enough for most real programs.

4

4.5 Change in the processing of the $if command

The processing of the #if command has been modified internally,
with two important consequences for programmers. First, as
should be noted in the list of differences from the standard
language, "sizeof" cannot be used in #if expressions, and the
expression must appear on a single line. These restrictions
fesult from a desire to keep #if expressions simple, and because
the pre-processor generally has no information about the size of

16

Lattice 8086/8088 C Compiler Supplement for Version 2.00

declared objects. One other clarification should be noted: if a
symbol appears in a #if expression which has not been defined in
a $define command, it is interpreted as if a value of zero had
been specified. This seems consistent with #ifdef usage and
permits the use of symbols which may or may not be defined,
Otherwise, #if expressions support the full range of operations
described in Section 15 of Appendix A of Kernighan and Ritchie,

4.6 New error/warning messages

Two new numbered messages are now generated by the compiler; here
is an explanation of them.

82 The object declared caused the total storage for its
storage class to exceed 32767 bytes, the maximum legal
value. ‘

83 This non-fatal warning complains of an indirect refer-

ence (usually a subscripted expression) which accesses
memory beyond the size of the object used as a base for
the address calculation. It generally.occurs when you
refer to an element beyond the end of an array.

4.7 Exit error code
The MS-DOS Version 2 compiler returns an exit code of zero if no
errors were detected, and a code of one otherwise. This allows
the use of "if" expressions in batch files, such as:

LC1 %1

if errorlevel 1 goto errs
5.0 CHANGES TO LIBRARY FUNCTIONS
The following features of the standard library functions provided
with the compiler are new or substantially changed in Version
2.00.
5.1 Program entry/exit functions

Three changes are important in the cperation of the program
startup and termination features of the new library.

5.1.1 Processing of =, <, and > options on command line

The special command line specifiers "=", "<", and ">" ate now
processed by C.OBJ instead of " main", and must appear before all
other command line arguments following the program name.

5.1.2 Source for "_main" now supplied

The standard library version of " main" has been supplied as

MAIN.C, while a smaller version which does not open any buffered
files has been supplied as TINYMAIN.C. Users may modify these

17

Lattice 8086/8088 C Compiler Supplement for Version 2.00

modules to produce their own versions of "_main". Please note,
however, the following cautions:

(1) The library function "printf" sends its output to the pre-
defined file pointer "stdout", which is normally opened by
* main®", If you remove the code that performs this fun-
ction, don’t be surprised when "printf" calls produce no
visible output (the I/O library functions ignore attempts to
read or write unopened files)., A similar caveat applies to
the use of "scanf", which reads from "stdin".

{2) 1If your intention is to avoid including the level 2 I/0
functions in the linked program, don”t call the library
function "exit", because it closes all buffered output files
before terminating execution. This will cause the level 2
functions to be included anyway. Call "_exit" instead.

5.1.3 Exit functions under MS-DOS Version 2

The functions "exit" and "_exit" pass the error exit code back to
the operating system, where it can be tested in a batch file
using a command like: :

if errorlevel 1 goto error
This feature is supported only under DOS Version 2,
5.2 1/0 library

Extensive revisions to the 1/0 library have extended its capa-
bilities and retained compatibility with the previous version.
The implementation of some features has changed internally, with
effects that are noted in this section.

5.2.1 Upgrades to level 1 and level 2 I/0 functions

This version upgrades the level 1 and level 2 functions to be
compatible with the latest UNIX releases and with the UNIFORUM
draft standard. You will not need to make any program changes,
since the new functions are still compatible with the old. How-
ever, any programs using level 2 I/0 (i.e., any that $included
"stdio.h®) must be recompiled because the stdio.h definitions
have changed.

Here is a summary of the extensions and changes: ,

(1) The "open” function currently accepts a second argument of
0, 1, or 2 for read, write, or update mode, respectively,
Now you can include the header file "fcntl.h" which defines
the following codes for that second argument:

O_RDONLY Same as code 0

O_WRONLY Same as code 1
O_RDWR Same as code 2

18

Lattice 8086/8088 C Compiler Supplement for Version 2.00

(2)

(3)

(4)

Also, the following flags can be ORed into the above codes:

O_CREAT Create the file if it doesn’t exist

O_TRUNC Truncate (set to zero length) the file if it
does exist

O_EXCL Flunk the create if file exists

O_APPEND Seek to end-of-file before each write

O_RAW Use untranslated 1I/0 (Lattice addition)

A new public symbol called "_iomode" has been added to
preset the translation mode. Normally, _iomode is 9 and
translated mode is used unless O_RAW is specified. If you
change _iomode to 0x8000, then untranslated mode is used
unless O_RAW is specified. 1In other words, O_RAW toggles
the meaning of _iomode.

The "fopen" function recognizes a + after the mode character
to indicate that both reads and writes are allowed. 1In
order to switch from one mode to the other, you must execute
an "fceek” or "rewind". We’'ve improved on the typical UNIX
implementation in this area by returning EOF if you fail to
do this, Many versions of UNIX will silently smear your
file if you violate the rule.

Normally the level 2 I/0 functions acquire buffers via the
level 2 memory allocator unless the file is on some device
other than a disk. We“ve added the standard UNIX “"setbuf"”
function that allows you to attach your own buffer via the
call:

char buffer [BUFSIZ]);
FILE *fp;
setbuf (fp, buffer);

Note that this function assumes that the buffer is the
standard size, which is defined via the BUFSIZ constant in
stdio.h. If you call it with a null pointer, it behaves the
same as "setnbf" and makes the file unbuffered.

Level 1 I/0 no longer acquires buffers via the level 2
memory allocator, so you don’t need to worry about screwing
up files when you do a "rstmem”. Under MS-DOS, buffering is
now performed by the operating system itself, resulting in
improved performance for large read/write data transfers.

5.2.2 Level 1 I/0 device processing ’

Device names are now recognized by the level 1 "open" and “"creat"
functions only if the trailing colon is supplied. If the colon
is omitted, the name is passed to the operating system and may be
processed specially by it; however, the level 1 functions will
deal with it as if it were a disk. The device names recognized
are as follows: .

Console CON:

~

Lattice 8086/8088 C Compiler Supplement for Version 2.00

Printer PRN:, LST:, LPT:, LPTI1:
Aux port AUX:, COM:, COMl:, RDR:, PUN:
Null NUL:, NULL: N

I1/0 is performed to these devices, one character at a time, using
the appropriate BDOS function calls. One exception occurs for
the console device: 1f a translated mode "read” operation re-
guests more than 1 byte, the BDOS buffered console input function
is used to read the data (a maximum of 128 bytes per read). Any
special editing features supported by the operating systen
(backspace processing, etc.) will therefore be enabled.

5.2.3 Implementation of level 2 I/0 buffering

The level 2 I/0 function "fopen" sets operations for files to be
suffered in 512-byte blocks, as in the previous version. If the
name it passes to "open" is recognized by that function as being
a device, "fopen” sets operations to be unbuffered. The old
"line-buffered” mode supported by the previous version has been
scrapped; now, unbuffered 1/0 is handled in true single-character
fashion, as in UNIX. Thus, "printf" to the console sends the
characters immediately, whether or not a newline is sent. Input
is also unbuffered, and only a single character is read at a
time. Note, however, that the " main" function provided in the
library sets up "stdin" to be buffered, which causes buffered
console input to be used.

5.2.4 New functions: fread/fwrite
Two new functions for -reading and writing blocks of data to
buffered files have been added to the library. These functions

work with the level 2 I/0 functions ("fopen", "fclose"). Here
is the manual page for these new functions.

20

Lattice 8086/8088 C Compiler Supplement for Version 2.00

NAME
fread/fwrite -- read/write blocks of data from/to a file
SYNOPSIS
nact = fread(p, s, n, fp):
nact = fwrite(p, s, n, fp):
int nact; actual number of blocks read or written
char *p; pointer to first block of data
int s; size of each blcck, in bytes
int n; number of blocks to be read or written
FILE *fp; file pointer
DESCRIPTION
These functions read ("fread”) or write ("fwrite"™) blocks of
data from or to the specified file. Each block is of size
"s” bytes; blocks start at "p" and are stored contiguously
from that location. "n" specifies the number of blocks (of
size "s") that are to be read or written.
RETURNS
nact = actual number of blocks (0f size "s") read or writ-
ten; may be less than "n" if error or end of file occurred
CAUTIONS

Return value must be checked to verify the correct number of
blocks were processed. The "ferror" and "feof"” macros can
be used to determine the cause if the return value is less
than "n°".

Lattice 8086/8088 C Compiler Supplement for Version 2.00

5.3 Memory allocation functions

The new versions of the memory allocation functions have been
extended to support the capability of a memory pool in excess of
64K bytes, For the most part, the new functions are compatible
with the old. The exceptions are listed below.

5.3.1 "sizmem®” function now returns "long” size in bytes

In the old version, "sizmem” returned the size of the memory pool
as an "unsigned"” number of l16-bit words. The new version returns
the available memory in bytes, and must be declared as a "long"
integer function:)

long n, sizmem():;
n = sizmem():
5.3.2 "getnl®” function

The new function “getml" works exactly like the "getmem" function
except that it accepts a "lcng" integer argument.

P = getml(lbytes);
char *p; pointer to memory block, or NULL
long lbytes; size of desired block, in bytes

In accordance with the usual convention, "getml” returns a null
(zero) pointer if it cannot allocate the requested block. Note
that the function must be declared "char *",

5.3.3 "lsbrk®™ function

The new function "lsbrk"™ is similar to "sbrk", but accepts a
"long"” integer for the size argument. Its return value on
failure is zero instead of the -1 returned by "sbrk".

p = lsbrk(lbytes); .
char *p; pointer to allocated block, or NULL
long lbytes; size of desired block, in bytes

5.3.4 Change in the action of the "rstmem” function

According to the manual, the level 2 memory allocation function
"rstmem" restored the memory pool to its empty state by calling
"rbrk®", This had the effect of deallocating all of the memory
obtained by calls to "sbrk", as well as calls to "getmem". In
the current version, the action of "rstmem" has been changed so
that only allocations made (by calls to "getmem") after a call to
"allmem" are affected. Thus, the cautions on page 1-37 of the
manual should read:

(1) The reset function "rbrk" cannot be used if any of the
standard 1/0 functions are also being used on currently open

-t 22

Lattice 8086/8088 C Compiler Supplement for Version 2.00

files. This restriction applies only to level 1 functions.
Files may be closed, then re-opened after the reset function
is called; however, any file pointers must be updated if
this is done, because there is no guarantee that the same
value will be returned when the file is opened again.

(2) A similar restriction applies to use of the function
"rstmem”, except that files opened BEFORE the most recent
call to "allmem” are not affected. Thus, if a program opens
all files first and then calls "allmem", it may safely call
“rstmem" without affecting those open files. Any files
opened AFTER the "allmem"™ call must be closed before
"rstmem” is called.

5.4 Utility macros
The standard I1/0 header file "stdio.h" defines three general

utility macros which are useful in working with arithmetic
objects., They are:

max(a,b) returns the maximum of “"a" and "b"
min(a,b) returns the minimum of "a" and "b"
abs (a) returns the absolute value of "a"

Several important restrictions must be noted.

First, since these are macros which use the conditional
operator, arguments with side effects (such as function calls or
increment or decrement operators) cannot be used, and the
address-of operator cannot be applied to these "functions.” Sec-
ond, beware of using the macro names in declarations such as

int min;

because the compiler will try to expand "min" as a macro, and you
will get an error message complaining of invalid macro usage.
Third, only arithmetic data items should be used as arguments to
these macros; "max" and "min® should be supplied two arguments of
the same data type, although conversion will be performed if
necessary.

5.5 New utility functions

-

Several new utility functions have been added to the library
which allow access to all of the features of the 8086/8088
processors, including (1) software interrupts (useful for ’making
direct ROM BIOS calls); (2) BDO2Z functions; (3) access to segment
register contents; (4) inter-scgment memory transfers; and (5)
"peek” and "poke" functions for examining and setting arbitrary
memory locations.

3

Lattice 8086/8088 C Compiler Supplement for Vetsloﬁ 2.00

NAME
int86/int86x -- generate 8086 software interrupt
‘SYNOPSIS
int86(intno, inregs, outregs):
int86x (intno, inregs, outregs, segregs);
int intno; interrupt number
union REGS *inregs; input registers
union REGS *outregs; cutput registers
struct SREGS *segregs; segment registers (int86x only)
DESCRIPTION
Performs an 8086 software interrupt of the specified number.
Check the system-level documentation for your operating
system to determine the interrupts and calling sequences
supported; generally, values in the registers are used as
inputs. ®"inregs"” must contain the register values which
. will be loaded into the working registers before the inter-
rupt is performed; "out:segs" will receive the register val-
ues after control returns from the interrupt, With
"int86x", you can specify the values which will be placed in
the secment registers before the interrupt; although the
SREGS structure defines all of the segment registers, only
DS and ES will actually be loaded. The REGS and SREGS
structures are defined in the DOS.H header file., :
CAUTIONS

The software interrupts on the 8086 are used to implement
all sorts of system level processing, and invalid input data
can cause unpredictable (and occasionally disastrous) re-
sults. Defining the segment register values for "int86x" is
best accomplished by calling "segread” to obtain current
values (see below for details on this function),

Note that "inregs”", “"outregs", and "segregs” are shown as
point2rs above; the usual technique is to declare thenm
directly, and then use the address-of operator to pass a
pointer to them. .

Lattice 8086/8088 C Compiler Supplement for Version 2.00

NAME
intdos/intdosx =-- generate DOS function call

SYNOPSIS
ret = intdos(inregs, outregs);)
ret = intdosx(inregs, outregs, segregs);

int ret; operating system return code

union REGS *inregs; input registers

union REGS *outregs; output registers

struct SREG *segregs; segment registers (intdosx only)
DESCRIPTION

Generates a DOS function reguest to the operating system.
Check the system-level documentation for your operating
system to determine the DOS functions and calling segquences
supported; the values in the registers are used as inputs.
In particular, the exact function request is specified by
placing a value in one of the registers (under MS-DOS, the
function number is specified in AH; under CP/M-86, in CL).
"inregs" must contain the values which will be loaded into
the working registers before the function call is made;
"outregs”" will receive the values in the registers after
control returns from the function request. With "intdosx",
you may specify the values which will be placed in the
segment registers before the interrupt; although the SREGS
structure defines all of the segment registers, only DS and
ES will actually be loaded. The REGS and SREGS structures
are defined in the DOS.H header file.

CAUTIONS

Defining the segment register values for "intdosx™ is best
accomplished by calling "segread" to obtain current values
(see below for details on this function).

Note that "inregs", "outregs”, and "segregs" are shown as
pointers above; the usual technigue is to declare them
directly, and then use the address-of operator to pass a
pointer to them, .

Lattice 8086/8088 C Compiler Supplement for Version 2.00

NAME

segread -- return current segment register values
SYNOPSIS

segread(segregs) ;

struct SREGS *segregs; structure for return of values
DESCRIPTION

Places the current 8086 segment register values into the
SREGS structure whose pointer is supplied. 1Its main purpose
is to obtain current values in order to make a subsequent
call to "int86x"™ or "intdosx". The definition for the SREGS
structure is found in the DOS.H header file.

26

Lattice 8086/8088 C Compiler Supplement for Version 2.00

NAME

movedata -- move data bytes from/to segment/offset address
SYNOPSIS

movedata(sseg, soff, dseq, doff, nbytes);

int sseg; segment portion of source address
int soff; offset portion of source address
int dseg; segment portion of destination address
int doff; offset portion of destination address
unsigned nbytes; number of bytes to move

DESCRIPTION

Moves the specified number of data bytes from the source to
the destination address. The addresses must be specified as
(segment:offset) in accordance with the standard 8086 nota-
tion. This function is primarily intended for use in pro-
grams compiled using the § and P models; in the D and L
models, the standard library function "movmem" can be used.
The "segread" function can be used to obtain segment regis-
ter values.

CAUTIONS

Memory is not protected on the 8086, so supplying invaliad
parameters to this function can have disastrous results.

Lattice 8086/8088 C Compiler Supplement tor vVersion 2.uUU

NAME
peek/poke -- examine/modify arbitrary memory locations
SYNOPSIS

peek (segment, offset, buffer, nbytes);
poke (segment, offset, buffer, nbytes);

int segment; segment portion of memory address

int offset; offset portion of memory address .

char *buffer; local memory buffer

unsigned nbytes; number of bytes to transfer
DESCRIPTION

These functions copy data values between an arbitrary memory
location and a local memory buffer: "peek" moves data to
the local buffer from a specified memory address, while
“poke"” moves data from the local buffer to the arbitrary
memory address. These functions are primarily intended for
use in programs compiled using the § and P models; in the D
and L models, the standard library function "movmem” can be
used.

ZAUTIONS
Memory is not protected on the 8086, so supplying invalid

parameters to the "poke" function can have disastrous re-
sults.

28

Lattice 8086/8088 C Compiler Supplement for Version 2.00

6.0 UTILITY PROGRAMS

The function extract utility has been modified, and a new utility
program -- the object module disassembler -- has been added to
the compiler package.

6.1 New version of Function Extract Utility

Extensive modifications to the function extract utility have made
the description in the manual (Section 1.1.5) inaccurate. Here
is the corrected version of that section.

(1.1.5 Function Extract Utility)

Because the compiler generates a single, indivisible object
module for all of the functions defined in a source file, the
function extract utility FXU is provided so that groups of small
functions may be kept together in a single source file and object
modules produced for them individually., The utility operates by
extracting the source text for a single, specified function, thus
creating a source module which can then be compiled to produce an
object module defining only that specific function,

Programmers who are a little puzzled by the need for this
utility may find the following example helpful., Suppose that one
user has a module called STRING.C, which defines several string
handling functions, and that a program calls one of those
functions (say, "strcnt"), If STRING.C is compiled as a single
source module, the resulting object module defines "“strcnt® along
with several other functions. When the program is linked, then,
the machine code for "strent" is included (as part of the object
module produced when STRING.C was compiled), but the code for all
of the other functions is included as well, even though the
program does not make use of them. Only by compiling "strcnt" as
the only function defined in its source module will the compiler
produce an object module which just defines that function. FXU
can be used to produce such a source file.

The format of the command to invoke the function extract
utility is

FXU (<header-file] ([>output-file] filename function

The various command line specifiers are shown in the order they
must appear in the command; optional specifiers are shown
enclosed in brackets. The first two options are part of the
general command line options for all C programs (see Section
1.1.4). :

<header-file The first option specifies a file which will be
copied to the output file when the specified
function is found. The entire file is copied
before any text from the function is written, If
only the function itself is to be written to the
output file, the <NUL option should be used. 1If

Lattice 8086/8088 C Compiler Supplement for Version 2.00

this option is omitted, text will be read from the
user’s console and copied to the output file
until a control-2 is typed.

>output-file The second option specifies the output file which
will contain the text of the extracted function
(preceded by the header file text, if any). If
this option is omitted, text is written to the
user“s console.

f€ilename Specifies the name of the file containing the
function to be extracted.

function Specifies the name of the function to be extracted
from the specifed file. The function name must be
specified exactly as it appears in its definition,
except that alphabetic characters may oe specified
in either case (upper or lower).

The function extract utility counts braces defined in the
sody of the functions in order to determine when it has reached
the end of a function. Although it recognizes comments and will
not make the mistake of counting any braces which might be
2nclosed in them, it assumes that comments can be nested, which
.5 the same assumption normally made by the compiler. The
compiler, however, can be requested by command line option to
Srocess comments as if they did not nest; FXU has no such option.

The text extracted consists of all the characters between
the closing brace of the preceding function, up to and including
the closing brace of the extracted function. 1If the specified
Zunction is the first one defined in the source file, then all
characters from the beginning of the file to the function’s
closing brace are included. Note that functions which refer to
2xternal data items defined in the source module cannot be easily
orocessed with the function extract utility. As the example
dcelow illustrates, however, the header file option can be used to
avoid this limitation.

If the specified function is not encountered in the
specified source file, the output file will receive the single
2rror message "Named function not found". Note that FXU works on
only a single function, not a list of functions. A-source module
Jefining more thin one extracted function can be generated,
Aaowever, by executing FXU repeatedly and then combining the
2xtracted texts using the CAT program, which is supplied as an
2xample source file.

The supplied version of FXU uses an internal buffer to store
characters between functions, while it scans for the next. The
ouffer size can be expanded, if necessary, by a simple
nodification to the source text, which is supplied as FXU.C.

ZXAMPLES

30

Lattice 8086/8088 C Compiler Supplement for Version 2.00

FXU <NUL STRING.C strcnt

Extract the function called “strcnt" from the text file STRING.C;
do not include any preceding text; and write the extracted text
to the user”s console.

FXU <IOS.H >INPUT.C IOFUNC.C input

Extract the function called "input"™ from the text file IOFUNC.C,
and prepend the output with the text from the file IOS.H; and
write the resulting text to INPUT.C. If each function in
IOFUNC.C can refer to the external locations "flagl" and "flag2”®,
for example, and needs the information from the standard I/0
header file, then IOS.H should include the text

tinclude <stdio.h>
extern int flagl, flag2;

A similar technique can be used for functions which need more
extensive external references,

6.2 New utility program: Object Module Disassembler

For programmers who wish to debug C modules at the machine
code level, the object module disassembler provides a listing of
the machine language instructions generated for a particular C
source module., If the module is compiled with the -4 option so
that line number/offset information is included in the object
file, the disassembler utility can produce a listing with
interspersed source code lines. This listing can then be used in
association with the link map for the program to perform
interactive debugging using the MS-DOS debug program. The
usefulness of this utility, of course, is limited to those
programmers who are knowledgeable about the 8086 architecture and
instruction set.

The format of the command to invoke the object module
disassembler is

OMD [>listfile] [options] objfile [textfile] -

The various command line specifiers are shown in the order they
must appear in the command. Optional specifiers are shown
enclosed in brackets.

>listfile The first option is used to direct the listing produced
by OMD to a specified file or device. If this option
is omitted, the listing output is written to the user’s
console,

options Four override options can be specified; each consists
of the special character "-" followed by a single -
letter which indicates the value to be overridden, and
a string of decimal digits specifying the override
value. There must be no embedded blanks in any single

- 31

Lattice 8086/8088 C Compiler Supplement for Version 2.00

option, but each must be specified as a separate field.
The valid options are:

-Pnnn Overrides the default size provided for the program
section of the object module being processed. “nnn”
specifies a decimal number of bytes of storage to be
allocated for the program section. The default value
is 1024 bytes.

-Dnnn Overrides the default size provided for ¢the data
section of the object module being processed. “nnn"
specifies a decimal number of bytes of storage to be
allocated for the data section. The default value is
1024 bytes.

-Xnnn Overrides the default maximum number of external items
which can be processed by OMD; this number applies
separately to both external definitions and external
references. "nnn" specifies a decimal number of
external items which can be processed. The default
value is 200.

-Lnnn Overrides the default size for the line number and
offset information tables. These tables are used only
if the object file was produced with the -d option;
line number/offset information from the file is placed
in these tables. The default size (which defines the
maximum number of line number/offset pairs which can be
processed) is 100.

objfile Specifies the name of the object file, produced by the
compiler, which is to be processed by OMD. The full
name including the .OBJ extension must be specified.

textfile Specifies the name of a C source code file which is to
be listed along with the disassembled instructions. 1If
this option is present, the object file must have been
compiled using the -d option for the LCl command. The
full name including the .C extension must be specified,

OMD processes only a single object module. The entire
module is read and loaded into memory before the listing is
generated. The various override options are useful for
processing very large object modules, or for reducing the amount
of memory needed by OMD on systems which are cramped for memory.

If the "textfile" option is used, only the source text from
the specified file is listed; if it refers to any #include files,
they will NOT be listed. Some limitations of the "textfile®
option should be noted. First, the code generated for the third
portion of "for" statements is placed at the bottom of the loop;
that code will appear in front of the next statement after the
end of the loop. Second, the compiler tends to defer storing
registers until the last possible moment, so that the code shown
for assignment statements often consists merely of loading values

e

32

Lattice 8086/8088 C Compiler Supplement for Version 2,00

into registers; the registers will be stored later. Finally, the
code generated for entry to a function will often be displayed in
front of the source lines defining that function. Thus,
inspection of the surrounding code may be necessary to determine
the actual code generated for a source file construct.

EXAMPLES
OMD -P2048 -D8000 QRS.OBJ

Disassemble the object module QRS.OBJ and write the listing to
the user’s console, Allocate 2048 decimal bytes of storage for
the program section defined in the object module, and allocate
8000 decimal bytes for the data section.

OMD >TEMP.LST -X400 XYZ.0BJ XY¥z.C

Disassemble the object module XYZ2.0BJ and write the listing to
the file TEMP.LST. Include source code lines from XY¥Z.C in the
listing, provided that line number and offset information was
present in the object file. Provide for a maximum number of 400
external items (same limit for both external definitions and
external references).

ERROR MESSAGES

A variety of error conditions are detected by the object
module disassembler; all cause early termination of the output
file and result in the writing of an appropriate error message to
"stderr". These messages are self-explanatory for the most part.
I1f one of the run-time-specifiable options is not sufficiently
large, the error message will indicate the specific option which
was not large enough; for example, if the module defines too many
words of program section, the message

Program section overflow

will be produced. Note that OMD was designed specifically for
use with modules generated by the C compiler; attempts to use it
with other object modules will probably cause an error message to
be generated.

Lattice 8086/8088 C Compiler Supplement for Version 2.00

7.0 STOCKRLIST

Jue to the support for the extended memory addressing models, the
List of files supplied with the compiler has grown considerably.
Vote that the manual describes the linking process as involving
-he files C.0OBJ and LC.LI3; in the current release, four differ~-
ant versions of each of these files have been supplied. The
orocedure for linking programs is the same, but now you must use:
for C.OBJ, either CS.0BJ, CP.OBJ, CD.OBJ, or CL.OBJ; and for
.C.LIB, either LCS.LIB, LCP.LIB, LCD.LIB, or LCL.LIB. Make sure
the same memory model is selected for both files.

You should find the following files on your release disk(s):

Zxecutable Piles

LC1.EXE C compiler (phase 1)
LC2.EXE C compiler (phase 2)
FXU.EXE Function extract utility
OMD.EXE Object module disassembler

Run~-time and Library Files

CS.0BJ C program entry/exit module (S model)

CP.0OBJ C program entry/exit module (P model)
CD.OBJ C program entry/exit module (D model)
CL.OBJ C program entry/exit module (L model)
LCS.LIB Run-time and I/0 library (S model)
LCP.LIB Run-time and I/0 library (P model)
LCD.LIB Run-time and 1/0 library (D model)
LCL.LIB Run-time and I/0 library (L model)

Source Files

o)

MAIN.C Standard library version of " main®
TINYMAIN.C Abbreviated version of "_main™
FTOC.C Fahrenheit-to-Celsius sample program
CAT.C File concatenate sample program
FXu.C Source for function extract utility
CONIO.C Basic console I/0 functions -

Header Files

(@]

STDIO.H Standard I/0 header file

CTYPE.K Character type macros header file .
ERROR.H Header file defining UNIX error numhers "
FCNTL.H Header file defining level 1 I/0 codes
I0S1.H Header file defining level 1 I/O structures
DOS.H Environment information header file

MSDOS .H Defines MS-DOS version

SM8086 .H Memory model header file for S model
PM8086.H Memory model header file for P model
DM8086.H Memory model header file for D model
LM8086.H Memory model header file for L model

34

Lattice 8086/8088 C Compiler Supplement for Version 2.00
(Note: in order to use the DOS.H header file, you must copy
one of the last four files into M8086.H)

Assembly Language Source Files

C.ASM Source for C.OBJ (all ,versions)
IO0.ASM Sample assembler language function

Assembly Language Macro Files

SM8086.MAC Macro include file used with S model
PM8086.MAC Macro include file used with P model
DM8086 .MAC Macro include file used with D model
LM8086.MAC Macro include file used with L model

(Note: in order to assemble the sample source modules, you
must copy one of the last four files into DOS.MAC)

_/"

Lattice 8086/8088 C Compiler Object Module Librar

OBJECT MODULE LIBRARIAN REFERENCE MANUAL

by Phoenix Software Associates, Ltd.

The Object Module Librarian (OML) manipulates libraries
object files on the Intel Corporation (1) 8086 (or 80
processor (tm) under the MS-DOS (2) or CP/M-86 (3) operat
systems.

OML handles object files and libraries conforming to
format generated by the Microsoft compilers for the Intel 80
This is actually the standard Intel format with an enhan
library index. A list of compilers that produce object ¢
compatible with this format is given later.

The first section of this manual provides an explanation
the "object library" concept and the capabilities of OML. Us
unfamiliar with library managers would do well to start he
Also, the OML user”s guide contains a chapter discussing obj:
files and linkage editors that may be helpful,.

The next section of this manual describes how to use OML
handle several common object library situations. At the s:
time it provides an informal explanation of what the commands
Those readers experienced with linkage editors and library m
agers may wish to skip directly to this portion of the manu
it provides enough information to handle most applijcations.

The final portion of the manual is an exhaustive list of
commands and features offered by OML. This should be examii
when it becomes necessary to go beyond the examples given in
previous section. Side issues such as error codes are genera
referred to appendices.

Trademark Acknowledgment:
(1) Intel is a trademark of Intel Corporation.
(2) MsS-DOS is a trademark of Microsoft, Inc.

-

(3) CP/M-86 is a trademark of Digital Research.

Lattice 8086/8088 C Compiler Object Module Librarian

I. LIBRARY MANAGER CONCEPTS

Typically it is convenient (if not essential) to divide a
large programing job into smaller pieces called "modules"™ that
can be edited and compiled separately. Actually, compilers
available on micro-computers tend to have severe limitations on
how many lines of code can be compiled at-one time, forcing the
programmer to use modularization anyway. On the positive side,
modular programming offers a method of organizing a program into
manageable pieces that are easier to understand and work with,

After the program modules are created and compiled the
programmer must “"link" thez together with a "linkage editor" to
produce the executable program.

Once one has created a2 modular program one may find that
some of the modules are useful in a different program. With a
little effort these modules can be made more general in function
and can be used in many programs. The programmer can gradually
ouild up a "library” of useful routines that can be hooked in by
the linkage editor whenever needed. .

In fact, virtually all compilers are sold with a "library",
since functions like arithmetic on real numbers are often not
supported by the hardware and have to be implemented as procedure
calls. The compiler library also contains modules that support
the high level features of the language such as formatted output
in FORTRAN. This library is often called the "run time support"”
since its modules are required while the program executes,

Other software products in addition to compiler run time
support are often sold in the form of libraries. An example
might be a data base manager that is combined with the applica-
tion program by the linkage editor to produce a complete system.

Because of the importance of libraries, linkage editors
typically have special facilities for handling them. To save
memory space, only those modules in the library that are
actually required by the program are linked in. Sometimes a
library is simply a concatenation of object modules, requiring
the linkage editor to search sequentially for the required
modules. More sophisticated systems provide a "library index",
It contains a list of the public symbols offered by each library
module, and the location of the module that defines each symbol,
Therefore the linkage editor can rapidly locate the modules that
are required. The Microsoft library format is an indexed
structure.

The purpose of the 1§bra;y manager is to create and
manipulate object module libraries. It is therefore a useful
assistant to the linkage editor.

OML provides commands that can create libraries from
individual object modules, and to extract a selected module from

a library. It can also merge libraries, and can replicate the

Lattice 8086/8088 C Compiler Object Module Librai

library search process undertaken by the linkage editor wh

creating a program. In other words, one can create a libr
consisting of only those modules that the linkage editor wo
have included in a particular program.,

OML also provides a powerful cross-reference function
optionally generates a report listing each public symbol,
module which defines it, and a list of other modules that re
to it. This may be used to cross-reference a single library
several libraries together, or, in combination with the lib:
search feature described above, to generate a cross-reference
a program that will be created by the linkage editor,

CREATING/MERGING LIBRARIES...

To create a new library use the BUILD and FILE comma:
For example, executing OML and entering

BUILD DB.LIB
PILE BTREE,SORT, REPGEN, FIRSTLIB.LIB

would create a library named DB.LIB containing the files lis
after the FILE command. These files could be single obj
modules or complete libraries. Everything is merged int
single library.

Normally you can just execute OML and type in commands or
many lines as desired. Then end the the last line with a se
colon to begin processing. Each statement begins with a key v
like BUILD or FILE and is followed by arguments, possibly s
arated by commas. Input is free format, and blank lines
ignored. Also, key words may be abbreviated by leaving
characters at the end. For example, you can use BU and FI inst
of BUILD and FILE. An error message will be given if
abbreviation could be confused with another command.

Another way to use OML is to specity its actions on the
command line, For example, the above library could have t
created by entering (on one line):

OML BU DU FI BTREE,SORT,REPGEN,FIRSTLIB;LIB

Note that the output file type defaults to LIB automa
cally.

SEARCHING A LIBRARY...

Suppose you want to create a library consisting of seve
modules plus those portions of another library that
referenced by the modules. Use the LIBRARY command:

BU DB FI BTREE,SORT,REPGEN,LIB FIRSTLIB.LIB

The portions of FIRSTLIB not referenced by the three ot

Lattice 8086/8088 C Compiler Object Module Librarian
files are not put into the DB library.

UPDATING A LIBRARY...

To update a library it is necessary to copy the old library
to the output file while omitting the module to be updated, and
also include the new module. For example, to replace module
COSINE 'in library MATHLIB, rename the current MATHLIB.LIB to
MATHLIB.,OLD and enter '

BU MATHLIB FI COSINE,MATHLIB.OLD EXC COSINE

The EXCLUDE statement applies to the preceding file and
causes the COSINE module in the MATHLIB to be ignored.

MODULE EXTRACTION...

The EXTRACT statement causes a single object module file to
oe created. It may not be used at the same time as BUILD. The
Zirst object module found in the input files is extracted, so the
rarticular module to be selected from a library must be speci-
"ied. The object file extracted may be given any file name, The
.odule name remains the same. For example, typing

EXT OLDCOS FI MATHLIB.LIB INCLUDE COSINE

:reates file OLDCOS.OBJ containing object module COSINE. The
_NCLUDE statement is the counterpart of EXCLUDE: it applies to
the previous input file and causes only those modules named to be
considered for processing. There wouldn”t be any point to
INCLUDing more than one module in this case since only the first
one found is extracted.

CROSS REFERENCE LISTING...

. To create a cross-reference listing use the LIST command
with input file commands like those given in previous examples,
For example,

LIST = DB S FI BTREE,SORT,REPGEN,FIRSTLIB.LIB,

Creates a crocss reference report named DB.LST describing the
modules in all of the files listed. The "S" selects the crosse-
reference report. For a description of other reports available
See the LIST command description, The "=" specifies that the
feport is to be put into a disk file. If omitted the report
appears on the console.

Lattice 8086/8088 C Compiler Object Module Librarian

operating system it is executing under. The first character not
allowed to be in a file name terminates the name. The escape
character may be used to put any character into a file name.

In this manual, MS-DOS format file names are used for purposes of
discussion., These file names are of the form [device:] name
[.type]l, with optional portions in brackets. Here are some
examples:

MATHLIB.LIB
B:CHESS.OBJ
SCANNER

When the "device"” is not given, OML assumes that the
currently logged-in disk is to be used.

INITIATING OML

OML may be used interactively, or input may be given on the
command line:

OML <statements> <cr>

where <cr> means to press the RETURN key. This means that OML
may be used in .BAT files.

To use OML in the interactive mode, enter
OML <cr>

on the console. OML will read statements from the console,
prompting with "=>", All input is stored uninspected until a
carriage return is typed. The standard line editing features
supplied by the operating system are available.

A disk file containing all or only part of a command may be
inserted into the input at any point by preceding the disk file
name with an "@". The default file type is ".LNK". These disk
files can contain further "@" specifications, up to three levels
deep. The most common use of this feature is to prepare a file
containing a complete command; then,

-

OML @<file name> <cr>

.
Ccreates the library. Sometimes these ".LNK" files may be pre-
pared once for a given library and used over and over again,
greatly simplifying the whole process.

OML reads an entire command, checking for syntax only,
before any file processing is done.

Lattice 8086/8088 C Compiler Object Module Librarian

operating system it is executing under. The first character not
allowed to be in a file name terminates the name. The escape
character may be used to put any character into a file name.

In this manual, MS-DOS format file names are used for purposes of
discussion. These file names are of the form [device:] name
[.typel, with optional portions in brackets. Here are some
examples:

MATHLIB.LIB
B:CHESS.OBJ
SCANNER

When the "device" is not given, OML assumes that the
currently logged-in disk is to be used.

INITIATING OML

OML may be used interactively, or input may be given on the
command line:

OML <statements> <cr>

where <cr> means to press the RETURN key. This means that OML
may be used in ,BAT files.

To use OML in the interactive mode, enter
OML <cr>

on the console. OML will read statements from the console,
prompting with "=>", All input is stored uninspected until a
carriage return is typed. The standard line editing features
supplied by the operating system are available,

A disk file containing all or only part of a command may be
inserted into the input at any point by preceding the disk file
name with an "@". The default file type is ".LNK". These disk
files can contain further "@" specifications, up to three levels
deep. The most common use of this feature is to prepare a file
containing a complete command; then,

-

OMIL, @<file name> <cr>

Creates the library. Sometimes these ".LNK" files may be prer
pared once for a given library and used over and over again,
greatly simplifying the whole process.

OML reads an entire command, checking for syntax only,
before any file processing is done.

RahaS

Lattice 8086/8088 C Compiler Object Module Libra

COMMAND FPORMAT

All OML input is free format. Blank lines are ignored,
a command may extend to any number of lines. Comments maj
included with input from any source by using a percent sign
When this is encountered, all remaining characters on the ¢
line are ignored.

Input is a list of statements:
<statement> <statement>...<statement>

Each statement begins with a key word, and many are follc
by arguments separated by commas. For example, in

FILE A,B,C

FILE is the key word, and A,B, and C are the arguments.
words may be abbreviated by omitting trailing characters, as
as the abbreviation is unigue among the entire group of
words., For instance, the previous statement could have t
entered as '

FI A,B,C

If a syntax error is found, the current input line is ecl
with two guestion marks inserted after the point at which
error was detected. This is followed by an error message
Appendix) . The command must then be re-entered.

If some other error occurs, OML terminates with an er
message also listed in the appendix.

OBJECT FILES

OML must be told what object files and libraries to use
input and what modules to select from them. The FILE commanc
typically used, and normally causes all modules with the gi
files to be processed:

FILE COSINE, SIN, ARCTAN .

The LIBRARY and SEARCH commands are similar, but are 1
only on libraries and select only those modules that defir
public symbol that is needed by some other module that
already been processed. This is called a "library search®™ anc
a process carried out by most linkage editors, It insures |
only those library modules that are actually needed are incl
in the program.

LIBRARY MATHLIB
SEARCH FORTRAN

The LIBRARY command causes the given libraries to

~

Lattice 8086/8088 C Compiler Object Module Librarian

searched once. When the SEARCE command is used the libraries may
be searched multiple times as long as undefined symbols remain.

This won“t be needed unless two or more libraries are being:

searched that each refer to symbols defined in the others.

If OML cant find a requested object file it will look on
drive A to find it, and will zhen ask the operator to enter the
drive id. Diskettes may be changed at this time if necessary. Of
course, the operator must insure that any diskettes removed do
not contain open files like the BUILD or EXTRACT file.

Also, if OML runs out of aemory a work file is opened on the
default disk, which then may not be removed.

Under MSDOS 2.0 operating systems OML will accept a path
name as part of an object file name. Also, if an object file
can“t be found OML will loox for a string named "OBJ" in the
environment and append its value to the front of the file name,
after stripping any drive id. For example, suppose that the
operator enters

SET OBJ = \OBJECT

and then runs OML. Let us suppose that one of the commands to
OML is

FILE B:TEST.OBJ

and that TEST.OBJ doesn’t in fact exist on drive B. OML would
strip the B: from the name and then try \OBJECT\TEST.OBJ to
obtain the requested file.

If an object file (not a library) is being processed the
module it contains is glven the same module name as the name of
the file it came from. This is done because some compilers don’t
supply a unigue module name. This default may be changed by
using the AS statement. It supplies the module name for the most
recent FILE given, For example,

FILE MPTHL AS COSINE
would name the module in MATHl COSINE instead of MATH1.

If you are processing libraries built with Microsoft’s
library manager you will get several checksum errors, These
arise because the Microsoft library manager renames the modules
as OML does but does not re-compute the checksum field at the end
of the module name record. The messages should no longer appeaf
once the library has been re-puilt by OML.

The modules Selected from a library may be further

restricted by using the INCLUDE and EXCLUDE statements. These

are followed by a list of module names:

9

@)

Lattice 8086/8088 C Compiler Object Module Librar

FILE MATHLIB INCLUDE SIN, CONSINE
LIB MATHLIB. DB EXCLUDE.BTREE

The INCLUDE statement causes only those modules listed to
considered for processing, and this selection precedes a libr
search. EXCLUDE is the opposite. The modules listed are
processed. INCLUDE and EXCLUDE apply to the FILE, LIBRARY
SEARCH file immediately preceding. In the second example abo
for instance, the EXCLUDE BTREE applies only to the DB libra
not MATHLIB. i

BUILDING A LIBRARY

The BUILD command is used to create a library out of
modules selected from the input files. It is followed by
name of the file to create. The file type defaults to .LIB:

BUILD DB.LIB
BUILD D:MATHLIB

After all modules are output the library index is created.

One must be careful that the output file does not have
same name as any of the input files, For instance, entering

BUILD MATHLIB
F£I COSINE, ARCTAN, MATHLIB

won’t work because MATHLIB will be erased before it is read.

The BUILD command may not be used simultaneously with
EXTRACT command (described next). If no output is requested £
OML (i.e. there is no BUILD, EXTRACT or LIST command) then (
will simply read the input modules and report any ecrors
finds. ‘

EXTRACTING A LIBRARY MODULE

The EXTRACT command is used to extract a single obj«
module from a library file and place it into a separate d
file. 1It is followed by the name of the file to create:

EXTRACT COSINE.OBJ ’
EXTRACT ARCTAN

If the file type is omitted OBJ is assumed.

The EXTRACT command extracts the first module found in
input files, Therefore it is usually necessary to use
INCLUDE statement to specify which library module should
extracted. For instance,

Lattice 8086/8088 C Compiler Object Module Librarian

EXTRACT COSINE FI MATHLIB

extracts the very first module in MATHLIB, even if it is not the
COSINE module. To get the correct one enter

EXTRACT COSINE FIMATHLIB INC COSINE

s

GENERATING REPORTS

The LIST command is used to generate reports about the
object files being processed. It may optionally be followed by a
file name, causing the reports to be directed to that disk file
or device., The file name must be preceded by an equal sign. Then
a character is entered for each report desired, separated by
commas. There are currently two reports available:

M - A list of all modules processed in alphabetical order.

S - A list of all public and external symbols in
alphabetical order. Each is followed by the name of the
module defining the symbol in parenthesis (this will be
blank for external symbols). Following this is an
alphabetical list of all modules that access
the symbol (i.e. this is a cross-reference report).

Here are some examples:

LIST M
LIST = DB,LST M, S
LIST = XREF.LST S -

The report generator can be re-configured for different size
papetr. It assumes 80 columns and 66 rows per page as a default,
The number of columns may be changed with the WIDTH command, and
the number of rows with the HEIGHT command. Here are some exam-
ples:

WIDTH 132
HEIGHT 88

CONTROLLING THE LIBRARY INDBX

Normally all public symbols from all modules are inserted
into the library index. If a duplicate symbol is found library
Creation continues but a warning message is given and the index
entry for that symbol will select the first module defining the
symbol.

Sometimes it is useful to exclude certain symbols from the
library index., This may be accomplished by using the NOINDEX
command. For example,

NOINDEX SYM1,SYM2,SYM3

~excludes SYM1, SYM2, and SYM3 from the index.

- 10

O

Lattice 8086/8088 C Compiler Object Module Librar]

Suppose you wish to create a library that contains sever
versions of the same module, for instance a device driver
some kind of hardware, If you try to place all of the modul
into the library you will get duplicate symbol warnings, and
link time the linkage editor wouldn”t be able to select t
desired module.

This can be made to work by using NOINDEX on the modu
entry points. This excludes all of these symbols from ¢
library index. To get the linkage editor to select the corre
modules insert an un-used but unigue dummy symbol into e:
module. At linkage edit time one of these dummy symbols would
accessed in order to create a need for the desired module. 1
linkage editor would then select it when the library is search

Using OML, for instance, one could use a statement like
DEFINE FOO=DRIVER1

to select the module containing driver 1. An alternative is
rely on the fact that the name of each module is actually in t
library index as well, followed by an exclamation point., F
example, if the library contains a module named DRIVERL tt
there will be a dummy index entry named DRIVERl!, These symbc
can be used instead of creating a dulmy module entry point
discussed above.

11

{

- ——

more uncommon Or oObscure errors a number is printed on the
console that may be looked up below,

COMMAND SYNTAX ERRORS

The following errors are caused by mistakes made in the
input given to OML. The input line causing the problem will be
displayed on the terminal, with a couple of gquestion marks
inserted at the point where the error was detected. Re~-run OML
after correcting the problem.

1l - "@" files are nested too deeply. Only three levels of "@"
files may be active at any given time. Do you have a loop
in your "@" file references?

2 - Disk error encountered while reading "@" file., Try re-
building the file.

5 - The item given for input at this point is too large. The
maximum size allowed is 64 characters.,

6 - Invalid digit in number (i.e. not 0 thru 9).

10 - Invalid file name,. The input stream should contain a
valid file name for the particular operating system being
used. .

11 - Expecting a statement. A key word which begins a
statement should be present here,

12 - The INCLUDE and EXCLUDE statements may not be used
simultaneously on the same input file.

14 - Expecting identifier. A section, module, segment, or
symbol name must be entered at this point.

15 - Expecting "="

16 - Expecting a value. A expression or 16 bit quantity must
appear at this point.

17 - No files were given to process! You must use the FILE
statement and specify at least one input file.

18 - The BUILD and EXTRACT commands may not be used simulta-
neously. You must run OML twice with one command in
each. .

%

()

WORK FILE ERRORS

When OML runs out of memory it opens a work file on 4di
named PLIB86.WRK to hold the description of the 1library. The
error codes indicate a problem with processing the work file.

30 - The work file can”t be created. Probably there is no spa
in the disk directory.

31 - An 1/0 error occurred while writing the work file.

32 - An I1/0 error occurred while reading the work file.

33 - An I1/0 error occurred while positioning the work filef

34 - There are too many module description objects in th

library (about 50,000 symbols, modules, and so on may
defined). This library is too large for OML to handle.

INPOT OBJECT FILE ERRORS

The following errors have to do with the object files th
are given to OML to process. Usually they occur when a file h
been corrupted somehow. Try re-compiling to get a new copy
the object file, If it is a library supplied by the compil
manufacturer that is causing the problem, try to get a fresh co
of it,

41 -~ Premature end of input object file. The end of the ind
cated file was reached unexpectedly. Possibly, the f£i
was truncated by copying it with a program that assumes
CNTL-2 (lAd) is the end of the file.

42 - Fatal read error in object input file.

43 - Fatal file position error in object input file. This ¢
occur when a library file is truncated.

OUTPUT FILE ERRORS

The following errors are caused by a problem in creati
the output code file or memory map file (when written to disk
Often, they are caused by a full disk nr disk directory, a di
that is write-protected, or some kind of hardware problem wi
the disk.

45 - Can”t create output disk file. Possibly the disk directo
is full, or the disk is write protected.

46 - Output file too large. The given modules won”t f£fit in

the library. You will have to break up the library in
one or more smaller ones,

13

47 - Patal disk write error in output file. Possibly the disk
is full or write protected, or some kind of hardware error
has occurred.

48 - Fatal disk read errar in output file. Probably, an
irrecoverable hardware error has occurred,

49 - Can’t close output file, Probably the disk is write
protected, or a hardware error has occurred.

50 - Can“t create the LIST output file. Possibly the disk
directory is full, or :he disk is write protected.

MISCELLANEQUS ERRORS

S1 - There are too many svmbols to be placed into the 1library
index. You will have to break up the library into one or
more smaller ones,

52 - No modules were selected (by library search, INCLUDE, or
EXCLUDE) to.be placed in the output file BUILD or EXTRACT).

54 - There 1isn“t enough memory in the computer to run OML,
You must have a really tiny memory - better buy more!
SYSTEM ERRORS

These errors indicate that a system error has occurred
through no fault of your own. They are 1listed here for
completeness in the manual, although it is unlikely that you can
do anything to correct them. Try running OML again. If the error
persists, please gather the relevant -information and contact the
software distributor from wnoom you obtained OML.

201 - Expandable array bug.

205 - Seek errors while writing output file (attempt to
seek past end of file).

219 - Bad object block (GetBlock).
221

Invalid object key (Q). -
222 ~ Invalid object key (QM).

14

O

