M April 1993
Order Number: 312546-001

N PARAGON™ XP/S

i860™ 64-BIT MICROPROCESSOR
N ASSEMBLER
REFERENCE MANUAL

[

A

- e e s
;QL‘A f;»'

.2

* Intel® Corporation

Copyright ©1993 by Intel Supercomputer Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or
copied in any form or by any means...graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval sys-
tems...without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel’s software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara-
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 9502. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 iCS Intellink Plug-A-Bubble
287 iDBP ioSpP

4-SITE iDIS iPDS PROMPT
Above iLBX iPSC Promware
BITBUS im iRMX

COMMputer Im iSBC ProSolver
Concurrent File System iMDDX iSBX QUEST
Concurrent Workbench iMMX iSDM

CREDIT Insite iSXM QueX

gf‘ta Pi(p:eline Modul intel KEPROM Quick-Pulse Programming
FX;?P :;:‘w ote int 1BOS ﬁ':;nyngmge’ Ripplemode
GENIUS Intelevision MCS RMX/80

1 int ligent Identifier Megachassis RUPI
ICE o lioent Pr . MICROMAINFRAME

1386 it figent Programming MULTI CHANNEL Seamless
i387 Intel MULTIMODULE SLD

1486 Intel386 ONCE

1487 Intel387 OpenNET SugarCube
1860 Intel486 OTP UPI

ICE Intel487 Paragon

iCEL Intellec PCBUBBLE VLSiCEL

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

APSO is a service mark of Verdix Corporation

DGL is a trademark of Silicon Graphics, Inc.

Ethernet is a registered trademark of XEROX Corporation

EXABYTE is a registered trademark of EXABYTE Corporation

Excelan is a trademark of Excelan Corporation

EXOS is a trademark or equipment designator of Excelan Corporation

FORGE is a trademark of Applied Parallel Research, Inc.

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.
GVAS is a trademark of Verdix Corporation

IBM and IBM/VS are registered trademarks of International Business Machines

Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.

NFS is a trademark of Sun Microsystems

OSF, OSF/1, OSF/Motif, and Motif are trademarks of Open Software Foundation, Inc.

PGI and PGF77 are trademarks of The Portland Group, Inc.

ParaSoft is a trademark of ParaSoft Corporation

SGI and SiliconGraphics are registered trademarks of Silicon Graphics, Inc.

Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

UNIX is a trademark of UNIX System Laboratories

VADS and Verdix are registered trademarks of Verdix Corporation

VAST2 is a registered trademark of Pacific-Sierra Research Corporation

VMS and VAX are trademarks of Digital Equipment Corporation

VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.
XENIX is a trademark of Microsoft Corporation

BB R R W W R pE R G e M RO O M WM AN

W w

| L] []
B4 [1 hals |

q

[

o

REV.

REVISION HISTORY

DATE

-001

Original Issue

4/93

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara-
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052. For all Federal use or contracts other than

DoD Limited Rights under FAR 52.2272-14, ALT. Ill shall apply.

EHE E EEEEE EEE

P P4 o B4 Py P od o o o M O N e NN MM

iv

Preface

l‘
Al
l«;

4

This manual describes the Paragon™ XP/S i860™ 64-bit microprocessor assembler (as860). The
assembler is designed for direct use by programmers and for indirect use as a postprocessor for the
output of high-level language translators. It supports the entire instruction set of the 1860
‘microprocessor.

i

ot W e W -

This manual assumes you are an application programmer proficient in the use of some assembly
language and that you are familiar with the architecture and instruction set of the 18360
microprocessor as presented in the i860™ 64-Bit Microprocessor Family Programmer's Reference
Manual.

-

1]

Organization

Chapter 1 Introduces the assembler, command-line syntax, command-line options, and
assembler directives.

Chapter 2 Describes the syntax of an assembly language program.
Chapter 3 Describes the syntax of individual assembly language instructions and

pseudo-instructions. (For a detailed description of the machine instructions,
refer to the i860™ 64-Bit Microprocessor Family Programmer's Reference

?‘ Manual.)
Chapter 4 Describes assembler directives.
Chapter 5 Tells how to use the macro preprocessor (mac860).

4

I

.y
=

Preface

Paragon' " XP/S i860""64-Bit Microprocessor Reference Manual

Notational Conventions

This manual uses the following notational conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be entered exactly as shown.

Italic Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace :
Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:
<Break> <8> <Ctrl-Alt-Del>
[1] Surround optional items.
Indicate that the preceding item may be repeated.

| Separates two or more items of which you may select only one.

{ Surround two or more items of which you must select one.

Applicable Documents

For more information, refer to the following manuals:

vi

i860™ 64-Bit Microprocessor Family Programmer's Reference Manual, Intel order number
240875

ParagonﬂM OSF/I User’s Guide, Intel order number 312489
ParagonTM OSF/1 C Compiler User’s Guide, Intel order number 312490

ParagonTM OSF/1 Fortran Compiler User’s Guide, Intel order number 312491

M O M M WO O W N O O R B MMM E - WM EE R RN RN

]
&

l)
i

k]
I

[|
.

4
1

L

=

Paragon™ XP/S i860""64-Bit Microprocessor Reference Manual Preface

Comments and Assistance

Intel Supercomputer Systems Division is eager to hear of your experiences with our new software
product. Please call us if you need assistance, have questions, or otherwise want to comment on your

Paragon system.

U.S.A./Canada Intel Corporation
phone: 800-421-2823
email: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

20090 Assago

Milano

Italy

1678 77203 (toll free)

France Intel Corporation

1 Rue Edison-BP303

78054 St. Quentin-en-Yvelines Cedex
France

0590 8602 (toll free)

Japan Intel Corporation K.K.
Supercomputer Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26

Japan

0298-47-8904

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

Pipers Way

Swindon SN3 IRJ

England

0800 212665 (toll free)

(44) 793 491056 (answered in French)

(44) 793 431062 (answered in Italian)

(44) 793 480874 (answered in German)

(44) 793 495108 (answered in English)

Germany Intel Semiconductor GmbH
Dornacher Strasse 1

8016 Feldkirchen bel Muenchen
Germany

0130 813741 (toll free)

World Headquarters

Intel Corporation

Supercomputer Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006

US.A.

(503) 629-7600

vii

Preface

vii

Paragon XP/S i860™64-Bit Microprocessor Reference Manual

MO OO O O O R B e B O BE R M B MR mEommMm MR

|

=0

-

Table of Contents

Chapter 1
Getting Started
USIiNg the ASSEMDIEE ... 1-1
Command-ling SYNTAX ... 1-2
Command-line OPLIONSco ot 1-2
Case SIGNIfICANCEcoiiiiiiiii e e e et e s ran s 1-3
F Y (o (0] 0 =T o} PP PPPPPRPRR 1-4
Filename Specificationsoouueiiiiiiii e 1-4
L)] 1L @ o [3 T TP 1-4
o] o101 g | =Y PP PP PRI 1-4
L@ 11} {018 | 4 1 =T PRSP PRSPPI 1-5
10 o] 1= o1 gl 1 L= PPN 1-5
Y] o o 1 = P PRSP 1-6

Assembler Directives

Table of Contents Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Chapter 2
Assembly Language Syntax

SEAEMENTES ... bbb e 2-1
CONSEANES ... bbbt bttt 2-2
10T 3 1= ¢ o PO PUPOTRP 2-2
Lo ¢ E= T 0T 1T o U SRS 2-4
L1 £=T o[SR 2-5
SYMDOIS ...t R ettt 2-5
LI Lo =] P PO PRR P 2-6
NamMEd Labelscooiii e s 2-6
TEMPOTArY LADEIS ..ottt s s sre e s e e re e e s asbe e s tneesannne 2-6
Other Address-valued SYMDBOIScccocveiiiiiiiiinie e s s sr e e er e e s neee s 2-7
ASSIGNMENES ...t b et ettt a ettt 2-7
THE .€NUM DIFECHIVEcooiiiiiiciieieiiis ittt er sttt re st s st e s s s e e s s b e s ae e ebee e sessessnsaenesarene 2-7
EXPIESSIONS ...ttt e st bbbttt 2-7
Bit and BOOIEAN OPEIatOrSccieciueiriiuiriiiiiriieriresserssereeesstessssesesaseesssssesssseesssessssaseesssesesnssensess 2-9
OPEIANG TYPES .eeeicieeiiieiiiieeiiiressireessitesssenteeesettes s aresestae s sassesaasesesaesesstesasabeeasasssasesssesnessnsaessenees 2-9
32-Bit CoNnstant EXPrESSIONSccooiiiiiiiiiiiiiiiie st rete e ssreee e e e s s stee e s svee e e e e sne e e s e eneeas 2-10
32-Bit Relocatable EXPreSSioNSoocccceiiiiiiiiin et sre e s s s 2-10
Type COmMDINALIONScoicieieiiieiii s e seee e et s rre e s s sne s neanananes 2-12
Automatic Conversion of 32-bit CONStaNtScccvviiciiiiiri e 2-13
OPErator PrECEUEBNCEcviiiiiieiiiiiiie e ceerrr et e s srr e e e s s sae e e s ssre e e e e s e s sebeessseseeesssnnreesesnnsnenss 2-13

X

MO OO O W O N R PR e R R R R R R S W MR Rm RN

bl

i

| M

"
&l

|
4

il

ol

A EE aE e e

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Table of Contents

Chapter 3
Instruction Syntax

Key to ABDBreviations ...t 3-2
Instruction Definitions in Alphabetical Order ... 3-4
DUal-iNnStruction MOAE ... 3-16
PSeUdOINSIIUCLIONS ... 3-16
Integer Register 10 ReGISIEr MOVEooiiiiiiecect et s 3-16
Integer Constant 1o RegISter MOVE ...t 3-16
Floating-point Register to Register MOVESccociiiiiii it 3-17
N (o T @] 11 =1 (o] o TP O PP RPN 3-17
32-bit ADAress EXPrESSIONccoiiiiiiiiieicciei et se e s nb e s ne s e s n s bneaenre e s 3-18
Unsigned 32-bit CONSTANTcoiiiii i e s e e s s e s nn e enns 3-18
Signed 32-bit CONSIANTcooiiiiiie et sbe e e s r e s se e s e e neeann 3-19
Chapter 4
Assembler Directives
[T | 1 22T=T o PSR PS 4-2
DUBI MOAE ...ttt et e ettt e e et e e s ar e e e s e s e e e e sase e e e s sraeaesasneeessseanseeeesannnnneessnanns 4-3
Section CONTIOLcoviiiiiiiii T 4-5
BIOCK Space DEfiNItIONcoocciiiiiiiii ettt sbae e e s e s re e e s e e e e s sesena s s enrnneneene 4-6
Common Space DefiNitioncccoiiciiiicc e e 4-7
FoTo] 110 o OO PP PSOR 4-7
Lo T4 1. o PP 4-8
Xi

Table of Contents) Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual
Records and STTUCIUIEScoceiiiiiriiiieiir et e st e e e sre e e 4-9
53 (o] £= 1o LI B T3 {1 011 [o o SRR SPRT PR 4-10
[o 1U T4 gT=T =\ (o] o PSPPI 4-12
EXternal SYMDOIS ..ot e e 4-13
Change AdAreSsing TEMPOTATYc.c.vcueueriiueereesesesisssisssssssessesesessesesssessssssssesasssessssesssnssssasesans 4-14
LIStING CONIIOLeiiieiiiiiiie et s s e s e b e sse s s se e s sebeesanee e e e eneeesanrreessreesnnennesans 4-15
53V 700 o To] [[o3 7= o T8 o o 1o To [N PP PR 4-16

Chapter 5
Using Macros

Macro Preprocessor Command-line Syntax ... 5-2
MACIO SYMDOIS ...ttt 5-2
Local Symbol Definitioncooiceeiiiiiiie ettt r e e nee e 5-3
Global Symbol DEfinitioncocciiiririieiirce e e e 5-3
53y g oTo I R = o= ToT=T4 V=T ot S 5-3
537 0] eTel I ©ToTgTor= 1 (=1 o F=1 { o] o K PSP 5-4
MacCro DefiNitioN ... et bnas 5-5
REPELITION ...t bbb 5-6
File INCIUSION ..o bbbttt 5-7
Conditional ASSEMDIY ...t 5-8

xii

BU BT OBE BN OPE OB OBA O ROBE MR OBE M PR A M RE B PR B M R MM R R W RERNRRNN

EOE

B |

-
B | S -

-

" B

Paragon™ XP/S i860" 64-Bit Microprocessor Assembler Reference Manual

Table of Contents

xiii

Table of Contents Paragon" XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Table 1-1.
Table 2-1.
Table 2-2.
Table 2-3.
Table 3-1.
Table 3-2.
Table 5-1.

xiv

List of Tables

ASSEMDIET OPLONS ...ouiiiiiiiiii i e et s e s e e e s et re s ereseesenssenarneeseeannen 1-3
Symbolic Character SpecCifiCationcoieeriieiiieirii e 2-4
[0 o= - (o] ¢ R 2-8
Type COMDINATIONcoiciiiiiiiiier e r e s s e e sreesnee s 2-12
Precision SpecifiCationccooociiiiiiiricie e e 3-3
FADDP MERGE UPAAIEcocuiiiiiuiieieeiieeestineesee s e steeseese e e e seessaeastesssa s e nten e seesaneneess 3-7
Y E= o] (o T @ o] o o 1= PSS 5-2

MR A E A NN ERE N RS NME MR E ME @SR ER R R AR NN

I
A

l

W

o SR S

3

4

e e e e R

] Al |

&

Lod i

Getting Started n

This chapter introduces the as860 assembler and discusses the command-line syntax, command-line
options, and assembler directives it recognizes.

Using the Assembler

In addition to supporting the entire instruction set of the i860™ microprocessor, the assembler
provides:

* Common object file format (COFF) output modules

¢ Long identifiers (up to 80 characters)

* Completely relocatable object modules

¢ Enforcement of coding rules unique to the i860 processor
e Optional source and code listings

¢ Symbolic debugger support

1-1

Getting Started Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

Command-line Syntax

The as860 command-line syntax is:
as860 [options] [source_file]
Where:

options Represent command-line options that control the assembly process. Most
options regulate the output created by the assembler. Each option must be
preceded by a hyphen (-). Some options are followed by arguments.
Arguments are usually shown separated from the option by a space, but the
spaces are optional.

If you do not declare an option, its default setting determines the function of
the assembler.

source_file Represents the complete path, filename, and extension of the
assembly-language source file. If you do not specify the path, the assembler
searches for the filename in the current directory. If you do specify a source
file name, the assembler uses standard input as the source until you type
<Ctrl-D>. You can also use the UNIX redirection operator (<), to specify the
source. (If you use standard input or the redirection operator, the output file
is a.out.)

Command-line Options

Command-line options affect input conditions, the assembly process, and output selections. Table
1-1 lists the assembler command-line options.

MO O W OE NN MM R e M EEEEmEWEEREMN

*

Y

I'u
il
l

i

i il

S

P

e

L

el e e

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual Getting Started

Table 1-1. Assembler Options

Option

Function

-a

Prohibit the importing of any symbols that are referenced but are
otherwise undefined.

I[listfile]

Write the source listing to listfile or to standard output if no listfile
argument is specified.

-L

Preserve text symbols starting with ".L" in the debug section.

-m

This option is recognized but ignored.

—o objfile

Put the output object file in objfile. If you omit this switch, the default
object file name is produced by stripping any directory prefixes from
filename, stripping any suffixes, and appending .0. An existing file
with the same name is silently overwritten.

-R

Suppress all .data directives. Code and data are both assembled into
the .text section.

-V

Display assembler version information.

-X

Enable additional checks of the program to find illegal or dangerous
sequences of instructions.

Case Significance

Case is significant for assembler options. The following example shows the warning message that
results when an uppercase A, which is not a valid option, is used by mistake.

as86@ -A myprog.s

as860 *command line*: Fatal: unknown flag: '-A'

Usage: as860 [options] file

1-3

Getting Started Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

Arguments
Arguments for options must follow the options that require them. A space between the option and
its argument is optional (except for the -1 option, which does not allow a space if an argument is

present). If the command line contains a syntax error, the assembler does not complete processing
of the command and issues an error message.

Filename Specifications

For options that require a filename specification, you can provide a complete pathname, filename,
and extension. If you do not specify a pathname, the assembler uses the current directory.

If the specified file already exists for the listing-file option -1 or the object-file option —o, the
assembler overwrites it after checking that the command syntax is in order.

Multiple Options

The following examples show valid uses of multiple assembler options. The first example specifies
an object file (-0), a listing file (-1), and an input file.

as860 -o testl.o -ltest.lst source.s
The next example suppresses .data directives (-R), and enables checking for out-of-sequence
instructions (-x). The resulting object file is named test. Separate options with a space, as in the

following example:

as860 -R -x test.s

Input Files

The as860 input file is an ASCII source file consisting of assembly language statements, including
mnemonics for i860 microprocessor instructions and assembler directives. The input file for as860
is an output of the ice compiler, the if77 compiler, the mac860 preprocessor, or is created with an
editor.

If you fail to specify a source file at invocation, the assembler accepts input until you type a
<Ctrl-D>.

M N AR M EE N EENENE@EMMEMMNE RS R E R ER AR RN

gl 1

E]

| Mm MR m
: o

B

™

S

[|

{

£

- -

LB

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual Getting Started

Output Files

Upon successful assembly, the assembler produces an object file and, optionally, a listing file as
output.

By default, the object filename is the source filename with a .o extension, but you can choose a
specific object filename using the —o option. The assembler overwrites an existing file with the same
specified or default name. If you use standard input or the redirection operator (<) for input, the
output file is a.out.

Object Files

After successful assembly, the assembler produces an object file in the common object file format
(COFF). The as860 object file contains i860 instructions, relocation information, a symbol table,
and, optionally, symbolic debugging information. After the linker, 1d860, processes the object file it
becomes part of an executable program.

NOTE

The assembler generates only the standard COFF file header, not
the optional header.

The primary output of the assembler is an object module with four sections: .text, .data, .bss, and
.abs. When the linker combines several object modules, the sections from each input module are
concatenated to form a single output module consisting of the combined .text sections, the
combined .data sections, and any .abs sections (the .bss section is not physically present in object
files).

Operating systems make distinctions between text and data memory. The assembler treats both
sections identically; however, it supports the linker and operating system by assigning different type
information to symbols in the different sections.

text section When assembly begins, output is directed to the .text section. The .text
section customarily contains instructions and constant data. Use the directive
.text to return to the .text section, after output has been diverted to another
section. Refer to Chapter 4 for more information.

.data section = The .data section customarily contains variable data to which the program
assigns initial values. Use the directive .data to divert output to the .data
section. Refer to Chapter 4 for more information.

Getting Started

1-6

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

.bss section The .bss section is not physically present in object files; rather, it serves as
a type for symbols that are assigned addresses in an area of memory that is
allocated only when the program is loaded. This memory is initialized with
zeros. Use the directives Jeomm and .comm to allocate .bss section
memory. Refer to Chapter 4 for more information.

.abs section There can be zero, one, or more absolute (.abs) sections. An absolute section
is assigned to a specific virtual address and, possibly, to a specific physical
address. An absolute section can contain either text or data. Use the directive
.abs to allocate an .abs section. Refer to Chapter 4 for more information.

Assembly-language programmers must be aware of these sections to ensure that instructions,
constants, and variables are correctly located by the linker.

The object-file symbol table contains an entry for each symbol defined in the assembly, thus
providing for linking to referenced modules by symbol. Assembler directives define symbols in the

assembly language source code. Directives control the format, processing, and content of the
assembler output.

Listing Files
The as860 listing file is an optional, line-numbered listing of assembly-language statements with
their hexadecimal representations and any error messages generated by the assembler. Use the —/
option to generate the listing. You can enable or disable the listing using the directives .list and .nlist.
Refer to Chapter 4 for more information.
The following sample invocation creates a listing file named mylist.lst.

as869 -lmylist.lst myprog.s

The listing file is an ASCII file containing four columns as follows:

instruction location line # source code

Where:
instruction Is the machine instruction or data, in hexadecimal, generated by the line of
source code.
location Is the current location-counter value in hexadecimal. This value indicates the
offset in bytes from the start of the object file.
line # Is the line number in decimal.

"B EEEREEREREENRENNEIMNNNNENIRSNNINIMNIMNEREMSNHEIMNEIHM.S.

#
I

——

[] L] i-ﬂ

L3 L B

e e e Rt e e e e e e B

i G

g

-

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

source code

Getting Started

Is the assembly-language statement from the source code. This column can
include any of the following elements: a label, the instruction mnemonic or

assembly directive, the operands, and any comments.

Figure 1-1 shows a portion of a listing file produced by the assembler.

00001fec 00000000
4002ffe7 00000004
0118e01f 00000008
0000e3a3 0000000c
0508e01f 00000010

00001fec 00000014
6801fle7 00000018
06001094 0000001c
07001294 00000020
34121c94 00000024
fde77£1c 00000028

1 .file "testa.f"

2 // PGFTN Rel 2.1 -opt 1 -norecursive
3 .text

4 .globl _ unnamed_

5 .align 8

6 __unnamed_ :

7 .globl _MAIN_

8 _MAIN_:

9 .al =0

10 .f1 = 48

11 orh h%.STACK1+.fl-16, rO,
12 or 1%.STACKl+.fl1l-16, r31,
13 st.l fp, 0(r31)
14 mov r31l, fp

15 st.l rl, 4(r31)

24 // lineno: 0

25 orh h%.C1_265, r0, r31
26 or 1%.Cl_265, r31, rl7
27 adds 6, r0, rlé6

28 adds 7, r0, rls8

29 adds 4660, r0, r28

30 st.1l r28, -4 (fp)

r3l
r31l

Figure 1-1. Sample Listing File

The location counter starts at 00000000 and is incremented each time a machine instruction is
generated. The value of the location counter indicates the number of bytes from the start of the object
file. For lines containing comments, the assembler does not increment the counter.

Listing-file error messages appear preceding the line in which the error was detected. Error messages
also appear on the standard error-reporting device, usually the monitor screen.

1-7

Getting Started Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

1 .file "testa.f"
2 // PGFTN Rel 2.1 -opt 1 -norecursive
3 .text
4 .globl __unnamed_
5 .align 8
6 __unnamed_ :
7 .globl _MAIN_
8 _MAIN_:
9 .al = 0
10 .f1 = 48

00001fec 00000000 11 orh h%.STACKl+.£f1-16, r0, 31

4002ffe7 00000004 12 or 1%.8TACKl+.fl1-16, r31, 31

0118e01f 00000008 13 st.1l fp, 0(r31)

0000e3a3 0000000c 14 mov r31, fp

0508e01£f 00000010 15 st.1l rl, 4(r31)

24 // lineno: O

00001fec 00000014 25 orh h%.Cl1_265, r0, r31

6801f1le7 00000018 26 or 1%.Cl_265, r31, rl7
FREAE error *rxK line 27: Error:

'r100' syntax error

06001094 0000001c 27 adds 6, rl100, rle

07001294 00000020 28 adds 7, r0, rl8

34121c94 00000024 29 adds 4660, r0, r28

fde77f1lc 00000028 30 st.1l r28, -4(fp)

Figure 1-2. Listing File With Error Message

B EEBEEEEREEENENRNNINNMNETNNNSERNBEREMNRNIRMNSEIRE.,

r Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual Getting Started

Assembler Directives

In addition to the assembler command-line options shown in Table 1-2, you can use a set of optional
I assembler directives to determine the format, processing, and content of the assembler output (refer

to Chapter 4 for more information on assembler directives). Assembler directives govern the
following operations of the assembler:

B

B |

e alignment on boundaries

%

* dual-mode instruction interpretation

section control

B

e block and common space definition

e record and structure definition

iamnﬂﬁ-ﬁ—
[]

¢ memory initialization and allocation

i
;3

* enumeration

i}

¢ external symbol definition

temporary register assignment
* listing management

e debugging support

4 & d I

]

W

s

&

l:g

Getting Started

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

OB O OO O R e MM e M e s R R MR ERN

lt
&

®
a

Bl
[

ki
]

|
Al

Assembly Language Syntax

—n
)
)
’ i

-y
cod

Statements

1

The assembler accepts five general statement formats:

1. Aninstruction statement results in the generation of one (and sometimes two or three) machine
instructions. The instructions are defined in Chapter 3.

[§

[labels:]... instruction [operands][// comment]

‘ 2. A directive statement controls the operation of the assembler or the macro preprocessor. The
) assembler directives are defined in Chapter 4. The macro preprocessor directives are defined in
‘ Chapter 5.
[labels]... directive [parameters][// comment]
i 3. Anassignment statement defines a symbol that can be used in place of the given constant integer

expression. Assignments are defined in this chapter.

[labels]... symbol =[:] expri// comment]

4. An empty statement contains nothing other than spaces, tab characters, and comments. Empty
statements have no meaning to the assembler. They can be inserted freely to improve the
appearance of a source file and to clarify the code.

i i ¥

5. Two adjacent slashes(/ /) introduce a comment. The slashes can appear anywhere in the line;
the comment extends from the slashes to the end of the line.

o Bl

[// comment]

| D |
g Bed e 4 o4

-

2-1

Assembly Language Syntax Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

An assembler statement is contained within one line of an input file. Multiple statements can be
entered on a single line if each statement is separated from the previous statement by a semicolon
(;)- For example:

pfadd.ss £23, £31, £31 ; fl-d.d 8(rlé6)++, £f22
For statements, the input character sequence is separated into lines by the line-feed (LF) character

(also called newline). A carriage return (CR) can precede the LF, in which case the CR-LF pair is
treated as a single newline.

NOTE

The assembler accepts only lowercase machine instructions and
register names. For example, this instruction is acceptable:

addu rl, r2, r3

but these are not:

Addu rl, rz, r3
ADDU rl1, r2, r3
addu R1, rz2, r3

Constants

Numeric

The assembler accepts both numeric and alphanumeric constants.

Numeric constants may be integers or floating-point numbers. Integer constants can be expressed
according to any of the following bases:

Decimal A sequence of the digits 0-9. The sequence may optionally be prefixed by Ot or
OT. If the prefix is not used, the digit sequence must not begin with a zero.

Hexadecimal A sequence of the digits 0-9, A-F, a-f prefixed by 0x or 0X
Binary A sequence of the digits 0-1 prefixed by Ob or 0B

Octal A sequence of the digits 0-7 either beginning with the digit 0 (zero) or prefixed by
00 or 00 (zero, letter oh)

M N NN W E N N RN NN E R E RN N RN RN NN RRNEN

2

- EONRE

R

£ .3

l i
"

ParagonTM XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembly Language Syntax

A floating-point constant has the form:
[of | OF][integeni[.[fraction][e{[+][-]} exponent]

where integer, fraction, and exponent are decimal integers. The prefix 0f (or 0F) may be omitted
when the presence of a decimal point makes it clear that a floating-point number is intended.

NOTE

Although a token such as .2e12 is also a legal symbol, the
assembler recognizes it as a floating-point constant. Do not use
such tokens as identifiers.

Example

This example shows numeric constants in storage-allocation statements. You can use numeric
constants in a variety of other places.

//Valid numeric constants

mask: .byte 0b01101001 //Binary
year: .short 365 //Decimal

.long 0t1950344 //Decimal

.short Oxffff / /Hexadecimal
factor: .float 1.2

.float 1.2el2

.float 1.2e+12

.float 1.2e-12

.double l.el2

.double .2el2

.double .2e+12

.double .2e-12

Assembly Language Syntax Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Alphanumeric
There are two types of alphanumeric constants:

Character Constant A single character enclosed within single quotation marks (). A character
constant is treated as an integer numeric constant with a value equal to
the code of the ASCII character specified.

String Constant A sequence of character specifications enclosed in double quotation
marks ("). A string constant supplies a sequence of values for the data
storage directives. A NUL character is not automatically appended to the
string by the assembler. Refer to the .byte and .string directives in
Chapter 4 for more details about strings.

Character and string constants can contain any ASCII character. Use the backslash character (\)
within character and string constants to enter apostrophes and quotation marks repetitively and to
specify certain control characters symbolically. An apostrophe is valid within a quotation mark
enclosed string constant, and likewise, a quotation mark is valid within an apostrophe enclosed
character constant. The symbolic character specifications are defined in Table 2-1. A backslash
followed by any character not shown in the first column of Table 2-1 is equivalent to the character
itself. For example, \ c is equivalent to c, because Table 2-1 does not define \ c as specifying a
special character.

Table 2-1. Symbolic Character Specification

Symbolic Form Character ASCII Code

\0 NUL 0x0

\b BS backspace 0x8

\t TAB 0x9

\n LF linefeed OxA

\r CR carriage return 0xD

\ Backslash 0x5C

\" Double quote in string 0x22

\' Single quote in constant 0x27 ¢
\f Form Feed oxC

\a Bell 0x7

\v Vertical tab 0x0B

2-4

MO N OO O W O RO R MM A e R EMREER AR RN

e
i

|

k. [

N §

-

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembly Language Syntax

Example
This example shows string constants in storage-allocation statements.

// Valid alphanumeric constants

.byte tx // Character constant
.byte "k ko // String constant
.byte "Ape\tBadger\tCamel\0" // Special characters

The term integer constant refers either to a numeric constant that is not a floating-point constant or
to a character constant. The value of a character constant is the value of its ASCII code.

Symbols

You can use symbols to label memory locations or integer values. Symbols are composed of letters,
digits, and the period (.), dollar sign ($), and underscore (_) characters. The first character of a
symbol may not be a digit, a period, or a dollar sign. Both uppercase and lowercase letters are
accepted, but are treated distinctly; for example, the symbol a is unrelated to the symbol A. Symbols
may be up to 80 characters long; all characters are significant.

Symbols are defined by:

e The label part of statements

e The .comm and .lcomm directives

* Assignment statements

¢ The .enum directive

A symbol not defined by one of the preceding methods is considered undefined. A symbol that is
used but not defined in the current module either is an external symbol (i.e., is declared in another
module) or is an error. If the —a command-line option is not specified when you invoke the
assembler, an undefined symbol is considered to be external. When —a is specified, such a symbol

is treated as an error.

For external symbols (those declared in other modules), the assembler generates information in the
output module that identifies them to the linker.

Assembly Language Syntax Paragon™ XP/S i860" 64-Bit Microprocessor Assembler Reference Manual

Labels

A label is a symbol that represents a location in either the zext or data section. You can define
multiple labels for the same location. A label can be either named or temporary.

Named Labels

A named label is a symbol followed by one or two colons. Labels defined with a single colon cannot
be referenced from another module. Two colons specify that the label is global, so that it can be
referenced by other modules. (The directive .globl provides another way to make a label global.
Refer to Chapter 4 for more information.)

Example
XY Z: // A local named label
abc:: .byte 1 // A global label
x1:x2:%X3: oyte 1 // Three labels on a line

Temporary Labels

A temporary label consists of a nonzero integer constant followed by a single colon. Any number of
these labels may be present in a source program, even if there are duplicates.

A reference to a temporary label consists of the label's constant value followed immediately (i.e.,
with no intervening space) by an f or b. The trailing letter specifies that the reference is forward or
backward, respectively. The integer specifies that the reference is to the nearest temporary label in
the given direction that has the same integer value.

Use temporary labels only in text sections and only as operands of control transfer instructions.

Example
1: br 1f // skips the next three instructions
nop
17: br 1b // selects prior branch instruction
nop
1: // continue

M AR ME MM E N ®RM®RMN@~ESNEMMPMEMBAEMEBEES®EEPREREREANETRRNN

- Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembly Language Syntax

Other Address-valued Symbols

The .comm and .lcomm directives assign the symbol id to a .bss section location. Symbols thus

¥ defined differ from labels, because labels refer to locations in the .text or .data section. The
. .comm directive establishes an undefined external symbol; the directive .lcomm establishes a
I local symbol. (Refer to the definitions of .comm and .lcomm in Chapter 4 for more information.)

I]
Assignments

Assignments have the form
. symbol =:] expr
An assignment defines a symbol that can be used in place of the given constant integer expression.
An assignment using = defines a local constant. An assignment using =: defines a global constant,
. whose 32-bit integer value is placed in the output symbol table so that it can be referenced by other

modules. For example:

a=1 // A local constant
. xXyz =: 123 // A global constant

J The .enum Directive

The .enum directive can be considered a form of assignment that also defines local symbols. Refer
to Chapter 4 for more information.

Expressions

The assembler supports expressions formed of integers and of floating-point numbers.

You can use integer expressions in assembler statements where an integer value is required. Integer
| values are represented by the assembler in 32-bit, twos complement form. A basic integer expression
can be any of the following:

* Aninteger constant

* Aninteger-valued symbol

* An address-valued symbol

A basic floating-point expression is a floating-point constant.

Assembly Language Syntax

Given that exp1, exp2, and exp3 are integer or floating-point expressions, the following are also

expressions:

(exp)

uop exp

exp1 bop exp2

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Paired parentheses can be used freely to clarify or override operator
precedence.

uop is a unary operator.

bop is a binary operator.

Any of the arithmetic, bit, and Boolean operators listed in Table 2-2 can be used in integer

expressions. All integer arithmetic is performed with 32 bits of precision. The operators defined for
floating-point expressions are unary + and -, and binary +, -, *, and /. Operands do not need to be
separated from operators by spaces. When an integer expression is combined with a floating point

expression by a binary operator, the result is floating-point.

Table 2-2. Operators

Class Operator Operator Type Function
Arithmetic + Unary (none)
- Unary Negation
+ Binary Addition
- Binary Subtraction
* Binary Multiplication
Binary Division
Bit Binary Logical AND
A Binary Logical Exclusive OR
I Binary Logical OR
<< Binary Shift left
>> Binary Arithmetic shift right
Boolean ! Unary Not
< Binary Less than
> Binary Greater than
= Binary Equal
Type 1% Unary Select low-order half
h% Unary Select high -order half
ha% Unary Select high-order half and
adjust

M O M M W OmOm RN W NN E e RN M M E MM EE R PR NRAMN

I Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembly Language Syntax

Bit and Boolean Operators

For the shift operators, exp2 (the right-hand operator) specifies the number of bit positions to shift.
' i The value of exp2 must lie in the range 0 through 31.

T] The right shift is an arithmetic shift. It does not change the sign bit; rather, it propagates the sign bit
to the right exp2 bits.

Boolean operators return only the integers zero (FALSE) and one (TRUE). The not operator ! returns
™ one (1) if its operand is zero and returns zero (0) if its operand has any nonzero value.

Operand Types

The operators in Table 2-2 use the operand type information maintained by the assembler. To aid the

i linker in combining object files, the assembler associates the value of every expression with a type.
There are both primary types and special types. The primary types deal with the operand

| characteristics defined by the assembly language. The primary types are:

lw‘ absolute An absolute expression is one whose value is based on a constant or on the

difference between two relocatable expressions of the same subtype (as defined
4. below). The values of absolute expressions are never affected by the linker.

N relocatable The value of an expression is relocatable if it is based on a label (but not on the
absolute difference of two labels) or upon an undefined external symbol.
@ Relocatable expressions are further classified by the following subtypes:

1 _ text Value is relative to the rext section.
) data Value is relative to the data section.
] bss Value is relative to the bss section.
] undefined Based on a symbol that is not defined except for its

appearance in a .global, .extern, or .comm directive.

The special types deal with operand characteristics of the machine instructions. These types are
explained in the section “32-Bit Relocatable Expressions” on page 2-10.

-
sl

Assembly Language Syntax ParagonTM XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

2-10

32-Bit Constant Expressions

The assembly language supports 32-bit constant expressions; however, instructions for the 1860
microprocessor do not directly accept 32-bit immediate constants. The assembler provides three
methods for converting a 32-bit constant into a 16-bit constant:

1. Selection operators that allow the programmer to specify either the high- or low-order half of a
32-bit constant.

2. Automatic expansion of an assembler pseudo-instruction into a multiple-instruction sequence,
one or more instructions of which handle each half of the 32-bit constant.

3. Automatic conversion of 32-bit constants to 16 bits. See ‘“Automatic Conversion of 32-bit
Constants” on page 2-13 for more information.

The operators 1% and h% (refer to Table 2-2), select the low- or high-order half respectively of a
32-bit constant expression. The following example illustrates their use.

Example
LongMask = OxXFFOOC7F3
// Case 1
or l1l%LongMask, r0, r4
orh h%LongMask, rd, r4
// Case 2
or LongMask, r0, 1r4d

The first case reconstructs the 32-bit constant in a register, by loading 16 bits at a time. In the second
case, the assembler automatically expands the given instruction into a similar two-instruction
sequence. Note that instruction expansion causes undesirable effects after a delayed branch
instruction or within dual-instruction mode. If you use the -x assembler option, the assembler detects
these situations and indicates an error.

32-Bit Relocatable Expressions

Relocatable expressions are adjusted by the linker using 32-bit arithmetic. However, the i860
microprocessor has no instructions that directly accept 32-bit address constants. To accommodate
this situation, the assembler and linker recognize an additional set of special relocatable types. With
these types, the assembler instructs the linker to relocate 32-bit addresses 16 bits at a time.

W PR OO OO O e M MWW M EMERE R AN N

l

r Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembly Language Syntax
i

il
&

The assembler provides three methods for converting from the primary types to the special types:

2.
IM‘ 1.

Rl
I 2. Automatic type conversion of a pseudo-instruction that generates multiple-instruction
o sequences.

Selection operators that allow the programmer to control type conversion.

I 3. Automatic conversion of 32-bit constants to 16 bits. See “Automatic Conversion of 32-bit
‘ Constants” on page 2-13 for more information.

The operators 1%, h%, and ha% (refer to Table 2-2), in addition to selecting the high- or low-order
half of a relocatable 32-bit expression, convert a primary relocatable type to a special relocatable

type.
LB 1% Selects the low-order 16 bits of an expression.
i h% Selects the high-order 16 bits of an expression. Does not perform any adjustment;
1 therefore, is suitable for combination with a subsequent or instruction.
- ha% Selects the high-order 16 bits of an expression, and, if bit 15 of the expression is
! set, performs the necessary adjustment. This is suitable for combination with a
'S subsequent register/offset instruction (ld.l, for example).
- The following examples illustrate the need for adjustment.
o)
‘ Example
] .align .float
ST: .float 0f£1.659463
i // Case 1
or 1%8T, r0, 5
i orh h%sT, r5, r5
1d.1 0(r5), ré
| // Case 2
orh ha%sT, r0, r5
]' 1d.1 1%8T(r5), ré
// Case 3
I 1d.1 ST, ré
| B The first case forms the complete address in 5, then loads the data item. The immediate value placed
' into the orh instruction by the linker is precisely the upper 16 bits of the address after relocation.

Assembly Language Syntax

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

The second case first extracts the high-order part of the address, then loads the data item by
combining the low-order bits of the address using the immediate offset form of the load instruction.
However, the processor sign-extends the immediate offset of this instruction. If bit 15 of the address
is set after relocation, the effect is that of a negative offset. The ha% operator identifies this potential
condition to the linker. When bit 15 is set, the linker adjusts the value of the high-order 16 bits so
that the correct result is produced even with the "negative" offset in the load instruction.

In the third case, the assembler automatically expands the given pseudo-instruction into a similar
multiple-instruction sequence using r31 as the temporary address register. (The addressing
temporary register can be changed by the .atmp directive, as described in Chapter 4.) Note that
pseudo-instruction expansion causes undesirable effects after a delayed branch instruction or within
dual-instruction mode. If the assembler option —x is selected, the assembler detects these situations
and indicates an error.

Type Combinations

When a complex expression is formed with one of the operators in Table 2-3 on page 12, the type of
the resulting expression depends on the types of the original expressions and upon the operator, as
defined by Table 2-3. All other type combinations are invalid. For example:

Example
.data; .align 4
Array: .short[8]0
.long[10]0
.byte "Miscellaneous message"
.align 4
End_Array:

.text
1d.1 Array+4, r4 //Relocatable+constant=relocatable
or End_Array-Array, r0, r5 //Relocatable-relocatable=constant

Table 2-3. Type Combination

Type of Operand 1 | Type of Operator | Type of Operand 2 Result
Absolute any Absolute Absolute
Relocatable + Absolute Relocatable
Absolute + Relocatable Relocatable
Relocatable - Absolute Relocatable
Relocatable - Relocatable Absolute

B EEEEREERNEE R RN RN RN EEE N ENNEENNEN

M
&l

[|

]
o

[

[3 S |

bay S i o

il

Im

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembly Language Syntax

Automatic Conversion of 32-bit Constants

The assembler automatically converts 32-bit immediate constants to 16 bits whenever possible.
When conversion is not possible, the assembler generates pseudo-instructions to accommodate the
32-bit operand. Note in the following examples that the assembler issues a warning to indicate when
pseudo-instructions have been substituted.

AS86Q ASSEMBLER, Vx.y

8488ffff
8488ffff
8488ffff
8488ffff
8488ffff

ODODDDD 1 addu Oxffff,r4, r8 // Case 1 @xXFFFF

wlnlnlnlonln! 2 addu @xffffffff,r4, r8 // Case 2 QXFFFFFFFF
wlnlnlnlolnlng 3 addu -1,r4, r8 // Case 3 @XFFFFFFFF
QOPPDDPDC 4 addu 1%-1,r4, r8 // Case 4 OXQPPPFFFF
OOPOPDLD 5 addu OxQ0@@ffff,r4, r8 // Case 5 OxXOPPPFFFF

**]line 6: Warning:Constant not representable in 16 bits, pseudo-inst generated
e7ffP00Peclf@dl QPPP@OP14 6 addu OxPPP1PPPD,rd, r8 // Case 6 DxPDD1QDDD
8088£800 VYPPPD1c

Operator Precedence

In the absence of overriding parentheses, binary operators are evaluated according to the following
precedence groups. Group one is the group with highest precedence (the first to be evaluated).

1. */
2. +,-
3 <,> =

4, <<, >>, &, 1,0

Unary operators have precedence over binary operators, except for the unary operators h%, 1%, and
ha%, which have lower precedence. For example, 1%main+0x4 gives the lower 16 bits of
main+0x4.

Assembly Language Syntax

2-14

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

M E A WA MME N EEREMEEMNMSSEMM®TES@ERMEEENERREEEREEDARN

"
kT
M

i
I

i
I

£ o

B
&

Instruction Syntax

The instructions of the assembly language correspond one-to-one with the machine instructions of
the i860 microprocessor (except for the "pseudoinstructions” presented in the section
“Pseudoinstructions” on page 3-16). The general syntax of an instruction is:

mnemonic source_operand_1, source_operand_2, destination

NOTE

The assembler accepts only lowercase machine instructions and
register names. For example, this instruction is acceptable:

addu rl, r2, r3

but these are not:

Addu rl, r2, r3
ADDU rl, r2, r3
addu R1, r2, r3

Mnemonics for machine instructions are defined in lowercase only.

Not all instructions have two source operands. In all cases, the actual destination appears to the right
of the source.

This chapter presents only the syntax for specifying machine instructions. For details regarding
instruction semantics, format, and encoding, refer to the i860™ Family Microprocessor
Programmer's Reference Manual.

3-1

Instruction Syntax

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Key to Abbreviations

3-2

For register operands, the abbreviations that describe the operands are composed of two parts. The
first part describes the type of register.

c

i

One of the predefined names of control registers: fir, psr, epsr, dirbase, db,
fsr, bear, ccr, p0, p1, p2, or p3.

One of the floating-point registers: fO through 31

One of the integer registers: r0 through r31

The second part identifies the field of the machine instruction into which the operand is to be placed:

src1

srcini

srcls

src2

dest

The first of the two source-register designators, which may be either a register or
a 16-bit immediate constant or address offset. The immediate value is
zero-extended for logical operations and is sign extended for add and subtract
operations (including addu and subu) and for all addressing calculations.

Same as srcl except that no immediate constant or address offset value is
permitted.

Same as srcl except that the immediate constant is a 5-bit value that is
zero-extended to 32 bits.

The second of the two source-register designators.

The destination register designator.

Thus, the operand specifier isrc2, for example, means that an integer register is used and that the
encoding of that register must be placed in the src2 field of the generated machine instruction.

Other (nonregister) operands are specified by a one-part identifier that represents both the type of
operand required and the instruction field into which the value of the operand is placed:

const32

Ibroff
sbroff

brx

A 16-bit immediate constant or address offset that the 1860 microprocessor
sign-extends to 32 bits when computing the effective address.

A signed, 26-bit, immediate, relative branch offset.

A signed, 16-bit, immediate, relative branch offset.

A function that computes the target address by shifting the offset (either /broff or
sbroff) left by two bits, sign-extending it to 32 bits, and adding the result to the

current instruction pointer plus four. The resulting target address may lie
anywhere within the address space.

E BB EEREEEEERNEBR NI NN RN ENNIEMNIMNESERNIRHMNIH®N.

I Paragon'" XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax

| B
ki
I Other abbreviations include:
H
I P Precision specification .ss, .sd, or .dd (.ds not permitted). Refer to Table 3-1.
I .r Precision specification .ss, .sd, .ds, or .dd. Refer to Table 3-1.
I RY .sd or .dd
W .ss or .dd
u
X .b (8 bits), .s (16 bits), or .| (32 bits)
1 Yy .1 (32 bits, .d (64 bits), or .q (128 bits)
I mem.x(address) The contents of the memory location indicated by address with a size of x.
I port.x(address) The I/O port indication by address with a size of x.
I int_vector.x(address)
' The interrupt vector with a size of x returned from I/O port address.
N PM The pixel mask, which is considered as an array of eight bits (PM(7)..PM(0),
- where PM(0) is the least-significant bit.
i
1 Table 3-1. Precision Specification
1 Suffix Source Precision Result Precision
1 .SS single single
I .sd single double
) .dd double double
1 ds double single
1 NOTE: Unless otherwise specified, floating-point operations accept single- or
" double-precision source operands and produce a result of equal or greater
1 precision. Both input operands must have the same precision. The source and
) result precision are specified by a two-letter suffix to the mnemonic of the
B operation.
L B
|
[B
|

3-3

Instruction Syntax Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Instruction Definitions in Alphabetical Order

adds isrcl, isrc, idest Add Signed
idest < isrcl +isrc2
OF « (bit 31 carry # bit 30 carry)
CCsetif isrcl + isrc2 < 0 (signed)
CCclear if isrc2 + isrc1 = 0 (signed)

addu isrcl, isrc2, idest Add Unsigned
idest < isrcl +isrc2
OF « bit 31 carry
CC « bit 31 carry

and isrcl, isrc2, idest Logical AND
idest « isrcl and isrc2
CC set if result is zero, cleared otherwise

andh #const, isrc2, idest Logical AND High
idest < (#const shifted left 16 bits) andisrc2
CC set if result is zero,.cleared otherwise

andnot isrcl, isrc2, idest Logical AND NOT
idest < (not isrcl) andisrc2
CC set if result is zero, cleared otherwise

andnoth #const, isrc2, idest Logical AND NOT High
idest « (not (#const shifted left 16 bits)) andisrc2
CC set if result is zero, cleared otherwise

be ibroff Branch on CC
IF CC=1
THEN continue execution at brx(lbroff)
FI

be.t ibroff. Branch on CC, Taken
IF CC=1

THEN execute one more sequential instruction
continue execution at brx(lbroff)

ELSE skip next sequential instruction

FI

MW M WA W W OEE NN E M EENE e RN E R ME RN

b
b

-
i

I

l i
Ea
I e
N
lvw ‘
ai

L]
S 1

Tk L.k Lot 3 1 Tt £ 4 . [E i -

Lo #

 conr e
wmE b

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax

bla isrcini, isrc2, sbroff. Branch on LCC and Add
LCC-temp clear if isrc2 + isrcIni <0 (signed)

LCC-temp set if isrc2 + isrcIni =0 (signed)

isrc2 < isrclni+ isrc2

Execute one more sequential instruction

IF LCC
THEN LCC « LCC-temp
continue execution at brx(sbroff)
ELSE LCC « LCC-temp
FI
bnc ibroff. Branch on Not CC
IF CC=0
THEN continue execution at brx(lbroff)
FI
bne.t lbroff Branch on Not CC, Taken
IF CC=0
THEN execute one more sequential instruction
continue execution at brx(Ibroff)
ELSE skip next sequential instruction
FI
br Ibroff. Branch Direct Unconditionally

Execute one more sequential instruction
Continue execution at brx(lbroff)

3-5

Instruction Syntax Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual
bri [iscrini] Branch Indirect Unconditionally
Execute one more sequential instruction
IF any trap bit in pSTr is set
THEN copy PU to U, PIM to IM in psr
clear trap bits

IF DS is set and DIM is reset
THEN enter dual-instruction mode after executing one
instruction in single-instruction mode
ELSE IF DS is set and DIM is set
THEN enter single instruction mode after executing one
instruction in single-instruction mode

ELSE IF DIM is set
THEN enter dual-instruction mode
for next instruction pair

ELSE enter single-instruction mode
for next instruction pair
FI

FI
FI
Continue execution at address in isrcIni
(The original contents of isrcini is used even if the next instruction
modifies isrc/ni. Does not trap if isrcIni is misaligned.)

bte isrcls, isrc2, sbroff Branch If Equal
IF isrcls = isrc2
THEN continue execution at brx(sbroff)
FI

btne isrcls, isrc2, sbroff Branch If Not Equal
IF isrcls # isrc2
THEN continue execution at brx(sbroff)
FI

call lbroff Subroutine Call

rl « address of next sequential instruction + 4 (or + 8 in dual mode)
Execute one more sequential instruction
Continue execution at brx(Ibroff)

calli (isrcini) Indirect Subroutine Call
rl < address of next sequential instruction + 4 (or + 8 in dual mode)
Execute one more sequential instruction
Continue execution at brx(Ibroff)
(The original contents of isrcni is used even if the next instruction
modifies isrc/ni. Does not trap if isrcini is misaligned. The register
isrcIni must not be r1.)

3-6

MO OO O OE W N R R M e M R R W ERE M ENRRREMN

B Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax
I
?
B
L fadd.p fsrcl, fsrc2, fdest Floating-Point Add
" fdest « fsrcl + fsrc2
I
" faddp fsrcl, fsrc2, fdest Add with Pixel Merge
- fdest < fsrcl + fsrc2 (using integer arithmetic; 8-byte operands and destination)
I Shift MERGE right 16 and load fields 31..16 and 63..48 from fsrcl + fsrc2
1 Table 3-2. FADDP MERGE Update
- Pixel Size Fields Load from Right Shift Amount
I (from PS) Result into MERGE (Field Size)
i 8 63..56, 47..40, 31..24, 15..8 8
1 16 63..58, 47..42, 31..26, 15..10 6
' 32 63..56, 31..24 8
‘x il
ol famov.a fsrcl, fdest Floating-Point Adder Move
I fdest « fsrcl
1 fiadd.w fsrcl, fsrc2, fdest Long-Integer Add
fdest « fsrcl + fsrc2 (2’s complement integer arithmetic)
i fisub.w fsrcl, fsrc2, fdest Long-Integer Subtract
oy fdest « fsrcl — fsrc2 (2’s complement integer arithmetic)
1
1 fix.v fsrcl, fdest Floating-Point to Integer Conversion
o fdest < 64-bit value with low-order 32 bits equal to integer part of fsrc/ rounded
I Floating-Point Load
I fid.y isrcl(isrc2), fdest (Normal)
fld.y isrci(isrc2)++, fdest (Autoincrement)
1 fdest « mem.y (isrcl +isrc2)
IF autoincrement
i THEN isrc2 «isrcl +isrc2
FI
i
I
r
B
I
| b
I
3-7

Instruction Syntax Paragon™ XP/S i860™" 64-Bit Microprocessor Assembler Reference Manual
Cache Flush

flush #const(isrc2) : (Normal)

fld.y #const(isrc2)++ (Autoincrement)

Write back (if modified) the line in data cache that has address (#const + isrc2)
80860XR: and set tag value to (#const + isrc2).
80860XP: and invalidate its virtual and physical tags. The Paragon XP/S
system uses the 80860XP.

Contents of line undefined.

IF autoincrement

THEN isrc2 « #const + isrc2

FI

fmlow.dd fsrcl, fsrc2, fdest Floating-Point Multiply Low
fdest < low-order 53 bits of (fsrc/ mantissa X fsrc2 mantissa)
fdest bit 53 < most significant bit of (fsrc/ mantissa X fsrc2 mantissa)

fmov.r fsrcl, fdest Floating-Point Reg-Reg Low
Assembler pseudo-operation
fmov.ss fsrcl, fdest =fiadd.ss fsrcl, 10, fdest
fmov.dd fsrcl, fdest =fiadd.dd fsrcl, 10, fdest
fmov.sd fsrcl, fdest =fiadd.sd fsrcl, fdest
fmov.ds fsrcl, fdest =fiadd.ds fsrcl, fdest
fmul.p fsrcl, fsrc2, fdest Floating-Point Multiply

fdest « fsrcl X fsrc2

fnop Floating-Point No Operation
Assembler pseudo-operation ‘
fnop = shrd r0, r0, r0

form fsrcl, fdest OR with MERGE Register
fdest < fsrcl OR MERGE
MERGE « 0

frep.p fsrc2, fdest Floating-Point Reciprocal

fdest « 1 / fsrc2 with maximum mantissa error < 2-7

fsqr.p fsrc2, fdest Floating-Point Reciprocal Square Root
fdest < 1/ ./ (fsrc2) with maximum mantissa error < 27

Floating-Point Store
fst.y fdest, isrcl(isrc2) (Normal)

M BN WM R R E WM M M EREE NN R RN ERER

“!“

W
|
I
I
U

e o Ll " l‘
=4 . 1 S |

[

W RN B el e s |]
oxor [N D S A Vo

(S

= =Rl

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax

tst.y fdest, isrcl(isrc2)++ (Autoincrement)

mem.y (isrc2+isrcl) « fdest
IF autoincrement

THEN isrc2 «isrcl +isrc2
FI

fsub.p fsrcl, fsrc2, fdest Floating-Point Subtract

fdest « fsrcl — fsrc2

ftrunc.v fsrcl, fdest Floating-Point to Integer Conversion

fdest < 64-bit value with low-order 32 bits equal to integer part of fsrc/

fxfr fsrcl, idest Transfer F-P to Integer Register
idest « fsrcl
fzchkl fsrcl, fsrc2, fdest 32-Bit Z-Buffer Check

Consider the 64-bit operands as arrays of two 32-bit fields
fsrcl(1)..fsrc1(0), fsrc2(1)..fsrc2(0), and fdest(1)..fdest(0)
where zero denotes the least-significant field.

PM < PM shifted right by 2 bits

FORi=0to1

DO

PM [i + 6] « fsrc2 (i) <fsrcl (i) (unsigned)

fdest (i) < smaller of fsrc2(i) and fsrci(i)
oD
MERGE « 0

fzchks fsrcl, fsrc2, fdest 16-Bit Z-Buffer Check

intovr

Consider the 64-bit operands as arrays of four 16-bit fields
fsrcl(3)..fsrc1(0), fsrc2(3)..fsrc2(0), and fdest(3)..fdest(0)
where zero denotes the least-significant field.

PM « PM shifted right by 4 bits

FORi=0to3

DO

PM [i + (4)] « fsrc2 (i) <fsrcl (i) (unsigned)
fdest (i) « smaller of fsrc2(i) and fsrcl(i)

oD
MERGE « 0
Software Trap on Integer Overflow
IF OF =1
THEN generate trap with IT set in psr
FI

Instruction Syntax

ixfr isrclni, fdest

Paragon™ XP/S i860™

64-Bit Microprocessor Assembler Reference Manual

Transfer Integer to F-P Register

fdest « isrclni

Id.c csrc2, idest

Load from Control Register

idest < csrc2

Id.x isrcl(isrc2), idest

Load Integer

idest <~ mem.x (isrcl + isrc2)

Idint.x isrc2, idest
idest < int_vector.x (isrc2)

Load Interrupt Vector

NOTE: Not available with the i860 XR CPU. Available on a Paragon XP/S system.

Idio.X isrc2, idest

Load I/O

idest « port.x (isrc2)

NOTE: Not available with the i860 XR CPU. Available on a Paragon XP/S system.

lock

Begin Interlocked Sequence

Set BL in dirbase

The next data load or store that appears on the bus locks that location
Disable interrupts until the bus is unlocked.

mov isrc2, idest

Register-Register Move

Assembler pseudo-operation

mov isrc2, idest = shl r0, isrc2, idest

mov const32, idest

Constant-to-Register Move

Assembler pseudo-operation

adds [%const32,10, idest

... when 0xFFFF8000 const32 < 0x8000

orh h%const32, 10, idest
or [%const32, idest, idest

... otherwise

nop

Core-Unit No Operation

Assembler pseudo-operation
nop = shi r0, r0, r0

or isrcl, isrc2, idest

Logical OR

idest < isrcl OR isrc2

CC set if result is zero, cleared otherwise

orh #const, isrc2, idest

Logical OR high

idest < (#const shifted left 16 bits) OR isrc2
CC set if result is zero, cleared otherwise

3-10

FEEENNENESRENENENENENRNEERENENRERENNENENNNRNNDH}

I Paragon" XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax

Ii@\
4
l 0

b

pfadd.p fsrcl, fsrc2, fdest Pipelined Floating-Point Add
I fdest < last stage adder result
b Advance A pipeline one stage
I A pipeline first stage < fsrcl + fsrc2
I pfaddp fsrcl, fsrc2, fdest Pipelined Add with Pixel Merge

fdest « last stage graphics-unit result
last-stage graphics-unit result <— fsrcl + fsrc2
(using integer arithmetic; 8-byte operands and destination)
Shift and load MERGE register from fsrcl + fsrc2 as defined in Table 3-2 on page 3-7

g
B3

S

i

pfaddz fsrcl, fsrc2, fdest Pipelined Add with Z Merge
frdest « last stage graphics-unit result
last-stage graphics-unit result < fsrcl + fsrc2
(using integer arithmetic; 8-byte operands and destination)
Shift MERGE right 16 and load fields 31..16 and 63..48 from fsrcl + fsrc2

oo
ELR

pfam.p fsrcl, fsrc2, fdest Pipelined Floating-Point Add and Multiply
fdest « last stage adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <— A-opl + A-op2
M pipeline first stage <- M-op1 + M-op2

[

pfamov.r fsrcl, fdest Pipelined Floating-Point Adder Move
fdest < last stage adder result
Advance A pipeline one stage
A pipeline first stage « fsrcl

pfeq.p fsrcl, fscr2, fdest Pipelined Floating-Point Equal Compare
fdest < last stage adder result
CC set if fsrcl = fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

i

pfat.p fsrcl, fscr2, fdest Pipelined Floating-Point Greater-Than Compare
(Assembler clears R-bit of instruction)
fdest < last stage adder result
CC set if fsrcl > fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

-
s

pfiadd.w fsrcl, fsrc2, fdest Pipelined Long-Integer Add
fdest < last stage graphics-unit result
last-stage graphics-unit result < fisrcl + fsrc2

i (2’s complement integer arithmetic)

g
B

3-11

Instruction Syntax Paragon " XP/S i860™" 64-Bit Microprocessor Assembler Reference Manual

pfisub.w fsrci, fsrc2, fdest Pipelined Long-Integer Subtract
fdest « last stage graphics-unit result
last-stage graphics-unit result < fsrcl — fsrc2
(2’s complement integer arithmetic)

pfix.v fsrcl, fdest Pipelined Floating-Point to Integer Conversion
fdest < last stage adder result
Advance A pipeline one stage
A pipeline first stage <— 64-bit value with low-order 32 bits
equal to integer part of fsrcl rounded

Pipelined Floating-Point Load
pfld.y isrci(isrc2), fdest (Normal)
pfld.y isrci(isrc2)++, fdest (Autoincrement)

fdest < mem.y (third previous pfid’s (isrcl + isrc2))
(where .y is precision of third previous pfid.y)

IF autoincrement
THEN isrc2 « isrcl +isrc2
FI
NOTE: pfld.q is not available with the i860 XR CPU. Available on a Paragon XP/S
system.
pfle.p fsrcl, fsrc2, fdest Pipelined F-P Less-Than or Equal Compare

Assembler pseudo-operation, identical to pfgt.p except that
assembler sets R-bit of instruction

fdest < last stage adder result

CC clearif fsrcl fsrc2, else set

Advance A pipeline one state

A pipeline first stage is undefined, but no result exception occurs

pfmam.p fsrcl, fsrc2, fdest Pipelined Floating-Point Add and Multiply
fdest < last stage multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <~ A-opl + A-op2
M pipeline first stage < M-opl X M-op2

PMOV.T fSICl, fAestueeeeeeeinereeinieieerrenseenseeneenienas Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation
pfmov.ss fsrcl, fdest = pfiadd.ss fsrcl, 10, fdest
pfmov.dd fsrci, fdest = pfiadd.dd fsrc1, 10, fdest
pfmov.sd fsrcli, fdest = pfiadd.sd fsrcl, fdest
pfmov.ds fsrcl, fdest = pfiadd.ds fsrcl, fdest

M RN MWW N E R MM EE M E NN EMNRER AR RN

l'w

lﬂ Paragon"'I XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax

i

‘4 -—
I - |

pfmsm.p fsrcl, fdest Pipelined Floating-Point Subtract and Multiply
fdest « last stage multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <— A-opl — A-op2
M pipeline first stage <— M-op1 X M-op2

oo Bl Bl

pfmul.p fsrcl, fsrc2, fdest Pipelined Floating-Point Multiply
fdest < last stage multiplier result
Advance M pipeline one stage
M pipeline first stage «— fsrcl X fsrc2

LS |

k4

pfmul3.dd fsrcl, fsrc2, fdest Three-Stage Pipelined Multiply
fdest « last stage multiplier result
Advance 3-Stage M pipeline one stage
M pipeline first stage « fsrcl X fsrc2

RN

pform fsrcl, fdest Pipelined OR to MERGE Register
fdest < last stage graphics-unit result
last-stage graphics-unit result < fsrc/ OR MERGE
MERGE « 0

_—

pfsm.p fsrcl, fsrc2, fdest Pipelined Floating-Point Subtract and Multiply
fdest « last stage multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
1 A pipeline first stage <— A-opl — A-op2
o M pipeline first stage <— M-opl X M-op2

ot bam b=

pfsub.p fsrcl, fsrc2, fdest Pipelined Floating-Point Subtract
fdest < last stage adder result
Advance A pipeline one stage

A pipeline first stage < fsrcl — fsrc2

fdest < last stage adder result
J Advance A pipeline one stage

1

|

|

1 pftrunc.v fsrcl, fdest Pipelined Floating-Point to Integer Conversion
i

1 A pipeline first stage < 64-bit with low-order 32 bits equal to integer part of fsrcl

3-13

Instruction Syntax Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

pfzchkl fsrcl, fsrc2, fdest Pipelined 32-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of two 32-bit fields
fsrel(1). fsrcl(0), fsrc2(1)..fsrc2(0), and fdest(1)..fdest(0)
where zero denotes the least-significant field.
PM « PM shifted right by 2 bits
FORi=0to1
DO

PM [i +6] «fsre2 (i) <fsrcl (i) (unsigned)
fdest (i) « last-stage graphics-unit result
last-stage graphics-unit result «— smaller of fsrc2(i) and fsrcl(i)

OD
MERGE « 0

pfzchks fsrcl, fsrc2, fdest Pipelined 16-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of four 16-bit fields
fsrcl(3)..fsrc1(0), fsrc2(3)..fsrc2(0), and fdest(3)..fdest(0)
where zero denotes the least-significant field.
PM « PM shifted right by 4 bits
FORi=0to3
DO

PM [i + 4] « fsrc2 (i) Sfsrcl (i) (unsigned)

fdest « last-stage graphics-unit result
last-stage graphics-unit result(i) < smaller of fsrc2(i) and fsrcl(i)

OD

MERGE « 0
pst.d #const(isrc2) Pixel Store
pst.d #const(isrc2)++ Pixel Store Autoincrement

Pixels enabled by PM in mem.d (isrc2 + #const) < fdest
Shift PM right by 8/pixel size (in bytes) bits

IF autoincrement
THEN isrc2 « #const + isrc2
FI
SCYyC.X isrc2 Special Cycles

Generate a special bus cycle (D/C#=0, W/R#=1, M/IO#=0) and set BE7#-BEO
according to the value contained in the register isrc2
NOTE: Not available with the i860 XR CPU. Available on a Paragon XP/S system.

shl isrcl, isrc2, idest. Shift Left
idest < isrc2 shifted left by isrcl bits

314

M M MMM RO O N R R B MR WM AW MR M REPENPRRE N

e |

By WH R R R R OO M M e

o4

-

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax

shr isrcl, isrc2, idest Shift Right
SC (in psr) «isrcl
idest « isrc2 shifted right by isrcl bits

shra isrcl, isrc2, idest Shift Right Arithmetic
idest « isrc2 arithmetically shifted right by isrc1 bits

shrd isrcini, isrc2, idest Shift Right Double
idest < low-order 32-bits of isrcni:isrc2 shifted right by SC bits

st.c isrclni, csrc2 Store to Control Register
csrc2 « srclni

st.x isrcni, #const(isrc2) Store Integer
mem.x (isrc2 + #const) « isrclni

stio.x isrclni, isrc2 Store I/0
portx (isrc2) « isrclni
NOTE: Not available with the i860 XR CPU. Available on a Paragon XP/S system.

subs isrcl, isrc2, idest Subtract Signed
idest < isrcl —isrc2
OF « (bit 31 carry # bit 30 carry)
CC set if isrc2 > isrcl (signed)
CC clear if isrc2 isrcl (signed)

trap isrcini, isrc2, idest Software Trap
Generate trap with IT set in psr

unlock End Interlocked Sequence
Clear BL in dirbase. The next load or store
unlocks the bus. Interrupts are enabled.

Xor isrcl, isrc2, idest Logical Exclusive OR
idest < isrcl XOR isrc2
CC is set if result is zero, cleared otherwise

xorh #const, isrc2, idest Logical Exclusive OR High
idest « (#const shifted left 16 bits) XOR isrc2
CC is set if result is zero, cleared otherwise

Instruction Syntax Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Dual-instruction Mode

One of the ways to indicate dual-instruction mode is with the d. prefix before the mnemonic of an
instruction of the floating-point unit. The d. prefix sets the dual-mode bit in that instruction. For
example:

d.fadd.ss f4, f5, f6

The other way is with the .dual... .enddual directives (refer to Chapter 4). It may be necessary to
use the d. prefix to create the preamble before a .dual... .enddual block.

Pseudoinstructions

A pseudoinstruction is an assembly-language instruction that does not correspond directly to a
machine instruction. Some pseudoinstructions are aliases for instructions that could be specified
with a different, but longer and less mnemonic, syntax. Others are like macro instructions; they are
expanded into a two-or three-instruction sequence.

Integer Register to Register Move

mov isrc2, idest
This pseudoinstruction is implemented as:

shl r0, isrc2, idest

Integer Constant to Register Move

mov const32, idest

If the value of const32 is 0xFFFF8000<const32<0x8000, then this pseudoinstruction is implemented
as:

adds /%const32, r0, idest
otherwise it is implemented as:

orh h%const32, r0, idest
or I%const32, idest, idest

3-16

- M OW ERE MmN

=4

LI

MM W OO W OE M e = R

H Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax

Floating-point Register to Register Moves

I { fmov } { .88 } fsrel, fdest
I pfmov .dd
| B
I These pseudoinstructions are implemented as:
L fiadd sS
b) fsrcl, fO, fdest
pfiadd .dd

{ fmov }{ 'Sd} fsrcl,fdest
pfmov .ds

These pseudoinstructions are implemented as:

{ famov }{ ‘Sd} fsrcl, fdest
pfamov .ds

oor

s

No Operation

-

nop
The core no-op pseudoinstruction is implemented as:

shi r0, r0, ro

The floating-point no-op pseudoinstruction is implemented as:

shrd r0, r0, r0

[EE—

fnop can be prefixed with "d.", but cannot be used to enter or exit DIM.

i Lo

[

n

E

3-17

Instruction Syntax Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

32-bit Address Expression

b
Id [addr_expr, idest
Ll
)
.b
st \ s (idest, addr_expr
g '1 J

fld d addr_expr, idest

pﬂd{ (11 } addr_expr, idest

A
fst k fdest, addr_expr
-q
pst.d fdest, addr_expr
flush addr_expr

When the memory reference of any of these instructions is a label or other relocatable expression,
the instruction is expanded into a two-instruction sequence. The following example serves to
illustrate the remaining cases as well:

orh ha%addr_expr, r0, r31
Id.l I%addr_expr(r31), idest

Unsigned 32-bit Constant

and const32, isrc2, idest
andnot const32, isrc2, idest
or const32, isrc2, idest
xor const3z, isrc2, idest

3-18

OO O MO R PR O B B N e B R e B R A WA ERWEa NN R R

“

Paragon™ XP/S i860"" 64-Bit Microprocessor Assembler Reference Manual Instruction Syntax

When const32 cannot be represented in 16 bits, these become pseudoinstructions, which are
expanded into a two-instruction sequence. The following example illustrates the expansion of or;
expansion of andnot and xor are similar.

orh h%const32, isrc2, r31
or %const32, r31, idest

The expansion of and complements const32, then uses the andnot instruction:
andnoth h%(-1-const32), isrc2, r31
andnot 1%(-1-const32), r31, idest

Signed 32-bit Constant

adds const32, isrc2, idest
addu const32, isrc2, idest
subs const32, isrc2, idest
subu const32, isrc2, idest

When the value of const32 cannot be represented in 16 bits, these become pseudoinstructions, which
are expanded into a three-instruction sequence; for example:

orh h%const32, ro0, r31
or 1%const32, r31, r31
adds r31, isrc2, idest

3-19

Instruction Syntax

3-20

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

B U PR W W B O MM M WM OE MW

Lo

MM A mEm & &N E R ER &N

¢ i -] :

4 B
[R

Assembler Directives

Assembler directives do not directly generate instruction codes; rather, they control operation of the
assembler, define and initialize data, or change the way instructions are generated. Assembler
directives are defined in lowercase only.

The following keywords for data formats are used in this section, both as directives and as
parameters:

.byte 8 bits

.short 16 bits

.long 32 bits

.quad 128 bits

float single-precision floating point (32 bits)
.double double-precision floating point (64 bits)

When a directive calls for a list of parameters, commas are used to separate the parameters.

Assembler Directives Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Alignment

.align type

.align exp1 [,exp2]

The .align directive causes the assembler to advance the location counter to the boundary specified
by the first parameter. The fype may be any of the following:

.short
.long
float
.double
.quad

The parameter exp1 is a constant integer expression that specifies the alignment boundary in
number of bytes. As the location counter is advanced, the section is normally filled with nop
instructions in the text section and with NULSs (binary zeros) in the data section. When the constant
integer expression exp2 is supplied, its value is used as the byte pattern for filling. Any symbols
used in the expressions must be previously defined.

The value of the exp! parameter must be a power of two less than or equal to 32. If the value is not
apower of two, the assembler produces an error message. When the value of exp1 is a power of two
greater than 32, the assembler produces a warning message.

MM OO R RO R R MM R MM e R R RR AR RN

lwvr

4

4

4

[__ =y e e]
S T S

4

H

i

| S

b

E

il e Rt e B i

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembler Directives

Dual Mode

.dualendual

The assembler offers two different methods for generating dual-mode instruction sequences. The
first method, the d. prefix to the instruction mnemonics has already been presented in Chapter 3. The
second method is to enclose normal core and F-unit instruction mnemonics within the .dual and
.enddual directives. After a .dual directive, the assembler aligns the instruction stream to a 64-bit
boundary. For all instructions until the corresponding .enddual, the assembler sets the dual-mode
bit in F-unit instructions.

Proper generation of the preamble (for entering dual-instruction mode) and the postamble (for
exiting) is the responsibility of the programmer. In some cases it is necessary to use the d. prefix to
create the preamble before a .dual....enddual block.

‘When the -X command-line option is set, the assembler enforces the dual-instruction mode rules
defined in the i860™ Microprocessor Family Programmer's Reference Manual. If the assembler
encounters any kind of error, then to avoid additional misleading error messages, the alignment
checking is disabled until the end of dual-instruction mode. These checks are performed whether the
dual-instruction mode is generated by the d. prefix or by a .dual....enddual block.

In Example 3-1, note that dual mode does not begin until three instructions after the .dual directive
and does not end until three instructions after the .enddual directive.

Example

// SINGLE-PRECISION VECTOR SUM

// input: rl6é - vector address
// rl7 - vector size (must be > 5)
// output: f16 - sum of vector elements
fld.d r0(rl6), £20 // Load first two elements
mov -2, r2l // Loop decrement for bla
.dual // Enter dual-instruction mode
pfadd.ss fo, fo, £0 // Clear adder pipe (1)
adds -6, rl7, rl7 // Decrement size by 6
pfadd.ss f0, £0, £0 // Clear adder pipe (2)
bla r21, rl7, Ll // Initialize LCC
pfadd.ss 0, f0, £0 // Clear adder pipe (3)
fld.d 8(rl6e)++, £22 // Load 3rd and 4th elements
Ll:: pfadd.ss £20, £30, £30 // Add £20 to pipeline
bla r21, rl7, L2 // If more, go to L2 after
pfadd.ss 21, £31, £31 // adding f21 to pipeline and
fild.d 8(rl6)++, £20 // loading next £20:£f21

// If we reach this point, at least one element remains to be loaded.
// rl7 is either -4 or -3. £20, £21, £f22, and £23 still contain
// vector elements. Add f20 and £f22 to the pipeline, too.

4-3

Assembler Directives

L2::

sumup: :

done: :

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

pfadd.ss £20, £30, £30

br sumup // Exit loop after adding
pfadd.ss £f21, £31, £31 // £21 to the pipeline

nop

pfadd.ss £22, £30, £30 // Add £22 to pipeline

bla r2l, rl7, Ll // If more, go to L1 after
pfadd.ss £23, £31, £31 // adding f£23 to pipeline and
fld.d 8(rle)++, £f22 // loading next f£22:£23

// If we reach this point, at least one element remains to be loaded.
// rl7 is either -4 or -3. £20, f£21, £22, and £23 still contain
// vector elements. Add £20 and f£21 to the pipeline, too.

pfadd.ss £20, £30, £30

nop

pfadd.ss £21, £31, £31

nop

.enddual // Initiate exit from dual mode
pfadd.ss f22, £30, £30 // Still in dual mode
mov -4, r2l

pfadd.ss £23, £31, £31 // Last dual-mode pair
bte r2l, rl7, done // If there is one more
fld.1 8(rl6e)++, £f20 // element, load it and
pfadd.ss £20, £30, £30 // add to pipeline

// Intermediate results are sitting in the adder pipeline.
// Let Al:A2:A3 represent the current pipeline contents.

pfadd.ss £0, £0, £30 // 0:Al:A2 £30=A3
pfadd.ss £30, £31, £31 // B2+A3:0:Al £31=A2
pfadd.ss f0, fo, £30 // 0:A2+A3:0 £30=A1
pfadd.ss fo, fo, £0 // 0:0:A2+A3

pfadd.ss £0, £0, £31 // 0:0:0 £31=A2+A3
fadd.ss £30, £31, fle // £f16 = Al+A2+A3

M BN W ARmE E NN MR EE MR R AN E RN RRER AN

.
I
W
-1
I
)

.

]

4

e e e e e L

S

i

i

1
I
1
1
I
I
I

l»w

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembler Directives

Section Control

ext
.data
.abs vaddr (paddn

These directives specify in which section assembly is to take place. The directive .text assigns
output to the fext section, the directive .data assigns output to the data section, and each .abs
directive creates an absolute-address section. In the absence of a section control directive at the
beginning of a program, assembly begins in the text section.

In an .abs directive, vaddris an integer expression that specifies the logical address of the section.

The optional paddris an integer expression that specifies the physical address. The same address
may not belong to two absolute sections.

45

Assembler Directives Paragon" XP/S i860™" 64-Bit Microprocessor Assembler Reference Manual

Block Space Definition

.blks [expr]

The block space directive reserves space for an object of the size indicated by . When .blk is used
in the text or data section, bytes of zeros are assembled into the object module. When .blk is used
within a dummy section (i.e., in a .dsect or .ndsect block), no space is actually allocated,; its only
effect is to increase or decrease the location counter. The size specifier s may take the following
values:

b Byte

s Short

| Long

f Single precision floating-point
d Double precision floating-point

The expr specifies the number of objects of the given size. If expris not present, one such location
is reserved.

The block space reserved is aligned according to the size of the S specifier.

See “Common Space Definition” on page 7 for methods of defining zero-filled objects that do not
allocate space in the output object module.

The following example shows space being reserved by the .blk directive for 128 double-precision
floating-point objects and 16 long objects:

Example
.data
darray: .blkd 128 // Array big enough for 128 doubles
iarray: .blkl 16 // Array big enough for 16 longs

MO O OB N B R A R R W M MM RNME MR RAMm

m N E m

i 4 o4 |

B4

o S £ i gt ¢

e

e

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembler Directives

Common Space Definition

.comm id, expr

Jdcomm id, expr

These directives reserve space in the memory image without requiring space in the object file.

.comm

The .comm directive establishes the symbol id as an undefined external symbol. The size of the
symbol is set to exprbytes. The .comm directive is useful for defining storage that is shared among
two or more modules, where the storage area:

¢ Does not need to be initialized, or
e Must be initialized to zero, or
* Must be initialized to a nonzero value by precisely one of the sharing modules.

A symbol defined by a .comm directive may be redefined (in the same module or in another
module) as a text or data section symbol. This is accomplished by using the same symbol as a label
for a .bIkS directive or for one of the storage-definition directives. Redefining the symbol assigns
it a location in the zext or data section and gives it an initial value. All references to the symbol then
refer to this location.

If the id symbol is not redefined as a fext or data section symbol (i.e., all other modules that reference
the symbol do so via a .comm directive), the linker assigns the symbol to the bss section.

When several identically named common symbols are present, the linker defines a single area with
the size of the largest common symbol.

The space allocated for the .comm symbol is aligned according to the size of the expr in the request.
The space allocated is aligned according to the most restrictive type possible (byte, short, word,
double, quad) whose size is less than or equal to expr. That is, if expr were in the range 4-7(bytes),
the alignment would be by word and if expr were in the range 8-15 (bytes), the alignment would be
by double word. If expr were greater than 16, alignment would be by quad (16 byte alignment).

Assembler Directives Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

4-8

Jcomm

The .lcomm directive defines id as a local symbol, assigns it to a bss section location, and reserves
exprbytes. This directive is useful for allocating objects that are not initialized (or are initialized to
zero) and not exported.

The space allocated for the .lcomm symbol is aligned according to the size of the expr in the request.
The space allocated is aligned according to the most restrictive type possible (byte, short, word,
double, quad) whose size is less than or equal to expr. That is, if expr were in the range 4-7 (bytes),
the alignment would be by word and if expr were in the range 8-15 (bytes), the alignment would be
by double word. If expr were greater than 16, alignment would be by quad (16 byte alignment).

M A AW Em AR E NN RN SR MMMM®BN:SSSSEB®NRBENE®R RN RN

I Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembler Directives

Records and Structures

.dsect....end

—
e

.ndsect....end

B |

©od

Records and structures are defined in a dummy section. The purpose of a dummy section is to assign
relative address values to the labels so that they may be used with an indexed addressing mode. Only
assignments, labels, storage-definition directives, and the directives .align, and .blkS are allowed.
(No code may be generated in a dummy section.)

Dummy sections are said to be ascending or descending. An ascending dummy block begins with
.dsect and ends with .end. After .dsect, the assembler's location counter is set to zero and
increases after each directive that allocates storage.

Example

4

B

// Employee record

e M B el Bed sl e BN B e

.dsect
id: .short
. name: .blkb 30
. ss_no: .byte [11]0 // same as blkb when in dsect

.align .long
salary:.long
.end

A descending dummy block begins with .ndsect and ends with .end. The descending dummy
block is useful for defining stack frames. In such a block, the assembler's location counter decreases
after each directive that allocates storage. Note that, because that location counter decreases after
each storage allocation, you must place the label for a storage location after the statement that
allocates that location.

Example

[

// Stack frame

= .ndsect

. x: // has value zero

| .long

- yv: // refers to the long

g .byte

“ Z: // refers to the byte
lz .end

4-9

Assembler Directives Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Storage Definition

4-10

.byte [[[rcount]]is_expr] [, [[rcountf]]is_expr]...
.short [[[rcountl]i_expr] [,[[rcounf]l]i_expr]...
.long [[[rcounfl]i_expr] [,[[rcounf]]i_expr]...
float [[[rcount]]ir_expr]l [,[[rcounf]]ir_expr]...
.double [[[rcount]]ir_expr] [, [[rcounf]] ir_expr]...

.string [[[rcount]] si_expr] I, [[rcounf]] is_expr]...

NOTE

Brackets shown in boldface are required punctuation. For
example, replace [rcount] by a number with brackets, e.g., [3].

The directives allocate and initialize areas of memory. They may be used either in the fext section or
in the data section. An area of the indicated size is allocated and is initialized with the value of the
following expression. The repeat count rcount is an optional constant integer expression enclosed
in square brackets. When rcountis given, rcount areas of the indicated size are allocated each with
the value of expr. When rcount is not given, one area of the indicated size is allocated.

The i_expris an integer expression. The ir_expr may be either an integer or floating-point
expression. The iS_exprmay be either a constant integer expression or a string constant. If it is a
string constant, each character within the string generates an area of the specified size, and the area
is initialized with the value of that character. If no initialization expression is given, the allocated
area is initialized to zero.

The directive .string is equivalent to .byte except that .string adds a final byte with the value
NUL.

The storage allocated for the allocation directives begins at the current location in the current section.
No default alignment rules apply. If you need a specific alignment, use the .align directive.

R N N NN IR NN N RN NN N NN NENNN

TR

e B Bl
H . o E S S B

¥]

§

£,

-

i

Paragon™ XP/S i860" 64-Bit Microprocessor Assembler Reference Manual

Assembler Directives

Example

// Valid storage definitions
.byte PR rk D // Three stars
.byte [3]+* // Three stars
.byte "k ok k0 // Three stars
.byte [3]mxkxn // Nine stars
.string "Aardvaark\tBadger\tCamel"// NUL-terminated string
.long // Initialized to zero
.long 1 // 32-bit word, value 1
.long 1,2,3 // Three 32-bit words
.long [311,(312,[313 // Nine 32-bit words
.float // Uninitialized storage
.float 3.14159 // 32-bit real

.double 3.14159265 // 64-bit real

// Invalid storage definitions
.long "XYZ" ’ // Must be integer expression
.float "XYZ" // Must be numeric expression

Assembler Directives Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Enumeration

.enum [symbol [=expr] [,symbol [=exp]...

This directive assigns integer constants with increasing values to a list of symbols. If = expris not
given, the first symbol's value is zero, and subsequent values are each greater by one. Any symbol
may be followed by the assignment = expr to set the sequence to another value. The expris an
integer expression.

Example
// Valid enumerations
.enum a,b,c // define a=0,b=1,c=2
.enum x=5,v,2z // define x=5,y=6,z=7
// Invalid enumerations
.enum x=2.0, vy, 2z // Not an integer

4-12

LI R B

MmN W EW E R R NN e e M

w8
dii

- .
R S |

o4

L]
e |

i

i

£ % |-

4

T | O

v

=]

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembler Directives

External Symbols

.extern symbol [,symbol]...

.globl symbol [,symbol]...

The .extern and .globl directives declare a list of symbols as external. If a symbol is defined within
the module as a constant or label, the effect is to make the value and type available to the linker. (In
other words, .global labelx is equivalent to .extern labelx, which is equivalent to labelx::).

If a symbol is referenced but not declared or defined within the same module, then

1. Ifthe -a option is specified in the command line, the undefined symbol causes an error message.

2. If the -a option is not specified in the command line, the symbol is an undefined external, and
the linker is instructed to import the symbol and relocate any references to it.

4-13

Assembler Directives Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual

Change Addressing Temporary

4-14

; .atmp reg

The .atmp directive selects the register that is to be used temporarily by pseudoinstruction
expansions that perform address computation (and other pseudo-instruction expansions as well).
(For more about pseudoinstructions, refer to Chapter 3.)

The register reg must be an integer register. Programmers should be careful when using this register
(Refer to the description of the Application Binary Interface (ABI) in Chapter 11 of the i860
Programmer's Reference Manual for details). The default addressing temporary register is r31.

"B BB EEREENENRENEBT NI B BB B NN NNNENRENRN

l"’?
il

o

.

[

B

1
I
1
I
i
1
)
B
|

Lo

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembler Directives

Listing Control

list [.macro] [.rept][.if]
nlist [.macro] [.rept][.if]
.page

title "string"

sbttl "string"

If listing is enabled with a command-line option, then these directives control the listing from within
the source module.

The directives .list and .nlist enable and disable the assembly listing for subsequent statements.
They work by incrementing (.list) or decrementing (.nlist) a counter; the listing is produced as long

as the counter is greater than zero.

Using .list or .nlist by itself affects the entire listing. Using .list or .nlist with .macro affects listing
of expanded macros. Using .list or .nlist with .rept controls listing of repeated blocks.

The .page directive begins a new page in the listing.

The .title directive specifies a string to appear in the page header as a title. The .sbttl directive
specifies a string for the page header subtitle.

4-15

Assembler Directives Paragon™ XP/S i860" 64-Bit Microprocessor Assembler Reference Manual

Symbolic Debugging

. .file name

An In_num

.def symbol
.val expr
.scl expr
.type expr
.tag name
Jdine expr
.size expr
.dim expr1 [,expr2] ...

.endef

These directives create symbol-table entries with specific values for the various fields. Normally,
these directives are generated only by translators, which intersperse them among generated
assembly-language instructions. The values are defined by the COFF specifications.

The .file directive creates a symbol table entry of type file and value name, which is normally the
name of the source file.

The line-number directive .In uses the location counter in the fext section as the address of the line.

You can repeat the .def... .endef block once for each symbol to be defined. The items within a
.def... .endef block correspond to the COFF as follows:

.val Value of the symbol

.scl Storage class of the symbol

type Type of the symbol

tag Tag name for auxiliary table entries

dine Line number for auxiliary table entries

.size The total size of an array, structure, union, etc.

.dim The number of elements in each dimension of an array
Example

This example shows the C source code and the actual assembly-language program created as the
output of a C compilation. (The -g compiler option was set to cause the C compiler to generate
symbolic debug information.)

LI B

I

Paragon™ XP/S i860™ 64-Bit Microprocessor Assembler Reference Manual Assembler Directives

3

H

4l

&il

I’h‘

C Source Code

struct record {
char name[30];
int mileage

£

oy

l“ Y
'ﬁ float vel (distance, time)
< float distance;
. float time;
I {
) double mat[4][5];
l return (distance/time);
!, }
I Assembly Language Output of C Compiler
l,, .file "symdeb.c"
- // PGC Rel 2.1 -opt 0 -debug
lé .text
.def record; .scl 10; .type 8; .size 36; .endef
ITT .def name; .val 0; .scl 8; .type 50; .dim 30; .size 30; .endef
) .def mileage; .val 32; .scl 8; .type 4; .endef
:T .def .eos; .val 36; .scl 102; .tag record; .size 36; .endef
o .globl _vel
!“» .align 32
’ _vel:
. .def _vel; .val _vel; .scl 2; .type 38; .endef
!a .al = 80
- L1 0= 192
I ; addu -(.al+.fl), sp, sp
‘ st.l fp, (.£1-16) (sp)
i addu (.£1-16), sp, fp

st.l rl, 4(fp)

B t

fmov.ds £8, £8

fmov.ds £10, f10
I3

fst.1l £8, 16(fp)

1 fst.l £10, 24(fp)
.1n 1
Ij .def .bf; .val i .scl 101; .line 7; .endef
// lineno: 7
Iﬂ // lineno: 11
" .1n 5
lﬁ fld.1l 16(fp), £f8

417

Assembler Directives

call _mth_i_rdiv
£f1d.1 24 (fp), £9
br .B62

nop

// lineno: 12

.1n 6

.B62://.R0000

4-18

.def distance; .val 16;

.def time; .val 24;
.def mat; .val -160;
.1n 6

.def .ef; .val

adds .al+l6, fp, r31
1d.1 4(fp), rl
1d.1 0(fp), fp

.scl 9;
.scl 9;
.scl 1;

.scl

.scl -1

bri rl

mov r3l, sp

.def _vel; val .;
.extern _mth_i_rdiv

Paragon™ XP/S i860" 64-Bit Microprocessor Assembler Reference Manual

.type 6;
.type 6;
.type 247;

101; .line

; .endef

.size 4;
.size 4;
.dim 4,5;

12;

.endef
.endef
.size 160;

.endef

.endef

B O R M W RROWWm MM PR PMM

M M O R AR W O E O MM oE

"
il

L

ﬂ

i)

"

il

)

L
.
| M

£

il

Using Macros

You can use the macro preprocessor (mac860) to expand macros in your assembly language files.
The macro preprocessor features:

e Definition and replacement of symbols with strings
* Macro definition and expansion with parameters

¢ Repeat statement expansion

¢ File inclusion

¢ Conditional expansion (conditional assembly)

The syntax of macro statements is similar to that of assembler assignment and directive statements;
therefore, programs appear to be written in a single homogeneous language.

Use of the macro preprocessor is optional. You invoke the macro preprocessor as explained in the
following section. If you do not use the macro preprocessor, your macros will not be expanded.

NOTE

All instruction names and other keywords are reserved. Do not use these
strings in your assembly code.

Using Macros

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

Macro Preprocessor Command-line Syntax

To invoke the macro preprocessor, use the following syntax:

mac860 [switches] source_file

where:
switches Is one or more of the switches listed in Table 5-1.
source_file Is the name of the file you want to process. The macro preprocessor reads the
specified input file and produces a single output file. This file is ready to be
processed by the assembler. The extension of the output file name is .mac.
Table 5-1. Macro Options
Switch Function
-D sym=val Defines sym as a local symbol with the value val in the macro
Processor.
-I incfile Includes the file incfile before the first statement of source_file. You
can use at most one -I switch in a single mac860 command.
—o objfile Specifies an output filename to replace the default output filename
(sourcefile.mac).
-V Displays mac860 version information.
-y Outputs special directives that the assembler uses for better reporting
of the lines in the source file where errors are detected.

Each switch is processed in the order in which it is listed. If no command-line files or options are
entered, the macro preprocessor simply displays the command-line syntax and quits.

Macro Symbols

The macro preprocessor associates a symbol with an arbitrary string. Once a macro symbol is
defined, any use of that symbol causes the symbol to be replaced by the associated string.

M PO WO RO PR O M R R R e R R E R MR EE Rl ™R

ksl

i

-

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual Using Macros

Local Symbol Definition

A local symbol definition associates a symbol with either an integer expression (int_exp) or with a
string (mstring):

symbol = int_expr
symbol = mstring

An int_expr can be any previously defined integer expression, as defined in Chapter 2. However,
int_expr cannot use type operators. Any expression that is not defined at the time of macro expansion
is treated as a string (except in the condition of an if macro statement, where the undefined
expression is treated as zero).

The mstring is not enclosed in quotation marks. The string starts with the first non-space character
after the = sign and ends with the last character of the line (except for comments). Space characters
at the end of the string are part of the symbol definition.

A local symbol definition is used only during macro expansion; the symbol definition is not carried
on to the assembly passes.

Global Symbol Definition

A global symbol definition has the form:
symbol =: int_expr

The int_expr can be any previously defined integer expression, as defined in Chapter 2. Any global
symbol expression that is not defined at the time of macro expansion is treated as a syntax error.

A global symbol definition is used both during the macro pass and during the assembly passes. The
assembly passes place the symbol and its value in the output symbol table.

Symbol Replacement

After a macro symbol definition, any occurrence of symbol causes symbol to be replaced by the
int_expr or mstring that it represents. To be accepted as such, a symbol must be properly delimited
from surrounding text. The macro preprocessor accepts the following as delimiters:

space

tab

newline

comma

operators defined for expressions

? (the symbol concatenation operator)

5-3

Using Macros Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

Note that, if an arithmetic expression contains an uninitialized symbol, the expression is treated as a
string.

The expression that results from symbol replacement is also scanned for occurrences of macro
symbols. Replacement is carried out at most four times. If the resulting expression, after four
replacements, still contains macro symbols, these symbols are not replaced.

The following example shows a local symbol definition in source code, and the resulting macro
expansion:

The following source code:

f_offset = 4
1d4.1 f _offset (rl®)++, rlb5
1d.1 f _record+f_offset+8, rl5

would be expanded by mac860 as follows:

mac862 myprog.s

cat myprog.mac

1d.1 4(rl®)++, rlh
1d4.1 f_record+4+8, rl5

Symbol Concatenation

You can use the macro operator ? to separate two or more symbols so that each is recognized as a
symbol, checked for replacement, and replaced if possible. The results are then concatenated,
without the ? operator. The syntax is:

symbol?symbol [?symbol] . ..

The following example shows source code with the ? operator on two lines and the resulting macro
expansion.

The following source code:

base=(rl®)

offset=4

1d.1 offset?base, rl4d
base=_n_rec

offset=4

1d.1 offset?base, rl4

would be expanded by mac860 as follows:

mac862 myprog.s

cat myprog.mac

1d.1 4(rl1l@), rl4

1d.1 4_n_rec, rl4d
5-4

MO M OROPE O O B R N O R M R B M R R W oW R W R OEON M WN R R

I Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual Using Macros
¥

&

Macro Definition

Use the following syntax to define a macro:

.macro [-]name[param] [[,]1param]

I statement

.endm

I A macro definition assigns a name and a formal parameter list to a sequence of assembler statements.
Each parameter param is a symbol. Symbols in the parameters are expanded before expansion of the

1 macro. There can be at most 30 parameters.

I After a matching .endm directive is processed, mac860 recognizes the name of the macro and
substitutes the saved assembly language statements. This procedure, called macro expansion,

1 invokes the macro. Actual parameters are supplied when the macro is invoked. The invocation must

supply the same number of actual parameters as there are formal parameters in the definition.
The .endm directive must be the first symbol on its line; no labels are permitted.

During macro expansion, all references to a parameter in the macro definition are replaced by the
i corresponding actual parameter. The replacement is done only once; the resulting
assembly-language statement is not scanned for further parameter matches. The expansion of the
macro along with the generated object code is listed. The directive .nlist .macro disables listing of
macro expansions.

One macro can invoke another to a depth of six macros. When one macro invokes another, the
parameters of the first invocation are hidden from the inner invocation, and therefore the inner macro
cannot reference them.

A macro name that is preceded in the definition by the dash character (—) defines a macro that is not

| B expanded recursively. Note that the macro processor does not recognize assembler keywords;
therefore, you can define a nonrecursive macro that has the same name as an instruction mnemonic.
Redefinition of macros is permitted. The latest version is the one that is saved for further expansion.
A macro definition can itself contain macro definitions. In this case, an inner definition is processed

i only when the outer macro is expanded. The inner macro cannot be called until the outer macro has

been expanded at least once. If the outer macro is expanded again, the inner macro is redefined.

Comments in the macro definition are replicated without change each time the macro is invoked. No
i expansion is done on comments. Comments on the invocation line are discarded upon expansion.

5-5

Using Macros

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

The following example shows a macro definition and its expansion by the macro preprocessor. The

following source code:

.macro stbfreg rx fregl freg2 freg3 fregd fregb

fst.l fregl, 4(

fst.1l freg2, 4(

fst.1l freg3, 4(

fst.1l freg4d, 4(

fst.1l fregh, 4(
.endm

1d.1 1090 (rl2),
stbfreg r31 £f7

rx) ++
rx) ++
rx) ++
rx) ++
rx) ++
r3l

£8 f9 fe6 £f15

would be expanded by mac860 as follows:

mac860 myprog.s
cat myprog.mac

1d.1 1099 (rl2), r31l

fst.1 £7, 4(r31)++
fst.1l £8, 4(r31)++
fst.1l £9, 4(r31)++
fst.1 £6, 4(r31)++
fst.1l £15,4(r31)++

Repetition

For repetition, use the following syntax:

.rept expr
Statement

.endr

The block of statements contained within these directives is expanded expr times. The integer
expression expr must be a positive integer constant and must be previously defined.

Repeat blocks can be nested within repeat blocks, up to eight levels deep. In this case, the inner
repeat block is expanded once for each expansion of the next outer block. The repeat count of an
inner block is evaluated at each expansion of the inner block.

The .endr directive must be the first symbol on its line; no labels are permitted.

Repeat blocks can contain macro calls, and macro definitions can contain repeat loops. Repeat loops,
however, cannot contain macro definitions.

MM E RN OE W W RN R MmO E M EREEEEREER RN R

=
o

=

f I

I

Y

1
i
1
r
I
i
I
I
[

i

i

{

1

k]

|

i

[|

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

Using Macros

The following example shows a macro with the repeat directive and the resulting macro expansion.
The following source code:

.macro idn size// Define identity matrix

.rept

.endr
. endm

tmp = @

size .float

.float 1;

[tmpl@;

.float [size-tmp-1]1 @
tmp = tmp + 1

// Define 16x16 identity matrix

idn 16

would be expanded by mac860 as follows:

mac860 myprog.s
cat myprog.mac

// Define 16x16 identity matrix

.floa
.floa
.floa
.floa
.floa
.floa
.floa
.floa
.floa
.floa
.floa
.floa

t [@]0;
t [1]19;
t [2]0;
t [3]19;
t [4]0;
t [5]9;
t [6]10;
t [710;
t [8]19;
t [9]19;
t [10]19;
t [1119;

.float [12]9@;
.float [13]0;
.float [14]0@;
.float [15]9;

File Inclusion

.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float

The syntax for file inclusion is:

.include "file_name"

1;

Ne Ne Ne N N N

~

Se Ne N Se Se N

PR R R R RRPERR R R R

~e

.float
.float
.float
.float
.float
.float
.float
.float
; .float
.float
.float
.float
.float
.float
.float
.float

[16-0-1]10@
[16-1-1]10
[16-2-1]0
[16-3-1]10
[16-4-110@
[16-5-1]10@
[16-6-119@
[16-7-110@
[16-8-1]0@
[16-9-1]0@
[16-10-110
[l6-11-1]0
[16-12-1]0
[16-13-1]0
[16-14-110
[16-15-119@

The .include directive causes the assembler to temporarily read input from file_name instead of the
current input file. (The quotation marks around file_name are required.) Upon reaching the end of
file_name, the assembler resumes reading from the current file at the statement that follows the

.include directive. Include files can be nested up to eight levels deep.

5-7

Using Macros

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

Conditional Assembly

You can obtain conditional assembly by using an .if/.else/.endif sequence or an .if/.elseif/.endif
sequence:

.if expr .if expr
statement statement
.else expr .elseif expr
statement statement
.endif .endif

The .if and .endif directives specify a block of assembly-language statements that are to be
assembled only if expr is true (nonzero). If the expr after .if is false (zero), assembly of statements
is suspended until a matching .else, .elseif, or .endif is found. If the expr is undefined, it is treated
as false.

The .else directive assembles subsequent statements only if the expr is false.

The .elseif directive is equivalent to a .else followed by a second .if, except that you need only one
.endif to terminate the block.

Conditional blocks can be nested within conditional blocks up to 32 levels deep.
A conditional block is listed regardless of the value of expr.

The following macro example shows conditional assembly that depends on single! being nonzero.
Macro expansion results are shown for cases when singlel is both @ and 1.

PP PR OB PR OSEOBR PR OB BN RN R B s B M R R B W e M MmO Om W R OW M

Paragon™ XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

Example

Source Code
.macro ADD x1,x2,res
.if singlel
fadd.ss x1,x2,res

.else
fadd.dd x1,x2,res
.endif
.endm
singlel = @
ADD fl6,£18, f2¢
singlel = 1
ADD £17,£19,f21

Macro Expansion

mac86@ myprog.s
cat myprog.mac
fadd.dd £f16,£18,£f29
fadd.ss £17,£19,f21

Using Macros

Using Macros

5-10

Paragon' " XP/S i860 ™ 64-Bit Microprocessor Assembler Reference Manual

A OPT N PN OBROBE W PR PN BT PR BN B FS KT B KON O BE W K B MW OO OW oW O Mmom oMM

