
Publication Number 29-428R06

M 83 - SERIES·

MODELS 8/32,8/32C,AND 8/32 D
PROCESSORS

USER MANUAL

PERKIN-ELMER

Computer Systems Division
2 Crescent Place
Oceanport. NJ. 07757

METRIC

COpyright@ 1975 by Perkin-Elmer Corporation Printed in U.S.A. May 1978

PAGE

i
ii
thru
v
vi
vii
viii

1-1
thru
1-3
1-4
thru
1-6
1-7
1-8
1-9
thru
1-19/
1-20

2-1
2-2
2-3
2-4
2-5
thru
2-7
2-8
2-9
thru
2-18
2-19
2-20
2-21
thru
2-26
2-27
2-28
thru
2-33
2-34
2-35
2-36
thru
2-39

PAGE REVISION STATUS SHEET (Sheet 1 of 2)

PUBLICATION NUMBER 29-428

TITLE M83-Series Models' 8/32, 8/32C and 8/32D Processors
User Manual ,

REVISION RO 6 DATE May 1978

REV. DATE PAGE 'REV. DATE PAGE REV. DATE

R06 5/78 2-40 5-11 R06 5/78
thru 5-12 R02 2/77
2-46 R02 2/77 5-13 R02 2/77

R01 1/76 2-47 RO-1 1/76 5-14 R06 5/78
R02 2/77 2-48 5-15 R01 1/76
R06 5/78 thru - 5-16 R02 2/77
R01 1/76 2-51/ 5-17 R01 1/76

2-52 R02 2/77 5-18 R02 2/77
5-19 R02 2/77

3-1 R01 1/76 5-20 R01 1/76
R06 5/78 3-2 R02 2/77 5-21 R02 2/77

3-3 R02 2/77 5-22 R01 1/76
3-4 R06 5/78 5-23 R02 2/77

R02 2/77 3-5 R02 2/77 5-24 R06 5/78
R01 1/76 3-6 R02 2/77 5-25 R02 2/77
R01 1/76 3-7 5-26 R06 5/78

thru 5-'1.7
3-24 R05 5/78 thru

5-33 R02 2/77
R06 5/78 4-1 R02 2/77 5-34 R06 5/78

4-2 R05 5/78 5-35/
R01 1/76 4-3 R01 1/76 5-36 R02 2/77
R02 2/77 4-4 R02 2/77
R01 1/76 4-5 R06 5/78 6-1 R02 2/77
R01 1/76 4-6 6-2 R02 2/77

thru 6-3 R01 1/76
4-12 R02 2/77 6-4 R02 2/77

R02 2/77 4-13 R06 5/78 6-5 R02 2/77
R05 5/78 4-14' R02 2/77 6-6 R01 1/76

4-15 R02 2/77 6-7 R04 5/78
4-16 R06 5/78 6-8 R06 5/78

R02 2/77 4-17 6-9 R06 5/78
R06 5/78 thru 6-10 R06 5/78
R06 5/78 2-23/ 6-11 R06 5/78

4-24 R02 2/77 6-12
thru

R02 2/77 5-1 R02 2/77 6-16 R02 2/77
R06 5/78 5-2 R01 1/76

5-3 R01 1/76 7-1 R04 5/78
5-4 R01 1/76 7-2 R06 5/78

R02 2/77 5-5 R02 2/77 7-3 R01 1/76
R06 5/78 5-6 R01 '1/76 7-4
R02 2/77 5-7 R06 5/78 thru

5-8 R02 2/77 7-15 R02 2/77
5-9 R01 1/76 7-16 R01 1/76

R06 5/78 5-10 R02 2/77 7-18 R01 1/76

A1598

PAGE

7-19
7-20
7-21
7-22
7-23
7-24
7-25
thru
7-27/
7-28

8-1
8-2
8-3
8-4
8-5
8-6
8-7/
8-8

9-1
9-2
9-3
9-4
9-5
9-6
9-7/
9-8

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9

10-10

11-1
11-2
11-3
11-4

PAGE REVISION STATUS SHEET (Shee·t 2 of 2)

PUBLICATION NUMBER 29-428
TITLE M83-Series Models 8/32, 8/32C, and 8/32D Processor.

User Manual
REVISION R06 DATE May 1978

REV. DATE PAGE REV. DATE PAGE REV. DATE

R06 5/78 11-5
R02 2/77 thru
R02 2/77 11-10 R01 1/76
R02 2/77 11-11/
R06 5/78 11-12 R02 2/77
R02 2/77

~1-1 R06 5/78
~1-2 R06 5/78

R01 1/76 ~2-1
thru

R01 1/76 ~2-4 R02 2/77
R02 2/77
R01 1/76 A3-1
R06 5/78 thru
R06 5/78 ~3-5/
R01 1/76 ~3-6 R02 2/77

R06 5/78 A4-1 R02 2/77
A4-2 R02 2/77

R06 5/78
R06 5/78 A5-1 R06 5/78
R01 1/76 AS-2 R01 1/76
R02 2/77 AS~3 R01 1/76
R02 2/77 AS-4 R02 2/77
R06 5/78 AS-5 R01 1/76

AS-6 R01 1/76
R02 2/77

A6-1
R06 5/78 thru
R02 2/77 A6-8 R03 1/78
R01 1/76
R02 2/77 A7-1 R06 5/78
R02 2/77 A7-2 R01 1/76
R01 1/76 A7-3 R06 5/78
R01 1/76
H02 2/77 A8-1 R01 1/76
R06 5/78 A8-2 R02 2/77
R01 1/76 A8-3 R01 1/76

A8-4 R01 1/76
R06 5/78
R01 1/76 I-I R06 5/78
R06 5/78 1-2
R06 5/78 thru

1-6 R01 1/76

A1598

TABLE OF CONTENTS

CHAPTER 1 SYSTEM DESCRIPTION

PROCESSOR

Program Status Word

Wait State (W) .
Immediate InterruptI Auto Driver Channe] Mask (I)
Machine Malfunction Interrupt Mask (M)
Arithmetic Fault Interrupt Mask (A)
Relocation Protection Interrupt Mask (RIP)
System Queue Service Interrupt Mask (Q)
Protect Mode (P)
Register Set Select (R) .
Condition Code «(YGL)
Location Counter (LOC)

General Register
Floating Point Register
Processor Interrupts . .
Reserved Memory Locations
Processor Operations

DATA FORMATS

Fixed Point Data
Floating Point Data
Logical Data

DATA ALIGNMENT

INSTRUCTION FORMATS

Branch Instruction Formats
Prograrnmin~ Examplf'~. . .
Register to Register (RR) Format
Short Form (SF) Format
Register and Indexed Storage One (RX 1) Format
Register and Indexed Storage Two (RX2) Format
Register and Indexed Storage Three (RX3) Format
Register and Imnlt'diate Storage One (RIl) Format
Register and Immediate Storage Two (RI2) Format

CHAPTER 2 LOGICAL OPERATIONS

DATA FORMATS
OPERATIONS ..

Boolean Operations
Translation
List Processing . . .

LvGICAL INSTRUCTION FORMATS
LOGICAL INSTRUCTIONS

Load
Load Register .
Load Immediate
Load Immediate Short
Load Complement Short
Load Halfword
Load Halfword Immediate
Load Address
Load Real Address
Load Halfword Logical

29-428 R06 5/78

· I-I

· 1-4

· 1-4

· 1-4
.1-4
· 1-5
· 1-5
· 1-5
· 1-5
· 1-5
· 1-5
· 1-5
· 1-5

.1-7
· 1-7
· 1-7
· 1-7
· 1-8

· 1-8

· 1-8
· 1-8
· 1-9
· 1-9 I

1-10

1-11
1-11
1-11
1-11
1-13
1-14
1-16
1-17
1-18

· 2-1

· 2-1
.2-2

.2-2

.2-2

.2-3

.2-4

.2-4

.2-5

.2-5

.2-5

.2-5

.2-5

.2-6

.2-6

.2-7

.2-8

.2-9

Load Multiple .. .
Load Byte
Load By te Register
Exchange Halfword Register
Exchange Byte Register
Store
Store Halfword
Store Multiple .
Store Byte ...
Store Byte Register
Compare Logical
Compare Logical Register
Compare Logical Immediate
Compare Logical Halfword

TABLE OF CONTENTS (Continuerl)

Compare Logical Halfword Immediate
Compare Logical Byte
AND
AND Register .
AND Immediate
AND Halfword
AND Halfword Immediate
OR
OR Register .
OR Immediate
OR Halfword
OR Halfword Immediate
Exclusive OR
Exclusive OR Register . .
Exclusive OR Immediate
Exclusive OR Halfword .
Exclusive OR Halfword Immediate
Test Immediate
Test Halfword Immediate
Shift Left Logical ...
Shift Left Logical Short .
Shift Righ t Logical
Shift Righ t Logical Short
Shift Left Halfword Logical
Shift Left Halfword Logical Short
Shift Right Halfword Logical
Shift Right Halfword Logical Short
Rotate Left Logical .
Rotate Right Logical
Test and Set
Test Bit
Set Bit
Complement Bit
Reset Bit
Cyclic Redundancy Check Modulo 12
Cyclic Redundancy Check Modulo 16
Translate
Add to Top of List
Add to Bottom of List
Remove from Top of List
Remove from Bottom of List

CHAPTER 3 BRANCHING

OPERATIONS

ii

Decision Making
Subroutine Linkage

2-10
2-11
2- 11
2-12
2-13
2-14
2- 15
2-16
2-17
2-17
2-18
2-18
2-18
2-19
2-19
2-20
2-21
2-21
2-21
2-22
2-22
2-23
2-23
2-23
2-24
2-24
2-25
2-25
2-25
2-26
2-26
2-27
2-28
2-29
2-29
2-30
2-30
2-31
2-31
2-32
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-40
2-42
2-45
2-45
2-46
2-46

.3-1

.3-1

.3-1

. 3-1

29-428 ROI 1/76

BRANCH INSTRUCTION FORMATS
BRANCH INSTRUCTIONS

Branch on True Condition

TABLE OF CONTENTStContinuerl)

Branch on True Condition Register
Branch on True Condition Backward Short
Branch on True Condition Forward Short
Branch on False Condition
Branch on False Condition Register
Branch on False Condition Backward Short
Branch on False Condition Forward Short
Branch and Link
Branch and Link Register . . .
Branch on Index Low or Equal
Branch on Index High

CHAPTER 4 FIXED POINT ARITHMETIC

DATA FORMATS
FIXED POINT NUMBER RANGE
OPERATIONS
CONDITION CODE
FIXED POINT INSTRUCTION FORMATS
FIXED POINT INSTRUCTIONS

Add
Add Register
Add Immediate
Add Immediate Short
Add Halfword
Add Halfword Immediate
Add to Memory
Add Halfword to Memory
Subtract
Subtract Register
Subtract Immediate ...
Subtract Immediate Short
Subtract Halfword
Subtract Halfword Immediate
Compare
Compare Register .
Compare Immediate
Compare Halfword
Compare Halfword Immediate
Multiply
Multiply Register
Multiply Halfword
Multiply Halfword Register
Divide
Divide Register
Divide Halfword
Divide Halfword Register
Shift Left Arithmetic ..
Shift Lcft Halfword Arithmetic
Shift Right Arithmetic
Shift Right Halfword Arithmetic
Convert lIalfword Valuc Register

29428 ROJ 1/76

.3-1

.3-1

.3-3

.3-3

.3-3

.3-3

.3-4

.3-4

.3-4

.3-4

.3-5

.3-5

.3-6
.3-7/3-8

iii

.4-1

.4-\

.4-1

.4-2

.4-2

.4-3

.4-3

.4-4

.4-4

.4-4

.4-4

.4-5

.4-5

.4-6

.4-7

.4-8

.4-8

.4-8

.4-8

.4-lJ

.4-9
4-10
4-10
4-10
4-1 !
4-11
4-12
4-12
4-13
4-13
4-14
4-14
4-16
4-16
4-18
4-19
4-20
4-21
4-22

TABLE OF CONTENTS (Continued)

CHAPTER 5 FLOATING POINT ARITHMETIC

INTRODUCTION
FLOATING POINT NUMBER

Floating Point Number Range
Normalization
Equalization
True Zero
Exponent Overflow .
Exponent Underflow
Data Formats
Guard Digit and Rounding
Conversion from Decimal

CONDITION CODE
FLOATING POINT INSTRUCTION FORMATS
FLOATING POINT INSTRUCTIONS

Load Floating Point
Load Floating Point Register
Load Floating Point Multiple
Store Floating Point
Store Floating Point Multiple
Add Floating Point
Add Floating Point Register .
Subtract Floating Point ...
Subtract Floating Point Register
Compare Floating Point
Compare Floating Point Register
Multiply Floating Point .., . .
Multiply Floating Point Register
Divide Floating Point
Divide Floating Point Register . .
Fi x Register
Float Register
Load Double Precision Floating Point
Load Register Double Precision Floating Point
Load Multiple Double Precision Floating Point
Store Double Precision Floating Point
Store Multiple Double Precision Floating Point
Add Double Precision Floating Point
Add Register Double Precision Floating Point .
Subtract Double Precision Floating Point . . .
Subtract Register Double Precision Floating Point
Compare Double Precision Floating Point
Compare Register Double Precision Floating Point
Multiply Double Precision Floating Point
Multiply Register Double Precision Floating Point
Divide Double Precision Floating Point ., . .
Divide Register Double Precision Floating Point
Fix Register Double Precision .
Float Register Double Precision

CHAPTER 6 STATUS SWITCHING AND INTERRUPTS

PROGRAM STATUS WORD

iv

Wait State
Protect Mode
Register Set Selection

. 5-1

.5-1

.5-3

.5-4

.5-4

. 5-5

.5-5

.5-6

.5-6

.5-6

.5-7

.5-8

.5-8

.5-8

.5-8

5-10
5-10
5-11
5-12
5-13
5-14
5- 14
5-16
5-16
5-18
5-18
5-19
5-19
5-21
5-21
5-23
5-24
5-25
5-25
5-26
5-27
5-28
5-2')
5-29
S-30
5-30
5-31
5-31
5-32
5-32
5-33
5-33
5-34

5-35/5-36

.6-1

.6-1

.6-2

.6-2

.6-2

29-428 ROJ J /76

INTERRUPT SYSTEM

Immediate Interrupt
Console Interrupt .
Simulated Interrupt

TABLE OF CONTENTS (Continuerl)

Machine Malfunction Interrupt
Arithmetic Fault Interrupt
Relocation/Protection Interrupt
System Queue Service Interrupt
Protect Mode Violation Interrupt
Illegal I nstruction In terrupt . . .
Supervisor Call Interrupt

STATUS SWITCHING INSTRUCTION FORMATS
STATUS SWITCHING INSTRUCTIONS

Load Program Status Word
Load Program Status Word Register
Exchange Program Status Register
Simulate Interrupt
Supervisor Call

CHAPTER 7 INPUT/OUTPUT OPERATIONS

INTRODUCTION AND CONFIGURATION OF I/O SYSTEM
DEVICE CONTROLLERS .

Device Addressing
Processor/Controller Communication
Device Priorities

INTERRUPT SERVICE POINTER TABLE
I/O INSTRUCTION FORMATS
I/O INSTRUCTIONS

Sense Status
Sense Status Register
Output Command ..
Output Command Register
Read Data
Read Data Register
Read Halfword
Read Halfword Register
Read Block
Read Block Register
Write Data
Write Data Register
Write Halfword
Write Halfword Register
Write Block
Write Block Register . .
Autoload
Simulate Channel Program

CONTROL OF-I/O OPERATIONS
STATUS MONITORING I/O

INTERRUPT DRIVEN I/O
SELECTOR CHANNEL I/O

Selector Channel Devices
Selector Channel Operation
Selector Channel Programming

29-428 RO I 1/76 v

.6-3

.6-6

.6-7

.6-7

.6-8

.6-9

.6-9
6-10
6-10
6-10
6-10

6-11
6-11

6-12
6-13
6-14
6- 15
6-16

. 7-1

. 7- 1

.7-1

.7-2

.7-2

.7-2

.7-2

.7-3

.7-3

.7-5

.7-5

.7-4

.7-4

.7-6

.7-6
.7-7
.7-7
.7-8
.7-9
7-10
7-10
7- 11
7- 1 I
7-12
7-13
7-14
7-15

7-16
7-16

7-17
7-18

7- 18
7-18
7-19

AUTO DRIVER CHANNEL ..
CHANNEL COMMAND BLOCK

Subroutine Address
Buffer ...
Translation
Check Word
Channel Command Word

Status Mask
Execute Bit (E)
Fast Bit (F)
Read/Write Bit (R/W)
Translate Bit (T) ...
Check Type Bit (C)
Cyclic Check Type Bit (S)
Buffer Switch Bit (B)

Valid Channel Command Codes

CHAPTER 8 MEMORY MANAGEMENT

PROGRAM ADDRESS SPACE
RELOCATION . .
PROTECTION . .
MAC REGISTERS

TABLE OF CONTENTS (Continued)

Definition of MAC Register Fields
Segmentation Register ..
Interrupt Status Register

CHAPTER 9 WRITABLE CONTROL STORE INSTRUCTIONS

WRITABLE CONTROL STORE INSTRUCTIONS

Write Control Store . .
Read Control Store ..
Branch to Control Store
Enter Control Store . .

I
CHAPTER 10 DATA HANDLING INSTRUCTIONS

DATA HANDLING INSTRUCTION FORMATS .
DATA HANDLING INSTRUCTIONS

Process Byte
Process Byte Register ...
Move and Process Byte String Register

CHAPTER 11 M71-102 HEXADECIMAL DISPLAY PANEL AND
M7]-101 BINARY DISPLAY PANEL PROGRAMMING SPECIFICATION

INTRODUCTION .

CONFIGURA TION

vi

Display Registers and Indicators
Key Operated Security Lock
Control Keys

7-19
7-20

7-20
7-21
7-21
7-21
7-22

7-22
7-22
7-22
7·22
7·22
7-23
7-23
7-23

7-23

. 8-1

.8-1

.8-1

.8-1

.8-4

.8-5

.8-5

.8-6

.9-]

.9-2

.9-4

.9-5

.9-6
.9-7/9-8

10-1

10-]
10-1

10-2
10-4
10-5

I 1- 1

11-1

1] -I

] 1-2
1] -3
11-3

29-428 R02 2/77

TABLE OF CONTENTS (Continued)

OPERATING PROCEDURES

Power Up
Power Down.
Memory Read
Memory Write
General Register Display
Floating Point Register Display
Floating Point Register Display (later versions of 8/32)
Program Status Word Display and Modification
Program Execution
Program Termination
Console Interrupt
Switch Register
Powcr Fail

DATA FORMAT ..

PROGRAMMING INSTRUCTIONS

Input/Output Programming
Wait Statc

PROGRAMMING SEQUENCES

Programming Note

11-5

11-5
11-5
11-5
11-5
11-6
11-6
11-6
11-6
11-7
11-7
11-7
11-7
11-7

II-X

11-9

11-9
11-9

1 t-9

11-11/11-12

INDEX ... 1-1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figurc 2-5
Figure 2-6
Figure 4-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 6-1
Figure 6-2
Figure 7-1
Figure 7-2
Figure 7-3
Figure 8-1
Figure 9-1
Figure 9-2
Figure 10-1
Figure 11-1
Figure 11-2
Figurc 11-3

Model 8/32 Processor Block Diagram
Program Status Word ..
Register Set Numbering
Instruction Formats
32-Bit Instruction Format Examples
Logical Data
Translation Table Entry
Circular List Definition
Circular List
Flow Chart for CRC Generation
Processing Instructions
Fixed Point Data Words Formats

ILLUSTRATIONS

Single Precision Floating Point Number Fields
Exponent Overflow
Exponent Underflow
Program Status Word
Interrupt System Block Diagram
Channel Command Block
Channel Command Word
Micro Code Flow Chart of Auto Driver Channel
Segmentation Registers
Model 8/32 Block Diagram
Model 8/32 Instruction Formats .
Flow Chart of MPBSR Instruction
Hexadecimal Display Panel
Display Registers and Indicators .
Hexadecimal Display Panel Data Transfers

29-428 R06 5/78

· \-2
.1-4
· 1-6
· 1-9
1-12
· 2-1
.2-2
.2-3
· 2-3
2-;:1 \
2-47

· 4-1
.5-2
.5-6
.5-6
· 6-1
.6-5
7-20
7-22
7-24
.8-6
.9-2
.9-3
10-6
1 t-l
11-2
11-8

vii

I

TAB!..E 4-1
TABLE 5-1
TABLE 6-1
TABLE 11-1

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4
APPENDIX 5
APPENDIX 6
APPENDIX 7
APPENDIX 8

viii

TABLE OF CONTENTS (Continuerl)

TABLES

FIX[D POINT FORMAT RELATIONS
FLOATING/FIXED POINT RANGES
INTERRUPT SYSTEMS
DISPLAY STATUS AND COM\1AND

APPENDICES

OP-CODE MAP
INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTES
INSTRUCTION SUMMARY - NUMERICAL
EXTENDED BRANCH MNEMONICS
ARITHMETIC REFERENCES
MODEL 8/32 EXECUTION TIMES IN MICROSECONDS
I/O REFERENCES
MODEL 8/32 MICRO INSTRLCTIONS

............. 4-1
...... 5-4
...... 6-4

. 11-11/11-12

· A 1-1
· A2-1
· A3-1
· A4-1
· A5-1
· A6-1
· A7-1
· A8-1

29-428 RO 1 1/76

CHAPTER 1

SYSTEM DESCRIPTION

All references to the Model 8/32 processor in this manual are applicable to the basic Model 8/32,
Model 8/32C and Model 8/32D unless otherwise specified.

The M83-Series 8/32 processors are designed to meet the need for high-performance 32-bit mini­
computers. Through the use of 32-bit general registers and a comprehensive instruction set, the
Model 8/32 provides fullword data processing power and direct memory addressing up to a limit of
one million bytes. The 8/32 System is shown, in block diagram form, in Figure 1-1.

The instruction set includes arithmetic and logical operations, list processing, floating point,
cyclic redundancy checking, and bit and byte manipulation. Through this repertoire and direct
memory addressing, coding and debugging time is reduced to a minimum.

Two sets (optionally expandable to 8) of sixteen 32-bit General Registers are provided. Register
set selection is controlled by bits in the Program Status Word. Register-to-Register instruc­
tions permit operations between any of the 16 registers in the current set, eliminating redundant
loads and stores; the multiple register set organization eliminates the overhead incurred in
saving and restoring registers when responding to interrupts.

The Memory Access Controller (MAC) provides automatic program segmentation, relocation,
and protection. The Processor Protect mode enables detection of privileged instructions.
These two features are invaluable in process control, data communication, and time-sharing
operations to guarantee that a running program cannot interfere with the integrity of the system.

In addition to conventional means of programmed I/O, the Model 8/32 automatically acknowledges
all I/o interrupts and performs much of the required overhead prior to activating an Interrupt
Service Routine. The Auto Driver Channel can perform data transfers with character translation,
longitudinal or cyclic redundancy checking and data buffer chaining without interrupting the run­
ning program.

The reader should refer to the following manuals for furthe r information:

Common Assembler Language (CAL) User's Manual, Publication Number 29-375.

ESELCH Program ning Manual, Publication Number 29-529.

EDMA Bus Universal Interface Instruction Manual, Publication Number 29-423.

M83-Series Models 8/32, 8/32C, and 8/32D Processors Micro Instruction Reference Manual
Publication Number 29-438.

M83-Series Models 8/32, 8/32C, and 8/32D Processors Maintenance Manual, Publication
Number 29-394.

Common Microcode Assembler Language (MICHOCAL) User's Manual, Publication Number
29-478

WCS User's Guidp, Publication Number 29-479.

29-428 R06 5/78 1-1

I

I

I
I

{ 'Bth 12B KB OF MEM FOR
32 KB 32 KB 32 KB 32 KB 8/32 & 8/32C

OR OR OR OR 4th 256 KB OF MEM FOR
NOTE

64 KB 64 KB 64 KB 64 KB 8/320 (1MB TOTAL) 32 KB MODULES FOR 8/32 & 8/32C

I I I
64 KB MODULES FOR 8/320.

f20d 12B KB OF MEM FOR
32 KB 32 KB 32 KB 32 KB 8/32 & 8/32C

OR OR OR OR 2nd 256 KB OF MEM FOR r - - - --
MUUIPORTMEMoRY" 1

64 KB 64 KB 64 KB 64 KB 8/320 I I

I 1 I I MMB I

32 KB 32 KB 32 KB {'" 12B KB OF MEM FOR I I 32 KB 8/32 & 8/32C
OR OR OR OR 1st 256 KB OF MEM FOR I I

64 KB 64 KB 64 KB 64 KB 8/320 I I I I
.{-16 .,r16 .,r16 ~16

SLMI MMI

L J
I - - - 32- - - - - -

LMI LMI

.Y32 .::r 32 LOCAL MEMORY BUS

MEMORY BUS CONTROLLER MBC
EDMA BUS

~ ~ --LOOKAHEAD STACK
(2 X 64 BITS I 1

ESELCH" EDMA BUS

INSTRUCTION REGISTER OR UNIVERSAL
DISPLAY PANEL I OP CODE I RI I X2 I ADDRESS "] BSELCH* INTERFACe

EHEI
DID I PROGRAM STATU] WORD 61 DEVICES ~ r= ST A T US l-:OC- CT -;-"]

CUSTOM

MULTIPLEXOR BUS MODEL 8/32 PROCESSOR & MAM* DEVICE

IIII
TAPE OR = UPTO EMAM*

UNIVEF.SAL ~
- -aX16

CLOCK -- GENERAL

~ REGISTERS ~

(~- 63 MUX BUS
DIGITAL I- ~ ~ DEVICES

MULTIPLEXOR CARTRIDGE
DISC - I

Y ~, r- }-HIGH SPEED I/O
PAPER T~ SWITCH* - -
~CONSOL~ r - - - - - - - - - - - - SBUS - - - - - - - - - -,

TELETYPE --
I 1 32 I 32 32 32 32 32 32 I

l- I r - - - - - - - - -- - - -, I CARD
READER I I I

MODULE 1 MODULE2 MODULE6
I (AND 3*) (OR 6 & 4)

I I CPUA CPU B CPU C I I

0 oI- I I (MAC) (ROM) (WCs*) I ALU IOU DFU* I HSDH*

I I I I INTERTAPE
DUAL CASSETTE I L - - - - - - I- - - - - _I t32 {32: ie- I I 32 132 16

I

I /32 '32 /32 V16 132 I
I

I I / I

I
I I

LINE PRINTER .

(I _MUX BUS I
-- ------------------ - -- - -- ---1

CRT h
~~

"OPTIONAL EQUIPMENTS OR PROVISIONS

1 1 r
FOR USE WITH OPTIONAL EQUIPMENT

MICRO] ANALOG
MINI I/O BUS CONVERSION I/O ----ff
SYSTEM* ADAPTER* EQUIPMENT" SWITCH"

Figure 1-1. 8/32 System Block Diagram

1-2 29-428 ROB 5/78

The following are major differences between the Model 7/32 and the Model 8/32 Processors
from a programmer's point of view:

1. The Model 7/32 Processor has two General Register sets while the Model 8/32 Processor
can have two or eight General Register sets depending on the option selected.

2. The Model 7/32 Processor has no I/O Priority Levels while the Model 8/32 Processor can
have up to four effective I/O Priority Levels depending on the number of optional register "I
sets selected.

3. Earlier versions of the Ml)del 7/32 Processor have a capability of executing some of the pro­
grams written for the INTERDATA 16-Bit Processors. The lat.er versions of the M'Jdel 7/32
Processors and the Model 8/32 Pr08essors have no such capability.

4. The Model 7/32 Processor does not have an optional writable control store and relat.ed
instructions as docs the Model 8/32 Processor.

5. Fullword operations: In t.he Model 8/32 Processor, t.o fetch/store a fullword from/into
memory, t.he fullword data must. be aligned on a fullword boundary. This is not. t.he case in
the current version of the Model 7/32 Processor. In the Model 7/:32, it is sufficient. t.hat a
fullword data be aligned on a halfword boundary. Thus, a program thai exeeuies correctly
on the current Model 7/32 may not do so when tried in the Model 8/32. The mnemonics for
the instructions that may introduce such a discrepancy are:

A CL LME RBL STE
ABL D LIlA wrL STM
AD DD M 8 STMD
AE DE MD 8CP STME
AM L ME 8D 8VC
ATL LD N SE TLATE
C LE 0 8T WB
CD LM RB 8TD X
CE LMD

6. In the Model 8/32 Processor fullword data read/write on a halfword boundary forces the
address to the fullword boundary and then the data is read/written. The machine gives no
indication of this occurring, except that fetched/stored fullword data is incorrect.

In the current Model 7/32, fullword data read/v,'rite on a halfword boundary causes the data
to be read fromhvritien into the consecutive halfwords.

7. M'3mory Access Con~roller (MAC): In the Mudol 7/32 the MAC is optional and traps 2'::>G bytes.
For Mt)del 8/32, t11.3 MAC is part of the basic pr08essor and tapes 72 bytes. Hefer to Ch.l.pter 8.

8. On tho average, the Model 8/32 is 2 to 2.5 times faster th~ln the Model 7/32.

29-428 R06 5/78

NOTE

For a detailed description of the Model 7/32, refer
to the Model 7/32 Processor User's Manual, Pub­
lication Number 29-405.

1-3

I

I

I

I

PROCESSOR

The Central Pro~essing Unit (CPU), or Processor, controls activities in the system. Refer to
Figure 1-1. It executes instructions in a specific sequence and perform:., arithmetic and logical
fun(!tions. lfio::!luded in the Pro~essor's components are:

Program status Word register
General registers
Floating point registers
Hardware multiply and divide
Floating point hardware

Program Status Word

The 64 bit Program Status Word (PSW) defines the state of the Processor at any given time. (See
Figure 1-2.)

o

32 3940 63

LOC

Figure '·2. Program Status Word

Bits 0:31 are reserved for status information and interrupt masks. Bits 40:63 contain the Loca­
tion Counter. Unassigned Program Status Word bits must not be used and must always be zero.
Status information and interrupt mask bits are defined as follows:

Bit 16
Bit 17
Bit 18
Bit 19
Bit 20
Bit 21
Bit 22
Bit 23
Bits 24:27
Bits 28:31

Wait State (W)

Wait state
Immediate internllJt/ Auto DrIver Channel (ADC) Mask
Machine malfunction interrupt mask
Arithmetic fault interrupt mask
Immediate Interrupt/ ADC mask
Relocation/protection interrupt mask
System queuc service interrupt mask
Protect mode
Register set select bits
Condition Code

When this bit is set, the Processor halts normal program execution. It is still responsive to
machine malfunction and immediate interrupts, if enabled.

Immediate Interrupt/Auto Driver Channel Mask (I)

Program Status Word Bits 17 and 20 together define the enable state of the Processor to re­
quests for service from devices on the Multiplexor Bus. Interrupt requests from external de­
vices are arranged on four priority levels. Level zero is the highest priority; Level three is
the lowest. When interrupts on any levels are enabled, the Processor is responsive to interrupt
requests on those levels. When interrupts on any levels are disabled, interrupt requests on
those levels are queued until the Processor is able to recognize them. Refer to Chapter 6 for
details of Immediate Interrupt processing.

Machine Malfunction Interrupt Mask (M)

This bit controls interrupts generated when power fails, when power returns, when parity eheck­
ing indicates a memory parity error, or when fullword data is read/written on halfword boundary.

1-4 29-428 R02 2/77

Arithmetic Fault Interrupt Mask (A)

This bit controls internal interrupts caused by arithmetic faults: fixed-point quotient overflow
or division by zero; or floating point overflow, underflow, or division by zero. If this bit is set,
the interrupt is taken. If it is reset, the error condition is ignored.

Relocation Protection Interrupt Mask (RIP)

This bit serves two purposes. It enables the memory access and protect controller so that pro­
gram addresses are automatically relocated. It also enables the relocation/protection interrupt
which is generated by the memory access and protect controller.

System Queue Service Interrupt Mask (0)

This bit controls the interrupt generated when the system queu,~ req'lires service. Refer to
Ch'lpter 6.

Protect Mode (P)

The Processor op'3rates in either the Supervisor or User mode. Th2 state is d::..termined by this
bit. If it is set, the Processor is in the protect mode, and only non-privileged instructions mm'
be executed, to protect the integrity of the system. If this bit is reset, the Processor is in the
Supervisor mode, and th3 currently runnins prog-ram illay execute any log-al in.struction.

ReQister Set Select (R)

Bits 24:27 of the Program Status Word are used to designate the current register set. All
Series 32 machines have at least two register sets. Register sets are numbered 0 through 15.
When fewer than 16 sets are implemented, the last set is always nJmhered 15. Th·e Mudel 8/32
may have 2 or 8 sets of general registers. (See Figure 1-3).

Condition Code (CVGL)

Bits 28:31 of the Program Status Word contain the Condition Code. As part of the execution of
certain instructions, the state of the Condition Code may be changed to indicate the nature of the
result. Not all instructions affect the Condition Code. The state of the Condition Code may be
tested with Conditional BranJh instructions. Each bit in the Condition Code is set if th·3 corres­
ponding condition occurred :m the last instruction. The normal interprclation ()f these b:ts is:

C V G L
1 0 0 0

0 1 0 J
0 0 1 0

0 0 0 1

Location Counter (LOC)

Arithmetic carry, or borrow, or shifted carry
Arlthemtic overflow
Greater than zero
Less tha.n zero

The Location Counter controls the sequencing of instruction execution. In normal sequential
operation, the Location Counter contains the address of the next instruction to be executed. The
instruction is fetched from memory. While the instruction is being executed, the Location Counter
is incremented by either two, or four, or six, depending on the length of the instruction. Upon
completion of instruction execution, the next instruction is fetched from the location specified by
the incremented Location Counter, and the process is repeated.

This sequential mode of operation is altered by Bran~h inatru,~ti()ns, the Load Program Status
Word (LPSW and LPS\VH) instructions, and by in~errupts. Branch instructions cauae the
Loeation CO'J.nter to be replaced by a new valu;:.) derived [rom the in~st ruction. Tho LPSW and
LPSWR instruJtions, and interrupts cause the entire Program Statu.:; W')rd to be replaced by
a n,8W Program Status Word.

29-428 R02 2/77 1-5

I

I
I

I

1-6

OPTIONAL

REGISTER

Figure 1-3. Register . Set Numbering

29-428 R02 2/77

GENERAL REGISTERS

The Model 8/32 can have either 2 or 8 register sets. If there are only 2 sets present, they are
numbered 0 and 15. If there are 8 register sets, they are numbered 0 through 6 and 15. (see
Figure 1-3.) Each register is 32 bits wide. Register set selection is determined by the state of
Bits 24:27 of the current Program status Word. Registers 1 through 15 of any set may be used
as index regi ste rs.

When interrupts occur, the Processor loads pertinent information into preselected registers
of the register set selected by the new program status word. The details of this operation are
described in Chapter 6. Register set 15, the user set, does not have any specific functional
assignments.

Floating Point Registers

There are eight optional single-precision floating point registers, each 32 bits 'Nide. The
registers are identified by the even numbers 0 through 14. Floating point operations must
always specify the registers with even numbers.

There are eight optional double-precision floating point registers each 64 bits wide. These
registers are identified by the even numbers 0 through 14, and arc completely separate from
the single-precision floating point registers.

Processor Interrupts

Interrupt conditions cause the entire Program status Word to be replaced by a new Program
Status Word, thus breaking the usual sequential flow of instruction execution. When an interrupt
condition occurs, the Processor saves its current Program Status Word either in memory or in
a pair of general registers belonging to the register set selected by the new PSW. It loads in­
formation related to the interrupt condition in other registers of this same set. It loads a new
Program Status Word from a memory location reserved for the specific interrupt condition.
(The immediate interrupt is an exception to the rule. The status portion of the new Program
Status Word, Bits 0:31, is forced to a preset value. The Location Counter is loaded from a
memory location reserved for the interrupting device. Refer to Chapter G for details on
interrupt processing.)

Reserved Memory Locations

The following memory locations are reserved for interrupt pointers, Program Status Words,
and system constants.

X'OOOOOO'
X'000020' -

X'00001F'
X'000027'

Hesel'ved (Single Precision Floating Point Hcgister, if equipped, S;lve .".rca)

Machine malfunction interrupt old PSW
X'000028'* - X'00002F'
X'000030' - X'000037'
X'000038' - X'00003F'
X'000040' - X'000047'
X'000048' - X'00004F'
X'000050' - X'00007F'
X'000080' - X'000083'
X'000084' - X'000085'
X'00008G' - X'000087'
X'000088' - X'00008F'
X'000090' - X'000097'
X'000098' - X'00009B'
X'00009C' - X'OOOOBB'
X'OOOOBC' - X'OOOOCF'
X'OOOODO' - X'0002CF'
X'0002DO' - X'0004CF'
X'0004DO' - X'OO08CF'

*Used by Micro-Program

29-428 ROJ 1/76

Not used, must be zero
Illegal instruction interrupt new PSW
Machine malfunction interrupt new PSW
Not used, must be zero
Arithmetic fault interrupt new PSW
Bootstrap loader and device definition table
System queue pointer
Power Fail PSW save pointer
PowcrF'ail Hegister save pointer
System queue service interrupt new PSW
Relocation/protection interrupt new PSW
Supervisor call new PSW status
Supervisor call interrupt new PSW location counter values
Not used, must be zero
Interrupt service pointer table
Expanded interrupt service pointer table
Expanded interrupt service pointer table

1-7

These reserved locations play an important role in both interrupt and ~nput/output processing.
For details on these subjects refer to Chapters 6 and 7. In addition to the above, certain loca­
tions are reserved for use by the Memory Access Controller. Refer to Chapter 8 for details.

The power down save areas for general registers and PSW must be completely contained within
·the first 64KB of memory. All new location Counter values are subject to MAC relocation if
the new PSW enables MAC (Bit 21 c-c 1). All other pointers contain absolute addresses not sulJ­
ject to MAC relocation.

Processor Operations

Fixed point arithmetic and logical operations are performed between:

The contents of two fullword registers.

The contents of a fullword register and the contents of a full'word located in memory.

The contents of a fullword register and the contents of a halfword located in memory.

Where the second operand is contained in memory, it may be located in the instruction stream
(immediate operation), or it may be located in indexed storage.

In fixed point arithmetic and logical operations between a fullword register and a halfword
operand in memory, the halfword operand is expanded to a fullword by propagating the most
significant bit into the high order bits before the operation is started. This permits the usc of
halfword to fullword operations with consistent results, and it provides space economy in that
small values do not require fullword locations.

Arithmetic operatiuns on fixed point halfword quantities may produce results that are not entirely
consistent with the results that arc obtained in a 16 bit Processor. Where this is a problem,
the Convert to Halfword Value Register Instruction (ClIVH) may be used to adjust the result and
the Condition Code so that they are consistent with the same operations in a 16 bit Processor.

Floating point operations take place between the contents of two floating point registers, or be­
tween the contents of a floating point register and a floating point operand contained in a full­
word or double word in memory. Following floating point operations, the Condition Code is
set to indicate the nature of the result.

DATA FORMATS

The Processor performs logical and arithmetic operations on single bits, 8 bit bytes, 16 bit
halfwords, 32 bit fullwords, and 64 bit double words. This data may represent a fixed point
number, a floating point number, or logical information.

Fixed Point Data

Fixed point arithmetic operands may be either 16 bit halfwords or 32 bit fullwords. In full­
word multiply and divide operations, 64 bit operands are manipulated. Fixed point data are
treated as 15 bit signed integers in the halfword format, and as 31 bit signed integers in the
fullword format. Positive numbers are expressed in true binary form with a Sign bit of zero.
Negative numbers are represented in two's complement form with a Sign bit of one. The
numerical value of zero is represented with all bits zero. Refer to Chapter 4 for details on
fixed point data representation.

Floating Point Data

A floating point number consists of a signed exponent and a signed fraction. The quantity ex­
pressed by this number is the product of the fraction and the number 16 raised to the power
represented by the exponent. Each floating point value requires a 32 bit fullword or a 64 bit
double word, of which eight bits are used for the sign and exponent, and the remaining bits are
used for the fraction. Refer to Chapter 5 for details on floating point data representation.

1-8 29-428 ROJ 1/76

Logical Data

Logical operations manipulate 8 bit bytes, 16 bit halfwords, and 32 bit fullwords. In addition,
it is possible to perform logical operations on single bits located in bit arrays. Refer to
Chapter 2 for details on logical data representation.

DATA ALIGNMENT

Locations in main memory are numbered consectively, beginning at address '00000'. While it is
said that memory is addressable and alterable to the byte level, machine accesses to memory in­
volve only halfwords or fullwords. Those instructions that require a single byte access actually
access a halfword and then manipulate the appropriate byte within the halfword.

Because memory can only be accessed to the halfword level, bit 31 of the address is truncated at
the memory. A halfword fetch at address '00051' gives you exactly the same halfword as ;Y'OLI get
when you access localion X'00050'. There is also no mechanism for warning the program that it
is accessing halfwords on the odd byte boundary.

The CAL Assembler will generate an error flag if it spes halfword operations directed to an odd
byte address. It also generates an error flag if it sees fullworcl operations directed to other than
a fullword address.

Bytes of information are addressed by their specific hexadecimal addrcss. Two bytes form a
halfword. I1alfwords have an eHm address, the address of the left most byte ill the pair. 1'\\'0

halfwords comprise a fullword. The addrf~ss of a ful1\\'ord h, a multiple oli (lour byks) and it
is the address of the left most halfword in the pair. The hardwarc actually truncates the least
significant two address bits on fullword accesses, forcing proper alignment. In later versions
of the 8/32, a machine malfunction interrupt is generated if a fuUword access is directed to an
address that has bit 30 set. The memory doesn't see bit 31, so no error is generated for a ful­
lword access to address '00301' for example. Addresses '00302' and '00303 t, however, will
generate the interrupt.

Two fullwords form a double word. The address of a double word is a multiple of 8 (Sbytes) <lnd
is the address of the left most fullv,'ord in the pair. For the present, double word alignment is
imposed only by the CAL Assembler and is not a genuine hardware restriction.

UScI' Level instructions are always aligned on halfword boundaries. Any halfword address is \'alid
regardless of the size of the instruction word.

29-428 R06 5/78 1-9

Most instructions in the extended series may be expressed in two or more formats. This feature
provides flexibility in data organization and instruction sequencing.

When working with the Interdata Common Assembler Language (CAL) assembler, it is not neces-
sary to specify the instruction format explicitly. The assembler chooses the most economical
format and supplies thc required bits in the machine code. When double indexing is implied, the
assembler always cho03es the RX3 format. Refer to th·8 Common Assembler Language (CA L) I
Manual, PU!Jlication Number 29-375.

Branch I nstruction Formats

The Branch instructions use the RR, SF, and all variations on the RX formats. However, in
the Conditional Branch instructions, the R1 field does not specify a register. Instead, it con­
tains a mask value (labelled M1 in the instruction descriptions), which is tested with the
Condition Code. The INTERDATA CAL assembler provides a series of Extended Branch Mnemonics
which make it possible to specify a Conditional Branch without specifying the mask value ex­
plicitly. For a summary of the Extended Branch Mnemonics, see Appendix 4.

Programming Examples

Each of the following programming examples refers to the sample assembly language program
shown in Figure 1-G. Note the use of symbolic equates for general registers. Machine code
generated and the result of each instruction arc dependent upon the physical and logical placement
of the instructions, respecUvcly.

Register to Register (RR) Format

a

OP

In this 16 bit format, Bits 0:7 contain the operation code. Bits 8:11 contain the R1 field, and
Bits 12:15 contain the R2 field. In most RR instructions, the register specified by R1 contains
the first operand, and the register specified by R2 contains the second operand. For example:

Machine Code

0865 C Second Operand

First Operand

RR

~----- Load Register 'LU' Instru·~tion Op-Code

Short Form (SF) Format

Assembler Notation

LR R6, R5

This 16 bit format provides space economy when working with small values. Bits 0:7 contain
the operation code. Bits 8:11 contain the R1 field. Bits 12:15 contain the N field. In arithmetic
and logical operations, the register specified by R1 contains the first operand. The N field
contains a four bit immediate value (0:15) used as the second operand. For example:

Machine Code

245E

~ Second Operand

First Operand

SF LIS R5,14

~----- Load Immediate Saort "L1S" Instru~tion Op-Code

29-428 ROG 5/78 1-11

I

I

I
Location
Count
Value Generated Code
_~ A
'--~I

Statement
Numbe Assembly L~mgl\age SO'Jree

1 ~ ~per:'tio~ ,.-__ O_~_)l_)rA.:I_n_d_(S_) __ ""'""\H,-___ c_o_m-";"-1_8i_1t_s __ ~

I

1
------------------------ ---~ --- ----- --- ---

;3
--- -------------------------- ---4--- ------- ---

0000001 5

(*
7 *

-8--*
0000 0005 9 R5

------------- ----!Hl-DQ _J10D6._ -1-0 -Rh-
0000 0007 11 R7
00 0 a 000 8'----___ ~~_-----
0000 0009 13 R9

--------- - -----ll.o..oD-OO-OA ---- - --14-- - ~ 1-1+-
0000 0008 15 R11

OOOOOOr 245E
---- -- -1-6-- -* ----

17 SF

00000 2 1 0865

00000 4 1 '+Q50 1000

0000081 4056 OFF2

OOOOOCI 4050 8004

0000101 4300 8004
ao.OQ.1.ltl ___ O 0 Q Q __ Qno..o. _____ _

_000018T rA90 8000

_D 0 oll.tl ____ C 8 ~_LltilllQ ___ _

_O.D.DJ12Ql __ E.8.A.Q. _JUI0_Q.e..Q (to _

_nnn0261 EBBA 0001 7FEE

-1-3-- ----*---- ----
19 RR
2.0 *
21 RX1.EXl

-22 -- -* ------
23 PX1.EX?
24 *
25 RX,.EX1

26-- -*--
27

_ U __ L acl
29 *

-3..0--- ~H' .EU
31 *

_ .32 ___ RIL.EX2-

33 *
_ 3!ol __ RI.? .. EX1.

35 * _.3.6. __ ~X2-

37 *

SCRAT
-tAR-G-T - 32- --
NORX;3
W I-.;'11H- 12 I'l-­
NOSQZ

Eau 5 GENERAL REGl ~TER 5
EQu ~ GENERAL REGI~TER 6
EQU 7 GENERAL REGI~TER 7
.EOU---- ..8--______________ -G.ENE.RAL--R.£G -U.~ER__-Jl-.--.-
EQU 9 GENERAL REG I sTER 9
EQu 10 .GENERAL- REG~~!ER 10
EQU 11 GENERAL ~EGI~TER 11

LIS (R5) = V'OOOOOOOE'

LR R6.H5 (R6) = v'oOonOOOr'

STH (X'1000') = ~'OOOr'
STH R5.x'OFF2·(R6) (X'1000') = X'OOOE'

5TH (LOC1) = x'onOE'

B Rll.EX1
nc. __ F_! n t _ _ ___ __

--L.l!i.i---- B,.S ... X-!..a.o..o. OJ-- ___ P.-1. R 9:) = ¥-!$£JO'J;..8.Q.O..o...t..-----

LHI ___ R9.X' 8000! (R s.l. ____ __lR~l __ :;' __ 'i.!~..F'F~8.Q GEL -

JlO_OJl2c.l __ ~05.Q __ E.EE.'t ______ . ___ '38_ RX2 .. EX2 .srI-! __ R5.LOCl___JLOC1) __)(·_OOOE.'
39 *

.JlQQ.Q3.QL ___ 'to 5.fLrF.o.a L!O _ RX? EX3.. STH ___ R5. LQC1 .. 14 (REd (LQC.1) __ x' 00 Of:'

41 *
...DO n 0 3'H _ --5..8.2Q 'to 0 1 QOJUl. _~2._ P X 3. EXL .L ________ ai ¥...!_l.nn_M • _____ ______ .1.R1.L_;:_Cl' 10 a 0 O_!-1 ______ _

43 *
J) __ (lQ_Q~AI ___ 58a5 __ ~...6Ql_.EFE.'t44 l(X~.EX2. L R8.Y'20000'·28(RS.R6) _ (RBl :; 1'('2Q0009 \

~Q~---------------

1-12

45 *
_!i6

47 *
A SF

-_~ __ ----- E..'\l.O- -_____________________________ ., _________________ _

Figure 1-5. 32-Bit Instruction Format Examples
(CAL Assembly Listing)

29-428 R06 5/78

Register and Indexed Storage One (RX1) Format

r OP

7\8 11\12 15161718

D2

This is a 32 bit format in which Bits 0:7 contain the operation code, Bits 8:11 contain the R1
field, Bits 12:15 contain the X2 field, Bits 16 and 17 must be zero, and Bits 18:31 contain the
D2 field. In general, the register specified by R1 contains the first operand. The second
operand is located in memory at the address obtained by adding the contents of the second
operand index register, specified by X2, and the 14 bit absolute address contained in the D2
field. For example:

Machine Code Assembler Notation

4050 1000 RXl. EX1 S111 R5, X'1000'

)1 l- Defines Second Operand Address

No Index Register Specified

First Operand

1....-_____ Store Hali'word 'STH' Instruction Op-Code I

The Second Operand address is calculated as follows:

Bits 16 1920 2324 27 28 31

\ 0001 \ 0000 I ooou \ 0000 \

t' L 14-Bit Absolute Address X'1000

Indicates RXl Format

No indexing is specified. Therefore, the second operand address is X'1000'.

Machine Code Label Assembler Notation

4056 OFF2 RXl.EX2 STH R5,X'OFF2'(R6)

)I [Defines Second Operand Address

Register 6 to be used for Indexing

First Operand

1--_____ Store Halfword 'STH' Instruction Op-Code I

The Second Operand address is calculated as follows:

Bits 16 19 20

\ 0000

LJ'
1111

23 24 27 28 31

11111 0010 \

c:= 14-Bit Absolute Address X'OFF2'
Indicates RX1 Format

Second Operand Address

contents of D2 field + contents of the Index Register 6 (see Figure 1-5)

X'OFF2' + Y'OOOOOOOE'

Y'00001000'

29-428 R06 5/78 1-13

I

I

Register and Indexed Storage Two (RX2) Format

o 31

01=' 02

This format provides relative addressing capability in a 32 bit instruction word. Bits 0:7
contain the operand code. Bits 8:11 contain the R1 specification. Bits 12:15 contain the X2
specification. Bit 16 must always bc one. Bits 17:31 contain the relative displacement, D2.

In the RX2 fOTInat, the register specificd by R1 contains the first operand. The address of
the second operand, in memory, is calculatcd by adding the value contained in the incremented
location counter (the address of the next sequential instruction) and the sum of (1) the 32-bit
representation of the 15-bit signed number contained in the D2 field, and (2) the contents of
the index register specified by X2. Negative numbers in the D2 field are expressed in two's
complement notation. For example:

Machine Code Assembler Notation ---_ ... _-
4050 8004 RX2. EX1

\1 T Defines Second Opcrand address

No Index Register SpeCified

First Operand

STH U5, LOCI

'------- Store Halfword 'STH' Jnstruction Op-Codc

The Second Operand address is calculated as follows:

Bits 16 19 20 23 24 27 28 31

I 1000 I 0000 I 0000 I 0100]

I
' ...J c== 15-Bit Positive Relative Displacement

1--. ________ Indicates RX2 Format

Second Operand Address

32-bit Expansion of contents of D2 field + contents of incremented Location
Counter (see Figure 1-5).

Y'00000004' + Y'00000010'

Y'00000014'

Machine Code

4050 FFE4 RX2. EX2

\1 I Defines Second OpCl.'and address

No Index Register Specified

First Operand

'------- Store Halfword 'STII' Instruction Op-Code

1-14

Assembler Notation

STH R5, LOCI

29-428 R06 5/78

The Second Operand address is calculated as follows:

Bits

0100

19 20 23 24 27 28

I 1111 I 1110 I
31

'------ 15-Bit Negative Relative Displacement

Indicates RX2 Format

Second Operand Address

32-bit Expansion of contents of D2 field + contents of incremented Location
Counter (see Figure 1-5).

Y'FFFFFFE4' + Y'00000030'

Y'00000014'

Machine Code Label Assembler Notation

4056 FFD2 RX2. EX3 STH R5, LOCl-14(RG) II I Defines Second Operand address

Register G to be used for Indexing

First Operand

'------- Store I1alf'wol.'d 'STII' lnatruction Op-Code I

The Second Operand address is calculated as follows:

Bits 16 1920 2324 2728 31

I 1111 I 1111 I 1101 I 0010 I
r 15-Bit Negative Relative Displacement

Indicates RX2 Format

Second Operand Address

32-Bit Expansion of D2 field c contents of incremented Location
Counter + contents of Index Register 6 (See Figure 1-5).

Y'FFFFFFD2' t- Y'00000034' + Y'OOOOOOOE'

Y'00000014'

29-428 R06 5/78

I

1-15

I

I

Register and Indexed Storage Three (RX3) Format

~ 'I "¥~20
1'-____ O_p ___ ...L ___ R_1_.L..I_F_X~~ 1 SX2 A2:

J

f-' --_.j
This is a 48 bit format in which double indexing is permitted. Bits 0:7 contain the operation
code. Bits 8:11 contain the R1 specification. Bits 12:15 contain the first index specification,
FX2. Bit 1G must be zero. Bit 17 must be one. Bits 18:19 must be zero. Bits 20:23 contain
the second index specification, SX2. Bits 24:47 contain a 24 bit address, A2. Second level
indexing is allowed even if first level indexlng is not specified.

In general, the first operand is contained in the register specified by Rl. The second operand
is located in memory. Its memory address is obtained by adding the contents of the first index
register and the contents of the second index register, and then adding to this result the contents
of the A2 field. For example:

Mach ine Code Label Assembler Notation

5870 4001 0000 HX3. EXI L R7, Y'lOOOO'

[1 L Defines Second Operand address

Second Level Indexing not specified

---- Specifies nx3 format

First Level Indexing not specified

First Operand

~-------- LO~l(1 'L' lnstru(~tion Op-Code

The Second Operand address is calculated as follows:

Bits 16 20 24 28 31 32 36 40 44 47

1 0100 1 0000 =t;~t;;I-1-+--0-0-0-0-+I-o-o-o--o-ll---o-o-oo--fI-o-o-o0----11
L---________________ ~--~I

20-Bit Absolute Address - Y'10000' --.--------------'
Indicates RX3 Format

Second Operand Address

Contents of A2 fiela

Y'00010000'

Mach ine Code Label Assembler Notation

5885 4601 FFE4

~
HX3. EX2 L R8, Y'20000'-28(R5, R6)

Defines Second Operand address

Register G to be used for Second Level Indexing

Specifics RX3 format

Register 5 to be used for First Level Indexing

'---------- First Operand

'----------- Load 'L' Instruction Op-Code

1-16 29-428 R06 5/78

The Second Operand address is calculated as follows:

Bits 16 20 24 28 31 32 36 40 44 47

I 0100 I 0110 I 0000 I 0001 I 1111 I 1111 I 1110 I 0100 I
L

I

20-Bit Absolute Address Y'l FFE4'

Indicates RX3 Format

Second Operand Address

= contents of A2 fieldt contents of Index Register 6

+ contents of Index Register 5 (see Figure 1-5).

= Y'0001FFE4' + Y'OOOOOOOE' t Y'OOOOOOOE'

= Y'00020000'

Register and Immediate Storage One (RI1) Format

o 78 11 12 1516 31

OP R1 X2 12

This format represents a ~~2 bit instruction word. Bits 0:7 contain thc operation code. Bits 8:11
contain the R1 specification. Bits 16:31 contain the 16 bit immcdiate valuc, 12.

In this format, the register specified by R1 contains the first operand. The 32-bit effective second
operand is obtained by adding together the 32-bit representation of the signed 16-bit value contained
in the 12 field, and the contents of the register specified by X2. For example:

Mach ine Code Assembler Notation

C890 8000 ill1. EX1

11 L 16-Bit Immediate Value

No Index Register Specified

First Operand

LHI R9, X'8000'

Load Halfword Immediate 'LIII' Im;truC'tion Op-Code

The Second Operand is calculated as follows:

Bits

(1000 (0 0000 (40000

Sign Bit

Second Operand

32-Bit representation of X'8000'

Y' FFFF8000'

Machine Code

C895 8000 RII. EX2

11 T 16-Bit Immediate Value

Index Register 5 Specified

First Operand

Assembler Notation

LHI R9,X'8000'(R5)

'--------- LO:1(l fhlfword Immedjate 'LUI' InstnlCtion Op-Code

29-428 ROG 5/78 1-17

I

I

I

The Second Operand is calculated as follows:

Bits

1

'6

1000 (0 0000

24 27 31

I 0000 I 0000 J
Sign Bit

Second Operand

= 32-Bit representation of X'Booor + the contents of Index Register 5 (See Figure 1-5).

= Y' FFFFBOOO't Y'OOOOOOOE'

= Y'FFFFBOOE'

Register and Immediate Storage Two (RI2) Format

7

R1 "1 X2t 47
"

I
.,,,

12
.:~

OP

This is a 4B bit instruction format. Bits 0:7 contain the operation code. Bits B:ll contain the
HI specification. Bits 12:15 contain the X2 specification. Bits 16:47 contain the 32 bit immediate
value, 12.

The first operand is contained in thc register specified by Rl. The second operand is obtained
by adding the contents of the index register, spccified by X2, and the 32 bit immediate value con­
tained in the 12 field. For example:

Machine Code Label Assembler Notation

FBAO 0000 BOOO RI2. EX1 LI RIO, X' BOOO' I L 32-Bit Immediate Held

No Index Register Specified

L--______ First Operand

L--_______ Load Immediate 'L[' InstrLlction Op-Codc

The Second Operand is calculated as follows:

Bits 44 47

0000 I
32·Bit Immediate Value

Second Operand

= Contents of 12 Field

= Y'OOOOBOOO'

1-1B 29-428 R06 5/78

Machine Code

F8BA 0001 7FFE IU2. EX2

I -c 32-Bit Immediate Field

~ Specifics Index Register 10

~----- First Operand

Assembler Notation

LI R11, Y'17FFE' (R10)

Load Immed.iatc 'LI' Instruction Op-Code

The Second Operand is calculated as follows:

Bits 16 20 24 28 32 36 40 44 47

L..-___ 32-Bit Immediate Value

Second Operand

= Contents of I2 Field + contents of Index Register 10 (See Figure 1-5).

= Y'00017FFE' j Y'00008000'

= Y'OOOlFFFE'

29-428 R06 5/78

I

1-19/1-20

CHAPTER 2

LOGICAL OPERATIONS

The set of logical instructions provides a means for the manipulation of binary data. :l\1any of the
instructions grouped with the logical set may also be used in arithmetic al1d other operations. These
instructions include loads, stores, compare::;, shift::;, list processing, translation, and cyclic redun­
dancy checks.

DATA FORMATS

Logical data can be organized as bytes, halfwords, fullwords, or bit arrays of up to 2:H bits as
shown in Figure 2-1.

0 BYTE 7

I I

0 HALFWORD 15

I I

0 FULLWORD 31

I

0 BITARRAY N

~ ; I

Figure 2-1. Logical Data

1(\ .. '23 RO 1 1/76 2-1

I

OPERATIONS

In logical operations between the contents of a general register and a halfword operand, the half­
word operand is expanded to a fullword before the operation starts. The halfword is expanded by
propagating the most significant bit through Bits 15:0 of the fullword.

Boolean Operations

The Boolean operators AND, OR, and Exclusive OR (XOR) operate on halfword and fullword quan­
tities. All bits in both operands participate individually. The Boolean functions are defined as
follows:

o AND 0 = 0
o AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

o OR 0 = 0
o OR 1 = 1
1 OR 0 = 1
10R 1 = 1

o XOR 0 = 0
o XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

Translation

(logical product)

(logical sum)

(logical difference)

The translate instruction is used to translate a character directly, or to effect an unconditional
branch to a special translate subroutine. Associated with the translate instruction is a trans­
lation table. The entries in the table are halfwords as shown in Figure 2-2 .

. 0 . 7S 15

I CHAR~CTER I

10 I(CHAR. HANDLING ROUTINE ADDRESS)/21

ENTRY SPECIFYING TRANSLATED
CHARACTER

ENTRY SPECIFYING ADDRESS OF
A CHARACTER HANDLING ROUTINE

Figure 2-2. Translation Table Entry

The character to be translated is a byte of logical data. This unsigned quantity is doubled and
used as an index into the table. If the corresponding entry has a one in bit Position zero, then
Bits 8:15 contain the character to be substituted for the data character. If there is a zero in bit
Position zero, then Bits 1:15 contain the address, divided by two, of the translate routine. When
the translate instruction results in a branch, this value is doubled to produce the address of the
routine. Because this result is a 16 bit address, the software routine must be located in the first
64:KB of the program. (The program can reside anywhere in memory if it is relocated by the
Memory Access Controller (MAC). The translate table can contain up to 256 entries. How­
ever, if th·2 data characters are always less than eight bits, fewer eatries are required.

2-2 29-428 R02 2/77

List Processing

The list processing instructions manipulate a circular list as defined in Figure 2-3.

o 15 16 31

NUMBER OF SLOTS NUMBER USED

CURRENT TOP NEXT BOTTOM

SLOTO

SLOT 1

,1..- ,.. ...

T SLOT N T
Figure 2-3. Circular List Definition

The first four halfwords contain the list parameters. Immediately following the parameter block
is the list itself. The first fullword in the list is designated Slot O. The remaining slots are desig­
nated 1, 2, 3, etc., up to a maximum slot number which is equal to the number in the list minus
one. An absolute maximum of 65,535 fullword slots may be specified. (Slots are designated 0
through X'FFFE'.)

The first parameter halfword indicates the number of slots (fullwords) in the entire list. The
second parameter halfword indicates the current number of slots being used. When this halfword
equals zero, the list is empty. When this halfword equals the number of slots in the list. the list
is full. Once initialized, this halfword is maintained automatically. It is incremented when ele­
ments are added to the list and decremented when elements are removed.

The third and fourth halfwords of the list parameter block specify the current top of the list and the
next bottom of the list respectively. These pointers are also updated automatically. See Figure 2-4.

29-428 ROI 1/76

OCCUPIED
SECTION

CURRENT TOP

Figure 2-4. Circular List

2-3

LOGICAL INSTRUCTION FORMATS

The logical instructions use the Register to Register (RR), the Register and Indexed Storage (RX),
and the Register and Immediate Storage (RI) instruction formats.

LOGICAL INSTRUCTIONS

The instructions described in this section are:

L Load 01 OR Immediate
LR Load Register OH OR Halfword
LI Load Immediate OHI OR Halfword Immediate
LIS Load Immediate Short X Exclusive OR
LCS Load Complement Short XR Exclusive OR Register
LH Load Halfword XI Exclusive OR Immediate
LHI Load Halfword Immediate XH Exclusive OR Halfword
LA Load Address XHI Exclusive OR Halfword Immediate
LRA Load Real Address TI Test Immediate
LHL Load Halfword Logical THI Test Halfword Immediate
LM Load Multiple SLL Shift Left Logical
LB Load Byte SLLS Shift Left Logical Short
LBR Load Byte Register SRL Shift RIght Logical
EXHR Exchange Halfword Register SRLS Shift Right Logical Short
EXBR Exchange Byte Register SLHL Shift Left Halfword Logical
ST Store SLHLS Shift Left Halfword Logical Short
STH Store Halfword SRHL Shift Right Halfword Logical
STM Store Multiple SRHLS Shift Right Halfword Logical Short
STB Store Byte RLL Rotate Left Logical
STBR Store Byte Register RRL Rotate Right Logical
CL Compare Logical TS Test and Set
CLR Compare Logical Register TBT Test Bit
CLI Compare Logical Immediate SBT Set Bit
CLH Compare Logical Halfword CBT Complement Bit
CLHI Compare Logical Halfword Immediate RBT Reset Bit
CLB Compare Logical Byte CRC12 Cyclic Redundancy Check Modulo 12
N AND CRC16 Cyclic Redundancy Check Modulo 16
NR AND Register TLATE Translate
NI AND Immediate ATL Add to Top of List
NH AND Halfword ABL Add to Bottom of List
NHI AND Halfword Immediate RTL Remove from Top of List
0 OR RBL Remove from Bottom of List
OR OR Register

2-4
29-428 ROt 1/76

INSTRUCTIONS

Load (L)
Load Register (LR)
Load Immediate (LI)
Load Immediate Short (LIS)
Load Complement Short (LCS)

Assembler Notation

L
L
LR
LI
LIS
LCS

Operation

Rl,D2 (X2)
Rl, A2 (FX2, SX2~
Rl,R2
Rl,I2 (X2)
Rl,N
Rl,N

Op-Code

58
58
08
F8
24
25

Format

RXl, RX2
RX3
RR
RI2
SF
SF

The second operand replaces the contents of the register specified in R 1.

Condition Code

C V G L
0 0 0 0
0 0 0 1
0 0 1 0

Programming Notes

Value is ZERO
Value is not ZERO
Value is not ZERO

The Load Immediate Short instruction causes the four bi t second operand to be expanded to
a 32 bit full word with high order bits forced to ZERO. This fullword replaces the contents
of the register specified by Rl.

The Load Complement Short instruction causes the four bit second operand to be expanded
to a 32 bit full word with high order bits forced to ZERO. The two's complement value of
this fullword replaces the contents of the register spe~ified by Rl.

When the Load instructions operate on fixed point data, the Condition Code indicates ZERO
(no flags), negative (L flag), or positive (G flag) value.

In the RR format, if Rl equals R2, the Load instruction functions as a test on the contents
of the register.

In the RX formats, the second operand must be located on a fullword boundary.

Example LCS

Assembler Notation Machine Code Comments

LCS REGS, 7 2587 LOAD -7 INTO REG8

Result of LCS Instruction:

(REG8) = FFFF FFF9

Condition Code = 0001 (L = 1)

29-428 R02 2/77

I

I

2-5

I

I

INSTRUCTIONS

Load Halfword (LH)
Load Halfword Immediate (LHI)

Assembler Notation Op-Code Format

LH
LH
LHI

Rl,D2 (X2)
Rl, A2 (FX2, SX2)
Rl,12 (X2)

48
48
C8

RX1, RX2
RX3
RIl

Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. This fullword replaces the contents of the register specified by R 1.

Condition Code

C V
0 0
0 0
0 0

G
0
0
1

L
0
1
0

Value is ZERO
Value is not ZERO
Value is not ZERO

Programming Notes

2-6

When the Load Halfword instructions operate on fixed point data, the Condition Code indi­
cates zero (no flags). negative (L flag), or positive (G flag) value.

In the RX formats, the second operand must be located on a halfword boundary.

In the RIl formE.t, the 16-bit 12 field is extend8d to a fullword by propagating the sign
bit throu,sh bits 0:15. The contents of the index register specified by X2 are then
add8d to form the fullword .second operand.

29-428 R02 2/77

I NSTRUCTI ON

Load Address (LA)

Assembler Notation

LA
LA

Operation

R1,D2 (X2)
R1,A2 (FX2,SX2)

Op-Code

E6
E6

RX1, RX2
RX3

The effective address of the second operand (24 bits) replaces Bits 8:31 of the register
specified by Rl. Bits 0:7 of the register specified by R1 are forced to ZERO.

Condition Code

Unchanged

Programming Note

The length of the address quantity depends on the internal structure of the particular machine.
Thus, in a Processor with a maximum address length of 20 bits, the calculated address replaces
bits 12:31 of the register specified by R1, and bits 0:11 are forced to ZERO. In a Processor with
maximum address length of 24 bits, the calculated address replaces bits 8:31 of the register speci­
fied by R1, and bits 0:7 are forced to ZERO.

29-428 R02 2/77 2-7

I

I

I

INSTRUCTION

Load Real Address (LRA)

Assembler Notation Op-Code Format

LRA
LRA

ru, D2(X2)
Rl, A2 (FX2, SX2)

63
63

RXl, RX2
RX3

Operation

This instruction simulates the operation of a memory access controller. (Refer to
Chapter 8 for a detailed description of MAC.) The register specified by Rl contains
a program address (not relocated). The second operand address points to a
relocation/protection module parameter block.

The address contained in thc register specified by Rl is relocated, using the appropriate
parameters. The relocated address replaces the contents of the register specified by Rl.

Cond!tion Code

C V
0 0
0 0
0 0
0 1
1 0

G
0
0
1
0
0

L
0
1
0
0
0

No restrictions
Not executable
Not writable
Not present
Not mapped (Limit violation)

The condition code is determined on a priority basis with Not Mapped having highest priority,
Not Present second, Not Writable third, and Not Executable having lowest priority.

Programming Note

If the address is not mapped or not present, the register specified by Rl is unchanged.

The second operand location must specify a fullword boundary.

This instruction is supported by the microcode revision R03 and above. It is therefore
not supported in all the models.

Example: LRA

This example performs an address translation in the same manner as the MAC.

For this example, Register 1 contains X'54341', MACREG is the starting address of a copy of
the MAC Register. The fifth fullword entry located at MACREG+X'14' contains X'OFF24170'.

Assembler Notation Machine Code Comments

LRA REGl, MACREG 6310 8100

Result of LRA Instruction:

(REG1) = 28441 (24100 + 04341)
MACREG = Unchanged
Condition Code = 0010 (not writable)

2-8

The first digit of the 20 bit
program address (5) is used
to index into MAC REG

29-428 R05 5/78

INSTRUCTION

Load Halfword Logical (LHL)

AssembJer Notation

LHL
LHL

Operation

Rl,D2 (X2)
Rl, A2 (FX2, SX2)

Op-Code

73
73

Format

RXl,RX2
RX3

The halfword second operand replaces Bits 16:31 of the register specified by Rl. Bits
0:15 of the register specified by R1 are forced to ZERO.

Condition Code

CV GL
o 0 0 0
o 0 1 0

Programming Note

Value is ZERO
Value is not ZERO

The second operand must be located on a halfword boundary.

29-428 R02 2/77

I

2-9

I

I

INSTRUCTION

Load Multiple (LM)

Assembler Notation Op-Code Format

LM
LM

Rl,D2 (X2)
Rl,A2 (FX2,SX2)

Dl
r:n

RXl,RX2
RX3

Operation

Successive registers, starting with the register specified by R 1, are loaded from successive
memory locations, starting with the location specified as the effective address of the second
operand. Each register is loaded with a fullword from memory. The process stops when
Register 15 has been loaded.

Condition Code

Unchanged

Programming Note

2-10

The second operand must be located on a fullword boundary.

The second operand :lddress is formed before any registers are loaded. Therefore,
X2, FX2, and SX2 can be among the registers loa.ded.

29-428 R02 2/77

INSTRUCTIONS

Load Byte (LB)
Load Byte Register (LBR)

Assembler Notation

LB
LB
LBR

Operation

R1, D2 (X2)
R1,A2 (FX2,8X2)
R1,R2

Op-Code

D3
D3
93

Format

RXl,RX2
RX3
RR

The eight-bit second operand replaces the least significant bits (Bits 24:31) of the register
specified by Rl. Bits 0:23 of the register are forced to ZERO.

Condition Code

Unchanged

Proqramming Note

In the Load Byte Register instruction, the second operand is taken from the least Significant
eight bits (Bits 24:31) of the register specified by R2.

29-428 R02 2/77 2-11

I

I

I

INSTRUCTION

Exchange Halfword Register (EXHR)

Assembler Notation Op-Code Format

EXHR R1,R2 34 RR

Operation

Bits 0: 15 of the register specified by R 2 replace Bits 16:31 of the register specified by R 1.
Bits 16:31 of the register specified by R2 replace Bits 0:15 of the register specified by Rl.

Condition Code

Unchanged

Programming Note

If R1 equals R2, the two halfwords contained within the register are exchanged.
If R1 does not equal R2, the contents of R2 are unchanged.

Example: EXHR

Assembler Notation

LI HEG;,) , Y'OABCDEF9'
LI REG7, Y'12345678'
EXHR REG5, REG7

Result of EXHR Instruction:

2-12

(REG 5) = 56781234
(REG 7) = 12345678
Condition Code = Unchanged

Machine Code

F850 OABC D£F9
F870 1234 5678
3457

Comments

(REG 5) =: OABCDEF9
(REG 7) = 12345678

29-428 R02 2/77

INSTRUCTION

Exchange Byte Register (EXBR)

Assembler Notation Op-Code

EXBR Rl,R2 94 RR

Operation

The two eight-bit bytes contained in Bits 16:31 of the register specified by R2 are exchanged
and loaded into Bits 16:31 of the register specified by RI. Bits 0:15 of the register specified
by R 1 are unchanged. The register specified by R2 is unchanged.

Condition Code

Unchanged

Programming Note

Rl and R2 may specify the same register. In this case, the two bytes in Bits 16:31 of the
register specified by R2 are exchanged.

Example: EXBR

Assembler Notation

LI REG7, X' 5AGB3C4D'
LI REG3, Y'987()1234'
EXBH HEG7, HEG3

Result of EXB R Instruction:

(REG7) = 5A6B3412
(REG3) = 98761234
Condition Code = Unchanged

29-428 R02 2/77

Machine Code

F870 5A6B 3C4D
F830 9876 1234
9473

Comments

(REG7) = 5A6B3C4D
(REG3) = 98761234

2-13

I

I

I

INSTRUCTION

Store (ST)

Assembler Notation

ST
ST

Operation

Rl,D2 (X2)
Rl, A2 (FX2, SX2)

Op-Code

50
50

Format

RX1,RX2
RX3

The 32 bit contents of the register specified by R 1 replace the contents of the memory
location specified by the effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

2-14 29-428 R02 2/77

I

INSTRUCTION

Store Halfword (STH)

Assembler Notation

8TH
8TH

Operation

R1,D2 (X2)
R 1, A2 (FX2,8X2)

Op·Code

40
40

RX1,RX2
RX3

Bits 16:31 of the register specified by R1 replace the contents of the memory location
specified by the effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundary.

29-428 R02 2/77 2-15

I

INSTRUCTION

Store Multiple (STM)

Assembler Notation

STM
STM

Operation

R1,D2 (X2)
R1,A2 (FX2,SX2)

Op-Code

DO
DO

RX1,RX2
nX3

The fullword contents of registers, starting with the register specified by R1, replace
the contents of successive memory locations, starting with the location specified by the
effective address of the second operand. The process stops when Register 15 has been
stored.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

2-16 29-428 R02 2/77

INSTRUCTIONS

Store Byte (STB)
StaTe Byte Register (STBR)

Assembler Notation

STB
STB
STBR

Operation

rn,D2 (X2)
R1,A2 (FX2,SX2)
R1,R2

Op-Code

D2
D2
92

Format

RX1,RX2
RX3
RR

The least significant eight bits (Bits 24:31) of the register specified by R 1 are stored in
the second operand location.

Cond ition Code

Unchanged'

Programming Note

In the Store Byte Register instruction, the eight bit quantity is stored in Bits 24:31 of the
register specified by R2. Bits 0:23 of the register are unchanged.

Example: STBR

Assembler Notation

LI REG4, Y'13577531'
LI REG3, Y'24688642'

STBH REG4, HEG3

Result of STBR Instruction:

(REG4) = 13577531
(HEG3) =-: 24688631
Condition Code = Unchanged

29-428 R02 2/77

Machine Code

F840 1357 7531
F830 2468 8642

9243

Comments

(REG4) = 13577531
(REG3) = 24688642

I

I

2-17

I
INSTRUCTIONS

Compare Logical (C L)
Compare Logical Register (C LIt)
Compare Logical Immediate (C LI)

Assembler Notation Op-Code Format

yL
CL
CLR
CLI

Rl,D2 (X2)
Rl,A2 (FX2,8X2)
Rl,R2
Rl,I2 (X2)

55
55
05
F5

RXl,RX2
RX3
RR
RI2

Operation

The first operand, the contents of the register specified by R 1, is compared logically to the
second operand. The result is indicated by the Condition Code setting. Neither operand is
changed.

Condition Code

C V
0 X
1 X
1 X
0 X
0 X

G
0
0
1
0
1

L
0
1
0
1
0

First operand equal to second
First operand less than second
First operand less than second
First operand greater than second
First operand greater than second

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.

The state of the V flag is undefined.

It is meaningful to check the following condition code mask (Ml) after a logical comparison:

Mask True/ F:alse * Inference

3 False First operand equal to second
3 True First operand not equal to second
8 False First operand greater than second
8 True First operand less than second

*Refer to page 3-1 for True/False concept in branch instructions.

2-18 29-428 R02 2/77

INSTRUCTIONS

Compare LOgical Halfword (C LH)
Compare Logical Halfword Immediate (C LHI)

Assembler Notation

CLH
CLH
CLHI

Operation

Rl, D2 (X2)
R 1, A2 (FX2, SX2)
R 1,12 (X2)

Op-Code

45
45
C5

RX1,RX2
RX3
RIl

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The first operand, the contents of the register specified by Rl, is
compared to this fullword. The result is indicated by the Condition Code setting. Neither
operand is changed.

Condition Code

C V G L
0 X 0 0
1 X 0 1
1 X 1 0
0 X 0 1
0 X 1 0

Programming Note

First operand equal to second
First operand less than second
First operand less than second
First operand greater than second
First operand greater than second

In the RX formats, the second operand must be located on a halfword boundary.

In the RIl format, the I6-bit 12 field is extended to a fullword by propagating the sign
bit through bits 0:15. The contents of the index register specified by X2 are then
added to form the fullword second operand.

The state of the V flag is undefined.

It is meaningful to check the following condition code mask (M1) after a logical conparison:

Mask True/False* Inference

3 False First operand equal to second
3 True First operand not equal to second
8 False First operand equal to or greater than second
8 True First operand less than second

*Refer to page 3-1 for True/False concept in branch instructions.

29-428 H06 5/78 2-19

I

I

I

INSTRUCTION

Compare Logical Byte (CLB)

Assembler Notation Op-Code Format

CLB
CLB

Rl,D2 (X2)
Rl, A2 (FX2, SX2)

D4
D4

RXl,RX2
RX3

Operation

The byte quantity, contained in Bits 24:31 of the register specified by Rl, is compared
with the 8-bit second operand. The result is indicated by the Condition Code setting.
N either operand is changed.

Condition Code

C V
0 X
1 X
1 X
0 X
0 X

G
0
0
1
0
1

L
0
1
0
1
0

First operand equal to second
First operand less than second
First operand less than second
First operand greater than second
First operand greater than second

Programming Note

It is meaningful to check thc following condition code mask (Ml) after a logical comparison:

Mask True/False* Inference

3 False Firs t operand equal to second
3 True First operand not equal to serond
8 False First operand equal to or greater than second
8 True First operand less than second

*Refer to page 3-1 for True/False concept in branch instructions.

2-20 29-428 R06 5/78

INSTRUCTIONS

AND (N)
AND Register (NR)
AND Immediate (NI)

Assembler Notation

N
N
NR
NI

Operation

RI,D2 (X2)
RI,A2 (FX2,SX2)
RI,R2
RI,12 (X2)

Op-Code

54
54
04
F4

Format

RXI,RX2
RX3
llR
Ri2

The logical product of the 32 bit second operand and the contents of the register specified
by RI replace the contents of the register specified by RI. The 32 logical bit product
is formed on a bit-by-bit basis.

Condition Code

C V G L
0 0 0 0
0 0 0 I
0 0 1 0

Programming Note

Result is ZERO
Result is not ZERO
Result is not ZERO

In the RX formats, the second operand must be located on a fullword boundary.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags),
negative (L flag) or positive (G flag) result.

29-428 R02 2/77 2-21

I

I

I

INSTRUCTIONS

AND Halfword (NH)
AND Halfword Immediate (NHI)

Assembler Notation Op-Code Format

NH
NH
NHI

RI,D2 (X2)
RI,A2 (FX2,SX2)
RI,I2 (X2)

44
44
C4

RXI,RX2
RX3
RIl

Operation

The halfword second operand is expanded to a full word by propagating the most significant
bit through Bits 15:0. The logical product of this 32 bit quantity and the contents of the
register specified by Rl replace the contents of the register specified by HI. The 32 bit
logical product is formed on a bit-by-bit basis.

Cond ition Code

C V
0 0
0 0
0 0

G
0
0
I

L
0
I
0

Result is ZERO
Result is not ZERO
Result is not ZERO

Programming Note

2-22

In the RX formats, the second operand must be located on a halfword boundary.

In the RIl format, the I6-bit 12 field is extended to a fullword by propagating the sign
bit through bits 0:15. The contents of the index register specified by X2 are then
added to form the fullword second operand.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (Lflag)
or positive (G flag) result.

29-428 R02 2/77

INSTRUCTIONS

OR (0)
OR Register (OR)
OR Immediate (01)

Assembler Notation

0 Rl, D2 (X2)
0 Rl, A2 (FX2, SX2)
OR Rl,R2
01 Rl,12 (X2)

Operation

Op-Code Format

56 RXl,RX2
56 RX3
06 RR
F6 RI2

The logical sum of the 32 bit second operand and the contents of the register specified by
RI replace the contents of the register specified by ill. The logical sum is formed on a
bit-by-bit basis.

Condition Code

C V G L
0 0 0 0
0 0 0 1
0 0 1 0

Programming Note

Result is ZERO
Result is not ZERO
Result is not ZERO

In the RX formats, the second operand must be located on a fullword boundary.

I

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

29-428 R02 2/77 2-23

I

I

INSTRUCTIONS

OR Halfword (OH)
OR Halfword Immediate (OHI)

Assembler Notation Op-Code Format

OH
OR
OR!

Rl, D2 (X2)
Rl,A2 (FX2,SX2)
R 1,12 (X2)

46
46
C6

RXl,RX2
RX3
RIl

Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical sum of this 32 bit quantity and the contents of the register
specified by nl replace the contents of thc register specificd by Rl. The 32 bit sum is
formed on a bit-by-bit basis.

Cond ition Code

C V G

0 0 0
0 0 0
0 0 1

L
0
1
0

Result is ZERO
Result is not ZERO
Result is not ZERO

Programming Note

2-24

In the RX formats, the second operand must be located on a halfword boundary.

In the RIl format, th3 l6-bit 12 field is extended to ;] fullword by prop3.gating the sign
bit through bits 0:15. The contents of the ind'2x register specified by X2 are then
added to form t1}L'~ fullw.')rd 8econd operand.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

29-428 R02 2/77

INSTRUCTIONS

Exclusive OR (X)
Exclusive OR Register (XR)
Exclusive OR Immediate (XI)

Assembler Notation

X RI,D2 (X2)
X RI, A2 (FX2, SX2)
XR RI,R2
XI . RI,12 (X2)

Operation

Op-Code Format

57 RXI,RX2
57 RX3
07 RR
F7 RI2

The logical difference of the 32 bit second operand and the contents of the register specified
by Rl replace the contents of the register specified by Rl. The 32 bit difference is formed
on a bit-by-bit basis.

Condition Code

C V G L
0 0 0 0
0 0 0 1
0 0 1 0

Programming Note

Result is ZERO
Result is not ZERO
Result is not ZERO

In the RX formats, the second operand must be located on a fullword boundary.

I

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

29-428 R02 2/77 2-25

I

I

INSTRUCTIONS

Exclusive OR Halfword (XH)
Exclusive OR Halfword Immediate (XlII)

Assembler Notation Op-Code Format

XH
XH
XHI

Rl, D2 (X2)
Rl, A2 (FX2, SX2)
Rl,12 (X2)

47
47
C7

RXl, RX2
RX3
RIl

Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical difference of this 32 bit quantity and the contents of the
register specified by Rl replace the contents of the register specified by Rl. The 32 bit
difference is formed on a bit-by-bit basis.

Condition Code

C V
0 0
0 0

0 0

G
0
0

1

L
0

1
0

Result is ZERO
Result is not ZERO
Result is not ZEHO

Programming Note

2-26

In the RX formats, the second opera.nd must be located on a halfword boundary.

In the RIl format, the 16-bit 12 field is extended to a fullword by propagating the sign
bit through bits 0:15. The contents of the index register specified by X2 are then
added to form the fullword second operand.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

29-428 R02 2/77

INSTRUCTION

Test ImmedIate (TI)

Assembler Notation Op-Code

TI RI,12 (X2) F3 R12

Operation

Each bit of the second operand is logically ANDed with the corresponding bit in the register
specified by Rl. Neither operand is changed.

Condition Code

C V G
0 0 0
0 0 0
0 0 1

Example: TI

L
0
1
0

Result is ZERO
Result is not ZERO
Result is not ZERO

This exa.mple tests if Bit 16 of Register 9 is set.

(REG 9) = 7EFBC230

Assembler Notation

TI R9,Y'OJ0080aa'

Result of TI Instruction

(R EG 9) uueh,mged
Condition Code::: 0::>1 0 (G =: 1)

29-428 R06 5/78

Comments

Test Bit 16

2-27

I

I

INSTRUCTION

Test Halfword Immediate (TH1)

Assembler Notation Op-Code

THl Rl,12 (X2) C3 RIl

Operation

The halfword second operand is expanded to a full word by propagating the most significant
bit through Bits 15: O. Each bit in this quantity is logically ANDed with the corresponding
bit contained in the register specified by RI. Neither operand is changed.

Condition Code

C V
0 0
0 0
0 0

G
0
0
1

L
0
1
0

Result is ZERO
Result is not ZERO
Result is not ZERO

Programming Notes

2-28

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

In the RIl format, the 16-bit 12 field is extended to a fullword by propagating the sign
bit through bits 0:15. The contents of the index register specified by X2 are then
added to form the fullword second operand.

29-428 R02 2/77

I NSTR UCTI ONS

Shift Left Logical (SLL)
Shift Left Logical Short (SLLS)

Assembler Notation

SLL
SLLS

Operation

R1,I2 (X2)
R1,N

Op-Code

ED
11

RIl
SF

The first operand, the contents of the register specified by R1, is shifted left the number
of places specified by the second operand. Bits shifted out of Position 0 are shifted through
the carry flag of the Condition Code and then lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position 31.

Condition Code

CV GL
XO o 0
XO o 1
XO 1 0
1 0 XX

Programming Notes

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

In the RI formats, the shift count is specified by the least Significant five bits of the second
operand. The maximum shJft count is 31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit shifted out of Position O.

I

I

If the second 'Jperand specifies a shift of zero places, the Condition Code is set in arJcord_tnce with I
the value contained in the register. The C flag is reset in this case.

When the register specified by Rl contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

29-428 R02 2/77 2-29

I

I

INSTRUCTIONS

Shift Right Logical (SRL)
Shift Right Logical Short (SRLS)

Assembler Notation Op-Code Format

SRL
SRLS

RI,I2 (X2)
Rl, N

EC
10

RIl
SF

Operation

The first operand, the contents of the register specified by R 1, is shifted right the number
of places specified by the second operand. Bits shifted out of Position 31 are shifted through
the carry flag of the Condition Code and then lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position O.

Condition Code

C V
X 0

X 0

X 0

1 0

G
0
0
1
X

L
0
1
0
X

Result is ZEHO
Result is not ZERO
Result is not ZERO
Carry

Programming Notes

2-30

In the RIl form3.t, the shift count is specified by the least significant five bits of the second
opera'1d. The ma.ximum f;hift count is .31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit shifted out of Position 31.

When the register specified by R 1 contains fixed pOint data, the L flag set indicates a nega­
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register. The C flag is reset in this case.

29428 R02 2/77

INSTRUCTIONS

Shift Left Halfword Logical (SLHL)
Shift Left Ha1fword Logical Short (SLHLS)

Assembler Notation

SLHL
SLHLS

Operation

Rl,12 (X2)
Rl,N

Op-Code

CD
91

RIl
SF

Bits 16: 31 of the register specified by n 1 are shifted left the number of places specified by
the second operand. Bits shifted out of Position 16 are shifted through the carry flag and
lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 31.
Bits 0: 15 of the first operand remain unchanged.

Condition Code

C V G L
X 0 0 0
X 0 0 1
X 0 1 0
1 0 X X

Programming Notes

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

The condition code setting is based on the halfword (bits 16:31) result.

In the R.U forma-t, the shift count is specified hy the least signHicant fO'.lr hits
of the second operand. The m<LXimum shift count is 15.

The state of the C flag indicates the state of the last bit shifted out of Position 16.

When the register specified by R1 contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

I

I

If the second operand .specifies a shUt of zero places, the cond:ttion code is set in accordance with I
the valu''3 con~ained in bits 16:31 of the register. The C flag is reset in this case.

29-428 R02 2/77 2-31

I

I

I

I

INSTRUCTIONS

Shift Right Halfword Logical (SRHL)
Shift Right Halfword Logical Short (SRIlLS)

Assembler Notation Op-Code

SRHL
SRHLS

R1, I2 (X2)
R1,N

CC
90

RIl
SF

Operation

Bits 16:31 of the register specified by R 1 are shifted right the number of places specified
by the second operand. Bits shifted out of Position 31 are shifted through the carry flag and
lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 16.
Bits 0:15 of the first operand remain unchanged.

Condition Code

C V
X 0
X 0
X 0
1 0

G
0
0
1
X

L
0
1
0
X

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

Programming Notes

2-32

The condition code setting is based on the halfword (bits 16:31) result.

In ~he RIl formE..t, the shift count is specified by th'3 least significant fO'Jr
bits of the second operand. The 111Lximum shUt count is 15.

The state of the C flag indicates the state of the last bit shifted out of the Position 31.

When the register specified by Rl contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Co~ditio~ Code is set in acenrdJ.nee with
the halfword va lu,e co~tained in bits 16:31 of the register. Thi~ C flag Is reset in this case.

29428 R02 2/77

INSTRUCTION

Rotate Left Logical (RLL)

Assembler Notation Op-Code Format

RLL Rl,12 (X2) EB RIl

Operation

The 32 bit first operand, contained in the register specified by R 1, is shifted left, end around,
the number of positions specified by the second operand. Bits shifted out of Position 0 are
shifted into Position 31.

Condition Code

C V G L
0 0 0 0
0 0 0 1
0 0 1 0

Programming Notes

Result is ZERO
Result is not ZERO
Result is not ZERO

I

The shift count is specified :).l th'3 least significant five bits 'Jf the second ~perand.
shift co:mt is 31.

The maximum I
When the register specified by R 1 contains fixed point data, the L flag set indicates a nega­
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register specified by Rl.

Example: RLL

1. Assembler Notation

LI REG9, Y'GG789ABC'
RLL REG9, X'0004'

Result of R L L Instruction:

2.

(REG 9) = 6789ABC5
Condition Code = 0010 (G = 1)

Assembler Notation

LI REGD, Y'88880000'
RLL REG9, X'O~3 '

Result of RLL Instruction:

(REG 9) = 4440q004
Condition Code = 0010 (G = 1)

29428 R02 2/77

Machine Code

F890 56789ABC
EB900004

Machine Code

F890 8888 0000
EB900003

Comments

(REG 9) = 56789ABC

Comments

(REG 9) = 88880000

2-33

I

I

I

INSTRUCTION

Hotate Right Logical (RRL)

Assembler Notation Op-Code Format

RRL R1,12 (X2) EA RIl

Operation

The 32 bit first operand, contained in the register specified by R 1, is shifted right, end
around, the number of positions specified by the second operand. Bits shifted out of Position
31 are shifted into Position O.

Condition Code

C V
0 0
0 0
0 0

G
0
0
1

L
0
1
0

Result is ZERO
Result is not ZEHO
Result is not ZERO

Programming Notes

The shift count is specified b.'l the least significant five bits of the second operand. The maximum
shift count is 31.

When the register specified by R 1 contains fixed point data, the L flag set indicates a nega-­
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register specified by Rl.

Example: RRL

1. Assembler Notation

L1 REG4, Y'12345(j78'
RRL REG4, X'04'

Result of RRL Instruction

2.

(REG4) = 81234567
Condition Code = 0001 (L = 1)

Assembler Notation

L1 REG,:!, Y'OOOOl111'
RRL REG4, X'Ol'

Result of RRL Operation:

2-34

(REG4) = '800000888'
Condition Code = 0001 (L = 1)

Machine Code

F'840 1234 5678
EA400004

Mach ine Code

F840 0000 1111
EA400001

Comments

(REG4) = 12345678

Comments

(REG 4) = 00001111

29-428 R06 5/78

INSTRUCTION

Test and S·~t (TS,

Assembler Notation

TS
TS

Operation

D2 (X2)
A2 (FX2 t SX2)

Op-Code

EO
EO

RX1,RX2
RX3

The halfword second operand is read from memory and, on the same cycle, written
back with the most significant bit set. The most significant bit of the second operand
is tested. The Condition Code reflects the state of this bit at the time of the memory
read. The other bits in the halfword are undefined.

Condition Code

C V G L
X X X 0
X X X 1

Programming Notes

Most significant bit reset
Most significant bit set

The Test and Set instru,~tion provides a mechanism for software synchro~1iza.tio~.

The Test and S'3t instru!Jtio~ can be used in a single processor enviro~ment as follows: Two:::>r
mDre user tasks rmning u::1der an Operating System share a halfword. This halfword IS located
in a memc·ry area refer ced to as Task Common. Ea'.:!h task ca!} access the h:1 lfword using the
TS instructio~. The synchronizatio~ sequence may be as follows:

TASK 1:

TASK 2:

S'3tS the most significant bit using the T8 instruction.

S'3llses the most significant blt using the') TS instruetio~; sees that it is set; per­
form~: the necessary software sYllchi'o~izatio!l; and then resets the most signi­
ficant hit of the halfword.

The Test and Set instru,~tion can :)(~ used :in a multi-processor system U.'3 follows: Two or moce
processors share a halfword. This halfword is located In a momc.ry area referred to as Shared
MI~mory. Each processor can access the halfword using the TS instru'Jtion. The synchroniza­
tion sequence can be exactly as explained for user tasks with the following su':::>tle difference.
Whereas TASKl and TASK2 can:10t a0cess the halfword':lt the sa::ne (real) time; two processors
can. Tho access is granted according to the priority.

The hardware/firmware onsures that no other accesses to the halfword have beon mcde during
the execution of the TS instructio~.

29428 R02 2/77 2-35

I

I

I

INSTRUCTION

Test Bit (TBT)

Assembler Notation

TBT
TBT

Operation

Rl,D2 (X2)
Rl,A2 (FX2,SX2)

Op-Code

74
74

Format

RXl,RX2
RX3

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array. Bits
in the array are counted from left to right starting with bit zero. The argument bit is located
and tested. The test does not change the bit.

Condition Code

C V G L
0 0 0 0
0 0 1 0

Example: TBT

Assembler Notation

LIS REGS,:3
TBT REG8, LABEL

Result of TBT Instruction:

Tested bit is ZERO
Te sted bit is ONE

Machine Code

2483
74800BC4

Memory Location X'BC4' unchanged
(REG 8) lUlchanged
Condition Code = 0010 (0 == 1)

2-36

Comments

(REG 8) = 3

LABEL = Halfword
in memory = X' B34A'

29-428 R06 5/75

INSTRUCTION

Set Bit (SBT)

Assembler Notation

SBT
SBT

Operation

R1,D2 (X2)
R1,A2 (FX2,SX2)

Op-Cod,e

75
75

RX1,RX2
RX3

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by Rl is the bit displacement into the array. Bits

in the array are counted from left to right starting with bit zero. The argument bit is located
and forced to one.

Condition Code

C V G L
0 0 0
0 0 1

0
0

Previous state of bit was ZE RO
Previous state of bit was ONE

Example: SBT

Assembler Notation

LIS REG5,8
SBT REG5, LABEL

Result of SBT Instruction:

Contents of LABEL = 21B4
(REG 5) unchanged
Condition Code = 0000 (G = 0)

29:"428 R06 5/78

Machine Code

2458
7550 1520

Comments

(REG 5) = 8
LABE L Located at
X'1520'. It contains
X'2134' .

2-37

I

I

I

INSTRUCTION

Complement Bit (CBT)

Assembler Notation

CBT
CBT

Operation

Rl,D2 (X2)
Rl, A2 (FX2, SX2)

Op-Code

77
77

RXl,RX2
RX3

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array. Bits
in the array are counted from left to right starting with bit zero. The argument bit is located
anc complemented.

Condition Code

C V G L
0 0
0 0

0
1

0
0

Previous state of bit was ZERO
Previous state of bit was ONE

Example: CST

Assembler Notation

LIS
CBT

REG9,3
REG9, LABEL

Result of CST Instruction:

2-38

Contents of LABEL -== 3813
(REG9) unchanged
Condition Code = 0000 (G = 0)

Machine Code

2493
'77900C4A

Comments

(REG 9) = 3
LABEL located
at X'C4A'. It
contains X' 2813' .

29-428 R06 5/78

INSTRUCTION

Reset Bit (RBT)

Assembler Notation

RBT
RBT

Operation

Rl,D2 (X2)
Rl,A2 (FX2,SX2)

Op-Code

76
76

RX1,RX2
RX3

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array. Bits I
in the array are counted from left to right starting with bit zero. The argument bit is located
and forced to ZERO.

Condition Code

C V G L
0 0 0
0 0 1

0
0

Previous state of bit was ZE RO
Previous state of bit was ONE

Example: RBT

Assembler Notation

LIS REG2,3
RBT REG2,LABEL

Result of RBT Instruction:

Contents of LABEL"- 2143
(REG 2) unchanged

Machine Code

2423
7620 1A42

Condition Code = 0010 (G = 1)

29-428 R06 5/78

Comments

(REG 2) = 3
LABEL located
at X'lA42' con­
tains X'3143'

2-39

I

I
INSTRUCTIONS

Cyclic Redundancy Check Modulo 12 (CRC 12)
Cyclic Redundancy Check Modulo 16 (CRC 16)

Assembler Notation Op-Code

CRC12 R1,D2 (X2) 5E
CRC12 R1,A2 (FX2,SX2) 5E
CRC16 R1,D2 (X2) 5F
CRC16 R1,A2 (FX2,SX2) 5F

Operation

Format

RX1,RX2
RX3
RX1,RX2
RX3

These instructions are used to generate either a 12 bit or a 16 bit Cyclic Redundancy Check
(CRC) character. The register specified by R1 contains, in Bits 24:31, the next data char­
acter to be included in the CRC. The second operand is the accumulated (old) CRC. The
polynominal used for the 12 bit CRe generation is:

X12+ Xll+ X3+ X2+ X + 1

The polynomial used for the 16 bit eRC generation is:

The second operand is replaced by the generated CRC character.

Condition Code

Unchanged

Programming Note

The register specified by R1 remains unchanged.

The second operand must be located on a halfword boundary.

Figure 2-5 illustrates a Flow Chart for CRC generation.

2-40 29-428 R02 2/77

29-428 R02 2/77

CRC12 ALGORITHM

STEP

(TEMP) <II------(R1 26:31) ® OLD CRC
(COUNT) +----6

SHIFT RIGHT
(TEMP) ... ---- (TEMP)

BY 1

1
2

3

(TEMP)"""-(TEMP) ® X'OF01' 4

(COUNT) <If--- (COUNT) - 1 5

NO

SECOND OPERAND 4--- (TEMP) 6

~
FOR CRC 16 ALGORITHM, USE: R124:31 INSTEAD OF R126:31 IN STEP 1

8 INSTEAD OF 6 IN STEP 2
X'A001' INSTEAD OF X'OF01' IN STEP 4

Figure 2-5. Flow Chart for CRC Generation

2-41

I

I

I
I

INSTRUCTION

Translate (TLATE)

Assembler Notation Op-Code Format

TLATE Rl,D2 (X2) E7 RXl,RX2
TLATE Rl, A2 (FX2,8X2) E7 RX3

Operation

The least significant bits (Bits 24:31) of the register specified by R 1 contain the character
to be translated. The fullword location specified by the second operand address contains the
address of a translation table. The table is made up of 256 halfwords. The character con­
tained in the register specified by R 1 is used as an index into the table.

If Bit 0 of the table entry corresponding to the index character is one, then Bits 8: 15 of the
table entry replace the index character, and the next sequential instruction is executed.

If Bit 0 of the table entry is zero, then Bits 1: 15 of the table entry contain the address,
divided by two, of a special handling routine. In this case, no translation takes place.
The address contained in Bits 1: 15 is shifted left by one, (multiplied by two). This address
replaces the current Location Counter, thereby effecting an unconditional branch.

Condition Code

Unchanged

Programming Note

The second operand address must be aligned on a fullword boundary.

I~ TRANSLATED
CHARACTER

,0 I(CHAR. HANDLING ROUTINE ADDRESS)/21

Example: TLATE

2-42

This example illustrates the use of the TLAT E instructio!1. The translatio!1 table mU3t either be
initialized or assembled to contain up to a total of 2.56 halfword entries. In this example. th8
table is initialized to contain 2 entries:

Label

TABADR

Assembler Notation

LIn REG5, X'8052'
8TH REG5, TABLE+4
LA REG7, TRANLAB
8RL8 REG7,1
8TH REG7, TABLE+A

DC A(TABLE)

Comments

LOAD TABLE ENTRY INTO REG5
PUT ENTRY INTO TABLE
LOAD ANOTHER TABLE ENTRY
DIVIDE BY 2
PUT ENTRY INTO TABLE

29-428 R02 2/77

Since a program is normally assembled as a relocatable program, the Address of
TRANLAB is not known, but for illustrative purposes assume address of TRANLAB
is X'B64'.

TABLE+O
TABLE+2
TABLE+4
TABLE+6
TABLE+B
TABLE+I0
TABLE+12

TABLE+508

o

,..L.

r

8

0

I : I
I I

0
I

I I
I !
I I
I 4 I
I

i T
! I

At TABLE+A is the address of TRANLAB divided by 2 (X'B64'/2)

15

:
I

5 I 2
I

I

3 I 2

I
I ,.

T

1. Using this table, this example translates the character in Hegister 2.

Label Assembler Notation Comments

LIS HEG2,2 (REG 2) = 0000 0002
TLATE HEG2, TABADH

Result of TLATE Instruction:

(REG2) = 0000 0052

Condition Code = Unchanged

The entry used = Contents at Address of (2 times contents of REG 2) + TABLE
= Contents at address TABLE + 4
= X'B052'

Since first bit of entry == 1, Direct translation is used and the contents of REG2 are replaced by
X'OOOO 0052'

2. Using the table, the following example shows how the TLATE instruction can
be used to branch to a special character handling routine:

Label

TRANLAB

29-428 R02 2/77

Assembler Notation

LIS REG5,5
TLATE HEG5, TABADR

LHR H6, H5
LB H3,0 (H6)

Comments

REG5 = 0000 0005

THESE INSTRUCTIONS
OPERATE ON THE SPECIAL
CHARACTER.

2-43

Result of TLATE Instruction:

(REG5) = 0000 0005

Condition Code = Unchanged

Control is Transferred to subroutine at address TRANLAB (X'864').

The entry used = Contents at Address of (2 times contents of REG 5) + TABLE
= Contents at Address TABLE + A
= X'0432'

Since the first bit of entry = 0, the microcode multiplies the entry by 2 and transfers to TRANLAB
(at address X'864') and continues executing instructions from the new address.

Alternately, the tal:>le may be assembled with the proper constant values. Th'2 "T" type
constant may be used to assemble the subrou~ine addresses in the proper form2t.

For example:

ALIGN 2
TABLE EQU *

DO 236
DC H'O'
ORG TABLE-d
DC X'80,'j2'
aUG TABLE+X'A'
DC T(THANTAB)
ORG TABLE+512

2-44 29-428 R02 2/77

I
INSTRUCTIONS

Add to Top of List (ATL)
Add to Bottom of Lj.st (ABL)

Assembler Notation

ATL Rl, D2 (X2)
ATL Rl,A2 (FX2,SX2)
ABL Rl,D2 (X2)
ABL Rl,A2 (FX2,SX2)

Operation

Op-Code Format

64 RX1,RX2
64 RX3
65 RX1,RX2
65 RX3

The register specified by R 1 contains the fullword element to be added to the list. The list
is located in memory at the address of the second operand. The number of slots used tally
is compared with the number of slots in the list. If the number of slots used equals the num­
ber of slots in the list, an overflow condition exists. The element is not added to the list
and the overflow flag in the Condition Code is set. If the number of slots used tally is
less than the number of slots in the list, it is incremented by one, the appropriate
pointer is changed, and the element is added to the list. Refer to Figure 2-4.

Condition Code

C V G L
0 0 0 0
0 1 0 0

Programming Notes

Element added successfully
List overflow

These instructions manipulate circular lists as described in the introduction to this chapter.

The second operand location must be on a fullword boundary.

The add to top of list instruction manipulates the current top pointer in the list. If no over­
flow occurs, the current top pointer, which points to the last element added to the top of the
list, is decremented by one and the element is inserted in the slot pointed to by the new cur­
rent top pointer. If the current top pointer was zero on entering this instruction, the cur­
rent top pointer is set to the maximum slot number in the list. This condition is referred
to as list wrap.

The add to bottom of list instruction manipulates the next bottom pointer. If no overflow oc­
curs, the element is inserted in the slot pointed to by the next bottom pointer, and the next
bottom pointer is incremented by one. If the incremented ne:hi; bottom pointer is greater
than the maximum slot number in the list, the next bottom pointer is set to zero. This con­
dition is referred to as list wrap.

See examples in the next section.

29-428 R02 2/77 2-45

I

I

INSTRUCTIONS

Remove from Top of List (RTL)
Remove from Bottom of List (RBL)

Assembler Notation Op-Code Format

RTL R1, D2 (X2) 66 RX1,RX2

RTL R1,A2 (FX2,SX2) 66 RX3
RBL R1, D2 (X2) 67 RX1,RX2

RBL R 1, A2 (FX2, SX2) 67 RX3

Operation

The element removed from the list replaces the contents of the register specified by R 1.
The list is located at the address of the second operand. If, at the start of the instruction
execution, the number of slots used tally is ZERO, the list is already empty and the instruc­
tion terminates with the overflow flag set in the Condition Code. This condition is referred
to as list underflow; in this case, Rl is undefined. If underflow does not occur, the number
of slots used tally is decremented by one, the appropriate pointer is changed, and the element
is extracted and placed :in :he register specified 'Jy Hl.

Condition Code

C V
0 0
0 0
0 1

G
0

1
0

L
0
0
0

List now empty
List is not yet empty
List was already empty

Programming Notes

2-46

These instructions manipulate circular lists as described in the introduction to this chapter.

The second operand location must be on a full word boundary.

In the case of list underflow, the contents of the register speCified by Rl are undefined.

The remove from top of list instruction manipulates the current top pointer. If no underflow
occurs, the current top pointer points to the element to be extracted. The element is ex­
tracted, and placed in the register specified by Rl. The current top pointer is incremented
by one and compared to the maximum slot number. If the current top pointer is greater than
the maximum slot number, the current top pointer is set to ZERO. This condition is referred
to as list wrap.

The remove from bottom of list instruction manipulates the next bottom pointer. If no under­
flow occurs, and the next bottom pointer is ZERO, it is set to the maximum slot number (list
wrap); otherwise, it is decremented by one, and the element now pointed to is extracted and
placed in the register specified by Rl.

29-428 R02 2/77

Examples: List Instructions (ATL, ABL, RTL, RBL)

The following are examples of the use of the four list processing instructions.

Thc original list is normally set up as shown in Figure 2-6.

Labels

LIST

SLOT 0

SLOT 1

SLOT 2

SLOT 3

SLOT 4

29-428 RO 1 1/76

0005 0000

0000 0000

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

where HALFWORDS at

LIST

LIST + 2

LIST + 4

LIST + 6

of total slots

5 (in this example)

of entries used

o

current top of Ii st

slot 0

next bottom of list

slot 0

Figure 2-6. List Processing Instructions

Assembler Notation

LIS REGO,O

STH REGO, LIST+2

ST REGO, LIST+4

LIS REG1,1

LIS REG2,2

LIS REG3,3

LIS REG4,4

LIS REG5,5

LIS REG6,6

STH REG5, LIST

Results and Comments

INITIALIZE # OF ENTRIES USED TO 0

INITIALIZE POINTERS TO 0

REGISTERS 1 THRU 6 CONTAIN

1 THRU 6 RESPECTIVELY

TOTAL # OF ENTRIES = 5

2-47

REF1 ATL REG1, LIST

I

REF2 ATL REG2, LIST

REF3 A TL REG3, LIST

2-48

LIST 0005 0001

0004 0000 (List wrap)

SLOT 0 UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 UNDEFINED

SLOT 3 UNDEFINED

SLOT 4 0000 0001

Condition Code = 0000
Curn~::1t Top Pointer = Slot 4
Next Bottom Pointer =. Slot 0

LIST 0005 0002
--

0003 0000

SLOT 0 UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 UNDEFINED

SLOT 3 0000 0002

SLOT 4, 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 0

LIST 0005 0003

0002 0000

SLOT 0 UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next B ottorn Pointer = Slot 0

29-428 R02 2/77

REF4 ABL REG4, LIST

HEF5 ABL REG5, LIST

REF6 ABL REG6, LIST

29-428 R02 2/77

LIST 0005 0004

0002 0001

SLOT 0 0000 0004

SLOT 1 UNDEFINED

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 1

LIST 0005 0005

0002 0002

SLOT 0 0000 0004

SLOT 1 0000 0005

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 2

LIST 0005 0005

0002 0002

SLOT 0 0000 0004

SLOT 1 0000 0005

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0100
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 2

(List overflow) I

2-49

I

I

I

REF7 RTL REG7, LIST

REFS RBL REGS, LIST

REF9 RTL REG9, LIST

LIST 0005 0004
----~--

0003 0002

SLOT a 0000 0004

SLOT 1 0000 0005
--

SLOT 2 X 0000 0003

SLOT 3

SLOT 4

SLOT a

0000 0002

0000 0001

(REG 7) =- 0000 000,3

Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 2

LIST 0005 0003

0003 0001
1--

0000 0004
1--

SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3

SLOT 4

SLOT 0

0000 0002

0000 0001

(REG :3) = 0000 000,5
Condition Code = 0010
Current Top Pointer = 3
Next Bottom Pointer = 1

LIST 0005 0002

0004 0001
1---

0000 0004

SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 0000 0001

(REG 9) = 0000 0002
Condition Code == 0010
Current Top Pointer = 4
Next Bottom Pointer = 1

NOTE

X cc_ Entry removed from hst, and is not accessible through further manipulation of list
instructions.

2-50 29-428 R02 2/77

REFIO RBL REGIO, LIST LIST 0005 0001

0004 0000

SLOT 0 X 0000 0004

SLOT I X 0000 0005

S.LOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 0000 0001

(REG 10) = 0000 OOO·i
Condition Code = 0010
Current Top Pointer = 4
Next Bottom Pointer = 0

REFll RTL REG11, LIST LIST 0005 0000

\\

REF12 RTL REG12, LIST

SLOT 0

SLOT 1

SLOT 2

SLOT 3

SLOT 4

0000 0000

X 0000 0004

X 0000 0005

X 0000 0003

X 0000 0002

X 0000 0001

(REG 11) = 0000 0001
Condition Code = 0000 (List is now empty)
Current Top Pointer = 0
Next Bottom Pointer = 0

LIST 0005 0000

0000 0000

SLOT 0 X 0000 0004

SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 X 0000 0001

(REG 12) = UNDEFINED
Condition Code = 0100 (List was already empty)
Current Top Pointer = 0
Next Bottom Pointer = 0

NOTE

X= Entry removed from list, and is not accessible through further manipulation of list
instructions.

29-428 R02 2/77 2-51/2-52

•

I

I

CHAPTER 3

BRANCHING

In normal operations, the Processor executes instructions in sequential order. The Branch
instructions allow this sequential mode of operation to be varied, so that programs can loop,
transfer control to subroutines, or make decisions based on the results of previous operations.

OPERATIONS

The second operand in Branch instructions is the address of the memory location to which con­
trol is transferred. The address may be contained in a register or it may be specified in the in­
struction as the second operand address.

Decision Making

The Conditional Branch instructions permit the program to make the decisions based on previous
results. In these instructions, the R1 field contains a four bit mask, M1, which is tested against
the Condition Code. The result of the test determines whether the branch is taken, or the next
sequential instruction is executed.

The following examples show previous Condition Code, mask spccified in a branch instruction,
and thc result of the test on which branch or no branch decision is made.

Previous Result
Condition Code Mask(M1) of Test (True/False)

0000 0010 0000 (False)
0001 1010 0000 (False)
1001 1000 1000 (True)
0100 0100 0100 (True)
1010 0010 0010 (True)
0010 0011 0010 (True)
0010 0000 0000 (False)

Subroutine Linkage

The Branch and Link instructions allow branching to subroutines in such a way that a return ad­
dress is passed to the subroutine. In these instructions, the address of the instruction immedi­
ately following the Branch instruction is saved in the register speCified by R 1.

BRANCH INSTRUCTION FORMATS

The Branch instructions use the Register to Register (RR), the Short Form (SF), and the Regis­
ter and Indexed Storage (RX) formats.

~C)-428 ROI 1/76 3-1

BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC
BFCR
BFBS
BFFS
BTC
BTCR
BTBS
BTFS

BAL
BALR
BXLE
BXH

Branch on False Condition
Branch on False Condition Register
Branch on False Condition Backward Short
Branch on False Condition Forward Short
Branch on True Condition
Branch on True Condition Register
Branch on True Condition Backward Short
Branch on True Condition Forward Short

Branch and Link.
Branch and Link Register
Branch on Index Low or Equal
Branch on Index High

I Refer to Appendix 4 for the list of a::ldHional branch mneml)~lcs recognized ~1Y the Assembler.

3-2 29-428 R02 2/77

INSTRUCTIONS

Branch on True Condition (BTC)
Branch on True Condition Register (BTCR)
Branch on True Condition Backward Short (BTBS)
Branch on True Condition Forward Short (BTFS)

Assembler Notation Op-Code

BTC Ml,D2 (X2) 42
BTC Ml, A2 (FX2, SX2) 42
BTCR Ml,R2 02
BTBS M1,N 20
BTFS M1,N 21

Operation

Format

RXl,RX2
RX3
RR
SF
SF

The Condition Code of the Program Status Word is tested for the conditions specified by the
mask field, Ml. If any of the conditions tested are found to be true, a branch is executed to
the second operand location. If none of the conditions tested is found to be true, the next
sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added or subtracted
from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

Example: BTC

Assembler Notation

LH ru, X'IOO'

BTC 3,LOC

29-428 R02 2/77

Machine Code

4810 0100

4230 ABCO

Comments

Load halfword (X' 1234') located
at X'100' Condition Codc is set to
CVGL = 0010 Mask is 3, i. c. ,
M1 = 0011. Perform logical AND
between CVGL and Ml, i. e., 0010
and 0011. The result is 0010,
i. e., true; therefore, a branch is
taken to LOC.

3-3

I

I

I

INSTRUCTIONS

Branch on False Condition (BFC)
Branch on False Condition Ragister (BFCR)
Branch on False Condition Backward Short (BFBS)
Branch on False Condition Forward Short (BFFS)

Assembler Notation Op-Code Format

BFC M1,D2 (X2) 43 RX1,RX2
BFC M1,A2 (FX2,SX2) 43 RX3
BFCR M1,R2 03 RR
BFBS M1,N 22 SF
BFFS M1,N 23 SF

Operation

The Condition Code of the Program Status Word is tested for the conditions specified in the
mask field, M1. If all conditions tested are found to be false, a branch is executed to the
second operand location. If any of the conditions tested is found to be true, the next sequen­
tial instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added to or subtracted
from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

Example: BFC

3-4

Assembler Notation

LCS
BFC

IU,2
9, LaC

Machine Code

2512
4390 ABCO

~omments

(R1) = FFFFFFFE. Condition Code,
CVGL = 0001 Mask is 1001. Perform
logical AND between mask and
CVGL, :i. e., 1001 and 0001. The
result is 0001, i. e., true, there­
fore, a branch is not taken in LaC.

29-428 R06 5/78

INSTRUCTIONS

Branch and Link (BAL)
Branch and Link Register (BALH)

Assembler Notation

BAL
BAL
BALR

Operation

Rl,D2 (X2)
R 1, A2 (FX2, SX2)
Rl,R2

Op-Code

41
41
01

Format

RXl,RX2
RX3
RR

The address of the next sequential instruction is saved in the register specified by R 1, and
a branch is taken to the second operand address.

Condition Code

Unchanged

Programming Notes

The second operand location must be on a halfword boundary.

The branch address is calculated before the register specified by R1 is changed. R1 may specify
the same register as X2, FX2, SX2, or R2.

Example: BAL

The following example illustrates the use of the BAL instruction. The instruction causes control
to be transferred to a subroutine called SUBROUT. After completion of the subroutine, the link­
ing register is used to branch back to the next sequential instruction after the BAL; i. e., the
instruction labelled RETURN.

Label

BEGIN

MAIN RETURN

PROG

SUBROUTINE

RTNEND

Assembler Notation

BAL REG4, SUBROUT

XR R6,R6

STn R6, LAB+4

LHL RS,LOC

AHI RS,10

BR REG4

NOTE

Comments

TRANSFER TO SUBROUT

THE RETURN ADDRESS OF
THE SUBROUTINE IS IN REG4

RETURN TO XR INST.

Within the subroutine, the linking register (REG4 in the example) should not be used.

Result of BAL Instruction:

Condition Code = Unchanged

29-428 R02 2/77 3-5

I

I

•

INSTRUCTION

Branch on Index Low or Eq'lal (BXLE)

Assembler Notation Op-Code

BXLE
BXLE

HI, D2 (X2)
Hl,A2 (FX2,SX2)

Cl
Cl

RXl,HX2
HX3

Set Up

In
Hl+l
Hl+2

°E------------------------~31 Starting index value
Incrcment value
Limit or final value

Prior to execution of this instruction, the register specified by Rl must contain a starting index value.
The register specified by Rl+1 must contain an increment valuc. The register specified by RI+2 must
contain a comparand (limit or final value). All values may be signed.

Operation

Execution of this instruction causes the increment value to be added to the index value. The
result is logically compared to the limit or final value. If the index value is less than or
equal to the limit value, a branch is exccuted to the second operand location. If the index
value is gTeater than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register specified by R 1.

The register numbers wrap around, i. e., three consecutive registers used by this instruction, may be
6, 7, 8 or 14, 15, 0 or 15, 0, I, etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value contained
in thc register specified by RI.

The register specified by RI may be thc same as X2, FX2 or SX2.

Example: BXLE

3-6

Transfer 10 bytes in memory starting at Memory Location Labelled BUFO to memory location
labelled BUFl.

Labels Assembler Notation

LIS REG3,0
LIS REG4,1
LIS R5,9

AGAIN LB REGO, BUFO(H3)

BUFO
BUF1

STB
BXLE

DS
DS

REGO, BUF1(Hl)
R3,AGAIN

10
10

Result of BXLE Instruction:

Condition Code = Unchanged by BXLE Instruction
(REG:3) "" OOOOOOOA
(REG4) = 00000001
(REG5) = 00000009

Comments

(REG 3) = STARTING INDEX VALUE = 0
(REG 4) = INCREMENT VALUE
(HEG 5) = FiliAL VALUE = 9

(REG 0) = 1 BYTE FROM BUFO
COpy 1 BYTE TO BUFI
IF (REG 3) = (REG 5), DONE

29-428 R02 2/77

INSTRUCTION

Branch on Index High (BXH)

Assembler Notation

Set Up

BXH
BXIl

RI,D2 (X2)
RI,A2 (FX2,SX2)

Op-Code

co
co

IU Starting index \"alue
RI'1 Increment yalue
IU-~2 Limit or final \"alue

Format

RXI, RX2
RX3

Prior to execution of this instruction, the register specified by Rl must contain a starting
index yalue. The register specified by Rl .. l must contain an increment \"alue. The register
specified b~" Rl~2 must contain a comparand (limit or final \"ahle). All \-alues may be signed.

Operation

Execution of this instruction causes the increment value to be added to the index value. The
result is logically compared to the limit or final value. If the index value is greater than
the limit value, a branch is executed to the second operand location. If the index value is
equal to or less than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register specified by R 1.

The register numbers wrap around, i. e., three consecuti\"e registers and by this instruction
may be G, 7, 8 or 1-1:, 1;3, 0 or 16, 0, I etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value con­
tained in the register specified by Rl.

The register specified by RI may be the same as X2, FX2 or SX2.

Example: BX H

The following example shows hov,l to set up a counter (1 - 9) using the BX11 instruction.

Assembler Notation Comment

LIS REGl,l (REG 1) = 0000 0001 (INDEX)
LIS
LIS

BEGIN BXH

REG2, I
REG3,9
REGl, LABEL

(REG 2) = 0000 0001 (INCREl\IENT)
(REG 3) = 0000 0009 (COMPARAND)
COMPARE INDEX WITH COMPARAND

LABEL

LII

B
LA
ST

Result of BXH Instruction:

RG, COtrt\T

BEGIt\
H8, RT1\"
R8, l\IE:l'.I

BRANCH TO BXH IKSTRUCTION
EXIT FROl\I BXH

Code bet\veen the instructions labelled BEGIN and LABEL will be executed 8 times.

Condition Code = enchanged by BXH instruction
(REGl) = 0000 0010
(REG2) = 0000 0001
(REG3) = 0000 0009

29-428 ROG 5/78 3-7

I

EXTENDED BRANCH MNEMON ICS

The CAL Assembler supports 14 extended branch mnemonics that generate the branch op-code
(true or false conditional) and the condition code mask required. The programmer must supply
the second operand address (symbolic or absolute). In the case of short format (SF) branch in­
structions, the second operand branch address must be within + 15 halfwords of the current lo­
cation counter. The CAL Assembler determines the backward or forward relationship of the
second operand address and generates the appropriate operation code.

Examples of extended branch mnemonic:

LAP

LOERR
ERRORl

CONTIN

LH
BNZ
SRLS
BNCS
BS
LIS
AIS
SIS
BPS
SIS
BO
LH

R5,LOOPI
LOERR
R6,1
LAP
CONTIN
R6,O
R6,1
R5,4
ERRORI
R8,1
ERROR2
Rl,TIME

Appendix 4 lists the extended branch mnemonics and the proper operand form to be used with
each mnemonic. The actual machine code generated is also listed.

The instructions described in this section are:

BC Branch on Carry
BCR Branch on Carry Register
BCS Branch on Carry Short

BNC Branch on No Carry
BNCR Branch on No Carry Register
BNCS Branch on No Carry Short

BE Branch on Equal
BER Branch on Equal Register
BES Branch on Equal Short

BNE Branch on Not Equal
BNER Branch on Not Equal Register
BNES Branch on Not Equal Short

BL Branch on Low
BLR Branch on Low Register
BLS Branch on Low Short

BNL Branch on Not Low
BNLR Branch on Not Low Register
BNLS Branch on Not Low Short

BM Branch on Minus
BMR Branch on Minus Register
BMS Branch on Minus Short

BNM Branch on Not Minus
BNMR Branch on Not Minus Register
BNMS Branch on Not Minus Short

3-8

BP
BPR
BPS

BNP
BNPR
BNPS

BO
BOR
BOS

BNO
BNOR
BNOS

BZ
BZR
BZS

BNZ
BNZER
BNZS

B
BR

NOP
NOPR

Branch on plus
Branch on Plus Register
Branch on Plus Short

Branch on Not Plus
Branch on Not Plus Register
Branch on Not Plus Short

Branch on Overflow
Branch on Overflow Register
Branch on Overflow Short

B ranch on No Overflow
Branch on No Overflow Register
Branch on No Overflow Short

B ranch on Zero
Branch on Zero Register
Branch on Zero Short

Branch on Not Zero
Branch on Not Zero Register
Branch on Not Zero Short

Branch (Unconditional)
Branch Register (Unconditional)

No Operation
No Operation Register

29"""1428 R06 5/78

INST'RUCTION

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation

BC
BC
BCR
BCS

Operation

D2(X2)
(A2(FX2, SX2)
R2
A

Op-Code + M1

428
428
028
208 (Backward)
218 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the Carry (C) flag is in the Condigion Code is set, a branch is taken to the second operand
location. If the Carry flag is not set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register speciried by R2.

Example: BCS

Assembler Notation

SHIFT SLLS
BCS

29-428 R06 5/78

R9,1
SHIFT

Machine Code

1191
2081

Comments

Register 9 is
shifted left un­
til the firs t zero
bit is shifted out
left.

3-9

INSTRUCTION

Branch on No Carry (BNC)
Branch on No Carry Register (BNCR)
Branch on No Carry Short (BNCS)

Assembler Notation

BNC
BNC
BNCR
BNCS

Operation

D2(X2)
A2(FX2, SX2)
R2
A

Op-Code + Ml

438
438
038
228 (Backward)
238 (Forward)

Format

RXl,RX2
RX3
nn
SF

If the Carry (C) flag in the Cbndition Code is not set, a branch is taken to the second operand
location. If the Carry flag is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-10 29-428 R06 5/78

INSTRUCTION

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Equal Short (BES)

Assembler Notation

BE
BE
BER
BES

Operation

D2(X2)
A2 (FX2, SX2)
R2
A

Op-Code + M1

433
433
033
223 (Backward)
233 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the G flag and the L flag are both reset in the Condition Code, a branch is taken to the
second operand location. If either flag is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the TITI format, the granch address is contained in the register specified by TI2.

Example: BE

Assembler Notation

CLHI
BE

29-428 R06 5/78

R4, X'23'
OPTIN

Machine Code

C540 0023
4330 OAOO

Comments

If R4 contains X'23' a branch
is taken to location X' AOO'.
Otherwise the next sequential
instruction is executed.

3-11

INSTRUCTION

Branch on Not Equal (BNE)
Branch on Not Equal Register (BNER)
Branch on Not Equal Short (BNES)

Assembler Notation

BNE
BNE
BNER
BNES

Operation

D2(X2)
A2(FX2, SX2)
R2
A

Op-Code + M1

423
423
023
203 (Backward)
213 (Forward)

Format

RXl,RX2
RX3
RR
SF

If the G flag or the L flag is set in the Condition Code, a branch is taken to the second
operand locationl If neither flag is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RH format, the branch address is contained in the register specified by H 2.

3-12 29-428 R06 5/78

INSTRUCTION

Branch on Low (BL)
Branch on Low Register (BLR)
Branch on Low Short (BLS)

Assembler Notation

BL
BL
BLR
BLS

Operation

D2(X2)
A2 (FX2, SX2)
R2
A

Op-Code + M1

428
428
028
208 (Backward)
218 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the Carry (C) flag in the Condition Code is set, a Branch is taken to the secondoperand
address. If the Carry flag is not set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by H2.

Example: BL

Assembler Notation

CLHI
BL

Rl, X'FF'
RESTART

29-428 R06 5/78

Machine Code

C51000FF
4280 OAOO

Comments

Rl is compared to X'OOFF'
If Rl is less than X' FF', a
branch is taken to memory
location X'OAOO'

3-13

INSTRUCTION

Branch on Not Low (BNL)
Branch on Not Low Register (BNLR)
Branch on Not Low Short (BNLS)

Assembler Notation

BNL
BNL
BNLR
BNLS

Operation

D29X2)
A2(FX2, SX2)
R2
A

Op-Code + M1

438
438
038
228 (Backward)
238 (Fowward)

Format

RXl,RX2
RX3
RR
SF

If the Carry (C) flag in the Condition Code is reset, a branch is taken to the second operand
address. If the Carry flay is set, the next sequential instruction is executed.

Condition Code

unchanged

Programming Note

The branch address must be located 011 a halfword boundary.

In the RR format, the branch address is contained in the register speciried by R2.

3-14 29-428 R06 5/78

INSTRUCTION

Branch on Minus (BM)
Branch on Minus Register (BMR)
Branch on Minus Short (BMS)

Assembler Notation

BM
BM
BMR
BMS

Operation

D2(X2)
A2(FX2, SX2)
R2
A

Op-Code + M1

421
421
021
201 (Backward)
211 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the Less Than (L) flag in the Condition Code is set, a branch is taken to the second operand
location. If the L flag is not set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by H2.

Example: 8M

Assembler Notation

SIS R3,1
BM CONTINUE

29-428 R06 5/78

Machine Code

2631
4210 10AO

Comments

If R3 is less than 0 after
the subtraction, a branch
is taken to X'10AO'.

3-15

INSTRUCTION

Branch on Not Minus (BNM)
Branch on Not Minus Register (BNMH)
Branch on Not Minus Short (BNMS)

Assembler Notation

BNM
BNM
BNMR
BNMS

Operation

D2(X2)
A2(FX2, SX2)
R2
A

Op-Code + M1

431
431
031
221 (Backward)
231 (Forward)

Format

RXl,RX2
RX3
RR
SF

If the Less Than (L) flag in the Condition Code is reset, a branch is taken to the second
operand location. If the L flag is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RH format, the branch address is contained in the register specified by R2.

3-16 29-428 R06 5/78

INSTRUCTION

Branch on Plus (BP)
Branch on Plus Register (BPR)
Branch on Plus Short (BPS)

Assembler Notation

BP
BP
BPR
BPS

Operation

D2(X2)
A2(FX2, SX2)
R2
A

Op-Code + M1

422
422
022
202 (Backward)
212 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the Greater Than (G) flag in the Condition Code is set, a branch is taken to the second
operand location. If the G flag' is not set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-428 R06 5/78 3-17

INSTRUCTION

Branch on Not Plus (BNP)
Branch on Not Plus Register (BNPR)
Branch on Not Plus Short (BNPS)

Assembler Notation

BNP D2(X2)
BNP A2(FX2, SX2)
BNPR R2
BNPS A

Operation

Op-Code + Ml

432
432
032
222 (Backward)
232 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the Greater Than (G) flag in the Condition Code is reset, a branch is taken to the second
operand location. If the G flag is set, the next sequential ins truction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the HH format, the branch address is contained in the register specified by R2.

3-18 29-428 R06 5/78

INSTRUCTION

Branch on Overflow (BO)
Branch on Overflow Register (BaR)
Branch on Overflow Short (BOS)

Assembler Notation

BO
BO
BOR
BaS

Operation

D2(X2)
A2(FX2, SX2)
R2
A

Op-Code + Ml

424
424
024
204 (Backward)
214 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the Overflow (V) flag in the Condition Code is set, a branch is taken to the second
operand location, If the V flag is reset, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RH format, the branch address is contained in the register specified by R2.

29-428 R06 5/78 3-19

INSTRUCTION

Branch on No Overflow (BNO)
Branch on No Overflow Register (BNOR)
Branch on No Overflow Short (BNOS)

Assembler Notation

BNO
BNO
BNOR
BNOS

Operation

D2(X2)
A2(FX2, SX2)
R2
A

Op-Code + Ml

434
434
034
224 (Backward)
2:14 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the Overflow (V) flag in the Condition Code is reset, a branch is taken to the second operand
location. If the V flag is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-20 29-428 R06 5/78

INSTRUCTION

Branch on Zero (BZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation

DZ
BZ
BZR
BZS

Operation

D2(X2)
A2(FX2, SX2)
R2
A

Op-Code + M1

433
433
033
223 (Backward)
233 (Forward)

Format

RXl,RX2
RX3
RR
SF

If the G and L flags are both reset in the Condition Code, a branch is taken to the second
operand location. If the G or L flag is set, the next sequential instruction is execut.ed.

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-428 R06 5/78 3-21

INSTRUCTION

Branch on Not Zero (BNZ)
Branch on Not Zero Register (BNZ)
Branch on Not Zero Short (BNZS)

Assembler Notation

BNZ D2(X2)
BNZ A2(FX2, SX2)
BNZR R2
BNZS A

Operation

Op-Code + M1

423
423
023
203 (Backward)
213 (Forward)

Format

RXl, RX2
RX3
RR
SF

If the G or L flag in the Condition Code is set, a branch is taken to the second operand
address. If the G and L flags are both reset, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-22 29-428 R06 5/78

INSTRUCTION

Branch (Unconditional) (B)
Branch Register (Unconditional) (BR)
Branch Short (Unconditional) (BS)

Assembler Notation Op-Code + M1

B D2(X2) 430
B A2(FX2, SX2) 430
BR R2 030
BS A 220 (Backward)

230 (Forward)

Operation

A branch is unconditionally taken to the second operand address.

Condition Code

Unchanged

Programming Note

The branch address must be located on a halfword boundary.

Format

RXl, RX2
RX3
RR
SF

In the RR format, t.he branch address is contained in t.he register specified by R2.

Example: B

Assembler Notation

B OPTIN

29-428 R06 5/78

Machine Code

4300 OAOO

Comments

An unconditional branch is
taken to location X'OAOO'.

3-23

INSTRUCTION

No Operation (NO P)
No Operation Register (NOPR)

Assembler Notation

NOP
NOPR

Operation

D2(X2)
R2

Op-Code + M1

420
020

Format

RX
RR

After a short delay (instruction decode time), the next sequential instruction is ex­
ecuted.

Condition Code

Unchanged

Programming Note

(D2(X2) and R2 are ignored and usually equal to zero (0).

Example: NOP, NOPR

Assembler Notation

NOP
NOPR

3-24

o
o

Machine Code

4200 0000
0200

Comments

No Operation
No Operation

29-428 R06 5/78

CHAPTER 4

FIXED POINT ARITHMETIC

Fixed Point Arithmetic instructions provide a complete set of operations for calculating addresses
and indexes, for counting, and for general purpose fixed point arithmetic.

DATA FORMATS

There are three formats for fixed point data: the halfword, the fullword, and the double word.
In each of these formats, the most significant bit (Bit 0) is the Sign bit. The remaining bits,
either 15, 31 or G3, represent the magnitude.

o 1 HALFWORD 15

o 1 FULLWORD

o DOUBLE WORD 63

~Isl ______ ~~~~: ______ ~I
Figure 4-1. Fixed Point Data Words Formats

Positive values are represented in true binary form with a Sign bit of ZERO. Negative values are
represented in two's complement form with a Sign bit of ONE. To change the sign of a number,
the two's complement of the number is produced as follows:

1. Change all zeros to ones, and all ones to zeros.
2. Add one.

FIXED POINT NUMBER RANGE

Fixed pomt numbers represent integers. Table 4-1 shows relation between different formats
along with decimal values.

TABLE 4-1. FIXED POINT FORMAT RELATIONS

DOUBLE WORD FULLWORD HALFWORD DECIMAL

8000000000000000 - 92233 72036 85477 5808
(MOST NEGATIVE)

80000000 - 2147483648
(MOST NEGATIVE)

8000 (MOST NEGATIVE) - 32768
FFFFFFFFFFFFFFFF FFFFFFFF FFFF (LEFT NEGATIVE) - 1
0000000000000000 00000000 0000 0
0000000000000001 00000001 0001 1

7FFF (MOST POSITIVE) 32767
7FFFFFFF 2147483647

(MOST POSITIVE)
7FFFFFFFFFFFFFFF 922337203685477 5807

(MOST POSITI VEl

29-428 R02 2/77 4-1

I

OPERATIONS

The Fixed Point instructions include both fullword and halfword operations. Fullword operations
take place between (a) the contents of two general registers, or (b) between the contents of a
general register and a fullword stored in memory, or (c) between the contents of a general
register and a fullword obtained from the instruction stream. Fullword multiply produces a
double word result which is contained in two adjacent registers. F'ullword divide operates on a
double word contained in two adjacent registers.

'/

Halfword operations take place between a fullword contained in one of the general registers and
a halfword contained in mcmory. Before the operation is started, the halfword in memory is ex­
panded to a fullword by propagating the most significant bit (Sign bit) into the high order bits of
the fullword. (The Halfword Multiply and Divide instructions are exceptions to this rule.)

CONDITION CODE

All Fixed Point Arithmetic instru.:::tions except Multiply and Divide affect the CO'1ditio:'1 Cod·C). The
Condition Code indicates the effect of the operatio:'1 on the 32 bit result.

In fixed point Add and Subtract operations 9 because the arguments are represented in two's
complement form, all bits, sign included, participate in forming the result. Consequently, the
occurrence of a carry or borrow has no real arithmetic significance.

For example, an Add operation between a minus one (FFFF FFFF) and a plus two (0000 0002)
produces the correct result of plus one (0000 0001) and a carry. The Condition Code is set to
1010 (C = 1 and G = 1). "Carry only" means that the complete result, which in this case would
have been 1 0000 0001, would not fit in 32 bits.

An overflow occurs when the result does not fit in 31 bits. Note that bit "zero" must be re­
served for the sign of the result. For example, adding one to the largest positive fixed point

I value will produce an overflow:

7FFF FFFF
-+- 0000 0001
:= 8000 0000

the condition code is 0101 (V = 1 and L = 1)

The result, 8000 0000, is logically correct, but because the sign bit is negative when the result
should be positive, the overflow condition exists.

The columns of the Condition Code table show the state of the C, V, G and L flags for the
specific result.

The I X' in the Condition Code column means that particular flag is not defined, i. e., the
flag can be 0 or 1. Hence, no inference should be drawn by testing that particular flag.

4-2 29-428 R06 5/78

FIXED POINT INSTRUCTION FORMATS

The fixed point instructions use the Register to Register (RR), the Short Form (SF), the Register
and Indexed Storage (RX), and the Register and Immediate (RI) instruction formats.

FIXED POINT INSTRUCTIONS

The fixed point instructions described in this section are:

A Add CI Compare Immediate
AR Add Register CH Compare Halfword
AI Add Immediate CHI Compare Halfword Immediate
AIS Add Immediate Short M Multiply
AH Add Halfword MR Multiply Register
AHI Add Halfword ImmeJiate MH Multiply Halfword
AM Add to Memory MHR Multiply Halfword Register
AHM Add Halfword to Memory D Divide
S Subtract DR Divide Register
SR Subtract Register DB Divide Halfword
SI Subtract Immediate DHR Divide Halfword Register
SIS Subtract Immediate Short SLA Shift Left Arithmetic
SH Subtract Halfword SLHA Shift Left Halfword Arithmetic
SHI Subtract Halfword Immediate SRA Shift Right Arithmetic
C Compare SRIIA Shift night lIalfword Arithmetic
CR Compare Register CHVR Convert to I-Ialfword Value Register

29-428 ROJ 1/76 4-3

I
I

INSTRUCTIONS

Add (A)
Add Register (AR)
Add Immediate (AI)
Add Immediate Short (AIS)

Assembler Notation Op-Code Format

A nl,D2 (X2) 5A nXl,RX2
A n 1, A2 (FX2, SX2) 5A RX3
An Rl,R2 OA RR
AI Hl,12 (X2) FA RI2
AIS Rl,N 26 SF

Operation

The second operand is added algebraically to the contents of the register specified by R 1.
The result of this 32 bit addition replaces the cOntents of the register specified by R 1.

Condition Code

C V G
X 0 0
X 0 0
X 0 1
X 1 X
1 X X

Programming Notes

L
0
1
0
X
X

Result is ZERO
Result is less then ZERO
Result is greater than ZERO
Arithmetic overflow
Carry

The second operand for the Add Immediate Short instruction is obtained by expanding the
four bit data field, N, to a 32 bit fullword by forCing the high order bits to zero.

In the RX formats, the second operand must be located on a fullword boundary.

Example: A

Add contents of memory location labelled LAB to the contents of (REG) 4.

1. Register 4 Contains X'7F341234'
Fullword in Memory at LAB contains X'7F124321'

Assembler Notation Comments

A REG4, LAB ADD (LAB) TO (RE G 4)

Result of A Instruction

(REG4) = X!FE465555!
(LAB) = unchanged by this instruction

I Condition Code := 0101 (V = 1, L = 1)

2. Register 5 Contains X'8000 0001'
Fullword in memory at lAB contains X'80000002'

Assembler Notation

A REG5, LAB

Result of A Instruction

4-4

(REGS) = X!00000003!
(LAB) = unchanged by this instruction
Condition Code:::: 1110 (C=I, V=l, G=l)

Comments

ADD (LAB) TO (REG 5)

29428 R02 2/77

INSTRUCTIONS

Add Halfword (AH)
Add Halfword Immediate (AHI)

Assembler Notation

AH
AlI
AlII

Operation

Rl,D2 (X2)
Rl,A2 (FX2,SX2)
Rl,I2 (X2)

Op-Code

4A
4A
CA

Format

RXl,RX2
RX3
RIl

The 16 bit second operand is expanded to a 32 bit fullword by propagating the most significant
bit through Bits 15: 0 of the fllllword. The fullword operand is added to the fullword contents
of the register specified by R 1. The 'result replaces the contents of the register specified
by R1.

Condition Code

C V G L
X 0 0 0
X 0 0 1
X 0 1 0
X 1 X X
1 X X X

Programming Note

Result is ZERO
Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow
Carry

In the RX formats, the second operand must be located on a halfword boundary.

In the RIl format, the 16-bit 12 field is extended to a fullword by propogating the sign bit through
bits 0:15. The contents of the index register specified by X2 are then added to form the fullword
second operand.

Example: AH

This example adds the halfword at memory location labelled LAB to the contents of Register 4.

1. Register 4 contains X'00230002'
lIalfword at memory location LAB contains X'FFFF'

Assembler Notation

All HEG4, LAB

Result of Instruction

(REG4) = '00230001'
(LAB) := unchanged by this instruction
Condition Code = 1010 (C=l, G=l)

2. Register 5 contains X'FFFF FFF5'
LAB contains X' FFF2'

Assembler Notation

All REG5, LAB

Result of Instruction

(REG5) = 'FFFF FFE7'
(LAB) = unchanged by this instruction
Condition Code = 1001 (C=l, L=l)

29-428 R06 5/78

Comments

ADD (LAB) TO (REG 4)

Comments

ADD LAB TO REG5

4-5

I

I
INSTRUCTION

Add to Memo ry (AM)

Assembler Notation

Al\I
Al\I

Operation

Rl, D2 (X2)
Rl,A2 (FX2,SX2)

Op-Code

51
51

RXl,RX2
RX3

The fullword second operand is added algebraically to the contents of the register specified
by R1. The result replaces the fullword second operand in memory. The contents of the
register specified by R1 are not changed.

Condition Code

c V G L
X 0 0 0
X 0 0 1
X 0 1 0
X 1 X X
1 X X X

Programming Note

Hesult is ZERO
Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow
Carry

The second operand must be located on a fullword boundary.

Example: AM

1. Add contents of register 8 to memory location labelled LOC:

Register 8 contains X'00000008'
Fullword in memory at LOC contains X'034289AB'

Assembler Notation Comments

AM REG8,LOC ADD (REG 8) TO (LOC)

Result of AM Instruction

(REG8) = X'00000008'
(LOC) = X'034289B3'

Condition Code = 0010 (G=l)

2. Add contents of register 7 to memory location labelled LOC:

Register 7 contains X'7F341234'
Fullword in memory at LOC contains X'7F124321'

Assembler Notation

AM REG7,LOC

Result of AM Instruction

4-6

(REG7) = unchanged by this instruction
(LOC) = X'FE465555'
Condition Code = 0101 (V=l, L=l)

Comments

ADD (REG 7) TO (LOC)

29428 R02 2/77

INSTRUCTION

Add Halfword to Memory (AHM)

Assembler Notation

AHM
AHM

Operation

R1,D2 (X2)
R 1, A2 (FX2, SX2)

Op-Code

61
61

RX1,RX2
RX3

The second operand is expanded to a full word by propagating the most significant bit through
Bits 15: O. This fullword is added algebraically to the contents of the register specified by
R 1. The 32 bit result is truncated to 16 bits by removing the most significant bits (Bits
0:15). The 16 bit result replaces the contents of the memory location specified by the
effective address of the second operand. The contents of the register specified by R1 are
not changed.

Condition Code

C V G L
X 0 0 0
X 0 0 1
X 0 1 0
X 1 X X
1 X X X

Programming Note

Result is ZERO
Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow
Carry

The second operand must be located on a halfword boundary.

The Condition Code settings are based on the halfword result.

Example: AHM

This example adds the contents of Register 5 to the contents of memory location LAB.

1. Register 5 contains X'00230002'
Halfword in memory at LAB contains X' FFFF'

Assembler Notation

AHM REG5, LAB

Result of AHM Instruction

(REG5) = unchanged by this instruction
(LAB) = 0001
Condition Code = 1010 (C=l, G=l)

2. Register 6 contains X'FFFF FFF5'
LAB contains X'FFF2'

Assembler Notation

AIIM REG6, LAB

Result of AHM Instruction:

(REG6) = unchanged by this instruction
(LAB) = FFE7
Condition Code = 1001 (C=l, L=l)

29-428 R02 2/77

Comments

ADD (REG 5) TO (LAB)

Comments

ADD (REG 6) TO (LAB)

4-7

•

I

INSTRUCTIONS

Subtract (S)
SulJtract Register (SR)
Su!Jtract Immediate (SI)
Subtract Immediate Short (SIS)

Assembler Notation

S HI, D2 (X2)
S HI, A2 (FX2, SX2)
SH RI,R2
SI H1,12 (X2)
SIS R1,N

Operation

O~-Code

513
513
013
FB
27

RXI,RX2
HX3
RR
HI2
SF

The fullword second operand is subtracted alg-ebraical1y from the contents of the reg-is1er
specified by H 1. The result replaces thc contents of the rcg-ister specified by H 1.

Condition Code

C V G I
X 0 0 0
X 0 0 1
X 0 1 0

X I X X
1 X X X

Programming Note

Result is ZERO
Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow
Borrow

The second operand for the Subtract Immediate Short instruction is obtained by expanding
the four bit data field, N, to a 32 bit fullword by forcing the high order bits to zero.

In the RX formats, the second operand must be located on a fullword boundary.

Examples:

This example subtracts the fullword at memory location LOC from the contents of Register 9.

1. REG9 contains X'44444444'

LOC contains X'44444444'

Assembler Notation

S HEG9, LOC

Result of S Instruction

(HEG9) = 0

LOC = X'44444444'

Condition Codc = 0000

2. REG9 contains X' 23456789'

LOC contains X' FFFF4321'

Assembler Notation

S I1EG9, LaC

Result of S Instruction

4-8

(REG9) c 23462368

(LaC) = FFFF4321

Condition Code = 1010 (C=l, G=l)

Comments

Subtract contents of (LQC) from (REG 9)

Comments

Subtract contents of (LOC) from (REG 9)

29428 R02 2/77

INSTRUCTIONS

Subtract Halfword (SH)
Subtract Halfword Immediate (SHI)

Assembler Notation

SH R 1, D2 (X2)
SH R1,A2 (FX2,SX2)
SHI R1,I2 (X2)

Operation

Op-Code

4B
4B
CB

Format

RX1,RX2
RX3
RIl

The 16 bit second operand is expanded to a 32 bit fullword by propagating the most significant
bit through Bits 15:0. This fullword is subtracted from the contents of the register specified
by n 1. The result replaces the contents of the register specified by R 1.

Condition Code

C V G L
X 0 0 0
X 0 0 1
X 0 1 0
X 1 X X
1 X X X

Programming Notes

Hesult is ZEHO
Result is less than ZERO
Hesult is greater than ZERO
Arithmetic overflow
Borrow

In the RX formats, the second operand must be located on a halfword boundary.

I

In the RIl format, the 16-bit 12 field is extended to a fullword by propogating the sign bit throu~h I
bits 0:15. The CO'1tents of the index register specified by X2 are then added to form the fullword
second operand.

Example: SH

This example subtracts the halfword at memory location LOC from the contents of register 9.

1. REG9 contains X'00123456'

LOC contains X'FFF4'

Assembler Notation

SII REG9, LOC

Result of SH Instruction

(REG9) = 00123462

(LaC) = FFF4

Condition Code = 1010

2. REG9 contains X' FFFF4567'

LOC contains X'2345'

Assembler Notation

SII REG9, LOC

Result of SH Instruction

(REG9) = FFFF2222

(LOC) = 2345

Condition Code = 0001

29428 R02 2/77

Comments

Subtract contents of (LOC) from (REG 9)

Comments

Subtract contents of (LOC) from (REG 9)

4-9

I
INSTRUCTIONS

Compare (C)
Compare Register (CR)
Compare Immediate (CI)

Assembler Notation

C
C
CR
CI

Operation

Rl, D2 (X2)
Rl, A2 (FX2, SX2)
Rl,R2
Rl,I2 (X2)

Op-Code

59
59
09
F9

RX1,RX2
RX3
RR
RI2

The first operand, contained in the register specified by Rl, is compared algebraically to
the 32 bit second operand. The result is indicated by the Condition Code setting. Neither
operand is changed.

Condition Code

C V G L
0 X 0 0
1 X 0 1
0 X 1 0

Programming Notes

First operand is equal to second operand
First operand is less than second operand
First operand is greater than second operand

In the RX formats, the second operand must be located on a fullword boundary.

The state of the V flag is undefined.

Example: C

This example compares the contents of Register 3 to the contents of the fullword in memory
location LAB.

Register 3 contains X'44567894'
Fullword at LAB contains X'04321243'

Assembler Notation

C REG3, LAB

Result of C Instruction

4-10

(REG3) = unchanged by this instruction
(LAB) = unchanged by this instruction
Condition Code = 0010 (G=l)

Comments

Compare (REG 3) to (LAB)

29-428 R02 2/77

INSTRUCTIONS

Compare Halfword (CH)
Compare Halfword Immediate (CHI)

Assembler Notation

CH
CH
CHI

Operation

Rl,D2(X2)
Rl,A2 (FX2,8X2)
Rl,I2 (X2)

Op-Code

49
49
C9

Format

RX1,RX2
RX3
RIl

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Dits 15: O. This fullword is compared algebraically with the first operand, the
contents of the register specified b~' 11 1. The result is indicated by the Condition Code set­
ting. Neither operand is changed .

.condition Code

C V G L
0 X 0 0
1 X 0 1
0 X 1 0

Programming Notes

First operand is equal to second operand
First operand is less than second operand
First operand is greater than second operand

In the RX formats, the second operand must be located on a halfword boundary.

I

In the RIl format, the 16-bit I2 field is extended to a fullword oy propogating th8 sign bit through I
bits 0:15. The contents of the index register specified by X2 are then added to form the fullword
second operand.

Condition code settings are based on the fullword comparison. The state of the V flag is
undefined.

Example: CH

This example compares the contents of REG8 to the halfword at LAB.

REG8 contains X'F4567891'
Halfword at LAB contains X'3123'

Assembler Notation

CH REG8, LAB

Result of CH Instruction

(REG8) = unchanged by this instruction
(LAB) = unchanged by this instruction
Condition Code = 1001 (C=l, V=l)

29428 R02 2/77

Comments

Compare (REG 8) to (LAB)

4-11

I

I

INSTRUCTIONS

Multiply (M)
Multiply Register (MR)

Assembler Notation

:;\I

1I

11R

Operation

Rl, D2 (X2)
R 1, A2 (FX2, SX2)
RI, R2

5C
5C
lC

RXl,RX2
RX3
RR

The RI field of these instructions specifics an even :lu~nbcred register.

The fullword first opcrand, contained in the register specified by RI .~ 1, is multiplied by
the fullword second operand. The 64 bit result is stored in the registers specified by Rl
and RI + 1.

Condition Code

Unchanged

Programming Notes

The Rl field of these instructions must specify an even numbered register.

I If the Rl field of these instructions is odd, the result is undefined.

In the RX form[~ts, the second operand mu.st be located on a fullword boundary.

The mO.3t significant bits of the result are placed in the register specified by Rl, the least signifi­
cant bits of the result are placed in the registe'r specified by RI + 1.

I The sign of the result is determined by the rules of algebra.

Example: M

ThiS exa:nple multiplies the contents of Register 9 by the contents of mem0ry locatio:':1 LOC and
p~aces the answer in the Registers Sand 9 (6,1 bits).

I R EG8 contains X'ru1nmnn11'
REG9 contains X'00002431'
Fullword at location LOC contains X'43120000'

Assembler Notation

I M REGS, LOC

Result of M Instruction

I REGS and REG9 together contain the answer
(REGS, REG9) = 0000 097D, 5E72 0000
(LOC) = unchanged by this instruction
Condition Code = unchanged by this instruction

4-12

Comments

Multiply (REG 9) by (LOC)

29-428 R02 2/77

INSTRUCTIONS

Multiply Halfword (MH)
Multiply Halfword Register (MHR)

Assembler Notation

MH
MH
MHR

Operation

Rl,D2 (X2)
Rl,A2 (FX2,8X2)
Rl,R2

Op-Code

4C
4C
OC

Format

RXl,RX2
RX3
RR

The first operand, contained in Bits 16:31 of the register specified by R 1, is multiplied by
the 16 bit second operand, taken from memory or from Bits 16:31 of the register specified by
R2. Both operands are 16 bit signed two's complement values. The 32 bit result I
replaces the contents of the register specified by RI.

Condition Code

Unchanged

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

The sign of the result is determined by the rules of algebra.

Example: MH

This example multiplies the halfword contents of Register 8 by the halfword in memory location
LAB.

REG8 contains X' ABC D 0045 I
Halfword at memory location LAB contains X'8674'

Assembler Notation

MH REG8, LAB

Result of MH Instruction

(REG8) = FFDF3D44
(lAB) = unchanged by this instruction
Condition Code = unchanged by this instruction

29-428 R06 5/78

Comments

Multiply least significant half of (REG 8) by (LAB)

4-13

I

I

•
I

I
I

INSTRUCTIONS

Divide (D)
Divide Register (DR)

Assembler Notation Op-Code

D
D
DH

/

HI, D2 (X2)
ru, A2 (FX2, SX2)
HI,TI2

5D
5D
ID

HXl, TIX2
TIX3
TIH

The 64 bit eli vidend contained in the re~ister specified by HI and the register specified by
Hl+l is divided by the fullworel divisor. The 32 bit signed remainder replaces the contents
of the registe r specified :)j RI. The 32 bit sigaod quotient replaces the contents of the register
specified :)y Rl fl.

Condition Code

Unchanged

Programming Notes

The Rl field of these instructions mv.st specify an even nu~nbored registei~.

If the RI field of these instructiol1G is odd" the result is undefined .

The most significant bits of the dividend must be contained in j~he register specified by Rl. The
least significant bits of the dividend -;1l1..'St be contained :in the register specified by RI + 1.

In the HX formLts, the seco:'1d opera.nd ~11USt be located on a fullword boui1dary.

If the divisor :is equal to zero, the instruction is not executed, the operand registers are un­
changed, and the arithmetic fault intercupt is taJ<en. if enabled by BH-19 of the current program
BtatUG word. If the intercupt is not ena1)led, the next sequential inGtruetio:'1 Js executed.

If the value of the quotient is greater than X'7Fii'F 1"FFF' or less th:.P1 (mere negative than)
X'80000000', quotient overflow is said to occur. If quotient overflow occurs, the operand registers
are not changed, and the aritlli"l1otic fault intereupt is taken. if enabled by tho Bit-19 of the current
program status word. If the interrupt is not enabled, the next sequential im~truetion is executed.

The sign of the quotient is determined by the rules of algebra. The sig11 of the remainder is the
same as the sign of the dividend.

Example: 0

4-14

This example divides the contents of Registers 8 and 9 by the fullword contents of memory
location LaC.

1. REG8 contains X'12345678' = First Half of Dividend
HEG9 contains X'98765432' = Second Half of Dividend
LaC contains X'34343434' = Divisor

Assembler Notation Comments

D REG8, LaC Divide (REG 8,9) by (LOC)

29-428 R02 2/77

Result of 0 Instruction

(REGS) = 1E1E1E1E = Remainder
(REG9) = 59455459 = Quotient
(LaC) = 34343434
Condition Code = unchanged by this instruction

2. REG8 contains X' FFFF1234' = First Half of Dividend
REG9 contains X'OOOOOOOO' Second Half of Dividend
LaC contains X'12345678' Divisor

Assembler Notation Comments

D REG8, LOC Divide (REG 8,9) by (LaC)

Result of 0 Instruction

(REG8)
(REG9)
LaC

F250D9EO Remainder
FFF2EFFC = Quotient
12345678

Condition Code = unchanged by this instruction

3. REG8 contains X'43657898'
REG9 contains X'12123456'
LaC contains X'OOOOOOOO'

Assembler Notation

D REG8, LaC

Result of 0 Instruction

First Half of Dividend
Second Half of Dividend
Divisor

Comments

Divide (REG8, 9) by (LaC)

Division by zero causes arithmetic fault to be taken if Bit 19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

4. REG8 contains X' 80000000' = First Half of Dividend
REG9 conatins X'OOOOOOOl' = Second Half of Dividend
LOC contains X'00000001' = Divisor

Assembler Notation Comments

D REG8, LOC Divide (REG 8,9) by (LaC)

Result of 0 Instruction:

Quotient overflow causes arithmetic fault to be taken if Bit-19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

29-428 R02 2/77

I

4-15

I

I

INSTRUCTIONS

Divide Halfword (DH)
Divide Halfword Hegister (DHR)

Assembler Notation Op-Code Format

DH
DH
DHR

R1,D2 (X2)
R1,A2 (FX2,SX2)
R1,R2

4D
4D
OD

RX1, RX2
HX3
RH

Operation

The 32 bit divident contained in the register specified by Rl is divided by a 16 bit signed,
two's complement divisior taken from memory or from Bits 16:31 of the register specified
by R2. The 16 bit remainder is expanded to a fullword by propagating the Sign bit through
Bits 15:0 and is stored in the register specified by Rl. The 16 bit quotient is e"Vanded to
a fullword by propagating the Sign bit through Bits 15:0 and is stored in the register spec­
ified by Rl+1.

Condition Code

Cnchanged

Programming Notes

In the HX formats, the second operand must be located on a half\\"ord boundary.

If the divisor is equal to zero, the instruction is not executed, the operand registers are un­
changed, and the arithmetic fault interrupt is taken, if enabled by Bit-19 of thc current program
status word. If the interrupt is not enabled, the next sequential instruction is executed.

If the ,"alue of the quotient is greater than X'? FFF' or less than (more negath"e than)
X'8000', quotient O\"erflo\\" is said to occur.

If quotient overflow occurs, the operand registers are not changed, and the arithmetic fault
interrupt is taken, if enabled by Bit-19 of the cur rent pro6ram statu3 word. If the interrupt
is not enab1ed, the next sequential instruo::tion is executed.

The sign of the quotient is determined ~J the rules of algebra. The sign of the remainder is
the same as the sign of the dh'idend.

Example: DH

This example divides the contents of Register? by the halfword contents of memory lo­
cation LaC.

1. R EG7 contains X'OO,}O :)034' == Di.vidend
LaC contains X'0008' = Divisor

Assembler Notation Comments

DH REG?, LaC Dh"ide (H EG 7, by (LOC)

Result of DH Instruction

-1:-16

(REG?)
(REGS)
(LOC)

0000 0004 = Remainder
0000 OOOA = Quotient
0008

Condition Code = unchanged by this instruction

29-428 ROG ;5/78

2. REG7 contains X'12345678'
LaC contains X'OOOO'

Assembler Notation

DR REG7, LOC

Result of DH Instruction

Dividend
Divisor

Comments

Divide (REG 7) by (LaC,

Division by zero causes arithmetic fault to be taken if Bit-19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

3. REG7 contains X'8000 0002' = Dividend
LaC contains X'OOOl'

Assembler Notation

DH REG'7,LOC

Result of DH Instruction

Comments

Divide (REG 7) by (LaC)

Quotient overflow causes arithmetic fault to be taken if Bit-19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

29-428 R02 2/77

I

I

I

I

4-17

I

I

I

INSTRUCTION

Shift Left Arithmetic (S LA)

Assembler Notation Op-Code Format

SLA R1,12 (X2) EF RIl

Operation

Bits 1:31 of the first operand, contained in the register specified by R1, are shifted left
the number of places specified by the second operand. The Sign bit (Bit 0), remains un­
changed. Bits shifted out of Position 1 are shifted through the carry flag and then lost.
The last bit shifted remains in the carry flag. Zeros are shifted into Position 31.

Condition Code

C V
X 0
X 0
X 0

G

0
0
1

L
0
1
0

Result is ZERO
Result is less than ZERO
Result is greater than ZERO

Programming Notes

The state of the C flag indicates the state of the last bit shifted.

The shUt COU:1.t is specified by the least significant five bits of the second operand. The
maximu":n shift cOU:1.t is 31.

A shift of zero places causes the Condition Code to be set in accord~L'1ce with the valu0
contained in the register specified by Rl. The C flag is reset in this case.

Example: SLA

This example shifts the bits in Register 5 left by the number specified by the second operand.

REG5 contains X' 80005647'

Assembler Notation

SLA REG5,4

Result of Instruction:

4-18

(REG5) = 80056470
Condition Code = 0001 (L=l)

Comments

Shift Left 4 Places

29428 R02 2/77

I

INSTRUCTION

Shift Left Halfword Arithmetic (SLHA)

Assembler Notation Op-Code

SLHA Rl t 12 (X2) CF RIl

Operation

Bits 17 :31 of the register specified by R 1 are shifted left the number of places specified
by the second operand. Bit 16 of the register, the halfword Sign bit, remains unchanged.
Bits shifted out of Position 17 are shifted through the carry flag and then lost. The last bit
shifted remains in the carry flag. Zeros are shifted into Position 31. Bits 0:15 of the first
operand register remain unchanged.

Condition Code

C V G L
X 0 0 0
X 0 0 1
X 0 1 0

Programming Notes

Result is ZERO
Result is less than ZERO
Result is greater than ZERO

The Condition Code settings are based on the halfword, Bits 16:31, result.

The state of the C flag indicates the state of the last bit shifted.

The shift count is specified by the least significant four bits of the seeond operand.
Ehift count is 15.

A shift of zero places causes the Condition Code to be set in aecordance with the halfword T,Talue
contained in Bits 16:31 of the register. The C flag is reset in this case.

29-428 R02 2/77 4-19

I

I

I

I

INSTRUCTION

Shift Right Arithmetic (SRA)

Assembler Notation Op-Code Format

SRA Rl,12 (X2) EE RIl

Operation

Bits 1 :31 of the first operand, contained in the register specified by R 1, are shifted right
the number of places specified by the second operand. The Sign bit (Bit 0), remains un­
changed and is propagated right as many positions as specified by the second operand. Bits
shifted out of Position 31 are shifted through the carry flag and lost. The last bit shifted
remains in the carry flag'.

Condition Code

C V G L
X 0 0 0
X 0 0 1
X 0 1 0

Programming Notes

Result is ZERO
Result is less than ZERO
Result is greater than ZERO

The state of the C flag indicates the state of the last bit shifted.

The shift count is specified by the least significant five bits of the second operand. The maximum
shift count is 31.

A shift of zero places causes the Condition Code to be set in accordance with the value contained
in the register. The C flag is reset in this case.

A shift of zero places causes the Condition Code to be set in accordance with the value contained
in the register. The state of the C flag in undefined in this case.

Example: SRA

This example shifts the contents of Hegister 9 right the number of places specified by the
second operand.

REG9 contains X' 800004256'

Assembler Notation Comments

SRA REG9,8 Shift (REG 9) right 8 bits

Result of Instruction

I (REG9) = X'FF800042'
Condition Code = 0001 (L=I)

4-20 29-428 R02 2/77

INSTRUCTION

Shift Right Halfword Arithmetic (SRRA)

Assembler Notation Op-Code

SRHA Rl, I2 (X2) CE RIl

Operation

Bits 17 :31 of the register specified by R1 are shifted right the number of places specified
by the second operand. Bit-16 of the register, the halfword Sign bit, remains unchanged
and is propagated right the number of positions specified by the second operand. Bits
shifted out of Position 31 are shifted through the carry flag and lost. The last bit shifted
remains in the carry flag. Bits 0: 15 of the first operand register remain unchanged.

Condition Code

C V G L
X 0 0 0

X 0 0 1
X 0 1 0

Programming Notes

Result is ZERO
Result is less than ZERO
Result is greater than ZERO

The condition code settings are based on the halfword; Bits 16:31, result.

The state of the C flag indicates the state of the last bit shifted.

•

The shift count is specified by the least significant four bits of the second operand. The maximum I
shift count is 15.

If the second operand ;3pecifies a shift of zero places, the C flag is reset in this case, I

29-428 R02 2/77 4-21

I

INSTRUCTION

Convert Halfword Value Register (CHVR)

Assembler Notation Op-Code Format

CHVR TI1,TI2 12 RR

Operation

The halfword second operand, (Bits 16:31) of the register specified by R2, is expanded
to a fullword by propagating the most significant bit (Bit 16) through Bits 15:0. This
fullword replaces the contents of the register specified by R1.

Condition Code

C V

X X
X X
X X
X 1
1 X
0 X

G

0
0
1

X
X
X

L

0
1
0
X
X
X

Result is ZERO
Result is less than ZERO
Result is great.er than ZERO
Source operand cannot be represented by a 1 () bit signed number
Carry flag was set in previoLls Condition Code
Carry flag was reset in previous Condition Code

Programming Note

The V flag is set when Bits 0:15 of the second operand are not the same as Bit-16 of the
second operand. (In this case, thc G and L flags reflect the algebraic value of Bits 16:31
of the second operand.)

Execution of this instruction following halfword operations guarantees results identical
with those that would be obtained if the program were run on an INTERDATA 16 bit mach­
ine. For example, assume that l.ocation A in memory contains the halfword value of
X'7FFF' (decimal 327G7) then,

LII
AIS

H1,A
TI1,1

TIl contains X'00007FFF'
TIl contains X' 00008000'

Following the add operation, the Condition Code is:

indicating a result greater than zero, which is correct for fullworc1 operations. If the
same sequence were executed on a 16 bit Processor, as:

LII
AIS

R1,A
R1,1

In contains X'7FFF'
TIl contains X'8000'

Following this, the Condition Code in the halfword Processor is:

4-22 29-428 R02 2/77

indicating overflow and a negative result. Going back to the original sequence and adding
the Convert Halfword Value instruction produces the following:

LII RI,A
AIS RI, I
CllVR RI, RI

RI contains X' 00007FFF'
RI contains X' 00008000'
RI contains X, FFFF8000'

Following this sequence, the Condition Code is:

which is identical to that of the IG bit Processor, and can be tested in the same manner.

29-428 R02 2/77 4-23/4-24

,

CHAPTER 5
FLOATING POINT ARITHMETIC

Floating Point Arithmetic instructions provide a means for rapid manipulation of scientific data
expressed as floating point numbers. Single Precision as well as Double Precision Floating
Point Instructions are described in this chapter. The comprehensive set of instructions includes
load and store floating point numbers; add, subtract, multiply, divide and compare two floating
point numbers; convert fixed point to floating point and vice versa. •

INTRODUCTIOl\l

Floating point is a means of respresenting a quantity in any numbering system. Consider a decimal
number (base ,- 10), 123 which can be represented in the following forms:

123.0
1. 23
0.123
0.0123

x 100

x 102

x 103

x 104

Note that in this example, the decimal point moved. Hence we have a floating point. In actual
floating point representation the significant digits are always fractional and are collectively
referred to as fraction. The power to which the base number is raised is called the exponent.
For example, in the number tt. 45678 X 102", 45678 is the fraction and 2 is the exponent. Both
the fraction and the exponent may be signed. If we have a floating point representation as,

(sign of fraction) (exponent) (fraction)

then the following representation applies:

Number

,32.94
-23760000.0

,+0.000059
-0.0000000092073

2 "" +.3294 x 10
8

-.2376 x 10
+.59 x 10-4

-.92073 x 10-8

Sign

+

-
+

-

Floating point

Exponent! Fraction

+2 3294
+8 2376
-4 59
-8 92073

The convenience with which extremely large or small numbers can be expressed in floating
point makes it ideally suitable for scientific computation. Note the compactness of floating
point notation in the above examples.

The floating point representation in the Model 8/32 is similar to the above representation. 'l'he
differences are as follows:

Hexadecimal, instead of decimal, numbering system is used.
PhYSical size of the number and hence the magnitude and the precision is limited.

'1()··128 RO'2 2/77 5-1

The single precision floating point number fields· are shown in Figure 5-1.

5-2

x

SIGN = 0
.: 1

F

F1 F2 F3 F4 F5 F6

LMOST SIGNIFICANT FRACTION DIGIT" 0 , UNNORMALIZED
FLOATING POINT NUMBER,
OR TRUE ZERO

NORMALIZED :fO:
FLOATING POINT NUMBER

F1 F2 F3 F4 F5 F6

LVAlUE OF THE FRACTION
= F 1.16-1 + F2.16-2 + F3.16·-3 + F4.16-4

+F5.16-5 + F6.16-6

EXPONENT IN EXCESS 64 NOTATION

EXCESS 64
00 TO 3F

40
41 TO 7F

HEXADECIMAL
-40 TO -1

a
1 TO 3F

POSITIVE FLOATING POINT NUMBER
NEGATIVE FLOATING POINT NUMBER

DECIMAL
-64 TO -1

a
1 TO 63

Figure 5-1. Single Precision Floating Point Number Fields

29-428 ROI t/7()

FLOATING-POINT NUMBER

In the Model 8/32 Processor a floating point number is represented in the following form:

Sign

Exponent

Sign Exponent Fraction

The most significant bit of a floating point number is a sign bit. The sign bit is zero
for positive numbers and one for negative numbers. The floating point value of zero
always has a positive sign.

The 7-Bit field, Bits 1:7, is designated as the exponent field. The exponent field con­
tains the true value of the exponent plus X'40' (decimal 64). This helps to represent
very small magnitudes between 0 and 1. The exponent is said to be e.xJ)ressed in
excess 64 notation. Some of the exponent values are as follows:

True True
Exponent in exponent in exponent in Multiply

Excess 64 notation hexadecimal decimal fraction by

00 -40 -64 16-64

3F -1 -1 16-1

40 0 0 1
41 1 1 16
7F 31" 63 16 163

The exponent field for true zero is always 00.

Fraction The fraction field is 6-hexadecimal digits for single precision floating point
numbers (thus limiting the precision) and 14-hexadecimal digits for double
precision floating point numbers. As in any other fraction, the floating point
fraction is expressed with most precision when the most significant digit (not
necessarily the most significant bit) is non-zero. The floating point number
with such a fraction is called a normalized floating point number. In the model
8/32 Processor, normalized numbers are always used to obtain maximum
possible precision. For hexadecimal fraction conversion, refer to Appendix 6.

Examples: The following examples illustrate the sign, exponent and fraction concept of a floating
point number.

Numbers in Hex Sign - exponent-fraction
integer-fraction shown for clarity Single Precision

notation I S IE I F Floating point numbers

+ 1 • 3A25678 0 41 1 3A25678 4113A256
- 6 . 8 9 F2 C 1 41 689F2C C1689F2C
+lA. C39D21 0 42 lAC39021 421AC39D
-3CIDF.82A3 1 45 3 C 1 D 1"8 2 A 3 C53Cl DF8
+ABCDEF12.9AC 0 48 An C DE Fl 2 9AC 48ABC DEF
+ 0 • 0 o 3 2A9C 1"2 0 3E 32 A9CF2 3E32A9CF
- 0 .0 00002C7B5 1 3B 2C 7 B 5 BB2C7 BGO

Refer to Appendix 6 for examples of similar conversion to double precision floating
point numbers.

29428 ROl l/76 5-3

Floating Point Number Range

The range of magnitude (M) of a normalized floating point number is as follows.

Single precision:
Double precision:
Approximately for both:

lEi-
65

S M S (1 - 16-6) * 1663

1(i-65 S M S (1 - 16-14) * 1663

5.4 * 10-79 < M < 7.2 * 1075

Table 5-1 shows the single precision point range in relocation to the fixed point range along with
the decimal values.

TABLE 5·' FLOATING/FIXED POINT RANGES

Floating Point Fixed Point Decimal
numbers integer numbers

(most negative) FFFF FFFF -7.2* 1075

C8800000 8000 0000 (most negative) -2 147 483 648
ell1 0000 FFFF FFFF (least negative) -1

(least negative) 8010 0000 -5.4* 10-79

(true zero) 0000 0000 0000 0000 0

(least positive) 0010 0000 +5.4* 10-79

4110 0000 0000 0001 (least positive) +1

4 87F FFFF 7 FFF FFFF (most positive) t2 147 483 647

(most positive) 7 F1"1" FFFF +7.2* 1075

Normal ization

Normalization is a process of making non-·zero the most significant digit (Fl) of the fraction of a
floating point number. In the normalization process, the floating point fraction is shifted left hexa­
decimally (1. e., four bits at a time), and its e}..'Ponent is decremented by one for each hexadecimal
shift until the most significant digit (not necessarily the most significant bit) of the fraction is non­
zero.

FRACTION

Is I EXPONENT Fl F2 F3 F4 F5 F6

• •

I SHIFT LEFT FRACTION HEXADECIMALLY UNTIL FHO

DECREMENT EXPONENT BY ONE FOR EACH SHIFT

Except LE, LER, LD, LDR instructions, all the floating point operations assume and require nor­
malized operands for consistent results. The LE, LER, LD and LDR instructions normalize an
unnormalized operand.

Example:

Operands

1. 42012345
2. 21000ABC
3. C900FE12
4. 6COOOOOO
5. 82000A67

5-4

After normalization

41123450
1EABCOOO
C7FE1200
00000000
00000000

(true zero)
(exponent underflow)

29-428 ROl 1/76

In example 4, the fraction of the operand is zero. During the normalization process, such a frac­
tion is detected and the floating point number is set to true zero.

In example 5, the e:h-ponent of the operand is very small. During the normalization process, the
exponent is decremented from 00 to 7 F. Surp a transition results in exponent underflow and the
floating point number is set to true zero.

In floating point operations, assuming that the operands are normalized, normalized results are
always produced. Results of operations between unnormalized .'lumbors are undefined.

Equalization

Equalization is a process of making equal the exponents of two floating point numbers. The fraction
of the floating point number with the smaller exponent is shifted right hexadecimally, i. e., four
bits at a time, and its exponent is incremented by one for each hexadecimal shift until the two
exponents are equal.

INCREMENT EXPONENT BY ONE FOR EACH SHIFT

I SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQUAL
•

Is I EXPONENT F1 F2 F3 F4 F5 F6

.
FRAC,-ION

During the floating point addition and subtraction two floating point operands are equalized.

Example:

1.

2.

Floating point
operands

43123456
3.F789ABC

C7FE1234
4956789A

Mter equalization

43123456
43000078

C900FE12
4956789A

In this example, normalized floating point numbers are shown because addition and subtraction
require normalization. Note that if the exponents differ by 6 or more the significance of the lower
exponent floating point number is lost in the process of equalization.

True Zero

A floating point number is said to be true zero when the exponent and the fraction fields are all
zeroes. In other words, all data bits must be zero. A value of zero always has a positive sign.
In general, zero values participate as normal operands in all floating point operations.

A true zero may be used as an operand or may result from an arithmetic operation that caused an
exponent underflow, in which case the entire number is forced to true zero. Secondly, if an arith­
metic operation produces a result whose fraction digits are all zeroes (sometimes referred to as
loss of Significance), the entire number is forced to true zero.

l';xamples:

Numbers Operation Result Reason

030000AB Normalize 0000 0000 exponent
underflow

41ABCDEF
41ABCDE; Subtract 0000 0000 loss of

Significance

~94.28 R02 2/77 5-5

I

Exponent Overflow

In floating point operations, exponent overflow may occur. Exponent overflow occurs when a
resulting exponent is greater than +63. If overflow occurs, the exponent and fraction bits of the
result are set to all Is, the largest possible magnitude and therefore the closest possible answer.
The sign of the result is not affected by the overflow. Figure 5-2 illustrates exponent overflow
using a line representation of numbers.

Most negative True Most positive
number Zero number

• • •• •
FFFFFFFF 0 7FFFFFFF

(exponent = 7 F) (exponent = 7F)

.. •
;:cc 6310 • ~

overflow overflow

Figure 5-2. Exponent Overflow

If overflow occurs, the V flag in the Condition Code is set, and an arithmetic fault interrupt is
taken, if enabled by the current PSW.

Exponent Underflow

The normalization process, during a floating point operation, may produce an exponent underflow.
Exponent underflow occurs when a result exponent would be less than -64. If underflow occurs,
the entire result is set to true zero, the closest possible answer. Figure 5-3 illustrates exponent
underflow using a line representation of numbers.

Least negative
number

80100000

rexponent = O~]
L = -6410

• •
underflow

True
Zero

•

Least positive
number
~.r-----e

0010000

[
exponent = 00]

= -6410
•

underflow

Figure 5·3. Exponent Underflow

If underflow occurs, the V flag in the Condition Code is set, and an arithmetic fault interrupt is
taken, if enabled by the current PSW.

Data Formats

In the model 8/32 Processor, floating point numbers occur in one of two formats, single precision
and double precision. The single precision format requires a fullword (32 bits) in one of the
8 single precision floating point registers or on a fullword address boundary, in memory. The sign
(s), exponent (x) and fraction (consisting of digits F1, F2, F3, F4, F5 and F6) fields are desig­
nated as follows:

x
,16 F3

5-6 29-428 R01 1/76

The double precision format requires a doubleword (64 bits) in one of the 8 double precision float­
ing point registers or on a doubleword address boundary in memory. The sign (s), exponent (x)
and fraction (consisting of digits Fl through F14) fields are designated as follows:

o 1 7 8 12 16 20 24 28

Is I X I Fl I F2 I F3 I F4 I F5 I F6 }
32 36 40 44

1

48

1

52 56 60

61 i F7
1

F8
1

F9 I FlO Fll F12 I F13 I F14

The value of a single (and similarly double) precision floating point number can be expressed as
follows:

sign(F1.16-1
+ F2.16- 2 + F3.16-3 -1- F4.16-4 + F5.16- 5 + 1"6.16-6) 16x -x '40'

Guard Digit and Rounding

A guard digit is an extra hexadecimal digit provided to the right of the least significant fraction
digit of a floating point number. In the model 8/32, only single precision floating point numbers
can have a guard digit. The guard digit is produced and used during the processing of intermedi­
ate results of a floating point operation. The guard digit does not appear in the final result. How­
ever, the guard digit helps rounding the final result, thus increasing the preciSion slightly. In the
absence of a guard digit, as is the case in double precision floating point numbers, the final result
is simply truncated.

NOTE

The basic 8/32 Processor, which does not have the double precision
floating point option, does not have a guard digit for single precision
floating point numbers. Hence the results are truncated, not rounded.

A guard digit is produced during the equalization phase of an Add and Subtract single precision
floating point operation. Then the operation is performed to obtain an intermediate result. The
guard digit participates in the operation. If the guard digit of the intermediate result is 0 through
7, no rounding is done. If it is 8 through F, one (1) is added to the fraction of the intermediate
result to obtain the final result fraction, unless such an addition produces a carry into the expon­
ent field. The following example illustrates the rounding procedure.

operands

42ABCD12
+416789AB

After
equalization

42ABCD12
+4206789A

42B245AC
+ 1
42B245AD

Guard
digit

~
lID
[ill intermediate result

fi nal res ult

A guard digit is also produced during the Multiply and Divide single preciSion floating point
operations. The intermediate product or the quotient is rounded as shown here to obtain the
final result.

29-428 R06 5/78 5-7

I

Conversion from Decimal

The process of converting a decimal number into the excess 64 notation used internally by the
Processor involves the following steps:

1. Separate the decimal integer from the decimal fraction:

182.37510 = (182 + .375)10

2. Convert each part to hexadecimal by referring to the Integer conversion table and the Fraction
conversion table in Appendix 5.

3. Combine the hexadecimal integer and fraction:

o
B6. 61G = (BG. 6 X 16) 16

4. Shift the radix point:

5. Add 64, (X'40'), to the exponent

4016 + 216 = 42
16

6. Convert the exponent field and fraction to binary allowing 1 bit for the sign, 7 bits for
the exponent field, and 24 or 56 bits for the fraction.

42B6G = 0100 0010 1011 0110 0110 0000 0000 0000

CONDITION CODE

Following floating point operations, including load, the Condition Code indicates the result of
the operation.

FLOATING POINT INSTRUCTION FORMATS

The Floating Point instructions use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In all of'the RR formats, except for Fix and Float, the R1 and
the R2 fields specify one of the floating point registers. There are eight single precision float­
ing point registers, and 8 double precision floating point registers numbered 0, 2, 4, 6, 8, 10,
12, and 14. Except FXR and FXDR instructions, the Rl field always specifies a floating point register.

FLOATING POINT INSTRUCTIONS

The floating point arithmetic operations, excluding loads and stores, require normalized operands
to ensure correct results. If the operands are not normalized, the results of these operations are
undefined. Floating point results are normalized. The Floating Point Load instruction normalizes
floating pOint data extracted from memory.

The single precision floating point instructions described in this section are:

LE Load Floating Point CE Compare Floating Point
LER Load Floating Point Register CER Compare Floating Point Register
LME Load Floating Point Multiple ME Multiply Floating Point
STE Store Floating Point MER Multiply Floating Point Register
STME Store Floating Point Multiple DE Divide Floating Point
AE Add Floating Point DER Divide Floating Point Register
AER Add Floating Point Regist.er FXR Fix Register
SE Subtract Floating Point FLR Float Register
SER Subtract Floating Point Register

5-8 29-428 R02 2/77

The double precision floating point instructions described in this section are:

LD Load DPFP CD Compare DPFP
LDR Load Register DPFP CDR Compare Register DPFP
LMD Load Multiple DPFP MD Multiply DPFP
STD Store DPFP MDR Multiply Register DPFP
STMD Store Multiple DPFP DD Divide DPFP
AD Add DPFP DDR Divide register DPFP
ADR Add Register DPF P FXDR Fix Register DPFP
SD Subtract DPFP FLDR Float Register DPFP
SDR Subtract Register DPFP

29-428 ROI 1/76 5-9

I

I

INSTRUCTIONS

Load Floating Point (LE)
Load Floating Point Register (LER)

Assembler Notation Op-Code Format

LE
LE
LER

Rl, D2 (X2)
Rl, A2 (FX2, SX2)
Rl,R2

68
68
28

RXl,RX2
RX3
RR

Operation

The floating point second operand is normalized, if necessary, and placed in the floating
point register specified by R 1.

Condition Code

C V
0 0
0 0
0 0
0 1

G
0
0
1
0

L
0
1
0
0

Floating point value is ZERO
Floating point value is less than ZERO
Floating point value is greater than ZERO
Exponent underflow

Programming Notes

If the fraction is zero, the result is forced to X'OOOO 0000 I

Normalization may produce exponent underflow. In this event, the result is forced to zero,
X'OOOO 0000', the V flag in the Condition Code is set, the G and L flags are reset and, if
enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a fullword boundary.

Example: LE

This example normalizes the fullword at memory location LaC and places it in Floating Point
Register 8.

Floating Point Register 8 = undefined
LaC = X'4200 1000'

Assembler Notation Comments

LE REG8, LaC Normalize contents of LaC

Result of LE Instruction

5-10

(Floating Point Register 8)
(LaC)
Condition Code

4010 0000
wlChanged by this instruction
0010

29428 R02 2/77

INSTRUCTION

Load Floating Point Multiple (LME)

Assembler Notation

LME
LME

Operation

R1,D2 (X2)
R1,A2 (FX2,SX2)

Op-Code

72
72

Format

RXl,RX2
RX3

Successive floating point registers, starting with the register specified by R1, are loaded
from successive m8mory locations starting with the address of the second operand. The
process stops when Floating Point Register 14 has been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the floating point registers assumed to be normalized and no test or
adjustment is performed.

The second operand must be located on a fullword boundary.

29-428 R06 5/78 5-11

I

I

INSTRUCTION

Store Floating Point (STE)

Assembler Notation

STE
STE

Operation

Rl,D2 (X2)
Rl,A2 (FX2,SX2)

Op-Code

60
60

RXl,RX2
RX3

The floating point first operand, contained in the floating pOint register specified by Rl,
is placed in the memory location specified by the second operand address. The first op­
erand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

5-12 29-428 R02 2/77

INSTRUCTION

Store Floating Point Multiple (STME)

Assemb.ler Notation

STME
STME

Operation

R1, D2 (X2)
R1,A2 (FX2,SX2)

Op-Code

71
71

Format

RX1,RX2
RX3

The contents of successive floating point registers, starting with the register specified by
R1, are stored in successive memory locations, starting with the address of the second
operand. The operation stops when the contents of Floating Point Register 14 have been
stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29-428 R02 2/77 5-13

•

I
INSTRUCTIONS

Add Floating Point (AE)
Add Floating Point Register (AER)

Assembler Notation

AE
AE
AER

Operation

RI, D2 (X2)
RI,A2 (FX2, SX2)
RI,R2

Op-Code

6A
6A
2A

Format

RXI,RX2
RX3
RR

The exponents of the two operands are compared. If the exponents differ, the fraction with
the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent
is incremented by one for each hexadecimal shift until the two ehJ)onents are equal. The hex­
adecimal digits (of four bits each) are shifted through the guard digit. The guard digit contains the
last shifted hexadecimal digit. If no shift occurs it is zero. The fractions are then added alge­
braically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one
and the fraction of the result is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction, producing a normalized result.
This result replaces the contents of the register speCified by Rl.

If the addition of fractions does not produce a carry, the result is normalized, if necessary, and
replaces the contents of the register speCified by Rl.

Condition Code

C V G L
X 0 o 0
X 0 0 1
X 0 1 0
X 1 0 1
X 1 1 0
X 1 0 0

Programming Notes

Floating point result is ZERO
Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

When the addition of the fractions produces a carry, incrementing the exponent of the result
by one may produce exponent overflow. In this case, the result is forced to the maximum

I value, ±X'7 FFF FFFF', the V flag, along with the G or L flag is set in the Condition Code and,
if enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is taken.

5-14

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'OOOO 0000'. The V flag is set in the Condition Code. The G and the
L flags are always reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault
interrupt is taken.

If the guard digit is 0:7, the result is not rounded. If the guard digit is 8: F, the result is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field.

In the RX formats, the second operand must be located on a full word boundary.

29-428 R06 5/78

Example: AE

This example adds the contents of LOC to the contents of the Floating Point Register 8 and places
the answer in Floating Point Register 8.

Floating Point Register 8 contains X'7EFF FFFF'
LOC contains X'7EFF FFFF'

Assembler Notation

AE REG8, LOC

Result of AE Instruction

(Floating Point Register 8)
(LOC)
Condition Code

29-428 R01 1/76

Comments

ADD (REG 8) to (LOC)

7F1F FFFF
unchanged by this instruction
0010

5-15

I
INSTRUCTIONS

Subtract Floating Point (SE)
Subtract Floating Point Register (SER)

Assembler Notation Op-Code Format

SE
SE
SER

Rl,D2 (X2)
Rl,A2 (FX2,SX2)
Rl,R2

6B
GB
2B

RXl,RX2
RX3
RR

Operation

The e:h"Ponents of the two operands are comparcd. If the exponents diffcr, the fraction with
the smaller e:h-ponent is shifted right hexadecimally (four bits at a time), and its e:h"Ponent
is incremented by one for each hexadecimal shift untn the two exponents are equal. The
hcxadecimal digits (of four bits cach) are shiftcd through the guard digit. The guard digit
contains the last shifted hexadccimal digit. If no shift occurs it is zero. The second oper­
and fraction is then subtracted algebraically from the first operand fraction.

If the subtraction of fractions produces a carry, the exponent of the result is incremented by
one and the fraction of the result is shifted right one hexadecimal digit. The carry bit is
shifted back into the most significant hexadecimal digit of the fraction, producing a normalized
result. This result replaces the contents of the register specified by Rl.

If the subtraction of fractions does not produce a carry, the result is normalized. The
normalized result replaces the contents of the register specified by R 1.

Condition Code

C V

X 0
X 0
X 0
X 1
X 1
X 1

G
0
0
1
0
1
0

L
0
1
0
1
0
0

Floating point result is ZERO
Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
E:h-ponent underflow

Programming Notes

5-16

vVhen the subtraction of the fractions produces a carry, incrementing the exponent of the
result by one may produce exponent overflow. In this case, the resul1 is forced to the max­
imum value, ±X'7FFF FFFF', the V flag, along with the G or L flag is set in the Condi-
tion Code and, if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt if. taken.

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X' 0000 0000'. The V flag is set in the Condition Code. The G and the
L flags are always reset and, if enabled by Bit-19 of the current PSW, the arithmetic fault
interrupt is taken.

The shifted hexadecimal digits (if any) participate in subtraction and produce a guard digit.
If the guard digit is 0:7, the result is not rounded. If the guard digit is 8: F, the result is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29-428 R02 2/77

Example: SE

This example subtracts the contents of LOC from the contents of Floating Point Register Sand
places the result in Floating Point Register S.

Floating Point Register S contains X'7FEF FFFF'
LOC contains X'7 A10 0000'

Assembler Notation

SE REGS, LOC

Result of Instruction

(Floating Point Register 8)
(LOC)
Condition Code

29-428 ROl 1/76

Comments

Subtract (LOC) from REG8

7FEF FFFE
unchanged by this instruction
0010

5-17

I
INSTRUCTIONS

Compare Floating Point (CE)
Compare Floating Point Register (CER)

Assembler Notation

CE
CE
CER

Operation

Rl,D2 (X2)
R 1, D2 (FX2, SX2)
Rl,R2

Op-Code

69
69
29

Format

RXl,RX2
RX3
RR

The first operand is compared to the second operand. Comparision is algebraic, taking
into account the sign, fraction, and exponent of each number. The result is indicated by
the Condition Code setting. Neither operand is changed.

Condition Code

c V G L
0 X 0 0
1 X 0 1
0 X 1 0

Programming Note

First operand is equal to second operand
First operand is less than second operand
First operand is greater than second operand

The state of the V flag is undefined.

In the RX formats, the second oper:md must be located on a fullword boundary.

5-18 29-428 R02 2/77

INSTRUCTIONS

Multiply Floating Point (ME)
Multiply Floating Point Register (MER)

Assembler Notation

ME
ME
MER

Operation

R1,D2 (X2)
R1,A2 (FX2,SX2)
R1,R2

Op-Code

6C
6C
2C

Format

RX1,RX2
RX3
RR

The exponents of each operand, as derived from the excess 64 notation used in floating point
representation, are added to produce the exponent of the result. This exponent is converted
back to excess 64 notation. The fractions are then multiplied.

If the result is zero, the entire floating point value is forced to zero, X'OOOO 0000'. If the
product is not zero, the result is normalized. The sign of the result is determined by the
rules of algebra. The result replaces the contents of the register specified by IU.

Condition Code

C V G L
X 0 0 0
X 0 0 1
X 0 1 0
X 1 0 1
X 1 1 0
X 1 0 0

Programming Notes

Floating point result is ZERO
Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent ovcrflow, Result is positive
Exponent underflow

The addition of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, ±X'7FFF FFFF'. The V flag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by Bit-19 of the current PSW.

The addition of exponents or the normalization process can produce exponent underflow. In
this case, the result is forced to zero, X'OOOO 0000'. The V flag in the Condition Code is
set. The G and L flags are reset, and if enabled by Bit-19 of the current PSW, the arithmetic
fault interrupt is taken.

Multiplication of two 6-hexadecimal digit fractions effectively produces a rcsult of 6-hexa­
decimal digits and a guard digit. If the guard digit is 0:7, the result is not rounded. If the
guard digit is 8: F, the result is rounded by adding 1 to the fraction of the result, unless
rounding produces a carry into the cxponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29-428 R02 2/77 5-19

I

Example: ME

This example multiplies the contents of LOC by the contents of the Floating Point Register 8
and places the result in Floating Pointer Register 8.

Floating Point Register 8 contains X' 5FFF FFFF'
LOC contains X'60FF FFFF'

Assembler Notation Comments

ME REG8, LOC Multiply (REG 8) by (LOC)

Result of ME Instruction

5-20

(Floating Point Register 8)
(LOC)
Condition Code

7FFF FFFE
unchanged by this instruction
0010

29-428ROll/76

INSTRUCTIONS

Divide Floating Point (DE)
Djvide Floating Point Register (DER)

Assembler Notation

DE
DE
DER

Operation

RI, D2 (X2)
RI, A2 (FX2, SX2)
RI,R2

Op-Code

6D
6D
2D

Format

RXI,RX2
RX3
RR

I

The exponents of each operand, as derived from the excess of 64 notation used in floating point
representation, are subtracted to produce the exponent of the result. This exponent is converted
back to excess 64 notation.

The first operand fraction is then divided by the second operand fraction. Division continues
until the quotient is normalized, adjusting the exponent for each additional division required. No
remainder is returned. The sign of the quotient is determined by the rules of algebra. The quo­
tient replaces the contents of the register specified by Rl.

Condition Code

C V G L
0 0 0 0
0 0 0 1
0 0 I 0
0 1 0 1
0 1 1 0
0 1 0 0
1 1 0 0

Programming Notes

Floating point result is ZERO
Floating point result is less than :?ERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow
Divisor equal to zero

Before starting the divide operation, the divisor is checked. If it is equal to zero, the op­
eration is aborted. Neither operand is changed. The C and the V flags of the Condition
Code are set. The G and L flags are reset. If enabled by Bit-19 of the current PSW, the
arithmetic fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, ±X'7FFF FFFF'. The V flag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by Bit-19 of the current PSW.

The subtraction of exponents or the division process can produce e:h'Ponent underflow. In
this case, the result is forced to zero, X'OOOO 0000'. The V flag in the Condition Code is
set. The G and L flags are always reset, and if enabled by Bit-19 of the current PSW, the
arithmetic fault interrupt is taken.

The 6-hexadecimal digit first operand fraction is divided by the 6-hexadecimal digit second
operand effectively producing the 6-hexadecimal digit quotient along with a guard digit. If
the guard digit is 0:7, the quotient is not rounded. If the guard digit is 8: F, the quotient is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
cxponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29-428 R02 2/77 5-21

Example: DE

This example divides the contents of Floating Point Register 4 by the contents of memory
location LaC and places the result in Floating Pointer Register 4.

Floating Point Register 4 contains X'44FF FFFF'
LaC contains X'0611 1111'

Assembler Notation Comments

Dividend
Divisor

DE REG4, LaC Divide (LaC) into (REG 4)

Result of DE Instruction:

5-22

(Floating Point Register 4)
(LaC)
Condition Code

7FFO 0000
unchanged by this instruction
0010

29-428 RO 1 1/76

INSTRUCTION

Fix Register (FXR) I

Assembler Notation Op-Code Format

FXR Rl,R2 2E RR

Operation

Rl specifies one of the general purpose registers. R2 specifies one of the floating point registers.
The floating point number contained in the floating point register is converted to a two's comple­
ment notation integer value by shifting and truncating. The result is stored in the register speci­
fied by Rl.

Condition Code

C V G L
X 0 0 0
X 0 0 1
X 0 1 0
X 1 0 1
X 1 1 0

Programming Notes

Result is ZERO or underflow
Result is less than ZERO
Result is greater than ZERO
Overflow, Result is negative
Overflow, Result is positive

The range of floating point magnitudes M that produces a non-zero integral result is:

::!::,X'4880 0000' > M~ .:tX'4110 0000'

Floating point magnitudes greater than +X'487F FFFF' cause overflow. The result is forced
to X'7FFF FFFF' if positive or to X'BOOO 0001' if negative. The V flag is set in the Condition
Code along with either the G or L Flag, depending on the sign of the result.

Floating point magnltudes less than +X'4110 0000' cause underflow and the result is forced to
zero.

In the event of overflow or underflow, the Arithmetic Fault Interrupt is not taken, even if
enabled in the current PSW.

Example: FXR

This example converts the contents of the Floating Point Register 8 to a fixed point number and
places it in Register 3.

Floating Point Register 8 contains X'46FF FFOO'
Register 3 contains undefined

Assembler Notation

FXR REG3, REG8

Result of FXR Instruction

(REG3)
(Floating Point Register 8)
Condition Code

29-428 R02 2/77

Comments

Convert (REG 8) to fixed point

OOFFFFOO
unchanged by this instruction
0010

5-23

I

I

INSTRUCTION

Float Register (FLR)

Assembler Notation Op-Code Format

FLR Rl,R2 2F RR

Operation

Hl specifies one of the floating point registers. H2 specifies one of the general purpose
registers. The integer value contained in the register specified by R2 is converted to a
floating pOint number and stored in the floating point register specified by R 1.

Condition Code

C V
X 0
X 0
X 0

G
0
0
1

L
0
1
0

Result is ZERO
Result is less thRn ZERO
Result is greater than ZERO

Programming Note

The full range of fixed point integer values may be converted to floating point. The fixed point
value X'7FFF FFFF', the largest positive integer, converts to a floating point value of X'487F
FFFF'. The fixed point value X'8000 0000', the most negative integer, converts to a floating
point value of X'C880 0000'. The result in Rl is normalized, and truncated if necessary
to fit in the six fraction digits.

Example: FlR

This example converts the Fixed point contents of Register 4 to a Floating Point number and
places it into Floating Point Register 8.

Register 4
Floating Point Register 8

Assembler Notation

FLR REG8, REG4

contains X'7FFF FFFO'
contents undefined

Comments

Convert REG4 to Floating Point

Result of FlR Instruction:

5-24

(Floating Point Register 8)
(REG4)
Condition Code

487FFFFF
unchanged by this instruction
OOlO

29-428 R06 5/78

INSTRUCTIONS

Load Double Precision Floating Point (LD)
Load Register Double Precision Floating Point (LDR)

Assembler Notation

LD RI, D2(X2)
LD RI, A2, (FX2, SX2)
LDR RI,R2

Operation

Op-Code

78
78
38

Format

RXI, RX2
RX3
RR

The floating point second operand is normalized, if necessary, and placed in the double preci­
sion floating point register specified by RI.

Condition Code

c V G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Programming Notes

Double precision value is ZERO
Double precision value is less than ZERO
Double precision value is greater than ZERO
Exponent underflow

If the fraction is zero, the result is forced to X'OOOO 0000 0000 0000'.

Normalization may produce exponent underflow. In this event, the result is forced to X'OOOO
0000 0000 0000', the V flag in the Condition Code is set, the G and L flags are reset and, if
enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-428 R02 2/77 5-25

I

INSTRUCTION

Load Multiple Double Precision Floating Point (LMD)

Assembler Notation Op-Code Format

LMD Rl, D2(X2)
LMD Rl,A2(FX2, SX2)

7F
7F

RX1, RX2
RX3

Operation

Successive double-precision floating point registers, starting with the register specified by
R1, are loaded from successive memory locations starting with the address of the second
operand. The process stops when Double Precision Floating Point Register 14 has been loaded.

Condition Code

Unchanged

Programming Notes

5-26

Values loaded into the double precision floating point registers are assumed to be nor­
malized and no test or adjustment is performed.

The second operand must be located on a double word boundary.

29-428 R06 5/78

INSTRUCTION

Store Double Precision Floating Point (STD)

Assembler Notation

STD Rl, D2, (X2)
STD Rl, A2(FX2, SX2)

Operation

Op-Code

70
70

Format

RXl,RX2
RX3

The floating point first operand, contained in the double precision floating point register speci­
fied by Rl is placed in the memory location specified by the second operand address. The first
operand is unchanged.

Condition Code

Unchanged.

Programming Notes

The second operand must be located on a double word boundary.

29-428 R02 2/77 5-27

I

I

I
INSTRUCTION

Store Multiple Double Precision Floating Point (STMD)

Assembler Notation Op-Code

STMD Rl, D2(X2) 7E RXl, RX2

STMD Rl, A2 (FX2, SX2) 7E RX3

Operation

The contents of successive double precision floating point registers, starting with the register
specified by R1, are stored in successive memory locations, starting with the address of the
second operand. The operation stops when the contents of Double Precision Floating Point
Register 14 have been stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a double word boundary.

5-28 29-428 R02 2/77

INSTRUCTIONS

Add Double Precision Floating Point (AD)
Add Register Double Precision Floating Point (A DR)

Assembler Notation

AD RI, D2(X2)
AD RI, A2(FX2, SX2)
ADR RI,R2

Operation

Op-Code

7A
7A
3A

Format

RXI,RX2
RX3
RR

The exponents of the two operands are compared. If the exponents differ the fraction with the
smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent is incre­
mented by one for each hexadecimal shift until the two exponents are equal. The fractions are
then added algebraically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one
and the fraction of the result is shifted right one hexadecimal position. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction, producing a normalized result.
This result replaces the contents of the double precision floating point register specified by RI.

If the addition of fractions does not produce a carry, the result is normalized, if necessary,
and placed in the double precision floating point register specified by RI.

Condition Code

C V G L
X 0 0 0
X 0 0 I
X 0 I 0
X I 0 I
X I I 0
X I 0 0

Programming Notes

Double Precision Result is ZERO
Double Precision Result is less than ZERO
Double Precision Result is greater than ZERO
Exponent Overflow, Result is negative
Exponent Overflow, Result is positive
Exponent Underflow

When the addition of fractions produces a carry, incrementing the exponent of the result by one
may produce exponent overflow. In this case, the result is forced to the maximum value,
.:!:,X'7FFF FFFF FFFF FFFF', the V flag, along with the G or L flag is set in the Condltion
Code and, if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is forced
to zero, X'OOOO 0000 0000 0000'. The V flag is set in the Condition Code, and the G and L
flags are reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is
taken.

In the RX formats, the second operand must be located on a double word boundary.

29-428 R02 2/77 5-29

I

I
INSTRUCTIONS

Subtract Double Precision Floating Point (SD)
Subtract Register Double Precision Floating Point (SDR)

Assembler Notation Op-Code Format

SD RI, D2(X2)
SD RI, A2(FX2, SX2)
SDR RI, R2

7B
7B
3B

RXl,RX2
RX3
RR

Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with
thc smaller exponent is shiftcd right hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift until the two exponents are equal. The second
operand fraction is then subtracted algebraically from the first operand fraction.

If the subtraction of fractions produces a carry, the exponent of the result is incremented by
one and the fraction of the result is shifted right one hexadecimal position. The carry bit is
shifted back into the most significant hexadccimal digit of the fraction producing a normalized
result. This result replaces the contents of the double precision floating point register
speCified by Rl.

Condition Code

C V G
X 0 0
X 0 0
X 0 1
X 1 1
X 1 0
X 1 0

L
0
1
0
0
1
0

Double Precision Result is ZERO
Double Precision Result is less than ZERO
Double Precision Result is greater than ZERO
Exponent Overflow, Result is positive
Exponent Overflow, Result is negative
Exponent Underflow

Programming Note

5-30

When the subtraction of fractions produces a carry, incrementing the exponent of the result
by one may produce exponent overflow. In this case, the result is forced to the maximum
value, ~ X'7FFF FFFF FFFF FFFF', the V flag, along with the G or L flag is set in the
Condition Code, and if enabled by Bit-l9 of the current PSW, the arithmetic fault interrupt is
taken.

Normalization of the result may produce exponent underflow. In this case, the result is forced
to zero, X'OOOO 0000 0000 0000'. The V flag is set in the Condition Code, the G and L flags
are reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-428 R02 2/77

INSTRUCTIONS

Compare Double Precision Floating Point (CD)
Compare Register Double Precision Floating Point (CDR,

Assembler Notation

CD Rl, D2(X2)
CD Rl, A2(FX2, SX2)
CDR Rl, R2

Operation

Op-Cod~

79
79
39

RXl,RX2
RX3
RR

The first operand is compared to the second operand. Comparison is algebraic, taking into
account the sign, exponent and fraction of each number. The result is indicated by the Condi­
tion Code setting. Neither operand is changed.

Condition Code

C V G L
0 X 0 0
1 X 0 1
0 X 1 0

Programming Notes

First operand is equal to second operand
First operand is less than second operand
First operand is greater than second operand

The state of the overflow flag is undefined.

In the RX formats, the second operand must be located on a double word boundary.

29-428 R02 2/77 5-31

I

I

I

INSTRUCTIONS

Multiply Double Precision Floating Point (MD)
Multiply Register Double Precision Floating Point (MDR)

Assembler Notation Op-Code Format

MD Rl, D2(X2)
MD Rl, A2(FX2, SX2)
MDR Rl, R2

7C
7C
3C

run,RX2
RX3
RR

Operation

The exponents of the two operands, as derived from the excess 64 notation used in floating
point representation, are added to produce the exponent of the result. This exponent is con­
verted back to excess 64 notation. The fractions are then multiplied.

If the product is zero, the entire double precision value is forced to zero, X'OOOO 0000 0000 0000'.
If the product is not zero, the result is normalized if necessary.. The sign of the result is deter­
mined by the rules of algebra. The result replaces the contents of the double precision floating
point register specified by RIo

Condition Code

C V
X 0
X 0
X 0
X 1
X 1
X 1

G
0
0
1
1
0
0

L
0
1
0
0
1
0

Double precision result is ZERO
Double precision result is less than ZERO
Double precision result is greater than ZERO
Exponent overflow, Result is positive
Exponent overflow, Result is negative
Exponent underflow

Programming Notes

5-32

The addition of exponents may produce exponent overflow. In this case, the result is forced
to the maximum value, ,±"X'7FFF FFFF FFFF FFFF'. The V flag in the Condition Code is
set, along with either the G or L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by Bit-19 of the current PSW.

The addition of exponents or the normalization process can produce exponent underflow. In
this case, the result is forced to zero, X'OOOO 0000 0000 0000'. The V flag in the Condition
Code is set, the G and L flags are reset, and if enabled by Bit 19 of the current PSW, the
arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-428 R02 2/77

INSTRUCTIONS

Divide Double Precision Floating Point (DD)
Divide Register Double Precision Floating Point (DDR)

Assembler Notation

DD RI, D2 (X2)
DD RI, A2 (FX2SX2)
DDR RI,R2

Operation

Op-Code

7D
7D
3D

Format

RXI,RX2
RX3
RR

The exponents of the two operands, as derived from the excess 64 notations used in floating
point representation, are subtr~cted to produce the exponent of the result. This exponent is
converted back to excess 64 notation.

The second operand fraction is then divided into the first operand fraction. Division continues
until the quotient is normalized, adjusting the exponent for each additional division required.

No remainder is returned. The sign of the result is determined by the rules of algebra. The
quotient replaces the contents of the double precision floating point register specified by RI.

Condition Code

C V G L
0 0 0 0
0 o· 0 I
0 0 1 0
0 I 0 I
0 I I 0
0 1 0 0
1 1 0 0

Programming Notes

Double precision result is ZERO
Double precision result is less than ZERO
Double precision result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow
Divisor was zero

Before starting the divide operation, the divisor is checked. If it is equal to zero, the opera­
tion is aborted. Neither operand is changed. The C and V flags in the Condition Code are
set, the G and L flags are reset, and if enabled by Bit 19 of the current PSW, the arithmetic
fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, ± X'7FFF FFFF FFFF FFFF'. The V flag in the Condition
Code is set, along with either the G or L flag, depending on the sign of the result. An arith­
metic fault interrupt is taken, if enabled by Bit-19 of the current PSW.

The subtraction of exponents or the division process may produce exponent underflow. In
this case, the result is forced to zero, X'OOOO 0000 0000 0000'. The V flag in the Condition
Code is set, the G and L flags are reset, and if enabled by Bit-19 of the current PSW, the
arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-428 R02 2/77 5-33

I

I
INSTRUCTION

Fix Register Double Precision (FXDR)

Assembler Notation Op-Code Format

FXDR Rl,R2 3E RR

Operation

Rl specifies one of the general pUl1)ose registers. R2 specifies one of the double precision
floating point registers. The floating point number contained in the floating point register
is converted to an integer value by truncating. The result is placed in the general register
specified by Rl.

Condition Code

C V G L

X 0 0 0
X 0 0 1
X 0 1 0
X 1 0 1
X 1 1 0

Programming Notes

Result is ZERO or underflow
Result is less than ZERO
Result is greater than ZERO
Overflow, Result is negative
Overflow, Result is positive

The range of the floating point magnitude M that produces a nO:'1-zero integral result is,
~ X'4880 0000 0000 0000' < M ~ .:!:. X'4110 0000 0000 0000'.

I Double precision floating point magnitudes greater than±X'487F FFFF FFFF FFi"F' cause
overflow. The result is forced to X'7FFF FF F F" if positive or to X'8000 0001' if negative.
The V flag is set in the Condition Code along with either the G or L flag, depending on the
sign of the result.

5-34

Double Precision floating point magnitudes less than +X'4110 0000 0000 0000' cause underflow.
The result is forced to zero and the Condition Code is set to zero.

In the event of overflow or underflow, the Arithmetic Fault Interrupt is not taken even if enabled
in the current PSW.

29-428 H06 5/78

INSTRUCTION

Float Register Double Precision (FLDR)

Assembler Notation Op-Code Format

FLDR RI,R2 3F RR

Operation

RI specifies one of the double precision floating point registers. R2 specifies one of the
general purpose registers. The integ~r value contained in the register specified by R2 is
converted to a floating point number and placed in the double precision floating point register
specified by Rl.

Condition Code

CV GL
X 0 o 0
XO 0 1
X o 1 0

Programming Notes

Result is ZERO
Result is less than ZERO
Result is greater than ZERO

I

The full range of fixed point integer values may be converted to double precision floating point.
The fixed point value X'7 FFF FFFF', the largest positive integer, converts to a double precision
floating point value of X'487F FFFF FFOO 0000'. The fixed point value X'8000 0000', the most
negative integer, converts to a double precision floating point value of X'C880 0000 0000 0000'.

The result in Rl is normalized.

29-428 R02 2/77 5-35/5-36

CHAPTER 6

STATUS SWITCHING AND INTERRUPTS

At any given time, the Processor may be in either the Stop mode or the Run mode. In the Stop
mode, the normal execution of instructions is suspended. The Processor is under control of the
operator who can, through the display console:

Examine any memory location

Change any memory location

Examine the contents of any general register

Examine and modify the current PSW

Execute instructions singly

The transition from the Stop mode to the R1U1 mode requires operator intervention at the display
console, or the occurrence of an interrupt (if enabled by the current PSW).

Once the Processor has been put in the Run mode, the current PSW controls the operation of the
Processor. By changing the contents of the current PSW, a running program can:

Put the Processor in the Wait state

Enable or disable various interrupts

Switch between supervisor and protect modes

Vary the normal sequential execution of instructions

PROGRAM STATUS WORD

The Program Status Word is a 64 bit double word. (See Figure 6-1.)

0 16171819202122 23 24 272829 30 31

I Iwl dMIA(IIRfiaip I R I clvlGI LI

32 3940 63

I I LOC I

Figure 6·1. Program Status Word

29428 R02 2/77

I

6-1

Bits 0 :15 of the PSW are not currently used, and must be zero. Bits 16 :27 are reserved for status
definition and interrupt masks. Bits 28:31 are reserved for the Condition Code. Bits 32:39 are
not used, and must be zero. Bits 40:63 are reserved for the Location Counter. The status and
interrupt bits are interpreted as follows:

Bit 16 (W)
Bit 17 (1)
Bit 18 (M)
Bit 19 (A)
Bit 20 (1)
Bit 21 (RP)
Bit 22 (Q)

Wait state
Immediate interrupt/Auto Driver Channel enable
Mae11ine malfunction interrupt enable
Aritlunetic fault interrupt enable
Immediate interrupt/Auto Driver Channel enable
Relocation/protection enable

Bit ~3 (P)
Bits 24:27 (R)

System queue service interrupt enable
Protect mode
Register set selection

The current PSW is contained in a hardware register within the Processor. Status switching re­
sults when the current PSW, or at least thc first half (Bits 0:31) of the current PSW, is replaced.
The occurrence of an interrupt or the execution of a Status Switching instruction can cause the re­
placement of the current PSW.

Wait State'

When Bit 16 of the current PSW is set, the Processor is in the Wait state. In this state, program
execution is halted. However, the Processor is still responsive to machine malfunction and
immediate interrupts, if they are enabled.. If the Processor is put in the Wait state with these
interrupts disabled, only operator intervention from the Display console can force the Processor
out of the Wait state.

Protect Mode

When Bit-23 of the current PSW is set, the Processor is in the protect mode. A program running
in this mode is not allowed to execute Privileged instructions. (Privileged instructions include

I all I/o instructions and most of the Status Switching instructions. See Appendix 1.) A privileged
instruction is treated as an illegal instruction when the Processor is in the protect mode. If
Bit-23 of the current PSW is reset, the Processor is in the Supervisor mode. Programs running
in this mode may execute any legal instruction.

Register Set Selection

Bits 24 :27 of the current PSW control register sot selection. Those bits are interpreted as
follows:

Bit 24

0
0
0
0
0
0
0
1

6-2

Bit 25 Bit 26 Bit 27

0
0
0
0
1
1
1
1

0 0 Register Set 0
0 1 Register Set 1
1 0 Register Set 2
1 1 Register Set 3
0 0 Register Set 4
0 1 Register Set 5
1 0 Register Set 6
1 1 Register Set 15

NOTE
When the processor is equipped with two register
sets, Bits 24, 25, 26 of the current PSW have no
effect on selection of register sets. Consequently,
specifying an even numbered register set causes
register set 0 to be selected whereas specifying
odd numbered register set causes register set 15
to be selected.

When the processor is equipped with eight register
sets, Bit-24 of the current PSW has no effect on
selection of register sets. Consequently, specify­
ing a register set number between 7 and 14 causes
one of the equipped sets to be selected instead.

29-428 R02 2/77

INTERRUPT SYSTEM

The interrupt system of the Processor provides rapid response to external and internal events
that require service by special software routines. In the interrupt response procedure, the Proc­
essor preserves its current state and transfers control to the required interrupt handler. This
software routine may optionally restore the previous state of the Processor upon completion of
the service. (See Table 6-1 and Figure 6-2.)

Some interrupts are controlled by bits in the current Program Status Word, that is, they can be
enabled or disabled by setting or resetting a bit in the PSW. Other interrupts are not controlled
by PSW bits, and are always enabled. The following is a list of Processor interrupts and their
controlling PSW bits, if any:

Interrupt

Immediate, Auto Driver Channel
Console
Machine Malfunction
Arithmetic Fault
System Queue Service
Protect Mode Violation
Relocation/Protection
Supervisor Call
Simulated
Illegal Instruction

PSW Bit

17 and 20
17 and 20
18
19
22
23
21
none
none
none

Interrupts occur at various times during processing. The immediate, console, and machine mal­
function interrupts occur between the execution of instructions or after completion of an auto driver
channel operation. The relocation/protection interrupt occurs after the execution of an instruction.
The system queue service, arithmetic fault, supervisor call, and simulated interrupts occur dur­
ing the execution of instructions. The illegal instruction and protect mode violation interrupts
occur before the execution of the improper instruction.

The interrupt procedure is based on the concepts of old, current, and new Program Status Words.
The curr.::mt PSW, contained in a hardware register, defines the operating state of the Processor.
When thiE state must be changed, the current PSW becomes the old PSW. The new PSW becomes
the current PSW. The current PSW now contains the operating status and the Location Counter for
the interrupt service routine.

With one exception (the machine malfunction interrupt), when the current PSW becomes the old
PSW it is saved in a pair of registers specified by the register set selection field of the new
PSW. The machine malfunction old PSW is stored in a reserved memory location. Again with
one exception, when a new PSW becomes the current PSW, it is loaded from a reserved memory
location. The exception is the immediate interrupt. On an immediate interrupt, the current
status is forced to a predetermined value. The current Location Counter is loaded from the
interrupt service pointer table.

The new Program Status Word for any interrupt should, if possible, disable interrupts of its
own class.

29-428 ROI 1/76 6-3

~
I

,j::>.

I',)
-:;;
.J:,.
10
00

;;tl
o
N

~
-....l
-....l

INTERRUPT

ARITHMETIC FAULT

AUTO DRIVER CHANNEL

CONSOLE

ILLEGAL INSTRUCTION

IMMEDIATE

MACHINE MALFUNCTION

MEMORY ACCESS CONTROLLER

PRIVILEGED INSTRUCTION

SIMULATED

SUPERVISOR CALL

SYSTEM QUEUE

" This Interrupt is always enabled.

** Memory Parity Error only

CONTROLLED BY
TYPE PSW BIT (S)

INTERNAL 19

EXTERNAL 17,20

EXTERNAL 17,20

INTERNAL "

EXTERNAL 17,20

INTERNAL 18

INTERNAL 21

INTERNAL 23

INTERNAL "

INTERNAL *

INTERNAL 22

TABLE 6-1. INTERRUPT SYSTEMS

CAN BE OLD PSW NEWPSW
QUEUED STORED IN LOADED FROM NOTES

NO REG. 14,15 X'48 - 4F' 'C' FLAG SET IN NEW PSW IF FLOATING POINT ARITHMETIC FAULT

YES REG. 0, 1 MICROPROGRAM NEW PSW STATUS = Y'OOO028NX'
(STATUS)

(MACHINE MALFUNCTION AND HIGHER-LEVEL IMMEDIATE

CHANNEL COMMAND
INTERRUPTS ENABLED)

BLOCK N IS THE SELECTED REGISTER SET

SUBROUTINE X IS THE CONDITION CODE ON TERMINATION

ADDRESS (LOC) (REG2) = INTERRUPTING DEVICE ADDRESS

(REG3) = INTERRUPTING DEVICE STATUS

(REG 4) = ADDRESS OF CHANNEL COMMAND BLOCK

NO (SEE IMMEDIATE INTERRUPT) NEW PSW STATUS = Y'OOO02800'

NO REG. 14, 15 X'30-3i CANNOT BE DISABLED

YES REG. 0, 1 MICROPROGRAM NEW PSW STATUS = Y'OOOO28NO'
STATUS
INTERRUPT SERVICE (MACHINE MALFUNCTION AND HIGHER-LEVEL IMMEDIATE
POINTER TABLE (LOC) INTERRUPTS ENABLED)

WHERE N IS THE SELECTED REGISTER SET
(REG.2) = INTERRUPTING DEVICE ADDRESS
(REG.3) = INTERRUPTING DEVICE STATUS

YES** X'20 - 2i X'38-3F' CONDITION CODE SET TO INDICATE NATURE OF MALFUNCTION

YES REG. 14, 15 X'90-9i MAC STATUS REGISTER INDICATES NATURE OF INTERRUPT

NO REG. 14, 15 X'30-37' TAKEN WHEN PRIVILEGED INSTRUCTION ATTEMPTED WHILE
PROCESSOR IN PROTECT MODE

NO (SEE IMMEDIATE OR AUTO DRIVER TAKEN WHEN 'SINT' INSTRUCTION EXECUTED IN
CHANNEL INTERRUPTS NON-PROTECT MODE (REG.4) = INTERRUPT SERVo POINTER

NO REG. 14, 15 X'98-9B' (STATUS) SVC TAKEN WHEN 'SVC' INSTRUCTION EXECUTED
POINTER TABLE (LOC) (REG. 13) = ADDRESS OF SVC PARAMETER BLOCK

YES REG. 14, 15 X'88-8F' TAKEN WHEN 'EPSR: 'LPSW: OR 'LPSWR' INSTRUCTIONS
EXECUTED IF SYSTEM QUEUE NOT EMPTY. (REG. 13) =
ADDRESS OF SYSTEM QUEUE

I

1'-.,)
'-0
.l::.
N
00

:;0
o
t..J

~
-...J
--l

en
I

OJ

1024
INTERRUPTS

• EXCHANGE PSW

:1--
EVEN

ADDRESS • JUMP TO UNIQUE LOCATION _.
INTERRUPT

SERVICE
SUBROUTINE

LOAD OLD PSW

Channel Command Word

~DEVICE
ID. -

INTERRUPT
POINTER

TABLE

-- ... '-----.....
ODD

ADDRESS

718

o 7

STATUS MASK

EXECUTE

GO TO UNIQUE AUTO
DRIVER CHANNEL

15

CHAR. 1

CHAR. 2
ANY COMBINATION OF
SPECIAL CHARACTERS
AND AUTO TRANSLA­
TIONS

o CHAR. HANDLING ROUTINE ADDRESS/2

Translation Table

Figure 6-2, Immediate Interrupt Systems Block Diagram

FAST

TRANSLATE

READ!WRITE T~ BUFFER SWITCH

REDUNDANCY CHECK TYPE

CHANNEL COMMAND WORD 0

BUFFER 0 BYTE COUNT 2

BUFFER 0 END ADDRESS 4

CHECK WORD 8

BUFFER 1 BYTE COUNT 10

BUFFER 1 END ADDRESS 12

TRANSLATION TABLE ADDRESS 16

-
SUBROUTINE ADDRESS 20

Channel Control Block

I

•

I

Immediate Interrupt

The immediate interrupt is used for control of external devices. Through this mechanism,
external devices can request and obtain Processor service. Interrupt requests from external
devices are arranged on 4 priority levels. Level ZERO is the highest priority level. Level 3
is the lowest. Priority interrupts are controlled by Bits-17 and 20 of the current PSW. The
interpretation of these bits is:

Bit-17 Bit-20

0 0 All level s disabled
0 1 Higher levels enabled
1 0 All levels enabled
1 1 Current and higher levels enabled

The current level is equal to the currently active register set. When interrupts on any levels
are enabled, the Processor is responsive to interrupt requests on those levels. When interrupts
on any levels are disabled, requests are queued until the Processor is able to recognize them.

The relationship between the interrupt priority and the currently active Register Set is sum­
marized below:

PSW Current
Bits Register Set External Interrupt Level Enabled

17 20 Level 0 Levell Level 2 Level 3

0 0 X NO NO NO NO

0 1 0 NO NO NO NO

0 1 1 YES NO NO NO

0 1 2 YES YES NO NO

0 1 3 YES YES YES NO

0 1 4 YES YES YES NO

0 1 5 YES YES YES NO

0 1 6 YES YES YES NO

0 1 F YES YES YES NO

1 0 X YES YES YES YES

1 1 0 YES NO NO NO

1 1 1 YES YES NO NO

1 1 2 YES YES YES NO

1 1 3 YES YES YES YES

1 1 4 YES YES YES YES

1 1 5 YES YES YES YES

1 1 6 YES YES YES YES

1 1 F YES YES YES YES

6-6 29-428 Rot 1/76

A unique new register set is associated with each interrupt level.

The register set number is the same as the interrupt level number. Thus, an interrupt on level
ZERO causes register set ZERO to be used; on level ONE, register set ONE, etc. When the
Processor recognizes a request from a device, it:

1. Saves the current PSW in registers zero and one of the new set. (Bits 0:31 are saved
in register zero; bits 32:63 are saved in register one.)

2. Loads the status portion of the current PSW with a value of Y'000028XO', where the I
"X" specifies the new register set; 0, 1, 2, or 3.

3. Acknowledges the request and obtains the device number and status from the device.
The device number is placed in register two of the new set. The status is placed in
register three.

4. Adds two times the device number to X'OOOODO' (the start of the interrupt service
pointer table), to obtain the address within the table that corresponds to the interrupt­
ing device. For the immediate interrupt, the value in the table must be even. The
value in the table becomes the current location counter.

In setting up the registers for the immediate interrupt service routine, the Processor loads the
device number and status into the least Significant bits of registers two and three. The most
significant bits in these registers are forced to ZERO. Note that the new PSW disables current
and lower levels, and specifies the appropriate register set. The machine malfunction interrupt
is enabled. Relocation and protection are disabled.

Console Interrupt

The console interrupt is a special case of the immediate interrupt. It also is controlled by
Bits 17 and 20 of the current PSW. If Bit-17 or 20 is set, a console interrupt is generated by:

DepreSSing the Function key on the console

Depressing 0

The effect of the console interrupt is to cause an immediate interrupt, as described prveiously,
from device X'001'. Register Set 0 is always selected.

Simulated Interrupt

The Simulate Interrupt instruction simulates an immediate interrupt. When this instruction is
executed, the Processor goes through the immediate interrupt procedure as if a request for ser-
vice had been received from an external device. The current PSW is saved, and a new PSW I
loaded just as for the immediate interrupt. The device is addressed, and the status returned in
Register 3. The address from the interrupt service pointer table is placed in Register 4. The
state of Bits-17 and 20 have no effect on this interrupt. It is always enabled. The new register
set is specified by the least significant 4 bits of t¥ register specified by the R1 field of the
instruction.

29-428 R04 5/78 6-7

Machine Malfunction Interrupt

Bit-I8 of the current PSW controls the machine malfunction interrupt. This interrupt occurs on
a memory parity error, on the detection of primary power failure, and during the restart pro­
cedure after power has been restored. \\'hen a machine malfunction interrupt occurs, the current
PSW is saved in memory location X' 000020'. The new PSW from memory location X' 000038' be­
comes the current PSW. The Condition Code of the new PSW as stored in memory must contain
zeros. After the interrupt is taken, the state of the Condition Code indicates the specific cause of
the interrupt.

Condition Code states are:

C V
0 0
0 0
0 0

G
0
0
1

L
0
1
0

power Restore
Power failure
Memory malfunction (e. g. Parity Error)

I Memory malfunction during Auto Driver Channel operation 1 0 1 0
1 0 0 1 Power failure during Auto Driver Channel operation

Power failure occurs when the primary power fail detector senses a low voltage, when the Initialize
I key (INI) of the Display console is depressed, or when the key operated POWER switch is turned to

the OFF position. Following the PSW exchange, the software has approximately one millisecond
to perform any necessary operations before the automatic shut down procedure takes over. During
the automatic shut down procedure the Processor saves the current PSW at the memory location
specified by the contents of location X'00084'; saves the 8 Single-precision floating point registers,
if equipped, in memory locations X'OOOOO' through 'OOOlF'; and it saves all available sets of general
registers, starting with register set 0, at the location specified by the contents of memory location
X'00086'. If the processor is equipped with double precision floating point, the double precision
floating point registers are stored immediately following the General Register Save area.

When power returns, the Processor restored the PSW and the general registers and floating
I point registers from their save areas. The contents of all other registers are undefined. If

Bit 18 of the restored PSW is set, the Processor takes another machine malfunction interrupt,
this time with no bits set in the Condition Code of the current PSW.

It is important here to note that during the power restore sequence, the Processor does distin­
guish the Initialize Key (INT) from power fail or power off. If, on power up, the Initialize Key
is still depressed, the Halt mode is unconditionally entered regardless of the state of Bit-I8 of
the restored PSW. The operator has to hold the Initialize Key down for longer than half a sec­
ond before the Halt mode is guaranteed.

During Write operations to memory with parity option, the Parity bit of each memory word is set
to maintain odd parity. The Parity bit is recomputed on each memory read. If the computed bit is
not equal to the bit read out of memory, the Processor takes a machine malfunction interrupt,
setting the G flag to indicate the parity error.

If a machine malfunction interrupt condition arises during an auto driver channel operation, the
PSW, current at the time the channel was activated, becomes the old machine malfunction PSW.
Register 4 of the set, designated by the machine malfunction new PSW, contains the address of
the Channel Command Block. The C flag of the current PSW is set along with either the L
flag or the V flag to indicate either power failure or parity error.

6-8 29-428 R06 5/78

Arithmetic Fault Interrupt'

Bit-19 of the current PSW controls the arithmetic fault interrupt. This interrupt, if enabled, can
occur for any of the following reasons:

Fixed point division by zero
Fixed point quotient overflow
Floating point division by zero
Floating point overflow or underflow

When this interrupt occurs, the current PSW is saved in Registers 14 and 15 of the set desig­
nated by the arithmetic fault new PSW. The new PSW, from memory location X'000048', be­
comes the current PSW. All Condition Code bits in the new PSW as stored in memory must be
zero. Before going to the interrupt service routine, the Processor sets the carry flag in the
Condition Code if the interrupt is the result of a floating point operation. If the interrupt is
the result of a fixed point operation, the carry flag is reset.

Any of the following conditions cause fixed point quotient overflow:

A halfword divide operation produces a result greater than 32,767 (X'7FFF').

A halfword divide operation produces a result less than -32,768 (X'8000').

A fullword divide operation produces a result greater than 2,147,483,647 (X' 7FFF FFFF').

A fullword divide operation produces a result less than -2,147,483,648 (X' 8000 0000').

\\-'hen a fixed point division by zero or a fixed point quotient overflow occurs, the operand registers
remain unchanged.

Floating point overflow occurs when, in a floating point operation, the value of the exponent ex­
ceeds +63. Floating point underflow occurs when, during the execution of a Floating Point in­
struction, the value of the exponent becomes less than -63. Following floating point overflow,
the result is forced to plus or minus X'7FFF Fl!'F'F'. Following a floating point w1derflow, the
result is forced to true zero, X'OOOO 0000'. After a floating point division by zero, the oper­
and register remains unchanged.

After any arithmetic fault interrupt, the Location Counter of the old PSW contains the address of
the instruction immediately following the one that caused the interrupt.

Relocation/Protection Interrupt

Bit-21 of the current PSW controls the relocation/protection interrupt. If this bit is set, and the
currently running program violates any of the relocation and protection conditions available in the
relocation and protection module, the Processor saves the current PSW in Registers 14 and 15
of the set designated by the relocation/protection new PSW. The new PSW at memory location
X'000090' becomes the current PSW.

29-428 R06 5/78 6-9

System Queue Service Interrupt

1
The system queue is a circular list identical to that described for the list processing instructions.
The queue may be set up at any convenient location in memory. While the maximum size of the
system queue allows 65536 entries, in practice, the queue should be big enough to hold one entry
for every external device controlled by a software program.

MAmory location X'000080' contains the address of the system queue. In the course of executing
any of the following instructions:

Load Program Status Word
Load Program Status Word Register
Exchange Program Status

the Processor tests Bit-22 of the new status being loaded. If this bit is set, the Processor checks
the state of the system queue. If there is an cntry in the qucue, the just loaded PSW becomes the
old PSW. It is saved in Registers 14 and 15 of the set designated by the system queue service
interrupt new PSW. The address of the queue, taken from location X'000080', is placed in
Register 13 of that set. The new PSW from location X'000088' becomes the current PSW.

Protect Mode Violation Interrupt

Bit-23 of the current PSW controls the execution of Privileged instructions. When this bit is set,
the Processor is in the Protect mode. Programs running in the Protect mode are not allowed to
execute Privileged instructions. Privileged instructions are:

All 1/0 instructions
Load Program Status Word
Load Program Status Word Register
Exchange Program Status Register
Simulate Interrupt
Simulate Channel Program

If a program rmming in the protect mode attempts to execute a Privileged instruction, the in­
struction is not executed. The Processor saves the current PSW in Registers 14 and 15 of the
set deSignated by the illegal instruction new PSW. The illegal instruction new PSW at location

X'000030' becomes the current PSW. The Location Counter of the old PSW contains the address
of the Privileged instruction.

Illegal Instruction Interrupt

The illegal instruction interrupt cannot be disabled. The interrupt occurs whenever the Processor
fetches an instruction word containing' an operation code that is not one of those permitted by the
system. The Processor saves the current PSW in Registers 14 and 15 of the set designated by
the illegal instruction new PSW. The illegal instruction new PSW from memory location X'000030'
becomes the current PSW.

When the Processor encounters an illegal instruction, it makes no attempt to execute it. The
Location Counter of the old PSW contains the address of the illegal instruction.

6-10 29-428 R06 5/78

Supervisor Call Interrupt

This interrupt occurs as the result of the execution of a Supervisor Call instruction. This in­
struction provides a means for user level programs to communicate with system programs. The
supervisor call interrupt is always enabled. When the Processor executes a Supervisor Call in­
struction, it:

Saves the current PSW in Registers 14 and 15 of the set designated by the supervisor call inter­
rupt new status.

Places the address of the supervisor call parameter block (address of the second operand) in
Register 13 of the appropriate set.

Loads the current PSW status with the value contained at memory location X'000098', super­
visor call new PSW status.

Loads the current PSW Location Counter from one of the supervisor call new PSW Location
Counter locations.

STATUS SWITCHING INSTRUCTION FORMATS

The Status Switching instructions use the .Kegister to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In some cases, Load Program Status Word and Load Program
Status Word Register, and the R1 field of the instruction has no significance and must be ZERO.

STATUS SWITCHING INSTRUCTIONS

The Status Switching instructions provide for software control of the interrupt structure of the sys­
tem. They also allow user level programs to communicate efficiently with control software. All
Status Switching instructions, except the Supervisor Call instruction are privileged operations.
Therefore, all interrupt handling routines must run in the Supervisor mode.

The instructions described in this section are:

LPSW Load Program Status Word
LPSWR Load Program Status Word Register
EPSR Exchange Program Status Register
SINT Simulate Interrupt
SVC Supervisor Call

29-428 R06 5/78 6-11

INSTRUCTION

I Load Program Status Word (LPSW)

Assembler Notation

Operation

LPSW
LPSW

D2 (X2)
A2 (FX2, SX2)

Op-Code

C2
C2

RXl, RX2
RX3

The 64 bit second operand becomes the current Program Status Word.

Condition Code

Determined by the new PSW (bits 28 :31)

Programming Note

The quantity to be loaded into the current Program Status Word must be located in memory
on a doub Ie word boundary.

6-12

This instruction is a privileged operation.

The R1 field of this instruction must be zero.

This instruction may be used to change register sets. The new set becomes active for execu­
tion of the next instruction.

29-428 R02 2/77

INSTRUCTION

Load Program Status Word Register (LPSWR)

Assembler Notation Op-Code

LPSWR R2 18 RR

Operation

The contents of the register specified by R2 replace Bits-O:31 of the current Program Status
Word. The contents of the register specified by R2+1 replace Bits-32:63 of the current
Program Status Word.

Condition Code

Determined by the new PSW (Bits 28:31)

Programming Notes

The R1 field of this instruction must be zero.

This instruction may be used to change register sets. The new set becomes active for execu­
tion of the next instruction.

This instruction is a privileged operation.

The R2 field of this instruction may not specify a register greater than 14.

29-428 R02 2/77 6-13

I

INSTRUCTION

I Exchange Program Status Register (EPSR)

•
Assembler Notation Op-Code Format

EPSR R1,R2 95 RR

Operation

Bits 0:31 of the current Program Status Word replace the contents of the register specified
by Rl. The contents of the register specified by H2 replace Bits 0:31 of the current Program
Status Word.

Condition Code

Determined by the new PSW (Bits 28:31)

Programming Notes

6-14

If R1 = R2, Bits 0:31 of the current PSW are copied into the register specified by R1, but
otherwise remain unchanged.

This instruction may be used to change register sets. The new set becomes active for execu­
tion of the next instruction.

This instruction is a privUeged operation.

29-428 R02 2/77

I NSTR UCTION

Simulate Interrupt (SINT)

Assembler Notation

SINT
SINT

Operation

12 (X2)
R1,I2(X2)

Op-Code

E2
E2

RIl
RIl

The least significant 10 bits of the second operand are presented to the interrupt handler as
a device number. The device number is used to index into the interrupt service pointer
table, simulating an interrupt request from an external device. The result is either an
immediate interrupt or an auto driver channel ope ration.

Condition Code

Determined by the new PSW in case of immediate interrupt or determined by the way the auto
driver channel operation terminates.

Programming Notes

If the R1 field of this instruction is not specified or contains zero, an interrupt from level 0 is
assumed and register set 0 is selected.

If the R1 field of the instruction is non-zero, the least significant 4 bits of the register speci­
fied by R1 designate the interrupt level and the new Register set.

This instruction is a privileged operation.

In the execution of this instruction, the Processor loads Registers 0:3 or 0:4 of the new set as
for a real interrupt request.

During the execution of this instruction, the device is addressed and the status byte is returned
in Register 3 of the new set.

In the event of instruction time-out, the V flag is set in the PSW, and register 3 of the new
set contains Y'00000004 ' .

29-428 R02 2/77 6-15

I

I

I

INSTRUCTION

Supervisor Call (SVC)

Assembler Notation Op-Code Format

SVC
SVC

N, D2 (X2)
N, A2(FX2, SX2)

E1
E1

RX1, RX2
RX3

Operation

The second operand (program address of the parameter block) replaces Bits 8 :31 of
Register 13 of the set designated by the supervisor call new PSW status. Bits 0:7 of
this register are forced to ZERO. The current Program Status Word replaces the
contents of Registers 14 and 15 of the appropriate set. The fullword quantity located
at X'000098' in memory replaces Bits 0:31 of the current Program Status Word. The
four-bit N field is doubled and added to X'00009C'. The halfword quantity located at
this address becomes the current Location Counter.

Condition Code

Determined by the new PSW (Bits 28;31)

Programming Notes

6-16

The second operand must be located on a fullword boundary.

This instruction provides means of switching from the Protect Mode to the Supervisor Mode.
It is used by the user program running under an Operating System to initiate certain functions
in the Supervisor program. The second operand address, is normally a pointer to the memory
location of the parameters the Supervisor program needs to complete the function specified. The
type of Supervisor call is specified in the R1 field of the ins truction. Sixteen different calls are
provided for. Return from the Supervisor is made by executing an LPSWR instruction specifying
the stored !lOld" PSW in Registers 14, 15 of the appropriate set (LPSWR R14).

29-428 R02 2/77

CHAPTER 7
INPUT/OUTPUT OPERATIONS

INTRODUCTION AND CONFIGURATION OF I/O SYSTEM

Input output (I/O) operations, as defined for the 32 bit series, provide a versatile means for
the exchange of information between the Processor, memory, and external devices. Com­
munication between the Processor and external devices is accomplished over the I/O Multi­
plexor Channel Bus (Byte or Halfword Modes). Data transfers over the Multiplexor Channel.
require Processor intervention, either programmed or automatic for each item transferred.

Direct data transfers between external devices and memory are accomplished over the EDMA
Bus, (Byte, Halfword or Burst Mode) and proceed independently of the Processor so other
program processing can proceed simultaneously. For more details refer to the following
manuals:

1. EDMA Bus Universal Interface Instruction Manual, Publication Number 29-423
2. ESELCH ProgramminlLM.anual, Publication Number 29-529
3. BSELCH Maintenance Manual, Publication Number 29-572. I

Burst mode data transfers over the EDMA Bus are possible only with the help of the EDMA
Bus Universal Interface 02-361 or the Buffered Selector Channel 02-456. Both devices can I
handle data transfer rates up to six Megabytes per second between Local Memory and custom
designed I/O systems. In the burst mode, the originating device transmits the starting memory
address and Burst Read or Burst Write command. This is followed by an arbitrary number of
fullword data transmissions (up to six Megabytes/sec). Lower limit burst mode data transmis-
sion rate is 400 Kbytes/sec (10 rnicrosec/fullword), below which bus control circuits assume the
transmitter dead and abort the transfer.

DEVICE CONTROLLERS

The basic functions of all device controllers are:

1. To provide synchronization with the Processor and to provide device address recognition.
2. To transmit operational commands from the Processor to the device.
3. To translate device status into meaningful information for the Processor.
4. To request Processor attention when required.

29-428 R04 5/78 7-1

I

I

I

In addition, controllers may generate parity, convert serial data to parallel, buffer incoming
or outgoing data, or perform other device-dependent functions.

Device Addressing

The system design allows as many as 1,023 external devices. Each device must have its own
unique device number or address. Device numbers may range from X'OOI' through X'3FF'.
(Device number X'OOO' is not used.) The minimum system provides for 255 device numbers.
Larger systems may have either 511 or 1,023.

Processor/Controller Communication

Device controllers may be attached directly to the I/O Bus, or they may be attached to the
I/O Bus indirectly thrrugh a Selector Channel. Communication between the Proces sor and
controller is a bi-directional, request-response type of operation.

The Processor can initiate a communication, by sending the device address out onto the I/O
Bus. When a controller recognizes the address, it returns a synchronization signal to the
Processor, and remains ready to accept commands from the Processor. The Processor waits
up to 35 microseconds for the synchronization signal. If no signal is received within this
period, the Processor aborts the operation and notifies the controlling program. In this
case, the status returned is X'04', know as False Sync. The condition code in the PSW, is
also set to X'4' (V flag = 1). Controller malfunction and software failure (incorrect device
address) are the most common causes of this type of time-out.

A controller can initiate communication with the Processor by generating an attention signal.
If the Processor is in the interruptable state as defined by bits 17 and 20 of PSW, it temporarily
suspends the normal "fetch instruction, execute, fetch next instruction" operation at the end of
the execute phase, and transmits an acknowledge signal over the I/O Bus. The controller re­
questing attention responds with a synchronization signal, and transmits its device number to
the Processor.

Device Priorities - External Interrupt Levels; Interrupt Queuing

The Model 8/32 architecture provides for four external interrupt levels. PSW bits 17 & 20
define the external interrupt enable status of the Processor. (See Chapter 6.).

When interrupt requests occur on more than one interrupt level, requests on the higher priority
interrupt level are acknowledged first. Level 0 is the highest, level 3 is the lowest in priority.

Interrupt Queuing: Any device controller wanting to interrupt the Processor activates one of
the four Attention lines sensed by the Processor and holds that line until the Processor acknow­
ledges the interrupt. Requests for attention are asynchronous; therefore more than one re­
quest may be pending at any time on any interrupt level. The system resolves these conflicts
according to device priority, determined by the physical placement of the device controller
on the I/O Bus. When two or more device controllers on the same interrupt level request
attention at the same time, the controller "nearest" to the Processor in the RACKO/TACKO
priority wiring pa: :"<..lrn captures the Acknowledge signal from the Processor and gets serviced
first. All other interrupting controllers further down the line in priority must wait for the
next Acknowledge signal from the Processor.

For details on standard and modified RACKO/TACKO priority wiring patterns, see the Model 8/32
Processors Installation Manuals, Publication Numbers 29-526 and 29-537.

INTERRUPT SERVICE POINTER TABLE

Device requests for service may result in either an immediate interrupt or an Auto Driver
Channel operation. The Processor chooses one of these options according to information
contained in the Interrupt Service Pointer Table.

7-2 29-428 R06 5/78

The Interrupt Service Pointer Table is an ordered list containing one entry for each possible
device number in the system. The table starts at memory location X'OOOODO' and contains a
halfword entry for each device number :In the system. For a minimum system, 255 device
numbers, the table extends through memory location X'0002CF'; for a maximum system, the
table extends through memory location X'0008CF' (1023 device numbers). The software
controlling I/o operations must set up the table.

When, having acknowledged a request for service, the Processor receives the device address,
it adds two times the device address to X'OOODO'. The result is the address, within the table,
of the entry reserved for the device requesting attention.

If the entry in the table is even (Bit 15 equals 0), the Processor takes an immediate interrupt
and transfers control to the software routine at the address contained in the table. If the
entry in the table is odd (Bit 15 equals 1), the Processor transfers control to the Auto Driver
Channel, without interrupting the currently running program.

At the time the Processor transfers control to the software routine, the old PSW (current at
the time of the device request) has been saved in Registers 0 and 1 of the new register set.
The device number is saved in Register 2 and the status in Register 3. The status portion of
the current PSW has been forced to a value of X'000028nO', where n is the new register set
number equal to the device interrupt level. Machine Malfunction Interrupts and higher level
I/O interrupts are enabled and all other interrupts disabled. The entry in the Interrupt Service
Pointer Table has become the new Location Counter.

In using the device number presented by the controller to vector into the Interrupt Service
Pointer Table, the Processor masks off the high order bits of the address as received from the
I/O Bus. In a system with only 255 device numbers, the address is masked to eight bits. In
a system with 1,023 device numbers the address is masked to 10 bits. The action preserves
system integrity in the event that a hardware malfunction results in a device address greater
than the maximum allowed in the system. (See Table 6-1.)

I/O INSTRUCTION FORMATS

The I/O instructions use the Register to Register (RR) and the Register and Indexed Storage (RX)
instruction formats.

I/O INSTRUCTIONS

Following most I/o instructions, the V flag in the Condition Code indicates an instruction time-out.
This means that the operation was not completed, either because the device did not respond at all,
or because it responded incorrectly.

In the Sense Status and Block I/O instructions, the V flag can also mean examine status. To dis­
tinguish between these two conditions, the program should test Bits 0:3 of the device status byte.
If all of these bits are ZERO, device time-out has occurred.

The instructions described in this section are:

SS
SSR
OC
OCR
RD
RDR
RH
RHR
RB

29-428 ROI 1/76

Sense Status
Sense Status Register
Output Command
Output Command Register
Read Data
Read Data Register
Read Halfword
Read Halfword Register
Read Block

RBR
WD
WDR
WH
WHR
WB
WBR
AL
SCP

Read Block Register
Write Data
Write Data Register
Write Halfword
Write Halfword Register
Write Block
Write Block Register
Autoload
Simulate Channel Program

7-3

I
INSTRUCTIONS

Output Command (OC)
Output Command Register (OCR)

Assembler Notation

OC
OC
OCR

Operation

R1,D2 (X2)
R1,A2 (FX2,SX2)
R1,R2

Op-Code

DE
DE
9E

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device and transmits an eight-bit command byte from the second operand loca­
tion to the device. Neither operand is changed.

Condition Code

C V G L
0 0 0 0 Operation successful
0 1 0 0 Instruction time-·out (FALSE SYNC) or EXAMINE status

Programming Notes

In the RR format, Bits 24:31 of the register specified by R2 contain the device command.

These instructions are privileged operations.

7-4 29-428 R02 2/77

INSTRUCTIONS

Sense Status (8S)
Sense Status Register (SSR)

Assembler Notation

SS
SS
SSR

Operation

R1, D2 (X2)
R1,A2 (FX2, SX2)
R1,R2

DD
DD
9D

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by IH contain the 10 bit device address. The device is
addressed and the eight bit device sta.tus is placed in the second operand location. The
Condition Code is set equal to the right most four bits of the device status byte. The first
operand is unchanged.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, condition code is set to 0100.

Programming Notes

In the RR format, the device status byte replaces Bits 24:31 of the register specified by R2.
Bits 0:23 are forced to zero.

These instructions are privileged operations.

29-428 R02 2/77 7-5

I

I
INSTRUCTIONS

Read Data (RD)
Read Data Register (RDR)

Assembler Notation Op-Code Format

RD
RD
RDR

R1, D2 (X2)
R1,A2 (FX2,8X2)
R1,R2

DB
DB
9B

RX1,RX2
RX3
RR

Operation

BUs 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. The device responds by transmitting an eight-bit data byte. This
byte is placed in the second operand location.

Condition Code

C V G L
0 0 0 0 Operation successful
0 1 0 0 Instruction time·-out (FALSE SYNC) or EXAMINE status

Programming Notes

7-6

In the RR format, the eight bit data byte replaces Bits 24:31 of the register specified by R2.
Bits 0:23 of the register are forced to zero.

These instructions are privileged operations.

29-428 R02 2/77

INSTRUCTIONS

Read Halfwo rd (RH)
Read Halfword Register (RHR)

Assembler Notation

RH
RH
RHR

Operation

Rl,D2 (X2)
Rl, A2 (FX2, SX2)
Rl,R2

Op-Code

D9
D9
99

Format

RXl,RX2
RX3
RR

Bits 22:31 of the register specified by Rl contain the 10 bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits
of data from the device to the second operand location. If the device is byte oriented, the
Processor transmits two eight-bit bytes in successive operations.

Condition Code

C V G L
0 0 0 0 Operation successful
0 1 0 0 Instruction time-out (FALSE SYNC) or EXAMINE status

Programming Notes

In the RR format, the data received from a halfword device replaces Bits 16:31 of the reg­
ister specified by R2. Bits 0:15 are forced to zero. The first byte of data from a byte de­
vice replaces Bits 16:23 of the register specified by R2. The second byte replaces Bits 24:31.
Bits 0:15 are forced to ZERO.

I

If the device is byte-oriented, it must be capable of supplying both bytes without intervening status
checks. Unlike the RB and RBR instructions, this instruction does not perform status checking
between the two byte transfers.

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

29-428 R02 2/77 7-7

I

INSTRUCTION }olO -?:> 'Z 00

Read Block (RB)

Assembler Notation Op-Code Format

RB Rl,D2 (X2) D7 RXl,RX2
RB R 1, A2 (FX2, SX2) D7 RX3

Operation

Bits 22:31 of the register specified by Rl contain the 10 bit device address. Bits 8:31 of
the fullword located at the second operand address contain the starting address of the data
buffer. Bits 8 :31 of the fullword located at the second operand address plus four contain the
ending address of the data buffer.

The Processor transmits eight bit data bytes from the device to consecutive locations in the
specified buffer.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, condition code is set to 0100.

Programming Notes

7-8

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans­
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

The second operand must be located on a fullword boundary.

29-428 R02 2/77

INSTRUCTION

Read Block Register (RBR)

Assembler Notation Op-Code Format

RBR Rl,R2 97 RR

Operation

Bits 22:31 of the register specified by R 1 contain the 10 bit device address. The register
specified by H2 contains the starting address of the data buffer. The register specified by
R 2+ 1 contains the ending address of the data buffer.

The Processor transmits eight bit data bytes from the device to consecutive locations in the
specified buffer.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, condition code is set to 0100.

Programming Notes

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

29-428 R02 2/77 7-9

I

INSTRUCTIONS

W~ite Data (WD)
Write Data Register (WDR)

Assembler Notation Op-Code Format

WD
WD
WDR

R1,S2 (X2)
R 1, A2 (FX2, SX2)
R1,R2

DA
DA
9A

RX1,RX2
RX3
RR

Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device and transmits an eight bit data byte from the second operand location
to the device. Neither operand is changed.

Condition Code

C V G L
0 0 0 0 Operation successful
0 1 0 0 Instruction time-out (FALSE SYNC) or EXAMINE status

Programming Notes

7-10

In the RR format, the eight bit data byte is contained in Bits 24:31 of the register specified
by R2.

These instructions are privileged operations.

29-428 R02 2/77

I
INSTRUCTIONS

Write Halfword (WH)
Write Halfword Register (WHH)

Assembler Notation

WH
WH
WHR

Operation

R1, D2 (X2)
R1,A2 (FX2,SX2)
R1,R2

Op-Code

D8
D8
98

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits
of data from the second operand location to the device. If the device is byte oriented, the
Processor transmits two eight bit data bytes in successive operations.

Condition Code

C V G L
0 0 0 0 Operation successful
0 1 0 0 Instruction time-out (FALSE SYNC) or EXAMINE status

Programming Notes

In the RR format, the data transmitted to a halfword device comes from Bits 16:31 of the
regist~r specified by R2. The first byte of data transmitted to a byte device comes from
Bits 16:23 of the register specified by R2, the second byte, from Bits 24:31.

If the device is byte-oriented, it must be capable of accepting both bytes without intervening status
checks. Unlike the WB and WBR instructions, this instruction does not perform status checking
between the two byte transfers.

In the RX format, the second operand must be ~ocated on a halfword boundary.

These instructions are pri vileged operations.

29-428 R02 2/77 7-11

I

INSTRUCTION

Write BlocI.;: (WB)

Assembler Notation Op-Code Format

WB
WB

R1, D2 (X2)
R1,A2 (FX2,SX2)

D6
D6

RX1,RX2
RX3

Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. Bits 8:31 of the
fullword located at the second operand address contain the starting address of the data buffer.
Bits 8:31 of the fullword located at the second operand address plus four contain the ending
address or the data buffer.

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, the condition code is set to 0100.

Programming Notes

7-12

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

The second operand must be located on a fullword boundary,

29-428 R02 2/77

INSTRUCTION

Write Block Register (WEH)

Assembler Notation Op-Code Format

WBR R1,R2 96 RR

Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The register
specified by R2 contains the starting address of the data buffer. The register specified by
R2+1 contains the ending address of the data buffer.

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate devi.ce
manual for a description of this status.

If the device is not in the system, the condition code is set to 0100.

Programming Notes

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans­
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

29-428 R02 2/77 7-13

I

I

INSTRUCTION

Autoload (AL)

Assembler Notation Op-Code Format

AL
AL

D2 (X2)
A2 (FX2, SX2)

D5
D5

RX1,RX2
RX3

Operation

The Autoload instruction loads memory with a block of data from a byte oriented input device.
The data is read a byte at a time and stored in successive memory locations starting with
location X'000080'. If the status is bad, the operation is terminated with V, G or L flags set. The
last byte is loaded into the memory location specified by the address of the second operand. Any
blank or zero bytes that are input prior to the first non-zero byte are considered to be leader and
are ignored. All other zero bytes are stored as data. The eight bit input device address is spec­
ified by memory location X'000078'. The device command code is specified by memory location
X'000079'.

Condition Code

C V
0 0
X 1
X X
X X

G
0
X
1
X

L
0
X
X
1

Operation successful or aborted.
Examine status or time-out
End of medium
Device unavailable

Programming Notes

7-14

This instruction may only be used with devices whose addresses are less than, or equal to,
X'FF'.

The R1 field of this instruction must be ZERO.

This instruction is a privileged operation.

The starting and ending addresses for this instruction are relocatable. Users should disable
the Memory Access Controller before attempting to use this instruction.

If the second operand is less than X/80' the operation is aborted.

29-428 R02 2/77

INSTRUCTION

Simulate Channel Program (SCP)

Assembler Notation

SCP
SCP

Operation

Rl, D2 (X2)
Rl,A2 (FX2, SX2)

Op·Code

E3
E3

Format

RXl,RX2
RX3

The second operand address is the address of a Channel Command Block (CCB). The buffer
switch bit of the Channel Command Word (CCW) specifies the buffer to be used for the data
transfer. If this bit is set, Buffer 1 is used. If it is reset, Buffer 0 is used. If the byte
count field of the current buffer is positive, the V flag in the Condition Code is set, and the
next sequential instruction is executed. If the byte count field is not positive, the following
data transfer operation is performed.

If the Channel Command Word specifies read, a byte of data is moved from Bits 24:31
of the register specified by Rl to the appropriate buffer location. If the Channel Command
Word specifies write, a byte of data is moved from the appropriate buffer location to Bits
24 :31 of the register specified by Rl. Bits 0:23 are forced to ZERO.

After a byte has been transferred, the count field of the appropriate buffer is incremented by
one. If the count field is now positive, and if the last bit of the CCW is reset, the buffer switch
bit of the CCW is complemented.

Condition Code

C V G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Programming Notes

COilllt field is now ZERO
COilllt field is now less than ZERO
COilllt field is now greater than ZERO
COilllt field was positive

The second operand must be located on a fullword boundary.

This instruction is a privileged operation.

29428 R02 2/77 7-15

I

CONTROL OF I/O OPERATIONS

The design of the 32 bit series I/O structure allows data transfers in any of several ways. The
choice of which I/O method to use depends on the particular application and on the characteristics
of the external devices. The primary methods of data transfer between the Processor and external
devices are:

One byte or one halfword to or from any of the general registers.

One byte or one halfword to or from memory.

A block of data to or from memory under direct Processor control.

A block of data to or from memory under control of a Selector Channel or EDMA Universal
Interface.

Multiplexed blocks of data to or from memory under control of the auto driver channel.

INTERDA TA standard device controllers expect a predetermined sequence of commands to effect
data transfers. These commands address the device, put it in the correct mode, and cause data
to be transferred. Because all I/O instructions are privileged operations, I/O control programs
must run in the Supervisor mode, Bit :~3 of the current PSW reset. I/O control programs should
disable immediate interrupts, or enable only higher level interrupts, controlled by PSW Bits
17 and 20.

STATUS MONITORING I/O

The simplest form of I/O programming is status monitoring I/O. In this mode of operation, only
one device is handled at a time, and the Processor cannot overlap other operations with the data
transfer. The sequence of operations in this type of programming is:

7-16

1. Address the device and set the proper mode (Output Command i.nstruction).

2. Test the device status (Sense Status instruction).

3. Loop back to the Sense Status instruction until the status byte indicates that the device is
ready (Conditional Branch instruction).

4. When the device is ready, transfer the data (Read or Write instruction).

5. If the transfer is not complete, branch back to the Sense Status instruction. If it is com­
plete, terminate.

A variation on this type of programming makes use of the block I/O instructions. In this kind of
programming, the program prepares the device and waits for it to become ready. It then executes
a block I/O instruction. The Processor takes over control and completes the transfer, one byte
at a time to or from memory. The Processor monitors device status during the transfer. Block
transfers may be used only with byte oriented devices whose ready status is zero.

29-428 ROI 1/76

INTERRUPT DRIVEN I/O

Interrupt driven I/O allows the Processor to take advantage of the disparity in speed between it­
self and the external devices being controlled. With status monitoring, the Processor spends
much of its time waiting for the device. With interrupt driven programming, the Processor can
use much of this time to perform other functions. This kind of programming establishes at
least two levels of operation. On one level are the interrupt service programs. On the other
levels are the interruptable programs that run with the immediate interrupt enabled.

Before starting interrupt driven operations, the Interrupt Service Pointer Table must be set up.
This table starts at memory location X' OOOODO'. It must contain a halfword address entry for
every possible device. The table is ordered according to device addresses in such a way that
X' OOOODO' plus two times the device address equals the memory address of the table entry re­
served for that device. The value placed in the location reserved for a device is the address of
the interrupt service routine for the device.

For example: if a console Teletype is connected at an address of X'02' and the interrupt
routine resides in memory at address X'3000', the set up involves: writing X'3000' at memory
location X'D4'. Note that X'D4' = X'DO' + 2 times the Teletype address. I

Although there may be gaps in device address assignments, the interrupt service pointer table
should be completely filled. Entries for non-existent devices can point to an error recovery
routine. (This PI ecaution prevents system failure in the event of spurious interrupts caused
by hardware malfunction or by improper use of the Simulate Interrupt instruction.)

The next step is to prepare the device for the transfer. This is done best with the immediate
interrupt disabled. Once the table pointer has been set up, and the device prepared, the
Processor can move on to an interruptable program.

When the device signals that it requires service, the Processor saves the current state,
and transfers control to the location specified in the interrupt service pointer table. At this
time, the current PSW has a status that indicates running state, machine malftmction inter­
rupt enabled, higher level I/O interrupts enabled and all other interrupts disabled. Registers
o and 1 of the new set contain the old PSW, indicating the status and location of the interrupted
program. Register 2 of that set contains the device address. Register 3 contains the device
status. The sequence of operation in this type of program is:

1. Set up the Interrupt Service Pointer Table to vector to error addresses for undefined
devices.

2. Set up address of software interrupt handler routine at 2 times the device number plus
X'DO' (X'DO' is starting address of Service Pointer table).

3. Set up software interrupt handler routine.

4. Set up the device and enable device interrupts.

5. Enable interrupts in PSW

The interrupt handler routine should:

1. Check the device status in Register 3, and if satisfactory,

2. Make the transfer, and

3. Return to the interrupted program by reloading the old PSW from Registers 0 and 1
(LPSWR RO).

The interrupt service routine should not enable the immediate interrupt on its own level. To
do so allows other interrupt requests to be acknowledged, and the contents of Registers 0:4
would be lost. If it is necessary to enable the immediate interrupt, the routine should save
the register set, switch to a different register set, saving it if necessary, and then enable
the immediate interrupt.

29428 R02 2/77

I

•

7-17

SELECTOR CHANNEL I/O

The Selector Channel controls the transfer of data directly between high speed devices and memory.
As many as 16 devices may be attached to the Selector Channel, only one of which may be opera­
ting at anyone time. The advantage gained in using the Selector Channel is that other program
processing may proceed simultaneously with the transfer of data between the external device and
memory. This is possible because the Selector Channel accesses memory on a cycle stealing
basis, which permits the Processor and the channel to share memory. In some cases, execution
times of the program in progress may be affected, while in ,others, the effect is negligible. This
depends upon the rate at which the Selector Channel and Processor compete for memory cycles.

The Selector Channel is linked to the Processor over the I/O Bus. It has its own unique device
number which it recognizes when addressed by the Processor. Like other device controllers, it
can request Processor attention through the immediate interrupt.

Selector Channel Devices

The Selector Channel has a private bus similar to the Processor's I/o Bus. Controllers for the
devices associated with the Selector Channel are attached to this bus. When the Selector Channel
is idle, its private bus is connected directly to the I/O Bus. If this condition exists, the Processor
can address, command, and accept interrupt requests from the devices attached to the Selector
Channel. When the Selector Channel is busy, this connection is broken. All communication be­
tween the Processor and devices on the Selector Channel are cut off. Any attempt by the Processor
to address devices on the channel results in instruction time-out.

Selector Channel Operation

Two registers in the Selector Channel hold the current memory address and the final memory
address. Before starting a Selector Channel operation, the control software, using Write instruc­
tions, places the address of the first byte of the data buffer in the current register and the address
of the last byte in the final address register. During the data transfer, the channel increments the
current address register by one for each byte transferred. When the current address equals the
final address, the last byte has been transferred, and the channel terminates.

The Selector Channel accesses memory a halfword at a time. Therefore, the transfer must
always involve an integer number of halfwords. The starting address of the data buffer must
always be on an even byte (halfword) boundary. The ending address must always be on an odd
byte boundary. The starting address must be less than the ending address.

Upon termination, the software can read back from the Selector Channel the address contained in
the current address register. If this address is less than the final address specified for the trans­
fer, and if the buffer limits were properly checked before the transfer, then this condition indicates
a device malfunction or an unusual condition within the device, for example, crossing a cylinder
boundary on a disc.

7-18 29-428 ROl l/76

Selector Channel Programming

The usual method of programming with the Selector Channel uses the immediate interrupt. The
first step in the operation is to check the status of the Selector Channel. If it is not busy, the
address of the termination interrupt service routine is placed in the location within the interrupt
service pointer table reserved for the Selector Channel. Next the program should proceed
as follows:

1. Give the Selector Channel a command to stop. This command initializes the Selector
Channel's registers and assures the idle condition with the private bus connected to the
I/O Bus.

2. Prepare the device for the transfer with whatever commands and information may be
required.

3. Give the Selector Channel the starting and final addresses.

4. Give the Selector Channel the command to start.

With the Start command, the Selector Channel breaks the connection between its private bus and
the Processor's I/O Bus, and provides a direct path to memory from the last device addressed
over its bus. When the device becomes ready, the channel starts the transfer which proceeds to
completion without further Processor intervention. Once the Start command has been given, the
Processor can be directed to the execution of concurrent programs.

On termination, the channel signals the Processor that it requires service. The Processor sub­
sequently takes an immediate interrupt, transferring control to the Selector Channel interrupt
service routine. At this time, Registers 0:3 of the new set are set up as for any other immedi­
ate interrupt.

Note that if a power failure interrupts a SELCH transfer, the ending address in the
SELCH is unpredictable.

AUTO DRIVER CHANNEL

The Auto Driver Channel provides a means for multiplexing block data transfers between memory
and low or medium speed I/O devices. The operation of the channel is similar in some respects
to interrupt driven I/O. The channel is activated upon a service request from a device on the I/O
Bus. Upon receipt of a device request, the Processor uses the device number to index into the
Interrupt Service Pointer Table. If the value contained in the table is even, the Processor trans­
fers control to the interrupt service routine. If the value is odd, it transfers control to the Auto
Driver Channel.

To the Auto Driver Channel, the address in the Interrupt Service Pointer Table is the address plus
one (making it odd) of a Channel Command Block (CCB). The Channel Command Block is basically
a channel program consisting of a description of the operation to be performed, and a list of para­
meters associated with the operation. In addition to the functions of Read and Write, the channel
can (a) translate characters, (b) test device status, (c) chain buffers, (d) calculate longitudinal
and cyclic redundancy check values, and (e) transfer control to software routines to take care
of unusual situations.

29-428 R06 5/78 7-19

I

I

CHANNEL COMMAND BLOCK

The Channel Command Block (CCB), as shown in Figure 7-1, consists of a Channel Command Word
(16 bits) that describes the function, count fields (16 bits each) for two buffers, final addresses
(32 bits each) for two buffers, a check word (16 bits) for the longitudinal or cyclic redundancy
check, the address (32 bits) of a translation table, and the address (16 bits) of a software routine.

o
2

4

8

10

12

16

20

o
CHANNEL COMMAND WORD

BUFFER 0 BYTE COUNT

BUFFER 0 END ADDRESS

CHECK WORD

BUFFER 1 BYTE COUNT

BUFFER 1 END ADDRESS

TRANSLATION TABLE ADDRESS

SUBROUTINE ADDRESS

·")Y~~~~~)-.~£l;~~~ v~,,!~;v I

15

(HALFWORD)

(HALFWORD)

(FULLWORD)

(HALFWORD)

(HALFWORD)

(FULLWORD)

(FULLWORD)

(HALFWORD)

Just as there may be many interrupt service routines ready at any time to service device requests,
there may be many channel command blocks in the system ready to handle data transfers as re­
quired. Each channel command block mllst start on a fullword boundary. The address plus one
of the channel command block must be placed in the interrupt service pointer table location
for the device involved in the transfer.

Subroutine Address

When the channel transfers control to the software subroutine whose address is contained in the
Channel Command Block, Registers 0:4 of the appropriate set have already been set up by the
Processor to contain the old PSW, the device number, the device status, and the address of the
Channel Command Block. The current PSW status specifies run state, machine malfunction
interrupt enabled, higher level I/O interrupts enabled, and all other interrupts disabled.

The channel transfers control to the subroutine either unconditionally (controlled by a bit in the
Channel Command Word), or because of bad device status, or because it has reached the limit of
a buffer. It indicates its reason for transferring control by adjusting the Condition Code as
follows.

C V G
0 0 0
0 0 0
0 0 1

L
0
1
0

Unconditional transfer
Bad status
Buffer limit

The subroutine address in the CCB is a 16 bit address. Because of this, the subroutine at that
address, or at least the first instruction of the subroutine, must reside in the first 64KB of
memory.

7-20 29428 R02 2/77

Buffers

There is space in the CCB to describe two' data buffer areas. The data areas may be located any­
where in memory. The limits of each data area are described by an address field and a count
field. The address field contains the address of the last byte in the data area. This is a 24 bit
address, right justified in the fullword provided. If the device being controlled is a halfword de­
vice, the final address must be odd. If the device is a byte device, the address may be either 'Odd
or even. The currently active buffer is selected by a bit in the Channel Command Word. When I
one buffer has been exausted, the channel may reverse the state of this bit and thus switch to
the alternate buffer. Automatic buffer switching is only available for byte devices.

The count field, in most operations, contains a negative number whose absolute value is equal to
one less than the number of bytes to be transferred. The one exception is the case of a single
byte transfer, where the count field contains ZERO.

During data transfers, the channel adds the value contained in the count field to the final address
to obtain the current address. It makes the transfer, referencing the current address, then in­
crements the value in the COllnt field b~r one for a byte device or by two for a halfword device.
\\'hen the count field becomes positive, i. e., greater than zero, the channel sets the G flag in
the Condition Code and transfers control to the specified software subroutine. If the count
field is positive upon channel activation, the Channel makes no transfer and returns control
to the processor with Condition Code = 0010 (G=l).

Translation

The translation feature is used for special character recognition and is available only for byte I
devices. If this operation is specified, the fullword provided in the Channel Command Block
must contain the 24 bit address, right justified, of a translation table. The table, which must
start on a halfword boundary, can contain up to 256 halfword entries. During data transfers,
the channel multiplies the data byte by two and adds this value to the translation table address.
The result is the address within the translation table of the halfword corresponding to the data
byte.

The channel references this location, and, if Bit 0 of the halfword is a one, it substitutes Bits
8:15 of the halfword for the data byte and proceeds with the operation. If Bit 0 of the halfword
is a ZERO, the channel:

Does not increment the byte count for the appropriate buffer.

Puts the data byte, untranslated, in Bits 24:31 of Register 3, of the appropriate set.

Forces Bits 0:23 of Register 3 to ZERO.

l\Tultiplies the value contained in the translation table by two, and transfers control to the
software routinc located at this address.

Upon transfer to the translation subroutine, Registers 0 and 1 contain the old PSW. Register 2
contains the device number. Register 3 contains the untranslated character. Register 4 con­
tains the address of the Channel Command Block. The current PSW indicates run state, machine
malfunction interrupt enabled, higher level I/O interrupts enabled and all other interrupts dis­
abled. The Condition Code is zero.

Check Word

If either longitudinal or cyclic redundancy checking is required, the check word in the Channel
Command Block contains the accumulated value. The initial value for the check word is usually
zero. (There are data dependent exceptions, e. g., where initial characters are not to be in­
cluded in Lhe check.) The longitudinal check is an Exclusive on of the character with the check
word. The cyclic check uses the formula for CRC 16:

X 16 +X15 +X2 + 1

29428 R02 2/77 7-21

I

I

If the Data Communication Option is equipped, the cyclic check may optionally use the formula
for CRC SDLC:

On input, if both redWldancy checking and translation are required, the character is translated
first, then the cyclic redundancy check is done using the original character input rather than
the translated character. On output, the character is translated first. Redundancy checking
may be used only with byte devices.

Channel Command Word

The Channel Command Word (CCW) , as shown in Figure 7-2, consists of two parts. Bits 0:7
contain a status mask. Bits 8:15 describe the channel operation.

o

Status Mask

789101112 15

STATUS MASK

FAST

TRANSLATE

READ/wRITE

BUFFER SWITCH

REDUNDANCY CHECK TYPE

Figure 7-2" Channel Command Word

On every channel operation involving a data transfer, the status mask is ANDed with the device
status. This operation does not change the status mask. If the result is zero, the cl1al1nel pro­
ceeds with the operation. If the result is non-zero, the channel sets the L flag in the Condition
Code, and transfers control to the specified software subroutine.

Execute Bit (E)

I If this bit is reset, the channel unconditionally transfers control to the specified subroutine,
without taking any other action. The Condition Code is zero. If this bit is set, the channel
continues with the operation as specified in the Channel Command Wo rd.

Fast Bit (F)

If this bit is set, the channel performs the I/O transfer in the fast mude. In the fast mode, buffer
chaining, redundancy checking, and translation are not allowed. ThiS bit must be set for halfword
devices. If this bit is set, Buffer 0 is always used.

Read/Write Bit (R/W)

This bit indicates the type of operation. If this bit is reset, a byte or a halfword is input from
the device. If this bit is set, a byte or a halfworcl is output to the device.

Translate Bit (T)

If this bit is set, and the fast bit reset, the channel translates the data byte.

7-22 29-428 R02 2/77

Redundancy Check Type Bits (RC)

These two encoded bits specify the type of redundancy check required. The following table con­
tains the valid types of checks. These bits are ignored if the Fast bit (Bit 15) is set. CRC
SDLC can be specified only if the Data Handling option is installed.

Bit
10

o
o
1
1

Bit
11

o
1
o
1

Buffer Switch Bit (B)

Redundancy Check TYPe

LRC
BISYNC CRC
RESERVED - MUST NOT BE SPECIFIED
SDLC CRC - SHOULD ONLY BE SPECIFIFIED
IF THE DATA HANDLING OPTION IS
INSTALLED.

When the fast bit is reset, this bit specifies which of the two buffers is to be used for the trans­
fer. If this bit is reset, Buffer 0 is used. If it is set, Buffer 1 is used. The channel chains
buffers when the count field becomes positive. It does this by complementing the buffer switch
bit before transferring control to the specified software routine.

Valid Channel Command Codes

The following is a list of valid codes for the Channel Command Word. Note that only the first three
may be used with halfword devices.

Channel Command Word 8:15

Hexadecimal Binary Meaning

00 00000000 Transfer to subroutine
81 10000001 Read fast mode
85 10000101 Write, fast mode
80 10000000 LRC, Buffer 0, Read
82 10000010 LRC, Buffer 0, Read, translate
84 10000100 LRC, Buffer 0, Write
86 10000110 LRC, Buffer 0, Write, translate
88 10001000 LRC, Buffer 1, Read
8A 10001010 LRC, Buffer 1, Read, translate
8C 10001100 LRC, Buffer 1, Write
8E 10001110 LRC, Buffer 1, Write, translate
90 10010000 CRC BISYNC, Buffer 0, Read
92 10010010 CRC BISYNC, Buffer 0, Read, translate
94 10010100 CRC BISYNC, Buffer 0, Write
96 10010110 CRC BISYNC, Buffer 0, Write, translate
98 10011000 CRC BISYNC, Buffer 1, Read
9A 10011010 CRC BISYNC, Buffer 1, Read, translate

9C 10011100 CRC BISYNC, Buffer 1, Write
9E 10011110 CRC BISYNC, Buffer 1, Write, translate
BO 10110000 CRC SDLC, Buffer 0, Read
B2 10110010 CRC SDLC, Buffer 0, Read, translate
B4 10110100 CRC SDLC, Buffer 0, Write
B6 10110110 CRC SDLC, Buffer 0, Write, translate
B8 10111000 CRC SDLC, Buffer 1, Read
BA 10111010 CRC SDLC, Buffer 1, Read, translate
BC 10111100 CRC SDLC, Buffer 1, Write
BE 10111110 eRC SDLC, Buffer 1, Write, translate

29-428 R06 5/78 7-23

I

General Auto Driver Channel Programming Procedure (See Figure 7·3.)

1. Set up Interrupt Service Pointer Table to vector to error routines for undefined devices.

2. Set up address of Channel Command Word + 1 (odd) in table at 2 times Device number
plus X'DO' (start of Interrupt Service Pointer Table)

3. Set up complete Channel Command Block.

4. Set up device and enable device interrupt.

5. Enable interrupts in PSW (Auto Driver Channel finishes operation).

6. Check for good termination of Auto Driver Channel operation.

7-24 29-428 R02 2/77

ACKNOWLEDGE INTERRUPT
ON LINE n

RO, SETn-PSW
Rl, SETn LOC

R2, SETn-DEVICE NUMBER
R3, SETn DEVICE STATUS

PSW-'000028nO'
2x DEVICE NUMBER IS INDEX
TO SERVICE POINTER TABLE

FETCH TABLE ENTRY

YES

LOC'--TABLE ENTRY
FETCH AND EXECUTE

NEXT USER INSTRUCTION
"IMMEDIATE INTERRUPT"
SERVICE POINTER TABLE
ENTRY WAS ADDRESS OF

SUBROUTINE

NFAST

CONDITION CODE = LS 4 STATUS BITS

SERVICE POINTER TABLE ENTRY
IS ADDRESS OF A CHANNEL COMMAND BLOCK

EXAUTO

CHANNEL
R4, SETn+-TABLE ENTRY

FETCH CHANNEL COMMAND WORD

NO

CONDITION CODE4-2
CHECK DEVICE STATUS
AGAINST STATUS MASK

NO

YES

YES

YES "FAST MODE"

FETCH BUFFER 0
BYTE COUNT

FETCH BUFFER 0 END ADDRESS
ADD BYTE COUNT AND
BUFFER END ADDRESS.
RESULT IS THE ADDRESS
OF DATA TO TRANSFER

CONDITION CODE O

EUXSUBl

Figure 7-3. Microcode Flowchart of Auto Driver Channel (Sheet 1)

29-428 ROl 1/76 7-25

7-26

NO

NOT ZERO

READ HALFWORD FROM

DEVICE AND STORE
HALFWORD IN MEMORY

HRDWT

INCREMENT BUFFER 0
BYTE COUNT BY 2

NO

EXAUTO

LOC R1
PSW+-R2

YES

FETCH AND EXECUTE
NEXT USER INSTRUCTION

HWRT1

CRITE HALFWORD
FROM MEMORY
TO THE DEVICE

DO MACHINE MALFUNCTION
PSW SWAP

GO TO INTERRUPTABLE
WAIT STATE

READ BYTE FROM
DEVICE AND STORE
BYTE IN MEMORY

NON·ZERO

FWRIT

WRITE BYTE FROM
MEMORY TO THE DEVICE

FRDWT

INCREMENT BUFFER 0
BYTE COUNT BY 1

EXSUB1

FETCH SUBROUTINE ADDRESS
FROM CCB COpy ADDRESS

TO LOC FETCH AND
EXECUTE NEXT USER

INSTRUCTION

*FETCH NEXT USER INSTRUCTION

Figure 7-3. Microcode Flowchart of Auto Driver Channel (Sheet 2)

29-428 ROt 1/76

"NORMAL MODE" "SUBROUTINE TRANSL"

USE BUFFER 0
BYTE COUNT AND

END ADDRESS

SET

YES

ADD BYTE COUNT AND
BUFFER END ADDRESS

AND FETCH THE
ADDRESSED BYTE

READ DATA BYTE
FROM THE DEVICE

AND SET ASIDE

SET

NO

STORE TRANSLATED
BYTE IN MEMORY

GET ORIGINAL DATA
BYTE INPUT FROM DEVICE

USE BUFFER 1
BYTE COUNT AND

END ADDRESS

EXAUTO

FETCH ADDRESS OF
TRANSLATION TABLE

FROM CCB
ADD TWICE THE

DATA BYTE TO THE
TABLE ADDRESS AND

FETCH HALFWORD ENTRY

MASK LS 8 BITS
TRANSLATED
CHARACTER

RETURN

NO

NO LOC-2x TABLE ENTRY
FETCH AND EXECUTIVE

NEXT USER INSTRUCTION
" EXIT TO SPECIAL

CHARACTER SUBROUTINE"

OUTPUT BYTE TO DEVICE

FETCH CHECKWORD
FROM CCB

DO LONGITUDINAL OR
CYCLIC REDUNDANCY CHECK

INCREMENT BUFFER
BYTE COUNT

YES
COMPLEMENT

BUFFER SWITCH
BIT IN CCW

* FETCH NEXT USER INSTRUCTION

EXSUBl

Figure 7-3. Microcode Flowchart of Auto Driver Channel (Sheet 3)

29-428 R01 1/76 7-27/7-28

CHAPTER 8
MEMORY MANAGEMENT

Memory Relocation and Protection is provided by the Memory Access Controller (MAC). The
MAC is a device which monitors all memory accesses. Under program control, it can (a) trans­
late the address of a memory access from a 20-bit program address to a 20-bit physical address,
(b) prevent write access to a block of memory, (c) reject instruction execution from a block of
memory or (d) detect an invalid memory access.

The throughput between the Processor and local memory or between the Selector Channel and local
memory is not affected by the use of the MAC.

In an operating system environment, the operation of the MAC is completely transparent to most
programs. It is very similar to a peripheral device in that only the operating system modules
directly responsible for its operation need be aware of its existence.

PROGRAM ADDRESS SPACE

The MAC allows an Operating System to provide support to user programs in such a way that
the program can be coded as if some subset of available memory, starting at address 0, were
available to the program. The range of addresses thus referenced by the program is called the
Program Address Space. At load time, the MAC can be used to map this program address space
into the available physical memory addresses so that any program address, referenced during
the program execution, is translated (relocated) to the correct physical address before memory is
accessed. The MAC interprets the Program Address as follows

MBD

SRN: SEGMENTATION REGISTER NUMBER
MBD: MEMORY BLOCK DISPLACEMENT

RELOCATION

The relocation of program address to physical address is accomplished through the relocation/
protection bit (bit 21) of the Program Status Word and the 16 Segmentation Registers of the
MAC. If the relocation/protection bit of the PSW is reset, the MAC provides no translation of
the addresses. If the relocation/protection bit of the PSW is set, the MAC assumes that all
memory accesses are program addresses which must be relocated to physical addresses.
Before the relocation/protection bit of the PSW is set, the MAC Segmentation Registers must
be loaded with the appropriate mapping of the program to physical address (see below). The
MAC Segmentation Register describes the starting address and length of a block of physical
memory allocated to the program address space. These blocks must start on a 256 byte boundary
and may be up to 64K bytes long.

29-428 ROI 1/76 8-1

I

I

PROGRAM f ADDRESS

11 112 15

1

16 31

0011 0011 0100 1010 0010

3 2 3 4 A

31
SEGMENTATION (11112

0111 0100 0010

23

1

24

REGISTER 3
7 4 2

PHYSICAL
1

0

ADDRESS

11112 31

0110 0101 0100 1010 0111

7 6 5 4 A

Address calculation: X'0234A' Memory block displacement
+ X'74200' Memory block starting address

X'7654A' Physical memory address

When the relocation/protection bit of the PSW is set, the program address is relocated as follows:

Program address Bits 12:15 select one of the segmentation Registers. In the example
above, segmentation Register 3 is selected.

Segmentation Register Bits 12:23 specify starting address of the block of memory. In the
illustration above, X'742' means that the memory block starting address is X'74200'.

Program address Bits 16:31 contain the memory block displacement.

The block displacement is added to the memory block starting address to obtain physical
memory address.

PROTECTION

In addition to describing a block of physical addresses, each Segmentation Register can be used
to limit the type of access to the described block of addresses. Five types of protection are
provided by the MAC when the relocation/protection bit of the current PSW is set:

8-2

if the presence bit (Bit 27) is reset in the Segmentation Register selected by Bits 12:15 of
the Program address (non-present address), or

if the write-protect bit (Bits 25:26 = 01 or 11) is set in the Segmentation Register
selected by Bits 12:15 of the program address, and an attempt is made to store into the
addressed memory (write protection violation), or

if write/interrupt protection bit (Bits 25:26 == 10) is set in the Segmentation Register
selected by bits 12:15 of the program address and a store is made into the addressed
memory (write/interrupt protection violation). or

if the execution-protection bit (Bit 24) is set in the Segmentation Register selected by
Bits 12:15 of the program address and an instruction fetch is being attempted from the
addressed memory (execute protection violation), or

if the value of Bits 16:23 of the program address is larger than the limit described in the
Segmentation Register selected by Bits 12:15 of the program address (invalid address),
then a Relocation/Protection Fault interrupt is generated. The MAC status register
contains the reason for the interrupt (see below)-

29-428 R02 2/77

INTERRUPT STATUS REGISTER

f><j4
SLF SRF

SEGMENTATION REGISTER

In the case of an execution protection violation, write protection violation or invalid address, if
the interrupt generated by the MAC cannot be accepted immediately by the Processor, the con­
troller continues to operate, but all Write operations are changed to read operations until the
interrupt is cleared. In the case of write/interrupt protect violation, the store operation is
allowed to complete and then an interrupt is generated. A MAC interrupt condition is cleared
by any reference to the MAC interrupt status register, however, only a store instruction will
clear the status register.

EXAMPLE:

The effect of the MAC is best illustrated by an example of a program executing under operating
system control.

Assume that the program consists of:

main program coded as if addresses 0 through 2FFF are available and a program entry
address of 100. (Program Address Space = 12K)

a subroutine coded as if addresses FOOOO through F1FFF are available. (Program Address
Space = 8K)

a data area which is initialized by some other program and which is contained at addresses
AOOOO through AFFFF. This area is to be write and execute protected. (Program Address
Space = 64K)

The operating system executes with the relocation/protection bit of the PSW reset so that no
address relocation or protection is in effect.

Assume that the main program, subroutine and data area are loaded into physical memory
starting at addresses 21000, FOOO, 13000 respectively. Before passing control to the example
program, the operating system:

sets the start address of Segmentation Registers 0, 10 and 15 to 21000, 13000 and OFOOO
respectively.

resets the presence bit in the remaining Segmentation Registers.

sets the limits of Segmentation Registers 0, 10 and 15 to 47, 255 and 31 blocks respectively.

sets write and executes protection in Segmentation Register 10.

29-428 R01 1/76 8-3

t5<14

SLF
11112

SRF
23r: 1 ~:61:7 E><j

SEGMENTATION REGISTER FIELDS

SEGMENTATION REGISTER O.

1><14 11 12 23r4 27

1
28 31

1 0010 1111 1 0010 0001 0000 0001 ~
0 2 F 2 a a

SEGMENTATION REGISTER 10:

[:;;<!j4 111
12

23r4 27 C><:I
1111 1111 0001 0011 0000 1011

a F F 3 a B a

SEGMENTATION REGISTER 15:

f><j4
1111 0000 0001

23
1
24 27~1

0001 1111 I 0000

11 12

a F a F a a

SEGMENTATION REGISTERS 1,2,3,4,5,6,7,8,9,11,12.13 & 14:

0000 [;><J 0000 0000 I 0000

11 12

a a a a a a a a

The program can then be started by loading a PSW with relocation/protection bit of the status
portion set and a location counter of 100. A relocation/protection fault interrupt occurs if:

an attempt is made to reference 30000. (Presence bit reset in selected Segmentation
Register, i. e., Segmentation Register 3.)

an attempt is made to store into A0100. (Write protect set in selected Segmentation
Register, i. e., Segmentation Register 10.)

an attempt is made to branch to AOOOO. (Execute protect set in selected Segmentation
Register, i. e., Segmentation Register 10.)

I an attempt is made to reference F3000. (Value of Bits 15:31 of program address (3000)
is larger than the limit field of Segmentation Regjster 15 (32 256 byte blocks or 2000)).

An attempt to reference 100, F1200 or AOOOI results in an access to 21100, 10200 or 13001
respectively.

8-4 29-428 R06 5/78

MAC REGISTERS

The MAC has 17 hardware registers referred to as Base Regi.sters. There are 16 Segmentation
Registers and 1 Interrupt Status Register. These registers are accessed through the assigned
memo ry locations.

The 72 bytes starting at the first 256 byte boundary above the Interrupt Service Pointer Table,
are dedicated to the MAC.

MAX NUMBER OF DEVICE ADDRESSES DEDICATED MAC LOCATIONS

256 300 - 347

512 500 - 547

1024 900 - 947

The MAC Registers are assigned to the dedicated locations as follows (for 256 maximum number

I

of device addresses): I

Segmentation Register Memory Location

0 300

" If 1 304

" " 2 308
" " 3 30C

" " 4 310

" " 5 314
II " 6 318

" " 7 31C

" " 8 320
II " 9 324

" " 10 328

" " 11 32C
" " 12 330

" " 13 334

" " 14 338

" " 15 33C

Interrupt Status Register 340

Values are loaded into the MAC registers by storing the values into the appropriate assigncd memory
locations. Any attempt to read the dedicated MAC locations returns the value in the corresponding
memory location except for the location assigned to the MAC status Register. In general, manipula­
tion of MAC registers is performed with the relocation/protection of the PSW reset. To summarize
the manipulation of the MAC registers:

The 68 bytes starting at the first 256 byte boundary above the Interrupt Service Pointer
Table, are dedicated to the MAC.

The value of a MAC register is changed by storing into the appropriate dedicated MAC
location.

The value of the MAC Status Register is read by loading from the appropriate dedicated
MA C location.

All attempts to read (load) from dedicated MAC locations return the value in the corres­
ponding memory location, except for the MAC status register location.

29-428 R06 5/78 8-5

MAC registers are manipulated, with the relocation/protection bit of the PSW reset, as follows:

The Segmentation Registers are set up by storing data into the appropriate assigned
memory locations.

The Segmentation Registers cannot be read. Any attempt to read the dedicated MAC
locations assigned for the Segmentation Registers returns the value in the corres­
ponding memory locations. This value may be different than the actual (hardware)
Segmentation Register value. To read the data which has been loaded into the Segmen­
tation Registers, it is necessary to read the assigned locations after the registers
have been loaded (with MAC disabled) and before the MAC is enabled. Under these
conditions the assigned memory locations will contain the same data as the Segmen­
tation Registers.

The Interrupt Status Register is cleared by writing any data into its assigned mem­
ory location.

The Interrupt Status Register can be read by rcading its assigned memory location.
This also clears the Interrupt Status Register.

Definition of MAC Register Fields

Segmentation Register

SLF SRF

Each Segmentation Register is 32 bits wide.

Field

0-3

SLF 4-11

SRF 12-23

E 24

WP 25-26

p 27

28-31

8-6

Meaning

Unused - must be zero

Segment Limit Field, contains one less than the number of
256 byte blocks in the segment described by this register.

Segment Relocation Field - indicates the starting address of
the segment described by this register (Starting address SRF
multiplied by X'100').

Execute protect bit - if set, instruction fetch from segment
causes relocation/protection fault.

Write protection field - encoded as follows:

00 - no write protection
01 or
11 - Writc protected - attempt to store into segment causes

relocation/protection fault - store is not executed.

10 - Write/Interrupt protect - attempt to store into segment
causes relocation/protect fault - store is executed.

Presence bit - if not set, selection of this register causes
relocation/protection fault.

Unused - must be zero.

29428 ROl 1/76

Interrupt Status Register

f

I 27

N 28

WP 29

WI 30

E 31

Meaning

Invalid Address - value of bits 16:31 of program address
greater than the limit specified by SLF in the selected
Segmentation Register.

Non-present Address - present bit not set in selected
segmentation register.

Write Protect Violation - attempt to store into write protected
segment.

Write/interrupt protection violation - store into write/
interrupt protected segment.

Execute Protect Violation - instruction fetch attempt from
execute protected segment.

The Interrupt status Register is set by the MA C during generation of a relocation/protection
fault interrupt. The first reference, load or store, to the memory location assigned to the
interrupt status register following the interrupt, clears the interrupt condition from the MAC.
The Relocation and protection interrupt handler should execute with the relocation/protection
bit of the PSW reset and should clear the Interrupt Status Register by storing any fullword into
the assigned memory location before exiting.

Initialization

Whenever the Initialize Switch (INI) on the display panel is depressed, or the processor is I
powered up, all segmentation, relocation, protection and MAC interrupts are disabled regard-
less of the state of bit 21 in tm current PSW. The contents of the MAC segmentation registers
must be restored by software after Power Fail.

The MAC remains disabled until a memory reference instruction is issued. At this time, the
MAC is enabled or remains disabled depending on the condition of bit 21 of the current PSW.

29-428 R06 5/78 8-7/8-8

CHAPTER 9

WRITABLE CONTROL STORE

INSTRUCTIONS

The writable control store option puts the power and speed of the Model 8/32 micro processor into
the hands of systems programmers for implementing high speed algorithms or specialized functions.
This option is available in the Model 8/32 and may not be available with other 32 Bit Processors. I

All the resources of the microprocessor become available to the user as an extension to the user
level architecutre. The user is provided with 512 or 2048 32-bit words of dynamically alterable high l
speed control store memory over and above the 1280 words of fixed read-only control store. Also there
are user level instructions for writing to and reading from thc control store and cxecuting micro­
programmed routines contained in the control store.

Figure 9-1 illustrates the organization of the Model 8/32 Microprocessor. In general, via the
appropriate micro-instruction, data is gated from the Hegister Stacks by way of the A & B source
buses to the selected module (ALU or I/O) and a given operation spccified for the I/o Module.
Results appear in the selected destination register via the S bus. The register stacks are paralleled
and each stack contains up to 168 32-bit registers. This includes up to 8 sets of 16 each user level
general registers, 16 floating point registers, and 8 registers for exclusive use by the miCrOprOgram.,
The dual stack organization allows concurrent gating onto the two source buses (A&B).

511

29-428 R06 5/78

* Module 3 registers used only with optional WCS. Optional High Precision
Floating Point Unit (OFU), not shown on this diagram, contains its own sin­
gle and double precision floating point registers

Figure 9-1. Model 8/32 Block Diagram

9-1

Many of the other internal registers are available for limited use by the microprogram.

Microinstructions in the Model 8/32 are divided into two basic types:

- Control Module Instructions. Branch, Execute, etc.

- Instructions for the other four modules.

ALU - Add, Subtract, Shift, Multiply, etc.
I/O Module - Read, Write, etc.
Floating Point ALU - Add, Subtract, Multiply, etc.
Double Precision Floating Point ALU - Add, Subtract, Multiply, etc.

Figure 9-2 shows the basic micrO-instruction formats. As can be seen, many concurrent opera­
tions are possible. For Branch and Execute instructions, the F field specifies the condition for
branching to or executing the target micro-instruction. The control bits specify the type of memory­
related action to be taken. Other bits determine if the next user instruction should be decoded and
whether the instruction is a "Branch" or "Execute and Return" type of instruction.

For the ALU modules and the I/O module, there are also multiple fields defining several parallel
operations. There are four basic instruction types: Register to Register with a transfer, Register
to Register with memory control, Immediate, and Register write to the Control Store. Data may be
retrieved from the fixed or the writable portion of the Control Store by use of the "I" bit in the
microinstruction.

A large repertoire of micro-instructions is available to make most efficient use of the parallelism
of the hardware. A complete list of micro-instructions is available in Appendix 8. Refer to the
Model 8/32 Microprogram Reference Manual, Publication No. 29-438, for details. Also refer to
the Model 8/32 WCS User's Guide, Publication Number 29-479, for usage of WCS under an oper­
ating system (e. g. OS/32-MT).

NOTE

The Writable Control Store consists of HAM lCs. The microcode
in the WCS is volatile and therefore must be restored after the
power fail/restore sequence. This function is done by the Model
8/32 WCS Support Program, Program Number 03-102.

WRITABLE CONTROL STORE INSTRUCTIONS

I The writable control store option provides the user with 512 or 2048 32-bit words of dynamically
alterable, high-speed control store memory (WCS). User level instructions are added for writing
blocks of data into the WCS, reading blocks of data from the WCS and executing micro-programmed
routines contained in the WCS.

The WCS acts as an extension to the basic read-only control store memory. The basic control
store represents control store addresses X'OOO' through X'4FF' and the WCS represents control

I store addresses X'800' through X'9FF' or X'FFF'.

The instructions described in this section are:

9-2

WDCS
RDCS
BDCS
ECS

Write Control Store
Read Control Store
Branch to Control Store
Enter Control Store

29-428 R06 5/78

INSTRUCTION WORD FIELDS

ADDRESS LINK

r 000213, I: I : I
6 10

1

"
",4

25

1

26 27 28 31

1
S F ADDRESS E I 0 I MC

REGISTER LINK

rOo02
1

3
01

:
1

: 1
6 10

1

" 13 14 220 24 25 26 27 28 31

~EI 01 1 F tlllill B MC

REGISTER TO REGISTER TRANSFER

r MO~ I : I : I ~ 1

6
10

1

" 'r 19(0
24 25 26

31 I
S A F B I C I PAGE ADRS

REGISTER TO REGISTER CONTROL

r MO~ I : I : 1
5

, 1

6

S

'0

1

" A '5

1

'6

F

19

1

20

B

24 25

1

26 27 28

IKE I 0 I Me 31

1
REGISTER TO REGISTER IMMEDIATE

r MO: I ~ I : I : 1

6

S r A 'r6

F

19

1

20

DATA
31 I

REGISTER WRITE

f 00,

2

1

3

, I ~ 1
5

1 1

6 10 11 15 16 19

1

20 24 25 26 27 28 31

1
NULL I A I 0000 B I 0 I E I 0 I MC

FIELD MEMORY

A Selects first operand register
B Selects second operand register
S Selects register to receive result
F Specifies function of addressed module
E Enables setting of Condition Code
C If set, transfer is conditional
X Execute
I Second operand is address of data
D Decode next user instruction
K F field extension
MC Main Memory Control

Figure 9-2. Model 8/32 Micro Instruction Formats

29-428 ROI 1/76 9-3

INSTRUCTION

I Write control Store (WDCS)

.Assembler Notation

WDCS R2

Operation

Op-Code

E80

Format

RR

The second operand address contained in the register specified by H2 is the starting location in
main memory of the data to be transferred to WCS. The area of WCS to be loaded is specified
by the low address contained in General Register 0 and the full word count minus one contained
in General Register 1. These registers must be set up by the user prior to executing the WDCS
instruction.

The WDCS instruction is interruptable. When it is interrupted, the Location Counter field of
PSW is not incremented so that after servicing the interrupt, the WDCS instruction can be re­
sumed. Proper resumption of the instruct jon is assured because as each fullword is transferred
to the WCS address specified by the contents of General Register 0 plus the count, the count in
General Register 1 is decremented by one. The operation continues until the count decrements
from zero to minus one.

Condition Code

Unchanged

Programming Notes

The R2 field may specify any register other than 0 or 1.

The second operand addreRs in the register specified by R2 must be located on a full word
boundary.

This instruction is a privileged operation.

9-4 29-428 R02 2/77

INSTRUCTION

Read Control Store (RDCS)

Assembler Notation

RDCS R2

Operation

Op-Code

E82

Format

RR

The second operand address contained in the register specified by R2 is the starting location in
main memory that is to receive data from the WCS. The area from which this data is to be copied
is specified by the low address contained in General Register 2 and the full word count minus one
in General Register 3. These registers must be set up by the user prior to executing the RDCS
instruction.

The RDCS instruction is interruptable. When it is interrupted, the Location Counter field of the
PSW is not incremented so that after servicing the interrupt, the RDCS instruction can be resumed.
Proper resumption of the instruction is assured because as each fullword is transferred from
WCS to main memory, the count in General Hegister 3 is decremented by on(', The operation con­
tinues until the count decrements from zero to minus one.

Condition Code

"(Tnchanged

Programming Notes

The R2 field may specify any register other than 2 or 3.

The second operand address in the register specified by R2 must be located on a fullword boundary.

This instruction is a privileged operation.

29-428 R02 2/77 9-5

I

INSTRUCTION

I Branch to Control Store (BDCS)

I

Assembler Notation.

Operation

BDCS R1, D2(X2)
BDCS R1,A(FX2, SX2)

Op-Code

E5
E5

Format

RX1,RX2
RX3

An unconditional branch is taken to the Control Store address equal to the least significant 12 bits
of the second operand address. The second operand address may specify any location within the
writable portion of the control store, X'800' through X'FFF', or to any location within the read­
only portion of the control store, X'OOO' through X'4FF'. Unpredictable results can occur if a
branch is taken to a non-present microprogram address.

Condition Code

Depends on the microprogram entered into.

Programming Notes

Micro level interrupts are not armed and the Location Count field of PSW is not incremented.

The second operand address is not tested for validity.

The user may assign any desired meaning to the R1 field of the instruction.

This instruction is a privileged operation.

9-6 29-428 R06 5/78

INSTRUCTION

Enter Control Store (ECS)

Assembler Notation Op-Code Format

ECS Rl, A(X2) E9 RIl

Operation

Control is given to the WCS location whose value is X'800' plus the contents of the Rl field. The
affect is a branch to one of the first sixteen locations in WCS. These locations may contain branch
microinstructions to sixteen different micro routines. By placing the appropriate number in the
Rl field of the ECS instruction the user can call one of sixteen different functions.

Condition Code

Depends on the microprogram entered into.

Programming Notes

The Location Count field of PSW is not incremented and micro-level interrupts are not armed.

The user may assign any desired meaning to the X2 field or the A field.

29-428 R02 2/77 9-7/9-8

CHAPTER 10

HIGH SPEED DATA· HANDLING

INSTRUCTIONS

The Data Handling instructions are used to compute polynomial error check redundancy char­
acters, as used by most data communications protocols. A high speed memory-to-memory
move capability is also provided with this option. Communications protocols supported by
this option include, but are not limited to, the following;

Binary Synchronous Communications (BISYNC or BSC) - IBM's widely accepted
half-duplex protocol uses the CRC BISYNC error check polynomial (X16 + x15 +
x2 + 1).

Synchronous Data Link Control (SDLC) - IBM's new full-duplex protocol uses the
eRC SDLC error check polynomial (x16 + x12 + x5 + 1).

Advanced Data Communications Control Procedure (ADCCP) - ANSI's proposed
National Standard full-duplex protocol uses CRC SDLC.

High Level Data Link Control (HDLC) - The ISO's International Standard full-duplex
protocol uses CRC SDLC.

DATA HANDLING INSTRUCTION FORMATS

The optional Data Handling instructions use the Register to Register (RR) , and the Register
and Indexed Storage (RX) formats.

DATA HANDLING INSTRUCTIONS

PB
PBR
MPBSR

Process Byte
Process Byte Register
Move and Process Byte String Register

29-428 R06 5/78

I

I

10-1

INSTRUCTION

I Process Byte (PB)

Assembler Notation Qp-Code Format

PB RI, D2(X2) 62 RXl, RX2
PB Rl, A2(FX2, SX2) 62 RX3

7

1

8 15 16

CHECK CODE I· x
23

1

24

DATA BYTE
31 1

Set Up

R1 x

Bits 24:31 of the rcgister specificd by RI contain thc data byte to be processed. Bits 8:15 of the
register specificd by In contain a check codc to indicate the type of processing. This byte is
intcrpreted as follows:

X'OO'
X'OI'
X'02'

Cumulative check zero (CRC BISYNC)
Cumulative check one (CRC SDLC)
Cumulative check two (LHC)

The second operand address points to a halfword rcsidual checksum to be included in the cumula­
tive check.

Operation

If CRC BISYNC is specified, the data byte, and the old residual checksum participate in the Gen­
eration of a new residual checksum based on the evaluation of the polynomial (X16 + x15 -I x2 + 1).

If eRC SDLC is specified, a similar operation is performed, using the polynomial
(x16 + x 12 + x 5 + 1)

In both of these cases, the new residual checksum replaces the old residual checksum at the second
operand location.

If LRC is specified, the EXCLUSIVE OR of the data byte with the old residual checksum replaces
the old residual checksum at the second operand location.

Condition Code

Unchanged

Programming Notes

Bits 0:7 and 16:23 of the register specified by Rl are ignored.

The register specified by Rl remains unchanged.

The second operand must be located on a halfword boundary.

Undefined check codes should not be used. If they are, the results are undefined.

10-2 29-428 R02 2/77

Example: PB

This example performs a Process Byte instruction and stores the residue into RESIDUE.

Register 1
where:

RESIDUE

Assembler Notation

contains X'0001007 A'
01 = CRC SDLC
7 A = DATA BYTE

contains X'D053' =: old residue

Comments

PB Rl, RESIDU E RESIDUE ON HALFWORD BOUNDARY

Result of PB Instruction

(R1)
(RESIDUE)
Condition Code

29428 RO 1 1/76

= unchanged by this instruction
.-. X'BC13' . new residue

unchanged by this instruction

10-3

INSTRUCTION

I Process Byte Register (PBR)

Assembler Notation Op-Code Format

PBR Rl,R2 32 RR

Set Up

a 7 8 I ::> 23 24 I 31

R1 X I CHECK CODE X I DATA BYTE

R2 a RESIDUAL CHECKSUM

Bits 24:31 of the register specified by Rl contain the data byte to be processed. Bits 8:15 of the
register specified by Rl contain a check code to indicate the type of processing. This byte is
interpreted as follows:

X'OO'
X'Ol'
X'02'

Cumulative check zero (CRC BISYNC)
Cumulative check one (CRC SDLC)
Cumulative check two (LRC)

The second operand is a fullword contained in the register specified by R2. Bits 1G:31 of the
second operand contain the residual checksum to be included in the processing.

Operation

If CRC BISYNC is specified, the data byte, and the old residual checksum participate in the gen­
eration of a new residual checksum based on the evaluation of the polynomial (x16 + x 15 + x 2 + 1).

IF CRC SDLC is specified, a similar operation is performed, using the polynomial
(x16 + x12 -+- x 5 -+- 1).

In both these cases, the new residual checksum replaces the contents of the Bits 16:31 of the
register specified by R2.

If LRC is specified, the EXCLUSIVE on of the data byte with the old residual checksum replaces
the old residual checksum in the second operand.

Condition Code

Unchanged

Programming Notes

Bits 0:7 and 16:23 of the register speeified by R1 are ignored. The register specified by RI re­
mains unchanged. Bits 0:15 of the register specified by R2 are not used and must be zero.

Undefined check codes should not be used. If they are, the results are undefined.

10-4 29-428 R02 2/77

INSTRUCTION

Move and Process Byte String Register (MPBSR)

Assembler Notation

MPBSR Rl, R2

Set Up

R1

R1+1

Rl+2

R1+3

R1+4

R2

o

CONTROL CODE

Op-Code Format

30 RR

7 8 I 15 ~6 I'
DATA BYTES STRING ADDRESS

TRANSLATION TABLE ADDRESS

I CHECK CODE T COUNT

0 I RESIDUAL CHECKSUM

LINK REGISTER FOR SUBROUTINE

DESTINATION BUFFER ADDRESS

3 1

The register specified by RI contains the address of the first byte in the string to be moved and
processed.

The register specified by Rl+1 contains the address of the translation table.

Bits 0:7 of the register specified by RI+2 contain a control code to indicate both the type and the
sequence of processing. This byte is defined as follows:

X'OO'
X'08'
X'OA'
X'OC'

Cumulative check using data byte, move data byte
Translate, cumulative check using data byte, move translated byte
Translate, cumulative check using translated byte, move translated byte
Translate, move translated byte

Bits 8:15 of the register specified by Rl+2 contain a check code to indicate the type of cumulative
check to be used in processing the data bytes. This byte is interpreted as follows:

X'OO'
X'Ol'
X'02'

Cumulative check zero (CRC BISYNC)
Cumulative check one (CRC SDLC)
Cumulative check two (LRC)

If cumulative check is not specified, this byte does not participate in the MPBSR instruction.

Bits 16:31 of the register specified by R1+2 contain a halfword count which defines the number of
bytes to be processed. A count of X'OOOO' specifies a move of 1 character. A count of X'7FFF'
specifies a move of 32,768 characters. These are the minimum and maximum count values
respectively.

Bits 16:31 of the register specified by R1+3 contain the halfword residual value to be used in
performing the cumulative check. If cumulative check is not specified, this register docs not
participate in the MPBSR instruction.

The register specified by R1+4 is used as a link register in the translation process, if a special
character subroutine is specified. If translate is not specified or if a special character sub­
routine is not specified, this register does not participate in the MPBSR instruction.

The register specified by R2 contains the address of the destination buffer.

29-428 R02 2/77 10-5

I

•

I
I

I

10-6

(LOC)-(lOC)+2

CG~0100

~~---4) 1
r---~)2

YES

NO
FETCH SOU RCE BYTE
INCREMENT SOURCE ADRS.
2x BYTE PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE HALFWORD

NO

LS 8 BITS ARE TRANSLATED BYTE
DEVELOP NEW CHECI<WORD
USING TRANSLATED BYTE
STORE TRANSLATED BYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADRS.
DECREMENT BYTE COUNT

NO

YES

YES

NO
FETCH SO RCE BYTE
INCREMENT SOURCE ADRS.
2x BYTE PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE
HALFWORD

NO

l.S 8 BITS ARE TRANSLATED
BYTE. DEVELOP NEW CHECK
WORD USING ORIGINAL SOURCE
BYTE. STORE TRANSLATED
BYTE IN DESTINATION BYTE
STRING INCHEMENT DESTINA­
TION ADRS. DECREMENT gYTE
COUNT

NO

~------------~~------------~~3

~----------------+-------------~--------------~4
L-______________________________ -L __________________________ ~) 5

Figure 10-1. Flow Chart of MPBSR Instruction

29-428 ROJ 1/76

2

CKONLY

FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.
DEVELOP NEW CHECKWORD
USING THE SOURCE BYTE
STORE THE BYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADRS.
DECREMENT BYTE COUNT

NO

3 >-------------------r------------J
4 >-__________________ L-____________ ~

5

TRONLY

YES

FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.
2x BYTE PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE HALFWORD

NO

YES
LS 8 BITS ARE TRANSLATED BYTE
STORE TRANSLATED BYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADDRESS
DECREMENT BYTE COUNT

NO

(R1+20:31)+-,-'FFFF FFFF'
(LOC) (LOC)+2

CONDITION CODE-'DOOO'
I

C __ E_XI T_) (R 1+4) +- (LOC)

(LOC)+-2x TRANSLATION
TABLE HALFWORD o

Figure t 0-1. Flow Chart of MPBSR Instruction (Continued)

29428 ROI 1176 10-7

I Operation (See Figure 10-1)

Successive bytes, starting with the first in the source string are:

1. Processed in accordance with the specifiGd codes.
2. Moved to the destination buffer.

The operation stops when the byte count becomes negative. The source string is unchanged. (See
Addresses and .count, below.) The processed bytes replace the contents of the destination buffer.
Upon completion of the instruction, the location counter is incremented to point to the next
instruction in sequence. If the byte count is negative at the start of the instruction, no moving
or processing is done, the instruction terminates, and the location counter is incremented to
point to the neh1: instruction.

Translation

The translation operation requires a 256 halfword table locatcd in memory at the address con­
tained in the register specified by Rl+I. The table is arranged in ascending order, with one entry
for each of the 256 possible data bytes. The translation operation may result in either a direct re­
placement, (in the destination buffer), of the data byte with another, or in a transfer to a special
character subroutine.

If the most significant bit, bit zero, of the halfword entry corresponding to the data byte is a one,
then bits 8:15 contain the replacement byte. This byte is moved to the proper location in the des­
tination buffer. The table entry is unchangcd.

If the most Significant bit of the entry js a zero, then bits 1:15 contain the address, divided by
two, of the special character subroutine. Before transferring to the subroutine, the link register,
specified by Rl+4, is loaded wi th the address of the MPBSR instruction. The source address has
not been incremented and points to the current byte. The count has not been decremented. The
destination address has not been incremented and points to the proper destination for this byte.
This byte does not participate in the cumulative check.

If none of the halfwords in the translation table has its most Significant bit set (i. e., no special
character subroutines), the register specified by Hl+4 is not used by this instruction.

Cumulative Check

The source byte used for the cumulative check may be the data byte or the translated byte as spec­
ified by the control code. The source byte is included in anyone of three types of cumulative
check operations as specified by the check code.

If CRC BISYNC is specified, the source byte, and the old residual checksum contained in Bits
16:31 of the register specificd by H1+3 participate in the generation of a new residual checksum
using a cyclic redundancy checking algorithm based on the generated polynomial (x16 + x15 + x2 + 1).

If CRC SDLC is specified, a similar operation is performed, using the polynomial
(x16 + x12 + x5 + 1).

In both of these cases, the new residual checksum replaces the contents of Bits 16:31 of the reg­
ister specified by Rl +3.

If LRC is specified, the EXCLUSIVE OR of the source byte with the old residual checksum re­
places the old residual checksum in Bits 16:31 of the register specified by Rl+3.

10-8 29-428 R02 2/77

Byte Count

As each byte is moved, the source address and the destination address are incremented by one.
The count is decremented by one. Upon completion of the instruction, the source and destination
address registers contain the incremented addresses. The count register specified by RI.., 2 con­
tains a negative one, X'FFFF FFFF'.

The count value is equal to the number of bytes in the source string minus one. A count of
X'OOOO' causes one byte to be processed, a count of X'7FFF' causes 32,768 bytes to be pro­
cessed. These are the minimum and maximum count values respectively.

Condition Code

C VGL
o 0 0 0
o I o 0

Addresses

Successful completion
Count negative at start

There are no boundary restrictions on eithe'r the location of the source string or on the location of
the destination buffer. Either may start and end on odd byte boundaries. If the memory access
controller is present and enabled, memory references using these addresses are relocated.

The translation table must be located on a halfword boundary. The address of the translation
table is relocated, if the memory access controller is enabled. Within the translation table, the I
address fo the special subroutine must point to a location within the first 64KB of program space.
This address is also subject to relocation by the memory access controller.

Source and destination buffers may overlap. No checking is performed. The addresses specified
by the source (R1) and destination (H2) registers may be equal, specifying a move in place, but
RI must not be equal to H2. That is, the instruction MPBSR 3,3 is invalid.

Programming Notes

This instruction is interruptable. The point at which interrupts are recognized, and the periods
of non-interruptability may vary in different implementations. Any of the following events may
cause this instruction to be interrupted: machine malfunction, memory failure, memory access
violation, external device attention. Before taking the interrupt, the processor finishes process­
ing the current byte, increments the source and destination address es, and decrements the count.
The location counter is not incremented. This permits the move to resume, following the servic­
ing of the interrupt. Interrupt routines may use this instruction, provided they do not destroy the
contents of the registers.

Undefined control codes should not be used. If they are, the results are unpredictable.

Illegal instruction interrupt occurs if the Processor is not equipped with the communication
Instructions option.

If R1 specifies register number 6, then registers 6, 7, 8, 9 and 10 are used by this instruction.
If R1 specifies register number 13, then registers 13, 14, 15, 0 and 1 are used, in that order,
by this instruction.

If Rl == H2, the results are not defined.

29-428 R06 5/78 10-9

EXAMPLE: MPBSR

This example moves and performs a CHC SDLC check on a byte string of data.

BUFIN = 256 bytes buffer containing data O:X'FF'

Register 1
Register 2
Register 3

Register 4
Register 5
Register 6

contains address of BUFIN
contains address of TRANS TAB
contains X'000100FF'
where: 00 indicates check and move

01 indicates CRC SDLC
00 is not used
FF indicates 256 bytes to be used

contains X'O' to begin
not used in this example
contains address of BUFOUT

Assembler Notation Comment

MPBSR REG1, REG6 MOVE BUFIN TO I3UFOUT

10-10

(REG1)
(REG2)
(REG3)
(REG4)
(REG6)

BUFIN + 256
unchanged by this instruction
X'FFFF FFFF'
Half Residue X'DS41'
BUFOUT + 256

Condition Code = 0000 successful completion

I3UFIN is unchanged
BUFOUT now contains 256 bytes 0-255

29428 ROI 1/76

CHAPTER 11

M 71- 102 HEXADECIMAL DISPLAY

PANEL AND M 71-101 BINARY DISPLAY

PANEL PROGRAMMING SPECIFICATION

INTRODUCTION

The M71-102 Hexadecimal Display Panel and M71-101 Binary Display Panel provide a means to
manually control the Processor, interrogate and display various Processor registers and machine
status, set and display Processor memory locations, and may be programmed as an I/O device
by the user. The Hexadecimal Display Panel and Binary Display Panel are identical in operation.
For convenience of the operator the Hexadecimal Display is equipped with a Hexadecimal readout
in addition to the standard Binary readout.

CONFIGURATION

The Hexadecimal Display Panel provides the system operator with visual indications of the
state of the Processor, as well as manual control over the system.

The Hexadecimal Display Panel, shown in Figure 11-1, is a RETMA standard 133 mm X 483 mm
(5!" X 19") panel which is plug removable from the Processor. It displays the current state of
the Processor and provides all necessary manual control over the system. The following para­
graphs describe the control and display elements of the Hexadecimal Display Panel.

r;::==========--=--=--=-=-==-=-===--------------=--=-------=-=---=--=-=-==-=--=-----=..::==-:=-==--

11

II
12 13 14 15

II
16 17 18 T9

000011 0000 0000 0000 0000110000 0000 0000 0000 . 40
MEMORY ADDRESS 04 12 15116 3110 MEMORY DATA 15

0' 0 SWITCH REGISTER '91

0' ~~~~S~~~ I~z
PROGRAM STATUS WORD 31

GENERAL REGISTER 6'
0' ---I
.Q REGISTE_~ ___ 10 ___ - __ 718 FLOATING REGISTER 31

Figure 11-1. Hexadecimal Display Pane!

29-428 R06 5/78

[dJGiJOD F {)f-f. SEI EJ
~~~[JI> 8 

[:][lE] [:J~[l~ 
~ 0 l"Jc:J~JD s ~ WAIT 

~ 0 B6f~aH ~ PuWER 
L....-__ . _____ 

e 

11-1 



Display Registers and Indicators 

Internal to the Hexadecimal Display Panel are five eight-bit byte Display Registers, Dl through D5, 
that hold data output from the Processor, and a 20-bit Switch Register that holds data input from 
The Hexadecimal Keyboard. Refer to Figure 11-2. 

MEMORY ADDRESS MEMORY DATA 
,12 1116 31 ,0 15 1 

3 4 
SWITCH REGISTER 

0 f I 19 I 

FUNCTION PROGRAM STATUS WORD , ° 31, 132 63 
REGISTER GENERAL REGISTER ,0 31 1 

REGISTER FLOATING·POINT REGISTER 
0 7 18 31, 

'32 63 

Figure 11-2. Display Registers and Indicators 

Associated with each of Display Registers Dl through D4 are eight indicator lamps that provide 
a binary read-out and two optional hexadecimal read-out indicators. Associated with the least sig­
nificant four bits of Displ:ty Register D5 are four indicator lamps for binary display and one optional 
hexadecimal read-out indicator. 

The most significant four bits of Display Register D5 (Bits 0 :3) control four of the five indicator 
lamps along the left edge of the Hexadecimal Display Panel. The fifth indicator lamp is controlled 
by logic internal to the Hexadecimal Display Panel. To the right of each of these five lamps is a. 
diagram that defines what is being displayed. In general, only one of the diagram lamps is on at 
a time. If none of the diagram lamps are on, a user program has written data to the Display 
Register D5. 

As seen in Figure 11-2, the most significant 20-bits of the display show the contents of Display Registers 
D3 and D4 and the least Significant four bits of Display Register D5 (Bits 4:7); or the contents of the 
20-bit Switch Register. When the Switch Register is being displayed, the lamp next to the Switch 
Register diagram is turned ON. Any other diagram lamp that may have been ON, remains ON. 
When the Switch Register is no longer displayed, its diagram lamp goes out and the most significant 
20-bits of the display again show the contents of Display Registers D3 and D4 and the least signifi­
cant four bits of Display Register D5 (Bits 4 :7). 

The methods of displaying the Switch Register and the other diagrammed items are discussed later. 

11-2 29-428 ROl 1/76 



Key Operated Security Lock 

This is a three-position, OFF-ON-WCK, key-operated locking switch, which controls the primary 
power to the system. This switch can also disable the Hexadecimal Display Panel, thereby pre­
venting any accidental manual input to the system. The power indicator lamp (PWR) associated 
with the key lock is located in the lower right corner of the Hexadecimal Display Panel. The 
PWR lamp is ON when the key lock is in the ON or LOCK position. The relationship between the 
key lock switch positions, primary power, the Control keys, and the Hexadecimal keys is: 

OFF The primary power is OFF. 

ON The primary power is ON and the Control keys and Hexadecimal keys are 
enabled. 

LOCK The primary power is ON and the Control keys and Hexadecimal keys are 
disabled. 

Control Keys 

The momentary contact Control keys are only active when the key-operated locking switch is in 
the ON position. 

INITIALIZE (INI) 

DATA (DTA) 

ADDRESS (ADD) 

MEMORY READ (RD) 

29-428 R06 5/78 

The Initialize (INI) key causes the system to be 
initialized. After the initialize operation, all device 
controllers on the system Multiplexor Bus are cleared 
and certain other functions in the Processor are reset. 

The Data (DTA) key clears the Switch Register and 
connects it to the most significant 20 display indicators. 
The Switch Register diagram lamp is turned ON. Hexa­
decimal data may now be entered into the Switch Register 
from the Hexadecimal Keyboard. As each Hexadecimal 
key is depressed, the data shifts into the Switch Register 
from the right. If more than five hexadecimal digits are 
entered, data shifted out of the Switch Register is lost. 

Depressing any non-hexadecimal key disconnects the 
Switch Register from the high order 20 display lamps and 
extinguishes the Switch Register diagram lamp. 

The Address (ADD) key causes the Processor to halt and 
copy the contents of the Switch Register into the Location 
Counter field of the Program Status Word. The new 
value of the Location Counter is then output to Display 
Registers Dl, D2, D3, and D4. The function diagram 
lamp is turned ON and a Hexadecimal 5 is output to the 
top four display lamps (Bits 4:7 of D5). 

The Memory Read (RD) key causes the Processor to halt 
and read the halfword contents of the memory location 
presently pointed to by the Location Counter. (If the 
Memory Access Controller is enabled by the current 
PSW then the relocated value of the Location Counter 
is the effective address of the memory location.) The 
halfword data read is output to Display Registers Dl 
and D2. The Location Counter is incremented by two 
and output to Display Registers D3 and D4 and the least 
significant four bits of Display Registers D5 (a 20-bit 
value). The lamp next to the Memory Address/Memory 
Data diagram is turned 0 N. 

11-3 

I 

I 

I 



I 

I 

11-4 

MEMORY WRITE (WRT) 

EXAMINE REGISTER (REG) 

EXAMINE FLOATING­
POINT REGISTER (FLT) 

FUNCTION (FN) 

SINGLE STEP (SGL) 

RUN (RUN) 

The Memory Write (WRT) key causes the Processor to 
halt and read in the least significant 16 bits of the 20 
bit Switch Register. The halfword of data is written into 
the memory location presently pointed to by the Location 
Counter. (If the Memory Access Controller is enabled 
by the current PSW then the relocated value of the Lo~ 
cation Counter is the effective address of the memory 
location.) The data written is then output to Display 
Registers D1 and D2. The Location Counter is incre­
mented by two and output to Display Registers D3 and 
D4 and the least significant four bits of Display Reg­
isters D5. The lamp next to the MemoryAddress/ 
Memory Data diagram is turned ON. 

The Examine Register (REG) key sets up the Hexadecimal 
Display Panel to interpret the next Hexadecimal key de­
pressed as a General Register number. When the hexa­
decimal register number key is depressed, the Processor 
halts and the content of the selected General Register of 
the set specified by the current PSW is output to Display 
Registers Dl, D2, D3 and D4. The General Register 
diagram lamp is turned ON and the number of the displayed 
register is output to the top four display lamps. 

The Examine Floating-Point Register (FLT) key sets up 
the Hexadecimal Display Panel to interpret the next hexa­
decimal key depressed as the number of a Floating-Point 
Register. When the hexadecimal register number key is 
depressed, the Processor halts and the content of the 
selected Floating-Point Register is output to Display Re­
gisters Dl, D2, D3, and D4. The Floating-Point Hegister 
diagram lamp is turned 0 N and the numb er of the dis­
played rcgister is output to the top four display lamps. If 
an odd numbered register had been selected and the proces­
sor is not equipped with double precision option, the 
register number is forced to the next lower even value 
before being used. On Processors not equipped with 
floating-point, the result of this operation is undefined. 

The Function (FN) key sets up the Hexadecimal Display 
Panel to interpret the next hexadecimal key depressed as 
the number of one of sixteen functions. When the hexa­
decimal key is depressed, the Processor halts to interpret 
the selected function. If the function is undefined, the 
Processor remains halted with no change to the display 
indicators. The defined functions are detailed later. 

The Single Step (SGL) key causes the Processor to exe­
cute one user level instruction at current location counter, 
increment the LaC and then halt. The register that was 
selected (PSW, LaC, General Register, etc.) is displayed. 

The Run (RUN) key causes the Processor to begin program 
execution at the address pointed to by the Location Counter 
(LaC). 

29-428 R06 5/78 



OPERATING ~PROCEDURES 

Power Up 

To power up the system, turn the key-operated security lock clockwise from the OFF position to 
the ON position. This action provides electrical power to the system and leaves all device con­
trollers on the Multiplexor Bus in an initialized state. 

Power Down 

To shut down power to the system: 

1. Halt the Processor. 

2. Turn the key-operated security lock to the OFF position. 

This removes primary power from the system and forces a Primary Power Fail (PPF) interrupt to 
the Processor. When power is re-applied, the Processor displays the contents of the Location 
Counter (LOC) and then assumes the Halt mode. If the Processor had been rUlming \vhen power 
was turned OFF, the Hun mode is assumed when power is re-applicd. 

Address a Memory Location 

To select an address: 

1. Depress the Data (DTA) key. The Switch Register is cleared and displayed. 

2. Enter the desired address from the Hexadecimal Keyboard. 

3. Depress the Address (ADD) key. The Processor halts and copies the contents of the 
Switch Register into the Location Counter field of the PSW. The new value of the 
Location Counter is then displayed. 

Memory Read 

To display the contents of memory locations: 

1. Select the memory read start addres s as in Address a Memory Location. 

2. Depress the Read (RD) key. The address read from, plus two, and the data read from 
memory are displayed. 

3. Repeat from Step 2 to read successive memory locations. The Location Counter is 
automatically incremented by two each time RD is depressed. 

Memory Write 

To write dat.:'1 from the Switch Register into memory: 

1. Select the memory write start address as in Address a Memory Location. 

2. Depress the Data (DTA) key. The Switch Register is cleared and displayed. 

3. Enter the data to be written from the Hexadecimal Keyboard. 

4. Depress the Write (WRT) key. The address written into, plus two, and the data written 
are displayed. 

5. Repeat from Step 2 to write different data into successive locations or from Step 4 to 
write the same data into successive locations. The Location Counter is automatically 
incremented by two each time WRT is depressed. 

29-428R011/76 11-5 



General Register Display 

To examine the contents of a General Register: 

1. Depress the Register (REG) key. 

2. Depress the hexadecimal register number. The Processor halts and the contents of the 
selected General Register is displayed. 

NaTE 

The General Register displayed is from the 
register set specified by the current Program 
status Word. 

Floating-Point Register Display 

To examine the contents of a Floating-Point Register: 

1. Depress the Floating-Point Register (FLT) key. 

2. Depress the hexadecimal register number. If the Processor is not equipped with 
floating-point the result of this operation is undefined. If the Processor is equipped 
with floating-pOint, the selected register number is forced even and the Floating-Point 
Register is displayed. The Processor is left in the Halt mode. 

Floating-Point Register Display (later versions of 8/32) 

After initialize or after a Function 2 all manual refercnces to floating register are single precision. 
After a Function 3 all refcrences to floating registers are double precision, if the Double Floating 
Point Unit (DFU) is equipped. 

Using even/odd concept 

The even numbered register of an even/odd pair refers to the most Significant 32 bits and the 
odd numbered register refers to the least significant 32 bits. 

References to an odd numbered floating point register when in the single precision mode (FN 2) 
produce different results depending on whether or not the DFU is equipped. If DFU is absent, then 
the number is forced to the next lower even number and that single precision register is displayed. 
If DFU is present, then the LS 32 bits of the corresponding double register are displayed. 

Program Status Word Display and Modification 

To examine the Status field (most significant half) of the current PSW: 

1. Depress the Function (FN) key. 

2. Depress Hexadecimal key 4. The Processor halts and the status field (most significant 
half) of PSW is displayed. 

To examine the Location Counter field (least significant half) of the current PSW: 

1. Depress the Function (FN) key. 

2. Depress Hexadecimal key 5. The Processor halts and the Location Counter field (least 
sigIlificant half) of PSW is displayed. 

To modify the least significant 16 bits (Bits 16-31) of the Status field: 

1. Depress the Data (DATA) key. 

2. Enter the data (to be written into bits 16-31 of the PSW) from the Hexadecimal keyboard. 

11-6 29-428ROll/76 



3. Depress the Function (FN) key. 

4. Depress Hexadecimal key 1. The Processor halts and copies the 16 bits of the Switch 
register in bits 16 -31 of the PSW. The modified PSW is then displayed. 

Program Execution 

To begin execution of a program: 

1. Select the program start address as in Address a Memory Location. 

2. Select the register to be displayed. 

3. Depress the Run (RUN) key. 

To execute a program in the Single-Step mode: 

1. Select the program start address as in Address a Memory Location. 

2. Select the register to be displayed. 

3. Depress the Single-Step (SGL) key. One instruction is executed, the last selected 
register (PSW, LOC, General Register, etc.) is displayed and the Processor halts. 

4. Repeat Step 3 to execute successive instructions. Return to Step 2 to display different 
registers. 

Program Termination 

To manually halt the execution of a program, display any register or depress the Single-Step 
(SGL) key. In the latter case, the last selected register is displayed. 

Console Interrupt 

To generate an interrupt from the Hexadecimal Display Panel: 

1. Depress the Function (FN) key. 

2. Depress Hexadecimal key O. If enabled by the current PSW, an interrupt from device 
number 1 is simulated. If not enabled, the Processor enters the Run mode. Hexadecimal 
Display Panel interrupts are not queued. 

The Hexadecimal Display Panel interrupt feature allows an operator to inform the running pro­
gram that some operator service or function is needed. No acknowledgement of the interrupt is 
required of the running program. 

Switch Register 

To examine the Switch Register at any time during execution of a program, depress any hexa­
decimal key. The Switch Register is displayed for as long as the key is depressed. No informa­
tion enters the Switch Register. When the hexadecimal key is released, the top 20 display lamps 
return to their previous state. 

The Switch Register can be modified without interrupting the Processor as follows: 

1. Depress the Data (DTA) key. The Switch Register is cleared and displayed. 

2. Enter the desired hexadecimal data. 

Power Fail 

When the Processor detects a power failure, the micro-program senses the Hexadecimal Display 
Panel status. The present status of the display is stored in main memory at a dedicated area 
by the micro-program. The current Program Status Word, Location Counter and the programmable 
registers are then saved in dedicated main memory locations and the micro-program deactivates 
the System Clear (SCLR) relay. 

29-428 ROt 1/76 11-7 



On power up, after the system clear relay has re-activated, the Program Status Word, Location 
Counter, and programmable registers are restored from their main memory save locations. The 
status of the display prior to the power failure is retrieved and interrogated by the micro-program. 

If the Hexadecimal Display Panel was in the Run mode, and the Initialize Key is not depressed, 
and if the Machine Malfunction Interrupt Enable bit of the PSW is set, a Machine Malfunction 
Interrupt is taken. If Machine Malfunction Interrupts are not enabled, the Processor enters the 
Run mode begimling at the instruction pointed to by the Location Counter. 

If the Hexadecimal Display Panel was not in the Run mode, or if the Initialize Key is still de­
pressed, the value of the Location Counter is output to the display registers, the WAIT lamp on 
the console is turned ON and the Halt mode is entered. 

Power failure and operation of the Initialize key are indistinguishable to the Miero- Program ex­
cept as described above. Consequently, operation of the Initialize key should be considered care­
fully when the Machine Malfunction Interrupt is enabled. The Initialize Key causes all the activi­
ties associated with a power failure to occur. The System Clear relay deactivates, then, after 
some delay, it is re-activatcd. If, after these electro-mechanical delays, the Initialize Key is 
still being depressed, the IIalt mode is entered. The total delay works out to be about a half a 

second. 

Care should also be taken when using the Hexadecimal Display Panel as an input device (testing 
Switch Register bits) due to the volatility of the Switch Register in a power fail situation. 

After a power up, the contents of the Switch Register are undefined. The display status byte is 
forced to X'40' on power up or initialize. 

DATA FORMAT 

A byte or a halfword can be transferred to or from the Display using a WD, WII, WDR, WHR, or 
RD, RH, RDR, RHR instruction. Refer to Figure 11-3. 

REGISTER 
DISPLAY 

SWITCH 
REGISTER 

05 

I N~T R UCT IERNS 
XECUT 0 

RO (R) 

RO (R) 

RO (R) 

RO (R) 

RH (R) 

RB (R) • 

WO (R) 

WO (R) 

WO (R) 

WO (R) 

WO (R) 

WH (R) 

WH (R) 

WH (R) 

WB (R) • • 

BLOCK LENGTH ~ 4 BYTES 

11-8 

04 03 02 01 

S2 Sl 

DATA TRANSFERRED 

NORMAL MODE INCREMENTAL MODE 

Sl S1 
Sl S2 
Sl Sl 

Sl S2 

51,S2 S152 
Sl,S2,Sl.S2 Sl,52,Sl,52 

01 01 

01 02 

01 03 

01 04 

01 - 05 

01,02 01,02 

01,02 03,04 
01!)? P5~OTEL _________ 

01,02,03,04,05 D1,02,03,04,05 

BLOCK LENGTH ~ 5 BYTES NOTE 1. 5UBSEOUEN, SYTES OUTPUT ARE LOST. 

Figure 11-3. Hexadecimal Display Panel Data Transfers 

29-428 ROl 1/76 



PROGRAMMING INSTRUCTIONS 

Input/Output Programming 

The Hexadecimal Display Panel is available to any running program as an I/o device with device 
address 01. The status and command bytes for the Hexadecimal Display Panel are summarized 
in Table 11-1. The status byte indicates the mode of the Hexadecimal Display Panel and is of little 
interest to a running program as it always indic~tes Run mode or Hexadecimal Display Panel 
Interrupt (Function 0). The command byte selects Normal or Incremental mode, which pertains 
to data Transfers. The selection logic which determines the Switch Register byte or register 
display byte to transfer is reset every time the Hexadecimal Display Panel is addressed when 
in the Normal mode. When an Output Command Incremental mode is issued to the Hexadecimal 
Display Panel, the byte selection logic is initially reset. Subsequent Read or Write instructions 
transfer bytes as shown in Figure 11-3. 

Block I/O with the Hexadecimal Display Panel is only feasible when the least significant four 
status bits are reset. 

NOTE 

After an initialize sequence or after any 
manual Hexadecimal Display Panel operation 
that results in anything being displayed, the 
Display Device Controller is automatically 
placed in the Normal mode. 

When programming the Hexadecimal Display Panel in the Incremental mode, the Output Command 
Incremental mode must be issued before each set of data transfers to guarantee that the byte 
selection logic is reset. 

The most significant four bits of the Switch Register are only available to the micro-program. 
These four bits are transferred as Bits 5, 6, 7, and 0 of the status when the Hexadecimal Display 
Panel status is Address (i. e., Display Status ,- XOIIXXXX'). 

Wait State 

The running program can place the Processor into the Wait state by setting the Wait bit of the 
current PSW. The WAIT indicator on the lower right of the panel is turned ON to inform the 
operator of the Wait state. The Processor can leave the Wait state and resume execution in 
two ways: 

1. An Interrupt can occur causing the Processor to jump to an interrupt service routine. 
When the routine restores the original PSW, the Wait state is re-established. 

2. The operator can depress the RUN key which causes the Wait bit in the PSW and the 
WAIT lamp to be rf~set and execution to resume at the address speCified by LOC. 

PROGRAMMING SE~UENCES 

The Hexadecimal Display has a device address of X'Ol'. 

This device can be used to output up to five bytes of data to the Console Panel Indicators. The 
following program sequence outputs four bytes of data starting from the memory location BUF: 

LIS 
LHI 
OCR 
WD 
WD 
WD 
WD 

29-428 ROI 1/76 

Rl,l 
R3,X'40' 
Rl,R3 
Rl,BUF 
Rl,BUF+l 
Rl,BUF+2 
Rl,BUF+3 

(Rl) = Display Address 

Display in Incremental Mode 

11-9 



At this time the Console Panel Indicators are ON as shown below: 

D4 D3 D2 
(BUF+3) (BUF+2) (BUF+l) 

In order to light indicators Dl and D2, the Console can be in the normal mode and one halfword 
can be output. The following programming sequence can be used: 

LIS 
LHI 
OCR 
WH 

Rl,1 
R3,X'80' 
Rl,R3 
Rl,BUF 

Console in Normal Mode 

The Console Panel Indicators will be ON as shown below: 

~ ____ ~ ___ D_4 ____ ~ D3 D2 
---/---:=---

(BUF+l) 

Note that when a halfword of data is output to the Console Panel, the most significant byte loads 
in indicator Dl and the least significant byte loads in D2. 

The Console Panel Switch Register can be read by using the read instructions as shown below: 

LIS Rl,l (Rl) = Console Address 
LHI R3,X'80' (R3) = 80 = Normal Mode 
OCR Rl,R3 
RHR Rl,R4 Read 1 Halfword 
EXBR R4,R4 Exchange Bytes 

At this time Register 4 has the 16 data switches. 

Programming Note: 

If more than five bytes are output to the Display Panel, the data is lost after five bytes. The 
Console must then be initialized by giving an Output Command to it before outputting any data, 
if the data is to be displayed. 

11-10 29-428ROl 1/76 



TABLE 11·1 DISPLAY STATUS AND COMMAND 

Run 
Memory write 
Memory read 

Address 
Fixed Register 

Floating Register 
Function 

General Register 0 
1 
2 
3 
4 
5 
6 
7 

8 
~ 

A 
B 
C 
D 
E 

General Register F 

29-428 R02 2/77 

Function 0 

1 
2 

3 

4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 

Function F 

Normal 
Incremental 

0 

X 
X 
X 
X 
X 
X 
X 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 
0 

1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 
0 
1 
0 

1 

1 2 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 0 

1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 

1 0 
1 0 
1 0 
1 0 
1 0 

1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 

STATUS 

3 4 5 

0 X X 
1 X X 
0 X X 
1 X X 
0 X X 
1 X X 
0 X X 

X 1 0 

X 1 0 
X 1 0 

X 1 0 

X 1 0 

X 1 0 

X 1 0 

X 1 0 

X 1 1 
X 1 1 

X 1 1 
X 1 1 
X 1 1 
X 1 1 
X 1 1 
X 1 1 

0 0 0 

0 0 0 
0 0 0 

0 0 0 
0 0 0 

0 0 0 

0 0 0 

0 0 0 
-0 0 1 
0 0 1 
0 0 1 

0 0 1 

0 0 1 

0 0 1 
0 0 1 
0 0 1 

COMMAND 

6 7 

X X 
X X 
X X 
X X 
X X 
X X 
X X 

0 0 

0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 
0 0 
0 0 
0 1 
0 1 
1 0 

1 0 
1 1 
1 1 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 
0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

} Single or Halt 

Floating Register 

Floating Register 

Console Interrupt 
PSW Select 

0 

2 

4 

() 

8 

A 

C 

E 

Set Single precision display mode 
Set Double precision display mode 

Display PSW 
Display LOC 

11-11/11-12 





LSD 

j 
o 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

MSD ---•• 
o 

SRLS 

BALR SLLS 

BTCR CHVR 

BFCR 

NR 

CLR 

OR 

XR 

LR *LPSWR 

CR 

AR 

SR 

MHR MR 

DHR DR 

29-428 R06 5/78 

APPENDIX 1 

MODEL 8/32 OP-CODE MAP 

2 3 4 5 6 7 9 C D E F 

5 4 
STE

2 
STD

3 
BTBS MPBSR STH ST SRHLS BXH STM TS 

4 4 4 
-- --

4 
STME

2 
BTFS BAL AM AHM SLHLS BXLE LM SVC 

4 4 4 
---- -------

BFBS PBR 5 BTC PB5 LME2 STBR * LPSW STB "SINT 
4 

BFFS BFC LRA4 LHL LBR THI LB "SCP TI 
4 

4 
LIS EXHR NH N ATL TBT EXBR NHI CLB NI 

4 

4 
*BDCS 

1 
LCS CLH CL ABL SBT *EPSR CLHI *AL CLI 

4 

4 
AIS OH 0 RTL RBT "WBR OHI *WB 4 LA 01 

4 

4 
SIS XH X RBL CBT *RBR XHI "RB 4 TLATE XI 

4 4 

LER 2 
3 4 2 3 * 1 

LDR LH L LE 
4 

LD *WHR LHI "WH R/WDCS LI 
4 !l 

2 
CDR 3 

4 
2 3 1 

CER CH C CE CD *RHR CHI *RH ECS CI 
4 4 

AER2 ADR
3 4 

AE2 AH A AD 
3 

*WDR AHI *WD RRL AI 
4 4 

SER 2 SDR 3 
4 2 

SD 3 SH S SE *RDR SHI "RD RLL SI 
4 4 

MER2 MDR 3 MH M 
4 ME2 MD 3 SRHL SRL 

4 4 

DER 2 DDR 3 
4 

DE 2 DH D DD 3 *SSR SLHL *SS SLL 
4 4 

FXR
2 

FXDR ..:: CRC12 STMD 3 "OCR SRHA *OC SRA 
4 

FLR 2 FLDR 3 CRC16 LMD 3 SLHA SLA 
4 

NOTES 

1. Writable Control Store (Optional) Instructions. Not supported on Model 7/32. 
RDCS = E82, WDCS == ESO. 

2. Single Precision Floating Point (Optional) Instructions. 

3. Double Precision Floating Point (Optional) Instructions. 
4. Second operand must be aligned on a fullword boundary. 

5. Communication (Optional) Instructions. (Model 8/32C, S/32D) • 
Privileged Instructions 

Al-l 



APPENDIX 1 (Continued) 

This manual describes all of the features (standard and optional) or all of the versions of Model 8/32. 

The following table shows the standard and optional features of the current versions of Model 8/32. Note that the optional 
features may be included with the initial system or may be added later. Certain optional features are required for certain 
software products. The corresponding software manuals list all such requirements. 

For further information, refer to INTERDA TA Price List, Publication Number 38-094. 

Standard 
Model Features Optional features 

8/32C 83-025 750 ns 32KB M83-102 Hexidecimal Display Panel 
Core Memory M83-l03 High Speed Data Handling Option 

M83-107 Processor/Memory Parity Generation 
and Checking Hard ware 

Standard 148 Instructions M83-l08 Writable Control Store 
M83-l10 Extended Regester Sets for 8/32 Processor 
M83-lll High Performance Floating Point Option. 
M73-105 Extended Memory Selector Channel 
M49-035 System Chassis previewed for up to 8 

381 mm (15") or 16178 mm (7") 
controllers with power 

Up to 1 MB of 750 ns core memory 

8/32D 83-030 750 ns 64KB M83-l02 Hexidecimal Display Panel 
Core Memory M83-103 High Speed Data Handling Option 

M83-l07 Processor/Memory Parity Generation and 
Checking Hardware 

Standard 148 Instructions M83-l08 Writable Control Store 
M83-l10 Extended Register Sets for 8/32 Processor 
M83-l11 High Performance Floating Point Option 
M73-105 Extneded Memory Selector Channel 
M49-035 System Chassis previewed for up to 8 

381 mm (15") or 16 178 mm (7") 
controllers with power 

Up to 1 MB or 750 ns core memory 

AI-2 29-428 R06 5/78 



APPENDIX 2 
INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTES 

Attributes 

A: arithmetic fault interrupt can occur 
C: Condition Code in the PSW is set to reflect the result 
CM: Condition Code can be set by the microprogram entered into 
D: second operand must be on double work boundary for consistent result 
F: second operand must be on fullword boundary for consistent result 
H: second operand must be on halfword boundary for consistent result 
I: illegal instruction interrupt can be initiated 
IA: immediate interrupt or Auto- Driver Channel can be initiated 
P: protect mode violation can occur 
RP: relocation/protection interrupt can occur 

INSTRUCTION OP-CODE MNEMONIC ATTIUBUTES PAGE NO. 

Add 5A A C,F 4-4 
Add Double Precision Floating Point 7A AD C,D,A, I 5-29 
Add Floating Point 6A AE C, F, A, I 5-14 
Add Floating Point Register 2A AER C, A, I 5-14 
Add Halfword 4A AH C,H 4-5 
Add Halfword immediate CA AHI C 4-5 
Add Halfword to Memory 61 AHM C,RP,H 4-7 
Add Immediate FA AI C 4-4 
Add Immediate Short 26 AIS C 4-4 
Add Register OA AR C 4-4 
Add Register Double Precision Floating Point 3A ADR C, A, I 5-29 
Add to Bottom of List 65 ABL C,F,RP 2-45 
Add to Memory 51 AM C,F,RP 4-6 
Add to Top of List 64 ATL C,F,HP 2-45 

AND 54 N C,F 2-21 
AND Halfword 44 NH C,H 2-22 
AND Halfword Immediate C4 NIH C 2-22 
AND Immediate F4 NI C 2-21 
AND Hegister 04 NH C 2-21 

Autoload D5 AL C,P 7-14 

Branch and Link 41 BAL H 3-5 
Branch and Link Hegister 01 BALH 3-5 
Branch to Control Store E5 BDCS CM,P, I 9-6 
Branch on False Condition 43 BFC H 3-4 
Branch on False Condition Backward Short 22 BFBS 3-4 
Branch on Flase Condition Forward Short 23 BFFS 3-4 
Branch on False Condition Register 03 BFCR 3-4 
Branch on Index High CO BXH H 3-7/3-8 
Branch on Index Low or Equal C1 BXLE H 3-6 
Branch on True Condition 42 BTC H 3-3 
Branch on True Condition Backward Short 20 BTBS 3-3 
Branch on True Condition Forward Short 21 BTFS 3-3 
Branch on True Condition Register 02 BTCR 3-3 

29-428 R02 2/77 A2-1 



APPENDIX 2 (Continued) 

INSTRUCTION OP-CODE MNEMONIC ATTRIBUTES PAGE NO. 

Compare 59 C C,F 4-10 
Compare Double Precision Floating Point 79 CD C, D, I 5-31 
Compare Floating Point 69 CE C, F, I 5-18 
Compare Floating Point Register 29 CER C, I 5-18 
Compare Halfword 49 CH C,H 4-11 
Compare Halfword Immediate C9 CHI C 4-11 
Compare Immediate F9 CI C 4-10 
Compare Logical 55 CL C,F 2-18 
Compare Logical Byte D4 CLB C 2-20 
Compare Logical Hallword 45 CLH C,H 2-19 
Compare Logical Halfword Immediate C5 CLHI C 2-19 
Compare Logical Immediate F5 CLI C 2-18 
Compare Logical Register 05 CLR C 2-18 
Compare Register 09 CR C 4-10 
Compare Register Double Precision Floating Point 39 CDR C, I 5-31 
Convert Halfword Value Register 12 CHVR C 4-22 
Complement Bit 77 CBT C,RP 2-38 
Cyclic Redundancy Check Modulo 12 5E CRC12 H,RP 2-40 
Cyclic Redundancy Check Modulo 16 5F CRCIG H,RP 2-40 

Divide 5D D F,A 4-14 
Divide Double Precision Floating Point 7D DD C,D, A, I 5-33 
Divide Floating Point 6D DE C, F, A, I 5-21 
Divide Floating Point Register 2D DER C, A, I 5-21 
Divide Halfword 4D DH H,A 4-16 
Divide Halfword Register OD DHR A 4-16 
Divide Register 1D DR A 4-14 
Divide Register Double Precision Floating Point 3D DDR C, A, I 5-33 

Enter Control Store E9 ECS C, I 9.-7/9-8 
Exchange Byte Register 94 EXBR 2-13 
Exchange Halfword Register 34 EXHR 2-12 
Exchange Program Status Register 95 EPSR C, P, IA 6-14 

Exclusive OR 57 X C,F 2-25 
Exclusive OR Halfword 47 XH C,H 2-26 
Exclusive OR Halfword Immediate C7 XHI C 2-26 
Exclusive OR Immediate F7 XI C 2-25 
Exclusive OR Register 07 XR C 2-25 

Fix Register 2E FXR C, I 5-23 
Fix Register Double Precision Floating Point 3E FXDR C, I 5-34 

Float Register 2F FLR C, I 5-24 
Float Register Double Precision 3F FLDR C, I 5-35/5-36 

Load 58 L C,F 2-5 
Load Address E6 LA 2-7 
Load Byte D3 LB 2-11 
Load Byte Register 93 LBR 2-11 
Load Complement Short 25 LCS C 2-5 
Load Double Precision Floating Point 78 LD C,D,A,I 5-25 
Load Floating Point 68 LE C, F,A, I 5-10 
Load Floating Point Multiple 72 LME F, I 5-11 
Load Floating Point Register 28 LER C,A, I 5-10 
Load Halfword 48 LH C 2-6 

A2-2 29428 R02 2/77 



APPENDIX 2 (Continued) 

INSTRUCTION OP-CODE MNEMONIC ATTRIBUTES PAGE NO. 

Load Halfword Immediate C8 LHI C 2-6 
Load Halfword Logical 73 LHL C 2-9 
Load Immediate F8 LI C 2-5 
Load Immediate Short 24 LIS C 2-5 
Load Multiple D1 LM F 2-10 
Load Multiple Double Precision Floating Point 7F LMD D,I 5-26 
Load Program Status Word C2 LPSW C, D, P, IA 6-12 
Load Program Status Word Register 18 LPSWR C, P, IA 6-13 
Load Real Address 63 LRA C, F, I 2-8 
Load Register 08 LR C 2-5 
Load Reg'ister Double Precision Floating Point 38 LDR C, A, 1 5-25 

Move and Process Byte String Register 30 MPBSR C,I 10-5 
Multiply 5C M F 4-12 
Multiply Double Precision Floating Point 7C MD C,D,A,I 5-32 
Multiply Floating Point 6C ME C, F,A, 1 5-19 
Multiply Floating Point Register 2C MER C,A,I 5-19 
Multiply Halfword 4C MH H 4-13 
Multiply Halfword Register oe MHR 4-13 
Multiply Register Ie MR 4-12 
Multiply Register Double Precision Floating Point 3C MDR e, A, I 5-32 

OR 56 0 C,l" 2-23 
OR Halfword 46 OH C,H 2-24 
OR Halfword Immediate C6 OHI e 2-24 
OR Immediate F6 01 C 2-23 
OR Register 06 OR C 2-23 

Output Command DE OC e, P, IA 7-4 
Output Command Register 9E OCR C, P, IA 7-4 

Process Byte 62 PB H, I 10-2 
Process Byte Register 32 PBR 1 10-4 

Read Block D7 RB C,F,P 7-8 
Read Block Register 97 RBR C,P 7-9 
Read Control Store E82 RDCS F, P, 1 9-5 
Read Data DB RD C,P 7-6 
Read Data Register 9B RDR C,P 7-6 
Read Halfword D9 RH C,H,P 7-7 
Read Halfword Register 99 RHR C,P 7-7 

Reset Bit 76 RBT C,RP 2-39 

Remove from Bottom of List 67 RBL C,l",RP 2-46 
Remove from Top of List 66 RTL C,F,RP 2-46 

Rotate Left Logical EB RLL C 2-33 
Rotate Right Logical EA RRL C 2-34 

Sens e Status DD SS C,P 7-5 
Sens e Status Register 9D SSR C,P 7-5 

Set Bit 75 SBT C,RP 2-37 

Shift Left Arithmetic EF SLA C 4-18 
Shift Left Halfword Arithmetic CF SLHA C 4-19 

29-428 R02 2/77 A2-3 



APPENDIX 2 (Continued) 

INSTRUCTION OP-CODE MNEMONIC ATTRIBUTES PAGE NO. 

Shift Left Halfword Logical CD SLHL C 2-31 

Shift Left Halfword Logical Short 91 SLIILS C 2-31 

Shift Left Logical ED SLL C 2-29 

Shift Left Logical Short 11 SLLS C 2-29 

Shift Right Arithmetic EE SRA C 4-20 

Shift Right Halfword Arithmetic CE SRHA C 4-21 

Shift Right Halfword Logical CC SRHL C 2-32 

Shift Right Halfword Logical Short 90 SRHLS C 2-32 

Shift Right Logical EC SRL C 2-30 

Shift Right Logical Short 10 SRLS C 2-30 

Simulate Channel Program E3 SCP C,F,P 7-15 

Simulate Interrupt E2 SINT C, P, IA 6-15 

Store 50 ST F,RP 2-14 

Store Byte D2 STB RP 2-16 

Store Byte Register 92 STBR 2-16 

Store Double Precision Floating Point 70 STD D,RP, I 5-27 

Store Floating Point 60 STE F, RP, I 5-12 

Store Floating Point Multiple 71 STME F, RP,I 5-13 

Store Halfword 40 STH H,RP 2-15 

Store Multiple DO STM F,RP 2-16 

Store Multiple Double Precision Floating Point 7E STMD D,RP,I 5-28 

Subtract 5B S C,F 4-8 

Subtract Double Precision Floating Point 7B SD C,D,A,I 5-30 

Subtract Floating Point 6B SE C, F, A, I 5-16 

Subtract Floating Point Register 2B SER C,A, I 5-16 

Subtract Halfword 4B SH C,H 4-9 

Subtract Halfword Immediate CB SHI C 4-9 

Subtract Immediate FB SI C 4-8 

Subtract Immediate Short 27 SIS C 4-8 

Subtract Register on SR C 4-8 

Subtract Register Double Precision Floating Point 3B SDR C, A, I 5-30 

Supervisor Call El SVC C,F 6-16 

Test Bit 74 TBT C 2-36 

Test Halfword Immediate C3 THI C 2-28 

Test Immediate F3 TI C 2-27 

Test and Set EO TS C,RP 2-35 

Translate E7 TLATE F 2-42 

Write Block D6 WB C,F,P 7-12 

Write Block Register 96 WBR C,P 7-13 

Write Control Store E80 WDCS F, P, I 9-4 

Write Data DA WD C,P 7-10 

Write Data Register 9A WDR C,P 7-10 

Write Halfword D8 WH C,H,P 7-11 

Write Halfword Register 98 WHR C,P 7-11 

A2-4 29-428 R02 2/77 



APPENDIX 3 

INSTRUCTION SUMMARY - NUMERICAL 

OP·CODE MNEMONIC INSTRUCTION PAGE NO. 

01* BALR Branch and Link Register 3-5 
02* BTCR Branch on True Condition Register 3-3 
03* BFCR Branch on False Condition Register 3-4 

04 NR AND Register 2·21 
05 CLR Compare Logical Register 2-18 

06 OR OR Register 2·23 
07 XR Exclusive OR Register 2-25 

08 LR Load Register 2-5 
09 CR Compare Register 4-10 

OA AR Add Register 4-4 
OB SR Subtract Register 4-8 
OC* MHR Multiply Halfword Register 4-13 
00* DHR Divide Haffword Register 4-16 

10 SRLS Shift Right Logical Short 2-30 
11 SLLS Shift Left Logical Short 2-29 

12 CHVR Convert to Halfword Value Register 4-22 

18 LPSWR Load Program Status Word Register 6-13 

1C* MR Multiply Register 4-12 
10* DR Divide Register 4-14 

20* BTBS Branch on True Condition Backward Short 3-3 
21* BTFS Branch on True Condition Forward Short 3-3 

22* BFBS Branch on False Condition Backward Short 3-4 
23* BFFS Branch on False Condition Forward Short 3-4 

24 LIS Load Immediate Short 2·5 
25 LCS Load Complement Short 2-5 

26 AIS Add Immediate Short 4·4 
27 SIS Subtract Immediate Short 4-8 

28 LER Load 2-5 
29 CER Compare Floating Point 5-18 

2A AER Add Floating Point Register 5-14 
2B SER Subtract Floating Point Register 5-16 
2C MER Multiply Floating Point Register 5-19 
20 DER Divide Floating Point Register 5-21 

2E FXR Fix Register 5-23 

2F FLR Float Register 5-24 

30 MPBSR Move & Process Byte String Register 10-5 
32* PBR Process Byte Register 10·4 

* Condition Code Not Changed 

29-428 R02 2/77 A3-1 



APPENDIX 3 (Continued) 

OP-CODE MNEMONIC INSTRUCTION PAGE NO. 

34* EXHR Exchange Halfword Register 2-12 

38 LOR Load Register Double Precision Floating Point 5-25 

39 CDR Compare Register Double Precision Floating Point 4·22 

3A ADR Add Register Double Precision Floating Point 5·29 

3B SDR Subtract Register Double Precision Floating Point 5·30 

3C MDR Multiply Register Double Precision Floating Point 5·32 
3D DDR Divide Register Double Precision Floating Point 5·33 
3E FXDR Fix Register Double Precision Floating Point 5·34 

3F FLDR Float Register Double Precision Floating Point 5·35/5·36 

40* STH Store Halfword 2·15 

41* BAL Branch and Link 3·5 
42* BTC Branch on True Condition 3·3 
43* BFC Branch on False Condition 3-4 

44 NH AND Halfword 2-22 
45 CLH Compare Logical Halfword 2·19 

46 OH OR Halfword 2-24 
47 XH Exclusive OR Halfword 2·26 

48 LH Load Halfword 2·6 
49 CH Compare Halfword 4·11 

4A AH Add Halfword 4·5 
4B SH Subtract Halfword 4-9 
4C* MH Multiply Halfword 4-13 

40* DH Divide Halfword 4·16 

50* ST Store 2·14 
51 AM Add to Memory 4·6 

54 N AND 2·21 
55 CL Compare Logical 2-18 

56 0 OR 2·23 

57 X Exclusive OR 2-25 

58 L Load 2·5 
59 C Compare 4·10 

5A A Add 4·4 
5B S Subtract 4-8 
5C* M Multiply 4·12 
50* 0 Divide 4·14 

5E* CRC12 Cyclic Redundancy Check Modulo 12 2·40 
5F* CRC16 Cyclic Redundancy Check Modulo 16 2-40 

60* STE Store Floating Point 5·12 
61 AHM Add Halfword to Memory 4-7 

62* PB Process Byte 10·2 
63 LRA Load Read Address 2·8 
64 ATL Add to Top of List 2-45 
65 ABL Add to Bottom of List 2-45 

66 RTL Remove from Top of List 2·46 
67 RBL Remove from Bottom of List 2-46 

* Condition Code Not Changed 

A3-2 29-428 R02 2/77 



APPENDIX 3 (Continued) 

OP-CODE MNENONIC INSTRUCTION PAGE NO. 

68 LE Load Floating Point 5-10 
69 CE Compare Floating Point 5-18 

6A AE Add Floating Point 5-14 
6B SE Subtract Floating Point 5-16 
6C ME Multiply Floating Point 5-19 
6D DE Divide Floating Point 5-21 

70* STD Store Double Precision Floating Point 5-27 
71* STME Store Floating Point Multiple 5-13 
72* LME Load Floating Point Multiple 5-11 
73 LHL Load Halfword Logical 2-9 

74 TBT Test Bit 2-36 
75 SBT Set Bit 2-37 
76 RBT Reset Bit 2-39 
77 CBT Complement Bit 2-38 

78 LD Load Double. Precision Floating Point 5-25 
79 CD Compare Double Precision Floating Point 5-31 
7A AD Add Double Precision Floating Point 5-29 
7B SD Subtract Double Precision Floating Point 5-30 
7C MD Multiply Double Precision Floating Point 5-32 
7D DD Divide Double Precision Floating Point 5-33 

7E* STMD Store Multiple Double Precision Floating Point 5-28 

7F* LMD Load Multiple Double Precision Floating Point 5-26 

90 SRHLS Shift Right Halfword Logical Short 2-32 

91 SLHLS Shift Left Halfword Logical Short 2-31 

92* STBR Store Byte Register 2-17 

93* LBR Load Byte Register 2-11 

94* EXBR Exchange Byte Register 2-13 
95 EPSR Exchange Program Status Word 6-14 

96 WBR Write Block Register 7-13 
97 RBR Read Block Register 7-9 

98 WHR Write Halfword Register 7-11 
99 RHR Read Halfword Register 7-7 

9A WDR Write Data Register 7-10 
9B RDR Read Data Register 7-6 

9D SSR Sense Status Register 7-5 
9E OCR Output Command Register 7-4 

CO* BXH Branch on Index High 3-7/3-8 
C1* BXLE Branch on Index Low or Equal 3-6 

C2 LPSW Load Program Status Word 6-12 

C3 THI Test Halfword Immediate 2-28 

C4 NHI AND Halfword Immediate 4-5 
C5 CLHI Compare Logical Halfword Immediate 2-19 

* Condition Code Not Changed 

29-428 R02 2/77 A3-3 



APPENDIX 3 (Continued) 

OP-COOE MNEMONIC INSTRUCTION PAGE NO. 

C6 OHI OR Halfword Immediate 2-24 
C7 XHI Exclusive OR Halfword Immediate 2-26 

C8 LHI Load Halfword Immediate 2-6 

C9 CHI Compare Halfword Immediate 4-11 

CA AHI Add Halfword Immediate 4-5 
CB SHI Subtract Halfword Immediate 4-9 

CC SRHL Shift Right Halfword Logical 2-32 
CD SLHL Shift Left Halfword Logical 2-31 

CE SRHA Shift Right Halfword Arithmetic 4-21 
CF SLHA Shift Left Halfword Arithmetic 4-19 

00* STM Store Multiple 2·16 
01* LM Load Multiple 2-10 
02* STB Store Byte 2-17 
03* LB Load Byte 2-11 

04 CLB Compare Logical Byte 2-20 

05 AL Autoload 7·14 

06 WB Write Block 7-12 
07 RB Read Block 7-8 

08 WH Write Halfword 7-11 
09 RH Read Halfword 7-7 

OA WO Write Data 7-10 
DB RO Read Data 7-6 

DO SS Sense Status 7-5 
DE OC Output Command 7-4 

EO TS Test and Set 2-35 

E1 SVC Supervisor Call 6-16 

E2 SINT Simulate Interrupt 6-15 
E3 SCP Simulate Channel Program 7-15 

E5 BOCS Branch to Control Store 9-6 
E6* LA Load Add ress 2-7 

E7* TLATE Translate 2-42 
E80* WOCS Write Control Store 9-4 
E82* ROCS Read Control Store 9·5 
E9 ECS Enter Control Store 9-7/9-8 

EA RRL Rotate Right Logical 2·34 
EB RLL Rotate Left Logical 2-33 

EC SRL Shift Right Logical 2-30 
ED SLL Shift Left Logical 2-29 

* Condition Code Not Changed 

A3-4 29-428 R02 2/77 



APPENDIX 3 (Continued) 

OP-CODE MNEMONIC INSTRUCTION PAGE NO. 

EE SRA Shift Right Arithmetic 4-20 
EF SLA Shift Left Arithmetic 4-18 

F3 TI Test Immediate 2-27 

F4 NI AND Immediate 2-21 
F5 CLI Compare Logical Immediate 2-18 

F6 01 OR Immediate 2-23 
F7 XI Exclusive OR Immediate 2-25 

F8 LI Load Immediate 2-5 
F9 CI Compare Immediate 4-10 

FA AI Add Immediate 4-4 
FB SI Subtract Immediate 4-8 

29-428 R02 2/77 A3-51 A3-6 





APPENDIX 4 
EXTENDED BRANCH ~~NEI\IIONICS 

INSTRUCTION OP CODE (M1) MNEMONIC OPERAND 

Branch on Carry 428 BC A{X2) 
Branch on Carry Register 028 BCR R2 
Branch on No Carry 438 BNC A{X2) 
Branch on No Carry Register 038 BNCR R2 

Branch on Equal 433 BE A{X2) 
Branch on Equal Register 033 BER R2 
Branch on Not Equal 423 BNE A{X2) 
Branch on Not Equal Register 023 BNER R2 

Branch on Low 428 BL A(X2) 
Branch on Low Register 028 BLR R2 
Branch on Not Low 438 BNL A(X2) 
Branch on Not Low Register 038 BNLR R2 

Branch on Minus 421 BM A(X2) 
Branch on Minus Register 021 BMR R2 
Branch on Not Minus 431 BNM A(X2) 
Branch on Not Minus Register 031 J31\l"~R R2 

Branch on Plus 422 BP A(X2) 
Branch on Plus Register 022 I3PR R2 
Branch on Not Plus 432 BNP A(X2) 
Branch on Not Plus Register 032 BNPR R2 

Branch on Overflow 424 B() A(X2) 
Branch on Overflow Register 024 B()R R2 

Branch on Not Overflow 434 BNO A{X2) I Branch on Not Overflow Register 034 BNOR R2 

Branch Unconditional 430 B A{X2) 
Branch Unconditional Register 030 BR R2 

Branch on Zero 433 BZ A{X2) 
Branch on Zero Register 033 BZR R2 
Branch on Not Zero 423 BNZ A{X2) 
Branch on Not Zero Register 023 BNZR R2 

No Operation 420 NOP 
No Operation Register 020 NOPR 

Branch on Carry Short 208 BCS A (Backward Reference) 
218 BCS A (Forward Reference) 

Branch on No Carry Short 228 BNCS A (l3ackward Reference) 
238 BNCS A (Forward Reference) 

Branch on Equal Short 223 I3ES A (Backwarr:J Reference) 
233 BES A (Forward Reference) 

Branch on Not Equal Short 203 BNES A (BackwarrJ Reference) 
213 BI\IES A (ForwarrJ Reference) 

29-428 R02 2/77 A4-1 



APPENDIX 4 (Continued) 

INSTRUCTION OP CODE (M1) MNEMONIC OPERANDS 

Branch on Low Short 208 BLS A (Backward Reference) 
218 BLS A (Forward Reference) 

Branch on Not low Short 228 BNLS A (Backward Reference) 
238 BNLS A (Forward Reference) 

Branch on Minus Short 201 BMS A (Backward Reference) 
211 BMS A (Forward Reference) 

Branch on Not Minus Short 221 BNMS A (Backwarri Reference) 
231 BNMS A (Forward Reference) 

Branch on Plus Short 202 BPS A (Backward Reference) 
212 BPS A (Forward Reference) 

Branch on Not Plus Short 222 BNPS A (Backward Reference) 
232 8NPS A (Forward Reference) 

Branch on Overflow Short 204 BOS A (Backward Reference) 
214 BOS A (Forward Reference) 

I Branch on Not Overflow Short 224 BNOS A (Backward Reference) 
234 BNOS A (Forward Reference) 

Branch Unconditional Short 220 BS A (Backward Reference) 
230 BS A (Forward Reference) 

Branch on Zero Short 223 BZS A (Backward Reference) 
233 BZS A (Forward Reference) 

Branch on Not Zero Short 203 BNZS A (Backward Reference) 
213 BNZS A (Forward Reference) 

A4-2 29-428 R02 2/77 



1024 

1 
2 
4 
8 

16 
32 
64 

128 

256 
512 

1 024 
2 048 

4 096 
8 192 

16 384 
32 768 

65 536 
131 072 
262 144 
524 288 

1 048 576 
2 097 152 
4 194 304 
8 388 608 

16 777 216 
33 554 432 
67 108 864 

134 217 728 

268 435 456 
536 870 912 

1 073 741 824 
2 147 483 648 

4 294 967 296 
8 589 934 592 

17 179 869 184 
34 359 738 368 

68 719 476 736 
137 438 953 472 
274 877 906 944 
549 755 813 888 

1 
2 
4 
8 

10 
20 
40 
80 

100 

APPENDIX 5 
ARITHMETIC REFERENCES 

TABLE OF POWERS OF TWO 

o 1.0 
1 0.5 
2 0.25 
3 0.125 

4 0.062 5 
5 0.031 25 
6 0.015 625 
7 0.007 812 5 

8 0.003 906 25 
200 9 0.001 953 125 
400 10 0.000 976 562 5 
800 11 0.000 488 281 25 

1000 12 0.000 244 140 625 
2 000 13 0.000 122 070 312 5 
4 000 14 0.000 061 035 156 25 
8 000 15 0.000 030 517 578 125 

10 000 16 0.000 015 258 789 062 5 
20 000 17 0.000 007 629 394 531 25 
40 000 18 0.000 003 814 697 265 625 
80 000 19 0.000 001 907 348 632 812 5 

100000 20 0.000 000 953 674 316 406 25 
200 000 21 0.000 000 476 837 158 203 125 
400000 22 0.000 000 238 418 579 101 562 5 
800000 23 0.000 000 119 209 289 550 781 25 

1 000 000 24 0.000 000 059 604 644 775 390 625 
2 000 000 25 0.000 000 029 802 322 387 695 312 5 
4 000 000 26 0.000 000 014 901 161 193 847 656 25 
8 000 000 27 0.000 000 007 450 580 596 923 828 125 

10 000 000 28 0.000 000 003 725· 290 298 461 914 062 5 
20 000 000 29 0.000 000 001 862 645 149 230 957 031 25 
40 000 000 30 0.000 000 000 931 322 574 615 478 515 625 
80 000 000 31 0.000 000 000 465 661 287 307 739 257 812 5 

100 000 000 32 0.000 000 000 232 830 643 653 869 628 906 25 
200 000 000 33 0.000 000 000 116 415 321 826 934 814 453 125 
400 000 000 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
800 000 000 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

1 000 000 000 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
2 000 000 000 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
4 000 000 000 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
8 000 000 000 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

I 

1 099 511 627 776 10 000 000 000 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 

29-428 R06 5/78 
A5-1 



1022 
APPENDIX 5 (Continued) 

TABLE OF POWERS OF SIXTEEN 

16
n n 

1 0 

16 1 

256 2 

4 096 3 

65 536 4 

1 048 576 5 

16 777 216 6 

268 435 456 7 

4 294 967 296 8 

68 719 476 736 9 

1 099 511 627 776 10 

17 1592 186 044 416 11 

281 474 976 710 656 12 

4 503 1599 627 370 496 13 

72 057 i594 037 927 936 14 

1 152 921 504 606 846 976 15 
\. I 

---Dee imal Values 

1023 
HEXADICIMAL TO DECIMAL INTEGEH CONVEHSION TABLE 

BYTE BYTE 

HEX DEC HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 0 0 

1 4,096 1 256 1 16 1 1 

2 8,192 2 512 2 32 2 2 

3 12,288 3 768 3 48 3 3 

4 16,384 4 1,024 4 64 4 4 

5 20,480 5 1,280 5 80 5 5 

6 24,576 6 1,536 6 96 6 6 

7 28,672 7 1,792 7 112 7 7 

8 32,768 8 2,048 8 128 8 8 

9 36,864 9 2,304 9 144 9 9 

A 40,960 A 2,560 A 160 A 10 

B 45,056 B 2,816 B 176 B 11 

C 49,152 C 3,072 C 192 C 12 

D 53,248 D 3,328 D 208 D 13 

E 57,344 E 3,584 E 224 E 14 

F 61,440 F 3,840 F 240 F 15 

A5-2 29-428 ROI 1/76 



,1020 

1 2 3 

1 2 3 4 

2 3 4 5 

3 4 5 6 

4 5 6 7 

5 6 7 8 

6 7 8 9 

7 8 9 A 

8 9 A B 

9 A B C 

A B C D 

B C D E 

C D E F 

D E F 10 

E F 10 11 

F 10 11 12 

1 2 3 

1021 

1 2 :~ 

1 1 2 3 

2 2 4 6 

3 :3 G 9 

4 4 H C 

5 5 A F 

6 6 C 12 

7 7 E 15 

8 13 10 18 

9 9 12 IB 

A A 14 IE 

B B 16 21 

C C IH 24 

D D lA 27 

E E lC 2A 

F F IE 2D 

1 2 3 

29-428 ROl 1/76 

APPENDIX 5 (Continued) 

HEXADECIMAL ADDITION AND SUBTRACTION TABLE 

Examples: 5+A::= F; 18-D = B; A+B = 15 

4 5 6 7 8 9 A B C 

5 6 7 1:\ 9 A B C D 

6 7 8 9 A B C D E 

7 13 9 A B C D E F 

8 9 A B C D E F 10 

9 A B C D E F 10 11 

A B C D E F 10 11 12 

B C D E F 10 11 12 13 

C D E F 10 11 12 13 14 

D E F 10 11 12 13 14 15 

E F 10 11 12 13 14 15 16 

F 10 11 12 13 14 15 16 17 

10 11 12 13 14 15 16 17 18 

11 12 13 14 15 16 17 HI 19 

12 13 14 15 16 17 18 19 lA 

13 14 15 16 17 18 19 lA IB 

4 5 6 7 13 9 A B C 

HEXADECIMAL MULTIPLICATION AND DIVISION TABLE 

Examples: 5x6::= IE; 75+D = 9; 5878 = B; 9xC = 6C 

4 5 6 7 1:\ 9 A B C 

4 5 6 7 8 9 A B C 

13 A C E 10 12 14 16 113 

C F 12 15 18 IB IE 21 24 

10 14 18 lC 20 24 28 2C 30 

14 19 IE 23 28 2D 32 37 3C 

18 IE 24 2A 30 36 3C 42 48 

lC 23 2A 31 38 3F 46 4D 54 

20 28 30 38 40 48 50 58 60 

24 2D 36 3F 48 51 5A 63 6C 

28 32 3C 46 50 5A 64 6E 78 

2C 37 42 4D 58 63 6E 79 84 

30 3C 48 54 60 6C 78 134 90 

34 41 4E 5B 613 75 82 SF 9C 

38 46 54 62 70 7E 8C 9A A8 

3C 4B 5A 69 78 87 96 A5 B4 

4 5 6 7 8 9 A B C 

D E F 

E F 10 1 

F 10 11 2 

10 11 12 3 

11 12 13 4 

12 13 14 5 

13 14 15 6 

14 15 16 7 

15 16 17 8 

16 17 IH 9 
--

17 18 19 A' 

18 19 lA B 

19 lA IE C 

lA IB lC D 

IB lC ID E 

lC ID IE F 

D E F 

D E F 

D E F 1 

lA lC IE 2 

27 2A 2D 3 

34 38 3C 4 

41 46 4B 5 

4E 54 5A 6 

5B 62 69 7 

68 70 78 8 

75 7E 87 9 

82 8C 96 A 

8F 9A A5 B 

9C A8 B4 C 

A9 B6 C3 D 

B6 C4 D2 E 

C3 D2 El F 

D E F 

A5-3 



1019 

APPENDIX 5 (Continued) 

TABLE OF MATHEMATICAL CONSTANTS 

CONSTANT DECIMAL VALUE 
HEXADECIMAL 

FLOATING POINT VALUE 
VALUE 

OOU8LE PRECISION 
I ------.,. 

SINGLE PRECISION 
I . 

1f 3.14159 26535 89793 23846 3.243F 6A88 4132 43F6 A888 5A31 

85A3 0803 
1f-1 0.31830 98861 83790 67154 0.517C C187 4051 7CCl 8727 2208 

2722 OA95 
J1f 1.77245 38509 05516 02730 l.C58F 8918 411C 58F8 9184 EF68 

4EF6 AA7A 

Ln 1f 1.14472 98858 49400 17414 1.2500 048E 4112 867A E858 4CAA 

7A18 0080 

J3 1.73205 08075 68877 29353 1.8867 AE85 4118 67AE 8584 CAA7 

84CA A738 

e 2.71828 18284 59045 23536 2.87E1 5162 4128 7E15 1628 AE03 

8AEO 2A68 

e -1 0.36787 94411 71442 32160 0.5E20 5808 405E 2058 0883 8COF 

838C OF18 

Je 1.64872 12707 00128 14683 1.A612 98El 411A 6129 8E1E 069C 

E069 8C97 

10910e 0.43429 44819 03251 82765 0.6F20 EC54 406F 20EC 5A98 9439 

9894 38C8 

1092e 1.44269 50408 88963 40736 1.7154 7652 4117 1547 6528 82FE 

882F El77 

'Y 0.57721 56649 OHi32 86061 0.93C4 67E3 4093 C467 E370 80C8 

7080 C7A5 

Ln 'Y -0.54953 93129 81644 82234 -O.8CAE 98Cl C08C AE98 Cl1F 5A60 

1F5A 5FF4 

J2 1.41421 35623 73095 04880 1.6A09 E667 4116 A09E 667F 38CO 

F38C C909 

Ln2 0.69314 71805 59945 30942 0.8'172 17F7 4081 7217 F701 CF7A 

01CF 79AC 

109102 0.30102 99956 63981 19521 0.4010 4042 4040 1040 4270 E7FC 
70E7 F8CC 

, J10 3.16227 76601 68379 33199 3.2988 0758 4132 9880 7584 86A5 
486A 5240 

Lnl0 2.30258 50929 94045 68402 2.4076 3776 4124 0763 776A AA28 
AAA2 B05C 

A5-4 29-428 R02 2/77 



1017 
APPENDIX 5 (Continued) 

INTEGER CONVERSION TABLE 

Hexadecimal and Decimal Integer Conversion Table 

HALFWORD 

BYTE BYTE 

BITS: 0123 4567 0123 

Hex Decimal Hex Decimal Hex Decimal 

0 0 0 0 0 0 
1 268,435 456 i 16,m,216 1 1 048 576 
2 53~;870,912 2 33,554,432 2 2,097,152 
3 flOS . 306 • 368 3 50,331,648 3 3,145,728 
4 1 ,073,741 824 4 67,108,864 4 4 194,304 
5 1 342 177,280 5 83,886,080 5 5,242,880 
6 1,610,612,736 6 1 00,663,296 6 6,291,456 
7 1,879,048,192 7 117,4401'512 7 7 340 032 
8 2,147,483,648 8 134,217,728 8 8,388,608 
9 2.41.5.919,104 9 150,994,944 9 9,437,184 
A 2, 6e:4, .354,560 A 167,772,160 A 10 485,760 
B 2,952,790,016 B 184,549,376 B 11 534,336 
C 3,221,225 472 C 201,326 592 C 12 582 912 
0 3,489,660 928 0 218 103 808 0 13 631 488 
E 3,758,096,384 E 234,881,024 E 14,680,064 
F 4,026,531,840 F 251,658,240 F 15,728,640 

8 7 

1025 

TO CONVERT HEXADECIMAL TO DECIMAL 

1. Locate the column of decimal numbers corresponding to 
the left-most digit or letter of the hexadecimal; select 
from this column and record the number that corresponds 
to the position of the hexadecimal digit or letter. 

2. Repeat step 1 for the next (second from the left) 
position. 

3. Repeat step 1 for the units (third from the left) 
position . 

4. Add the numbers selected from the table to form the 
decimal number. 

1026 

TO CONVERT DECIMAL TO HEXADECIMAL 

1. (a) Select from the table the highest decimal number 
that is equal to or less than the number to be con­
verted. 
(b) Record the hexadecimal of the column containing 
the se lected number. 
(c) Subtract the selected decimal from the number to 
be converted. 

2. Using the remainder from step 1(c) repeat all of step 1 
to develop the second position of the hexadecimal 
(and a remainder) . 

3. Using the remainder from step 2 repeat all of step 1 to 
devell!>p the units position of the hexadecimal. 

4. Combine terms to form the hexadecimal number. 

29428 ROI 1/76 

6 

4567 

Hex Decimal 

0 0 
1 65,536 
2 131,072 
3 196/ 608 
4 262,144 
5 327,680 
6 393,216 
7 458,752 
8 524,288 
9 589,824 
A 655,360 
B 720,896 
C 786 432 
0 851 968 
E 917,504 
F 983,040 

5 

EXAMPLE 

Conversion of 
Hexadecimal Value 

1. D 

2. 3 

3. 4 

4. Decimal 

EXAMPLE 

Conversion of 
Decimal Value 

1. 0 

2. 3 

3. 4 

4. Hexadecimal 

Hex 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
0 
E 
F 

034 

3328 

48 

4 

3380 

3380 

-3328 
----s2 

-48 
--4 

-4 

034 

HALFWORD --
BYTE BYTE 

0123 4567 0123 4567 
--

Decimal Hex Decimal Hex Decimal Hex Decimal 
-,-,--r----- r-- ----

0 0 0 0 0 0 0 
4,096 1 256 1 16 _1_,_ 1 
8,192 2 512 2 32 2 1--- 2" 

12/ 288 3 768 3 48 -~ 
r-- 3- '" 

16,384 4 1,024 4 __ ~--'-~ r-- f: "" 
20,480 5 1,280 5 80 --5-- 5 
24,576 6 1,536 6 96 6 6 
28/ 672 7 1,792 7 112 7 7 
32,768 8 2,048 8 128 8 --r- S -
36,864 9 2,304 9 144 9 --"9-
40,960 A 2,560 A 160 A 10 
45,056 B 2~ 

B -- -Y76---~~- 11 
49,152 C 3,072 

r
C
-- '-192- -

-$-- ~_tl ___ 
53,248 0 3,328 0 208 ,- 0 13 
57,344 E 3,584 E 224 E 14 
61,440 F 3,840 F 240 ---r- -15-

---,--

4 3 2 1 ,-

To convert integer numbers greater than the capacity of 
table, use the techniques below: 

HEXADECIMAL TO DECIMAL 

Successive cumulative multiplication from left to right, 
adding units position. 

Example: 03416 = 338010 

DECIMAL TO HEXADECIMAL 

0= 13 
~ 
208 

3 = + 3 
2i1 
x16 

3376 
4= +4 

3380 

Divide and collect the remainder in reverse order. 

Example: 338010 = X16 

16 13380 ~ remainder 

16 ~ -------- 4 1 
16~---=:3 

o 338010= 03416 

A5-5 



1018 

APPENDIX 5 (Continued) 
FRACTION CONVERSION TABLE 

Hexadecimal and Decimal Fraction Conversion Table 

BYTE 

BITS 0123 4567 

Hex Decimal Hex Decimal Hex 

.0 .0000 .00 .0000 0000 .000 .0000 
.1 .0625 .01 .0039 0625 .001 .0002 
.2 .1250 .02 .0078 1250 .002 .0004 
.3 .1875 .03 .0117 1875 .003 .0007 
.4 .2500 .04 .0156 2500 .004 .0009 
.5 .3125 .05 .0195 3125 .005 .0012 
.6 .3750 .06 .0234 3750 .006 .0014 
.7 .4375 .07 .0273 4375 .007 .0017 
.8 .5000 .08 .0312 5000 .008 .0019 
.9 .5625 .09 .0351 5625 .009 .0021 
.A .6250 .OA .0390 6250 .OOA .0024 
.B .6875 .OB .0429 6875 .OOB .0026 
.C .7500 .OC .0468 7500 .OOC .0029 
.0 .8125 .00 .0507 8125 .000 .0031 
.E .8750 .a: .0546 8750 .OOE .0034 
.F .9375 .OF .0585 9375 .OOF .0036 

1 2 

TO CONVERT .ABC HEXADECIMAL TO DECIMAL 

Find.A in position 1 .6250 

Find .OB in position 2 .0429 6875 

Find .OOC in position 3 .0029 2968 7500 

. ABC Hex is equal to .6708 9843 7500 

TO CONVERT _13 DECIMAL TO HEXADECIMAL 

1. Find .1250 next lowest to .1300 

HAlFWORD 

3 

BYTE 

0123 4567 --f--

Decimal Hex Decimal Equivalent 

0000 
4414 
88~8 
324~ 
7656 
2070 
6484 
0898 
5312 
9726 
4140 
8554 
2968 
7382 
1796 
6210 

0000 .0000 .0000 0000 0000 0000 
0625 .0001 .0000 1525 8789 0625 
1250 .0002 .0000 3051 --7578 1250 
1875 .0003 .0000 4577 6367 1875 
2500 .0004 .0000 6103 5156 2500 
~125 .0005 .0000 7629 3945 3125 
3750 .0006 .0000 9155 2734 3750 
4375 .0007 .0001 0681 1523 4375 
5000 .0008 .0001 2207 0312 5000 
56~ .0009 .0001 3732 9101 5625 
6250 .OOOA .0001 5258 7890 6250 
6875 .OOOB .0001 6784 6679 6875 
7500 .OOOC .0001 8310 5468 7500 
8125 .0000 .0001 9836 4257 8125 
8750 .OOOE .0002 1362 3046 8750 
9375 .OOOF .0002 2888 1835 9375 

4 

To convert fractions beyond the capocity of table, use techniques below: 

HEXADECIMAL FRACTION TO DECIMAL 

Convert the hexadecimal fraction to its decimal equivalent using the same 
technique as for integer numbers. Divide the results by 16n (n is the 
number of fraction positions) . 
Example: .8A7 = .54077110 

8A716 = 221510 .540771 
163 = 4096 409612215.000000 

subtract -.1250 = .2Hex 

2. Find .0039 0625 next lowest to .0050 0000 
-.0039 0625 = .01 

3. Find .0009 7656 2500 . 0010 9375 0000 
- . 0009 7656 2500 = .004 

4. Find .0001 0681 1523 4375 .0001 1718 7500 0000 
-.0001 0681 1523 4375 = .0007 

.0000 10375976 5625 = .2147Hex 

5. 13 Decimal is approximately equal to ________ 3 

A5-6 

DECIMAL FRACTION TO HEXADECIMAL 

Collect integer ports of praduct in the order of calculation . 

Example: .540810 = .8A716 

.5408 

1
8 ~-

A"-

7~ 

x16 
[ID.6528 

x16 
[QI.4448 

x16 
[ZI.l168 

29-428 ROl 1/76 



INST. 

A 

ABL 
AD 
ADR 
AE 

AER 

AH 

AHI 

AHM 

AI 

AIS 

AL 

AM 

AR 

ATL 

BAL 

BALR 

BDCS 

BFBS 

BFC 

BFCR 

BFFS 

BTBS 

BTC 

BTCR 

BTFS 

BXH 

BXLE 

29-428 R03 1/78 

APPENDIX 6 

MODEL 8/32 EXECUTION TIMES 
IN MICRO SECONDS 

EXECUTION 
TIME NOTES 

1. 26 1 

4.77/10.45/10.75 
3.53/3.93 5 

1.12 5 

1. 82 5 

1. 00 5 

1. 26 1 

.515 

2.60 4 

.510 2 

.415 

6. 31+2.10+3. 27n 4 

2.60 4 

.415 

4.77/10.07/10.47 4 

1. 45 3 

1.19 3 

1. 80 User's U code 4 

.415/1. 45 3 

.415/1.19 3 

.415/.930 3 

.415/1. 45 3 

.415/1. 45 3 

.415/1.19 3 

.415/.930 3 

.415/1.45 3 

3.54/4.05 3 

3.54/4.05 3 

COMMENTS 

OVF /NORM/WRAP 
RXl, RX3/RX2 

L == LEADER BYTES 
n == DATA BYTES 

OVF/NORM/WRAP 

No branch/branch 

No branch/branch 

No branch/branch 

No branch/branch 

No branch/branch 

No branch/branch 

No branch/branch 

No branch/branch 

No branch/branch 

No branch/branch 

A6-I 



EXECUTION 
INST. TIME 

C 2.00/2.60 

CBT 4.66 
CD 3.09/3.49 
CDR 0.63 
CE 1.47 

CER 0.630 

CH 2.00/2.60 

CHI 1.43/2.02 

CHVR 3.14/3.40 

CI 1.43/2.02 

CL 1. 26 

CLB 2.77 

CLH 1. 26 

CLHI .515 

CLI .515 

CLR .415 

CR 1.18/1.76 

CRC12 7.84/9.52/10.33 

CRC16 8.84/10.09/12.16 

D 5.76 

DD 9.20/9.65 
DDR 6.70 
DE 4.47 

DER 3.60 

DH 8.21 

DHR 8.21 

DR 6.31 

ECS 1. 51 USER'S U 
CODE 

EPSR 2.89 

EXBR 1. 22 

EXHR 1. 74 

A6-2 

APPENDIX 6 
(CONTINUED) 

NOTES 

4 

5 
5 
5 

5 

1 

4 

1 

2 

* 4 

* 4 

5 

5 

5 

5 

5 

COMMENTS 

LIKE SIGNS/UNLIKE SIGNS 

RXl, RX3/RX2 

LIKE SIGNS/UNLIKE SIGNS 

LIKE SIGNS/UNLIKE SIGNS 

NORM/OVF 

LIKE SIGNS/UNLIKE SIGNS 

LIKE SIGNS/UNLIKE SIGNS 

MIN/ A VG/MAX 

MIN/ A VG/MAX 

RXl, RX3/RX2 

29-428 R03 1/78 



EXECUTION 
INST. TIME 

FLDR 2.08 
FLU 2.08 
FXDR 8.32 
FXR 5.46 

L 1.26 

LA 1.19 

LB 2.57 

LBR .415 

Les .515 
LD 3.02/3.42 
LDR 1.13 
LE 1. 43 
LER 1.13 

LH 1. 26 

LHI .515 

LHL 1. 35 

LI .515 

LIS .415 

LM 3.54+1. 35n 
LMD 3.68+2.15n 
LME 3.59+1. 34n 

LPSW 4.83/5.24 

LPSWR 3.15 
LR 4.15 
LHA 9.13/6.82/9.21/8.69 

M 3.51/5.43 
MD 4.94/5.34 
MDR 2.54 
ME 2.50 

MER 1. 74 

MH 3.78/4.26 

MHR 5.83/6.24 
MPBSR 9.95 

16.50 
16.20 

2.76 

14.40 

29-428 R03 1/78 

APPENDIX 6 
(CONTINU ED) 

NOTES 

5 
5 
5 
5 

1 

4 

5 
5 
5 
5 

5 

1 

2 

4 
5 
5 

3 

3 

5 

5 
5 

5 

COMMENTS 

RXl, RX3/RX2 

n == NO. OF REGISTERS 
n := NO. OF REGISTERS 
n :;.c NO. OF REGISTERS 

RXl, RX3/RX2 

NORM/LIMIT VIOLA TION/WRITE 
PROTECT/EXECUTE PROTECT/ 
NO PRESENCE-REFER TO NOTE 2 

BEST/WORST 
RXl, RX3/RX2 

BEST/WORST 

BEST/WORST 

TLATE ONLY 
TLA TE & CHECK 
ERROR CHK. & TLA TE 
NEG. BYTE COUN'r 

ERROR CHECK ONLY 

A6-3 



EXECUTION 
INST. TIME 

MR 2.70/4.26 

N 1. 26 

NH 1. 26 

NHI .515 

NI .515 

NR .415 

0 1. 26 

OC 4.52 

OCR 2.88 

OH 1. 26 

om .515 

01 .515 

OR .415 

PB 8.34/8.34/8.34 
8.74/8.74/8.74 
8.34/8.34/8.34 

PBR 6.96/6.96/6.96 
RB 4.88+2.66n 

RBL 5.20/9.85/10.43 

RBR 3.90+3.25n 

RBT 4.75 

RD 4.11 

RDCS 3.09+1. 51n 

RDR 1.70 

RH 4.00/3.53 

RHR 2.18/1. 70 

RLL .675+.06n 

A6-4 

APPENDIX 6 
(CONTINUED) 

NOTES 

1 

1 

2 

1 

4 

1 

2 

RXl 
RX2 
RX3 

4 

4 

4 

4 

COMMENTS 

BEST/WORST 

CRC 16/SDLC/LDC 
CRC 16/SDLC/LDC 
CRC 16/SDLC/LDC 

CRC 16/SDLC/LDC 

n = NO. OF BYTES 

OVF /NORM/WRAP 

n = NO. OF BYTES 

n =- NO. FULLWORDS 

BY TE/HALFWORD 

BYTE/HALFWORD 

n = NO. OF SHIFTS 

29-428 R03 1/78 



EXECUTION 
INST. TIME 

RRL 6.75+.06n 

RTL 5.22/12.05/12.32 

S 1. 26 

SBT 4.66 

SCP 6.10/9.88/10.22 

SD 3.53/4.94 
SDR 1.12 
SE 1.81 

SER 1. 00 

SH 1. 26 
, 

SRI .515 

SI .510 

~ SINT 7.19/8.14 

SIS .415 

SLA • 675+.06n 

SLHA .675+.06n 

SLHL • 675+. 06n 

SLHLS 4. 20+. 06n 

SLL .675+.06n 

SLLS .420+.06n 

SR .415 

! SRA .675+.06n 

SRHA .675+.06n 

SRHL .675+.06n 

SRHLS .420+.06n 

SRL .675+.06n 

SRLS . 420+. 6n 

29-428 R03 1/78 

APPENDIX 6 
(CONTINUED) 

NOTES 

4 

1 

4 

4 

5 
5 
5 

5 

1 

2 

3 

COMMENTS 

n = NO. OF SHIFTS 

OVF /NORM/WRAP 

CNT+/NORM/TERM 
TIMES SHOWN ARE FOR READ. 
FOR WRITE, ADD 0.13 

RX1, RX2/HX3 

LEVELO/LEVEL 1:3 

n == NO. OF SHIFTS 

n = NO. OF SHIFTS 

n = NO. OF SHIFTS 

n = NO. OF SHIFTS 

n = NO. OF SHIFTS 

n = NO. OF SHIFTS 

n == NO. OF SHIFTS 

n = NO. OF SHIFTS 

n = NOo OF SHIFTS 

n = NO. OF SHIFTS 

n = NO. OF SHIFTS 

n = NO. OF SHIFTS 

A6-5 



EXECUTION 
INST. TIME 

SS 4.10 

SSR 1. 72 

ST 2.05 

STB 2.63 

STBR 1. 30 
STD 2.79/2.81 
STE 2.30/2.70 

STH 2.05 

STM 3.42+.78n 
STMD 4.60+1. 90n 
STME 3. 65+. 95n 

SVC 5.32 

TBT 3.82 

THI .515 

TI .515 

TLATE 2.52/3.16 

TS 2.82/3.22 

WB 5.50+3.39n 

WBR 3.89+3.39n 

WD 4.10 

WDCS 2.36+2.17n 

WDR 1.82 

WH 4.14/3.46 

WHR 2.50/1.83 

X 1.26 

XH 1. 26 

XHI .515 

XI .515 

XR .415 

A6-6 

APPENDIX 6 
(CONTINUED) 

NOTES 

4 

4 

4 

5 
5 

4 

4 
5 
5 

3 

4 

2 

3 

4 

4 

1 

1 

2 

COMMENTS 

RX1, RX3/RX2 
RX1, RX3/RX2 

n = NO. OF E~GISTERS 
n = NO. OF REGISTERS 
n = NO. OF REGISTERS 

TRANSLATE/SPECIAL CHARACTER 

BIT SET/BIT RESET 

n = NO OF BYTES 

n = NO. OF BYTES 

n = NO. 0 F FULLWORDS 

BYTE/HALFWORD 

BY TE/HALFWORD 

29-428 R03 1/78 



"APPENDIX 6 
(CONTINUED) 

All execution times assume no DMA interference. Times given for I/O Instructions assume best case 
device response. 

Due to an Instruction's position within the cache, execution times will vary. 

29-428 R03 1/78 

NOTES 

1. RXl-l. 26/1. 51/1. 71 - BEST/TYPICAL/WORST 
RX2-1. 26/1. 51/1. 71 - BEST/TYPICAL/WORST 
RX3-1. 27/1.57/1.77 - BEST/TYPICAL/WORST 

2. R12-0. 51/0. 61/0. 71 - BEST/TYPICAL/WORST 

3. On branching out of the cache, additIOnal overhead 
is incurred on fetching the next Instruction. This 
overhead can range from 0 to 0.54 microseconds, 
depending on the format of the next instruction. Use 
0.20 microseconds for the typical case. Subtract 
0.54 microseconds if the next Instruction is in the 
cache. 

4. Add 0.40 if RX2. 

5. Execution times vary depending on the data in the 
operands in many cases and on the instructfon's 
location in the cache, for memory referencing 
instructions. In all cases, the listed time for an 
instruction is the fastest execution time. The 
following factors can be used to adjust the execu­
tion time. 

A. Normalize Result (add, subtract, multiply, divide, 
float load) - Add 100 ns per hexadecimal shift. 

B. Equalize exponents (add, subtract) - Add 100 ns per 
hexadecimal shift, add 140 ns if B operand is greater 
than the A operand. 

C. Data with alternate 1 's and O's (multiply only) can 
increase time by 700 ns for single precision and 
1600 ns for double percision. 

D. Position of an instruction in the cache (all memory 
referencing instructions) can increase execution 
time by 400 ns (maximum) if instruction read causes 
the cache to try to refill from memory, or if the 
stack is already being refilled from memory. 

* Abortable Instruction 

A6-7 



APPENDIX 6 
(CONTINUED) 

AUTO DRIVER CHANNEL EXECUTION TIMES IN MICROSECONDS 

FAST MODE 

~ 
E-i CIJ 

FUNCTION ;::J E-i ;::J E-t NORMAL u W ClE-t 
~ZIZl 

~ CIJ ~;::J;::J 
><: ~ « OH 
~ p:: I=Q~ I=QU~ 

READ (BYTE) 10.080 11.39 13.52 16.47 
READ (HALFWORD) 10.080 11.39 13.52 15.22 
WRITE (BYTE) 10.080 11.39 13.52 16.330 
WRITE (HALFWORD) 10.080 11. 39 13.52 16.23 

NORMAL MODE 

~ 
E-i CIJ 

FUNCTION ;::JE-i P E-t 
NORMAL U~ ~E-i ~ZCIJ 

~CIJ ~g~ ><:W <t:< 
~p:: I=Q~ I=QU~ 

LRC, BU FFO, READ 10.08 11. 39 14.72 21. 73 
LRC, BU FFO, READ, TLA TE 10.08 11. 39 14.72 24. 65/16 • 94 
LRC, BUFFO, WRITE 10.08 11. 39 14.72 20.59 
LRC, BU FFO, WRITE, TLA TE 10.08 11. 39 14.72 23.49/16.710 
LRC, BUFFl, READ 10.08 11. 39 14.98 21. 47 
LRC, BUFFl, READ, TLATE 10.08 11. 39 14.98 24.39/16.68 
LRC, BUFFl, WRITE 10.08 11. 39 14.98 20.33 
LRC, BUFFl, WRITE, TLATE 10.08 11. 39 14.98 23.23/16.45 
CRC, BU FFO, READ 10.08 11. 39 14.72 26.77/28.41/30.05 
CRC, BU FFO, READ, TLA TE 10.08 11. 39 14.72 (16.94)29.67/31. 31/32.95 
CRC, BU FFO, WRITE 10.08 11. 39 14.72 25.33/26.97/28.61 
CRC, BU FFO, WRITE, TLA TE 10.08 11. 39 14.72 (16.71) 28.23/29.87/31. 51 
CRC, BU FF1, READ, 10.08 11. 39 14.98 26.51/28.15/29.79 
CRC, BUFFl, READ, TLATE 10.08 11. 39 14.98 (16.68)29.41/31.05/32.69 
CRC, BUFF1, WRITE 10.08 11. 39 14.98 25.07/26.71/28.35 
CRC, BUFF1, WRITE, TLATE 10.08 11. 39 14.98 (16.45)27.97/29.61/31.25 

NOTE 1: NORMAL/SPECIAL CHARACTER 

p:: 
~ 
~ 

fj§ 
I=QW 

16.06 
15.81 
15.92 
15.91 

BUFFER END 

22.10 
25.02 
20.96 
23.86 
21. 84 
24.76 
20.70 
23.60 
26.99/28.63/30.27 
29.89/31.53/33.17 
25.55/27.19/28.83 
28.45/30.09/31.73 
26.73/28.37/30.01 
29.63/31.27/32.91 
25.29/26.93/28.57 
28.19/29.83/31.47 

NOTE 2: MIN/AVE/MAX ALWAYS USE MIN IF DATA COMMUNICATION OPTION EQUIPPED 

~ 

t) 
Z 

1 

1 

1 

1 
2 
3 
2 
3 
2 
3 
2 
3 

NOTE 3: (SPECIAL CHARACTER) MIN/AVE/MAX ALWAYS USE MIN IF DATA COMMUNICATION OPTION 
EQUIPPED 

A6-8 

IMMEDIA TE INTERRUPTS 
MALF 
MAC (DATA) 
MAC (INSTR) 
ILLEGAL INSTR 
on LPSW, LPSWR, EPSR ADD 

THEN ADD 

6.72 
6.64 
5.60 
5.34 
5.34 
2.38 IF QUEUE SERVICE ENABLED 
3.420 IF QUEUE NOT EMPTY 

29-428 R03 1/78 



b6 
BITS b5 

b4 

b3 b2 bl bO ~ • t • • LSD 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 2 

0 0 1 1 3 

0 1 0 0 4 

0 1 0 1 5 

0 1 1 0 6 

0 1 1 1 7 

1 0 0 0 8 

1 0 0 1 9 

1 0 1 0 A 

1 0 1 1 B 

1 1 0 0 C 

1 1 0 1 D 

1 1 1 0 E 

1 1 1 1 F 

NUL Null 
SOH Start of heading 
STX Start of tcxt 
ETX End of text 
EOT End of transmission 
ENQ Enquiry 
ACK Acknowledge 
BEL Audible signal 
BS Backspace 
HT Horizontal tabulation 
LF Line feed 
VT Vertical tabulation 
FF Form fced 
CR Carrier return 
SO Shift out 
SI Shift in 

29-428 R06 5/78 

APPENDIX 7 

I/O REFERENCES 

ASCII/HEX CONVERSION TABLE 

0 0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 2 3 

NUL DLE SPACE 0 

SOH DCl ! 1 

STX DC2 " 2 

ETX DC3 # 3 

EOT DC4 $ 4 

ENO NAK % 5 

ACK SYN & 6 

BEL ETB 7 

BS CAN ( 8 

HT EM ) 9 

LF SUB * : 

VT ESC + ; 

FF FS < 
CR GS - 0= 

SO RS > 
SI US / ? 

DLE 
DCl-3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
US 
SP 
DEL 

1 1 1 

0 0 1 1 

0 1 0 1 

4 5 6 7 

@ p , 
p 

A 0 a q 

B R b r 

C S c s 

D T d t 

E U e u 

F V f v 

G W 9 w 

H X h x 

I Y i y 

J Z j z 

K [ k { 
L \ I 

I 
I 

M ] m } 
N ./'.... n .-J 

0 -- 0 DEL 

Data link escape 
Device control 
Device stop 
Negative acknowledge 
Synchronous idle 
End of transmission block 
Cancel 
End of medium 
Start of special sequcnce 
Escape 
File separator 
Group separator 
Record separator 
Unit separator 
Space 
Delete/Idle 

A7-1 



APPENDIX 7 (Continued) 

ASCII CARD CODE CONVERSION TABLE 

7-BIT 7-BIT 
ASCII CARD ASCII CARD 

GRAPHIC CODE CODE GRAPHIC CODE CODE 

SPACE 20 BLANK @ 40 8-4 
! 21 11-8-·2 A 41 12-1 

" 22 8-7 B 42 12-2 
#: 23 8--3 C 43 12-3 
$ 24 11-8-3 D 44 12-4 
% 25 0-8--4 E 45 12-5 
& 26 12 F 46 12-6 , 27 8--5 G 47 12-7 
( 28 12-8--5 H 48 12-8 
) 29 11-8--5 I 49 12-9 

* 2A 11-8--4 J 4A 11-1 
+ 2B 12-8--6 K 4B 11-2 
, 2C 0-8--3 L 4C 11-3 
- 2D 11 M 4D 11-4 
. 2E 12-8-·3 N 4E 11-5 
/ 2F 0-·1 0 4F 11-6 
0 30 0 P 50 11-7 
1 31 1 Q 51 11-8 
2 32 2 R 52 11-9 
3 33 3 S 53 0-2 
4 34 4 T 54 0-3 
5 35 5 U 55 0-4 
6 36 6 V 56 0-5 
7 37 7 W 57 0-6 
8 38 8 X 58 0-7 
9 39 9 Y 59 0-8 
: 3A 8--2 Z 5A 0-9 
j 313 11-8--6 [ 5B 12-8-2 

< 3C 12-8-4 "- 5C 0-8-2 
= 3D 8-6 ] 5D 12-8-7 

> 3E 0-8-6 t 5E 11-8-7 
? 3F 0-8--7 -+- 5F 0-8-5 

A7-2 29-428 R01 1/76 



N 
\0 
.l::.. 
N 
00 

:;tj 
o 
0\ 

VI 

":::J 
00 

> 
-....l 
W 
> -....l 

.l::.. 

STANDARD-PREFERRED ADDRESS TABLE 

l.~])_ .. \ B C D f: 

:l1~j) 

,\ 

B 

D 

E 

I TTY' I 
1l\~I'L\Y CAI{uLSEL I !',\PEH 

I 
l~).;lO ITAPE HOI{ 

_~ ____ 1,'l'In:.9:\ CLI
I 

O;\I.Y 

~I ,.. -l',-\DI I'\':\CIIP:\I.Y 

I---I'AS\"\_ 

I BE .. \DEI{ 
I'P,CII C(;:lI." 

CABD 
IU:ADEI{ 

~ L1:\E I:\TEHH\'PT ;\IODl'LE 

\ :\DI\~ :!u 1(1 ~71 

WADER 
STOHAGE 
U\1T 

C()>:T,\CT 
('LOSI'HE 
\IO])U.E 

__ ----1 () nrs S\\TITII ----__ 

FlHST 
C.\SSETTE 

SYSTDI 

SEC():\l) 

RESERVED 
(b;32) 

I 

I 

i 

I 

I 
I 

i 

"IT, '"Il ' I.\>:E I).'TEH!{l'PT ,\IOIll U: 

201/301 
DATA SET 

HDX 

201/301 
DATA SET 

FDX 

,,\])ItS ~H TO ~F) .... 

111(; I'r.\ L 

:'IIX 

liNIVERSAL 

360/370 
AUX. IKF 

360/370 
INF 

1.1:\1,: I I C\SSETTI,: I I 
PRINTERS I SYSTE:l1 VAHIABLE fiOIlz 

I i 

I 
I CI.OCK 

HE\..\Y 
Dmn:H 
:lIOI)(,U: 

FWPPY 
DISC 

l",:\n:I{~I'):\ 

Hilll':III:\T 

~56/800 

I BPI 
~IAG TAPE 

1600 BPI 
:lL.\G TAPE 

I 
All' 

i 
11.1 

I.. AOC .. I 

801 
DIALER 

iql t=""'=:t I I II 
HE~I(}\ .. U",l', 

CARTHIDGE I .. ,-----QSA--------------' ... 

FIXED 

FLXt:lJ 
I ---- I I 

DISC 1 
FIXED 
DISC 2 

~--~--~~~~--~--~~-L~--~J-~~~I 
.. \Il' .. \:\,\1.\1(; 1\1'\''[' CO\THOLLU{ 
\()(' ,\\,\LU(; 0ITI'1"]' CU:\TI{()LLEH 

IlI(' I}!(;IT,\L I (I C(I\,(,HOI.LEIl 

(i,;,\ \iL\D SY:\ClIHO>:OCS .. \DAPTEH 
l'L1 \'\I\'EHS,\L LOGIC I:\TEHFACE 





APPENDIX 8 

MODEL 8/32 MICRO INSTRUCTIONS 

TYPE INSTRU CTIONS MNEMONIC 

FIXED POINT Add A 
ARITHMETIC Add and Transfer AX 
INSTRUCTIONS Add Immediate AI 

Add and Increment AINC 
Add and Increment and Transfer AINCX 
Subtract S 
Subtract and Transfer SX 
Subtract Immediate SI 
Subtract and Decrement SDEC 
Subtract and Decrement and Transfer SDECX 
Multiply M 
Multiply and Transfer MX 
Multiply Immediate MI 
Divide D 
Divide and Transfer DX 
Divide Immediate DI 

LOGICAL Load L 
IN ST RU CTIONS Load and Transfer LX 

Load Immediate LI 
store STR 
And N 
And and Transfer NX 
And Immediate NI 
OR 0 
OR and Transfer OX 
OR Immediate 01 
Exclusive OR X 
Exclusive OR and Transfer XX 
Exclusive OR Immediate XI 

BYTE HANDLING Load Byte LB 
INSTRUCTIONS Load Byte Register LBR 

store Byte STB 
Store Byte Register STBR 
Exchange Byte EXB 

SHIFT ROTATE Shift Left Logical SLL 
INSTRU CTIONS Shift Left Logical and Transfer SLLX 

Shift Left Logical Immediate SLLI 
Shift Left Halfword Logical SLHL 
Shift Right Logical SRL 
Shift Right Logical and Transfer SRLX 
Shift Right Logical Immediate SRLI 
Shift Right Halfword Logical SRHL 
Shift Left Arithmetic SLA 
Shift Left Arithmetic and Transfer SLAX 
Shift Left Arithmetic Immediate SLAI 
Shift Left Halfword Arithmetic SLHA 
Shift Right Arithmetic SRA 
Shift Right Arithmetic and Transfer SRAX 
Shift Right Arithmetic Immediate SRAI 
Shift Right Halfword Arithmetic SRHA 

29-428 ROt 1/76 AS-l 



APPENDIX 8 (Continued) 

TYPE INSTRU CTIONS MNEMONIC 

Rotate Left RL 
Rotate Left and Transfer RLX 
Rotate Left Immediate RLI 
Rotate Right RR 
Rotate Right and Transfer RRX 
Rotate Right Immediate RRI 

FLOATING POINT Compare CE 
INSTRUCTIONS Compare and Equalize CEQ 
(MODULE 3) Compare and Equalize and Transfer CEQX 

Add AE 
SUbtract SE 
Add Unnormalized AU 
Multiply ME 
Divide DE 

I FLOATING POINT Read Condition Code RCC 
INSTRUCTIONS Load Double Precision LD 
(MODULE 6 OR 4) Load Double Precision and Transfer LDX 

• Load Double Precision Immediate LDI 
Load Double Unnormalized LW 
Load Double UIUlormalized Immediate LWI 
Load Double Unnormalized and Transfer LWX 
Load Single Precision LE 

I Load Single Precision Immediate LEI 
Load Single Precision and Transfer LEX 
Add Double Precision Register ADR 
Divide Double Precision Register DDR 
Subtract Double Precision Register SDR 
Multiply Double Precision Register MDR 
Compare Double Precision Register CDR 
Read Register Double Precision RRD 
Read Register Double Precision and Transfer RRDX 
Compare Single Precision CER 
Read Register Single Precision RUE 
Read Register Single Precision and Transfer UREX 
Add Single Precis.ion Register AER 
Divide Single Precision Register DER 
Subtract Single Precision Register SER 
Multiply Single Precision Hegister MER 

BRANCH/EXECUTE Branch and Link BAL 
AND LINK Branch and Link and Arm Interrupts BALA 
INSTRUCTIONS Braneh and Link and Disarm Interrupts BALD 

Braneh and Link on Zero BALZ 
Braneh and Link on Not Zero BALNZ 
Braneh and Link on Less BALL 
Branch and Link on Not Less BALNL 
Branch and Link on Greater BALG 
Branch and Link on Not Greater BALNG 
Branch and Link on Overflow BALV 
Branch and Link on No Overflow BALNV 
Branch and Link on Carry BALC 
Branch and Link on No Carry BALNC 
Branch and Link on True CC Match BALT 
Branch and Link on False CC Match BALF 

A8-2 29-428 R02 2/77 



TYPE 

INPUT /OUTPUT 
INSTRUCTIONS 

29-428 ROI 2/77 

APPENDIX 8 (Continued) 
INSTRU CTIONS 

Execute and Link 
Execute and Link and Arm Interrupts 
Execute and Link and Disarm Interrupts 
Execute and Link on Zero 
Execute and Link on Not Zero 
Execute and Link on Less 
Execute and Link on Not Less 
Execute and Link on Greater 
Execute and Link on Not Greater 
Execute and Link on Overflow 
Execute and Link on No Overflow 
Execute and Link on Carry 
Execute and Link on True CC Match 
Execute and Link on No Carry 
Execute and Link on False CC Match 

Acknowledge Interrupt 
Acknowledge Interrupt and Transfer 
Address and Sense Status 
Address and Sense Status and Transfer 
Address and Sense Status Register 
Sense Status 
Sense Status and Transfer 
Sense Status Register 
Address and Output Command 
Address and Output Commands and Transfer 
Address and Output Command Immediate 
Address and Output Command Register 
Output Command 
Output Command and Transfer 
Output Command Immediate 
Output Command Register 
Address and Read Data 
Address and Read Data and Transfer 
Address and Read Data Register 
Read Data 
Read Data and Transfer 
Read Data Register 
Address and Write Data 
Address and Write Data and Transfer 
Address and Write Data Immediate 
Address and Write Data Register 
Write Data 
Write Data and Transfer 
Write Data Immediate 
Write Data Register 
Address and Read Halfword 
Address and Read Halfword and Transfer 
Read Halfword 
Read Halfword and Transfer 
Address and Write Halfword 
Address and Write Halfword and Transfer 
Write Halfword 
Write Halfword and Transfer 

MNEMONIC 

EXL 
EXLA 
EXLD 
EXLZ 
EXLNZ 
EXLL 
EXLNL 
EXLG 
EXLNG 
EXLV 
EXLNV 
EXLC 
EXLT 
EXLNC 
EXLF 

AK 
AKX 
SSA 
SSAX 
SSRA 
SS 
SSX 
SSR 
OCA 
OCAX 
OCAI 
OCRA 
OC 
OCX 
OCI 
OCR 
RDA 
RDAX 
RDRA 
RD 
RDX 
RDR 
WDA 
WDAX 
WDAI 
WDRA 
WD 
WDX 
WDI 
WDR 
RHA 
RHAX 
RH 
RHX 
WHA 
WHAX 
WH 
WHX 

A8-3 



TYPE 

CONTROL 
INSTRUCTIONS 

AS-4 

APPENDIX 8 (Continued) 

INSTRUCTIONS 

Sense Machine Control Register 
Sense Machine Control Register and Transfer 
Clear Machine Control Register 
Load the Wait Flip-Flop 
Pulse Output Lines 
Branch and Disable Console Interrupt 
Power Down 

MNEMONIC 

SMCR 
SMCRX 
CMCR 
LWFF 
POUT 
BDC 
POW 

29-428 ROI 2/77 



ARITHMETIC REFERENCES 
AUTO DRIVER CHANNEL 
AUTOLOAD ...... . 

BOOLEAN OPERATIONS . 
BRANCHING ...... . 
BRANCH INSTRUCTION FORMATS 
BRANCH INSTRUCTIONS .... 

Branch and Link . . . . . 
Branch and Link Register 
Branch on False Condition 
Branch on False Condition Backward Short 
Branch on False Condition Forward Short 
Branch on False Condition Register . . . . 
Branch on Index High . . . . . . . . . . . 
Branch on True Condition . . . . . . . . . 
Branch on True Condition Backward Short 
Branch on True Condition Forward Short 
Branch on True Condition Register 

BUFFER ........... . 

CHANNEL COMMAND BLOCK 
CHANNEL COMMAND CODES 
CHANNEL COMMAND WORD 

Buffer Switch Bit (B) 
Check Type Bit (C) . 
Cyclic Check Type Bit (S) 
Executive Bit (E) .. 
Fast Bit (F) ..... 
Read/Write Bit (R/W) 
Status Mask . . 
Translate Bit (T) 

CHECK WORD 
CIRCULAR LIST ... 
CONDITION CODE .. . 
CONSOLE INTERRUPT. 
CONTROL KEYS .... 
CONTROL OF I/O OPERATIONS 
CONVERSION FROM DECIMAL . 

INDEX 

DATA ALIGNMENT .............................. . 
DATA HANDLING INSTRUCTION FORMATS 
DATA HANDLING INSTRUCTIONS ..... . 

Move and Process Byte String Register 
Process By te . . . . . 
Process Byte Register 

DATA FORMATS ..... . 

Fixed Point Data 
Floating Point Data 
Logical Data . 

DECISION MAKING 
DEVICE ADDRESSING 
DEVICE CONTROLLERS 
DEVICE PRIORITIES . . 
DISPLAY REGISTERS AND INDICATORS 
DISPLAY STATUS AND COMMAND . . . . 

29-428 R06 5/78 

. A5-1 
7-19 
7-14 

.2-2 

. 3-1 
. 1-10,3-1 

.3-2 

.3-5 

.3-5 

.3-4 

.3-4 

.3-4 

.3-4 
.3-7/3-8 

.3-3 

.3-3 

.3-3 

.3-3 

. 7-21 

7-20 
7-23 
7-22 

7-23 
7-23 
7-23 
7-22 
7-22 
7-22 
7-22 
7-22 

7-21 
.2-3 

1-5, 4-2, 5-8 
.6-7, 11-7 

11-3 
7-16 
.5-8 

.1-9 I 10-1 
10-1 

10-5 
10-2 
10-4 

.1-8,2-1,4-1,5-6 

· 1-8 
· 1-8 
· 1-9 

.3-1 

.7-2 
· 7-1 
.7-2 
11-2 

.10-10 

1-1 



EQUALIZATION 
EXPONENT OVERFLOW . 
EXPONENT UNDERFLOW 
EXTENDED BRANCH MNEMONICS 

FIXED POINT ARITHMETIC .... 
FIXED POINT DATA WORDS FORMATS 
FIXED POINT INSTRUCTION FORMATS 
FIXED POINT INSTRUCTIONS 

Add ........ . 
Add Halfword . . . . 
Add Halfword Immediate 
Add Halfword to Memory 
Add Immediate ... 
Add Immediate Short 
Add Register 
Add to Memory . . 
Compare ..... . 
Compare Halfword 
Compare Halfword Immediate 
Compare Immediate . . . . . . 
Compare Register . . . . . . . 
Convert to Halfword Value Register 
Divide ......... . 
Divide Halfword . . . . . 
Divide Halfword Register 
Divide Register 
Multiply ........ . 
Multiply Halfword . . . . 
Multiply Halfword Register 
Multiply Register 
Shift Left Arithmetic .,. 
Shift Left Halfword Arithmetic 
Shift Right Arithmetic 
Shift Right Halfword Arithmetic 
Subtract .......... . 
Subtract Halfword ..... . 
Subtract Halfword Immediate 
Subtract Immediate . . . 
Subtract Immediate Short 
Subtract Register 

FLOATING/FIXED POINT RANGES 
FLOATING POINT INSTRUCTION FORMATS 
FLOATING POINT INSTRUCTIONS . . . . . 

Add Double Precision Floating Point 
Add Floating Point ........ . 
Add Floating Point Register . . . . . 

INDEX (Continued) 

Add Register Double Precision Floating Point 
Compare Double Precision Floating Point .. 

1-2 

Compare Floating Point .......... . 
Compare Floating Point Register ..... . 
Compare Register Double Precision Floating Point 
Divide Double Precision Floating Point .. . . . 
Divide Floating Point ............. . 
Divide Floating Point Register . . . . . . . . . . 
Divide Register Double Precision Floating Point 
Fi x Register . . . . . . . . . 
Fix Register Double Precision . 
Float Register . . . . . . . . . 
Float Register Double Precision 
Load Double Precision Floating Point 

. 5-5 

.5-6 

.5-6 
. A4-1 

.4-1 

.4-1 

.4-3 

.4-3 

.4-4 

.4-5 

.4-5 

.4-7 

.4-4 

.4-4 

.4-4 

.4-6 
4-10 
4-11 
4-11 
4-10 
4-10 
4-22 
4-14 
4-16 
4-16 
4-14 
4-12 
4-13 
4-13 
4-12 
4-18 
4-19 
4-20 
4-21 
.4-8 
.4-9 
.4-9 
.4-8 
.4-8 
.4-8 

.5-4 

.5-8 

.5-8 

5-29 
5-14 
5-14 
5-29 
5-31 
5-18 
5-18 
5-31 
5-33 
5-21 
5-21 
5-33 
5-23 
5-34 
5-24 

5-35/5-36 
... 5-25 

29-428 ROI 1/76 



INDEX (Continued) 

Load Floating Point . . . . . . . . . . . . . . 
Load Floating Point Multiple ........ . 
Load Floating Point Register ........ . 
Load Multiple Double Precision Floating Point 
Load Register Double Precision Floating Point 
Multiply Double Precision Floating Point . . . 
Multiply Floating Point ...... . . . . . . 
Multiply Floating Point Register ...... . 
Multiply Register Double Precision Floating Point 
Store Double Precision Floating Point . . . . . 
Store Floating Point . . . . . . . . . . . . . . 
Store Floating Point Multiple . . . . . . . . . 
Store Multiple Double Precision Floating Point 
Subtract Double Precision Floating Point ... 
Subtract Floating Point ... . . . . . . . . . 
Subtract Floating Point Register ...... . 
Subtract Register Double Precision Floating Point 

FLOATING POINT NUMBER . . . . . 
FLOATING POINT NUMBER RANGE 
FLOATING POINT REGISTER . . . . 
FLOATING POINT REGISTER DISPLAY 
FLOATING POINT REGISTER DISPLAY (LATER VERSIONS OF 8/32) 

GENERAL REGISTER ..... . 
GENERAL REGISTER DISPLAY. 
GUARD DIGIT AND ROUNDING 

HEXADECIMAL DISPLAY PANEL 
HEXADECIMAL DISPLAY PANEL DATA TRANSFERS 

INPUT/OUTPUT INSTRUCTION FORMATS 
INPUT/OUTPUT INSTRUCTIONS 

Autoload 
Ou tpu t Command . . . . 
Output Command Register 
Read Block 
Read Block Register 
Read Data ..... 
Read Data Register 
Read Halfword 
Read Halfword Register 
Sense Status ..... . 
Sense Status Register 
Simulate Channel Program 
Write Block .... 
Write Block Register 
Write Data ..... 
Write Data Register 
Write Halfword 
Write Halfword Register 

INPUT/OUTPUT PROGRAMMING 
INPUT/OUTPUT OPERATIONS 
INPUT/OUTPUT REFERENCES 
INPUT/OUTPUT SYSTEM CONFIGURATION 
INSTRUCTION FORMATS ..... 

Branch Instruction Formats 
Register and Immediate Storage One (RIl) Format 
Register and Immediate Storage Two (RI2) Format 
Register and Indexed Storage One (RXl) Format . 
Register and Indexed Storage Two (RX2) Format 

29-428 ROt 1/76 1-3 

5-10 
5-11 
5-10 
5-26 
5-25 
5-32 
5-19 
5-19 
5-32 
5-27 
5-12 
5-13 
5-28 
5-30 
5-16 
5-16 
5-30 

.5-3 

.5-4 
· 1-7 
11-6 
11-6 

· 1-7 
11-6 
.5-7 

11-1 
11-8 

· 7-3 
.7-3 

7-14 
.7-4 
.7-4 
.7-8 
.7-9 
.7-6 
.7-6 
.7-7 
.7-7 
.7-5 
.7-5 
7-15 
7-12 
7-13 
7-10 
7-10 
7-11 
7-11 

11-9 
· 7-1 

. A7-1 
.7-1 
· 1-9 

1-10 
1-16 
1-17 
1-12 
1-13 



INDEX (Continued) 

Register and Indexed Storage Three (RX3) Format .... . 
Short Form (SF) Format ................. . 

INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTES 
INSTRUCTION SUMMARY - NUMERICAL 
INTERRUPT SERVICE POINTER TABLE 
INTERRUPT STATUS REGISTER 
INTERRUPT SYSTEM ...... . 

Arithmetic Fault Interrupt 
Console Interrupt . . . . . 
Illegal Instruction Interrupt 
Immediate Interrupt .... 
Machine Malfunction Interrupt 
Protect Mode Violation Interrupt 
Relocation/Protection Interrupt 
Simulated Interrupt ..... . 
Supervisor Call Interrupt 
System Queue Service Interrupt 

INTERRUPT SYSTEM BLOCK DIAGRAM 

KEY OPERATED SECURITY LOCK 

LIST PROCESSING ........ . 
LOGICAL DATA ......... . 
LOGICAL INSTRUCTION FORMATS 
LOGICAL INSTRUCTIONS . . . 

Add to Bottom of List 
Add to Top of List 
AND ......... . 
AND Halfword 
AND Halfword Immediate 
AND Immediate 
AND Register . . . . . . . 
Compare Logical 
Compare Logical Byte ... 
Compare Logical Halfword 
Compare Logical Halfword Immediate 
Compare Logical Immediate . . . . . 
Compare Logical Register . . . . . . 
Complement Bit .......... . 
Cyclic Redundancy Check Modulo 12 
Cyclic Redundancy Check Modulo 16 
Exchange Byte Register ... 
Exchange Halfword Register 
Exc1usive OR ....... . 
Exc1usive OR Halfword .. . 
Exc1usive OR Halfword Immediate 
Exc1usive OR Immediate 
Exc1usive OR Register 
Load ..... 
Load Address .. . 
Load Byte .... . 
Load Byte Register 
Load Complement Short. 
Load Halfword 
Load Halfword Immediate 
Load Halfword Logical 
Load Immediate . . . . 
Load Immediate Short 
Load MUltiple ... 
Load Real Address 

1-15 
1-10 

. A2-1 

. A3-1 
.7-2 
.8-6 
.6-4 

.6-9 

.6-7 
6-10 
.6-6 
.6-8 
6-10 
.6-9 
.6-7 
6-10 
6-10 

.6-5 

1 1-3 

.2-3 

.2-1 

.2-4 

.2-4 

2-45 
2-45 
2-21 
2-22 
2-22 
2-21 
2-21 
2-18 
2-19 
2-19 
2-19 
2-18 
2-18 
2-38 
2-40 
2-40 
2-12 
2-13 
2-25 
2-26 
2-26 
2-25 
2-25 
.2-5 
.2-7 
2-11 
2-11 
.2-5 
.2-6 
.2-6 
.2-9 
.2-5 
.2-5 
2-10 
.2-8 

29-428 RO} } /76 



Load Register . . . . . . 
OR .......... . 
OR Halfword ..... . 
OR Halfword Immediate 
OR Immediate ..... . 
OR Register ...... . 
Remove from Bottom of List 
Remove from Top of List 
Reset Bit ..... . 
Rotate Left Logical .. . 
Rotate Right Logical 
Set Bit ......... . 
Shift Left Halfword Logical 
Shift Left Halfword Logical Short 
Shift Left Logical . . . . . . . . 
Shift Left Logical Short . . . . . 
Shift Right Halfword Logical " 
Shift Righ t Halfword Logical Short 
Shift Righ t Logical 
Shift Righ t Logical Short 
Store ...... . 
Store Byte .... . 
Store Byte Register 
Store Halfword 
Store Multiple . . . 
Test and Set . . . . 
Test Bit ..... . 
Test Halfword Immediate 
Test Immediate 
Translate 

MAC REGISTERS . 

Definition of MAC Register Fields 
Interrupt Status Register 
Segmentation Register 

MEMORY READ ...... . 
MEMORY WRITE . . . . . . . 

INDEX (Continued) 

MICRO CODE FLOW CHART OF AUTO DRIVER CHANNEL 
MODEL 8/32 BLOCK DIAGRAM . . . . . . . . . . . . . 
MODEL 8/32 EXECUTION TIMES IN MICROSECONDS 
MODEL 8/32 INSTRUCTION FORMATS .... 
MODEL 8/32 MICRO INSTRUCTIONS . . . . . 
MODEL 8/32 PROCESSOR BLOCK DIAGRAM 

OP-CODE MAP ...... . 
OPERATING PROCEDURES 

Console Interrupt . 
Floating Point Register Display 
Floating Point Register Display (later versions of 8/32) 
General Register Display 
Memory Read 
Memory Write 
Power Down 
Power Fail .. 
Power Up .. 
Program Execution 
Program Status Word Display and Modification 
Program Termination 
Switch Register 

OPERATIONS . . . . . . 

29-428 ROI 1/76 

.2-5 
2-22 
2-24 
2-24 
2-23 
2-23 
2-46 
2-46 
2-39 
2-33 
2-34 
2-37 
2-31 
2-31 
2-29 
2-29 
2-32 
2-32 
2-30 
2-30 
2-14 
2-17 
2-17 
2-15 
2-16 
2-35 
2-36 
2-28 
2-27 
2-42 

.8-4 

.8-5 

.8-6 

.8-5 

11-5 
11-5 
7-24 
.9-2 

· A6-t 
· .9-3 
· A8-1 
· . 1-2 

· Al-l 
11-5 

11-7 
11-6 
11-6 
11-6 
11-5 
11-5 
11-5 
11-7 
11-5 
11-7 
11-6 
11-7 
11-7 

.3-1,4-1 

1-5 



POWER DOWN ....... . 
POWER FAIL ........ . 
POWER UP ....... . 
PROCESSING INSTRUCTIONS 
PROCESSOR ........ . 
PROCESSOR/CONTROLLER COMMUN ICATION 
PROCESSOR INTERRUPTS 
PROCESSOR OPERATIONS 
PROGRAM EXECUTION ..... 
PROGRAMMING INSTRUCTIONS 
PROGRAMMING SEQUENCES . . 
PROGRAM STATUS WORD 

Arithmetic Fault Interrupt Mask (A) 
Condition Code (CVGL) ..... . 

INDEX (Continued) 

Immediate Interrupt/Auto Driver Channel Mask (I) 
Location Counter (LOC) ......... . 
Protect Mode (P) ............. . 
Register Set Select (R) .......... . 
Relocation Protection Interrupt Mask (R/P) 
System Queue Service Interrupt Mask (Q) .. 
Wait State (W) . . . . . . . . . . . . . . . . 

PROGRAM STATUS WORD DISPLAY AND MODIFICATION 
PROGRAM TERMINATION 
PROTECTION . . . . . . . . . 
PROTECT MODE ...... . 

REGISTER SET NUMBERING 
REGISTER SET SELECTION . 
RELOCATION . . . . . . . . . 
RESERVED MEMORY LOCATION 

SEGMENTATION REGISTERS .. 
SELECTOR CHANNEL I/O . . . . 

Selector Channel Devices 
Selector Channel Programming 
Selector Channel Operation . . 

STATUS MONITORING I/O ..... . 
STATUS SWITCHING AND INTERRUPTS 
STATUS SWITCHING INSTRUCTION FORMATS 
STATUS SWITCHING INSTRUCTIONS 

Exchange Program Status Register 
Load Program Status Word .... 
Load Program Status Word Register 
Simulate Interrupt 
Supervisor Call 

SUBROUTINE ADDRESS 
SUBROUTINE LINKAGE 
SWITCH REGISTER . . . 

TRANSLATION ..... 
TRANSLATION TABLE ENTRY 

WAIT STATE ......... . 
WRITABLE CONTROL STORE INSTRUCTIONS 

1-6 

Branch to Control Store 
Enter Control Store 
Read Control Store 
Write Control Store .. 

· 11-5 
· 11-7 

11-5 
2-47 
· 1-1 
.7-2 
· 1-7 
· 1-8 
11-7 
11-9 
11-9 

.1-4,6-1 

· 1-5 
· 1-5 
· 1-4 
· 1-5 
· 1-5 
· 1-5 
· 1-5 
· 1-5 
· 1-4 

11-6 
11-7 
.8-1 
.6-2 

· 1-6 
.6-2 
.8-1 
· 1-7 

.8-5,8-6 
7-18 

7-18 
7-19 
7-18 

7-16 
.6-1 

· 6-11 
· 6-11 

· 6-14 
· 6-12 
· 6-13 
· 6-15 

6-16 

7-20 
· 3-1 
11-7 

. 2-2, 7-21 
· .. 2-2 

.1-4,6-2 
· .. 9-2 

· .. 9-6 
.9-7/9-8 

.9-5 
· .. 9-4 

29-428 HOI 1/76 



~I 
:::il 
(!) 

51 
-I 

<!\ 
I-

al 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I , 

PUBLICATION COMMENT FORM 

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning 
this pUblication. 

From ________________ Date _______________ _ 

Title ________________ Publication Title ___________ _ 

Company _______________ Publication Number __________ _ 

Address ______________ _ 

FOLD FOLD 

Check the appropriate item. 

0 Error Page No. Drawing No. --------

0 Addition Page No. Drawing No. ________ _ 

0 Other Page No. Drawing No. ________ _ 

Explanation: 

FOLD FOLD 

Fold. and Staple 
No postage necessary if mailed in U.S.A. 



STAPLE 

FOLD 

- - - - -. - - - - - - - - ~ - -

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J. 

POSTAGE WILL BE PAID BY ADDRESSEE 

PERKIN-ELMER 
Computer Systems Division 
2 Crescent Place 
Oceanport, NJ 07757 

TECH PUBLICATIONS DEPT. MS 322A 

FOLD 

STAPLE 

STAPLE 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

FOLD 

FOLD 

STAPLE 


	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	A1-1
	A1-2
	A2-1
	A2-2
	A2-3
	A2-4
	A3-1
	A3-2
	A3-3
	A3-4
	A3-5
	A3-6
	A4-1
	A4-2
	A5-1
	A5-2
	A5-3
	A5-4
	A5-5
	A5-6
	A6-1
	A6-2
	A6-3
	A6-4
	A6-5
	A6-6
	A6-7
	A6-8
	A7-1
	A7-2
	A7-3
	A7-4
	A8-1
	A8-2
	A8-3
	A8-4
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	replyA
	replyB

