o

=

ot ¢

USERS MANUAL FOR
INTERTEC’S

SUPERBRAIN'

VIDEO COMPUTER SYSTEM

IMPORTANT NOTICE

This version of the SuperBrain Users Manual is intended for use with the
~SuperBrain or SuperBrain.QD Video Computer Systems. However, this manual is
~applicable only for those units with .Revision-01 of the- Keyboard/CPU module,

and version 3.0 or higher of the DOS and boot loader. If-you have a Revnsnon 00:-.

Keyboard/CPU module, then use only the First or Second Edition of this manual.

Document No. 6831010
September 1980

This is the fourth edition of this manual. Your warranty registration form must be
returned promptly to assure receipt of future revisions, if any, to this document.

e+ [MPORTANT #++

Do not attempt to write or save programs on your system diskette. It has been ‘write
protected’ by placing a small adhesive aluminum strip over the notch on the right hand side
of the diskette. Such attempts will result in a ‘WRITE’ or ‘BAD SECTOR' error.

Before using your SuperBrain please copy the System Diskette onto a new blank diskette -
an Intertec 1121010 diskette. If you do not have such a diskette, contact you local dealer.
He should be able to supply you with one. If you have any questions concerning this
procedure please contact your dealer before proceeding. Failure to do so may result in
permanent damage to your System Diskette.

BEFORE APPLYING POWER TO THE MACHINE INSURE THAT NO DISKETTES ARE
INSERTED INTO THE MACHINE. NEVER TURN THE MACHINE ON OR OFF WITH
- DISKETTES INSERTED IN IT. FAILURE TO OBSERVE THIS PRECAUTION WILL
MOST DEFINITELY RESULT IN DAMAGE TO THE DISKETTES.

CONFIDENTIAL
AND
PROPRIETARY INFORMATION

Information presented in this manual is furnished for customer reference only and
is subject to change.

This document is the property of Intertec Data Systems Corporation, Columbia,
South Carolina, and contains confidential and trade secret information. This
information may not be transferred from the custody or control of Intertec
except as authorized by Intertec and then only by way of loan for limited
purposes. |t must not be reproduced in whole or in part and must be returned to
intertec upon request and in all events upon completion of the purpose of the
loan.

Neither this document nor the information it contains may be used or disclosed
to persons not having a need for such use or disclosure consistent with the
purpose of the loan without the prior express written consent of Intertec.

COPYRIGHT 1980

The following is a trademark of Intertec Data Systems Corporation, Columbia,
South Carolina:

SUPERBRAIN

INTERTEC DATA SYSTEMS CORPORATION
Columbia, South Carolina

THE SUPERBRAIN VIDEO COMPUTER SYSTEM

JIIC

CONGRATULATIONS ON YOUR PURCHASE OF INTERTEC’S SUPERBRAIN
VIDEO COMPUTER SYSTEM

Your new SuperBrain Video Computer was manufactured at Intertec’s new 120,000 square
foot plant in Columbia, South Carolina under stringent quality control procedures to insure
trouble-free operation for many years. If you should encounter difficulties with the use or
operation of your terminal, contact the dealer from whom the unit was purchased for
instructions regarding the proper servicing techniques. |f service cannot be made available
through your dealer, contact Intertec’s Customer Service Department at (803) 798-9100.

As with all Intertec products, we would appreciate any comments you may have regarding
your evaluation and application for this equipment. For your convenience, we have enclosed
a customer comment card at the end of this manual. Please address your comments to:

Product Services Manager
Intertec Data Systems Corporation
2300 Broad River Road
Columbia, South Carolina 29210

The SuperBrain is distributed worldwide through a network of dealer/OEM vendors and
through Intertec’s own marketing facilities. Contact us at (803) 798-9100 (TWX - 810-
666-2115) regarding your requirement for this and other Intertec products.

INTERTEC
] E DAIA
SYSJEMS.
Corporate Headquarters: 2300 Broad River Road, Columbia, South Carolina 29210 @ 803 798 9100 @ TWX: 810666 2115

Intertec’s new one hundred and twenty thousand square foot corporate and manufacturing facility in Columbia, South Carolina

WILL THE MICROCOMPUTER YOU BUY TODAY
STILL BE THE BEST MICROCOMPUTER BUY TOMORROW?

Probably the best test in determining how to spend your microcomputer dollar
wisely is to consider the overall versatility of your terminal purchase over the next
three to five years. In the fast-paced, ever-changing world - of data
communications, new features to increase operator and machine efficiency are
introduced into the marketplace daily. We at Intertec are acutely aware of this
rapid infusion of new ideas into the small systems business. As a result, we have
designed the SuperBrain in such a manner as to virtually eliminate the possibility
of obsolescence.

Many competitive alternatives to the SuperBrain available today provide only
limited capability for high level programming and system expansion. Indeed, most
low-cost microcomputer systems presently available quickly become outdated
because- of the inability to expand the system. Intertec, however, realizes that
increased demands for more efficient utilization of programming makes system
expansion capability mandatory. That means a lot. Because the more you use
your SuperBrain, the more you’ll discover its adaptability to virtually any small
system requirement. Extensive use of “‘software-oriented’’ design concepts instead
of conventional “’hardware’’ designs assure you of compatibility with almost any
application for which you intend to use the SuperBrain.

Once you read our operator’s manual and try out some of the features described
herein, we are confident that you too will agree with our ‘“top performance -
bottom dollar’’ approach to manufacturing. The SuperBrain offers you many
more extremely flexible features at a lower cost than any other microcomputer
we know of on the market today. The use of newly developed technologies,
efficient manufacturing processes and consumer-oriented marketing programs
enables us to be the first and only major manufacturer to offer such an incredible
breakthrough in the microcomputer marketplace.

Browse through our operator’s manual and sit down in front of a SuperBrain for a
few hours. Then, let us know what you think about our new system. There is a
customer comment card enclosed in the rear section of this manual for your
convenience.

Thank you for selecting the SuperBrain as your choice for a microcomputer
system. We hope you will be selecting it many more times in the future.

TABLE OF CONTENTS

INTRODUCTION

MAJOR COMPONENTS

SYSTEM OPERATION

INTRODUCTION TO CP/M FEATURES & FACILITIES
OPERATION OF THE CP/M CONTEXT EDITOR

CP/M 2.0 USER’'S GUIDE FOR CP/M 1.4 OWNERS
OPERATION OF THE CP/M DEBUGGER Section 7
OPERATION OF THE CP/M ASSEMBLER Section 8
THE CP/M 2.0 INTERFACE GUIDE

THE CP/M 2.0 SYSTEM ALTERATION GUIDE
MICROSOFT BASIC 80 REFERENCE MANUAL
MICROSOFT UTILITY SOFTWARE MANUAL
SERVICE INFORMATION

HARDWARE ADDENDUMS

SOFTWARE ADDENDUMS

INTRODUCTION

. R . ;

Page 6

INTRODUCTION

The SuperBrain Video Computer System represents the latest technological advances in the
microprocessor industry. The universal adaptability of the SuperBrain CP/M* Disk
Operating System satisfies the general purpose requirement for a low cost, high performance
microcomputer system.

From the standpoint of human engineering, the SuperBrain has been designed to minimize
operator fatigue through the use of a typewriter-oriented keyboard and a remarkably clear
display. The SuperBrain displays a total of 1,920 characters arranged in 24 lines with 80
characters per line. The video display is usually crisp and sharp due to Intertec’s own
specially designed video driver circuitry. And, the high quality, non-glare etched CRT face
plate featured on every SuperBrain assures ease of viewing and uniformity of brightness
throughout the entire screen.

The SuperBrain’s unique internal design assures users of exceptional performance for just a
fraction of what they would expect to pay for such “‘big system’’ capabilities. The
SuperBrain utilizes a single board ““microprocessor’’ design which combines all processor,
RAM, ROM, disk controller, and communications electronics on the same printed circuit
board. This type of design engineering enables the SuperBrain to deliver superior,
competitive performance.

Standard features of every SuperBrain include: two double-density, single-sided
mini-floppies with a total of over 350,000 bytes formatted disk storage, 32K of dynamic
RAM memory — expandable to 64K (in one 32K increment), a universally recognized
CP/M* Disk Operating System featuring its own text editor, an assembler for assembly
language programming, a program debugger and a disk formatter. Also standard are dual
universal RS232 communications ports for serial data transmission between a host computer
network via modem or an auxiliary serial printer. A number of transmission rates up to
9600 baud are available and selectable under program control.

Other standard features of the SuperBrain include: special operator convenience keys, dual
“restart’”’ keys to insure simplified user operation, a full numeric keypad complement, and a
high quality typewriter compatible keyboard. An optional low cost S-100 bus adaptor is
available to convert the SuperBrain Z80A data bus into an S-100 data and address
compatible protocol. The S-100 adaptor accommodates one S-100 printed circuit board
which can be mounted internally.

For reliability, the SuperBrain has been designed around 4 basic modules packaged in an
aesthetically pleasing desk-top unit. These major components are: the Keyboard/CPU
module, the power supply module, the CRT assembly, and the disk drives themselves.
Failure of any component within the terminal may be corrected by simply replacing only
the defective module. Individual modules are fastened to the chassis in such a manner to
facilitate easy removal and reinstallation. Terminal down-time can be greatly minimized by
simply “‘swapping-out” one of the modules and having component level repair performed at
one of Intertec’s Service Centers. Spare modules may be purchased from an Intertec
marketing office to support those customers who maintain their own “‘in-house” repair
facilities.

The SuperBrain’s cover assembly is exclusively manufactured ““‘in-house’ by Intertec. A
high-impact structural-foam material is covered with a special ““felt-like’’ paint to enhance
the overall appearance. Since the cover assembly is injected-molded, there is virtually no
possibility of cracks and disfigurations in the cover itself. And, by manufacturing and
finishing the cover assembly in-house, Intertec is able to specify only high quality material
on the external and internal cover components of your SuperBrain to insure unparalleled
durability over the years to come.

*CP/M is a registered trademark of Digital Research

Page 7

INTRODUCTION (continued)

A wide variety of programming tools and options are either planned or available for the
SuperBrain. Standard software development tools available from Intertec include Basic,
Fortran and Cobol programming languages. A wide variety of applications packages (general
ledger, accounts receivable, payroll, inventory, word processing, etc.) are available to
operate under SuperBrain CP/M Disk Operating System from leading software vendors in
the industry. Disk storage may be increased by adding SuperBrain’s S-100 bus adaptor and
connecting other auxiliary disk devices, including hard disk drives. And, another model of
the SuperBrain - SuperBrain QD - features double density, double-sided disk drives which
provide over 700,000 bytes of formatted data.

The price/performance ratio of the SuperBrain has rarely been equalled in this industry. By
employing innovative design techniques, the SuperBrain is not only able to offer a
competitive price advantage but boasts many features found only in systems costing three to
five times as much. SuperBrain’s twin Z80A microprocessors insure extremely fast program
execution even when faced with the most difficult programming tasks. And, each unit must
pass a grueling 48 hour burn-in before it is shipped to the Customer. By combining advanced
microprocessor technology with in-house manufacturing capability and stringent quality
control requirements, your SuperBrain should provide unparalleled reliability in any
application into which it is placed.

CUTAWAY VIEWH SHOWING MOUNTING OF MAJOR SUBASSEMBLIES.

Page 8

SYSTEM SPECIFICATIONS

FEATURE DESCRIPTION
CPU
Microprocessors Twin Z80A’s with 4MHZ Clock Frequency. One Z80A

(the host processor) performs all processor and screen
related functions. The second Z80A is “down-loaded”’
by the host to execute disk |/O.

Word Size 8 bits
Execution Time 1.0 microseconds register to register
Machine Instructions 168
Interrupt Mode All interrupts are vectored and reserved.
Floppy Disk
Storage Capacity Over 350K (700K + on SuperBrain QD) total bytes of

unformatted data on two double density drives.
Optional external hard disk storage can be connected
using the optional S-100 bus adaptor.

Data Transfer Rate 250K bits/second

Average Access Time 250 milliseconds. 35 milliseconds track-to-track
Media - 5 % inch mini-disk

Disk Rotation 300 RPM

Internal Memory
Dynamic RAM 32K (64K on Superbrain QD) bytes dynamic RAM.
Expandable to 64K in one 32K increment. Optional
32K is socketed.

Static RAM 1K bytes of static RAM is provided in addition to the
main processor RAM. This memory is used for program
and/or data storage for the auxiliary processor.

ROM Storage 2K bytes standard. Allows ROM ‘‘bootstrapping’’ of
system at power-on.

CRT

Display Size 12-inch, P4 phosphor.

Display Format 24 lines x 80 characters per line.

Character Font 5x7 character matrix on a 7x10 character field
Display Presentation Light characters on a dark background.

*Specifications subject to change without notice or liability.

Page 9

SYSTEM SPECIFICATIONS (continued)

FEATURE DESCRIPTION
Bandwidth 15 MHZ.
Cursor

Communications
Screen Data Transfer

Main Interface

Auxiliary Interface

Z80A Data Bus

S-100 Bus

Parity

Transmission Mode

Addressable Cursor

System Utilities
Disk Operating System
DOS Software

Optional Software
FORTRAN

COBOL

BASIC

Application Packages

Keyboard
Alphanumeric Character Set

Reversed image (block cursor)

Memory-mapped at 38 kilobaud. Serial transmission of
data at rates up to 9600 bps.

RS-232C asynchronous. Synchronous interface optional.

Simplified RS-232C asychronous. Synchronous inter-
face optional.

40-pin Data Bus connector.

Connector provided for connection of optional S-100
bus adaptor.

Choice of even, odd, marking, or spacing - under
program control.

Half or Full Duplex. One or two stop bits.

Direct Positioning by absolute x, y addressing.

CP/M 2.2

An 8080 disk assembler, debugger, text editor and file
handling utilities.

ANSI standard. Relocatable, random and sequential disk
access.

ANSI standard. Relocatable, sequential, relative and
indexed disk access.

Sequential and random disk access. Full string
manipulation, interpreter.

Extensive software development tools are available from
leading software vendors including software for the
following applications: Payroll, Accounts Receivable,
Accounts Payable, Inventory Control, General Ledger
and Word Processing.

Generates all 128 upper and lower case ASCII characters.

*Specifications subject to change without notice.

Page 10

SYSTEM SPECIFICATIONS (continued)

FEATURE

DESCRIPTION

Special Features

Numeric Pad

Cursor Control Keys

Internal Construction
Cabinetry

Component Layout

Mounting

Environment
Weight

Physical Dimensions

Environment

Power Requirements

2-Key Rollover, Keyboard lock/unlock - under program
control.

0-9, decimal point, comma, minus and user-
programmable function keys.

Up, down, forward and backward.

Structural foam

Four board modular design. All processor related
functions and hardware are on a single printed circuit
board. All video and power related circuits on separate
single boards.

All modules mounted to base. CRT in a rigid aluminum
frame. Disk Drive assemblies are mounted into special
bracket for ease of servicing.

Approximately 45 pounds.

14 5/8" (H) x 21 3/8 (W) x 23 1/8 (D)

Operating: 09 to 40° C Storage: 0° to 85° C; 10 to
85% rel. humidity - non-condensing.

115 VAC, 60 HZ, 3 AMP (optional 230VAC/50HZ
model available)

*Specifications subject to change without notice.

Page 11

OPTIONAL VERSUS STANDARD FEATURES

Since each SuperBrain is designed utilizing the latest advances in microprocessor technology,
many features which other system vendors offer as options are offered as standard features
on the SuperBrain.

The SuperBrain Video Computer is designed to satisfy the universal requirement for a low
cost, high performance small business system and, hence, there are virtually no options from
which to choose. Basically, available options for the SuperBrain include:

BASIC 80 FROM MICROSOFT - an extensive implementation of Basic language available
for Z80 microprocessors. In just three years of use, it has become the world’s standard for
microcomputer Basic. Basic 80 gives users what they want from a Basic - ease of use plus all
of the features that make a micro perform like a minicomputer or large mainframe. Basic 80
meets the requirements of the ANSI subset standard for Basic and supports many unique
features rarely found in other Basics.

MICROSOFT FORTRAN 80 - comparable to Fortran compilers on large mainframes and
minicomputers. All of ANSI standard Fortran X3.9-1966 is included except the COMPLE X
datatype. Therefore, users may take advantage of the many application programs already
written in Fortran. Fortran 80 is unique in that it provides a microprocessor Fortran and
assembly language development package that generates relocatable object modules. This
means that only the subroutines and system routines required to run Fortran 80 programs
are loaded before execution. Subroutines can be placed in a system library so that users
develop a common set of subroutines that are used in their programs. Also, if only one
module of a program is changed, it is necessary to recompile only that module.

CENTRONICS-COMPATIBLE PARALLEL INTERFACE(1) - connects directly to
SuperBrain’s 40 pin Z80A data bus connector and provides for a parallel output as required
for Centronics-compatible printers.

S-100 BUS ADAPTOR(2) - connects to SuperBrain’s auxiliary Z80A data bus edge card
connector and provides for the connection of up to one standard sized S-100 bus board
inside the SuperBrain cabinet. Bus adaptor includes ribbon cables, S-100 conversion
circuitry, S-100 card guides and a metal mounting bracket to enable the S-100 bus adaptor
to be installed on the inside cover just to the right of SuperBrain’s twin double-density disk
drives.

SYNCHRONOUS INTERFACE - enables synchronous transmission via the auxiliary RS232
serial communications port.

32K DYNAMIC RAM EXPANSION KIT - a set of sixteen 16K RAM chips which plug into
existing sockets on the SuperBrain Keyboard/CPU module to enable expansion of the
SuperBrain’s dynamic memory from 32K to 64K. Also included with the RAM kit is an
additional CP/M DOS Diskette which reconfigures the SuperBrain’s Operating System to
accommodate all 64K of RAM.

(1) Available June, 1980
(2) Available June, 1980

MAJOR COMPONENTS

t B
/

Page 1

_ INTERNAL CONSTRUCTION

Perhaps the most remarkable feature of the SuperBrain is its modular construction using
only four major subassemblies which are clearly defined in their respective functions so as to
facilitate ease of construction and repair. These four subassemblies are shown in figure one

and described below.

2. INTERTEC DATA SYSIEMS

$100 Board—
(User Supplied

f Optional S100

Page 2

INTERNAL CONSTRUCTION (continued)

KEYBOARD/CPU MODULE

The control section of the SuperBrain Video Computer is based upon the widely acclaimed
Z80A microprocessor. The result is far fewer components and the ability to perform a
number of functions not possible with any other approach. The Keyboard/CPU module
(figure two) contains the SuperBrain’s twin Z80 microprocessors. One Z80A (the host
processor) performs all processor and screen related functions while the second Z80A can be
“downloaded” to execute disk I/O handling routines. The result is extremely fast execution
time for even the most sophisticated programs.

In addition to containing the SuperBrain’s microprocessor circuitry, the Keyboard/CPU
module contains 32K of dynamic RAM with sockets for an additional expansion capability
of 32K (see figure three). Also found on this module is: the character and keyboard encoder
circuitry, the ““bootstrap’” ROM, the disk controller and all communications electronics.
Power is supplied to and signals are transferred from this module via a single 22 pin ribbon
cable connected to the SuperBrain’s main power supply module. Connection of this module
to the disk drive subassemblies is via a separate ribbon cable. Figure four shows the
connectors on the Keyboard/CPU module which are used for interconnecting this module
with the disk drive subassemblies, the main power supply and the optional parallel and/or
S-100 bus adaptor.

«v;o wwa ’RJT ¥ 1 l ! { {ri\‘
~;Alsf[}i?{ul;ljlllfi‘;{ff
2 2 Y

e

Figure 2 - SuperBrain Keyboard/CPU Module

el el g A 2 b oA

Figure 3 - Dynamic RAM Section Figure 4 - Keyboard/CPU Module Connectors
Every SuperBrain is equipped with 32K dynamic The 40 pin connector on the top edge of the card
RAM - on board expandable to 64K. 16 sockets are is for connection to SuperBrain’s optional parallel
provided for the additional 32K of RAM. and/or S100 bus adaptor. The 40 pin connector on

the right edge routes signals to and from the disk
drive assembly.

Page 3

INTERNAL CONSTRUCTION (continued)

CRT DISPLAY MODULE

The CRT Display Module consists of a 12 inch, high resolution, cathode ray tube mounted
in a rigid aluminum chassis. The faceplate of the CRT is etched in order to reduce glare on
the surface of the screen and provide uniform brightness throughout the entire screen area.
The CRT display presentation is arranged in 24 lines of 80 characters per line.

The CRT video driver circuitry is mounted in the base of the CRT chassis to facilitate ease
of removal and subsequent repair. In this manner, either the CRT itself or the video
circuitry can be easily exchanged without disrupting any of the other major modules within
the terminal (see figure five).

QHREER
L ISR

Figure 5 - SuperBrain CRT Display Module
This module is easily removed for service or replacement. A
single edge connector is provided for connection to
SuperBrain’s Power Supply Module.

Page 4

INTERNAL CONSTRUCTION (continued)

MAIN POWER SUPPLY MODULE

The SuperBrain’s power supply is a ““solid-state, switching’’ design and employs switching
voltage regulators to provide many years of trouble-free service. This design reduces heat
dissipation and allows for efficient cooling of the entire terminal with a specially designed
whisper fan to reduce environment noise. The entire power supply can be easily removed by
unscrewing the three screws holding it into the base of the terminal. Included on the main
power supply module are the power off/on switch, the user brightness control and the main
and auxiliary RS232 serial ports. By combining the power supply section and external serial
communications connections on the same module, the total module count is able to be kept
to a minimum thus greatly facilitating ease of field service repair while at the same time
minimizing the number of modules required to be stocked to effect competent field repair
(refer to figure six). :

Figure 6 - Main Power Supply

Page 5

INTERNAL CONSTRUCTION (continued)

DISK DRIVE MODULES

Figures seven and eight illustrate the left and right views of the SuperBrain’s specially
designed double-density disk drive subassembly. Each SuperBrain contains two of these type
drives which are mounted conveniently just to the right of the CRT display module on a
rugged aluminum mounting bracket which supports the drives so that they are flush
mounted with the front “’bezel’”’ of the unit. Power to these drives is derived from the Power
Supply Module located just behind the drive assemblies themselves. Data to and from these
drives is routed via a single 34 pin ribbon cable connecting the drives to the Keyboard/CPU
module.

Figure 8 - Bottom View of SuperBrain Drive Assembly

Page 6

INTERNAL CONSTRUCTION (continued)

The SuperBrain can be configured to employ an optional module - the S-100 bus adaptor.
This adaptor plugs into the SuperBrain’s Keyboard/CPU module and mounts internally on
the metal bracket supporting the disk drive assemblies. Figure nine shows the SuperBrain
with the S-100 bus adaptor and a single S-100 printed circuit card. Figure ten shows the
same unit without the S-100 bus module installed.

The S-100 bus adaptor is offered as an optional feature on the SuperBrain for those users
who desire to expand the units’ capability with the addition of auxiliary disk devices
including the new, more popular Winchester-type drives.

A single S-100 card can be easily inserted in the card guide supplied with each S-100 bus
adaptor (as shown in figure eleven). NOTE: The S-100 bus adaptor includes cabling,
connectors ‘and circuitry to convert the SuperBrain’s Z80 data bus into the S-100 bus. The
actual S-100 compatible printed circuit board (as is shown in figure eleven) is supplied by
the user.

Figure 9 - SuperBrain with S-100 Bus Adaptor Figure 10 - SuperBrain with S-100 Bus Adaptor
and card installed. and card removed.

Figure 11 - SuperBrain S-100 Bus Adaptor
Includes adaptor, 100 pin S-100 connector, card guides,
mounting bracket and all necessary cabling. The S-100 card is
supplied by the user.

2

SYSTEM OPERATION

Page 1

THEORY OF OPERATION

The SuperBrain contains two Z80 microprocessors. (Reference Figure 3-1) uP1 is the master
processor. It communicates with the 64K RAM and the |/O devices (serial port, keyboard
encoder, interface controller, and CRT controller). Aside from these devices, it can also
access the 2K ROM and DATA BUFFER RAM in the FLOPPY DISK CONTROLLER. uP2
is slaved to uP1 and can only access the 2K ROM, DATA BUFFER, and the DISK
INTERFACE. This processor is used exclusively for disk control.

The 32/64 kilobyte main memory consists of up to thirty-two 16K x 1 bit dynamic RAMS.
These are divided in four banks (0-3) with each bank containing 16 kilobytes of storage. The
RAS-CAS timing sequence necessary for memory access is created by the memory timing
generator.

There are two devices that can access memory - uP1 and the CRT Controller. uP1 can read
and write to memory while the CRT Controller can only perform the read function. Because
each device runs at a different speed, two clock frequencies are required for memory timing.
The speed is determined by the selection of the control input to the timing generator. The
microprocessor functions require the faster clock.

The CRT-VIDEO CONTROLLER contains three main devices - the CRT Controller which
generates all the timing signals for data display; the video generator which produces the
character font; and the octal 80-bit shift register which stores one row of video data. (80
characters)

The CRT Controller generates all the timing necessary to display 24 rows of characters with
80 characters per row. Thus the screen can display a total of 1920 characters. These
characters are stored in the CRT refresh buffer which is the upper 2048 bytes (2K) of RAM.

Because the CRT buffer is not a separate buffer and the processor must also use the same
bus to access memory, this bus must be timeshared between the two. This is accomplished
by the CRT controller performing a direct memory access (DMA) cycle which is done at the
beginning of each scan row. Each scan row is divided into ten scan lines, therefore
during the first scan line time, the controller takes control of the processor bus by generat-
ing a bus request. After acquiring the bus, it reads 80 characters from the CRT buffer and
loads them into the 80 x 8 shift register. This data is then recirculated in the buffer for the
next nine scan lines to produce one row of video characters. Therefore, there are twenty-
four DMA cycles performed per vertical frame.

There are also twenty-five interrupts generated - one for each row scan and one extra during
vertical blanking. During the first twenty-four, the processor sets or resets the video blanking
depending on whether that row is displayed or not. During the vertical blanking interrupt,
the address registers in the CRT controller are initialized to the correct top-of-page address
and the cursor register is also updated.

The Interface Controller is basically three 8 bit |/O ports (8255). Through this device, the
processor can obtain status bits from other devices and react to the status by setting/
resetting individual bits in the 8255.

The Keyboard Encoder scans the keyboard for a key depression, determines its position,
and generates the correct ASCIl code for the key. The processor is flagged by the ‘Data
Ready’ signal via the Interface Controller. The character is then input by the processor.

Page 2

THEORY OF OPERATION (continued)

The remaining |I/O device is the RS-232-C Serial Interface Port. Presently, it operates only in
the asynchronous mode and adheres to a simplified standard protocol. The baud rate is set
to 1200 baud by the operating system (Refer to the Technical Bulletin enclosed at the end
of this manual.)

‘As previously mentioned, uP1 has the capability of communicating with the RAM and ROM
in the FLOPPY DISK CONTROLLER. It does this to obtain the bootloader from ROM on
power-up and system reset and also when transferring disk parameters and data to/from the
Data Buffer RAM. Because the amount of main memory used is the maximum that the
processor addressing can support different 16K banks of main memory must be switched off
line when communicating with the disk RAM or ROM. In these cases Bank O
(O0O00H-3FFFH) is switched out when communicating with the ROM, and Bank 2
(8000H-BFFFH) when communicating with the RAM.

The DISK CONTROLLER performs all disk related 1/O functions upon command from the
main processor. These commands are:

e Restore to track @

o Read sector

e Write sector

e Write sector with deleted data mark
e Format

The parameters associated with drive, side, track, and sector numbers are loaded, a status
word is set at specified location in the disk RAM. When uP2 receives this status, it sets the
‘disk busy’ status bit and performs the indicated function. Upon completion, it resets the
‘busy’ bit thus allowing the main processor (uP1) to retrieve data and status from the RAM.

GENERAL SPECIFICATIONS

POWER 110/220 VAC 50/60 HZ
Dual Switching Power Supplies

MEMORY 32/64K bytes (dynamic)
MICROPROCESSOR Two Z280’s operating at 4MHZ
SERIAL PORTS Two asynchronous ‘simplified’ RS-232-C, programmable ports

CRT SCREEN 24 lines, 80 columns
7 x 10 dot character field
5 x 7 dot character font
50/60 HZ refresh rate

FLOPPY DISKS Two, 5-1/4", double density, MFM
Format (Soft sectored) - 512 Bytes/sector; 10 sectors/track
35/70 tracks/diskette

Capacity - 179K bytes formatted single sided, 35 tracks/diskette
358K bytes formatted single sided, 70 tracks/diskette

DOS CP/M, Version 2.2

. B
.

CRT - VIDEO CONTROLLER

i I___l_,
|
i [VERTICAL SYNC

DISK CONTROL

mmR_ | VIDEO DOT CLK ! HORIZONTAL SYNC
L .
uFt | CRT VIDEO .
7 BUS REQ CONTROLLER A LINE CONT | o craToR |—————— VIDEO
BUS AK | |
MAIN MEMORY R AMHZ ——e~ e |
CAS
64K x 8 i
RAM \ 1 |
DATA ATTRIBUTE
10.92 MHZ 16 MHZ s |
! 10.92 MHZ SELECT DATA
! DOT CLK |
! N 1
RAM ADDRESS HEMORY __PROCESSOR CONTROL ! beraL 8o B |
. S i -
7 GENERATOR[™® HUX CRT CONTROL X CONTROL, ‘CLK HIFT REG |
_CRT CONTROL | ! |
DATA : |
| SWITCH ADDRESS l I D R |
MUX e ————_—
Ag - Ag E A7 - A3 MEMORY BANK
| ADDRESS INHIBIT 1 ADDRESS BUS D0 - D7
DATA TSNS o -DATA BUS EXTERNAL
no - mg > FXER
o CONTROL CONTROL_BUS 1/0
+12 e CONTROL
+5 VD
-~
~ 6o ENA'BUS #2
S =5VD
-12 ¢ TRI-STATE | TRI-STATE TRI-STATE KEYEOARD XEYBOARD
> BUFFER_| BUFFER BUFFER ENCODER
TXDATA e
RS-232 INTERFACE — DATA READY
RTS -« ASYNC CONTROLLER
DTR <——| SERIAL DISK BUSY
PORT BUS AK| [BUS REQ
RXDATA s G PRT o 22T N i e o~ - ____
>— . - -k :
l
cTS S>—— i :
t4AMHZ S — DATA
DSR 4MHZ |
St | . !
i up2 ADDRESS .
o 1
1 1 CONTROL !
. WRITE DATA | WRITE
L e ——————
2 MHZ : 1 DISK PRECOMP ; DISK WRITE DATA
X INTERFACE] i
el) ROM DATA BUFFER ;
: 2K x 8 RAM) |
16 MHZ PROCESSOR #1 |'|6 ﬂl ISK CONTROLLEj 1MHZ ‘READ DATA glE\;:RAmR - - DISK READ DATA
CLK GENERATOR | ELK GENERATOR ol '
il i i
: READ CLK } '
; 8MHZ .
|

8MHZ 4MHZ 1MHZ i
FLOPPY DISK CONTROLLER

10.92 MHZ
DOT CLK 10.92 MHZ

TIMING GENERATOR

I
I

1

I

|

[
16MHZ 4MHZ 2MHZ [
i

|

|

1

l

i

FIGURE 3-1 SUPERBRAIN KEYBOARD/CPU MODULE BLOCK DIAGRAM

¢ abey

Page 4

INSTALLATION AND OPERATING INSTRUCTIONS

UNPACKING INSTRUCTIONS

Be sure to use extreme care when unpacking your SuperBrain Video Computer System. The
unit should be unpacked with the arrows on the outside facing up. Once you have opened
the unit, locate the Operator’s Manual which should be placed at the front of the terminal.

If you have ordered additional optional software with your system, it will most likely be
attached to the outside of the carton in a gray envelope. Extreme care should be used in
opening this envelope so as not to damage any of the delicate diskette media contained
inside. The MASTER SYSTEM DISKETTE is located inside the front cover of the
Operator’s Manual. Be careful not to discard or misplace this diskette as it will be vital for
the operation of the equipment in later sections.

Now that you have located your Operator’s Manual and system diskette you can proceed to
remove all packing material on the top and front of the terminal. Once this has been
accomplished, you may now remove the terminal from the shipping carton. In some
instances, you may notice that the terminal is somewhat difficult to remove from the
carton. This is due to the varying amounts of packing material that is placed in each carton.
If you should experience such difficulties, rotate the carton on its side. With the terminal on
its side, you should now be able to pull outward on the terminal and separate it from the
box. Once the terminal is out of the carton place it on a table and remove the protective
plastic bag which should be surrounding the terminal. DO NOT DISCARD THE SHIPPING
CARTON UNTIL YOU HAVE COMPLETELY CHECKED OUT THE TERMINAL.

SET UP

Now that you have removed your SuperBrain Video Computer System from its packing
carton, you are ready to begin to set up the system. The first step in this procedure is to
verify that your SuperBrain Video Computer System is wired for a line voltage that is
available in your area. This can be ascertained by looking on the serial tag located at the
right rear of the terminal. This tag should indicate that your unit is set up for either 110 or
for a 220 VAC operation. DO NOT ATTEMPT TO CONNECT THE SUPERBRAIN VIDEO
COMPUTER SYSTEM TO YOUR LOCAL POWER OUTLET UNLESS THE VOLTAGE AT
YOUR OUTLET IS IDENTICAL TO THE ONE SPECIFIED ON THE BACK OF YOUR
TERMINAL. Should the voltages differ, contact your dealer at once and do not proceed to
connect the SuperBrain Video Computer System to the power outlet.

Before connecting the SuperBrain Video Computer System to the wall outlet, be sure that
the power switch located at the left rear corner is turned OFF. You may now proceed to
connect your computer system to the wall outlet. After completing this connection, turn
the power switch to the ‘ON’ position. At this time, you should hear a faint “whirring’’
sound coming from the fan in the computer. After approximately 60 seconds the message
‘INSERT DISKETTE INTO DRIVE A’ will appear on the screen. If this message does not
appear on the screen after approximately 60 seconds, depress the RED key located on the
upper right hand corner of the numeric key pad. This key is the master system reset key and
should reinitialize the computer system thereby displaying the ‘INSERT" message on the
screen. If, after several attempts at resetting the equipment you are unable to get this message
to appear on the screen, turn the unit off for approximately 3 to 5 minutes and then
reapply power to the unit. If you are still unable to get the appropriate message to appear
on the screen, contact your Intertec representative.

SYSTEM DISKETTE

Now that you have power applied to the machine and the ‘INSERT DISKETTE’ message
has been displayed in the upper left hand corner, you are ready to proceed with loading the
computer’s operating system. This is accomplished by locating the small 5% diskette that
was packed with the operator’s manual. Once you have located this diskette you will notice

Page 5

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

that a small adhesive aluminum strip has been placed over the notch on the right hand side
of the diskette. This aluminum strip is used to “WRITE PROTECT" the diskette. Therefore,
you may only load and/or read programs off of this diskette. |f you wish to write or save
programs on the system diskette it will be necessary to remove the small adhesive aluminum
strip from the diskette. This is NOT RECOMMENDED as it will subject your diskette to
accidental errors that may be induced by you while you are getting familiar with the
operating system.

You are now ready to proceed with inserting the system diskette into the machine. When
facing the front of the machine, you will notice that there are two small openings on the
right-hand side of the machine. The first opening (the one furtherest to the left) is
designated as DRIVE A. The second opening (the one on the right-hand side of the
terminal) is designated as DRIVE B. This distinction is extremely important since the disk
operating system can only be loaded from DRIVE A.

Now that you have located the two disk drives on the system, open the disk drive door on
DRIVE A (opening closest to your left). The drive can be opened by applying a very slight
pressure outward on the small flat door located in the center of the opening. Once the Drive
door has been opened, you are now ready to insert the Operating System Diskette. As noted
previously, this is the diskette which was packed with your Operator’s Manual. The front of
the diskette should contain a small white sticker located in the upper left hand corner of the
diskette. This diskette should contain a message indicating that it is ‘the SuperBrain DOS
Diskette with CP/M Version 2.0. Once you have located this diskette you may insert it into
the machine. Be careful to insure that (1) the small aluminum write protect strip is
orientated towards the top edge of the diskette and that (2) the label located in the upper
left hand corner of the operating system diskette is facing AWAY from the screen towards
the right-hand side of the terminal. Once you have orientated the diskette in this fashion,
you may now insert it into the terminal. Itis EXTREMELY important that the diskette be
properly orientated before inserting it into the machine since improper orientation will not
allow the operating system to properly load. Once the diskette has been placed in the
machine, be sure that it has been inserted all the way by applying a gentle pressure on the
rear edge of the diskette. Once you are certain that the diskette is fully inserted, you may
close the disk drive door. This can be accomplished by applying a slight pressure on the door
pulling it back into the direction from which it was originally opened. Once you have closed
the door, you will notice a small ““swishing” sound. This sound is normal and indicates that
the computer is now attempting to load the operating system. Some drives are quieter than
others and therefore this noise may not be audible in some cases.

After closing the door the following message should appear in the upper left-hand corner of
the screen:

XXK SUPERBRAIN DOS VER X.X
A>

If this message does not appear on the screen, try depressing the two RED keys located on
either side of the keyboard. This should reset the terminal and thereby attempt to reload
the operating system. If after several seconds, the message does not appear on the screen, try
depressing the RED keys several more times. |f repeated depressions of the RED keys do
not bring up the indicated message, then open the door on the disk drive A and remove the
system diskette and check to see if it was properly inserted. It is extremely important that
the diskette be in the proper orientation before attempting to load the operating system. If
you are unsure as to the proper orientation of the diskette, please contact the representative
from whom you originally purchased your equipment.

Page 6

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

After you have checked the orientation of the diskette try reinserting it into DRIVE A (do
NOT insert the system diskette into DRIVE B as it will not load from DRIVE B). Once the
diskette has been reinserted, close the door on DRIVE A and depress the RED key. If after
several repeated depressions of the RED keys the message XXK SUPERBRAIN DOS VER
X.X does not appear on the terminal then contact your dealer.

REVIEWING THE SYSTEM DISKETTE

Now that you have successfully loaded the System Diskette and Disk Operating System,
(DOS), the SuperBrain is ready to accept your disk operating system commands. At this
time we will review several of the commands in the operating system. However, it is
recommended that you refer to the appropriate section in this Manual for a detailed
description of all such commands (Section 4 - Introduction to CP/M Features and
Facilities). The most used system command is the DIR command. This command directs the
operating system to display the directory of all programs contained on the system diskette.
You may enter this command by simply typing the letters DIR on the keyboard. After you
have typed these letters, it is necessary to depress the RETURN key. Depressing this key
instructs the computer to process the line of data that you have just typed. After you
depress the RETURN key the computer should respond by displaying all of the programs on
the system diskette. These programs will appear in the following form:

A: ED.COM A: SYSGEN:COM
A: DDT.COM A: PIP.COM

A: ASM.COM A: STAT.COM

A: LOAD.COM A: SUBMIT.COM
A: DUMP.COM

To obtain a better understanding of just what this information means, lets take a look at the

first line:
A: ED.COM

The first letter on this line is a letter A. This tells you that the information following this
letter is located on DRIVE A. The colon serves as a separator between the Drive designator
(““A") and the file NAME and file TYPE. The file NAME is, in this case, ““ED’’ and the file
TYPE is ““COM". As such, this line tells the operator that a program called ED (the disk
operating system text editor) is located on the YA’ drive and is a COM type of file. A more
detailed treatment of this information can be found in section 4 of this manual.

IMPORTANT NOTE: Some of the disk utility programs have a two digit number suffixed to
the File name (i.e. PIP 22). This suffix is used to indicate the actual revision and/or version
level of the program.

DUPLICATING THE OPERATING DISKETTE

Now that you have successfully loaded the Disk Operating System on Drive A, it is
important to duplicate this diskette onto another disk. This is necessary in order to preserve
the original copy of the diskette and guard against any possible damage to the original
media. To generate a copy of the operating system you will first need a NEW BLANK
DISKETTE. We recommend an Intertec 1121010 diskette for this purpose. If you do not
have any blank diskettes of similar quality, please contact the representative from whom
you purchased your equipment. He should be able to supply you with an ample quantity of
these diskettes.

Once you have located a new blank diskette, insert it into DRIVE B. Follow the procedures
outlined in the previous paragraphs regarding the insertion of the operating system diskette.
The only difference is that you will be inserting the new blank diskette into DRIVE B. Be
sure and leave the system diskette installed on DRIVE A.

Page 7

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

Once you have installed the new blank diskette on DRIVE B, you are now ready to
“FORMAT" the new diskette. It is necessary to format all new previously unused diskettes
before attempting to transfer data to them. This is necessary because all information is
stored on diskettes in what is known as the SOFT SECTORED FORMAT which necessitates
the writing of certain information on the disks before user programs can be stored on them.

To format the disk in DRIVE B enter the command ‘FORMAT' at the keyboard. Remember

‘to depress the key marked RETURN after typing the words FORMAT. The operating
system should now respond by asking you to select the type of diskette being formatted (S
or D). This question asks whether the diskette to be formatted is single sided or double
sided. Unless you have ordered our new Quad Density SuperBrain QD, the response to this
guestion should be the letter ‘S indicating a single sided diskette. After entering the ‘S’
depress the RETURN key. The operating system will now ask you whether you have a 64K
(6) or 32K (3) disk operating system. In most cases, the answer to this question will be 3
(32K). After you have entered the appropriate response to this question the operating
system will respond by telling you to place a blank diskette on DRIVE B. Since this has
already been done, we are now ready to proceed with formatting the diskette and may
do so by entering the letter “/F". At this point and time you will hear the disk drive reset to
track O and begin the formatting process. When a disk is formatted the read/write head
positions to track O and rewrites each track (there are a total of 35 on each diskette). The
screen will also display the current track which is being formatted. This number should
range from 0 to 34 for a total of 35 tracks.

After the disk has been completely formatted, the operating system will respond by asking
you whether to “REBOQOT" the operating system or whether you wish to format another
disk. If you wish to format another disk, remove the newly formatted disk from DRIVE B
and insert a new blank diskette into DRIVE B. You may now proceed to format this new
diskette by once again entering the letter “F"”. |f you do not wish to format any more
diskettes, simply enter a RETURN.

The Operating System should now reload and once again be ready to accebt new commands.

Since the intent of this procedure was to copy the original disk operating system we are now
ready to begin that procedure. This can be accomplished by entering the following
command on the keyboard: 52

4
PIPB: =%

After you have entered the above command at the keyboard depress the return key.

The system will now begin to copy all of the programs on DRIVE A over to DRIVE B. As
each program is copied, its name will be displayed on the screen. This procedure takes
approximately 5 to 10 minutes. After the procedure completes, the control of the operating
system will be returned to the user.

Now that you have completed copying the operating system’s programs from the A DRIVE
to the B DRIVE it is necessary to copy the disk operating system itself (which is located on
tracks O, 1 and 2) onto the DRIVE B. This may be accomplished by entering the following
‘command at the keyboard:

SYSGEN = 7.

The SYSGEN command is used to generate an operating system and place it on the desired

Page 8

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

disk. Once you have entered this command at the keyboard and typed RETURN, the disk
operating system will ask you to select which drive that you want to take the source from.
The correct answer to this question is the letter A”. After entering A’ depress the
RETURN.

The next question the program will ask is where do you want the source to be placed (the
destination drive). The correct answer to this is the letter “’B’’ indicating DRIVE B. Once
you have entered this, the operating system will be copied from DRIVE A onto DRIVE B.

After this proceés has been completed the operating system will ask you whether you wish
to duplicate another copy or to reload the operating system. The correct response is to
simply enter a RETURN which will reload the operating system.

Once the operating system has been reloaded, you may now remove the master disk
operating system in DRIVE A. Once this disk has been removed store it in a safe place as
you may need it later to generate additional copies of the disk operating system and its
programs. '

At this point you should have removed the master disk from DRIVE A. Now remove the
copy from DRIVE B and reinstall it on DRIVE A and close the door on DRIVE A. After
you have completed this, depress the RED reset keys located on either side of the keyboard.
This will reset the machine and reload the newly installed operating system off of your new
diskette.

IMPORTANT: If random garbled information is displayed on the screen at this time, this
indicates that you have made an error in the use of the “SYSGEN’' program. If this is
indeed the case, then remove the new diskette from DRIVE A and reinstall the original
master system diskette and repeat the previously outlined procedure for generating a new
disk operating system. If you still encounter difficulties, please refer to Section 4 of this
manual for more detailed information concerning this procedure.

Now that you have successfully completed the generation of a new system diskette please
refer to Section 4 of this manual for a complete description of all of the operating systems
utility programs (DDT.COM, PIP.COM, SUBMIT.COM, etc.).

OPTIONAL SOFTWARE

Numerous optional software packages are available for use with your SuperBrain Video
Computer System. Currently available directly from Intertec are such software packages as
Microsoft’s BASIC, FORTRAN and COBOL. If you would like additional information on
these packages please contact your local Intertec representative.

NEWLY RELEASED SYSTEM PROGRAMS

From time to time, Intertec will be releasing additional ‘standard’ system programs. Listed
below is a brief description of several such programs. A complete description of these and
other similar programs can be found in the “‘software addenda’’ section of this manual.

FORMAT.COM Allows the user to format blank diskettes. This program must be run on
all new diskettes which have not been previously formatted on a
SuperBrain Video Computer System. It is important to note that
although you may have formatted these diskettes on other systems, this
does not necessarily imply that they will work on a SuperBrain unless
they have been formatted on a computer of this type. Therefore, in
order to insure complete compatibility please format all new diskettes on
a SuperBrain Video Computer System before using. "

Page 9

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

RAMTST.COM This program runs an extensive test on main memory by writing and
reading all possible patterns into all locations in the RAM. This program
takes approximately 4 to 5 minutes to complete on 32K machines and 8
to 10 minutes on 64K machines. Since different amounts of RAM are
contained in the 32 and 64K machines, we have included two RAM test
programs. These are: RAMTST32.COM and RAMTST64.COM which are
for testing 32 and 64K versions of the SuperBrain Video Computer
System. It is important to note that the 64K RAM test program will not
execute properly on a 32K machine.

At the end of the RAM test program, the message RAM OK will appear
on the screen if the test was completed successfully. |f any errors were
detected during the test, the computer’s bell will turn on and continue in
a continuous tone manner until the RED reset key is depressed. If a
continuous tone such as this is heard on the computer when executing
the RAM test, depress the RED reset and try executing the program
several times. If the program continues to produce the audible tone, then
please contact the Intertec Service Department.

CONFIGUR.COM This program allows the user to configure all parameters for the R$232
MAIN and AUXILIARY serial port. The selected configuration is then
permanently stored on the disk along with the disk operating system. As
such, the system will be completely reconfigured each time power is
applied to the machine or the RED reset key is depressed.

A complete description of all of these programs can be found in the software addenda
section of this manual. In addition to the descriptions contained therein, most newly
released system programs will contain a description program along with the actual COM file.
This program will be in the form of FILE NAME.DES. As an example of such a program
would be ‘FORMAT.DES’. This program.would contain a description of how the format
program operates. Therefore, if you are unable to find an adequate description in the
software addenda section of this manual for a program on the disk, please check for a DES
version of the program on your disk. If such a program exists, you may display the
instructions by simply typing the following command: TYPE FILENAME.DES.

VIDEO DISPLAY FEATURES AND CONTROL CODES
Various screen control features are available to the operator through the use of ‘'ESCAPE’
sequences. Among these are the following:

Absolute cursor addressing [ESC] [Y] [row] [column] The cursor is positioned to
the row and column specified. Refer to the SuperBrain
screen layout for specific screen formatting information.

Erase to end of line [ESC] [«] [K] Data is erased from cursor position to the
end of the current line.

Erase to end of page [ESC] [«] [k] Data iserased from cursor position to the
end of the screen.

Display control characters [ESC] [«] [E] Enable transparent mode. Control
characters received are displayed on the screen and are
not executed.

Page 10

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

Disable control character display [ESC] [«] [D] Disable the transparent mode.
Other features are also available using the ‘CONTROL’ key. They are the following:

CONTROL [A] - Home cursor (Row 1, Column 1)
CONTROL [F] - Cursor forward

CONTROL [G] - Ring Bell

CONTROL [I] -Tab

CONTROL [K] - Cursor Up

CONTROL [L] - Clear Screen

CONTROL [U] - Cursor Back

MASTER RESET FEATURE

A Master Reset of all terminal hardware may be accomplished by depressing the solid
colored RED key located on the upper right hand corner of the numeric keypad. It is
important to note that on some versions of the SuperBrain, this reset feature may involve
the depression of two RED keys. If this is the case on your computer system, you will
notice that the two RED keys are located on the right and left corners of the alphameric
section of the keyboard.

CURSOR CONTROL KEYS

There are three to four cursor control keys located on every SuperBrain Video Computer
System. These keys are located on the right-hand side of the numeric keypad. If your
computer has a single RED key (keyboard layout A), it will be located in the upper right
hand corner of the numeric keypad thereby leaving only three cursor position keys. |f your
computer is configured with two RED keys (keyboard layout B - one RED key located on
each side of the alphanumeric keyboard cluster), then you will have a total of four cursor
position keys on the right hand side of the numeric keypad. In either case, these keys will
 transmit codes to any program running on the SuperBrain. These codes may in-turn be
interpreted by the program to result in cursor movement on the screen. It is important to
know that these keys will not produce cursor movement when you are in the operating
system mode. The reason for this is that CP/M does not define any use of cursor positioning
on the screen. As such, depression of these keys while in the operating system mode will
result in the control codes assigned to the individual keys being displayed as control codes
on the screen.

Page 11

INTERFACING INFORMATION

RS-232-C Serial Interface

The following chart illustrates the pinouts for the MAIN and AUXILIARY serial ports and
the direction of signal flow. _ '

SUPERBRAIN SERIAL PORT PIN ASSIGNMENTS

(For use with Revision 3.0 DOS software or higher
and Keyboard/CPU Module Revision 1.0 or higher)

MAIN PORT
PIN # ASSIGNMENT DIRECTION
1 3Ly GND -
2 Ben Transmitted Data (From SB)
3 BLK Received Data (To SB)
4 v Request to Send (From SB)
5 erY Clear to send (To SB)
6 0RG Data Set Ready (To SB)
7 WHT GND —
15 SR Transmit Clock (To SB)
17 Y&« Receive Clock (To SB)
20 rep Data Terminal Ready (From SB)
22 T Ring Indicator (ToSB)
24 LBRM Clock (From SB)
AUXILIARY PORT
PIN # ASSIGNMENT DIRECTION
1 GND —
2 Received Data (To SB)
3 Transmitted Data (From SB)
7 GND —
20 Data Terminal Ready (To SB)

Bus Adaptor Interface

The SuperBrain contains a Z80 bus interface to the main processor bus. These signals are
shown in the chart on the following page.

When using this interface, it is recommended that all signals be buffered so as not to
excessively load the main processor bus. The external bus should ONLY be utilized for 1/O
devices using addresses 80H to FFH. Memory mapped 1/O is NOT possible since the
SuperBrain is internally configured for 64K of RAM.

PIN CONNECTIONS FOR EXTERNAL BUS

SIGNAL
P/N NAME DESCRIPTION
1 | SPARE
2 SYSRES* | System Reset Output, Low During Power Up Initialize or
Reset Depressed
3 SPARE
4 A10 Address Output
5 A12 Address Output
6 A13 Address Output
7 A15 Address Output
8 GND Signal Ground
9 Al1 Address Output
10 A1l4 Address Output
11 A8 Address Output
12 ouT* Peripheral Write Strobe Output
13 WR* Memory Write Strobe Output
14 SPARE
15 RD* Memory Read Strobe Output
16 SPARE
17 A9 Address Output
18 D4 Bidirectional Data Bus
19 IN* Peripheral Read Strobe Output
20 D7 Bidirectional Data Bus
21 SPARE
22 D1 Bidirectional Data Bus
23 SPARE
24 D6 Bidirectional Data Bus
25 AQ Address Output
26 D3 Bidirectional Data Bus
27 A1 Address Output
28 D5 Bidirectional Data Bus
29 GND Signal Ground
30 DO Bidirectional Data Bus
31 A4 Address Bus
32 D2 Bidirectional Data Bus
33 SPARE
34 A3 Address Output
35 Ab Address Output
36 A7 Address Output
37 GND Signal Ground
38 Ab6 Address Output
39 +5V 5 Volt Output (Limited Current)
40 A2 Address Output

NOTE: * implies negative (Logical “0"") true, Input or OQutput

Connection points for External Bus

Page 12

NUMERIC KEYPAD

(with cursor keys)

! @ # $ % A & . () - + | ~ |BAcK
BSC | 1 2 | .3 4 5 6 7 8 9 0 - = « |SPACE| BREAK: 7 8 9 ¢ [RESTART
I T : |
| | LINE
TAB | @ w J E | R T Y u o P i 1| HINE] DEL . 5 6 i
CAPS : p |
CTRL | “ock| A s D F G H J K L : : { | RETURN 1 2 3 ; t
HERE E
< > ? E
SHIFT | z X c v B N M ' _ T shiET | g 0 R l
SPACE BAR

SUPERBRAIN KEYBOARD LAYOUT A

NUMERIC KEYPAD
(with cursor keys)

Special “‘re-start” sequence key used in
conjunction with other re-start key on
right side of keyboard will re-load
SuperBrain’s Disk Operating System. A
two-key re-start sequence is used to
minimize chance of operator error when
system is in operation. Both keys must
be depressed simultaneously to reload
the operating system,

SUPERBRAIN KEYBOARD LAYOUT B

sl i lelslelelalals]s]s o]~ e o

TAB Q w E R T Y U ! 0 P i Fers | DEL

cTRL | Soen | A s D F G H J K L - ; RETURN

stanT| SHIFT | 2 X c | v B N mo| < > sHiFT | | RE
SPACE BAR

8 9 ’ G
5 6 - -
2 3 E '
N
T
E
0 R l

SUPERBRAIN SCREEN LAYOUT
5 8
1234567890 12345678901 224567890123 456789061234567880

» 1 2 3

1234 6567890 123 4567890 123468627889 0

sHtlifels |Rje|tfc()|af+] (=] |/{ofv|2|3[a]|s[sfr|s]0 KI=[>|1|@|A[B[CIOD[E[F{G H{ 1 |J|K[LIM{HIOIPIQIR[S{T{U[Y[WIX[YZICINII(A[_[N{a(bfeclafofte{n|ilifk{t m[nfo]|q
! R 2
- ! __1

" 3
—— ——

L4 4
$ 5
* 6
13 7
‘-_ 8
((80 Characters \ — .
1 This Screen Format of the Intertube’s display area provides —

) an easy method of locating and addressing specific screen positions. 10
1 24 Using the ESC, Y, r, c command, locate both the row character (r = 1 - 24) T

. lines and the column (¢ = 1 - 80) characters. Example: "
T SCREEN DISPLAY m

+ ROW COLUMN COMMAND 12
. 1 (Home) 1 ESC Y sp sp —

13 ts 13
14 |- An application programmer may find it helpful to maintain a table of 14
1 row and column numbers with their respective addressing characters T
15 as shown on this Screen Format. This will provide quick and easy 15

ne access to specific screen positions.
6|/ 16
17 |0 17
—— 1
18 {1 18
= u
19 |2 19
. L
20 |3 20
21 |4 21
—— -
22 |5 22
23 (¢ 23
|7 24
7 896 1234567897123 465¢678298
0 o 0

f2345678911234567892123458789312345878931234567893123456
[} [} 0

G| ebed

Page 16

INTERPRETING THE ASCIl CODE CHART

The figure below illustrates a conventionally arranged ASCI| code chart divided into three
sections corresponding to control codes (columns O and 1) upper case characters (columns
2, 3, 4, and b), and lower case characters (columns 4 and 5).

by 0 0 0 0 1 1 1 1
% bg % | % "o | % % 0| "
AR :

} \ ! i row § 0 1 2 3 4 5 6 7

0 0 0 0 0O [NULIDLE|[sP| o | @ P [p

0 0 0 1 1 SOH| DCI | ! | A | Q a q

0 0 1 0 2 STX [DC2 2 B R b r

0 0 1 1 3 ETX|[DC3 | # 3 C S c s

0 1 0 0 4 EOT[DCa| § 4 D T d t

0 1 0 1 5 |ENQ|NAK| % 5 E u e u

0o [1 1 0 6 |ACK|SYN]| & 6 F v f v

0 1 1 1 7 |BEL[ETB]| 7T G wWT g w

1 0 0 0 8 BS [CAN| 8 H X h X

1 0 0 1 9 HT [EM |) 9 | Y i y

1 0 1 0 10 LF [suB| - : J Z j z

1 0 1 1 1 vT [ESC| + : K E k]

1 1 0 0 12 FF | FS , < L \ L)

1 1 0 1 13 CRI|GS| —| = [M| m '

1 1 1 0 14 SO | RS . < N A n ~
1 1 1 1 15 Sl | US| / ? o0 | — | o |DEL

Control codes are not displayable unless in the transparent mode. Some of these codes
affect the state of the terminal when they are received by the display electronics. For
example, the code SOH causes the cursor to go.to the home position, and code DC2 turns
on the printer port. Codes which have no defined function in the SuperBrain software are
ignored if received. The set of 64 upper case alphanumeric characters is sometimes referred
to as “compressed ASCII",

If the terminal is set for upper case operation only (CAPS LOCK), lower case alpha
characters from the keyboard are automatically translated and displayed as their upper case
equivalents (columns 4 and 5). If the DEL code is received, it is ignored. Lower case
characters received from the input RS-232C port are displayed as lower case.

The seven-bit binary code for each character is divided into two parts in this chart. A
four-bit number represents the four least significant bits (B1, B2, B3, B4) and a three-bit
number represents the three most significant bits (B5, B6, B7). The chart above also is
divided into 8 columns and 16 rows. This offers two ways of indicating a particular
character’s code. The character code is indicated as either a seven-bit binary number or as a
column/row number in decimal notation. For example, the character M is represented by
the binary number 1001101 or the alternative 4/15 notation. Similarly, the control code VT
is represented by the code 00001011 or the alternative 0/11 notation.

INTRODUCTION TO
CP/M FEATURES & FACILITIES

Il DIGITAL RESEARCH

Post Office Box 5§79, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (e¢) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, -electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Section

1,

2,

Table of Contents

INmDUCI‘Im ' FFFRFRRN NN R RERENERENER NN R RN RN RN RN NN XX]

mTION-AL DESCRIPI‘IW OF CP/M [EEERNNENRNENRNNENNN NN NN NN
2.1. General Command StruCtUre ..ecececccsccccecssscea
202. File References IR E NN RENRNENENRENRENNNERNNRNNRNNRE N NN N NV

Page

1

wWwww

WI'I'CHING DISKS @00 B OECBOIGONELBLBLOASOENLICAIVEIOGISOS 6

THE EORM OF BUILT"'IN CDMMAN% @888 00000000000000000
4010 ERA afn CL cecsescsscscecsssscsssssccascssssncc
.20 DIR afn CL seevescscsccscsccssscsccscsscsccscscse
3. REN ufnl=ufn2 Cr .eicececcecccccccacccccccccas

.4. SAVEn um cr 0 8 80 0B 0008000080800 08008080000800808000
.5. TYPE ufn cr G 80 0 8880 0008000008080 088003080000808080

D

LINE mITING MD OUTP[JI‘ mNTROL...............-.....

TRMSIEN‘T mMMmm G0 8 G008 CEI 0B LHNNSNNOGNOLBGELESNLNBLIGLN

STAT cr 8000800800000 08W00C003688803300000060008000

Am Ufrl cr 0 0 0008888830338 00800000000880800080808008080
LmD Ufn cr 9 0 088808800000 08000880608808080060060880000

PIP cr G0 0080000000038 00808000800808080800008800000>

ED Ufn cr @08 08 0000080008800 00RINOBCAROIBSLINBSIOLIONIOGEDININODE
SYSGEN cr G0 0 0800 0808888000808 008800c00800000008800680
SUBMIT ufn parm#l ... PAIM#N Cr .cececcccccccee
D[JMP ufn cr @ 8 008808080080 880080800800808c00s80s0ss0ss0s
mVCPM Cr @ 00 800080 0NBBNSBENLLNNNILNNIGSIAGBBESLNSS

. o
s o

[e) e W) We) e) We We)We)We))
.
\D(IJ\IO\:J'I;F-WNI—‘

Bms ERWR mSSAGES G 8 800 0800000000 N8CENLSLBOSIOINBGEBNBSOLINIINIDOLS

OPERATIONW CP/M ON TI-E m 88 0000000880000 000880800

WO WO JdJ

12
13
16
17
18
25
27
28
30

33
34

1, INTRODUCTION,

CP/M is a monitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage., Using a computer
mainframe based upon Intel’s 8@80# microcomputer, CP/M provides a general
envirorment for program construction, storage, and editing, along with
assembly and program check-out facilities, An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilog Z-88) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-compatible diskette drives., A
detailed discussion of the modifications required for any particular hardware
enviromment is given in the Digital Research document entitled “CP/M System
Alteration Guide.," Although the standard Digital Research version operates on
a single-density Intel MDS 800, several different hardware manufacturers
support their own input-output drivers for CpP/M,

The CP/M monitor provides rapid access to programs through a
comprehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
seguential and random file access., Using this file system, a large number of
distinct programs can be stored in both source and machine executable form,

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystems. Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with wvarious
high-level languages., When coupled with CP/M°s Console Command Processor, the
resulting facilities equal or excel similar large computer facilities,

CP/M is logically divided into several distinct parts:

BIOS Basic I/O System (hardware dependent)
BDOS Basic Disk Operating System

CcCp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRT, Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware enviromment by "patching" this portion of
CP/M, The BDOS provides disk management by controlling one or more disk
drives containing independent file directories, The BDOS implements disk
allocation strategies which provide fully dynamic file construction while
minimizing head movement across the disk during access, Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files, The

BDOS has entry points which include the following primitive operations which
can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations,

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ | Read a record from a particular file,

WRITE Write a record onto the disk.

SELECT Select.a particular disk drive for further
operations,

- The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system, The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section,

- The last segment of CP/M is the area called the Transient Program Area
(TPA), The TPA holds programs which are loaded from the disk under command of
the CCP, During program editing, for example, the TPA holds the CP/M text
editor machine code and data areas, Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA,

It should be mentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing program. That is, once a user’s program is
loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk,

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
enviromment in which CP/M is executing, Thus, the standard system can be
easily modified to any non-standard ernviromment by changing the peripheral
drivers to handle the custom system,

2, FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP, which reads and
interprets cammands entered through the console, In general, the CCP
addresses one of several disks which are online (the standard system addresses
up to four different disk drives)., These disk drives are labelled A, B, C,
and D, A disk is "logged in" if the CCP is currently addressing the disk. 1In
order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">"
indicating that the CCP is ready for another command. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number, All CP/M systems are initially set to operate
in a 16K .memory space, but can be easily reconfigured to fit any memory size
on the host system (see the MOVCPM transient cammand). Following system
signon, CP/M automatically logs in disk A, prompts the user with the symbol
"A>" (indicating that CP/M is currently addressing disk "A"), and waits for a
command, The cammands are implemented at two levels: built-in commands and
transient cammands,

2.1. GENERAL COMMAND STRUCTURE.
~ Built-in cammands are a part of the CCP program itself, while transient

commands are loaded into the TPA from disk and executed. The built-in
commands are o

ERA Erase specified files,

DIR List file names in the directory,

REN Rename the specified file,

SAVE Save memory contents in a file,

TYPE Type the contents of a file on the logged disk,

Nearly all of the cammands reference a particular file or group of files, The
form of a file reference is specified below, '

' 2.2. FILE REFERENCES.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M, These file references can be either
"unambiguwous" (ufn) or ‘“ambiguous" (afn). An uwnambiguous file reference
uniquely identifies a single file, while an ambiguous file reference may be

satisfied by a number of different files,

File references consist of two parts: the primary name and the secondary
name, Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM," for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file, The two names are separated by a "." as shown below:

PPPPPPPP. SSS

where pPrPPPPPP represents the primary name of eight characters or less, and
sss is the secondary name of no more than three characters, As mentioned
above, the name

BPPPPPPP

is also allowed and is eguivalent to a secondary name consisting of three
blanks, The characters used in specifying an unambiquous file reference
cannot contain any of the special characters

E <>.,;:=?*[]E

while all alphanumerics and remaining special characters are allowed,

An ambiguous file reference is used for directory search and pattern
matching, The form of an ambiguous file reference is similar to an
unambiguous reference, except the symbol "?" may be interspersed throughout
the primary and secondary names, In various commands throughout CP/M, the “?"
symbol matches any character of a file name in the "?" position, Thus, the
ambiguwous reference

X?Z.C?M

is satisfied by the unambiguous file names

XYZ ,C0OM
and

X3z .CAM
Note that the ambiguwous reference
.

is equivalent to the ambiguous file reference

22?7772 227

while

PPPPPPPP. *
and
* .sss

are abbreviations for

PPPPPPPP.?2?2?
and

respectively, As an example,
DIR *.*

is interpreted by the CCP as a command to list the names of all disk files in
the directory, while

DIR X.Y
searches only for a file by the name X.Y Similarly, the command
DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambiguwous reference,

The following file names are valid unambiguous file references:
X XY7Z GAMMA

X.Y XYz ,C0M GAMMA.1

As an added convenience, the programmer can generally specify the disk
drive name along with the file name, In this case, the drive name is given as
a letter A through Z followed by a colon (:). The specified drive is then
"logged in" before the file operation occurs, Thus, the following are valid
file names with disk name prefixes:

A:X.Y B:XYZ C:GAMMA
Z :XY7 ,CQOM B:X,A?M C:* ASM
It should also be noted that all alphabetic lower case letters in file

and drive names are always translated to upper case when they are processed by
the CCP.

3. SWITCHING DISKS.

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console imput, Thus, the sequence of prompts and commands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A,
SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B,

B>DIR *,ASM List all "AsSM" files on B,
DUMP ASM

FILES ASM

B>A: Switch back to A,

4, THE FORM OF BUILT-IN (OMMANDS,

The file and device reference forms described above can now be used to
fully specify the structure of the built-in commands. In the description
below, assume the following abbreviations:

ufn - unambiguous file reference
afn - ambiguous file reference
cr - carriage return

Further, recall that the CCP always translates lower case characters to upper
“»4& case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in canmand names and file references,

4,1 ERA afn cr

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the ">"). The files
which are erased are those which satisfy the ambiguous file reference afn.
The following examples illustrate the use of ERA:

ERA X.Y The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned,

ERA X, * All files with primary name X are removed from
the current disk,

ERA * ,ASM All files with secondary name ASM are removed
from the current disk,

ERA X?Y.C?M All files on the current disk which satisfy the
ambiguous reference X?Y,C?M are deleted,

,, ERA * % Erase all files on the current disk (in this case
sk the CCP prompts the console with the message

"ALL FILES (Y/N)?"
- which requires a Y response before files are
actually removed),

ERA B:* ,PRN All files on drive B which satisfy the ambiguous
reference 2?22?2227 ,PRN are deleted, independently
of the currently logged disk,

4,2, DIR afn cr
The DIR (directory) command causes the names of all files which satisfy
the ambiguwous file name afn to be listed at the console device., As a special
case, the cammand
DIR

lists the files on the currently logged disk (the cammand "DIR" is egquivalent
to the cammand "DIR *.,*"), Valid DIR commands are shown below,

DIR X.Y

DIR X?7.C?M

DIR ??2.Y

Similar to other CCP commands, the afn can be preceded by a drive name,

The following DIR commands cause the selected drive to be addressed before the
directory search takes place,

DIR B:

DIR B:X,Y

DIR B:* ,A?M

If no files can be found on the selected diskette which satisfy the
directory request, then the message “NOT FOUND" is typed at the console,

4,3, REN ufnl=ufn2 cr

The REN (rename) command allows the user to change the names of files on
disk., The file satisfying ufn2 is changed to ufnl, The currently logged disk
is assumed to contain the file to rename (ufnl), The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user’s console
supports this graphic character., Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.
REN XYZ ,00M=XYZ XXX The file XYZ.XXX is changed to XYZ.COM,

The operator can precede either ufnl or ufn2 (or both) by an optional
drive address. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by
a drive name, then ufml is assumed to reside on that drive as well.:‘;:&If both
ufnl and ufn2 are preceded by drive names, then the same drive must be

specified in both cases, The following REN commands illustrate this format.

REN A:X.,ASM = Y.,ASM The file Y.,ASM is changed to X.ASM on
drive A,

REN B:ZAP,BAS=Z0T.BAS The file ZOT.BAS is changed to ZAP.BAS
on drive B,

REN B:A,ASM = B:A,BAK The file A.BAK is renamed to A,ASM on
drive B.

If the file ufnl is already present, the REN command will respond with 3%

the error "FILE EXISTS" and not perform the change, If ufn2 does not exist on
the specified diskette, then the message "NOT FOUND" is printed at the
console,

4,4, SAVE n ufn cr

The SAVE command places n pages (256-byte blocks) onto disk from the TPA
and names this file ufn, In the CP/M distribution system, the TPA starts at
100H (hexadecimal), which is the second page of memory., Thus, if the user’s
program occupies the area from 1@@H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed, Examples are:

SAVE 3 X.COM Copies 1@0@H through 3FFH to X.COM.

SAVE 40 Q Copies 10@H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

SAVE 4 X.Y Copies 1@0@H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below.

SAVE 10 B:Z0T.COM Copies 10 pages (100H through @AFFH) to
the file Z0T.OOM on drive B,

4,5, TYPE ufn cr

M The TYPE command displays the contents of the ASCII source file ufn on

25

the currently logged disk at the console device, Valid TYPE commands are

TYPE X.Y

TYPE X,PIM
TYPE XXX
The TYPE command expands tabs (clt-I characters), assumming tab positions
are set at every eighth colum, The ufn can also reference a drive name as
shown below,

TYPE B:X,PRN The file X.PRN from drive B is displayed.

10

5. LINE EDITING AND OUTPUT CONTROL.,

The CCP allows certain line editing functions while typing command lines. 3%

rubout Delete and echo the last character typed at the
console,

ctl-U Delete the entire line typed at the console,

ctl-X (Same as ctl-U)

ctl-R Retype current command line: types a "clean line" fol-

lowing character deletion with rubouts,

ctl-E Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

ctl-C CP/M system reboot (warm start)
ctl-Z End input from the console (used in PIP and ED).
The control functions ctl-P and ctl-S affect console output as shown below.,

ctl-p Copy all subsequent console output to the currently
assigned list device (see the STAT command), Output
is sent to both the list device and the console device
until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S). This feature is
used to stop output on high speed consoles, such as
CRT’s, in order to view a segment of output before con-
tinuing,

Note that the ctl-key segquences shown above are obtained by depressing the
control and letter keys simultaneously., Further, CCP command 1lines can
generally be up to 255 characters in lenath; they are not acted upon until the
carriage return key is typed.

11

6. TRANSIENT COMMANDS.

Transient commands are loaded from the currently logged disk and executed
in the TPA, The transient commands defined for execution under the CCP are
shown below, Additional functions can easily be defined by the user (see the
LOAD command definition).

STAT List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment.

ASM Load the CP/M assembler and assemble the specified
program from disk.

LQAD Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command under the CCP).

DDT Load the CP/M debugger into TPA and start execution,

PIP Load the Peripheral Interchange Program for subseguent
disk file and peripheral transfer operations,

ED Load and execute the CP/M text editor program,

SYSGEN Create a new CP/M system diskette,

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

MOVCPM quenerate the CP/M system for a particular memory
size,

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user, As an added
convenience, the transient cammand can be preceded by a drive name, which
causes the transient to be loaded from the specified drive into the TPA for
execution, Thus, the command

B:STAT

Sl causes CP/M to temporarily “log in" drive B for the source of the STAT

transient, and then return to the original logged disk for subsequent
processing,)

12

The basic transient commands are listed in detail below.
6.l. STAT cr

The STAT command provides general statistical information about file
storage and device assignment, It is initiated by typing one of the following
forms:

STAT cr
STAT "command line" cr

Special forms of the “"command line" allow the current device assignment to be
examined and altered as well. The various command 1lines which can be
specified are shown below, with an explanation of each form shown to the
right,

STAT cr If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

Xx: R/W, SPACE: nnnK
or
Xx: R/O, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start), The space
remaining on the diskette in drive x is given

in kilobytes by nnn,

STAT x: cr If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the command "STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK
STAT afn cr The command line can also specify a set of files
' to be scanned by STAT, The files which satisfy
afn are listed in alphabetical order, with stor-
age requirements for each file under the heading

RECS BYTS EX D:FILENAME,TYP
rrrr bbbK ee d:ppppppprp.Ssss

where rrrr is the number of 128-byte records

13

allocated to the file, bbb is the number of kilo-
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),

d is the drive name containing the file (A...Z2),
pPepppPpp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name. After listing the individual
files, the storage usage is summarized,

STAT x:afn cr As a convenience, the drive name can be given
ahead of the atn, In this case, the specified
drive is first selected, and the form "STAT afn"
is executed.

STAT x:=R/0 cr W This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place, When a disk is read-only,
the message

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key

is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

e The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals "“CP/M Interface
Guide" and "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices, The four logical devices are

named:

CON: The system console device (used by CCP
for communication with the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list dévice

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M, Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14

BAT:

UCl:
PTR:
UR1:
UR2:
PTP:
UPl:
UP2:
LPT:

ULl:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output goes to current LST: device)

User-defined console

Paper tape reader (high speed reader)

User—defined reader #1
User—defined reader #2
Paper tape punch (high
User-defined punch #1
User-defined puncﬁ #2

~

Line printer

speed punch)

User—defined list device #1

It must be emphasized that the physical device names may or may not

actually correspond to devices which the names imply.

That is, the PTP:

device may be implemented as a cassette write operation, if the user wishes,
The exact correspondence and driving subroutine is defined in the BIOS portion

of CP/M,

In the standard distribution version of CP/M, these devices

correspond to their names on the MDS 800 development system,

The possible logical to physical device assignments can be displayed by

STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical

typing

device:
CON.
RDR:
PUN:
LST:

In each case,

STAT DEV: cr

nu

TTY:
TTY:
TTY:
TTY:

CRT:
PTR:
PTP:
CRT:

BAT:
UR1:
UPl:
LPT:

UCl:
UR2:
UP2:
ULl:

the loqicél device shown to the left can take any of the four
physical assignments shown to the right on each line,
physical mapping is displayed by typing the command

15

The current logical to

(874
i

which produces a listing of each logical device to the left, and the current
corresponding physical device to the right, For example, the 1list might
appear as follows:

(ON: = CRT:
RDR: = UR1l:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing a
STAT command of the form

STAT 141 = pdl, 1d2 = pd2 , ... , 1dn = pdn cr

where 1dl through 1ldn are logical device names, and pdl through pdn are
compatible physical device names (i.e., 1di and pdi appear on the same line in
the "VAL:" cammand shown above), The following are valid STAT commands which
change the current logical to physical device assignments:

STAT (ON:=CRT: cr
STAT PUN: = TTY:,IST:=LPT:, RDR:=TTY: cr

6.2. ASM ufn cr.

The ASM command loads and executes the CP/M 8080 assembler, The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM commands are valid: .

AM X
ASM GAMMA

The two-pass assembler is automatically executed, If assembly errors occur
during the second pass, the errors are printed at the console,

3 The assembler produces a file

X « PRN
where x is the primary name specified in the ASM command., The PRN file
contains a listing of the source program (with imbedded tab characters if

present in the source program), along with the machine code generated for each
statement and diagnostic error messages, if any. The PRN file can be listed

16

at the console using the TYPE command, or sent to a peripheral device using
PIP (see the PIP command structure below). Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 columns (program addresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator s quide) by removing the
leftmost 16 characters of each line (this can be done by issuing a single
editor "macro® cammand). The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly, The file

X HEX

is also produced which contains 8080 machine language in Intel “hex" format
suitable for subsequent loading and execution (see the LOAD command). For
complete details of CP/M’s assembly lanquage program, see the "CP/M Assembler
Language (ASM) User s Guide.,"

Similar te other transient commands, the source file for assembly can be

taken fram an a.ternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the command

ASM B:ALPHA cr
loads the assembler from the currently logged drive and operates upon the

source program ALPHA,ASM on drive B, The HEX and PRN files are also placed on
drive B in this case.

6.3, LOAD ufn cr
The LOAD command reads the file vufn,r Which is assuméd to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed., The file name ufn is assumed to be of the form
X JHEX

and thus only the name x need be specified in the command, The LOAD command
creates a file named

x.COM
which marks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character “>" printed by the CCP,
In general, the CCP reads the name x following the prompting character

and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17

x .COM

If found, the machine code is loaded into the TPA, and the program executes,
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can "invent” new commands in the CCP, (Initialized disks contain the
transient commands as (OM files, which can be deleted at the user’s option.)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins,

It must be noted that the BETA.HEX file must contain wvalid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at 100H, the beginning of the TPA., Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are

) filled with zeroes by the LOAD command as the hex records are read. Thus,

5, LOAD must be used only for creating CP/M standard "COM" files which operate in
the TPA. Proagrams which occupy regions of memory other than the TPA can be
loaded under DDT.

6.4, PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files., The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP "command line" cr

In both cases, PIP is loaded into the TPA and executed. In case (1), PIP
reads command lines directly from the console, prompted with the "**
character, until an empty command line is typed (i.e., a single carriage
return is issued by the operator)., Each successive command line causes some
media conversion to take place according to the rules shown below, Form (2)
of the PIP command is eguivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines.
The form of each command line is

destination = source#l, source#2, ... , source#n cr

where "destination" is the file or peripheral device to receive the data, and

18

"source#l, ..., source#n” represents a series of one or more files or devices
which are copied from left to right to the destination,

When multiple files are given in the command 1line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption), The egual symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability, Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions, Finally,
the ‘total command line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width).

The destination and source elements can be unambiguous references to CP/M
source files, with or without a preceding disk drive name, That is, any file
can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored., When
the drive name is not included, the currently logged disk is assumed.
Further, the destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire

concatenation is complete, If the destination file already exists, it is 3&

removed if the command line is properly formed (it is not removed if an error
condition arises). The following command lines (with explanations to the
right) are valid as input to PIP:

X =Ycr Copy to file X from file Y,
where X and Y are unambiguous
file names; Y remains unchanged.

X=Y,72 cr) Concatenate files Y and Z and
copy to file X, with Y and Z
unchanged.

X.ASM=Y.ASM, % .,ASM,FIN.ASM cr Create the file X.ASM from the

X concatenation of the Y, 7, and
FIN files with type ASM,

NEW,.ZOT = B:OLD,ZAP cr Move a copy of OLD,ZAP from drive
B to the currently logged disk;
name the file NEW,ZOT,.

B:A,U = B:B,V,A:C,W,D.X cr Concatenate file B,V from drive B

with C.W from drive A and D.X.
from the logged disk; create
the file A,U on drive B,

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives, The abbreviated forms are

19

PIP x:=afn cr
PIP x:=y:afn cr
PIP ufn = y: cr
PIP x:ufn = y: cr

The first form copies all files from the currently logged disk which satisfy
the afn to the same file names on drive X (x = A...Z). The second form is
eguivalent to the first, where the source for the copy is drive y (y = A...
Z). The third form is eguivalent to the command "PIP ufn=y:ufn cr" which
copies the file given by ufn from drive y to the file ufn on drive x, The
fourth form is equ1valent to the third, where the source disk is explicitly
given by v. _

Note that the source and destination disks must be different in all of
these cases, If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied., If a file exists by the same name as the
destination file, it is removed upon successful completion of the copy, and
replaced by the copied file,

The following PIP commands give examples of wvalid disk-to-disk copy
operations:

B:=*_ ,(OM cr Copy all files which have the
secondary name "COM" to drive B
from the current drive.

A:=B:ZAP.* cr Copy all files which have the
primary name "ZAP" to drive A
from drive B.

ZAP ,ASM=B: cr Equivalent to ZAP,ASM=B:ZAP,ASM
B:ZOT,(OM=A: cr Equivalent to B:ZOT.COM=A:ZOT.COM
B:=GAMMA,BAS cr Same as B:GAMMA,BAS=GAMMA,BAS
B:=A:GAMMA.BAS cr Same as B:GAMMA,BAS=A:GAMMA,BAS

PIP also allows reference to physical and logical devices which are
attached to the CP/M system, The device names are the same as given under the
STAT command, along with a number of specially named devices, The 1logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and IST: (list)

while the physical devices are

20

TTY: (console, reader, punch, or list)

CRT: (console, or list), UCl: (console)
PTR: (reader), URl: (reader), UR2: (reader)
PTP: (punch), UPl: (punch), UP2: (punch)
LPT: (list), ULl: (list)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and LST: devices are to be used for
console input/output,)

The RDR, IST, PUN, and (ON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/0 system.
(The current physical device mapping is defined by IOBYTE; see the "CP/M
Interface Guide" for a discussion of this function). The destination device
must be capable of receiving data (i.e., data cannot be sent to the punch),
and the source devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII 0°s) to the device
(this can be issued at the end of punched output),

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP),

INP: Special PIP input source which can be "patched"
into the PIP program itself: PIP gets the input OSED iM
data character-by-character by CALLing location der 40
103H, with data returned in location 109H (parity) €oMe27
bit must be zero). Compoier
Transfer,

ouT': Special PIP output destination which can be
patched into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit, Note that locations 1@9H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator's manual).

PRN: Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands., In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files), Data from each device or
file is concatenated from left to right until the last data source has been

21

read, The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files, Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name) which is changed to the actual file name
only upon successful campletion of the copy. Files with the extension "COM"
are always assumed to be non-ASCII,

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the message "ABORTED"
to indicate that the operation was not completed, Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any pending
commands which were set up while using the SUBMIT command.

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader. 1In this case, the PIP program checks to ensure that the source
file contains a properly formed hex file, with legal hexadecimal values and
checksum records, When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches), When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read., If the
tape position cannot be properly read, simply continue the read (by typing a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a RDR:
device, In this case, the PIP program reads the device and monitors the
keyboard, If ctl-Z is typed at the keyboard, then the read operation is
terminated normally.

Valid PIP commands are shown below,

PIP IST: = X,PRN cr Copy X.PRN to the LST device and
terminate the PIP program.

PIP cr Start PIP for a seguence of
commands (PIP prompts with "*"),

*QON:=X,ASM,Y.,ASM,Z.,ASM cr Concatenate three ASM files and
copy to the CON device,

*X HEX=CON:,Y . HEX,PTR: cr Create a HEX file by reading the
QON (until a ctl-Z is typed), fol-
lowed by data from Y.HEX, followed
by data from PTR until a ctl-Z is
encountered, '

*cr Single carriage return stops PIP,

22

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 40 nulls to the punch device;

then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 4@ more null charac-
ters,

The user can also specify one or more PIP parameters, enclosed in left
and right square brackets, separated by zero or more blanks, Each parameter

immediately follow the affected file or device, Generally, each parameter can
be followed by an optional decimal integer value (the S and Q parameters are
The valid PIP parameters are listed below,

affects the copy operation, and the enclosed 1list of parameters must -

exceptions) .

B

Dn

Block mode transfer: data is buffered by PIP until an ASCII
x=0ff character (ctl-S) is received from the source device,
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader, Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data, The amount of data which can be buffered is de-
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device.

Echo all transfer operations to the console as they are being
performed, , ~

Filter form feeds from the file, All imbedded form feeds are
removed, The P parameter can be used simultaneously to
insert new form feeds,

Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation, The console will be
prompted for corrective action in case errors occur.

Ignore ":00" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case,

Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon, If N2

is specified, then leading zeroes are included, and a tab is
inserted following the number. The tab is expanded if T is

23

set,

o] Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at every n lines (with an initial page
eject). If n =1 or is excluded altogether, page ejects
occur every 6@ lines, If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

0stz Quit copying from the source device or file when the
string s (terminated by ctl-Z) is encountered.

Sstz Start copying from the source device when the string s is
encountered (terminated by ctl-Z). The S and Q parameters
can be used to “abstract" a particular section of a file
(such as a subroutine), The start and quit strings are al-
ways included in the copy operation,

NOTE - the strings following the s and g parameters are
translated to upper case by the CCP if form (2) of the
PIP command is used, Form (1) of the PIP invocation, how-
ever, does not perform the automatic upper case translation,
(1) PIP cr
(2) PIP "command line"” cr

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source,

U Translate lower case alphabétics to upper case during the
the copy operation,

v Verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file).

Z Zero the parity bit on input for each ASCII character.,

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.,ASM=B:[v] cr Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

PIP LPT:=X,ASM[nt8u] cr Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper
case,

24

PIP PUN:=X.HEX[i],Y.ZOT[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any ":00" records which it contains,

PIP X.,LIB = Y,ASM [sSUBRl:"z qIMP 137z] cr Copy from the file Y,ASM
into the file X.LIB., Start the copy when the
string "SUBR1l:" has been found, and quit copy-
ing after the string "JMP L3" is encountered,

PIP PRN:=X,ASM [p50] Send X.ASM to the LST: device, with line num—
bers, tabs expanded to every eighth column,
and page ejects at every 50th line, Note that
nt8p6d is the assumed parameter list for a PRN
file; p5@0 overrides the default value.

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment, Complete details of
operation are given the ED user’s manual, "ED: a Context Editor for the CP/M
Disk System," In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed seqguence), There is no
practical restriction on line length (no single line can exceed the size of
the working memory), which is instead defined by the number of characters
typed between cr’s, The ED program has a number of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M, Although the CP/M has a
limited memory work space area (approximately 500@ characters in a 16K CP/M
system), the file size which can be edited is not 1limited, since data is
easily "paged" through this work area,

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access, The programmer then "appends" data from
the source file into the work area, if the source file already exists (see the
A command), for editing., The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command),.
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file,

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run, Upon completion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM, Thus, the X,BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file, The operator can always return to
the previous version of a file by removing the most recent version, and
renaming the previous version., Suppose, for example, that the current X,ASM
file was improperly edited; the seguence of CCP)» command shown below would
reclaim the backup file.

DIR X.* : Check to see that BAK file
is available.

ERA X,ASM Erase most recent version,

REN X.ASM=X.BAK Rename the BAK file to ASM.

AN

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q command) without destroying the original file, 1In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "ping-pong" the source and create
backup files between two disks, The form of the ED command in this case is

ED ufn d:

where ufn is the name of a file to edit on the currently logged disk, and 4 is
the name of an alternate drive., The ED program reads and processes the source
file, and writes the new file to drive 4, using the name ufn, Upon completion
of processing, the original file becomes the backup file, Thus, if the
operator is addressing disk A, the following command is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.$$S$ on drive
B. Upon campletion of a successful edit, A:X,ASM is renamed to A:X,BAK, and
B:X.$$S is renamed to B:X,ASM, For user convenience, the currently logged
disk becomes drive B at the end of the edit, Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS
is printed at the console as a precaution against accidently destroying a

source file, 1In this case, the operator must first ERAse the existing file
and then restart the edit operation,

26

. Similar to other transient commands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name, Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.ASM on drive A, with
new file and backup on drive A,

ED B:X.ASM A: Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A, On
termination of editing, change X.ASM
on drive B to X.BAK, and change X.$$S -
on drive A to X.ASM,

6.6. SYSGEN cr

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system, The SYSGEN program prompts the console
for cammands, with interaction as shown below,

SYSGEN cr Initiate the SYSGEN program.
SYSGEN VERSION m.m | SYSGEN sign-on message,

SOURCE DRIVE NAME (OR RETURN TO SKIP)

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys—
tem; usually A. If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only, Typing a drive name

X will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
X (x is one of A, B, C, or D).
Answer with cr when ready.

FUNCTION QOMPLETE System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

If a diskette is being ini-
tialized, place the new disk
into a drive and answer with

the drive name, Otherwise, type
a cr and the system will reboot
from drive A, Typing drive name
X will cause SYSGEN to prompt

27

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready.

FUNCTION COMPLETE New diskette is initialized
in drive x.

The "DESTINATION" prompt will be repeated ntil a single carriage return is
typed at the console, so that more than one disk can be initialized,

Upon campletion of a successful system generation, the new diskette
contains the operating system, and only the built-in commands are available,
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate COM files
from an existing CP/M diskette to the newly constructed diskette using the PIP
transient,

The user can copy all files from an existing diskette by typing the PIP
command

PIP B: = A: *_ *[v] cr

which copies all files from disk drive A to disk drive B, and verifies that
each file has been copied correctly. The name of each file is displayed at
the console as the copy operation proceeds, _

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system, Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M,

6.7. SUBMIT ufn parm#l ... parm#n cr

The SUBMIT command allows CP/M commands to be batched together for
automatic processing. The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of "SUB.” The SUB file contains CP/M prototype commands, with
possible parameter substitution, The actual .parameters parm#l ,.. parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted camnmands are processed sequentially by CP/M,

28

The prototype command file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included when
the file is submitted for execution, When the SUBMIT transient is executed,
the actual parameters parm#l ... parm#n are paired with the formal parameters
$1 ... $n in the prototype cammands, If the number of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console, The SUBMIT function creates a file of
substituted commands with the name

$$$.5UB

on the logged disk, When the system reboots (at the termination of the
SUBMIT), this cammand file is read by the CCP as a source of input, rather
than the console. If the SUBMIT function is performed on any disk other than
drive A, the commands are not processed until the disk is inserted into drive
A and the system reboots, Further, the user can abort command processing at
any time by typing a rubout when the command is read and echoed., 1In this
case, the $$$.SUB file is removed, and the subsequent commands come from the
console, Command processing is also aborted if the CCP detects an error in
any of the cammands, Programs which execute under CP/M can abort processing of
command files when error conditions occur by simply erasing any existing
$$$,SUB file,

In order to introduce dollar signs into a SUBMIT file, the user may type
a "S" which reduces to a single "$" within the command file, Further, an
up-arrow symbol "** may precede an alphabetic character x, which produces a
single ctl-x character within the file,

The last cammand in a SUB file can initiate another SUB file, thus
allowing chained batch commands,

Suppose the file ASMBL.SUB exists on disk and contains the prototype
commands
AM s1
DIR $1.*
ERA *_,BAK
PIP $2:=$S1.PRN
ERA $1.PRN

and the cammand
SUBMIT ASMBL X PRN cr

is issued by the operator, The SUBMIT program reads the ASMBL.SUB file,

swbstituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

ASM X

DIR X.*

ERA *_,BAK

PIP PRN:=X,PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name., Submitted files are only acted
upon, however, when they appear on drive A, Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is
inserted in drive A, 1

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form, The file contents are listed sixteen bytes at a time,
with the absolute byte address 1listed to the 1left of each 1line in
hexadecimal., Long typeouts can be aborted by pushing the rubout key during
printout. (The source listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment,)

6.9. MOVCPM cr

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at program termination, If the first parameter is omitted or a "*" is given,
the MOVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguous RAM in the host system (starting aat @00¢H). If
the second parameter is omitted, the system is executed, but not permanently
recorded; if "*" is given, the system is left in memory, ready for a SYSGEN
operation, The MOVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation, The
command forms are:

MOVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contigu-
ous RAM, starting at 1@@H). Upon com—
pletion of the relocation, the new -
system is executed but not permanently
recorded on the diskette, The system
which is constructed contains a BIOS
for the Intel MDS 804.

30

MOVCPM n cr Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

MOVCPM * * cr Construct a relocated memory image for
the current memory confiqguration, but
leave the memory image in memory, in
preparation for a SYSGEN operation,

MOVCPM n * cr , Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation,

The command
MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation, The message

READY FOR "SYSGEN" OR
“"SAVE 32 CPMxx,COM"

is printed at the console upon completion, where xx is the current memory size
in kilobytes. The operator can then type

SYSGEN cr Start the system generation,

SOURCE DRIVE NAME (OR RETURN TO SKIP) . Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation,

DESTINATION DRIVE NAME (OR RETURN T@ REBOQT)
Respond with B to write new system
to the diskette in drive B. SYSGEN
will prompt with:

DESTINATION ON B, THEN TYPE RETURN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B. SYSGEN will continue to type the prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the

31

SYSGEN program with a system reboot,

The user can then go through the reboot process with the o0ld or new
diskette, Instead of performing the SYSGEN operation, the user could have

typed
SAVE 32 CPMxx,COM

at the campletion of the MOVCPM function, which would place the CP/M memory
image on the currently logged disk in a form which can be “patched." This is
necessary when operating in a non-standard environment where the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide."

Valid MOVCPM commands are given below:

MOVCPM 48 cr Construct a 48K verskon of CP/M and start
execution,
MOVCPM 48 * cr Construct a 48K version of CP/M in prepara-

tion for permanent recording; response is

READY FOR "SYSGEN" OR
"SAVE 32CpM48,COM"

MOVCPM * * cr Construct a maximum memory version of CP/M

and start execution,

It is important to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Agreement,

32

7. BDOS ERROR MESSAGES,

There are three error situations which the Basic Disk Operating System
intercepts during file processsing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error
where x is the drive name, and "error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette, This
condition 1is generally due to a malfunctioning disk controller, or an
extremely worn diskette, If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer,
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats, The MDS-80@ controller, for example,
requires two bytes of one’s following the data CRC byte, which is not reguired
in the IBM format. As a result, diskettes generated by the Intel MDS can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer’s equipment will produce the "BAD SECTOR" message when read
by the MDS. In any case, recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation, Note, however, that typing a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adequate backups in this case.

The "SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range., 1In this case, the value of x in the error
message gives the selected drive, The system reboots following any input from
the console,

The "READ ONLY" message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has been
set to read-only by the BDOS, In general, the operator should reboot CP/M
either by using the warm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed., If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the warm or cold
start, but internally marks the drive as read-only, The status of the drive
is subsequently changed to read/write if a warm or cold start occurs., Upon
issuing this message, CP/M waits for imput from the console, An automatic
warm start takes place following any input,

33

8. OPERATION OF CP/M ON THE MDS.,

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system, A basic knowledge of the MDS hardware and
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel’s ISIS
operating system, The disk drives are labelled @ through 3 on the MDS,
corresponding to CP/M drives A through D, respectively., The CP/M system
diskette is inserted into drive @, and the BOOT and RESET switches are
depressed in sequence., The interrupt 2 light should go on at this point. The
space bar is then depressed on the device which is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates). The BOOT switch is then turned off, and the CP/M signon
message should appear at the selected console device, followed by the "A>"
system prompt. The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT @ switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operating under DDT, in which case the DDT program gets control instead,

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity. Note,
however, that the user must not remove a diskette and replace it with another
‘without rebooting the system (cold or warm start), unless the inserted
diskette is "read only.,"

Due to hardware hang-ups or malfunctions, CP/M may type the message
BDOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error, This error may occur when
drive doors are opened and closed randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure, The user can
optionally elect to ignore the error by typing a single return at the
console, The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the operation again,

Termination of a CP/M session requires no special action, except that it
is necessary to remove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics,

It should be noted that factory-fresh IBM-compatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version, In particular, the ISIS "FORMAT" operation produces non-standard
~sector numbering throughout the diskette, This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version, If it becomes necessary to reformat a diskette
(which should not be the case for standard diskettes), a program can be
written under CP/M which causes the MDS 800 controller to reformat with
sequential sector numbering (1-26) on each track.

e e s e - -

Note: "MDS 8#@" and "ISIS" are registered trademarks of Intel Corporation,

OPERATION OF
THE CP/M CONTEXT EDITOR

Il DIGITAL BESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM

USER’S MANUAL

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (¢) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, -electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time "in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

ED TUTORIAL « ¢ ¢ o o o o o o a 2 o o« o o o« « 1
1.1 Introduction to ED . . « ¢ ¢« ¢ ¢ « « « « 1
1.2 ED Operation . « « « « « ¢ ¢« o o ¢ o . .‘ 1
1.3 Text Transfer Functions 1
1.4 Memory Buffer Organization‘. e+ e« +« « .« 5
1.5 Memory Buffer Operation 5
1.6 Command Strings . . « « « « « « « « o« o 7

1.7 Text Search and Alteration . « « « . . . 8

1.8 Source Libraries . « ¢« ¢ « + o o« « « « o 11

12

L]
.
.
.
.
.

1.9 Repetitive Command Execution
ED ERROR CONDITIONS « « « « ¢ « s o s« o « o« o« 13

CONTROL CHARACTERS AND COMMANDS « . « « « . . 14

ii

ED USER'S MANUAL

1. ED TUTORIAL
l.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by

typing

<filename>
ED
<filename>.<filetype>

In general, ED reads segments of the source file given by
<filename> or <filename> . <filetype> into central memory,
where the file is manipulated by the operator, and subse-
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

1.3. Text Transfer Functions

Given that n is an integer value in the range 0 through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem-
porary (and eventually final) file:

.Backup
File

Figure 1

Appen
(a)

. Overall ED Operation

Source
Libraries

_

d (R)

Write

/ (W)

Memory Buffer

Insert
(1)

Illl’l
————————

Type

(T)

Temporary

File

New
Source
File

Note: the ED program accepts both lower and upper case ASCII
characters as input from the console.

can be typed in either case.

Single letter commands

The U command can be issued to

cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.

Characters are echoed as typed without translation,

The ~U command causes ED to revert to
ED starts with an assumed -U in effect.

however.

"no translation" mode.

Figure 2.

Source File

First Line.

24\‘Appended SN

A N

- Limes\ ~
_\—\ N \\—
| Mp *~
| L\ '
UnprocessedI N
Source
Lines I

Figuré 3.

Memory Buffer Organization

Memory Buffer

" First Line®

_ > Buffered

+ N Text \iL
v N
N A N \ N
| Free {
: Memory |
| Space :
e e e —

Temporary File

N First Line\
\Processed‘s‘
e\ \ \\
.\ Text
—_— \

v NN

NN

s

A A \ \

Free File

|
[
| Space :
|

Logical Organization of Memory Buffer

Memory Buffer

first
line

current
line CL

last
line

————————— <cr><

———————— <cr><l

1£>

f>

-——<cr><1lf>

nA<cr>® append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.

Increment SP and MP by n.

nW<cr> - write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

E<cr> - end the edit. Copy all buffered text
to temporary file, and copy all un-
processed source lines to the temporary
file. Rename files as described
previously.

H<cr> - move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

O<cr> - return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position 1 of the scurce file. The
effects of the previous editing commands
are thus nullified.

Q<cr> - quit edit with no file alterations,
return to CP/M.

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then 1 is assumed. Thus, the commands A and W append
one line and write 1 line, respectively. In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<cr> represents the carriage-return key

commands are provided as a convenience. The command OA fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require-
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

1.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carriage-
return (<cr>) and line-feed (<1f>) characters, and
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
line which contains the CP.

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the lines directly from the console
with the insert command

I<cr>

'ED then accepts any number of input lines, where each line
terminates with a <cr> (the <1f> is supplied automatically),
until a control-z (denoted by 4z is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>

NOW IS THE<cr>
TIME FOR<cr>

ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

NOW IS THE<cr><lf>
TIME FOR<cr><1lf>

ALL GOOD MEN<cr><lf> .£

Various commands can then be issued which manipulate the CP
or display source text in the vicinity of the CP. The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by
t, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced
by 65535. If an integer n is optional, but not supplied,

then n=1 is assumed. Finally, if a plus sign is optional, .
but none is specified, then + is assumed.

+B<cr> - move CP to beginning of memory buffer
if +, and to bottom if -.

tnC<cr> - move CP by *n characters (toward front
of buffer if +), counting the <cr><1lf>
as two distinct characters

tnD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

tnK<cr> = kill (ie remove) #*n lines of source text
using CP as the curresnt reference. If
CP is not at the beginning of the current
line when K is issuec, then the charac-
ters before CP remain if + is specified,
while the characters after CP remain if -
is given in the command.

tnL<cr> - if n=0 then move CP to the beginning of
the current line (if it is not already
there) if n#0 then first move the CP to
the beginning of the current line, and
then move it to the beginning of the
line which is n lines down (if +) or up
(if -). The CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified.

*nT<cr> - If n=0 then type the contents of the
current line up to CP. If n=1 then
type the contents of the current line
from CP to the end of the line. If
n>1 then type the current line along
with n-1 lines which follow, if +
is specified. Similarly, if n>1 and
- is given, type the previous n lines,
up to the CP. The break key can be
depressed to abort long type-outs.

tn<cr> - equivalent to *nLT, which moves up or
down and types a single line

1.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <cr> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command:

Rubout remove the last character
~Control-U delete the entire line
Control-C re-initialize the CP/M System
Control-E return carriage for long lines

without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String Effect Resulting Memory Buffer
1. B2T<cr> move to beginning éﬁ NOW IS THE<cr><lf>
of buffer and type
2 lines: TIME FOR<cr><1lf>
"NOW IS THE ALL GOOD MEN<cr><1lf>
TIME FOR"
2. 5C0T<cr> move CP 5 charac- NOW I:§: S THE<cr><1lf>
ters and type the P
beginning of the
line
"NOw I"

3. 2L-T<cr> move two lines down NOW IS THE<cr><1lf>
and type previous TIME FOR<cr><lf>

line
"TIME FOR" l ALL GOOD MEN<cr><1lf>
4. -L#K<cr> move up one line, NOW IS THE<cr><lf>
delte 65535 lines
which follow
5. I<cr> " insert two lines NOW IS THE<cr><lf>
TIME TO<cr> of text
<1f>
INSERT<cCr> TIME TO<cr><1lf

+z INSERT<cr><lf>

6. =-2L#T<cr> move up two lines, NOW IS THE<cr><lf>

and type 65535
lines ahead of CP TIME TO<cr><lf>

"NOW IS THE" INSERT<cr><1lf>
7. <cr> ' move down one line NOW IS THE<cr><1lf>
and type one line
"INSERT" ‘ TIME TO<cr><lf>E§é]
INSERT<cr><1lf>

1.7. Text Search and Alteration

ED also has a command which locates strings within the
memory buffer. The command takes the form

F | <cr>
n clcz...ck +z

where c; through cy represent Ehe characters to match followed
by either a <cr> or control -z". ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is

moved directly after the character cy. 1If the n matches are
not successful, the CP is not moved from its initial position.
Search strings can include 41 (control-l), which is replaced

- by the pair of symbols <cr><1lf>.

*The control-z is used if additional commands will be typed
following the +tz.

The following commands illustrate the use of the F
command :

Command String Effect Resulting Memory Buffer
1. B#T<cr> move to beginning NOW IS THE<cr><lf>
and type entire
buf fer TIME FOR<cr><1lf>
ALL GOOD MEN<cr><lf>
2. FS T<cr> find the end of NOW IS THE<cr><l‘f>
the string "s T"
3. FI+4z0TT find the next "I" NOW IS THE<cr><1lf>
and type to the
CP then type the TIQME FOR<cr><lf>
remainder of the ALL GOOD MEN<cr><lf>
current line:
"TIME FOR"

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is: -

I clc

gt cnfz or

I c,cC c <cr>
‘ n

12000

where c; through ¢, are characters to insert. If the inser-
tion string is terminated by a %z, the characters cj through
cp are inserted directly following the CP, and the CP is
moved directly after character c,. The action is the same
if the command is followed by a <cr> except that a <cr><1lf>
is automatically inserted into the text following character
Cp. Consider the following command sequences as examples

of the F and I commands:

Command String Effect Resulting Memory Buffer
BITHIS IS tz<cr> Insert "THIS IS " THIS IS NOW THE <cr><1lf>
at the beginning
of the text

TIME FOR<cr><1lf>
ALL GOOD MEN<cr><1lf>

J

FTIME+z-4DIPLACEtz<cr> , THIS IS NOW THE<cr><1lf>

find "TIME" and delete PLACE FOR<cr><lf>
it; then insert "PLACE" ALL GOOD MEN<cr><1f>
3FO+z-3D5DICHANGESt<cr>) THIS IS NOW THE <cr><lf>

find third occurrence PLACE FOR<cr><lf>

of "O" (ie the second ALL CHANGES‘S§<cr><lf>
"O" in GOOD), delete

previous 3 characters;

then insert "CHANGES"

-8CISOURCE<cr> move back 8 characters THIS IS NOW THE<cr><1lf>
and insert the line PLACE FOR<cr><1f>

"SOURCE<cr><1f>"
ALL SOURCE<cr><lf>

CHANGES<cr><lf>

ED also provides a single command which combines the F -and
I commands to perform simple string substitutions. The command
takes the form

<cr>
n s clcz...ck+z dld2'°'dm { iz }
and has exactly the same effect as applying the command string

<cr>
E clcz...ckfz kDIdldz"’dm { Xz

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successively sub-
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to F is provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

N c,cC o cr
n 12°°°%k | tz

which searches the entire source file for the nth occurrence
of the string cjcy...cx (recall that F fails if the string
cannot be found in the current buffer). The operation of the

10

i command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #W is issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the saurce file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

<c
nJ clcz...ck+z d1d2'°'d +z e e { }

search from the current CP for the next occurrence of the
string C1Cp+..Cr. If found, insert the string dydso eeesdps -

and move CP to follow dp Then delete all characters follow1ng
CP up to (but not 1nclud1ng) the string ej,ej,...e leaving

CP directly after dp. If ej,ep,...e cannot be foﬁnd then

no deletion is made. If the current line is

with the following action applied n times to the memory buffer: -

NOW IS THE TIME<cr><1lf>

Then the command
JW +zWHAT+ztl<cr>
Results in

NOW WHAT <cr><1lf>

(Recall that 41 represents the pair <cr><1lf> in search and

substitute strings).
It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1l.8. Source Libraries

ED also allows the inclusion of source libraries during
the editing process with the R command. The form of this
command 1is

11

R £ £

1 2..fnTz or

R flfz..fn<cr>

where fjfj..f, is the name of a source file on the disk with
as assumed filetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the charac-
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command M allows the ED user to group ED com-
mands together for repeated evaluation. The M command takes

the form:
. <cr>
n M clcz...ck {+z}

where cjcj...cp represent a string of ED commands, not inclu-
ding another M command. ED executes the command string n
times if n>1. If n=0 or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command) .
As an example, the following macro changes all occur-
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMA+2z-5DIDELTA+z0TT<cr>

or equivalently

MSGAMMA*+2zDELTA+z(0TT<cr>

12

2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized command

> memory buffer full (use one of
the commands D,X,N,S, or W to
remove characters), F,N, or S
strings too long.

cannot apply command the number
of times specified (e.g., in
F command)

0 cannot open LIB file in R
command

Cyclic redundancy check (CRC) information is written with
each output record under CP/M in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where d is the currently selected drive (A,B,...). The oper-
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con-
tents of the BAK file to ensure that it contains the proper
information:

TYPE xX.BAK<cr>

where x is the file being edited. Then remove the primary
file:

ERA x.y<cr>
and rename the BAK file:

REN x.y=x.BAK<cr>

The file can then be re-edited, starting with the previous
version.

13

3. CONTROL CHARACTERS AND COMMANDS

The following table summarizes the control characters
and commands available in ED:

Control Character Function
tc system reboot
te physical <cr><1f> (not
actually entered in
command)
+i logical tab (cols 1,8,
15,--.)
+1 logical <cr><lf> in
search and substitute
strings
tu : line delete
tz string terminator
rubout character delete
break discontinue command

(e.g., stop typing)

14

Command Function

nA append lines

+B begin bottom of buffer
+nC move character positions
+nD delete characters

E end edit and close files

(normal end)

nF find string
H end edit, close and reopen
files -
I insert characters
nJ place strings in juxtaposition
+nK kill lines
+nL move down/up lines
nM macro definition
nN find next occurrence with
autoscan
o return to original file
*nP move and print pages
Q quit with no file changes
R read library file
nS substitute strings
+nT type lines
ty ' translate lower to upper case if U,
no translation if -U
nw write lines
nz sleep
tn<cr> move and type (+nLT)

15

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by
a number followed by a colon, in the same format as the line number display. In this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

" The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command

:400T

is interpreted as "type from the current line number through the line whose absolute
number is 400." Combining the two line reference forms, the command

345::400T .
for example, is interpreted' as "move to absolute line 345, then type through absolute
line 4A@." Note that absolute line references of this sort can precede any of the
standard ED commands.

A special case of the V command, "3V", prints the memory buffer statisties in
the form:

free/total

where "free" is the number of free bytes in the memory buffer (in decimal), and "total"
is the size of the memory buffer.

ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer)
command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$$.L1B

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K command
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X ecommand,
they can be re-read any number of times back into the source file. The command

Ax
is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas-
terous commands to be typed as single letters, rather than in composite commands.
The commands :

E (end), H (head), O (original), Q (quit)
must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT c

where x is the error character, and c¢ is the command where the error occurred.

CP/M 2.0 USER’S GUIDE
FOR CP/M 1.4 OWNERS

Il DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 USER'S GUIDE °
FOR CP/M 1.4 OWNERS

COPYRIGHT (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (e¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or bv any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

- Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/¥M 2.9 USER'S GUIDE FOR CP/# 1.4 OWNERS

Cooyright (c) 1979
Digital Researcn, Box 573
Pacific Grove, California

1. An Overview of CP/#M 2.9 Facilities . . v v v ¢ o o o o o « o 1
2. User Interface . . . ¢ v ¢ ¢« & ¢ ¢« ¢ o ¢ ¢ o o o s e e s e 3
3. Console Command Processor (CCP) Interface 4
4., STAT Enhancements . . . & ¢ v & & o ¢ o o o o s o o o o o« o>
5. PIP EnhancementsS . . . ¢ ¢« ¢ o o + o « o o o s o o o o« « « o 8
6.’ BD Enhancements . . . & ¢ ¢ v 4 4 e e e e e e s s e e . . . 10
7. ‘The X508 FUNCEION . & v v v & v v 4 o v v o o o o o« o o o 11
3. SDOS Interface Conventions . , « ¢ v v o « o o o o« o« o « o o« 12
9. CP/¥ 2.0 Memory Organization ¢ v v ¢« ¢ o « o« o o o 27

1y, 3I0S DIifferences . v v v v v ¢ o o o o o o o o o o o o o o« o 28

1. AN OVERVIEW OF CP/M 2.0 FACILITIES.

CP/t1 2.9 is a high-performance single-console operating system
which uses table driven technigques to allow field recontiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1. Features of CP/M 2.6 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reach the full drive size
with the capaoility to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.4 are physically
separated by user numbers, with facilities for file copy operations
from one user area to another. PpPowerful relative-record random access
functions are present in CP/M 2.8 which provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed 1into a
BIOS-resident "disk nvparameter block" which is either hand coded or
produced automatically using the disk definition macro 1library
provided with CP/M 2.8. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this intformation 'to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
wnich are multiples of the fundamental 128 byte data unit, and the
system_ alteration manual includes general-purpose suproutines which
use the tnis deblocking information to take advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algoritnms, make CP/M 2.9 truly a universal data management
system,

File expansion is achieved by providing up to 512 1logical file
extents, where each logical extent contains 16K bytes of data. CP/M
2.0 is structured, nowever, so that as much as 128K bytes of data 1is
addressed Dby a single physical extent (corresponding to a single
directory entry), thus maintaining compatibility with worevious
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.6 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M's unique data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is uoward compatible from earlier
versions to the full eight megaoytes, while random access
compatibility stops at 512K byte files. Due to CP/M 2.0's simpler and
faster random access, application programmers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules ana utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP provides a "login”

(All Information Contained Herein is Proprietary to Digital Research.)

1

function to change from one user area to anotner. The CCP also
formats directory displays in a more convenient manner and accounts
- for both CRT and hard-copy devices in its enhanced line editing
functions. '

The sections below point out the inaividual differences between
CP/M 1.4 and CP/M 2.8, with the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 nmanuals.
Additional information dealing with CP/M 2.0 I/O system alteration is
presented in the Digital Researcn manual "CP/M 2.8 Alteration Guide."

(A1l Information Contained Herein is Proprietary to Digital Research.)

2

2, USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the symbol "ctl" below indicates that the control key is
simultaneously depressed) :

rub/del removes and ecnoes last character

ctl-C reboot when at beginning of line

ctl-E physical end of line

ctl-H backspace one character position¥*

ctl=J (line feed) terminates current input*
ctl-M (carriage return) terminates input
ctl-R retype current line after new line
ctl-U remove current line after new line
ctl-X backspace to beginning of current line*

In particular, note that ctl-H produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
aditor keeps track of the current prompt column position so that - the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) IWTERFACE.

There are four functional differences between CP/M 1.4 and. CP/M
2.0 at the console command processor (CCP) level. The .CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *_.*" and
"SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range 4 to 15. Upon <cold start,
the operator is automatically "logged" into user area number ¥, which
is compatible with standard CP/¥M 1.4 directories,. The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are 1logged-in while
addressing one user number are automatically active when the operator
moves to another user numpber since a user number is simply a prefix
which accesses particular directory entries on. the active disks.

The active wuser number 1is maintained until changed by a
subseguent USER command, or until a cold start operation when user §
is again assumed,

Due to the fact that user numbers now tag individual directory
entries, the ERA *,* command has a different effect., In version 1.4,
this command can be used to erase a directory whicn has "garbage"”
information, wverhaps resulting from use of a diskette under another
operating system (heaven forpbial). In 2.8, however, the ERA *.,*
command affects only the current user number. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

, The SAVE command in version 1.4 allows only a single memory save
ooperation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.9,
nowever, does not perform directory operations in wuser data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4, STAT ENHANCEMENTS.

Tne STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

STAT VAL:

produces a summary of the available status commands, resulting in the
output:

Temo R/0 Disk: d:=R/0

Set Indicator: d:filename.typ 3R/O SR/W $SYS SDIR
Disk Status : DSK: d:DSK:

User Status : USR:

Iobyte Assign:

(list of possible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:
STAT d:filename.tyo $S

wnere "d:" is an optional drive name, and "filename.typ" 1is an
unampiguous or ambiguous file name, ovroduces the output display
format:

S5ize Recs Bytes EXt Acc

43 43 6k 1 R/0 A:ED.COM
55 55 12k 1 R/O (A:PIP.COM)
05530 123 2k 2 R/W A:X.DAT

where tne $S parameter causes the "Size" field to bpe disvplayed
(without the $S, the Size field is skipped, but the remaining fields
are displayed). The Size field 1lists the virtual file size in
records, while the "Recs" field sums the numpber of virtual records in
eacnh extent. For files constructed seguentially, the Size and Recs
fields are identical. The "Bytes" field lists the actual number of
bytes allocated to the corresponding file, The minimum allocation
unit is determined at contiguration time, and thus tne number of bytes
corresponds to the record count vlus the remaining unused space in the
last allocated block for seguential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. 1In the case of random access, the
S5ize field gives the logical end-of-file record position and the Recs
field counts the 1logical records of each extent (each of these
extents, however, may contain unallocated "holes" even though they are
added into the record count). The "Ext" field counts the number of
logical 16X extents allocated to the file, Unlike version 1.4, the
EXt count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K pytes (8
logical extents) directly addressed by a single directory entry,
devending wupon allocation size (in a special case, there are actually
250K bytes which can be directly addressed by a ohysical extent).

The "Acc" field gives the R/O0 or R/W access mode, which 1is
changed wusing ‘the commands shown below. Similarly, the parentheses
(All Information Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it has the “system"
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:filename.typ SR/0
STAT d:filename.typo $SR/W
STAT d:filename.typ $SYS
STAT d:filename.typ SDIR

set or reset various permanent file indicators. The R/0 indicator
places the file (or set of files) in a read-only status until changed
by a subseguent STAT command. The R/O status 1is recorded 1in the
directory with tne file so that it remains R/0 through intervening
cold start operations, The R/W indicator places the file in a
permanent read/write status. The S5YS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The “filename.typ" may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs., The drive name denoteda by "d:" is
optional.

When a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

B8dos Err on d: File R/O

The BDOS then waits for a console input before performing a subseguent
warm start (a "return" is sufficient to continue). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by "d:" which is 1in
the range A:, B:, ..., P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity
8192: Kilopyte Drive Capacity
128: 32 Byte Directory Entries
@: Checked Directory Entries
1024: Records/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 1is an 8 megabyte drive), followed by the total
capacity listed in Kilopytes. The directory size 1is 1listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (ld24 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

128K in the example above). The number of records per block shows the
basic allocation size (in the example, 128 records/pblock times 128
bytes per record, or 16K pytes per block). The listing is then
followed by the number of physical sectors pver track and the number ot
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be guite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

oroduces a drive characteristics tapble for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers whichn have files on the
currently addressed disk. The display format is:

Active User : 9
Active Files: @ 1 3

where the first line lists the currently addressed user number, as set
by the last CCp USER command, followed by a 1list of wuser numbers
scanned from the current directory. 1In the above case, the active
user number is ¥ (default at cold start), with three wuser numbers
whicnh have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research,)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of CP/M 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the appropriate file
names. The commandas are:

Gn Get File from User number n
(n in the range ¥ - 15)

W Write over R/0 files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another,.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 1into user area number 4, The
command

PIP A:=A:*,*[G2]

copies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command, The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 9 login user ¥

DDT PIP.COM load PIP to memory
(note PIP size s)

GO , return to CCP

USER 3 login user 3

SAVE s PIP.COM

where s 1is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under ODT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1D@#, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subseguent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which |is

set to a permanent R/O status. If attempt is made to overwrite a R/O
file, the prompt ’

(All Information Contained Herein is Proprietary to Digital Research.)

8

DRSTINATION FILE IS R/O, DELETE (Y/N)?

is issued. 1If the operator responds with the character "y" then the
file is overwritten. Otherwise, the response

** NOT DELETED **

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence. In order to avoid the prompt and response
in the case of R/O file overwrite, the command line can include the W
parameter, as shown below

PIP A:=B:*, COM[W]

which copies all non-system files to.the A drive from the B drive, and
overwrites any R/O files in the process., If the operation involves
several concatenated files, the W parameter need only be included with
the last file in the list, as shown in the following example

pPIP A.DAT = B,DAT,F:NEW.DAT,G:0LD,DAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter 1is included, otherwise system files are not
recognized, ‘The command line

PIP ED.COM = B:ED,CUM[R]

for example, reads the ED,COM file from the B drive, even if it has
been marked as a R/0 ana system file., The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M 1is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
9. If compatibility 1is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the “CP/M 2.0 Alteration Guide," and refer to Section 1@ which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research,)

9

6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the editor has the “v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the ED wuser's guide, where the "v" command is
described.

ED also takes file attributes into account, If the operator
attempts to edit a read/only file, the message

** FILE IS READ/ONLY *¥*

appears at the console, The file can bpe 1loaded and examined, but
cannot be altered in any way. Normally, the overator simply ends the
.edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

“SYSTEM" FILE NOT ACCESSIBLE
is displayed at the console, and the edit session is aborted. Again,
the STAT program can be used to change the system attribute, if
desiread,

Finally, the insert mode ("i") command allows CRT 1line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

10

7. THE XSUB FUNCTION.,

An additional utility program is supplied with version 2,0 of
Cp/M, <called XSUB, which extends the power of the SUBMIT facility to
include line 1input to programs as well as the console command
processor, The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command 1lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 108) receive
their input directly from the submit file, For example, the file
SAVER,SUB could contain the submit lines:

XSUB

DDT

IS1.HEX

R

GO

SAVE 1 $2,COM

with a subsequent SUBMIT command:
SUBMIT SAVER X Y
which substitutes X for $1 and Y for $2 in the command stream, The
XSUB program loads, followed by DDT which is sent the command lines
“IX.HEX" "R" and "“G@" thus returning to the CCP. The final command
“SAVE 1 Y.COM" is processed by the CCP.
The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate its presence, Subsequent
submit command streams do not reauire the XSUB, unless an intervening

cold start has occurred., Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research,)

11

8. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 6G605H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
dL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.3 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.8. Note that a =zero value 1is returned for
out-of range function numbers. :

¥ System Reset 19* Delete File

1 Console Input 20 Read Seguential

2 Console Output 21 Write Sequential

3 Reader Input 22*% Make File

4 Punch Output 23* Rename File

5 List Output 24* Return Login Vector

6* Direct Console I/0 25 Return Current Disk

7 Get I/O Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

9 Print String 28* Write Protect Disk
10* Read Console Buffer 29*% Get Addr(R/0 Vector)
11 Get Console Status 30* Set File Attributes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15*% QOven File 34* Write Random
16 Close File 35* Compute File Size
17* Search for First 36* Set Random Record

18* Search for Next

(Functions 23, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/0 1is supvorted under CP/M 2.8 for those
applications where it 1is necessary to avoid the BDOS console I/0
operations., Programs which currently perform direct I/O through the
BIOS should be changed to use direct I/O under BDOS so that they can
be fully supported under future releases of MP/M and CP/M,

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input reguest, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = @i
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
'E contains a valid ASCII character which is sent to the console,

(All Information Contained Herein is Proprietary to Digital Research.)

12

Function 13: Read Console Buffer.

The console puffer read operation remains unchanged except that
console line editing 1is supported, as described in Section 2. Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme 1left
margin). This new convention makes operator data input and line
correction more legible,

Function 12: Return Version Number.

function 12 has been redefined to ovrovide information which
allows version-independent programming (this was previously the "lift
head" function whicn returned HL=0008 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 9§08 for the CP/M release (H = 01 for Mp/M), and L = 08 for all
releases previous to 2.0. CP/M 2.8 returns a hexadecimal 20 in
register L, with subseguent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for exampble, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file operations described below, DE addresses a file
control bplock (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The File Control 3lock (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file 1is accessea randomly. The default file control block
normally located at ¥#d5CH can be used for random access files, since
bytes 887D, V@7EH, and @07FH are available for this purpose. For
notational purposes, the FCB3 format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research.)

13

o 01 62 ...
where

dr drive code (¥ - 16)

08 69 16 11 12 13 14 15 16 .

=> use default drive for file

1 => auto disk select
2 => auto disk select

e o @

16=> auto disk select

fl1...£8 contain the file

uoper case, with

name
high bit
tl,t2,t3 <contain the file
upper case, with
tl', t2', and t3'
bit of these positions,
tl*
t2'

type

high bit

1 => 8ys file,

ex

1 => Read/Only file,
no DIR list

drive A,
drive B,

drive P,

in ASCII

]

in ASCII

]

denote the

31 32 33 34 35

contains the current extent number,

normally set to 88 by the user, but
in range ¥ - 31 during file I/0

sl

s2

reserved for internal system use

reserved for internal system use, set

to zero on call to OPEN, MAKE, SEARCH

rc

record count for extent "ex,"

takes on values from § - 128

dg...dn
system use

cr

filled-in by CP/M, reserved for

current record to read or write in

a sequential file operation, normally

set to zero by user

rd,rl,r2

optional random record number in the

range #-65535, with overflow to r2,
rd,rl constitute a 16-bit value with
low byte r@, and high byte rl

Function 15: Open File,

Tne Open File operation is identical to previous definitions,
Note that

with the exception
previous versions of CP/M defined this

byte

that byte s2 is automatically zeroed.

as zero, but

made

no

(All Information Contained Herein is Proprietary to Digital Research.)

14

\

cnecks to assure compliance, Thus, the byte is cleared to ensure
upward compatibility with the latest version,. where it is required.

Function 17: Search for First.

Search First scans the directory for a match with the file given
oy the FCB addressed by DE. The value 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise a value of A egual to 0,
1, 2, or 3 is returned indicating the file is present. In the case
that the file 1is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position 1is A * 32 (i.,e.,, rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the directory information can be extracted from the buffer at this
position,

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from f1 through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, put does allow complete flexipbility to scan all
current directory values. If the dr field is not a guestion mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next,

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions. ‘

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range @ to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

- Function 22: Make File.

The Make File operation is identical to ©previous versions of
CP/M, except that byte s2 is zeroed upon entry to the BDOS.

Function 23: Rename File,.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range ¥ to 3 is returned,

Function 24: Return Login Vector.

The login vector value returned by CP/M 2.8 is a 1l6-bit value in
HL, where the least significant bit of L <corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, lapbelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The disk write protect function provides temvorary write
protection for the currently selected disk. Any attemot to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector,

Function 29 returns a bit wvector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 38: Set File Attributes.

The = Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2' above) <can be
set or reset., The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

matcn, and changes the matched directory entry to contain the selected
inaicators. Indicators fl1' through f4' are not nwpresently wused, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations,
Indicators £5' tnrough £f3' and t3' are reserved for future system
expmansion,

Function 31: Get Disk Parameter Block Address.

The address of the BIOS resident disk parameter block 1is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space .computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environmment changes, if required. WNormally, apolication
programs will not require this facility.

Function 32: Set or Get User Code.

An application program can change or interrogate the currently
active wuser number by calling function 32, If register E = FF
nexadecimal, then tne value of the current user number is returned in
register A, where the value is in the range 4 to 31, If register E is
not FF, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random.

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read ovperation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r® at 33, rl at 34, and r2 at 35). Note that the seguence
of 24 pits 1is stored with least significant byte first (r9), middle
pyte next (rl), and high byte last (r2). CP/M release 2.3 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file,

Thus, in version 2.9, the rb6,rl byte pair 1is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from © to 65535, providing access to any particular
record of the 8 megabyte file. In order to orocess a file using
random access, . the base extent (extent) must first be opened.
Although the base extent may or may not contain any allocated data,
this ensures that the file is vroperly recorded in the directory, and
is visible in DIR reguests. The selected record number is then stored
into the random record field (rd,rl), and the BDOS is called to read
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

17

error code, as listed below, or the value 96 indicating the operation
was successful. In the latter case, the current DMA address contains
the randomly accessed record, Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subseguent
random read operations continue to read the same record,

Upon each random read operation, the logical extent and current

record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last

randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a seguential write overation, You can, of course, simply advance
the random record wvosition following each ranaom read or write to
obtain the effect of a seguential I/0 operation.

Error codes returned in register A following a random read are
listed below,

1 reading unwritten data

62 (not returned in random mode)
@3 cannot close current extent

J4 seek to unwritten extent

45 (not returned in read mode)

26 seek past ohysical end of disk

Error code ¢l and ¥4 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with =zero return codes
indicating operation complete. /

Function 34: Write Random.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to corresoond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does 1in seguential mode under either CP/M 1.4 or CP/M
2.”.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 45, which
indicates that a new extent cannot be created due to directory
overflow.

Function 35: Compute File Size.

Wwhen computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r6, rl, and r2 are
present). The FCB contains an unambiguous file name which is used 1in
the directory scan. Upon return, the random record bytes contain the
“virtual" file size which is, in effect, the record address of the
record following the end of the file, if, following a call to
function 35, the high record byte r2 is 91, then the file contains the
maximum record count 65536 in version 2.8. Otherwise, bytes rd and rl
constitute a 16-bit value (r@# is the least significant Dbyte, as
before) which is the file size.

Data can be appended to the end of an existing file by simoly
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. 1If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates, If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the wvirtual size 1is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record,

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 pbytes, the resulting record vosition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record 1lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time,.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write., A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selecteda point in the file,

This section is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the ©program has been <created,
assembled, and placed into a file labelled RANDOM.COM, the CCpP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this varticular case) and, if found, proceeds to prompt the
console for input. If not found, the file 1is <created before the
orompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range 4 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit orocessing, resvectively. If the W command is 1issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. 1In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again
The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
lapel "ready" where the individual commands are interpreted, The

default file <control block at 905CH and the default buffer at 9080H
are used in all disk operations. The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

which contain the principal input 1line processor, called "readc."
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development,

;***

ok x
;* sample random access program for cp/m 2.9@ *
%k *
;***

0109 org 19dh ;base of toa

a0v9 = reboot eau paadh ;system reboot

Qops5 = bdos eqgu d885h ;bdos entry point

ool = coninp egu 1 ;console input function

g2 = conout equ 2 ;console output function

ey = pstring equ 9 ;pPrint string until 'S’

gdova = rstring eaqu 19 ;read console buffer

Jdobc = version egu 12 sreturn version number

AOVE = openf equ 15 ;file open function

d418 = closef ' equ 16 ;close function

gple = makef equ 22 :make file function

Jyu2l = readr egu 33 sread random

9922 = writer eagu 34 ;write random

dd5¢c = fco equ $d5ch ;default file control block

@gd7da = ranrec egu fcb+33 ;random record position

b7t = ranovf equ fco+35 ;high order (overflow) byte

2080 = buff 2qu 2380h ;buffer address

Ppda = cr eqgu ddh ;jcarriage return

boda = 1f equ dah ;line feed
;***
o« * *
i* load sp, set-up file for random access *
o % *
;**'k********

31060 31lbco 1xi sp,stack
H version 2.87?

9103 Qedc mvi c,version

2195 cdBs50 call bdos /

2108 felb cpi . 23h ;version 2.0 or better?

¥lda d2166 jnc versok :
H bad version, message and go back

¥10d 111bd 1xi d,badver

@119 cddad call print

2113 c3090 jmo reboot
versok: .
; correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

3116 debf mvi c,openf ;open default fcb

118 115cO Ixi d,fcb
61llo cdg56 call bdos
glle 3c inr a ;err 255 becomes zero
d11f c2379 jnz ready
i
-3 cannot open file, so create it
3122 delo mvi c,makef
9124 115cd 1xi d,fcb
9127 cdp50 call bdos
#l2a 3c inr a serr 255 becomes zero
912b c2370 jnz ready
H
: cannot create file, directory full
¥12e 113ad 1xi d,nospace
8131 cddad call print :
3134 c3939 jmp reboot ;back to ccp
IR R SRR S SRR R SRR R RS SRR R R R R R R R R EEE R EEEXEE SRR E RN
* *
* loop back to "“ready" after each command *
* *

KKKERAKRKKRKAKKRKRAKR KKK KR AKRKKRKAKRAKRKRRKRKhkAhkhhkhkkkxhkhkhkhkhkkhkhkrnkhhk*k

we we 'Y wme N N we we “e wo

eady: ‘
file is ready for processing

V137 cdeb5y call readcom ;read next command

013a 227d9 shld ranrec ;store input records

¥13d 217fp% 1xi h,ranovf

0140 36380 mvi m,d sclear high byte if set

2142 fe51 coi 'Q* ;quit?

0144 c2569 jnz notg
H
: guit processing, close file

8147 deld mvi c,closef

0149 115cu : 1xi d,fcb

Bl4c cddso call bdos

pl14f 3c inr a ;err 255 becomes @

2158 cabdp jz error serror message, retry

2153 c3d00 jmp reboot ;back to ccp
;***
o % *
i* end of guit command, process write *
« X *
;***
notg:
H not the guit command, random write?

0156 fe57 cpi ‘W’

158 c2890 jnz notw
: this is a random write, f£ill buffer until cr

#15b 11449 1xi d,datmsg

d15e cddad call print ;data prompt

(All Information Contained Herein is Proprietary to Digital Research,)

22

2161
P1l63

0166
dloe7
Y168
Jl6b
Jléc
@led
1ot

9172
0173
0174
0175

0178

g1l7a
dl7c
D17f
$1382
9183
#1586

9189
d18b

d18e
2190
9193
0196
0197

P19a
#19d
B19f

dla2
#la3
Blad
31a6
glad
#laa

(All Information Contained Herein is Proprietary to Digital Research,)

delf
21800

c5

e5
cdc2p
el

cl
feldd
ca78d

77
23
bd
c2660

3649

be22
115cd
cdbs5d
b7
c2bS¥d
c3379

tes52
c2b9d

de2l
115c®
cdid5o
b7
c2b9y

cdcfto
Je8d
21809

Te

23
e67f
ca379
c5

e5

mvi c,127 ;up to 127 characters
1xi h,buff ;destination
rloop: ;read next character to buff
push b ;save counter
push h ;next destination
call getchr ;character to a
pop h ;restore counter
DOD b ;restore next to fill
cpi cr ;end of line?
jz erlooo
H not end, store character
mov m,a
inx h ;next to fill
dcr c ;jcounter goes down
jnz rloop ;end of puffer?
erloop:
: end of read loop, store 90
mvi m,d
’
; write the record to selected record number
mvi c,writer
1xi d,fcb
call bdos
ora a serror code zero?
jnz error smessage if not
jmp ready ; for another record
;**********x**
;* *
;* end of write command, nrocess read *
ok *
;***********x***************************************
notw:
; not a write command, read record?
cpi 'R'
jnz error ;skip if not
[
: read random record
mvi c,readr
1xi d, fcb
call bdos
ora a ;return code 96¢?
jnz error
’
: read was successful, write to console
call crlf shew line
mvi c,128 ;max 128 characters
1xi h,buff ;next to get
wloop:
mov a,m snext character
inx h ;next to get
ani 7fh ;mask parity
jz ready ;for another command if 00
push b ;save counter
push h ;save next to get

23

dlab fe2d cpi ;graphic?

Plad d4c8d cnc putchr ;skip output if not

P1lby el pop h

d1bl cl pop b

d1b2 @4 dcr c’ ;count=count-1

¥1b3 c2a20@ jnz wloop

¥1b6 c3370 jmp ready
7)
;***
:* - *
;* end of read command, all errors end-up here *
o % *
;******'***
H ~
error:

g1b9 11590 o 1xi d,errmsg

P1lbc cddad © call print

d1bf c3370 jmp ready
H
;***
;* *
;* utility subroutines for console i/o *
o %k *
[
;***
getchr:

;read next console character to a

B1lc2 dedl mvi c,coninp

d1lcd cdg50 call bdos

Jlc7 c¢9 ret

H
putchr:
swrite character from a to console

W1c8 bei2 mvi c,conout
Ulca 5f mov e,a scharacter to send
Blcb cdi5yd call bdos ;send character
dlce c9 ret

crlif:

;send carriage return line feed
dlcf 3eld mvi a,cr ;carriage return
#1d1l cdc8p call putchr
¥1d4 3eda mvi a,lf ;line feed
#1d6 cdc8d call outchr
#1449 c9 ret

print:

;print the buffer addressed by de until §$
@¥1lda ds push d
921db cdcfd call crlf ‘
glde dl DOD a ;new line
d1df 0eB9 mvi c,pstring
Plel cd@g59 call bdos ;orint the string
#led c9 ret

readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

;read the next command line to the conbuf

@le5 116bYJ 1xi d,prompt
Ple8 cddah call print ;command?
#1leb deba mvi c,rstring
Jled 117a6 1xi d,conbuf
@1fd cd@s56 ’ call bdos sread command line
H command line is present, scan it
B1£f3 210080 1xi h,? sstart with 0000
f1f6 117c@ 1xi d,conlin;command line
d1£f9 la readc: 1ldax d ;next command character
d1fa 13 inx d ;to next command position
B1fb b7 ora a scannot be end of command
Jlfc c8 rz
B not zero, numeric?
Plfd de63¥ sui ‘g
91ff felda cpi 19 ;carry if numeric
Y201 42139 jnc endrd
; add-in next digit
3204 29 dad h ;%2
U295 4d mov c,l
206 44 mov b,h :bc = value * 2
3287 29 dad h ;%4
D268 29 dad h ;%8 .
3299 09 dad b s *¥2 + *8 = *1§
D2da 85 add 1 ;+digit
d200 5T mov 1,a
229c a2£99 jnc readc ;for another char
Jd24t 24 inr h soverflow
0210 c3£f99 jmp readc ; for another char
endrd:
; end of read, restore value in a
@213 c639 adi /N ; command
G215 febl coi 'a' :translate case?
34217 d4ds8 rc
: lower case, mask lower case bits
9218 e65f ani 161$1111b
g2la c9 ret
;*************************************x*************
* x
:* string data area for console messages *
°« % *
;***
badver:
J21b 536£79 db 'sorry, you need cp/m version 2$'
nospace:
¥23a 4e6£29 db 'no directory space$'’
datmsg: ,
$24d 547979 db ‘type data: $'
errmsg:
2259 457272 db ‘error, try again.$'
prompt:
#26b 4e6570 db 'next command? $'

.
’

(All Information Contained Herein is Proprietary to Digital Research.)

25

:***

« % , *
;* fixed and variable data area *
o % *
;***
g27a 21 conbuf: db conlen ;length of console buffer
P27b consiz: ds 1 ;resulting size after read
@27c conlin: ds 32 ;length 32 buffer
0821 = conlen equ $-consiz
B29c ds 32 116 level stack
stack:
J2bc end

(All Information Contained Herein is Proprietary to Digital Research.)

26

9. CP/M 2.0 MEMORY ORGANIZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Module 20k 24k 32k 48k 64k
CCp 34034 4409H 6400VH A400H E400H
BDOS 3CoYH 4COoH 6C0o0H ACOVH ECO0H
BIOS 4A0dH 5A0dH 72904 BAJOH FAD3H

Top of Ram 4FFFH 5FFFH 1FFFH BFFFH FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MDS-808 with standard 1I8M 8" floppy disk drives. The disk
layout is shown below:

Sector Track 90 Module Track 91 Module
1 (Bootstrap Loader) 4989H BDOS + 480H
2 34004 CCP + 00pH 4190H BDOS + 500H
3 3430H CCP + 0848 418¢H BDOS + 5804
4 35304 CCP + 190H 4230H BDOS + 640d
5 35804 CCP + 18uH 423YH BDOS + 680d
6 3600H CCP + 206H 43pbd BDOS + 706H
7 36864 CCP + 280H 438¥H BDOS + 780H
8 3700 CCP + 30dH 44p¥Hd BDOS + 800H
9 37804 CCP + 380d 448¢yH BDOS + 88WH

19 38v0H CCp + 490GH 4599H BDOS + 900H
11 3388uH CCP + 4380H 4580H BDOS + 989H
12 3%0dd CCP + 500H 46J¥H BDOS + AOQH
13 3938094 CCP + 580H 468@d BDOS + ABOH
14 3A00H CCP + 600H 470VH BDOS + B@QGH
15 3A80H CCpP + 680H 4780H BDOS + B3@H
16 3B@GH CCP + 7904 480PH BDOS + C@@H
17 3830H CCP + 7824 4880d BDOS + C8@H
18 3C30H BDOS + 0POH 4990H BDOS + DOGH
19 3C80H BDOS + 080H 498¢H BDOS + D8@H
20 3D@PH BDOS + 104dH 4AGPH BIOS + 000H
21 3D8PH BDOS + 180H 4A80H BIOS + @89H
22 3EQQH BDOS + 200H 4B30AH BIOS + 100H
23 3E8PH BDOS + 280H 4B80H BIOS + 18@H
24 3F9dH BDOS + 300H 4C0Q2H BIOS + 200H
25 3F8PH BDOS + 380H 4C8@PH BIOS + 2804
26 49008 BDOS + 400H 4DPPH BIOS + 300H

In particular, note that the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>