Publication Number 29-428R06

METRIC

M 83 - SERIES
MODELS 8/32,8/32C.AND 8/32D

PROCESSORS
USER MANUAL

PERKIN-ELMER

Computer Systems Division
2 Crescent Place
Oceanport. N.J. 07757

Copyright @ 1975 by Perkin-Eimer Corporation Printed in U.S.A. May 1978

PAGE REVISION STATUS SHEET (Sheet 1 of 2)
PUBLICATION NUMBER 29-428

TITLE M83-Series Models 8/32, 8/32C and 8/32D Processors
User Manual _,

REVISION RO6 DATE May 1978
PAGE REV. DATE PAGE ‘REV. DATE PAGE REV. DATE
i ROG6 5/78]|| 2-40 5-11 ROG6 5/78
ii thru 5-12 RO2 2/77
thru 2-46 | RO2 2/77 || 5-13 RO2 2/717
v RO1 1/76(] 2-47 | RO1 1/76 || 5-14 RO6 5/78
vi RO2 2/77)1 2-48 5-15 RO1 1/76
vii RO6 5/78|| thru il 5-16 R0O2 2/77
viii ROL 1/76} 2-51/ 5-17 RO1 1/76
2~52 | RO2 2/77 || 5-18 RO2 2/77
1-1 5-19 RO2 2/77
thru 3-1 RO1 1/76 || 5-20 RO1 1/76
1-3 ROG 5/781 3-2 RO2 2/77 || 5-21 RO2 2/77
1-4 3-3 RO2 2/77 || 5-22 RO1 1/76
thru 3-4 RO6 5/78 || 5-23 RO2 2/77
1-6 RO2 2/771] 3-5 RO2 2/77 || 5-24 RO6 5/78
1-7 RO1 1/76}] 3-6 RO2 2/77 || 5-25 RO2 2/77
1-8 RO1 1/76]|] 3-7 5-26 RO6 5/78
1-9 thru 5-27
thru 3-24 | RO5 5/78 || thru
1-19/ ' , 5-33 RO2 2/77
1-20 RO6 5/781] 4-1 RO2 2/77 || 5-34 ROG6 5/78
4-2 RO5 5/78 || 5-35/
2-1 ROL 1/76|| 4-3 RO1 1/76 || 5-36 RO2 2/77
2=-2 RO2 2/771 4-4 RO2 2/77
2-3 RO1 1/76|| 4-5 RO6 5/78 || 6-1 RO2 2/77
2-4 RO1 1/76]|| 4-6 N E 6-2 RO2 2/717
2-5 thru 6-3 RO1 1/76
thru 4-12 | RO2 2/77 || 6-4 RO2 2/717
2-7 RO2 2/77|| 4-13 | RO6 5/78 || 6-5 RO2 2/717
2-8 RO5 5/78|| 4-14-|] R0O2 2/77 || 6-6 RO1 1/76
2-9 4-15 | RO2 2/77 || 6=7 R0O4 5/78
thru 4-16 | ROG6 5/78 || 6-8 RO6 5/78
2-18 RO2 2/771| 4-17 6-9 ROG6 5/78
2-19 RO6 5/78|] thru 6-10 RO6 5/78
2-20 RO6 5/78]] 2-23 6-11 RO6 5/78
2-21 4-24 | RO2 2/77 || 6-12
thru thru
2-26 RO2 2/771t 5-1 RO2 2/77 |l 6-16 RO2 2/77
2-27 RO6 5/78]|] 5-2 RO1 1/76
2-28 5-3 RO1 1/76 || 7-1 RO4 5/78
thru 5-4 RO1 1/76)| 7-2 RO6 5/78
2-33 RO2 2/77}| 5~5 RO2 2/77 |1 7-3 RO1 1/76
2-34 RO6 5/78|| 5-6 RO1 ‘1/76 || 7-4
2-35 RO2 2/771] 5-7 RO6 5/78 || thru
2-36 5-8 RO2 2/77 {1 7-15 RO2 2/77
thru 5-9 RO1 1/76 || 7-16 RO1 1/76
2~39 ROG6 5/78]|] 5-10| RO2 2/77 |1 7-18 RO1 1/76

A1598

PAGE REVISION STATUS SHEET

PUBLICATION NUMBER 29-428

TITLE M83-Series Models 8/32,

User Manual
REVISION RQ6

(Sheet 2 of 2)

8/32C, and 8/32D Processor

DATE May 1978

PAGE REV. DATE PAGE REV. DATE PAGE REV. DATE
7-19 RO6 5/78]|11-5
7-20 RO2 2/77|ithru
7-21 RO2 2/77||11-10 | RO1 1/76
7-22 RO2 2/77(11-11
7-23 RO6 5/78]|11-12 | RO2 2/717
7-24 RO2 2/717
7-25 Al-1 RO6 5/78
thru Al-2 | RO6 5/78
7-27
7-28 RO1 1/76(ja2-1
thru
8-1 RO1 1/76||a2-4 RO2 2/77
8-2 RO2 2/77
8-3 RO1 1/76(|a3-1
8-4 RO6 5/78|lthru
8-5 RO6 5/78|la3-5/
8-6 RO1 1/76|laA3-6 RO2 2/77
8-7/ _
8-8 RO6 5/78[1a4-1 RO2 2/77
A4-2 RO2 2/77
9-1 RO6 5/78
9-2 ROG6 5/78|la5-1 RO6 5/78
9-3 RO1 1/76||A5-2 RO1 1/76
9-4 RO2 2/77(1a5=3 ROL1 1/76
9-5 RO2 2/77||a5-4 RO2 2/77
9-6 RO6 5/78||A5-5 RO1 1/76
9-7/ A5-6 RO1 1/76
9-8 RO2 2/77
A6-1
10-1 RO6 5/78l|lthru
10-2 RO2 2/77|la6-8 RO3 1/78
10-3 RO1 1/76
10-4 RO2 2/771|1a7-1 RO6 5/78
10-5 RO2 2/771|1a7-2 RO1 1/76
10-6 RO1 1/76{|A7-3 RO6 5/78
10-7 RO1 1/76
10-8 RO2 2/77||ag-1 RO1 1/76
10-9 ROG6 5/78||A8-2 RO2 2/717
10-10 RO1 1/76{|A8-3 RO1 1/76
A8-4 RO1 1/76
11-1 RO6 5/78
11-2 RO1 1/76j|1-1 RO6 5/78
11-3 ROG6 5/78||I-2
11-4 RO6 5/78l|thru
I-6 RO1 1/76

A1598

TABLE OF CONTENTS

CHAPTER 1 SYSTEM DESCRIPTION e e e 1-1
PROCESSOR e e e e e e e e 1-4
Program Status Wordo S 1-4
Wait State (W) o o e 1-4
Immediate Interrupt/Auto Driver Channel Mask (I) 1-4
Machine Malfunction Interrupt Mask (M) ., e 1-5
Arithmetic Fault Interrupt Mask (A) e e e 1-5
Relocation Protection Interrupt Mask (R/P) 1-5
System Queue Service Interrupt Mask (Q) L 1-5
Protect Mode (P) e e e I-5
Register Set Select (R} e e e e 1-5
Condition Code (CVGL) o e e e 1-5
Location Counter (LOC) e e e 1-5
General Register L L e e e e 1-7
Floating Point Register e e e e 1-7
Processor Interrupts L L e e e e e e e 1-7
Reserved Memory Locations L. e e e S 1-7
Processor Operations oL e e e e e e e e e e e e e e 1-8
DATA FORMATS . . . o e e e 1-8
Fixed Point Data © . . L e e e 1-8
Floating Point Data e 1-8
Logical Data e e 1-9
DATA ALIGNMENT o e e e e e e e e e e e e 1-91
INSTRUCTION FORMATS o e e e e e e s 1-10
Branch Instruction Formats L e e e e e e e e 1-11
Programming Examples. oL L e e 1-11
Register to Register (RR) Format e e e e e 1-11
Short Form (SF) Format e e e e e e e e e 1-11
Register and Indexed Storage One (RX1)Format o ... 1-13
Register and Indexed Storage Two (RX2) Format 1-14
Register and Indexed Storage Three (RX3) Format 1-16
Register and Immediate Storage One (RI1) Format 1-17
Register and Immediate Storage Two (RI2) Format 1-18
CHAPTER 2 LOGICAL OPERATIONS e e e e e e e e e e e 2-1
DATA FORMATS o e e e e s e e s 2-1
OPERATIONS . . . o e e 2-2
Boolean Operations L L L L L e e e e e e e e e 2-2
Translation L L L e e e e e e e e e e 2-2
List Processing L L e e e e e e 2-3
LUGICAL INSTRUCTION FORMATS e e s e e e e 2-4
LOGICAL INSTRUCTIONS e e e 2-4
Load L e e e e e e 2-5
Load Register e e e 2-5
Load Immediate L L e e e e 2-5
Load Immediate Short L e e 2-5
Load Complement Short L e e e e 2-5
Load Halfword o e e 2-6
Load Halfword Immediate L e e e 2-6
Load Address L e e e e e e e e e e 2-7
Load Real Address e e e e e e e e e 2-8
Load Halfword Logical e e 29

29-428 RO6 5/78 i

TABLE OF CONTENTS: (Continued)

Load Multiple L e e e e e e 2-10
Load Byte e e e e e e e e e 2-11
Load Byte Register 0 e e e e e e e e e e e 2-11
Exchange Halfword Register e 2-12
Exchange Byte Register e 2-13
Store . . L e e e e e e e 2-14
Store Halfword e e 2-15
Store Multiple L L e e e 2-16
Store Byte L e e e e e e e 2-17
Store Byte Register L e e e e e e e e 2-17
Compare Logical P 2-18
Compare Logical Register o e e e 2-18
Compare Logical Immediate e e e 2-18
Compare Logical Halfword e 2-19
Compare Logical Halfword Immediate 2-19
Compare Logical Byte L e 2-20
AND . e e e 2-21
AND Register e e e e e e e 2-21
AND Immediate L e e e e e e e 2-21
AND Halfword o e e e e e e e 2-22
AND Halfword Immediate e 2-22
OR . e e 2-23
OR Register e e e e e e e 2-23
OR Immediate e e e e 2-23
OR Halfword e e e e e e e 2-24
OR Halfword Immediate e e e e 2-24
Exclusive OR e e e e e e e 2-25
Exclusive OR Register e e e e e e e 2-25
Exclusive OR Immediate e e 2-25
Exclusive OR Halfword e e e 2-26
Exclusive OR Halfword Immediate e 2-26
Test Immediate L e e e e e e e e e 2-27
Test Halfword Immediate e e e e e 2-28
Shift Left Logical e e e 2-29
Shift Left Logical Short 0 . e e e e e e e e e 2-29
Shift Right Logical e e e e e 2-30
Shift Right Logical Short o e e 2-30
Shift Left Halfword Logical e 2-31
Shift Left Halfword Logical Short e 2-31
Shift Right Halfword Logical 0 0 e 2-32
Shift Right Halfword Logical Short 2-32
Rotate Left Logical o . 0 e e 2-33
Rotate Right Logical e e 2-34
Testand Set L L L L e e e e e e e e e e 2-35
Test Bit e e e e e e 2-36
Set Bit e e e e e e e e 2-37
Complement Bit L e e e e e 2-38
Reset Bit e e e e e e e 2-39
Cyclic Redundancy Check Modulo 12 e 2-40
Cyclic Redundancy Check Modulo 16 e e e 2-40
Translate e e e e e e e 2-42
Addto Topof List e e e e e e e 2-45
Add to Bottom of List L e e e e e e 2-45
Remove from Top of List e 2-46
Remove from Bottom of List e e 2-46
CHAPTER 3 BRANCHING e e e s e e s e e e e s e s e 3-1
OPERATIONS e e e e e 3-1
Decision Makingo e e e e e e e e 3-1
Subroutine Linkage L e e e e 3-1

29428 RO1 1/76

TABLE OF CONTENTS (Continued)

BRANCH INSTRUCTION FORMATS e e e s e e e s s e s e 3-1
BRANCH INSTRUCTIONS . . . o e e e e e e e e s e e s e e e s s s e e e 3-2
Branch on True Condition e e e e e 3-3
Branch on True Condition Register 3-3
Branch on True Condition Backward Short 3-3
Branch on True Condition Forward Short e 3-3
Branch on False Condition e e e e 3-4
Branch on False Condition Register L e 3-4
Branch on False Condition Backward Short s 3-4
Branch on False Condition Forward Short e e 3-4
Branch and Link e e e e 3-5
Branch and Link Register e e e e e e o035
Branch on Index Low or Equal.00 e 3-6
Branch on Index High Lo 3-7/3-8
CHAPTER 4 FIXED POINT ARITHMETIC e e e 4-1
DATA FORMATS e e e e e e 4-1
FIXED POINT NUMBER RANGE e e s e e s e 4-1
OPERATIONS e 4-2
CONDITION CODE e e e e e e e s e e e s e e 4-2
FIXED POINT INSTRUCTION FORMATS s e e e s e e e 4-3
FIXED POINT INSTRUCTIONS e e e e e s s 4-3
Add . . e e e e e 4-4
Add Register L e e 4-4
Add Immediate e e e e 4-4
Add Immediate Short e 4-4
Add Halfword e e e e 4-5
Add Halfword Immediate L e 4-5
Add to Memory e e e e e e e e 4-6
Add Halfword to Memory e e e e e e 4-7
Subtract e e e 4-8
Subtract Register L e 4-8
Subtract Immediate L L e e e e e e 4-8
Subtract Immediate Short L L e e e e e e e 4-8
Subtract Halfword o e e e e e 49
Subtract Halfword Immediate L e e e e 4-9
COMPAre o i it e e e e e e e e e e e e e e e e 4-10
Compare Register L L e e e e e e e e 4-10
Compare Immediate e 4-10
Compare Halfword e e e e e 4-1t
Compare Halfword Immediate e e e e e e e e 4-11
Multiply . . . e e e e e 4-12
Multiply Register o e e e e 4-12
Multiply Halfword e e e 4-13
Multiply Halfword Register o . e e e e e 4-13
Divide L e e e e e 4-14
Divide Register e e e e e 4-14
Divide Halfword e e e e e e e 4-16
Divide Halfword Register L . e e e e e 4-16
Shift Left Arithmetic o L e e e e e 4-18
Shift Left Halfword Arithmetic 0 . e e e e e e e e e e e e e 4-19
Shift Right Arithmetic e 4-20
Shift Right Halfword Arithmetic e e e 4-21
Convert Halfword Value Register e 4-22

29428 RO1 1/76 iii

CHAPTER 5 FLOATING POINT ARITHMETIC e 51
INTRODUCTION e e e e e s e e s s 5-1
FLOATING POINT NUMBER e e e e e e e s e e e e 5-3
Floating Point Number Range54
Normalization L e e 5-4
Equalization L e e e e e e 5-5
True Zero L e e e e e e 5-5
Exponent Overflow e e e e e e 5-6
Exponent Underflow e e e e e 5-6
Data Formats e e e e e 5-6
Guard Digit and Rounding L e e 5-7
Conversion from Decimal L o e oo 58
CONDITION CODE e e e e e e e e e e e e 58
FLOATING POINT INSTRUCTION FORMATS it .58
FLOATING POINT INSTRUCTIONS e e e e e 5-8
Load Floating Point e e e e 5-10
Load Floating Point Register e 5-10
Load Floating Point Multiple e 5-11
Store Floating Point L e e e 5-12
Store Floating Point Multiple e o513
Add Floating Point e e e e 5-14
Add Floating Point Register e 5-14
Subtract Floating Point L e e e 5-16
Subtract Floating Point Register 5-16
Compare Floating Point e e e e 5-18
Compare Floating Point Register518
Multiply Floating Point e e e e e e 5-19
Multiply Floating Point Register59
Divide Floating Point e e e e e e 5-21
Divide Floating Point Register i i e 5-21
Fix RegiSter v v i i et e e e e e e e e e e e 5
Float Register o e e e e e e e e e e 5-24
Load Double Precision Floating Point o oo 5-25
Load Register Double Precision Floating Point525
Load Multiple Double Precision Floating Point526
Store Double Precision Floating Point 5-27
Store Multiple Double Precision Floating Point, 5-28
Add Double Precision Floating Point e 5
Add Register Double Precision Floating Point8582
Subtract Double Precision Floating Point53
Subtract Register Double Precision Floating Point 5-30
Compare Double Precision Floating Point oo 5-31
Compare Register Double Precision Floating Point531
Multiply Double Precision Floating Point53%
Multiply Register Double Precision Floating Point 5-32
Divide Double Precision Floating Point oo o o 5-33
Divide Register Double Precision Floating Point533
Fix Register Double Precision e 5-34
Float Register Double Precision e 5-35/5-36
CHAPTER 6 STATUS SWITCHING AND INTERRUPTS e 6-1
PROGRAM STATUS WORD e e e e s e e 6-1
Wait State L e e e e e e 6-2
Protect Mode e e e 6-2
Register Set Selection L e 6-2
iv 29428 RO1 1/76

TABLE OF CONTENTS (Continued)

TABLE OF CONTENTS (Continued)

INTERRUPT SYSTEM e e e s s e s s e e s 6-3
Immediate Interrupt _ . L e 6-6
Console Interrupt L e e e 6-7
Simulated Interrupt L L e e e e e 6-7
Machine Malfunction Interrupt L L e e e 6-8
Arithmetic Fault Interrupt L e 6-9
Relocation/Protection Interrupt e 6-9
System Queue Service Interrupto e e e e e 6-10
Protect Mode Violation Interrupto 6-10
Illegal Instruction Interrupt L e e e 6-10
Supervisor Call Interrupt L e e e e 6-10
STATUS SWITCHING INSTRUCTION FORMATS e e e e e e e 6-11
STATUS SWITCHING INSTRUCTIONS e e e e e e e e 6-11
Load Program Status Word L e 6-12
Load Program Status Word Register e 6-13
Exchange Program Status Register L 6-14
Simulate Interrupt L L e e e e e e e 6-15
Supervisor Call L e e e e e e e e e e 6-16
CHAPTER 7 INPUT/OUTPUT OPERATIONS e e e e e e e 7-1
INTRODUCTION AND CONFIGURATION OF I/OSYSTEM i e 7-1
DEVICE CONTROLLERS e s e s e e e e e e 7-1
Device Addressing L L L e e e e e 7-2
Processor/Controller Communication L e e 7-2
Device Priorities L e e e e e s 7-2
INTERRUPT SERVICE POINTER TABLE e e e e e e e e e e 7-2
I/O INSTRUCTION FORMATS e e e e e e e e e e e e e e s s e e e e 7-3
I/OINSTRUCTIONS . . . e e e e e e e e e e e e s e e e 7-3
Sense Status L L L e e e e e e e e e e e 7-5
Sense Status Register L e e e e e 7-5
Output Command L e e e e e e e e e e e e e e e e 7-4
Output Command Register e e e e e e e e e e 7-4
Read Data e e e 7-6
Read Data Register L e e e e e e e e 7-6
Read Halfword o . o e e e 7-7
Read Halfword Register o . 7-7
Read Biock o o o o e e e e e 7-8
Read Block Register e e e e e e 79
Write Data oL e e e e e e e e 7-10
Write Data Register e e e e e e 7-10
Write Halfword L L o e e e e e e 7-11
Write Halfword Register o s 7-11
Write Block L e e e e e e 7-12
Write Block Register L L e e e e e e e e e 7-13
Autoload . . . L e e e e e e e 7-14
Simulate Channel Program L e e e e 7-15
CONTROL OF-I/O OPERATIONS e e e e e e e e e e s e 7-16
STATUS MONITORING I/O e e e e e e e e e e e s 7-16
INTERRUPT DRIVEN I/O o e e e e e s e e e s s e 7-17
SELECTOR CHANNEL I/O e e e e e e e e e s e e 7-18
Selector Channel Devices L . 0 o i e e e e e e e e e e e e e e 7-18
Selector Channel Operation 0 o 0 i i e e e e e e e e e e e e 7-18
Selector Channel Programming L Lo 7-19

29-428 RO1 1/76 v

TABLE OF CONTENTS (Continued)

AUTO DRIVER CHANNEL e e e e e e e e e e e e s s e e s e 7-19
CHANNEL COMMAND BLOCK e e e e e e e e e e e s e e e e e 7-20
Subroutine Address L L L e e e e e e e e e e e e 7-20

Buffer e e e e e e e e e e e e e e e e e e 7-21
Translation L L L e e e 7-21

Check Word e e e e e e e 7-21

Channel Command Word L L e e e e e e e 7-22

Status Mask . . . L L e e e e e e s 7-22

Execute Bit (E) e e e e e e e e e 7-22

Fast Bit (F) e 7-22

Read/Write Bit (R/W) e 7-22

Translate Bit (T) e e e e 7-22

Check Type Bit (C) o e e e e 7-23

Cyclic Check Type Bit (S) e e 7-23

Buffer Switch Bit (B) e e e e e e e e 7-23

Valid Channel Command Codes e e e e e 7-23
CHAPTER 8 MEMORY MANAGEMENT s s s e e e 8-1
PROGRAM ADDRESS SPACE e e e e 8-1
RELOCATION o e e e e e e e e e e e e e 8-1
PROTECTION e e e e e e e e e e e 8-1
MAC REGISTERS e e e 8-4
Definition of MAC Register Fields e 8-5
Segmentation Register L L e 8-5

Interrupt Status Register L e e 8-6
CHAPTER 9 WRITABLE CONTROL STORE INSTRUCTIONS e 9-1
WRITABLE CONTROL STORE INSTRUCTIONS e s e s e e e e e 9-2
Write Control Store L e e e e e e e e e 9-4

Read Control Store e e e e e e e e 9-5

Branch to Control Store L e e e e e e e 9-6

Enter Control Store e e e e e e e e 9-7/9-8
CHAPTER 10 DATA HANDLING INSTRUCTIONS 10-1
DATA HANDLING INSTRUCTION FORMATS e e e e e e s e e e e 10-1
DATA HANDLING INSTRUCTIONS e e e e e e e s e e e 10-1
Process Byte L e e e e 10-2

Process Byte Register e 10-4

Move and Process Byte String Register L e e 10-5

CHAPTER 11 M71-102 HEXADECIMAL DISPLAY PANEL AND

M71-101 BINARY DISPLAY PANEL PROGRAMMING SPECIFICATION 11-1
INTRODUCTION oo PR RN E
CONFIGURATION e e e e s s s e 11-1

Display Registers and Indicators e 11-2
Key Operated Security Lock e 11-3
Control Keys L e e e e e e e 11-3

vi 29-428 RO2 2/77

TABLE OF CONTENTS (Continued)

OPERATING PROCEDURES e e 11-5
Power Up e e e e e 11-5
Power Down e e e e e e 11-5
Memory Read e e e e e e e e e e 11-5
Memory Write e e e e 11-5
General Register Display L L e e e 11-6
Floating Point Register Display e e 11-6
Floating Point Register Display (later versions of 8/32) 11-6
Program Status Word Display and Modification o oo 11-6
Program Execution L L e e e e 11-7
Program Termination L L e e e e e 11-7
Console Interrupt L L e e e e 11-7
Switch Register o e e e e 11-7
Power Fail e e 11-7
DATA FORMAT e s e e e e 11-8
PROGRAMMING INSTRUCTIONS e e e e e e e 11-9
Input/Output Programming e e e e e 119
Wait State e e 11-9
PROGRAMMING SEQUENCES e e s e 11-9
Programming Note L L e e e e e 1-11/11-12
INDEX . . o e e e e e e e e e I-1
ILLUSTRATIONS
Figure 1-1 Model 8/32 Processor Block Diagramo oo 1-2
Figure 1-2 Program Status Word L L e e 1-4
Figure 1-3 Register Set Numbering o e e e e 1-6
Figure 1-4 Instruction Formats o e 1-9
Figure 1-5 32-Bit Instruction Format Examples L oo 1-12
Figure 2-1 Logical Data e e e e e e e 2-1
Figure 2-2 Translation Table Entry e e e e 2-2
Figure 2-3 Circular List Definition e e e e e e e 2-3
Figure 2-4 Circular List e e e e e e e e e 2-3
Figure 2-5 Flow Chart for CRC Generation o . 0 i v it e e e e e e e e e e e 2-41
Figure 2-6 Processing Instructionso e e e e e e 2-47
Figure 4-1 Fixed Point Data Words Formats 4-1
Figure 5-1 Single Precision Floating Point Number Fields 5-2
Figure 5-2 Exponent Overflow L . 5-6
Figure 5-3 Exponent Undetflow e e e 5-6
Figure 6-1 Program Status Word L e e e e 6-1
Figure 6-2 Interrupt System Block Diagram Lo e 6-5
Figure 7-1 Channel Command Block L e 7-20
Figure 7-2 Channel Command Word L L e e e 7-22
Figure 7-3 Micro Code Flow Chart of Auto Driver Channel 7-24
Figure 8-1 Segmentation REISIEIS o v v v s e e e e e e e e e e e e e e e e 8-6
Figure 9-1 Model 8/32 Block Diagram e 9-2
Figure 9-2 Model 8/32 Instruction Formats e 9-3
Figure 10-1 Flow Chart of MPBSR Instruction 0 i i ittt et i e e e e e 10-6
Figure 11-1 Hexadecimal Display Panel e 11-1
Figure 11-2 Display Registers and Indicators e 11-2
Figure 11-3 Hexadecimal Display Panel Data Transfers 11-8

29-428 RO6 5/78

vii

TABLE 4-1
TABLE 5-1
TABLE 6-1
TABLE 11-1

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4
APPENDIX 5
APPENDIX 6
APPENDIX 7
APPENDIX 8

viii

TABLE OF CONTENTS (Continued)

TABLES
FIXED POINT FORMAT RELATIONS o o o o 4-1
FLOATING/FIXED POINT RANGES o 5-4
INTERRUPT SYSTEMS o e e e e e 6-4
DISPLAY STATUS AND COMMAND 11-11/11-12
APPENDICES
OP-CODEMAP e Al-1
INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTESA21
INSTRUCTION SUMMARY - NUMERICAL A3-1
EXTENDED BRANCH MNEMONICS o o e A4-1
ARITHMETIC REFERENCES o o o e AS5-1
MODEL 8/32 EXECUTION TIMES IN MICROSECONDS Ao6-1
IJO REFERENCES o . e A7-1
MODEL 8/32 MICRO INSTRUCTIONS e AS8-1

29-428 RO1 1/76

CHAPTER 1
SYSTEM DESCRIPTION

All references to the Model 8/32 processor in this manual are applicable to the basic Model 8/32, I
Model 8/32C and Model 8/32D unless otherwise specified.

The M83-Series 8/32 processors are designed to meet the need for high-performance 32-bit mini-
computers. Through the use of 32-bit general registers and a comprehensive instruction set, the
Model 8/32 provides fullword data processing power and direct memory addressing up to a limit of
one million bytes. The 8/32 System is shown, in block diagram form, in Figure 1-1.

The instruction set includes arithmetic and logical operations, list processing, floating point,
cyclic redundancy checking, and bit and byte manipulation. Through this repertoire and direct
memory addressing, coding and debugging time is reduced to a minimum.

Two sets (optionally expandable to 8) of sixteen 32-bit General Registers are provided. Register
set selection is controlled by bits in the Program Status Word., Register-to-Register instruc-
tions permit operations between any of the 16 registers in. the current set, eliminating redundant
loads and stores; the multiple register set organization eliminates the overhead incurred in
saving and restoring registers when responding to interrupts.

The Memory Access Controller (MAC) provides automatic program segmentation, relocation,
and protection. The Processor Protect mode enables detection of privileged instructions.
These two features are invaluable in process control, data communication, and time-sharing
operations to guarantee that a running program cannot interfere with the integrity of the system.

In addition to conventional means of programmed I/O, the Model 8/32 automatically acknowledges
all I/O interrupts and performs much of the required overhead prior to activating an Interrupt
Service Routine, The Auto Driver Channecl can perform data transfers with character translation,
longitudinal or cyclic redundancy checking and data buffer chaining without interrupting the run-
ning program.

The reader should refer to the following manuals for further information:

Common Assembler Languagc (CAL) User's Manual, Publication Number 29-375.

ESELCH Programming Manual, Publication Number 29-529,

EDMA Bus Universal Interface Instruction Manual, Publication Number 29-423,

M83-Series Models 8/32, 8/32C, and 8/32D Processors Micro Instruction Reference Manual '
Publication Number 29-438,

M83-Series Models 8/32, 8/32C, and 8/32D Processors Maintenance Manual, Publication I
Number 29-394.

Common Microcode Assembler Language (MICROCAL) User's Manual, Publication Number
29-478

WCS User's Guide, Publication Number 29-479,

29-428 R06 5/78 1-1

*8th 128 KB OF MEM FOR

32 KB 32 KB 32 KB 32KB 8/32 & 8/32C NOTE
OR OR OR OR 4th 256 KB OF MEM FOR
64 KB 64 KB 64 KB 64 KB 8/32D (1MB TOTAL) 32 KB MODULES FOR 8/32 & 8/32C
[64 KB MODULES FOR 8/32D.
*2nd 128 KB OF MEM FOR
32KB 32KB 32 KB 32 KB 8/32 & 8/32¢C
OR OR OR OR 2nd 256 KB OF MEM FOR - T T T T T T R
64 KB 64 KB 64 KB 64 KB 8/32D : MULTIPORT MEMORY |
| MMB I
15t 128 KB OF MEM FOR
32 KB 32KB 32 KB 32 KB 58/32 % 8/32C | |
OR OR OR OR
64 K8 64 KB 64 KB 64 KB 1st 256 KB OF MEM FOR | : |
8/32D | |
sLMI MMI
16 16 16 16 L]

[LM 11 Lt] [— — — & — —

132 432 LOCAL MEMORY BUS
MEMORY B8US CONTROLLER MBC
. EDMA BUS
% «—————LOOKAHEAD STACK
(2 X 64 BITS)
ESELCH™ EDMA BUS
INSTRUCTION REGISTER OR UNIVERSAL
DISPLAY PANEL OPCODE | Ry | X2 | ADDRESS | BSELCH* INTERFACE*
PROGRAM STATUS WORD 51 DEVICES T
Il STATUS [loc et] CUSTOM
MULTIPLEXOR BUS MODEL 8/32 PROCESSOR MAM* DEVICE
EEE= = B 0P TO OR
e = =1 == EMAM*
UNIVERSAL IEE e = “——38Xx16
CLCCK ElE B == GENERAL T
e e e REGISTERS
— =1 == Q\/ 63 MUX BUS
DIGITAL = B e — DEVICES
MULTIPLEXOR = == = CARTRIDGE
DISC
————’-‘ ! -
HIGH SPEED '[10
1
PAPER TAPE | SWITCH™
rdo--o oo -~ ms oo -o=- -
TELETYPE
| 32 32 f32 32 32 32 32 |
CARD L e e] MODULE 2 !
READER | I MODULE 1 MODULE 6|
(AND 3%) (OR 6 & 4)
| l CPUA CPUB CPUC | |
O O 1] (MAC) (ROM) (WCS*} | ALU 10U DFU* I HSDH*
INTERTAPE I I I I
DUAL CASSETTE P L) — — 4 e e |
I 32 32 32 16 32
| 32 32 32 16 32 |
| |
LINE PRINTER I |
| : -MUX BUS]
CRT - - - - -"—-"-""-"-"=—"-"="="~"="-~"=—=—"—"=”—=—-=— —-”—-— -
Ji
T “OPTIONAL EQUIPMENTS OR PROVISIONS
1 FOR USE WITH OPTIONAL EQUIPMENT
MICRO ANALOG
MINI |/o* BUS CONVERSION I/0 ——is
SYSTEM ADAPTER* EQUIPMENT* SWITCH

Figure 1-1. 8/32 System Block Diagram

1-2 29-428 R06 5/78

The following are major differences between the Model 7/32 and the Model 8/32 Processors
from a programmer's point of view:

1. The Model 7/32 Processor has two General Register sets while the Model 8/32 Processor
can have two or cight General Register scts depending on the option selected.

2. The Model 7/32 Processor has no 1I/O Priority Levels while the Model 8/32 Processor can
have up to four effective I/0O Priority Levels depending on the number of optional register
sets selected.

3. Earlier versions of the Model 7/32 Processor have a capability of executing somea of the pro-
grams written for the INTERDATA 16-Bit Processors. The later versions of the Model 7/32

Processors and the Model 8/32 Prozessors have no such capability.

4, The Model 7/32 Processor does not have an optional writable control store and related

instructions as docs the Model 8/32 Processor.

w1
.

Fullword operations: In the Model 8/32 Processor, to feteh/store a fullword from/into

memory, the fullword data must be aligned on a fullword boundary. This is not the case in
the current version of the Model 7/32 Processor. In the Model 7/32, it is sufficient that a
fullword data be aligned on a halfword boundary. Thus, a program that exccutes corrcetly
on the current Model 7/32 may not do so when tried in the Model 8/32. The mnemonics for
the instructions that may introduce such a discrepancy are:

A
ABL
AD
ALE
AM
ATL
C
CD
CE

CL
D

DD
DE
L

LD
LE
LM
LMD

LMIE
LRA
M
MD
ME
N

(0]

RB

RBL
RTL
S
sCp
SD
SE
ST
STD

STIE
STM
STMD
STME
SVC
TLATE
wB

X

6. In the Model 8/32 Processor fullword data read/write on a halfword boundary forces the

address to the fullword boundary and then the data is read/written.

The machine gives no

indication of this occurring, except that fetched/stored fullword data is incorrect.

In the current Model 7/32, fullword data read/write on a halfword boundary causes the data

to be read from/written into the consecutive halfwords.

7. Mamory Access Con‘roller (MAC): In the Model 7/32 the MAC is optional and traps 256 hytes.
For Model 8/32, the MAC is part of the basic processor and tapes 72 bytes., Refer to Chapter 8.

8. On the average, the Model 8/32 is 2 to 2.5 times faster than the Model 7/32,

29-428 R06 5/78

NOTE

For a detailed description of the Model 7/32, refer
to the Model 7/32 Processor User's Manual, Pub-
lication Number 29-405,

PROCESSOR

The Central Processing Unit (CPU), or Processor, controls activities in the system. Refer to
Figure 1-1, It executes instructions in a specific sequence and performs arithmetic and logical
functions. Included in the Processor's componznts are:

Program Status Word register
General registers

Floating point registers
Hardware multiply and divide
Floating point hardware

Program Status Word

The 64 bit Program Status Word (I>’SW) defines the state of the Processor at any given time. (See
Irigure 1-2.)

0 16,171819 2021 222324 272829 30,31
\
wli|m AL »lalp R clvic|L
32 3940 63
[1 Loc

Figure 1-2. Program Status Word

Bits 0:31 are reserved for status information and interrupt masks. Bits 40:63 contain the Loca-
tion Counter. Unassigned Program Status Word bits must not be used and must always be zero.
Status information and interrupt mask bits are defined as follows:

Bit 16 Wait state

Bit 17 Immediate interrupt/Auto Driver Channel (ADC) Mask
Bit 18 Machine malfunction interrupt mask

Bit 19 Arithmetic fault interrupt mask

Bit 20 Immediate Interrupt/ADC mask

Bit 21 Relocation/protection interrupt mask

Bit 22 System queuc service interrupt mask

Bit 23 Protect mode

Bits 24:27 Register set select bits
Bits 28:31 Condition Code

Wait State (W)

When this bit is set, the Processor halts normal program execution. It is still responsive to
machine malfunction and immediate interrupts, if enabled.

Immediate Interrupt/Auto Driver Channel Mask (1)

Program Status Word Bits 17 and 20 together define the enable state of the Processor to re-
quests for service from devices on the Multiplexor Bus. Interrupt requests from external de-
vices are arranged on four priority levels. Level zero is the highest priority; Level three is
the lowest. When interrupts on any levels are enabled, the Processor is responsive to interrupt
requests on those levels. When interrupts on any levels are disabled, interrupt requests on
those levels are queued until the Processor is able to recognize them. Refer to Chapter 6 for
details of Immediate Interrupt processing.

Machine Malfunction Interrupt Mask (M)
This bit controls interrupts generated when power fails, when power returns, when parity check-

ing indicates a memory parity error, or when fullword data is read/written on halfword boundary.

1-4 29-428 RO2 2/77

Arithmetic Fault Interrupt Mask (A)

This bit controls internal interrupts caused by arithmetic faults: fixed-point quotient overflow
or division by zero; or floating point overflow, underflow, or division by zero. If this bit is set,
the interrupt is taken. If it is reset, the error condition is ignored.

Relocation Protection Interrupt Mask (R/P)

This bit serves two purposes. It enables the memory access and protect controller so that pro-
gram addresses are automatically relocated. It also enables the relocation/protection interrupt
which is generated by the memory access and protect controller.

System Queue Service Interrupt Mask (Q)

This bit controls the interrupt generated when the system queus requires service, Refer to I
Chapter 6.

Protect Mode (P)

The Processor operates in either the Supervisor or User mode. The state is determined by this
bit. If it is set, the Processor is in the protect mode, and only non-privileged instructions mayv
be executed, to protect the integrity of the system. If this bit is reset, the Processor is in the
Supervisor mode, and thz currently running program may cxecute any legal instruction.

Reaister Set Select (R)

Bits 24:27 of the Program Status Word are used to designate the current register set. All

Series 32 machines have at least two register sets. Register sets are numbered 0 through 15.

When fewer than 16 sets are implemented, the last set is always nambered 15, The Model 8./32

may have 2 or 8 sets of general registers. (See Figure 1-3), |

Condition Code (CVGL)

Bits 28:31 of the Program Status Word contain the Condition Code. As part of the execution of
certain instructions, the state of the Condition Code may be changed to indicate the nature of the
result. Not all instructions affect the Condition Code. The state of the Condition Code may be
tested with Conditional Branch instructions. Iiach bit in the Condition Code is set if thz corres-
ponding condition occurred on the last instruction. The normal interpretation of thesc bits is:

CIVIGI|L

110]0]0 Arithmetic carry, or borrow, or shifted carry
01100 Arithemtic overflow

0101110 Greater than zero

ofofoft Less than zero

Location Counter (LOC)

The Location Counter controls the sequencing of instruction execution. In normal sequential
operation, the Location Counter contains the address of the next instruction to be executed. The
instruction is fetched from memory. While the instruction is being executed, the Location Counter
is incremented by either two, or four, or six, depending on the length of the instruction. Upon
completion of instruction execution, the next instruction is fetched from the location specified by
the incremented Location Counter, and the process is repeated.

This sequential mode of operation is altered by Branch instructions, the Load Program Status
Word (LPSW and LPSWR) instructions, and by in‘errupts. Branch instructions cause the
Location Counter to b2 replaced by a new valus derived from the instruction, The LPSW and
LPSWR instructions, and interrupts cause the entire Program Status Word to bz replaced by
a naw Program Status Word.

29-428 RO2 2/77 1-5

1-6

REGISTER SET

DESIGNATION
NUMBER
0 EXECUTIVE SET
1
2 OPTIONAL
3 REGISTER
4 SETS
5
6
7 /
8
0 g /
10 / UNIMPLEVENTED
1 /// SETS 4
12 // / /
13 ’ /
14
15 USER SET

Figure 1-3. Redgister Set Numbering

29-428 RO2 2/77

GENERAL REGISTERS

The Model 8/32 can have either 2 or 8 register sets. If there are only 2 sets present, they are
numbered 0 and 15. If there are 8 register sets, they are numbered 0 through 6 and 15. (see
Figure 1-3.) Each register is 32 bits wide. Register set selection is determined by the state of
Bits 24:27 of the current Program Status Word. Registers 1 through 15 of any set may be used
as index registers. ‘

When interrupts occur, the Processor loads pertinent information into preselected registers
of the register set selected by the new program status word. The details of this operation are
described in Chapter 6. Register set 15, the user set, does not have any specific functional
assignments.

Floating Point Registers

There are eight optional single-precision floating point registers, each 32 bits wide. The
registers are identified by the even numbers 0 through 14, Floating point operations must
always specify the registers with even numbers.

Therc are eight optional double-precision floating point registers cach 64 bits wide. These
registers are identified by the even numbers 0 through 14, and are completely separate from
the single-precision floating point registers.

Processor Interrupts

Interrupt conditions cause the entire Program Status Word to be replaced by a new Program
Status Word, thus breaking the usual sequential flow of instruction execution., When an interrupt
condition occurs, the Processor saves its current Program Status Word either in memory or in
a pair of general registers belonging to the register set selected by the new PSW. It loads in-
formation related to the interrupt condition in other registers of this same set. It loads a new
Program Status Word from a memory location reserved for the specific interrupt condition.
(The immediate interrupt is an exception to the rule. The status portion of the new Program
Status Word, Bits 0:31, is forced to a preset value. The Location Counter is loaded from a
memory location reserved for the interrupting device. Refer to Chapter 6 for details on
interrupt processing.)

Reserved Memory Locations

The following memory locations are reserved for interrupt pointers, Program Status Words,
and system constants.

X'000000" - X'00001r" Reserved (Single Precision FFloating Point Register, if equipped, Save Arca)
X'000020" X1000027! Machine malfunction interrupt old PSW

X'000028'* - X'00002F!' Not used, must be zero

X'000030" - X'000037" Illegal instruction interrupt new PSW
X'000038! - X'00003T" Machine malfunction interrupt new PSW
X'000040°' - X'000047! Not used, must be zero

X'000048"' - X'00004F' Arithmetic fault interrupt new PSW
X'000050" - X'00007F! Bootstrap loader and device definition table
X'000080' - X'000083!' System queue pointer

X'000084!' - X'000085' Power Fail PSW save pointer

X'000086" ~ X'000087' Power FFail Register save pointer
X'000088! - X'00008F! System queue service interrupt new PSW
X'000090' - X'000097' Relocation/protection interrupt new PSW
X'000098! - X'00009B' Supervisor call new PSW status

X'00009C! - X'0000BB' Supervisor call interrupt new PSW location counter values
X'0000BC' -~ X'0000CF! Not used, must be zero

X'0000D0! - X'0002CF' Interrupt service pointer table

X'0002D0' - X'0004CF' Expanded interrupt service pointer table
X'0004D0' - X'0008CF' Expanded interrupt service pointer table

*Used by Micro-Program

29-428 RO1 1/76 1-7

These reserved locations play an important role in both interrupt and input/output processing.
For details on these subjects refer to Chapters 6 and 7. In addition to the above, certain loca-
tions are reserved for use by the Memory Access Controller. Refer to Chapter 8 for details.

The power down save areas for general registers and PSW must be completely contained within
-the first 64KB of memory. All new location Counter values are subject to MAC relocation if
the new PSW enables MAC (Bit 21 = 1), All other pointers contain abhsolute addresses not sub-
ject to MAC relocation,

Processor Operations

Fixed point arithmetic and logical operations are performed between:
The contents of two fullword registers.
The contents of a fullword register and the contents of a fullword located in memory.
The contents of a fullword register and the contents of a halfword located in memory.

Where the second operand is contained in memory, it may be located in the instruction stream
(immediate operation), or it may be located in indexed storage.

In fixed point arithmetic and logical operations between a fullword register and a halfword
operand in memory, the halfword operand is expanded to a fullword by propagating the most
significant bit into the high order bits before the opcration is started. This permits the use of
halfword to fullword operations with consistent results, and it provides space cconomy in that
small values do not require fullword locations.

Arithmetic operations on fixed point halfword quantities may produce results that are not entirely
consistent with the results that arc obtained in a 16 bit Processor. Where this is a problem,

the Convert to Halfword Value Register Instruction (CHVR) may be used to adjust the result and
the Condition Code so that they are consistent with the same operations in a 16 bit Processor,

Floating point operations take place between the contents of two floating point registers, or be-
tween the contents of a floating point register and a floating point operand contained in a full-
word or double word in memory. Following floating point operations, the Condition Code is
set to indicate the nature of the result.

DATA FORMATS

The Processor performs logical and arithmetic operations on single bits, 8 bit bytes, 16 bit
halfwords, 32 bit fullwords, and 64 bit double words. This data may represent a fixed point
number, a floating point number, or logical information.

Fixed Point Data

Fixed point arithmetic operands may be either 16 bit halfwords or 32 bit fullwords. In full-
word multiply and divide operations, 64 bit operands are manipulated. Fixed point data are
treated as 15 bit signed integers in the halfword format, and as 31 bit signed integers in the
fullword format. Positive numbers are expressed in true binary form with a Sign bit of zero.
Negative numbers are represented in two's complement form with a Sign bit of one. The
numerical value of zero is represented with all bits zero. Refer to Chapter 4 for details on
fixed point data representation.

Floating Point Data

A floating point number consists of a signed exponent and a signed fraction. The quantity ex-
pressed by this number is the product of the fraction and the number 16 raised to the power
represented by the exponent. Each floating point value requires a 32 bit fullword or a 64 bit
double word, of which eight bits are used for the sign and exponent, and the remaining bits are
used for the fraction. Refer to Chapter 5 for details on floating point data representation.

1-8 29428 ROI 1/76

Logical Data

Logical operations manipulate 8 bit bytes, 16 bit halfwords, and 32 bit fullwords. In addition,
it is possible to perform logical operations on single bits located in bit arrays. Refer to
Chapter 2 for details on logical data representation.

DATA ALIGNMENT

Locations in main memory are numbered consectively, beginning at address '00000'. While it is
said that memory is addressable and alterable to the byte level, machine accesses to memory in-
volve only halfwords or fullwords. Those instructions that require a single byte access actually
access a halfword and then manipulate the appropriate byte within the halfword.

Because memory can only be accessed to the halfword level, bit 31 of the address is truncated at
the memory. A halfword fetch at address '00051' gives you exactly the same haltword as yvou get
when you access location X'00050', There is also no mechanism for wuarning the program that it
is accessing halfwords on the odd byte houndary.

The CAL Assembler will generate an error flag if it sees halfword operations directed to an odd
byte address. It also generates an error flag if it sees fullword operations directed to other than
a fullword address.

Bytes of information are addressed by their specific hexadecimal address., Two bytes form a
halfword, IHalfwords have an even address, the address of the left most byte in the pair. Two
halfwords comprise a fullword. The address of a fullword is a multiple of 4 (four bytes) and it
is the address of the left most halfword in the pair, The hardware actually truncates the least
significant two address bits on fullword accesses, forcing proper alignment. In later versions
of the 8/32, a machine malfunction interrupt is generated if a fullword access is dirccted to an
address that has bit 30 set. The memory doesn't see bit 31, so no error is generated for a ful-
lword access to address '00301' for example. Addresses '00302' and '00303', however, will
generate the interrupt.

Two fullwords form a double word. The address of a double word is a multiple of 8 B8bytes) and
is the address of the left most fullword in the pair. For the present, double word alignment is

imposed only by the CAL Assembler and is not a genuine hardware restriction.

User Level instructions are always aligned on halfword boundaries. Any halfword address is valid
regardless of the size of the instruction word.

29-428 RO6 5/78 1-9

Most instructions in the extended series may be expressed in two or more formats. This feature
provides flexibility in data organization and instruction sequencing.

When working with the Interdata Common Assembler Language (CAL) assembler, it is not neces-
sary to specify the instruction format explicitly. The assembler chooses the most economical
format and supplies the required bits in the machine code. When double indexing is implied, the
assembler always chooses the RX3 format, Refer to the Common Assembler Language (CAL)
Manual, Publication Number 29-375.

Branch Instruction Formats

The Branch instructions use the RR, ST, and all variations on the RX formats. However, in

the Conditional Branch instructions, the Rl field does not specify a register. Instead, it con-

tains a mask value (labelled M1 in the instruction descriptions), which is tested with the

Condition Code. The INTERDATA CAL assembler provides a series of Extended Branch Mnemonics
which make it possible to specify a Conditional Branch without specifying the mask value ex-
plicitly. For a summary of the Extended Branch Mnemonics, see Appendix 4.

Programming Examples

Fach of the following programming examples refers to the sample assembly language program
shown in Figurc 1-5. Note the usc of symbolic cquates for general registers. Machine code
generated and the result of each instruction arc dependent upon the physical and logical placement
of the instructions, respcctively.

Register to Register (RR) Format

0 78 1112 15

opP R1 R2

In this 16 bit format, Bits 0:7 contain the operation code. Bits 8:11 contain the R1 field, and
Bits 12:15 contain the R2 field. In most RR instructions, the register specified by R1 contains
the first operand, and the register specified by R2 contains the second operand. For example:

Machine Code Label Assembler Notation

0865 RR LR RR6, R5

Second Operand

First Operand

Load Register 'LR' Instruction Op-Code

Short Form (SF) Format

0 7.8 11,12 15

opP R1 TN

This 16 bit format provides space economy when working with small values. Bits 0:7 contain
the operation code. Bits 8:11 contain the R1 field. Bits 12:15 contain the N field. In arithmetic
and logical operations, the register specified by R1 contains the first operand. The N field
contains a four bit immediate value (0:15) used as the second operand. Tor example:

Machine Code Label Assembler Notation

245E SF LIS R5,14

L— Second Operand

First Operand

Load Immediate Short ""LIS" Instruction Op-Code

29-428 ROG 5/78 1-11

Statement

Location Number Assembly Language Source
Count A
Value Generated Code rLabel Operation Operand(s) Comments]
f_—'%l A N\ r~ A NS A N A NS A \
1 SCRAT
. —- TARGT. 32 e e e
3 NORX3
—— e elp s WIDTH 12A - o e e i e
00000071 5 NOogQz
6 * e ——— - - e = e RO -
T %
SO U | S R [R .- e e
0000 0005 9 RS EGu 5 GENERAL REGIRTER 5
e 0000 0006 ... 10 RE - —- - EBU 6 o ... GENERAL REGIRTER 6
0000 0007 11 R7 EQu 7 GENERAL REGISTER 7
0006 0008 o ra - EQUy.-— 8 e GENERAL REGISTER 8. .-
0000 0009 13 RS9 EQU 2 GENERAL REGISTER 9
o= 0000 _000A . _ 14 . Rls - EQu - 1p s - .BGENERAL. REGISTIER 1n
0000 0Oo0B 15 R11% EQu 11 GENERAL REGITER 11
- B [, C e - - - e .
0000001 245E 17 SF LIs RS.14 (RS) = y*0000000E"*
18- -% S ———
0000021 0865 19 RR LR R6+RB (R6) = y'000n000F"
-~ 1 | K e . - . B .. o .
0000041 4050 1000 21 RX1.EX1 STH R5.X*1000°" (X*'1000v) = ¥'000F
e L2 . e e
0000081 4056 OFF2 23 RX1.EX2 STH R5+X'0FF2*(R6) (X'1000¢) = X'000E"
24 * e .
00000CY 4050 8004 25 RX2.EX1 STH R5,L0C1 (LOC1) = x'onoE"
e e e e B el — - — -
0000103 4300 8004 27 B RI1,EX1
0000141 o000 0000 .. 28 10cl . DC . _ F'pe . - R e
29 x
-000018Y €A90 8000 30 uI1.EX1 LWf RO,x'RO000¢ (R = YICFERA0000. .
31 x
00001C1 €895 8000 32 QRIVT.EX2 LHYI . R9,.X'800012(RS). ... (R9) = Y'FFFFAQQE.. .
o 33 &)
0000201 _F8AQ 0000 A000 34 _RI2.EX1 LI_. R1o,X*'8000¢ . (R10) = Y*'00N08000y
35 = i
0000263 FABA 0001 7FFE 36 RI2.FX2 I . R131,Yt17FcFe(R10) (R11) = Ys00QIFFEEs
37 =«
00002C1 4050 FFE4 . 38 RX2.EX2 STH. _R5,LO0CY1 _ . {LO0C1l) = X'nooE"
39 x
0000301 4056 FFDR . 40 __RrX2.EX3Z STH __ R5,L0C1-1u4(R6) _ (LOC1l) = X'000E
41 = .
000034y 5870 4001 0000 42 pX3.EX1 L . R7,y'3iQo00¢ __ _ __(R7) = (Y*'1l0000%) .
43 %
00003Ar 5885 4601 FFE4 44 ;X%.EX2 L . . RB.Y'20000'-28(R5:R6) _(RA) = (Y'300001)
45 x
000040y _4300 FFBC ____ 46 . . B . __SF R
47 x
000044y 48 Enn m

Figure 1-6. 32-Bit Instruction Format Examples
(CAL Assembly Listing)

1-12 29-428 RO6 5/78

Register and Indexed Storage One (RX1) Format

0 7 8 11,12 15,16 17 18 31

opP R1 X2 0fo D2

This is a 32 bit format in which Bits 0:7 contain the operation code, Bits 8:11 contain the R1
field, Bits 12:15 contain the X2 field, Bits 16 and 17 must be zero, and Bits 18:31 contain the
D2 field. In general, the register specified by R1 contains the first operand. The second
operand is located in memory at the address obtained by adding the contents of the second
operand index register, specified by X2, and the 14 bit absolute address contained in the D2
field. Tor example:

Machine Code Label Assembler Notation

4050 1000 RX1.EX1 STH R5,X'1000'
—[—— Defines Second Operand Address
No Index Register Specified

First Operand

Store Haliword 'STH' Instruction Op-Code
The Second Operand address is calculated as follows:

Bits 16 1920 2324 27 28 31

0001 0000 0000 0000
L |

l L 14:8it Absolute Address X 1000
Indicates RX1 Format

No indexing is specified. Therefore, the second operand address is X'1000'.

Machine Code Label Assembler Notation
4056 O0FI'2 RX1.EX2 STH R5,X'0FF2'(R6)

L —— Defines Second Operand Address

I Register 6 to be used for Indexing

TFirst Operand

Store Halfword 'STH' Instruction Op-Code

The Second Operand address is calculated as follows:

Bits 16 19 20 23 24 27 28 31

0000 1N 111 0010
Ll]

| L 14.8it Absolute Address X'OFF2'
Indicates RX1 Format

Second Operand Address

contents of D2 field + contents of the Index Register 6 (see Figure 1-5)

X'0FF2' + Y'0000000E'

Y'00001000'

29-428 ROG6 5/78 1-13

Register and Indexed Storage Two (RX2) Format

0 78 1112 151617 31

oP R1 X2 1 D2

This format provides relative addressing capability in a 32 bit instruction word. Bits 0:7
contain the operand code. Bits 8:11 contain the R1 specification. Bits 12:15 contain the X2
specification. Bit 16 must always be one. Bits 17:31 contain the relative displacement, D2.

In the RX2 format, the register specificd by Rl contains the first operand. The address of
the second operand, in memory, is calculated by adding the value contained in the incremented
location counter (the address of the next sequential instruction) and the sum of (1) the 32-bit
representation of the 15-bit signed number contained in the D2 field, and (2) the contents of
the index register specified by X2. Negative numbers in the D2 field are expressed in two's
complement notation. For example:

_Machine Code Label Assembler Notation

4050 8004 RX2.EX1 STII R5, LOC1
Defines Second Operand address
No Index Register Specified

First Operand

Storce Halfword 'STH' Instruction Op-Code
The Second Operand address is calculated as follows:

Bits 16 19 20 23 24 27 28 31

1000 0000 0000 0100
L]

L~ 15-Bit Positive Relative Displacement
Indicates RX2 Format

Second Operand Address

= 32-bit Expansion of contents of D2 field + contents of incremented Location
Counter (see Figure 1-5).

= Y'00000004' + Y'00000010'

= Y'00000014'
Machine Code Label_ Assembler Notation
4050 FFE4 RX2.EX2 STH R5, LOC1

Defines Second Opcrand address

No Index Register Specified

First Operand

——————— Store Halfword 'STH' Instruction Op-Code

1-14 29-428 RO6 5/78

The Second Operand address is calculated as follows:

Bits 16 19 20 2324 2728 31

111 "M 1110 0100
L]
[15-Bit Negative Relative Displacement

Indicates RX2 Format

Second Operand Address

= 32-bit Expansion of contents of D2 field + contents of incremented Location
Counter (see Figure 1-5).

= Y'FFFFFFE4' + Y'00000030'

= Y'00000014'
Machine Code Label Assembler Notation
4056 FFD2 RX2, EX3 STH R5, LOC1-14(R6)

Defines Second Operand address

Register 6 to be used for Indexing

L Tirst Operand

Store Halfwovrd 'STH' Instruction Op-Code
The Second Operand address is calculated as follows:

Bits 16 1920 2324 27 28 31

1M1 1111 1101 0010
L 1

156-Bit Negative Relative Displacement
Indicates RX2 Format

Second Operand Address

i

32-Bit Expansion of D2 field + contents of incremented Location
Counter + contents of Index Register 6 (See Figure 1-5).

= Y'FFFFFIFD2' + Y'00000034' + Y'0000000E"

Y'00000014"'

29-428 RO6 5/78

1-15

Register and Indexed Storage Three (RX3) Format

0 7 " 1516,17,18 19 20 24 47

oP R1 FX2 |0|1]0 (0 SX2 A

This is a 48 bit format in which double indexing is permitted. Bits 0:7 contain the operation
code. Bits 8:11 contain the R1 specification. Bits 12:15 contain the first index specification,
FX2. Bit 16 must be zero. Bit 17 must be one. Bits 18:19 must be zero. Bits 20:23 contain
the second index specification, SX2. Bits 24:47 contain a 24 bit address, A2. Second level
indexing is allowed even if first level indexing is not specified.

In general, the first operand is contained in the register specified by Rl. The second operand
is located in memory. Its memory address is obtained by adding the contents of the first index
register and the contents of the second index register, and then adding to this result the contents
of the A2 field. For example:

Machine Code Label Assembler Notation
2§70 4001 0000 RX3.EX1 L R7, Y'10000'

Defines Second Operand address
Second Level Indexing not specified

-—— Specifies RX3 format

First Level Indexing not specified

First Operand

Load 'L’ Instru:tion Op-Code

The Second Operand address is calculated as follows:

Bits 16 20 24 28 31 32 36 40 44 47
0100 0000 0000 0001 0000 0000 0000 0000
| S L]
20-Bit Absolute Address - Y' 10000 |
Indicates RX3 Format

Second Operand Address

= Contents of A2 field

= Y'00010000'
Machine Code Label Assembler Notation
5885 4601 FI'E4 RX3.EX2 L R8, Y'20000'-28(R5, R6)

Defines Second Operand address
Register 6 to be used for Second Level Indexiﬁg

Specifies RX3 format

Register 5 to be used for First Level Indexing

First Operand

Load 'L' Instruction Op-Code

1-16 29-428 RO6 5/78

The Second Operand address is calculated as follows:

Bits 16 20 24 28 3132 36 40 44 47
0100 0110 0000 0001 1111 1111 1110 0100
[L —J
20-Bit Absolute Address Y'1FFE4' I

- Indicates RX3 Format
Second Operand Address
= contents of A2 field + contents of Index Register 6
+ contents of Index Register 5 (see Tigure 1-5).
= Y'0001FFE4' + Y'0000000E' + Y'0000000E"'
= Y'00020000"
Register and Immediate Storage One (R11) Format ‘

0 78 1112 1516 31

opP R1 X2 12

This format represents a 32 bit instruction word. DBits 0:7 contain the operation code. DBits 8:11
contain the R1 specification. Bits 16:31 contain the 16 bit immediate value, I2.

In this format, the register specified by R1 contains the first operand. The 32-bit effective second
operand is obtained by adding together the 32-bit representation of the signed 16-bit value contained
in the I2 field, and the contents of the register specified by X2. For example:

Machine Code Label Assembler Notation
9?90 8000 RI1.EX1 LHI R9,X'8000'
16-Bit Immediate Value

No Index Register Specified

First Operand

Load Halfword Immediate "LIIIT' Instruetion Op-Code
The Second Operand is calculated as follows:

Bits 16 20 24 28 31

1000 0000 0000 0000

l Sign Bit

Second Operand

]

32-Bit representation of X'8000'

= Y'FFFF8000'
Machine Code Label Assembler Notation
C895 8000 RI1.EX2 ~ LHI R9,X'8000'(R5)

16-Bit Immediate Value
Index Register 5 Specified
First Operand

Load Halfword Immediate 'LHI' Instruction Op-Code

29-428 ROG6 5/78 1-17

The Second Operand is calculated as follows:

Bits 16 20 24 27 31

1000 0000 0000 0000

I Sign Bit

Second Operand
= 32-Bit representation of X'8000' + the contents of Index Register 5 (See Figure 1-5).

= Y'FFFF8000' + Y'0000000E"'

]

Y'FFFF800E'
Register and Immediate Storage Two (R12) Format

0 7 11 15 47

oP R1 X2 12 .

This is a 48 bit instruction format. Bits 0:7 contain the operation code. Bits 8:11 contain the
R1 specification. Bits 12:15 contain the X2 specification. Bits 16:47 contain the 32 bit immediate
value, I2.

The first operand is contained in the register specified by R1. The second operand is obtained
by adding the contents of the index register, specified by X2, and the 32 bit immediate value con-
tained in the 12 field. For example:

Machine Code Label Assembler Notation

%“_SAO 0000 8000 RI2.EX1 LI R10,X'8000'
32-Bit Immediate Field
No Index Register Specified

First Operand

Load Immediate 'LI' Instraction Op-Code
The Second Operand is calculated as follows:

Bits 16 20 24 28 32 36 40 44 47

0000 0000 0000 000G 1000 6000 0000 0000

L]
L 32-Bit Immediate Value

Second Operand

1]

Contents of I2 Field

Y'00008000'

1

1-18 29-428 RO6 5/78

Machine Code Label Assembler Notation

I'8BA 0001 7FFE RI2. EX2 LI R11, Y'17TFFE'(R10)

32-Bit Immediate Field
Specifies Index Register 10

First Operand

Load Immediate 'LI' Instruction Op-Code
The Second Operand is calculated as follows:

Bits 16 20 24 28 32 36 40 44 47

0000 0000 0000 0001 0111 111 111 1110

| i
IR 32-Bit Immediate Value

Second Operand

= Contents of I2 Field + contents of Index Register 10 (See Figure 1-5).

Y'00017FFE' + Y'00008000'

= Y'0001FFTFE'

29-428 RO6 5/78

1-19/1-20

CHAPTER 2
LOGICAL OPERATIONS

The set of logical instructions provides a means for the manipulation of binary data. Many of the
instructions grouped with the logical set may also be used in arithmetic and other operations. These
instructions include loads, stores, compares, shifts, list processing, translation, and cyclic redun-
dancy checks.

DATA FORMATS

Logical data can be organized as bytes, halfwords, fullwords, or bit arrays of up to 231 pits as
shown in Figure 2-1.

.0 BYTE 7l

l

I0 HALFWORD 15.

|

‘0 FULLWORD 31,

I |

0 BIT ARRAY N

Figure 2-1. Logical Data

~eo28 ROD 1/76 2-1

OPERATIONS

In logical operations between the contents of a general register and a halfword operand, the half-
word operand is expanded to a fullword before the operation starts. The halfword is expanded by
propagating the most significant bit through Bits 15:0 of the fullword.

Boolean Operations

The Boolean operators AND, OR, and Exclusive OR (XOR) operate on halfword and fullword quan-
tities. All bits in both operands participate individually. The Boolean functions are defined as
follows:

0AND 0 =10
0AND 1 =0 logical duet
1AND 0 =0 (logical product)
1AND1=1
OORO0=0
e logical sum)
10R0=1 (logical su
10R1=1
0XOR 0=0
0XOR1=1) ‘
1XOR0=1 (logical difference)
1XOR 1=0

Translation

The translate instruction is used to translate a character directly, or to effect an unconditional
branch to a special translate subroutine. Associated with the translate instruction is a trans-
lation table. The entries in the table are halfwords as shown in Figure 2-2.

0 78 15
1 CHARACTER ENTRY SPECIFY!NG TRANSLATED
CHARACTER
[O l(CHAR. HANDLING ROUTINE ADDRESS)/ZJ ENTRY SPECIFYING ADDRESS OF

A CHARACTER HANDLING ROUTINE

Figure 2-2. Translation Table Entry

The character to be translated is a byte of logical data. This unsigned quantity is doubled and
used as an index into the table. If the corresponding entry has a one in bit Position zero, then
Bits 8:15 contain the character to be substituted for the data character. If there is a zero in bit
Position zero, then Bits 1:15 contain the address, divided by two, of the translate routine. When
the translate instruction results in a branch, this value is doubled to produce the address of the
routine. Because this result is a 16 bit address, the software routine must be located in the first
64KB of the program. (The program can reside anywhere in memory if it is relocated by the
Memory Access Controller (MAC). Ths= translate table can contain up to 256 eantries. How-
ever, if the data characters are always less than eight bits, fewer entries are required,

2-2 29-428 RO2 2/77

List Processing

The list processing instructions manipulate a circular list as defined in Figure 2-3.

0 15 16 31
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOT 0
SLOT 1
o= =
SLOTN

Figure 2-3. Circular List Definition

The first four halfwords contain the list parameters. Immediately following the parameter block

is the list itself. The first fullword in the list is designated Slot 0. The remaining slots are desig-
nated 1, 2, 3, etc., up to a maximum slot number which is equal to the number in the list minus
one. An absolute maximum of 65, 535 fullword slots may be specified. (Slots are designated 0
through X'I'FFE'.)

The first parameter halfword indicates the number of slots (fullwords) in the entire list. The
second parameter halfword indicates the current number of slots being used. When this halfword
equals zero, the list is empty. When this halfword equals the number of slots in the list, the list
is full. Once initialized, this halfword is maintained automatically. It is incremented when ele-
ments are added to the list and decremented when elements are removed.

The third and fourth halfwords of the list parameter block specify the current top of the list and the
next bottom of the list respectively. These pointers are also updated automatically. See Figure 2-4.

OCCUPIED
SECTION

Figure 2-4. Circular List

29-428 RO1 1/76 2-3

LOGICAL INSTRUCTION FORMATS

The logical instructions use the Register to Register (RR), the Register and Indexed Storage (RX),
and the Register and Immediate Storage (RI) instruction formats.

LOGICAL INSTRUCTIONS

The instructions described in this section are:

L Load (0]} OR Immediate
LR Load Register OH OR Halfword
LI Load Immediate OHI OR Halfword Immediate
LIS Load Immediate Short X Exclusive OR
LCS Load Complement Short XR Exclusive OR Register
LH Load Halfword X1 Exclusive OR Immediate
LHI Load Halfword Immediate XH Exclusive OR Halfword
LA Load Address XHI Exclusive OR Halfword Immediate
LRA Load Real Address TI Test Immediate
LHL Load Halfword Logical THI Test Halfword Immediate
LM Load Multiple SLL Shift Left T.ogical
LB Load Byte SLLS Shift Left Logical Short
LBR Load Byte Register SRL Shift Right Logical
EXHR Exchange Halfword Register SRLS Shift Right Logical Short
EXBR Exchange Byte Register SLHL Shift Left Halfword Logical
ST Store SLHLS Shift Left Halfword Logical Short
STH Store Halfword SRHL Shift Right Halfword Logical
STM Store Multiple SRHLS Shift Right Halfword Logical Short
STB Store Byte RLL Rotate Left Logical
STBR Store Byte Register RRL Rotate Right Logical
CL Compare Logical TS Test and Set
CLR Compare Logical Register TBT Test Bit
CLI Compare Logical Immediate SBT Set Bit
CLH Compare Logical Halfword CBT Complement Bit
CLHI Compare Logical Halfword Immediate RBT Reset Bit
CLB Compare Logical Byte CRC12 Cyclic Redundancy Check Modulo 12
N AND CRC16 Cyclic Redundancy Check Modulo 16
NR AND Register TLATE Translate
NI AND Immediate ATL Add to Top of List
NH AND Halfword ABL Add to Bottom of List
NHI AND Halfword Immediate RTL Remove from Top of List
(6] OR RBL Remove from Bottom of List
OR OR Register
2-4

29-428 RO1 1/76

INSTRUCTIONS

Load (L)

Load Register (LR)

Load Immediate (LI)

Load Immediate Short (LIS)
Load Complement Short (LCS)

Assembler Notation Op-Code Format
L R1,D2 (X2) 58 RX1, RX2
L R1,A2 (FX2, 8X2) 58 RX3
LR R1,R2 08 RR
LI R1,12 (X2) F8 RI2
LIS R1,N 24 SF
LCS R1,N 25 SF
Operation

The second operand replaces the contents of the register specified in R1.

Condition Code

Value is ZERO
Value is not ZERO
Value is not ZERO

o o ola
o o ol«

- o oln
o+ ol

Programming Notes

The Load Immediate Short instruction causes the four bit second operand to be expanded to
a 32 bit fullword with high order bits forced to ZERO. This fullword replaces the contents

of the register specified by R1.

The Load Complement Short instruction causes the four bit second operand to be expanded
to a 32 bit fullword with high order bits forced to ZERO. The two's complement value of
this fullword replaces the contents of the register specified by R1.

When the Load instructions operate on fixed point data, the Condition Code indicates ZERO
(no flags), negative (L flag), or positive (G flag) value.

In the RR format, if R1 equals R2, the Load instruction functions as a test on the contents
of the register.

In the RX formats, the second operand must be located on a fullword boundary.

Example LCS
Assembler Notation Machine Coc_!e Comments
LCS REGS, 7 2587 LOAD -7 INTO REGS8

Result of LCS Instruction:
(REGS8) = FFFF FFF9

Condition Code = 0001 (L =1)

29-428 RO2 2/77

INSTRUCTIONS

Load Halfword (LH)
Load Halfword Immediate (LHI)

Assembler Notation Op-Code Format
LH R1,D2 (X2) 48 RX1, RX2
LH R1,A2 (FX2,8X2) 48 RX3
LHI R1,12 (X2) Cs8 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. This fullword replaces the contents of the registeér specified by R1.

Condition Code

Value is ZERO
Value is not ZERO
Value is not ZERO

o o oln
o o o|c
~ o oln
O - o

Programming Notes

When the Load Halfword instructions operate on fixed point data, the Condition Code indi-
cates zero (no flags), negative (L flag), or positive (G flag) value,

In the RX formats, the second operand must be located on a halfword boundary.
In the RI1 format, the 16-bit 12 field is extendad to a fullword by propagating the sign

bit through bits 9:15, The contents of the index register specified by X2 are then
addad to form the fullword second operand.

29428 RO2 2/77

INSTRUCTION

Load Address (LA)

Assembler Notation Op-Code Format
LA R1,D2 (X2) E6 RX1, RX2
LA R1,A2 (FX2,8X2) E6 RX3
Operation

The effective address of the second operand (24 bits) replaces Bits 8:31 of the register
specified by R1. Bits 0:7 of the register specified by R1 are forced to ZERO.

Condition Code

Unchanged

Programming Note

The length of the address quantity depends on the internal structure of the particular machine.
Thus, in a Processor with a maximum address length of 20 bits, the calculated address replaces
bits 12:31 of the register specified by R1, and bits 0:11 are forced to ZERO. In a Processor with
maximum address length of 24 bits, the calculated address replaces bits 8:31 of the register speci-
fied by R1, and bits 0:7 are forced to ZERO.

29-428 RO2 2/77 2-7

INSTRUCTION

Load Real Address (LRA)

Assembler Notation Op-Code Format
LRA R1, D2(X2) 63 RX1, RX2
LRA R1, A2(FX2, SX2) 63 RX3
Operation

This instruction simulates the operation of a memory access controller. (Refer to
Chapter 8 for a detailed description of MAC.) The register specified by R1 contains
a program address (not relocated), The second operand address points to a
relocation/protection module parameter block.

The address contained in the register specified by R1 is relocated, using the appropriate
parameters. The relocated address replaces the contents of the register specified by R1.

Condition Code

No restrictions

Not exccutable

Not writable

Not present

Not mapped (Limit violation)

= o o o oln
o+ oo ol
oo ool
c oo kR oM

The condition code is determined on a priority basis with Not Mapped having highest priority,
Not Present second, Not Writable third, and Not Executable having lowest priority.

Programming Note
If the address is not mapped or not present, the register specified by Rl is unchanged.

The second operand location must specify a fullword boundary.

This instruction is supported by the microcode revision R03 and above., It is therefore

not supported in all the models.

Example: LRA
This example performs an address translation in the same manner as the MAC.

Tor this example, Register 1 contains X'54341', MACREG is the starting address of a copy of
the MAC Register, The fifth fullword entry located at MACREG+X'14' contains X'0FF24170°',

Assembler Notation Machine Code Comments
LRA REG1, MACREG 6310 8100 The first digit of the 20 bit

program address (5) is used
to index into MACREG

Result of LRA Instruction:

(REG1) = 28441 (24100 + 04341)
MACREG = Unchanged
Condition Code = 0010 (not writable)

2-8 29-428 R0O5 5/78

INSTRUCTION

Load Halfword Logical (LHL)

Assembler Notation Op-Code Format
LHL R1,D2 (X2) 73 RX1,RX2
LHL R1,A2 (FX2,8X2) 73 RX3
Operation

The halfword second operand replaces Bits 16:31 of the register specified by R1. Bits
0:15 of the register specified by R1 are forced to ZERO.

Condition Code

(=)
o
o
(=3

Value is ZERO
ofjof1jo0 Value is not ZERO

Programming Note

The second operand must be located on a halfword boundary.

29-428 RO2 2/77

2-9

INSTRUCTION

Load Multiple (LM)

Assembler Notation Op-Code Format
LM R1,D2 (X2) D1 RX1, RX2
LM R1,A2 (FX2,8X2) D1 RX3
Operation

Successive registers, starting with the register specified by R1, are loaded from successive
memory locations, starting with the location specified as the effective address of the second
operand. Each register is loaded with a fullword from memory. The process stops when
Register 15 has been loaded.

Condition Code

Unchanged

Programming Note
The second operand must be locatedon a fullword boundary.

The second operand address is formed before any registers are loaded. Therefore,
X2, FX2, and SX2 can be among the registers loaded.

2-10 29-428 RO2 2/77

INSTRUCTIONS

Load Byte (LB)
Leoad Byte Register (LBR)

Assembler Notation Op-Code Format
LB R1,D2 (X2) D3 RX1,RX2
LB R1, A2 (FX2,SX2) D3 RX3
LBR R1,R2 93 RR
Operation

The eight-bit second operand replaces the least significant bits (Bits 24:31) of the register
specified by R1. Bits 0:23 of the register are forced to ZERO.

Condition Code
Unchanged
Programming Note

In the Load Byte Register instruction, the second operand is taken from the least significant
eight bits (Bits 24:31) of the register specified by R2.

29-428 RO2 2/77 2-11

INSTRUCTION

Exchange Halfword Register (EXHR)

Assembler Notation Op-Code Format
EXHR R1,R2 34 RR
Operation

Bits 0:15 of the register specified by R2 replace Bits 16:31 of the register specified by R1.
Bits 16:31 of the register specified by R2 replace Bits 0:15 of the register specified by R1.

Condition Code
Unchanged
Programming Note

If R1 equals R2, the two halfwords contained within the register are exchanged.
If R1 does not equal R2, the contents of R2 are unchanged.

Example: EXHR

Assembler Notation Machine Code Comments
LI REG5, Y'0ABCDETY' F850 OABC DETF9 (REG 5) = 0ABCDEF9
LI REG7, Y'12345678' 870 1234 5678 (REG 7) = 12345678
EXHR REG5,REGT? 3457

Result of EXHR Instruction:
(REG 5) = 56781234

(REG 7) = 12345678
Condition Code = Unchanged

2-12 29428 RO2 2/77

INSTRUCTION

Exchange Byle Register (EXBR)

Assembler Notation Op-Code Format
EXBR R1,R2 94 RR
Operation

The two eight-bit bytes contained in Bits 16:31 of the register specified by R2 are exchanged
and loaded into Bits 16:31 of the register specified by R1. Bits 0:15 of the register specified

by R1 are unchanged. The register specified by R2 is unchanged.

Condition Code

Unchanged

Programming Note

R1 and R2 may specify the same register. In this case, the two bytes in Bits 16:31 of the

register specified by R2 are exchanged.

Example: EXBR

Assembler Notation Machine Code Comments
LI REG7, X'5A6B3C4D' F870 5A6B 3C4D (REGT) = 5A6B3C4D
LI REG3, Y'98761234' F830 9876 1234 (REG3) = 98761234
EXBR REG7,REG3 9473

Result of EXBR Instruction:
(REGT) = 5A6B3412

(REG3) = 98761234
Condition Code = Unchanged

29-428 RO2 2/77

2-13

INSTRUCTION

Store (ST)
Assembler Notation Op-Code Format
ST R1,D2 (X2) 50 RX1, RX2
ST R1,A2 (FX2,5X2) 50 RX3
Operation

The 32 bit contents of the register specified by R1 replace the contents of the memory
location specified by the effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

2-14 29-428 RO2 2/77

INSTRUCTION

Store Halfword (STH)

Assembler Notation Op-Code Format
STH R1,D2 (X2) 40 RX1,RX2
STH R1, A2 (FX2,8X2) 40 RX3
Operation

Bits 16:31 of the register specified by R1 replace the contents of the memory location
specified by the effective address of the second operand,

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundary.

29-428 RO2 2/77

2-15

2-16

INSTRUCTION

Store Multiple (STM)

Assembler Notation Op-Code Format
STM R1,D2 (X2) DO RX1,RX2
STM R1,A2 (FX2,5X2) DO RX3
Operation

The fullword contents of registers, starting with the register specified by R1, replace
the contents of successive memory locations, starting with the location specified by the
effective address of the second operand. The process stops when Register 15 has been
stored.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

29-428 RO2 2/77

INSTRUCTIONS

Store Byte (STB)
Store Byte Register (STBR)

Assembler Notation ’ OE.dee Format
STB R1,D2 (X2) D2 RX1,RX2
STB R1, A2 (FX2,5X2) D2 RX3
STBR R1,R2) 92) RR
Operation

- 'The least significant eight bits (Bits 24:31) of the register specified by R1 are stored in
the second operand location.

Condition Code

Unchahged ‘

Programming Note

In the Store Byte Register instruction, the eight bit quantity is stored in Bits 24:31 of the
register specified by R2. Bits 0:23 of the register are unchanged.

Example: STBR

Assembler Notation Machine Code Comments
LI REG4, Y'13577531' F840 1357 7531 (REG4) = 13577531
LI REG3, Y'24688642"' 830 2468 8642 (REG3) = 24688642
STBR REG4,REG3 9243

Result of STBR Instruction:
(REG4) = 13577531

(REG3) == 24688631
Condition Code = Unchanged

29428 RO2 2/77 2-17

INSTRUCTIONS

Compare Logical (CL)
Compare Logical Register (CLR)
Compare Logical Immediate (CLI)

Assembler Notation Op-Code Format
CL R1,D2 (X2) 55 RX1,RX2
CL R1,A2 (FX2,8X2) 55 RX3
CLR R1,R2 05 RR
CLI R1,12 (X2) F5 RI2
Operation

The first operand, the contents of the register specified by R1, is compared logically to the
second operand. The result is indicated by the Condition Code setting. Neither operand is
changed.

Condition Code

C|V|G|L

0|X|[o0lo0 First operand equal to second
1(X|0(1 First operand less than second
1iX[1}0 First operand less than second
0[X[|0f1 First operand greater than second
0[X[1]|0 First operand greater than second

Programming Note
In the RX formats, the second operand must be located on a fullword boundary.
The state of the V flag is undefined.

It is meaningful to check the following condition code mask (M1) after a logical comparison:

Mask True/False* Inference
3 False First operand equal to second
3 True First operand not equal to second
8 False First operand greater than second
8 True First operand less than second

*Refer to page 3-1 for True/False concept in branch instructions.

2-18 29428 RO2 2/77

INSTRUCTIONS

Compare Logical Halfword (CLH)
Compare Logical Halfword Immediate (CLHI)

Assembler Notation Op-Code Format
CLH R1,D2 (X2) 45 RX1,RX2
CLH R1,A2 (FX2,5X2) 45 . RX3
CLHI R1,I2 (X2) C5 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The first operand, the contents of the register specified by R1, is
compared to this fullword. The result is indicated by the Condition Code setting. Neither
operand is changed. ’

Condition Code

C|VI|G|L

0|X|[0]|0 First operand equal to second
1|1Xi0|1 First operand less than second
1[X|1]}0 First operand less than second
0({X|0}1 First operand greater than second
o[xi|1io TFirst operand greater than second

Programming Note
In the RX formats, the second operand must be located on a halfword boundary.
In the RI1 format, the 16-bit I2 field is extended to a fullword by propagating the sign

bit through bits 0:15. The contents of the index register specified by X2 are then
added to form the fullword second operand.

The state of the V flag is undefined.

It is meaningful to check the following condition code mask (M1) after a logical conparison:

Mask True/False* Inference
3 False First operand equal to second
3 True First operand not equal to second
8 False First operand equal to or greater than second
8 True First operand less than second

*Refer to page 3-1 for True/False concept in branch instructions.,

29-428 R06 5/78 2-19

INSTRUCTION

Compare Logical Byte (CLB)

Assembler Notation Op-Code Format
CLB R1,D2 (X2) D4 RX1,RX2
CLB R1,A2 (FX2,S8X2) D4 RX3
Operation

The byte quantity, contained in Bits 24:31 of the register specified by R1, is compared
with the 8-bit second operand. The result is indicated by the Condition Code setting.
Neither operand is changed.

Condition Code

C|V|G|L

o|xX]|0|0 First operand equal to second
1]X101)1 First operand less than second
1i{X|[1}0 First operand less than second
0|X|0]|1 First operand greater than second
0|X|1]0 First operand greater than second

Programming Note

It is meaningful to check the following condition code mask (M1) after a logical comparison:

Mask True/False* Inference
3 TFalse First operand equal to second
3 True First operand not equal to second
8 Talse First operand equal to or greater than second
8 True First operand less than second

*Refer to page 3-1 for True/TIalse concept in branch instructions.

2-20 29-428 R0O6 5/78

INSTRUCTIONS

AND (N)
AND Register (NR)
AND Immediate (NI)

Assembler Notation Op-Code
N R1,D2 (X2) 54
N R1,A2 (FX2,58X2) 54
NR R1,R2 04
NI R1,I2 (X2) F4
Operation

Format

RX1, RX2
RX3

RR

RI2

The logical product of the 32 bit second operand and the contents of the register specified
by R1 replacc the contents of the register specified by R1. The 32 logical bit product

is formed on a bit-by-bit basis.

Condition Code

CIV|IG{L

01010}0 Result is ZERO
0j0]0]1 Result is not ZERO
0j0(1]0 Result is not ZERO

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags),

negative (L flag) or positive (G flag) result.

29-428 RO2 2/77

2-21

INSTRUCTIONS

AND Halfword (NH)
AND Halfword Immediate (NHI)

Assembler Notation Op-Code Format
NH R1,D2 (X2) 44 RX1,RX2
NH R1,A2 (FX2,8X2) 44 RX3
NHI R1,12 (X2) C4 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical product of this 32 bit quantity and the contents of the
register specified by R1 replace the contents of the register specified by R1. The 32 bit
logical product is formed on a bit-by-bit basis.

Condition Code

C|VIGI|L

010]07}0 Result is ZERO
010101 Result is not ZERO
ojol1]o Result is not ZERO

Programming Note
In the RX formats, the second operand must be located on a halfword boundary.
In the RI1 format, the 16-bit I2 field is extended to a fullword by propagating the sign

bit through bits 0:15. The coatents of the indsx register specified by X2 are then
added to form the fullword second operand.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (Lflag)
or positive (G flag) result,

2-22 29428 RO2 2/77

INSTRUCTIONS

OR Register (OR)

OR (O} I
OR Immediate (OI)

Assembler Notation Op-Code Format
(o] R1,D2 (X2) 56 RX1,RX2
O R1, A2 (FX2,8X2) 56 RX3
OR R1,R2 06 RR
o1 R1,I2 (X2) F6 RI2
Operation

The logical sum of the 32 bit second operand and the contents of the register specified by
R1 replace the contents of the register specified by R1. The logical sum is formed on a
bit-by-bit basis.

Condition Code

C|V{G|L

0j0]o0}o Result is ZERO
00|01 Result is not ZERO
0j§j0]11]0 Result is not ZERO

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.
When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)

or positive (G flag) result.

29-428 RO2 2/77 2-23

INSTRUCTIONS

OR Halfword (OH)
OR Halfword Immediate (OHI)

Assembler Notation Op-Code Format
OH R1,D2 (X2) 46 RX1,RX2
OH R1,A2 (FX2,8X2) 46 RX3
OHI R1,I12 X2) Cé6 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical sum of this 32 bit quantity and the contents of the register
specified by R1 replace the contents of the register specified by R1. The 32 bit sum is
formed on a bit-by-bit basis.

Condition Code

C|VI|G|L

0Jj0101}0 Result is ZERO
010§01(1 Result is not ZERO
0]0]1]0 Result is not ZERO

Programming Note
In the RX formats, the second operand must be located on a halfword boundary.
In the RI1 formast, the 16-bit 12 field is extended to a fullword by propagating the sign
bit through bits 0:15. The contents of the index register specified by X2 are then

added to form the fullword second operand.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

2-24 29428 RO2 2/77

INSTRUCTIONS

Exclusive OR Register (XR)

Exclusive OR (X)] I
Exclusive OR Immediate (XI)

Assembler Notation Op-Code ' Format
X R1,D2 (X2) 57 RX1,RX2
X R1,A2 (FX2,8X2) 57 RX3
XR R1,R2 07 RR
XI . R1,12 (X2) oy RI2
Operation

The logical difference of the 32 bit second operand and the contents of the register specified
by R1 replace the contents of the register specified by R1, The 32 bit difference is formed
on a bit-by-bit basis.

Condition Code

C|{VI|G|L

0(0]|0]0 Result is ZERO
0f(0]0}1 Result is not ZERO
0[0f1]0 Result is not ZERO

Programming Note
In the RX formats, the second operand must be located on a fullword boundary.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

29-428 RO2 2/77 2-25

INSTRUCTIONS

Exclusive OR Halfword (XH)
Exclusive OR Halfword Immediate (XHI)

Assembler Notation Op-Code Format
XH R1, D2 (X2) 47 RX1, RX2
XH R1, A2 (FX2,8X2) 47 RX3
XHI R1,12 (X2) C7 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical difference of this 32 bit quantity and the contents of the
register specified by R1 replace the contents of the register specified by R1., The 32 bit
difference is formed on a bit-by-bit hasis.

Condition Code

C|V|G]|L

0jofo|o Result is ZERO
ofjo]o|1 Result is not ZERO
0J0]1]0 Result is not ZERO

Programming Note
In the RX formats, the second operand must be located on a halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullword by propagating the sign
bit through bits 0:15. The contents of the index register specified by X2 are then
added to form the fullword second operand.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

2-26 29-428 RO2 2/77

INSTRUCTION

Test Immediate (TI)

Assembler Notation Op-Code _Format
TI R1,12 (X2) F3 RIZ
Operation

Each bit of the second operand is logically ANDed with the corresponding bit in the register
specified by R1. Neither operand is changed.

Condition Code

C{V|G|L

ojo0j0f|o0 Result is ZERO

0ojo0jo0l1 Result is not ZERO

0]0j1]0 Result is not ZERO
Example: TI

This example tests if Bit 16 of Register 9 is set.

(REG 9) = TEFBC230

Assembler Notation Comments
TI R9,Y'02008039' . Test Bit 16

Result of T| Instruction

(REG 9) unchanged
Condition Code = 0010 (G = 1)

29-428 R06 5/78 997

INSTRUCTION

Test Halfword Immediate (THI)

Assembler Notation Op-Code Format
THI R1,12 (X2) C3 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. Each bit in this quantity is logically ANDed with the corresponding
bit contained in the register specified by R1. Neither operand is changed.

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO

o o ola
o o o|ld
- o ol
o r ol

Programming Notes

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

In the RII format, the 16-bit I2 field is extended to a fullword by propagating the sign

bit through bits 0:15. The contents of the index register specified by X2 are then
added to form the fullword second operand.

2-28 29-428 RO2 2/77

INSTRUCTIONS

shift Left Logical (SLL)
Shift Left Logical Short (SLLS)

Assembler Notation Op-Code
SLL R1,12 (X2) ED
SLLS R1,N 11

Operation

Format

RI1
SF

The first operand, the contents of the register specified by R1, is shifted left the number
of places specified by the second operand, Bits shifted out of Position 0 are shifted through

the carry flag of the Condition Code and then lost.

flag. Zeros are shifted into Position 31.

Condition Code

C|V|G|L

X0 |00 Result is ZERO
X[{010j1 Result is not ZERO
X(o{1]0 Result is not ZERO
110 [X[X Carry

Programming Notes

The last bit shifted remains in the carry

In the RI formats, the shift count is specified by the least significant five bits of the second

operand. The maximum shift count is 31,

In the SF format, the maximum Shift coynt is 15.

The state of the C flag indicates the state of the last bit shifted out of Position 0.

If the second operand specifies a shift of zero places, the Coandition Code is set in accordance with I
the value containad in the register. The C flag is resef in this case.

When the register specified by R1 contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

29-428 RO2 2/77 2-29

INSTRUCTIONS

Shift Right Logical (SRL)
shift Right Logical Short (SRLS)

Assembler Notation Op-Code Format
SRL R1,I2 (X2) EC RI1
SRLS R1, N 10 SF

Operation

The first operand, the contents of the register specified by R1, is shifted right the number
of places specified by the second operand. Bits shifted out of Position 31 are shifted through
the carry flag of the Condition Code and then lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position 0.

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

Mo oD
MoK olH

XX oMa
c oo o«

Programming Notes

In the RI1 format, the shift count is specified by the least significant five bits of the second
operand. The maximum shift count is 31,

In the SF format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted out of Position 31.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register. The C flag is reset in this case.

2-30 29428 RO2 2/77

INSTRUCTIONS

Shift Left Halfword Logical (SLHL)
Shift Left Halfword Logical Short (SLHLS)

Assembler Notation Op-Code Format
SLHL R1,I2 (X2) CD RI1
SLHLS R1,N 91 SF

Operation

Bits 16:31 of the register specified by R1 are shifted left the number of places specified by
the second operand. Bits shifted out of Position 16 are shifted through the carry flag and
lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 31.
Bits 0:15 of the first operand remain unchanged.

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

H XM X0
o o ool
=Nl
MO R ol

Programming Notes
The condition code setting is based on the halfword (bits 16:31) result.

In the Ril format, the shift count is specified by the least significant four bits
of the second operand. The maximum shift count is 15.

The state of the C flag indicates the state of the last bit shifted out of Position 16.

When the register specified by R1 contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the condition code is set in accordance with
the valu2 contained in bits 16:31 of the register. The C flag is reset in this case.

29-428 RO2 2/77 2-31

INSTRUCTIONS

Shift Right Halfword Logical (SRHL)
Shift Right Halfword Logical Short (SRHLS)

Assembler Notation Op-Code Format
SRHL R1,12 (X2) cc RI1
SRHLS R1,N 90 SF

Operation

Bits 16:31 of the register specified by R1 are shifted right the number of places specified
by the second operand. Bits shifted out of Position 31 are shifted through the carry flag and
lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 16.
Bits 0:15 of the first operand remain unchanged.

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO

H M X|Q
o oo olg
== [0
MO Ko

Carry

Programming Notes

2-32

The condition code setting is based on the halfword (bits 16:31) result.

In the RI1 formeat, thz shift count is specified by ths least significant four
bits of the second operand. The maximum shift count is 15,

The state of the C flag indicates the state of the last bit shifted out of the Position 31.

When the register specified by R1 contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in acecordance with
the halfword valuz containad in bits 16:31 of the register. The C flag is reset in this case.

29428 RO2 2/77

INSTRUCTION

Rotate Left Logical (RLL) |
Assembler Notation Op-Code Format

RLL R1,12 (X2) . EB RI1
Operation

The 32 bit first operand, contained in the register specified by R1, is shifted left, end around,
the number of positions specified by the second operand. Bits shifted out of Position 0 are
shifted into Position 31.

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO

o o ot
o o ol
= C ol
o+ ol

Programming Notes
The shift count is specified by the least significant five bits of the sccond operand, The maximum
shift count is 31,
When the register specified by R1 contains fixed point data, the L flag set indicates a nega-
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register specified by R1.

Example: RLL
1. Assembler Notation Machine Code Comments |
LI REG9Y, Y'56789ABC! I'890 56789ABC (REG 9) = 56789ABC
RLL REGY9, X'0004" EB90 0004

Result of RLL Instruction:

(REG 9) = 6789ABC5
Condition Code = 0010 (G =1)

2. Assembler Notation Machine Code Comments I
LI REGY Y'88880000! 890 8888 0000 (REG 9) = 88880000
RLL REGY, X'03' EB90 0003

Result of RLL Instruction:

(REG 9) = 44400004
Condition Code = 0010 (G =1)

29-428 R0O2 2/77 ’ 2-33

INSTRUCTION

Rotate Right Logical (RRL)

Assembler Notation

RRL R1,12 (X2)

Operation

Op-Code
EA

Format

RI1

The 32 bit first operand, contained in the register specified by R1, is shifted right, end
around, the number of positions specified by the second operand. Bits shifted out of Position

31 are shifted into Position 0.

Condition Code

CIVIGIL
0j0j0j0
0j0j0j1
0]0J110

Programming Notes

Result is ZERO
Result is not ZERO
Result is not ZERO

The shift count is specified by the least significant five bits of the second operand. The maximum

shift count is 31.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-

tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with

the value contained in the register specified by R1.

Example: RRL

1. Assembler Notation

LI REG4, Y'12345678'
RRL REG4, X'04'

Result of RRL Instruction

(REG4) = 81234567

Condition Code = 0001 (L. = 1)

2. Assembler Notation

LI REG4,Y'00001111"'
RRL REG4, X'01'

Result of RRL Operation:

(REG4) = '800000888"

Condition Code = 0001 (L =1)

2-34

Machine Code

F840 1234 5678
EA40 0004

Machine Code

F840 0000 1111
EA40 0001

Comments

(REG4) = 12345678

Comments

(REG 4) = 00001111

29-428 R06 5/78

INSTRUCTION

Test and Set (TS)

Assembler Notation Op-Code Format
TS D2 (X2) EO RX1,RX2
TS A2 (FX2,5X2) EO0 RX3
Operation

The halfword second operand is read from memory and, on the same cycle, written
back with the most significant bit set. The most significant bit of the second operand
is tested. The Condition Code reflects the state of this bit at the time of the memory
read. The other bits in the halfword are undefined.

Condition Code

C|V|G]|L
XX X]0 Most significant bit reset
X|XI X1 Most significant bit set

Programming Notes
The Test and Se! instruction provides a mechanism for software synchronization,

The Test and Set instruction can be used in a single processor environment as follows: Two or
more user tasks runaing uader an Operating System share a halfword. This halfword is located
in a memcry area referced to as Task Common. Each task can access the halfword using the
TS instruction, The synchronization sequence may be as follows:

TASK 1: Sets the most significant bit using the TS instruction.

TASK 2: Senses the most significant bit using the TS instruction; sees that it is set; per-
forms the necessary software synchronization; and then resets the most signi-
ficant hit of the halfword.

The Test and Set instruction can be used in a multi-processor system as follows: Two or more
processors share a halfword. This halfword is located in a memory area referred to as Shared
Memory, Each processor can access the halfword using the TS instruction. The synchroniza-
tion sequence can be exactly as explained for user tasks with the following subtle difference.
Whereas TASK1 and TASK2 canaof, access the halfword at the same (real) time; two processors
can, The access is granted according to the priority.

The hardware/firmware ensures that no other accesses to the halfword have been mude during
the execution of the TS instruction.

29428 RO2 2/77 2-35

INSTRUCTION

Test Bit (TBT)

Assembler Notation Op-Code. Format
TBT R1,D2 (X2) 74 RX1,RX2
TBT R1,A2 (FX2,8X2) 74 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The

value contained in the register specified by R1 is the bit displacement into the array. Bits

in the array are counted from left to right starting with bit zero. The argument bit is located
and tested. The test does not change the bit.

Condition Code

C|V|G|L
ofofofo Tested bit is ZERO
0jof1]o Tested bit is ONE
Example: TBT
Assembler Notation Machine Code Comments
LIS REGS,3 2483 (REG 8) =3
TBT REGS8, LABEL 7480 OBC4 TLABEIL = Halfword

in memory = X'B34A"
Result of TBT Instruction:
Memory Location X'BC4' unchanged

(REG 8) unchanged
Condition Code = 0010 (G = 1)

2-36 29-428 RO6 5/75

INSTRUCTION

Set Bit (SBT)

Assembler Notation Op-Code Format
SBT R1,D2 (X2) 75 RX1,RX2
SBT R1, A2 (FX2,8X2) 75 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The

value contained in the register specified by Rl is the bit displacement into the array. Bits
in the array are counted from left to right starting with bit zero. The argument bit is located

and forced to one. ‘

Condition Code

C|V|GI|L
0]0j0]0 Previous state of bit was ZERO
00110 Previous state of bit was ONE
Example: SBT
Assembler Notation Machine Code Comments
LIS REGS,8 2458 (REG 5) =8
SBT REG5, LABEL 7550 1520 LABEL Located at
X'1520'. It contains
X'2134'.

Result of SBT Instruction:
Contents of LABEL = 21B4

(REG 5) unchanged
Condition Code = 0000 (G = 0)

29-428 R06 5/78

2-37

INSTRUCTION

Complement Bit (CBT)

Assembler Notation Op-Code Format
CBT R1,D2 (X2) 77 RX1,RX2
CBT R1, A2 (FX2,8X2) 77 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The

value contained in the register specified by R1 is the bit displacement into the array. Bits

in the array are counted from left to right starting with bit zero. The argument bit is located
anc complemented.

Condition Code
C|{VIG|L
ojo|o]o Previous state of bit was ZERO
0fjoj1]o Previous state of bit was ONE
~Example: CBT
Assembler Notation Machine Code Comments
LIS REG9,3 2493 .~ (REG9) =3
CBT REGY9, LABEL 7790 0C4A : LABEL located

at X'C4A'. It
contains X'2813'.

Result of CBT Instruction:

Contents of LABEL = 3813
(REGY) unchanged
Condition Code = 0000 (G = 0)

2-38 ' 29-428 R06 5/78

INSTRUCTION

Reset Bit (RBT)

Assembler Notation Op-Code Format
RBT R1,D2 (X2) 76 RX1,RX2
RBT R1,A2 (FX2,SX2) 76 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by Rl is the bit displacement into the array. Bits
in the array are counted from left to right starting with bit zero. The argument bit is located

and forced to ZERO.

Condition Code

C|VIG!L
0fo0 0 Previous state of bit was ZERO
ofoj1to0 Previous state of bit was ONE
Example: RBT
Assembler Notation Machine Code Comments
LIS REG2,3 2423 (REG 2) =3
RBT REG2,LABEL 7620 1A42 LABEL located

at X'1A42' con-
tains X'3143"'

Result of RBT Instruction:

Contents of LABEL = 2143
(REG 2) unchanged
Condition Code = 0010 (G=1)

29-428 R06 5/78 2-39

INSTRUCTIONS

Cyclic Redundancy Check Modulo 12 (CRC 12)
Cyclic Redundancy Check Modulo 16 (CRC 16)

Assembler Notation Op-Code
CRC12 R1,D2 (X2) 5E
CRC12 R1,A2 (FX2,8X2) 5E
CRC16 R1,D2 (X2) 5F
CRC16 R1,A2 (FX2,5X2) 5F

Operation

Format

RX1,RX2
RX3
RX1,RX2
RX3

These instructions are used to generate either a 12 bit or a 16 bit Cyclic Redundancy Check
(CRC) character. The register specified by R1 contains, in Bits 24:31, the next data char-
acter to be included in the CRC. The second operand is the accumulated (old) CRC. The

polynominal used for the 12 bit CRC generation is:

x124 x1 %34 x20 x 4+ 1

The polynomial used for the 16 bit CRC generation is:

%164 %154 x2, 1

The second operand is replaced by the generated CRC character.

Condition Code

Unchanged

Programming Note

The register specified by R1 remains unchanged.
The second operand must be located on a halfword boundary.

Figure 2-5 illustrates a Flow Chart for CRC generation,

2-40

29428 RO2 2/77

29-428 R0O2 2/77

CRC12 ALGORITHM

(START ,

(TEMP) +———(R196.31) (® OLDCRC
(COUNT)*+——6

SHIFT RIGHT
(TEMP) <*—— (TEMP)
BY 1
YES
CARRY
NO

(COUNT) «—— (COUNT) — 1

NO
CARRY

YES

SECOND OPERAND «————- (TEMP)

FOR CRC 16 ALGORITHM, USE: R1g4.37 INSTEAD OF Riyg.3
8 INSTEAD OF 6
X'A001" INSTEAD OF X'0F01’

Figure 2-5. Flow Chart for CRC Generation

(TEMP)#——(TEMP)) X'OFOV

IN STEP 1
IN STEP 2
IN STEP 4

STEP

.

2-41

INSTRUCTION

Translate (TLATE)

Assembler Notation Op-Code Format
TLATE R1,D2 (X2) E7 RX1, RX2
TLATE R1,A2 (FX2,8X2) E7 RX3

Operation

The least significant bits (Bits 24:31) of the register specified by R1 contain the character
to be translated. The fullword location specified by the second operand address contains the
address of a translation table. The table is made up of 256 halfwords. The character con-
tained in the register specified by R1 is used as an index into the table.

If Bit 0 of the table entry corresponding to the index character is one, then Bits 8:15 of the
table entry replace the index character, and the next sequential instruction is executed.

If Bit 0 of the table entry is zero, then Bits 1:15 of the table entry contain the address,
divided by two, of a special handling routine. In this case, no translation takes place.

The address contained in Bits 1:15 is shifted left by one, (multiplied by two). This address
replaces the current Location Counter, thereby effecting an unconditional branch.

Condition Code

Unchanged

Programming Note

The second operand address must be aligned on a fullword boundary.

0 7,8 15

1 TRANSLATED
CHARACTER

0](CHAR. HANDLING ROUTINE ADDRESS)/2

Example: TLATE

This example illustrates the use of the TLATE instruction. The translation tablie must either be
initialized or assembled to contain up to a total of 256 halfword eniries., In this example, the
table is initialized to contain 2 entries:

Label Assembler Notation Comments
LHI REGSH, X'8052' LOAD TABLE ENTRY INTO REG5
STH REG5, TABLE-+4 PUT ENTRY INTO TABLE
LA REG7, TRANLAB LOAD ANOTHER TABLE ENTRY
SRLS REGT,1 DIVIDE BY 2
STH REG7, TABLE+A PUT ENTRY INTO TABLE
TABADR DC A(TABLE)

2-42 29428 RO2 2/77

Since a program is normally assembled as a relocatable program, the Address of
TRANLAB is not known, but for illustrative purposes assume address of TRANLAB
is X'864',

0 15

TABLE+0
TABLE+2 :
TABLE+4 8
TABLE+6
TABLE+8 .
TABLE+10 0 4

TABLE+12

—— e

(=]
(%)

by
¢

SRR [N SR SN HpIE NNNpE Rpi, F

TABLE+508 :I’ |

At TABLE+A is the address of TRANLAB divided by 2 (X'864'/2)

1. TUsing this table, this example translates the character in Register 2.

Label Assembler Notation Comments

LIS REG2,2 (REG 2) = 0000 0002
TLATE REGZ, TABADR

Result of TLATE Instruction:
(REG2) = 0000 0052
Condition Code = Unchanged
The entry used = Contents at Address of (2 times contents of REG 2) + TABLE

= Contents at address TABLE + 4
= X18052'

Since first bit of entry = 1, Direct translation is used and the contents of REG2 are replaced by

X'0000 0052!
2. Using the table, the following example shows how the TLATE instruction can
be used to branch to a special character handling routine:

Label Assembler Notation Comments
LIS REGS5,5 REGS5 = 0000 0005
TLATE REG5, TABADR

TRANLAB LHR R6,R5 THESE INSTRUCTIONS
LB R3,0 (R6) OPERATE ON THE SPECIAL

CHARACTER.

29428 RO2 2/77

2-43

Result of TLATE Instruction:
(REGS5) = 0000 0005
Condition Code = Unchanged
Control is Transferred to subroutine at address TRANLAB (X'864').
The eﬁtry used = Contents at Address of (2 times contents of REG 5) + TABLE
= Contents at Address TABLE + A

= X'0432'

Since the first bit of entry = 0, the microcode multiplies the entry by 2 and transfers to TRANLAB
(at address X'864') and continues executing instructions from the new address.

Alternately, the table may be assembled with the proper constant values. The "T" type
constant may be used to assemble the subroutine addresses in the proper formeat.

For example:

ALIGN 2
TABLE EQU *
DO 256
DC H'0'
ORG TABLE-+1
DC X'8052"
ORG TABLE+X'A’
DC T(TRANTAB)

ORG TABLE+512

2-44 29-428 RO2 2/77

INSTRUCTIONS

Add to Top of List (ATL)
Add to Bottom of List (ABL)

Assembler Notation Op-Code Format
ATL R1,D2 (X2) 64 RX1,RX2
ATL R1,A2 (FX2,8X2) 64 RX3
ABL R1,D2 (X2) 65 RX1,RX2
ABL R1, A2 (FX2,8X2) 65 RX3
Operation

The register specified by R1 contains the fullword element to be added to the list. The list
is located in memory at the address of the second operand. The number of slots used tally
is compared with the number of slots in the list. If the number of slots used equals the num-
ber of slots in the list, an overflow condition exists. The element is not added to the list
and the overflow flag in the Condition Code is set. If the number of slots used tally is

less than the number of slots in the list, it is incremented by one, the appropriate

pointer is changed, and the element is added to the list. Refer to Figure 2-4.

Condition Code
CIV|G|L
0{o0jo0fo Element added successfully
0111010 List overflow

Programming Notes
These instructions manipulate circular lists as described in the introduction to this chapter.
The second operand location must be on a fullword boundary.

The add to top of list instruction manipulates the current top pointer in the list, If no over-
flow occurs, the current top pointer, which points to the last element added to the top of the
list, is decremented by one and the element is inserted in the slot pointed to by the new cur-
rent top pointer. If the current top pointer was zero on entering this instruction, the cur-
rent top pointer is set to the maximum slot number in the list, This condition is referred

to as list wrap.

The add to bottom of list instruction manipulates the next bottom pointer. If no overflow oc-
curs, the element is inserted in the slot pointed to by the next bottom pointer, and the next
bottom pointer is incremented by one. If the incremented next bottom pointer is greater
than the maximum slot number in the list, the next bottom pointer is set to zero. This con-
dition is referred to as list wrap.

See examples in the next gection.

29-428 RO2 2/77 2-45

INSTRUCTIONS

Remove from Top of List (RTL)
Remove from Bottom of List (RBL)

Assembler Notation Op-Code Format
RTL R1, D2 (X2) 66 RX1,RX2
RTL R1,A2 (FX2,5X2) 66 RX3
RBL R1,D2 (X2) - 67 RX1,RX2
RBL R1, A2 (FX2,58X2) 67 RX3
Operation

The element removed from the list replaces the contents of the register specified by R1.

The list is located at the address of the second operand. If, at the start of the instruction
execution, the number of slots used tally is ZERO, the list is already empty and the instruc-
tion terminates with the overflow flag set in the Condition Code. This condition is referred
to as list underflow; in this case, Rl is undefined. If underflow does not occur, the number
of slots used tally is decremented by one, the appropriate pointer is changed, and the element
is extracted and placed in the register specified by R1.

Condition Code

List now empty
List is not yet empty
List was already empty

o o o0
- o o

o = OID
o o ol

Programming Notes

These instructions manipulate circular lists as described in the introduction to this chapter.
The second operand location must be on a fullword boundary.
In the case of list underflow, the contents of the register specified by R1 are undefined.

The remove from top of list instruction manipulates the current top pointer. If no underflow
occurs, the current top pointer points to the element to be extracted. The element is ex-
tracted, and placed in the register specified by R1. The current top pointer is incremented
by one and compared to the maximum slot number. If the current top pointer is greater than
the maximum slot number, the current top pointer is set to ZERO. This condition is referred
to as list wrap.

The remove from bottom of list instruction manipulates the next bottom pointer. If no under-
flow occurs, and the next bottom pointer is ZERO, it is set to the maximum slot number (list
wrap); otherwise, it is decremented by one, and the element now pointed to is extracted and
placed in the register specified by R1.

2-46 29428 RO2 2/77

Examples: List Instructions (ATL, ABL, RTL, RBL)

The following are examples of the use of the four list processing instructions.

The original list is normally set up as shown in Figure 2-6.

LIST

SLOT 0

SLOT 1

SLOT 2

SLOT 3

SLOT 4

Labels

29-428 RO1 1/76

0005| 0000

0000} 0000

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

where HALFWORDS at

LIST

LIST + 2

LIST + 4

LIST + 6

Figure 2-6. List Processing Instructions

Assembler Notation

LIS

STH

ST

LIS

LIS

LIS

LIS

LIS

LIS

STH

REGO, 0

REGO, LIST+2

REGO, LIST+4

REG1,1
REG2,2
REGS3, 3
REG4, 4
REG5, 5
REGS, 6

REGS5, LIST

I

of total slots

5 (in this example)
of entries used
0

current top of list
slot 0

next bottom of list

slot 0

Results and Comments

INITIALIZE # OF ENTRIES USED TO 0

INITIALIZE POINTERS TO 0

REGISTERS 1 THRU 6 CONTAIN

1 THRU 6 RESPECTIVELY

TOTAL # OF ENTRIES = 5

REF1

REF2

REF3

2-48

ATL REG1, LIST

ATL REG2,LIST

ATL REG3, LIST

LIST

SLOT 0

SLOT 1

SLOT 2

SLOT 3

SLOT 4

0005

0001

0004

0000

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

0000

0001

Condition Code = 0000
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot 0

LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

0005

0002

0003

0000

UNDEFINED

UNDEFINED

UNDEFINED

0000

0002

0000

0001

Condition Code = 0000
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 0

LIST

SLOT 0

SLOT 1

SLOT 2

SLOT 3

SLOT 4

0005

0003

0002

0000

UNDEFINED

UNDEFINED

0000

0003

0000

0002

0000

0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 0

(List wrap)

29-428 RO2 2/77

REF4 ABL REG4, LIST LIST 0005{0004

0002|0001

SLOT 0 0000 0004

SLOT 1 UNDEFINED

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 1

RETF5 ABL REG5, LIST LIST 0005|0005
0002|0002

SLOT 0 0000 0004

SLOT 1 0000 0005

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 2

REF6 ABL REG6,LIST LIST 0005|0005
0002{0002

SLOT 0 0000 0004

SLOT 1 0000 0005

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0100 (List overflow)

Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 2

29-428 RO2 2/77

RETF7 RTL REGT7, LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

RETFS8 RBL REGS, LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

REF9 RTL REGS, LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

LIST

0005{0004

00030002

0000 0004

0000 0005

0000 0003

0000 0002

0000 0001

(REG 7) = 0000 0093

Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 2

LIST

000510003

0003|0001

0000 0004

0000 0005

0000 0003

0000 0002

0000 0001

(REG 8) = 0000 0005

Condition Code = 0010
Current Top Pointer = 3
Next Bottom Pointer =1

LIST

X

X

X

0005(0002

00040001

0000 0004

0000 0005

0000 0003

0000 0002

0000 0001

(REG 9) = 00090 0002

Condition Code = 0010
Current Top Pointer = 4
Next Bottom Pointer = 1

NOTE

X = Entry removed from list, and is not accessible through further manipulation of list

instructions.

29-428 R0O2 2/77

REF10 RBL REG10, LIST LIST| 0005|0001
10004{0000

SLOT0 X 0000 0004

SLOT1 X | 0000 0005

SLOT2 X | 0000 0003

SLOT3 X | 0000 0002

SLOT 4 0000 0001

(REG 10) = 0000 0004
Condition Code = 0010
Current Top Pointer = 4
Next Bottom Pointer =0

REF11 RTL REGI11, LIST LIST 00050000
00000000

SLOTO0 X 0000 0004

SLOT1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

\f\ SLOT4 X 0000 0001

(REG 11) = 0000 0001

Condition Code = 0000 (List is now empty)
Current Top Pointer = 0

Next Bottom Pointer = 0

REF12 RTL REG12, LIST LIST 0005{ 0000
0000|0000

SIOTO0 X 0000 0004

SLOT1I X 0000 0005

SILOT2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 X 0000 0001

(REG 12) = UNDEFINED
Condition Code = 0100 (List was already empty)
Current Top Pointer = 0
Next Bottom Pointer =0

NOTE

X= Entry removed from list, and is not accessible through further manipulation of list
instructions.

29-428 R02 2/77

2-51/2-52

CHAPTER 3
BRANCHING

In normal operations, the Processor executes instructions in sequential order. The Branch
instructions allow this sequential mode of operation to be varied, so that programs can loop,
transfer control to subroutines, or make decisions based on the results of previous operations.

OPERATIONS

The second operand in Branch instructions is the address of the memory location to which con-
trol is transferred. The address may be contained in a register or it may be specified in the in-
struction as the second operand address.

Decision Making

The Conditional Branch instructions permit the program to make the decisions based on previous
results. In these instructions, the R1 field contains a four bit mask, M1, which is tested against
the Condition Code. The result of the test determines whether the branch is taken, or the next
sequential instruction is executed.

The following examples show previous Condition Code, mask spccified in a branch instruction,
and the result of the test on which branch or no branch decision is made.

Previous Result
Condition Code Mask(M1) of Test (True/Talse)
0000 0010 0000 (False)
0001 1010 0000 (False)
1001 1000 1000 (True)
0100 0100 0100 ~ (True)
1010 0010 0010 (Truce)
0010 0011 0010 (True)
0010 0000 0000 (False)

Subroutine Linkage
The Branch and Link instructions allow branching to subroutines in such a way that a return ad-

dress is passed to the subroutine. In these instructions, the address of the instruction immedi-
ately following the Branch instruction is saved in the register specified by R1.

BRANCH INSTRUCTION FORMATS

The Branch instructions use the Register to Register (RR), the Short Form (SF), and the Regis-
ter and Indexed Storage (RX) formats.

20428 RO1 1/76 3-1

BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC
BFCR
BFBS
BFFS
BTC
BTCR
BTBS
BTFS
BAL
BALR
BXLE
BXH

Branch on False Condition

Branch on False Condition Register
Branch on False Condition Backward Short
Branch on False Condition Forward Short
Branch on True Condition

Branch on True Condition Register
Branch on True Condition Backward Short
Branch on True Condition Forward Short
Branch and Link .

Branch and Link Register

Branch on Index Low or Equal

Branch on Index High

l Refer to Appendix 4 for the list of additional branch mnemonics recognized 9y the Assembler,

3-2

29-428 RO2 2/77

INSTRUCTIONS

Branch on True Coundition (BTC)

Branch on True Condition Register (BTCR)
Branch on True Condition Backward Short (BTBS)
Branch on True Condition Forward Short (BTI'S)

Assembler Notation Op-Code
BTC M1, D2 (X2) 42
BTC M1, A2 (FX2,8X2) 42
BTCR M1,R2 02
BTBS M1,N 20
BTFS M1,N 21
Operation

Format

RX1, RX2
RX3

RR

SF

SF

The Condition Code of the Program Status Word is tested for the conditions specified by the
mask field, M1. If any of the conditions tested are found to be true, a branch is executed to

the second operand location. If none of the conditions tested is found to be true, the next

sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained

In the SF format, the N field contains the number of halfwords to be added or subtracted

in the register specified by R2,

from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

Example: BTC

Assembler Notation Machine Code
LH R1, X'100' 4810 0100
BTC 3, LOC 4230 ABCO

29428 RO2 2/77

Comments

Load halfword (X'1234') located

at X'100' Condition Code is set to
CVGL = 0010 Mask is 3, i.c.,

M1 = 0011. Perform logical AND
between CVGL and M1, i.e., 0010
and 0011. The result is 0010,
i.e., true; therefore, a branch is
taken to LOC.

INSTRUCTIONS

Branch on False Condition (BFC)

Branch on False Condition Ragister (BFCR)
Branch on False Condition Backward Short (BFBS)
Branch on False Condition Forward Short (BF IS}

Assembler Notation Op-Code Format
BFC M1, D2 (X2) 43 RX1,RX2
BFC M1, A2 (FX2,8X2) 43 RX3
BFCR M1,R2 03 RR
BFBS M1,N 22 SF
BFFS M1,N 23 SF
Operation

The Condition Code of the Program Status Word is tested for the conditions specified in the
mask field, M1. If all conditions tested are found to be false, a branch is executed to the
second operand location. If any of the conditions tested is found to be true, the next sequen-

tial instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added to or subtracted
from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

Example: BFC
Assembler Notation Machine Code Comments
LCS R1,2 2512 (R1) = FFFFFFFE. Condition Code,
BFC 9, LOC 4390 ABCO CVGL = 0001 Mask is 1001, Perform

logical AND between mask and
CVGL, i.c., 1001 and 0001. The
result is 0001, i.e., true, there-
fore, a branch is not taken in LOC,

3-4 29-428 R06 5/78

INSTRUCTIONS

Branch and Link (BAL)
Branch and Link Register (BALR)

Assembler Notation Op-Code Format
BAL R1,D2 (X2) 41 RX1,RX2
BAL R1,A2 (FX2, SX2) 41 RX3
BALR R1,R2 01 RR
Operation

The address of the next sequential instruction is saved in the register specified by R1, and
a branch is taken to the second operand address.

Condition Code

Unchanged

Programming Notes
The sccond operand location must be on a halfword boundary.

The branch address is calculated before the register specified by R1 is changed. R1 may specify
the same register as X2, X2, $X2, or R2,

Example: BAL

The following example illustrates the use of the BAL instruction. The instruction causes control
to be transferred to a subroutine called SUBROUT. After completion of the subroutine, the link-
ing register is used to branch back to the next sequential instruction after the BAL; i.e., the
instruction labelled RETURN,

Label Assembler Notation Comments
[BEGIN BAL REG4, SUBROUT TRANSFER TO SUBROUT
MAIN RETURN XR R6,R6
PROG STH R6,1L.AB+4
F—SUBROUT LHL R8,LOC THE RETURN ADDRESS OF

THE SUBROUTINE IS IN REG4

SUBROUTINE — AHI R8,10

| RTNEND BRR REG4 RETURN TO XR INST.

NOTE

Within the subroutine, the linking register (REG4 in the example) should not be used.

Result of BAL Instruction:

Condition Code = Unchanged

o))

29428 RO2 2/77 3-

INSTRUCTION
Branch on Index Low or Equal (BXLE)

Assembler Notation Op-Code Format
BXLE R1,D2 (X2) c1 RX1, RX2
BXLE R1, A2 (FX2,8X2) C1 RX3

Set Up

0 31
R1 Starting index value
R1+1 Increment value
R1+2 Limit or final value

Prior to execution of this instruction, the register specified by R1 must contain a starting index value.
The register specified by R1+1 must contain an increment value. The register specified by R1+2 must
contain a comparand (limit or final value)., All values may be signed.

Operation

Execution of this instruction causes the increment value to be added to the index value. The
result is logically compared to the limit or final value. If the index value is less than or
equal to the limit value, a branch is exccuted to the second operand location. If the index
value is greater than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The incremented index value replaces the contents of the register specified by R1.

The register numbers wrap around, i.e., three consecutive registers used by this instruction, may be
6, 7, 8or 14, 15, 0 or 15, 0, 1, etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value contained
in the register specified by R1.

The register specified by R1 may be the same as X2, X2 or SX2.
Example: BXLE

Transfer 10 bytes in memory starting at Memory Location Labelled BUF0 to memory location
labelled BUF1.

Labels Assembler Notation Comments
LIS REGS3,0 (REG 8) = STARTING INDEX VALUE =0
LIS REG4,1 (REG 4) = INCREMENT VALUE
LIS R5,9 (REG 5) = FINAL VALUE =9
AGAIN LB REGO, BUFO(R3) (REG 0) =1 BYTE FROM BUF0
STB REGO, BUF1(R1) COPY 1 BYTE TO BUF1
BXLE R3,AGAIN IF (REG 3) = (REG 5), DONE
BUF9O DS 10
BUTF1 DS 10

Result of BXLE Instruction:
Condition Code = Unchanged by BXLE Instruction
(REG3) = 0000000A
(REG4) = 00000001
(REGS5) = 00000009

3-6 29-428 RO2 2/77

INSTRUCTION

Branch on Index High (BXH)

Assembler Notation Op-Code Format
BX1 R1,D2 (X2) Co RX1,RX2
BXIl R1, A2 (FX2,8X2) (of4] RX3
Set Up
R1 Starting index value
R1-1 Increment value
R1-+2 Limit or final value

Prior to execution of this instruction, the register specified by R1 must contain a starting
index value. The register specified by R1+1 must contain an increment value., The register
specified by R1+2 must contain a comparand (limit or final value). All values may be signed.

Operation

Execution of this instruction causes the increment value to be added to the index value, The
result is logically compared to the limit or final value. If the index value is greater than
the limit value, a branch is executed to the sccond operand location. If the index value is
equal to or less than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The incremented index value replaces the contents of the register specified by R1.

The register numbers wrap around, i.e., three consecutive registers and by this instruction
may be 6, 7, 8 or 14, 15, 0 or 15, 0, 1 etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value con-
tained in the register specified by R1.

The register specified by R1 may be the same as X2, FX2 or SX2.
Example: BXH

The following example shows how to set up a counter (1 - 9) using the BXH instruction.

Label Assembler Notation Comment
LIS REGI,1 (REG 1) = 0000 0001 (INDEX)
LIS REG2,1 (REG 2) = 0000 0001 (INCREMENT)
LIS REGS3, 9 (REG 3) = 0000 0009 (COMPARAND)
BEGIN BXH REGI, LABEL COMPARE INDEX WITH COMPARAND

LH R6,COUNT

B BEGIN BRANCH TO BXH INSTRUCTION
LABEL LA R8, RTN EXIT FROM BXH
ST R8, MM

Result of BXH Instruction:
Code between the instructions labelled BEGIN and LABEL will be executed 8 times.

Condition Code = Unchanged by BXH instruction
(REG1) = 0000 0010
(REG2) = 0000 0001
(REG3) = 0000 0009

29-428 RO6 5/78 3-7

EXTENDED BRANCH MNEMONICS

The CAL Assembler supports 14 extended branch mnemonics that generate the branch op-code
(true or false conditional) and the condition code mask required. The programmer must supply
the second operand address (symbolic or absolute). In the case of short format (SF) branch in-
structions, the second operand branch address must be within + 15 halfwords of the current lo-
cation counter. The CAL Assembler determines the backward or forward relationship of the
second operand address and generates the appropriate operation code.

Examples of extended branch mnemonic:

LH R5, LOOP1

BNZ LOERR
LAP SRLS R6,1

BNCS LAP

BS CONTIN
LOERR LIS R6,0
ERRORI1 AIS R6,1

SIS R5,4

BPS ERROR1

SIS R8,1

BO ERROR2
CONTIN LH R1l, TIME

Appendix 4 lists the extended branch mnemonics and the proper operand form to be used with
each mnemonic. The actual machine code generated is also listed.

The instructions described in this section are:

BC Branch on Carry BP Branch on Plus
BCR Branch on Carry Register BPR Branch on Plus Register
BCS Branch on Carry Short BPS Branch on Plus Short
BNC Branch on No Carry BNP Branch on Not Plus
BNCR Branch on No Carry Register BNPR Branch on Not Plus Register
BNCS Branch on No Carry Short BNPS Branch on Not Plus Short
BE Branch on Equal BO Branch on Overflow
BER Branch on Equal Register BOR Branch on Overflow Register
BES Branch on Equal Short BOS Branch on Overflow Short
BNE Branch on Not Equal BNO Branch on No Overflow
BNER Branch on Not Equal Register BNOR Branch on No Overflow Register
BNES Branch on Not Equal Short BNOS Branch on No Overflow Short
BL Branch on Low BZ Branch on Zero
BLR Branch on Low Register BZR Branch on Zero Register
BLS Branch on Low Short BZS Branch on Zero Short
BNL Branch on Not Low BNZ Branch on Not Zero
BNLR Branch on Not Low Register BNZER Branch on Not Zero Register
BNLS Branch on Not Low Short BNZS Branch on Not Zero Short
BM Branch on Minus .
BMR Branch on Minus Register B Branch (Unconditional)
BMS Branch on Minus Short BR Branch Register (Unconditional)
BNM Branch on Not Minus
BNMR Branch on Not Minus Register
BNMS Branch on Not Minus Short NOP No Operation

NOPR No Operation Register

3-8 29-428 R06

5/78

INSTRUCTION

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation Op-Code + M1 Format
BC D2 (X2) 428 RX1, RX2
BC (A2(FX2, SX2) 428 RX3
BCR R2 028 RR
BCS A 208 (Backward) ST

218 (Forward)
Operation

If the Carry (C) flag is in the Condigion Code is set, a branch is taken to the second operand
location. If the Carry flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained inthe register speciried by R2,

Example: BCS
Assembler Notation Machine Code Comments
SHIFT SLLS R9,1 1191 Register 9 is

BCS SHIFT 2081 shifted left un-
til the first zero
bit is shifted out
left.

29-428 R06 5/78

INSTRUCTION

Branch on No Carry (BNC)
Branch on No Carry Register (BNCR)
Branch on No Carry Short (BNCS)

Assembler Notation Op-Code + M1

BNC D2(X2) 438
BNC A2(FX2, SX2) 438
BNCR R2 038
BNCS A 228 (Backward)

238 (Forward)

Operation

Format

RX1, RX2
RX3

RR

SF

If the Carry (C) flag in the Condition Code is not set, a branch is taken to the second operand

location.
Condition Code
Unchanged

Programming Note

The branch address must be located on a halfword boundary.

If the Carry flag is set, the next sequential instruction is executed.

In the RR format, the branch address is contained in the register specified by R2.

3-10

29-428 R06 5/78

INSTRUCTION

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Equal Short (BES)

Assembler Notation

BE D2(X2)
BE A2(FX2, SX2)
BER R2
BES A
Operation

Op-Code + M1

433

433

033

223 (Backward)
233 (Forward)

Format

RX1, RX2
RX3

RR

SF

If the G flag and the L flag are both reset in the Condition Code, a branch is taken to the
second operand location. If either flag is set, the next sequential instruction is executed.

Condition Code
Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the granch address is contained in the register specified by R2.

Example: BE

Assembler Notation

CLHI R4, X'23'
BE OPTIN

29-428 R06 5/78

C540 0023
4330 0A00

Comments

If R4 contains X'23' a branch
is taken to location X'A00'.
Otherwise the next sequential
instruction is executed.

INSTRUCTION

Branch on Not Equal (BNE)
Branch on Not Equal Register (BNER)
Branch on Not Equal Short (BNES)

Assembler Notation_ _Op-Code + M1 Format
BNE D2 (X2) 423 RX1, RX2
BNE A2(FX2, SX2) 423 RX3
BNER R2 023 RR
BNES A 203 (Backward) SF

213 (Forward)

Operation

If the G flag or the L flag is set in the Condition Code, a branch is taken to the second
operand locationl If neither flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R 2.

3-12 29-428 R06 5/78

INSTRUCTION

Branch on Low (BL)
Branch on Low Register (BLR)
Branch on Low Short (BLS)

Assembler Notation Op-Code + M1
BL D2(X2) 428
BL A2(FX2, SX2) 428
BLR R2 028
BLS A 208 (Backward)

218 (Forward)

QOperation

If the Carry (C) flag in the Condition Code is set, a Branch is taken to the second operand

Format

RX1, RX2
RX3

RR

SF

address. If the Carry flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged

Programming Note

The branch address must be located on a halfword houndary.

In the RR format, the branch address is contained in the register specified by R2.

Example: BL
Assembler Notation Machine Code
CLHI Ri, X'FI' C510 00FF
BL RESTART 4280 0A00

29-428 R06 5/78

Comments

R1 is compared to X'00FT["
If R1is less than X'FF', a
branch is taken to memory
location X'0A00'

3-13

INSTRUCTION

Branch on Not Low (BNL)
Branch on Not Low Register (BNLR)
Branch on Not Low Short (BNLS)

Assembler Notation Op-Code + M1 Format
BNL D29X2) 438 RX1, RX2
BNL A2(FX2, SX2) 438 RX3
BNLR R2 038 RR
BNLS A 228 (Backward) SF

238 (Fowward)
Operation

If the Carry (C) flag in the Condition Code is reset, a branch is taken to the second operand
address. If the Carry flay is set, the next sequential instruction is executed,

Condition Code
unchanged
Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register speciried by R2.

3-14 29-428 R06 5/78

INSTRUCTION

Branch on Minus (BM)
Branch on Minus Register (BMR)
Branch on Minus Short (BMS)

Assembler Notation Op-Code + M1 Format
BM D2(X2) 421 RX1, RX2
BM A2(FX2, SX2) 421 RX3
BMR R2 021 RR
BMS A 201 (Backward) SF

211 (Forward)

Operation

If the Less Than (L) flag in the Condition Code is set, a branch is taken to the second operand
location. If the L flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: BM
Assembler Notation Machine Code Comments
SIS R3,1 2631 If R3 is less than 0 after
BM CONTINUE 4210 10A0 the subtraction, a branch

is taken to X'10A0',

29-428 R06 5/78 3-15

INSTRUCTION

Branch on Not Minus (BNM)
Branch on Not Minus Register (BNMR)
Branch on Not Minus Short (BNMS)

Assembler Notation Op-Code + M1 Format
BNM D2(X2) 431 RX1, RX2
BNM A2(FX2, 8X2) 431 RX3
BNMR R2 031 RR
BNMS A 221 (Backward) SF

231 (Forward)

Operation

If the Less Than (L) flag in the Condition Code is reset, a branch is taken to the second
operand location, If the L flag is set, the next sequential instruction is executed.

Condition Code
Unchanged

Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-16 29-428 R06 5/78

INSTRUCTION

Branch on Plus (BP)
Branch on Plus Register (BPR)
Branch on Plus Short (BPS)

Assembler Notation

BP D2(X2)
BP A2(FX2, SX2)
BPR R2
BPS A
Operation

Op-Code + M1

422

422

022

202 (Backward)
212 (Forward)

Format

RX1, RX2
RX3

RR

SF

If the Greater Than (G) flag in the Condition Code is set, a branch is taken to the second
operand location, If the G flag is not set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-428 R06 5/78

3-17

INSTRUCTION

Branch on Not Plus (BNP)
Branch on Not Plus Register (BNPR)
Branch on Not Plus Short (BNPS)

Assembler Notation Op-Code + M1 Format
BNP D2(X2) 432 RXl, RX2
BNP A2(FX2, 8X2) 432 RX3
BNPR R2 032 RR
BNPS A 222 (Backward) SF

232 (Forward)

Operation

If the Greater Than (G) flag in the Condition Code is reset, a branch is taken to the second
operand location. If the G flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-18 29-428 R06 5/78

INSTRUCTION

Branch on Overflow (BO)

Branch on Overflow Register (BOR)

Branch on Overflow Short (BOS)

Assembler Notation

BO D2(X2)
BO A2(FX2, SX2)
BOR R2
BOS A
Operation

Op-Code + M1

424

424

024

204 (Backward)
214 (Forward)

Format

RX1, RX2
RX3

RR

SI

If the Overflow (V) flag in the Condition Code is set, a branch is taken to the second
operand location, If theV flag is reset, the next sequential instruction is executed,

Condition Code
Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-428 RO6 5/78

3-19

INSTRUCTION

Branch on No Overflow (BNO)
Branch on No Overflow Register (BNOR)
Branch on No Overflow Short (BNOS)

Assembler Notation _9_p-Code + M1 Format
BNO D2(X2) 434 RX1, RX2
BNO A2(FX2, SX2) 434 RX3
BNOR R2 034 RR
BNOS A 224 (Backward) SF

234 (Forward)

Operation

If the Overflow (V) flag in the Condition Code is reset, a branch is taken to the second operand
location, If the V flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-20 29-428 R06 5/78

INSTRUCTION

Branch on Zero (BZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation

DZ D2(X2)
BZ A2(FX2, 5X2)
BZR R2
BZS A
Operation

Op-Code + M1

433

433

033

223 (Backward)
233 (Forward)

Format

RXi, RX2
RX3

RR

SF

If the G and L flags are both reset in the Condition Code, a branch is taken to the second
operand location. If the G or L flag is set, the next sequential instruction is executed.

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-428 R06 5/78

3-21

INSTRUCTION

Branch on Not Zero (BNZ)
Branch on Not Zero Register (BNZ)
Branch on Not Zero Short (BNZS)

Assembler Notation Op-Code + M1 Format
BNZ D2(X2) 423 RX1, RX2
BNZ A2(FX2,8X2) 423 RX3
BNZR R2 023 RR
BNZS A 203 (Backward) SF

213 (Forward)

Operation

If the G or L flag in the Condition Code is set,b a branch is taken to the second operand
address. If the G and L flags are both reset, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-22 29-428 R06 5/78

INSTRUCTION

Branch (Unconditional) (B)
Branch Register (Unconditional) (BR)
Branch Short (Unconditional) (BS)

Assembler Notation Op-Code + M1 Format
B D2 (X2) 430 RX1, RX2
B A2(FX2, SX2) 430 RX3
BR R2 030 RR
BS A 220 (Backward) SF

230 (Forward)
Operation
A branch is unconditionally taken to the second operand address.
Condition Code
Unchanged
Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: B
Assembler Notation Machine Code Comments
B OPTIN 4300 0A00 An unconditional branch is

taken to location X'0A00',

29-428 R06 5/78 3-23

INSTRUCTION

No Operation (NOP)
No Operation Register (NOPR)

Assembler Notation Op-Code + M _1_ Format
NOP D2(X2) 420 RX
NOPR R2 020 RR
Operation

After a short delay (instruction decode time), the next sequential instruction is ex-
ecuted,

Condition Code
Unchanged
Programming Note
(D2(X2) and R2 are ignored and usually equal to zero (0).

Example: NOP, NOPR

Assembler Notation Machine Code Comments
NOP 0 4200 0000 No Operation
NOPR 0 0200 No Operation

3-24 29-428 R06 5/78

CHAPTER 4
FIXED POINT ARITHMETIC

Fixed Point Arithmetic instructions provide a complete set of operations for calculating addresses
and indexes, for counting, and for gencral purpose fixed point arithmetic.

DATA FORMATS
There are three formats for fixed point data: the halfword, the fullword, and the double word.

In each of these formats, the most significant bit (Bit 0) is the Sigh bit. The remaining bits,
either 15, 31 or 63, represent the magnitude.

0 1 HALFWORD 15
ls]

0 1 FULLWORD 31,
<] il
0 1 DOUBLE WORD 63
I 1 — 4
ls] |

lf fal

Figure 4-1. Fixed Point Data Words Formats

Positive values are represented in true binary form with a Sign bit of ZERO, Negative values are
represented in two's complement form with a Sign bit of ONE, To change the sign of a number,
the two's complement of the number is produced as follows:

1. Change ail zeros to ones, and all ones to zeros.,
2. Add one.

FIXED POINT NUMBER RANGE

TFixed point numbers represent integers. Table 4-1 shows relation between different formats
along with decimal values.

TABLE 4-1. FIXED POINT FORMAT RELATIONS

DOUBLE WORD FULLWORD HALFWORD DECIMAL
8000000000000000 - 92233 72036 85477 5808
{MOST NEGATIVE)
80000000 ~21474 83648
(MOST NEGATIVE)
8000 (MOST NEGATIVE] — 32768
FFFFFFFFFFFFFFFF FFFFFFFF FFFF (LEFT NEGATIVE) -1
0000000000000000 00000000 0000 0
0000000000000001 00000001 0001 1
7FFF_(MOST POSITIVE) 32767
7FFFFFFF 21474 83647
(MOST POSITIVE)
7FFFFFFFFFFFFFFF 92233 72036 85477 5807

(MOST POSITIVE)

29-428 RO2 2/77 4-1

 OPERATIONS

The Fixed Point instructions include both fullword and halfword operations. TFullword operations
take place between (a) the contents of two general registers, or (b) between the contents of a
general register and a fullword stored in memory, or (c) between the contents of a general
register and a fullword obtained from the instruction stream. Fullword multiply produces a
double word result which is contained in two adjacent registers. Fullword divide operates on a
double word contained in two adjacent registers. i

o
Halfword operations take place between a fullword contained in one of the general registers and
a halfword contained in memory. Before the operation is started, the halfword in memory is ex-
panded to a fullword by propagating the most significant bit (Sign bit) into the high order bits of
the fullword. (The Halfword Multiply and Divide instructions are exceptions to this rule.)

CONDITION CODE

All Tixed Point Arithmetic instructions except Multiply and Divide affect the Condition Cod2. The
Condition Code indicates the effect of the operation on the 32 bit result.

In fixed point Add and Subtract operations, because the arguments are represented in two's
complement form, all bits, sign included, participate in forming the result. Consequently, the
occurrence of a carry or borrow has no real arithmetic significance.

Tor example, an Add operation between a minus one (FFFF FFFTF) and a plus two (0000 0002)
produces the correct result of plus one (0000 0001) and a carry. The Condition Code is set to
1010 (C =1 and G = 1). "Carry only'" means that the complete result, which in this case would
have been 1 0000 0001, would not fit in 32 bits.

An overflow occurs when the result does not fit in 31 bits. Note that bit "zero'" must be re-
served for the sign of the result. For example, adding one to the largest positive fixed point
value will produce an overflow:

7FFF FFFF
+_0000 0001
= 8000 0000

the condition code is 0101 (V=1 and L = 1)

The result, 8000 0000, is logically correct, but because the sign bit is negative when the result
should be positive, the overflow condition exists.

The columns of the Condition Code table show the state of the C, V, G and L flags for the
specific result.

The 'X' in the Condition Code column means that particular flag is not defined, i.e., the
flag can be 0 or 1. Hence, no inference should be drawn by testing that particular flag.

4-2 29-428 R06 5/78

FIXED POINT INSTRUCTION FORMATS

The fixed point instructions use the Register to Register (RR), the Short Form (SF), the Register
and Indexed Storage (RX), and the Register and Immediate (RI) instruction formats.

FIXED POINT INSTRUCTIONS

The fixed point instructions described in this section are:

A Add CI Compare Immediate

AR Add Register CH Compare Halfword

Al Add Immediate CHI Compare Halfword Immediate
AIS Add Immediate Short M Multiply

AH Add Halfword MR Multiply Register

AHI Add Halfword Imme liate MH Multiply Halfword

AM Add to Memory MHR Multiply Halfword Register
AHM Add Halfword to Memory D Divide

S Subtract DR Divide Register

SR Subtract Register DH Divide Halfword

SI Subtract Immediate DHR Divide Halfword Register

SIS Subtract Immediate Short SLA Shift Left Arithmetic

SH Subtract Halfword SLHA Shift Left Halfword Arithmetic
SHI Subtract Halfword Immediate SRA Shift Right Arithmetic

C Compare SRIA Shift Right Halfword Arithmetic
CR Compare Register CHVR Convert to Halfword Value Register

29-428 RO1 1/76 4-3

INSTRUCTIONS

Add (A)

Add Register (AR)

Add Immediate (AI)

Add Immediate Short (AIS)

Assembler Notation Op-Code
A R1,D2 (X2) 5A
A R1,A2 (FX2,8X2) 5A
AR R1,R2 0A
Al R1,12 (X2) FA
AIS R1,N 26
Operation

Eormat

RX1,RX2
RX3

RR

RI2

SF

The second operand is added algebraically to the contents of the register specified by R1.
The result of this 32 bit addition replaces the contents of the register specified by R1.

Condition Code

Result is ZERC

Result is less then ZERO
Result is greater than ZERO
Arithmetic overflow

Carry

A e
X oo ol<g

MM = o ol
MM o+ ol

Programming Notes

The second operand for the Add Immediate Short instruction is obtained by expanding the
four hit data field, N, to a 32 bit fullword by forcing the high order bits to zero.

In the RX formats, the second operand must be located on a fullword boundary.

Example: A

Add contents of memory location labelled LAB to the contents of (REG) 4.

1. Register 4 Contains X'7F341234"
Fullword in Memory at LAB contains X'7F124321'

Assembler Notation

A REG4, LAB

Result of A Instruction

(REG4) = X'IFE465555'
(LAB) = unchanged by this instruction
Condition Code = 0101 (V=1, L=1)

2. Register 5 Contains X'8000 0001’
Fullword in memory at LAB contains X'80000002'

Assembler Notation

A REG5, LAB

Result of A Instruction

44

(REG5) = X'00000003'
(LAB) = unchanged by this instruction
Condition Code = 1110 (C=1, V=1, G=1)

Comments

ADD (LAB) TO (REG 4)

Comments

ADD (LAB) TO (REG 5)

29-428 RO2 2/77

INSTRUCTIONS

Add Halfword (AH)
Add Halfword Immediate (AHI)

Assembler Notation

AH R1,D2 (X2)

AH R1,A2 (FX2,8X2)

AHI R1,I2 (X2)
Operation

Op-Code Format
4A RX1,RX2
4A RX3
CA RI1

The 16 bit second operand is expanded to a 32 bit fullword by propagating the most significant
bit through Bits 15:0 of the fullword. The fullword operand is added to the fullword contents
of the register specified by R1. The result replaces the contents of the register specified

by R1.

Condition Code

Result is ZERO

i I i (o)
Mmoo ol

XY= o o|@
MY o~ ol

Carry

Programming Note

Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow

In the RX formats, the second operand must be located on a halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword by propogating the sign bit through
bits 9:15, The contents of the index register specified by X2 are then added to form the fullword

second operand,

Example: AH

This example adds the halfword at memory location labelled LAB to the contents of Register 4.

1.

Register 4 contains X'00230002'

Halfword at memory location LAB contains X'FFFF'

Assembler Notation

AIl REG4,LAB

Result of Instruction

(REG4) = '00230001"'

(LAB) = unchanged by this instruetion
Condition Code = 1010 (C=1, G=1)

Register 5 contains X'FFFF FFF5'
LAB contains X'FTF2!

Assembler Notation

Al REG5, LAB

Result of Instruction

(REG5) = '"FFFF FFET'
(LAB) = unchanged by this instruction
Condition Code = 1001 (C=1, L=1)

29~-428 R06 5/78

Comments

ADD (LAB) TO (REG 4)

Comments

ADD LAB TO REG5

INSTRUCTION

Add to Memory (AM)

Assembler Notation Op-Code Format
AM R1,D2 (X2) 51 RX1,RX2
AM R1,A2 (FX2,8X2) 51 RX3
Operation

The fullword second operand is added algebraically to the contents of the register specified
by R1l. The result replaces the fullword second operand in memory. The contents of the
register specified by R1 are not changed.

Condition Code

Result is ZERO

Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow

Carry

] e
A= oo ol

M= o ol
MM o= ol

Programming Note
The second operand must be located on a fullword boundary.
Example: AM
1. Add contents of register 8 to memory location labelled LOC:

Register 8 contains X'00000008'
Fullword in memory at LOC contains X'034289AB!

Assembler Notation Comments

AM REGS8,LOC ADD (REG 8) TO (LOC)
Result of AM Instruction

(REGS8) = X'00000008'
(LOC) = X'034289B3'

Condition Code = 0010 (G=1)

2. Add contents of register 7 to memory location labelled LOC:

Register 7 contains X'7F341234!
Fullword in memory at LOC contains X'7F124321'

Assembler Notation Comments

AM REG7,LOC ADD (REG 7) TO (LOC)

Result of AM Instruction
(REGT) = unchanged by this instruction

(LOC) = X'FE465555"
Condition Code = 0101 (V=1, L=1

4-6 29428 RO2 2/77

INSTRUCTION

Add Halfword to Memory (AHM)

Assembler Notation Op-Code Format
AHM R1,D2 (X2) 61 RX1,RX2
AHM R1, A2 (FX2,8X2) 61 RX3
Operation

The second operand is expanded to a fullword by propagating the most significant bit through
Bits 15:0. This fullword is added algebraically to the contents of the register specified hy
R1. The 32 bit result is truncated to 16 bits by removing the most significant bits (Bits
0:15). The 16 bit result replaces the contents of the memory location specified by the
effective address of the second operand. The contents of the register specified by R1 are
not changed.

Condition Code

ClVIG]|L

X|0]0]0 Result is ZERO

X|0})0]1 Result is less than ZERO
X|0]1]0 Result is greater than ZERO
XJ111X| X Arithmetic overflow

1 XXX Carry

Programming Note

The second operand must be located on a halfword boundary.
The Condition Code settings are based on the halfword result,

Example: AHM

This example adds the contents of Register 5 to the contents of memory location LAB.

1. Register 5 contains X'00230002'
Halfword in memory at LAB contains X'FFFF'

Assembler Notation Comments

AHM REGS5, LAB ADD (REG 5) TO (LAB)

Result of AHM Instruction

(REGS5) = unchanged by this instruction
(LAB) = 0001
Condition Code = 1010 (C=1, G=1)

2. Register 6 contains X'FFFF FFF5'
LAB contains X'FFF2!

Assembler Notation Comments

AHM REG6,LAB ADD (REG 6) TO (LAB)
Result of AHM Instruction:
(REGS6) = unchanged by this instruction

(LAB) = FFE7
Condition Code = 1001 (C=1, L=1)

29428 RO2 2/77 4-7

INSTRUCTIONS

Subtract (S)

Subtract Register (SR)
Subtract Immediate (ST)
Subtract Immediate Short (SIS)

Assembler Notation Op-Code
S R1,D2 (X2) 5B
S R1,A2 (FX2,5X2) 5B
SR R1,R2 0B
SI R1,I12 (X2) FB
SIS Ri1, N 27
Operation

Format

RX1, RX2
RX3

RR

RI2

SF

The fullword second operand is subtracted algebraically from the conients of the register
specified by R1. The result replaces the contents of the register specified by R1.

Condition Code

CIVIG]L

X|o|lo]o Result is ZERO

Xitoj0f1 Result is less than ZERO
X|l0|1[0 Result is greater than ZERO
XI1]X|X Arithmetic overflow

1IX XX Borrow

Programming Note

The second operand for the Subtract Immediate Short instruction is obtained by expanding
the four bit data field, N, to a 32 bit fullword by forcing the high order bits to zero,

In the RX formats, the second operand must be located on a fullword boundary.

Examples:

This example subtracts the fullword at memory location LOC from the contents of Register 9.

1. REGY9 contains X'44444444"'
LOC contains X'44444444"'

Assembler Notation

S REGY, LOC

Result of S Instruction
(REGY9) =0
LOC = X'44444444"
Condition Code = 0000

2. REGSY contains X'23456789'

LOC contains X'FFFF4321'

Assembler Notation

S REGY, LOC
Result of S Instruction

(REGY) - 23462368
(1.OC) = FFFF4321
Condition Code = 1010 (C=1,G=1)

Comments

Subtract contents of (LOC) from (REG 9)

Comments

Subtract contents of (LOC) from REG 9)

29428 RO2 2/77

INSTRUCTIONS

Subtract Halfword (SH)
Subtract Halfword Immediate (SHI)

Assembler Notation

Op-Code Format
SH R1,D2 (X2) 4B RX1,RX2
SH R1, A2 (FX2,8X2) 4B RX3
SHI R1,12 (X2) CB RI1
Operation

The 16 bit second operand is expanded to a 32 bit fullword by propagating the most significant

bit through Bits 15
by R1. The result

Condition Code

=X R KK
M= o o ol

M- o o|@
MM ool

Programming Notes

In the RX formats,

:0. This fullword is subtracted from the contents of the register specified

replaces the contents of the register specified by R1.

Result is ZERO

Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow

Borrow

the second operand must be located on a halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullword by propogating the sign hit through

bits 0:15,
second operand.

Example: SH

The contents of the index register specified by X2 are then added to form the fullword

This example subtracts the halfword at memory location LOC from the contents of register 9.

1. REGY contains X'00123456'

LOC contains X'FFF4'

Assembler Notation

SII REGY, LOC

Result of SH Instruction

(REGY) = 00123462

(LOC) = FFF4

Comments

Subtract contents of (LOC) from (REG 9)

Condition Code = 1010

2. REGY contains X'FFFF4567!

LOC contains X'2345!

Assembler Notation

SII REGY, 1.OC

Result of SH Instruction

(REG9) = FFFF2222
(LOC) = 2345
Condition Code = 0001

29428 RO2 2/77

Comments

Subtract contents of (LOC) from (REG 9)

INSTRUCTIONS

Compare (C)
Compare Register (CR)
Compare Immediate (Cl)

Assembler Notation Op-Code Format
C R1,D2 (X2) 59 RX1,RX2
C R1,A2 (FX2,8X2) 59 RX3
CR R1,R2 09 RR
CI R1,12 (X2) F9 RI2
Operation

The first operand, contained in the register specified by R1, is compared algebraically to
the 32 bit second operand. The result is indicated by the Condition Code setting. Neither
operand is changed.

Condition Code

C|V|G|L :
0{X|[0]0 IPirst operand is equal to second operand
1(Xf{0]1 First operand is less than second operand

0 [X[1}0 First operand is greater than second operand

Programming Notes

In the RX formats, the second operand must be located on a fullword boundary.
The state of the V flag is undefined.

Example: C

This example compares the contents of Register 3 to the contents of the fullword in memory
location LAB.

Register 3 contains X'44567894!'
Fullword at LAB contains X'04321243'

Assembler Notation Comments

C REGS3,LAB Compare (REG 3) to (LAB)

Result of C Instruction
(REG3) = unchanged by this instruction

(LAB) = unchanged by this instruction
Condition Code = 0010 (G=1)

4-10 29428 RO2 2/77

INSTRUCTIONS

Compare Halfword (CH)
Compare Halfword Immediate (CHI)

Assembler Notation Op-Code) Format
CH R1,D2 (X2) 49 RX1,RX2
CH R1,A2 (FX2,8X2) 49 RX3
CHI R1,12 (X2) C9 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. This fullword is compared algebraically with the first operand, the
contents of the register specified by R1. The result is indicated by the Condition Code set-
ting. Neither operand is changed.

Condition Code

C|VIG|L

01Xi0¢(0 Iirst operand is equal to second operand
1(xX]ol1 First operand is less than second operand
0[X]1]0 First operand is greater than second operand

Programming Notes
In the RX formats, the second operand must be located on a halfword boundary.

In the RIL format, the 16-bit I2 field is extended to a fullword by propogating th= sign bit through
bits 0:15. The contents of the index register specified by X2 are then added to form the fullword
second operand.

Condition code settings are based on the fullword comparison. The state of the V flag is
undefined. i

Example: CH
This example compares the contents of REGS8 to the halfword at LAB.

REGS8 contains X'F4567891'
Halfword at LAB contains X'3123'

Assembler Notation Comments

CH REGS,LAB Compare (REG 8) to (LAB)

Result of CH Instruction
(REGS8) = unchanged by this instruction

(LAB) = unchanged by this instruction
Condition Code = 1001 (C=1, V=1)

29428 RO2 2/77 4-11

INSTRUCTIONS

Multiply (M)
Multiply Register (MR)

Assembler Notation Op-Code Format
Al R1,D2 (X2) 5C RX1,RX2
M R1,A2 (FX2,8X2) 5C RX3
MR R1,R2 i RR
Operation

The R1 field of these instructions specifies an even numbered register.
The fullword first operand, contained in the register specified by R1 + 1, is multiplied by

the fullword second operand., The 64 bit result is stored in the registers specified by R1
and R1 + 1,

Condition Code

Unchanged

Programming Notes
The Rl field of these instructions must specify an even numbered register,
If the R1 field of these instructions is odd, the result is undefined.
In the RX formats, the second operand must be located on a fullword boundary.

The most significant bits of the result are placed in the register specified by R1, the least signifi-
cant bits of the result are placed in the register specified by R1 + 1.

The sign of the result is determined by the rules of algebra.

Example: M

This example multiplies the coatents of Register 9 by the contents of memory location LOC and
places the answer in the Registers 8 and 9 (64 bits).

REGS contains X'nannnann'
REGY9 contains X'00002431"'

Fullword at location LLOC contains X'43120000'

Assembler Notation Comments

M REGS,LOC Multiply REG 9) by (LOC)

Result of M Instruction

REGS8 and REGY together contain the answer
(REG8, REGY9) = 0000 097B, 5E72 0000

(LOC) = unchanged by this instruction
Condition Code = unchanged by this instruction

4-12 29428 RO2 2/77

INSTRUCTIONS

Multiply Halfword (MI{)
Muitiply Halfword Register (MHR)

Assembler Notation Op-Code Format
MH R1,D2 (X2) 4C RX1,RX2
MH R1,A2 (FX2,SX2) 4C) RX3
MHR R1,R2 0C RR
Operation

The first operand, contained in Bits 16:31 of the register specified by R1, is multiplied by

the 16 bit second operand, taken from memory or from Bits 16:31 of the register specified by

R2. Both operands are 16 bit signed two's complement values. The 32 bit result 1
replaces the contents of the register specified by R1.

Condition Code

Unchanged

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

The sign of the result is determined by the rules of algebra,

Example: MH

This example multiplies the halfword contents of Register 8 by the halfword in memory location
LAB.

REGS contains X'ABCD 0045'
Halfword at memory location LAB containg X'8674'

Assembler Notation Comments

MH REGS, LAB Multiply least significant half of (REG 8) by (LAB)

Result of MH Instruction

(REGS8) = FFDF3D44
(LAB) = unchanged by this instruction
Condition Code = unchanged by this instruction

29-428 R06 5/78 4-13

INSTRUCTIONS

Divide (D)
Divide Register (DR)

Assembler Notation Op-Code Format
D R1,D2 (X2) 5D RX1,RX2
D R1,A2 (FX2,8X2) 5D RX3
DI? R1,R2 1D RR
Opera!ion

The 64 bit dividend contained in the register specified by R1 and the register specified by
R1+1 is divided by the fullword divisor. The 32 bit signed remainder replaces the contents
of the register specified by R1. The 32 bit sigaed quotient replaces the contents of the register

specified Hy R1+1,

Condition Code

Unchanged

Programming Notes

The R1 field of thesc instructions must specify an even numbered registex,

If the R1 field of these instructions is odd, the result is undefined.

The most significant bits of the dividend must be contained in the register specified by R1. The
least significant bits of the dividend must be contained in the register specified by R1 + 1.

In the RX formats, the second operand must be iocated on a fullword houndary.

If the divisor is equal to zero, the instruction is not executed, the operand registers are un-
changed, and the arithmetic fault intercupt is taken, if enabled by Bit-19 of the current program
status word. If the intercupt is not enabled, the next sequential instruction is executed.

If the value of the quotient is greater than X'7FFFFIFFI' or Iess than (mere negative than,

X'80000000°, quotient overflow is said to occur,

If quotient overflow occurs, the operand registers

are not changed, and the arithmetic fault interrupt is taken, if enabled by the Bit-19 of the current
program status word. If the interrupt is not enabled, the next sequential instruction is executed.

The sign of the quotient is determined by the rules of algebra.

same as the sign of the dividend.

Example: D

The sign of the remainder is tha

This example divides the contents of Registers 8 and 9 by the fullword contents of memory

location LOC.

1. REGS contains X'12345678' = First Half of Dividend
REGY contains X'98765432' = Second Half of Dividend
1.OC containsg X'34343434' = Divisor

Assembler Notation Comments

D REGS,LOC Divide (REG 8,9) by (LOC)

29428 RO2 2/77

Result of D Instruction

(REGS8) = 1E1E1E1E = Remainder

(REG9) = 59455459 = Quotient

(LOC) = 34343434

Condition Code = unchanged by this instruction

2. REGS contains X'FFFFIF1234' = First Half of Dividend

REG9 contains X'00000000' = Second Half of Dividend
LOC contains X'12345678" = Divisor
Assembler Notation Comments
D REGS, LOC Divide (REG 8,9) by (LOC)

Result of D Instruction

il

(REGS) F250D9E0 = Remainder

(REG9) FFF2EFFC= Quotient

LOC = 12345678

Condition Code = unchanged by this instruction

3. REGS contains X'43657898' = TFirst Half of Dividend
REGY contains X'12123456' = Second Half of Dividend
LOC contains X'00000000' = Divisor
Assembler Notation Comments
D REGS8, LOC Divide (REGS8, 9) by (LOC)

Result of D Instruction

Division by zero causes arithmetic fault to be taken if Bit 19 of PSW is enabled.
Operands and Condition Code remain unchanged by this instruction.
4. REGS contains X'80000000' = First Half of Dividend

REG9 conatins X'00000001' = Second Half of Dividend

LOC contains X'00000001' = Divisor

Assembler Notation

Comments_

D REGS, 1LOC Divide (REG 8,9) by (LOC)
Result of D Instruction:

Quotient overflow causes arithmetic fault to be taken if Bit-19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

29428 RO2 2/77 4-15

INSTRUCTIONS

Divide Halfword (DH)
Divide Halfword Register (DHR)

Assembler Notation Op-Code Format
DH R1,D2 (X2) 4D RX1,RX2
DH R1,A2 (FX2,8X2) 4D RX3
DHR R1,R2 0D RR
Operation

The 32 bit divident contained in the register specified by R1 is divided by a 16 bit signed,
two's complement divisior taken from memory or from Bits 16:31 of the register specified
by R2. The 16 bit remainder is expanded to a fullword by propagating the Sign bit through
Bits 15:0 and is stored in the register specified hy R1, The 16 hit quotient is expanded to
a fullword by propagating the Sign bit through Bits 15:0 and is stored in the register spec-
ified by R1+1,

Condition Code

Unchanged
Programming Notes

In the RX formats, the second operand must be located on a halfword boundary.

If the divisor is equal to zero, the instruction is not executed, the operand registers are un-
changed, and the arithmetic fault interrupt is taken, if enabled by Bit-19 of the current program
status word. If the interrupt is not enabled, the next sequential instruction is executed.

If the value of the quotient is greater than X'7FFI' or less than (more negative than)
X'8000', quotient overflow is said to occur.

If quotient overflow occurs, the operand registers are not changed, and the arithmetic fault
interrupt is taken, if enabled by Bit-19 of the current program status word. If the interrupt
is not enabled, the next sequential instruction is executed,

The sign of the quotient is determined "y the rules of algebra. The sign of the remainder is
the same as the sign of the dividend.

Example: DH

This example divides the contents of Register 7 hy the halfword contents of memory lo-

cation LOC.
1. REG7 contains X'003) 2354' = Dividend
LOC contains X'0008' = Divisor
Assembler Notation Comments
DH REG7, LOC Divide (REG 7) by (LOC)

Result of DH Instruction

(REG7) = 0000 0004 = Remainder
(REG8) = 0000 000A = Quotient
(LOC) = 0008

Condition Code = unchanged by this instruction

1-16 29-42% RO6 5/75

2. REGT7 contains X'12345678"
LOC contains X'0000'

Assembler Notation

DH REG7,LOC

Result of DH Instruction

Dividend
Divisor

I

Comments

Divide (REG 7) by (LOC)

Division by zero causes arithmetic fault to be taken if Bit-19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

3. REGY7 contains X'8000 0002' = Dividend

LOC contains X'0001'

Assembler Notation

DH REG7,LOC

Result of DH Instruction

Comments

Divide (REG 7) by (LOC)

Quotient overflow causes arithmetic fault to be taken if Bit-19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

29428 RO2 2/77

INSTRUCTION

Shift Left Arithmetic (SLA)

Assembler Notation Op-Code Format
SLA R1,12 (X2) EF RI1
Operation

Bits 1:31 of the first operand, contained in the register specified by R1, are shifted left
the number of places specified by the second operand. The Sign bit (Bit 0), remains un-
changed. Bits shifted out of Position 1 are shifted through the carry flag and then lost.

The last bit shifted remains in the carry flag. Zeros are shifted into Position 31.

Condition Code

C|VIG]|L

X|10[{0]0 Result is ZERO

X10{0]1 Result is less than ZERO
Xlo|1]o0 Result is greater than ZERO

Programming Notes

The state of the C flag indicates the state of the last bit shifted.

The shift count is specified by the least significant five bits of the second operand. The
maximum shift couat is 31,

A shift of zero places causes the Condition Code to be set in accordance with the value
contained in the register specified by R1. The C flag is reset in this case,

Example: SLA
This example shifts the bits in Register 5 left by the number specified by the second operand.

REGS5 contains X'80005647'

Assembler Notation Comments

SLA REG5,4 Shift Left 4 Places
Result of Instruction:

(REG5) = 80056470
Condition Code = 0001 (L=1)

4-18 29428 RO2 2/77

INSTRUCTION

Shift Left Halfword Arithmetic (SLHA)

Assembler Notation

Op-Code Format
SLHA R1,12 (X2) CF RI1

Operation

Bits 17:31 of the register specified by R1 are shifted left the number of places specified
by the second operand. Bit 16 of the register, the halfword Sign bit, remains unchanged.
Bits shifted out of Position 17 are shifted through the carry flag and then lost. The last bit

shifted remains in the carry flag. Zeros are shifted into Position 31. Bits 0:15 of the first
operand register remain unchanged.

Condition Code

C|VI|G|L

X|lofo]o Result is ZERO

Xtoflo]1 Result is less than ZERO
Xloi1lo Result is greater than ZERO

Programming Notes

The Condition Code settings are based on the halfword, Bits 16:31, result.

The state of the C flag indicates the state of the last bit shifted.

The shift count is specified by the least significani four bits of the second operand. The maximum I
ghift count is 15.

A shift of zero places causes the Condition Code to be set in accordance with the halfword value l
contained in Bits 16:31 of the register. The C flag is reset in this case.

29-428 RO2 2/77 4-19

INSTRUCTION

Shift Right Arithmetic (SRA)

Assembler Notation Op-Code Format
SRA R1,12 (X2) EE RI1
Operation

Bits 1:31 of the first operand, contained in the register specified by R1, are shifted right
the number of places specified by the second operand. The Sign bit (Bit 0), remains un-
changed and is propagated right as many positions as specified by the second operand. Bits

shifted out of Position 31 are shifted through the carry flag and lost. The last bit shifted
remains in the carry flag.

Condition Code

ClVIG]|L

X|(ofo]o Result is ZERO

Xlofo]|1 Result is less than ZERO
X{0{11{o0 Result is greater than ZERO

Programming Notes
The state of the C flag indicates the state of the last bit shifted.

The shift count is specified by the least significant five bits of the second operand. The maximum
shift count is 31,

A shift of zero places causes the Condition Code to be set in accordance with the value contained
in the register., The C flag is reset in this case,

A shift of zero places causes the Condition Code to be set in accordance with the value contained
in the register. The state of the C flag in undefined in this case,

Example: SRA

This example shifts the contents of Register 9 right the number of places specified by the
second operand.

REGY contains X'800004256'

Assembler Notation Comments

SRA REGSY, 8 Shift REG 9) right 8 bits

Result of Instruction

(REG9) = X'FF800042!
Condition Code = 0001 (L=1)

4-20 29428 RO2 2/77

INSTRUCTION

Assembler Notation

Shift Right Halfword Arithmetic (SRIA) I
Op-Code Format
R1,I2 (X2) CE RI1

SRHA

Operation

Bits 17:31 of the register specified by R1 are shifted right the number of places specified
by the second operand. Bit-16 of the register, the halfword Sign bit, remains unchanged
and is propagated right the number of positions specified by the second operand. Bits
shifted out of Position 31 are shifted through the carry flag and lost. The last bit shifted
remains in the carry flag. Bits 0:15 of the first operand register remain unchanged.

Condition Code

o o o<
— o ofl@

L
0
1
0

R HKoRQ

Programming Notes

Result is ZERO
Result is less than ZERO
Result is greater than ZERO

The condition code settings are based on the halfword, Bits 16:31, result.

The state of the C flag indicates the state of the last bit shifted.

The shift count is specified by the least significant four bits of the second operand. The maximum
ghift count is 15,

If the second operand specifies a shift of zero places, the C flag is reset in this case.

29428 RO2 2/77

4-21

INSTRUCTION

Convert Halfword Value Register (CHVR)

Assembler Notation Op-Code Format
CHVR R1,R2 12 RR
Operation

The halfword second operand, (Bits 16:31) of the register specified by R2, is expanded
to a fullword by propagating the most significant bit (Bit 16) through Bits 15:0. This

fullword replaces the contents of the register specified by R1.

Condition Code

CIVI[G]|L

X X{ofo Result is ZERO

X X]lol1 Result is less than ZERO

X X| 1|0 Result is greater than ZERO

X|1[X| X Source operand cannot be represented by a 16 bit signed number
1 (X [X] X Carry flag was sct in previous Condition Code

01X X} X Carry flag was reset in previous Condition Code

Programming Note

The V flag is set when Bits 0:15 of the second operand are not the same as Bit-16 of the
second operand. (In this case, the G and L flags reflect the algebraic value of Bits 16:31
of the second operand.)

Execution of this instruction following halfword operations guarantees results identical
with those that would be obtained if the program were run on an INTERDATA 16 bit mach-
ine. For example, assume that location A in memory contains the halfword value of
X'"TFFFE' (decimal 32767) then,

LI R1,A R1 contains X'00007FFF'
AIS R1,1 R1 contains X'00008000'

Following the add operation, the Condition Code is:

ClVIG|L

0jof1(o

indicating a result greater than zero, which is correct for fullword operations. If the
same sequence were cxecuted on a 16 hit Processor, as:

LI R1,A R1 contains X'7FFIF'
AlS R1,1 R1 contains X'8000'

4-22 29428 RO2 2/77

indicating overflow and a negative result. Going back to the orliginal sequence and adding

the Convert Halfword Value instruction produces the following:

L1 R1,A R1 contains X'00007FFF"'
AlS R1,1 R1 contains X'00008000'
CHVR R1,R1 R1 contains X'FFFF8000'

TFollowing this sequence, the Condition Code is:

ClV|G|L
of1(0 |1

which is identical to that of the 16 bit Processor, and can be tested in the same manner.

29428 RO2 2/77

4-23/4-24

CHAPTER 5
FLOATING POINT ARITHMETIC

TFloating Point Arithmetic instructions provide a means for rapid manipulation of scientific data
expressed as floating point numbers. Single Precision as well as Double Precision Floating
Point Instructions are described in this chapter. The comprehensive set of instructions includes
load and store floating point numbers; add, subtract, multiply, divide and compare two floating
point numbers; convert fixed point to floating point and vice versa.

INTRODUCTION

Floating point is a means of respresenting a quantity in any numbering system. Consider a decimal
number (base = 10), 123 which can be represented in the following forms:

123.0 x 10°
1.23 x 102
0.123 X 103
0.0123 x 10%

Note that in this example, the decimal point moved. Hence we have a floating point. In actual
floating point representation the significant digits are always fractional and are collectively
referred to as fraction, The power to which the base number is raised is called the exponent.
For example, in the number ', 45678 x 102“, 45678 is the fraction and 2 is the exponent. Both
the fraction and the exponent may be signed. If we have a floating point representation as,

(sign of fraction) (exponent) (fraction)

then the following representation applies:

Number TFloating point
: ' Sign | Exponent/Fraction
132,94 = 1.3294 x 102 T | 2 3294
~23760000. 0 = -.2376 x 10 | +8 2376
+0.000059 = 4.59x107% T | 4 59
-0.0000000092073 = -.92073 x 1078 s 92073

The convenience with which extremely large or small numbers can be expressed in floating
point makes it ideally suitable for scientific computation. Note the compactness of floating
point notation in-the above examples.

The floating point representation in the Model 8/32 is similar to the above represéhtation. “The
differences are as follows: '

Hexadecimal, instead of decimal, numbering system is used.
Physical size of the number and hence the magnitude and the precision is limited.

921
1
-

19-428 RO2 2/77

The single precision floating point number fields are shown in Figure 5-1,

F1 F2 F3 Fa F5 F6

-MOST SIGNIFICANT FRACTION DIGIT=0: UNNORMALIZED
FLOATING POINT NUMBER,
OR TRUE ZERO
$0: NORMALIZED
FLOATING POINT NUMBER

F1 F2 F3 F4 F5 F6

'“—VALUE OF THE FRACTION
=F1.16-1+ F2.16-2 + F3.16-3 + F4.16-4
+F5.16-5 + F6.16-6

—— EXPONENT IN EXCESS 64 NOTATION

EXCESS 64 HEXADECIMAL DECIMAL

00 TO 3F -40TO -1 -64 TO -1
40 0 0

41TO7F 1TO3F 1TO 63

——SIGN =0 : POSITIVE FLOATING POINT NUMBER
= : NEGATIVE FLOATING POINT NUMBER

Figure 5-1. Single Precision Floating Point Number Fields

5-2 29-428 RO1 1/76

FLOATING-POINT NUMBER

In the Model 8/32 Processor a floating point number is represented in the following form:

Sign

Exponent

Sign Exponent J

Fraction

|

The most significant bit of a floating point number is a sign bit. The sign bit is zero
for positive numbers and one for negative numbers. The floating point value of zero
always has a positive sign.

The 7-Bit field, Bits 1:7, is designated as the exponent field. The exponent field con-
tains the true value of the exponent plus X'40' (decimal 64)., This helps to represent
very small magnitudes between 0 and 1. The exponent is said to be expressed in
excess 64 notation. Some of the exponent values are as follows:

Exponent in

Excess 64 notation

00
3F
40
41
TF

True True
exponent in exponent in
hexadecimal decimal
-40 -64
-1 -1
0 0
1 1
3r 63

The exponent field for true zero is always 00.

Fraction

Multiply
fraction by

16—64

16-1
1

16
16" 63

The fraction field is 6-hexadecimal digits for single precision floating point
numbers (thus limiting the precision) and 14-hexadecimal digits for double
precision floating point numbers. As in any other fraction, the floating point
fraction is expressed with most precision when the most significant digit (not
necessarily the most significant bit) is non-zero. The floating point number
with such a fraction is called a normalized floating point number. In the model
8/32 Processor, normalized numbers are always used to obtain maximum
possible precision. For hexadecimal fraction conversion, refer to Appendix 6.

Examples: The following examples illustrate the sign, exponent and fraction concept of a floating
point number.

R

+

+ABCDEF12,9AC
+0.,003 2A9CTI2
-0.000002C7B5

Numbers in Iex
integer-fraction
notation

1,3A25678
6.89 F2C

1A.C39D21
3C1DF.82A3

Sign-exponent-fraction

shown for clarity

178

| E | F

l

H OO M ORKO

41 13A25678

41 689 Fr2cC

42 1AC39021
45 3C1DF82A3

48 ABCDEF129AC

3E 32 A9CF2

3B 2C 7B5

Single Precision
Floating point numbers

4113A256
Cl689F2C
421AC39D
C53C1 DF8
48ABC DEF
3E32A9CF
BB2C7 B50

Refer to Appendix 6 for examples of similar conversion to double precision floating
point numbers.

29-428 RO1 1/76

Floating Point Number Range
The range of magnitude (M) of a normalized floating point number is as follows.

65

Single precision: 16 " S MS (- 1676 « 1663
Double precision: 16765 € y < - 16714 « 1663
Approximately for both: 5.4% 10779 < M < 7.,2% 1075

Table 5-1 shows the single precision point range in relocation to the fixed point range along with
the decimal values.

TABLE 5-1 FLOATING/FIXED POINT RANGES

Floating Point Fixed Point Decimal
numbers integer numbers
(most negative) FFFF FFFT -7.2% 107°
Cc880 0000 8000 0000 (most negative) -2 147 483 648
C111 0000 FFFT FFIT (least negative) -1
(least negative) 8010 0000 -5.4 * 10"79
(true zero) 00000000 0000 0000 0
(least positive) 0010 0000 +5.4% 10779
4110 0000 0000 0001 (least positive) +1
4 87F FFIFEF TFFI° Fi?FF (most positive) +2 147 483 647
(most positive) 7 FFF FFFF +7.2% 1070

Normalization

Normalization is a process of making non-zero the most significant digit (F1) of the fraction of a
floating point number. In the normalization process, the floating point fraction is shifted left hexa-
decimally (i.e., four bits at a time), and its exponent is decremented by one for each hexadecimal
shift until the most significant digit (not necessarily the most significant bit) of the fraction is non-
Z€ero.

FRACTION
Al

S EXPONENT F1 F2 F3 F4 F5 F6

- -

SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F130

DECREMENT EXPONENT BY ONE FOR EACH SHIFT

Except LE, LER, LD, LDR instructions, all the floating point operations assume and require nor-
malized operands for consistent results. The LE, LER, LD and LDR instructions normalize an
unnormalized operand.

Example:
Operands After normalization
1. 42012345 41123450
2. 21000 ABC 1EABCO0O00O0
3. C900FE12 C7FE1200
4. 6C000000 00000000 (true zero)
5. 82000A67 00000000 (exponent underflow)

5-4 29-428 RO1 1/76

In example 4, the fraction of the operand is zero. During the normalization process, such a frac-
tion is detected and the floating point number is set to true zero.

In example 5, the exponent of the operand is very small., During the normalization process, the
exponent is decremented from 00 to 7F. Sugh a transition results in exponent underflow and the
floating point number is set to true zero.

In floating point operations, assuming that the operands are normalized, normalized results are
always produced. Results of operations between unnormalized aambers are undefined.

Equalization

Equalization is a process of making equal the exponents of two floating point numbers. The fraction
of the floating point number with the smaller exponent is shifted right hexadecimally, i.e., four
bits at a time, and its exponent is incremented by one for each hexadecimal shift until the two
exponents are equal.

INCREMENT EXPONENT BY ONE FOR EACH SHIFT

SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQUAL

S EXPONENT F1 F2 F3 F4 F5 F6

FRACTION

During the floating point addition and subtraction two floating point operands are equalized.

Example:
Floating point After equalization
operands
1. 43123456 43123456
3F789ABC 43000078
2. C7TFE1234 C900FEL2
495 6789A 4956 789A

In this example, normalized floating point numbers are shown because addition and subtraction
require normalization. Note that if the exponents differ by 6 or more the significance of the lower

exponent floating point number is lost in the process of equalization.

True Zero

A floating point number is said to be true zero when the exponent and the fraction fields are all
zeroes. In other words, all data bits must be zero. A value of zero always has a positive sign.
In general, zero values participate as normal operands in all floating point operations.

A true zero may be used as an operand or may result from an arithmetic operation that caused an
exponent underflow, in which case the entire number is forced to true zero. Secondly, if an arith-
metic operation produces a result whose fraction digits are all zeroes (sometimes referred to as
loss of significance), the entire number is forced to true zero.

lixamples:
Numbers Operation Result Reason
030000AB Normalize 0000 0000 exponent
underflow
41 ABCDEF
41 ABCDE ¢ Subtract 0000 0000 loss of
significance

29428 RO2 2/77 5-5

Exponent Overflow

In floating point operations, exponent overflow may occur. Exponent overflow occurs when a
resulting exponent is greater than +63. If overflow occurs, the exponent and fraction bits of the
result are set to all 1s, the largest possible magnitude and therefore the closest possible answer.
The sign of the result is not affected by the overflow. Figure 5-2 illustrates exponent overflow
using a line representation of numbers.

Most negative True Most positive
number Zero number
. oo .

FFFFFFFF 0 TFFFFFTFF
(exponent = 7T (exponent = TI)
-—e o 6310 — &

overflow overflow

Figure 5-2. Exponent Overflow

If overflow occurs, the V flag in the Condition Code is set, and an arithmetic fault interrupt is
taken, if enabled by the current PSW.

Exponent Underflow

The normalization process, during a floating point operation, may produce an exponent underflow.
Exponent underflow occurs when a result exponent would be less than -64. If underflow occurs,
the entire result is set to true zero, the closest possible answer. Figure 5-3 illustrates exponent

underflow using a line representation of numbers,

Least negative True Least positive
number Zero number
—F f—e . —
80100000 0010000
[exponent =00] exponent = 00]
= —6410 = —6410

- +————
underflow underflow

Figure 5-3. Exponent Underflow

If underflow occurs, the V flag in the Condition Code is set, and an arithmetic fault interrupt is
taken, if enabled by the current PSW.

Data Formats

In the model 8/32 Processor, floating point numbers occur in one of two formats, single precision
and double precision. The single precision format requires a fullword (32 bits) in one of the

8 single precision floating point registers or on a fullword address boundary, in memory. The sign
(s), exponent (x) and fraction (consisting of digits F1, F2, I3, F4, F5 and F6) fields are desig-
nated as follows:

5-6 29-428 RO1 1/76

The double precision format requires a doubleword (64 bits) in one of the 8 double precision float-
ing point registers or on a doubleword address boundary in memory. The sign (s), exponent (x)
and fraction (consisting of digits IF1 through F14) fields are designated as follows:

01 7 8 12 16 20 24 28 .
S X F1 F2 F3 F4 F5 F6 §
‘32 36 40 44 48 52 56 60 63
2 F7 F8 F9 F10 F11 F12 F13 F14
)~

The value of a single (and similarly double) precision floating point number can be expressed as
follows:

— _ _ -5 e ot 1
sign(F1.16 ™1 + 12,1672 + 73,1673 + F4.16™% 4 ¥5.16™° + 16.1676) 16%7X40

Guard Digit and Rounding

A guard digit is an extra hexadecimal digit provided to the right of the least significant fraction
digit of a floating point number. In the model 8/32, only single precision floating point numbers
can have a guard digit. The guard digit is produced and used during the processing of intermedi-
ate results of a floating point operation. The guard digit does not appear in the final result. How-
ever, the guard digit helps rounding the final result, thus increasing the precision slightly. In the
absence of a guard digit, as is the case in double precision floating point numbers, the final result
is simply truncated.

NOTE

The basic 8/32 Processor, which does not have the double precision
floating point option, does not have a guard digit for single precision
floating point numbers, Hence the results are truncated, not rounded,

A guard digit is produced during the equalization phase of an Add and Subtract single precision
floating point operation. Then the operation is performed to obtain an intermediate result. The
guard digit participates in the operation. If the guard digit of the intermediate result is 0 through
7, no rounding is done., If it is 8 through F, one (1) is added to the fraction of the intermediate
result to obtain the final result fraction, unless such an addition produces a carry into the expon-
ent field., The following example illustrates the rounding procedure.

After Guard
operands equalization digit
+42ABCD12 +42ABCD12
41678 9 AB 420678 9A [B)
42B245AC intermediate result
+ 1
42B245AD final result

A guard digit is also produced during the Multiply and Divide single precision floating point
operations. The intermediate product or the quotient is rounded as shown here to obtain the
final result.

29-428 RO6 5/78 5-7

Conversion from Decimal

The process of converting a decimal number into the excess 64 notation used internally by the
Processor involves the following steps:

1. Separate the decimal integer from the decimal fraction:
182. 37510 = (182 +. 375)10

2. Convert each part to hexadecimal by referring to the Integer conversion table and the Fraction
conversion table in Appendix 5.

18214 = B6 .37510 = .64
3. Combine the hexadecimal integer and fraction:

B6.6,, = (BG6.6 X 16°) 14

16~ ¢
4, Shift the radix point:

B6.6 X 16%) | = (.B66 X 16%) |4
5. Add 64, (X'40'), to the exponent

4016 + 216 = 4216

6. Convert the exponent field and fraction to binary allowing 1 bit for the sign, 7 bits for
the exponent field, and 24 or 56 bits for the fraction.

42B66 = 0100 0010 1011 0110 0110 0000 0000 0000

CONDITION CODE

Following floating point operations, including load, the Condition Code indicates the result of
the operation.

FLOATING POINT INSTRUCTION FORMATS

The Floating Point instructions use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In all of the RR formats, except for Fix and Float, the R1 and

the R2 fields specify one of the floating point registers. There are eight single precision float-

ing point registers, and 8 double precision floating point registers numbered 0, 2, 4, 6, 8, 10,

12, and 14. Except FXR and FXDR instructions, the R1 field always specifies a floating point register.

FLOATING POINT INSTRUCTIONS

The floating point arithmetic operations, excluding loads and stores, require normalized operands
to ensure correct results. If the operands are not normalized, the results of these operations are
undefined. Floating point results are normalized. The Floating Point Load instruction normalizes

floating point data extracted from memory.

The single precision floating point instructions described in this section are:

LE Load Floating Point CE Compare Floating Point

LER Load Floating Point Register CER Compare Floating Point Register
LME Load Floating Point Multiple ME Multiply Floating Point

STE Store Floating Point MER Multiply Floating Point Register
STME Store Floating Point Multiple DE Divide Floating Point

AE Add Floating Point DER Divide Floating Point Register
AER Add Floating Point Register FXR Fix Register

SE Subtract Floating Point FLR Float Register

SER Subtract Floating Point Register

5-8 29-428 RO2 2/77

The double precision floating point instructions described in this section are:

LD
LDR
LMD
STD
STMD
AD
ADR
SD
SDR

29-428 RO1 1/76

Load DPFP

Load Register DPFP
Load Multiple DPFP
Store DPFP

Store Multiple DPFP
Add DPFP

Add Register DPFP
Subtract DPFP

Subtract Register DPFP

CD
CDR
MD
MDR
DD
DDR
FXDR
FLDR

Compare DPFP
Compare Register DPFP
Multiply DPFP

Multiply Register DPFP
Divide DPFP

Divide register DPFP
Fix Register DPFP
TFloat Register DPFP

INSTRUCTIONS

Load Floating Point (LE)
Load Floating Point Register (LER)

Assembler Notation Op-Code Format
LE R1,D2 (X2) 68 RX1,RX2
LE R1, A2 (FX2,SX2) 68 RX3
LER R1,R2 28 RR
Operation

The floating point second operand is normalized, if necessary, and placed in the floating
point register specified by R1.

Condition Code

Floating point value is ZERO

Floating point value is less than ZERO
Floating point value is greater than ZERO
Exponent underflow

o oo ola
= O O o|d
o+ o oin
oo+ ojH

Programming Notes
If the fraction is zero, the result is forced to X'0000 0000’
Normalization may produce exponent underflow. In this event, the result is forced to zero,

X'0000 0000', the V flag in the Condition Code is set, the G and L flags are reset and, if
enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a fullword boundary.

Example: LE

This example normalizes the fullword at memory location LOC and places it in Floating Point

Register 8.

Floating Point Register 8 = undefined

L.OC = X'4200 1000'

Assembler Notation Comments

LE REGS8,LOC Normalize contents of LOC
Result of LE Instruction

(Floating Point Register 8) = 4010 0000

(LOC) = unchanged by this instruction

Condition Code = 0010

5-10 29-428 RO2 2/77

INSTRUCTION

Load Floating Point Multiple (LME)

Assembler Notation Op-Code Format
LME R1,D2 (X2) 72 RX1, RX2
LME R1,A2 (FX2,8X2) 72 RX3
Operation

Successive floating point registers, starting with the register specified by R1, are loaded

from successive memory locations starting with the address of the second operand. The
process stops when Floating Point Register 14 has been loaded.
Condition Code

Unchanged

Programming Notes

Values loaded into the floating point registers assumed to be normalized and no test or
adjustment is performed.

The second operand must be located on a fullword boundary.

29-428 R06 5/78

INSTRUCTION

Store Floating Point (STE)

Assembler Notation Op-Code Format
STE R1,D2 (X2) 60 RX1,RX2
STE R1,A2 (FX2,SX2) 60 RX3
Operation

The floating point first operand, contained in the floating point register specified by R1,
is placed in the memory location specified by the second operand address. The first op-
erand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

5-12 29428 R0O2 2/77

INSTRUCTION

Store Floating Point Multiple (STME)

Assembler Notation . Op-Code Format
STME R1,D2 (X2) 71 RX1,RX2
STME R1,A2 (FX2,8X2) 71 RX3

Operation

The contents of successive floating point registers, starting with the register specified by
R1, are stored in successive memory locations, starting with the address of the second
operand. The operation stops when the contents of Floating Point Register 14 have been
stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29428 RO2 2/77 5-13

INSTRUCTIONS

Add Floating Point (AE)
Add Floating Point Register (AER)

Assembler Notation Op-Code Format
AE R1,D2 (X2) 6A RX1,RX2
AE R1,A2 (FX2,S8X2) 6A RX3
AER R1,R2 2A RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with

the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent

is incremented by one for each hexadecimal shift until the two exponents are equal. The hex-
adecimal digits (of four bits each) are shifted through the guard digit. The guard digit contains the
last shifted hexadecimal digit. If no shift occurs it is zero. The fractions are then added alge-
braically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one
and the fraction of the result is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction, producing a normalized result.
This result replaces the contents of the register specified by R1.

If the addition of fractions does not produce a carry, the result is normalized, if necessary, and
replaces the contents of the register specified by R1.

Condition Code

C|VIG|L

X|07101{0 Floating point result is ZERO

Xiolo{1 TFloating point result is less than ZERO
Xiojf1io Floating point result is greater than ZERO
X(1}o{|1 Exponent overflow, Result is negative
Xfi1f11o Exponent overflow, Result is positive
Xi1j01o0 Exponent underflow

Programming Notes

When the addition of the fractions produces a carry, incrementing the exponent of the result
by one may produce exponent overflow. In this case, the result is forced to the maximum
value, +X'"7FFF FFFF', the V flag, along with the G or L flag is set in the Condition Code and,
if enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'0000 0000'. The V flag is set in the Condition Code. The G and the
L flags are always reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault

interrupt is taken.,

If the guard digit is 0:7, the result is not rounded. If the guard digit is 8:F, the result is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field,

In the RX formats, the second operand must be located on a fullword boundary.

5-14 29-428 RO6 5/78

Example: AE

This example adds the contents of LOC to the contents of the Floating Point Register 8 and places
the answer in Floating Point Register 8.

Floating Point Register 8 contains X'7TEFF FFFI"'
LOC contains X'7TEFF FFFF'

Assembler Notation Comments

AE REGS,LOC ADD (REG 8) to (LOC)

Result of AE Instruction

(Floating Point Register 8) = 7F1F FFFF
(LOC) = unchanged by this instruction
Condition Code = 0010

29-428 RO1 1/76 5-15

INSTRUCTIONS

Subtract Floating Point (SE)
Subtract Floating Point Register (SER)

Assembler Notation Op-Code Format
SE R1,D2 (X2) 6B RX1,RX2
SE R1,A2 (FX2,SX2) 6B RX3
SER R1,R2 2B RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with
the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent
is incremented by one for each hexadecimal shift until the two exponents are equal. The
hexadecimal digits (of four bits each) are shifted through the guard digit. The guard digit
contains the last shifted hexadecimal digit. If no shift occurs it is zero. The second oper-
and fraction is then subtracted algebraically from the first operand fraction.

If the subtraction of fractions produces a carry, the exponent of the result is incremented by
one and the fraction of the result is shifted right one hexadecimal digit. The carry bit is
shifted back into the most significant hexadecimal digit of the fraction, producing a normalized
result. This result replaces the contents of the register specified by R1.

If the subtraction of fractions does not produce a carry, the result is normalized. The
normalized result replaces the contents of the register specified by R1.

Condition Code

Floating point result is ZERO

Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive

ISR o e
M HEO OOl
oo R o oln
OOI—'O'—'OF

Exponent underflow

Programming Notes

When the subtraction of the fractions produces a carry, incrementing the exponent of the
result by one may produce exponent overflow. In this case, the resulf is forced to the max-
imum value, +X'7FFF FFFI', the V flag, along with the G or L flag is set in the Condi~

tion Code and, if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'0000 0000', The V flag is set in the Condition Code. The G and the

L flags are always reset and, if enabled by Bit-19 of the current PSW, the arithmetic fault
interrupt is taken.

The shifted hexadecimal digits (if any) participate in subtraction and produce a guard digit.
If the guard digit is 0:7, the result is not rounded. If the guard digit is 8:F, the result is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29-428 RO2 2/77

Example: SE

This example subtracts the contents of LOC from the contents of Floating Point Register 8 and
places the result in Floating Point Register 8.

Floating Point Register 8 contains X'7FEF FFIFF!

LOC contains X'7A10 0000'
Assembler Notation ’ Comments
SE REGS8,LOC Subtract (LOC) from REGS8

Result of Instruction

(Floating Point Register 8§ = 7FEF FFFE
(LOC) = unchanged by this instruction
Condition Code = 0010

29-428 RO1 1/76 -17

[%7]

INSTRUCTIONS

Compare Floating Point (CE)
Compare Floating Point Register (CER)

Assembler Notation Op-Code Format
CE R1,D2 (X2) 69 RX1,RX2
CE R1,D2 (FX2,8X2) 69 RX3
CER R1,R2 29 RR
Operation

The first operand is compared to the second operand. Comparision is algebraic, taking
into account the sign, fraction, and exponent of each number. The result is indicated by
the Condition Code setting. Neither operand is changed.

Condition Code

ClV|{G|L

0|X|0]0 I'irst operand is equal to second operand
1|X[0]1 First operand is less than second operand
0(X|1]|0 T'irst operand is greater than second operand

Programming Note
The state of the V flag is undefined.

In the RX formats, the second operand must be located on a fullword boundary.

5-18 29428 RO2 2/77

INSTRUCTIONS

Multiply Floating Point (ME)
Multiply Floating Point Register (MER)

Assembler Notation Op-Code Format
ME R1,D2 (X2) 6C RX1,RX2
ME R1,A2 (FX2,8X2) 6C RX3
MER R1,R2 2C RR
Operation

The exponents of each operand, as derived from the excess 64 notation used in floating point
representation, are added to produce the exponent of the result. This exponent is converted
back to excess 64 notation., The fractions are then multiplied.

If the result is zero, the entire floating point value is forced to zero, X'0000 0000'. If the

product is not zero, the result is normalized. The sign of the result is determined by the
rules of algebra. The result replaces the contents of the register specified by R1,

Condition Code

Floating point result is ZERO

Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

bl i i e}
H o o o|ld
OO Mo O
©C OO R OH

Programming Notes

The addition of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, +X'7FFF FFFF'. The V flag in the Condition Code is set,

along with either the G or the L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by Bit-19 of the current PSW,

The addition of exponents or the normalization process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000'. The V flag in the Condition Code is

set. The G and L flags are reset, and if enabled by Bit-19 of the current PSW, the arithmetic
fault interrupt is taken.

Multiplication of two 6-hexadecimal digit fractions effectively produces a result of 6-hexa-
decimal digits and a guard digit. If the guard digit is 0:7, the result is not rounded. If the
guard digit is 8:T, the result is rounded by adding 1 to the fraction of the result, unless
rounding produces a carry into the exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29-428 RO2 2/77 5-19

Example: ME

This example multiplies the contents of LOC by the contents of the Floating Point Register 8
and places the result in Floating Pointer Register 8.

Floating Point Register 8 contains X'8FFF FFFF'

LOC contains X'60FF FFFF'
Assembler Notation Comments
ME REGS, LOC Multiply (REG 8) by (LOC)

Result of ME Instruction

(Floating Point Register 8 = T7FFF FFFE
(LOC) = unchanged by this instruction
Condition Code = 0010

5-20 29-428 RO1 1/76

INSTRUCTIONS

Divide Floating Point (DE) I
Divide Tloating Point Register (DER)
Assembler Notation Op-Code Format
DE R1,D2 (X2) 6D RX1,RX2
DE R1, A2 (FX2,8X2) 6D RX3
DER R1,R2 2D RR
Operation

The exponents of each operand, as derived from the excess of 64 notation used in floating point
representation, are subtracted to produce the exponent of the result., This exponent is converted
back to excess 64 notation.

The first operand fraction is then divided by the second operand fraction. Division continues
until the quotient is normalized, adjusting the exponent for each additional division required. No
remainder is returned. The sign of the quotient is determined by the rules of algebra. The quo-
tient replaces the contents of the register specified by R1.

Condition Code

Floating point result is ZERO

Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow :
Divisor equal to zero

Hooooooln
H R eo o od
coromoo|n
Coo RO RO|H

Programming Notes

Before starting the divide operation, the divisor is checked. If it is equal to zero, the op-
eration is aborted. Neither operand is changed. The C and the V flags of the Condition
Code are set. The G and L flags are reset. If enabled by Bit-19 of the current PSW, the
arithmetic fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, #X'7FFF FFFF'. The V flag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by Bit-19 of the current PSW,

The subtraction of exponents or the division process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000'. The V flag in the Condition Code is
set. The G and L flags are always reset, and if enabled by Bit-19 of the current PSW, the
arithmetic fault interrupt is taken.

The 6-hexadecimal digit first operand fraction is divided by the 6-hexadecimal digit second
operand effectively producing the 6-hexadecimal digit quoticent along with a guard digit. If
the guard digit is 0:7, the quotient is not rounded. If the guard digit is 8:F, the quotient is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29-428 RO2 2/77 5-21

Example: DE

This example divides the contents of Floating Point Register 4 by the contents of memory

location LLOC and places the result in Floating Pointer Register 4.

Floating Point Register 4 contains X'44FF FFFF' = Dividend
LOC contains X'0611 1111’ = Divisor

Assembler Notation

DE REG4,LOC

Result of DE Instruction:

(Floating Point Register 4)
(LOC)
Condition Code

Comments

Divide (LOC) into (REG 4)

7TFF0 0000
unchanged by this instruction
0010

29428 RO1 1/76

INSTRUCTION

Iix Register (FXR) l
Assembler Notation Op-Code Format

FXR R1, R2 2E RR
Operation

R1 specifies one of the general purpose registers. R2 specifies one of the floating point registers.
The floating point number contained in the floating point register is converted to a two's comple-
ment notation integer value by shifting and truncating. The result is stored in the register speci-

fied by R1.

Condition Code

Result is ZERO or underflow
Result is less than ZERO

Result is greater than ZERO
Overflow, Result is negative
Overflow, Result is positive

KX KK XA
HROoOOd
o R o ol
O RO R OoH

Programming Notes
The range of floating point magnitudes M that produces a non-zero integral result is:
+X'4880 0000'> M> +X'4110 0000’
Floating point magnitudes greater than +X'487F FFFF' cause overflow. The result is forced
to X'"7FFF FFFT' if positive or to X'8000 0001' if negative. The V flag is set in the Condition
Code along with either the G or L Flag, depending on the sign of the result.

Floating point magnitudes less than +X'4110 0000' cause underflow and the result is forced to |
zero,

In the event of overflow or underflow, the Arithmetic Fault Interrupt is not taken, even if
enabled in the current PSW.

Example: FXR

This example converts the contents of the Floating Point Register 8 to a fixed point number and
places it in Register 3.

Floating Point Register 8 contains X'46FTF FFF00!

Register 3 contains undefined
Assembler Notation Comments
FXR REG3, REGS Convert (REG 8) to fixed point

Result of FXR Instruction

(REG3) = 00FFFF00
(Floating Point Register 8) unchanged by this instruction
Condition Code 0010

It

29428 RO2 2/77 5-23

INSTRUCTION

Float Register (FLR)

Assembler Notation Op-Code Format
FLR R1,R2 2F RR
Operation

R1 specifies one of the floating point registers. R2 specifies one of the general purpose
registers. The integer value contained in the register specified by R2 is converted to a
floating point number and stored in the floating point register specified by R1.

Condition Code

Result is ZERO
Result is less than ZERO
Result is greater than ZERO

e}
o o o|ld
= o oln
o~ ok

Programming Note

The full range of fixed point integer values may be converted to floating point. The fixed point
value X'TFFF FFFF', the largest positive integer, converts to a floating point value of X'487F
FFFF'. The fixed point value X'8000 0000', the most negative integer, converts to a floating
point value of X'C880 0000'. The result in Rl is normalized, and truncated if necessary

to fit in the six fraction digits.

Example: FLR

This example converts the Fixed point contents of Register 4 to a Floating Point number and
places it into Floating Point Register 8.

Register 4 contains X'TFFF FFF0'
Floating Point Register 8 contents undefined

Assembler Notation Comments

FLR REGS8,REG4 Convert REG4 to Floating Point

Resuit of FLR Instruction:

[

(Floating Point Register 8) 487FFFFF
(REG4) unchanged by this instruction
Condition Code = 0010

5-24 29-428 R06 5/78

INSTRUCTIONS

Load Double Precision Floating Point (LD)
Load Register Double Precision Floating Point (LDR)

Assembler Notation Op-Code
LD R1,D2(X2) 78
LD R1,A2,(FX2,SX2) 78
LDR R1,R2 38
Operation

Format

RX1, RX2
RX3
RR

The floating point second operand is normalized, if necessary, and placed in the double preci-

sion floating point register specified by R1.

Condition Code

Double precision value is ZERO

ololo|o|a
—=lololo|
o|=lololn
olo|m|o|m

Exponent underflow

Programming Notes

Double precision value is less than ZERO
Double precision value is greater than ZERO

If the fraction is zero, the result is forced to X'0000 0000 0000 0000'.

Normalization may produce exponent underflow, In this event, the result is forced to X'0000
0000 0000 0000', the V flag in the Condition Code is set, the G and L flags are reset and, if
enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-428 RO2 2/77

INSTRUCTION

Load Muitiple Double Precision Floating Point (LMD)

Assembler Notation Op-Code Format
LMD R1, D2(X2) 7F RX1, RX2
LMD R1,A2(FX2,SX2) F RX3
Operation

Successive double-precision floating point registers, starting with the register specified by
R1, are loaded from successive memory locations starting with the address of the second
operand. The process stops when Double Precision Floating Point Register 14 has been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the double precision floating point registers are assumed to be nor-
malized and no test or adjustment is performed,

The second operand must be located on a double word boundary.

5-26 29-428 R0O6 5/78

INSTRUCTION

Store Double Precision Floating Point (STD)

Assembler Notation Op-Code Format
STD R1, D2, (X2) 70 RX1, RX2
STD R1,A2(FX2,S5X2) 70 RX3
Operation

The floating point first operand, contained in the double precision floating point register speci-
fied by R1 is placed in the memory location specified by the second operand address. The first
operand is unchanged.

Condition Code

Unchanged.

Programming Notes

The second operand must be located on a double word boundary.

29428 RO2 2/77 5-27

INSTRUCTION

Store Multiple Double Precision Floating Point (STMD)

Assembler Notation Op-Code Format
STMD R1,D2(X2) 7E RX1, RX2
STMD RI1,A2 (FX2, SX2) 7E RX3

Operation

The contents of successive double precision floating point registers, starting with the register
specified by R1, are stored in successive memory locations, starting with the address of the
second operand. The operation stops when the contents of Double Precision Floating Point
Register 14 have been stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a double word boundary.

5-28 29-428 RO2 2/77

INSTRUCTIONS

Add Double Precision Floating Point (AD) I
Add Register Double Precision Floating Point (ADR)

Assembler Notation " Op-Code Format
AD RIl,D2(X2) 7A RX1, RX2
AD RI, A2(FX2,SX2) 7A RX3
ADR R1,R2 3A RR

Operation

The exponents of the two operands are compared. If the exponents differ the fraction with the
smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent is incre-
mented by one for each hexadecimal shift until the two exponents are equal. The fractions are
then added algebraically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one

and the fraction of the result is shifted right one hexadecimal position. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction, producing a normalized result.
This result replaces the contents of the double precision floating point register specified by R1.

If the addition of fractions does not produce a carry, the result is normalized, if necessary,
and placed in the double precision floating point register specified by R1.

Condition Code

Double Precision Result is ZERO

Double Precision Result is less than ZERO
Double Precision Result is greater than ZERO
Exponent Overflow, Result is negative
Exponent Overflow, Result is positive
Exponent Underflow

b i le)
HHEHO OO«
ororoon
SO RO K OoH

Programming Notes

When the addition of fractions produces a carry, incrementing the exponent of the result by one
may produce exponent overflow. In this case, the result is forced to the maximum value,
+X'7FFF FFFF FFFF FFFF', the V flag, along with the G or L flag is set in the Condition
Code and, if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is forced

to zero, X'0000 0000 0000 0000'. The V flag is set in the Condition Code, and the G and L
flags are reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is

taken.

In the RX formats, the second operand must be located on a double word boundary.

29428 R0O2 2/77

INSTRUCTIONS

Subtract Double Precision Floating Point (SD)
Subtract Register Double Precision Iloating Point (SDR)

Assembler Notation Op-Code Format
SD R1, D2(X2) 7B RX1, RX2
SD R1,A2(FFX2,SX2) 7B RX3
SDR R1, R2 3B RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with
the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift until the two exponents are equal. The second
operand fraction is then subtracted algebraically fromthe first operand fraction.

If the subtraction of fractions produces a carry, the exponent of the result is incremented by
one and the fraction of the result ig shifted right one hexadecimal position. The carry bit is
shifted back into the most significant hexadecimal digit of the fraction producing a normalized
result, This result replaces the contents of the double precision floating point register
specified by R1.,

Condition Code

Double Precision Result is ZERO

Double Precision Result is less than ZERO
Double Precision Resulf is greater than ZERO
Exponent Overflow, Result is positive
Exponent Overflow, Result is negative
Exponent Underflow

Ko M XX XA
HHRrROOOold
OOHHOOQ
O RO O O

Programming Note

When the subtraction of fractions produces a carry, incrementing the exponent of the result
by one may produce exponent overflow. In this case, the result is forced to the maximum
value, + X'TFFF FFFF FFIF FFFF', the V flag, along with the G or L flag is set in the
Condition Code, and if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is
taken.

Normalization of the result may produce exponent underflow. In this case, the result is forced
to zero, X'0000 0000 0000 0000'. The V flag is set in the Condition Code, the G and L flags
are reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

5-30 29-428 RO2 2/77

INSTRUCTIONS

Compare Double Precision Floating Point (CD)
Compare Register Double Precision Floating Point (CDR)

Assembler Notation Og-Code_ Format
CD R1,D2(X2) 79 RX1,RX2
CD Ri1,A2(FX2,5X2) 79 RX3
CDR R1,R2 39 RR
Operation

The first operand is compared to the second operand. Comparison is algebraic, taking into

account the sign, exponent and fraction of each number.
tion Code setting. Neither operand is changed.

Condition Code

C{V|G|L

0]X]|0]0 First operand is equal to second operand
11X|0|1 First operand is less than second operand
0]X|[{1]0 First operand is greater than second operand

Programming Notes

The state of the overflow flag is undefined.

In the RX formats, the second operand must be located on a double word boundary.

29-428 RO2 2/77

The result is indicated by the Condi-

INSTRUCTIONS

Multiply Double Precision Floating Point (MD)
Multiply Register Double Precision Floating Point (MDR)

Assembler Notation Op-Code Format
MD RI1, D2(X2) 7C RX1, RX2
MD RI1, A2(FX2,SX2) 7C RX3
MDR R1, R2 3C RR
Operation

The exponents of the two operands, as derived from the excess 64 notation used in floating
point representation, are added to produce the exponent of the result. This exponent is con-
verted back to excess 64 notation. The fractions are then multiplied.

If the product is zero, the entire double precision value is forced to zero, X'0000 0000 0000 0000'.
If the product is not zero, the result is normalized if necessary. The sign of the result is deter-
mined by the rules of algebra. The result replaces the contents of the double precision floating

point register specified by R1,

Condition Code

Double precision result is ZERO

Double precision result is less than ZERO
Double precision result is greater than ZERO
Exponent overflow, Result is positive
Exponent overflow, Result is negative
Exponent underflow

commooln
or o om ol

I Rl (e
H RO oo

Programming Notes

The addition of exponents may produce exponent overflow. In this case, the result is forced
to the maximum value, +X'7FFF FFFF FFFF FFFF'. The V flag in the Condition Code is
set, along with either the G or L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled hy Bit-19 of the current PSW,

The addition of exponents or the normalization process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000 0000 0000'. The V flag in the Condition

Code is set, the G and L flags are reset, and if enabled by Bit 19 of the current PSW, the
arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

5-32 29428 RO2 2/77

INSTRUCTIONS

Divide Double Precision Floating Point (DD)
Divide Register Double Precision Floating Point (DDR)

Assembler Notation Op-Code Format
DD R1,D2 (X2) 7D RX1,RX2
DD Rl,A2 (FX25X2) 7D RX3
DDR R1,R2 3D RR
Operation

The exponents of the two operands, as derived from the excess 64 notations used in floating
point representation, are subtracted to produce the exponent of the result. This exponent is
converted back to excess 64 notation.

The second operand fraction is then divided into the first operand fraction. Division continues
until the quotient is normalized, adjusting the exponent for each additional division required.

No remainder is returned. The sign of the result is determined by the rules of algebra. The
quotient replaces the contents of the double precision floating point register specified by R1.

Condition Code

Double precision result is ZERO

Double precision result is less than ZERO
Double precision result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

Divisor was zero

~lololo|olo|o|la
e I Y R IS I =)]
ololmlo|~lo|o|l®
olo|o|=|o|n|o|mH

Programming Notes

Before starting the divide operation, the divisor is checked. If it is equal to zero, the opera~
tion is aborted. Neither operand is changed. The C and V flags in the Condition Code are
set, the G and L flags are reset, and if enabled by Bit 19 of the current PSW, the arithmetic
fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, 1 X'7FFF FFFF FFFF FFFF'. The V flag in the Condition
Code is set, along with either the G or L flag, depending on the sign of the result. An arith-
metic fault interrupt is taken, if enabled by Bit-19 of the current PSW.

The subtraction of exponents or the division process may produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000 0000 0000', The V flag in the Condition
Code is set, the G and L flags are reset, and if enabled by Bit-19 of the current PSW, the
arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-428 RO2 2/77 5-33

INSTRUCTION

Fix Register Double Precision (FXDR)

Assembler Notation Op-Code Format
FXDR R1l,R2 3E RR
Operation

R1 specifies one of the general purpose registers. R2 specifies one of the double precision
floating point registers. The floating point number contained in the floating point register
is converted to an integer value by truncating. The result is placed in the general register
specified by R1.

Condition Code

Result is ZERO or underflow
Result is less than ZERO

Result is greater than ZERO
Overflow, Result is negative
Overflow, Result is positive

- R-E-1P4
=omooln
O - O moH

P [

Programming Notes

The range of the floating point magnitude M that produces a non-zero integral result is,
+ X'4880 0000 0000 0000'< M 2 + X'4110 0000 0000 0000'.

Double precision floating point magnitudes greater than +X'4837F FFFF FFFI FEFF' cause
overflow. The result is forced to X'7FFF FFFF' if positive or to X'8000 0001' if negative.
The V flag is set in the Condition Code along with either the G or L flag, depending on the
sign of the result.

Double Precision floating point magnitudes less than +X'4110 0000 0000 0000' cause underflow,
The result is forced to zero and the Condition Code is set to zero.

In the event of overflow or underflow, the Arithmetic Fault Interrupt is not taken even if enabled
in the current PSW.

5-34 29-428 R06 5/78

INSTRUCTION

TFloat Register Double Precision (FLDR)

Assembler Notation Op-Code Format

FLDR R1,R2 3F RR

Operation

R1 specifies one of the double precision floating point registers. R2 specifies one of the
general purpose registers. The integer value contained in the register specified by R2 is
converted to a floating point number and placed in the double precision floating point register

specified by R1.

Condition Code

C|V|GIL

X 1010 |0 Result is ZERO

X1i0 {0 |1 Result is less than ZERO
X010 Result is greater than ZERO

Programming Notes

The full range of fixed point integer values may be converted to double precision floating point.
The fixed point value X'7FFF FFFF', the largest positive integer, converts to a double precision
floating point value of X'487F IFFFF FF00 0000'. The fixed point value X'8000 0000', the most
negative integer, converts to a double precision floating point value of X'C880 0000 0000 0000'.

The result in R1 is normalized.

29-428 R0O2 2/77 5-35/5-36

CHAPTER 6

STATUS SWITCHING AND INTERRUPTS

At any given time, the Processor may be in either the Stop mode or the Run mode.

mode, the normal execution of instructions is suspended. The Processor is under control of the

operator who can, through the display console:

Examine any memory location

Change any memory location

Examine the contents of any general register
Examine and modify the current PSW

Execute instructions singly

The transition from the Stop mode to the Run mode requires operator intervention at the display

console, or the occurrence of an interrupt (if enabled by the current PSW).

Once the Processor has been put in the Run mode, the current PSW controls the operation of the

Processor. By changing the contents of the current PSW, a running program can:

Put the Processor in the Wait state
Enable or disable various interrupts
Switch between supervisor and protect modes

Vary the normal sequential execution of instructions

PROGRAM STATUS WORD

The Program Status Word is a 64 bit double word. (See Figure 6-1.)

0 1617181920 2122 23 24 27 2829 30 31

|'>—<_']winimiAiulR{,io Pi R IC]VIGI!J

32 39 40 63

LOC

Figure 6-1. Program Status Word

29428 RO2 2/77

6-1

Bits 0:15 of the PSW are not currently used, and must be zero. Bits 16:27 are reserved for status
definition and interrupt masks. Bits 28:31 are reserved for the Condition Code. Bits 32:39 are
not used, and must be zero. Bits 40:63 are reserved for the Location Counter. The status and
interrupt bits are interpreted as follows:

Bit 16 (W) Wait state

Bit 17 () Immediate interrupt/Auto Driver Channel enable
Bit 18 (M) Machine malfunction interrupt enable

Bit 19 (A) Arithmetic fault interrupt enable

Bit 20 (I Immediate interrupt/Auto Driver Channel enable
Bit 21 (RP) Relocation/protection enable

Bit 22 (Q) System queue service interrupt enable

Bit 23 (P) Protect mode

Bits 24:27 (R) Register set selection

The current PSW is contained in a hardware register within the Processor. Status switching re-
sults when the current PSW, or at least the first half (Bits 0:31) of the current PSW, is replaced.
The occurrence of an interrupt or the execution of a Status Switching instruction can cause the re-
placement of the current PSW,

Wait State "

When Bit 16 of the current PSW is set, the Processor is in the Wait state. In this state, program
execution is halted. However, the Processor is still responsive to machine malfunction and
immediate interrupts, if they are enabled. If the Processor is put in the Wait state with these
interrupts disabled, only operator intervention from the Display console can force the Processor
out of the Wait state.

Protect Mode

When Bit-23 of the current PSW is set, the Processor is in the protect mode. A program running
in this mode is not allowed to execute Privileged instructions. (Privileged instructions include
all 1I/0 instructions and most of the Status Switching instructions. See Appendix 1.) A privileged
instruction is treated as an illegal instruction when the Processor is in the protect mode. If
Bit-23 of the current PSW is reset, the Processor is in the Supervisor mode. Programs running
in this mode may execute any legal instruction.

Register Set Selection

Bits 24:27 of the current PSW control register set selection. These bits are interpreted as
follows:

Bit 24 Bit 25 Bit 26 Bit 27
0 0 0 0 Register Set 0
0 0 0 1 Register Set 1
0 0 1 0 Register Set 2
0 0 1 1 Register Set 3
0 1 0 0 Register Set 4
0 1 0 1 Register Set 5
0 1 1 0 Register Set 6
1 1 1 1 Register Set 15
NOTE

When the processor is equipped with two register
sets, Bits 24, 25, 26 of the current PSW have no
effect on selection of register sets. Consequently,
specifying an even numbered register set causes
register set 0 to be selected whereas specifying
odd numbered register set causes register set 15
to be selected.

When the processor is cquipped with eight register
sets, Bit-24 of the current PSW has no effect on
selection of register sets. Consequently, specify-
ing a register set number between 7 and 14 causes
one of the equipped sets to be selected instead.

6-2 29428 RO2 2/77

INTERRUPT SYSTEM

The interrupt system of the Processor provides rapid response to external and internal events
that require service by special software routines. In the interrupt response procedure, the Proc-
essor preserves its current state and transfers control to the required interrupt handler. This
software routine may optionally restore the previous state of the Processor upon completion of
the service. (See Table 6-1 and Figure 6-2.)

Some interrupts are controlled by bits in the current Program Status Word, that is, they can be
enabled or disabled by setting or resetting a bit in the PSW. Other interrupts are not controlled
by PSW bits, and are always enabled. The following is a list of Processor interrupts and their

controlling PSW bits, if any:

Interrupt PSW Bit
Immediate, Auto Driver Channel 17 and 20
Console 17 and 20
Machine Malfunction 18
Arithmetic Fault 19
System Queue Service 22
Protect Mode Violation : 23
Relocation/Protection 21
Supervisor Call none
Simulated none
Illegal Instruction none

Interrupts occur at various times during processing. The immediate, console, and machine mal-
function interrupts occur between the execution of instructions or after completion of an auto driver
channel operation. The relocation/protection interrupt occurs after the execution of an instruction.
The system queue service, arithmetic fault, supervisor call, and simulated interrupts occur dur-
ing the execution of instructions. The illegal instruction and protect mode violation interrupts
occur before the execution of the improper instruction.

The interrupt procedure is based on the concepts of old, current, and new Program Status Words.
The currant PSW, contained in a hardware register, defines the operating state of the Processor.
When this state must be changed, the current PSW becomes the old PSW. The new PSW hecomes
the current PSW. The current PSW now contains the operating status and the Location Counter for
the interrupt service routine.

With one exception (the machine malfunction interrupt), when the current PSW becomes the old
PSW it is saved in a pair of registers specified by the register set selection field of the new
PSW. The machine malfunction old PSW is stored in a reserved memory location. Again with
one exception, when a new PSW becomes the current PSW, it is loaded from a reserved memory
location. The exception is the immediate interrupt. On an immediate interrupt, the current
status is forced to a predetermined value. The current Location Counter is loaded from the
interrupt service pointer table.

The new Program Status Word for any interrupt should, if possible, disable interrupts of its
own class.

29-428 RO1 1/76 6-3

TABLE 6-1. INTERRUPT SYSTEMS

-9

CONTROLLEDBY| CAN BE OLD PSW NEW PSW
INTERRUPT TYPE PSW BIT (S) QUEUED STORED IN LOADED FROM NOTES

ARITHMETIC FAULT INTERNAL 19 NO REG. 14,15 | X'48—aF 'C’ FLAG SET IN NEW PSW IF FLOATING POINT ARITHMETIC FAULT

AUTO DRIVER CHANNEL 'EXTERNAL 17,20 YES REG. 0, 1 MICROPROGRAM NEW PSW STATUS = Y'000028NX"
(STATUS) (MACHINE MALFUNCTION AND HIGHER-LEVEL IMMEDIATE
CHANNEL COMMAND | INTERRUPTS ENABLED)
BLOCK N IS THE SELECTED REGISTER SET
SUBROUTINE X IS THE CONDITION CODE ON TERMINATION
ADDRESS (LOC) (REG2) = INTERRUPTING DEVICE ADDRESS

(REG3) = INTERRUPTING DEVICE STATUS
(REG 4) = ADDRESS OF CHANNEL COMMAND BLOCK

CONSOLE EXTERNAL 17,20 NO (SEE IMMEDIATE INTERRUPT) NEW PSW STATUS = Y'00002800°

ILLEGAL INSTRUCTION INTERNAL * NO REG. 14, 15 X'30-37' CANNOT BE DISABLED

IMMEDIATE EXTERNAL 17,20 YES REG. 0,1 MICROPROGRAM NEW PSW STATUS = Y'000028N0’
STATUS

INTERRUPT SERVICE | (MACHINE MALFUNCTION AND HIGHER-LEVEL IMMEDIATE
POINTER TABLE (LOC)| INTERRUPTS ENABLED)

WHERE N IS THE SELECTED REGISTER SET

(REG.2) = INTERRUPTING DEVICE ADDRESS

(REG.3) = INTERRUPTING DEVICE STATUS

MACHINE MALFUNCTION INTERNAL 18 YES** X'20 - 27' X'38-3F' CONDITION CODE SET TO INDICATE NATURE OF MALFUNCTION

MEMORY ACCESS CONTROLLER | INTERNAL 21 YES REG. 14,15 x'90-97' MAC STATUS REGISTER INDICATES NATURE OF INTERRUPT
PRIVILEGED INSTRUCTION INTERNAL 23 NO REG. 14,15 x'30-37' TAKEN WHEN PRIVILEGED INSTRUCTION ATTEMPTED WHILE

PROCESSOR IN PROTECT MODE

SIMULATED INTERNAL * NO (SEE IMMEDIATE OR AUTO DRIVER TAKEN WHEN ‘SINT" INSTRUCTION EXECUTED IN
CHANNEL INTERRUPTS NON-PROTECT MODE (REG.4) = INTERRUPT SERV. POINTER
SUPERVISOR CALL INTERNAL * NO REG. 14, 15 X'98-9B' (STATUS) SVC | TAKEN WHEN ‘SVC’ INSTRUCTION EXECUTED

POINTER TABLE (LOC) | (REG. 13) = ADDRESS OF SVC PARAMETER BLOCK

SYSTEM QUEUE . INTERNAL 22 YES REG. 14, 15 x'88-8F' TAKEN WHEN “EPSR,” ‘LPSW,” OR ‘LPSWR’ INSTRUCTIONS
EXECUTED IF SYSTEM QUEUE NOT EMPTY. (REG. 13) =
ADDRESS OF SYSTEM QUEUE

LLIT T0Y 8TH-6T

* This Interrupt is always enabled.
** Memory Parity Error only

LLIT TOF 8TH6T

¢-9

EVEN o EXCHANGE PSW INTERRUPT
O — — — —~-, ADDRESS _ ¢ ;ymP TO UNIQUE LOCATION ——— o SERVICE
SUBROUTINE
o—= — — f— —
LOAD OLD PSW
o—o— — — —_—
Channel Command Word
oO— — — — -
0 71819 11011112 15
O—e— — — - STATUS MASK | E RC |Blaw| T|F l
N—r
o — — L FAST
L > TRANSLATE
1024 INTERRUPT
o L DEVICE_| o inrer b — L———— READ/WRITE
INTERRUPTS ID. TABLE L —————» BUFFER SWITCH
O — — _ EXECUTE : — REDUNDANCY CHECK TYPE |
o—=e— — — -
CHANNEL COMMAND WORD 0
O—e— — — -
BUFFER 0 BYTE COUNT 2
o—e¢— — — —— '
BUFFER 0 END ADDRESS a4
oO—e¢— — — —-
) oDD CHECK WORD 8
L ADDRESS GO TO UNIQUE AUTO
o— — —— -/ > DRIVER CHANNEL —"] BUFFER 1 BYTE COUNT 10
0 718 5 BUFFER 1 END ADDRESS 12
(1 CHAR. 1 1
2 TRANSLATION TABLE ADDRESS | 16
ANY COMBINATION OF | | ! CHAR. 2
SPECIAL CHARACTERS SUBROUTINE ADDRESS 20

0 CHAR. HANDLING ROUTINE ADDRESS/2 | 3
AND AUTO TRANSLA- |

TIONS !
1 : Channel Control Block

256

Translation Table

Figure 6-2. Immediate Interrupt Systems Block Diagram 1

Immediate Interrupt

The immediate interrupt is used for control of external devices. Through this mechanism,
external devices can request and obtain Processor service. Interrupt requests from external
devices are arranged on 4 priority levels. Level ZERO is the highest priority level. Level 3
is the lowest. Priority interrupts are controlled by Bits-17 and 20 of the current PSW. The
interpretation of these bits is:

Bit-17 Bit-20
0 0 All levels disabled
0 1 Higher levels enabled
1 0 All levels enabled
1 1 Current and higher levels enabled

The current level is equal to the currently active register set. When interrupts on any levels
are enabled, the Processor is responsive to interrupt requests on those levels. When interrupts
on any levels are disabled, requests are queued until the Processor is able to recognize them.

The relationship between the interrupt priority and the currently active Register Set is sum-
marized below:

PSw Current
Bits Register Set External Interrupt Level Enabled

17 20 Level 0 Level 1 Level 2 Level 3
0 0 X NO NO NO NO
0 1 0 NO NO NO NO
0 1 1 YES NO NO NO
0 1 2 YES YES NO NO
0 1 3 YES YES YES NO
0 1 4 YES YES YES NO
0 1 5 YES YES YES NO
0 1 6 YES YES YES NO
0 1 F YES YES YES NO
1 0 X YES YES YES YES
1 1 0 YES NO NO NO
1 1 1 YES YES NO NO
1 1 2 YES YES YES NO
1 1 3 YES YES YES YES
1 1 4 YES YES YES YES
1 1 5 YES YES YES YES
1 1 6 YES YES YES YES
1 1 F YES YES YES YES

6-6 29-428 ROl 1/76

A unique new register set is associated with each interrupt level.

The register set number is the same as the interrupt level number. Thus, an interrupt on level
ZERO causes register set ZERO to be used; on level ONE, register set ONE, etc. When the
Processor recognizes a request from a device, it:

1. Saves the current PSW in registers zero and one of the new set. (Bits 0:31 are saved
in register zero; bits 32:63 are saved in register one.)

2. Loads the status portion of the current PSW with a value of Y'000028X0', where the
"X'" gpecifies the new register set; 0, 1, 2, or 3.

3. Acknowledges the request and obtains the device number and status from the device.
The device number is placed in register two of the new set. The status is placed in
register three.

4, Adds two times the device number to X'0000D0' (the start of the interrupt service
pointer table), to obtain the address within the table that corresponds to the interrupt-
ing device. For the immediate interrupt, the value in the table must be even. The
value in the table becomes the current location counter.

In setting up the registers for the immediate interrupt service routine, the Processor loads the
device number and status into the least significant bits of registers two and three. The most
significant bits in these registers are forced to ZERO. Note that the new PSW disables current
and lower levels, and specifies the appropriate register set. The machine malfunction interrupt
is enabled. Relocation and protection are disabled.

Console Interrupt

The console interrupt is a special case of the immediate interrupt. It also is controlled by
Bits 17 and 20 of the current PSW, If Bit-17 or 20 is set, a console interrupt is generated by:

Depressing the Function key on the console

Depressing 0

The effect of the console interrupt is to cause an immediate interrupt, as described prveiously,
from device X'001'. Register Set 0 is always selected.

Simulated Interrupt

The Simulate Interrupt instruction simulates an immediate interrupt. When this instruction is
executed, the Processor goes through the immediate interrupt procedure as if a request for ser-
vice had been received from an external device. The current PSW is saved, and a new PSW
loaded just as for the immediate interrupt. The device is addressed, and the status returned in
Register 3. The address from the interrupt service pointer table is placed in Register 4. The
state of Bits-17 and 20 have no effect on this interrupt. It is always enabled. The new register
set is specified by the least significant 4 bits of the register specified by the Rl field of the
instruction.

29-428 RO4 5/78 6-7

Machine Malfunction Interrupt

Bit-18 of the current PSW controls the machine malfunction interrupt. This interrupt occurs on
a memory parity error, on the detection of primary power failure, and during the restart pro-
cedure after power has been restored. When a machine malfunction interrupt occurs, the current
PSW is saved in memory location X'000020'. The new PSW from memory location X'000038' be-
comes the current PSW. The Condition Code of the new PSW as stored in memory must contain
zeros. After the interrupt is taken, the state of the Condition Code indicates the specific cause of
the interrupt.

Condition Code states are:

Power Restore

Power failure

Memory malfunction (e.g. Parity Error)

Memory malfunction during Auto Driver Channel operation
Power failure during Auto Driver Channel operation

= O O O
© o0 o old
O == O OIf
= OO - Ol

Power failure occurs when the primary power fail detector senses a low voltage, when the Initialize
key (INI) of the Display console is depressed, or when the key operated POWER switch is turned to
the OFF position. Following the PSW exchange, the software has approximately one millisecond

to perform any necessary operations before the automatic shut down procedure takes over. During
the automatic shut down procedure the Processor saves the current PSW at the memory location
specified by the contents of location X'00084'; saves the 8 single-precision floating point registers,
if equipped, in memory locations X'00000' through '0001F'; and it saves all available sets of general
registers, starting with register set 0, at the location specified by the contents of memory location
X'00086', If the processor is equipped with double precision floating point, the double precision
floating point registers are stored immediately following the General Register Save area.

When power returns, the Processor restored the PSW and the general registers and floating
point registers from their save areas. The contents of all other registers are undefined. If
Bit 18 of the restored PSW is set, the Processor takes another machine malfunction interrupt,
this time with no bits set in the Condition Code of the current PSW,

It is important here to note that during the power restore sequence, the Processor does distin-
guish the Initialize Key (INT) from power fail or power off. If, on power up, the Initialize Key
is still depressed, the Halt mode is unconditionally entered regardless of the state of Bit-18 of
the restored PSW. The operator has to hold the Initialize Key down for longer than half a sec-
ond before the Halt mode is guaranteed. ’

During Write operations to memory with parity option, the Parity bit of each memory word is set
to maintain odd parity. The Parity bit is recomputed on each memory read. If the computed bit is
not equal to the bit read out of memory, the Processor takes a machine malfunction interrupt,

setting the G flag to indicate the parity error.

If a machine malfunction interrupt condition arises during an auto driver channel operation, the
PSW, current at the time the channel was activated, becomes the old machine malfunction PSW.
Register 4 of the set, designated by the machine malfunction new PSW, contains the address of
the Channel Command Block. The C flag of the current PSW is set along with either the L

flag or the V flag to indicate either power failure or parity error.

29-428 R06 5/78

Arithmetic Fault Interrupt:

Bit-19 of the current PSW controls the arithmetic fault interrupt. This interrupt, if enabled, can
occur for any of the following reasons:

Fixed point division by zero

TIixed point quotient overflow
TFloating point division by zero
Floating point overflow or underflow

When this interrupt occurs, the current PSW is saved in Registers 14 and 15 of the set desig-
nated by the arithmetic fault new PSW. The new PSW, from memory location X'000048', be-
comes the current PSW. All Condition Code bits in the new PSW as stored in memory must be
zero. Before going to the interrupt service routine, the Processor sets the carry flag in the
Condition Code if the interrupt is the result of a floating point operation, If the interrupt is
the result of a fixed point operation, the carry flag is reset.

Any of the following conditions cause fixed point quotient overflow:
A halfword divide operation produces a result greater than 32,767 (X'TFFF").
A halfword divide operation produces a result less than -32,768 (X'8000").
A fullword divide operation produces a result greater than 2,147, 483,647 (X'7TFFF FFFF').

A fullword divide operation produces a result less than -2,147, 483,648 (X'8000 0000").

When a fixed point division by zero or a fixed point quotient overflow occurs, the operand registers
remain unchanged.

Floating point overflow occurs when, in a floating point operation, the value of the exponent ex-
ceeds +63. Floating point underflow occurs when, during the execution of a Floating Point in-
struction, the value of the exponent becomes less than -63. Following floating point overflow,
the result is forced to plus or minus X'7FFF FFF[F', Following a floating point underflow, the
result is forced to true zero, X'0000 0000'. After a floating point division by zero, the oper-
and register remains unchanged.

After any arithmetic fault interrupt, the Location Counter of the old PSW contains the address of
the instruction immediately following the one that caused the interrupt.

Relocation/Protection Interrupt

Bit-21 of the current PSW controls the relocation/protection interrupt. If this bit is set, and the
currently running program violates any of the relocation and protection conditions available in the
relocation and protection module, the Processor saves the current PSW in Registers 14 and 15

of the set designated by the relocation/protection new PSW. The new PSW at memory location
X'000090' becomes the current PSW.

29-428 R06 5/78 6-9

System Queue Service Interrupt

The system queue is a circular list identical to that described for the list processing instructions.
The queue may be set up at any convenient location in memory. While the maximum size of the
system queue allows 65536 entries, in practice, the queue should be big enough to hold one entry
for every external device controlled by a software program.

Memory location X'000080' contains the address of the system queue. In the course of executing
any of the following instructions:

Load Program Status Word
Load Program Status Word Register
Exchange Program Status

the Processor tests Bit-22 of the new status being loaded. If this bit is set, the Processor checks
the state of the system queue. If there is an entry in the queue, the just loaded PSW becomes the
old PSW. It is saved in Registers 14 and 15 of the set designated by the system queue service
interrupt new PSW. The address of the queue, taken from location X'000080', is placed in
Register 13 of that set. The new PSW from location X'000088' becomes the current PSW,

Protect Mode Violation Interrupt

Bit-23 of the current PSW controls the execution of Privileged instructions, When this bit is set,
the Processor is in the Protect mode. Programs running in the Protect mode are not allowed to
execute Privileged instructions. Privileged instructions are:

All 1/0 instructions

Load Program Status Word

Load Program Status Word Register
Exchange Program Status Register
Simulate Interrupt

Simulate Channel Program

If a program running in the protect mode attempts to execute a Privileged instruction, the in-
struction is not executed. The Processor saves the current PSW in Registers 14 and 15 of the
set designated by the illegal instruction new PSW. The illegal instruction new PSW at location

X'000030' becomes the current PSW, The Location Counter of the old PSW contains the address
of the Privileged instruction.

Illegal Instruction Interrupt

The illegal instruction interrupt cannot be disabled. The interrupt occurs whenever the Processor
fetches an instruction word containing an operation code that is not one of those permitted by the
system. The Processor saves the current PSW in Registers 14 and 15 of the set designated by

the illegal instruction new PSW. The illegal instruction new PSW from memory location X'000030!
becomes the current PSW.

When the Processor encounters an illegal instruction, it makes no attempt to execute it. The
Location Counter of the old PSW contains the address of the illegal instruction.

6-10 29-428 R06 5/78

Supervisor Call Interrupt

This interrupt occurs as the result of the execution of a Supervisor Call instruction. This in-
struction provides a means for user level programs to communicate with system programs. The
supervisor call interrupt is always enabled., When the Processor executes a Supervisor Call in-

struction, it:
Saves the current PSW in Registers 14 and 15 of the set designated by the supervisor call inter-
rupt new status.

Places the address of the supervisor call parameter block (address of the second operand) in
Register 13 of the appropriate set.

Loads the current PSW status with the value contained at memory location X'000098', super-
visor call new PSW status.

Loads the current PSW Location Counter from one of the supervisor call new PSW Location
Counter locations.

STATUS SWITCHING INSTRUCTION FORMATS

The Status Switching instructions use the Kegister to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In some cases, Load Program Status Word and Load Program
Status Word Register, and the R1 field of the instruction has no significance and must be ZERO.

STATUS SWITCHING INSTRUCTIONS

The Status Switching instructions provide for software control of the interrupt structure of the sys-
tem. They also allow user level programs to communicate efficiently with control software. All
Status Switching instructions, except the Supervisor Call instruction are privileged operations.
Therefore, all interrupt handling routines must run in the Supervisor mode.

The instructions described in this section are:

LPSW Load Program Status Word

LPSWR Load Program Status Word Register
EPSR Exchange Program Status Register
SINT Simulate Interrupt

sSvC Supervisor Call

29-428 R06 5/78

INSTRUCTION

Load Program Status Word (LPSW)

Assembler Notation Op-Code Format
LPSW D2 (X2) Cc2 RX1, RX2
LPSW A2 (FX2, SX2) C2 RX3
Operation

The 64 bit second operand becomes the current Program Status Word.

Condition Code

Determined by the new PSW (bits 28:31)

Programming Note

The quantity to be loaded into the current Program Status Word must be located in memory
on a double word boundary.

This instruction is a privileged operation.
The R1 field of this instruction must be zero.

This instruction may be used to change register sets. The new set becomes active for execu-
tion of the next instruction.

6-12 29-428 RO2 2/77

INSTRUCTION

Load Program Status Word Register (LPSWR)

Assembler Notation Op-Code Format
LPSWR R2 18 RR
Operation

The contents of the register specified by R2 replace Bits-0:31 of the current Program Status
Word. The contents of the register specified by R2+1 replace Bits-32:63 of the current
Program Status Word.

Condition Code

Determined by the new PSW (Bits 28:31)

Programming Notes
The R1 field of this instruction must be zero.

This instruction may be used to change register sets. The new set becomes active for execu-
tion of the next instruction.

This instruction is a privileged operation.

The R2 field of this instruction may not specify a register greater than 14.

29428 RO2 2/717 6-13

INSTRUCTION

Exchange Program Status Register (EPSR)

Assembler Notation Op-Code Format
EPSR R1, R2 95 RR
Operation

Bits 0:31 of the current Program Status Word replace the contents of the register specified
by R1. The contents of the register specified by R2 replace Bits 0:31 of the current Program
Status Word.

Condition Code

Determined by the new PSW (Bits 28:31)

Programming Notes

If R1 = R2, Bits 0:31 of the current PSW are copied into the register specified by R1, but
otherwise remain unchanged.

This instruction may be used to change register sets. The new set becomes active for execu-
tion of the next instruction.

This instruction is a privileged operation,

6-14 29-428 RO2 2/77

INSTRUCTION

Simulate Interrupt (SINT)

Assembler Notation Op-Code Format
SINT 12(X2) E2 RI1
SINT R1,12(X2) E2 RI1
Operation

The least significant 10 bits of the second operand are presented to the interrupt handler as
a device number. The device number is used to index into the interrupt service pointer
table, simulating an interrupt request from an external device. The result is either an
immediate interrupt or an auto driver channel operation.

Condition Code

Determined by the new PSW in case of immediate interrupt or determined by the way the auto
driver channel operation terminates.

Programming Notes

If the R1 field of this instruction is not specified or contains zero, an interrupt from level 0 is
assumed and register set 0 is selected.

If the R1 field of the instruction is non-zero, the least significant 4 bits of the register speci-
fied by R1 designate the interrupt level and the new Register set.

This instruction is a privileged operation.

In the execution of this instruction, the Processor loads Registers 0:3 or 0:4 of the new set as
for a real interrupt request.

During the execution of this instruction, the device is addressed and the status byte is returned
in Register 3 of the new set.

In the event of instruction time-out, the V flag is set in the PSW, and register 3 of the new
set contains Y'00000004'.

29428 RO2 2/77 6-15

INSTRUCTION

Supervisor Call (SVC)

Assembler Notation Op-Code Format
svcC N, D2 (X2) El RX1, RX2
svec N, A2(FX2,SX2) E1 RX3

Operation

The second operand (program address of the parameter block) replaces Bits 8:31 of
Register 13 of the set designated by the supervisor call new PSW status. Bits 0:7 of
this register are forced to ZERO. The current Program Status Word replaces the
contents of Registers 14 and 15 of the appropriate set., The fullword quantity located
at X'000098' in memory replaces Bits 0:31 of the current Program Status Word. The
four-bit N field is doubled and added to X'00009C'. The halfword quantity located at
this address becomes the current Location Counter.

Condition Code

Determined by the new PSW (Bits 28:31)

Programming Notes
The second operand must be located on a fullword boundary.

This instruction provides means of switching from the Protect Mode to the Supervisor Mode.

It is used by the user program running under an Operating System to initiate certain functions

in the Supervisor program., The second operand address, is normally a pointer to the memory
location of the parameters the Supervisor program needs to complete the function specified. The
type of Supervisor call is specified in the Rl field of the instruction. Sixteen different calls are
provided for. Return from the Supervisor is made by executing an LPSWR instruction specifying
the stored "'Old'" PSW in Registers 14, 15 of the appropriate set (LPSWR R14).

6-16 29-428 RO2 2/77

CHAPTER 7
INPUT/OUTPUT OPERATIONS

INTRODUCTION AND CONFIGURATION OF 1/O SYSTEM

Input output (I/0) operations, as defined for the 32 bit series, provide a versatile means for
the exchange of information between the Processor, memory, and external devices. Com-
munication between the Processor and external devices is accomplished over the I/0O Multi-
plexor Channel Bus (Byte or Halfword Modes). Data transfers over the Multiplexor Channel
require Processor intervention, either programmed or automatic for each item transferred.

Direct data transfers between external devices and memory are accomplished over the EDMA
Bus, (Byte, Halfword or Burst Mode) and proceed independently of the Processor so other
program processing can proceed simultaneously., For more details refer to the following
manuals:

1. EDMA Bus Universal Interface Instruction Manual, Publication Number 29-423
2. ESELCH Programming Manual, Publication Number 29-529
3. BSELCH Maintenance Manual, Publication Number 29-572.

Burst mode data transfers over the EDMA Bus are possible only with the help of the EDMA

Bus Universal Interface 02-361 or the Buffered Selector Channel 02-456. Both devices can
handle data transfer rates up to six Megabytes per second between Local Memory and custom
designed I/O systems. In the burst mode, the originating device transmits the starting memory
address and Burst Read or Burst Write command. This is followed by an arbitrary number of
fullword data transmissions (up to six Megabytes/sec). Lower limit burst mode data transmis-
sion rate is 400 Kbytes/sec (10 microsec/fullword), below which bus control circuits assume the
transmitter dead and abort the transfer,

DEVICE CONTROLLERS
The basic functions of all device controllers are:

. To provide synchronization with the Processor and to provide device address recognition.
To transmit operational commands from the Processor to the device.

To translate device status into meaningful information for the Processor.

To request Processor attention when required.

LN CR
< .

29-428 R04 5/78 7-1

In addition, controllers may generate parity, convert serial data to parallel, buffer incoming
or outgoing data, or perform other device-dependent functions.

Device Addressing

The system design allows as many as 1,023 external devices. Each device must have its own
unique device number or address. Device numbers may range from X'001' through X'3FF'.
(Device number X'000' is not used.) The minimum system provides for 255 device numbers.
Larger systems may have either 511 or 1,023,

Processor/Controller Communication

Device controllers may be attached directly to the I/0 Bus, or they may be attached to the
1/0 Bus indirectly through a Selector Channel. Communication between the Processor and
controller is a bi-directional, request-response type of operation.

The Processor can initiate a communication, by sending the device address out onto the I/0
Bus. When a controller recognizes the address, it returns a synchronization signal to the
Processor, and remains ready to accept commands from the Processor. The Processor waits
up to 35 microseconds for the synchronization signal. If no signal is received within this
period, the Processor aborts the operaticn and notifies the controlling program. In this

case, the status returned is X'04', know as False Sync. The condition code in the PSW, is
also set to X'4' (V flag = 1), Controller malfunction and software failure (incorrect device
address) are the most common causes of this type of time-out.

A controller can initiate communication with the Processor by generating an attention signal.

If the Processor is in the interruptable state as defined by bits 17 and 20 of PSW, it temporarily
suspends the normal '"fetch instruction, execute, fetch next instruction' operation at the end of
the execute phase, and transmits an acknowledge signal over the I/O Bus. The controller re-
questing attention responds with a synchronization signal, and transmits its device number to
the Processor.

Device Priorities — External Interrupt Levels; Interrupt Queuing

The Model 8/32 architecture provides for four external interrupt levels. PSW bits 17 & 20
define the external interrupt enable status of the Processor. (See Chapter 6.).

When interrupt requests occur on more than one interrupt level, requests on the higher priority
interrupt level are acknowledged first. Level 0 is the highest, level 3 is the lowest in priority.

Interrupt Queuing: Any device controller wanting to interrupt the Processor activates one of
the four Attention lines sensed by the Processor and holds that line until the Processor acknow-
ledges the interrupt. Requests for attention are asynchronous; therefore more than one re-
quest may be pending at any time on any interrupt level. The system resolves these conflicts
according to device priority, determined by the physical placement of the device controller

on the I/O Bus. When two or more device controllers on the same interrupt level request
attention at the same time, the controller '"nearest' to the Processor in the RACK0/TACKO
priority wiring paiiern captures the Acknowledge signal from the Processor and gets serviced
first. All other interrupting controllers further down the line in priority must wait for the

next Acknowledge signal from the Processor.

For details on standard and modified RACK0/TACKO priority wiring patterns, see the Model 8/32
Processors Installation Manuals, Publication Numbers 29-526 and 29-537,

INTERRUPT SERVICE POINTER TABLE
Device requests for service may result in either an immediate interrupt or an Auto Driver

Channel operation. The Processor chooses one of these options according to information
contained in the Interrupt Service Pointer Table.

7-9 29-428 R06 5/78

The Interrupt Service Pointer Table is an ordered list containing one entry for each possible
device number in the system. The table starts at memory location X'0000D0' and contains a
halfword entry for each device number in the system. For a minimum system, 255 device
numbers, the table extends through memory location X'0002CF'; for a maximum system, the
table extends through memory location X'0008CF' (1023 device numbers). The software
controlling I/O operations must set up the table.

When, having acknowledged a request for service, the Processor receives the device address,
it adds two times the device address to X'000D0', The result is the address, within the table,
of the entry reserved for the device requesting attention.

If the entry in the table is even (Bit 15 equals 0), the Processor takes an immediate interrupt
and transfers control to the software routine at the address contained in the table. If the
entry in the table is odd (Bit 15 equals 1), the Processor transfers control to the Auto Driver
Channel, without interrupting the currently running program.,

At the time the Processor transfers control to the software routine, the old PSW (current at
the time of the device request) has been saved in Registers 0 and 1 of the new register set.

The device number is saved in Register 2 and the status in Register 3. The status portion of
the current PSW has been forced to a value of X'000028n0', where n is the new register set
number equal to the device interrupt level, Machine Malfunction Interrupts and higher level
I/O interrupts are enabled and all other interrupts disabled. The entry in the Interrupt Service
Pointer Table has become the new Location Counter.

In using the device number presented by the controller to vector into the Interrupt Service
Pointer Table, the Processor masks off the high order bits of the address as received from the
I/0 Bus. In a system with only 255 device numbers, the address is masked to eight bits. In

a system with 1,023 device numbers the address is masked to 10 bits. The action preserves
system integrity in the event that a hardware malfunction results in a device address greater
than the maximum allowed in the system. (See Table 6-1.)

1/0 INSTRUCTION FORMATS

The I/0 instructions use the Register to Register (RR) and the Register and Indexed Storage (RX)
instruction formats.

1/0 INSTRUCTIONS

Following most I/QO instructions, the V flag in the Condition Code indicates an instruction time-out.
This means that the operation was not completed, either because the device did not respond at all,
or because it responded incorrectly.

In the Sense Status and Block I/0O instructions, the V flag can also mean examine status. To dis-
tinguish between these two conditions, the program should test Bits 0:3 of the device status byte.
If all of these bits are ZERO, device time-out has occurred.

The instructions described in this section are:

SS Sense Status RBR Read Block Register

SSR Sense Status Register WD Write Data

OoC Output Command WDR Write Data Register

OCR Output Command Register WH Write Halfword

RD Read Data WHR Write Halfword Register
RDR Read Data Register WB Write Block

RH Read Halfword WBR Write Block Register

RHR Read Halfword Register AL Autoload

RB Read Block SCp Simulate Channel Program

29-428 RO1 1/76 7-3

INSTRUCTIONS

Output Command (OC)
Output Command Register (OCR)

Assembler Notation Op-Code Format
ocC R1,D2 (X2) DE RX1,RX2
ocC R1,A2 (FX2,SX2) DE RX3
OCR R1,R2 9E RR

Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device and transmits an eight-bit command byte from the second operand loca-
tion to the device. Neither operand is changed.

Condition Code

C|V]|G|L
01010140 Operation successful
0j1jo}o Instruction time-out (FALSE SYNC) or EXAMINE status

Programming Notes
In the RR format, Bits 24:31 of the register specified by R2 contain the device command.

These instructions are privileged operations.

7-4 29-428 RO2 2/77

INSTRUCTIONS

Sense Status (SS)
Sense Status Register (SSR)

Assembler Notation Op-Code
Ss R1,D2 (X2) DD
Ss R1,A2 (FX2,SX2) DD
SSR R1,R2) 9D
Operation

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The device is
addressed and the eight bit device status is placed in the second operand location. The
Condition Code is set equal to the right most four bits of the device status byte. The first

operand is unchanged.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device

manual for a description of this status.

If the device is not in the system, condition code is set to 0100.

Programming Notes

In the RR format, the device status byte replaces Bits 24:31 of the register specified by R2.

Bits 0:23 are forced to zero.

These instructions are privileged operations.

29-428 RO2 2/77

-5

INSTRUCTIONS

Read Data (RD)
Read Data Register (RDR)

Assembler Notation Op-Code Format
RD R1,D2 (X2) DB RX1,RX2
RD R1,A2 (FX2,SX2) DB RX3
RDR R1,R2 9B RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. The device responds by transmitting an eight-bit data byte. This
byte is placed in the second operand location.

Condition Code

ClVIG|L
0{of{ofo Operation successful
0]1]0]0 Instruction time-out (FALSE SYNC) or EXAMINE status’

Programming Notes

In the RR format, the eight bit data byte replaces Bits 24:31 of the register specified by R2.
Bits 0:23 of the register are forced to zero.

These instructions are privileged operations.

7-6 29-428 RO2 2/77

INSTRUCTIONS

Read Halfword (RH)
Read Halfword Register (RHR)

Assembler Notation Op-Code
RH R1,D2 (X2) . D9
RH R1,A2 (FX2,5X2) D9
RHR R1,R2 99
Operation

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits

of data from the device to the second operand location.

If the device is byte oriented, the

Processor transmits two eight-bit bytes in successive operations.

Condition Code

Programming Notes

C|V|G|L
0f{0[{0]0 Operation successful
0f1lo04o Instruction time-out (FALSE SYNC) or EXAMINE status

In the RR format, the data received from a halfword device replaces Bits 16:31 of the reg-

ister specified by R2. Bits 0:15 are forced to zero.

The first byte of data from a byte de-

vice replaces Bits 16:23 of the register specified by R2. The second byte replaces Bits 24:31.
Bits 0:15 are forced to ZERO.

If the device is byte-oriented, it must be capable of supplying both bytes without intervening status
checks. Unlike the RB and RBR instructions, this instruction does not perform status checking
between the two byte transfers.

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

29-428 R02 2/77 7-7

INSTRUCTION wo—2200

Read Block (RB)

Assembler Notation Op-Code Format
RB R1,D2 (X2) D7 , RX1,RX2
RB R1,A2 (FX2,5%X2) D7 RX3
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. Bits 8:31 of
the fullword located at the second operand address contain the starting address of the data
buffer. Bits 8:31 of the fullword located at the second operand address plus four contain the
ending address of the data buffer.

The Processor transmits eight bit data bytes from the device to consecutive locations in the
specified buffer.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, condition code is set to 0100.

Programming Notes
The starting address must be less than, or equal to, the ending address. If the starting

address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-

mitted.
The Processor is in a non-interruptable state during the transfer,

This instruction is a privileged operation.

The second operand must be located on a fullword boundary.

Y

Al

- Moo ud I o

7-8 29428 RO2 2/77

INSTRUCTION

Read Block Register (RBR)

Assembler Notation Op-Code Format
RBR R1,R2 97 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The register
specified by R2 contains the starting address of the data buffer. The register specified by
R2+1 contains the ending address of the data buffer.

The Processor transmits eight bit data bytes from the device to consecutive locations in the
specified buffer.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, condition code is set to 0100,

Programming Notes

The starting address must be less than, or equal to, the ending address. If the starting

address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-

mitted.
The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

29428 RO2 2/77 7-9

INSTRUCTIONS

Write Data (WD)
Write Data Register (WDR)

Assembler Notation Op-Code
WD R1,82 X2) DA
WD R1, A2 (FX2,8X2) DA
WDR R1,R2 9A
Operation

to the device. Neither operand is changed.

Condition Code

Operation successful

(=]
(=)
[=)
(=)

Programming Notes

Bits 22:31 of the register specified by R1 contain the 10 bit device address.
addresses the device and transmits an eight bit data byte from the second operand location

Format

RX1,RX2
RX3
RR

The Processor

Instruction time-out (FALSE SYNC) or EXAMINE status

In the RR format, the eight bit data byte is contained in Bits 24:31 of the register specified

by R2.

These instructions are privileged operations.

7-10

29428 RO2 2/77

INSTRUCTIONS

Write Halfword (WH)
Write Halfword Register (WHR)

Assembler Notation Op-Code
WH R1,D2 (X2) D8
WH R1,A2 (FX2,5X2) D8
WHR R1,R2 98
Operation

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits

of data from the second operand location to the device.

If the device is byte oriented, the

Processor transmits two eight bit data bytes in successive operations.

Condition Code

Programming Notes

ClVI|G|L
0{o 0|0 Operation successful
0f1]01{0 Instruction time-out (FALSE SYNC) or EXAMINE status

In the RR format, the data transmitted to a halfword device comes from Bits 16:31 of the
register specified by R2. The first byte of data transmitted to a byte device comes from
Bits 16:23 of the register specified by R2, the second byte, from Bits 24:31.

If the device is byte-oriented, it must be capable of accepting both bytes without intervening status
checks. Unlike the WB and WBR instructions, this instruction does not perform status checking

between the two byte transfers.

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

29-428 RO2 2/77

7-11

INSTRUCTION

Write Block (WB)

Assembler Notation Op-Code Format
WB R1,D2 (X2) D6 RX1, RX2
WB R1, A2 (FX2,8X2) D6 RX3
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address., Bits 8:31 of the
fullword located at the second operand address contain the starting address of the data buffer.
Bits 8:31 of the fullword located at the second operand address plus four contain the ending
address or the data buffer,

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.
Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, the condition code is set to 0100.

Programming Notes

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO, If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.
This instruction is a privileged operation.

The second operand must be located on a fullword boundary,

7-12 29-428 RO2 2/77

INSTRUCTION

Write Block Register (WBR)

Assembler Notation Op-Code Format
WBR R1,R2 96 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The register
specified by R2 contains the starting address of the data buffer. The register specified by
R2+1 contains the ending address of the data buffer.

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate devi_ce
manual for a description of this status,

_ If the device is not in the system, the condition code is set to 0100.

Programming Notes
The starting address must be less than, or equal to, the ending address. If the starting

address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-

mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

29-428 RO2 2/77 7-13

INSTRUCTION

Autoload (AL)

Assembler Notation Op-Code Format
AL D2 (X2) D5 RX1,RX2
AL A2 (FX2, §X2) D5 RX3
Operation

The Autoload instruction loads memory with a block of data from a byte oriented input device.

The data is read a byte at a time and stored in successive memory locations starting with

location X'000080'. If the status is bad, the operation is terminated with V, G or L flags set. The
last byte is loaded into the memory location specified by the address of the second operand. Any
blank or zero bytes that are input prior to the first non-zero byte are considered to be leader and
are ignored. All other zero bytes are stored as data. The eight bit input device address is spec~
ified by memory location X'000078'. The device command code is specified by memory location
X'000079'.

Condition Code

Operation successful or aborted.
Examine status or time-out

End of medium

Device unavailable

XK M on
H M H oI
=] [0
MM eI

Programming Notes

7-14

This instruction may only be used with devices whose addresses are less than, or equal to,
X'FF'.

The R1 field of this instruction must be ZERO.
This instruction is a privileged operation.

The starting and ending addresses for this instruction are relocatable., Users should disable
the Memory Access Controller before attempting to use this instruction.

If the second operand is less than X'80' the operation is aborted.

29428 R0O2 2/77

INSTRUCTION

Simulate Channel Program (SCP)

Assembler Notation Op-Code Format
SCP R1,D2 (X2) E3 RX1, RX2
SCP R1, A2 (FX2,S8X2) E3 RX3

Operation

The second operand address is the address of a Channel Command Block (CCB). The buffer
switch bit of the Channel Command Word (CCW) specifies the buffer to be used for the data
transfer, If this bit is set, Buffer 1 is used, If it is reset, Buffer 0 is used. If the byte
count field of the current buffer is positive, the V flag in the Condition Code is set, and the
next sequential instruction is executed. If the byte count field is not positive, the following

data transfer operation is performed.

If the Channel Command Word specifies read, a byte of data is moved from Bits 24:31

of the register specified by R1 to the appropriate buffer location. If the Channel Command
Word specifies write, a byte of data is moved from the appropriate buffer location to Bits
24:31 of the register specified by R1. Bits 0:23 are forced to ZERO.

After a byte has been transferred, the count field of the appropriate buffer is incremented by
one. If the count field is now positive, and if the last bit of the CCW is reset, the buffer switch

bit of the CCW is complemented.

Condition Code

Count field is now ZERO

Count field is now less than ZERO
Count field is now greater than ZERO
Count field was positive

or o oln
OO olH

oo o oln
oo old

Programming Notes

The second operand must be located on a fullword boundary.

This instruction is a privileged operation.

29428 RO2 2/77 7-15

CONTROL OF 1/0 OPERATIONS
The design of the 32 bit series I/0 structure allows data transfers in any of several ways. The
choice of which I/O method to use depends on the particular application and on the characteristics
of the external devices. The primary methods of data transfer between the Processor and external
devices are:

One byte or one halfword to or from any of the general registers.

One byte or one halfword to or from memory.

A block of data to or from memory under direct Processor control.

A block of data to or from memory under control of a Selector Channel or EDMA Universal
Interface.

Multiplexed blocks of data to or from memory under control of the auto driver channel.

INTERDATA standard device controllers expect a predetermined sequence of commands to effect
data transfers. These commands address the device, put it in the correct mode, and cause data
to be transferred. Because all 1/0 instructions are privileged operations, 1/0 control programs
must run in the Supervisor mode, Bit 23 of the current PSW reset. I/0 control programs should
disable immediate interrupts, or enable only higher level interrupts, controlled by PSW Bits

17 and 20.

STATUS MONITORING 1/0
The simplest form of I/O programming is status monitoring 1/0. In this mode of operation, only
one device is handled at a time, and the Processor cannot overlap other operations with the data
transfer. The sequence of operations in this type of programming is:

1. Address the device and set the proper mode (Output Command instruction).

2. Test the device status (Sense Status instruction).

3. Loop back to the Sense Status instruction until the status byte indicates that the device is
ready (Conditional Branch instruction).

4. When the device is ready, transfer the data (Read or Write instruction).

o

If the transfer is not complete, branch back to the Sense Status instruction, If it is com-
plete, terminate.

A variation on this type of programming makes use of the block I/0O instructions. In this kind of
programming, the program prepares the device and waits for it to become ready. It then executes
a block I/0 instruction. The Processor takes over control and completes the transfer, one byte
at a time to or from memory. The Processor monitors device status during the transfer. Block
transfers may be used only with byte oriented devices whose ready status is zero.

29-428 RO1 1/76

INTERRUPT DRIVEN 1/0

Interrupt driven 1/0 allows the Processor to take advantage of the disparity in speed between it-

self and the external devices being controlled. With status monitoring, the Processor spends

much of its time waiting for the device. With interrupt driven programming, the Processor can

use much of this time to perform other functions. This kind of programming establishes at
least two levels of operation. On one level are the interrupt service programs. On the other
levels are the interruptable programs that run with the immediate interrupt enabled.

Before starting interrupt driven operations, the Interrupt Service Pointer Table must be set up.

This table starts at memory location X'0000D0'. It must contain a halfword address entry for
every possible device. The table is ordered according to device addresses in such a way that
X'0000D0" plus two times the device address equals the memory address of the table entry re-

served for that device. The value placed in the location reserved for a device is the address of

the interrupt service routine for the device.

For example: if a console Teletype is connected at an address of X'02' and the interrupt
routine resides in memory at address X'3000', the set up involves: writing X'3000' at memory
location X'D4'., Note that X'D4' = X'D0' + 2 times the Tcletype address.

Although there may be gaps in device address assignments, the interrupt service pointer table
should be completely filled. Entries for non-existent devices can point to an error recovery
routine. (This precaution prevents system failure in the event of spurious interrupts caused
by hardware malfunction or by improper use of the Simulate Interrupt instruction.)

The next step is to prepare the device for the transfer. This is done best with the immediate
interrupt disabled. Once the table pointer has been set up, and the device prepared, the
Processor can move on to an interruptable program.

When the device signals that it requires service, the Processor saves the current state,

and transfers control to the location specified in the interrupt service pointer table. At this
time, the current PSW has a status that indicates running state, machine malfunction inter-
rupt enabled, higher level I/0 interrupts enabled and all other interrupts disabled. Registers
0 and 1 of the new set contain the old PSW, indicating the status and location of the interrupted
program. Register 2 of that set contains the device address. Register 3 contains the device
status. The sequence of operation in this type of program is:

1. Set up the Interrupt Service Pointer Table to vector to error addresses for undefined
devices.

2, Set up address of software interrupt handler routine at 2 times the device number plus
X'D0' (X'D0" is starting address of Service Pointer table),

3. Set up software interrupt handler routine.

4. Set up the device and enable device interrupts.

5. Enable interrupts in PSW

The interrupt handler routine should:

1. Check the device status in Register 3, and if satisfactory,
2. Make the transfer, and

3. Return to the interrupted program by reloading the old PSW from Registers 0 and 1
(LPSWR RO).

The interrupt service routine should not enable the immediate interrupt on its own level, To
do so allows other interrupt requests to be acknowledged, and the contents of Registers 0:4
would be lost. If it is necessary to enable the immediate interrupt, the routine should save
the register set, switch to a different register set, saving it if necessary, and then enable
the immediate interrupt.

29428 R0O2 2/77

7-17

SELECTOR CHANNEL 1/0

The Selector Channel controls the transfer of data directly hetween high speed devices and memory.
As many as 16 devices may be attached to the Selector Channel, only one of which may be opera-
ting at any one time. The advantage gained in using the Selector Channel is that other program
processing may proceed simultaneously with the transfer of data between the external device and
memory. This is possible because the Selector Channel accesses memory on a cycle stealing
basis, which permits the Processor and the channel to share memory. In some cases, execution
times of the program in progress may be affected, while in others, the effect is negligible. This
depends upon the rate at which the Selector Channel and Processor compete for memory cycles.

The Selector Channel is linked to the Processor over the I/0 Bus. It has its own unique device
number which it recognizes when addressed by the Processor. Like other device controllers, it
can request Processor attention through the immediate interrupt.

Selector Channel Devices

" The Selector Channel has a private bus similar to the Processor's I/0 Bus. Controllers for the
devices associated with the Selector Channel are attached to this bus. When the Selector Channel
is idle, its private bus is connected directly to the 1/0 Bus. If this condition exists, the Processor
can address, command, and accept interrupt requests from the devices attached to the Selector
Channel. When the Selector Channel is busy, this connection is broken. All communication be-
tween the Processor and devices on the Selector Channel are cut off. Any attempt by the Processor
to address devices on the channel results in instruction time-out.

Selector Channel Operation

Two registers in the Selector Channel hold the current memory address and the final memory
address. Before starting a Selector Channel operation, the control software, using Write instruc-
tions, places the address of the first byte of the data buffer in the current register and the address
of the last byte in the final address register. During the data transfer, the channel increments the
current address register by one for each byte transferred. When the current address equals the
final address, the last byte has been transferred, and the channel terminates.

The Selector Channel accesses memory a halfword at a time. Therefore, the transfer must
always involve an integer number of halfwords. The starting address of the data buffer must
always be on an even byte (halfword) boundary. The ending address must always be on an odd
byte boundary. The starting address must be less than the ending address.

Upon termination, the softwarc can read back from the Selector Channel the address confained in
the current address register. If this address is less than the final address specified for the trans-
fer, and if the buffer limits were properly checked before the transfer, then this condition indicates
a device malfunction or an unusual condition within the device, for example, crossing a cylinder
boundary on a disc.

7-18 29428 RO1 1/76

Selector Channel Programming

The usual method of programming with the Selector Channel uses the immediate interrupt. The
first step in the operation is to check the status of the Selector Channel, If it is not busy, the
address of the termination interrupt service routine is placed in the location within the interrupt
service pointer table reserved for the Selector Channel. Next the program should proceed

as follows:

1. Give the Selector Channel a command to stop. This command initializes the Selector
Channel's registers and assures the idle condition with the private bus connected to the

1/0 Bus.

2. Prepare the device for the transfer with whatever commands and information may be
required.

3. Give the Selector Channel the starting and final addresses.

4. Give the Selector Channel the command to start.

With the Start command, the Selector Channel breaks the connection between its private bus and
the Processor's I/O Bus, and provides a direct path to memory from the last device addressed
over its bus. When the device becomes ready, the channel starts the transfer which proceeds to
completion without further Processor intervention. Once the Start command has been given, the
Processor can be directed to the execution of concurrent programs.

On termination, the channel signals the Processor that it requires service. The Processor sub-
sequently takes an immediate interrupt, transferring control to the Selector Channel interrupt
service routine. At this time, Registers 0:3 of the new set are set up as for any other immedi-
ate interrupt.

Note that if a power failure interrupts a SELCH transfer, the ending address in the
SELCH is unpredictable,

AUTO DRIVER CHANNEL

The Auto Driver Channel provides a means for multiplexing block data transfers between memory
and low or medium speed I/0 devices. The operation of the channel is similar in some respects
to interrupt driven I/O. The channel is activated upon a service request from a device on the I/0
Bus. Upon receipt of a device request, the Processor uses the device number to index into the
Interrupt Service Pointer Table. If the value contained in the table is even, the Processor trans-
fers control to the interrupt service routine. If the value is odd, it transfers control to the Auto
Driver Channel.

To the Auto Driver Channel, the address in the Interrupt Service Pointer Table is the address plus
one (making it odd) of a Channel Command Block (CCB)., The Channel Command Block is basically
a chamnel program consisting of a description of the operation to be performed, and a list of para-
meters associated with the operation. In addition to the functions of Read and Write, the channel
can (a) translate characters, (b) test device status, (c) chain buffers, (d) calculate longitudinal
and cyclic redundancy check values, and (e) transfer control to software routines to take care

of unusual situations.

29~-428 R06 5/78 7-19

CHANNEL COMMAND BLOCK

The Channel Command Block (CCB), as shown in Figure 7-1, consists of a Channel Command Word
(16 bits) that describes the function, count fields (16 bits each) for two buffers, final addresses

(32 bits each) for two buffers, a check word (16 bits) for the longitudinal or cyclic redundancy
check, the address (32 bits) of a translation table, and the address (16 bits) of a software routine.

0 15
0 CHANNEL COMMAND WORD (HALFWORD)
2 BUFFER 0 BYTE COUNT (HALFWORD)
4 BUFFER 0 END ADDRESS (FULLWORD)
8 CHECK WORD (HALFWORD)
10 BUFFER 1 BYTE COUNT (HALFWORD)
12 BUFFER 1 END ADDRESS (FULLWORD)
16 TRANSLATION TABLE ADDRESS (FULLWORD)
20 SUBROUTINE ADDRESS (HALFWORD)
il vptD By TR T ~
03 | xy?,j .‘,:y/__@-..,w.} m‘/y"- 1% If/_ﬁl’f//

~ {) €
cpd N2 /4F?gure 7-1. Channel Command Block

Just as there may be many interrupt service routines ready at any time to service device requests,
there may be many channel command blocks in the system ready to handle data transfers as re-
quired. Each channel command block must start on a fullword boundary. The address plus one

of the chammel command block must be placed in the interrupt service pointer table location

for the device involved in the transfer.

Subroutine Address

When the channel transfers control to the software subroutine whose address is contained in the
Channel Command Block, Registers 0:4 of the appropriate set have already been set up by the
Processor to contain the old PSW, the device number, the device status, and the address of the
Channel Command Block. The current PSW status specifies run state, machine malfunction
interrupt enabled, higher level I/0 interrupts enabled, and all other interrupts disabled.

The channel transfers control to the subroutine either unconditionally (controlled by a bit in the
Channel Command Word), or because of bad device status, or because it has reached the limit of
a buffer. It indicates its reason for transferring control by adjusting the Condition Code as
follows.,

Unconditional transfer
Bad status
Buffer limit

o o oln
o o ol
- o oln
o b olH

The subroutine address in the CCB is a 16 bit address. Because of this, the subroutine at that
address, or at least the first instruction of the subroutine, must reside in the first 64KB of
memory.

7-20 ' 29-428 RO2 2/77

Buffers

There is space in the CCB to describe two-data buffer areas. The data areas may be located any-
where in memory. The limits of each data area are described by an address field and a count
field. The address field contains the address of the last byte in the data area. This is a 24 bit
address, right justified in the fullword provided. If the device being controlled is a halfword de-
vice, the final address must be odd. If the device is a byte device, the address may be either odd
or even. The currently active buffer is selected by a bit in the Channel Command Word. When
one buffer has been exausted, the channel may reverse the state of this bit and thus switch to

the alternate buffer. Automatic buffer switching is only available for byte devices.

The count field, in most operations, contains a negative number whose absolute value is equal to
one less than the number of bytes to be transferred. The one exception is the case of a single
byte transfer, where the count field contains ZERO,

During data transfers, the channel adds the value contained in the count field to the final address
to obtain the current address. It makes the transfer, referencing the current address, then in-
crements the value in the count field by one for a byte device or by two for a halfword device.
When the count field becomes positive, i.e., greater than zero, the channel sets the G flag in
the Condition Code and transfers control to the specified software subroutine. If the count

field is positive upon channel activation, the Channel makes no transfer and returns control

to the processor with Condition Code = 0010 (G=1).

Translation

The translation feature is used for special character recognition and is available only for byte
devices. If this operation is specified, the fullword provided in the Channel Command Block
must contain the 24 bit address, right justified, of a translation table, The table, which must
start on a halfword boundary, can contain up to 256 halfword entries. During data transfers,
the channel multiplies the data byte by two and adds this value to the translation table address.
The result is the address within the translation table of the halfword corresponding to the data
byte.

The channel references this location, and, if Bit 0 of the halfword is a one, it substitutes Bits
8:15 of the halfword for the data byte and proceeds with the operation. If Bit 0 of the halfword
is a ZERO, the channel:

Does not increment the byte count for the appropriate buffer.

Puts the data byte, untranslated, in Bits 24:31 of Register 3, of the appropriate set.

Forces Bits 0:23 of Register 3 to ZERO.

Multiplies the value contained in the translation table by two, and transfers control to the
software routine located at this address.

Upon transfer to the translation subroutine, Registers 0 and 1 contain the old PSW. Register 2
contains the device number. Register 3 contains the untranslated character. Register 4 con-
tains the address of the Channel Command Block. The current PSW indicates run state, machine
malfunction interrupt enabled, higher level I/0 interrupts enabled and all other interrupts dis-
abled. The Condition Code is zero.

Check Word

If cither longitudinal or cyclic redundancy checking is required, the check word in the Channel
Command Block contains the accumulated value. The initial value for the check word is usually
zero. (There are data dependent exceptions, e¢.g., where initial characters are not to be in-
cluded in the check.) The longitudinal check is an Exclusive OR of the character with the check
word. The cyclic check uses the formula for CRC 16:

x16 4 x10 4 x2 41

29428 RO2 2/77 7-21

If the Data Communication Option is equipped, the cyclic check may optionally use the formula
for CRC SDLC:

16, 412, (5 4

X
On input, if both redundancy checking and translation are required, the character is translated
first, then the cyclic redundancy check is done using the original character input rather than
the translated character. On output, the character is translated first. Redundancy checking
may be used only with byte devices.

Channel Command Word

The Channel Command Word (CCW), as shown in Figure 7-2, consists of two parts. Bits 0:7
contain a status mask. Bits 8:15 describe the channel operation.

0 78 9 10 1112 15
i + | — ol s L il J
STATUS MASK IEN RclalRJTlFl

L
FAST

TRANSLATE
READ/WRITE

EXECUTE

BUFFER SWITCH

REDUNDANCY CHECK TYPE

Figure 7-2. Channel Command Word

Status Mask
On every channel operation involving a data transfer, the status mask is ANDed with the device
status. This operation does not change the status mask. If the result is zero, the channel pro-

ceeds with the operation. If the result is non-zero, the channel sets the L flag in the Condition
Code, and transfers control to the specified software subroutine.

Execute Bit (E)
If this bit is reset, the channel unconditionally transfers control to the specified subroutine,

without taking any other action. The Condition Code is zero. If this bit is set, the channel
continues with the operation as specified in the Channel Command Word.

Fast Bit (F)

If this bit is set, the channel performs the I/O transfer in the fast mode. In the fast mode, buffer
chaining, redundancy checking, and translation are not allowed. This bit must be set for halfword
devices. If this bit is set, Buffer 0 is always used.

Read/Write Bit (R/W)

This bit indicates the type of operation. If this bit is reset, a byte or a halfword is input from
the device. If this bit is set, a byte or a halfword is output to the device.

Translate Bit (T)

If this bit is set, and the fast bit reset, the channel translates the data byte.

7-22 29-428 RO2 2/77

Redundancy Check Type Bits (RC)

These two encoded bits specify the type of redundancy check required. The following table con-
tains the valid types of checks. These bits are ignored if the Fast bit (Bit 15) is set. CRC
SDLC can be specified only if the Data Handling option is installed.

Bit Bit
10 11 Redundancy Check Type
0 0 LRC
0 1 BISYNC CRC
1 0 RESERVED - MUST NOT BE SPECIFIED
1 1 SDLC CRC - SHOULD ONLY BE SPECIFIFIED
IF THE DATA HANDLING OPTION IS
INSTALLED.

Buffer Switch Bit (B)

When the fast bit is reset, this bit specifies which of the two buffers is to be used for the trans-
fer., 1If this bit is reset, Buffer 0 is used. If it is set, Buffer 1 is used. The channel chains
buffers when the count field becomes positive. It does this by complementing the buffer switch
bit before transferring control to the specified software routine,

Valid Channel Command Codes

The following is a list of valid codes for the Channel Command Word. Note that only the first three

may be used with halfword devices.

Channel Command Word 8:15

Hexadecimal Binary Meaning

00 00000000 Transfer to subroutine

81 10000001 Read fast mode

85 10000101 Write, fast mode

80 10000000 LRC, Buffer 0, Read

82 10000010 LRC, Buffer 0, Read, translate

84 10000100 LRC, Buffer 0, Write

86 10000110 ILRC, Buffer 0, Write, translate

88 10001000 LRC, Buffer 1, Read

8A 10001010 LRC, Buffer 1, Read, translate

8C 10001100 LRC, Buffer 1, Write

8E 10001110 LRC, Buffer 1, Write, translate

90 10010000 CRC BISYNC, Buffer 0, Read

92 10010010 CRC BISYNC, Buffer 0, Read, translate
94 10010100 CRC BISYNC, Buffer 0, Write

96 10010110 CRC BISYNC, Buffer 0, Write, translate
98 10011000 CRC BISYNC, Buffer 1, Read

9A 10011010 CRC BISYNC, Buffer 1, Read, translate
9C 10011100 CRC BISYNC, Buffer 1, Write

9E 10011110 CRC BISYNC, Buffer 1, Write, translate
BO 10110000 CRC SDLC, Buffer 0, Read

B2 10110010 CRC SDLC, Buffer 0, Read, translate
B4 10110100 CRC SDLC, Buffer 0, Write

B6 10110110 CRC SDLC, Buffer 0, Write, translate
B8 10111000 CRC SDLC, Buffer 1, Read

BA 10111010 CRC SDLC, Buffer 1, Read, translate
BC 10111100 CRC SDLC, Buffer 1, Write

BE 10111110 CRC SDLC, Buffer 1, Write, translate

29-428 R06 5/78 7-23

General Auto Driver Channel Programming Procedure (See Figure 7-3.}
1. Set up Interrupt Service Pointer Table to vector to error routines for undefined devices.

2. Set up address of Channel Command Word + 1 (odd) in table at 2 times Device number
plus X'D0! (start of Interrupt Service Pointer Table)

3. Set up complete Channel Command Block.
4. Set up device and enable device interrupt.
5. Enable interrupts in PSW (Auto Driver Channel finishes operation).

6. Check for good termination of Auto Driver Channel operation.

7-24 29428 RO2 2/77

1/0 INTERRUPT
LEVEL n

ACKNOWLEDGE INTERRUPT
ON LINE n
RO, SETn*—PSW
R1, SETn*—LOC
R2, SETh*—DEVICE NUMBER
R3, SETn*—DEVICE STATUS
PSW<—'000028n0"
2x DEVICE NUMBER IS INDEX
TO SERVICE POINTER TABLE
FETCH TABLE ENTRY

CONDITION CODE = LS 4 STATUS BITS

SERVICE POINTER TABLE ENTRY
IS ADDRESS OF A CHANNEL COMMAND BLOCK

LOC<—TABLE ENTRY
FETCH AND EXECUTE
NEXT USER INSTRUCTION
“IMMEDIATE INTERRUPT"”
SERVICE POINTER TABLE
ENTRY WAS ADDRESS OF
SUBROUTINE

} CHANNEL

R4, SETn*+—TABLE ENTRY
FETCH CHANNEL COMMAND WORD

“STATUS OK"”

EXECUTE NO

BIT SET
?

CONDITION CODE =2
CHECK DEVICE STATUS
AGAINST STATUS MASK

CONDITION CODE<—0

CONDITION

CODE =1

NO ‘FAST’

BIT IN CCW
SET?

YES “FAST MODE”

FETCH BUFFER O
BYTE COUNT

1S
COUNT

YES

D B

NFAST EXAUTO

POSITIVE

FETCH BUFFER 0 END ADDRESS
ADD BYTE COUNT AND
BUFFER END ADDRESS.

RESULT IS THE ADDRESS
OF DATA TO TRANSFER

Figure 7-3, Microcode Flowchart of Auto Driver Channel (Sheet 1)

29-428 ROl 1/76

C

EUXSuB1

7-25

NO
HALFWORD

DEVICE

TEST
R/W BIT

NOT ZERO

BYTEIO

TEST
R/W BIT
IN CCW

NON-ZERO

IN CCW

READ HALFWORD FROM
DEVICE AND STORE
HALFWORD IN MEMORY

} HWRTI ZERO

WRITE HALFWORD
FROM MEMORY
TO THE DEVICE

READ BYTE FROM
DEVICE AND STORE
BYTE IN MEMORY

FWRIT

WRITE BYTE FROM
MEMORY TO THE DEVICE|

HRDWT

INCREMENT BUFFER 0
BYTE COUNT BY 2

]

INCREMENT BUFFER O
BYTE COUNT BY 1

J

FRDWT

COMMON

NCREMENTE YES

BYTE COUNT
Posm}/

LOC<*—R1
PSW <—R2

PSW

WAIT BIT
SET?

FETCH AND EXECUTE
NEXT USER INSTRUCTION

EXSUB1

FETCH SUBROUTINE ADDRESS
FROM CCB COPY ADDRESS
TO LOC FETCH AND
EXECUTE NEXT USER
INSTRUCTION

DO MACHINE MALFUNCTION
PSW SWAP

GOTOINTERRUPTAB({)

WAIT STATE

*FETCH NEXT USER INSTRUCTION

Figure 7-3. Microcode Flowchart of Auto Driver Channel (Sheet 2)

7-26

29428 ROl 1/76

“NORMAL MODE"

“SUBROUTINE TRANSL"

SET
USE BUFFER O USE BUFFER 1
BYTE COUNT AND BYTE COUNT AND
END ADDRESS END ADDRESS
EXAUTO
IS
BYTE COUNT _YES

POSITIVE

ADD BYTE COUNT AND
BUFFER END ADDRESS
AND FETCH THE
ADDRESSED BYTE

TEST
SET

FETCH ADDRESS OF
TRANSLATION TABLE

ADD TWICE THE
DATABYTE TO THE
TABLE ADDRESS AND
FETCH HALFWORD ENTRY

MASK LS 8 BITS

TRANSLATED
CHA R/IL\CTER

R/WBIT IN
ccw

READ DATA BYTE
FROM THE DEVICE
AND SET ASIDE

YES

SUBROUTINE
TRANSL

NFWRIT

YES

SUBROUTINE
TRANSL

LOC<—2x TABLE ENTRY
FETCH AND EXECUTIVE
NEXT USER INSTRUCTION
“ EXIT TO SPECIAL
CHARACTER SUBROUTINE"”

r OUTPUT BYTE TO DEVICE j

STORE TRANSLATED
BYTE IN MEMORY
GET ORIGINAL DATA
BYTE INPUT FROM DEVICE

FETCH CHECKWORD
FROM CCB
DO LONGITUDINAL OR
CYCLIC REDUNDANCY CHECK
INCREMENT BUFFER
BYTE COUNT

*FETCH NEXT USER INSTRUCTION

IS COUNT
POSITIVE
?

EXAUTO

COMPLEMENT
BUFFER SWITCH
BIT IN CCW

C
: EXSUB1

Figure 7-3. Microcode Flowchart of Auto Driver Channel (Sheet 3)

29428 RO1 1/76

7-27/7-28

CHAPTER 8
MEMORY MANAGEMENT

Memory Relocation and Protection is provided by the Memory Access Controller (MAC). The
MAC is a device which monitors all memory accesses. Under program control, it can (a) trans-
late the address of a memory access from a 20-bit program address to a 20-bit physical address,
(b) prevent write access to a block of memory, (c) reject instruction execution from a block of
memory or (d) detect an invalid memory access.

The throughput between the Processor and local memory or between the Selector Channel and local
memory is not affected by the use of the MAC.

In an operating system environment, the operation of the MAC is completely transparent to most
programs. It is very similar to a peripheral device in that only the operating system modules
directly responsible for its operation need be aware of its existence.

PROGRAM ADDRESS SPACE

The MAC allows an Operating System to provide support to user programs in such a way that

the program can be coded as if some subset of available memory, starting at address 0, were
available to the program. The range of addresses thus referenced by the program is called the
Program Address Space. At load time, the MAC can be used to map this program address space
into the available physical memory addresses so that any program address, referenced during

the program execution, is translated (relocated) to the correct physical address before memory is
accessed. The MAC interprets the Program Address as follows

0 11,12 15,16 31
SRN MBD

SRN: SEGMENTATION REGISTER NUMBER
MBD: MEMORY BLOCK DISPLACEMENT

RELOCATION

The relocation of program address to physical address is accomplished through the relocation/
protection bit (bit 21) of the Program Status Word and the 16 Segmentation Registers of the

MAC. If the relocation/protection bit of the PSW is reset, the MAC provides no translation of
the addresses. 1If the relocation/protection bit of the PSW is set, the MAC assumes that all
memory accesses are program addresses which must be relocated to physical addresses.

Before the relocation/protection bit of the PSW is set, the MAC Segmentation Registers must

be loaded with the appropriate mapping of the program to physical address (see below). The
MAC Segmentation Register describes the starting address and length of a block of physical
memory allocated to the program address space. These blocks must start on a 256 byte boundary
and may be up to 64K bytes long,

29428 ROl 1/76 8-1

11,12 15,16 31

PROGRAM
ADDRESS 0011 0010 0011 0100 1010
3 2 3 4 A
0 11,12 23 24 31
SEGMENTATION 0111 0100 0010
REGISTER 3
7 4 2
0 11,12 31
PHYSICAL
ADDRESS 0111 0110 0101 0100 1010
7 6 5 4 A
Address calculation: X'0234A" Memory block displacement
+ X'74200' Memory block starting address
X'T654A" Physical memory address

When the relocation/protection bit of the PSW is set, the program address is relocated as follows:

Program address Bits 12:15 select one of the segmentation Registers. In the example
above, segmentation Register 3 is selected.

Segmentation Register Bits 12:23 specify starting address of the block of memory. In the
illustration above, X'742' means that the memory block starting address is X'74200°'.
Program address Bits 16:31 contain the memory block displacement.

The block displacement is added to the memory block starting address to obtain physical
memory address.

PROTECTION

In addition to describing a block of physical addresses, each Segmentation Register can be used
to limit the type of access to the described block of addresses. Five types of protection are
provided by the MAC when the relocation/protection bit of the current PSW is set:

if the presence bit (Bit 27) is reset in the Segmentation Register selected by Bits 12:15 of
the Program address (non-present address), or

if the write-protect bit (Bits 25:26 = 01 or 11) is set in the Segmentation Register
selected by Bits 12:15 of the program address, and an attempt is made to store into the
addressed memory (write protection violation), or

if write/interrupt protection bit (Bits 25:26 = 10) is set in the Segmentation Register
selected by bits 12:15 of the program address and a store is made into the addressed
memory (write/interrupt protection violation), or

if the execution-protection bit (Bit 24) is set in the Segmentation Register selected by
Bits 12:15 of the program address and an instruction fetch is being attempted from the
addressed memory (execute protection violation), or

if the value of Bits 16:23 of the program address is larger than the limit described in the
Segmentation Register selected by Bits 12:15 of the program address (invalid address),
then a Relocation/Protection Fault interrupt is generated. The MAC status register
contains the reason for the interrupt (see below).

29-428 RO2 2/77

0 26 27 2829 30 31

| [N WPWIL E

INTERRUPT STATUS REGISTER

0 3,4 11,12 23,24 25 26,27 ,28 31
SLF SRF G |w.pP. |P.

SEGMENTATION REGISTER

In the case of an execution protection violation, write protection violation or invalid address, if
the interrupt generated by the MAC cannot be accepted immediately by the Processor, the con-
troller continues to operate, but all Write operations are changed to read operations until the
interrupt is cleared. In the case of write/interrupt protect violation, the store operation is
allowed to complete and then an interrupt is generated. A MAC interrupt condition is cleared
by any reference to the MAC interrupt status register, however, only a store instruction will
clear the status register.

EXAMPLE:

The effect of the MAC is best illustrated by an example of a program executing under operating
system control.

Assume that the program consists of:

main program coded as if addresses 0 through 2FFF are available and a program entry
address of 100, (Program Address Space = 12K)

a subroutine coded as if addresses F0000 through F1FFI' are available. (Program Address
Space = 8K)

a data area which is initialized by some other program and which is contained at addresses
A0000 through AFFFF. This area is to be write and execute protected. (Program Address
Space = 64K)

The operating system executes with the relocation/protection bit of the PSW reset so that no
address relocation or protection is in effect.

Assume that the main program, subroutine and data area are loaded into physical memory
starting at addresses 21000, F000, 13000 respectively. Before passing control to the example
program, the operating system:

sets the start address of Segmentation Registers 0, 10 and 15 to 21000, 13000 and 0F000
respectively.

resets the presence bit in the remaining Segmentation Registers.

sets the limits of Segmentation Registers 0, 10 and 15 to 47, 255 and 31 blocks respectively.

sets write and executes protection in Segmentation Register 10.

29-428 ROl 1/76

0 3,4 11,12 23,24 ,2526,27,28 31
SLF SRF E | WP|P.
SEGMENTATION REGISTER FIELDS
SEGMENTATION REGISTER 0.
0 3,4 11, 12 23,24 27,28 31
0010 1111 0010 0001 0000 0001
0 2 F 2 1 0 1
SEGMENTATION REGISTER 10:
0 3,4 11, 12 23,24 27,28 31
1111 11 0001 0011 0000 1011
0 F F 1 3 0 B
SEGMENTATION REGISTER 15:
0 3,4 11,12 23,24 27,28 31
0001 111 0000 1111 0000 0001
0 1 F 0 F 0 1
SEGMENTATION REGISTERS 1,2,3,4,5,6,7,8,9,11,12,13 & 14 :
0 3.4 11,12 23,24 27 28 31
0000 0000 0000 0000 0000 0000
0 0 0 Q 0 0 0

The program can then be started by loading a PSW with relocation/protection bit of the status
portion set and a location counter of 100. A relocation/protection fault interrupt occurs if;

an attempt is made to reference 30000. (Presence bit reset in selected Segmentation
Register, i, e., Segmentation Register 3.)

an attempt is made to store into A0100. (Write protect set in selected Segmentation
Register, i.e., Segmentation Register 10.)

an attempt is made to branch to A0000. (Execute protect set in selected Segmentation
Register, i.e., Segmentation Register 10.)

an attempt is made to reference I'3000. (Value of Bits 15:31 of program address (3000)
is larger than the limit field of Segmentation Register 15 (32 256 byte blocks or 2000)).

An attempt to reference 100, F1200 or A0001 results in an access to 21100, 10200 or 13001
respectively.

g-d 29-428 R06 5/78

MAC REGISTERS

The MAC has 17 hardware registers referred to as Base Registers. There are 16 Segmentation
Registers and 1 Interrupt Status Register. These registers are accessed through the assigned
memory locations.

The 72 bytes starting at the first 256 byte boundary above the Interrupt Service Pointer Table,
are dedicated to the MAC.

MAX NUMBER OF DEVICE ADDRESSES DEDICATED MAC LOCATIONS I
256 300 — 347
512 500 — 547
1024 900 — 947

The MAC Registers are assigned to the dedicated locations as follows (for 256 maximum number

of device addresses): |
Segmentation Register Memory Location

0 - 300

Tt 1" 1 - 304

mn " 2 - 308

1" " 3 - 3OC

" " 4 - 310

1" 1" 5 - 314

1 1t 6 - 318

1" 1" '7 - 31C

" " 8 - 320

" " 9 _ 324

" " 10 - 328

" " 11 - 32C

" " 12 - 330

" " 13 - 334

" " 14 - 338

" " 15 - 33C
Interrupt Status Register - 340

Values are loaded into the MAC registers by storing the values into the appropriate assigned memory
locations. Any attempt to read the dedicated MAC locations returns the value in the corresponding
memory location except for the location assigned to the MAC Status Register. In general, manipula-
tion of MAC registers is performed with the relocation/protection of the PSW reset. To summarize
the manipulation of the MAC registers:

The 68 bytes starting at the first 256 byte boundary above the Interrupt Service Pointer
Table, are dedicated to the MAC.

The value of a MAC register is changed by storing into the appropriate dedicated MAC
location,

The value of the MAC Status Register is read by loading from the appropriate dedicated
MAC location.

All attempts to read (load) from dedicated MAC locations return the value in the corres-
ponding memory location , except for the MAC status register location.

29-428 R06 5/78 8-5

MAC registers are manipulated, with the relocation/protection bit of the PSW reset , as follows:

The Segmentation Registers are set up by storing data into the appropriate assigned

memory locations.

The Segmentation Registers cannot he read. Any attempt to read the dedicated MAC
locations assigned for the Segmentation Registers returns the value in the corres-
ponding memory locations. This value may be different than the actual (hardware)
Segmentation Register value. To read the data which has been loaded into the Segmen-
tation Registers, it is necessary to read the assigned locations after the registers
have been loaded (with MAC disabled) and before the MAC is enabled. Under these
conditions the assigned memory locations will contain the same data as the Segmen-

tation Registers.

The Interrupt Status Register is cleared by writing any data into its assigned mem-
ory location.

The Interrupt Status Register can be read by rcading its assigned memory location.
This also clears the Interrupt Status Register.

Definition of MAC Register Fields

Segmentation Register

0 3,4

11,12 23 24 25,26 27 31

SLF

SRF E|wp [P

Each Segmentation Register is 32 bits wide.

Field

SLF

SRF

wP

8-6

Bits
0-3

4-11

12-23

24

25-26

27

28-31

Meaning

Unused - must be zero

Segment Limit Field, contains one less than the number of
256 byte blocks in the segment described by this register.

Segment Relocation Field - indicates the starting address of
the segment described by this register (Starting address = SRF
multiplied by X'100').

Execute protect bit - if set, instruction fetch from segment
causes relocation/protection fault.

Write protection field - encoded as follows:

00 - no write protection

01 or

11 - Write protected - attempt to store into segment causes

relocation/protection fault - store is not executed.

10 - Write/Interrupt protect - attempt to store into segment
causes relocation/protect fault - store is executed.

Presence bit - if not set, selection of this register causes
relocation/protection fault.

Unused - must be zero.

29428 ROl 1/76

Interrupt Status Register

0 26,2728, 29,3031
| 1N |wrwile
Field Bits Meaning
I 27 Invalid Address - value of bits 16:31 of program address

greater than the limit specified by SLF in the selected
Segmentation Register. i

N 28 Non-present Address - present bit not set in selected
segmentation register,

WP 29 Write Protect Violation - attempt to store into write protected
segment.
WI 30 Write/interrupt protection violation - store into write/

interrupt protected segment.

E 31 Execute Protect Violation - instruction fetch attempt from
execute protected segment.

The Interrupt Status Register is set by the MAC during generation of a relocation/protection
fault interrupt. The first reference, load or store, to the memory location assigned to the
interrupt status register following the interrupt, clears the interrupt condition from the MAC.
The Relocation and protection interrupt handler should execute with the relocation/protection
bit of the PSW reset and should clear the Interrupt Status Register by storing any fullword into
the assigned memory location before exiting.

Initialization

Whenever the Initialize Switch (INI) on the display panel is depressed, or the processor is
powered up, all segmentation, relocation, protection and MAC interrupts are disabled regard-
less of the state of bit 21 in the current PSW. The contents of the MAC segmentation registers
must be restored by software after Power Fail.

The MAC remains disabled until a memory reference instruction is issued. At this time, the
MAC is enabled or remains disabled depending on the condition of bit 21 of the current PSW.

29-428 R06 5/78 8-7/8-8

CHAPTER 9
WRITABLE CONTROL STORE
INSTRUCTIONS

The writable control store option puts the power and speed of the Model 8/32 micro processor intc
the hands of systems programmers for implementing high speed algorithms or specialized functions.
This option is available in the Model 8/32 and may not be available with other 32 Bit Processors. 1

All the resources of the microprocessor become available to the user as an extension to the user

level architecutre. The user is provided with 512 or 2048 32-bit words of dynamically alterable high |
speed control store memory over and above the 1280 words of fixed read-only control store. Also there
are user level instructions for writing to and reading from the control store and executing micro-
programmed routines contained in the control store.

Figure 9-1 illustrates the organization of the Model 8/32 Microprocessor. In general, via the
appropriate micro-instruction, data is gated from the Register Stacks by way of the A & B source
buses {o the selected module (ALU or 1/0) and a given operation specified for the I/0 Module.

Results appear in the selected destination register via the S bus. The register stacks are paralleled
and each stack contains up to 168 32-bit registers. This includes up to 8 sets of 16 each user level
general registers, 16 floating point registers, and 8 registers for exclusive use by the microprogram.
The dual stack organization allows concurrent gating onto the two source buses (A&B).

511

5-BUS 1 ' 9

1 L} 1

So0-a1 4}2 ,’,
(STACK B}

REGISTER SET 0 REGISTER SET 0

GRO:GRF GRO:GRF

—
REGISTERSET 1
GRO:GRF

1 CC-BUS

32
31, (STACK Al
0 12 3
- b~ 1]
1
L E

s
Psw |
BRANCH REGISTER SET 1
CONTROL GRO: GRF

$16:31

REGISTER SET 2]

RLC

GRO:GRF

I
REGISTER SET 2
GRO:GRF

GRO:GRF GRO:GRF
INTERRUPT
CONTROL

I
FLOATING-POINT REG!
ERO:ERF *

FLOATING— POINT
20-8IT ADDER REGS. ERO: ERF #

T T
| PLUS 1 I I REGISTER SET £ I FEGISTER SETF I
4

1 1
204 49 PRIVILEGED MICRO REGISTERS MICRO REGISTERS
ILLEGAL MRO:MR7 MRO: MR7
MEMORY Agcsss ROM
CONTROLLER
N 4 B2 ,V‘ ’Jb
MEMORY BUS
! INPUT/OUTPUT|
ARITHMETIC LOGIC UNIT] UNIT |
|
[k1l 820:31 ¥
I MDR . 120:31 "0:31, Bo:ar Bo:3t L Msm‘P'ss
CONTROL N
STORE
o MEMORY
12:31 Poa DISPLAY
CONTROL
FORMAT]
ROM
Jram Y
| = CONTROL
212 £ A-BUS (3]
i 2 K) i 1]
{ B - BUS i] b

* Module 3 registers used only with optional WCS. Optional High Precision
Floating Point Unit (DFU), not shown on this diagram, contains its own sin-
gle and double precision floating point registers

Figure 9-1. Model 8/32 Block Diagrém

29-428 R06 5/78 9-1

Many of the other internal registers are available for limited use by the microprogram.,
Microinstructions in the Model 8/32 are divided into two basic types:

-~ Control Module Instructions. Branch, Execute, etc.

- Instructions for the other four modules.

ALU - Add, Subtract, Shift, Multiply, etc.

1/0 Module - Read, Write, etc.

Floating Point ALU - Add, Subtract, Multiply, etc.

Double Precision Floating Point ALU - Add, Subtract, Multiply, etc.

Figure 9-2 shows the basic micro-instruction formats. As can be seen, many concurrent opera-
tions are possible. For Branch and Execute instructions, the F field specifies the condition for
branching to or executing the target micro~instruction. The control bits specify the type of memory-
related action to be taken. Other bits determine if the next user instruction should be decoded and
whether the instruction is a "Branch'" or "Execute and Return'' type of instruction.

For the ALU modules and the I/0 module, there are also multiple fields defining several parallel
operations. There are four basic instruction types: Register to Register with a transfer, Register
to Register with memory control, Immediate, and Register write to the Control Store. Data may be
retrieved from the fixed or the writable portion of the Control Store by use of the '"I'" bit in the
microinstruction.

A large repertoire of micro-instructions is available to make most efficient use of the parallelism
of the hardware. A complete list of micro-instructions is available in Appendix 8. Refer to the
Model 8/32 Microprogram Reference Manual, Publication No. 29-438, for details. Also refer to
the Model 8/32 WCS User's Guide, Publication Number 29-479, for usage of WCS under an oper-
ating system (e.g. 0S/32-MT).

NOTE

The Writable Control Store consists of RAM ICs. The microcode
in the WCS is volatile and thereforec must be restored after the
power fail/restore sequence. This function is done by the Model
8/32 WCS Support Program, Program Numbecr 03-102.

WRITABLE CONTROL STORE INSTRUCTIONS

The writable control store option provides the user with 512 or 2048 32-bit words of dynamically
alterable, high-speed control store memory (WCS). User level instructions are added for writing
blocks of data into the WCS, reading blocks of data from the WCS and executing micro-programmed
routines contained in the WCS.

The WCS acts as an extension to the basic read-only control store memory. The basic control
store represents control store addresses X'000' through X'4FI'' and the WCS represents control
store addresses X'800' through X'9FF' or X'FFF!',

The instructions described in this section are:

WDCS Write Control Store
RDCS Read Control Store
BDCS Branch to Control Store
ECS Enter Control Store

9-2 29-428 R06 5/78

ADDRESS LINK

INSTRUCTION WORD FIELDS

0 23 4,5 6 10, 11 13 14 25 26 27 28 31
000 1 X[T S F ADDRESS E|D MC
REGISTER LINK
0 2.3 4 5 6 10, 11 13 14 19 20 24 25 26 27 28 31
000 0Oy X} T F //{/// B E| D MC
REGISTER TO REGISTER TRANSFER
0 2,3,4,5 6 10, 11 15 16 19 20 24 25 26 31
MOD| 0| Of | S A F B C PAGE ADRS
REGISTER TO REGISTER CONTROL
0 2 3,4 5 6 10 11 15, 16 19,20 24 25 26 27 28 31
MOD | Of 1 I S A F B KYE} D MC
REGISTER TO REGISTER IMMEDIATE
0 2 3 4, 5 6 10 M1 15 16 19,20 31
MOD| IV (O 1 S A F DATA
REGISTER WRITE
0 2 3 4 5 6 10 11 15 16 19 20 24 25 26 27 28 31
001 1 1] 1 NULL A 0000 B OlE| D MC
FIELD MEMORY '
A Selects first operand register
B Selects second operand register
S Selects register to receive result
F Specifies function of addressed module
E Enables setting of Condition Code
C If set, transfer is conditional
X Execute
I Second operand is address of data
D Decode next user instruction
K F field extension
MC Main Memory Control
Figure 9-2. Model 8/32 Micro Instruction Formats
29428 ROl 1/76 9-3

INSTRUCTION

Write Control Store (WDCS)

Assembler Notation Op-Code Format
WDCS R2 E80 RR
Operation

The second operand address contained in the register specified by R2 is the starting location in
main memory of the data to be transferred to WCS. The area of WCS to be loaded is specified
by the low address contained in General Register 0 and the fullword count minus one contained

in General Register 1. These registers must be set up by the user prior to executing the WDCS
instruction,

The WDCS instruction is interruptable., When it is interrupted, the Location Counter field of
PSW is not incremented so that after servicing the interrupt, the WDCS instruction can be re-
sumed. Proper resumption of the instruction is assured because as each fullword is transferred
to the WCS address specified by the contents of General Register 0 plus the count, the count in
General Register 1 is decremented by one. The operation continues until the count decrements

from zero to minus one.
Condition Code

Unchanged
Programming Notes

The R2 field may specify any register other than 0 or 1.

The second operand address in the register specified by R2 must be located on a fullword
boundary.

This instruction is a privileged operation.

9-4 29-428 RO2 2/77

INSTRUCTION
Read Control Store (RDCS)

Assembler Notation Op-Code Format
RDCS R2 E82 RR
Operation

The second operand address contained in the register specified by R2 is the starting location in
main memory that is to receive data from the WCS. The area from which this data is to be copied
is specified by the low address contained in General Register 2 and the fullword count minus one
in General Register 3. These registers must be set up by the user prior to executing the RDCS
instruction.

The RDCS instruction is interruptable. When it is interrupted, the Location Counter field of the

PSW is not incremented so that after servicing the interrupt, the RDCS instruction can be resumed.
Proper resumption of the instruction is assured because as each fullword is transferred from

WCS to main memory, the count in General Register 3 is decremented by one, The operation con-
tinues until the count decrements from zero to minus one,

Condition Code
Unchanged

Programming Notes
The R2 field may specify any register other than 2 or 3.
The second operand address in the register specified by R2 must be located on a fullword boundary.

This instruction is a privileged operation.

29428 RO2 2/77 9-5

INSTRUCTION

] Branch to Control Store (BDCS)
Assembler Notation . Op-Code Format
BDCS R1,D2(X2) E5 RX1,RX2
BDCS R1,A(FX2, SX2) E5 RX3
Operation

An unconditional branch is taken to the Control Store address equal to the least significant 12 bits
of the second operand address. The second operand address may specify any location within the
| writable portion of the control store, X'800' through X'FFF', or to any location within the read-

only portion of the control store, X'000' through X'4FF', Unpredictable results can occur if a
branch is taken to a non-present microprogram address.

Condition Code
Depends on the microprogram entered into.

Programming Notes
Micro level interrupts are not armed and the Location Count field of PSW is not incremented.
The second operand address is not tested for validity.

The user may assign any desired meaning to the R1 field of the instruction.

This instruction is a privileged operation,

9-6 29-428 R06 5/78

INSTRUCTION

Enter Control Store (ECS)

Assembler Notation Op-Code Format
ECS RI1,A(X2) E9 RI1
Operation

Control is given to the WCS location whose value is X'800' plus the contents of the Rl field. The
affect is a branch to one of the first sixteen locations in WCS, These locations may contain branch
microinstructions to sixteen different micro routines. By placing the appropriate number in the
R1 field of the ECS instruction the user can call one of sixteen different functions.

Condition Code

Depends on the microprogram entered into.

Programming Notes

The Location Count field of PSW is not incremented and micro-level interrupts are not armed.

The user may assign any desired meaning to the X2 field or the A field.

29-428 R0O2 2/77 9-7/9-8

CHAPTER 10
HIGH SPEED DATA HANDLING
INSTRUCTIONS

The Data Handling instructions are used to compute polynomial error check redundancy char-
acters, as used by most data communications protocols, A high speed memory-to-memory
move capability is also provided with this option. Communications protocols supported by
this option include, but are not limited to, the following:

Binary Synchronous Communications (BISYNC or BSC) - IBM's widely accepted

half-duplex protocol uses the CRC BISYNC error check polynomial (x16 +x10 4
2

x4 + 1),

Synchronous Data Link Control (SDLC) - IBM's new full-duplex protocol uses the
CRC SDLC error check polynomial (x16 +x12 x5y 1),

Advanced Data Communications Control Procedure (ADCCP) - ANSI's proposed
National Standard full-duplex protocol uses CRC SDLC,

High Level Data Link Control (HDLC) - The ISO's International Standard full-duplex
protocol uses CRC SDLC.

DATA HANDLING INSTRUCTION FORMATS

The optional Data Handling instructions use the Register to Register (RR), and the Register
and Indexed Storage (RX) formats.,

DATA HANDLING INSTRUCTIONS

PB Process Byte
PBR Process Byte Register
MPBSR Move and Process Byte String Register

29-428 R06 5/78 10-1

INSTRUCTION

Process Byte (PB)

Assembler Notation Op-Code Format
PB R1, D2(X2) 62 RX1, RX2
PB R1, A2(FX2, SX2) 62 RX3
Set Up 0 7,8 15,16 23 ,24 31
R1 X CHECK CODE ' X DATABYTE

Bits 24:31 of the register specified by R1 contain the data byte to be processed. Bits 8:15 of the
register specified by R1 contain a check code to indicate the type of processing. This byte is
interpreted as follows:

X'00' Cumulative check zero (CRC BISYNC)

X'0o1' Cumulative check one (CRC SDLC)
X'o2' Cumulative check two (LRC)

The second operand address points to a halfword residual checksum to he included in the cumula-
tive check.

Operation

If CRC BISYNC is specified, the data byte, and the old residual checksum participate in the Gen-
eration of a new residual checksum based on the evaluation of the polynomial (le +x18 4 x2 4 1).

If CRC SDLC is specified, a similar operation is performed, using the polynomial
(x16 4 x12 1 x5 4 1)

e

In both of these cases, the new residual checksum replaces the old residual checksum at the second
operand location.

If LRC is specified, the EXCLUSIVE OR of the data byte with the old residual checksum replaces
the old residual checksum at the second operand location.

Condition Code

Unchanged

Programming Notes
Bits 0:7 and 16:23 of the register specified by R1 are ignored.
The register specified by R1 remains unchanged.
The second operand must be located on a halfword boundary.

Undefined check codes should not be used. If they are, the results are undefined.

10-2 29428 RO2 2/77

Example: PB

This example performs a Process Byte instruction and stores the residue into RESIDUE.

Register 1 contains X'0001007A"
where: 01 = CRC SDLC
7A = DATA BYTE

RESIDUE contains X'D053"' = old residue
Assembler Notation Comments

PB R1,RESIDUE RESIDUE ON HALFWORD BOUNDARY
Result of PB Instruction

(R1) = unchanged by this instruction

(RESIDUE) = X'BC13' - new residue

Condition Code = unchanged by this instruction

29428 ROl 1/76

10-3

INSTRUCTION

Process Byte Register (PBR)

Assembler Notation Op-Code Format
PBR R1,R2 32 RR
Set Up
0 7,8 15 4,16 23,24 31
R1 X CHECK CODE X DATA BYTE
R2 0 RESIDUAL CHECKSUM

Bits 24:31 of the register specified by Rl contain the data byte to be processed. Bits 8:15 of the
register specified by R1 contain a check code to indicate the type of processing. This byte is
interpreted as follows:

X'00' Cumulative check zero (CRC BISYNC)
X'01' Cumulative check one (CRC SDLC)
X'02' Cumulative check two (LRC)

The second operand is a fullword contained in the register specified by R2. Bits 16:31 of the
second operand contain the residual checksum to be included in the processing.

Operation

If CRC BISYNC is specified, the data byte, and the old residual checksum participate in the gen-
eration of a new residual checksum based on the evaluation of the polynomial (x16 + x15 + x2 + 1),

IF CRC SDIC is specified, a similar operation is performed, using the polynomial
(x16 + x12 5 x5 4 1).

In both these cases, the new residual checksum replaces the contents of the Bits 16:31 of the
register specified by R2.

If LRC is specified, the EXCLUSIVE OR of the data byte with the old residual checksum replaces
the old residual checksum in the second operand.

Condition Code

Unchanged

Programming Notes

Bits 0:7 and 16:23 of the register specified by R1 are ignored. The register specified by Rl re-
mains unchanged. Bits 0:15 of the register specified by R2 are not used and must be zero.

Undefined check codes should not be used. If they are, the results are undefined.

10-4 ' 29428 RO2 2/77

INSTRUCTION

Move and Process Byte String Register (MPBSR)

Assembler Notation Op-Code Format
MPBSR R1, R2 30 N RR
Set Up
0 7,8 15 16 31

R1 DATA BYTES STRING ADDRESS
R1+1 TRANSLATION TABLE ADDRESS
R1+2 CONTROL CODE J CHECK CODE COUNT
R1+3 0 RESIDUAL CHECKSUM
R1+4 LINK REGISTER FOR SUBROUTINE
R2 DESTINATION BUFFER ADDRESS |

The register specified by R1 contains the address of the first byte in the string to be moved and
processed.

The register specified by R1+1 contains the address of the translation table.

Bits 0:7 of the register specified by R1+2 contain a control code to indicate both the type and the
sequence of processing. This byte is defined as follows:

X'00! Cumulative check using data byte, move data byte

X'08! Translate, cumulative check using dala byte, move translated hyte
X'0A' Translate, cumulative check using translated byte, move translated byte
X'0C!' Translate, move translated byte

Bits 8:15 of the register specified by R1+2 contain a check code to indicate the type of cumulative
check to be used in processing the data bytes. This byte is interpreted as follows:

X'00' Cumulative check zero (CRC BISYNC)
X'or Cumulative check one (CRC SDLC)
X'02! Cumulative check two (LRC)

If cumulative check is not specified, this byte does not participate in the MPBSR instruction,

Bits 16:31 of the register specified by R1+2 contain a halfword count which defines the number of
bytes to be processed. A count of X'0000' specifies a move of 1 character. A count of X'7TFFF'
specifies a move of 32,768 characters. These are the minimum and maximum count values
respectively.

Bits 16:31 of the register specified by R1+3 contain the halfword residual value to be used in
performing the cumulative check. If cumulative check is not specified, this register docs not
participate in the MPBSR instruction.

The register specified by R1+4 is used as a link register in the translation process, if a special
character subroutine is specified. If translate is not specified or if a special character sub-
routine is not specified, this register does not participate in the MPBSR instruction.

The register specified by R2 contains the address of the destination buffer.

29428 RO2 2/77 10-5

BYTE

COUNT
NEGATIVE

TRANSLATE
ONLY

CHECK &
JRANSLATE

YES

?

1

(LOC)=—(LOC)+2
CONDITION CODE

0100

EXIT >

v

N 2

?

TRCK

NO
FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.
2x BYTE PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE HALFWORD

NO NEGATIVE

—

?

LS 8 BITS ARE TRANSLATED BYTE
DEVELOP NEW CHECKWORD
USING TRANSLATED BYTE

STORE TRANSLATED BYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADRS.
DECREMENT BYTE COUNT

NO

YES

FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.
2x BYTE-PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE
HALFWORD

NO

NEGATIVE
?

YES
LS 8 BITS ARE TRANSLATED
BYTE. DEVELOP NEW CHECK
WORD USING ORIGINAL SOURCE
BYTE. STORE TRANSLATED
BYTE IN DESTINATION BYTE
STRING INCREMENT DESTINA-
TION ADRS. DECREMENT BYTE
COUNT

NEGATIVE
?

S

7

-7

Figure 10-1. Flow Chart of MPBSR Instruction

29428 ROI 1/76

iy

v \(

w

CKONLY

NO

FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.
DEVELOP NEW CHECKWORD
USING THE SOURCE BYTE
STORE THEBYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADRS.
DECREMENT BYTE COUNT

NEGATIVE
?

YES

TRONLY

INTERRUPT \.YES

?

FETCH SOURCE BYTE

INCREMENT SOURCE ADRS.

2x BYTE PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE HALFWORD

NO

YES
LS 8 BITS ARE TRANSLATED BYTE
STORE TRANSLATED BYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADDRESS
DECREMENT BYTE COUNT

NG NEGATIVE

?

(R1+20:31)o—|v'FFFF FFFF’
(LOC)e—(LOC)+2
ole

I
CONDITION CODE «-"0000"

Y v \r

EXIT

—

(R1+4) - (LOC)

(LOC)=-2x TRANSLATION
TABLE HALFWORD

EXIT

[&)]

Figure 10-1. Flow Chart of MPBSR Instruction (Continued)

29428 ROl 1/76

I Operation (See Figure 10-1)
Successive bytes, starting with the first in the source string are:

1. Processed in accordance with the specified codes.
2. Moved to the destination buffer,

The operation stops when the byte count becomes negative. The source string is unchanged. (See
Addresses and Count, below.) The processed bytes replace the contents of the destination buffer.
Upon completion of the instruction, the location counter is incremented to point to the next
instruction in sequence. If the byte count is negative at the start of the instruction, no moving

or processing is done, the instruction terminates, and the location counter is incremented to
point to the next instruction.

Translation

The translation operation requires a 256 halfword table located in memory at the address con-
tained in the register specified by R1+1, The table is arranged in ascending order, with one entry
for each of the 256 possible data bytes. The translation operation may result in cither a direct re-
placement, (in the destination buffer), of the data byte with another, or in a transfer to a special
character subroutine.

If the most significant bit, bit zero, of the halfword entry corresponding to the data byte is a one,
then bits 8:15 contain the replacement byte. This byte is moved to the proper location in the des-
tination buffer. The table entry is unchanged.

If the most significant bit of the entry is a zero, then bits 1:15 contain the address, divided by
two, of the special character subroutine. Before transferring to the subroutine, the link register,
specified by R1+4, is loaded with the address of the MPBSR instruction. The source address has
not been incremented and points to the current byte., The count has not becn decremented. The
destination address has not been incremented and points to the proper destination for this byte.
This byte does not participate in the cumulative check.

If none of the halfwords in the translation table has its most significant bit set (i.e., no special
character subroutines), the register specified by R1+4 is not used by this instruction.

Cumulative Check

The source byte used for the cumulative check may be the data byte or the translated byte as spec-
ified by the control code. The source byte is included in any one of three types of cumulative
check operations as specified by the check code.

If CRC BISYNC is spccified, the source byte, and the old residual checksum contained in Bits

16:31 of the register specified by R1+3 participate in the generation of a new residual checksum
using a cyclic redundancy checking algorithm based on the gencrated polynomial (x16 +x15 4+ x2 + 1),

If CRC SDLC is specified, a similar operation is performed, using the polynomial
(x16 +x12 4 x5 4 1y,

In both of these cases, the new residual checksum replaces the contents of Bits 16:31 of the reg-
ister specified by R1+3.

If LRC is specified, the EXCLUSIVE OR of the source byte with the old residual checksum re-
places the old residual checksum in Bits 16:31 of the register specified by R1+3.

10-8 29-428 RO2 2/77

Byte Count

As each byte is moved, the source address and the destination address are incremented by one.
The count is decremented by one, Upon completion of the instruction, the source and destination
address registers contain the incremented addresses. The count register specified by R1+2 con-
tains a negative one, X'FFI'F FFFF',

The count value is equal to the number of bytes in the source string minus one. A count of
X'0000' causes one byte to be processed, a count of X'7FFF' causes 32, 768 bytes to be pro-

cessed. These are the minimum and maximum count values respectively.

Condition Code

C|VI|G|L

0[0jojo Successful completion

0]110{0 Count negative at start
Addresses

There are no boundary restriclions on either the location of the source string or on the location of
the destination buffer. Either may start and end on odd byte boundaries, If the memory access
controller is present and enabled, memory references using these addresses are relocated.

The translation table must be located on a halfword boundary. The address of the translation
table is relocated, if the memory access controller is enabled, Within the translation table, the
address fo the special subroutine must point to a location within the first 64KB of program space.
This address is also subject to relocation by the memory access controller,

Source and destination buffers may overlap. No checking is performed. The addresses specified
by the source (R1) and destination (R2) registers may be equal, specifying a move in place, but
R1 must not be cqual to R2. That is, the instruction MPBSR 3, 3 is invalid.

Programming Notes

This instruction is interruptable. The point at which interrupts are recognized, and the periods
of non-interruptability may vary in different implementations. Any of the following events may
cause this instruction to be interrupted: machine malfunction, memory failure, memory access
violation, external device attention. Before taking the interrupt, the processor finishes process-
ing the current byte, increments the source and destination addresses, and decrements the count.
The location counter is not incremented. This permits the move to resume, following the servic-
ing of the interrupt. Interrupt routines may use this instruction, provided they do not destroy the
contents of the registers.

Undefined control codes should not be used. If they are, the results are unpredictable.

Illegal instruction interrupt occurs if the Processor is not equipped with the communication
Instructions option.

If R1 specifies register number 6, then registers 6, 7, 8, 9 and 10 are used by this instruction.
If R1 specifies register number 13, then registers 13, 14, 15, 0 and 1 are used, in that order,

by this instruction.

If R1 = R2, the results are not defined.

29-428 R0O6 5/78 10-9

EXAMPLE: MPBSR

This example moves and performs a CRC SDLC check on a byte string of data.

BUFIN = 256 bytes buffer containing data 0:X'FTF!'

Register 1 contains address of BUFIN
Register 2 contains address of TRANSTAB
Register 3 contains X'000100FF"

where: 00 indicates check and move
01 indicates CRC SDLC
00 is not used
I'F indicates 256 bytes to he used

Register 4 contains X'0' to begin

Register 5 not used in this example

Register 6 contains address of BUFOUT
Assembler Notation Comment

MPBSR REG1, REG6 MOVE BUFIN TO BUFOUT

(REG1) = BUTFIN + 256

(REG2) = unchanged by this instruction

(REG3) = X'FFFF FFTFT

(REG4) = Half Residue X'D841'

(REGS) = BUI'OUT + 256

10-10

Condition Code = 0000 successful completion

BUFIN is unchanged
BUFOUT now contains 256 bytes 0-255

29428 ROl 1/76

CHAPTER 11
M 71-102 HEXADECIMAL DISPLAY
PANEL AND M 71101 BINARY DISPLAY

PANEL PROGRAMMING SPECIFICATION

INTRODUCTION

The M71-102 Hexadecimal Display Panel and M71-101 Binary Display Panel provide a means to
manually control the Processor, interrogate and display various Processor registers and machine
status, set and display Processor memory locations, and may be programmed as an I/0 device
by the user. The Hexadecimal Display Panel and Binary Display Panel are identical in operation.
For convenience of the operator the Hexadecimal Display is equipped with a Hexadecimal readout
in addition to the standard Binary readout.

CONFIGURATION

The Hexadecimal Display Panel provides the system operator with visual indications of the
state of the Processor, as well as manual control over the system.

The Hexadecimal Display Panel, shown in Tigure 11-1, is a RETMA standard 133 mm X 483 mm
(53" X 19") panel which is plug removable from the Processor. It displays the current state of
the Processor and provides all necessary manual control over the system. Thefollowing para-
graphs describe the control and display elements of the Hexadecimal Display Panel.

— S e— g

n 2 13 1 15 16 17 8 19 @@BE‘
05000 O000 O00D 0000 OO0VOJOO0O OO0 00NO OOO? E:ID@

A 1 I O

o islts MEMORY AGDRESS e MEMORY DATA X
ole SWITCH REGISTER 19] LTJEE]B o
SP{ETNETION PROGRAM STATUS WORD ol L WRIT
SiffESSTER GENERAL REGISTER 63 E]EHS,—”]@ o
Oo REGISTER 78 FLOATING REGISTER 31 _— - POWER

e
L_ i e
. LOCK
ON
INTIIRDATA] ore
: J

Figure 11-1. Hexadecimal Display Panel

29-428 R06 5/78 11-1

Display Registers and Indicators

Internal to the Hexadecimal Display Panel are five eight-bit byte Display Registers, D1 through D5,
that hold data output from the Processor, and a 20-bit Switch Register that holds data input from

The Hexadecimal Keyboard. Refer to Figure 11-2.

SWITCH REGISTER

il

0 710 0) 7
D5 D4 D3
12 15,16 MEMORY ADDRESS 31 .0 MEMORY DATA 5
1
O“*“‘ ll* T + ;
34 SWITCH REGISTER
o F : 2y
FUNCTION o PROGRAM STATUS WORD 3
1
Oe F t &3l
REGISTER GENERAL REGISTER
Oe——m—1 [} 0 31,
| T Ll
REGISTER FLOATING-POINT REGISTER
[Ao LB 31'
OC¢————1} 35 63"

Figure 11-2. Display Registers and Indicators

Associated with each of Display Registers D1 through D4 are eight indicator lamps that provide

a binary read-out and two optional hexadecimal read-out indicators. Associated with the least sig-
nificant four bits of Display Register D5 are four indicator lamps for binary display and one optional
hexadecimal read-out indicator.

The most significant four bits of Display Register D5 (Bits 0:3) control four of the five indicator
lamps along the left edge of the Hexadecimal Display Panel. The fifth indicator lamp is controlled
by logic internal to the Hexadecimal Display Panel. To the right of each of these five lamps is a.
diagram that defines what is being displayed. In general, only one of the diagram lamps is on at
a time. If none of the diagram lamps are on, a user program has written data to the Display
Register D5.

As seen in Tigure 11-2, the most significant 20-bits of the display show the contents of Display Registers
D3 and D4 and the least significant four bits of Display Register D5 (Bits 4:7); or the contents of the
20-bit Switch Register. When the Switch Register is being displayed, the lamp next to the Switch
Register diagram is turned ON, Any other diagram lamp that may have been ON, remains ON.

When the Switch Register is no longer displayed, its diagram lamp goes out and the most significant
20-bits of the display again show the contents of Display Registers D3 and D4 and the least signifi-

cant four bits of Display Register D5 (Bits 4:7).

The methods of displaying the Switch Register and the other diagrammed items are discussed later.

11-2 29428 RO1 1/76

Key Operated Security Lock

This is a three-position, OFF-ON-LOCK, key-operated locking switch, which controls the primary
power to the system. This switch can also disable the Hexadecimal Display Panel, thereby pre-
venting any accidental manual input to the system. The power indicator lamp (PWR) associated
with the key lock is located in the lower right corner of the Hexadecimal Display Panel. The

PWR lamp is ON when the key lock is in the ON or LOCK position. The relationship between the
key lock switch positions, primary power, the Control keys, and the llexadecimal keys is:

OFF The primary power is OFF.
ON The primary power is ON and the Control keys and Hexadecimal keys are
enabled.

LOCK The primary power is ON and the Control keys and Hexadecimal keys are

disabled.

Control Keys

The momentary contact Control keys are only active when the key-operated locking switch is in

the ON position.

INITIALIZE (INI)

DATA (DTA)

ADDRESS (ADD)

MEMORY READ (RD)

29-428 R06 5/78

The Initialize (INI) key causes the system to be
initialized. After the initialize operation, all device
controllers on the system Multiplexor Bus are cleared
and certain other functions in the Processor are reset.

The Data (DTA) key clears the Switch Register and
connects it to the most significant 20 display indicators.
The Switch Register diagram lamp is turned ON. Hexa-
decimal data may now be entered into the Switch Register
from the Hexadecimal Keyboard. As each Hexadecimal
key is depressed, the data shifts into the Switch Register
from the right, If more than five hexadecimal digits are
entered, data shifted out of the Switch Register is lost.

Depressing any non-hexadecimal key disconnects the
Switch Register from the high order 20 display lamps and
extinguishes the Switch Register diagram lamp.

The Address (ADD) key causes the Processor to halt and
copy the contents of the Switch Register into the Location
Counter field of the Program Status Word. The new
value of the Location Counter is then output to Display
Registers D1, D2, D3, and D4. The function diagram
lamp is turned ON and a Hexadecimal 5 is output to the
top four display lamps (Bits 4:7 of D5).

The Memory Read (RD) key causes the Processor to halt
and read the halfword contents of the memory location
presently pointed to by the Location Counter, (If the
Memory Access Controller is enabled by the current
PSW then the relocated value of the Location Counter

is the effective address of the memory location.) The
halfword data read is output to Display Registers D1
and D2. The Location Counter is incremented by two
and output to Display Registers D3 and D4 and the least
significant four bits of Display Registers D5 (a 20-bit
value). The lamp next to the Memory Address/Memory
Data diagram is turned ON.

11-3

MEMORY WRITE (WRT) The Memory Write (WRT) key causes the Processor to
halt and read in the least significant 16 bits of the 20
bit Switch Register. The halfword of data is written into
the memory location presently pointed to by the Location
Counter. (If the Memory Access Controller is enabled
by the current PSW then the relocated value of the Lo-
cation Counter is the effective address of the memory
location.) The data written is then output to Display
Registers D1 and D2. The Location Counter is incre-
mented by two and output to Display Registers D3 and
D4 and the least significant four bits of Display Reg-
isters D5. The lamp next to the MemoryAddress/
Memory Data diagram is turned ON.

EXAMINE REGISTER (REG) The Examine Register (REG) key sets up the Hexadecimal
Display Panel to interpret the next Hexadecimal key de-
pressed as a General Register number. When the hexa-
decimal register number key is depressed, the Processor
halts and the content of the selected General Register of
the set specified by the current PSW is output to Display
Registers D1, D2, D3 and D4. The General Register
diagram lamp is turned ON and the number of the displayed
register is output to the top four display lamps.

EXAMINE FLOATING- The Examine Floating-Point Register (FLT) key sets up

P