
.'

Lattice 8086/8088 C COmpiler

2.3

Section 3

3.1

3.2

. .., -... ",.
2.2.1 P~e-pro~ssor ~eatures
2.2.2 ~ithme~;'c Objects' .
2.2.3 D~rived Objects
2.2.4 5;t.orage~lasses
2.2. 5 ~ope of Ident,ifiers:
2.2.6 tnitiali!iers ". ,',
2.:2. 7~p-reSS£?n E.valu~:'iC!)rt~
2.4.8,&;ontrol-,Flow-,

'.. . ~I'- ~ ~

Amend~ts to . ..ithe. C Refereit:e' Manitai
:::.; .,' ;~; . \~': . ~ 4'" ~. '

Portable" Librar:tFUn$Hons-
'''~:' \: ~~ .. '~ ~ i::- .;

Mem.ory .U~.,cUi~!f,Fut=t~~~,.~~

3.1. ~ Lev.i~ W M~~try"\Ali6c.it;.ion
3 . ~.' 2 t,.ey~lt:. Httno r Y': 1\1109 e. ~on
3. 1.3 Le~~,l 1 ' .. Memory .A11ocatlon

I/O and System Functions

1 •. 2.1 Level 2 I/O Functions :and Macros
3.2.2 Levell I/O Functions
3.2.3 Direct Console I/O Functions
3.~.4 Program Exit FUllctions

). J U.ti'li ty Functions and Macros

3 •. 3.1 Memory Utilities
3.'3.2 Char acte·r Type Maeros
3 •. 3.3 String Utility Funct;ons

Appendix A Error Messages

Appendix B Compiler' Errors

Appendix C 'Con.version of CP/M Programs
" ~., " . .

2-3
2-5
2-5
2-6
2-7
2-8
2-9
2-10
"
2-ll

3;"'1: .. '

3::"2'
}~ ..
~,-:'12' '

3-t5

3~15
3-39
3-48
3-54

3-57

3-57
3-61
3-62

SECTION 1 The MS-DOS Implementation

The Lattice 8086/8088 C compiler runs under Microsoft~s MS-DOS
operating system. It accepts pro~rams written in the C
pro~ramming language (the full language -- not a subset) and
produces relocatablemachine code in Intel~s 8086 object module
format, suitable for use by Microsoft's program linker. The
library defines a comprehensive set of I/O subroutines which
implement under MS-DOS most of the UNIX-compatible standard
functions described in the text by Kernighan and Ritchie.

The 8086 instruction set is well-suited to the implementation of
Cl high level language like C, and the Lattice corr.piler generates
machine code which takes full advantage of its features.
Although the 8086 architecture supports up to 1 megabyte of
addrE:ssable memory, it lacl<s the ability to address this memory
directly and efficiently. This impleMentation therefore
restricts the size of C programs to a maximum of 64K bytes of
program se:tion (functions), plus a maximum of 64K bytes of data
sec t ion (inc 1 u din g s tat i c d a t a , a u to 0 r s t a c k d a t a, and
dynamically allocatable memory). Even with this restriction,
programs of considerable complexity and power (including the
compiler itself) can be developed.

1.1 Operating Instructions

The Lattice compiler is supplied under MS~DOS as a package
consisting of the following files;

LCl.EXE
LC2:EXE
FXU.EXE
C.OBJ
LC.LIB
LC~BAT
STDIO.H
CONIO.H
CTYPE.H
FTOC.C
CAT.e
SIEVE.C
rO .• ASM

C compiler (phasel)
C compiler' (phase 2)
Function extract utility
C program el\try/exitmodule
Run-time and I/O library
Batch file to execute phases 1 and 2
Standard 1/0 header file
Console I/O header file
String macro head~r file
Fahrenheit-to-CeLsiussample program
File concatenate sample program
Eratosthenes sieve sample program
Sample tssembler. program

These dis~ files take up about 160 kilobytes of disk
storage. Each phase of the. compiler itself has about SOK bytes
of program section, and each requires a ~inimum oEan additional
14K bytes of data area. Thus, the compiler needs about 64K bytes
of working memorytnaddition. to' that taken up by MS-DOS itself,
and addi tional memory w ill be' needed to compile large source
files. (On the MS-DOS system used to develop the compiler, the
MS-DOS components requir~d slightly more than 16K bytes.)

1-1

Lattice 8086/8088 C eo.pl1er Tbe MS~DOS lmpleaentation

LCl and LC2 make up the actual compiler. Each performs a
portion of the compilation process and mU!lt. be invoked by
separate commands; LCl does NOT automatically load LC2 when it
completes its processing. Normally, LC2 should be executed
immediately after LCl if there are no errors, in the source file.
The batch procedure file LC.BAT is provided to execute. LCl and
~C2 in succession, uSing the same file name (the normal
sequence). The compilation process can be diagrammed as follows:

file.C -> LCl -> file.Q
file.O -> LC2 -> file.OBJ

LCl reads a Csource file, which MUST have a .C extension,
and (pro'/ided there are no fatal errors) produces an intermediate
file of the same name with a .0 e~tension. LC2 reads an
~ntermediate filE creatad by LCl and produces al~object file of
che same name with a .OBJ extension. The.Q ftle is deleted by
LC: when i.t completes its processing. Eac;h, ph3:lenOrmally
~eeates its output file on the same drive a$ the input file.
Note that if a source file defines more than or.e function, so
joes its resulting Object file. Individual functions cannot be
beoken out from the object file when a program is linked: see
Section 1. 3.2 for mo!;e infox:mation.: .: f '. ... ,." •

The .OBJ file must be suppl led' a's input to .. th"Jl inker. in
order to produce an executable program file. Two special files
must also be involved' in the linking process, in addi.tion to any
.08J files created by the user. The lini<i.ng PrOcess C,jlO be
aiagrammed as fOllows:

C.OBJ + user.OBJ + ••• + LC.LIB -> LINK -:-> use~.EXE

The special files required. are C.OBJ and LC.LIB. First, .the
file C.OBJ must be specified as, the FIRST .odule on ~he LlNK
execution command; this module def inest.ne .. e,xecution ent~y and
exit points for any. program· generated· uSin'3 the Lattj.c~ C
compiler. Second, the file LC.LIB ml,lst be :speci.fied .. as the
1 ibrary; this file defines all. of the. run-·time and I/Olit;lrary
functions included as part of the Lat.tice C ,package. _ The user
must also specify at link time .the names oe any .08J fil"!s: wbich
are to be included, as w"!ll as the name o,f thp. .EX! file which
will oe created by the linker.' '.' '. "

To ill'Jst:ate the program generation sequence, here a~e the
commands necessary to compil"!, lin~, ,and exp.cute the Fahr.nhelt­
to-Celsius sample program. Thi~ example assumes that all of the
.EXE files (LC1, LC2, and,LINK) reside on-the same disk. The.
t::urnmands will be shown in upper case, although lower case
commands w ill work just .as well.. (Note: . t,he, .;ii'oker prompts
descr ibed here are t.hOS! for. Version 1.1;Q of toe_ Microsoft
linker; consult Microsoft 5 d~cumentationi..ft,hey ace different
for the version you have. ~eoera.Jly" thed~faul.tresponses are
correct.) , . .

STEP 1: Execute the fi'r'st phase of the e~mpil~r by typing

l-2

STEP 2:

STEP 3:

STEP 4:

LC 1 tTOC <Cit>

Note that the .C extension is not sup.plied (although
the command w ill work proper ly even if it is).

Wh~n the MS-DOS p~ompt is issued after LCl has
completed its processing f execute the second phase of
the compiler with

LC2 FTOC<CR>
~.

Again, no extens ion is speci f ied; LC2 suppl ies the .0
extension •

. When the prompt is issued after LC2 has completed its
processing, execute the linker 'by typing

LINt< C FTOC<CR>

Note that C (meaning C.OBJ)is specified as the FIRST
object mOdule on the LINt< command; this i::; required for
the .. linking of any, C program,. ;ThenFTOC (meaning
FTOC.OBJ, which was just· produced; by LCi) is specified
as an additional ~bject module. Re~pond to the other
linker prompts ~s .f~llows:

Run :Fi'ie [C.EXE): rtoC<CR>
List File .[NUL.MAP]: ~'<GR>
Libr a cleS[• LIB}: t;c <Cit>' . '.,' : :'.;'

'1'heser.esponses cause t.he',run fi'le to be nam.ed
FTOC.EXE, Skip the generatiol'lo;. a link map, and cause
LINK to sear~h LC.LIB fpr.external: references.
'.;: ".
Execut'e the • EXE 'fi.L~ I:>Y 'ty~,i,??

FTOC<CR>

.~ list of Fahrenhei t: t __ mperatl1re, values and thei r
q~elsius equiv~le.nts will.b.e ",titten to the user"s
console. ", '.

Note that the first two. steps could have been accomplished
with thes i n91e 'comma nd

, LC FTOC <CR>

which uses t.he' LC.BAT .batchfile to execute LCl and LC2 in
succe3sion. NO.te also. that the file FTOC.OB.l still exists and
should probably be erased.

Detailed instructiona. for .compiling. linking, and executing
programs ~:re presented. in:the follo ing sections. See Section
1.3 for a detailed, .. diEicussic?m .of the processing performed by the

1-3

Lattice 8086/8088 C co.piler The MS-DOS Implementation

compiler phases.

In presenting the various command line formats, the term
"field- will be used to describe a sequence of non-white-space
characters in the command line. Optional fields will be shown
enclosed in square brackets ([]); the brackets are NOT to be
included when the actual command is typed. Study the examples at
the end of each section to see how actual commands should lOok.

1. 1. 1 Phase 1

The first phase of the compilet reads a C source file and
produces an intermediate file of logical records called
quadruples, or quads. See Section 1.3.1 for a more detailed
discussion of the processing performed. The format o~ the
command to invoke the first phase of the compiler is

r..Cl [.. stack} {>l.istfile} filename [options] <CR>

The various command line specifi~rs are shown in the order they
must appear in the command. Optional specif iers are shown
~nclosed in brackets. The first two options are part of the
general command line-()ptions. for. all Cprograms (se'.e Se.~ion
1.1.4). ..•.

=stack The first option is usedt~ override the' number of
bytes reserved f.or the stac;k (see .Section \,,4 for a
complete description o~ the'$t;ructure of C programs).
The default is '2048 (d.ecimal). bytes, which is
sufficient for most ptograms. tf 'pr~s~nt, the stack
size override field must be tbe fL~st field after the
name of the first ~has~ ,(LC~)~ It is specifi~4 ~s an
equals sign followed by a ,de'ci,mal,number (for example,
=4096 specifies a value of 4096 decimal"bytes). 'Since
the compiler uses recursion to,process C statem~nts,
heavily nestedstateinents calis'ethe compil'!rto' use
anore stack space than straightforward, linear
sequences. If a source program with "'a lot of embedded
statements {ifs within ifs withiI1.if,:'5,.etc.) causes the
first phase to. die mySterious17,inthe middle of a
compilation, or to complain of ereors which don~t
exi.t, or to exhibit other unusual behavior, incie~sing
the stack size ~~y solve ~he problem. On the other
hand, you may Si.plyhave'discovered a compil~r bugi'
see ~ppendix B for the procedure used ~o report such
problems. On systems which are cramped for memory, t~e
sta~k size may be irimmed down in an att~mpt to
eliminate a "Not enough memory" errot; there is no
guarantee,however, that the ¢o!llpilationwill be
successful, particularly if the stack size i~ reduced
below 1024 bytes. ' .

>listfile The second o~tionis-us~d. to dir~cii the fitst phase
messages to a specified fi leo These:messages include
the compiler si':Jnon message and any'error -or ,warning

1-4

messages which may be generated. The full filename
must be specified, including extension. If the file
already exists, it is truncated and reused. This
option is useful for reviewing long lists of error
messages.

filename This is the only command line field which MUST be
present: it specifies the name of the C source file
which is to be compiled. The file name should be
specified without the .C extension: the first phase
supplies the extension automatically. Note that only
files with a .C extension can be compiled; if some
other extension is specified, the compiler ignores it
and tr iesto find "name.C·. (I include files, on the
other hand, must be fully specified with extensions.)
The default d:ive is used unless some other drive is
specified: the quad file is created on the same drive
as the source file unless the -0 option is used (see
below). Alphabetic characters may be either upper or
lower case in file names.

options Compile ~ime options are specified as a minus sign
followed by a single letter. The letter must be. typed

" in lower case: the"corresponding upper Case option will
have no effe'ct."·' ,Eact .2.PJ':,,i;.o;i',m.u~.!,_b,e_ . .sp'~cif ied_
separately, with a separate minus sign and letter (that

. is, they cannot-be 'combined as they' can for certain
UNIX programs). Current options include:

-a CauseS ,the compiler to assume worst-case aliaSing, that
is, toabariddn any optimiz~tions based on favorable

, assumptions'abou-t pointers·~ Normally, the compiler
assu.~s that objects refer~nced through p~inters are
not the same as objects being-re'ferenced directly in
the same section of the program: this option cancels
that assumption. The -a option is almost neve~
required unless the programmer is dOing something
tricky with pointers; see Section 1.3.4 for more
infor!p-ation.

-b F.orces byte alignment for alr offset calculations. The
first phase~o~m~lly aligns all objects which are not
·char" on a word boundary. This insures efficient data
fetches on an SOS6 (fetching a word on an odd byte
boundary on the S086 p~ocessor requires four additional
clock pe;iodsl~ This option is provided to allow space

. efficient programs for the BOaS processor. It .'is also
useful fdrcertain ~tructute declaration~ where word
items most-be ~laced at odd byte offsets in order to
con'form to specif ic recdrd layouts (for example, the
FCB structure used in MS-OOS contains a long integer
which falls on an odd byte boundary).

-c Causes comm~nts tc) be processed without nesting. The
Lat.Hce compiler normally ;assumesthat comments may be

1-5

Lattice 8086/8088 C Compiler The MS-DOS I.pleaentation

nested: this allows large sections' of code to be
commented out very easily. This option allows the user
to force the compiler to the standard, non-nesting mode
of operation.

-d Causes debugging information to be included in the quad
file. Specifically, line separator records a.re
interspersed with the normal quads. This allows the
second phase to produce a table of information relating
input line numbers to program section offsets. If this
option is used, the quad file is NOT deleted by the
second phase. (Note: this opt iQn is not implemented
on some earlier versions of the compiler.)

-od Creates the output file (the quad file) on drive Rd R,
where "d" is a single alphabetic character, either
upper or lower case, specifying a disk drive ("a" for
A:, "b" for B:, etc.). The dr ive letter must be
adjacent to the R_O· (no intervening blankS).

-x Changes the default storage class for external
declarations (made ou~side,th~ bOdy of .. a, .function) from
"external defini tion" ·to. "external ieference". The
usual meaning~of ane~~ernaideclaration for which an
explicit storage class is. not present is tod~fine
storage for the objec~ and make it viSible in other
files: external definltion •. The -x o'pnon causes such
declarations to be treated. as if ,they we.re preceded by
the "extern" keyword, that is, :theobject being
neclared is present in some other. f,ile. The option is
provided for use on.' programs ,wt;.i.ttenfor the BDS C
compiler: see Appendix C fOI: .. mor~. information.

EXAMPLES

Lel XYZ -ob -x

Execute the first phase of the compiler using file.XYZ.C as
input, creating file XYZ.Qon B:, and iriterpret all ~xternal
declarations without a storage class as being '''extern R
declarations. .

lcl =4096 >tns.err tns

Execute the first phase of .the compiler using file TNS.C as'
input, creating file TNS.Q on the currently logged-in disk: set
the stack size to 4096 decimal bytes, and create a file TNS.ERR
to contain all of the messages generated by t~e compiler.

1. 1. 2 Phase 2

The second phase of the compiler' reads a' quad fill! created
by the fitst phase and creates an 6bjeet fi1~ in the standard
MS-DOS format. See Section 1.3.2 for a more detailed discussion

1-6

\

of the processing performed. The format of the command to invoke
the second phase of the compiler is

LC2 filename [options)<CR>

The command format is very similar to that for the first phase.
The stack size override and listfile options can also be used,
but they are generally less useful and will not be described here
in any detail. Note that neither phase of the compiler does any
processing of the standard input, so the < option has no effect
on either phase (see Section 1.1.4 for the general C program
execution options) •

filename This field must be present; it specifies the name of
the intermediate file for which code is to be
generated. This intermediate file Ls a quad file with
a .0 extension, created by the first phase of the
compiler. The file name should be specified without
the .0 extens ion; the second phase suppl ies the
extension automatically. Alphabetic characters may be
supplied in either upper or lower case. The default
drive is used unless some other drive name is
specif led, "and, ,the object H le is created on the same
dtive as the quad file unless the -0 option is used
(see "below) • ' ,

options Compll~ time opt~ons are speci{i~d as a minus sign
followed by a single'let'ter. The letter must be typed
in lower case; the corresponding upper case option will
have no effect,. Each option must be specified
separately,w,ttll a s~p,arllte minus sLgn and letter (that
is, they ,cann'ot be combined as they can for, certain
UNIX programs). 'Cu,rr~ntoptions include:

-f Causes code forflc:)a'ti1l9 point operations to be
generated usLn;the, 8087 numeric data processor. Note
that this option must be used for all functions which
per~fprm any floating point operations which are to be
included in a program, that is, function~ compiled with
the -f option :canrl0t ,be combined with (floating point)
functions cOlllPiled wi,thout the -f option. (Note: this
option is not' i.nplE!mented on some earlier versions of
the compile r •)

-od

EXAMPLES

Creates theo~ tpu t file (th~ object file) on drive "d",
where nd" is "a Single alp'habetic character, 'either
upper or lower case, specifying a disk drive ("a" for
AI" "b" for 13:, etc.). The dri·.re letter must be
adjacent to the "-0" (no intervening blanks).

LC2 A:NXF -f

Execute the second phas~ of the compilet using file A:NXF.O as

1-7

Lattice 8086/8088 C Compiler Tbe MS-DOS lapleaentation

input, creating file NXF.OBJ on drive At, and generate code for
all floating point operations to use the 8087 floating point
processor.

lc2 u790 -oc

Execute the second phase of the compiler using file U790.0 as
input, creating file U790.0BJ on drive Ct.

1.1.3 Program Linking

After all of the component source modules for a program have
been compiled, they must be linked together to form an executable
program file. This step is necessary for several reasons.
7irst, the object file produced by the second phase of the
compiler is not in a state suitable for execution. Second, most
programs make use of functions not defined in the current module;
before such programs can execute, they must be "connected" with
t.hose ot.her modules. These exter.nal functions may be defined by
the user, in which case they must be compiled and be available as
.OBJ files, or t.hey may be defined in the library supplied with
the compiler. (The portable functions are descr ibed in Section
3: others defined only under MS-OOS are described in Section
1.5.1 Third, although Cnormally define~ the functiOn ~alled
"main" to be the execution point of at program, there is usually
a considerable amount of system-oependent processing which must
be performed before "main" is actually called; the module to
perform this processing is integrated into the program when it is
linked. . ..

Although the usual concept oj. linking involves external
function calls, C also permits functions to access data locations
defined in other modules. This kino of reference is possible
because the external 1 ink age mechariismsuppor ted by the object
code associates an external symbOL ~ith a memory loc~tion; this
symbol is the identifier used tb declare the obj~ct in a C
program. The programmer must !)e careful. to c,ieclare· an object
with the same attr ibutes in both themO.9ule which define~ it and
the module which refers to it, beCause the linker carln.ot verify
the type of reference made -~it simply connects memory
references using external symbols. The ~~e of include files for
common external declarations wit.l usually prevent thiskfnd of
error. . .. ,

The linkinq process in a general sense requi~~s that all of
the components of a program be specified, either directly or
indirectly, as input to the linker. Three types of input are
r~quired.

1-8

1. The file C.OBJ must be specified as the first module
included by the linker. This file defines the MS-OOS entry
point for all C programs compiled using the Lattice C
compiler.

2. Functions generated by the user. must be spe;cified as

additional mOdules to be included. These modules include
the main module, as well as any additional functions defined
in other source modules.

3. The file LC.LIB must be specified as the library to
be searched during linking.

In the case of the Microsoft linker supplied with MS-DOS, these
inputs are specified by:

1. Making "cn the first module on the "LINK" command.

2. Including the names (without the .OBJ extension) of
the user·s object files on the "LINK" command, after the "C·
specification.

3. Typing "LC n in response to the nLibraries· prompt
from the linker.

Note that for step (2), one of the files included on the "LINK·
command must be the main module.

If the linker cannot find one of the .OBJ fil~s mentioned on
the "LINK" command, it will stop proceSSing without creating a
.EXE file. Z>.nother error condition can arise if the linker
cannot ~ind all of the ext.r~al items referred to in the .OBJ
files specified. In this case, you will <Jet a message to the
effect that "Unsatisfied external reference(s)" exist, f,)llowed
by a list of the external.names which were not satisfied. DO NOT
ATTEMP'l' TO EXECU1'E A PROGRAM WITH UNS~:rrSFIED EXTERNAL REFERENCES
unless you are quite sure that the missing functions will never
actually be called.

See Section 1.2.2 for a discussion of external names. See
Section 1.4 for a technical descr i?tion of the object code
features used in this implementation. tf the version of the
linker supplied with your system has diIferent prompts than those
illustrated here, consult MicrQsoft·s documentation, Generally,
the default responses to other prompts are correct. If your
linker allows generation of a public symbol map, you may want to
create a .MAP file and look at t~e components present in the
resulting load module.

EXAMPLe:

LINK C XYZ QRS

Run File [C.EXE]: XYZ<CR>
List File [NUL.MAP]: <CR>
Libraries (.LIB]: LC<CR>

Execute the linker, proQucing XYZ.EXE as an executable program,
and include files XYZ.OBJ and QRS.OBJ in the program.

1-9

Lattice 8086/8088 C Compiler Tbe MS-DOS Iapleaentation

1.1.4 Program Execution

When a C program is executed, the function "main- is called
to begin execution. Two important services are performed for it
before it ever receives control.

1. The command which executed the program is analyzed, and
information from the command line is supplied as parameters to
qmain". The analysis performed and the nature of the parameters
supplied will be discussed in detail below. This feature is
designed to make it easier to process command line inputs to the
program.

2 • The b u f fer edt e l(t f i 1 P. S • s t din • (standard input),
"stdout" (standard output), and "stderr" (standard error) are
opened and thus available for use by the program. Normally, all
three units are assigned to the user·s 6onsole, but "stdin" and
"s tdou t" may be ass igned elsewhe r e by command 1 i ne opt ions
descr ibed below. This feature allows flexibility in the' use of
programs which work with text filp. input and output using the
~t~ndard "getchar" and "putchar" macros.

The simplest way to execute a Cprogram is just to type the
name of the .EXE file (without the .EXE extension), followed by a
return. Since the cO.mmand lin.e provides· a conve-nient way to
supply input to a program, a program execution request will often
contain other information. The general format of the command
line to execute a C program is

pgmnalUe [-stack] [<infil'!!} (>outfileJ(argsl <CR>

Everything after "pgmname" is oj?tional, as the brackets indicat!!.
The vari~us additional it~ms, if present, must be specified in
the order shown.

pgmname

-stack

1-10

This field names .the progra'm to' be executed: it is the
name of the .EXE file crea~ed when the prog~am was
linked. It must be. spec;ified withQut the .EX!
extension.

The first optional field i~used to specify a decimal
number of bytes to be res~rved for th~ stack when the
program executes. The default valu~ used if this field
is not present is 2048 bytes. The stack size is
specified as a decimal number immediately preceded by
an equals sign. ~ll objects declared "auto· ate
allocated from the stack, but the memory used for these
allocations is freed when .the functi~n in which they
are declared returns to its caller. The dynamic nature
of this allocation mak~s it generally difficult to
predict how much stack space is actually needed for a
particular program. The stack s.ize option on the
command line allows the user to ~dj~st the amount of
memory reserved for the stack witho~t ha~ing to
recompile the program. The memory reserved for the

stack af fects the amount of memory avai lable for
dynamic allocation by the various library functions
descr ibed in Section 3.1. See Section 1.4 for more
information about the structure of C programs.

<infile The second optional field names a file or device to
which the standard input ("stdin") is to be assigned.
This option is useful only if the program being
executed actually uses the standard input (that is, it
processes text input using "getchar" or "scanf" or
makes explicit "getc" or "fscanf" calls using "stdin").
The file or device name must be immediately preceded by
a < character; if a file, the full name including
extension, if any, must be specified. See Section
1.5.2 for a list of valid device names. The file must
exist. or the program will be aborted with the error
message "Can't open stdin file".

>outfile The third optional field numes a file or device to
which the standard output ("stdout") is to be assigned.
This option is useful only if the program being
executed actually uses the standard output (t~at is, it
generates text output using "putchar" or ·printf" or
makes explicit "putc" or "f.,rintf" calls using
"stdout"). The file or device name must be immediately
preceded by a > character; if a file, the full name
including extension, if any, must be specified. See
Section 1.~.2 for a list of valid device names. The
file is opened as a ne file, which discards its
previous contents if it already existed and creates an
empty file. If the filename specified is invalid or
not enough directory space is avail~ble to create the
new file, the program is aborted with the error message
"Can't create stdout file".

If· two> characters are used instead of one, the file
is opened for appending, and any output is added on to
the end of the file. This option is useful for
accumulating logging information. The file.is created
if it does not exist.

args Any additional fields beyond the program name and the
three optional fields are extracted and passed to the
function "main" as two arguments:

main {argc, argvl
int argc; /* number of arguments */
char. *argv[}; /* array of ptrs to arg strings */

Each aTg string is terminated by a null byte. On most
systems which support C, "argv[O]" is the name by which
the program was invoked. Unfortunately, under MS-DOS
the program name is not readily available, although all
of the other information from the command line is. A
dummy "argv[O}" is therefore supplied {all programs are

1-11

Lattice 8086/8088 C ca.piler Tbe MS-DOS lapleaent.ation

named ·c· according to "argv[O]·) but subsequent
elements of "argv· are defined properly. Arguments
appear in "argv" in the same order in which they were
found on the command line. Note that the optional
stack and file specifiers are NOT included in the
"argv· list of strings.

Although all of the above features are intended as a
convenience for writing utility programs under MS-DOS, many of
the library I/O functions are forced to be a part of the program
because of this processing (specifically, the opening of the
buffered input and output files). For programs which were going
to use the buffered I/O functions anyway, this does not present a
problem, even though these functions add a substantial number of
bytes of code to the size of the linked program. Users who must
be concerned about program size and who are not using these
functions can avoid including the extra modules by supplying a
special version of " main", the library function whiCh calls
"main". See Section I.s.4 for detai ls.

EXAMPLES

CPROG =8000 <INPUT.R POP 12

Execute CPROG.EXE, setting the stack size to 8000 decimal bytes,
with "stdin· connected to file INPUT.R. The "main" function will
be supplied an "arge" value of 3, with strings "c·, "POp·, and
"12" in the "argv· array.

errlog »errors.log data

Execute ERRLOG.EXE with "stdout" connected to ERRORS.LOG for
appending (adding to the end of file). The "main" function will
be supplied with an "argc· value o~ 2, with strings "c" and
"data" in the "argv· array. --

1.1.5 Function Extract UtilLty

Because the compHer generates a single, indivis inle object
module fo~ all of the functions defined ina source flle, the
function extract utility program FXU.EXE i.s ''provided so that
groups of small. functions may be kept in a :lingle source file and
object modules produced forth~m individuallj. The utility
operates by extracting the source text for a specified function
alld creating a sin;le· source module which can then be compiled to
produce an object module. The format of the command to invoke
the utility is as follows:

FXU filename function <CR>

where -filename R is the name of the ft1e containing several
functions and "function" is the name of~he particular function
to be extracted. The first file name llIust be specified WITH an
extenSion, if one is defined1 the second name (that of the
function) should be specified without any extension. If the

named function is found, a file of the same name with a .C
extenSion is createdr otherwise, an error message is generated •
. The following limitations of the utility should be noted:

1. The function name must be specified exactly as it appears
in its definition: if alphabetic characters are lower case in the
source file, they should be lower case in the command. The name
of the file created, however, will have all lower case letters
converted to upper case.

2. The user must be careful hot to specify a function with
the same name as the original source file, that is, if ·xyz· is
being extracted from XYZ.C the original contents of the file will
be lost.

3. The text extract~d consists of all the characters between
the closing brace of the previous function, up to a~d including
the closing brace of the extracted function. Obviously, there
are problems with functions that refer to external data locations
defined in the source module: in general, FXU should be used only
for groups of functions which do not refer to any external data
l.ocations defined in the same module.

4. The program counts braces definp.d in the body of the
function in order to determine when it has reached the end of
that function. Although it recognizes comments and will not make
the mistake of counting any braces which might be enclosed in
them, it ~ssumes that comments can be nested, which is the same
assumption normally made by the compiler. 't'hecompiler , however,
can be requested 'by command line option to process comments as if
they did not nest; FXU has no such option.

EXAMPLE

fxu sfuncs.c movstr

Extract the function called ·movstr" from the text file
"SFUNCS.C·, and create a new f ile ·MOVST~.C· to contain the text
of that function.

1.2 Machine Dependencies

The C language definition does not completely specify all
aspects of the language: a number of important features art!
described as "machine-dependent." This flexibility in some of
the finer details permits the language to be implemented on a
variety of machine arChitectures without forcing code generation
sequences that are elegant on one machine and awkward on another.
This section describes the machine-dependent features of the
language as implemented on the 8086. See Section 2 of the manual
for a description of the machine-independent features of the
Lattice implementation of the language.

1-13

Lattice 8086/8088 C Compiler Tbe MS-DOS I.plementation

1.2.1 Data Elements

The standard C data types are implemented according to the
following descriptions~ All data elements are normally aligned
on a word boundary, with the exception of "char" variables; as
noted in Section 1.1.2, this alignment can be disabled by a
compile time option. In all cases, regardless of the length of
the data element, the low order (least significant) byte is
stored first, followed by successively higher order bytes. This
scheme is consistent with the general byte ordering used on the
SOS6,and with the memory formats expected by the S087 numeric
data processor. The following table summarizes the
characteristics of the data types:

Type

char
int
short
unsigned
long
float
double

Lenqth in

8
16
16
16
32
32
64

Bits Range

o to 255 (ASCII character set)
-32768 to 32767
-32768 to 32767
o to 65535
-2 x 10**9 to 2 x 10**9
+/~ 10**-37 to +/- 10**38
+/- 10**-307 to +/- 10**308

"char" defines 4n 8-bit unsigned integer. Text charaeters are
generated with bit 7 reset, according to the standard ASCII
format.

Hint" defines a 16-bit siqned integer: "short" and "short int"
are synonyms.

"unsiqned" or "unsigned int" defines a 16-bit unsigned integer.
Note that in this implementation, "un$igned" is not a modifier
but a separate data type.

"long" or "long int" defines a 32-bit signed integer.

"fl04t" defines a 32-bit signed floating point number, with an 8-
bit biased binary exponent, and a 24-bit fractional part which is
stored in normalized form without the high-order bit being
explicitly represented. The exponent bias is 127. This
representation is eq~ivalent to approximately 6 or 7 decimal
digits of precision.

"double" or "long float" defines a 64-bit signed floating point
number, with an II-bit biased binary exponent, and a 53-bit
fractional part which is stored in normalized form wit~out the
high-order bit being explicitly represented. The exponent bias
is 1023. This representation is equivalent to approxi:nately 15
or 16 decimal digits of precision.

Pointers to the various data types consist of the 16-bit
offset of the low order (least slgnlf icant) byt.e of the. data
element. Since the combined size of the data elements in a C
program cannot exceed 64K bytes, the address of an item is fully

1-14

SpeCl!lea 1n 16 b1tS. POlnters to tunct10ns conS1S~ O~ ~ne LO­

bit offset of the first byte of the code defining the function.
Again, since the combined size of all the functions in a C
program cannot exceed 64K bytes, the address of the function is
fully specified in 16 bits.

1.2.2 External Names

External identifiers in the MS-DOS implementation differ
from ordinary identifiers in one important respect: the MS-DOS
linker treats upper and lowez case letters as if they were the
same. This means that, although the compiler will consider
"main" and "MAIN" to be two different functions, the linker will
not. External names may be up to 8 characters in length, and the
underscore is a valid character. Since the compiler always
assumes that external names have the same characteristics as
ordinary identifiers, programmers must be careful not to define
external names which the compiler believes are different but
which the linker will interpret as the same name. l\. safe rule is
to use lower case letters only for all externally visible items,
including"functions and data items which are to be defined for
reference from functions in other source files.

A user may define external objects with any name that does
not conflict with the following classes of identifiers:

••••••• Certain library functions and data elements (defined in
modules written in C) are defined with an initial
underscore.

ex···· Run-time support functions (written in assembly
language) which implement C language features such as
long integer multiply and divide, floating point
arithmetic, and the like are defined with "CX" as the
first two characters.

xc··.· Low-level operating system interface functions (written
in assembly language) are defined with "XC" as the
first two characters.

The likelihood of collision with library definitions is
remote, but users should be aware of these conventions and avoid
applying these types of identifiers to external, us~r-defined
functions and data.

1. 2. 3 Include File ProceSSing

Include files may be specified as

• include "filename.ext"
or

linclude <filename.ext>

The two forms have exactly the same effect. The name between the

1-15

Lattice 8086/8088 C Ca.piler The MS-DOS 18pleaentation

delimiters is taken at face value~ the extension must be
specified if one is defined for the file. The usual convention
is to use .H for all header files, as do the header files
included with the compiler package. Alphabetic characters in a
file name may be specified in either upper or lower case •. The
file must be present on the currently logged-in disk unless a
drive specifier is included in the file name (not recommended).
The file name is retained internally by the compiler for error
reporting (see Section 1.3.3).

1.2.4 Arithmetic Operations and Conversions

Arithmetic operations for the integral types (floating type
operations are disc~ssed in the next section) are generally
performed by in-line cod~. Integer overflows ~re ignored in all
cases, although 16-bit signed comparisons correctly include
overflow in determining the relative size of operands. Division
by zero generates an interrupt which is processed by MS-DOS; on
the operating system used to develop the compiler, the message
"Integer overflOW" is generated and execution of the offending
program aborted. Division of negative integers causes truncation
toward zero, just as it does for pOSitive integers, and the
remainder has the same sign as the dividend. Right shifts are
arithmetic, that is, the sign bit is copied into vacated bit
pOSitions, unless the operand being shifted is ·unsigned"; in
that case, a logical (zero-fill) right shift is performed.

Function calls to library routines are generated only for
long integer multiplication, division, and comparison. product
overflo is ignored. Division by zero yields a result of zero.
The sign of the remainder is the same as the sign of the
dividend. Comparison is signed but does not take account of
overflow.

Conversions are generated according to the "usual arithmetic
conversions· described in Kernigha~ and Ritchie, and are
generally well-behaved. The following should be noted.

1. "char" objects are unsigned in this· implementation. Sign
extension is .NOT performed during expansion to Mint"; instead,
the high byte is simply set to zero. Code sequences such as

char i;

for (i:&8: i >- O~ i--)

.,i tlnot work (in this cas'!, the loop never terminates).

2. Conversion of "int" ot' "short" to "long" causes sign
extension. The inverse operation is a truncation: the result is
undefined if its absolute value is too lat'ge to be represented.

3. Conversions from integral to floating types are fairly
straightforward. The inverse conversions cause any fractional
part to be dropped.

1-16

4. Conversion from "float" to "double" is well-defined, but
the inverse operation may cause an underflow or overflow
condition since "double" has a much larger exponent range.
Considerable precision is also lost, though the fraction is
rounded to its nearest "float" equivalent.

1.2.5 Floating Point Operations

In accordance with the language definition, all floating
point arithmetic operations are performed using double precision
operands, and all function arguments of type "float" are
converted to "double" before the function is called. The formats
used are identical to the "short real" and "long real" formats
expected by the BOB7 numeric data processor (the formats are
described in Section 1.2.1). Legal floating point operations
include simple assignment, conversion to other arithmetic types,
unary minus (change sign), addition, subtraction, multiplication,
division, and comparison for equality or relative size. Note
that, in contrast to the signed integer representations, negative
floating point values are not represented in two~s complement
notation; positive and negative numbers differ only in the sign
bit. This means that two kinds of zero are possible: positive
and negative. All floating point operations treat either value
as true zero and generally produce positive zero, whenever
possible. Beware, however, of code which checks "float" or
"double" objects for zero by type punning (that is, examining the
objects as if they were" intO or some other integral type); such
code may consider (falsely) negative zero to be not zero.

As noted in Section 1.1.2, a compile time option selects
whether code is generated to perform floating point operations
using the BO!7 co-processor. The default option generates calls
to library functions for arithmetic and comp~rison operations.
Not~ that the two classes of code generation cannot be combined
in the same progra~; in other words, all functions in the same
program which use floating point variables must be compiled with
one option or the other. Combining functions compiled with
di fferent floating point options will have disastrous results.

Otherwise, the calculations performed by either option
should be very nearly equivalent. The library functions used if
the B087 is not present perform arithmetic calculations using 64
fraction bits and a 16 bit exponent, just as the BOB7 does.
Intermediate results, however, must be converted back to the
"double" representation, while on the BOB7 they can be left in
the more precise "temporary real" format. This may cause some
loss of precision in certain cases. For example, in the sequence

double a,b,c;

a .. a * b I c;

the intermediate "a * bR result r~mains in the expanded temporary
format on the 80B7 register stack but requires conversion back to

1-17

Lattice 8086/8088 C Compiler Tbe MS-DOS Iapleaentation

RdoubleR in the default case. Please note that· the library
functions which perform the arithmetic operations without using
the 8087 were coded for accuracy, not speed, using
straightforward, unsophisticated algorithms. If the speed of
floating point arithmetic is a major consideration, the user
should obtain a system with the 8087 co-processor and use the -f
option for compiling floating point modules. (Note: this option
is not implemented on some earlier versions of the compiler.)

Floating point exceptions are processed by a library
function called CXFERR that is called according to the following
convention:

CXFERR(errno) ;
int errno;

where Rerrno R can be

o = invalid operation (8087 only)
1 = underflow
2 = overflow
3 = divide by zero

Note that Rinvalid operation- is detected only for 8087
operations, and signals that an operand was a NAN or a result
indeterminate.

The standard version of CXFERR supplied in LC.LIB Simply
ignores all error conditions. The user may write a diff.rent
\1~rsion (i;'\ either C or assembly language), if desired, to print
out an error message and terminate processing, or take any other
action. If CXFERR returns to the library function which called
it, each exception is processed as follows:

Underflow

Overflow

zerodlvide

Non-8087: set the result equal to :tero. 8087:
denormalize the r'!sult.

Set the result to plus or minus infinity.

Non-8087: set the resultequal.to zero.·S087: set
the result to plus or minus infinity.

Consult the 8087 description for more information about the
floating point formats and the other special features of the
8087.

1.2.6 Bit Fields

Bit fields are fetched on a. word bas is, that is, the entire
word containing the desired bit field is loaded (or stored) even
if the field is 8 bits or less in size. Bit fields are assigned
from left to right within a machine woro; the maximum field size
is lS bits. ~it fieldS are considered unsigned in this
implementation; sign extension is NOT pE:rformedwhen the value of
a field is expanded in an arithmetic expression.· If a structure

1-18

is declared

struct {
unsigned x 5
unsigned y 4
unsigned z 3
} a;

then "a" occupies a single l6-bit word, "a.x" resides in bits 15
through 11, "a.y" in bi ts 10 through 7, and "a.z" in bits 6
through 4. Because of the way bytes are ordered on the 8086,
this results in "a.y" being spli t between the low and high bytes.

1.2.7 Register Variables

The current version of the compiler does not implement
r~gister v~riables, although declarations using "register" are
accepted if properly made. Storage is reserved for these objects
as if they had been declared "auto". Future versions of the
compiler may elect to support register variables.

1.3 Compiler Processing

The Lattice C compiler under MS-DOS is implemented as two
separate executable programs, each performing part of the
compilation task. This section discusses the structure of the
compiler in general terms, and describes the processing performed
by both phases. Special sections are devoted to a discussion of
the topics of error processing and code generation.

1. 3.1 Phase 1

The first phase of the compiler performs all pre-processor
functions concurrently with lexical and syntactical analysis of
the input file. It generates the symbol tables, which contain
information about the various identifiers in the program, and
produces an intermediate file of logical records called
quadroJples, which represent the elementary actions specified by
the program. The intermediate file (also called the quad file)
is re'/iewed as it is written, and 10c3.1ly common subexpressions
are detected and replaced by equivalent results. When the entire
source program has been processed (assuming there are no fatal
errors), selected symbol table information is written to the quad
file, for u,;e by the second phase. The first phase is thus very
active as far as diSk I/O is concerned. Generally, if the disk
activity stops for more than a few seconds, it~s a pretty safe
bet that the compiler has crashed. Consult Appendix B for the
compiler bug reporting procedure if this happens.

When the first phase begins execution, it writes a signon
message to the standard output, unless (1) the specified source
file could not be found or (2}a quad file with a .0 extension
could not be created (due to lack of directory space). This
message identifies the version of the compiler which is being
executed. No other messages are generated unless the source file

1-19

Lattice 8086/8088 C Co8piler Tbe MS-DOS lapleaentation

contains errors; see Section 1.3.3 for informat.ion about error
orocessing. Note that the quad file is deleted if any fatal
errors are detected.

1.3.2 Phase 2

The second phase of the compiler scans the quad file
?roduced by the first phase, and produces an object file in the
Intel 8086 format. This object code supports all of the
necessary relocation and external linkage conventions needed for
.: programs (see Section 1.4 for details). ~ logical segment of
code specifying the 8086 machine language instructions which make
JP the executable portion of the program is generated first,
followed by a segment of data-defining code for all static items.
~nlike the first phase, the code generator is not always actively
?erforming disk I/O. Each function is constructed in memory
before its object code is generated, so there may be fair ly
3izable pauses during which no apparent activity is taking place.
In general, these delays should not persist more than several
:3econds. Anything longer than a thirty second delay can safely
be assumed to be a crash; see Appendix B for information about
rep~rting compiler problems.

When the second phase begins execution, it writes a signan
~essage to the standard output, unless (1) the specified quad
!il~ could not be found or (2) an object fil~ with a .OBJ
-:xtension could not be created (due to lack of directory space).
Nhcn code generation is complete, the second phase writes a
~~ssage of the form

Module size P=pppp O-dddd

to the standard output (usually the user"s console). .pppp.
indicates the size in bytes of the program or executable portion
~f the module generated, and ·dddd~ indicates the size in bytes
of the data portion; both values are given in hexadecimal. These
sizes include the requirements for all of the functions included
in the original source file. Note that the sizes define the
amount of memory required for the module once it is loaded (as
?art of a program) into memory; the .OBJ file requires,more space
because it contains additional relocation information.

As noted in the introduction to Section 1. t, the code
generator produces a single .OBJmodule for a given source
~odule, regarJless of how many functions were defined in that
module. These functions (if more than one is defined) cannot be
separated at link time; if anyone of the functions is needed,
311 of them will be included. Functions must be separated into
individual source files and compiled .to produce separate object
modules if it is necessary to avoid thin colle:tive inclusion. A
special utility program (FXU.EXE) is provided so that multiple
functions may be stored in a single .C file and extracted
individual~y ~r compilation; see Section 1.t.S.

1-20

1.3.3 Error processin9

All error conditions (with the exception of internal
compiler errors) are detected by the first phase. As soon as the
first fatal error is encountered, the compiler stops generating
quads and deletes the quad file. This prevents the second phase
from attempting to generate code from an erroneou. quad file, in
the event that it is executed next (as in the procedure LC.BAT).
When the compiler detects an error in an input file, it generates
an error message of the form

filename line Error nn: descr iptive text

where "filename" is the name of the current input file (which may
not be the original source file if linclude files are used)J
"line" is the line number, in decimal, of the current line in
that file: "nn" is an error number useful for obtainin9 an
expanded explanation of the error from Appendix A: and "error
message text" is a brief description of the error condition. All
ecror messages are written to the standard output, which is
normally the user~s console but can be directed to a file if
de.;;ired(see Section 1.1.1). A message si,'IIilar to the one above
but with the text "Warning" instead of "Error" is generated for
nor.-fatal warnings; in this case, generation of the quad file
continues normally. tn some cases, an error message will be
followed by the additional message

Execution terminated

which indicates that the compil"!r was too confused by the error
to be able to continue processing. The compiler uses a very
simple-minded error recovery technique which may cause a single
error to induce a succession of subsequent error5 in a sort of
"cascade" effect. tTl general, the progra:nmer should attempt to
correct the dbvious errors first and not be too concerned about
error messages for apparently valid source lines (although all
lines for which errors are reported should be checked) •

Error messages which begin with the text "CXERR" are
internal compiler errors which in¢icate a prohlem in the compiler
itself. Refer to Appendix S for the compiler error reporting
procedure. The com~iler generates a few nther error messages
that are not numbered; they are usually self-explanatory. The
mo.st common of these is the "Not enough memory" message, which
means that the compiler tan out of working memory.

1.3.4 Code Generation

The code generation phase reads the quad file and builds an
image of the instructions for each function in working memory,
before writing the instructions to the object fil~. This implies
that at least as much working memory must be ~resent as is
required by the largest function in the source file: actually,
considerably more memory ~as much as several times that size) is
required because of the additional overhead used by the compiler.

\-21

Lattice 8086/8088 C Coapiler The MS-DOS I~le.entation

Since the compiler is subject to the same 64K byte data space
limitation as are all C programs generated by the Lattice
compiler, there is a definite limit to the size of a function
which can be compiled even when the maximum amount of memory is
available. Nonetheless, all of the compiler~s own source modules
-- some of which contain very large functions -- can be compiled
without difficulty. In any case, C is a language which
encourages modularity; most programs consist of numerous
functions, most of them smatt. It is therefore doubtful that the
function size limitation will prove to be a problem.

One of the sources of the extra overhead in buffering the
function in memory derives from the fact that branch instructions
are not explicitly represented in the function image. Instead,
they are represented by special structures denoting the type and
target of each branch. When the function has been completely
deflned, the branch instructions are analyzed and several
impo~tant optimizations are performed.

1 . .&.ny branch instruction which passes control directly to
another branch instruction is re-routed to branch directly
to the target location.

2. The combination of a conditional branch instr~ction which
branches over a single unconditional branch is replaced by a
$il1g1e conditional branch instruction of the opposite sense.

3. Sections of code into which control does not flow are
detected and discarded.

4. Each branch instruction is coded in the smallest possible
machine language sequence required to reach the target
location.

Most of these optimizations are applied iteratively until no
improvement is Obtained.

The code generator also makes a special effort to generate
efficient code for the ·switch" statement. Three different code
sequences may be produced, depending on the number and range of
the case values.

1-22

1. If the number of cases is three or fewer, control is
rOuted to the "case" entr ies by a Ser ies of test and branch
instructions.

2. tf the case values are all positive and the differen~e
between the maximum and minimum case values is less than
twice the number of cases, the compiler generates a branch
table which is directly indexed by the "switch· value. The
value is adjusted, if necessary, by the minimum case value
and compared against the size of th'!! table before indexing.
This construction requir~s minimal execution time and a
table no longer than that required for the sequence
.lescr ibed next.

3. Otherwise, the compiler generates a table of [case value,
branch address] pairs, which is linearly searched for the
"switch" value.

All of the above sequences are generated in-line without function
calls because the number of instruction bytes is small enough
that little benefit would be gained by implementing them as
library functions.

Aside from these special control flow analyses, the compiler
does not perform any global data flow analysis or any loop
optimizations. Thus, values in registers are not preserved
across regions into which control may be directed. The compiler
does, however, retain information about register contents after
conditional branches which cause control to leave a region of
code. Throughout each section of code into which control cannot
branch (although it may exit via conditional branches), values
which are loaded into registers are retained as long as possible
so as to avoid redundant load and store operations. The
allocation of registers is guided by "next-use" information,
obtained by analysis of the local blocK of code, which indicates
which operands will be used again in subsequent operations. This
information .3.lso a5!;ists the compiler, in analyzing binary
operations, in its decision w~ether to load both operands into
registers or to load one operand and use a memory reference to
the other. Generally, the result of such an operation will be
computed in a register, but sequences like

i += j;

will load the value of "j" into a register and compute the result
directly into the memory location for Hi" (but only if "in is not
used later in the same local block of code) •

The ha"rdware registers lI.X, ax,
general purpose accumulators, whil~ 51
used for access to indirect operands.
current stack frame; see Section 1.4.3

ex, and OX are used as
and 01 (along with aX) are
B? is used to address the
for more information.

In order to generate the most efficient code for the largest
number of source language constructions, the compiler usually
makes a favorable .~ssumption about pointer variables.
Specifically, it assumes that the actual objects accesse<.l using
pointer variables are not the same as other objects which pan be
accessed directly. This allows the compil~r to avoid discarding
register content!; (thus forcing them to be reloaded, perhaps
unnecessarily, at a later time) whenever a result is assigned
using a pointer. Consider the following example:

int i, j, It, *pi;

i • j+2;
*pi '" j;
k • 1*4;

1-23

Lattice 8086/8088 C eo.piler The MS-DOS l~le.entation

In the general case, it is quite possible that "pi" might
actually point to "i", which would change the value assigned to
"k" in the next statement. In the vast majority of C programs,
however, "i" w ill be a local var iable to which .it is not possible
for "pi" to point. The compiler normally makes this assumption,
that is, that "*pi" cannot be equivalent to "i", and therefore
can retain the value computed in the first statement for "i" in a
register, which saves having to reload it to perform the multiply
operation in the third statement.

On the other hand, there are rare cases where this
assumption is not valid. C programmers almost never code
sequences such as

pi • fa i;
*pi • 12;

but more subtle cases of pOinter overlap can occur, particularly
when both the pointer and its target are externally defined. For
these case.s, the "-a" compile time option is provided; this
forces the compiler to assume worst-cas. aliasing (which is the
compil~r jargon for this pointer overlap we have been discussing)
when generating code. We have designed the comri1er to operate
this way because we believe that the cases of overlap are more
the exception than the rule. Thus, rather than default to worst­
case assumptions that produce correct code in all cases and
unnecessary ineff iciencies in most cases, the compiler normally
makes a favorable assumption that produces efficient code which
works correctly in all but a few cases. The "-a" option is then
provided for use on programs which violate that assumption.

One final note on this subject: even when the "-a" option
is used, the compiler assumes that only objects of the pointed-to
type can be changed in pointer assignments. Thus, if an "int"
pointer is used in an indirect aSSignment, only registers
containing "int" values will be discarded.

1.4 Run-time Program Structure

This section describes the structure of C programs under the
8086/8088 MS-DOS implementation of the Lattice C compiler. Some
knowledge of the architecture of the 8086 processor and of the
8086 object code and linkage concepts is required in order to
understand much of the information presented. Readers who are
not interested in the precise technical details of the hardware ,
implementation may safely skim through or Skip over this section;
it is primarily intended for programmers who must provide an
interface between C and assembly language.

Without mention of the specific object code details used to
create it (whicn will be divulged in subsequent sections), the
general structure of a C program is illustrated by the following
diagram.

1-24

r· ,
\ ,

1.4.1 Object Code Conventions

The object file created by the second phase is in the
standard MS-DOS object code format, which is compatible with the
Intel 8086 object module format. The object file defines the
instructions and data necessary to implement the module specified
by the C source file, and also contains relocation and linkage
information necessary to guarantee that the components will be
addressed properly when the module is executed or referenced as
~art of a linked program. In order to force the parts of the
;odule into the proper locations after linking, the object file
defines two logical segments which are marked for concatenation
with other segments of the same name.

PROG is the segment which includes the instructions which
perform the actions specified by any functions defined in the
source file.

DATA is the segment which includes all static data items
which are defined in the source file. This includes not only
~hose data items explicitly declared "static" but also items
declared outside the body of a function without an explicit
storage class specifier, str lng constants, and double precision
co~stants. (Auto data items are simply allocated on the stack at
run time and are not explicitly defined in the object file.)

'Both segments are defined to be combinable with other
segments of the same name. PROG segments combine with byte­
alignment, that is, as closely as possible: DATA segments combine
with word-alignment. Thus, no space is wasted when functions are
combined during linking, and the word alignment of elements
within a particular DATA segment is preserved after combination.
This ~lignment of data items is important for efficient data
:etches on the 8086, where word fetches from an odd byte address
require an additional four clock periods. Note that although a
.::ompile-time option (described in Section 1.1.1) allows the
~lignment requirement for data items within a particular module
to be relaxed, the word alignment of DATA segments duriryg linking
is not aff'!cted.

The net effect of these segment definitions is to force, at
link time, all functions to be c.)llected together and all stati.c
dat3 items to be similarly combined. This achieves the most
important part of the program structure diagrammed above. The
segment directives needed to combine assembly language modull!s
with C modules are shown in Section 1.4.4.

1.4.2 Linkage Conventions

In ~rder to guarantee that both the program and data
portions of th"! final linked program do not exceed 64K bytes, two
groups are defined in the object code.

PGROUP • BASE segment + PROG segment

1-26

.::)

C)

Lattice 8086/8088 C Cacpi1er Tbe MS-DOS l~leaentat

DGROUP • DATA segment + STACK segment

The PROG and DATA segments are obtained from the C modules in I

program, as discussed in the previous section. The other t
segments are defined in the module C.OB.1, which must be the fil
module encountered during linking. The BASE segment serves I
purposes: (1) it forces PGROOP lower' in memory because it is
first segment within C.OBJ, and (2) it cOntains text who
identifies the current compiler revision number. The latl
feature allows programs to be examined with the debugger
determine the revision of the library used when the program ,
linked. The STACK segment has a dual role as well: (1)
defines the base of the stack and dynamic memory portion of !

data section of the program, and (2) it satisfies the linke
need for a segment of type STACK (if one is not encountered,
linker generates a warning message)". With these grc
definitions, the address of a function is its offset from'
base of PGROUP, and the address of a data element is its offl
from the base of DGROUP.

The module C.OB.1 also defines its own PROG and DJ
segments. The PROG segment defines the initial execution addr
of the linked program. The segment registers are initializ
and the amount of memory remaining above the STACK segment
determined. The stack pointer is adjusted to its maxi~um val
as noted in the discussion at Section 1.4. In the DATA segm~
of C.OBJ, the address of the stack base and top are saved for
by the memory allocation functions. At the top of the stack,
address of the program segment prefix is saved so that an or de
return to KS-DOS can be made when the program terminates. '
characters from the command line which executed the program .
transferred from the program segment prefix to the stack.
pointer to this copy of the command line is then passed to I
function a main-, which begins execution of the progra~ (I
Section l.S.4).

As noted in Section 1.2.2, external names differ fl
ordinary identifiers in C in that upper and lower case lettl
are equivalent. The relocation information in the object cc
defines all external names relative to either PGROUP {functio

'or DGROOP (data). 11.11 external names are defined .as
unspecified typ~, that i~, there is no set oE attribul
associated with the name; it is simply an offset within one
the other of the two defined group~. It is therefore an error
define two items with the same external name in the same progr
lt is the programmer~s responsibility to prevent this occurre
and a1$0 to make sure that programs refer to external names i
consistent way (i.e., a function should not refer to -xyz·
-long- when it is actually defined as -int a in SOlne ot)
module). External definition and reference from asseml
language modules are discussed in Section 1.4.4.

Consult the appropriate linker documentation for informat
as to how to obtain a publ ic symbol map for a linked program.
a convenience, the DGROUP segments are defined with class n.

DATA and the PGROUP segments with class name PROG.

1.4.3 Function Call Conventions

When a C function makes a call to another function, it first _)
pushes the values of any arguments onto the stack and then makes -
a call to that function. A near call (which changes IP but not
CS) is used because all functions are defined within 64K bytes.
The argument values are pushed in reverse (right-to-left) order
because the stack grows downward on the 8086; this allows the
called function to address the arguments in the natural left-to­
right (low-address-to-high-address) order. The first actions
taken by the called function are:

1. The SP register is pushed onto the stack; this saves
the value of SP used by the caller.

2. The stack pointer SP is reduced (i.e., a value is
subtracted from it) by the number of bytes of stack space
required by the call~d function. This value is rounded to
the nearest word so that the stack pointer is always word­
aligned. The stack space includes all "auto" data elements
de~lared in the function, and also may include additional
space for the temporary storage locations which are often
required d;Jring expression evaluation. If no "auto" items
or temporaries are needed, this step is skipped; SP is
unchanged.

3. The stack pointer SP is moved into ~P to allow
adjressing of the elements on the stack: function
argument~, "auto" s~orage, and temporaries.

The offsets of the var ious components are indicated by the
following diagram. Note that of the registers used by the
calling program, only SP is saved.

High <- Caller"s BP
arguments

return address

caller's saved SF
1-------------------
1

auto data items

temporaries
Low 1------------------- <- BP, SP

During execution of a C function, SP and SF normally contain
the same value. The temporaries are allocated closest to BP,
followed by the "auto" elements declared, il'l the order of their
declaration. This addressing scheme has the disadvantage that

1-28

i I I
'-j !

I
I
I
I • !
I
j
t
I
I
I

I ,
!
!

:~ I
I

I
I

Lattice 8086/8088 C Coapiler The MS-DOS Xapleaent.l

the arguments suppIied to the function are at an off
-determined in part by the amount of "auto· storage declared.
the function declares more than about 124 bytes of "a\
storage, the arguments require an additional offset byte in
instructions which refer to them.

The compensating advantage to this mechanism appears whe
function calls another function and supplies it with argun
values. Because a C function may in special cases hav
var iable number of arguments ("pr intf· is the classic examp
the called function cannot de-allocate the stack space usee
pushing the argument values; the calling function must do so.
retaining the normal SP value in BP, Lattice C functions
restore the staCK pointer after a function call with the two-t
instruction

MOV SP,SP

If BP is not set up in this way, a value must be explicitly ae
to SP~ which requires a three- or four-byte instruction.

A second advantage to this technique is that it is eas~
implement assembly language functions (to be called from C) \
a variable number of arguments. Since the call.:!r's BP cont~
the value in SP before argument values were pushed (as
diagram shows), it defines the upper limit for the address of
arguments. In other words, only the space between the so
r~turn address and the address in the caller's BP register
contain arguments.

When a function returns to its caller, it first loads
function return value, if any, into predefined registers.
si~e of the value returned determines the register(s) used:

16 bits
3:2 bits
64 bits

AX register
(AX,BX) register pair
(AX,BX,CX,DX) register quadruplet

In the multiple register returni, AX contains the high order I
of the value. Double precision functions compiled with th.
option return the function value as the top of the 8087 regil
stack.

After the return value is loaded, the function adds tc
the same value that was subtracted on entry. Then SP is pop I
restoring the caller's base pointer, and a near return
executed. The calling function now regains control, and n
restore SP if any argument val~es were pushed~

1.4.4 Assembly Language Interface

Programmers may write assembly language modules
inclusion in C programs, provided that these modules adhere
the object code, linkage, and function call conventions descrl
in the precedin9 sections. An assembly lan9uage module wt

Lattice 8086/8088 C eo.piler The MS-DOS lapleaentation

defines one or more functions to be called from C must begin with
the statements

PGROUP GROUP PROG
PROG SEGMENT BYTE PUBLIC #pROG#

ASSUME CS:PGROUP

foilowed by PUBLIC declarations of the function(s):

PUBLIC AFONC

ArONC PROC NEAR

The function itself must be declared NEAR, as shown above, and
must conform to the conventions detai led in the preceding
section. If a value is to be returned by the function, it must
be pLaced in the appropriate register(s).

A module may similarly define data locations to be accessed
iusin; "extern" declarations) in C programs by defining a DATA
segment, as in the following example:

DGROCIP
DATA

GROUP
SEGMENT
ASSUME
PUBLIC
OW
OW
DB
ENDS

DAT~
WORD PUBLIC #DATA#
DS:DGROUP
OX1,DX2,DX3
4000B
8000H
#Text string"

Note that if the"address of an item is to be defined, the name
mus t be pr '!f ixed with the group name if it is used as the operand
of the OFFSET operator or of the DW or DO statements. If DX4 is
used to deE ine the address of D.Xl in the example abov"!, it must
be coded

OX4 OW DGROUP:DX1

Otherwise, a segment-relative offsat is generated, which will not
be the actual address of the item as it is defined within the
context of a C program. (Note: the prefix is not required for
the LEA instruction, which refer$ to the current ASSUME
directive.) .

To call a C function from assembly language, an EXTRN
declaration for the function must be included after the SEGMENT
directive, and the calLer must supply any expected arguments in
the proper order (see Section 1.4.3).

1-30

EXTRN CFUNC:NEAR

CALL CFUNC

Similarly, to refer to data elements defined in a C module,
include appropriate EXTRN statements:

EXTRN XD1:WORD,XD2:BYTE

MOV AX,XOl

Note that any EXTRN statements for data elements must be defined
within a DATA segment declaration like the one shown previously.
The BYTE attribute must be used for external ·char" items. If an
element is larger than a word, a STRUC can be used to define it,
or its offset can be loaded into an index and used to fetch its
component parts. The same caution about addresses requiring a
group prefix applied to external reference:

OW OGROU?:XOl

must be used to define the address of XDl.

Remember that upper and lower case letters for external
names (and for all symbols within assembly language modul~s) are
equivalent, so an assembly language function "XYZ· can be called
from C as either ·XYZ· or ·xyz·.

The fo110win; example (a portion of one of the operating
system interface routines used in the MS-DOS implementation)
ilhlstrates many of the requirements discussed above, and shows
how a STRUC may be used to address elements on the stack.

SDOS OPEN EOU OFH
BDOS:CREATE EOU 16H

PGROUP GROUP PROG
;

:Open existing file
:Create new file

: Dynamic storage layout for XCMAKE, XCFIND

DYNS STRUC
DB ?

INTNO DB ? :Save 1300S interrupt number here
OLD BP OW ? :Caller's BP save
RETN OW ? :Return address frolll call
ARGl ow ? :First argument
ARG2 OW ? :Second argument
ARG3 ow ? :Third argument
OYNS ENDS

DYNSIZE EQU 2 ;Size of stoc4ge to be allocated

1-31

Lattice 8086/8088 C eo.piler Tbe MS-DOS laple~ntatlon

name

synopsis

;
;description

returns

,

XCMAKE -- create new file

iret = XCMAKE(filename, pmode, area);
int iret: return code: 0 if successful
char * filename; file to be created
int pmode: access privilege mode bits
int *area: for return of file pointer data

This function is called by ·creat· to create
a new file. The access privilege mode bits are
ignored in this implementation. The ·area­
pointer gets a pOinter to a device or file block
for the new file. It is then supplied to XCIOS
when th.e connect call is made.

iret • 0 if file successfully created
= -1 if error

?ROG SEGMENT BYTE PUBLIC ~PROG#
PUBLIC XCMAKE,XCFIND
EXTRN XCFINT:NEAR,XCFTRM:NEAR
ASSUME CS:PGROUP

XCMAKE PROe NEAR
PUSH BP
SUB SP,DYNSIZE
MOV BP,SP
MOV rBP} .INTNO,BDOS CREATE
MOV AX, [BP} .ARG3 -; MOVE AREA ARG TO ARG2
MOV [BP} .ARG2,AX
J'MP SHORT XCFO 1

name XCFIND -- find existing named file

.j synopsis

descr iption

returns
,
;(CFIND PRce

PUSH
SUB
MOV
MOV

XCF01: PUSH
CALL

1-32

iret • XCFIND(filename, area);
int iret; return code: Q if successful
char *filename: file to be found
int *area: for return of file pointer data

This function finds an existing file (or device)
and returns a point~r to the file block or device
!:llock f.;)r it. Exce?t for the privilege mode
bits, the arguments have the same meaning as for
XCMAKE.

same as XCMAKE

NEAR
BP
SP,DYNSIZE
BP,SP
[BP} .INTNO,BDOS OPEN
[BP] .ARGl -;PASS FILE NAME TO XCFIHT
XCFIHT :GET FILE/DEVICE BLOCK PTR

MOV
TEST
JNZ
NOT
JMP

XCF02: MOV
MOV
MOV
TEST
JNZ
MOV
MOV
INT
'rEST
JZ
PUSH
CAl.L
MOV
MOV
JMP

XCF04: MOV
XOR

XCFOS: ADD
POP
RET

XCFIND ENDP
XCMAKE EHDP

END

SP,BP
AX,AX
XCF02
AX
SHORT XCF05
BX,AX
01, [BP] .ARG2
AL, [BX]
AL,80H
XCF04
OX,BX
AH, [BP} .INTNO
218
AL,AL
XCF04
BX
XCFTRM
SP,BP
AX,-l
SHORT xcros
[01] ,BX
AX,AX
SP,OYNSIZE
BP

1.5 Library Implementation

;TEST RETURN VALUE FROMXCFINT
;BRANCH IF POINTER NOT NULL

~RETURN -1

; GET FIRST BYTE OF BLOCK

;BRANCH IF DEVICE
; FCB ·ADDRESS INTO OX

;OPEN/CREATE FILE

;BRANCH IF. SUCCESSFUL

;FREE THE FILE ACCESS BLOCK

;RETURN PTR TO BLOCK
;SET GOOD STATUS

;RETURN TO CALLER

Although the portable library functions described in Section
3 of this manual define a general purpose interface to the
typical environment provided for C programs, there are inevitably
many details and variations which are system-dependent. In this
section, some of the details of the KS-OOS liorary implementation
are presented in order to clarify the pec~liarities of this
p~rticular environment. Fbrtunately, KS-DOS supports a number of
powerful features which allow a full implementation of the
standard fil~ t/O ftinctions, although the representation of text
files presents a minor problem; Section 1.t.S discusses file I/O.
Several standard device names are also supported by MS-DOS, and
the Lattice C I/O interface processes these in special ways, as
explained in Section 1.5.2. The structure of Lattice C programs
(see Section 1.4) allows the f;]l t set of memory allocation
f;]nctions, although care must be taken to provide sufficient
space for the QtacK, as Section 1.5.3 warns. The basic program
entry and exit functions are described in Section 1.5.4, and some
special functibns unique to the KS-DOS implementation are
presented in Section 1.5.5. As additional functions will
probably be provided as the compiler evolves, the programmer
should check the addendum for the current ve~sion of the
compiler.

"\
/

Lattice 8086/8088 C eo.piler Tbe MS~D05 Iapleaentation

1. 5.1 File I/O

File names are specified according to the following format:

d:filename.ext

where Wd:" is an ~ptional drive specifie~, "filename" is the name
of the file, and ".extW is the file extension. If the drive
specifier is omitted, the currently logged-in disk is used. The
file name is specified without trailing blanks, if less than 8
characters, and the extension (including the ".") must be omitted
if one is not defined for the file. Alphabetic characters may be
supplied in either upper or lower case, actual file names use
upper case letters only. Only those characters which are legal
for file names under MS-DOS are acceptable; consult the MS-DOS
documentation for details. Certain names are recognized as
devices rather than files; see the next section.

When a file is opened using "open" or wcreat", a file access
block is allocated using "getmem", and library functions which
process read and write calls use this block to transfer data
between the file and the caller~s area. The file access block
contains information such as the current file pOSition and the
logi.cal end of file position; it also includes a 128-byte buffer
which is used for MS-DOS read and write functions on the file.
Because the relative block number is kept as a l6-bit unsigned
integer, the maximum size of a file which can be accessed using
the "read" and ·write" functions in this implementation is 65535
X 128, or about 8 megabytes. Note that the file I/O functions
maintain an exact end- of file, even though portions of the file
are accessp.d in l28-byte blocKs. When data is written to the
file, it is copied into the -block buffer and not actually written
to disk until the buffer is full, the file pOSition changed to
another block, or the file is closed. The memory used for the
file access block is released (via "rlsmem") when the file is
closed. -

Note that all of the standard I/O functions -ultimately call
"open", "creat", "read", and "~rite") so the above description
applies to "printf", "scanf", Wputchar", "getchar", and all the
other upper level functions (if used for file I/O). Programs
with open fill!!s cannot use the "rstrnem" or "rbrk" functions (see
Section 3.1) because the file I/O system allocates the file
access block from the same memory pool. This restriction does
not -apply to open files which are actually de'Jicas (see next
section), because a file access block is not allocated for device
I/O, Note that the level 2 functions are subject to a separate
out similar restr iction because "foren" allocates a buffer using
"getmem". -

In the MS-DOS implementation, both. the level 2 ("f6pen-,
"putc", "getc", "felose") and the level 1 ("open", "creat-,
"read", "write", "close") I/O functions are limited to 16 open
fi les, including devices, and including the three (stdin, stdout,
stdeer) which are automat.ically opened for the "main" program.

1-34

The portable library provides a system-dependent option when
a file is opened or created; the programmer may select one of two
modes of I/O operation while a flle is open. On some systems the
modes are in fact the same, but in the MS-DOS implementation they
differ in some important details.

Translated or text mode is the default. In this mode, the
line terminator normally used by C programs (a single newline
character, '\n' or OxOA) is translated to the MS-DOS line
terminator, which consists of the two characters carriage return
and linefeed (OxOD followed by OxOA). This translation is
performed when the file is written using calls to the "writeR
library function; the inverse translation is performed when the
file is read using the "read" library function. Programs which
use the higher level I/O functions ("putchar", "getchar",
"pr int f", etc.) are usually not affected, but programs which call
"read" and ·write" directly must beware of these translations.
On "read" calls, the count returned may be less than the actual
number of bytes by which the file position was advanced (because
of CR deletions). On "write" calls, the count returned may be
greater than the number of bytes specified in the count argument
(because of CR insertions). Note that on read operations
translation is performed only if the CR is immediately followed
by an LF character; isolated car r iage returns are not af fected.
Similarly, on write operations translation is performed only if
the LF is NOT preceded by a CR.

Untranslated or binary mode is an option which can be
selected when the file is opened or created. By adding Ox8000 to
the mode for the "open" call or to the access pr il/ilege mode word
for the "creat" call, the programmer indicates that read/write
operations on the file are to be performed without translation.
In this mode, bytes are transferred between the caller's area and
the fil~ without modification. This option must be used for
files containing binary data, since otherwise data bytes which
happen to take on CR and LF values will be translated
incorrectly. Since the high-level I/O routines call "open" or
"creatH themselves, these routines cannot be used on files in the
untranslated mode; they always operate in text mode.

In addition to the file I/O modes discussed above, two other
functions should be clarified under the heading of file I/O. The
"creat" function gets a system-dependent argument, the access
privilege mode bits; these are ignored under the MS-DOS
implementation, except for bit 15 (the OxBOOO bit) which if set
causes the file to be accessed in u~translated or binary mode.
The "lseek" function has an offset mode, not always implemented,
which specified an offset relative to the end of file. Because
MS-DOS retains an exact end of file in its directory, this mode
can be and is implemented in this version.

1-35.

Lattice 8086/8088 C Compiler The MS-DOS I.ple.entation

1.5.2 Device I/O

Several special "file- names are checked for by the Lattice
I/O interface under MS-DOS, and processed using single character
reads and writes. These device names may be specified in either
upper or lower case, with or without a trailing ":". The
following table lists the devices and the corresponding BOOS
functions used for read and write operations, in translated and
un tr ans la ted modes.

Device
Name

CON
AUX
COMl
PRN
LPTl
NUL

Translated Mode
Read FN Write FN

1
3
3

2
4
4
5
5

Untranslated Mode
Read FN Write FN

7
3
3

6
4
4
5
5

A "-" for the function number indicates that th~ corresponding
operation is not supported for that device. The "read" function
ceturns end of file (count = 0) if read is not supported. If
write is not supported, the "write" function returns a normal
count indicating success, but does not actually send the data.
An additional special device name, specified by a null string
("", which consists of just a "\0"), is recognized and processed
as if "CON" had been specified.

In translated mode, a· newline (OxOA) on output is converted
to a carriage return/linefeed sequence. A carriage return on
input i~ converted to a newline, and terminates the read
operation even i.f the byte count is not satisfied. In
untranslated mode, characters are sent without modification, and
read operations do not terminate until the requested number of
characters has been received. Note that a read operation to the
console in untranslated mode does not echo the characters
received.

programmers may also perform direct single character I/O
operations uSlng the "bdos" function, and several additional
functions support dir~ct I/O to the console. !;ee Section 1.'i.5
for details.

If one of these devices is opened for access usin9 "fopen';',
output is normally buffered, which means that no data is actually
sent to the device until 'i12 bytes have accumulated or the file
is closed. The buffer can be flushed using "fflush" or the file
can be changed to the line-buffered mode using "setnbf", aee
Section 3.2.2 for more information.

1-36

1.S.3 Memory Allocation

The full set of memory allocation functions described in
Section 3.1 is provided under MS-OOS. The following cautions
should be noted:

1. The reset functions "rstmem"'and "rbrk" cannot be used if
any of the standard I/O functions are also being used on
currently open files. Note that only disk files allocate a
file access block using "getmem", the reset functions may be
used if the only open files are actually connected to
devices. (They also cannot be used if either files or
devices are open through the level 2 I/O functions, see
Section 3.2.) A file may be closed, then re-opened after
the reset function is call~d, however, any file descriptors
or file pointers must be updated if this is done, because
there is no guarantee that the same value will be returned
when the file is opened again.

2. The dynamic memory used by the memory allocation
fun:tions is the same memory used for the run-time stack.
Progcams must be careful to provide enough space for the
stac~ to prevent its coLlision with the dynamic memory pool,
either by getting an override value from the command line
(see Section 1.1.4) or by defining an external "int"
location called" stack" and initializing it with a desired
value. For exampre, the statement

int _st~ck a 10000,

w ill provide for 10000 bytes of stack space. (Note: in
order to qualify as an external def inition, this statement
must appear OUTSIDE the bOdy of any function def i.ned in the
same module.) The default value for " stac~· (supplied from
the library) is 2048. See Section 1.4-for information about
the structure of programs.

3. Programmers who wish to implement their own memory
allocation functions can refer to the locations in C.OBJ
which define the total stack space available:

extern char ·_base;

contains the offset (from OS) of the lowest portion of the
stack, which isthe same as the highest offset of the I>tatic
data items in the program (see diagram at Section 1.4').

extern char ·_toPJ

contains the offset of the top of the stack, either X~FFFO~
or whatever was determined to be the highest usable offset.
As noted above, the external location" stack" contains the
default or specified stack size desired,-user-written memory
allocators may wish to make use of that value, as a
convenience.

Lattice 8086/8088 C Compiler The MS-DOS Iapleaentation

1.5.4 Program Entry/Exit

The C.OBJ module calls" main" to begin execution- of a C
program, and passes to it a -copy of the command line which
executed the program. Actually, because MS-DOS does not save the
program name portion of the command, the command line passed to
" main" consists of the characters "c .. (lower case ~c~ followed
by a blank) immediat'!ly followed by all of the characters typed
after the program name. The standard version. of " main" supplied
in LC.LIB analyzes the command line for all or the elements
descr ibed in Section 1.1.4, and then passes the command-line
arguments to "main". If the stack override and file specifier
features are not needed, the following function may be used
instead. Note that th'! function must be compi led and the
resulting object file included as one of the .OBJ files named on
the LINK command.

tinclude "STDIO.B"
tinclude "CTYPe.H"
#define MAXARG 32

main (line)
char *line,
{

/* maximum command line arguments */

3tatic int argc • 0,
static char *argv[MAXARG1,

while (isspace(*line» line++, /* find program name*/
while (*line !- ~\O~)

{ /* get command line parameters */
if (argc =- MAXARG) break,
argv[argc++l • line,
while (*line !- ~\O~ " isspace(*line) .- 0) line++,
if (*line != ~\O~) *line++ • ~\O"',
while (isspace(*line» line++,
}

main (argc,argvl, /* call main function */
exit(O);
}

The program exit functions "exit" and" exit", described in
Section 3.3, are im?lemented under MS-DOS but the error code and
error message arguments are both ignored.

1.5.5 Special Functions

The functions discussed in this section provide serial I/O
capabi.lities at various levels. At the lowest level, the
function

1-38

v • inp(Pl;
int VI
tnt p,

returns the a-bit value ·v· (expanded to 16 bits by padding with
zero) from input port "p", while the function

outp(p,v);

sends the 8-bit value ·v" to output port "p". These functions
perform the equivalent of the assembly language instructions

IN AL,P
OUT P ,AL

The functions can be used to perform I/O directly from C.

Access to the BOOS function entries of MS-DOS is provided by

iret
int

• bdos (f:'l, dx);
iret; value returned in AL by BOOS f~nction

int fn;
int dx;

(expanded to 16 bits by zero padding)
the BOOS function number
(optional) value to be placed in OX

Obviously, not all of the BDOS functions can be called with this
interface; sti tl, a sizable number of them are accessibt~,
including all of the single character I/O functions. The "bdos·
functi~n is used to implement the special function

ire t • k bh i t () 1
int iret; 0 if a character was typed,

non-zero otherwise

which returns a value indicating whether or not a character has
been typed at the user~s console.

Some of the most frequent I/O requests on any system which
supports C are to the user~s terminal, where it is often
necessary to perform character I/O on a single-character basis.
Two library functions provide this capability.

c • getch();
int c;

returns the (·int"-expanded) character from the console. The
character is NOT echoed or cheeked for the program interrupt
character (control-C or control-BREAK).

putch(c) ;

sends the specified character directly to the console. 'Progralll
interrupt is also NOT checked for by this function.

Since the standard 1/0 functions are buffered even when
"stdin" and "stdout" are the user~s console, mixing "putch" calls
with "printf." or ·puts" calls can cause definite problems
(si~ilar problems occur on input). These problems can be avoided
by using the direct console I/O functions described in Section

Lattice 8086/8088 C Ca.piler Tbe MS-DOS lapleaentation

3.2.4, along with the special header file "CONIO,H", Note that
the "putchar" and "getchar" functions used in these modules are
the same as the ·putch" and "getch" functions described above:
they do not echo characters received on input or check for the
program interrupt character. If this presents a problem, the
~ser can define local versions of "putch" and "getch" (inside one
of the user's modules) which send and receive characters using
some different mechanism (such as the BDOS functions land 2,
~hich can be called with the "bdos" function described above).

Two special console 1/0 functions are provided for input and
output of text strings. The function

p = cgets(s);
char *p:
char *s;

returned string pointer
buffer for input string

uses the BOOS function 10 to get an input string. The first byte
(character) of ·s· must be initialized by the caller to contain
the nLlmber of bytes, minus two, in as". The string pointer
:et.urned· is "s+r, which is the first byte of input data. The
~arriage return (which the user at the console must type to
terminate the operation) is replaced by a null byte. Note that
"s+l" will contain the number of characters in the string.
Characters typed are echoed, and the full range of editing
capabilities (such as backspacing, etc.) are available to the
user.

Text string output can be performed using

cputS(3):
char *s: string to be output

.... h ich uses the. BOOS function 9 to w rite to the console. A
carriage ro!turn or linefeed is ~OT appended; they must be
included in the string, if de~Lred. This function locates the
terminating null byte, changes it to a "$" (Ox24), then changes
it back to the null byte before returning. This points out the
function's two limitations: (1) the string to be printed cannot
itself contain a '$' and (2) the string to be output cannot
~eside in read-only memory (ROM).

1-40

;" ...

SECTION 2 Language Definition

The Lattice C compiler accepts a program written in the C
programming language, determines the elementary actions specified
by that program, and eventually translates those actions into
machine language instructions. ~lthough the final result of
these processes is highly machine-dependent, the actual language
accepted by the compile: is for the most part independent of any
system or implementation details. This section presents the
language defined by the Lattice portable C compiler using the
Kernighan and Ritchie text as ~ reference point. Since this
language conforms closely to that describen in the text, only the
major differences are first presented. The major features of the
language are then discussed, not in any attempt at completeness
but simply for the sake of showing them from a diff~~ent
perspective. Finally, the C reference manual is "amended w to
show more precisely how the language differs from the standard.

2.1 Summary of Differences

Deviating from a standard has its own peculiar set of perils
and rewards. On the one hann, the differences create problems
for those who have conformed to the standard in the past; on the
other, they may make life easier for those who take advantage of
them in the future. Most of ' the differences listed below were
prompted by a deSire to make the language both more portable and
more comprehensible. The vast majority of programs will not run
afoul of these potential troublespots; those that do witl in most
cases be improved by adjusting to conform to them. Here, then,
is a summary of the major differences:

o Comments normally can be nested in the Latticecompilerf in
the standard, they cannot. A compile-time option forces the
compilp.r back to the standard non-nesting mode. .

o Pre-processor macro substitution using arguments must be
specified on a Single line: f·:;)r example, when "max(a,b)" is
used, the invocation text from "max" to the final closing
parenthesis must be defined within a single input line.

o The dollar sign ($) is permitted as an embedded (i.e., not
the first) charact~r in identifiers.

o 'Identically written string constants refer to the same
static storage locations, t~at is, only one copy'of the
string is generated by the compiler. This is in contrast to
the statement in Kernighan and Ritchie that all strings are
distinct, even when written identically.

o Multiple character constants are accepted by this compileq
in the standard, only a single character enclosed in single
quotes is legal. The resulting value may be "short· or
"long-, and its exact value is machine-dependent.

Lattice 8086/8088 C ca.piler Language Definition

a In processing structure and union member declarations, the
compiler builds a separate list of member names for each
structure (or union). Thus, identical names may be used for
members in different structures, even though both the offset
and the attributes may be different in each declaration.
The specific structure being referenced determines which
member name (and therefore which offset and set of
attributes) is meant. The typing rules for structure member
references .are strictly enforced so that the particular list
of valid member names can be determined. In other words,
the expression in front of the "." or "->" operators must be
identifiable by the compiler as a structure or pointer to a
structure of a definite type.

o Implicit pOinter conversion (by assignment) is legal but
generates a warning m~ssage; this occurs whenever any value
other than a pointer of the same type or the constant zero
is assigne~ to a pointer. A cast operator can be used to
eliminate the warning. A more stringent requirement is
enforced for initializers, where the expression to
initialize a pOinter must evaluate to a pointer of the same
type ·or to the constant zero; any other value is an error.

a If a structure or union appears as a function argument
without being preceded by the address-of operator (Ii), the
compiler generates a warning message and assumes that the
address of the aggregate was intended.

o An array name may be preceded by the address-of operator ,&)
in this implementation; the meaning, however, is not that of
a pointer to the first element but of a polnter to the
array. This construct allows initialization of painters to
arrays.

a The maximum size of any declared object is the largest
positive integer which can be represented as an "int". This
implies a maxi~um size of 32767 for 16-bit "int" machines.

a The maximum value of the constant expression d~fining the
size of a single subscript of an array is 32767.

A more systematic and detailed explination of the above
differences is presented in Section 2.3, but some of the most
important items above deserve some immediate cl~rification.

The intent behind makin3 the structure and union member
names a separate class of identifiers for each structure is
t ... ofold. First, the flexibility of member names is greatly
increased, since now the programmer need not worry about a
possible conflict of names between different structures. Second,
the requirement that the compiler be able to determine the type
of the structure being referenced generally improves the clarity
of the code, and disallows such questionable constructs as

2-2

int .p;

p->xyz • 4;

which is considered an error by this compiler. Those who grumble
about this restriction should note that one can accomplish the
equivalent sequence in Lattice C by using a cast:

«struct ABC -)p)->xyz = 4;

The parentheses are required since the "->" operator binds more
tightly than the cast. The idea is not that such code should be
prohibited unconditiona:ly but that any such constructs should be
clearly visible for what they are; the cast operator serves this
purpose nicely.

Exactly the same intent is present in the pointer conversion
warning. By using a cast operator, the programlner can eliminate
the warning; the conversion is then explicitly intentional, -!nd
not simply the result of sloppy coding. In addition, there is a
more important reason for the warning. Although many C programs
make the implicit assumption that pointers of all types may be
stored in "int" var iables (or other pointer types) and retr ieved
without difficulty, the language itself makes no guarantee of
this. On word-addr~sse= machines, in fact, such conversions will
not always work properly; the warning message provides a gentle
(and non-fatal) reminde: of this fact.

Finally, the warning generated when a structure or union i~
used as a function argument without the address-of operator is
intended to remind programmers that this compiler does not allow
an aggregate to be passed to a function -- only pointers to such
objects.

2.2 Major Language Features

The material presented in this section is meant to .clarify
some of the language features which are not always fully defined
in the Kernighan and Ritchie text. These are features which
depend on implementation decisions in the compiler itself or on
interpretations of the language definition. Those language
features which are speclfically machine dependent are described
elsewhere in this manual.

2.2.1 Pre-proc~ssor Feature~

The Lattice C compiler Supports the full set of pre­
processor commands descr lbed in Kernighan and Ri tchi'!!, but Some
of the characterlstics of the commands depend on how the compiler
is implemented. Most 1 mplementa tions per form the pre-processor
commands concurrently with lexical and syntactic analysiS of the
Source fi le, because an addition",l compilation step CAn be
avoided by this technique. Other versions of the compiler
incorporate a separate pre-processor phase in order to reduce the
~ize of the first phases of the compiler. In either case, the

Lattice 8086/8088 C Compiler Language Definition

analysis of the pre-processor commands is largely independent of
the compiler~s C language analysis. Thus, +define text
substitutions are not generally performed for any of the pre­
processor commands, although nesting of macro definitions is
possible since substituted text is always re-scanned for new
Idefine symbols. The exception occurs with the lif command,
which is processed differently depending on whether pre-processor
functions are performed concurrently or in a separate phase. In
the former case, the pre-processor module "borrows· the
compiler~s expression analyzer to evaluate the t if expression, so
that ,define substitutions are performed and the ·sizeof·
operator can be used. I f evaluated dur ing a separate pre­
processor phase, lif expressions are more restricted; Idefine
substitutions are hot performed, and the "sizeof" operator cannot
be used because the pre-processor phase has no knowledge of
declared objects. To be safe, ~ne should keep lif expressions as
simple as possible; better still, avoid lif altogether and use
lifdef or 'ifndef.

The Idef ine command, as noted in Section 2. t, has the
limitation that the macro invocation text must ~ll be contained
on a single input line. Because the compiler uses a text buffer
of fixed size, a particularly complex macro may occasionally
cause a line buffer overflow condition; usually, however, this
error occurs when more than one macro reference occurs in the
same source line, and can be circumvented by placing the macros
on different lines. Circular definitions like

'define A B
'define B A

will be detected by the compiler if either A or Bis ever used,
as will more subtle loops. Like many other implement~tions of C,
the Lattice compiler supports nested macro definitions, so that
if the line

tdefine XYZ 12

is followed later by

Idefine XYZ 43

the new definition takes effect, but the old one is not
forg~tten. In other words, after encountering

'undef XYZ

the former definition (12) is restored. To completely ·undefioe·
XYI, an additional fundef is required. The rule is that each
Idefine must be matched by a corresponding lundef before the
symbol is truly forgotten.

2-4

2.2.2 Arithmetic Objects

Six types of arithmetic objects are sup~orted by the Lattice
compiler; along with pOinters, these obJects represent the
entities which can be manipulated in a C program. The types are:

"shor~· or "short int"
"char"
"unsigned" or "unsigned int"
"long" or "long int"
"float"
"double" or "long float"

Note that in this implementation, ·unsigned" is not a modifier
but a separate data type.

The "natural" size of integers for the target machine (the
machine for which code is being generate1) is indicatp.d by a
plain "int" type specifier; this type will be i~entical to either
"short" or "long", depending on the architecture of the target
machine. Although the s.ize of all these objects is technically
machine dependent, the Lattice compiler assumes the target
machine has an a-bit, 16-bit, or 32-bit architecture and that the
fundamental storage quantity is an a-bit byte. Only in
connection with bit fieldS does this assumption ever become
immportant.

The compiler follows the standard pattern for conversions
between the various arithmetic types, the so-called "usual
arithmetic conversions" described in the Kernighan and Ritchie
text. The only exception to this occurs in connection with byte~
or iented machines, where expansion of "char" to "int" may be
avoided if both op~rands in an expression are "char", and the
tArget machine supports byte-mode arithmetic and logical
operations. "

2.2.3 Derived Objects

The Lattice C compiler supports the standard extensions
leading to vuious kinds of derived objects, including pOinters,
functions, arrays, and structures and unions. Declarations of
these types may be arbitrarily complex, although not all
declarations result in a legal object. For example, arrays of
functions or functions returning aggregates are illegal. The
compiler checks for these kinds of declaratio~s and also verifies
that structures IJr unions do not contain instance<; of them"selvea.
Objects which are declared as arrays cannot have an array length
of zero, unless they are formal parameters or are declared
"extern" (see Section 2.2.4). All pOinters a;;e assumed to be the
same size -- usually, that of a plain "int" -- with one
exception. On word-addressed machines, pointers which point to
objects which can appear on any byte boundary are assumed to
require twice as much storage as pointers to objects ~hich must
be word-aligned.

Lattice 8086/8088 C Compiler Language Definition

Note that the size of aggregates (arrays and structures) may
be affected by alignment requirements. For example, the array

struct {
short i:
char c:
} x[lO} J

.... il1 occupy 40 bytes on machines hich require "short" objects t.o
be aligned on an even byte boundary.

2.2.4 Storage Classes

Declared objects are assigned by the compiler to storage
offsets hich are relative to one of severaL different storage
bases. The assigned storage base depends on the explicit storage
class specified in the declaration or on the context of the
declaration, as follo s:

(1) External. An object i~ classified as external if the
"extern" key ord is present in its declaration, and the object is
not later defined in the source file (that is, it is not declared
outside the body of a function ~ithout the "extern" key ord).
Storage is not allocated for external items because they are
assumed to exist in some other file, and must be included during
the linking process that builds a set of object modules into a
load module.

(2) Static. An object is classified as static if "the
"static" key ord is "present in its declaration Ot if it is
declated outside the body of a function ithout an explicit
storage class specifier. Storage is allocated for static items
in the data section of the object module; all such locations are
initialized to zero unless an initializer expression i~ included
in the declaration (see Section 2.2.6). Static items declared
outside the body of a function ithout the "static" key otd are
visibLe in other files, that is, they are externally defined.
Note that string constants ate allocated as static items, and are
treated as unnamed statie arrays of "charR. "

(3) Auto. An object is classified as auto if the ·auto·
key ord is ptescnt in its declarati.on or if it is declared inside
the body of a function ithout an expLicit storage class
specifier (it is iLlegal to declare an object "auto" outside the
body of a function). Storage is presumabLy allocated for auto
items using a stack mechanism during execution of the function in
.... hich they are defined. '

(4) Formal. An object is classified as formal if it is a
formal parameter to one of the functions in the source file.
Storage is presumably allocated for formal items hen a function
call is made during execution of the program.

Note that the first phase of the compiler makes no
assumption about the validity of the -re9ister- storage class

2-6

declarator. Items which are declared "register" are so flagged,
but storage is allocated for them anyway against either the auto
or the formal storage base. The implementation of "register" is
machine dependent and may not be supported at all in some cases.

Note also that if the "-x" option is used, the implicit
storage class for items declared outside the body of a function
changes from "static" to "extern". This allows a single header
file to be used for all external data definitions. When the
"main" function is compiled, the a_x" option is not used, and so
the various objects are defined and made externally visible; when
the other functions are compiled, the "-x" option causes the same
declarations to be interpreted as references to objects defined
elsewhere.

2.2.5 Scope of Identifiers

The Lattice compiler conforms almost exactly to the scope
rules discussed in Appendix A of th~~ernighan and Ritchie text
(PP. 205-206). The only exceptio~~arises in connection with
structure and union member names, where as noted in Section 2.1
the compiler ~eeps separate lists of member names for each
structure or union; this means that additional classes of non­
conflicting identifiers occur for the various structures and
unions. Two additional points are worth clarification.

First, when identifiers are declared at the beginning of a
statement block internal to a function (other than the first
block immediately following the function name), storage for any
auto items declared is allocated against the current base of auto
storage. When the statement block terminates, the next available
auto storage offset is reset to its value preceding those
declarations. Thus, that storage space may be reused by later
local declaations. Rather than generate explicit allocate and
deallocate. operations, the compiler uses this mechanism to
compute the total auto storage required by the function: th~
resul tine; storage is allocated whenever the function is called.
With this scheme, functions will allocate possibly more storage
than will be needed (in the event that those i-nner statement
blocl:s are not executed), but the need for run-time dynamic
allocation within the function is avoided.

Second, when an identifier with a previous declaration is
redefined locally in a statement block with the "extern" storage
class specifier, the previous definition is superseded in the
normal fashion put the compiler also verifies compatibility with
any preceding "extern" definitions of the same name. This is
done in accordance with the principle expressed in the text,
namely that all functions in a given program which refer to the
same external identifier refer to the same object. Within a
Source file, the compiler also verifies that all external
declarations agree in type. The point is that in this particular
case -- where a local block red!!f ines an ident if ier as -extern"
-- the declaration effectively does not disappear upon
termination of the block, since the compiler now has an

Lattice 8086/8088 C Compiler Language Definition

additional external item f=: which it must verify equivalent
declarations .•

2.2.6 Initializers

Objects which are of t~! ·static· storage class (as defined
in Section 2.2.4) are guara~:eed to contain binary zeroes when
:he orogram begins execution, ~nless an initializer expression is
lsed" to define a different i::.tial value. The Lattice compiler
supports the full range of ~:-:itializer expressions described in
Kernighan and Ritchie, bu: restricts the initialization of
~ointers somewhat. An arittnatic object may be initialized with
an expression that evaluates :0 an arithmetic con~tant whicn, if
~ot of the appropriate type, is converted to that of the target
::>bject. As noted in Sec::.on 2.1, the expres~ion used to
initialize a pointer is more :estricted: it must ~valuate to the
~int" constant zero or to a ?C:.nter expression yielding a pointer
~f exactly the same type as :~e pointer being initialized. This
?ointer expression can inc:lJde the address of a previously
jeclared "s tatic' or "exte::-:" object, plus or minus an .. int"
.:onstant, but it cannot in:orporate a cast (type conversion)
.:.>perator (because pointer :onve,sions are not evaluated at
=ompile time). This res:!:iction makes it imr;>ossible to
initialize a pointer to an a::!y unless the" operator is allowed
to be used on an array name, :ecause the array name without the
?receding 6. is automatically =onverted to a pointer to the first
~lement of the array. Accor~:.ngly, as noted in Section 2.1, the
:attice compiler accepts the i operator on an array name so that
jeclarations like

int a[5], (*pa) [5] • ia;

~an be made. Note that if a ?ointer to a structure (or union) is
~eing initialized, the struc:~re name used to generate an address
~ust be preceded by the" ope:atOt.

More complex: objects (arrays and structures) may be
initial ized by bracketed, C01211I13-separated Usts of initializec
expressions, with each expression corr~sponding to an arithmetic
or pointer element of the aq;:egate. ~ clo~ing brace can be used
~o terminate the list early: see Appendix A of Kernighan and
~itchie for examples. Unior.s may not be initialized under t~is
l~plementation, although the !irst part of a structure containing
a union may be initialized ~f the expression lise ends before
=ea~hing the union. ~ chara=:~r array may be initi~li~ed with a
~tring6onstant which need no: be enclosed in braces; this is the
only exception to the rule requiring braces around the list pf
initializers for an aggregate.

Initializer expressions for ~auto· objects can only be
applied to simple arith.etic or pOinter types (not to
ciggregates), and are entirely equivalent to assignment
statements.

2-8

Lattice 8086/8088C Compiler Language Definition

2.2.7 Expression Evaluation

All of the standard operators are supported by the Lattice
compiler, in the standard order of precedence (see p. 49 of
Kernighan and Ritchie). Expressions are evaluated using an
operator precedence parsing technique which reduces complex
expressions to a sequence of unary and binary operations
involving at most two operands. Operations involving only
constant ope:ands (including floating point constants) are
evaluated by the compiler immediately, but no special effort is
made to re-order operands in order to group constants. Thus,
expressions such as

c - "A" + "a"

must be parenthesized in order for the compiler to evaluate the
constant par t:

c + ("a" - "A")

If at least one operand in an operation is not constant, the
intermediate expression result is represented by a temporary
storage location, usually just called a temporary. The temporary
is then Wplugged into" the larger expression and becomes ~n
operand of another binary or unary operation; the process
continues until the entire expression has been evaluated. The
lifetime of temporaries and. their assignment to temporary storage
10C3tions are determined by a subroutine internal to the first
phase of the compiler. This subroutine recognizes identically
generated temporariaswithin a straight-line block of code and
eliminates recomputation of equivalent results. Thus, common
subexpressions are recognized and evaluated only once. For
exa~ple, in the statement

a[i+1) • b[i+l);

the expression -i+l- will be evaluated once and used for both
subscripting operations. Expressions which produce a result that
is never used and which have no side effects, such as

are discarded by this same subroutine.

Within the block of code examined by the temporary analysis
subroutine, oper.ati.ons which produce a temporary result are· noted
and remembered so that later equivalent operations may be
deleted, as noted above. Two conditions (other than function
calls, which may have undetermined side effects) cause the
subroutine to discard an operation and no longer check for the
eq'Jivalent operation later: (1) if either of its operands appear
directly as a result of a subsequent operation; or (2) if a
subsequent operation defines an indirect (i.e., through a
pointer) result for the same type of object as one of the
original operarrds. The latter condition is based on the

Lattice 8086/8088 C COIIpller: Language Definition

compiler's assumption that pointers are always used to refer: to
the correct type of target object, so that, for example, if an
assignment is made using an "int" pointer only objects of type
"int" can be changed. Only when the programmer indulges in "type
punning" -- using a pointer to inspect an object as if it were a
different type -- is this assumption invalid, and it is hard to
conceive of a case where the common subexpression detection will
cause a problem with this somewhat dubious practice. Such
inspections are generally better left to assembly language
modules in any case.

With the exception of this common subexpression detection,
which may replace an operation with a previous, equivalent one,
expressions are evaluated in strict left-to-right order as they
are encountered, except, of course, where that is prevented by
operator precedence or parentheses. It is best not to ma~e any
assumptions, however, about the order of evaluation, since the
code generation phase is generally free to re-order the sequence
of many operations. The most important exceptions are the
logical OR (I I) and logical AND (&&) operators, for which the
language definition guarantees left-to-right evaluation. The
code generation phase may have other effects on expression
evaluation: usually, some favorable assumptions about pointer
aSSignments are made, though these can be shut off by a compile
time option. Check the implementation section of this manual for
full details.

2.2.8 Control Flow

C offers a rich set of statement flow constructs, and the
Lattice compiler supports the full complement of them. Some
minor points of clarification are noted here. First of all, the
compiler does verify that "switch" statements contain (1) at
least one case entry: (2) no duplicate case values: and (3) no
more than one "default" entry. In addition, the first phase of
the compilet recognizes certain statement flow constructs
involving constant test values, and may discard certain portions
of code accordingly. (Even those portions ultimately discarded
are fully analyzed, lexically and syntactically, before being
eliminated.) If an "if" statement has a constant t"est value,
only the code for the appropriate clause (the "then" or "else"

. portion) is retained: "while", "do", and "for" statements with
zero test values are entirely discarded.

The code generation phase generally makes a special effort
to generate efficient sequences for control flow. In particular,
the size and number of branch instructions is kept to a minimum
by extensive analysis of the flow within a function, and "switch­
statements are analyzed to determine the most efficient of
several possible machine language constructs. Check the
implementation section of this manual for the details regarding
this particular code generator.

2-10

Lattice 8086/8088 C coapiler Language Definition

2.3 Amendments to the C Reference Manual

The most precise definition of the C programming langua~e
generally available is Appendix A of the Kernighan and Ritchle
text, which is entitled "C Reference Manual.· This section
presents, in the same order defined in the text, a series of
amendments or annotations to that manual; this commentary
explicitly states any deviations of the Lattice C language
implementation from the features described. Because this
implementation is very close to that standard, many of the
sections apply exactly as writteni these sections will not be
commented upon. Any section not listed here can be assumed to be
fully valid for the language accepted by the Lattice C compiler.

CRM 2.1 Comments

The Lattice compiler allows comments to be nested, that is,
each /* encountered must be matched by a corresponding */ before
the comment t~rminates. This feature makes it easy to ·comment
out" large se~tions of code which themselves contain comments.
The compile time option "-c" forces the compiler to process
comments in the standard, non-nesting'mode.

CRM 2.4.3 Character constants

Two extensions to character constants are provided. First,
more than one character may be enclosed in single quotes; the
result may be Mint" or "long", dependin; on the number of
characters, and its value is machine dependent. Second, if the
first character following the backs lash in an escape sequence is
"x" (lower case X), the next one or two digits are interpreted as
a hexadecimal value. Thus,

"'\xf9'"

generates a character with the value OXF9.

CRM 2.5 Strings

The Lattice compiler recognizes identically 'written string
constants and only generates one copy of the strin~. (Note that
strings used to initialize "char" arrays -- not "char *" -- are
not actually generate:i.) The same "\x" convention des~ribed
above Ciln be employed in strings, where it is generally more
useful (especially for those of us who have never understood how
octal came to be used on l6-bit machines).

CRM 2.6 Hardware characteristics

See the implementation section of this manual for hardware
characteristics.

2-11

Lattice 8086/8088 C Ca.piler Lanquaqe Definition

CRM 7.1 Primary expressions

The Lattice compiler always enforces the rules for the use
of structures and unions, for the simple reason that it cannot
otherwise determine which list of member names is intended.
Recall from Section 2.1 that the Lattice ~ompiler maintains a
separate list of members for each type of structure or union.
Therefore, the primary expression preceding the or ._>.
operator must be immediately recognizable as a structure or
pointer to a structure of a specific type.

CRM 7.2 Unary operators

The requirement that the & operator can only be applied to
~n'lvalue is relaxed slightly to allow application to an array
name (which is not considered an lvalue). Note that the meaning
of such a constru:t is a pointer to the array itself, which is
quite different from a pointer to the first element of the array.

CRM 7.6 Relational operators

When pointers of different types are compared, the right­
hand operand is converted to the type of the left-hand opp.rand:
comparison of a pointer and one of the integral types causes a
conversion of the integer to the pointer type. Both of these are
operations of questionable value and are cer tainly machine
dependent. .

CRM 7.7 Equality operators

The same conversions noted above are applied.

CRM B.l Storage class specifiers

The text states that the sc-specifier, if omitted from a
declaration outside a function, is taken to be "extern". This is
somewhat misleading, if not plainly inaccurate: i.n fact (a.; the
text points out in CRM 11.2), the presence or absence of "extern·
is :ritical to determining whether an object is being defined or
referenced. As noted in Section 2.2.4 of this document, if
"extern" is present, then the declared object either exists in
some other file or is defined lat~c in the same fil~; if no sc­
specifier is present, then the declared object is being defined
and ill. be visible in other files. If the "static" specifier is
present, the object is also defined but i$ not made externally
viSible. The only exception to these rules occurs for function~,
where it is the presence of a defining statement body that
determines whether the function is being defined.

The Lattice compiler can be forced to assume "extern· for
all declarations outside a function by means of the "-x" compile
time option. Declarations which explicitly specify "static· or
"extern" are not .affected. .

2-12

Lattice 8086/8088 C Compiler Language Definition

CRM 8.5 Structure and union declarations

The Lattice compiler treats the names of structure members
quite differently. The names of members and tags do not conflict
with each other or with the identifiers used for ordinary
variables. Both structure and union tags are in the same class
of names, so that the same tag cannot be used for both a
structure and a union. A separate list of members is maintained
for each structure; thus, a member name may not appear twice in a
particular structure, but the same name may be used in several
different structures within the same scope.

CRM 8.7 Type names

Although a structure or union may appear in a type name
specifier, it must refer to an already known tag, that is,
structure definitions cannot be made inside a type name. Thus,
the sequence •

{struct { int high, low; } *) x

is not permitted, but

$truct HL { int high, low; } ;

(struct HL *) x

is acceptable.

CRM 10.1 External function definitions

As noted in the text, formal parameters declared "float· are
actually interpreted as "double"; similarly, formals declared
"char" or "short" are read as flint". For consistency, the
Lattice compiler applies the same rutes to functions: a function
declared to return "float" is assumed to return "double", and
"char" or "short" functions to return" int".

CRM 10.2 External data definitions

The Lattice compiler applies a simple rule to external data
declar3tion~: if the key~ord "extern" is present, the actual
storage will be allocated el~~where, and'the declaration is
simply a reference to it. Otherwis"!, it is interpreted as an
actual definition which allocates storage (unless the "-x"'option
has been used; see the comments on CRM B.1).

CRM 12.1 Conditional compilation

As noted in Section 2.2.1 of this document, the constant
expression following lif may not in all cases contain ·sizeof",
depending on the compiler implementation.

2-13

Lattice 8086/8088 C ea.piler Language Definition

CRM 12.4 Line control

Although the file name for tline is denoted as -identifier-,
it need not conform to the characteristics of C identifiers. The
compiler takes whatever string of characters is suppliedi the
only lexical Iequirement for the file name is that it cannot
contain any white space.

CRM 14.1 Structures and unions

The escape from typing rules described in the text is
explicitly not allowed by the Lattice compiler. In a reference
to a structure or union member, the name on the right MUST be 4
member of the aggregate named or pointed to by the expression of
the left. This implementation, however, does not att~mpt to
enforce any restrictions on reference to union members, such as
requiring a value to be assigned to a particular member before
ailo~ing it to be examined via that member.

Future versions of the compiler will probably support
structure assignment, but the value of other operations (such as
~assing aggregates directly to or returning them from functions)
seems questionable.

2-14

)
./

Lattice 8086/8088 C Coapiler Portable Library Punctions

SECTION 3 Portable Library Functions

In order to provide real portability, a programming environment
must provide -- in a machine-independent way -- not only a wel1-
defined language but a library of useful functions as well. The
portable library provided with the Lattice C compiler attempts to
supply that need. Although not all of the features of these
functions can be implemented on every system supported by the
compiler, all systems must be able to provide the basic functions
of memory allocation, file input/output, and character string
manipulation~ otherwise, the compiler itself could not be
implemented. An important benefit of presenting the functions
from a machine-independent viewpoint is that it helps the
programmer think of them in this light, as well.

When referring to the function descriptions presented in this
section, remember that the compiler assumes a function to return
an "int" value unless it is explicitly declared otherwise. Don~t
forget to declare any functions which return other kinds of
values BEFORE you call them.

3.1 Memory Allocation Functions

The standard library provides memory allocation capabilities
at several different levels. The hi9her level functions call the
lower levels to perform the work, but provide easier interfaces
in exchange for the extra overhead. The actual amount of memory
available is system dependent and usually depends on the size of
the program. In most systems the memory made available for
dynamic allocation by these functions is the same memory used for
the run-time stack (used for function calls and auto var iab1es).
On these systems a default number of bytes is reserved for the
stack, and the remainder of the memory is used by the memory
allocation functions. In order to allow programs to adjust the
amount of memory reserved for the stack (and thus the amount
available for dynamic allocation), the main program usually
supports a special "=n" option to override the default stack
size~ alternatively, a program may define the size internally.
Chec>. the implementation section of the manual for details. The
user is cautioned that on many systems there is no check against
th,= stack overrunning its allotted size and'destroying portions
of the memory pool.

All of the memory allocation functions rpturn a pointer
which is of type ·char *" but is guaranteed to be sufficiently
aligned to store any object.

3-1

Lattice 8086/8088 C eo.piler Portable Library Punctions

3.1.1 Level 3 Memory Allocation

The functions described in this section provide a UNIX­
compatible memory allocation facility. The blocks of memory
obtained may be released in any arbitrary order, but it i$ an
error to release something not obtained by One of these
functions. Because these functions use overhead locations to
keep track of allocation sizes, the "free" function does not
require a size argument. The overhead does, however, decrease
the efficiency with which these functions use the available
memory. .1f a lot of small allocations are requested, the level 2
functions will be considerably more efficient.

3-2

I
r
[
r
l

'\
)

Lattice 8086/8088 C eo.piler Portable Library PUnctions

NAME

malloc -- UNIX-compatible memory allocation

SYNOPSIS

p • malloc(nb)~es),
char *p,
unsigned nbytes;

DESCRIPTION

block pointer
number of bytes requested

Allocates a b:::ck of. memory in a way that is compatible with
UNIX. The pr:~ary difference between ·malloc· and ·getmem­
is that the f::rmer allocates a structure at the front of
each block. ~his can result in very inefficient use of
memory if you ~ake lots of small requests.

RETURNS

p • NULL if n:: enough space available
• pointer to :~ock of -nbytes· of memory otherwise

CAUTIONS

Return value n~st be checked for NULL. The function should
be declared ":har *. and a cast operator used if def ining a
pointer to SODe other kind of object, as in

char *ma:loc (I ,
int *pi;

pi • (i~~ *)malloc(N) J

~attice 8086/8088 C Coapiler Portable Library Panctiona

-IAMB

calloc -- allocate memory and clear

SYNOPSIS

p .. calloc{nelt,
char *p~
unsigned nelt;
unsigned eltsiz;

eltsiz} ;
block pointer
number of elements
element size in bytes

DESCRIPTION

Allocates and clears (sets to all zeroes) a block of memory.
The size of the block is specified by the product of the two
parameters; this calling technique is obviously convenient·
for allocating arrays. Typically, the second argument is a
"sizeof" expression.

RETURNS

p = NULL if not enough space available
= pointer to block of memory otherwise

CAUTIONS

3-4

Return value must be cheeked for NULL. The function should
be declared "char *" and a cast used if defining a pointer
to $ome other kind of object, as in

struct buffer *pb;

pb • (struct buffer *)calloc(4, sizeof{struct buffer»,

r
'-

')
j

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

free -- UNIX-compatible memory release function

SYNOPSIS

ret· free(cp);
int ret;
cbar *ep;

DESCRIPTION

return code
block pointer

Releases a block of memory that was previously allocated by
Mmalioe" or "calloc". The pointer should be "char *" and is
checked for validity, that is, verified to be an element of
the memory pool.

RETURNS

ret· 0 if successful
• -1 if invalid block pOinter

CAUTIONS

Cbeck the return code; if -1, it could help you track down a
coding problem. Remember to cast the pointer back to ·char
*", as in

char *malloc () ;
int *pi;

pi = (int *) malloc(N);

if (free «char *) pi) != 0) { ••• error ••• }

3-5

Lattice 8086/8088 C CoIapiler Portable Library Punctions

3.1. 2 Level 2 Memory Allocation

The functions described in this section provide an efficient
and convenient memory allocation capability. Like the level 3
functions, allocation and de-allocation requests may be made in
any order, and it is an error to free memory not obtained by one
of these functions. The caller must retain both the pointer and
the size of the block for use when it is freed; failure to
provide the cor rect length may lead to wasted memory (the
functions can detect ari incorrect length when it is too large,
but not when it is too small). An additional convenience is
provided by the ·sizmem" function, which can be used to determine
the total amount of memory available.

The level 2 functions maintain a linked list of the blocks
of memory released by calls to "rlsmem", called the free space
lis~. Initially, this list is null, and "getmemW acquires memory
by calling the Levell memory allocator ·sbrk". As blocks are
t"~leased by the program, the free space list is created; when a
block adjacent to one already on the list is freed, it is
combined with any adjacent blocks. Thus, the size of the largest
~lock available may be smaller than the total amount of free
memory, due to breakage.

3-6

Lattice 8086/8088 C Compiler Portable Library Punctiona

NAME

getmem -- get a memory block

SYNOPSIS

p • getmem(nbytes),
char *p;
unsigned nbytes;

DESCRIPTION

block pointer
number of bytes requested

Gets a block of memory from the free memory pool. I f the
pool is empty or a blocK of the requested size is not
available, more memory is obtained via the level 1 function
-sbrk-.

RETURNS

p • NULL if not enough space available
.. pOinter to mejnory block otherwise

CAUTIONS

Retllrn value must he checked for NULL. The function should
be declared "char *" and a cast used if defining a pointer
to some o~her kind of object, as in

char *getmem () ,
struct XYZ *px,

px .. (struct XYZ *)getmem(sizeof(struct XYZ»,

Lattice 8086/8088 C eo.piler portable Library Functions

NAME

rlsmem -- release a memory block

SYNOPSIS

ret = rlsmem(cp,
int ret:
char *CPi
unsigned nbytes:

nbytes) i
return code
block pointer to be freed
size of block

DESC!'lIPTION

Releases the memory block by placing it on a free block
list. If the new block is adjacent to a block on the list,
they are combined.

RETURNS

ret = 0 if successful
= -1 if supplied block not obtained by -getmem-, or overlaps
one of the blocks on the list

CAUTIONS

1-8

Return value should be checked for error. If the correct
size is not supplied, the block may not be freed properly.

)

Lattice 8086/8088 C Compiler Portable Library ¥unctions

NAME

allmem -- allocate all available memory

SYNOPSIS

ret = allmem () :
int ret;

DESCRIPTION

return code

Uses the level 1 function ·sbrk- to get all available
memory and attach it to the memory pool used by ·getmem-o

RETURNS

ret c -1 if first ·sbrk- fails
- 0 if successful

Lattice 8086/8088 C Compiler Portable Library Function.

NAME

sizmem -- get ·memory pool size

SYNOPSIS

words • sizmem():
unsigned words: number of words. (s izeof (int))

DESCRIPTION

Returns the number of unallocated words (i.e., number of
units of size "sizeof(int)") in the memory pool used by
"getmem". Note that "getmem n dynamically expands the pool
by calling "sbrk" whenever a request cannot be honored.
Therefore, the value returned by "sizmem" does not
necessarily indicate ho~ much memory is actually available.
If used after calling "allmem", however, the actual memory
pool size WILL be returned.

RETURNS

words • (unsigned) number of "int" objects in memory pool

CAUTIONS

Note that the value returned is in wordS, not bytes.

)-10

"\
I

./

Lattice 8086/8088 C Compiler Portable Library Function.

NAME

rstmem -- reset memory pool

SYNOPSIS

rstmem() J

DESCRIPTION

Resets the memory pool used by "getmem" and "rlsmem· to its
initial state. All previously allocated memory is released,
and the maximum amount of memory is once again available.

CAUTIONS

This function cannot be used if any files are open and being
accessed using any of the level 2 I/O functions, because
these functions use "getmem" to allocate buffers. On some
systems, this restriction applies to the level 1 I/O
functions as well: check the implementation section of the
manual to see if this caution is valid for this system.
Note that "sizmem" will return a value of zero after
"rstmem" is called.

Lattice 8086/8088 C eo.piler Portable Library Punctiona

3.1.3 Levell Memory Allocation

The two functions defined at the lowest level of memory
allocation are primitives which perform the basic operations
needed to implement a more sophisticated facility: they are used
by the level 2 functions for that purpose. "sbrk" treats tha
total amount of memory ava~lable as a single block, from which
portions of a specific size may be allocated at the low end,
creating a new block of smaller size. ·rbrk· merely resets the
block back to its origina: size. Do not confuse the "break
point" mentioned here wi~~ the "breakpoint" concept used in
debugging; this term simply refers to the address of the low end
of the block of memory mani?ulated by ·sbrk·.

3-12

)

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

sbrk -- set memory break point

SYNOPSIS

p = sbrk(nbytes)J
char *pJ
unsigned nbytes;

DESCRIPTION

points to low allocated address
number of bytes to be allocated

Allocates a block of memory of the requested size, if
possible. This function is the basic UNIX memory allocator.
The first time it is called, it will allocate the largest
available block of high memory. Then the requsted number of
bytes is lopped off the low end of the block for use by the
caller.

RETURNS

p • -1 if request cannot be fulfilled
= pointer to low address of block if successful

CAUTIONS

For consistency with the UNIX function, ·sbrk" returns -1 if
it cannot satisfy the request, although the rest of the
memory allo.cator s return NULL. The fllnct i.on should be
declared "char ." and a cast used if defining a pointer to
some other kind of object.

Lattice 8086/8088 C Compiler Portable Library Function.

NAME

rbrk -- reset memory break point

SYNOPSIS

rbrk () ,

DESCRIPTION

Resets the memory break point back to its original starting
point. This effectively returns all memory to the free
space block.

CAUTIONS

Like -rstmem- above, this function cannot be used if any
files are open and being accessed using the level 2 I/O
functions. On some systems, the same restriction applies to
use of level 1 I/O functions.

Lattice 8086/8088 C CompHer Portable Library Functions

3.2 I/O and System Functions

The standard library provides I/O functions at several
different levels, with single character "get· and "put" functions
and formatted I/O at the highest levels, and direct byte stream
I/O functions at the lowest levels. The major system dependency
arises in connection with text files, where so~e systems perform
certain translations to accommodate the particular text file
representation used in the local environment. Although the
translation is generally transparent at the higher levels, 1/0 at
the lowest levels, particularly I/O involving binary data, must
be aware of the translation. Check the implementation section of
this manual for the details appropriate to this system.

Three general classes of I/O functions are provided. First,
the level 2 functions define a buffered text file interface which
implements the single character I/O functions as macros rather
than function calls. Unlike the corresponding functions under
UNIX, these functions are buffered even when performing I/O to
and from the user's console (although they are buffered on a line
basis, rather than the 512~byte block buffering used for disk
files). Second, the level 1 functions define a byte stream
oriented file interface, primarily useful for manipulation of
disk files, though most of the same functions are applicable to
devices (such as the user"s console) as well. Finally, since one
of the most common I/O interfaces is wi th the user"s console, a
special set of functions allow single character I/O directly to
the user's terminal, as well as formatted and string I/O.

The system functions discussed in this section are concerned
with program exit. Additional system functions are described in
the implementation section of the manual.

3.2.1 Level 2 I/O Functions and Macros

These functions provide a buffered interface using a special
structure, manipulated internally by the functions, to which a
pointer called the "file pointer" is defined. This structure is
defined in the standard I/O header file (usually called ·stdio.h"
on most systems) which generally must bp. included (by means of a
linclude ~tatement) in the source file where level 2 features ~re
being used. The file pointer is used to sp~cify the file upon
which operations are to be performed. Some functions require a
file pOinter, such as

FILE *fPl

to be explicitly included in the calling sequencel others imply a
specific file pointer. In particular, the file pointers ·stdin"
and ·stdout" are implied by the use of several functions and
macros: these files are so commonly used that on most systems
they are opened autom3tically before the main function of a
program begins execution. Other file pointp.rs must be declared
by the programmer and initilllized by calls to the "fopen"
function. Note that a file pointer may be used to read a file or

Lattice 8086/8088 C Co~iler Portable Library Functions

to write a file, but it is not legal to perform both operations
on the same file.

The level 2 functions are designed to work primarily with
text files. The usual C convention for line termination uses a
single character, the newline (~\n~), to indicate the end of a
line. Unfortunately, many operating environments use a multiple
character sequence -- usually carriage return/line. feed, but
occasionally even more exotic delimiters. In order to allow all
C programs to work with text files in the same way, the Lattice
functions support the standard newline convention but may -­
depending on the system -- perform a "text mode" translation so
that end of line sequences will conform to local conventions.
This translation is usually beneficial and transparent but may
cause problems when working with binary files. Normally, all
files accessed through the level 2 functions are opened in the
text, or translated mode, but the programmer may override this
mode by defining the external location

int _fmode = Ox8000,

in one of the functions in the program (this statement must
appear outside the body ~f the function itself in order to be
considered an external definition). The value at " fmode" is
passed to the Levell function "open" or "creat" when the file is
opened. If zero, the file is opened in the text modeJ if 0)(8000,
the file is opened in the binary, or untranslatedmode. Note
that if • fmode" is defined as above, the "stdin", "stdout", and
"stderr"1iles opened for the main function will also be opened
in the binary mode. If this is undesirable, " fmode" can be
initialized with zero and then set to Ox8000 before specific
"fopen" calls are madeJ in this way, different filp.s may be
opened in different modes. Check the implemertt~tion section of
this manual for more information about the file access modes.

The actual I/O operations are performed by the level 2
functions by calls to the level 1 I/O functions described· in the
next section~ The normal mode of buffering, designed to support
sequential operations, performs read and. write functions in 512-
byte blocks; a buffer of that size is allocated (using "getmem")
when the file is opened. The buffering technique allows single
character I/O operations to be implemented efficiently as macros,
and reduces the number of actual I/O requests. 5 ince output is
buffered, a file that is being weitten must be closed so that the
data in the buffer is actually written to the filp.. h different
buffering scheme is used for devices such as the user~s terminal.
The same buffer is allocated, but the read operation which fills
the buffer terminates on a newline, and the write operation which
flushes the buffer is initiated when a newline is received. This
scheme manages to reduce the I/O overhead while at the same time
performing the I/O in a more timely fashion. The line buffering
scheme is enabled using the ·setnbf" function descr ibed in this
section, which simply sets the IONBF flag for the file (note:
of the various flags defined in-the standard I/O header fiLe,
only this one is'-currently implemented). Line buffering is also

)

Lattice 8086/8088 C Compiler Portable Library Punctions

the mode set up for ·stderr·, and for ·stdin- and ·stdout- in the
event that they default to the user~s terminal. See Section
3.2.3 for information about the direct, unbuffered interface to
the user~s terminal.

In the descriptions below, some of the function calls are
actually implemented as macros; these are noted explicitly. The
reason the programmer should be aware of the distinction is
because most macros involve the conditional operator and may,
under certain conditions, evaluate an argument expression more
than once. This can cause unexpected results if that expression
involves side effects, such as increment or decrement operators
or function calls.

~ttice 8086/8088 C Co.piler Portable Library Punction.

NAME

fopen -- open a buffered file

SYNOPSIS

fp = fopen(name, mode);
FILE *fp; file pointer for specified file
char *name; file name
char *mode; ·access mode

DESCRIPTION

Opens a file for buffered access; the translated mode is the
default mode but may be overridden as describe~ in the
introduction to this section. The null-terminated string
which specifies the file name must conform to local naming
conventions. The access mode is also specified as a string,
and may be one of the followin~:

Wr • to read a file
·w" to write a file
"a" to append to a file

The mode character must be specified in lower case. The "a"
option adds to the end of an existing file, or creates a new
one; the "w" option discards any data in the file, if i.t
already exists. On most systems, no more than 16 files
(including ·stdin", "stdout", and "stderr", if those are
opened for "main··) can be opened using "fopen".

RETURNS

fp a NULL if error
: file pointer for specified file if successful

CAUTIONS

The ret~rn code must be checked for NULL; the error r~turn
may be generated if an invalid mode w~s specifed, the file
was not found, could not be created, or too many fil~s were
already open.

)

Lattice 8086/8088 C eo.piler Portable Library Punctions

NAME

freopen -- reopen a buffered file

SYNOPSIS

fpr • freopen(name,
FILE *fpr;
char *name;
char *mode;
FILE *fp;

DESCRIPTION

mode, fp);
file pointer after re-opening
file name
access mode
current file pointer

Reopens a buffered file, that is, attaches a new file to a
previously used file pointer. This function is useful for
programs which must open several files, but only one at a
time; this avoids using up file pointers unnecessarily. Tbe
previous file is automatically closed before the file
pointer is reused. The name and mode arguments are the same
as those for "fopen".

RETURNS

fpr • NULL if error
& fp if successful

CAUTIONS

The return code should be checked for NULL, the same errors
as defined for "fopen" may occur.

3-19

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

fclose -- close a buffered fiLe

SYNOPSIS

ret. fcLose(fp),
int ret,
FILE *fp,

return code
file pointer for file to be closed

DESCRIPTION

Completes the processing of a file and releases all related
resources. If the file was being written, any data which
has accumulated in the buffer is written to the file, and
the Level l "close" function is called for the associated
file descriptor. The buffer associated with the file bLock
is freed. "felose" is automatically called for all open
files when a program calls the "exit" function (see Section
3.2.41 or when the "~ain" piogram returns, but it is good
programming practice to close your own files explicity. As
the last buffer is not written until "felose" is called,
data may be lost if an output file is not properly closed.

~TURNS

3-20

ret = -1 if error
• 0 if successful

)

Lattice 8086/8088 C eo.piler Portable Library Functions

NAME

getc/getchar -- get character from file

SYNOPSIS

c • getc(fp)1
c • getchar();
int c;
FILE *fp:

DESCRIPTION

next input character or EOF
file pointer

Gets the next character from the indicated file (·stdin·, in
the case of -getchar-). The value EOF (-l) is returned on
end of file or error.

RETURNS

c • character
• EOr if end of file or error

CAUTIONS

These 3re implemented as macros, so beware of side effects.
Remember that for devices (such as the user~s console) input
is buffered on a line basis, that is, the read operation
that fills the buffer does not terminate until a newline is
received. See Section 3.2.3 if direct single character I/O
to the console is needed.

Lattice 8086/8088 C eo.piler Portable Library Functions

NAM!

putc/putchar -- put character to file

SYNOPSIS

r • putc (c, fp),
r • putchar(c)r
int t; same as character sent, or error code
char cr character to be output
FILE *fp; file pointer

DESCRIPTION

Puts the character to the indicated file (·stdout-, in the
case of ·putchar-). The value EOF (-1) is returned on end
of file or error.

RETURNS

r • character sent if ~uccessful
• EOF if error or end of file

CAUTIONS

3-22

These are implemented as macros, so beware of side effects.
Remember that output for devices (such as the user's
console) is buffered on a line' basis, that is, the write
operation that flushes the buffer is not actually performed
until a newline is sent. See Section 3.2.3 if direct single
character I/O to the console is needed.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

fgetc/fputc -- get/put a character

SYNOPSIS

r .. fgetc(fp)I
r • fputc(c, fp);
int r;
char c;
FILE *fp;

DESCRIP'rION

return character or code
character to be sent (-fputc·)
file pointer

These functions get (fgetc) or put (fputc) a single
character to the indicated file. Since they are functions,
they may be used in placed of the corresponding macros (getc
and outc) in the event that a lot of c3l15 are mad'!, and the
prog~ammer is concerned about the memory used up in the
macro expansions. The tradeoff is the usual one: the macro
is more efficient timewise because it saves a function call;
but the fun::tion is more eff icient spacewise since its cod'!
is present in the program only once.

RETURNS

r = character if successful (c, for "fputc·)
= EOF if error Or end of file

~attice 8086/8088 C Compiler Portable ~ibrary Punctions

NAME

unqetc -- push character back on input file

. SYNOPSIS

r • ungetc(c, fp)1
int r,
char CI
FILE *fpl

return character or code
character to be pushed back
file pointer

DESCRIPTION

Pushes back a character to the specified input file. The
character supplied must be the character mo.st recently
obtained by a "qetc· (or "qetchar", in which case fp should
be supplied as ·stdin") invocation.

RETURNS

r • character if successful
= EOF if previous character does not match

3-24

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

gets/fgets -- get a string

SYNOPSIS

p • gets(s) 1
p • fgets(s, n,
char *p;
char *s;
int n;
FILE *fp;

DESCRIPTION

fp) :
returned string pointer
buffer far input string
number of bytes in buffer
file pointer

Gets an input string from a file. The specified file
C"stdin", in the case of "getsA) is read until a newline is
encountered or "n-l" characters have been read (nfgets"
only). Then, ngets" replaces the ne ... line with a null byte,
while "fgets" passes the newline through with a nult byte
appended.

RETURNS

p • NULL if end of file or error
= s if successful

CAUTIONS

For "gets", there is no length parameter, so the input
buffer had better be large enough to accommodate the string.

Lattice 8086/8088 C Compiler portable Library Punctions

NAME

puts/fputs -- put a string

SYNOPSIS

r .. puts(s);
r • fputs (S, fp);
int C1
char *s;
FILE *fp;

return code
output strin9 pointer
file pointer

DESCRIPTION

Puts an output string to a file. Characters from the string
are written to the specified file ("stdout", in the case of
"fputs") until a null byte is encountered. The null byte is
not written, but "puts· appends a newline.

RETURNS

r = EOF if end of file or error

CAUTIONS

3-26

Remember that output to a device (such as the user~s
console) is buffered on a line basis, that is, the write
operation that flushes the buffer is not performed until a
newline is sent. See Section 3.2.3 for an equivalent to
"puts" that sends characters directly (without buffering) to
the user~s console.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

scanf/fscanf/sscanf -- perform formatted input conversions

SYNOPSIS

n" scanf(cs, ••• ptrs •••);
n = fscanf (fp, cs, ••• ptrs ••• >:
n • sscanf (ss, cs, ••• ptrs ••.);
int n; number of input items matched, or EOF
FILE *fp; file pointer ("fscanf" only)
char *551 input string ("sscanf" only)
char -cs; format control string
---- ••• ptrs .•• ; pointers for return of input values

DESCRIPTION

These functions perform formatted input conversions on text
Obtained from (1) the "stdin" file ("scanf"); (2) the
specified file ("fscanf"); or (3) the. specified string
("sscanf"). The control string contains format specifiers
and/or characters to be matched from the input; the list of
pointer arguments specify where the results of the
conversions are to go. Format specifiers are of the form

'-nlX

where (1) the optional ft*" means that the conversion is to
be performed, but the result value not returned; (2). the
optional fIn" is a decimal number specifying a maximum field
width; (3) the optional "1" (the letter ell) is used to
indicate a "long int" or "long float" (i.e., "double")
resillt is desired: and (4) "X" is one of the format type
indicators fr~m the following list:

d decimal inteqer
o octal integer
x hexadecimal integer
h short inteqer
c Single character
s character string
f floating point number

The format type must be specified in 'lower case. White
space characters in the contral string are iqnored;
characters other than format specifiers are expected to
match the next non-white-space characters in the inp~t. The
input is scanned through white space to locate the next
input item in all ca5es exc~pt the tIc" specifieri where the
next input character is returned without this initial scan.
See the Kernighan and Ritchie text for a more detailed
explanation of the formatted input functions.

3-27

Lattice 8086/8088 C ~er . Portable Library Functions

RETURNS

n • number of inp~~ items successfully matched, i.e., for
~hich valid :~xt data was foundl this includes all
single charac~!r items in the control string

• EOF if end of fl_~ or error during scan

CAUTIONS

3-28

All of the input ~alues must be POINTERS to the result
locations. Make llre that the format specifiers match up
properlj with thE result locations. If the assignment
suppression feat~;e (ft*") is used, remember that a pointer
must NOT be suppl~:d for that specifier.

Lattice 8086/8088 C Compi~er Portab~e Library Punctions

NAME

printf/fprintf/sprintf -- generate formatted output

SYNOPSIS

printf (cs, ••• args •••) ;
fprintf(fp, cs, ••• args •••);
n • sprintf(ds, cs, ••• args •••);
int n; number of characters ("sprintf" only)
FIL£ *fpl file pointer (nfprintf")
char *ds; destination string pointer ("sprintf")
char *cs; format control string
---- ••• args ••• ; list of arguments to be formatted

DESCRIPTION ~~~

These functions perform formatted output conversions and
send the resulting text to (l) the "stdout" file ("pr intf") I
(2) the specified file ("fprintfft): or (3) the specified
output str ing ("spr intf"). The control str ing contains
ordinary characters, which are sent without modification to
the appropriate output, and format specifiers of the form .

,-m.plX

where (1) the optional "-" indicates the field is to be left
justif ied (r ight justified is the defaul t); (2) the optional
"mil field is a decimal number specifying a minimum field
width; (3) the optional ".p" field is the character "."
followed by a decimal number specifying the precision of a
floating point image or the maximum number df characters to
be printed from a string; (4) the optional "l" (letter ell)
indicates that the item to be formatted is "long"; and (5)
"X" is. one of the format type indicators from the following
list:

d decimal si9ned integer
u -- decimal unsigned integer
x hexadecimal integer
o octal integer .
s character string
c single character
f fixed decimal floating point
e exponential floating point
9 use "eft or "f", whichever is shorter ,

The format type must be specified in lower case. Characters
in the control string which are not part of a format
specifier are sent to the appropriate output; a , may be
sent by using the sequence ". See the Kernighan and
Ritchie text for a more detailed explanation of the
formatted output functions.

•

Lattice 8086/8088 C COepi1er Portab1e Library Punctions

?ETURNS

n • number of characters placed in "ds· (-sprintf" only),
not including the null byte terminator

:AUTIONS

3-30

For ·sprintf", no check of the size of the output string
area is made, so it had better be large enough to contain
the resulting image. In all cases, make sure that the
format specifiers match up properly with the supplied values
for formatting.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAM!

fseek -- seek to a new file position

SYNOPSIS

ret • fseek(fp,
int retl
FILE *fPl
long POSl
int model

DESCRIPTION

pos, mode);
return code
file pointer
desired file position
offset mode

Seeks to a new pOSition in the specified file. See the
"lseek" function descr iption (Section 3.2.2) for the meaning
of the offset mode argument.

RETURNS

ret • 0 if successful
• -1 if error

CAUTIONS

The file poSition may be affected by text mode translation,
since the translation may change the number of actual. data
bytes read or written.

Lat.tice 8086/8088 C CoIDpiler Portable Library Punctiona

NAME

ftell -- return current file position.

SYNOPSIS

pos = ftell(fp)1
long pes;
FILE *fP1

current file position
file pointer

DESCRIPTION

Returns the current file position, that is, the number of
bytes from the beginning of the file to the byte at which
the next read or write operation will transfer data.

RETURNS

pos current file position (long)

CAUTIONS

3;"32

The file position returned takes account of the buffering
used on the file, so the file position returned is a logical
filp. position rather than the actual position. Note that
text mode translation may cause an incorrect file position
to be re~~rned, since the number of characters in the buffer
is not necessarily the number that will be actually read or
written because of the translation.

"

: '~", '~". ,~ .

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

ferror/feof -- check if error/end of file

SYNOPSIS

ret. feof(fp);
ret - ferror(fp);
int ret;
FILE *fpl

DESCRIPTION

return code
file pointer

These macros generate a non-zero value if the indicated
condition is true for the specified file.

RETURNS

ret • non-zero if error (Rferror") or end of file ("feof")
• zero if no.t

Lattice 8086/8088 C eo.piler Portable Library Punctions

NAME

clrerr -- clear error flag for file

SYNOPSIS

clrerr(fp);
FILE *fp; file pointer

DESCRIPTION

3-34

Clears the error flag for the specified file. Once set, the
flag will remain set, forcing EOF returns for functions on
the file, until this function is called.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

fileno -- return file number for file pointer

SYNOPSIS

fn • f ileno (fp) I
int fn; file number associated with file pointer
FILE *fp; file pointer

DESCRIPTION

Returns the file number, used for the level 1 I/O calls, for
the specified file pointer.

RJ::TURNS

fn file number (file descriptor) for level 1 calls

CAUTIONS

Implemented as a macro.

,

Lattice 8086/8088 C Compiler

NAME

rewind -- rewind a file

SYNOPSIS

rewind (fp)1
FILE *fPI

DESCRIPTION

file pointer

Portable Library Functions

Resets the file posi';ion of the specified file to the
beginning of the file.

CAUTIONS

Implemented as a macro.

3-36

Lattice 8086/8088 C compiler Portable Library Functions

NAME

fflush -- flush output buffer for file

SYNOPSIS

f flush (fp) 7
FILE *fp;

DESCRIPTION

file pointer

Flushes the output buffer of· the specified file, that is,
forces it to be written.

CAUTIONS

This macro must be used only on files which have been opened
for writing or appending.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

setnbf -- force line buffering for file

SYNOPSIS

setnbf(fp);
FILE *fp; file pointer

DESCRIPTION

Changes the buffering mode for the specified file pointer
from the default S12-byte block luode to the line buffering
mode used for devices (including the user~s console). In
this mode, read operations to fill the buffer terminate when
a newline is read, and write operations to flush the buffer
are initiated whenever a newline is received.

CAUTIONS

1-38

Altho~gh the line-buffered mode may be used without
diff.iculty on files, the standard buffering mode is
generally more efficient, ~o this function should only be
used for those "files· which are definitely known to be
devices.

Lattice 8086/8088 C Compi1er Portab1e Library Punctions

3.2.2 Levell I/O Functions

These functions provide a basic, low-level 1/0 interface
which allows a fi le to be viewed as a stream of randomly
addressable bytes. Operations are performed on the file usin9
the functions described in this section; the file is specified by
a "file number" or "file descriptor," such as

int fd;

which is returned by "open" or "creat" when the file is opened.
Data may be read or written in blocks of any size, from a sin91e
byte to as much as several kilobytes in a single operation •. The
concept of a file position is key: the file position is a long
.integer, such as

10n9 fpos:

which specifies the position of a byte in the file as the number
of bytes from the beginning of the file to that particular byte.
Thus, tne first byte in the file is at file position OL. Two
distinct file positions are maintained internally by the level 1
functions. The current file position is the point at which data
transfers take place between the program and the file: it is set
to zero when the file is opened, and is advanced by the number of
bytes read or written ~sing the "read" and "write" functions.
The end of file position is si~ply the total number of bytes
contained in the file1 it is changed only by w~ite operations
which increase the size of the file. The current file position
can be set to any va.lue from zero up to and including the end of
file position using the "lseek" function, but it is illegal to
seek to a position beyond the end of fi leo Thus, to append data
to a file, the current file position is set to the end of the
file using "lseek"~efore any ~rite operations are performed.
When data is read from near the end of file, as much of the
requested cOunt as can be satisfied is returned; zero is returned
for attempts to read when the file position is at the end of
fi leo

The level 1 functions operate in one of two mutually
excl,:sive modes: the text or translated mode, and the binary or
untranslated mode. On some svstems the two modes are identicat.
The desired mode is speCified-when the fi.le los opened or createli,
and remains in effect until the file is closed. The two modes
are provided so that any required translation of text file end of
line sp.quences ~an be performed automatically even by the lowest
level operations ("read" and "write" functions), while at the
same time a program may disable the translation, as needed, when
working with binary files. The problem is that not all systems
use the standard C end of line delimiter, the newline (,n"): the
translated mode converts the newline to whatever the local
delimiter may be. Since this may involve expansion or
contra:tion of the number of bytes read or written, the count
returned by ·~ead· or "write" may not correctly reflect the
actual change in the file position. In the binary mod~, this

Lattice 8086/8088 C Compiler Portable Library Functions

problem does not occur since no translation is performed.

Although the level ~ functions are primarily useful for
working with files, they can be used to read and write data to
jevices (including the user's terminal), as well. The exact
:"lature of the I/O performed is system dependent, but it is
~enerally unbuffered and may have different effects depending on
~hether the translated or untranslated mode is in effect. The
"lseek" function has no effect on devices, and usually returns an
~rror status. Direct I/O to the user's terminal may also be
?erformed using the functions descr ibed in Section 3.2.3.

The actual I/O operations on disk files are buffered, but at
~ level that is generally transparent to the programmer. The
::)uffering makes close operations a necessity for files that are
::1odified. On some systems, the buffers used for the level 1
':unctions are allocated using "getmem", which restr iets the use
~f the memory allocation functions "rstmem" and "rbrk". Check
:he implementation section of the manual to determine whether
:his restriction applies, for information about the translated
and binary modes, and for the details of device I/O on this
)articular system.

3-40

Lattice 8086/8088 C eoapiler Portable Library Punctions

NAME

open -- open a file

SYNOPSIS

file • open(name,
int file:
char * name;
int rWlllode;

DESCRIPTION

rwmode) ;
file numbe.r or error code
file name
read/write mode, where O .. read, l-write,
2=readjwrite, and bit 15 indicates the

, desired mode (text-O, binary"l)

Opens a file for access using the level 1 I/O functions.
The file name must conform to local naming conventions. The
mode word indicate~ the type of I/O which will be performed
on the file. The low order bits specify whether read or
write operations (or both) are to be allowed, as follows:

o a read only access
1 • write only access
2 a read/write access

If oit 15 (the Ox8000 bit) of the mode word is set, then all
operations will be performed without text file translation
(if such translation is normally performed foc the system).
If this bit'is reset (the default mode used by the level 2
functions), so~e trans13tion of data may occur, the exact
nature of which is system dependent. The current file
position is set to zero if the file i.s successful ty opened.
On most systems, no more than 16 file~ (including any which
are bein9 accessed through the level 2 functions, such as
"stdin,i, "stdout", etc.) can be open at the same time.
Closing the file releases the file number for use with some
other file.

RETURNS

fil~ .. file number to access file, if successful
'" -1 if error

CAU'rIONS

Check. the return value for error. ·open· can be used only
on existin) files; use "cra~t" to access ,a new file.

Lattice 8086/8088 C Campi~er Portable Library Functions

NAME

creat -- create a new file

SYNOPSIS

file = creat(name,
int file;
char *name:
int pmode:

pmode) :
file number or error code
file name
access privilege mode bits: bit 15 has
same meaning as for "open"

DESCRIPTION

Creates a new file with the specified name and prepares it
for access via the level 1 I/O functions. The file name
must conform to local naming conventions. Creating a device
is equivalent to opening it. The access privilege mode bits
are system dependent and on some systems may be largely
ignored; however, bit 15 is interpreted in the same way as
for "open": if set, operations are performed on the file
without translatiof\. If the file already exists, its
contents are discarded. The current fill!! pOSition and the
end of file are both zero (indicating an empty file) if. the
function is successful.

~TURNS

filp. = file number to access file, if successful
• -1 if erroc

CAUTIONS

3-42

Check the return value for error. Rcreat" should be used
only on fiies which ace being completely rewritten, since
any existLng data is lost.

Lattice 8086/8088 C Coapiler portable Library Functions

NAME

unlink -- remove file name from file system

SYNOPSIS

ret • unlink (name) ;
int ret;
char *name;

DESCRIPTION

return code: 0 if successful
name of file to be removed

Removes the speci f ied file from the file system. The f i l.e
name must conform to local naming conventions. The
specified file must not be currently open. All data in the
fi le is lost.

RETURNS

ret = 0 if successful
• -1 if error

CAUTIONS

Should be used with care, since the file, once removed, is
generally irretrievable.

Lattice 8086/8088 C Coapi1er Portable Library Punctions

NAME

read -- read data from file

SYNOPSIS

status • read(file,
int status;
int file;
char *buffer;
int lengt.h;

buffer, length)l
status code or actual length
file number for file
input buffer
number of bytes requested

DESCRIPTION

aeads the next set of bytes from a fil~. The return count
is always equal to the number of bytes placed in the buffer
and will never exceed the "length" parameter, except in the
case of an error, where -1 is returned. The file position
is advanced accordingly.

RETURNS

status • 0 if end of file
= -1 if error occurred
.. number of bytes actually read, otherwise

CAUTIONS

3-44

If fewer than the requested ~umber of bytes cemain between
the current file· position and the end of file, only that
number is transferred and r~turned. The number of bytes by
which the file position was advanced may not equal the
number of bytes transferred if text mode translation
occurred.

\

/

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

write -- write data to file

SYNOPSIS

status • write(flle,
int status;
int fil~;
char *buffer;
int length;

DESCRIPTION

buffer, length);
status code or actual length
file number
output buffer
number of bytes in buffer

Writes the next set of bytes to a file. The return count is
equal to the number of bytes written, unless an ereor
occurred. The file position is advanced accordingly.

RETURNS

status • -1 if error
• number of bytes actually written

CAUTIONS

The number of bytes written may be less than the supplied
count if a phySical end of file limitation was encountered.
If text mode translation occurs, the returned count may be
greater than the supplied count due to the addition of
characters during translation. The returned count is always
the same as the number of characters by which the Eile
position was advanced.

Lattice 8086/8088 C Ca.pl~er portable Library Functions

NAME

lseek -- seek to specified file position

SYNOPSIS

pos = lseek(file,
long pos;
int file;
long offset;
int mode;

offset, mode);
returned file position or error code
file number for file
desired position
offset mode:
o • relative to beginning of file
1 • relative to current file position
2 = relative to end of file

DESCRIPTION

Ch'nges the current file position to a new pOSition in the
file. The offset is specified as a long int and is added to
the current position (mode 1) or to the logical end of file
(mode 2). Not all implementations support offset mode 2.

RETURNS

pos = -lL if error occurred
= new file position if successful

CAUTIONS

3-4"

The "offset" parameter MUST be a "long" quantity, so don~t
forget to indicate a "long" constant when supplying a zero.
In most cases, the return code should be checked for error,
which indicates that an invalid file position (beyond the
end of file) was sp~cified. Note that the current file
position may be obtained by

long cpos, lseek()1

cpos a lseek(fi1e, OL, 1);

which will never return an error code.

-"

~attice 8086/8088 C eoapiler Portable Library Functions

NAME

close -- close a file

SYNOPSIS

status • close(file};
int status;
int file;

DESCRIPTION

status code: 0 if successful
file number

Closes a file and frees the file number for use in accessing
another file. Any buffers allocated when the file was
opened are released.

RETURNS

status = a if successful
• -1 if error

CAUTIONS

This function MUST be called if the file was modified;
otherwise, the end of file and the actual data on disk may
not be updated properly.

Lattice 8086/8088 C Coapiler Portable Library Punctions

3.2.3 Direct Console I/O Functions

These functions provide a direct I/O interface to the user~s
console. Because there is no buffering ,of characters, the
functions are particularly useful for applicati6ns which use
cursor positioning to define special screen formats or which
implement special single character responses to program prompts.
In order to distinguish these functions from the corresponding
level 2 functions, different names are used for them. This
allows programs to make use of both kinds of I/O, if desired.
Programs which perform console I/O exclusively can use the
console I/O header file (called "conio.h" on most systems) which
defines several of the level 2 functions in terms of the direct
c'onsole functions, a feature which is most convenient for
programs written for other C environments where I/O to the user~s
terminal is always unbuffered. The equivalencies defined by
"conio.h" are

getchar = getch
putchar z putch
gets .. cgets
puts .. cputs
scanf = cscanf
printf c cprintf

The functions on the. right si.de of the equals si.gns are described
in this section.

A couple of system dependencies arise in connection with'the
direct console functions. Whether or not characters are echOed
as they are input is system dependent but there is usually a
mechanism to enable or disable the echo. On some systems the
characters that are typed when the program is not actually
waiting for input are save~~ and then presented to the "getch"
function when it requests input. Often only one character is
3aved, but some systems may save none whi le others retain
several. The presence of "type-ahead," as this feature is
usually called, rarely affect.s t.he program itself, alt.hough its
absence may be a source of irritation to users ..,ho have to
communicate wi.th the program. Check the implementation section
of the manual for more information about console t/O.

3-48

Lattice 8086/8088 C COmpiler Portable Library Punctions

NAME

getch/putch -- get/put character directly from/to console

SYNOPSIS

c • getch () ;
putch (c) ;
int c;

DESCRIPTION

character received/sent to console

These functions get ("getch") or put ("putch") single
characters from or to the user~s console.

RETURNS

c c character received (agetch-)

CAUTIONS

There is no notion of an end of file or error status, but
some systems may implement EOF (~l) as an error return.

Lattice 8086/8088 C Co~iler Portable Library Functions

NAME

ungetch

SYNOPSIS

push character back to console

r • ungetch (c) ;
int r; return code
char c; characeer to be pushed back

DESCRIPTION

Pushes the indicated character back on the console. Only a
single level of pushback is allowed. The effect is to cause
"getchft to return the pushed-back character next time it is
called.

:U:TURNS

3-50

r • EOF if a character has already been pushed back
• c if successful

Lattice 8086/8088 C Compiler Portable Library !'unctiona.

NAME

cgets -- get string directly from console

SYNOPSIS

p • cgets(s):
char .p;
char *3;

DESCRIPTION

returned string pointer
input string buffer

Gets a string directly from the user"s console. Characters
arl! input until a system-dependent terminator (usually CR,
OxOD) is encountered. On some systems, the first byte of
·s· must be initialized to contain some kind of byte count
indicating the size of the buffer.

RETURNS

p • pointer to string received, which mayor may not
(depending on the system) include the terminating carriage
return

CAUTIONS

Chec~ the implementation section of the manual for details
of the operation of this function.

~attice 8086/8088 C eo.piler Portable Library Punctions

cputs -- put string directly to console

;YNOPSIS

cputs(S):
char *s: string to be output

:=:SCRIPTION

Puts a string directly to the user's console. On some
systems an additional character (usually CR, OxOD) is
appended.

:.~UTIONS

;-52

Check the implementation section of this manual for details
of the operation of this function.

/)

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

cscanf/cprintf-- formatted I/O directly to console

SYNOPSIS

same as "scanf" and "printf"

DESCRIPTION

These functions perform the equivalent of ·scanf" and
"printER, but characters are sent directly to or received
directly from the console.

RETURNS

n • number of input items matched ("cscanf")

CAUTIONS

"cscanf" performs its I/O directly using "getch", so there
are none of the usual input conveniences such as back
spacing or line deletion. If "cgets· provides some of these
conveniences, it may be b~tter to call "cgets" and then use
"sscanf" to decode the resulting string.

Lattice 8086/8088 C COmpiler Portable Library Punctions

3.2.4 program Exit Functions

The program entry mechanism, that is, the means by which the
~ain function gains control, is sufficiently system dependent
:hat it must be described in the implementation section of this
7.anual. Program· exit, however, is somewhat more general,
~lthough not without its own implementation dependencies.

The simplest way to terminate execution of a C program is
~or the "main" function to execute a ·~eturn" statement, or -­
;ven simpler -- to "drop through" its terminating brac~. In many
;ases, however, a more flexible program exit capability is
·:eeded; this is provided by the "exit" and II exit" functions
:escribed in this section. They offer the advantage of allowing
!ny function -- not just "main" -- to cause termination of the
;rogram, and in some systems, they allow information to be passed
:0 other programs.

3-54

Lattice 8086/8088 C Ca.piler Portable Library Functions

NAME

exit -- terminate execution of program and close files

SYNOPSIS

exit(errcode[,message]);
int errcodel exit error code
char *message; exit message (optional)

DESCRIPTION

Terminates execution of the current program, but first
closes all o~tput files which are currently open through the
level 2 I/O functions. The error code is norm~lly set to
zero to indicate no error, and to anon-zero value if some
kind of error exit was ta~en. The optional exit message may
not be implemented on some systems.

CAUTIONS

Note that "exit" only closes those files which are being
accessed using the level 2 functions. Files accessed using
the level 1 functions are NOT automatically closed.

Lattice 8086/8088 C eo.piler Portable Library Punctions

NAME

_exit -- terminate execution immediately

SYNOPSIS

exit(errcode [,message]);
Tnt errcode; exit error code
char *message; exit message (optional)

DESCRIPTION

Terminates execution of the current program immediately,
without checking for open files. The arguments are the same
as for "exit" (which calls " exit" after checking the level
2 files). -

" I
/

Lattice 8086/8088 C Coapiler Portable Library Functions

3.3 Utility Functions and Macros

The portable library provides a variety of additional
functions useful for many of the common data manipulations
performed by C programs. Three utilities provide fast memory
transfers; a set of macros allow quick testing of character
types; and several utility functions facilitate character string
handling. Almost none of these functions are system dependent.

3.3.1 Memory Utilities

The three utility functions described here are usually
implemented in machine language for maximum efficiency. These
are the equivalent of the almost univ~rsal FILL and MOVE
subroutines defined in other languages.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

setmem -- initialize memory to specified ·char· value

SYNOPSIS

setmem(p, n, c):
char .p:
unsigned n:
char c;

base of memory to be initialized
number of bytes to be initialized
initialization value

;)ESCRIPTION

Sets the specified number of bytes of memory to the
specified byte value. On many systems a hardware "block
fill" instruction is used to perform the initialization.
This function is useful for the initialization of "auto
char" arrays.

;AUTIONS

3-58

Some systems may distinguish between ·char *" pointers and
pointers of other types, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the "pM argument.

,/

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

movmem -- move a block of memory

SYNOPSIS

movmem(s, d, n);
char *s;
char *d;
unsigned n;

DESCRIPTION

source memory block
destination memory block
number of bytes to be transferred

Moves memory from one location to another. The function
checks the relative locations of source and destination
blockS, and performs the move in the order necessary to
preserve the data in the event of overlap. On many systems
a hardware "block move" instruction is used to perform the
transfer.

CAUTIONS

Some systems may distinguish between ·char *" pointers and
pointers of other types, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the "s" and "d" arguments.

Lattice 8086/8088 C Co~iler Portable Library Functions

NAME

repmem -- replicate values through memory

SYNOPSIS

repmem(s, v, lv,
=har *s~
char *v:
int lv:
int nv~

nv):
memory to be initialized
template of values to be replicated
number of bytes in template
number of templates to be replicated

DESCRIPTION

Replicates a set of values throughout a block of. memory.
This function is a generalized version of "setmem", and can
be used to initialize arrays of items other than "char-.
Note that the replication count indicates the number of
copies of MV· which are to be made, not the total number of
bytes to be initialized.

CAUTIONS

3-60

Some systems may distinguish between ·char *" pointers and
other types of pointers, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the "d" and "v" arguments.

/

Lattice 8086/8088 C Coapiler Portable Library Functions

3.3.2 Character Type Macros

The character type header file, called ·ctype.h- on most
systems, defines several macros which are useful in the analysis
of text data. Most allow the programmer to determine quickly the
type of a character, i.e., whether it is alphabetic, numeric,
punctuation, etc. These macros refer to an external array called
" ctype· which is indexed by the character itself, so they are
generally much faster than functions which check the character
against a range or di$cret~ list of values. Although ASCII is
defined as a 7-bit code, the" ctype" array is defined to be 257
bytes long so that valid results are obtained for any character
value. This means that a character with the value Oxbl, for
instance, will be classified the same as a character with the
value Ox3l. Programs who wish to distinguish between these
values must test for the OxBO bit before using one of these
macros. Note that "_ctype" is actually indexed by the character
value plus one; this allows th~ $tandard EOF value (-l) to be
tested in a macro without yielding a nonsense result. ~OF yields
a zero res~lt for any of the macros: it is not defined as any of
the character types.

Here are the macros defined in the charact~r type header
file "ctype.h". Note that many of these will evaluate argument
expressions more than once, so beware of using expressions with
side effects, such as function calls or increment or decrement
operators. Don·t forget to include "ctype.h" if you use any of
these macros; otherwise, the compiler will generate a reference
to a functil)n of the same name.

isalpha(c) non-zero if c is alphabetic, 0 if not
isupper (c) non-zero if c is upper case, 0 if not
islower(c) non-zero if c is Lower case, 0 if not
isdigit(c} non-zero if c is digit, 0 if not
i3Xdig i.t (c) non-zero if c is a hexadecimal dig i t, 0

if not (0-9, A-F, a-f)
isspace(c) non-zero if c is white space, 0 if not
ispunct(c) non-zero if c is punctuation, 0 if not
i3alnum(c) non-zero if c is alphabetic or digit
isprint(c) non-zero if c is printable (including

blank)
isgraph(c) non-zero if c is ,)raphic (excluding

blan<)
iscntrl(c) non-zero if c is cont~ol character
isascii(c) non-zeco if c is ASCII (O-127)

'for iscsym(c) non-zero if valid character C
identifier

isesymf(c) non-zero if valid first character for C
identifier

toupper (c) converts c to upper case, if lower case
tolower (c) converts c to lower case, if upper case

Note that the last two macros generate the vahlP' of "c· unchanged
if i tdoes not qualify for the convo!csion.

Lattice 8086/8088 C Compiler portable Library Functions

3.3.3 String Utility Functions

The portable library provides several functions to perforlll
many of the most common str ing manipulations. These functions
all work with sequences of characters terminated by a null (zero)
byte, which is the C definition of a character string. A special
naming convention is used, which works as follows. The first two
characters of a string function are always "st", while the third
character indicates the type of the return value frolll the
function: .

"stc· indicates the function returns an Kinta count
"stp" indicates the function returns a character pointer
"sts" indicates the function returns an Kinta status value

Thus, the nallle of the function shows at a glance the type ~f
value it returns.

For compatibility with other C implementations, four of the
most common functions are provided with "str" names; these are
the functions mentioned in Kernighan and Rit~hie: "strlen",
"strcpy", "strcat", and "strCmp".

,/

Lattice 8086/8088 C Coapiler Portable Library Functions

NAME

strlenjstclen -- measure length of string

SYNOPSIS

length • strlen(s);
length • stclen(s);
int length; number of bytes in "s" (before null)

DESCiUPTION

Counts the number of bytes in ·s· before the null
terminator. The terminator itself is NOT included in the
count.

RETURNS

length • n~mber of bytes in string before null byte

Lattice 8086/8088 C Coapiler Portable Library Functions

NAME

strcpy/stccpy -- copy one string to another

SYNOPSIS

strcpy(to, from);
actual = stccpy(to,
int actual;

char *to;
char *from;
int length;

DESCRIPTION

from, length);
actual number of characters moved
(" stccpyft only)
destination string pointer
source string pointer
s izeof (to) (ft s tccpy" only)

Moves the null-termiriated source string to the destination
string. ftstrcpy· does not get a length parameter, so all of
the source string is copied unconditionally. For ·stccpy·,
if the source is too long Eor the destination, its rightmost
characters are not moved. The destin'ation str ing is abo/ays
n~ll-terminated.

RETURNS

actual = actual number of characters moved, including the
null terminator ("stccpy· only)

CAUTIONS

As noted above, "strcpy· does not get a length parameter, so
the destination string had b~tter be large enough. Use
·stccpy· if this causes problems.

)

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

strcat -- concatenate strings

SYNOPSIS

strcat(to, from);
char *to;
char *from;

DESCRIPTION

string to be concatenated to
string to be added

Concatenates "from" to the end of "to". The result is
always null-terminated.

CAUTIONS

No length parameter is present, so the destination strin9
had better be large enough to receive the combined result.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

strcmp/stsemp--- compare ~wo strings

SYNOPSIS

statuS • strcmp(s, t);
status • stscmp(s, t);
int status;

char *5;
char *t;

DESCRIPTION

:esu1t of comparison
>0 if s>t, 0 if s.-t, <0 if s<t
~irst string to compare
second string to compare

Compares two null-termi~ated strings, byte by byte, and
returns an "int" stat~s in~icating the result of the
comparison. If zero, the strings are identical, up to and
including the terminatl~g byte. If non-zero, the status
indicates the result ~f :~e comparison of the first pair of
bytes which were not equa~

RETURNS

status. 0 if strings matcn
< 0 1f first st~in~ less :han second string
> 0 if flcst string greater than second string

CAU'l'IONS

The result of the comparison may depend on whether
character!'; are considere:! signed, if any of the characters
are greater t~an 127.

)

Lattice 8086/8088 C Coapiler Portable Library Punctions

NAME

stcu_d -- convert unsigned integer to decimal string

SYNOPSIS

length = stcu d(out, in, outlen)i
int length; - output str ing length (excluding null)
char *out; output string
unsigned in; input value
int outleni sizeof{out)

DESCRIPTION

Converts an unsigned integer into a string of decimal digits
terminated with a null byte. Leading zeroes are not copied
to the output str ing, and if the input value is zero, o.nly a
single '0' character is produced.

RETURNS

length", number of characters placed in output string, not
including the null terminator

CAUTIONS

If the output string is too small f~r the result, only the
rightmost digits are returned.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

stci_d -- convert signed integer to decimal string

SYNOPSIS

length = stei d(out, in, outlen);
int length; - output string length (eKcluding null)
char *out; output string
int in; input value
int outlen; sizeof (out)

DESCRIPTION

Converts an integer into a string of decimal digits
terminated with a null byte. If the integer is negative,
the output string is preceded by a "-". Leading zeroes are
not copied to the output string.

tU:TURNS

length • number of characters placed in output string, not
including the null terminator

'~l fI,",M'S I-~
':AUTIONS \"" 0 - "I q

• ~ D - cr'1'
If the output string is too small f.or the result, the
returned length may be zero, or a partial string may be
(eturned.

/

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stch_i -- convert hexadecimal string to integer

SYNOPSIS

count = stch i(p, r) 1
int count; -
char *p;
int *0

DESCRIPTION

number of characters scanned
input string
result il'lteger

Performs an anchored scan of the input string to convert a
hexadecimal value into an integer. The scan terminates when
a non-hex character is found. Valid hex characters are 0-9,
A-F, and a-f.

RETURNS

count· 0 if input string does not begin with a hex digit
• number of characters scanned

CAUTIONS

No check for overflow is made during the processing_

Lattice 8086/8088 C Ca.piler Portable Library Functions

NAME

stcd_i -- convert decimal string to integer

SYNOPSIS

count = stcd i(p,
int countl -
char *PI
int *r;

r) I
number of charact~ts scanned
input string
result integer

DESCRIPTION

Performs an anchored scan of the input string to convert a
decimal value into an integer. The scan terminates when a
non-decimal character is found. Valid decimal characters
are 0-9. The first character may be ~+~ or ~ ~

RETURNS

count = 0 if input string does not begin with a decimal
digit

• number of characters scanned

CAU'L'IONS

No check for overflow is made during proce~sing.

3-70

)

Lattice 8086/8088 C Compiler Portable Library FUnctions

NAME

stpblk -- skip blanks (white space)

SYNOPSIS

q • stpblk (p) :
char *q:
char *p:

DESCRIPTION

updated string pointer
initial string pointer

Advances the string pointer past white space characters.

RETURNS

q • updated string pointer (advanced past white space)

CAUTIONS

Must oe declared "char * .. , as the "stp· prefiK indicates.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stpsym -- get a symbol from a string

SYNOPSIS

p • stpsym(s, sym,
char *Pl
char *s;
char *sym;
int symlen;

symlen);
points to next character in ·s·
input string
output string
sizeof(sym)

DESCRIPTION

Breaks out the next symbol from the input string. The first
character of the symbol must be alphab~tic (upper or lower
case), and the remaining characters must be alphanumeric.
Note that the pointer is NOT advanced past any initial white
space in the input string. The output string is the null­
ter,uinated symbol..

RETURNS

p = pointer to next character (after symbol) in input string

CAUTIONS

3-72

Must be declared ·char .", as the ·stp· preEix indicates.
If no valid symbol characters are found, "pM will equal ·s·,
and "Slm" will contain an initial null ~yte.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stptok -- get a token from a string

SYNOPSIS

P E stptok(s,
char *p:
char *s:
char *tok:
int toklen;
char *brk:

DESCRIPTION

tok, toklen, brlt);
points to next char in "s·
input string
output string
sizeof (tok)
break string

Breaks out the next token from the input string. The token
consists of all characters in "s· up to but not including
the first character that is in the break string. In other
word!';, the break stringd~fines a list of characters which
cannot be included in a token. Note that the pOinter is NOT
advanced past any initial white space characters in the
input string. The output string is the null-terminated
token.

RETURNS

p = pointer to next character (after token) in input string

CAUUONS

Must be declared ·char *", as the ·stp" prefix indicates.
If no valid token characters are found, "p. will equal "s·,
and "tok ft will contain an initial null byte.

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

stpchr -- find specific character in string

SYNOPSIS

p = stpchr(s,
char *p:
char *s:
char c:

c) :
points to "c" in "s" (or h NULL)
points to string being scanned
character to be located

DESCRIPTION

Scans the specified string to find the first occurrence of
the specified character. If the null terminator byte is hit
first, a NULL pointer is returned.

RETURNS

p = NULL if "c" not found in "s"
= pointer to first "c" found in "s" (from left)

CAU'rIONS

Must be declared "char;" as the "stp" prefix indicates.

)-74

/

Lattice 8086/8088 C COilpiler Portable Library Functions

NAME

stpbrk -- find break character in string

SYNOPSIS

p = stpbrk(s, b);
char *p;
char *s;
char *b;

DESCRIP'rION

points to element of "b" in ·s·
points to string being scanned
points to break character string

Scan$ the specified string to find the first occurrence of a
character from the break string "b". In other words, "b" is
a null-terminated list of characters being sought. 'tf the
terminator bjte for "5" is hit first, a NULL pointer is
returned.

RETURNS

p = NULL if no element of "b" is found in "sft
• pointer to first element of "b" in "5" (from left)

CAu'rIONS

Must be declared "cnar *ft , as the "stp" prefix indicates.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

steis/steisn -- measure span of a,character set

SYNOPSIS

length = stcis(s, b),
length = stcisn(s, b);
int length,
char *s;
char *b;

span length in bytes
pOints to string being scanned
points to character set string

DESCRIPTION

These functions compute the number of characters at the
beginning (left) of "s" that co~e from a specified character
set, For ·stcis·, the character set consi~t~ of all
characters in "b", while for "steisn", it consists of all
characters NOT in "b",

RETURNS

3-76

length = number of characters from the specified set which
appear at the beginning (left) of "s"

.
~

./

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME

stcarg -- get an argument

SYNOPSIS

length = stcarg(s,
int length;
char *s;
char *b;

DESCRIPTION

b) I
number of bytes in argument
text string pointer
break string pointer

Scans the text string until one of the break characters is
found or until the text str ing ends (as indicated by a null
character). While scanning, the function skips over partial
strings enclosed in single or double quotes, and the
backslash is recognized as an escape character.

RETURNS

length = number of bytes (in ·s") in argument
= 0 if not found

,

~attice 8086/8088 C Compiler Portable Library Punctions

NAME

stcpm -- pattern match (unanchored)

SYNOPSIS

length • stcpm(s, p, q);
int length;
char *SI
char "'p;
char **q;

length of matching string
string being scanned
pattl!rn string
points to matched string if found

DESCRIPTION

Scans the specified string to find the first substring that
matches the specified pattern. The pattern is specified in
a simple form of regular expression notation, where

? matches any c:taracter
s* matches zero or more occurrences of "s"
s+ matches one or more occurrences of os·

The backslash is used as an escape character (to match one
of the special cha~acters ?, *, or +). The scan is not
anchored, that is, if a matching string is not found at the
first position of ·s·, the next position is tried, and so
on. A pointer to the first matching substring is returned
at "*q".

R£TURNS

length = 0 if no match
= length of matchin; substring, if successful

CAUTIONS

3-78

Note that the third argument must be a pointer to a
character pOinter, since this function really returns two
values: a pointer to and the l~ngth of the first matching
substring.

"

Lattice 8086/8088 C Compiler Portable Library Punctions

NAKE

stcpma -- pattern match (anchored)

SYNOPSIS

length .. stcpma(s,
int length:
char *s:
char *p:

DESCRIPTION

p) :
length of matching string
string being scanned
pattern string

Scans the specified string to determine if it begins with a
l substring that matches the specified pattern. See the

description of "stcpm" for a specification of the pattern
format.

RETURNS

length .. 0 if no match
.. length of matching substring if successful

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stspfp -- parse file pattern

SYNOPSIS

error • stspfp(p, n);
int error;
char *p;
int n[16);

return code: -1 if error
file name string
node index array

DESCRIPTION

Parses a file name patt~rn which consists of node names
separated by slashes. Each slash is replaced by a null
byte, and the beginning index of that node is placed in the
index array. For example, the pattern "/abc/de/f" has three
nodes, and their indexes are 1 for "abc·, 5 for "de", and 8
for "f". Note that the leading slash, if present, is
skipped. Note also that a slash that is part of a node name
(usu~lly un·.dse) mllst be preceded by a backslash. The
l3st ~ntry in the node array lin" is set to -1 (in the
example above, this causes U n [3)" to be -1).

RETURNS

error ~ 0 if successful
= -1 if too many nodes or other error

3-80

/

Lattice 8086/8088 C Coepiler Error Messages

APPENDIX A Error Messages

This appendix describes the various messages produced by the
first and second phases of the compiler. Error messages which
begin with the text "CXERR" are compiler errors which are
described in Appendix 8.

A.l Unnumbered Messages

These messages describe error conditions in the environment,
rather than errors in the source file due to improper language
specifications.

Can#t create object file

The second phase of the compiler was unable to create the
.OBJ file. This ~rror usually result$ from a full dir~ctory
on the output disK.

Can#t create quad file

The first phase of the compiler was unable to create the .0
fi le. This error usually res'llts from a fllll directory on
the output disk.

Can#t open quad file

The second phase of the compiler was unable to open the .0
file specified on the LC2 command, usually because it did
not exist on the specified (or currently logged-in) diSk.

Can~t open source file

The f i rat phase of the compi ler was unable to open the .C
file specified on the LCl command, usually because it did
not exist on the specified (or currently logged-in) diSK.

File name missin~

A file name was not specified on the LCl or LC2 command.

Intermediate file ~rror

The first phas~ of the compiler encountered an eccor when
writing to the .0 file. This error usually results from an
out-of-space condition on the output ~isk.

Invalid command line option .
An invalid command line option (beginning with a R_R) was
specified on either the LCt or the LC2 command. See
Sections 1.1.1 and 1.1.2 for the valid command lirte options.
The option is ignored, but the compilation is not otherwise
affected. In otner words, this error is not fatal.

Lattice 8086/8088 C Compiler -Error Messages

Not enough memory

This message is generated when either phase of the compiler
uses up all the available working memory. The only cure for
this error is either to increase the available memory on the
system, or (if the maKimum is already available) reduce the
size and complexity of the source file. Particularly large
functions will generate this error regardless of how much
memory is available: break the task into smallp.[functions
if this occurs.

Object file error

The second phase of the compiler encountered an error when
writing to the .OB.J file. This error usually resu.lts from
an out-of-space condition on the output disk.

A.2 Numbered error messages

These error messages describe syntax or specification errors
in the source file; they are generated by' the first phase of the
compiler. A few are warning messages that simply remark on
marginally acceptable con:;tructioJls but do not prevent the
creatioJl of the quad file. See Section 1.3.3 for more
information about error processing.

1 This error is generated by a variety of conditions in
conne~tion with pre-processor commands, including specifying
an unrecognized 'command, failure to include whit~ space
between command elements, or use of an illegal pre-processor
symb.:ll (note that '$' is valLi for ordinary identifiers but
not for pre-processor symbols).

2 The end of an input file was encountered when the compil~r
expected more data. May occur on an ~include file or the
original source filp.. tn many cases, correction of a
previous error will eliminate this one.

3 The file name specified on a • include command was not found
on the currently logged-in dis~.

4 An unrecognized element was encounterp.d i~ the input flle
that eo~ld not be classified a$ any of the valid leKical
constructs (s~ch as an idp.ntif.ier or one of the valiti
expression operatorc;). May occur if control characters, or
other garbage is detected in the source file. May also
occur if a pre-processor commdnd is specified with the .,.
not in the first position of an input line.

S A pre-processor Idefine macro was used with the wrong number
of arguments.

I) Expansion of a Idefine macro causp.d the compil'!r"s line
buffer to overflow. May occur if moee than one lengthy

A-2

Lattice 8086/8088 C Compiler Error Messages

m.cro appears on a single input line.

7 The maximum extent of linclude file nesting was exceeded1
the current version of the compiler supports I include
nesting to a maximum depth of 4.

8 An invalid arithmetic or pointer conversion was specified.
Usually results when an attempt is made to convert something
into an array, a structure, or a function.

9 The named identifier was undefined in the context in which
it appeared, that is, it had not been previously declared.
This message is only generated once: subsequent encounters
with th.e identifier assume that it is of type "int" (which
may cause other errors).

10 An error was detected in the expression following the "[­
character (preSumably a subscr ipt elCpression). May occur if
the expression in brackets is null (not present) •

11 The length of a string constant exceeded the maximum allowed
by the compil~r (256 bytes), Will occur .i f the closing" is
o~ltted in specifying the string,

12 The expression preceding the "," or "->" structure reference
operator was not recognizable by the compiler as a sttucture
or pointer to a structure. May occur for constructions
which are accepted by other compilers: see Section 2.1.

13 An identifier indicatin; the desired aggregate member was
not found following the "," or "->" operator,

14 The indicated identifier was not a member of the structure
or union to wttich the "," or "->" referred, May occur for
constructions which are accepted by other compilers; see
Seo::tion 2.1.

15 The identifier preceding the "C" function call operator was
not implicitly or explicitly declared as a function.

16 A function argument expression specified following the" ("
function c~ll operator was invalid, Hay occur if an
argument expression was omitted,

17 Our ing expression eval'Htiol'l, the end of an expression was
encountered but more than one operand was still a~aitin9
evaluation, May occur if an expres~ion contained an
incorrectly specified operation,

la Our ing expression evaluation, the end of an expression waS
encountered but an op~rator was still ~ending evaluation.
May occur if an operand was omitted for a binary operation,

Lattice 8086/8088 C Compile: Error llessages

19 The numbers of oper._ng and closing parentheses in an
expression were not e~~al. May occur if a macro was poorly
specified or imprope:~y used, but is generally due to the
obvious error.

20 An expression which :id not evaluate to a constant was
encountered in a cont::tt which required a constant result.
May occur if one of :~e operators not valid for constant
expressions was preser.: (see Kernighan and Ritchie, Appendix
A, p. 211).

21 An identifier declare: as a structure, union, or function
was encountered in a~ expression without being properly
qualified (by a str_cture reference or function call
operatot}.

22 (non-fatal warning) An ~dentifier declared as a structute or
union appeared as a L:.-:.::tion argument without the preceding
,operator. Express.;n evaluatlon continues with the'
assumed (i.e., a pointe: to the aggregate is generated).

23 The conditional operat:= was used erioneous1y. May occur if
the ? operator is pnsent but the : ..,as not found when
expected.

24 The context of the ex~:ession required an operand to be a
pointer. May occur if :he expression following "*- did not
evaluate to a pointer.

25 The context of the ex~=e$sion required an operand to be an
lvalue. !olay occur if :he expression f"llo..,ing ",- ..,as not
an lvalue, or if the :~ft side of an aSSignment expression
was not an lvalue.

26 The context of the e~~ression required an operand to be
arithmetic (not a poin~er, fun=tion, or aggregate).

27 The context of the e~?ression requir~d an operand to be
either arithlll<!tic or a pointer:. May occur for the logical
OR and logic~l AND ope:ators.

28 Our ing expression eva:..:ation, the end of an.. expression was
encountered but not enough operands were available for
evalu.:ltion. May occ~::: if a binary operation is impCoplHly
specified. ,

~9 .An op~ration was apecified which was invalid for pointer
operands (such as one of the arithmetic operations other
than addition). .

A-4

/

Lattice 8086/8088 C Compiler Error lleaaages

30 (non-fatal warning) In an assignment statement defining a
value for a pointer variable, the expression on the right
side of the" operator did not evaluate to a pointer of the
exact same type as the pointer variable being assigned,
i.e., it did not point to the same type of object. See
Section 2.1 for an explanation of the philosophy behind this
warning. Note that the same message becomes a fatal error
if generated for an initializer expression.

31 The context of an expression required an operand to be
integral, i.e., one of the (nteger types ("char", "int·,
"short", 'unsigned", or "long").

32 The express ion specifying the type name for a cast
(conversion) operation or a siz~of expression waS invalid.
See Kernighan and Ritchie, ~ppendix ~, pp. 199-200 for the
va:id syntax.

33 An attempt was made to attach an initializer expression to a
strJcture, union, or array that was declared "auto". Such
Lni~ializations are expressly dlsallowed by the language.

34 The expression used to initialize an object was invalid.
May oc:::ur for a vari~ty of reasons, including failure to
separate elements in an initializer list with commas or
s?e:::ification of an expression which did noi evalute to a
cons~ant. May require some experimentation to determine the
exact cause of the error.

3S During processing of an initializer list or a str~Cture or
Ilnion member declaration list, 'the compiler expected a
clusing right brace but did not find it. May occur if too
many elements are spe~ified in an initializer expression
lis~ or if a structure member was i,nproperly declared.

36 This implementation does not allow initializer expressions
to be used for unions.

17 The specified statement label was encountered more than once
during processing of the current function.

38 In a body of compound statements, the numbers of opening
lef t boces d) and closin; right braces <l) were not equ-!l.
May occur if the cumpi l-'![got "out of pha::;e" due to a
previous error.

39 One uf the C language reserved words appeared in an invalid
context (e.,]., as a var iable name). See Kernighan and
Rit=hie for a list of the reserved words (p. 180). Note
that "entry" is reserved although it is not implemented In
the compiler.

40 A "break" statement was detected that was not within the
scope of a ·while", "dO·, ·for"~ or "switch" statement. May
occur due to an error in a preceding s~atement.

Lattice 8086/8088 C Compiler Error Kessagee

41

:'7

:;0

'i2

54

A "case" prefix was encountered outside the scope of a
·switch" statement. May occur due to an error in .a
precedin9 statement.

The expression defining a "case" value did not evaluate to
an Hint" constant.

A "case" prefix was encountered which defined a constant
value already used in a previous "case" p!~fix within the
same "switch" statement.

A "continue" statement was detected that was not within the
scope of a "while", "do", or Hfor" loop. May occur due to
an error in a preceding statement.

A "defaul t" pr ~f ix was encountered outs idOl! the scope of a
"switch" statement. May occur due to an error in a
preceding statement.

A "default" prefix was encountered within the scope of a
-~switch" statement in which a preceding "defaul~" prefix had
alr~ady been encountered.

Following the body of a "do" statement, the "while" clause
was expected but not found. May occur due to an error
within the body of the "do" statement.

The expression defining the looping condition in a "while"
or "do" loop was null (not present). Indefinite loops must
supply the con.stant t, i.f that is what is intended.

An "else" keyword was-det~cted t~at was not within the scope
of a preceding "if" statement. May occur due to an err~r in
a preceding statement.

A statement label foUowing the "goto" keyword was elCpected
but not found.

The Ldicated identifier, which appeared in a "goto"
statement as a statement label, was already defined as a
variable within the scope of the current function.

The expression fallowing the "if" k~yword was null (no~
present) •

This error is generated when the el(pr~ssio~ following the
"return" keyword could not be 1eg311y converted to the type
of the v31ue returned by the f~nction. May be generated if
that expression specifies a structurp., union, or function.

The elCpression defining the value for a "switch" statement
did not define an Hint" value or a v<!lue that could be
legally converted to Hint".

Lattice 8086/8088 C Compiler Error Messages

55 The statement defining the body of a "switch" statement did
not contain at least one "case" prefix.

S6 The compiler expected but did not find a colon (:). May be
generated if a "case" expression was improperly specifif!d,
or if the colon was simply omitted following a label or
prefix to a statement.

57 The compiler expected but did not find a semi-colon (;l.
This error generally means that the compiler completed the
processing of an expression but did not find the statement
terminator (;l. May occur if too many closing parentheses
are included or if an expression is otherwise incorrectly
formed.

58 A parenthesis required by the syntax of the current
statement was expected but not found (as in a "while" or
"for" loop). May occur if the enclosed expression is
incorre:::tly specified, causing the compiler to end the
expression early.

59 I~ processing external data or function definitions, a
storage class invalid for that declaration context (such as
"auto" or "register") was encountered. May occur if, due to
preceding errors, the compiler begins processing portions of
the body of a function as if they were external definitions.

60 A storage class other than "register" appeared on the
declaration of a formal parameter.

61 The indicated structure or union tag was not previously
defined, that is, the members of the aggregate were unknown.

62 A structure or union tag has been detected in the opposite
usage from which it was originally declared (i.e., ~ tag
originally applied to a "struct" has appeared on an
aggregate with the "union" specifier). The Lattice compiler
defines only one class of identifiers for both structure and
union tags.

~3 The indicated identifier has been declared more than once
within the same scope. This error may be generated due to a
preceding error, but is generally thi result ?f improper
declar:ltions.

64 A declaratio'l of the membe:s of a structure or union did not
contain at least one member name.

65 An attempt was made to defi.ne a function body when the
compiler was not processing external definitions. May occur
if :I preceding error Caused the compilp.r to "get out of
phase" with respect to the declarations in the source file.

Lattice 8086/8088 C CoIlpiler Error Messages

66 The expression defining the size of a subscript in an array
declaration did not evaluate to a positive "int" constant.
May also occur if a zero length was specified for an inner
(i.e., not the leftmost) subscript.

67 A declaration specified an illegal object as defined by this
version of C. Illegal objects include functions which
return aggregates (arrays, structures, or unions) and arrays
of functions.

68 A structure or union declaration included an object declared
as a function. This is illegal, although an aggregate may
contain a pointer to a function.

69 The structure or union whose declaration was- just processed
contains an instance of itself, which is ill .. gal. May be
generated if the "*" is forgotten on a structure pointer
declaration, or if (due to some intertwining of structure
d .. finitions) the structure actually contains an instance of
itself.

70 A function#s formal param.ete, was declared illegally, that
is, it was declared as a structur .. , union, or function. The
campi ler does not automatically convert such references to
pointers, which is what is usually intended.

71 Reserved for expansion. Check the latest addendum to see if
this error has been newly defined; otherwise, treat it as a
compiler error and '''port it accocjing to the directions in
Appendix B.

72 An external item has been declared with attributes which
con fl ict with apr .. " ious declarat ion. May occur if a
function was used earli~r, as an implicit "int" function,
and was then declared as returning some other kind of value.
Functions which return ~ value other than "int" must be
declared before they are used so that the compiler is aware
of the type of the function value.

73 In processing the declaration of obje(;.ts, the compiler
expected to find 3nother line of declarations but din not in
fact find one. This ecror ~ay be genecated if a preceding
error caused the compii'!c to "get Ollt of phas-e" witll respect
to declaratiooo;.

74 During processIng of elCtacnal declarations, an attempt was
mad .. to define a function, b~t it was not the first
identifier declared on the input line.

75 An attempt was made to define the same function more than
once within the same source module.

A-a

Lattice 8086/8088 C Compiler Error Messages

76 The compiler expected, but did not find, an opening left
brace in the current context. May occur if the opening
brace was omitted on a list of initializer expressions for
an agqreqate.

77 In processinq a declaration, the compiler expected to find
an identH ier which was to be d-eclared. May occur if the
prefixes to an identifier in a declaration (parentheses and
asteriSks) are improperly specified, or if a sequence of
declarations is listed incorrectly.

78 The indicated statement label was referred to in th<e
previous function in a "qoto" statement, but no definition
of the label was found in that function.

79 In processing a list of declared· items, toe compiler
expected ~ separator {comma or semi-colon; but did not find
one. Usually results from an improperly specified list of
names being declared, or from an attempt to initialize an
object for which initialization is not permitted (such as an
"extern" object).

80. The number of bits sp<ecified for a bit field was invalid.
Note that the Lattice compiler does not accept bit fields
which are exactly the length of a machine word (such as 16
on a 16-bit machin~)l these must be declared as ordinary
"int" or "unsigned" ~ariables.

81 The current input line contained a reference to a pre­
processor symbol which was defined with a circular
definition, or loop. See Section 2.2.1 for an example.·

Lattice 8086/8088 C C~iler Compiler Bno

APPENDIX B Compiler Errors

This appendix describes the procedure to be used for reporti
compiler errors. These are errors that result not from t
user's incorrect specifications but from the compiler itse
failing to operate properly. There are four general kinds
errors which can occur:

1. The compiler generates an error message for a sour
module which is actually correct.

2. The compiler fails to generate an error message for
incorrect source module.

3. The compiler detects an internal error condition a
generates an error message of the form

CXERR: nn

where ~nn~ is an internal error number.

4. The compiler dies mY$teriously (crashes) while compili
a source module.

5. The compiler generates incorrect code for a corre
source modulI!.

The last type of error is of course the most t'.IifF.icult
determine and the m~st ve~ing for the pr09ramme~, who has
indication that anything is wrong until ~()methi.ng inexpl icab
doesn"t w~rk and only concludes that the compil~r is at fau
aft~r a long and painstaking study of his or her own code.

We wOIJ~1 like to know about and repair any compiler erro
as soon as possible, '50 please help us out by reporting a
problems promptly. The difficulties you suff~r ~ay be spared t
next programmer if you do so. 11'\ order to maintain a mo
precise record of the bugs that arl! di.scovered, we ~ould like a.
probl!ms to be r~ported in writing. You can send the Probl
reports to Lifeboat, but the problem will be attended to mo
~uickly if you send it to Lattice directly at .this address:

Lattic~, Inc.
P. O. Box 3072
Glen ~llyn, Illinois

60138
..

In all r.ases, i.nclude the follow in; it'!ms of information
your package:

1. A listi.ng of the source .modulf! for which the err
occurred. Don"t forget to i.nclude listings of any tinclude fil
used (and watch out for .include file nesting: don't forget t
inner files as well). Supplying the source on ~isk will possib

. B-

Lattice 8086/8088 C Compiler Coapiler Brrors

save us some typin" but there's no guarantee we·ll be able to
read it (unless it s IBM PC format), and if you don't want to
spare a disk just send listings.

2. The revision of the compiler and when it was purchased. -~
3. Your name and address and, if you-re willing to talk

about the problem with a technical person, a phone number with
the times you will be available.

4. A description, brief or lengthy as it suits you, of the
problem, along with any other information you think may be
helpful. Obviously, errors of type 3 (see above) don't need
anything more than a terse "Causes CXERR 23." If you·ve
investigated the problem yourself to some extent, let us know
what you found.

Once you have determined that there is a definite compiler
pro~lem, put together a problem report and ship it off to u~.
We-il try to get to it as soon as possible, and we are attempting
to institute a liberal update policy, especially for those who
report bugs. Meanwhile, try coding around the problem: if that
doesn-t work, mutter a few curses directed at "lousy compiler
writers" and work on something else. Remember, Lattice is in the
business of supplyin~ portable C compilers and we use them for

. "

our own development work, so we're well motivated to fix any
problems you find.\

J

. \
t)
'--

B-2

Lattice 8086/8088 C Caepiler Conversion of CP/M Progr

APPENDIX C Conversion of CP/M Programs

Because of its similarity to CP/M, it is reasonable to exp
that C programs wr itten for· that operatinq system will
transported to MS-DOS without a great deal of difficulty. T
appendix attempts to point out some of the pitfalls likely to
encountered when moving source from CP/M to KS-DOS
compilation with the Lattice C compiler.

The least amount of trouble 1 ies in store for those who h
written p~ograms for the BDS C compil~r. ~t the source c
level, every effort has been made to be compatible. While
Lat.tice compiler is a little strictp.r in some things, genera
the correction is accepted by the BOS compil~r as well, wh
fa~ilitates keepinq one set of source for both systems.
e~ample, a sequence like

char *cp;

t:p = cfunct(i);

char *cfunct (n)
int n:
{

will ~ause the Lattice compiler to complain about a mismatch
external attr ibut.es, becau,;e "cfunct" is used impl ici tly as "j
before it is defined as "char *" Inserting

char *cfunct():

pr ior to the fir'3t Ilse of "cfunct" eliminates the error, and
acceptable to the BOS compiler as well. As for other co~
constructions, the warning generated for structures suppl ied
fun-:tion arguments without a preceding & wa,; inclul
specifi~alll for aDs C programs. The problem of e~tecnal d
definitions posed by the 80S implement~tion#s lack of stor
class specifiers is solved by the -x compile time option. H
are the rules for using it on 80S C programs:

.
1. When compiling the main modulp., do NOT specify the

optio~. The various external d~clar~tions are interpreted
defi"litions of the objects, and 5t'':lCage is actually 'lll\~c'ated
them.

2. When compiling any of the other modu'1~5, specify the
option on the LCl command. The various external declarations
then interpreted as references to objects defined elsewh
(presumably in the main module).

8e careful not to compil~ more than one of the modules
the pro9r4m without using the -x option: otherwise, the 11n
will inform you that multiple definitions ?f the ext!cnal it

Lattice 8086/8088 C Compiler Conversion of CP/M Prograaa

were encountered.

At the library level, there are other, more serious
difficulties. Altho·ugh the BDS library does a good job of
supplying most of the standard functions descr ibed in the
Kernighan and Ritchie text, the details of their operation are
d if ferent from the L.attice functions in a number of small ways.
In particular, ·putchar" and "getchar" are direct console I/O
functions under 80S C, whereas they are implemented as macros in
Lattice C. This problem can be avoided by using the console I/O
functions described in Sections 1.5.5 and 3.2.3. In general, it
is best to review all of the functions supplied in both libaries
with a view toward locating potential trouble spots. Many of the
more specialized CP/M functions have not yet been provided in the
Lattice library, but check the latest compiler addendum; others
will probably be added as newer versions of the compiler ace
released.

Users of the Whitesmiths C compiler are not lil(ely to
~ncounter any prt:lblems with source language compatibility, but
the library is for the most part completely different. Still,
judicious use of tdefines may eliminate some problems.

"

/" -,
l...~

Lattice 8086/8088 C Compiler Inc

INDEX

Note: index references containing punctuation (such as functj
names, which are enclosed in double quotes, as in apr intf") •
listed at the beginning of the references for each letter.
sure to check the entire list for each letter when searching j

a particular reference.

8087 numeric data processor
8088 processor

"allmem" function
"auto" data elements
-a option
addrass-of operator
aliasing
alignment requirements
amendments to the C Reference Manual
arguments
arithmetic conversions
arithmetic objects
arithmetic operations
array name
ASCrI
assembly language interface
auto storage class

"bdos" function
-b option
BOOS function entries
binary mode
bit fields
branch instructions
buffering
byte alignment
byte ordering

·calloc" function
·cgets· function
"close" function
·clrecr" function
"cprintf" function
"cputs" function
"creat" function
"cscanf" functicn
"_ctype" array
-c option
C.OBJ
character constants
character type macros
code generation
command line arguments
comments
common subexpressions

. 1-7,
1-5

3-9
1-28
1-5,
2-2,
1-5,
2-6
2-11
1-28
1-16
2-5
1-16
2-2,
3-61
1-29
2-6.

1-39
1-5
1-39.
1-3'5,
1-18
1-22
3-16,
1-'5
1-14

3-4
1-40,
3-47
3-34
3-53
1-40,
3-42
)-S3
3-61
1-5,
1-2,
2-1,
3-61

'1-21
l-ll,
1-5,
2--9

1-14, 1-17, 1-18

1"'24
2-12
1-24

2-12

3-16, 3-39

3-40

3-51

3-52

2-11
1-8, 1-27
2-11

1-38
2-1, 2-tl

Lattice 8086/8088 C Compiler

compiler errors
compiler processing
conditional compilation
console I/O functions
constant operands
constant test values
control flow
control flow analysis
conversions
CTYPE.H
CXERR error message
CXFERR library function

tdefine cO/lll'lland
-d option
data elements
data formats
DATA segment
debugging
de:ived objects
devi-::e I/O
davice names
DGROUP group
1iff~(ences from standard language
division by zero
dollar sign
double precision

"exit" funt::tion
"extern" storage class·
.. exit" function
echo
equality operators
error messages
error processing
escape character
expression evaluation
external data definitions
external declarations
~xternal function definitions
external names
external storage class

"fclo~e" function
"feof" macro
"ferror" macro
"fflush" macro
"Egetc" function
"fgets" function
"fileno" macro
"fopen" function
"fprintf" function
Hfputc· function
"fputs" fun~tion
"free" function

1-2

1-21
1-19
2-13
1-39, 3-48
2-9
2-10
2-10
1-22
1-16
3-61
1-21
1-18

2-4
1-6
1-14
1-14
1-26
1-6
2-5
1-36
1-36
1-27
2-1
1-16
2-1
1-17

3-5'5
2-7
3-56
3-48
2-12
1-21
1-21
3-77, 3-78
2-9
2-13
1-6
2-13
1-15
2-6

3-20
3-33

Index

3-33 ~
3-37
3-23
3-25
3-35
3-18
3-29
3-23
3-26
3-5

,.-,

Lattice 8086/8088 C Coaapiler In

"freopen" function 3-19
"fscanf" function 3-27
"fseek" function 3-31
"ftell" function 3-32 .. fmode" flag word 3-16
-1 option 1-7
file access mode 3-18
file descriptor 3-39, 3-41
file I/O 1-34
file names 1-34
file number 3-39, 3-41
file pointer 3-15, 3-18
file position 3-31, 3-32, 3-39, 3-44

3-45, 3-46
floating point exceptions 1-18
floating point formats 1-14
floating point operations 1-17
formal storage class 2-6
formatted input 3-27, 3-53
formatt~d output 3-29, 3-53
function arguments 1-28
function call conventions 1-28
function extract 'Jtil i ty 1-12
function return value t-29
FXU .EXE 1-12

"getc" macro 3-21
"getch" function 1-39, 3-49
"getchac" macro 3-21
"getmem" function 3-7
"gets" function 3-25
groups 1-26

l'lard are characteristics 1-14
hardware r'!!'J isters 1-23

" inp" function 1-38
"isa1num" macro 3-61
"isa1pha" macro 3-61
"isa'"cii" macro 3-61
"iscntr1" macro 3-61
.. i:icsym" macro 3-61
"i:icsymf" macro 3-61
"isdigit" macro 3-61
"isgraph" macro 3-61
.. is10 er .. macro 3-61
"isprint" macro 3-61
"ispunct" macro 3-61
"lsspace" macro 3-61
"isupper" macro 3-61
"i:ixdigit" macro 3-61
lif command 2-4, 2-13
I/O and system functions 3-15
include files 1-15
initiali.zation 2-8

Lattice 8086/8088 C Compiler

initializers
integer overflow

"kbhit- function

"lseek- function
#line command
language definition
LC.BAT
l:.C.LIB
level 1 I/O functions
level 1 memory allocation
level 2 I/O functions
level 2 memory allocation
level 3 memory allocation
library
library functions
library implementation
line buffering
!.ine control
llnkage conventions
l.inkin;
local declarations
Logical end of file
lvalue

"main w function
"malloc" function
"movmem" function .. main" function
machine dependencies
macros
maltimum ~ize of a file
maltimum size of declared object
maxi:num subscript· length
member names
memory allocation
memory allocation functions
memory utilities
MS-DOS

"open" function
"outp" functi.on
~ operator
-0 option
object code conventions
ObJect code format
object module
operating instructions
operating system
operators
optimization
order of evaluation
overflow

2-8
1-16

1-39

3-46
2-14
2-1
1-2
1-2,
3-39
3-12
3-15
3-6
3-2
3-1
3-1
1-33
3-16,
2-14
1-26.
1-8
2-7
3-39,
2-12

1-8,
. 3-3

3-59
1-38
1-13
3-17
1-34
2-2
2-2
2-2,
1-2S,
3-1
3-57
1-1,

3-41
1-39

1-9

3-38

3-46

1-10

2-12,
1-37

1-33

2-2, 2-12
1-6, 1-7
1-26
1-26
\-20
1-1
1-1
2-9
1-22
2-10
1-18

Index

t}

~'-')

,J

2-13, 2-14

Lattice 8086/8088 C COmpiler

"printf" function
"putc" macro
"putch" function
"putchar" macro
"puts" function
PGROUP group
phase 1 command line options
phase 1 execution
phase 1 processing
phase 2 command line options
phase 2 execution
phase 2 processing
'pointer conversion warning
pointer overlap
pointers
pointer variables
portable library functions
pre-processor features
pre-processor macro subs~itution
primary expressions
program entry/exit
program execution
program exit functions
program generation
program linking
program structure
PROG segment

quad file
quadru!?les

"rbrk" function
"read" function
"register" ~torage class
"repmen" function
"rewind" macro
"rlsmem" function
"rstmem" function
register al1oc~tion
registers
regi3ter variables
regular expression notation
relational operators
run-time program structure

"sbrk" function
"scanf" function
"setmem" function
"setnbf" function
"sizeof" operator
"sizmem" function
"sorintf" function
"s~canf· function
"stcarg" function
"stccpy· function

3-29
3-22
1-39, 3-49
3-22
3-26

1-27
1-5
1-4
1-19
1-7
1-6
1-20
2-2, 2-3
1-24
1-14, 2-5, 2-8, 2-12
1-23
3-1
2-3
2-1
2-12
1-38
1-10
3-54
1-2
1-8
1-24
1-26

t-19, 1-21
1-19

)-14
3-44
2-7
3-60
3-36
3-8
3-11
1-23
1-28, 1-29-
1-19
3-78
2-12 -
1-24

3-13
3-27
3-58
3-38
2-4, 2-13
3-10
3-29
3-27
3-77
3-64

lnd

l-~

Lattice 8086/8088 C Compiler Index

"sted i M function 3-70 -Hstch i M function 3-69
"stcis" function 3-76
"stcisn" function 3-76 ,,-)
"stci d" function 3-68
"stc1en" function 3-63
"stcpm" function 3-78
"stcplna" function 3-79
"stcu d" function 3-67
"stderr" 1-10, 3-16
"stdin" 1-10, 1-11, 3-15
"stdout" 1-10, 1-11, 3-15
"stpblk" function 3-71
"stpbrk" function 3-75
"stpchr" function 3-74
"stpsym" function 3-72
"stptok" function 3-73
"strcat" function 3-65
"strcmp" function 3-66
"strcpy" function 3-64
"strlen" function 3-63
"stscmp" function 3-66'
" stspfp" function 3-80
"switch" statement 1-22
scope of identifiers 2-7
segment definitions 1-26
segment registers 1-25 ,) shift operations 1-16
sign extension 1-16, 1-18
size of C programs 1-1
spec ia1 functions 1-38
stack 1-28, 1-37, 3-1
stack pOinter SP 1-2'5, 1-28
stack size 1-4, 1-10
standard error 1-10
standard input 1-10, 1-11
standard output 1-10, 1-11
stati.c storage class 2-6
storage classes 2-6
storage class specifiers 2-12
string constants 2-1, 2-11
strings 2-11
steing utility functions 3-62
structure and union declarations 2-13
stru::ture member references 2-2, 2-12
structures and unions 2-1, 2-12, 2-14 "

.. tolower" macro 3-61
"toupper" macro 3-61

C~~J tags 2-13
temporaries 1-28, 2-9
terminating execution 3-54
text mode 1-35, 3-16, 3-39
total program size 1-25
translated mode 1-35, 3-16, 3-39

1-6

Lattice 8086/8088 C Compiler

type-ahead
type names
type punning

"ungetc· function
"ungetch" function
·unlink function
tundef command
unary operators
underflow
unions
unsatisfied external :eferences
untranslated mode
utility functions and macros

"write· function
warning message

-x option

zerodivide

3-48
2-13
2-l0

3-24
3-50
3-43
2-4
2-l2
l-18
2-8, 2-14
l-9
l-35, 3-16, 3-39
3-57

3-45
2-2

l-6, 2-7, 2-12

l-18

In(

1

Lattice 8086/8088 C Compiler Supplement for Version 2.00

'Lattice 8086/8088 C Compiler

MANUAL St7PPLEMENT FOR VERSION 2.00 OF COMPILER

1.0 DIFFERENCES FROM PREVIOUS VERSIONS

The following list summarizes the most important differences
between Version 2.00 and previous versions for users who are
upgrading their compiler. For complete information about the new
features, refer to the latest manual and supplement.

1.1 Compiler Differences

The meaning of some previously defined compile time flags has
been changed, and several new options have been added.

1.1.1 Effect of the -a flag

The effect of the -a flag has been extended so that it forces all
assignment statements (that is, the aC,tual store operation) to be
performed before the execution of the next statement. This is
important only in (1) unions, where a value is stored and then
immediately inspected or passed to a function via another member1
(2) real-time processing where shared data values are used as
"lock- words, and immediate execution of an assignment statement
is critical to subsequent actions: and (3) memory-mapped I/O
assignments, where values must be stored repeatedly in the same
"memory" location.

1.1.2 Alignment of data elements

The alignment of storage for arithmetic objects has been changed.
Now, the only data elements which force alignment to a word
offset are pointers, structures, and .unions. (In previous
versions of the compiler, all objects except simple "char"
variables were word-aligned.) The -b flag still has the effect
of dropping alignment requirements for all objects.

1.1.3 Extensions to -i flag

The - i option has been generalized to accept a pref ix which is to
be prepended to file names from 'include stat'!ments: up to 4 -1
options may be specified. Note that the current directory is
always searched first before the -i options are checked.

1.1.4 Optional long identifiers flag

A special -noption has been added which, if used, forces the
compiler to retain up to 39 characters for all identifiers
(includit:'g pre-processor tdefine symbols).

Lattice 8086/8088 C Co.pilar Suppleaent for Veraion 2.00

1.1.5 Stack overflow checki:q

The compiler now, by defa~,:, generates code at the beginning of
each function to check fo: stack overflow. The code for stack
overflow detection can be eliminated by compiling your source
module with the new -v c::~ion on LC2. Library functions are
supplied with stack overfl~ detection included.

1.1.6 Expanded memory addressing

The -m and -s flags on LC: are new compile time options uS1i!d for
the new expanded memory ac::essing feature of the compiler. Four
different memory -models" are supported, allowing a range of
addressing capabilities fc: compiled programs. Note that a sin­
gle program must be compil~c and linked according to one and only
one of the memory models. ~hat is, functions compiled according
to different memory models may not be combined in a single pro­
gram.

1.1.7 Code group and segme~: name override

Two-new flags (-g and -s) :n LC2 allow the user to speci fy code
group and segment names in ~he generated object file.

1.2 Run-time and Library C~~ferences

In addition to new versi=~s of the library to support the new
memory addressing capabili~ies, the implementation of many of the
library routines h~s been ~~proved, resulting in some differences
in their operation.

1.2.1 Processing of -, <, and> specifiers on command line

The special command line specifiers -.", "<", and ->- are now
processed by C.OBJ insteacof • main", and must appear before all
other command line argumen:s fO~lowing the program name.

1. 2. 2 New version of stdio.h and level 2 IIO functions

The level l and level 2 IIO functions have been upgraded but are
compatible with the old functions: however, any program using
level 2 I/O (i.e., any that .included "stdio.h") must be
recompiled because the stcio.h definitions have changed.

~.2.3 Extensions to -open- and "fopen" functions

The Levell I/O "open- function has been extended to support a
number of new flags, defined in thu new header file "fcntl.h-.
The level 2 I/O -fopen" function has been extended to accept a
"." after the mode character to indicate that both reads and
writes are allowed on the file. To switch from one mode to the
other, you must execute -fseek" or -rewind" on the file pointer"

2

."/

Lattice 8086/8088 C Coapiler Supple .. nt for Version 2.00

1.2.4 Implementation of level 2 1/0 buffering

The level 2 I/O functions now per form I/O for all devices (inclu­
ding the console) in true unbuffered fashion. The old "line
buffered" mode supported by the previous version has been
scrapped, so that "printf" to the console sends its characters
immediatelYi whether or not a newline is sent. Similarly, input
from devices is also normally unbuffered, but buffered console
input is supported and processed using the SDOS function. The
new version of • main" sets up "stdin" t~ be buffered, so back­
space and line cancel features will now work on reads from
"stdin" when assigned to .the console.

1.2.5 Implementation of level 1 I/O buffering

The level 1 I/O functions (open, read, write, lseek, close) do
not acquire buffers via the level 2 memory allocator, as they did
in previous versions. This means that you no longer have to
worry about messing up files when you do a "rstmem", and that the
"_block" external is no longer supported. Under KS-DOS, buffer­
ing is now performed by the operating system itself, resulting in
improved performance for large read/write data transfers.

1.2.6 Support for MS-DOS Version 2.0

The compiler and library for KS-DOS Version 2.0 supports the new
path names available under that operating system. Your programs
should not require any changes unless they are sensitive to the
file name format. I/O redirection now works properly under DOS
Version 2 for programs compiled using this new library.

1. 2.7 Extensions to level 2 memory allocation

The memory allocation functions have been extended to support the
new extended addreSSing capabilities of the compiler. In
particular,· the "sizmem" function has been changed to return a
"long" integer, and two new functions ("getml" and "lsbrk") have
been added which support a "long" integer requested block size.
The other functions are compatible with the old versions.

1.2.8 New utility functions

Several new utility functions have been added to .the library
which allow access to all of the features of the 8086/8088
processors, including (1) software interrupts (useful for making
direct ROM SIOS calls): (2l SOOS functions: (3) access to segment
register conte.nts:(4) inter-segment memory transfersl and (S)
"peek" and ·poke" functions for examining and setting any memory
locations. .

Lattice 8086/8088 C Compiler Suppleaent for Version 2.00

2. a MANUAL ERRATA

Please note the following errors in the original version of t.he
manual.

2.1 Missing ENDS statement

On page 1-33 of the manual, t.he last. four st.at.ement.s of the
assembly language example should read as follows:

XCFIND ENDP
XCMAKE ENDP
PROG ENDS

END

Inclusion of the ENDS statement is critical: if omitted, the
linker will produce an invalid EXE file when the module is
linked. Note that the assembly language interface is slightly
different for each of the memory models; see below.

2.2 Call a_exit-, not -exit-

On page 1-38 of the manual, a short. version of a main- is presen­
ted; however, the final st.atement before the clOSing brace should
read:

_exit(O) I

If -exit- is called, the level 2 I/O functions are included in
the program. Note that the correct version of this function has
now been supplied as TINYMAIN.C.

2.3 -kbhit- function described incorrectly

Page 1-39 ~e the manual describes a function called -kbhit-,
which returns a status indicating whether a character has been
typed at the user#s console. Please note that the action of the
function as described in the manual is exactly opposit.e to its
actual character istics: it returns zero if a characte~ has NOT
been typed at the keyboard, and non-zero if a character is wai­
ting input.

4

Lattice 8086/8088 C Compi1er Supp1eaent for Version l.OO

3. 0 MAJOR NEW FEATURES

The most important new features present in Version 2.00 of the
compiler are (1) expanded memory addressing capabilitiesJ (2)
run-time stack overflow checking1 and (3) support for MS-DOS
Version 2.0.

3.1 Expanded memory addressing

The compiler now supports program and data spaces greater than
64K bytes. Four different "memory models" are defined, as
follows:

Model Program Address Space Data Address Space

S 64K UK
P up to 1M 64K
D 64K up to 1M
L up to 1M up to 1M

The 0 and L models use four-byte pOinters, and the P and L models
generate FAR calls and returns, None of this requires you to
change any of your C code if you have played by the rules. The
main pitfall is any assumption that a pointer will fit into an
integer, since integers are still only two bytes under all mo­
dels.

In all of the models, a single DATA segment is used to contain
all statically allocated data within the program, thus restr ic­
ting the combined total of static data to 64K bytes or less.
Similarly, the stack segment where "auto" data elements are
allocated can never be greater than 64K. In the 0 and L models,
however, dynamic memory can be allocated without restriction, and
pointers can.be used to access any location in memory.

3.1.1 ChOOSing the memory model

All of the functions in a sin~le program must be compiled and
linked according to one and only one of the available memory
models. In other words, you may not combine functions compiled
for different models. It becomes important, therefore, to choose
the right memory model for yo.ur application. The tradeoff
involved is between efficiency and memory add(essability. There
are two choices that must be made. #

(1) Will the combined size of the functions in your program be
greater than 64K bytes? If not, select one of the models
that uses NEAR calls (the S or 0 models), which are faster
and require less tode. Otherwise, you must select a model
that supports FAR calls (the P or L models), unless your
application is suitable for program section overlays, whiCh
can be created using the Phoenix Software Associates PLINK8'.

(2) Does your application require more t.han 641 bytes of data

Lattice 8086/8088 C Compiler Supplement for Version 2.00

storage? If not, .select one of the mo.dels that uses 2-byte
data pointers (the S or P models), because pointer operations
are performed much more efficiently in these models. If you
simply need access to specific memory locations beyond the
program#s 64K address space, you can probably use the new
library f~nctions "peek" and ·poke" and retain the efficient
2-byte pointers. Otherwise, if data storage in excess of 64K
bytes i.s a must, you must select a model that uses the 4-byte
data pointers (the 0 or L models) and pay the price of
somewhat less efficient code.

3.1.2 Compiling for the memory models

Generation of code for the various models is controlled by a new
compile time option specified on the first phase (LC1) of the
compiler. The -m option must be followed immediately (no spaces,
please) by a. letter (either 10wer- or upper-case) specifying the
desired memcry model. The model may also be specified as a
single numeric digit from 0 to 3. If no -m option is present,
code is generated for the S model.

S model: LCl filename (no flags) - LCl filename -ms
LCl filename -mO

P model: ~[:ClfileE.am; -w
LCl filename -ml

0 model: LCl filename -md
LCl filename -m2

L model: LCl filename -ml
Lel filename -m3

3 .• 1.3 Linking programs

When using the various memory models, you must be careful to link
with the appropriate library (LCS.LIB, LCP.LIB, LCO.LIB or
LCL.LIB). The compiler generates code segments with different
names for each model, which allows you to examine the LINK map
and determine if you have erroneously mixed code for different
models. Only one of the following segment names should appear on
the link map.

S model:
P model:
o model:
L model:

PROG
COOE

COOE
_PROG

(code group PGROUP)

(code group CGROUP)

Note that for the P and L~models, several segments with the name
CODE (or PROG) will be included (one for each separately com­

piled modUle containing functions).

6

Lattice 8086/8088 C Compiler Supplement for Version 2.00

3.1.4 Run-time pr09ram structure

Two different memory layouts are now used. For the small data
case, the layout remains exactly as descr ibed in the manual. For
the large data cases, the stack resides immediately above the
static data area, and the free memory pool (allocated by "sbrxa)
is above the stack. OS is the base of the static data, SS is the
base of the stack, and ES is undefined. The public symbol
" base" still contains the base of the stack relative to OS (it
specifies the number of static data bytes). The symbol • top·
contains the top of the stack relative to SS (it contains the
number of bytes allocated for the stack).

It is important that your pr09ramsreserve sufficient stack space
in the large models, since there is no free space to absorb stack
overflows. (Stack overflow checking is now a default optionl see
below.) If you define a publtc unsigned integer called - stack-,
that value will be used as the number of bytes in th~stack.
Note that the stack can be as large as 64K bytes in the 0 and L
models.

3.1.5 Code generation for pointer ope~ations

The code generated by the 0 and L models uses four-byte pointers
and can therefore address any location in memory. These pointers
are stored as an offset portion in the low two bytes, followed by
a base portion in the high two bytes (the format expected by the
machine language instructions LOS and LES). Objects are ad­
dressed from these pointers by loading the base portion into the
extra segment register ES, the offset portion into an index
register, and using the segment override prefix for ES to force
the indexed operation to refer to the correct memory location.
Since there is only one ES register, such common operations as
copying from one pointer to another require ES to be reloaded for
each step in the copying process. Pointer references are there­
fore much more efficient in the 2-byte memory models, and if your
application can live with a 64K data space, use the S or the P
model.

The four-byte pointers used in the 0 and L mOdels are manipulated
accor~ing to the following rules:

(1) Pointer arithmetic is performed by addi.ng or subtracting a
32-bit offset to the pointer, using a call to a library
rnutine. Thus, dynamically allocated arrays (addressed by
subscripting a pointer variable) may be larger than 64K, and
address manipulations work properly for all of~set values.
Note that, since the compiler requires statically declared
arrays (extern, static, or auto) to be less than 64K bytes 1n
size, only a 16-bit offset is used in accessing elements of
these arrays, resulting in more efficient code. The compiler
also performs pointer arithmetic for constant offsets which
fit in 16 bits by performing the operation on the offset
portion of the poi'nter, and then adjusting the base portion
by lOOOH if overflow occurs.

Lattice 8086/8088 C eompiler Supplement for Version 2.00

(2) When two 4-byte pointers are subtracted, a library routine is
called which returns a -long- result.

(3) Conversions between long integers and 4-byte pointers are
automatically performed, again by calling library routines.

(4) Comparison of pointers for equality or relative rank is
performed by calling a library routine whiCh converts the
pointers to normalized (canonical) form before comparing.
Thus, two pointers which have different base and offset
portions but which actually point to the same location will
be recognized as equal.

(5) Any function which returns a pointer as its return value
calls a library routine which converts that pointer to nor­
malized (i.e., offset in the range 0 to 15) form.

3.1.6 The -s option for four-byte pointers

Whi~e the above rules provide complete generality in the use of
four-byte pOinters, the additional overhead of library routine
calls can be inefficient if a significant amount of pointer
manipulation is being performed. A special compile time option
(specified on LC1) is provided for koowledgeable users whoare
willing to work within certain restrictions. Adding the -s flag
to Lel causes the following changes in the above rules:

(1) Pointer arithmetic is performed by adding or subtracting a
l6-bit offset to ~he pointer. Thus, no single object may be
greater than 64K bytes in size.

(2) Pointer arithmetic affects only the offset portion of the
pointer (not the base). When pointers are compared for
equality, an exact match of both base and offset portions is
required. When compared for relative rank, only the offset
portions are compared, so the compar ison is meaningful only
if they are pointers to the same array.

(3) When two pointers are SUbtracted, only the offset portions
participate in the operation, and the result is a ·s.hort-.

(4) Pointers and long integers are not converted when one is
assigned to the otherl instead, a simple copy operation is
performed.

(5) The return value from a function which returns a pointer is
not normalized.

We expect that most functions can be safely compiled with the -s
option, with the result of improved code generation quality. In
fact, all of the library functions written in Csupplied in our
libraries are compiled with the -s option, except for the memory
allocation functions. Note that the -s flag has no effeet on the
Sand P models.

8

Lattice 8086/8088 C CoIIpiler Supple.ant for Version 2.00

3.1.7 Assembly language interface

While C functions can be adapted for a memory model simply by
changing a compile-time switch, assembly language functions pre­
sent a bigger problem, because you must change your code to
process long pointers or use FAR linkages or both. The pointers
can be handled in the following way:

SIP model:

DIL model:

MOV BX, [BP) .ARGl
MOV AX, [BX)

LES BX, [BP) .ARGl
MOV AX,ES: U~Xl

7get a pointer arg
,I,u.e it

7get offset and base
Juse it

As noted above,DS always points to the base of static storage
for any of the memory models, so assembly language functions must
be careful not to change DS. In the Sand P models, ES must also
be preserved (but not in the D and L models).

The use of FAR linkages requires the PROC statements to be
changed. Note also that the position of any EXTRN statements for
external funttions is critical. Fo~ FAR l~nkages, they must
appear before the SEGMENT definition for the code segment; While
for NEAR linkages, they must appear after the codeseqmentdefi­
nition. These rules can be summarized in the followinq example:

SID model: define code segment
EXTRN XYZ :NEAR,

ABC PROC NEAR

P/L model: EXTRN XYZ:FAR,
define code segment

ABC PROC FAR

To deal with this messy problem, we~ye put conditional statements
into our assembly language functions. 'rhis keeps a single source
f.ile for each function, and it is then re-assembled with a dif­
ferent macro Ubrary for each model. Our libraries (SM8086.AAC,
DMBOB6.MAC, PMBOB6.AAC, and LMB086.MAC) are included and should
be s~lf-explanatory. We put the following statement at the
beginninq of each assembly language module:

INCLUDE DOS.MAC

Then, we merely copy the appropriate library to DOS.MAC before
assembling for a particular model. The source ~iles for~.ASM
and IO.ASH, which are supplied, illustrate the use of these
macros.

3.1.8 Special cautions on using the D and L models

As noted above, the biggest potential problem when converting
code to use the four-byte pointers of the D and L models is that
pointers and integers are no longer the same size. While you may

~attice 8086/8088 C compiler Supple.ent for Version 2.00

think that your code does not depend in any way on this fact, you
may find that the assumption has crept into your implementation
without your being aware of it. Be alert for problems that miqht
relate to this. Here are three other important cautions you
should take note of:

(1) When supplying pointer arguments to C functions, it is common
practice to supply a null pointer (i.e., one that does not
point to anythingl as the tdefine constant NULL, which is
def ined as 0 by "stdio.h". I f you compi le code for the D or
L models, you MUST change NULL to be OL so that the null
pointer value supplied to functions is the same size as the
pointer argument. If you fail to do this, the called
function will not correctly address its parameters, and all
sorts of chaos will result.

(2) The "sbrk" memory allocator is supposed to return a value of
-1 when no more memory is available (for compatibility with
other implementations). Under the 0 and L models, the result
of casting -1 into a character pointer depends on whether the
-5 option ..,as used (see sections. 3.1.5 and 3.1.61. Since the
1 ibrary function was compiled WITHOUT. the -s option, the -1
gets converted to the four-byte pointer format. The result
is tha.t a function compiled WITH the -s option cannot
properly test for the -1 value! Avoid all of these problems
by usinc; the library function "lsbrk", which accepts a long
integer number of bytes and returns zero if no more space is
available (see section 5.3 of this supplement).

(3) The four-byte pointers implemented under the D and L models
allow direct access to all of the memory on the machine.
This can b~ extremely useful, but it can also be extremely
dangerous. Memory on the 8086 and 8088 processors is not
protected, and storing values via an uninitialized pointer
can crash the system -- or w·orse. MS-DOS stores a number of
very important system elements in lower memory: we have
already heard one horror story about a user who destroyed the
File Allocation Table for his hard diSk by USing a garbage
pointer to set up a st-ructure. All we can do is caution you
to be extremely careful. Our advice to beginning C users is
to stick with the Sand P models, where uninitialized poin­
ters are much less likely to access critical locations.

3.1.9 Creating an array greater than 64K bytes
,

Since static data i~ all of the memory models is limited to a
:naximum of 64K bytes, the only way to create an object of greater
3 ize is through the memory allocation functions. A quick check
~f the manual, however, shows that the allocation functions only
3ccept a size argument of ·unsigned" type, which has a maximum
~alue of 64K. We have overcome this shortcoming by adding two
~ew allocation functions which accept a size argument which is a
~long" integer. These functions are descrlbed in more detail in
section 5.3 below, but an example here will illustrate the use of
one of them. .

-.
10

Lattice 8086/8088 C Compiler Supplement for Version 2.00

Suppose
values;
array.
address

that we must allocate an array of 10,000 double preclslon
80,000 bytes of storage will be required for such an

First, declare a pointer which will contain the array#s
after allocation:

double *d;

Note that a simple "double" pointer is all that is needed,
despite the fact that it will actually point to an array. Next,
declare the memory allocation function:

char *getml();

Note that you MUST declare the memory allocation function to
return a pointer; otherwise, the compiler will assume it returns
an "int" and the cast operation shown below will not work
correctly. The only difference between "getml" and "getmem" is
that "getml" gets an argument which is a "long" integer. The
array is then allocated by the expression:

d • (double *) getml(80000Ll;

Note the "L" specifier on the constant. The size could also be
specified as "(lOOOOL * sizeof(double»". (Special note: if you
compute the size argument for "getml" using a multiplication
expression, be sure that one of the operands is 3 long constant
or is cast to a long BEFORE the multiplication; otherwise, the
compiler will perform the multiplication in ·short" arithmetic
and obtain an incorrect result. If the example above is written
as "((long) (10000 * s izeof (double»", the size argument is
incorrectly computed as 144641)

The returned pointer, of course, must be checked for NULL (zero)
before use; NULL is returned if there is not enough memory
available for the requested allocation. The variable Rd" can now
be subscripted as if it were an array, i.e., d[12l will address
the thirteenth element of "d", etc. In this example, the number
of elements in the array is less than 64K, so ordinary "int"
variables can be used as subscripts; if we had allocated a "char"
array, "long" integers would be needed to subscript an array of
this size. One final note: since we are addressing an object
with a size greater than 64K, the -s option c.annot be used.

3.2 Stack overflow checking

The compiler now, by default, generates code at the beginning of
each function to check for stack overflow. The cost in code size
for each function is 9 bytes for the Sand D models, and 11 bytes
for the P and L models. The benefit is elimination of a very
nasty class of errors which can be very difficult to find. When
stack overflow is detected, the error message

*** STACK OVERFLOW ***

Lattice 8086/8088 C Compiler Supple.ent for Version 2.00

is written to the eonsole, and the program terminates immedi­
ately.

Staek overflow oeeurs when the program fails to supply suffieient
storage for the run-time stack. The number of bytes of storage
for which the staek is set up is defined in the external location
" stack", and can be changed when the program is exeeuted by the
n;nnn" option on the command line. The size of the staek can
thus be set in any of three ways:

(1)

,--

If no definition for" stack" is found in the user~s objeet
modules during linking, the Lattiee C library provides a
definition of " staek" containing 2048 (2K). Thus, the
default stack size is 2048 bytes.

(2) If one of the user~s object modules includes a definition for
• stack", that value will be used. All that is required is
that a statement like

........

int _stack • 4096;

. appear outs ide the body of a funct ion.
beeomes the default stack size •

That value then

(3) Either one of the above methods can be overridden at
execution time (after linking) by executing the program with
a eommand like

PRO~AME.·8000

The decimal value after the equals sign beco.es thestaek
size during execution of the program.

Unfortunately, there is no hard and fast rule for determining how
much stack spaee a program will need. You will need at least as
much storage as the largest amount of "auto· storage in any of
the functions included in the program (i.e., if one of your
funetions has an "auto· array of 4000 bytes, you will need at
least that much stack spaee, beeause "auto" data items are
allocated on the staek). Since C funetions typically eall other
funetions, the storage needed by the called function must be
added to that needed by the caller, and so on. Our intention in
supplying the various setting mechanisms described above is to
make the stack si~e easily adjustable.

,
The code for staek overflow detection can be eliminated by com­
piling your source file with the -v option on LC2. Library
functions are supplied with stack ovarflow detection included.

3.3 ~upport for MS-DOS Version 2

If you speeified DOS Version 2 when you ordered the compiler, you
reeeived a version of the compiler and library set up for that
operating system. The compiler and the programs generated will
exeeute only under DOS Version 2.

12

Lattice 8086/8088 C Co.piler Supple.ent for Version 2.00

3.3.1 Compiler support for MS-DOS Version 2

The compiler now recognizes the full Version 2 path names for all
file names. The name can be specified on the command line, as in

LCl b:\lowlevel\file

(which specifies b:\lowlevel\file.c fo.rcompilation), or it can
be specified in 'include statements, as in

tinclude -b:\headers\stdio.h-

The -i option has been extended to support an alternative form of
the above, where the command line might specify, for example:

LCl xyzfile -ib:\headers\

and the 'include statement could then read

tinclude ·stdio.hw

Note that the trailing backslash must be supplied on the prefix
attached to the -i flag: it is not automatically supplied by the
compiler.

A maximum of 4 -i prefixes may be specified on the LCl command.
When an 'include statement is encountered naming a file that is
no~ already pref ixed by a dr ive or directory specif ication, the
current directory is searched first for the file: if not found,
each -i prefix (in the same order specified on the LCl command)
is prepended to the iinclude file name and searched for, in turn,
until the file is located. An error message is produced if none
of the ~earches is successful. No spaces, please, between the -i
and the desired text to be used for prepending.

The -0 option for both LCl and LC2 has been similarly extended,
allowing the output file to be written directly to another direc­
tory, if desired.

Special versions of the utility programs FXU and OKD for MSDOS
Version 2 have also been provided.

3.3.2 Library support for MS-DOS Version 2

The main change in the library for MS-DOS Versio~ 2 is thlt the
1/0 functions recognize path names because they use the new UNIX­
like file interface provided in Version 2. Your programs should
not require any Changes unless they are sensitive to the file
name format. The I/O redirection mechanism has been adjusted to
work properly for Version 2 programs.. The wexit- and - exit­
functions pass the exit code back to the operating system, and
the va~ue can be tested in a batch file command such as

if errorlevel WvalueW

Lattice 8086/8088 C Compi1er Supp1e8ent for Version 2.00

4.0 COMPILER AND RUN-TIME CHANGES

The following items are new or substantially cnanged, as compared
to the descriptions in the manual. Some minor changes to the
language accepted by the compiler are not remarked upon if they
were not explicitly mentioned in the manual (or unless they. are
incompatible 'with previous versions).

4.1 Compile time options for LCl

Bere are the new or changed compile time options on the first
phase of the compiler.

-a Same as in previous version, but additionally forces
all assignment statements to be performed (i.e., the
actual store to memory) before execution of the next
statement. Normally, the code generated for assignment
cauS~ a value to be loaded to a register, but it may
not be stored immediately; the -a flag now forces the
store operation. This is important only in (1) unions,
where a value is stored and then'immediately inspected
or passed to a function via another member: (2) real­
time processing where shared data values are used as
-lock- words, and immediate execution of an assignment
statemen is critical to subsequent actions; and (3)
memory-mapped I/O aSSignments, where values must be
stored repeatedly in the same "memory· location. '

-d Causes debugging information to be included in the quad
file. Specifically, line separator quads are inter­
spersed with t'he normal quads. This allows the second
phase to collect information relating input line num­
bers to program section offsets. If this option is
used, the object file produced will contain line num­
ber/offset records, and can be processed by the object
module disassembler to produce an intermixed source
code and machine code listing (see 6.1 below). Note
that the -d option does not affect the si~e of the
f~nction itself, only the object file.

-iprefix Specifies that .include files are to be searched for by
prepending the file name with the seC ing ·pref ix·,
unless the file name in the tinclude statement is
already prefixed by a drive or directory i~entifie~.
If -prefix· is a single character, a colon is added;
thus, -ia causes prepending with "a:". Up to 4 dif­
ferent -i strings may be specified. Note that un­
prefixed 'include file names are searched for first in
the current directory, and then by prepending with the
prefixes specified in -i options, in the same left-to­
right order as they were supplied on the command line.

14

Lattice 8086/8088 C Compiler Suppleaent for Version 2.00

-mM Causes the compiler to generate code for the specified
memory model. The model can be specified as a single
letter, either upper- or lower-case, naming the modelf
or a numeric indicator from 0 to 3 may be used (SaO,
pal, D-2, L-3). The model specifier must be adjacent
to the "m" (no intervening blanks).

-n Causes the compiler to retain up to 39 characters for
all identifier symbols, including Idefine symbols. The
default symbol retention length is 8 characters.

-oprefix Specifies that the output (.0) file name is to be
formed by prepending the input file name (the .C file
which is being compiled) with "prefix". If "prefix" is
a single character, a colon is added; thus, -ob causes
prepending with "b:". Any drive or directory prefixes
attached to the input file name are discarded before
the prepending is performed.

-s Changes the ~ay code is generated for four-byte poin­
ters in the D and L models; .see section 3.1.6.

4.2 Compile time options for LC2

Rere are the new or cha.nged compile-time options on the second
phase of the compiler.

-f This option, described in the manual, has not yet been
implemented. 8087 support will be provided in a future
release of the compiler.

-q9rouP Specifies that the name "group" is to be used for the
code group in the .08J module. ·group· must be 15 or
fewer characters in length, and niust be adjacent to t.he
"-g" (no intervening blanks).

-oprefix Specifies that the output (.OB3) file name is to be
formed by prepen~ing the quad file name (the .0 file
which is being processed) with ·prefix". If "prefix"
is a single character, a colon is added; thus, -ob
causes prepending with "b:". Any drive or directory
prefixes attached to the quad file'name are discarded
before the preperiding is performed.

f

-ssegment Specifies that the name ·segment· is to be used for the
code segment in the .OBJ module.- ·segment" must be 15
or fewer characters in length, and. must be adjacent to
the "-5· (no intervening blanks).

i -v Causes the code generator to omit the code at the entry
to each function which checks for stack overflow. /

The -9 and -5 options for LC2 are provided tooverrlde the
default code group and segment names. Only users who need to
interface to __ very specialized applications (other languages,

Lattice 8086/8088 C Compiler Supple.ent for Version 2.00

etc.) will need to make use of these options.

4.3 Alignment of data elements

The alignment of storage for arithmetic objects has been changed.
Now, the only data elements which force alignment to a word
offset are pointers, structures, and unions. The -b flag still
has the effect of dropping alignment requirements for all ob­
jects.

4.4 Language definition: arbitrary limitations

This section attempts to clarify some of the limitations of the
compiler which are omitted or not clearly defined in the manual.
Although the definition of a programming language is an idealized
abstraction, any real implementation is constrained by a number
of factors, not the least of which is practicality. The Lattice
compiler imposes the following arbitrary restrictions on the
language it accepts:

o The maximum size, in bytes, of any declared object is the
largest positive integer which can be represented as an
"int". This implies a maximum size of 32767 bytes for 16-
bit "int" machines. The total size of all objects declared
with the same storage class is also subject to the same
restriction.

o The maximum value of the constant expression defining the
size of a single subscript of an array is one less than the
largest positive "int" (32766 for a 16-bit "int").

o The total size of the formal parameters for any function is
limited to a maximum of 256 bytes. Thus, the maximum number
of formal parameters depends on their sizes.

o The maximum 5ize of a string constant is 256 bytes.

o Macros with arguments are limited to a maximum number of 8
arguments.

o The ~~ximum level of linclude file nesting is 4.

These limitations are imposed because of the woy objects are
represented internally by the compiler; our hope is that they are
rea~onably large enough for most real programs.

4.5 Change.in the processing of the lif command

The processing of the lif command has been modified internally,
with two important consequences for programmers. First, as
should be noted in the list of differ~nces· from the standard
language, ·sizeof" cannot be used in lif expressions, and the
expression must appear on a single line. These restrictions
r&sultfrom a desire to keep lif expressions Simple, and because
the pre-processor generally has no information about the size of

16

Lattice 8086/8088 C Compiler Suppleaent for Version 2.00

declared objects. One other clarification should be noted: if a
symbol appear$ in a iif expression which has not been defined in
a tdefinecommand, it is interpreted as if a value of zero bad
been specified. This seems consistent withtifdef usage and
permits the use of symbols which mayor may not be defined.
Otherwise, tif expressions support the full range of operations
described in Section 15 of Appendix A of Kernighan and Ritchie.

4.6 New error/warning messages

Two new numbered messages are now generated by the compiler~ bere
is an explanation of them.

82

83

The object declared caused the total storage for its
storage class to eltceed 32767 bytes, the maximum legal
value.

This non-fatal warning complains of an indirect refer­
ence (usually a subscripted eltpression) which accesses
memory beyond the size of the object used as a base for
the address calculation. It generally.occurs when you
refer to an element beyond the end of an array.

4.7 Exit error code

The MS-DOS Version 2 compiler returns an exit code of zero if no
errors were detected, and a code of one otherwise. This allows
the use of "if" expressions in batch files, such as:

LCl \l
if error level 1 goto errs

S.O CHANGES TO LIBRARY FUNCTIONS

The follOWing features of the standard library functions provided
with the compiler are new or substantially changed in Version
2.00.

5.1 Program entry/exit functions

Three changes are important in the c?eration of the program
startup and termination features of the new library.

5.1.1 Processing of =, <, and> options on command line

The special command line specifiers "c·, "c A, and .>A ate now
processed by C.OBJ instead Of .. main", and must appear before all
other command line arguments foilowing the program name.

5.1.2 Source for ·_main· now supplied

The standard library version of .. main· has been supplied as
MAIN.C, while a smaller version which does not open any buffered
files has been supplied as TINYMAIN.C. Users may modify these

Lattice 8086/8088 C eo.piler Supple.ent for Version 2.00

modules to produce their own versions of "_main". Please note,
however, the following cautions:

(1) The library function "printf" sends its output to the pre­
defined file pointer "stdout", which is normally opened by
.. main". If you remove the code that performs this fun­
ction, don~t be surpr ised when "pr intf" calls produce no
visible output (the I/O library functions ignore attempts to
read or write unopened files). A similar caveat applies to
the use of "scanf", which reads from "stdin".

(2) If your intention is to avoid including the level 2 I/O
functions in the linked program, don~t call the library
function "exit", because it closes all buffered output files
before terminating execution. This will cause the level 2
functions to be included anyway.' Call "_exi t" instead.

5.1.3 Exit functions under MS-DOS Version 2

The functions "exi t" and " exi t"pass the error exi t code back to
the operating system, where it can be tested in a batch file
using a command like:

if error level 1 goto error

This feature is supported only under DOS Version 2.

5.2 I/O library

Extensive revisions to the I/O library have extended its capa­
bilities and retained compatibility with the previOUS version.
The implementation of some features has c~anged internally, with
effects that are noted in this section.

5.2.1 Upgrades tQ levelland level 2 I/O functions

This version upgrades the levelland level 2 functions to be
compatible with the latest UNIX releases and with the UNIFORUM
draft standard. You w ill not need to make any program changes,
since the new functions are still compatible with the old. How­
ever, any programs using level 2 I/O (i.~., any that ,included
"stdio.h·) must be recompiled because the stdio.h definitions
have changed.

Here is a summary of the e:ctens ions and changes:

(1) The "open" function currently aC"cepts a second argument of
0, 1, or 2 for read, write, or update mode, respectively.
Now you can include the header file "fcntl.h" which defines
the following codes for that second argument: .

a RDONLY
O-WRONLY
O:aoWR

Same as code 0
Same as code 1
Same as code 2

18

Lattice 8086/8088 C Coapiler Supplement for Version 2.00

Also, the following flags can be ORed into the above codes:

o CREAT
O-TRUNC

o EXCL
O-APPEND
O:RAW

Create the file if it doesn~t exist
Truncate (set to zero length) the file if it
does exist
Flunk the create if file exists
Seek to end-of-file before each write
Use untranslated I/O (Lattice addition)

A new public symbol called " iomode" has been added to
preset the translation mode. -Normally, iomode is 0 and
translated mode is used unless 0 RAW is specified. If you
change iomode to Ox8000, then untranslated mode is used
unless 0 RAW is specified. In other words, 0 RAW toggles
the meaning of _iomode. -

(2) The "fopen" function recognizes a + after the ~ode character
to indicate that both reads and writes are allowed. In
order to switch from one mode to the other, you must execute
an "f~eek" or "rew ind". We~ve improved on the typical UNIX
inlplementation in this area by c:eturning EOF if you fail to
do this. Many versions ~f UNIX will silently smear your
file if you violate the rule.

(3) Normally the level 2 I/O functions acquire buffers via the
level 2 memory allocator unless the file is on some device
other than a disk. We~ve added the standard UNIX "setbuf"
function that allows you to attach your own buffer via the
call:

char buffer[BUFSIZ]r
FILE *fp:
setbuf(fp, buffer),

Note that this function assumes that the buffer is the
standard size, which is defined via the BUFSIZ constant in
stdio.h. If you call it with a null pointer, it behaves the
same as "setnbf" and makes the file unbuffered.

(4) Levell 1/9 no longer acquires buffers via the level 2
memory allocator, so you don~t need to worry about screwing
up files when you do a "rstmem". Under KS-DOS, buffering is
now performed by the operating system itself, resulting in
improved performance for large read/write data transfers.

5.2.2 Levell I/O device processing

Device names are now recognized by the level 1 "open" and "creat"
functions only if the trailing colon is supplied. If the colon
is omitted, the name is passed to the operating system and may be
processed specially by it: however, the level 1 functions will
deal with it as if it were a diSk. The device names recognized
are as follows:

Coneole CON:

Lattice 8086/8088 C Compiler Supplement for Version 2.00

Printer
Aux port
Null

PRN:, LST:, LPT:, LPT1:
AUX:, COM:, COM1:, RDR:, PUN:
NUL:, NULL:

I/O is performed to these devices, one character at a time, using
the appropriate BOOS function calls. One exception occurs for
the console device: if a translated mode "read" operation re­
quests more than 1 byte, the 6DOS buffered console input function
is used to read the data (a maximum of 128 bytes per read). Any
special editing features supported by the operating system
(backspace processing, etc.) will therefore be enabled.

5.2.3 Implementation of level 2 I/O buffering

The level. 2 I/O function "fopen" sets operations for files to be
~uffered in S12-byte blocks, as in the previous version. If the
name it passes to "open" is recognized by that function as being
a device, "fopen" sets operations to be unbuffered. The old
"line-buffered" mode supported by the previous version has been
scrapped; now, unbuffered I/O is handled in true single-character
fashion, as in UNIX. Thus, "printf" to the console sends the
characters immediately, whether or not a newline is sent. Input
is also unbuf fered, and only a single char acter is read at a
time. Note, however, that the " main" function provided in the
library sets up "stdin" to be butfered, which causes buff~red
console input to be used.

5.2.4 New functions: fread/fwrite

~wo new functions for·reading and writing blocks of data to
buffered files have been added to the library. These functions
work with the level 2 I/O functions ("fopen", "fclose"). Here
is the manual page for these new functions.

20

)

Lattice 8086/8088 C Compiler Suppleaent for version 2.00

NAME

fread/fwrite -- read/write blocks of data from/to a file

SYNOPSIS

nact • fread(p, s, n, fp)J
nact • fwrite(p, s, n, fp) J
int nact: actual number of blocks read or written
char *PJ pointer to first block of data
int SJ size of each block, in bytes
int nJ number of blocks to be read or written
FILE *fpJ file pointer

DESCRIPTION

These functions read {"fread"} or write {"fwrite"} blockS of
data from or to the specified file. Each bloCk is of size
"s· bytes: blocks start at "p. and are stored contiguously
from that location. "n" specifies the number of blocks (of
size "s·) that are to be read or written.

RETURNS

nact • actual number of blocks (of size "s", read or writ­
ten: may be less than "n" if error or end of file occurred

CAUTIONS

Return value must be cheeked to verify the correct number of
blocks were processed. The "ferror" and "feof" macros can
be used to determine the cause if the return value is less
than "n".

/'

Lattice 8086/8088 C Compiler Supplement for Version 2.00

5.3 Memory allocation functions

The new versions of the memory allocation functions have been
extended to support the capability of a memory pool in excess of
641< bytes. For the most part, the new functions are compatible
with the old. The exceptions are listed below.

5.3.1 "sizmem" function now returns "long" size in bytes

In the old version, "sizmem" returned the size of the memory pool
as an "unsigned- number of 16-bit words. The new version returns
the available memory in bytes, and must be declared as a "long"
integer function:

long n, sizmem()J

n • sizmem() #

S.3.2 "getml" function

The new function "getml" works exactly like the "getmem" function
except that it accepts a "long" integer arg'umen t.

p • getml(lbytes) #
char .p:
long lbytes:

pointer to memory block, or NULL
size of desired block, in bytes

In accordance with the usual convention, "getml" returns a null
(zero) pOinter if it cannot allocate the requested block. Note
that the function must be declared "char ."

5.3.3 "lsbrk" function

The new function "lsbrk" is similar to "sbrk", but accepts a
"long" integer for the size argument. Its return value on
failure"is zero iristead of the -1 returned by "sbrk".

p. lsbrk(lbytes)1
char ·P1
long lbytes:

pointer to allocated block, or NULL
size of desired block, in bytes

5.3.4 Change in the action of the "rstmem" funct~oQ

According to the manual, the level 2 memory allocation function
"rstmem" restored the memory pool to its empty state by calling
"rbrk a • This had the effect of deallocating all of the memo~y
obtained by calls to "sbrk", as well as calls to "getmem". In
the current version, the action of "rstmem" has been changed so
that only allocations made (by calls to "getmem") after a call to
"allmem" are affected. Thus, the cautions on page 1-37 of the
manual should read:

(1) The reset function "rbrk" cannot be used if any of the
standard I/O functions are also being used on currently open

22

Lattice 8086/8088 C Compiler Supplement for Version 2.00

files. This restriction applies only to level 1 functions.
Files may be closed, then re-opened after the reset function
is called: however, any file pointers must be updated if
this is done, because there is no guarantee that the same
value will be returned when the file is opened again.

(2) A similar restriction applies to use of the fuftction
"rstmem", except that files opened BEFORE the most recent
call to "allmemn are not affected. Thus, if a program opens
all files first and then calls "allmem", it may safely call
"rstmem n without affecting those open files. Any files
opened AFTER the "allmem" ~all must be closed before
"rstmem" is called.

5.4 Utility macros

The standard I/O header file "stdio.h" defines three general
utility macros which are useful in working with arithmetic
Objects. They are:

max (a, b)
min(a,b)
abs (a)

returns the maximum of "a" and "b"
returns the Mlnlmum of "a" and "b"
returns the absolute value of -a"

Several important restrictions must be noted.

rirst, since these are macros which use the conditional
operator, arguments with side effects (such as function calls or
increment or decrement ooerators) cannot be used, and the
address-of operatQr cannot be applied to these "functions." Sec­
ond, beware of using the macro names in declarations such as

int min:

because the compi ler w ill try to expand "m in" as a macro, and you
will get an error message complaining of invalid macro usage.
Third, only arithmetic dat~ items should be used as arguments to
these macros: "max" and "min" should be supplied two arguments of
the same data type, although conversion wi~l be performed if
necessary.

5.5 New utility functions

Several new utility functions have been added to the library
which allow access to all of the features of the 8086/8088
processors, including (1) softwart! interrupts (useful for 'making
direct ROM BIOS calls); (2) BDO.S functions; (3) access to segment
register contents: (4) inter-s~9ment memory transfers; and (5)
"peek" and "poke" functions for examining and setting arbitrary
memory locations.

Lattice 8086/8088 C Compiler Supplement for Version 2.00

NAME

int86/int86x -- generate 8086 software interrupt

SnlOPSIS

int86 (intno, inregs, outregs},
int86x(intno, incegs, outregs, segregs},

int intnof
union REGS * inregs r
union REGS *outregs;
struct SREGS *segregs;

DESCRIPTION

interrupt nWllber
input registers
output registers
segment registers (int86x only)

Performs an 8086 software interrupt of the specified number.
Check the system-level documentation for your operating
system to determine the interrupts and calling sequences
supported: generally, values in the registers are used as
inputs. "inregs" must contain the register values which

_ will be loaded into the working registers before the inter­
rupt is performedr ·out:egs" will redeive the- register val­
ues after control returns from the interrupt. With
"int86x·, you can specify the values which will be placed in
the se~ment registers before the interrupt; although the
SREGS structure defines all of the segment registers, only
D5 and ES will actually be loaded. The REGS and SREGS
structures are defined in the DOS.H header file.

CAUTIONS

The software interrupts on the 8086 are used to implement
all sorts of system level proceSSing, and invalid input data
can cause unpredict~ble (and occasionally disastrous) re­
sults. Defining the segment register values for ·int86x· is
best accomplished by calling ·segread- to obtain current
values (see below for details on this function).

Note that -inregs·, ·outregs·, and ·segregs· ar~ shown as
pointHs above; the usual technique is to declare them
directly, and then use the address-of operator to pass a
pointer to them.

24

Lattice 8086/8088 C Compiler Suppleaent for Version 2.00

NAME

intdos/intdosx -- generate DOS function call

SYNOPSIS

ret· intdos(inregs, outregs):
ret • intdosx(inregs, outregs, segregs);

int ret;
union REGS *inregs:
union REGS *outregs;
struct SREG ·segregs;

DESCRIPTION

operating system return code
input registers
output registers
segment registers (intdosx only)

Generates a DOS function request to the operating system.
Check the system-level documentation for your operating
system to determine the DOS functions and calling sequences
supported; the values in the registers are used as inputs.
In particular, the exact function request is specified by
placing a value in one of the registers (under KS-DOS, the
function number is specified in AH; under CP/H-86, in CL).
"inregs· must contain the values which will be loaded into
the working registers before the function call is made:
·outregs· will receive the values in the registers after
control returns from the function request. With ·intdosx·,
you may specify the values which will be placed in the
segment registers before the interrupt; although the SREGS
structure defines all of the segment registers, only OS and
ES w ill actually be loaded. The REGS and SREGS structures
are def ined in the DOS.H header file.

CAUTIONS

Defining the segment register values for ·intdosx· is best
accomplished by calling ·segread· to obtain current values
(see below for details on this function).

Note that "inregs", ·outregs·, and ·segregs· are shown as
pointers above; the usual technique is to declare them
directly, and then use the address-of operator to pass a
pointer to them.

Lattice 8086/8088 C Compiler Suppl~aent for Version 2.00

NAME

segread -- return current segment register values

SYNOPSIS

segread(segregs),

struct SREGS ·segregs: structure for return of values

DESCRIPTION

Places the current 8086 segment register values into the
SREGS structure whose pointer is supplied. Its main purpose
is to obtain current values in order to make a subsequent
call to "int86x· or ·intdosx·, The definition for the SREGS
structure is found in the DOS.H header file,

)

Lattice 8086/8088 C Compiler Supplement for Verslon 2 .• 00

NAME

movedata -- move data bytes from/to segment/offset address

SYNOPSIS

movedata(sseg,
int neg;

soff, dseg, doff, nbytes);

int soff;
int dse9l
int doff;
unsigned nbytes;

DESCRIPTION

segment portion of source address
offset portion of source address
segment portion of destination address
offset portion of destination address
number of bytes to move

Moves the specified number of data bytes from the source to
the destination address. The addresses must be specified as
(segment:offset) in accordance with the standard 8086 nota­
tion. This function is primarily intended -for use in pro­
grams compiled uSing the Sand P models; in the 0 and L
models,- the standard library function "movmem" can be used.
The ·segread" function can be used to obtain segment regiS-
ter values. .

CAUTIONS

Memory is not protected on the 8086, so supplying invalid
parameters to this function can have disastrous results.

~attice 8086/8088 C eompile[Supplement ~o[verSLon ~.UU

peek/poke -- examine/modify arbit[ary memory locations

SYNOPSIS

peek(segment, offset, buffer, nbytes);
poke (segment, offset, buffer, nbytes);

int segment;
int offset;
char *buffer;
unsigned nbytes;

JESCRIPTION

segment portion of memory address
offset portion of memory address
local memory buffer
number of bytes to transfer

These functions copy data values between an arbitrary memo[y
location and a local memory buffer: "peek" moves data to
the local buffer from a specified memory address, while
"poke" moves data from the local buffer to the arbitra[y
memory address. These functions are primarily intended. for
use in programs compiled using the Sand P models; in the b
and L models, the standard library function "movmem" can be
used.

':AUTIONS

Memory is not protected on the 8086, so supplying invalid
parameters to the "poke" function can have disastrous re­
sul ts.

28

Lattice 8086/8088 C Coapiler Supple.ent for Version 2.00

6.0 UTILITY PROGRAMS

The function extract utility has been modified, and a new utility
program -- the object module disassembler has been added to
the compiler package.

6.1 New version of Function Extract Utility

Extensive modifications to the function extract utility have made
the description in the manual (Section 1.1.'5) inaccurate. Here
is the corrected version of that section.

(1.1.5 Function Extract Utility)

Secause the compiler generates a single, indivisible object
module for all of the functions defined in a source fil~, the
function extract utility FXU is provided so that groups of small
functions may be kept together ina single source fil'! and object
modules produced for them individually. The utility operates by
extracting the source text for a single, specified function, thus
creating a source module which can then be compiled to produce an
object module defining only that spec~£ic function.

Programmers who are a little puzzled by the need for this
utility may find the following example helpful. Suppose that one
user has a mOdule called STRING.C, which defines several string
handl ing functions, and tha t a program calls one of those
functions (say, "strcnt"). 1 f STRING.C is compiled as a single
source module, the resulting object module defines ·strcnt" along
with several other functions. When the program is linked, then,
the machine code for ·strcnt" is included (as part of the object
module produced when STRING.C was compiled), but the code for all
of the other functions is included as well, even though the
pr99ram does not make use of them. Only by compiling ·strcnt" as
the only function defined in its source module will the compiler
produce an object modllle which just defines that function. FXU
can be used to produce such a source file.

The format of the command to inVOke the function extract
utility is

rxu «header-file1 (>outpllt-file1 filename function

The various command line specifiers are shown in the order they
must appear in the command: optional specifiers are shown
enclosed in br,ckets. The first two options are part ,of the
general command line options for all C programs (see Section
1.1.4) •

<header-f ile The first option specifies a file which will be
copied to the output file when the specified
function is found. The entire file is copied
before any text from the function is written. If
only the function itself is to be written to the
Olltput file, the <NUL option should be used. If

Lattice 8086/8088 C Compiler Supplement for Version ~.OO

>output-file

filename

function

this option is omitted, text will be read from the
user~s console and copied to the output file
until a control-Z is typed.

The second option specifies the output file which
will contain the text of the extracted function
(preceded by the header file text, if .any). If
this option is omitted, text is written to the
user~s console.

Specifies the name of the file containing the
function to be extracted.

Specifies the name of the function to be extracted
from the specifed file. The function name must be
specified exactly as it appears in its definition,
except that alphabetic characters may be specified
in either case (upper or lower).

The iunction extract utility counts braces defined in the
~ody of the functions in order to determine when it has reached
~he end of a function. Although it recognizes comments and will
:1ot make the mistake of counting any braces which might be
~nclosed in them, it assumes that comments can be nested, which
~s the same assumption normally made by the compiler. The
;ompiler, however, can be requested by command line option to
?rocess comments as if they did not nest; FXU has no such option.

The text extracted c~nsists of all the characters between
~he closing brace of the preceding function, up to and including
~he closing brace of the extracted function. If the specified
:unction is the first one defined in the source file, then all
::haracters from the beginning of the file to" the function~s
::losing br ace are included. Note that funct ions which refer to
~xternal data items defined in the source module cannot be easily
~rocessed with the function extract utility. As the example
~elow illustrates, however, the header file option can be used to
3void this limitation.

If the specified function is not encountered in the
3pecified sou ice file, the output file will receive the single
~rror message "Named function not found". Note that FXU works on
;,nly a Single function, not a list of functions. A-source module"
jefining more thin one extracted function can be generated,
~owever, by executing FXU repeatedly and then combining the
extracted texts usi~g the CAT program, which is supplied as an
example source file.

The supplied version of rxu uses an internal buffer to store
::haracters between functions, while it scans for the next. The
~uffer size can be expanded, if necessary, by a simple
~odification to the sourc~ text, which is supplied as FXU.C.

E:XAMPLES

30

Lattice 8086/8088 C Compiler Suppleaent for Version 2.00

FXU <NOL STRlNG.C strcnt

Extract the function called ·strcnt· from the text fill! STRlNG.C:
do not include any preceding text: and write the extracted text
to the user#s console.

FXO <lOS.8 >lNPUT.C IOFUNC.C input

Extract the function called "input" from the text file IOFONC.C,
and prepend the output with the text from the file IOS.H: and
write the resulting text to INPUT.C. If each function in
10FUNC.C can refer to the external locations "f1agl" and "flag2",
for example, and needs the information from the standard I/O
header file, then IOS.H should include the text

tinclude <stdio.h>
extern int f1ag1, flag2:

A similar technique can be used for functions which need more
extensive external references.

6.2 New utility program: Object Modul~ Disassembler

For programmers who wish to debug C modules at the machine
code level, the object module disassembler provides a listing of
the machine language instructions generated for a particular C
source module. If the module is compiled with the -d option'so
that line number/offset information is included in the object
f i 1 e , the dis ass e m b 1 e rut i 1 i t Y can prod u c e ali s tin g wit h
interspersed source code lines. This listing can then be used in
association with the link map for the program to perform
interactive debugging uSing the MS-DOS debug program. The
usefulness of this utility, of course, is limited to those
programmers who are knowledgeable about the 8086 architecture and
instruction set.

The for ma t of the command to invoke the obj ect module
disassembler is

OMD [>listfilel [options] objfile [textfile)

The various command line specifiers are shown in the order they
must appear in the command. Optional specifiers are shown
enclosed in brackets.

>listfile The first option is used to direct the listing produced
by OHD to a specified file or devic~. If this option
is omitted, the listing output is written to the user#s
console.

options Four override options can be specified: each consists
of the special character ._" followed by a single
letter which indicates the value to be overridden, and
a string of decimal digits specifying the override
value. There must be no embedded blanks in any single

Lattice 8086/8088 C Co.piler Supplement for Version 2.00

option, but each must be specified as a separate field.
The valid options are:

-Pnnn Overrides the default size provided for the program
section of the object module being processed. "nnn"
specifies a decimal number of bytes of storage to be
allocated for the program section. The default value
is 1024 bytes.

-Dnnn Overrides the default size provided for the data
section of the object module being processed. -nnn"
specifies a decimal number of bytes of storage to be
allocated for the data section. The default value is
1024 bytes.

-Xnnn Overrides the default maximum number of external it~ms
which can be processed by OKD; this number appl ies
separately to both external definitions and external
references. ·nnn~ specifies a decimal number of
external items which can be processed. The default
value is 200.

-Lnnn Overrides the default size for the line number and
offset information tables. These tables are used only
if the object file was produced with the -d option;
line number/offset information from the file is placed
in these tables. The default size (which defines the
maximum number of line number/offset pairs which can be
processed) is 100.

objfile Specifies the name of the object file, produced by the
compiler, which is to be processed by OKD. The full
name including the .OBJ extension must be specified.

textfile Specifies the name of a C source code file which is to
be listed along with the disassembled instructions. If
this option is present, the .object file must have been
compiled using the -d option for the LCl command. The
full name including the .C extension must be specified.

OKD processes only a single object nlodule. The entire
module is read and loaded into memory before the listing is
g e n era ted. The v a rio u s 0 v err ide 0 p t ion s a rOe use f u 1 for
proceSSing very large object modules, or for reducing the amount
of memory needed by OKD on systems which are cramped for memory. ,

If the "te~tfile" option is used, only the source text from
the specified file ios list~d; if ito r~ferso to any tinclude fioles,
they will NOT be li.ted. Some limltatlons of the "textfile"
option should be noted. First, the code generated for the third
portion of "for~ statements is placed at the bottom of the loop,
that code will appear in front of the next statement after the
end of the loop. Second, the compiler tends to defer storing
registers until the last possible moment, so that the code shown
for aSSignment statements often consists merely of loading value.

32

Lattice 8086/8088 C Compiler Supple.ent for Version 2.00

into registers; the registers will be stored later. Finally, the
code generated for entry to a function will often be displayed in
front of the source lines defining that function. Thus,
inspection of the surrounding code may be necessary to determine
the actual code generated for a source file construct.

EXAMPLES

OMD -P2048 -08000 QRS.OBJ

Disassemble the object module QRS.OBJ and write the listing to
the user"s console. Allocate 2048 decimal bytes of storage for
the program section defined in the object module, and allocate
8000 decimal bytes for the data section.

OMD >TEMP.LST -X400 XYZ.OBJ XYZ.C

Disassemble the object module XYZ.OBJ and write the listing to
the file TEMP.LST. Include source code lines from XYZ.C in the
listing, provided that line number and offset information was
present in the object file. Provide for a maximum number of 400
external items (sAme limit for bo~h external definitions and
external references).

ERROR MESSAGES

A variety of error conditions are detected by the object
module disassembler; all cause early termination of the output
file and result in the writing of an appropriate error message to
Wstderrw.These messages are self-explanatory for the most part.
If one of the run-time-specifiable options is not sufficiently
large, the error message will indicate the specific option which
was not large enough: for example, if the module defines too many
words of program section, the message .

Program section overflow

will be produced. Note that OM.D was designed specifically for
use with modules generated by the C compiler; attempts to use it
with other object modules will probably cause an error message to
be generated.

33

~attice 8086/8088 C Compiler Supplement for Version 2.00

7.0 STOCKLIST

Ju·e to the support for the extended memory addressing models, the
:'ist of files supplied with the compiler has grown considerably.
:~ote that the manual descr ibes the linking process as involving
~he files C.OBJ and LC.LIB; in the current release, four differ­
ent versions of each of these files have been supplied. The
~rocedure for linking programs is the same, but now you must use:
for C.OBJ, either CS.OBJ', CP.OBJ, CD.OBJ, or CL.OBJ; and for
:'C.LIB, either LCS.LIB, LCP.LIB, LCO.LIB, or LCL.LIB. Make sllre
:he same memory model is selected for both files.

You Should find the following files on your release disk(s):

execlltable Piles

LCl.EXE
LC2.EXE
FXU.EXE
OMD.EXE

C compiler (phase 1)
C compiler (phase 2)
Function extract Iltility
Object.module disassembler

~un-time and Library Files

CS.OBJ
CP.OBJ
CD.OBJ'
CL.OBJ
LCS.LIB
LCP.LIB
LCD. LIB
LCL.LIB

:: Source Files

MAIN.C
TINYMAIN.C
FTOC.C
CAT.C
FXU.C
CONIO.C

:: Header Files

STDIO.S
CTYPE.H
ERROR.R
FCNTL.S
10Sl.R
DOS.R
MSDOS.S
SM8086.H
PH8086.S
0148086.8
LM8086.R

C program entry/exit module (S model)
C program entry/exit module (P model)
C program entry/exit module (0 model)
C program entry/exit module (L model)
Run-time and' I/O library (S model)
Run-time and I/O library (P model)
Run-time and I/O library (0 model)
Run-time and I/O library (L model)

Standard library version of • main­
Abbreviated version of - mainT

Fahrenheit-to-Celsius sample program
File concatenate sample program
Source for function extract utility
Basic console I/O functions

Standard I/O header file
Character type macros header file .
Reader file defining UNIX error num~ers
Reader file defining level 1 I/O codes
Header file defining level 1 I/O structures
Environment information header file
Defines MS-DOS version
Memory model header file for S model
Memory model header file for P model
Memory model header file for 0 model
Memory model header file for L model

34

)

Lattice 8086/8088C Compiler Supplement for Version 2.00

(Note: in order to use the DOS.R header file, you must copy
one of the last four files intoM8086.H)

Assembly Language Source Files

C.ASM
IO.ASM

Assembly Language

SM8086.MAC
PM8086.MAC
DM8086.MAC
LM8086.MAC

Source for C.OBJ (all ~ersions)
Sample assembler language function

Macro Files

Macro include file used with S model
Macro include file used with P model
Macro include file used with D model
Macro include file used with L model

(Note: in order to assemble the sample source modules, you
must copy one of the last four files into DOS.MAC)

/

Lattice 8086/8088 C eo.piler Object Module Librar

OBJECT MODULE LIBRARIAN REFERENCE MANUAL

by Phoenix Software ASsociates, Ltd.

The Object Module :ibrarian (OML) manipulates libraries
object files on the !!\tel Corporation (1) 8086 {or 80:
processor (tm) under t~e MS-DOS (2) or CP/M-86 (3) operat
systems.

OML handles object files and libraries conforming to
format generated by the Microsoft compilers for the Intel 80
This is actually the standard Intel format with an enha~
library index. A list of compilers that produce object ~
compatible with this format is given later.

The first section o! this manual provides an explanation
the ·object library· concept and the capabilities of OML. Us
unfamiliar with library managers would do well to start he
Also, the OML user#s gUlde contains a chapter discussing objl
files and linkage editors that may be helpful.

The next section of this manual describes how to use OML
handle several common Object library situations. At the Se
time it provides an info:mal explanation of what the commands
Those readers experienced with linkage editors and library m
agers may wish to skip directly to this portion of the manu
it provides enough information to handle most appl~cations.

The final portion of the manual is an exhaustive list of
commands and features offered by OML. This should be examil
when it becomes necessary to qo beyond the examples given in
previous section. Side issues such as error codes are qenera:
referred to appendices.

Trademark Acknowledgment:

(1) Intel is a trademark of Intel Corporation.

(2) MS-DOS is a trademark of Microsoft, Inc.

(3) CP/M-86 is a trademark of Digital Research.

1

"

Lattice 8086/8088 CCompiler Object Module Librarian

1. LIBRAR! MANAGBR CONCBP'l'S

Typically it is convenient (if not essential) to divide a
large programing job into smaller pieces called ·modules R that
can be edited and compiled separately. Actually, compilers
available on micro-computers tend to have severe limitations on
!'low many lines of code can be compiled at" one time, forcing the
programmer to use modular ization anyway. On the positive side,
modular programming offers a method of organizing a program into
manageable pieces that are easier to understand and work with.

After the program modules are created and compiled the
programmer must "link" the!: together with a "linkage editor R to
produce the executable program.

Once one has created a modular program one may find that
some of the modules are useful in a different program. With a
little effort these modules can be made more general in. function
and Can be used in many programs. The programmer can gradually
ouild up a "library· of use:ul routines that can be hooked in by
tne linkage editor whenever needed.

o

In fact, virtually all compilers are sold with a "library·,
since functions like arithmetic on real numbers are often not
3upported by the hardware and have to be implemented as procedure
=alls. The compiler library also contains modules that support
~~e high level features of the language such as formatted output
in FORTRAN. This library is often called the "run time support R ('",

since its modules are required while the program executes. ~

Other software products in addition to compiler run time
support are often sold in the form of libraries. An example
might be a data base manager that is combined with the applica­
tion program by the linkage editor to produce a complete system.

Because of the importance of libraries, linkage editors
typically have special facilities for handling them. To save
memory space, only those modules in the library that are
actually required by the program are linked in. Sometimes a
:!.ibrary is simply a conca.tenation of object modules, requiring
the linkage edi tor to search sequentially for the required
modules. More sophisticated systems provide a "library index·.
It contains a list of the public symbols offered by each library
mod~le, and the location of the module that defines each symbol.
Therefore the linkage editor can rapidly lOcate the motiules that
are required. The Microsoft library format is an indexed
str'Jcture.

The purpose of the library manager is to create and
manipulate object module libraries. It is therefore a useful
assistant to the linkage editor.

OMI. provides commands that can create libraries froll
individual object modules, and to extract a selected module froll
a library. It can also merge libraries, and can replicate

o

Lattice 8086/8088 C Oospiler Object Module Libral

library search process undertaken by the linkage editor wh
creating a program. In other words, one can create a libr
consisting of only those modules that the linkage editor we
have included in a particular program.

OML also provides a power ful cross-reference function,
optionally generates a report listing each public symbol,
module which def ines it, and a 1 ist of other modules that re
to it. This may be used to cross-reference a single libraq
several libraries together, or, in combination with the libl
search feature described above, to generate a cross-referencE
a program that will be created by the linkage editor.

CREATING/MERGING LIBRAlUBS •••

To create a new library use the BUILD and FILE commal
For example, executing OML and entering

BUILD
.FILE

DB.LIB
BTREE,SORT,REPGEN,FIRSTLIB.LIB

would create a library named DB.LIB containing the files li!
after the FILE command. These files could be single obj
modules or complete libraries. Everything is merged int
single library.

Normally you can just execute OML and type in commands 01
many lines as desired. Then end the the last line with a se
colon to begin processing. Each statement begins with a key'
like BUILD or FILE and is followed by arguments, possibly s
arated by commas. Irtput is free format, and blank lines
ignored. Also, key words may be abbreviated by leaving
characters at the end. For example, you can use BU and FI inst
of BUILD and FILE. An error message wi~l be given if
abbreviation could be confused with another command.

Another way to use OML is to specity its actions on the
command line. For example, the above library could have t
created by entering (on one line):

OML SU DU FI BTREE,SORT,REPGEN,FIRSTLIB:LIB

Note that the output file type defaults to LIB au~oma
cally.

SEARCHING A LIBRARY •••

Suppose you want to create a library consisting of seve
modules plus those portions of anothetlibrary that
referenced by the modules. Use the LIBRARY command:

BU D8 FI BTREE,SORT,REPGEN,LIB FIRSTLIB.LIB

The po~tions of FIRSTLIB not referenced by the three ot

...

Latt.ice 8086/8088 C CoIIIpiler Object Modu1e Librarian

files are not put into the DB library.

UPDATING A LIBRARY •••

To update a libra"ry it is necessary to copy the old library
to the output file while omitting the module to be updated, and
also include the new module. For example, to replace module
:OSINE in 1 ibrary MATHLIS, rename the cur rent MATHLIB.LIB to
MATHLIB.OLD and enter

SU MATHLIB FI COSINE,MATHLIS.OLD EXC COSINE

The EXCLUDE statement applies to the preceding file and
causes the COSINE module in the MATHLIB to be ignored.

MODULE EXTRACTIOR •••

The EXTRACT statement causes a single object module file to
oe created. It may not be used at the sa~e time as BUILD. The
: irstobject module found in the input files is extracted, so the
~articu~ar module to be selected from a library must be speci­
. ied. The obj ect file extracted may be given any file name. The
.odule name remains the same. For example, typing

EXT OLDCOS FI MATHLIB.LIB INCLUDE COSINE

;reates file OLDCOS.O&J containing object module COSINE. The
:NCLUDE statement is the counterpart of EXCLUDE: it applies to
~he previous input file and causes only those modules named to be
considered for processing. There wouldn't be any point to
INCLUDing more than one module in this case since only the first
one founa is extracted.

CROSS REFERENCE LISTING •••

To create a cross-reference listing use the LIST command
with input file commands like those given in previous examples.
For example,

LIST = DB 5 FI BTREE,SORT,REPGEN,FIRSTLIB.LIB.

creates a cross reference report named DB.LST describing the
modules in all of the files listed. The ftsn selects the crose­
reference report. For a description of other reports available
see the LIST command description. The ft.ft specifies that the
report is to be put into a disk file. If omitted the report
appears on the console.

o

o

o

Lattice 8086/8088 C Compl~er Object Module Librarian

operating system it is executing under. The first character not
allowed to be in a file name terminates the name. The escape
character may be used to put any character into a file name.

In this manual, MS-DOS format file names are used
discussion. These file names are of the form
{.type), with optional portions in brackets.
examples:

MATHLIB.LIB
B:CHESS.OBJ
SCANNER

for purposes of
[device:) nallle
Here are some

When the Rdevice R is not given, OML assumes that the
currently logged-in disk is to be used.

INITIATING 2!!!!

OML may be used interactively, or input may be given on the
command line:

OHL <statements> <cr>

where <cr> means to press the RETURN key. This means that OML
may be used in .BAT files.

To use OHL in the interactive mode, enter

OHL <cr>

on the console. OML will read statements from the conl101e,
prompting with -.>". All input is stored uninspected until a
carriage return is typed. The standard line editing features
supplied by the operating system are available.

A disk file containing all or only part of a command may be
inserted into the input at any point by preeeding the disk file
name with an "@R. The default file type is -.LNK-. These disk
files can eontain further "@" speCifications, up to three levels
deep. The most common use of this feature is to prepare a file
containing a complete command 1 then,

OHL @<file name> <cr>

creates the library. Sometimes these ".LNKft files may be pre­
pared once for a given library and used over and over again,
greatly simplifying the whole process.

OML reads an enti re command,
before any file processing is done.

6

checking for syntax only,

Lattice 8086/8088 C Compiler Object Module Librarian

operating system it is executing under. The first character not
allowed to be in a file name terminates the name. The escape
character may be used to put any character into a file name.

In this manual. MS-DOS format file names are used for purposes of
discussion. These file names are of the form [device:1 name
[.type1, with optional portions in brackets. Here are some
examples:

MATHLIB.LIB
B:CHESS.OBJ
SCANNER

When the "device" is not given, OML assumes that the
currently 10gged-in disk is to be used.

INITIATING ~

.OML may be used interactively, or input may be given on the
command line:

OML <statements> <cr>

where <cr> means to press the RETURN key. This means that OML
may be used in .BAT files.

To use OML in the interactive mode, enter

OML <cr>

on the console. OML w ill read statements from the console,
prompting with -.>". All input is stored uninspected until a
carriage return is typed. The standard line editing features
supplied by the operating system are available.

A disk file containing all or only part of a command may be
inserted into the input at any point by preceding the disk file
name with an Wi". The default file type is ".LNK". Tbese disk
files can ~ontain further "@" specifications, up to three levels
deep. The most common use of this feature is to prepare a file
containing a complete command; then,

OML @<file name> <cr>

creates the library. Sometimes these ".LNX" files m3Y be pre~
paced once for a given library and used over and over again,
greatly simplifying the whole process.

OML reads an entire command. checking for syntax only,
before any file processing is ·done.

o

()

Lattice 8086/8088 C Ca.piler Object Module Libral

COMMAND FORIIA'l'

All OML input is free format. Blank lines are ignored,
a command may extend to any number of lines. Comments ma3
included with input from any source by using a percent sign
When this is encountered, all remaining characters on the I
line are ignored.

Input is a list of statements:

<statement> <statement> ••• <statement>

Each statement begins with a key word, and many are folle
by arguments separated by commas. For example, in

FILE A,B,C

FILE is the key word, and A,B, and C are the arguments.
words may be abbreviated by omitting trailing characters, as
as ~he abbreviation is unique among the entire group of
words. For instance, the previous statement could have t
entered as

FI A,BtC

If a syntax error is found, the current input line is ecl
with two question marks inserted after the point at which
error was detected. This is followed by an error message '
Appendix}. The command must then be re-entered.

If some other error occurs, OML terminates with an ez
message also listed in the appendix.

OBJECT FILBS

OML must be told what object files and libraries to use
input and what modules to select from them •. The FILE comman.
typically used, and normally causes all m-odules with the 9 j
files to be processed:

FILE COSINE, SIN, ARCTAN

The LIBRARY and SEARCH commands are similar, but are,
only on libraries and select only those modules that defir
public symbol that is needed by some other module that
already been processed. This is called a "library search- anc
a process carried out by most linkage editors. It insur~s ,
only those library modules that are actually needed are incl1
in the program.

LIBRARY MATHLIB
SEARCH FORTRAN

The LIBRARY command causes the given libraries to

.,

Lattice 8086/8088 C Compiler Object MOdule Librarian

searched once. When the SEARCE command is used the libraries may
be searched multiple tiiDes as long as undefined symbols remain.
~his won-t be needed unless two or more libraries are being
searched that each refer to syabols defined in the others.

If OML can-t find a requested object file it will look on
drive A to find it, and will ~hen aslt the operator to enter the
drive ide Diskettes may be changed at this time if necessary. Of
course, the operator must insure that any diskettes removed do
not contain open files like the BUILD or EXTRACT file.

Also, if OML runs out of aemory a wo"rk file is opened on the
default disk, which then may not be removed.

Under MSDOS 2.0 operating systems OML will accept a path
name as part of an object file name. Also, if an object file
can·t be found OML will loo(for a string named ·OBJ- in the
environment and append its value to the front of the file name,
after stripping any drive ide For example, suppose that the
operator enters

SET OBJ c \OBJECT

and then runs OML. Let us sappose that one of the commands to
OML is

FILE B:TEST.OBJ

()

and that TEST.OBJ doesn·t in fact exist on drive B. OML would (J
str ip the B: from the name and then try \OBJECT\TEST.OBJ to
obtain the requested file.

If an object file (not a library) is being processed the
module it contains is given the same module name as the name of
the file it came from. This is done because some compilers don"t
supply a unique module name. This default may be changed by
using the AS statement. It supplies the module name for the most
recent FILE given. For example,

FILE ~THl AS COSINE

would name the module in MATHl COSISE instead of MATH1.

If you are processing libral,':ies built with Microsoft"s
library manager you will get several checksum errors. These
arise because the Microsoft ~ibrary manager renames th~ modules
as OML does but does not re-compute the checksum field at the end
of th~ module name record. The messages should no longer appear
once the library has been ce-built by OKL.

The modules selected from a library may be further
restricted by using the INCLUDE and EXCLUDE statements. These
are followed by a list of mOdule names:

8

Lattice 8086/8088 C Compiler Object Module Librar

FILE MATHLIB INCLUDE SIN, CONSINB
LIB MATHLIB. DB EXCLUDE.STREE

The INCLUDE statement causes only those modules listed to
considered for processing, and this selection precedes a libr
search. EXCLUDE is the opposite. The modules listed are I

processed. INCLUDE and EXCLUDE apply to the FiLE, LIBRARY
SEARCH file immediately preceding. ITl the second example abo
for instance, the EXCLUDE BTREE applies only to the DB libra
not MATHLIB.

BUILDING ~ LIBRARY

The BUILD command is used to create a library out of I
modules selected from the input files. It is followed by
name of the file to create. The file type defaults to .LIB:

BUILD DB. LIB
BUILD D:MATHLIB

After all modules are output the library index is created.

One must be careful that the output file does not have
same name as any of the input files. For instance, entering

BUILD MATHLIB
FI COSINE, ARCTAN, MATHLIB

won~t work because MATHLIB will be erased before it is read.

The BUILD command may not be used simultaneously with
EXTRACT command (deser ibed next). If no output is requested f
OML {i.e. there is no BUILD,' EXTRACT or LIST command} then (
will simply raad the input modules and report any errors
finds.

EXTRACTING ~ LIBRARY MODULB

The EXTRACT command is used to extract a single obj­
modu~e from a library file and place it into a separate d
file. It is followed by the nalne of the file to create:

EXTRACT COStNE.OBJ
EXTRACT ARCTAN

If the file type is omitted OBJ is assumed.

,

The EXTRACT command extracts the first module found in
input files. Therefore it is usually necessary to use
INCLUDE statement to specify which library module should
extracted. For instance,

9

\, -

Lattice 8086/8088 C co.piler Object Module Librarian

EXTRACT COSINE 1'1 MATULIB

extracts the very first module in MATHLIB, even if it is not the
COSINE module. To get the correct one enter

EXTRACT COSINE 1'1 MATHLIB INC COSINE

GENERATING REPORTS

The LIST command is used to generate reports about the
object files being processed. It may optionally be followed by a
file name, causing the reports to be directed to that disk file
or device. The file name must be preceded by an equal sign. Then
a character is entered for each report desired, separated by
commas. There are currently two reports available:

M - A list of all modules processed in alphabetical order.

S - A list of all public and external symbols in
alphabetical order. Each is followed by the name of the
module defining the symbol in parenthesis (this will be
blank for external symbols). Following this is an
alphabetical list of all modules that access
the symbol (i.e. this is a cross-reference report).

Here are some examples:

LIST M
LIST = DB,LST M, S
LIST = XREF.LST S .

The report generator can be re-configured for different size
paper. It assumes 80 columns and 66 rows per page as a default.
The number of columns may be changed with the WIDTH command, and
the number of rows with the HEIGHT command. Here are. some exam­
ples:

WIDTH 132
HEIGlT 88

CONTROLLING THE LIBRARY IND£X --- -----
Normally all public symbols from all module. are inserted ~

into the library ~ndex. If a duplicate symbol is found library
creation continues but a warning message is given and the index
entry for that symbol will select the first module defining th,e
symbol.

() _.

Sometimes it is useful to exclude certain symbols from the
library index. This may be accomplished by using the NOINDEI ~ .. _-)
command. For example,

NOINDEX SYM1,SYM2,SYM3

excludes SYM1, SYM2, and SYM3 from the index.

\
/

Lattice 8086/8088 C co.pl~er OD)ect MOQu~e L1Drari

Suppose you wish to create a library that contains seveE
versions of the same module, for instance a device driver f
some kind of hardware. If you try to place all of the modul
into the library you will get duplicate symbol warnings, and
link time the linkage editor wouldn#t be able to select t
desired module.

This can be made to work by using NOINDEX on the modt
entry points. This excludes all of these symbols from t
library index. To get the linkage editor to select the corrE
modules insert an un-used but unique dummy symbol int6 ea
mOdule. At linkage edit time one of these dummy symbols would
accessed in order to create a need for the desired module. ']
linkage editor would then select it when the library is search,

OSing OML, for instance, one could use a statement like

DEFINE FOO-DRIVERl

to select the module containing driver 1. An alternative is
rely on the fact that the name of each module is actually in 1
library index as well, followed by an exclamation point. F
example, if the library contains a module named CaIVERl tt
there will be a dummy index entry named DRIVER1!. These symbc
can be used instead of creating a dummy module entry point
discussed above.

11

more uncommon or 'obscure errors a number is printed on the (~
console that may be looked up below. ,~~

COMMAND SYH'rAlt ERRORS

The following errors are caused by mistakes made 1n the
input given to OKL. The input line causing the problem will be
displayed on the terminal, with a couple of question marks
inserted at the point where the error was detected. Re-run OKL
after correcting the problem.

1 - "@" files ar,. nested too deeply. Only three levels of "@"
files may be active at any given time. 00 you have a loop
in your W@" file references?

2 - Disk error encountered while reading w@. file. Try re­
building the file.

5 - The item given for input at this point is too large. The
maximum size allowed is 64 characters.

6 - Invalid digit in number (i.e. not 0 thru 9).

10 - Invalid file name. The input stream should contain a
valid file name for the particular operating system being
used.

11 - Expecting a statement. A key word which begins a
statement should be present here.

12 - The INCLUDE and EXCLUDE statements may not be used
simultaneously on the same input file.

14 - Expecting identifier. A section, module, segment, or
symbol name must be entered at this point.

15 - Expecting "."
16 - Expecting a value. A expression or 16 bit quantity must

appear at t.his poin t.

17 - No files were given to process! You must use the FILE
statement and specify at least one input file.

18 - The BUILD and EXTRACT commands may not be used simulta­
neously. You must run OML twice with one command 1n
each.

12

c

c

!Q!! FILE ERRORS

When OML runs out of memory it opens a work file on di
named PLIB86.WRK to hold the description of the library. The
error codes indicate a problem with processing the work file.

30 - The work file can~t be created. Probably there is no spa
in the disk directory.

31 - An I/O error occurred while writing the work file.

32 - An I/O error occurred while reading the work file.

33 - An I/O error occurred while positioning the work file.

34 - There are too many module description objects in th
library (about 50,000 symbols, modules, and so on may
defined). This library is too large for OML to handle.

~ OBJEC'l' !!!!! ERRORS

The following errors have to do with the object files th
are ;iven to OML to process. Usually they occur when a file h
been corrupted somehow. Try re-compiling to get a new copy
the obj ect file. If it is a library supplied by the compil
manufacturer that is causing the pr~blem, try to get a fresh co
of it.

41 - Premature end of input object file. The end of the ind
cated file was reached unexpectedly. possibly, the fi
was truncated by copying it with a program that assumes
CNTL-Z (lAa) is the end of the file.

42 - Fatal read error in object input file.

43 - Fatal file position error in object input file. This c
occur when a library file is truncated.

0U'l'P0'l' ~ ERRORS

The following errors are caused by a problem in creati
the output code file or memory map file (when written to disk
Often, they are caused by a full disk or disk- directory, a di
that is write-prote~ted, or some kind of hardware problem wi
the disk.

45 - Can~t create output disk f{le. Possibly the disk directo
is full, or the disk is write protected.

46 - Output file too large. The given modules won't fit in
the 1 ibrary. You will haile to break up the 1 ibrary in
one or more smaller ones.

13

47 Fatal disk write error in output file. Possibly the disk
is full or write prote-:ted, or some kind of hardware error
has occurred.

4B - Fatal disk read error in output file.
irrecoverable hardware error has occurred.

Probably, an

49 - Can~t close output !ile. Probably the disk is write
protected, or a hardw~e error has occurred.

50 - Can~t create the LIST output file. Possibly the disk
directory is full, or ~he disk is write protected.

KISCEr..:.ANEOOS ERRORS

51 - There are too many sy.abols to be placed into the library
index. You will have to break up the library into one or
more smaller ones.

52 - No modules were selec~ed (by library search, INCLUDE, or
EXCLUDE) to be placed in the output file BUILD or EXTRACT}.

54 - There isn~t enough nemory in the computer to run OKL.
YOu must have a really tiny memory - better buy morel

SYSTEM ERRORS

These errors indicate that a system error has occurred
through no fault of your own. They are listed here for
completeness in the manual, although it is unlikely that you can
do anything to correct the~. Try running OML again. If the error
perSists, please gather the relevant information and contact the
software distributor from wnom you obtained OKL.

201 - Expandable array bug.

205 - Seek errors while writing output file (attempt to
seek past end of filel.

219 - Bad object block (GetBlock).

221 Invalid object key (0).

222 - Invalid object key (OM).

o

, (J

14

