
IJ
IJ
r:

I
··~

...

(-. -...I
(~

I'J
rJ
[J

I~

I~

IJ
IJI

.J

[J

IJ

D

April 1995

Order Number: 312491-003

. . .:".:" :: " .". ." ... ":

TM
Paragon System

Fortran Compiler User's Guide

InteP Corporation

Copyright ©l995 by Intel Scalable Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or copied in
any form or by any means ... graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems ... without
the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness far a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility far the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property ofIntel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara­
graphs (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286
287

i386
i387
i486
i487
i860

APSO is a service mark of Verdix Corporation
DGL is a trademark of Silicon Graphics, Inc.
Ethernet is a registered trademark of XEROX Corporation
EXABYTE is a registered trademark of EXABYTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a trademark or equipment designator of Excelan Corporation
FORGE is a trademark of Applied Parallel Research, Inc.

Intel
Intel386
Inte1387
Intel486
Intel487

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.
GVAS is a trademark ofVerdix Corporation
mM and mMlVs are registered trademarks of International Business Machines
Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.
NFS is a trademark of Sun Microsystems
OpenGL is a trademark of Silicon Graphics, Inc.
OSF, OSF/l, OSFlMotif, and Motif are trademarks of Open Software Foundation, Inc.
POI and POF77 are trademarks of The Portland Group, Inc.
PostScript is a trademark of Adobe Systems Incorporated
ParaS oft is a trademark of ParaSoft Corporation
sea and OPEN DESKTOP are registered trademarks of The Santa Cruz Operation, Inc.
Seagate, Seagate Technology, and the Seagate logo are registered trademarks of Seagate Technology, Inc.
SOl and SiliconGraphics are registered trademarks of Silicon Graphics, Inc.
Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

iPSC
Paragon

UNIX is a registered trademark in the United States and other countries, licensed exclusively through XlOpen Company Ltd.
V ADS and Verdix are registered trademarks of Verdix Corporation
V AST2 is a registered trademark of Pacific-Sierra Research Corporation
VMS and VAX are trademarks of Digital Equipment Corporation
VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.
XENIX is a trademark of Microsoft Corporation

ii

-----------~--~------------------- --------

Ir~
U

D

[J

[--,
, '

".1

c

[j

r:

r:
I~

I ~'. ,,'-'
~I

1'-
-'W

1=
r:
I'., , ,

,

rJ
IJ

IJ
I)

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in­
stalled, and the front of the diagnostic station. There are no user service­
able areas inside the system. Refer any need for such access only to tech­
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer­
ence when the eqUipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara­
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub­
lished-rights reserved under the copyright laws of the United States.

iii

W"I 1 ___

{'lI'I
Ii AJ

11--'"

• <IIi

'"
I
1Il_.~

~

~ "-,",.,

I ,

.J,,,!

~
-"\IV',

.... ~_I

~

"""

I'
ill

i'1' •
rw
I

ti.l, __ ~

j"of

OIL -J

n- -

i4

r'IJf
~~ ,

"'"
. __ J

rI!' .. -.

i1 -"I

~ -O<t.l

i1f
,,~

if
---I

--
_J

I~

['"
..>..(~

iv LJ

(
''''''1

.. Jii

I:

I"~

r"
r:

I:
(-:

pJ

(~~
-"'"

Preface

This manual describes the Paragon TM system Fortran compiler and driver. This manual assumes that
you are an application programmer proficient in the Fortran language and the UNIX operating
system.

Organ ization
Chapter 1

Chapter 2

Chapter 3

Chapter 4

ChapterS

Chapter 6

Appendix A

AppendixB

Introduces the software development environment and shows how to create
executable files from Fortran source code. This chapter contains enough
information to get you started creating executable files for the Paragon
system.

Describes if77, the command for compiling, assembling, and linking Fortran
source code for execution on the Paragon system.

Gives you a strategy for using the compiler's optimization features to help
maximize the single-node performance of your programs.

Tells how to use the compiler's function inliner.

Tells how to write Fortran routines that are callable from C and how to call C
functions from Fortran.

Describes the language that the Fortran compiler accepts (ANSI Fortran 77)
and extensions to the standard language (Le., features and capabilities not
defined for the ANSI standard language, such as V AX and Cray extensions).

Lists the error messages generated by the compiler, indicating each
message's severity and, where appropriate, the probable cause of the error
and how to correct it.

Lists the error messages generated by the Fortran runtime system, indicating,
where appropriate, the probable cause of the error and how to correct it.

v

Preface

AppendixC

AppendixD

Paragon TM System Fortran Compiler User's Guide

Describes the internal Structure of the compiler, with special emphasis on the
vectorizer and optimizer.

Contains reference manual pages for the Paragon software development
commands and compiler-related system calls.

Notational Conventions
This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be entered exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-I~alic-Monospace

Identifies user input (what you enter in response to some prompt).

Bold-Monospace

[J

c

f"",
I .

Identifies the names of keyboard keys (which are also enclosed in angle !If '4

brackets). A dash indicates that the key preceding the dash is to be held down ~.,..,.J
while the key following the dash is pressed. For example:

<Break> <s> <ctrl-Alt-Del>

Surround optional items.

Indicate that the preceding item may be repeated.

Separates two or more items of which you may select only one.

{ } Surround two or more items of which you must select one.

Applicable Documents
For more infonnation, refer to the Paragon ™ System Technical Documentation Guide.

vi

IJ
I:

I_-_~
..wi

I-~
-~

("~

-'"

I :

(--.
"""

I ~

r:

I:
rJ
1--'

I ~'

1_--
_~:..J

I:
I =!

_~I

r:
U
IJ

~~~~~-----~----- --

Paragon™ System Fortran Compiler User's Guide Preface 

Comments and Assistance 
Intel Scalable Systems Division is eager to hear of your experiences with our new software product. 
Please call us if you need assistance, have questions, or otherwise want to comment on your Paragon 
system. 

U .S.AJCanada Intel Corporation 
Phone: 800-421·2823 

Internet: support@ssd.inteLcom 

Intel Corporation Italia s.p.a. 
Milanofiori Palazw 

United Kingdom Intel Corporation (UK) Ltd. 
Scalable Systems Division 

20090 Assago 
Milano 
Italy 
167877203 (toll free) 

France Intel Corporation 
1 Rue Edison-BP303 

Pipers Way 
Swindon SN3 IRJ 
England 
0800 212665 (toll free) 

78054 St. Quentin-en-Yvelines Cedex 
France 

(44) 793491056 (answered in French) 
(44) 793431062 (answered in Italian) 
(44) 793480874 (answered in German) 
(44) 793495108 (answered in English) 

0590 8602 (toll free) 

Intel Japan K.K. 
Scalable Systems Division 
5-6 Tokodai, Tsukuba City 
Ibaraki-Ken 300-26 
Japan 
0298-47-8904 

Germany Intel Semiconductor GmbH 
Dornacher Strasse 1 
85622 Feldkirchen bei Muenchen 
Gennany 
0130813741 (toll free) 

World Headquarters 
Intel Corporation 

Scalable Systems Division 
15201 N.W. Greenbrier Parkway 

Beaverton, Oregon 97006 
U.S.A. 

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time) 
Fax: (503) 677-9147 

vii 



Preface Paragon 1M System Fortran Compiler User's Guide 

viii 

IJ 
[J 

r: 
(: 
r: 



I: 
( -.. "1 

.oJ 

1_-., 
..... 

I : 

r~ 
1_-..., 

~:J 

I ~o 

[~ 

IJ 
I '~ 

-.I 

r-, 
.J 

(~ 

I" 
I : 
(-: 

(-~ 
..-J 

IJ 

IJ 

Table of Contents 
... :".: ":' .... : ": ". .. ".. .. : . '". ... ."... . 

Chapter 1 
Getting Started 

The Software Development Environment .............................................................................. 1-1 

System Hardware ............................................................................................................................... 1-1 

System Software ................................................................................................................................ 1-2 

Software Development Environments ......................................................................................... 1-2 

Compiler Driver ............................................................................................................................ 1-4 

i860 TM Assembler ......................................................................................................................... 1-4 

i860 ™ Linker ................................................................................................................................ 1-5 

Execution Environments ............................................................................................................... 1-5 

Running on a Single Node ................................................................................................................. 1-5 

Running on Multiple Nodes ................................................................................................................ 1-5 

Debugging .......................................................................................................................................... 1-6 

Example Driver Command Lines ............................................................................................... 1-7 

ix 



Table of COnten1s ParagontM System Fortran Compiler User's Guide 

Chapter 2 
The if77 Driver 

Invoking the Driver .......................................................................................................................... 2-1 

Controlling the Driver ..................................................................................................................... 2-4 

Specific Passes and Options ............................................................................................................. 2-4 

Preprocess Only ................................................................................................................................. 2-5 

Preprocess and Compile Only ........................................................................................................... 2-6 

Preprocess, Compile, and Assemble Only ......................................................................................... 2-6 

Add and Remove Preprocessor Macros ............................................................................................ 2-6 

Controlling the Compilation Step .............................................................................................. 2-7 

Specific Actions .................................................................................................................................. 2-7 

Location of Include Files .................................................................................................................. 2-16 

Optimization Level ............................................................................................................................ 2-16 

Generating Debug Information ......................................................................................................... 2-17 

Controlling the Link Step ............................................................................................................ 2-17 

Stripping Symbols ............................................................................................................................ 2-18 

Generating a Relinkable Object File ................................................................................................ 2-18 

Producing a Link Map ...................................................................................................................... 2-18 

Linker Libraries ................................................................................................................................. 2-18 

Controlling Mathematical Semantics ..................................................................................... 2-19 

Controlling the Driver Output .................................................................................................... 2-20 

Executable for Multiple Nodes ......................................................................................................... 2-20 

Name of Executable File .................................................................................................................. 2-21 

Verbose Mode .................................................................................................................................. 2-21 

Overriding Compiler Defaults .................................................................................................... 2-22 

x 

[) 
r" l.JrJ 

I
~I 

.11 

I: 

~= 

I: 
(J 

(: 



I···~ 

. ..1 

Ij 
1-: 

I : 

r: 
( -,., 

,j 

I "" 
_.I 

I~ 

[-' 

I~ 

r: 
I--

I"": 

I 1 

I~ 

I~ 

1·4; 

.. "") 

IJ 
() 

Paragon TM System Fortran Compiler User's Guide Table of Contents 

Control Directives .......................................................................................................................... 2-23 

Directive Descriptions ...................................................................................................................... 2-26 

altcode[nlconcur ........................................................................................................................ 2-26 

altcode[nlconcurreduction ......................................................................................................... 2-26 

[no]assoc ................................................................................................................................... 2-27 

[no]bounds ................................................................................................................................. 2-27 

[no]cncall ................................................................................................................................... 2-27 

[no]concur .................................................................................................................................. 2-27 

[no]depchk ................................................................................................................................. 2-27 

[no]eqvchk ................................................................................................................................. 2-27 

[no]func32 .................................................................................................................................. 2-28 

ivdep .......................................................................................................................................... 2-28 

[no]lstval .................................................................................................................................... 2-28 

opt .............................................................................................................................................. 2-28 

[no]recog .................................................................................................................................... 2-28 

[no]smallvect .............................................................................................................................. 2-29 

[no]shortloop .............................................................................................................................. 2-29 

[nolswpipe ................................................................................................................................. 2-29 

[no]transform ............................................................................................................................. 2-29 

[no]vector ................................................................................................................................... 2-29 

[nolvintr ...................................................................................................................................... 2-30 

Directive Examples .......................................................................................................................... 2-30 

Chapter 3 
Optimizing Programs 
Introduction ........................................................................................................................................ 3-1 

Optimization Procedure ................................................................................................................. 3-1 

Shortening Turnaround Time .•....................................................................................•.•.................... 3-2 

xi 



Table of Conten1B 

f~ 
Paragon ™ System Fortran Compiler User's Guide U 

Compiler Switches for Optimization ........................................................................................ 3-3 

General Optimizations (-0) ................................................................................................................ 3-3 

Scalar Optimizations (-01, -02) .................................................................................................. 3-3 

Software Pipelining (-03, -04) .................................................................................................... 3-4 

Vectorization (-Mvect) ........................................................................................................................ 3-5 

How Vectorization Works ............................................................................................................ 3-5 

Controlling Vectorization (-Mvect= ... ) .......................................................................................... 3-6 

Preventing Associativity Changes (-Mvect=noassoc) .................................................................. 3-7 

Getting Information About Vectorization (-Minfo=loop) ................................................................ 3-8 

Loop Unrolling (-Munroll) .................................................................................................................. 3-10 

Making Loops Parallel ...................................................................................................................... 3-11 

General Loop Parallelization (-Mconcur) ................................................................................... 3-11 

Parallelizing Loops with Calls (-Mcneall) ................................................................................... 3-12 

Getting Information About Parallelization .................................................................................. 3-12 

Non-IEEE Math (-Knoieee) .............................................................................................................. 3-12 

Non-IEEE Divides (Compiling with -Knoieee) ............................................................................ 3~13 

Non-IEEE Math Library (Linking with -Knoieee) ........................................................................ 3-13 

BLAS Library (-Ikmath) ..................................................................................................................... 3-14 

Inlining (-Minline) .............................................................................................................................. 3-14 

Ignoring Potential Data Dependencies (-Mnodepchk) ..................................................................... 3-14 

Code Changes for Optimization ............................................................................................... 3-15 

General Improvements ..................................................................................................................... 3-15 

Loop Improvements ......................................................................................................................... 3-16 

File 110 Improvements ...................................................................................................................... 3-17 

Chapter 4 
Using the Inliner 
Compiler Inline Switch ................................................................................................................... 4-1 

Creating an Inliner Library ............................................................................................................ 4-2 

Using Inliner Libraries .................................................................................................................... 4-3 

xii 

.-~.~-~~~~~~~~-

[J 

[J 

r -1 

LI.. . ..J 

~= 
~~ 

~~ 

~= 

l: 
r: 



I ~· ... 

r: 
r: 
r: 
(: 
I: 
I-' 

(~ 

r-: 
r: 
1= 
(~ 

I ~- .. 

r: 
I--_~' 

:..":..: 

(-,.,., 

.->OJ 

(-: 

IJ 

C 

IJ 

Paragon™ System Fortran Compiler User's Guide Table of Contents 

Restrictions on Inlining ................................................................................................................. 4-4 

Error Detection During Inlining .................................................................................................. 4-5 

Efficiency Considerations ............................................................................................................ 4-5 

Examples ............................................................................................................................................. 4-6 

Dhry .................................................................................................................................................... 4-6 

Fibo .................................................................................................................................................... 4-7 

Makefiles ............................................................................................................................................ 4-7 

Chapter 5 
Interfacing Fortran and C 

Calling a C Function from Fortran ............................................................................................. 5-1 

Calling a Fortran Routine from C ............................................................................................... 5-3 

Chapter 6 
Extensions to ANSI Fortran 

Standard Language ......................................................................................................................... 6-1 

Extensions Derived from VAX/VMS and IBMNS ................................................................. 6-2 

Compiler Directives ............................................................................................................................ 6-2 

OPTIONS Statement .......................................................................................................................... 6-3 

Control Statements (DO, DO WHILE, and ENDDO) .......................................................................... 6-4 

Data Extensions .............................................•................................................................................... 6-4 

Data Types .................................................................................................................................. 6-4 

Decimal Integer Constants .......................................................................................................... 6-7 

OctaVHexadecimal Constants ..•....................•............................................................................. 6-7 

Hollerith Constants ...................•............•......•.....................•......•......................•.......................... 6-9 

Character Constants .................................................................................................................. 6-10 

Logical Representation .............................................................................................................. 6-1 0 

xiii 



Table of Contents Paragon TM System Fortran Compiler User's Guide 

Data Initialization ....................................................................................................................... 6-1 0 

PARAMETER Statement ............................................ -............................................................... 6-10 

Common Blocks ........................................................................................................................ 6-11 

EQUIVALENCE Statement ........................................................................................................ 6-11 

IMPLICIT Statement .................................................................................................................. 6-11 

VOLATILE Statement ................................................................................................................ 6-12 

ENTRY Statement ..................................................................................................................... 6-12 

Structures .................................................................................................................................. 6-13 

Records ....................................•................................................................................................ 6-14 

UNION/MAP .............................................................................................................................. 6-15 

Exclusive OR ............................................................................................................................. 6-17 

Format Extensions .....................................................•..................................................................... 6-17 

A, 0, Z, Q, and $ Field Descriptors ........................................................................................... 6-17 

Carriage Control Characters ...................................................................................................... 6-18 

Commas in External Fields ........................................................................................................ 6-18 

Reading Non-Quoted Data into CHARACTER Variables .......................................................... 6-18 

Variable Format Expressions <expr> ........................................................................................ 6-18 

Format Specification Separators ............................................................................................... 6-19 

ENCODE/DECODE Statements ................................................................................................ 6-19 

Lexical Extensions ........................................................................................................................... 6-19 

Identifier Names ......................................................................................................................... 6-19 

Character Constants .................................................................................................................. 6-20 

Inline Comments ........................................................................................................................ 6-20 

Debug Statements .............................................•....................................................................... 6-20 

INCLUDE Statements ................................................................................................................ 6-20 

Statement Ordering ................................................................................................................... 6-21 

Input File Format ....................................................................................................................... 6-21 

I/O Extensions .................................................................................................................................. 6-22 

Namelist Directed I/O ................................................................................................................ 6-22 

ACCEPT and TYPE Statements ............................................................................................... 6-22 

I/O Lists ..................................................................................................................................... 6-22 

Control List Extensions ................................•...........................................•................................. 6-23 

xiv 

[J 

c 
c 

I "'"' , ! 

lJ 

c 



r: 
I·· .. , 

!oj 

r: 
I ~ 

.... 

r: 
r: 
I: 
r~ 

I~ 

I: 
I--~ 

(~ 

I ,= 

I L: 

I-~ 

I~ 
( -'" 

.~: 

r: 
[~ 

A.J 

.-'''''! L.J 
n 
LJ 

Paragon .... System Fortran Compiler User's Guide Table of Contents 

Extensions Derived from Cray Fortran ................................................................................. 6-23 

POINTER Statement ........................................................................................................................ 6-23 

Dynamic COMMON ......................................................................................................................... 6-25 

Memory Allocation Statements ...................................................................•.................................... 6-26 

ALLOCATE Statement .............................................................................................................. 6-26 

DEALLOCATE Statement ......................................................................................................... 6-27 

Using Memory Allocation Statements ........................................................................................ 6-27 

Other 1/0 Extensions ..................................................................................................................... 6-28 

General Input/Output ........................................................................................................................ 6-28 

File Formats ..................................................................................................................................... 6-29 

OPEN Statement .............................................................................................................................. 6-29 

CLOSE Statement ............................................................................................................................ 6-30 

BACKSPACE Statement .................................................................................................................. 6-30 

READIWRITE Statement ................................................................................................................. 6-30 

Subroutine and Intrinsic Extensions ...................................................................................... 6-31 

Built-In Functions ............................................................................................................................. 6-31 

VAXlVMS System Subroutines ........................................................................................................ 6-31 

DATE ......................................................................................................................................... 6-31 

IDATE ........................................................................................................................................ 6-32 

EXIT ........................................................................................................................................... 6-32 

SECNDS .................................................................................................................................... 6-32 

TIME .......................................................................................................................................... 6-33 

MVBITS ..................................................................................................................................... 6-33 

RAN ........................................................................................................................................... 6-34 

VAX/VMS Intrinsics ...........................................•.............................................................................. 6-34 

UNIX Related System Subroutines .................................................................................................. 6-36 

GETARG ..........•........................................................................................................................ 6-36 

IARGC ....................................................................................................................................... 6-36 

Additional Intrinsic Functions .................................................................................................. 6-37 

Vector Intrinsics .............................................................................................................................. 6-41 

xv 



Table of Contents Paragon TN System Fortran Compiler User's Guide 

Appendix A 
Compiler Error Messages 

Appendix B 
Runtime Error Messages 

Appendix C 
Compiler Internal Structure 
Scanner and Parser ........................................................................................................................ C-3 

Expander ..................................................................................................... ; ....................................... C-3 

Optimizer and Vectorizer .............................................................................................................. C-3 

Procedure Integration ........................................................................................................................ C-3 

Internal Vectorization ........................................................................................................................ C-4 

Global Optimizations ......................................................................................................................... C-4 

Local Optimizations ........................................................................................................................... C-4 

Flexible Memory Utilization ............................................................................................................... C-5 

Scheduler and Pipeliner ............................................................................................................... C-5 

xvi 

D 
[j 

(J 

c 
[J : 

I: 



r: Paragon™ System Fortran Compiler User's Guide Table of Contents 

I
"~ ... 

" 

III 

I: 
I:: Appendix D 
r: Manual Pages 

r-! -,_: 

r: 
r= 
IJ 
I=~ 

1= 
r= 
I~' 

(
""""I 

~,.:.l 

r: 
IJ 
() 

() 

AR860 ................................................................................................................................................ 0-7 

AS860 ............................................................................................................................................... 0-9 

OUMP860 ......................................................................................................................................... 0-11 

IF77 .................................................................................................................................................. 0-13 

IFIXLIB ............................................................................................................................................. 0-34 

l0860 ............................................................................................................................................... 0-35 

MAC860 ........................................................................................................................................... 0-40 

NM860 ............................................................................................................................................. 0-41 

SIZE860 ........................................................................................................................................... 0-43 

STRIP860 ........................................................................................................................................ 0-45 

ABORT() ................•......................................................................................................................... 0-46 

ACCESSO ~ ....................................................................................................................................... 0-47 

ALARM() .......................................................................................................................................... 0-48 

BESJOO ............................................................................................................................................ 0-49 

CHOIRO ........................................................................................................................ : .................. 0-51 

CHMOOO ......................................................................................................................................... 0-52 

CTIMEO ............................................................................................................................................ 0-53 

OATEO ..................•......................................................................................................................... 0-55 

OV _ACOSO ..................................................................................................................................... 0-56 

ERFO ............................................................................................................................................... 0-62 

ETIME(} ........................................................................................................................................... 0-63 

EXITO ............................................................................................................................................... 0-64 

FDA TEO ...... ............................. ...................... ......... ........................................................•............... 0-65 

FGETCO ........................................................................................................................................... 0-66 

FlMINO ............................................................................................................................................ 0-67 

FlUSHO ........................................................................................................................................... 0-68 

FORKO ............................................................................................................................................. 0-69 

FPUTCO ........................................................................................................................... ; ............... 0-70 

FREEO ............................................................................................................................................ 0-71 

xvii 



Table of Contents Paragon no System Fortran Compiler User's Guide 

xviii 

FSEEKO .............................................................•............................................................................. 0-72 

FTELLO ...........•...•.........•.................................................................................................................. 0-73 

GERRORO ....................................................................................................................................... 0-74 

GETARGO .................................................................•...................................................................... 0-75 

GETCO ... ~ ......................................................................................................................................... 0-76 

GETCWOO ....................................................................................................................................... 0-77 

GETENVO ........................................................................................................................................ 0-78 

GETGIOO ......................................................................................................................................... 0-79 

GETLOGO ........................................................................................................................................ 0-80 

GETPIOO ......................................................................................................................................... 0-81 

GETUIOO .......................................................................................................................................... 0-82 

GMTIMEO ........................................................................................................................................ 0-83 

HOSTNMO ....................................................................................................................................... 0-85 

IARGCO ........................................................................................................................................... 0-86 

10ATEO ............................................................................................................................................ 0-87 

IERRNOO ......................................................................................................................................... 0-88 

IOINITO ............................................................................................................................................ 0-89 

ISATIYO .......................................................................................................................................... 0-90 

ITIMEO ............................................................................................................................................. 0-91 

KILLO ............................................................................................................................................... 0-92 

LINKO ............................................................................................................................................... 0-93 

LNBLNKO ....................................................................................................... ; ................................. 0-94 

LOCO ............................................................................................................................................... 0-95 

L TIMEO ............................................................................................................................................ 0-96 

MALLOCO ........................................................................................................................................ 0-98 

MVBITSO ......................................................................................................................................... 0-99 

OUTSTRO ...................................................................................................................................... 0-100 

PERRORO ..................................................................................................................................... 0-101 

PUTCO ........................................................................................................................................... 0-102 

PUTENVO ...................................................................................................................................... 0-103 

QSORTO ........................................................................................................................................ 0-104 

RANOO ....................... ~ ................................................................................................................... 0-105 

[J 

[: 

(] 

(J 

[If' 
1..-"" 

[
1 

,','. 

"...: 

[" ~ 
.'" 



l 'l'I·, 
iii 

I~ 

r-: 
r: 
f"'i 
I .. I 

r~: 

I: 
I~' 

1-1 

".I 

r-~ 

[: 

I~ 

[J 

Paragon 1M System Fortran Compiler User's Guide Table of Contents 

RANOOMO ............................................................ '" ...................................................................... 0-106 

RENAMEO ..................................................................................................................................... 0-107 

RI NOEXO ....................................................................................................................................... 0-108 

SECNOSO ...................................................................................................................................... 0-109 

SIGNALO ........................................................................................................................................ 0-110 

SLEEPO ......................................................................................................................................... 0-112 

STATO ............................................................................................................................................ 0-113 

STIMEO .......................................................................................................................................... 0-115 

SV_ACOSO .................................................................................................................................... 0-116 

SYMLNKO ...................................................................................................................................... 0-122 

SYSTEM() .........•............................•..........................................................••.....•............................. 0-123 

TIMEO ............................................................................................................................................ 0-124 

TI MESO ................•..................................•............................•......................•.....................•.........•.. 0-125 

TTYNAMO ........................•..........•.............................•......•......•......•...........•................................... 0-126 

UNLlNK() ...•••.....•.........•...........................................................................................••..................... 0-127 

WAITO ..................•••..............................................•..........................................•............................. 0-128 

xix 



Table of Contents Paragon 1M System Fortran Compiler User's Guide 

List of Illustrations 

Figure C-1. Compiler Structure ............................................................................................................... C-2 
Figure C-2. Parallel Activities of i860™ Microprocessor ......................................................................... C-6 

xx 

(] 

U 

D 
[~ 

~J 

[J 

IJ 
IJ 



I'·~, : 
.~ 

r: 
I: 
1-,., 

"', 

1'''1 

,J 

r: 
1-

r: 

Paragon™ System Fortran Compiler User's Guide Table of Contents 

Table 1-1. 

Table 2-1. 

Table 2-2. 

Table 5-1. 

Table 5-2. 

Table 6-1. 

Table 6-2. 

Table 6-3. 

Table 6-4. 

Table 6-5. 

Table 6-6. 

Table 0-1. 

Table 0-2. 

List of Tables 

Software Development Commands ............................................................................... 1-3 

Summary of if77 Driver Switches ................................................................................... 2-2 

Directive Summary ...................................................................................................... 2-25 

Fortran Data Types for Called C Functions ................................................................... 5-2 

C Data Types for Called Fortran Routines ..................................................................... 5-3 

Data Type Extensions .................................................................................................... 6-5 

Data Type Ranks ........................................................................................................... 6-6 

Intrinsics That Support The New Data Types .............................................................. 6-35 

Other New Intrinsics .................................................................................................... 6-35 

Additional Intrinsic Functions ....................................................................................... 6-37 

Vector Intrinsic Functions ............................................................................................ 6-42 

Commands Discussed in This Appendix ...................................................................... 0-2 

System Calls Discussed in This Appendix .................................................................... 0-3 

xxi 



Table of Contents Paragon TM System Fortran Compiler User's Guide 

xxii 

[) 

[J ! 

[: 

rv---: 
~~ 

IJ 
[J 

[J 



r: 

10'·0. 
"" 

I "" 
'.d 

r~ 

I
"O~ 

..,J 

,
.0", 

.. , 

I~ 

10". 

-.~ 

I~ 

I) 

c 

Getting Started 

This chapter introduces the software development environment and shows how to create executable 
files from Fortran source code. 

This chapter contains enough information to get you started using the compiler driver to create 
executable files from Fortran source code that conforms to the ANSI Fortran 77 standard. For 
information on extensions to the standard language, refer to Chapter 6 . 

The Software Development Environment 
The software development environment consists of a Paragon TM system and its supporting software. 

System Hardware 

A Paragon TM system consists of an ensemble of nodes connected by a high-speed internal network. 
Each node contains one or more i860™ processors and 16M bytes or more of memory. Each node's 
memory is directly accessible only to that node; nodes share information with other nodes by passing 
messages over the network. All nodes run the operating system. Multiple processes can run on each 
node, and each process can have multiple threads (also known as lightweight processes). 

The nodes appear to the programmer and user to be a single system. For example, every process has 
a different process ID from any other process running anywhere in the system, no matter what node 
the processes are running on. In addition, all nodes share a single file system and have equal access 
to the system's 110 facilities. 

The nodes of the system are divided into a service partition and a compute partition. The compute 
partition may be subdivided into smaller partitions. 

1-1 



Getting Started Paragon 1M System Fortran Compiler User's Guide 

• Nodes in the service partition run a variety of system services, such as user shells, editors, and 
compilerS. Programs run in the service partition consist of single, independent processes. 

• Nodes in the compute partition runparallel applications-user-written programs that consist of 
groups of cooperating processes. All the processes in a single application run in the same 
compute partition; they mayor may not use all the processors in the partition 

See the Paragon ™ System User's Guide for more information about partitions and applications. 

System Software 

.1-2 

The system software is a complete implementation of the aSF!! operating system. It includes all the 
calls and commands of aSF!!, plus extensions for parallel programming. 

• For information on the standard aSF!! calls and commands, see the OSF!l User's Guide, 
OSFf 1 Command Reference, and OSFf 1 Programmer's Reference. 

• For information on the parallel extensions, see the Paragon TM System User's Guide, Paragon ™ 
System Commands Reference Manual, and Paragon ™ System Fortran Calls Reference Manual. 

Software Development Environments 

The operating system includes a complete set of commands for compiling, linking, executing, and 
debugging parallel applications. These commands are available in two different software 
development environments: 

• The cross-development environment runs both on the Paragon system and on supported 
workstations. 

• The native development environment runs only on the Paragon system itself. 

() 

rrl 
... ....! 

IJ i 

(' , , 

....-J 

(J 



r: 

r: 

( .,1 

;1 ' 
-~ , 

r--
1-: 

I: 
r: 
(

i 

_-"oj 

c 

-----.--~--. 

Paragon™ System Fortran Compiler User's Guide Getting Started 

Table 1-1 lists the commands in the two software development environments. 

Table 1-1. Software Development Commands 

Name in Name in 
Cross-Development Native 

Environment Environment Description 

ar860 ar Manages object code libraries 

as860 as Assembles i860™ source code 

dump860 dump860 Ownps object files 

if77 r17 Compiles Fortran programs 

itixHb itixHb Updates inliner library directories. 

Id860 Id links object files 

mac860 mac Preprocesses assembly-language programs 

nm860 nm Displays symbol table (name list) information 

size860 size Displays section sizes of object files 

strip860 strip Strips symbol information from object files 

With minor exceptions, these commands work the same in both environments and on all supported 
hardware platforms. The biggest difference between the two environments is the names of the 
commands, as shown in Table 1-1 For convenience, the cross development name is also supported 
in the native environment. Where other differences exist, they are noted in Appendix D. 

NOTE 

This manual uses the cross-development names for these 
commands. However, except where noted, all discussions of the 
cross-development command names apply equally to the 
corresponding native command names. 

This manual gives complete information on the compiler and provides manual pages for the other 
commands shown in Table 1-1 The Paragon system also provides a symbolic debugger, parallel 
performance analyzer, and other software tools; for information on these tools, see the Paragon ™ 
System Application Tools User's Guide. 

1-3 



------_._----- ._------- - -"---.----~~--.--~ -" -----"---.-----.~-- .. _----_ .. __ .. _---_ .. -... --------~----:----.--.----.------~~-~-~.~-~~~~-----.-.--.---.-.------.---

Getting Started 

1-4 

--~-----

Paragon TM System Fortran Compiler User's Guide 

Compiler Driver 

The Fortran driver provides an interface to the compiler, assembler, and linker that makes it easy to 
produce executable files from Fortran source code. For example: 

• It automatically sets appropriate compiler, assembler, and linker switches. 

• It lets you pass switches directly to the assembler and linker. All functionality of the as860 
assembler and Id860 linker is available through the driver. 

• It lets you stop after the preprocessor, compiler, assembler, or linker steps. 

It lets you retain intennediate files. 

The driver creates an executable file for execution on a Paragon system node. 

The if77 command invokes the Fortran driver. For example, the following command line compiles, 
assembles, and links the Fortran source code in the file m)prog./(using the default driver switches) 
and leaves an executable version of the program in the file a.out: 

% if77 myp:rog. f 

Chapter 2 describes the if77 driver in detail, and Appendix D contains a manual page for if77. 

NOTE 

You can invoke the assembler and linker directly (as indicated in 
the next two sections). However, if you do so, you must explicitly 
specify switches, libraries, and other information that is provided 
automatically by the driver. Therefore, such usage is 
recommended for advanced users only. 

i860 TM Assembler 

The as860 command invokes the i860 assembler to assemble the output of the compiler. For 
example, the following command line assembles the file m)prog.s and leaves the resulting object 
code in the file m)prog.o: 

% as860 myp:rog.s 

For more infonnation on using the i860 assembler, refer to the as860 manual page in Appendix D. 

[] 

(
"'1, ' , , 
----.J 

(J 

I: 
I.! .... 

I: 
[~ 



[ •. : 
_OiiI 

I: 
r: 
I-.~ 

joj 

I:, 

I: 

,-< 
I, -'" 

,-, 

I~ 

I: 
I: 
r4 

Paragon"" System Fortran Compiler User's Guide Getting Started 

i860™ Linker 

TIle Id860 command invokes the i860 linker to link the output of the as860 assembler. For example, 
the following command line links the file myprog.o with the library mylib.a and leaves the resulting 
executable in the file a.out. 

% Id860 myprog.o mylib.a 

For more information on using the i860 linker, refer to the Id860 manual page in Appendix D. 

Execution Environments 
TIle software tools can create executable files for execution on one node or multiple nodes. 

Running on a Single Node 

By default, the if77 driver creates a file for execution on a single node. For example, the following 
command line compiles myprog.jto the executable a.out. 

% if77 myprog.f 

When you run the resulting executable by typing a.out on the Paragon system, it runs on one node 
in the service partition. 

Running on Multiple Nodes 

To run a program on multiple nodes, you must use calls from the library /ibnx.a. This library contains 
the calls that you use to start processes on multiple nodes and communicate with processes running 
on other nodes. (All of the calls in libnx.a are described in the Paragon ™ System Fortran Calls 
Reference Manual.) 

The if77 driver does not automatically search /ibnx.a. To search libnx.a, you can use either the -ox 
or -Inx switch when linking: 

• TIle -nx switch links in /ibnx.a, libmach.a, and options! autoinit.o, and creates an executable that 
automatically starts itself on multiple nodes when invoked.. For example, the following 
command line compiles myprog.jto the executable a.out. 

% if77 -nx myprog.f 

1-5 



Getting Started Paragon TM System Fortran Compiler User's Guide 

When you run the resulting executable by typing a.out on the Paragon system, it runs on all the 
nodes in your default partition. You can use the command line switches and environment 
variables described in the Paragon™ System User's Guide to control its execution 
characteristics. 

For compatibility with the iPSe system, the -node switch is equivalent to -ox. For example, the 
following command is equivalent to the previous command: 

% if77 -node myprog.f 

However, continued support for this switch is not guaranteed. 

The -lox switch links in Ubm.a, but you should use the -ox switch if your program is going to 
run on multiple nodes. For example, the following command line compiles myprog.jto the 
executable a.out: 

% if77 myprog. f -lnz 

Note that -lox must appear after the filenames of any source or object files that use calls from 
libnx.a. 

Debugging 

1-6 

To debug programs, use the Interactive Parallel Debugger (IPD). IPD can debug any program that 
runs on the Paragon system. 

To compile an application for debugging, use the -g compile-time switch. The -g switch is equivalent 
to the following switches: 

-00 Do not optimize code. 

-Mdebug Include symbol table and line table information. 

-Mframe Include stack frame traceback information. 

If you do not use the -g switch you can still debug the program, but debugging will be limited. For 
example, at optimization levels higher than 0, access to individual source lines will be decreased, 
and display or modification of variables and registers will probably have unpredictable results. In 
addition, without stack frame traceback information turned on, the information displayed by the 
debugger for a stack traceback will be incomplete. 

For more information on using the Interactive Parallel Debugger, refer to the Paragon ™ System 
Interactive Parallel Debugger Reference Manual and the Paragon™ System Application Tools 
User's Guide. 

IJ 

[" .'" i 

.. .! 

[J 

rf "', 
1tAo! 

c: 
~= 
If.·~: 
I. 

(. "'~ 

.""' 

r"'" 
1 .. -, 

( .. ~ , 

~AJ 



r: 

I: 

r: 

I: 

1" 
( 1 

.'::J 

IJ 

Paragon TM System Fortran Compiler User's Guide Getting Started 

Example Driver Command Lines 
The following example command lines show how to use the if77 driver to perfonn typical tasks: 

Compile and link for a single node, leaving the executable in a file called x: 

% if77 -0 x x.f 

• Compile and link for multiple nodes with automatic start-up: 

% if77 -nx -0 x x.f 

Compile and link in libnx.a. 

% if77 -0 x x.f -Inx 

Compile, but skip assemble and link steps (-S); leaves assembly language output in file x.s: 

% if77 -8 x.f 

Compile and assemble, but skip link step (-c); leaves object output in file x.o: 

% if77 -c x.f 

Compile and assemble with optimizations: 

% if77 -c -02 x.f 
% if77 -c -03 x.f 
% if77 -c -03 -Mvecc x.f 

(level 2 - global optimizations only) 
(level 3 - adds software pipelining) 

(level 3 optimizations plus vectorization) 

See Chapter 3 for more infonnation on optimization. 

1-7 



Getting Started Paragon TM System Fortran Compiler User's Guide 

If ... · '~"'.', L 

1:.1 . jl 

l= 

lJ 

1-8 



r: 
f"""! 

.1 .. 

r: 
r: 
I: 
r: 
( . .., 

-.1 

I: 
I·~ 

1_·. 
c 1 

I 
I 

~ 

1.= 
I: 
(~ 

IJ 

IJ 

The if77 Driver 

This chapter describes if77, the driver for compiling, assembling, and linking Fortran source code 
for execution on the Paragon 1M system. 

The following sections tell how to invoke if77 and how to control its inputs, processing, and outputs. 

Invoking the Driver 
The if77 driver is invoked by the following command line: 

if77 [switches] source_file ... 

where: 

switches 

sourceJile 

Is zero or more of the command line switches listed in Table 2-1. Note that 
case is Significant in switch names. 

Is the name of the file that you want to process. if77 bases its processing on 
the suffixes of the files it is passed: 

file.F is considered to be a Fortran program with 
preprocessor directives. It is preprocessed, compiled 
and assembled. The resulting object file is placed in 
the current directory. 

The Fortran preprocessor is similar to the standard 
UNIX preprocessor cpp. See The C Programming 
Language by Kernighan and Ritchie for information 
on the preprocessor control directives used by this 
preprocessor. 

2-1 



The if77 Driver 

Switch 

-c 

-Dname[ =defj 

-E 

-F 

-g 

-Idirectory 

-Koption 

-Uibrary 

-Ldirectory 

-m 

2-2 

file.f 

file.s 

file.o 

file.a 

file.c 

Paragon 1M System Fortran Compiler User's Guide 

is considered to be a Fortran program. It is compiled 
and assembled. The resulting object file is placed in 
the current directory. 

is considered to be an i860 assembly language file. It 
is assembled and the resulting object file is placed in 
the current directory. 

is considered to be an object file. It is passed directly 
to the linker if linking is requested. 

is considered to be an ar library. It is passed directly to 
the linker if linking is requested. 

is considered to be a C program. It is passed to the C 
compiler. 

All other files are taken as object files and passed to the linker (if linking is 
requested) with a warning message. If a file's suffix does not match its actual 
contents, unexpected results may occur. 

Table 2-1. Summary of if77 Driver Switches (1 of 2) 

Description 

Skip link step; compile and assemble only (to file. 0 for eachfile.f). 

Define preprocessor symbol name to be def. 

Preprocess each file.F to stdout. 

Preprocess eachfile.F to filei. 

Synonymous with -Mdebug -00 -Mframe. 

Add directory to include file search path. 

Request special mathematical semantics (ieee, ieee=enable, ieee=strict, 
noieee, trap=fp, trap=align). 

Load Iiblibrary.a from library search path (passed to the linker). 

Add directory to library search path (passed to the linker). 

Generate a link map (passed to the linker). 

[J 

[J 

~= 
I: 
I: 

c 
(J 

I: 



I~ 

( -'\!II.-. 

iii 

( -"'" 

---'" 

I: 
r~ 

I~ 

I: 
r-" 

1= 
I~ 

1_-"" 
.;..1 

I: 
IJ 
(] 

Paragon™ System Fortran Compiler User's Guide The im Driver 

Table 2-1. Summary of ir77 Driver Switches (2 of 2) 

Switch Description 

-Moption Request special compiler actions (alpha, anno, beta, [no]bounds, clr_reg, 
cray, concur, cncall, cpp860, [no]dclcbk, [no]debug, [no]depchk, 
[no]d1ines, dollar, extend, extract, [no]frame, [no]i4, info, inline, keepasm, 
[no]list, [no]longbranch, neginfo, noansi, nostartup, nostdinc, nostdlib, 
onetrip, [no]perfmon, [no]quad, [no]r8, [no]r8intrinsics, [no]recursive, 
[no]reentrant, reloc_libs, safealloc, [no]save, [no]signextend, 
[no ]spliUoop _ ops, [no ]spliUoop _refs, standard, [no ]streamall, 
[no]strideO, [no]unixlogical, [no]unroll, [no]upcase, vect, [no]vintr, 
[no]xp). 

-nostdinc Remove the default include directory from the include files search path. 

-ox Create executable application for multiple nodes. 

-ojile Use file as name of output file. 

-O[level] Set optimization level (0, 1, 2, 3, 4). 

-r Generate a relinkable object file (passed to the linker). 

-S Skip assemble and link step; compile only (to jile.s for eachjile.f or file.F). 

-s Strip symbol table information (passed to the linker). 

-Uname Remove initial definition of name in preprocessor. 

-v Print the entire command line for assembler, linker, etc. as each is invoked in 
verbose mode. 

-v Print the version banner for assembler, linker, etc. as each is invoked. 

-VV Displays the driver version number and the location of the online release notes, 
but perfonns no compilation. 

-W pass,option[,option ... ] Pass options to pass (0, a, I). 

-Ypass,directory Look in directory for pass (0, a, I, S, I, L, U, P). 

The rest of this chapter discusses these switches in more detail. 

NOTE 

The switches that discuss loop parallelization are available only 
with the Paragon System MP product. 

2-3 



The if77 Driver Paragon TN System Fortran Compiler User's Guide 

Controlling the Driver 
The following switches let you control how the driver processes its inputs: 

-w Pass specified options to specified tool. 

-y Look in specified directory for specified tool. 

-E Skip compile, assemble, and link step; preprocess only (output to stdout). 

-F Skip compile, assemble, and link step; preprocess only (output toftle.f). 

-s Skip assemble and link step; compile only (output to file.s). 

-c Skip link step; compile and assemble only (output tofile.o). 

-D Define (create) preprocessor macro. 

-u Undefine (remove) preprocessor macro. 

Specific Passes and Options 

The following switch lets you pass options to specific passes (tools): 

-Wpass,option[,option ... ] 

where: 

pass Is one of the following: 

o (zero) Compiler. 

a Assembler. 

Linker. 

option Is a comma-delimited string that is passed as a separate argument 

24 

[) 

I~ 

IJ 

(~ 

(
"'l 

..-! 

c 
[J 



r: 

fJ 

r: 

I: 
I: 

I~ 
( -"1 

..J 

IJ 
IJ 
[J 

Paragon no System Fortran Compiler User's Guide TheimOriver 

The following switch lets you tell the driver where to look for a specific pass: 

-Ypass,directory 

where pass is one of the following: 

o (zero) 

a 

s 

I 

L 

u 

p 

Search for the compiler executable in directory. 

Search for the assembler executable in directory. 

Search for the linker executable in directory. 

Search for the start-up object files in directory. 

Set the compiler's standard include directory to directory. 

Set the first directory in the linker's library search path to directory (passes 
-YLdirectory to the linker). 

Set the second directory in the linker's library search path to directory (passes 
-YUdirectory to the linker). 

Set the linker's entire library search path to directory (passes -YPdirectory to 
the linker). 

See the if77 manual page in Appendix D for the defaults for these directories; see the Id860 manual 
page in Appendix D for more infonnation on the -YL, -YU, and -yP switches. 

Preprocess Only 

By default, the driver preprocesses, compiles, assembles, and links eachfile.F. However, the 
following switches suppress the compile, assemble, and link steps: 

-E After preprocessing eachfile.F, send the result to standard output (stdout). 

-F After preprocessing eachfile.F, send the result to a file named file.f. 

Note that these switches have meaning only for files with the uppercase ".F' suffix. 

2-5 



The if77 Driver Paragon TM System Fortran Compiler User's Guide 

Preprocess and Compile Only 

By default, the driver preprocesses, compiles, assembles, and links eachjile.F and compiles, 
assembles, and links eachjile.f. However, the following switch tells the driver to suppress the 
assemble and link steps and produce an assembler source file: 

-s 

After compiling eachjile.F orjile.f, the assembler source file is sent to a file namedfile.s. 

Preprocess, Compile, and Assemble Only 

By default, the driver preprocesses, compiles, assembles, and links eachjile.F and compiles, 
assembles, and links eachjile.f. However, the following switch tells the driver to suppress the link 
step: 

-c 

After assembling eachjile.F or jile.f, the output is sent to a file namedfile.o. If you are compiling a 
single source file, you can specify a different output file name with the -0 switch. 

Add and Remove Preprocessor Macros 

2-6 

The following command line switches let you predefine preprocessor macros and undefine 
predefined preprocessor macros: . 

-Dname[ =defJ Define name to be defin the preprocessor. If defis missing, it is assumed to 
be empty. If the "=" sign is missing, then name is defined to be the string 1 
(one). 

-Uname Remove any initial definition of name in the preprocessor. 

Because all-D switches are processed before all-U switches, the -U switch overrides the -D switch. 
The -U switch affects only preprocessor macros defined with the -D switch, not macros defined in 
source files. The only macro predefined by the preprocessor itselfis __ LINE __ , whose value is the 
current source file line number, and it cannot be undefined with -U. 

Note that these switches have meaning only for files with the uppercase ".F' suffix. 

[) 

I ~ 

jJl 

~J 

( 1 
£I 

IJ 
I ~l 

.J 

[J 

[~ I 

.-"I1i 

IJ 



1··'1!I 

.JJ 

I: 
I··" 

~ • ...AfIj 

r: 

I: 
r: 

I: 
I.···'" 

-$oJ 

I···", 
A~ 

I: 
I: 
r: 
(] 

(] 

Paragon'" System Fortran Compiler User's Guide The if77 Driver 

Controlling the Compilation Step 
The following switches let you control the compilation step: 

-Moption 

-I 

-0 

-g 

Specific Actions 

Request special compiler actions. 

Add a directory to include file search path. 

Set the optimization level. 

Include symbolic debug infonnation in the output file (synonymous with 
-Mdebug -00 -Mframe). 

The following command line switch lets you request specific actions from the compiler: 

-Moption 

where option is one of the following (an unrecognized -M option is passed directly to the compiler, 
which often removes the need for the -WO switch): 

alpha 

anno 

beta 

[no]bounds 

Activate alpha-release compiler features. 

Produce annotated assembly files, where source code is intermixed with 
assembly language. -Mkeepasm or -S should be used as well. 

Activate beta-release compiler features. 

[Don't] enable array bounds checking (default -Mnobounds). With 
-Mbounds enabled, bounds checking is not applied to subscripted pointers or 
to externally-declared arrays whose dimensions are zero (extern arr[ D. 
Bounds checking is not applied to an argument even if it is declared as an 
array. If an array bounds checking violation occurs when a program is 
executed, an error message describing where the error occurred is printed and 
the program terminates. The text of the error message includes the name of 
the array, where the error occurred (the source file and line number in the 
source), and the value, upper bound, and dimension of the out-of-bounds 
subscript. The name of the array is not included if the subscripting is applied 
to a pointer. 

Clear the internal registers after every procedure invocation. This option is 
used for diagnostic purposes. 

2-7 



The 1f17 Driver 

2-8 

Paragon 1M System Fortran Compiler User's Guide 

concur=[option[,option ... ]] 

cpp860 

cncall 

Make loops parallel as defined by the specified options. option can be any of 
the following: 

altcode:count Make innennost loops without reduction parallel only 
if their iteration count exceeds count. Without this 
switch, the compiler assumes a default count of 100. 

altcode reduction:count 
Make innennost loops with reduction parallel only if 
their iteration count exceeds count. Without this 
switch, the compiler assumes a default count of 200. 

dist:block Make the outennost valid loop parallel. This is the 
default option. 

dist:cyclic Make the outennost valid loop in any loop nest 
parallel. If an innennost loop is made parallel, its 
iterations are allocated to processors cyclically. That 
is, processor 0 perfonns iterations 0, 3, 6, ... ; processor 
1 perfonns iterations 1,4,7, ... ; and processor 2 
perfonns iterations 2, 5, 8, and so on. 

global_ vcache Directs the vectorizer to locate the cache within the 
area of an external array when generating codes for 
parallel loops. By default, the cache is located on the 
stack for parallel loops. 

noassoc Do not make loops with reductions parallel. This is the 
same as -Mvect=noassoc. 

Direct the internal preprocessor to not compress white space. 

Make loops with calls parallel. By default, the compiler does not make loops 
with calls parallel since there is no way for the compiler to verify that the 
called routines are safe to execute in parallel. When you specify -Mcncall on 
the command line, the compiler also automatically specifies -Mreentrant. 

-Mcneall also allows several other types of loops to be made parallel: 

• loops with 110 statements 

• loops with conditional statements 

loops with low loop counts 

• non-vectorizable loops 

If the compiler can detect a cross-iteration dependency in a loop, it will not 
make the loop parallel, even if -Mcncall is specified. 

[~ 

lJ 
[: 

[J 

( I 
. I 

.0IIII 

riO 
l,J 

[J 

(J 

IJ 



r: 

I: 

(~ 

I· "'" 
..... ,.1 

I~ 
I .... ... 

I:: 
I~ 

I: 
I: 
I: 
[

-.!!1 

.. '" 

lJ 
I) 

I) 

Paragon™ System Fortran Compiler User's Guide The if77 Driver 

cray 

[no]dclchk 

[no]debug 

[no]depchk 

[no]dlines 

dollar ,char 

extend 

Enable Cray compatibility mode for various options. 

[Don't] require that all variables be declared (default -Mnodclchk). 

[Don't] generate symbolic debug information (default -Mnodebug). If 
-Mdebug is specified with an optimization level greater than zero, line 
numbers will not be generated for all program statements. -Mdebug increases 
the object file size. 

[Don't] check for potential data dependencies (default -Mdepchk). 
-Mnodepchk is especially useful in disambiguating unknown data 
dependencies ariSing from use of array subscripts that cannot be derived at 
compile time. For example, if an array is referenced in a loop using the 
induction variable plus some otherunknownnon-induction-based variable as 
a subscript, the compiler must assume that the array conflicts with a similar 
array reference based on the induction variable alone. If it is known that the 
two array references do not conflict, then this switch may result in better code. 
Do not use this switch if such data dependencies do exist, because incorrect 
code may result. 

[Don't] treat lines beginning with D in column 1 as executable statements, 
ignoring the D (default -Mnodlines). 

Specify char as the character to which the compiler maps the dollar sign. The 
compiler allows the dollar sign in names. 

Allow 132-column source lines (normally only 72 columns are allowed). 

extract=[option[,option ... ]] 
Pass options to the subprogram extractor (see the inline option for more 
information). The options are: 

[name:]subprogram 
Extract the specified subprogram. name: must be used 
if the subprogram name contains a period. 

[size:]number Extract subprograms containing less than 
approximately number statements. 

If both number(s) and subprogram(s) are specified, then subprograms 
matching the given name(s) or meeting the size requirements are extracted. 

The -ofile switch must be used with -Mextract to tell the compiler where to 
place the extracted subprograms. The name of the specified file must contain 
a period. 

There are some restrictions on the types of subprograms that can be extracted. 
See Chapter 4 for these restrictions and other information on using the 
compiler's subprogram extractor. 

2-9 



The if77 Driver 

2-10 

[no]frame 

[no]i4 

Paragon TM System Fortran Compiler User's Guide 

[Don't] include the frame pointer (default -Mnoframe). Using -Mnoframe 
can improve execution time and decrease code, but makes it impossible to get 
a call stack traceback when using a debugger. 

[Don't] treat integer as integer"'4 (default -Mi4). -Mnoi4 treats integer as 
integer"'2. 

info=[option[,option ... ]] 
Produce useful infonnation on the standard error output. The options are: 

time or stat 

loop 

concur 

inline 

Output compilation statistics. 

Output infonnation about loops. This includes 
information about vectorization, software pipelining, 
and parallelization. 

Same as -Minfo=loop. 

Output infonnation about subprograms extracted and 
itllined. 

cycles or block or size 

iii 

all 

inline=[option[,option ... ]] 

Output block size in cycles. Useful for comparing 
various optimization levels against each other. The 
cycle count produced is the compiler's static estimate 
of freeze-free cycles for the block. 

Output intennediate language as comments in 
assembly file. 

All of the above. 

Pass options to the subprogram inliner. The options are: 

[lib:] library Inline subprograms in the specified inliner library 
(produced by -Mextract). If lib: is not used, the 
library name must contain a period. If no library is 
specified, subprograms are extracted from a temporary 
library created during an extract prepass. 

() 

(J 

IJ 

[J 

[. ~ 
. i 

~ 

[name:]subprogram (; 
Inline the specified subprogram. If name: is not used, .,.; 
the subprogram name must not contain a period. 

[size:]number Inline subprograms containing less than 
approximately number statements. 

levels:number Perfonn number levels ofinlining (default 1). 

[J 

() 

IJ 



r: 

r: 
I

C"~ 

'" 

I ~! 

I: 
(-0. 

I:' 
I ', 

~I 

I "~ 
"" 

I~ 
("~ 

"'OJ 

IJ 

Paragon™ System Fortran Compiler User's Guide TheimOriver 

iomutex 

keepasm 

Iist[=name] 

nolist 

If both number(s) and subprogram(s) are specified, then subprograms 
matching the given name(s) or meeting the size requirements are inlined. 

There are some restrictions on the types of subprograms that can be inlined. 
See Chapter 4 for these restrictions and other infonnation on using the 
compiler's subprogram extractor. 

Place critical sections around 110 statements. 

Keep the assembly file for each Fortran source file, but continue to assemble 
and link the program. This is mainly used in compiler peIfonnance analysis 
and debugging. 

Create a source listing in the file Mme. If name is not specified, the listing file 
has the same name as the source file except that the ".f' suffix is replaced by 
a ".1st" suffix. If Mme is specified, the listing file has that name; no extension 
is appended. 

Don't create a listing file (this is the default). 

[no]longbranch [Don't] allow compiler to generate bte and btne instructions (default 
-Mlongbrancb). -Mnolongbranch should be used only if an assembly error 
occurs. 

neginfo=concur 

noansi 

nostartup 

nostdinc 

nostdlib 

onetrip 

Print infonnation for each countable loop that is not made parallel stating why 
the loop was not made parallel. 

Allow multiple implicit statements. 

Don't link the usual start-up routines (crtO.o and ijmain.o), which contain the 
entry point for the program. 

Remove the default include directory (Iusrlinclude for f77, 
$( PARAGON _ XDEV )/paragon/include forif77) from the include files search 
path (the list of directories searched for files referenced by include 
statements, such as fnx.h). 

Don't link the standard libraries (Ubpm.o, guard.o,libj.a, libm.a, libc.a, 
iclib.a, and libmach3.a) when linking a program. 

Force each do loop to be iterated at least once (for compatibility with 
Fortran 66). 

2-11 



The ifl1 Driver 

2-12 

[no ]perfmon 

[no]quad 

[no]r8 

Paragon 1M System Fortran Compiler User's Guide 

[Don't] link the perfonnance monitoring module (libpm.o) (default 
-Mpertinon). See the Paragon TM System Application Tools User's Guide for 
information on performance monitoring. 

[Don't] force top-level objects (such as local arrays) of size greater than or 
equal to 16 bytes to be quad-aligned (default -Mquad). Note that -Mquad 
does not affect items within a top-level object; such items are quad-aligned 
only if appropriate padding is inserted. Common blocks are always 
quad-aligned. 

[Don't] treat real as double precision and real constants as double precision 
constants (default -MnorS). 

[no]r8intrinsics [Don't] treat intrinsics as follows (default -MnorSintrinsics): 
cmplx as dcmplx 
real as dble 
alog as d10g 
a1ogl0 as d1ogl0 
amaxl as dmaxl 
aminl as dminl 
amodasdmod 
csqrt as cdsqrt 
clog as cdlog 
cexp as cdexp 
csin as cdsin 
ccos as cdcos 

[no]recursive [Don't] allocate local variables on the stack, thus allowing recursion (default 
-Mnorecursive). SAVEd, data-initialized, or namelist members are always 
allocated statically, regardless of the setting of this switch. 

[no]reentrant [Don't] generate reentrant code (default -Mnoreentrant). -Mreentrant 
disables certain optimizations that can improve perfonnance but may result 
in code that is not reentrant. Even with -Mreentrant, the code may still not 
be reentrant if it is improperly written (for example. if it declares static 
variables). 

reloc Ubs Causes -I switches that appear before source or object file names on the 
compiler command line to appear after these file names on the Id command 
line. 

[no]save [Don't] allocate all local data in static locations instead of on the stack 
(default -Msave). The effect is similar to using the save statement for all local 
variables. Recursion is not allowed with this switch in effect. -Msave may 
allow some older Fortran programs to run, but may decrease perfonnance. 

(J 

[) 

IJ 

I ~ 

] 

~
.T] 

. I 

1 
.Ao< 

(J 

l: 
( I 
, I 

...J 

[J 



1"111 

.lor 

r: 
(
'~ 

""I 

1'''', 
'"' 

( ... ., 
'" 

(-~I 

I ~I 

••• j 

( ... .., 
,.' 

I: 
( ~, 

..i.:1 

r·~' 

1··-
• ,,1 

r: 
( . ..., 

d 

r: 
c 

Paragon'" System Fortran Compiler User's Guide The 1f7? Driver 

[no ]signextend [Don't] sign-extend the result of a conversion of a signed integer to a smaller 
signed type (default -Mnosignextend). For example, if -Msignextend is in 
effect and an integer"'4 containing the value 65535 is converted to an 
integer*2, the value of the integer"'2 will be -1. This option is provided for 
compatibility with other compilers. -Msignextend will decrease 
perfonnance. 

spliUoop _ ops=n 
Set a threshold of n floating-point operations within a loop. Irmennost loops 
whose number of floating-point operations exceeds n are split. Each 
floating-point operation counts as two. The default for n is 40 when -Mvect 
is used. 

nospIiUoop _ ops 
Do not split loops when the floating-point operation threshold is exceeded. 
When -Mvect is specified, innennost loops whose number of floating point 
operations exceed 40 are split by default. This switch turns the default off. 

split_loop_refs=n 
Set a threshold of n array element loads and stores within a loop. Innennost 
loops whose number ofloads and stores exceeds n are split. The default for n 
is 20 when -Mvect is used 

nospliUoop _ refs 
Do not split loops when the array element loads and stores threshold is 
exceeded. When -Mvect is specified, innennost loops whose number of array 
element loads and stores exceeds 20 are split by default. This switch turns the 
default off. 

standard Flag non-ANSI-Fortran77 usage . 

[no]streamall [Don't] stream all vectors to and from cache in a vector loop (default 
-Mstreamall). When -Mnostreamall is in effect, the compiler chooses one 
vector to come directly from or go directly to main memory, without being 
streamed into or out of cache. 

[no]strideO [Don't] inhibit certain optimizations and allow for stride 0 array references. 
-MstrideO may degrade perfonnance, and should only be used if zero stride 
induction variables are possible. (default -MnostrideO). 

unixlogical Set the value of a logical expression to one if the result is .TRUE •. 

2-13 



The if77 Driver 

2-14 

Paragon™ System Fortran Compiler User's Guide 

unroll [ =option· [,option ... ]] 

nounroll 

[no]upcase 

Invoke the loop unroller and set the optimization level to 2 if it is set to less 
than 2. option is one of the following: 

c:m 

n:u 

Do not unroll loops. 

Completely unroll loops with a constant loop count 
less than or equal to m. If m is not supplied, the default 
value is 4. 

Unroll loops that are not completely unrolled or have 
a non-constant loop count u times. If u is not supplied, 
the unroller computes the number of times a loop is 
unrolled. 

[Don't] preserve case in names (default -Mnoupcase). -Mnoupcase causes 
all names to be converted to lower case. Note that, if -Mupcase is used, then 
variable name Q is different than variable name q, and keywords must be in 
lowercase. 

vect[ =option[,option ... ]] 
Perform vectorization (also enables -Mvintr). If no options are specified, 
then all vector optimizations are enabled. Note that -Mvect causes -00, -01 
optimization levels to be prevented; -02 is the default while -03 and -04 are 
supported The available options are: 

altcode[:number] 

noaltcode 

Produce non-vectorized code to be executed if the loop 
count is less than or equal to number. Otherwise 
execute vectorized code. The default value for number 
is 10. 

Generate no non-vectorized alternate code. 

cachesize:number 

noassoc 

This sets the size of the portion of the cache used by 
the vectorizer to number bytes. Number must be a 
multiple of 16, and less than the cache size of the 
microprocessor (16384 for the i860 XP, 8192 for the 
i860 XR). In most cases the best results occur when 
number is set to 4096, which is the default (for both 
microprocessors). 

When scalar reductions are present (for example, dot 
product), and loop unrolling is turned on, the compiler 
may change the order of operations so that it can 

._---_._----- -------------------~-----

[ .. ..., 
.AII 

I T', 
i,...J 

1-": ... 

c 



I: 
r: 
r: 
r: 

r: 
r .... 

I . ..., 
. oJ 

1"'""1 

"I 

1."1 

~, 

r~ 

I: 

r~ 

r: 
I) 

F'1 1.-1 

Paragon'"' System Fortran Compiler User's Guide The if77 Driver 

[no]vintr 

[no]xp 

recog 

generate better code. This transfonnation can change 
the result of the computation due to round-off error. 
The use of noassoc prevents this transformation. 

Recognize certain loops as simple vector loops and 
call a special routine. 

smallvect[ :number] 

streamlim:n 

transform 

This option allows the vectorizer to assume that the 
maximum vector length is no greater than number. 
number must be a multiple of 10. If number is not 
specified. the value 100 is used. This option allows the 
vectorizer to avoid stripmining in cases where it 
cannot determine the maximum vector length. In 
doubly-nested, non-perfectly nested loops this option 
can allow invariant vector motion that would not 
otherwise have been possible. Incorrect code may 
result if this option is used, if a vector takes on a length 
greater than specified . 

This sets a limit for application of the vectorizer data 
streaming optimization. If data streaming requires 
cache vectors of length less than n, the optimization is 
not perfonned. Other vectorizer optimizations are still 
perfonned. The data streaming optimization has a high 
overhead compared to other loop optimizations, and 
can be counter-productive when used for short vectors. 
The n specifier is not optional. The default limit is 32 
elements if streamlim is not used. 

Perform high-level transformations such as loop 
splitting and loop interchanging. This is normally not 
useful without -Mvect=recog. 

-Mvect with no options means the following: 
-Mvect=recog,transform,cachesize:4096,a1tcode:l0. 

[Don't] perform recognition of vector intrinsics (default -Mnovintr, unless 
-Mvect is used). 

[Don't] use i860 XP microprocessor features (default -Mxp). See the i860™ 
64-Bit Microprocessor Family Programmer's Reference Manual for 
information on the differences between the i860 XP microprocessor and the 
original i860 XR microprocessor. 

2-15 



Them Driver Paragon TIl System Fortran Compiler User's Guide 

Location of Include Files 

The following command line switch lets you add a specified directory to the compiler's search path 
for include files: 

-Idirectory 

where directory is the pathname of the directory to be added. If you use more than one -I switch, the 
specified directories are searched in the order they were specified (left to right). 

The INCLUDE statement directs the compiler to begin reading from another file. The compiler uses 
two rules to locate the specified file. Note that the Fortran INCLUDE statement is different from 
the #include statement, whcih uses the C preprocessor. 

1. If the filename specified in the INCLUDE statement includes a pathname, the compiler begins 
reading from the file it specifies. 

2. If no pathname is provided in the INCLUDE statement, the compiler searches for the file in the 
following order: 

any directories specified with-I 

• the directory containing the source file 

• the current directory 

Optimization Level 

2-16 

The following command line switch lets you set the optimization level explicitly: 

-O[level] 

where level is one of the following: 

o 

1 

2 

A basic block is generated for each Fortran statement. No scheduling is done 
between statements. No global optimizations are performed. 

Scheduling within extended basic blocks is performed. Some register 
allocation is performed. No global optimizations are performed. 

All level 1 optimizations are performed. In addition, traditional scalar 
optimizations such as induction recognition and loop invariant motion are 
performed by the global optimizer. 

(J 

1."'.'1 joi 

(J 

1."1 
I"" 

IJ 



P 
I ..... 

( '."1 
IIJ 

r: 
I: 
r: 
I """ 

.f.! 

r: 

r: 
I "'.' 

" 

I~ 

1= 
I

'~ 

41 

r: 

IJ 

Paragon™ System Fortran Compiler User's Guide The imOrlver 

3 

4 

All level 2 optimizations are perfonned. In addition, software pipelining is 
perfonned. 

All level 3 optimizations are perfonned, but with more aggressive register 
allocation for software pipelined loops. In addition, code for pipelined loops 
is scheduled several ways, with the best way selected for the assembly file . 

If -0 is used without a level, the optimization level is set to 2. If you do not use the -0 switch, the 
default optimization level is 1. 

NOTE 

When compiling an application for debugging, you will get the best 
results using -00. 

If you prefer optimized code to "debuggability," use -02. See Chapter 3 for infonnation on 
additional compiler optimization features. 

Generating Debug Information 

To compile for debugging you should use the -g compiler switch. The -g switch is equivalent to 
-Mdebug -Mframe -00. These switches have the following effects: 

-Mdebug 

-Mframe 

-00 

Generate symbol and line number infonnation. 

Generate stack frames on function calls. (Default -Mnoframe.) Debugging 
code without stack frames generated on function calls will result in stack 
tracebacks that have missing calls when you use the frame command. 

Optimization off. If you do not turn optimization off, access to individual 
source lines will be decreased, and display or modification of variables and 
registers will probably have unpredictable results. 

You can debug programs not compiled for debugging, but your ability to debug will be very limited. 
The debugging information generated by -g increases the object flle size. 

Note that -Mvect causes the compiler to ignore optimization levels less than 2. For example, -g 
-Mvect is the same as -g -Mvect -02. Optimization cannot be turned off when+ -Mvect is used. 

Controlling the Link Step 
The following switches let you control the link step (they are all passed directly to the linker): 

2-17 



The ifl7 Driver Paragon TM System Fortran Compiler User's Guide 

-s Strip symbol table infonnation. 

-r Generate a relinkable object file. 

-m Produce a link map. 

-L Change the default library search path. 

-I Load a specific library. 

Stripping Symbols 

The following command line switch strips all symbols from the output object file: 

-s 

This results in a smaller object file, but makes it more difficult to debug. 

Generating a Relinkable Object File 

The following command line switch generates a relinkable object file: 

-r 

1], 

~ 

(J 

(
'l'1 
'I I .JiJ. 

When you use the -r switch, the linker keeps internal symbol infonnation in the resulting object file. [ J 
This lets you link the object file together with other object files later. 

Producing a Link Map 

The following command line switch produces a link map on the standard output: 

-m 

The link map lists the start address of each section in the object file. To get more infonnation about 
the object file, use the dump860 command. 

Linker Libraries 

2-18 

The following switch adds a directory to the head of the linker's library search path: 

-Ldirect:ory 

where directory is the pathname of a directory that the linker searches for libraries. The linker 
searches directory first (before the default path and before any previously specified -L paths). 

(J 

IJ 
I: 
I: 



(
.~ 

.... 

I-cOO 

.Ai 

I: 
r: 
I~ 
I ~., 

I .•. i 

( . .., 
... 1 

I ,.., 
~l"J 

I~ 

r: 
Il 

Paragon™ System Fortran Compiler User's Guide The if77 Driver 

The following switch tells the linker to use a specific linker library: 

-llibrary 

The linker loads the library Iiblibrary.a from the first library directory in the library search path in 
which a file of that name is encountered. 

See the Id860 manual page in Appendix D for more information on the linker's library search path. 

Controlling Mathematical Semantics 
The following command line switch lets you request special mathematical semantics from the 
compiler and linker: 

-Koption 

where option is one of the following: 

ieee 

ieee=enable 

ieee=strict 

noieee 

If used while linking, links in a math library that conforms with the IEEE 754 
standard . 

If used while compiling, tells the compiler to perform real and double 
precision divides in conformance with the IEEE 754 standard. 

If used while linking, has the same effects as -Kieee, and also enables floating 
point traps and underflow traps. If used while compiling, has the same effects 
as -Kieee. 

If used while linking, has the same effects as -Kieee=enable, and also enables 
inexact traps. If used while compiling, has the same effects as -Kieee. 

If used while linking, produces a program that flushes denormals to 0 on 
creation (which reduces underflow traps) and links in a math library that is 
not as accurate as the standard library, but offers greater performance. This 
library offers little or no support for exceptional data types such as INF and 
NaN, and will trap on such values when encountered. 

If used while compiling, tells the compiler to perform real and double 
precision divides using an inline divide algorithm that offers greater 
performance than the standard algorithm. This algorithm produces results that 
differ from the results specified by the IEEE standard by no more than three 
units in the last place. 

2-19 



._--_ .... -----.-.----~--.-----" .. -.-----.. -----------.---- ........ - ... -_._---------------

The if77 Driver 

trap=fp 

trap=align 

Paragon'" System Fortran Compiler User's Guide 

If used while compiling, disables kernel handling of floating point traps. Has 
no effect if used while linking. 

If used while compiling, disables kernel handling of alignment traps. Has no 
effect if used while linking. 

·Kieee is the default. See "Non-IEEE Math (-Knoieee)" on page 3-12 for more information on the 
·K switch. 

Controlling the Driver Output 
The following switches let you control the driver's outputs: 

·ox 

·0 

·v 

·vv 

·V 

Create an executable application for multiple nodes. 

Specify the name of the output file. 

Print the version banner for each tool (assembler, linker, etc.) as it is invoked. 

Display the driver version number and the location of the online release notes. 
but do not perform any compilation. 

Print the entire command line for each tool as it is invoked, and invoke each 
tool in verbose mode (if it has one). 

Executable for Multiple Nodes 

2-20 

By default, the ir77 driver creates an executable for a single node. The following command line 
switch creates an executable for multiple nodes: 

-nx 

The·ox switch has no effect if used while compiling. If used while linking, it has two effects: 

• It links in libnx.a, the library that contains all the calls in the Paragon TN System Fortran Calls 
Reference Manual. It also links in libmach.a and optionsiautoinit.o. 

------------~------------

(~ 
_AI 

(. "l 

Jo.I 

(
'1'1 
'1 i 

-1IliI 

(J 

( ."., 

J 



(' 
.AiI 

r: 
1··"1.· 

.J.J 

r.
·~ 

.01 

r: 

1= 
r~ 

1""'1 

-"" 

r~ 
1~1 

I~ 

1
"~1 

~I 

I.""." 
"" 

I: 

Paragon™ System Fortran Compiler User's Guide Theim Driver 

It links in a special start-up routine that automatically copies the program onto multiple nodes, 
as specified by standard command line switches and environment variables. See the Paragon ™ 
System User's Guide for information on these command line switches and environment 
variables. 

For compatibility with the iPSC® system, the im driver currently accepts the following command 
line switch, which is synonymous with -nx: 

-node 

However, support for this switch may be dropped in a future release. 

Name of Executable File 

By default, the executable file is named a.out (or file.o if you use the -c switch). However, the 
following command line switch lets you name the file anything you like: 

-ofile 

where file is the desired name. 

Verbose Mode 

By default, the driver does its work silently. However, the following command line switch causes 
the driver to display the version banner of each tool (assembler,linker, etc.) as it is invoked: 

-v 

The following command line switch causes the driver to identify itself in more detail than the -V 
switch and display the location of the online compiler release notes. No compilation is performed: 

-w 

The following command line switch causes the driver to display the entire command line that 
invokes each tool, and to tum on verbose mode (tf available) for each tool: 

-v 

2-21 



The if77 Driver Paragon TM System Fortran Compiler User's Guide 

Overriding Compiler Defaults 

2-22 

You can override the default switch settings for the Paragon Fortran compiler by creating a compiler 
default file in your home directory, your current working directory, or the directory where the 
compiler driver resides. This file must be named .icfrc. The default file contains compiler switches 
as they would appear on the command line, delimited by spaces, tabs, or new lines. The file can 
contain any number of lines. 

The following is an example of the contents of a default file: 

-03 -Mvect 
-Knoieee -Mframe -Mnoperfmon 

The compiler searches the following directories in the order listed for the .icfrc file. 

1. your current working directory 

2. your home directory 

3. The directory where the compiler driver resides. If you place a .icfrc file in usrlccslbin on a 
Paragon system, you should also have the system administrator create a link to that directory in 
usrlbin. 

If you have default files in more than one of these directories, the compiler uses the first one found. 

NOTE 

The .icfrc file is used by both the Paragon C compiler and the 
Paragon Fortran compiler. It is suggested that .icfrc files that 
reside in your home directory or the directory where the compiler 
driver resides contain only switches that are common to both 
compilers. 

When you invoke the compiler, the compiler driver reads the default file, if it exists, and constructs 
a new command line. The command line consists of the switches in the .icfrc file first, then the 
switches in the command line you used to invoke the compiler. Because of this order, you should 
not put arguments in the default file if they must go at the end of the command line. An example 
would be directives to link to libraries. The following is the order of precedence for compiler 
switches: 

1. specific entries on the command line 

2. entries in the .icfrc file 

3. default switch settings 

(J 

U 

( .. l 
..oJ 

[J 

[ '"' , : 

~.i 

[J 

[J 



13 
r: 
I: 
r: 
r: 
I: 
1_'''1 

llr:J 

I_I 

I'-"! 

.~ 

I'J 

I: 
I~ 

rJ 

Paragon TM System Fortran Compiler User's Guide The im Driver 

For example, suppose you have the following entries in your .icfrc file: 

-03 -Mvect 

If you use the following command line to invoke the compiler: 

icc -04 example.c 

The compiler will generate the following command line: 

icc -03 -Mvect -04 example.c 

Because the -04 switch from the compiler invocation comes after the -03 switch from the default 
file, the explicit command line switch overrides the default file switch, and the optimization level is 
set to 4. 

NOTE 

Although you can include file names and switches such as -c in 
the default file, this is not advisable because all arguments in the 
default file will appear on all compiler command lines. Arguments 
other than those needed to override default settings of switches 
should go in a make file. 

Control Directives 
Control directives alter the effects of certain command line switches or the default behavior of the 
compiler. While a command line switch effects the entire source file being compiled, control 
directives affect only selected subprograms or loops in the source file. Control directives allow you 
to fine tune selected routines or loops. 

Directives have the following syntax: 

cdir$[scope] directive_body 

The c in the directive syntax must be in column 1. For compatibility with other compilers, you can 
substitute cvd for cdir in a directive. 

scope can be I (loop), r (routine), or g (global) 

For directives that allow loop, routine, and global scope, the following rules apply: 

2-23 



Them Driver 

2-24 

·I(loop) 

r(routine) 

g(global) 

Paragon TM System Fortran Compiler User's Guide 

Indicates the directive applies to the next lexical loop. The directive does not 
apply to any loops that are enclosed by the next loop. Loop-scoped directives 
are only applied to DO loops. 

Indicates the directive applies to the code that follows the directive until the 
end of the routine. 

Indicates the directive applies to the code that follows the directive until the 
end of the file. 

For directives where loop scope is not allowed, the scope rules fall into two groups. 

The following rules apply to directives func32, frame, and opt: 

r(routine) 

g(global) 

Indicates the directive applies to the current routine, if it is in a routine. If it 
is not in a routine, it applies to the next routine. 

Indicates the directive applies to all routines that follow it. 

The following rules apply to directive bounds: 

r(routine) 

g(global) 

Indicates the directive applies to the code that follows the directive until the 
end of the routine. 

Indicates the directive applies to the code that follows the directive until the 
end of the file. 

If scope is not specified, the default scope for each individual directive is applied. Table 1-1 lists 
these defaults. Additional scope rules are described in the following section. 

directive_body can include any of the directives listed in Table 2-2. 

The body of the directive can immediately follow scope, or any number of blanks can separate scope 
from the body of the directive. Case is not significant in a directive name, so the names can include 
upper or lowercase characters. Case is significant for any variable names that appear in the body of 
the directive if the -Mupcase switch has been specified on the command line. 

Table 2-2 provides a summary of the supported directives. The default column specifies the default 
condition for each directive. The scope column lists the permitted scopes for each directive, with the 
default scope in parentheses. The name of a directive can be preceded by a -M. For example, 
-Mnoassoc is equivalent to noassoc. 

[~ 

IJ 

I] 

IJ 

IJ 

IJ 
[J 

( i ... 

IJ 



I: Paragon™ System Fortran Compiler User's Guide The ifn Driver 

I
-~ 

.. 
1_-

,M 

Table 2·2. Directive Summary (1 of 2) 

DIRECTIVE DESCRIPTION DEFAULT SCOPE 

a1tcode[n ]concur Execute inner loops without n=l00 O)rg 
reductions in parallel only if 
their iteration count exceeds n. 

a1tcode[n]concurreduction Execute inner loops with n=200 O)rg 
reductions in parallel only if 

1_'" 
_I 

their iteration count exceeds n. 

[no]assoc [Don't] perfonn associative assoc O)rg 
transfonnations 

[no]bounds [Don't] perfonn array bounds nobounds (r)g 
checking 

[no]concur [Don't] consider loops for noconcur O)rg 
parallelization 

[no]cncall [Don't] consider loops for nocncall (l)rg 
parallelization even if they 
contain calls or conditionals, 
their loop counts do not exceed 
thresholds, or they contain inner 
non-vectorizable loops 

dist=block Change concurrency NlA (l)rg 
characteristics to block 

I,~ disl=cyclic Change concurrency NlA (l)rg 
characteristics to cyclic 

1_"'1 

.. ...,:,. .. 

[no]depchk [Don't] check for potential data depcbk (l)rg 
dependencies 

[no]eqvchk [Don't] checkEQUIV ALENCE eqvchk (l)rg 
statements for data 
dependencies 

I: [no]func32 [Don't] align functions on nofunc32 (r)g 
32-byte boundaries 

ivdep Ignore potential data depcbk (l)rg 
dependencies 

[no]lstvai [Don't] compute last values Istval (l)rg 

2-25 



Them Driver Paragon ™ System Fortran Compiler User's Guide 

Table 2-2. Directive Summary (2 of 2) 

DIRECTIVE DESCRIPTION DEFAULT 

opt Select optimization level N/A 

[no]recog [Don't] recognize vector idioms recog 

[no]smallvect [Don't] assume short loop count nosmallvect 

[no]shortloop [Don't] assume short loop count noshortloop 

[no]swpipe [Don't] perfonn software swpipe 
pipelining transfonnations 

[no]transform [Don't] perfonn vector transform 
transfonnations 

[no]vector [Don't] perfonn vectorizations vector 

[no]vintr [Don't] recognize vector vintr 
intrinsics 

NOTE 

The Cray directive cdir$ [nojvector has routine scope instead of 
loop. The default scope for [nojvector when any other prefix is 
used, such as cvd$, is loop. ' 

SCOPE 

(r)g 

(l)rg 

(l)rg 

(l)rg 

(l)rg 

(l)rg 

(l)rg 

(l)rg 

Directive Descriptions 

2-26 

The following sections provide descriptions of each control directive. 

altcode[n]concur 

This directive alters the effect of the -Mconcur=altcode:n command line switch. The directive 
makes innennost loops without reduction parallel only if their iteration count exceeds n. Without this 
directive, the compiler assumes a default of 100. 

altcode[n]concurreduction 

This directive alters the effect of the -Mconcur=altcode]eduction:n command line switch. The 
directive makes innennost loops with reduction parallel only if their iteration count exceeds n. 
Without this directive, the compiler assumes a default of 200. 

[) 

[J 

[J 

( ~ ..... ' I 

oJ 

(J 

I: 
IJ 



I: 

1_·'" 
..J 

I~, 

I '"I 

.-,J 

I: 

Paragon™ System Fortran Compiler User's Guide The im Driver 

[n0] assoc 

This directive alters the effects of the -Mvect=noassoc or -Mconcur=noassoc command line 
switches. By default, when scalar reductions are present the vectorizer may change the order of 
operations to generate better code and allow parallelization of loops. Such transformations change 
the result of the computation due to roundoff error. The noassoc directive disables these 
transformations. 

[no]bounds 

This directive alters the effects of the -Mbounds command line switch. The bounds directive 
enables the checking of array bounds when subscripted array references are performed. By default, 
array bounds checking is not performed. 

[no]cncall 

This directive alters the effects of the -Mcncall command line switch. The cncall directive causes 
the compiler to consider loops within the specified scope for parallelization, even if they contain 
calls to user-defined routines, they contain conditional statements, their loop counts do not exceed 
the usual thresholds, or they contain inner non-vectorizable loops. If you use the cneall directive, 
you must specify -Mconcur on the compiler command line. 

[no]concur 

This directive alters the effects of the -Mconcur command line switch. The concur directive causes 
the compiler to consider loops within the specified scope for parallelization. If you use the concur 
directive, you must specify -Mconcur on the compiler command line. 

[no]depchk 

This directive alters the effects of the -Mdepcbk command line switch. When potential data 
dependencies exist, the compiler, by default, assumes that a data dependency exists which may 
inhibit certain optimizations or vectorizations. The nodepcbk directive directs the compiler to 
ignore these potential data dependencies. 

[no]eqvchk 

The noeqvcbk directive causes the compiler to ignore any dependencies between variables 
appearing in EQUIVALENCE statements. By default, the compiler checks for dependencies. 

2-27 



The If77 Driver 

2-28 

Paragon"" System Fortran Compiler User's Guide 

[no]func32 

This directive alters the effects of the -Mfunc32 command line switch. The func32 directive causes 
the compiler to alignfWlCtionS on a 32-byte boWldary. By default, fimctions are aligned on an 8-byte 
boWldary. 

ivdep 

The ivdep directive is equivalent to the nodepcbk directive. 

[no]lstval 

The compiler determines whether or not the last values for loop iteration control variables and 
promoted scalars must be computed. When the compiler determines it is necessary, it computes the 
last values. The noIstvai directive causes the compiler to not compute last values. 

There is no command line switch that corresponds to this directive. 

opt 

This directive overrides the value specified by the -0 command line switch. The syntax, for the opt 
directive is as follows: 

cdir$[ <scope>] opt=<level> 

scope can be either r or g, and level is an integer constant representing the optimization level desired 
for the subprogram (routine scope) or all subprograms in a flle (global scope). 

[n0] recog 

This directive alters the effects of the -Mvect command line switch. If the ·Mvect=transform 
switch is included on the command line, vector recognition is disabled for the entire compilation. 
The norecog directive allows selective disabling of vector recognition when the -Mvect switch is 
selected. The recog directive toggles a previous norecog. 

The recog directive only affects the compiler when ·Mvect is included on the command line. 

[J 

IJ 

I ~ 

jl 

( .. ~ 
J 



r: 
(: 
I··· ... 

J..: 

I : 
I: 
(": 

I~' 

(OO~ 

:£., 

I u 

, .~j 

10." 

.. ~ 

I~ 

r: 
(] 

() 

C 

Paragon™ System Fortran Compiler User's Guide The im Driver 

[no]smallvect 

This directive alters the effects of the -Mvect=smallvect command line switch. The smallvect 
directive has the following syntax: 

cdir$[scope] smallvect[ =count] 

scope can be g,l, or r. count is an integer constant that specifies the maximum iteration count for a 
loop whose count is not a constant. If count is not specified, the default value is 100. 

The default condition is nosmallvect, where the vectorizer does not make assumptions about the 
maximum iteration count for loops whose counts are not constants. 

[no]shortloop 

This directive is identical to the [no]smaIIvect directive. 

[no]swpipe 

The noswpipe directive causes the compiler to suppress software pipelining transformations that 
normally occur at optimization levels greater than 2. 

There is no command line switch that corresponds to this directive. 

[no]transform 

This directive alters the effects of the -Mvect=transform command line switch. The notransform 
directive can be used to inhibit vector transformations when the -Mvect switch is in effect. The 
transform directive can be used to toggle a previous notransform. The transform directive only 
affects compilation when the -Mvect switch is specified on the command line. 

[no]vector 

The novector directive disables vector transfonnations and vector recognitions. This directive only 
affects compilation when the -Mvect switch is specified on the command line. 

2-29 



----- ---_________ --- - _._ --_______________ ._ · __ r·· ___ ··_· _____ .. _______ _ 

The iff7 Driver Paragon 1M System Fortran Compiler User's Guide 

[nolvintr 

The novintr directive disables recognition of vector intrinsics. This directive only affects 
compilation when the -Mvect switch is specified on the command line. If both the norecog and vintr 
directives are present, the norecog directive takes precedence. 

Directive Examples 

2-30 

This section presents several examples that illustrate the effects of directives and the use of the scope 
specifiers. During compilation. a directive either turns a switch on or off, and the directive only 
applies to the section of code following the directive and defined by the scope specified. The scope 
can be the following loop, the current or following routine, or the rest of the program. 

The following program is used for the first example: 

subroutine sl(a,b,x,y,n) 
double precision a(n),b(n), x(n,n), y(n,n) 
do i=l,n 

a(i) = sin(b(i» 
do j = 1, n 

x(j,i) = cos(y(j,i» 
enddo 

enddo 
end 

When this subroutine is compiled using the -Mvect command line switch as follows, the sine and 
cosine functions are both recognized as operations on vectors, and the compiler produces code using 
the vector versions of the sine and cosine routines: 

if77 -Mvec~ -c -ovec~.o subsl.f 

You can use directives in the source code to alter the compiler behavior as follows: 

subroutine sl(a,b,x,y,n) 
double precision a(n), ben), x(n,n), y(n,n) 

cdir$l novintr 

(~, " 
. .tJ 

( I 
,JiI 

('~, 
' I, 

..iIii 

I","'l 1,,.,J 

~" l!I1 
, ' 

.".j 

~~' 

i .. J 

c 
[J 



r: 
I~ 

I: 
r: 

( : 
r: 
r~~ 
il ", 

I: 
c 
u 

Paragon™ System Fortran Compiler User's Guide 

do i=l,n 

cdir$l vintr 
a(i) sin(b(i» 

do j 1, n 
x(j,i) cos(y(j,i» 

enddo 
enddo 
end 

The if17 Driver 

In this version of the program, the compiler does not use the vector intrinsic sine routine, since the 
first directive turns off vector intrinsic recognition for the loop containing the sine. The second 
directive toggles the vintr switch before the nested loop, so the compiler uses a vector intrinsic 
routine for the cosine. 

The following example uses the r (routine) directive scope: 

cdir$r novintr 
subroutine s2(a,b,x,y,n) 
double precision a(n), ben), c(n), den) 

cdir$l vintr 
do i=l,n 

a(i) = sin(b(i» 
enddo 
do j = 1, n 

c ( j ) cos ( d ( j ) ) 
enddo 
end 

When subroutine s2 is compiled using the -Mvect command line switch, the sine intrinsic is 
recognized as an operation on a vector and the compiler produces code using the vector intrinsic sine 
routine: 

if77 -Mvec~ -c -ovec~.o subs2.f 

Since the scope of the novintr directive is for the routine, vector recognition is disabled for the 
subroutine s2. However, the loop-scoped directive vintr appears before the do loop containing the 
reference to sin( ), so vector intrinsic recognition is enabled only for that loop. Since the loop 
containing the reference to cos( ) does not have a loop-scoped vintr directive in effect, the vector 
version of cos( ) is not recognized. 

2-31 



The 1f77 Driver 

2-32 

Paragon 1M System Fortran Compiler User's Guide 

In the following example, the global novintr directive turns off vector intrinsic recognition for the 
entire file: 

cdir$g novintr 
subroutine s3(a,b,x,y,n) 
double precision a(n), ben), x(n,n), y(n,n) 
do i=l,n 

a ( i) = sin (b ( i) ) 
do j = 1, n 

x(j,i) = cos(y(j,i» 
enddo 

enddo 
end 

[] 

[J 

(] 

[
"l , ' 

. .1 

~J 

( '1, . , 
, .~ 

[J 

(J 

(~ 



I: 

I~-

.-Ai 

I: 

r~ 
I ~'~I 

.... ! 

I
'~""i 

.J 

I: 
[J 

I: 
1_, 

. Arj 

I: 
I: 
c 

Optimizing Programs 

Introduction 
This chapter gives you a strategy for using the compiler's optimization features to help maximize 
the single-node performance of your programs. It also explains what the most commonly-used 
compiler optimization switches do and how they interact with each other. Finally, it gives you a few 
tips for changes you can make in your code to help the program run faster . 

The techniques discussed in this chapter are single-node optimizations only. They make the program 
run faster on each node, but do not improve the program's internode communications. See the 
Paragon ™ System User's Guide for information on improving the performance of a multi-node 
application. 

Optimization Procedure 
This section presents the recommended procedure for optimizing a new or ported program. The 
fundamental characteristics of this procedure are adding optimizations in a controlled manner and 
testing the program after each optimization. 

1. Compile your program with the -02 switch for scalar optimizations. The optimizations 
performed at level 2 are considered "safe"-if your program works at all, it should continue to 
work (and work faster) with -02. 

2. Test the program to be sure it works as you expect. 

3. When the program is working, use the performance analysis tools to determine which parts of 
the code are taking the most time. (See the Paragon ™ System Application Tools User's Guide 
for information on performance analysis.) 

4. Inspect the time-consuming code to see if will benefit from vectorization. In general, 
vectorization helps floating-point math on large vectors or in loops. It does not help integer 
math, string operations, or file operations. 

3-1 



Optimizing Programs Paragon 1M System Fortran Compiler User's Guide 

5. Recompile only those files that will benefit from vectorization with the -04 and -Mvect 
switches. 

6. Test the vectorized program to be sure it is still working and has not slowed down. (If the 
program gives unexpected results or runs more slowly than it did before, try recompiling the 
vectorized files with -03 -Mvect instead; if loop counts are small, try -04 without -Mvect 
instead.) 

7. Examine your program to see if it is "numerically stable." A program is said to be numerically 
stable if it does not depend on the behavior specified by the IEEE standard for floating-point 
mathematics, such as proper behavior in case a denormal, infinity, or "not-a-number" occurs 
during a calculation. Recompile and/or link only those files that are numerically stable with the 
-Knoieee switch. (The differences between using -Knoieee when compiling and using 
-Knoieee when linking are described later in this chapter.) You may get different results with 
-Knoieee on compile and link, and on different source files; try a variety of combinations. 

8. If you have MP nodes, compile with -Mconcor -04 -Mvect. Programs with large loop counts 
can often run faster on two CPUs. 

9. Test the program after each attempt to be sure it is still working and has not slowed down. 

Further optimizations may be possible at this point. Depending on the program, you may be able to 
use additional compiler optimization switches (as described under "Compiler Switches for 
Optimization" on page 3-3) and/or modify your code for greater performance (as described under 
"Code Changes for Optimization" on page 3-15). Be sure to test the program after each change. 

(J 

(.J 

~.
"l 

, , 

j 

Shortening Turnaround Time 

3-2 

As you can see, optimizing a program can involve many "compile, link, run" cycles. You may be 
able to reduce the time consumed by each run by using one or more of the following techniques: 

• Use a smaller input file. 

• Temporarily reduce the count in the outermost loop of the program. 

• Add a call to exitO after a key subroutine. 

• Extract key subroutines into a separate program for testing. 

(J 

These techniques can help you to optimize your program more quickly by performing more tests per .- i 
unit time. However, when you use these techniques, be sure that the reduced data or program I 
fragment is representative of the whole program. ,,.J 

(J 



(
1'1. " 

ill 

1-: 

I: 
1_...., 

... J 

(
-.,.~ 

~, 

(--,., 

: . __ 'J 

( -'" 

• .... 'J 

I: 
r--, 

,~ I 

I: 
I .. : 

. "" 

1_--., 
...J 

I: 
I: 

--_.- .----------

Paragon™ System Fortran Compiler User's Guide Optimizing Programs 

Compiler Switches for Optimization 
The irT7 command has a number of switches you can use to request compiler optimizations: 

-0 Perfoxms general code optimizations. 

-Mvect Perfoxms vectorization. 

-Mconcur Perfoxms loop parallelization. 

-Mcncall Parallelizes loops with calls. 

-Munroll Unrolls loops. 

-Knoieee Uses faster but less accurate floating-point math. 

-Ikmath Links to an optimized BLAS library. 

-Minline Replaces subprogram calls with inline code. 

-Mnodepchk Ignores potential data dependencies . 

-Mstreamall Instructs the compiler to stream all vector stores in a loop to the processor 
cache.Best used with -Mvect. 

These switches are discussed in the remainder of this section. 

General Optimizations (-O) 

The -0 switch perfoxms general code optimization. The -0 can be followed by a number that 
specifies the optimization level, from 0 (no optimization) to 4 (all optimizations). Each optimization 
level perfoxms all the optimizations that the levels below it perfoxm . 

If you don't use the -0 switch, you get optimization levell. If you use -0 with no number following 
it, you get optimization level 2 . 

Programs optimized at levels above 0 cannot be debugged easily with a symbolic debugger. If you 
are compiling an application for debugging, you should use the -00 switch. 

Scalar Optimizations (-01, -02) 

Optimization levels 1 and 2 perfoxm scalar optimizations. These optimizations do not use the special 
features of the i860™ microprocessor, but they can improve the perfoxmance of most code and are 
unlikely to break working code. 



Optimizing Programs Paragon ™ System Fortran Compiler User's Guide . 

• Level 1 perfonns only local optimizations: those that affect only a single Fortran statement. 
These optimizations include algebraic identity removal (removal of subexpressions that do 
nothing, such as a=a), and redundant load and store elimination (elimination of unnecessary 
memory accesses). 

• Level 2 perfonns global optimizations: those that can affect multiple Fortran statements. These 
optimizations include invariant code motion (moving code that is the same on each iteration of 
a loop out of the loop) and global register allocation (assigning variables to registers based on 
how and when they are used). 

Software Pipelining (-03, -04) 

Optimization levels 3 and 4 make the compiled program use the i860 microprocessor's pipelining 
and dual-instruction mode features. These optimizations are beneficial only for code that perfonns 
intensive floating-point mathematics, particularly in loops. Since this type of code is also usually 
vectorizable, the -03 and -04 switches are usually used together with -Mvect. 

Pipelining and dual-instruction mode allow the i860 microprocessor to work on more than one 
operation at a time. 

Pipelining means that the i860 microprocessor's floating-point unit can accept new input while 
previous inputs continue to move toward the result. Forexample, a floating-point addition takes 
three clock cycles, but the adder can accept new input every clock cycle. (The results of each 
input emerge from the adder three clock cycles after the operands entered.) 

Pipelining means that a sequence of similar operations can be perfonned in less time. However, 
it takes a few cycles to prime the pipeline and a few cycles to drain it; this means that a pipeline 
must have a certain minimum number of operations to be efficient. 

The exposed pipeline of the i860 microprocessor allows floating-point adds and multiplies to 
occur simultaneously (this is called dual-operation mode). 

Dual-instruction mode means that the i860 microprocessor's floating-point unit and integer unit 
can be active at the same time. For example, the floating-point adder can perfonn an addition at 
the same time the integer unit is loading the operands for the next addition. 

Optimization levels 3 and 4 both attempt to schedule the program's operations to make the most use 
of pipelining and dual-instruction mode. This procedure is called software pipelining. For example, 
if the program contains an addition and a multiplication that are near each other but do not depend 
on the other's results, the compiler can schedule the two operations to occur at the same time. 

• Level 3 uses a single scheduling algorithm on all candidates for software pipelining. 

• Level 4 considers several scheduling algorithms for each candidate, and chooses the one that 
gives the best perfonnance (or none of them, if the non-pipelined code is faster); 

[J 
~ 
1.AJ 

(J 

I] , 

( .
. 'i"l 

. ., 
..... 

I: 



I] 

(---.. 
[ ' .... 

. _~iIrJ 

r: 
r: 
r: 
I~' 

I, "., 
", 

I: 
1= 
I ": 
(~ 

I~ 

I: 

I '.'~ 

-', 

( '. "1 
,,,J 

I: 

Paragon™ System Fortran Compiler User's Guide Optimizing Programs 

In theory, the code produced by level 4 should always be faster than the code produced by level 3, 
at the cost of a very small increase in compilation time. You should try -04 fIrst, then try -03 if the 
results are not satisfactory. 

Keep in mind that optimization levels 3 and 4 benefIt code that is floating-point intensive. Code that 
spends most of its time in string handling, disk operations, or other non-floating-point operations 
will generally not benefIt from optimization levels greater than 2. 

Vectorization (-Mvect) 

The -Mvect switch performs vectorization. Vectorization consists of three processes, which are 
described in the next section. Vectorization is benefIcial only for code that performs floating-point 
calculations on long vectors, typically in loops of 10 or more iterations. 

The difference between -03/-04 and -Mvect is that optimization levels 3 and 4 (by themselves) 
perform pipelining on your code as written, while -Mvect attempts to rearrange your code to make 
more effective pipelining possible. This is why -03/-04 and -Mvect are usually used together. 
-Mvect with an optimization level less than 3 will rearrange the code, but no pipelining will be 
performed; -03 or -04 without -Mvect will perform software pipelining, but will not fInd as many 
candidates for pipelining as they would with -Mvect. (However, if vector lengths are short, -04 
alone may work better than -04 -Mvect.) 

The vectorization petformed by -Mvect affects only single nodes. The compiler cannot parallelize 
vectors by splitting them up among several processors; you must do that yourself. 

-Mvect will force an optimization level greater than or equal to 2. -Mvect -01 results in the -01 
being ignored. 

How Vectorization Works 

Vectorization consists of three processes: 

Nested loop transjormation--the compiler attempts to rearrange nested loops to increase 
possibilities for pipelining. For example: 

100 

do 100 j = 1, 1000 
do 100 i = 1, 3 

x(i,j) = x(i,j) * a(i,j) 
continue 

Given this code, the compiler may rearrange the loops so that the loop over j becomes the inner 
loop, resulting in 3 vectors of length 1000 instead of 1000 vectors of length 3. 

3-5 



Optimizing Programs Paragon 1M System Fortran Compiler User's Guide 

Cache management-the compiler attempts to perfonn streaming (loading all the operands for 
a loop into the microprocessor's data cache before beginning the loop) and stripmining 
(breaking a loop into smaller chunks so that the operands for each chunk will fit into the cache). 

• . Vector idiom recognition-the compiler scans the code for certain common vector operations 
and replaces them with calls to hand-written assembly routines that do the same thing faster. For 
example, the following source code perfonns a dot product: 

do i = 1, 100 
s = s + a(i) * b(i) 

enddo 

The vector idiom recognizer will replace the code produced by these statements with a single 
call to a hand-coded dot-product routine. 

Controlling Vectorization (-Mvect= ... ) 

You can control the vectorizer by specifying options to -Mvect. The available options are as follows: 

-Mvect=recog 

-Mvect=transrorm 

-Mvect=Doassoc 

-Mvect=smallvect[:number] 

-Mvect=C8chesize:number 

streamlim:n 

Perform vector idiom recognition and cache management 

Perform nested loop transformation. transform is not 
normally useful without recog. 

Do not rearrange the order of operands in scalar reductions 
(such as dot product). Rearranging operands can result in 
faster code, but may give different results due to round-off 
error. 

Assume that no vectorizable do loop is iterated more than 
number times. Number must be a multiple of 10; if :number 
is omitted, the value 100 is used. This option improves the 
perfonnance of doubly-nested, non-perfectly-nested lOOps, 
but may result in incorrect code if any vectorizable loop has 
more iterations than the specified number. 

Use at most number bytes of the data cache for cache 
management of vector operations. Number must be a 
multiple of 16, and less than the cache size of the 
microprocessor (16384 for the i860 XP, 8192 for the 
i860XR). 

This sets a limit for application of the vectorizer data 
streaming optimization. If data streaming requires cache 
vectors of length less than n, the optimization is not 
performed. Other vectorizer optimizations are still 
performed. The data streaming optimization has a high 

(J 

[: 
f"l 
I ~~: 

(J 



r: 

I
-~ 

-~ 

(~ 

r: 

I "" 
• .1l...I' 

I -'If! 

.1 

1= 
1_-.., 

.1.<1 

r: 
IJ 
I] 

C 

Paragon™ System Fortran Compiler User's Guide 

-Mvect=a1tcode:number 

Optimizing Programs 

overhead compared to other loop optimizations, and can be 
counter-productive when used for short vectors. The n 
specifier is not optional. The default limit is 32 elements if 
streamlim is not used. 

Produce non-vectorized code to be executed if the loop 
count is less than or equal to number. Otherwise execute 
vectorized code. The default value for number is 10. 

-Mvect with no options means -Mvect=recog,transform,cachesize:4096,aItcode:l0. 

You can also control vectorization by using the following switches: 

Set a threshold of n floating-point operations within a loop. 
Innennost loops whose number of floating-point 
operations exceeds n are split. Each floating-point 
operation counts as two. The default for n is 40 when 
-Mvect is used. 

Do not split loops when the floating-point operation 
threshold is exceeded. When -Mvect is specified, 
innennost loops whose number of floating point operations 
exceed 40 are split by default. This switch turns the default 
off. 

Set a threshold of n array element loads and stores within a 
loop. Irmennost loops whose number of loads and stores 
exceeds n are split. The default for n is 20 when -Mvect is 
used 

Do not split loops when the array element loads and stores 
threshold is exceeded. When -Mvect is specified, 
innennost loops whose number of array element loads and 
stores exceeds 20 are split by default. This switch turns the 
default off. 

Preventing Associativity Changes (-Mvect=noassoc) 

The switch -Mvect=noassoc requires a bit more explanation than the others. 

In most cases, the rearrangements perronned by -Mvect do not affect the results of the calculations 
perronned by your program. One exception is that the compiler takes advantage of the associativity 
of floating-point operations to produce faster code. For example, consider the following dot product. 

3-7 



---- ---------- ------------- --- -----_._----------.. _--

Optimizing Programs 

do i 1, 100 
s s + a(i) * b(i) 

enddo 

Paragon 1M System Fortran Compiler User's Guide 

The order of evaluation of this dot product is as follows: 

s = (( ( (s + (a (1) *b (1) )) + (a (2) *b (2) )) + (a ( 3) *b ( 3) )) + ... ) 

However, the vector idiom recognizer takes advantage of the associativity of floating-point addition 
to rearrange it as follows: 

s = s + ««(a(l)*b(l)) + (a(2)*b(2))) + (a(3)*b(3))) + ... ) 

The rearranged equation is the same algebraically as the original, and runs faster than the original 
(because it presents a more uniform series of operations for pipelining), but may give slightly 
different results. You can prevent this type of rearrangement by using the switch -Mvect=no8SSOC. 

Getting Information About Vectorization (-Minfo=loop) 

You can find out what the vectorizer is doing by using the switch -Minfo=)oop while compiling with 
-Mvect. This switch sends information about what vectorizations the compiler is performing to the 
standard error output. For example: 

% if77 -04 -Mvec~ -KDoieee -Minfo=loop -c nas.f 
II SW pipelined loop wi 21 cycles and 2 columns wi cnt 7 gend for line 27 
Vect: streaming data and stripmining loop at line 64. strip size = 1008. 
Interchanging loop lines 125, 126 
Vect: streaming data and stripmining loop at line 127. strip size = 200. 
Vect: loop at line 122 replaced by call to __ filI4. 
II Software pipelined loop wi 8 cycles and 3 columns for line 127 
II Pipe/Dual-inst 1 column 21 cycle loop gend for line 127 
Vect: streaming data for loop at line 164. No stripmine loop required. 
II SW pipelined loop wi 5 cycles and 2 columns wi cnt 128 gend for line 164 
Vect: streaming data and stripmining loop at line 392. strip size = 336. 
Vect: loop at line 392 replaced by call to __ zxmy4s. 
Distributing loop at line 751, 2 new loops 

• 

• 

Note that optimizations may not be performed in order by line number (for example, the fifth 
message refers to line 122, while the fourth, sixth, and seventh messages refer to line 127). The 
meanings of the messages in this example are as follows: 

II SW pipelined loop wi 21 cycles and 2 columns wi cnt 7 gend for line 27 

[J 

[J 

[ : 
. ..J 

[] 

IJ 

J""'"! 
Iii. j"",} 

I: 

I: 



I: 
r: 

(-"" 
. ..J 

IJ 

I-~ 

I , 
.J 

I_J 

r: 
IJ 

Paragon™ System Fortran Compiler User's Guide Optimizing Programs 

This means that the optimizer has performed software pipelining for a loop beginning at line 27 of 
the source file. Each iteration of this loop takes 21 machine cycles (best-case) to execute. Two 
"columns" of operations are logically scheduled into the pipelines; that is, there are two sequences 
of instructions "in the pipeline" at once. The phrase "cnt 7" indicates that the loop has seven 
iterations, and the word "gend" is an abbreviation for "generated." 

vect: streaming data and stripmining loop at line 64. strip size = 1008. 

This means that the vectorizer has performed cache management by inserting a call to a built-in 
routine that fills the i860 microprocessor's data cache before the beginning of the loop. Each "strip" 
(that is, each chWlk of data) contains 1008 data values. 

The size of the strip is chosen to fill the portion of the cache used by the vectorizer. The larger the 
amount of data required by each iteration of the loop, the smaller the maximum strip size for that 
loop. The default for the vectorizer's portion of the cache is 4096 bytes, so in this case each iteration 
of the loop probably requires four bytes of data. You can change the vectorizer's portion of the 
cache, and thus the strip size, with the switch -Mvect=eacbesize:number. 

Interchanging loop lines 125, 126 

This means that the vectorizer has performed nested loop transformation by exchanging two lines of 
code. This transformation typically gives either more iterations or unit stride in the innermost loop. 

Vect: streaming data and stripmining loop at line 127. strip size = 200. 

This message is similar to the previous "streaming data and stripmining loop" message, discussed 
earlier. This loop has a smaller strip size because it has more data (in this case, about 20 bytes of data 
are probably required in each loop iteration). 

Vect: loop a.t line 122 replaced by call to _fi1l4. 

This means that the vectorizer has performed vector idiom recognition by replacing an initialization 
of an array in a loop with a call to an optimized routine that performs the same function more 
quickly. 

II Software pipelined loop wi 8 cycles and 3 columns for line 127 

This message is similar to the "sw pipelined loop" message, discussed earlier, except that the 
number of iterations in the loop could not be determined at compile time (as shown by the lack of a 
"cnt" phrase in the message). This loop has three columns, so it will be more efficient than the 
two-column loop shown earlier. 

II Pipe/Dual-inst 1 column 21 cycle loop gend for line 127 

This means that the optimizer has made use of the i860 microprocessor's pipelining and 
dual-instruction mode to optimize a loop. 

3-9 



Optimizing Programs Paragon™System Fortran Compiler User's Guide 

This message is similar to the previous message, except that a "Software pipelined loop" message 
means that the vectorizer has inserted loop start-up and shut-down code, while a "PipeIDual-inst" 
message means that the vectorizer is using pipelining and dual-instruction mode within the loop but 
has not generated any start-up or shut-down code. 

Vect: streaming data for loop at line 164. No stripmine loop required. 

This message is similar to the previous "streaming data and stripmining loop" messages, discussed 
earlier, except that in this case it was not necessary to "stripmine" the loop by gathering data 
together. For example,this might be an operation on a single array that fits in the cache. 

II SW pipelined loop wi 5 cycles and 2 columns wi cnt 128 gend for line 164 
Vect: streaming data and stripmining loop at line 392. strip size = 336. 

These messages are similar to messages discussed earlier. 

Vect: loop at line 392 replaced by call to __ zxrny4s. 

This means that the vectorizer has performed vector idiom recognition by replacing user code with 
a call to an optimized built-in routine (in this case _ zxmy4s0. a single-precision complex 
multiply). The list of these routines is not documented because it is subject to change. 

Distributing loop at line 751, 2 new loops 

This means that the vectorizer has split a loop with two or more sequences of operations in it into 
two separate loops, one or both of which may be vectorizable. 

Loop Unrolling (-Munroll) 

3-10 

The loop unroller expands the contents of a loop and reduces the number of times a loop is executed. 
With the -Munroll option, you can unroll loops either partially or completely. There are several 
possible benefits from loop unrolling, including the following: 

• Reducing the loop's branching overhead. 

• Providing better opportunities for instruction scheduling. 

Branching overhead is reduced when a loop is unrolled two or more times, since each iteration of 
the unrolled loop corresponds to two or more iterations of the original loop. The number of branch 
instructions executed is proportionately reduced. When a loop is unrolled completely, the loop's 
branch overhead is eliminated altogether. 

Loop unrolling can also be beneficial for the instruction scheduler. When a loop is completely 
unrolled or unrolled two or more times, opportunities for improved scheduling may be presented. 
The code generator can take advantage of more possibilities for instruction grouping or filling 
instruction delays found within the loop. 

() 

[J 

[J 

IE 

[J 

~J 

If "1 

l~ 

[J 

(J 



r: 

r: 
I """ 

~ 

1-#: 

... .'..1 

I: 
r: 

,--.. 
-~ 

I
-~ 

,oJ 

r.: 
r: 

Paragon™ System Fortran Compiler User's Guide Optimizing Programs 

You can use the -MinCo or -Minfo=loop option to have the compiler inform you when code is being 
unrolled. The compiler displays a message indicating the line number and the number of times the 
code is unrolled. 

Making Loops Parallel 

The compiler is able to use the three separate processors of an MP node by making some loops 
parallel by splitting execution of the loop among two or three processors. Each processor is allocated 
certain iterations of the loop to perform. This can result in greater performance. Both inner and outer 
loops can be parallelized. For nested loops, the compiler selects the outermost parallelizable loop 
and makes it parallel. 

A loop can be parallelized if its iterations can be performed in any order without affecting the results 
computed by the loop. For example, one type of loop that cannot be parallelized is one in which the 
results of some iteration are used in a later iteration. Loops with reductions, such as vector sum or 
dot product, fit this descriptioIL The compiler will try to parallelize this type of loop, but can only 
do so by performing the sums in a different order than defined by the original loop. As a result, the 
final sum computed may be slightly off due to roundoff error. If exact results are important, you can 
use the -Mconcur=noassoc switch to prevent parallelization of loops with reductions. 

The following sections describe the compiler switches associated with parallelizing loops. 

General Loop Parallelization (-Mconcur) 

The -Mconcur switch causes the compiler to parallelize certain loops. The following options are 
available: 

-Mconcur=a1tcode:count Make innermost loops without reduction parallel only if 
their iteration count exceeds count. Without this switch, the 
compiler assumes a default count of 100. 

-Mconcur=a1tcode reduction:count 

-Mconcur=dist:block 

-Mconcur=dist:cyclic 

Make innermost loops with reduction parallel only if their 
iteration count exceeds count. Without this switch, the 
compiler assumes a default count of 200. 

Make the outermost valid loop parallel. This is the default 
option. 

Make the outermost valid loop in any loop nest parallel. If 
an innermost loop is made parallel, its iterations are 
allocated to processors cyclically. That is, processor 0 
performs iterations 0,3,6, ... ; processor 1 performs 
iterations 1,4,7, ... ; and processor 2 performs iterations 2, 
5, 8, and so on. 

3-11 



Optimizing Programs Paragon™ System Fortran Compiler User's Guide 

-Meoneur=noassoc 

Directs the vectorizer to locate the cache within the area of 
an external array when generating codes for parallel loops. 
By default, the cache is located on the stack for parallel 
loops. 

Do not make loops with reductions parallel. 

Parallelizing Loops with Calls (-Mcncall) 

By default, the compiler does not parallelize loops with calls, since there is no way for the compiler 
to verify that the called routines are safe to execute in parallel. The -Mcneall switch forces the 
compiler to parallelize loops with calls. When you specify -Meneall on the command line, the 
compiler also automatically specifies -Mreentrant. 

-Mencall also allows several other types of loops to be made parallel: 

• loops with 110 statements 

• loops with conditional statements 

• loops with low loop counts 

non-vectorizable loops 

If the compiler can detect a cross-iteration dependency in a loop, it will not make the loop parallel, 
even if -Mcneall is speCified. 

Getting Information About Parallelization 

In addition to providing infonnation about vectorization, the -Minfo=loop switch also provides 
information about any loop parallelization that has occured. 

The -Mneginfo=coneur switch prints infonnation for each countable loop that is not made parallel 
stating why the loop was not made parallel. 

Non-IEEE Math (-Knoieee) 

3-12 

- -----------~ 

The -Knoieee switch makes the compiled program use faster but less accurate floating-point math. 
This can result in a substantial improvement in perfonnance, but may give unacceptable numeric 
results. If your program relies on the accuracy and exception handling provided by the IEEE 754 
standard for floating-point mathematics, do not use this switch. If you do use it, be certain to check 
your program's results against the expected values. 

IJ 
[J 

[J 
[J 

I_~ 

[
, "I 

.: I 

... 1 

[J 

IJ 
(J 



1··11\ 

Jd 

r-""'.·' 
...: 

l: 
( "".' 

'" 

r"" 
,", 

1_-,.. 
~, 

r= 
I"'" 

" 1_·_'" 

r~ 

I -.~ 
.~ 

·1-'" 
.,;.;.,! 

I ·."'" 
iii 

PI 
Iii 

Paragon™ System Fortran Compiler User's Guide Optimizing Programs 

The effect of the -Knoieee switch depends on whether you use it while compiling, while linking, or 
both. 

To use -Knoieee for compilation but not linking, use -Knoieee in conjunction with the -c switch 
to compile a source file to a .0 file, then link the .0 file into a compiled program without 
-Knoieee. For example: 

% if77 -c -Knoieee mypxog.f 
% if77 mypxog.o 

To use -Knoieee for linking but not compilation, compile the source file without -Knoieee, 
using the -c switch to produce a .0 file, then use the -Knoieee switch while linking the .0 file 
into a compiled program. For example: 

% if77 -c mypxog.f 
% if77 -Knoieee mypxog.o 

To use -Knoieee for both compilation and linking, compile the source file to an executable 
program with -Knoieee. For example: 

% if77 -Knoieee mypxog.f 

Non-IEEE Divides (Compiling with -Knoieee) 

The i860 microprocessor does not include a hardware divide unit. By default, the compiler performs 
floating-point division by calling a routine that conforms to the IEEE standard. This routine correctly 
handles overflow, underflow, and other exceptional conditions. 

If you use the -Knoieee switch while compiling a program, the compiler uses a faster but less 
accurate division routine. This routine is substantially faster than the IEEE routine, but gives results 
that may differ from the correctly rounded result by as much as three units in the last place. 

The non-IEEE division routine is also implemented as inUne code rather than a subroutine call, 
resulting in even greater performance improvements at some increase in code size. 

Non-IEEE Math Library (Linking with -Knoieee) 

By default, the standard math library conforms to the IEEE standard. The routines in this library 
handle out-of-range inputs in a well-defined manner and call an exception handler when a denormal 
is generated in a calculation. 

If you use the -Knoieee switch while linking a program, the linker uses a different set of math and 
runtime libraries. These libraries replace the standard math library with compatible routines, many 
of which are faster but less accurate than their IEEE counterparts. (The rest are identical to their 
IEEE counterparts.) The square root function in particular has been very carefully optimized. 
However, the non-IEEE libraries may give unexpected results in response to arguments that are out 
of the defined domain for the given operation (such as the tangent of 90 degrees). 

3-13 



Optimizing Programs Paragon TM System· Fortran Compiler User's Guide 

Using the -Knoieee switch when linking also causes the compiler to link in a different initialization 
routine. The non-IEEE initialization routine sets a flag that causes the microprocessor to 
immediately flush all denormals to zero on creation. This can make the program nm faster, but may 
give erroneous results if the denormal range is necessary to the result. 

BlAS library (-Ikmath) 

The -Ikmath switch links to a highly-optimized math library. This library includes the BLAS (Basic 
Linear Algebra Subroutines) levels 1,2, and 3 and some FFT (fast Fourier transform) routines. See 
the CLASSPACK Basic Math Library User's Guide for complete information on this library. You 
may have to re-code part of your program to use the routines in this library. 

Inlining (-Min line) 

The -Minline switch replaces subprogram calls with inline code. See Chapter 4 for information on 
using the inliner. 

In general, inlining must be used judiciously. Inlining trades the overhead of a subprogram call for 
larger code, which can overnm the instruction cache and actually decrease performance. You should 
inline only those routines that meet the following criteria: 

• The routine is very small (10 lines of source code or less). 

• The routine is called in only one place in the source code, or a few widely-separated places. 

• The call (or calls) to the routine occurs in a section of code that is called very often or is 
otherwise time-critical. 

Inlining routines that do not meet these criteria generally results in little or no improvement. 

Ignoring Potential Data Dependencies (-Mnodepchk) 

3-14 

The -Mnodepchk switch ignores potential data dependencies. 

CAUTION 

The -Mnodepchk switch can give incorrect or erroneous results, 
and gives no improvement for many programs, but is provided for 
those programmers who can make use of it. 

() 

[J 

[J 

(J I 



I ·· 
"" 

r~ 

( .. , 

I '" 
,j 

I: 

IJ 

I
'~ 

.,,1 

I ': 
,Ai 

I .... 
"--(J 

Paragon™ System Fortran Compiler User's Guide Optimizing Programs 

Nonnally, the compiler emits code that will work properly even where data dependencies exist. For 
example, consider the following code: 

a(i) = value 
variable = a(j) 

If the compiler does not know the values of the variables i and j at compile time, it normally assumes 
that they may have the same value. This is a data dependency. ifi has the same value asj, the second 
statement depends on the first. This is only one example of data dependency; many other types of 
data dependency exist. 

If you use the -Mnodepchk switch, the compiler assumes that no data dependencies exist. This can 
allow the compiler to generate faster code in some cases. In this example, -Mnodepchk would allow 
the compiler to execute the second statement before the first if it results in a more efficient program. 
However, if any data dependencies do exist, the results will be unpredictable. 

Use the -Mnodepchk switch only if you understand the program very well and are sure that no data 
dependencies exist. 

Code Changes for Optimization 
This section lists some changes you may be able to make in your code that will make the code more 
efficient or make the jobs of the optimizer and vectorizer easier. 

General Improvements 

These changes can improve almost all types of code: 

Split larger programs into smaller pieces and use appropriate optimization levels on each piece. 
For example, -Mvect makes vector codes faster, but can make non-vector codes slower. If a 
single source file contains both vector and non-vector code, you should split it into vector and 
non-vector pieces and compile the two pieces separately, with and without -Mvect. The 
program fspHt can be used to help split your program up. 

• Keep basic blocks under 30 lines of code. A basic block is a group of program statements in 
which the flow of control enters at the beginning and leaves at the end without the possibility 
of branching (except at the end). Small basic blocks give the compiler more opportunities to 
rearrange code for optimizations. 

• Avoid type conversions (for example, the assignment of a double-precision value to a 
single-precision variable). Type conversions are time-consuming operations that are often 
unnecessary. Conversions between floating-point and integer types are particularly difficult. 
Examine your code and be sure that variables that are used together are of the same type, except 
where different types are needed. 

3-15 



Optimizing Programs Paragon™ System Fortran Compiler User's Guide 

Loop Improvements 

3-16 

These changes make it easier for the vectorizer to assemble long sequences of similar operations, 
which allow the i860 microprocessor to work the most efficiently. These changes can be very 
effective in improving the performance of code that uses floating-point vectors. 

Use unit stride (each iteration of a loop works on the next vector element, rather than skipping 
elements). This results inefficient pipelines. This is one of the most important changes you can 
make. 

Use countable loops (loops which are iterated a loop-invariant number of times). The compiler 
can create more efficient code for a loop whose iteration count is known at compile time than it 
can for a loop whose iteration count is not known until the program executes (such as a loop 
from 1 to n or a loop that terminates when a certain condition is true). 

• Use constants for the bounds and increment value in do statements. 

Use perfectly-nested loops (loops that have no code outside the innermost loop). Here is an 
example of a perfectly-nested loop: 

do 100 k = 1,10 
do 100 j = 1,10 

do 100 i = 1,2000 
• 
• all loop operations here 

100 continue 

Perfectly-nested loops also terminate only at a loop-control statement; they do not have any 
"early outs." 

• In nested loops, make the loop with the highest iteration count in the innermost loop. This gives 
the vectorizer the longest uninterrupted string of operations to work with. 

• Keep data dependence distances short. The data dependence distance of a loop is determined 
by the proximity in memory of the different data objects that are accessed in the body of a loop. 
For example, a loop that accesses vector elements a(n) and a(n+5) has a data dependence 
distance of 5. For best results, inner loops should have a data dependence distance of less than 
8 for double-precision vectors and less than 16 for real vectors. 

[) 

(] 

(J 

IJ 
(

1!'] 

.. ~ 

[: 
'~'I IA~! 

I: 

[J 
.[" I 

Ai 

(] 



r: 
r: 

1_.., 
. u 

r~ 

I~ 

I: 
1_""\ 

J 

r: 
(

--""1 

....J 

IJ 

IJ 

Paragon 1M System Fortran Compiler User's Guide Optimizing Programs 

• Avoid if statements within loops. If the compiler can't be sure that the code that is executed on 
each iteration of a loop is the same as the code in the previous iteration, it cannot set up a 
pipeline. Instead of writing an if statement within a loop, write the loop within the if statement. 
For example, if your code looks like this: 

c 

c 

do 100 i = 1, 1000 
code for all conditions 
if(a .gt. b) then 

code for a > b 
endif 

100 continue 

Rewrite it as follows: 

if(a .gt. b) then 
do 100 i = 1, 1000 

c code for all conditions 
c code for a > b 
100 continue 

else 
do 101 i = 1, 1000 

c code for all conditions 
101 continue 

endif 

Note that this example assumes that the variables a and b are not changed in the loop body. If 
the condition in the if statement depends on code within the loop, you cannot rearrange the loops 
in this way. 

• Avoid divides and type conversions within loops. Division and type conversion are operations 
that cannot be performed in hardware by the i860 microprocessor, so loops containing these 
operations cannot be pipelined as effectively. 

File 1/0 Improvements 

If your program reads and writes sizeable data files, you can obtain substantial improvements in 
performance with these changes: 

• Move the data files to PFS 1M (parallel File System 1M) file systems. Access to PFS ftle systems 
is substantially faster than access to ordinary non-parallel file systems for large files. 

Use sequential unformatted 110 rather than formatted 110. Formatted file 110 guarantees 
portability between different Fortran programs, but uses a lot of compute cycles on each read or 
write. If you don't need this portability (for example, if the file is used only by one or two 
programs), you can improve the efficiency of flle 110 by using unformatted I/O. 

3-17 



--------------- .. _._-----_._----_._---_._---- ---~. 

Optimizing Programs Paragon 1M System Fortran Compiler User's Guide 

·3-18 

Use parallel I/O calls (creadO, cwriteO,lseek()) rather than Fortran I/O. These calls are more 
efficient than Fortran's built-in I/O statements. 

• Use asynchronous I/O (ireadO, iwrite()). The asynchronous calls let your program work while 
reads or writes are in progress. You can also use asynchronous I/O to perform double buffering: 
reading data into a buffer, then reading into a second buffer while simultaneously processing 
the data in the first buffer. 

See the Paragon ™ System User's Guide for more information on the techniques discussed in this 
section. 

[J 
("~ 

. ...J 

(1 
.!lIIi 

[J 

[J 

13 
("1"1 

i"" 

r'"i 
l __ ~ 

I: 
(J 

I·~ 

"..iJ 

(J 

( "11\ 
. .1 



11 
r: 

r: 
I: 
r: 
I

···~ 

. _' 

I ~: 

r: 
r: 

( "" 
"J 

I: 
r: 
I

~., 

,.., 

( . ...., 
~ 

c 
c 

Using the Inliner 

This chapter describes the compiler's subprogram inlining capability . 

Subprogram inlining is a compiler optimization under which the body of a subprogram is expanded 
in place of a call to the subprogram. This can speed up execution by eliminating the parameter 
passing and subprogram call and return overhead. Inlining a subprogram body also creates 
opportunities for other compiler optimizations. Inlining will usually result in larger code size 
(although in the case of very small subprograms, code size can actually decrease). Using inlining 
indiscriminately can result in much larger code size and no increase in execution speed; there may 
even be a decrease in execution speed. 

There are basically two ways to accomplish inlining: 

Automatic inlining as part of the compilation process. When you use the -Minline switch 
during compilation, the compiler first looks in the source files for subprograms that can be 
inlined, then replaces calls to those subprograms with the equivalent code automatically. 

Use of inliner libraries. When you use the -Mextract switch during compilation, the compiler 
looks for subprograms that can be inlined and extracts them into an inliner library. Later, when 
compiling a program that calls subprograms in the inliner library, you use the -Minline switch 
and specify the library; the compiler replaces calls to the subprograms in the library with the 
equivalent code. 

Compiler Inline Switch 
To request subprogram inlining, use the -Minline switch: 

-Minline=oprion[,oprion ... ] 

4-1 



Using the Inliner Paragon ™ System Fortran Compiler User's Guide 

where option is one of the following: 

[name:]subprogram 
Specifies a particular subprogram to inline. If name: is not used, the 
subprogram name must not contain a period. Any number of names can be 
specified. 

NOTE 

Inlining in Fortran is case sensitive. You must use lowercase when 
specifying the names of subprograms to be inlined with the 
-Min line switch. 

[size:]number Specifies an upper bound on subprogram size to inline. Any subprogram less 
than the specified number of lines (approximately) will be inlined. 

[lib:] library Specifies a library ofinlined subprograms. Iflib: is not used, the library name 
must contain a period. Any number of libraries can be specified. A 
subprogram is inlined if it is found in any of the libraries. 

levels:number Specifies the number of levels of inlining to perform (default 1). For example, 
suppose subprogram a calls b and b calls c. If you want to completely inline 
a (including the calls to b and c), you must use -Minline=a,b,c,levels:2. 

You must specify at least one name, size, or library. If both subprogram name(s) and a size limit are 
specified, a subprogram is inlined if it is named or if it satisfies the limit. 

Inlining can be either automatic or manual. If you do not specify any inliner libraries, the compiler 
performs a special pass for all source files named on the command line before any of them are 
compiled. This pass extracts subprograms that meet the requirements for inlining and puts them in 
a temporary library for use by the compilation pass. 

If you specify one or more inliner libraries, the compiler does not perform an initial extract pass. 
Instead, subprograms to be inlined are selected from the specified libraries. If neither subprogram 
names nor a size limit are specified, any subprogram in the library meets the conditions for inlining. 

Creating an Inliner Library 
To create or update an inliner library, use the -Mextract switch: 

-Mextract[=option[,option ... ]] 

where option is one of the following: 

4-2 

u 

[
"'l 

... ~ 

(""1 
iJ 

~I 

WlJ 

[J 

(: 
[: 
[~ 

[. ; 
.AJ 

U· 
···.1 

[J 



I~ 

r: 

r: 
('.~ 

... 

I '''' 
'" 

r: 

I ~ 
~I 

I: 

r: 

IJ 

c 

Paragon TM System Fortran Compiler User's Guide Using the Inliner 

[name:]subprogram 
Extracts the specified subprogram. name: must be used if the subprogram 
name contains a period . 

[size:]number Extracts subprograms containing less than approximately number statements. 

If you don't specify any options with -Mextract, the compiler attempts to extract all subprograms 
of a reasonable size. 

When you use -Mextract, only extraction is performed; compilation and linking are not performed. 

If the -Mextract switch is present, you must also specify a single inliner library name on the 
compiler command line. For example: 

This specifies the inliner library in which the extracted forms of subprograms are placed. The library 
mayor may not already exist; it is created if it does not. 

You can use the -MiDline switch at the same time as the -Mextract switch. In this case, the extracted 
form of the subprogram can have other subprograms inlined into it This makes it possible to obtain 
more than one level of inlining. In this situation, if no library is specified with -Minline, processing 
will consist of two extract passes. The first pass is the hidden pass implied by -Minline during which 
subprograms are extracted into a temporary library. The second pass uses the results of the first pass 
but puts its results into the library specified with the -0 switch. See examples below. 

Using In liner Libraries 
An inliner library is implemented as a directory. For each element of the library, the directory 
contains a file containing the encoded form of the inlinable subprogram. 

A special file named TOe serves as a directory for the library. This is a printable, ASCII file that can 
be examined to find out information about the library contents, such as names and sizes of 
subprograms, the source file from which they were extracted, the version number of the extractor 
that created the entry, etc. 

Libraries and their elements can be manipulated using ordinary system commands, for example: 

• You can rename a library with mv. 

• You can remove an element from a library with rIO, or remove an entire library with rm -r. 

You can copy an element from one library to another with cp, or copy an entire library with 
cp-r. 

• You can examine the contents of a library with Is, or determine the modification date of an 
element with Is .1. 



Using the Inliner Paragon'" System Fortran Compiler User's Guide 

Since deleting or adding an element can cause the TOe file to become out of date, a utility program 
ifixlib is provided to recreate a correct TOe file. Use it as follows: 

% ifixlib library_name 

When use of the if17 command causes an entry to be created or updated, the date of the most recent 
change of the library directory itself is updated also. This allows a library to be listed as a 
dependency in a make:file, in order to ensure that the necessary compilations are perfonned again 
when a library is changed. 

Restrictions on Inlining 
The following Fortran subprograms cannot be extracted: 

Main or BLOCK DATA programs 

() 

"(" "-., 

--

I ~ lJ I 

[
'11\ 

" , 

-.J 

Subprograms containing alternate return, computed GOTO, assigned GOTO, DATA, SA VE, ~ J 

4-4 

or EQUIVALENCE statements 

• Subprograms containing FORMAT statements 

• Subprograms containing multiple entries 

A Fortran subprogram is not inlined if any of the following applies: 

• It is referenced in a statement function. 

• There exists a common block mismatch; i.e., the caller must contain all common blocks 
specified in the callee, and elements of the common blocks must agree in name, order, and type 
(except that the caller's common block can have additional members appended to the end of the 
common block). 

• There exists an argument mismatch; i.e., the number of actual and formal parameters must be 
equal. 

• There exists a name clash; e.g., a call to subroutine xyz in the extracted subprogram and a 
variable named xyz in the caller. 

• A constant actual parameter in the caller has an assignment to its associated fannal parameter 
in the extracted subprogram. 

The compiler gives you an error message if you violate any of these restrictions. The severity of the 
error varies, depending on the type of the error and how far the compiler has gone in the inlining 
process before detecting it. 

(J 

IJ 
[

"~ 

"---

l: 

IJ ' 
l: 



r: 

(-" 

AI 

r: 

1_.,., 
- -'.1 

I: 
I-_--~ 

.OJ 

I~ 
r~ 

(
-""'i 

.........lI;J; 

I] 

Paragon™ System Fortran Compiler User's Guide Using the Inliner 

Error Detection During Inlining 
When invoking the inliner, you should always set the diagnostics reporting switch (-Minfo=inline). 

An additional feature associated with inlining is enhanced compiler error detection. For example: 

• If an inlinable subprogram is called with the wrong number of arguments, a warning message 
is issued and the subprogram is not inlined. 

If an inlinable subprogram is called in a context which assumes that a value is returned, but the 
body of the subprogram does not contain any statements that set the return value, a severe error 
is issued. 

If the declaration of an external variable referenced by an inlinable subprogram does not match 
the declaration in the source file being compiled, a severe error is issued. 

Efficiency Considerations 
To ensure that compiler vectorizer optimizations are not impeded, observe the following guidelines 
when inlining Fortran subprograms: 

Avoid inlining subprograms whose formal parameters are adjustable arrays. For example, this 
fragment will vectorize well: 

subroutine x(a) 
integer n 
parameter (n = 100) 
double precision a(n, n) 

However, this fragment will not vectorize well: 

subroutine x(a, n) 
integer n 
double precision a(n, n) 

4-5--



Using the Inliner Paragon no System Fortran Compiler User's Guide 

• Avoid actual parameters that are elements of arrays, except when the element specified is the 
first element of the array. For example: 

program p 

integer actparam(3:l0,2:8,9) 

C The next call will not inline efficiently 
call inline_sub(actparam(4,6,2)) 

C The next call will inline efficiently 
call inline_sub(actparam(3,2,1)) 

end 

Examples 

Dhry 

4-6 

This section contains examples of using the inliner. 

Assume the program dhry consists of a single source file dhry.f. Then, the following command line 
builds an executable for dhry in which Proc7 has been inlined wherever it is called: 

% if77 dhry.f -Minline=Proc7 

The following command line builds an executable for dhry in which Proc7 plus any subprograms 
of roughly three or fewer statements have been inlined (1 level only). 

% if77 dhry.f -Minline=Proc7,3 

The following commands build an executable for dhry in which all subprograms of roughly ten or 
fewer statements are inlined. Two levels of inlining will have been performed. This means that if 
subprogram A calls subprogram B, and B calls C, and both B and C are inlinable, then the version 
of B that is inlined into A will have had C inlined into it 

% if77 dhry.f -Mextract=lO -Minline=lO -0 temp.ilib 
% if77 dhry.f -Minline=temp.ilib 
% rm -r temp.ilib 

r: 

(J 

[J 

I] 

~= 
~-~ 
I,.,AU 

( '" 
, ~j 

[J 



r: 
r: 

I~ 

IJ 
1"'1 

~I 

r: 
[: 
I·.."" 

~I 

IJ 
I] 

Paragon'" System Fortran Compiler User's Guide Using the Inliner 

Fibo 

Makefiles 

Assumingfibo.f contains a single subprogram fibo that calls itself recursively. Then. the following 
command line creates file fibo.o in which fibo has been inlined into itself: 

% if77 fibo.f -c -Minline=fibo -0 

Because this version ofjibo recurses only half as deeply, it should execute noticeably faster. 

The following fragment of a makefile assumes that file utils.f contains a number of small 
subprograms that are used in the files parser.f and alloc.j. An inliner library utils.ilib is maintained. 
Note that the library must be updated whenever utils.for one of the include files it uses is changed. 
In tum, parser.f and alloc.fmust be compiled again whenever the library is updated 

• 
• 

main.o: $(SRC)/main.f $(SRC)/global.h 
$(F77) $(F77FLAGS) -c $(SRC)/main.f 

utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h 
$(F77) $(F77FLAGS) -c $(SRC)/utils.f 

utils.ilib: $(SRc)/utils.f $(SRC)global.h $(SRC)/utils.h 
$(F77) $(F77FLAGS) -Mextract=15 -0 utils.ilib 

parser.o: $(SRC)/parser.f $(SRC)/global.h utils.ilib 
$(F77) $(F77FLAGS) -Minline=utils.ilib -c $(SRC)/parser.f 

alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.ilib 
$(F77) $(F77FLAGS) -Minline=utils.ilib -c $(SRC)/alloc.f 

myprog: main.o utils.o parser.o alloc.o 
$(F77) -0 myprog main.o utils.o parser.o alloc.o 

4-7 



Using the Inliner Paragon TM System Fortran Compiler User's Guide 

4-8 

[J 

[J 

1'F1 ' 

~ 

I: 

l: 
c 
c 
[J 

[J 



I~ 

r: 

I: 

I
··~ 

J 

r: 
I: 

Interfacing Fortran and C 

This chapter describes how to use C and Fortran routines together in the same program. 

Calling a C Function from Fortran 
The Fortran compiler adds an underscore U at the beginning and end of every external name 
(function. subroutine and common), and expects all external names to begin and end with an 
underscore. However, the C compiler only adds an underscore at the beginning of each external 
name. This means that to make a C function callable from Fortran. the name that you give it (in the 
C source) must end with an underscore. If you want to call an existing function whose name does 
not end with an underscore, you must write a "wrapper" function, whose name does end with an 
underscore, which just calls the existing function. 

Also, any dollar signs in a C external name are replaced with underscores (or you can choose another 
replacement character by using the -MdoUar switch when you compile the program). For example, 
to call the C function my$func_O from Fortran. you would call it as my _funcO. 

You can also use a C pragma to prevent the compiler from appending an underscore to the function 
name. The C pragma directive has the following fonn: 

cornment_char$pragma C (id [,id] ... ) 

where 

C, D, or * in column 1 or a ! in any column 

pragma either pragma or PRAGMA 

id iname of an external function 

The C pragma directive marks external functions writen in C. The compiler does not append an 
underscore to the specified identifiers. The following example shows a sample C pragma. 

EXTERNAL FUNC1, FUNC2 !$PRAGMA C(FUNC1, FUNC2) 

5-1 



Interfacing Fortran and C Paragon 1M System Fortran Compiler User's Guide 

All Fortran arguments are passed by reference. (Temporary storage for non-addressable objects such 
as literals is provided by the compiler.) Therefore, each parameter in the called C routine must be a 
pointer of the appropriate type, as shown in Table 5-1. 

Table 5-1. Fortran Data Types for Called C Functions 

Fortran Passes C Receives 

REAL"'4 float'" 

REAL"'S double '" 

INTEGER"'4 long'" 

INTEGER"'2 short '" 

INTEGER"'1 char'" 

LOGICAL"'4 long'" 

LOGICAL"'2 short '" 

LOGICAL'" 1 char'" 

COMPLEX struct complex {Boat realpart, imagpart;} '" 

COMPLEX"'16 struct dcomplex {double reaipart, imagpart;} '" 

CHARACTER char'" 

In the case of a passing a CHARACTER argument. Fortran not only passes a pointer to the char 
variable, but also passes the length of the CHARACTER variable, as anint (not as anint "') at the 
end of the argument list. Fortran CHARACTER string constants are null tenninated. 

If the C function being called from Fortran returns a value, then the return types correspond as 
follows: 

• An int C function must be declared either as INTEGER or LOGICAL in the calling Fortran 
routine. 

• A Boat or double C function must be declared as DOUBLE PRECISION in the calling Fortran 
routine. Since C usually promotes float return values to double, REAL return values usually 
cannot be returned from C. 

• COMPLEX, DOUBLE COMPLEX, and CHARACTER are returned by passing the address 
where the return value is to be stored as an extra first parameter to the C function. The length of 
a CHARACTER return value is passed as an extra second int parameter to the C function. 

(J 

IJ 

IJ 

I] 

IJ 

I] 

IJ 
(J 

If a Fortran caller calls a C function as a subroutine with alternate return parameters, the value lJ 
returned by the C function (using return(e») is interpreted as the expression in the Fortran alternate 
return statement RETURN e. The Fortran caller does a computed GOTO on the return value to [~ .. 
implement the alternate return. Ai 



I: 

r: 
1-.--

.1iiJ 

I: 
I·~ 

I :1 

I: 
I~ 

r: 

r= 
1-: 

Paragon™ System Fortran Compiler User's Guide Interfacing Fortran and C 

Calling a Fortran Routine from C 
The Fortran compiler adds an underscore U at the beginning and end of every external name 
(function, subroutine and common), while the C compiler only adds an underscore at the beginning 
of each external name. This means that to call a Fortran routine or refer to a Fortran COMMON 
block from C, you must append an underscore to its name. For example, to call the Fortran routine 
myfuncO from C, you would call it as myfunc_O. 

All Fortran parameters are passed by reference. Therefore, the corresponding argument in the C call 
must be a pointer of the appropriate type, as shown in Table 5-2. For example, to pass the scalar 
variable x from C to Fortran, use the argument value &x. 

Table 5-2. C Data Types for Called Fortran Routines 

C Passes Fortran Receives 

float'" REAL"'4 

double '" REAL"'S 

long'" INTEGER"'4 

short '" INTEGER"'2 

char'" INTEGER"'1 

long'" LOGICAL"'4 

short '" LOGICAL"'2 

char'" LOGICAL"'1 

struct complex {float realpart, imagpart;} '" COMPLEX"'S 

struct dcomplex {double realpart, imagpart;} '" COMPLEX'" 16 

char'" CHARACTER 

In the case of a passing a CHARACTER argument, C must not only pass a pointer to the char 
variable, but must also pass the length of the char variable, as an int (not as an jnt "') at the end of 
the argument list. 

If the Fortran routine being called from C is a FUNCTION, then the return types correspond as 
follows: 

• An INTEGER or LOGICAL Fortran FUNCTION must be declared as int in the calling C 
routine. 

A DOUBLE PRECISION Fortran function must be declared as double in the calling C 
routine. Since C usually promotes float return values to double, a REAL return value may not 
be accessible in C. (You can use the -Msingle switch when compiling the calling C program to 
suppress the promotion of float to double.) 



Interfacing Fortran and C Paragon 1M System Fortran Compiler User's Guide 

COMPLEX, DOUBLE COMPLEX, and CHARACTER are returned from the called Fortran 
routine by passing the address where the return value is to be stored as an extra first parameter 
to the C function The length of a CHARACTER return value is passed as an extra second int 
parameter to the C function. 

The alternate return statement of Fortran. RETURN e, has no equivalent in C. 

5-4 

[J 

(J 

... ." i: . 
I&~ 

IJ 
I: 
I: 
(J 

I) 
() 



(~ 

r: 
1-

JIli 

r: 
I~ 

r: 
r: 
I: 
r: 

I: 
I: 
I '''' 

,,j 

1_-,-" 

~ 

1,--
.,;;0:: 

1"'1" 

,,..i 

Extensions to ANSI Fortran 

This chapter describes the following extensions to the standard language (i.e., features and 
capabilities not described in the American National Standard Programming Language FORTRAN, 
ANSI x3.9-1978); 

• Extensions derived from V AX/VMS and IBMlVS 

• Extensions derived from Cray Fortran 

• Other I/O extensions 

• Subroutine and intrinsic extensions 

Additional intrinsic functions 

• Vector intrinsics 

See the Paragon ™ System Fortran Language Reference Manual for a complete description of the 
language accepted by the if77 compiler and more details on'the extensions described in this chapter. 

Standard Language 
The Fortran compiler compiles programs written in a true superset of ANSI standard Fortran 77, as 
described in the American National Standard Programming Language FORTRAN, ANSI x3.9-1978. 
There are no deviations from this language standard. 

The compiler also supports the requirements of the Military Standard, MIL-STD-1753. 

Instead of fully specifying the language accepted by the compiler, this chapter describes only those 
features that differ from the Fortran language specified in the ANSI standard cited above. Most of 
the differences (incompatibilities and extensions) are V AXlVMS and IBMlVS features. 

6-1 



Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide 

Extensions Derived from VAXlVMS and IBMNS 
The Fortran compiler provides partial or full support for the following V AXlVMS and IBMlVS 
extensions: 

Compiler directives 

• Control statements 

Data related 

• Format related 

• Lexical related 

I/O related 

The following VMS Fortran statements are not supported: 

DELETE 
UNLOCK 

FIND 
DICTIONARY 

REWRITE 

Compiler Directives 

6-2 

The Fortran compiler recognizes three VMS compiler directives: 

% NOLIST 

%LIST 

% EJECT 

Turns off listing of source lines in the listing file (including the %NOLIST 
line itself). 

Turns the listing back on for the next line. 

Causes a new listing page to be started. 

These directives have an effect only when the ·MUst command line switch is used. All directives 
must begin in column one. 

[J 
(.". 
.~ 

(J 
.~ 

II! . 
.>IIJ 

(J 

( '1 
• I 

.-'li 

[ 1 .J 

[ 1 
. ...J 

(] 



r: 
I: 
( --

'" 

(-: 

r: 
I: 

I: 
I ~' 

'~,: 

r~l 

I: 

I
'~ 

,,.J 

(
-=-" 

~" 

IJ 
Pi 
L 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

OPTIONS Statement 

The OPI'IONS statement can be used to override or confinn certain compiler command-line 
switches. The statement has the fonn: 

OPTIONS /option [joption ... ] 

The recognized options are: 

CHECK=ALL No effect (recognized, but ignored). 

CHECK=[NO]OVERFLOW No effect. 

CHECK=[NO]BOUNDS No effect. 

CHECK=[NO]UNDERFLOW No effect. 

CHECK=NONE No effect. 

NOCHECK No effect. 

[NO]EXTEND _SOURCE (Don't) enable the -Mextend switch. 

[NO]F77 (Don't) enable the -Mstandard switch. 

[NO]G _ FLOATING No effect. 

[NO]I4 (Don't) enable the -Mi4 switch. 

[NO]RECURSIVE (Don't) enable the -Mrecursive switch. 

[NO]REENTRANT (Don't) enable the -Mreentrant switch. 

[NO]STANDARD (Don't) enable the -Mstandard switch. 

See Chapter 2 for more infonnation on these switches. 

Restrictions: 

• The OPI'IONS statement must be the first statement in a program unit, preceding the 
PROGRAM, SUBROUTINE, FUNCTION, and BLOCKDATA statements. 

The options override the values from the compiler command line for the program unit 
immediately following the OPTIONS statement. 

• Any prefix of the option sufficiently long to uniquely identify the option is a legal abbreviation. 

• Upper or lower case is not Significant, unless the switch -Mupcase is present on the command 
line. If -Mupcase has been selected, the options must be in lower case. 

6-3 



Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide 

Control Statements (DO, DO WHILE, and ENDDO) 

• The DO statement has the fonn: 

DO [5[,]] v=el, e2[, e3] 

Support is provided for the VMS Fortran extension that allows the statement label to be omitted. 
If the optional label, s, is not included, the DO statement must be tenninated by an ENDDO 
(details follow in this section). V AXlVMS "Extended Range" DO loops are supported. 

• The DO WIHLE statement has the fonn: 

DO [5[,]] WHILE (e) 

where e is a logical expression and s is an optional label of a statement that must physically 
follow in the same program unit. The DO WIHLE statement executes for as long as the logical 
expression e continues to be true when tested at the beginning of each iteration If e is false, 
control transfers to the statement following the loop. The label s is optional when an ENDDO 
is used to terminate the loop (see below). 

• An ENDDO statement may optionally terminate an indexed DO or DO WlllLE statement (see 
previous section). The ENDDO statement is required for a DO or DO WIHLE statement which 
does not contain a tenninal-statement label. The ENDDO statement may also be used as a 
labeled terminal statement if the DO or DO WmLE statement contains a terminal-statement 
label. 

Data ExtenSions 

Data Types 

The size of a data type may be specified by appending a data type length specifier of the fonn *n to 
the data type name. For example, REAL*S is equivalent to DOUBLE PRECISION. 

.~ .. --------~------------------------

[J 
[ -." 

I 

.. Al 

[
"'fI 

. ..-1 

~~ 

l.iJ 

If~ 
• ...J 

I] 

[J 
[J 

'--1 
.~ 

[J 

(J 

[] 



r: 
(: 

r: 
(--... 
I~~, 

~'" 

I-~ 
,," 

I
-~ 

~I 

l ""'l 

.~ 

I '''' 
•• 1 

1"1", 

.IW 

r: 
IJ 
I ' 

-' 

1= 

c 
(] 

Paragon 1M System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Table 6-1 shows the lengths of data types and their meanings. 

Table 6-1. Data Type Extensions 

Type Meaning Size 

LOGICAL*1 Small Logical 1 byte 

LOGICAL*2 Short Logical 2 bytes 

LOGICAL*4 LOGICAL 4 bytes 

BYTE Small Integer 1 byte 

INTEGER*2 Short Integer 2 bytes 

INTEGER*4 INTEGER 4 bytes 

REAL*4 REAL 4 bytes 

REAL*S DOUBLE PRECISION 8 bytes 

COMPLEX*S COMPLEX 8 bytes 

COMPLEX*16 DOUBLE COMPLEX 16 bytes 

The new BYTE type is treated as a signed one-byte integer. 

Assignment of a value too big for the data type to which it is assigned is an undefIned operation. 

VMS data type length specifIers are fully supported except for REAL*16 (Quad Precision). 

A symbolic name can be followed by a data type length specifier of the fonn * s, where s is one of 
the acceptable lengths for the data type being declared. Such a specifIcation overrides the length 
attribute that the statement implies and assigns a new length to the specified item. If a data type 
length specifIer is specifIed with an array declarator, the data type length specifIer goes immediately 
after the array name. Unlike V AXlVMS Fortran, a specifIer is allowed after a CHARACTER 
function name even if the CHARACTER type word has a specifIer. For example: 

CHARACTER*4 FUNCTION C*8() 

is allowed by the Fortran compiler, but not by V AXlVMS Fortran. 

The storage given to INTEGER and LOGICAL types is four bytes. A compiler switch to allow the 
default for these types to be two bytes is not supported. 

The storage given to REAL type is four bytes; for DOUBLE PRECISION, it is eight bytes. 

The floating point format supported is machine-dependent. V AXlVMS supports its own floating 
point format. 

6-5 



Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide 

6-6 

Intrinsic support for the new data types is provided. 

V AXlVMS Fortran supports logical data items to be used with any operation where a similar sized 
integer data item is pennissible and vice versa. The logical data item is treated as an integer or the 
integer data item is treated as a logical of the same size without any conversion. 

V AXlVMS Fortran sign extends the result when a logical data item is assigned an integer or logical 
value of a different size. This is supported. 

Floating point data items may be used as array subscripts and in computed GOTOs. V AXlVMS 
Fortran allows this and the float is converted to integer. Floating point data items are not permitted 
in array bounds and alternate returns. 

The type of an arithmetic expression corresponds to the type specified for V AXlVMS Fortran. The 
type of an expression is determined by the rank of its elements. Table 6-2 shows the ranks of data 
types from lowest to highest. 

Table 6-2. Data Type Ranks 

Data Type Rank 

LOGICAL 1 (lowest) 

INTEGER"'2 2 

INTEGER"'4 3 

REAL*4 4 

REAL"'S (Double precision) 5 

COMPLEX*S (Complex) 6 

COMPLEX*16 (Double complex) 7 (highest) 

The data type of a value produced by an operation on two arithmetic elements of different data types 
is the data type of the highest-ranked element in the operation. except that an operation involving a 
COMPLEX"'8 data type and a REAL"'S data type produces a COMPLEX"'16 result (The REAL *8 
element is not rounded). 

The type of a logical expression is always a LOGICAL *4 result. 

[: 

[: 
I: 

(] 

IJ 

[J 

[J 

(J 



(". " ., 

(~ 

(~ 
Jitli' 

I: 
1'''1 

,,," 

I: 
(
'~ 

,,," 

( 
~I 

_J 

I '~I 

I: 

IJ 
c 
c 

Paragon"" System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Decimal Integer Constants 

The fonn for a decimal integer constant is: 

where di is a digit in the range 0 to 9 and where s is an optional sign. The value of an integer constant 
must be within the range -2147483648 to 2147483647 inclusive (_231 to (231 - 1)). All integer 
constants assume a data type of INTEGER"'4 and have a 32-bit storage requirement. 

NOTE 

VAXNMS Fortran stores integer constants as either 16-bit 
quantities or 32-bit quantities depending on their size. Passing 
integer constants as actual arguments to dummy arguments of 
smaller size is machine-dependent and is an undefined operation. 

Octal/Hexadecimal Constants 

Octal and hexadecimal constants are handled alike. 

The fonn for an octal constant is: 

The fonn for a hexadecimal constant is: 

where ci is a digit in the range 0 to 7 and where ai is a digit in the range 0 to 9 or a letter in the range 
A to F or a to f (case mixing is allowed). You can specify up to 64 bits (22 octal digits, 16 
hexadecimal digits). 

NOTE 

VAX/VMS Fortran supports up to 128 bits. 

6-7 



Extensions to ANSI Fortran Paragon TM System Fortran Compiler User's Guide 

Octal and hexadecimal constants stored as either 32-bit or 64-bit quantities. If their number of digits 
are represented by less than the necessary size, they are padded on the left with zero. They assume 
data types based on the way they are used. The rules for data type conversion of constants are as 
follows: 

• The size of the constant is always either 32 or 64 bits and has a typeless data type. 
Sign-extension and type-conversion are never perfonned. All binary operations are perfonned 
on 32-bit or 64-bit quantities. This implies that the rules to follow are only concerned with 
mixing 32-bit and 64-bit data. 

• When the constant is used with an arithmetic binary operator, including the assignment 
operator, and the other operand is not typeless, the constant assumes the type and size of the 
other operand. 

When the constant is used in a relational expression, such as .EQ., the size is chosen from the 
operand having the largest size. This implies that 64-bit comparisons are possible. 

• When the constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or 
COMPL function, a 32-bit operation is performed if no argument is more than 32 bits in size, 
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen 
operation. 

When the constant is used as an actual argument in any other context, no data type is assumed; 

(J 

[J 

() 

I: 

lJ 

~J 

[J 

however, a length of four bytes is always used. If necessary, truncation on the left occurs. ~ = 
• When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant. An 

example of a required specific data type is in array subscripting. (= 
• When the constant is used in a context other than that mentioned above, an INTEGER*4 data 

type is assumed. Examples include arithmetic binary operations with other untyped constants r -; 
and in logical expressions. ...i 
When the required data type for the constant implies that the length needed is more than the f '1 

number of digits specified, the leftmost digits have a value of zero. When the required data type i.J 
for the constant implies that the length needed is less than the number of digits specified, the 
constant is truncated on the left. Truncation of nonzero digits is allowed. lJ 
In the example below, the INTEGER*4 I and INTEGER*2 J will have the hex value 1234 
and 4567 respectively. The REAL*8 D variable will have the hex value l= 
Ox4000012345678954 after its second assignment. ~ 

I 

J 

D 

D 

'1234'X ! Leftmost Pad with zero. 
'1234567'X ! Truncate Leftmost 3 hex digits 
'40000123456789ab'X 
EQV(D,'ff'X) ! 64-bit Exclusive Or 

(J 

IJ 



I: 
1-: 
r: 

I""""'" 
j 

1_"" 
,""I 

I: 
r: 

r: 
1-4 

"d 

I
-~ 

'" 

r: 
[: 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Hollerith Constants 

Hollerith constants and character constants are handled alike but in a manner somewhat different 
from hexadecimal and octal constants. 

The fonn of a Hollerith constant is: 

where n specifies the positive number of characters in the constant and cannot exceed 2000 
characters. A Hollerith constant is stored as a byte string with four characters per 32-bit word. 
Hollerith constants are untyped arrays of INTEGER *4. The last word of the array is padded on the 
right with blanks if necessary. Hollerith constants cannot assume a character data type and cannot 
be used where a character value is expected. Unlike V AXlVMS Fortran, Hollerith constants are 
pennitted with the %REF Built-In function. (Refer to the section "Subroutine and Intrinsic 
Extensions" (on page E-25) for details on %REF). A Hollerith constant used in a numeric 
expression assumes the data type according to the following rules. (Note, these rules also apply to 
character constants used in a numeric context.) 

• Sign-extension is never performed. 

• The byte size of the Hollerith constant is determined by its context and is not strictly limited to 
32 or 64 bits like hexadecimal and octal constants. 

• When the constant is used with a binary operator, including the assignment operator, the data 
type of the constant assumes the data type of the other operand. 

• When a specific data type is required, that type is assumed for the constant. When an integer or 
logical is required, INTEGER*4 and LOGICAL*4 are assumed. When a float is required, 
REAL*4 is assumed. An example of a required specific data type is in array subscripting. 

• When the constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFf, or 
COMPL function, a 32-bit operation is perfonned if no argument is more than 32 bits in size, 
otherwise, a 64-bit operation is perfonned. The size of the result corresponds to the chosen 
operation. 

When the constant is used as an actual argument, no data type is assumed and the argument is 
passed as an INTEGER*4 array. Character constants are passed by descriptor only. 

• When the constant is used in any other context, a 32-bit INTEGER *4 array type is assumed. 

When the length of the Hollerith constant is less than the length implied by the data type, spaces are 
appended to the constant on the right. When the length of the constant is greater than the length 
implied by the data type, the constant is truncated on the right. 

6-9 



Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide 

6-10 

Character Constants 

Character constants may be used in a numeric context (for example, as the expression on the right 
side of an arithmetic assignment statement). The rules for typing and sizing of character constants 
used in a numeric context follows the same rules given for Hollerith constants as outlined in the 
preceding section. Note that character constants as actual arguments are always passed by descriptor. 

Logical Representation 

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and 0 
respectively. A logical expression is defmed to be true if its least significant bit is l and false 
otherwise. This definition conforms exactly to the V AXlVMS definition. 

The abbreviations, T and F, can be used as an alternative to • TRUE. and .F ALSE. in data 
initialization statements or in namelist input. 

Data Initialization 

The V AX/VMS extension to allow data initialization within data type declaration statements is 
supported fully. Data is initialized by placing values bounded by slashes immediately following the 
symbolic name (variable or array) to be initialized. Initialization of fields within structure 
declarations is allowed. Unnamed fields cannot be initialized. Initialization of records is not allowed. 

Hollerith, octal or hexadecimal constants can be used to initialize data in both data type declarations 
or in DATA statements. Truncation and padding occur for constants that differ in size from the data 
item declared as specified in the previous section on constants. 

The requirement that the data initialization part must agree with the number of variable elements is 
relaxed for declaration statements in order to support an IBMlVS extension. DATA statement 
initialization requirements are not relaxed. For example, the following declaration statement is 
acceptable and will initialize the first ten elements of the array A to the value 3. 

INTEGER A(20)/lO*3/ 

PARAMETER Statement 

The extensions to the PARAMETER statement supported by V AXlVMS Fortran are fully 
supported. The two extensions to the PARAMETER statement are as follows: 

• Its list is not bounded with parentheses. 

• The fonn of the constant rather than the implicit or explicit typing of the symbolic name, 
determines the data type of the variable. 

c 
(J 

[J 

[J 

I'~ 
..;.W 

[: 

~= 

(: 
'.: I.. . ..J 

( "'I. ' I 

..aJ 

I: 
I: 



r: 
r: 
I: 
r: 

I: 
(~ 

li'~ 
"J 

I: 

I: 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

The fonn of the alternative PARAMETER statement is: 

PARAMETER p=c [,p=c] ... 

where p is a symbolic name and c is a constant, symbolic constant, or a compile time constant 
expression. See the Paragon ™ System Fortran Language Reference Manual for details. 

Common Blocks 

Records are allowed to be named within common blocks. Since the storage requirements of records 
are machine-dependent, the size of a common block containing records may vary between machines. 
Note that this may also affect subsequent equivalence associations to variables within common 
blocks that contain records. 

Both character and non-character data may reside in one common block. Data is aligned within the 
common block in order to confonn to machine-dependent alignment requirements. 

A common block may be data initialized in more than one program unit if the existing system 
environment allows it (note that COFF-based systems do not). It is up to the programmer to make 
sure that data within one common block is not initialized more than once. 

Blank common may be data initialized. 

EQUIVALENCE Statement 

An array element may be identified with a single subscript in an EQUIVALENCE statement even 
though the array is defined to be a multidimensional array. See the Paragon™ System Fortran 
Language Reference Manual for details. 

Equi valence of character and non-character data is allowed as long as misalignment of non-character 
data does not occur. 

Records and record fields cannot be specified in EQUIVALENCE statements. 

IMPLICIT Statement 

The use of the keyword NONE with the IMPLICIT statement is supported. The fonn is: 

IMPLICIT NONE 

See the Paragon™ System Fortran Language Reference Manual for details. 

6-11 



Extensions to ANSI Fortran Paragon'" System Fortran Compiler User's Guide 

6-12 

Since symbol names may begin with dollar sign ($) or underscore U, these characters by default 
are of type REAL. In an IMPLICIT statement, these characters may be used in the same manner 
as other characters. They cannot be used in a range specification. A valid example is: 

IMPLICIT INTEGER (A-D,$,_) 

VOLATILE Statement 

The VOLATILE statement inhibits all optimizations on the variables, arrays, and common blocks 
that it identifies. The form of this statement is: 

VOLATILE nitem [,nitem] ... 

where each nitem is the name of a variable, array, or common block. The name of a common block 
must be enclosed in slashes. If nitem names a common block, all members of the common block are 
volatile. 

The volatile attribute of a variable is inherited by any direct or indirect equivalences. For example: 

COMMON /COM/ Cl, C2 
VOLATILE /COM/, /DIR/ 
EQUIVALENCE (DIR, X) 
EQUIVALENCE (X, Y) 

ENTRY Statement 

/COM/ and /DIR/ are volatile 
X is volatile 
Y is volatile 

The ENTRY statement provides multiple entry points within a subprogram. Entry names within a 
FUNCTION subprogram need not be of the same data type as the function name, but they all must 
be consistent within one of the following groups of data types: 

BYTE, INTEGER*2,INTEGER*4,LOGICAL*1, LOGICAL*2, LOGICAL*4, REAL*4, 
REAL*S, COMPLEX*S 

• COMPLEX*16 

• CHARACTER 

If the function is of character data type, all entry names must also have the same length specification 
as that of the function. 

[J 

l: 

IJ 
(J 

~
~ 

, ' 
' .. di/.J 

[J 
[
,--1 
, , 

~j 

[~ 

l: 
l: 

lJ 



[: 

r: 
I · .. 
r: 

Paragon'"' System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Structures 

A structure is an aggregate data type that may consist of multiple heterogeneous data types. A 
structure declaration block is used to declare this user-defined type. This declaration is composed of 
a STRUCTURE statement followed by the declaration body that declares one or more fields and is 
finally followed by the END STRUCTURE statement. Fields within structures are aligned in order 
to confonn to machine-dependent alignment requirements. Alignment of fields also provides a 
C-like "struct" building capability and allows convenient inter-language communications. Note that 
aligning of structure fields is not supported by V AX/VMS Fortran. Refer to the "Records" section 
(on page E-12) for an example. The fonn of a structure declaration is as follows: 

STRUCTURE [/structure_name/] [field_namelist] 
field_declaration 
[field_declaration] 

[field_declaration] 
END STRUCTURE 

where structure_name is unique, is used to identify a structure and is used in subsequent RECORD 
statements to refer to the structure. Field _ namelist is a list of fields having the structure of the 
associated structure declaration. Afield _ namelist is allowed only in nested structure declarations. 
Field_declaration can consist of any combination of substructure declarations, typed data 
declarations, union declarations or unnamed field declarations. 

Field names within the same declaration nesting level must be unique, but an inner structure 
declaration can include field names used in an outer structure declaration without conflict. Also, 
since periods are used in record references to separate fields, it is not legal to use relational operators 
(for example, .EQ., .XOR.) logical constants (.TRUE. or .FALSE.) and logical expressions 
(.AND., .NOT., .OR.) as field names in structure declarations. 

Fields declared in a structure are aligned according to the dependencies imposed by the hardware 
and hence a structure's storage requirement is machine-dependent Note that V AXJVMS Fortran 
does no padding. The % FILL feature is not functionally supported since explicit padding of a record 
is not necessary. However, the %FILL will be recognized and result in no action. 

Data initialization can occur for the individual fields. 

The UNION statement and MAP statement are supported. 

See the Paragon™ System Fortran Language Reference Manual for details. The next section on 
Records provides an example. 

6-13 



Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide 

6-14 

Records 

A record is a V AXNMS Fortran extension that is an aggregate entity containing one or more record 
fields. Each field of a record can be named. This allows one to organize heterogenous data items 
within one structure and to operate on them individually or collectively. 

The form of a record is defined with a "structure definition" block (STRUCTURE statement). The 
record is established in memory by specifying the name of the structure in a RECORD statement. 
The format of a RECORD statement is as follows: 

RECORD /structure_name/record_namelist 
[,/structure_name/record_namelistl 

[,/structure_name/record_namelistl 

where structure _1U.l11te is the name of a previously declared structure and record _ namelist is a list of 
one or more variable or array names separated by commas. Records initially have undefined values 
unless their values have been defined in their corresponding structure declarations. 

Individual fields of a record may be referenced by refening to the parent record name, a period (.), 
and finally the field name. A scalar reference is defined to mean a reference to a name that resolves 
to a single typed data item (e.g., INTEGER). An aggregate reference is defined to mean a reference 
that resolves to a structured data item. 

As in V AXNMS Fortran, scalar field references may appear wherever normal variable or array 
elements may appear with the exception of COMMON, SAVE, NAMELIST, DATA and 
EQUIV ALENCE statements. Aggregate references may only appear in aggregate assignment 
statements, unformatted 110 statements, and as parameters to subprograms. 

V AXlVMS Fortran allows aggregates to be assigned as a whole entity. This type of RECORD 
assignment is fully supported. 

RECORDS are fully supported except for the functional support of %FILL. See the Paragon™ 
System Fortran Language Reference Manual for a detailed description and use of the RECORD 
statements and structure declarations. The following is an example of RECORD and 
STRUCTURE usage. 

STRUCTURE /person/ 
INTEGER id 
LOGICAL living 

Declare a structure to define a person 

CHARACTER*50 first, last, middle 
INTEGER age 

END STRUCTURE 
! Define popUlation to be an array where each element is of 
! type person. Also define a variable, me, of type person. 

RECORD /person/ population(lOOO), me 

[J 

[
."'1 

.~ 

1= 
IJ 

,1 
~ ,.; 

!If! 
i......J 

(J 

lJ 



[: 

I: 

r: 

I: 
r: 

I'~ 

IJ 

Paragon™ System Fortran Compiler User's Guide 

me.age = 34 
me.living = .TRUE. 
me.first = 'steve' 
me.id = 542124822 

Extensions to ANSI Fortran 

Assign values for the variable me to 
some of the fields. 

population(l).last 'Jones' Assign the "last" field of 
element 1 of array population. 
Assign all the values of record 
"me" to the record population(2) 

population(2) = me 

UNION/MAP 

A union declaration is a multi statement declaration defining a data area that can be shared 
intermittently during program execution by one or more fields or groups of fields. It declares groups 
of fields that share a common location within a structure. Each group of fields within a union 
declaration is declared by a map declaration, with one or more fields per map declaration. 

Union declarations are used when one wants to use the same area of memory to alternately contain 
two or more groups of fields. Whenever one of the fields declared by a union declaration is 
referenced in a program, that field and any other fields in its map declaration become defined. Then, 
when a field in one of the other map declarations in the union declaration is referenced, the fields in 
that map declaration become defined, superseding the fields that were previously defined. 

A union declaration is initiated by a UNION statement and terminated by an END UNION 
statement. Enclosed within these statements are two or more map declarations, initiated and 
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields 
is defined by a separate map declaration. The fonnat of a UNION statement is as follows: 

UNION 

map_declaration 
[map_declaration] 

[map_declaration] 
END UNION 

where the format of the map _declaration is as follows: 

MAP 

field_declaration 
[field_declaration] 

[field_declaration] 
END MAP 

where field j.eclaration is a structure declaration or RECORD statement contained within a union 
declaration, a union declaration contained within a union declaration, or the declaration of a typed 
data field within a union. Refer to the section "Structures" (on page B-l1) and the Paragon ™ System 
Fortran Language Reference Manual for more on field declarations. 

6-15 



Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide 

6-16 

Data can be initialized in field declaration statements in union declarations. Note, however, that if 
fields within multiple map declarations in a single union are initialized, the initialization of the 
overlapping data is undefined. 

Field alignment within multiple map declarations are perfonned as previously defined in structure 
declarations. 

The size of the shared area for a union declaration is the size of the largest map defined for that union. 
The size of a map is the sum of the sizes of the field(s) declared within it along with area reserved 
for alignment purposes. 

Manipulating data using union declarations is similar to what happens using EQUIVALENCE 
statements. However, union declarations are probably more similar to union declarations for the 
language C. The main difference here is that the language C requires one to associate a name with 
each MAP and uses that name to differentiate multiple "maps" in a single union. The Fortran 
compiler's requirement that field names be unique within the same declaration nesting level 
eliminates the need for naming the MAPs. 

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each 
element of the reca" array would be the size of typetag (4 bytes) plus the size of the largest 
MAP-the employee map (24 bytes). 

STRUCTURE /account/ 
INTEGER typetag 

map. 
UNION 

MAP 
CHARACTER*12 ssn 
REAL*4 salary 
CHARACTER*8 empdate 

END MAP 
MAP 

INTEGER*4 acct_cust 
REAL*4 credit_amt 
CHARACTER*8 due_date 

END MAP 
MAP 

INTEGER*4 acct_supp 
REAL*4 debit_amt 
BYTE num_items 
BYTE items(12) 

END MAP 
END UNION 

END STRUCTURE 

RECORD /account/ recarr(1000) 

Tag used to determine defined 

Structure for an employee 
Social Security Number 

Employment date 

Structure for a customer 

Structure for a supplier 

Items supplied 

For more on UNIONs and MAPs, see the Paragon TM System Fortran Language Reference Manual. 

-~~-----------

[J 

() 

IJ 
IJ 
IE 
r~ 
li..d 

IJ 
[J 
[, 
lJOJ 

I) 

lJi 



[! 

r~ 

I: 
r: 
r: 
r""" 

,,' 

I: 
r: 
r: 
I: 
(

' .. ''1 

-" 

I·", 
"~: 

r: 
IJ 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Exclusive OR 

The Exclusive Or operator, .xOR., is supported. See the Paragon™ System Fortran Language 
Reference Manual for details. 

Format Extensions 

A, 0, Z, Q, and $ Field Descriptors 

The 0, z, Q and $ field descriptors are new; the A edit descriptor is extended. 

The A field descriptor is extended to process any data type. When not specified, the width is 
detennined by the size of the data item. Note that the A field descriptor is the only repeatable edit 
descriptor whose field width specifier is optional as specified in Fortran 77. 

The 0 field and Z field transfers octal or hexadecimal values and can be used with any data type. 
They have the fonn: 

Ow[ .m] and Zw[ .m] 

Where w specifies the field width and m indicates minimum field width on output 

On input. the external field to be input must contain (unsigned) octal or hexadecimal characters only. 
An all blank field is treated as a value of zero. If the value of the external field exceeds the range of 
the corresponding list element, an error occurs. 

On output, the 0 and Z field descriptors transfers the octal and hexadecimal value of the 
corresponding liD list element (respectively), right-justified, to an external field that is w characters 
long. If the value to be transmitted does not fill the field, leading spaces are inserted; if the value is 
too large for the field, the entire field is filled with asterisks. If m is present, the external field consists 
of at least m digits, and is zero-filled on the left if necessary. Note that if m is zero, and the internal 
representation is zero, the external field is blank-ftlled. 

A typeless value output with list directed liD is output in hexadecimal fonn by default. There is no 
other octal or hexadecimal capability with list directed 110. 

The Q edit descriptor calculates the number of characters remaining in the input record and stores 
that value in the next 110 list item. On output, the Q descriptor skips the next liD item. See the 
Paragon ™ System Fortran Language Reference Manual for details. It has the fonn: 

Q 

6-17 



Extensions to ANSI Fortran Paragon TM System Fortran Compiler User's Guide 

6-18 

The $ descriptor allows the programmer to control carriage control conventions on output. It is 
ignored on input. For example, on tenninal output, it can be used for prompting. See the Paragon ™ 
System Fortran Language Reference Manual for more details. It has the form: 

$ 

For F, E, and D output editing, the V AXlVMS Fortran output format is adhered to. See the 
Paragon ™ System Fortran Language Reference Manual for details on output processing for P, E, 
and D field descriptors. 

Carriage Control Characters 

The I/O system recognizes characters as carriage controls when appearing as the first character of a 
record being written. In addition to the standard "1", "" (blank), "+", and "0"; the "$" and ''\0'' 
(ASCII NUL) are supported. The "$" allows for prompting by causing output to start at the 
beginning of the next line, and suppressing carriage return at the end of the line. The ''\0'' overprints 
with no advance; that is, it starts output at the beginning of the current line and does not return to the 
left margin after printing. 

Note that a "$" appearing as the first character in a record to be written is interpreted as a carriage 
control character and is different from the "$" being used as an edit descriptor in a fonnat statement. 
See the Paragon ™ System Fortran Language Reference Manual for details. 

Commas in External Fields 

Use of the comma in an external field eliminates the need to "count spaces" to have data match 
format edit descriptors. The use of a comma to terminate an input field and thus avoid padding the 
field is fully supported, as described in the Paragon ™ System Fortran Language Reference Manual. 

Reading Non-Quoted Data into CHARACTER Variables 

When reading string data from a fonnatted file into a character"'n variable, the string need not be 
quoted. Characters are read until the character"'n variable is full or until a linefeed is read, 
whichever comes first. See the Paragon ™ System Fortran Language Reference Manual for more 
information. 

Variable Format Expressions <expr> 

VariabIe fonnat expressions are supported in full. They provide a means for substituting runtime 
expressions for the field width and other parameters for the field and edit descriptors in a FORMAT 
statement (except for the H field descriptor). Variable format expressions are evaluated each time 
they are encountered in the scan of a format. If the value of a variable used in the expression changes 
during the execution of the I/O statement, the new value is used the next time the format item 
containing the expression is processed. Restrictions apply as indicated in the Paragon ™ System 
Fortran Language Reference Manual. 

[J 
[) 

[] 

IJ 

~l 
WLAJ 

r'" 
Wa._...J 

l: l . ..w 

[J 

[J 

[J 



I: 
I: 

I: 
r: 

I: 
I~. 
( •... , 

.1 

I: 
1,-"" 

- -~ 

I: 
r" 
('" 

I "I 
•• 1 

r: 
I: 

Paragon TM System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Format Specification Separators 

The ANSI Fortran 77 requirement that a fotmat specification separator within a fOIIDat statement be 
a comma or a slash (j) is relaxed. The comma may be eliminated as a fotmat specifier whenever the 
end of the specifier and the beginning of the next specifier can be unambiguously detetmined. For 
example the following is legal: 

format('1'7H123456716) 

Commas were eliminated between the following format specifiers: 

'1 ' 
7H1234567 
16 

ENCODE/DECODE Statements 

The ENCODE and DECODE statements are unique to V AXlVMS Fortran and are fully supported. 
The ENCODE and DECODE statements transfer data between variables or arrays in internal 
storage and translate that data from internal to character fotm, and vice versa, according to format 
specifiers. Similar results can be accomplished using internal files with fotmatted sequential 
WRITE and READ statements. The ENCODE and DECODE statements have the fotm: 

ENCODE (c,f,b[,10STAT=ios] [,ERR=S]) [list] 
DECODE (c,f,b[,10STAT=ios] [,ERR=s]) [list] 

where c is an integer expression specifying the number of bytes involved in translation, fis the 
fotmat identifier, b is a scalar or array reference for the buffer area and list is the buffer area either 
containing data or receiving data. See the Paragon TM System Fortran Languo.ge Reference Manual 
for details and restrictions. 

Lexical Extensions 

Identifier Names 

Identifiers may be arbitrarily long. The number of significant characters is 30. In addition to 
alphabetic and numeric characters, identifiers may contain the dollar sign ($) and the underscore U. 
The first character of a name must be either alphabetic, the dollar sign, or an underscore. The default 
data type for identifiers beginning with "$" or "_" is REAL. 

By default, all uppercase letters, except those in character or Hollerith constants are translated to 
lower case. As a result, keywords may be in either upper or lower case, and case is not significant in 
identifier names. This can be changed by use of the -Mupcase switch. When this switch is used, 
keywords must be in lower case and case is significant in identifier names. 

6-19 



Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide 

6-20 

Character Constants 

For compatibility with C usage, the following backslash escapes are recognized within character 
string constants: 

\v 
\a 
\n 
\t 
\b 
\f 
\r 
\0 
\' 
\" 
\\ 
\x 
\ddd 

vertical tab 
alert (bell) 
newline 
tab 
backspace 
formfeed 
carriage return 
null 
apostrophe (does not tenninate a string) 
double quotes (does not tenninate a string) 
\ 
x, where x is any other character 
character with the given octal representation. 

Character string constants may be delimited using either an apostrophe (') or a double quote ("). If 
a string begins with one variety of quote mark, the other may be embedded within it without using 
the repeated quote (as in standard Fortran 77) or backslash escape. 

Inline Comments 

An exclamation point (!) can be used anywhere in the statement field (except when used in a 
Hollerith or character constant) to start an end-of-line comment. 

Debug Statements 

The letter "D" in column 1 designates the statement on that line to be a debugging statement. The 
compiler will treat the debugging statement as a comment unless the command line switch -Mdlines 
is used during the compilation. In that case, the compiler acts as if the "D" were a blank and compiles 
the line according to the standard rules. 

INCLUDE Statements 

The INCLUDE 'statement directs the compiler to start reading from another me. The fonnat for the 
INCLUDE statement is: 

INCLUDE 'pathname[/[NO] LIST] , 

~~--~--~---------~-------------------------

[) 

I~ .Jt;-J 

(J 

[J 

[J 

[J 



r: 

r: 
r: 

I: 
I: 
I~ 

I: 
r: 

[J 
(J 

l: 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

The INCLUDE statement may be nested to a depth of 20 and can appear anywhere within a program 
unit as long as the statement-ordering restrictions for Fortran statements are not violated. The 
directory search rules are as follows: 

If pathname is a fully qualified pathname, then that pathname specifies the directory to search. 

The current directory is searched 

The directories specified via the -I switch on the compile line are searched in the order in which 
they occurred. 

The qualifiers /LIST or INOLIST can be used to control whether the include file is expanded in the 
listing file (if generated). 

Note that there is no support for V AXlVMS "text libraries." Also note the lack of support for the 
"module_name" pathname qualifier that exists in the V AX!VMS version of the INCLUDE 
statement. 

Statement Ordering 

The rules defining the order in which statements appear in a program unit have been relaxed as 
follows: 

• DATA statements can be freely interspersed with PARAMETER statements, other 
specification statements and executable statements. 

NAMELIST statements are supported and have the same order requirements as FORMAT and 
ENTRY statements. 

• The IMPLICIT NONE statement can precede other IMPLICIT statements. 

See the Paragon TM System Fortran Language Reference Manual for details on statement ordering. 

Input File Format 

Input source file format has been extended from Fortran 77 to allow a number of V AX!VMS Fortran 
extensions. Fortran 77 input source file format is supported in full as indicated in the ANSI standard. 

A continuation line may also be indicated by using an ampersand (&) in column one of a line. 

• Tab-Format lines are supported. A tab in columns 1-6 ends the statement label field and begins 
an optional continuation indicator field. If a non-zero digit follows the tab character, the 
continuation field exists and indicates a continuation field. If anything other than a non-zero 
digit follows the tab character, the statement body begins with that character and extends to the 
end of the source statement. Note that this does not override Fortran 77's source line handling 
since no valid Fortran statement can begin with a non-zero digit. The tab character is ignored if 
it occurs anywhere else in a line except in Hollerith or character constants. 

6-21 



Extensions to ANSI Fortran Paragon TM System Fortran Compiler User's Guide 

• Input lines may be of varying lengths. If there are fewer than seventy two characters, the line is 
padded with blanks; characters after the 72nd are ignored unless the -Mextend switch is used 
on the compile line. 

• If the -Mextend switch is used on the command line then the input line can extend to 132 
characters. The line is padded with blanks if it is fewer than 132; characters after the 132nd are 
ignored. Note that use of this switch extends the statement field to position 132. 

• Blank lines are allowed at the end of a program unit. 

• The number of continuation lines allowed is extended to 99. 

V AXlVMS Fortran's Sequence Number Field support is not provided. 

1/0 Extensions 

6-22 

110 statements are composed of three basic components: the statement keyword, the control list, and 
thellO list. The statement keywords supported are READ, ACCEPT, WRITE, TYPE, and 
PRINT. ACCEPT and TYPE are VAX/VMS extensions. ENCODE and DECODE are supported 
as previously described. The control list and 110 list have a few extensions and are discussed in this 
section. The concept of namelist directed 110 is a V AXlVMS Fortran extension and is supported. 

Namelist Directed 1/0 

The NAMELIST statement is fully supported. This feature allows for the definition of namelist 
groups for namelist directed 110. See the Paragon TM System Fortran Language Reference Manual 
for details on namelist directed 110. 

ACCEPT and TYPE Statements 

The ACCEPT statement has the same syntax as the PRINT statement and causes fonnatted input 
to be perfonned on stdin. It is identical to the READ statement with a unit specifier of asterisk (*). 
The ACCEPT statement is supported. 

The TYPE statement has the same syntax and effect as the PRINT statement and is supported. 

1/0 Lists 

Aggregate references can be used in unfonnatted input and output statements. 

An extension that allows the programmer to freely parenthesize 110 items and groups of 110 items 
within 110 lists is supported as in V AX/VMS Fortran. 

[
."1'\ 

Ai 

(J 

''''l. l"", 

(J 

(J 

(J 

[J 



I: 
r: 

I: 
r: 

( ""',' 

" 

I~: 
(

--""1 

,'I .• 

I ~:; 
( -~ 

1= 
I: 

,-
• _.J 

IJ 
C 

Paragon .... System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Control List Extensions 

V AXlVMS allows a much larger set of I/O specifiers than Fortran 77. A subset of V AXlVMS 
extensions is supported by the Fortran compiler. 

A namelist specifier is a parameter that specifies that namelist directed I/O is being used and 
identifies the group-name of the list of entities that may be modified on input or written on output. 
The namelist specifier has the form: 

[NML=] group_name 

where group -,lame is the name of a list previously defined in a NAMELIST statement. 

The keyword NML is optional only if (1) the namelist specifier is the second parameter in the 
control list and (2) the first parameter is a logical unit specifier without an optional keyword UNIT. 
A namelist specifier cannot be used in a statement that contains a format specifier. 

Extensions Derived from Cray Fortran 
The Fortran compiler supports the following Cray extensions: 

• Pointer-based variables (pOINTER statement). 

Dynamic COMMON blocks (ALLOCATABLE attribute). 

• Memory allocation statements (ALLOCATE and DEALLOCATE statements). 

POINTER Statement 

A pointer variable is an integer variable that contains the address of a corresponding pointer-based 
variable. Th! storage located by the pointer variable is viewed according to what's implied by the 
pointer-based variable (subscripted, data type, etc.). A reference to a pointer-based variable appears 
in FORTRAN statements like a normal variable reference (such as a local variable, common block 
variable, or dummy variable). When the pointer-based variable is referenced, the address to which 
it refers is always taken from its associated pointer (that is, its pointer variable is derejerenced). 

The POINTER statement declares a scalar variable to be a pointer and another variable to be its 
pointer-based variable. The syntax of the POINTER statement is: 

POINTER (pl, vl) [, (p2, v2) ... ] 

6-23 



Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide (J 

6-24 

Where: 

pI,p2, ... 

vI, v2, ... 

are the pointer variables; a pointer variable must have type INTEGER and 
must not be an array. 

are the corresponding pointer-based variables; a pointer-based variable can 
be of any type, including structure. 

[J 

fl _..J 

A pointer-based variable can be dimensioned in the POINTER statement or in a separate type or if if! 
DIMENSION statement. The dimension expression may be adjustable, where the rules for ~ "'" 
adjustable dummy arrays regarding any variables which appear in the dimension declarators apply. 

r''i 
The pointer-based variable does not have an address until its corresponding pointer is defined. A l.... ~ 
pointer can be defined by any of the following: 

r 1 
Assigning the value of the LOC function to the pointer variable. ~ . .J 

• Assigning a value defined in tenns of another pointer variable to the pointer variable. 

Dynamically allocating a memory area for the pointer-based variable. 

Also, if a pointer-based variable is dynamically allocated, it may also be freed (see "Memory 
Allocation Statements" on page 6-26). 

For example: 

Restrictions: 

REAL XC(IO) 
COMMON IC, XC 
POINTER (P, I) 
POINTER (Q, XeS»~ 

P LOC(IC) 
I 0 

P LOC(XC) 
Q P + 20 
X(I) = 0 

ALLOCATE (X) 

IC gets 0 

same as LOC(XC(6» 
XC(6) gets 0 

Q locates a dynamically allocated 
memory area 

• No storage is allocated when a pointer-based variable is declared. 

• If a pointer-based variable is referenced, it's assumed that its pointer variable is defmed. 

". .,.: 
l.aJ 

IJ 

[J 

(J 

IJ 



I: 
I -

. .ill 

r: 
r: 
r~, 

1 : 

r-'" 
., 

I "" 
<', 

I: 
I: 
( "' 

• .j 

'''" . "': 
( . ...., 

,lW 

I~ , , 
.. ...; 

Paragon 1M System Fortran Compiler User's Guide Extensions to ANSI Fortran 

• A pointer-based variable may not appear in the argument list of a SUBROUTINE or 
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or 
SA VE statements. 

• A pointer-based variable can only be adjustable in a SUBROUTINE or FUNCTION 
subprogram. If a pointer-based variable is an adjustable array, it's assumed that the variables in 
the dimension declarator(s) are defined with an integer value at the time the subroutine or 
function is called. For a variable which appears in a pointer-based variable's adjustable 
declarator, modifying its value during the execution of the subroutine or function does not 
modify the bounds of the dimensions of the pointer-based array. 

• A pointer-based variable is assumed not to overlap with another pointer-based variable. 

Dynamic COMMON 

A dynamic, or allocatable, common block is a common block whose storage is not allocated until 
an explicit ALLOCATE statement is executed. 

The syntax of the COMMON statement is extended to allow an attribute (ALLOCATABLE) after 
the COMMON keyword: 

COMMON [, ALLOCATABLE] named_common_list 

where named _ Com17Wn _list is the same fonn used to declare named (statically allocated) common 
blocks. 

If the ALLOCATABLE attribute is present, all named common blocks appearing in the common 
statement are marked as allocatable. Like a nonnal COMMON statement, the name of an 
allocatable common block may appear in more than one COMMON statement. Note that the 
ALLOCATABLE attribute need not appear in every COMMON statement. 

For example: 

COMMON, ALLOCATABLE /alll/ a, b, /al12/aa, bb 
COMMON /stat/d, /alll/ c 

These statements declare alll and a1l2 as allocatable common blocks whose members are a, b, c, 
and aa, bb, respectively, and stat as a statically-allocated common block (whose member is tl) . 

A reference to a member of an allocatable common block appears in a FORTRAN statement just 
like a member of a nonnal (static) common block. No special syntax is required to access members 
of allocatable common blocks. For example, using the above declarations, the following statement 
is legal: 

aa b * d 

6-25 



Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide [J 

Restrictions: 

• Before members of an allocatable common block can be referenced, the common block must 
have been explicitly allocated using the ALLOCATE statement. 

• Members of an allocatable common block cannot be data initialized. 

• The memory used for an allocatable common block may be freed using the DEALLOCATE 
statement. 

• If a subprogram declares a common block to be allocatable, all other subprograms containing 
COMMON statements of the same common block must also declare the common to be 
allocatable. 

I) 

IJ 

(] 

Memory Allocation Statements 

6-26 

The ALLOCATE and DEALLOCATE statements provide a mechanism to allocate and free 
memory during the execution of a program. 

ALLOCATE Statement 

The syntax of the ALLOCATE statement is: 

ALLOCATE ( al [, al ] ... [, STAT=var ] ) 

Where: 

al 

var 

is a pointer-based variable or the name of an allocatable common enclosed 
in slashes. 

is an integer variable, integer array element, or an integer member of a 
structure. 

(J 

The ALLOCATE attempts to allocate storage for each of the pointer-based variables and (J 
allocatable common blocks which appear in the statement. For a pointer-based variable, its 
associated pointer variable is defined with the address of the allocated memory area. If the STAT= (, ~" 
speCifier is present, successful execution of the ALLOCATE statement causes the status variable to __ 
become defined with the value 0 (zero). If an error occurs during the execution of the statement and 
the STAT= is present, the status variable is defined with the value 1 (one). If an error occurs and the [~.~,' 
STAT= specifier is not present. program execution is terminated. = 

[J 

() 



r°'1ll 

~ 

I: 

r: 
r-"'.·· 

.,; 

I #i 

•• 1 

I: 
(~ 

1--· 
"" 

I ~ 
[

_O",,! 

. ....,1 

I: 
I: 
(­. " 
I] 

c 

Paragon TM System Fortran Compiler User's Guide Extensions to ANSI Fortran 

DEALLOCATE Statement 

The syntax of the DEALLOCATE statement is: 

DEALLOCATE ( al [, al ] ... [ , STAT=var] ) 

Where: 

al is a pOinter-based variable or the name of an allocatable common enclosed 
in slashes. 

var is an integer variable, integer array element, or an integer member of a 
structure. 

The DEALLOCATE statement causes the memory allocated for each of the pointer-based variables 
or allocatable common blocks which appear in the statement to be deallocated (freed). An attempt 
to deallocate a pointer-based variable or an allocatable common block which was not created by an 
ALLOCATE statement results in an error condition. 

If the STAT= specifier is present, successful execution of the DEALLOCA TE statement causes the 
status variable to become defined with the value 0 (zero). If an error occurs during the execution of 
the statement and the STAT= is present, the status variable is defined with the value 1 (one). If an 
error occurs and the STAT= specifier is not present, program execution is terminated. 

Using Memory Allocation Statements 

Here is an example of the ALLOCATE and DEALLOCATE statements: 

COMMON P, N, M 
POINTER (P, A(N,M» 
COMMON, ALLOCATABLE IALL/X(10), Y 
ALLOCATE (lALLI, A, STAT=IS) 
PRINT *, IS 
XeS) = A(2, 1) 
DEALLOCATE (A) 
DEALLOCATE (A, STAT=IS) 
PRINT *, 'should be 1', IS 
DEALLOCATE (/ALL/) 

6-27 



Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide 

Other I/O Extensions 
This section describes the following I/O extensions: 

• How the underlying I/O is performed 

• The different file organizations 

• Extensions to the OPEN statement 

Extensions to the CLOSE statement 

Extensions to the BACKSPACE statement 

• Extensions to the READIWRITE statement 

GenerallnputlOufput 

6-28 

The Fortran compiler supports the full I/O facilities of ANSI Standard Fortran 77 along with several 
extensions as listed in the following sections. A number of different file and access types are also 
supported. They include: 

• Internal and external files 

• Fixed and variable record length files 

Formatted and unformatted I/O 

• Direct and sequential I/O 

The Fortran 77 standard gives a certain amount of latitude to compiler implementors concerning 
default features of Fortran I/O. Unless specified otherwise, all file units opened are initially 
connected for sequential, formatted, variable length record, synchronous buffered I/O, and have a 
default value of NULL for the BLANK specifier in the OPEN statement. All STATUS and LIMIT 
variables must be of type INTEGER *4. 

The operating system provides three standard data streams called standard input, standard output, 
and standard error. All of these streams are normally connected to the user's terminal, but this can 
be overridden by using I/O redirection on the command line (see the OSF /1 User's Guide for more 
information on I/O redirection). Standard input is pre connected to logical unit 5, standard output is 
preconnected to logical unit 6, and standard error is preconnected to logical unit O. This means that 
you can read from unit 5 and write to units 6 and 0 without opening them first. 

() 

I! 

I: 
I] 

, I i ""1 

'.,~ 

(J 

[J 

( 1 
,,,.I 

(J' 

1]' 

~! 



r: 
I·~ 

II:! 

1_"' .. 
'" 

r: 
1-: 

I: 

I
·~ 

-, 

(
."""1 

,;.;..j 

I ~ 

r---; ... : 
I: 
1-·· 

., 
. ..&1 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

File Formats 

Four kinds of external files are supported by the Fortran compiler: variable length and fixed length, 
formatted and unfonnatted records. To promote portability, files are implemented as ordinary UNIX 
files with their internal structure defined by the method used to write them. 

A file is opened for fixed length record I/O by specifying the record length of the records using the 
REeL specifier of the OPEN statement. This is used by the I/O system to make the file look as if 
it is made up of records of the given length. The record length must be in units of bytes. For 
unfonnatted files, the size of the data items in a record must be added up (e.g., an INTEGER"'2 item 
requires two bytes). Each data item in an unfonnatted file immediately follows the previous item 
with no alignment requirements. 

For fixed length record formatted files, each record consists of exactly the number of bytes that is 
specified by the user. 

Each record of a variable length unformatted file is preceded and followed by a four-byte integer 
containing the record's length in bytes. 

For variable length record formatted input, each newline character is interpreted as a record 
separator. On output, the I/O system writes a newline at the end of each record. If a program writes 
a newline itself, the single record containing the newline will appear as two records when read or 
backspaced over. The maximum allowed length of a record in a variable length record formatted file 
is 2000 characters. 

Any file opened for direct access must be via fixed length records. 

OPEN Statement 

V AXlVMS Fortran introduces a number of extensions to the OPEN statement. Many of these relate 
only to the VMS file system and are not supported (e.g., KEYED access for indexed files). All of the 
standard Fortran 77 features for the OPEN statement are supported. The following k~words for the 
OPEN statement have been added or augmented as shown below. See the Paragon System 
Fortran Language Reference Manual for details on these keywords. 

ACCESS The value of ' APPEND' will be recognized and implies sequential access 
and positioning after the last record of the file. Opening a file with append 
access means that each appended record is written at the end of the file (Le., 
the lseekO system call has no effect on the file pointer). 

ASSOCIATEVARIABLE 
This new keyword specifies anINTEGER"'4 variable which is updated to the 
next sequential record number after each direct access I/O operation. Only for 
direct access mode . 

6-29 



-----------------------

Extensions to ANSI-Fortran Paragon TM System Fortran Compiler User's Guide 

DISPOSE and DISP 
_ These new keywords specify the disposition for the file after it is closed. 

, KEEP' or ' SAVE' is the default on anything other than 
STATUS='SCRATCH' files. ' DELETE' indicates that the file is to be 
removed after it is closed. The PRINT and SUBMIT values are not supported. 

NAME This new keyword is a synonym for FILE. 

READONLY This new keyword specifies that an existing fIle can be read but prohibits 
writing to that fIle. The default is readjwr i teo 

RECL= 1 en The record length given is interpreted as number of words in a record if the 
runtime enviromnent parameter FORTRANOPTis set to vaxio. This is to 
ease porting of V AXlVMS programs. The default is that len is given in 
number of bytes in a record. 

TYPE This new keyword is a synonym for STATUS. 

CLOSE Statement 

The DISPOSE or DISP keyword is added to the CLOSE statement. It is synonymous with the 
STATUS keyword. This new keyword specifies the existence of the file after closing. The default 
is ' SAVE' or ' KEE P , . The value of ' DELETE' will delete the file after closing. These new values 
can be used with the STATUS keyword also. 

BACKSPACE Statement 

The BACKSPACE statement is supported as defined by Fortran 77. However, you must not issue 
a BACKSPACE statement for a file that is open for direct or append access. 

READIWRITE Statement 

list directed reads or writes on internal files is supported in addition to the Fortran 77 standard of 
fonnatted reads or writes on internal files. 

Namelist directed fonnatting is not pennitted with internal reads or writes. 

l: 

I ~·' ,,' i 

A.i 

!'!If 1 
i. : Ia_",-, 

IJ 
[ ~, - , 

.... 

IJ 



r: 
r: 
r: 
I~ 

I···"" 
,",' 

r: 
( ... ., 

k. 

I ~: 

r: 
1·'-. 

. "' 

I "" 
~I 

1= 
( .. " 

,.J 

IJ 

U 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Subroutine and Intrinsic Extensions 
This section describes added system built-in function and subroutine support and non-Fortran 77 
intrinsic support. Table 6-5 (on page 6-37) summarizes the intrinsic functions. 

Built-In Functions 

The following built-in functions are fully supported: 

• %VAL 

% REF 

%DESCR 

%LOC 

See the Paragon™ System Fortran Language Reference Manual for details. 

VAX/VMS System Subroutines 

The following V AXlVMS Fortran system subroutines are provided. 

DATE 

Returns a nine-byte string containing the ASCII representation of the current date. It has the form: 

CALL DATE(buf) 

where bufis a nine-byte variable, array, array element, or character substring. The date is returned 
as a nine-byte ASCII character string of the form: 

dd-mmm-yy 

where: 

dd Is the two-digit day of the month 

mmm Is the three-character abbreviation of the month 

yy Is the last two digits of the year 

6-31 



Extensions to ANSI Fortran Paragon TN System Fortran Compiler User's Guide 

IDATE 

The IDA TE subroutine returns three integer values representing the current month. day, and year. 
It has the fonn: 

CALL IDATE(i, j, k) 

If the current date were October 9, 1984, the values of the integer variables upon return would be: 

i = 10 
j= 9 
k= 84 

EXIT 

The EXIT subroutine causes program termination, closes all open files, and returns control to the 
operating system. It has the fonn: 

CALL EXIT[(exit_status)] 

where exit_status is an optional integer argument used to specify the image exit value. 

SECNDS 

Provides system time of day, or elapsed time, as a floating point value in seconds. It has the fonn: 

y = SECNDS (x) 

where (REAL or DOUBLE PRECISION) Y is set equal to the time in seconds since midnight, 
minus the user supplied value of the (REAL or DOUBLE PRECISION) x. Elapsed time 
computations can be perfonned with the following sequence of calls. 

x = SECNDS(O.O) 

! Code to be timed 

DELTA = SECNDS(X) 

The accuracy of this call is the same as the resolution of the system clock. 

I ~ 

.. JiI 

[ 111 
.. ~ 

IJ 
[J 

IJ 
[] 

[J 

lJ 

[J 

I , 
.JiJ 



I" ,:Ii 

I-~ 
,JIij 

I: 
I: 
r: 
r"""i 

.. I 

I~I 

I: 

I~ 

I: 
I: 
.''''' I ~i 

r: 
(

1"1 

..J 

[] 

Paragon'" System Fortran Compiler User's Guide Extensions to ANSI Fortran 

TIME 

Returns the current system time as an ASOI string. It has the fonn: 

CALL TIME(buf) 

where bufis an eight-byte variable, array, array element, or character substring. The TIME call 
returns the time as an eight-byte ASCII character string of the fonn: 

hh:mm:ss 

For example: 

16:45:23 

Note that a 24-hour clock is used. 

MVBITS 

The MVBITS subroutine transfers a bit field from one storage location (source) to a field in a second 
storage location (destination). MVBITS transfers a3 bits from positions a2 through (a2 + a3 - 1) of 
the source, aI, to positions a5 through (a5 + a3 - 1) of the destination, a4. Other bits of the 
destination location remain unchanged. The values of (a2 + a3) and (a5 + a3) must be less than or 
equal to 32. It has the fonn: 

CALL MVBITS(al, a2, a3, a4, as) 

where: 

al 

a2 

a3 

a4 

a5 

Is an integer variable or array element that represents the source location. 

Is an integer expression that identifies the first position in the field transferred 
fromal. 

Is an integer expression that identifies the length of the field transferred from 
al. 

Is an integer variable or array element that represents the destination location. 

Is an integer expression that identifies the starting position within a4, for the 
bits being transferred. 



Extensions to ANSI Fortran Paragon TM System Fortran Compiler User's Guide 

RAN 
Returns the next rmmber from a sequence of pseudo-random numbers of uniform distribution over 
the range a to 1. The result is a floating point number that is uniformly distributed in the range 
between 0.0 and 1.0 exclusive. It has the form: 

y = RAN(i) 

where y is set equal to the value associated by the function with the seed argument i. The argument 
i must be anINTEGER"'4 variable orINTEGER*4 array element. 

The argument i should initially be set to a large, odd integer value. The RAN function stores a value 
in the argument that it later uses to calculate the next random number. 

There are no restrictions on the seed, although it should be initialized with different values on 
separate runs in order to obtain different random numbers. The seed is updated automatically, and 
RAN uses the following algorithm to update the seed passed as the parameter: 

SEED = 69069 * SEED + 1 ! MOD 2**32 

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point and 
returned as the result. 

VAXlVMS Intrinsics 

Additional intrinsics are added to support the new data types ofINTEGER*2, LOGICAL"'1, 
LOGICAL*2, and COMPLEX*16. Typeless generic intrinsics (AND, OR, NEQV, EQV, 
SHIFT, and COMPL) are added to support 64-bit constant manipulations. V AXlVMS Fortran 
Bit-manipulation intrinsic functions are supported. The REAL*16 intrinsic functions are not 
supported Table 6-5 (on page 6-37) lists only supported V AXlVMS intrinsics not part of ANSI 
Fortran 77. 

Support for trigonometric functions with arguments in degrees is provided as well as for arguments 
of type COMPLEX*16. 

[) 

11 
1.1 

I] 

[J 

rf·~.' tJJ 

[J 

[J 

(J 

IJ 
I) 



r: 
I: 
r: 

I
····~ 

-' 

(~1 

I: 
f--

-<W 

1_" 
.:;..J 

I ~, 

I~<'I 

•. ..1 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Table 6-3 lists the intrinsics that support the new data types. 

Table 6-3. Intrinsics That Support The New Data Types 

Intrinsic Function Generic Name 

Absolute Value ABS 

Truncation INT,llNT 

Nearest Integer ININT 

Conversion to REAL*4 REAL 

Conversion to REAL *8 DBLE 

Conversion to COMPLEX*8 CMPLX 

Imaginary part of COMPLEX*16 (no generic name, specific names only) 

Complex Conjugate (no generic name, specific names only) 

Maximum and Minimum MAX,MIN 

Positive Difference DIM 

Remainder MOD 

Transfer of Sign SIGN 

Trigonometrics SIN,COS 

Misc SQRT, LOG, EXP 

Table 6-4 lists other new intrinsics (generics). 

Table 6-4. Other New Intrinsics (1 of 2) 

Intrinsic Function Generic Name 

Trigometrics with degree arguments SIND, COSD, TAND, ASIND, ACOSD, 
ATAND, ATAN2D 

Z£ro-Extend Functions ZEXT,IZEXT 

Conversion to COMPLEX* 16 DCMPLX 

Bitwise AND IAND,AND 

Bitwise OR IOR,OR 

Bitwise Exclusive OR IEOR, XOR, NEQV 

Bitwise Exclusive NOR EQV 

Bitwise Complement NOT,COMPL 



--- -----------

Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide 

Table 6-4. Other New Intrinsics (2 of 2) 

Intrinsic Function Generic Name 

Bitwise Shift ISOFT, LSIDFT, RSIDFT, SIDFT 

Bitwise Circular Shift ISHFTC 

Bit Extract mITS 

Bit Set mSET 

Bit Test BTEST 

Bit Clear mCLR 

Table 6-5 (on page 6-37) lists generic and intrinsic names for all intrinsics supported by the Fortran 
compiler that are not defined by ANSI Fortran 77. See the Paragon TN System Fortran Language 
Reference Manual for details on these new and extended intrinsic functions. 

UNIX Related System Subroutines 

6-36 

The following subroutines are supplied to support C-like command line argument processing by 
Fortran routines. 

GETARG 

SUBROUTINE GETARG(N, ARG) 
INTEGER*4 N 
CHARACTER* (*) ARG 

Returns Nth command line argument in character variable ARG. For N equal to zero, the name of the 
program is returned. 

lARGe 

INTEGER*4 FUNCTION IARGC() 

Returns the number of command line arguments following the program name. 

[ .. ~ 
. .&1 

[~ 

IJ 

lJ 
[J 

[J 

f~l 

1.J 

(J 

[J 

[J 

IJ ' 



I.··" .... 

r: 
r: 
I: 
I: 
r~' 

r: 
I: 
I ~ 

I~ 

(.""] . ~ 

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Additional Intrinsic Functions 
Table 6-5 lists intrinsic functions that are in addition to those described for Fortran 77. All the 
Fortran 77 intrinsics are supported and are detailed in the American National Standard 
Programming Language FORTRAN, ANSI x3.9-1978. See the Paragon TAo! System Fortran Language 
Reference Manual for details on the intrinsics in this chapter. 

Table 6-5. Additional Intrinsic Functions (1 of 4) 

Number Generic Specific Type of 
Function of Args Name Name Argument Type of Result 

Square Root 1 SQRT CDSQRT COMPLEX "'16 COMPLEX*16 

Natural Logarithm 1 LOG CDLOG COMPLEX "'16 COMPLEX*16 

Exponential 1 EXP CDEXP COMPLEX "'16 COMPLEX*16 

Sine (degree) 1 SIND SIND REAL"'4 REAL"'4 
DSIND REAL"'S REAL"'S 

Cos (degree) 1 COSD COSD REAL"'4 REAL*4 
DCOSD REAL*S REAL*S 

Tan (degree) 1 TAND TAND REAL"'4 REAL*4 
DTAND REAL"'S REAL"'S 

ArcSine (degree) 1 ASIND ASIND REAL"'4 REAL*4 
DASIND REAL"'S REAL"'S 

ArcCosine (degree) 1 ACOSD ACOSD REAL"'4 REAL"'4 
DACOSD REAL*S REAL"'S 

ArcTangent (degree) 1 ATAND ATAND REAL*4 REAL*4 
Arc Tan a DATAND REAL"'S REAL"'S 

ArcTangent (degree) 2 ATAN2D ATAN2D REAL"'4 REAL*4 
Arc Tan alla2 DATAN2D REAL"'S REAL*S 

Sine 1 SIN CDSIN COMPLEX*16 COMPLEX"'16 

Cos 1 COS CDCOS COMPLEX"'16 COMPLEX"'16 

Absolute Value 1 ADS DABS INTEGER"'2 INTEGER"'2 
JIADS INTEGER"'4 INTEGER"'4 
CDABS COMPLEX*16 REAL"'S 

6-37 



Extensions to ANSI Fortran 

Function 

Truncation 

Nearest Integer 
[a + .5*sign(a)] 

Zero-Extend Function 
(Conversion Routine) 

Convert to REAL *4 

Convert to REAL *S 

Fix 

Conv to 
COMPLEX"'S or 
COMPLEX*S from 
two arguments 

Convto 
COMPLEX"'16 or 
COMPLEX*16 from 
two arguments 

Paragon TN System Fortran Compiler User's Guide 

Table 6·5. Additional Intrinsic Functions (2 or 4) 

Number Generic Specific Type of 
of Args Name Name Argument Type of Result 

1 llNT llNT REAL*4 INTEGER*2 
llDINT REAL*S INTEGER*2 

COMPLEX*S INTEGER*2 
COMPLEX *16 INTEGER*2 

INT COMPLEX "'16 INTEGER "'4 
JINT JINT REAL*4 INTEGER*4 

JIDINT REAL"'S INTEGER"'4 
COMPLEX"'S INTEGER"'4 
COMPLEX*16 INTEGER"'4 

1 ININT ININT REAL*4 INTEGER*2 
llDNNT REAL*S INTEGER*2 

JNINT JNINT REAL"'4 INTEGER"'4 
JIDNNT REAL"'S INTEGER"'4 

1 IZEXT LOGICAL*1 INTEGER*2 
LOGICAL*2 INTEGER*2 
INTEGER*2 INTEGER*2 

ZEXT JZEXT LOGICAL*1 INTEGER*4 
WGICAL*2 INTEGER *4 
WGICAL*4 INTEGER *4 
INTEGER*2 INTEGER*4 
INTEGER*4 INTEGER*4 

1 REAL FLOATI INTEGER*2 REAL*4 
FLOATJ INTEGER*4 REAL"'4 

COMPLEX*16 REAL*4 

1 DBLE DFLOTI INTEGER*2 REAL*S 
DFLOAT INTEGER*4 REAL * 8 
DFLOTJ INTEGER*4 REAL * 8 
DREAL COMPLEX*16 REAL * 8 

1 llFIX REAL*4 INTEGER*2 
JIFIX REAL*4 INTEGER*4 

1,2 CMPLX INTEGER*2 COMPLEX"'S 
COMPLEX *16 COMPLEX"'S 

1,2 DCMPLX INTEGER*2 COMPLEX'" 16 
1,2 INTEGER"'4 COMPLEX'" 16 
1,2 REAL*4 COMPLEX*16 
1,2 REAL*S COMPLEX*16 
1 COMPLEX*S COMPLEX*16 
1 COMPLEX*16 COMPLEX"'16 

[~ 

U 

I] 

IJ 

I : .-".1 

IJ 
I: 

[J 

IJ 



r: Paragon TM System Fortran Compiler User's Guide Extensions to ANSI Fortran 

r: 
r: Table 6-5. Additional Intrinsic Functions (3 of 4) 

r: Number Generic Specific Type of 
Function of Args Name Name Argument Type of Result 

Imag Part of Cmplx 1 AIMAG COMPLEX*S REAL*4 
DIMAG COMPLEX*16 REAL*S 

Complex Conjugate 1 CONJG DCONJG COMPLEX*16 COMPLEX*16 

Maximum n>1 MAX IMAXOI INTEGER*2 INTEGER*2 
MAXI REAL*4 INTEGER*2 
AIMAXO INTEGER*2 REAL*4 
JMAXO INTEGER*4 INTEGER*4 
JMAXI REAL*4 INTEGER*4 
AJMAXO INTEGER*4 REAL*4 

Minimum n>1 MIN IMINO INTEGER*2 INTEGER*2 
IMINI REAL*4 INTEGER*2 
AIMINO INTEGER*2 REAL*4 
JMINO INTEGER*4 INTEGER*4 
JMINI REAL*4 INTEGER*4 
AJMINO INTEGER*4 REAL*4 

Positive Difference 2 DIM DDIM INTEGER*2 INTEGER*2 
JIDIM INTEGER*4 INTEGER*4 

Remainder 2 MOD IMOD INTEGER*2 INTEGER*2 
JMOD INTEGER*4 INTEGER*4 

Transfer of Sign 2 SIGN IISIGN INTEGER*2 INTEGER*2 
JISIGN INTEGER*4 INTEGER*4 

Bitwise AND 2 lAND IIAND INTEGER*2 INTEGER*2 
Performs a logical JIAND INTEGER*4 INTEGER*4 

I: AND on bits AND See note 1 typeless 

Bitwise OR 2 lOR IIOR INTEGER*2 INTEGER*2 
Performs a logical OR JIOR INTEGER*4 INTEGER*4 
on bits OR See note 1 typeless 

BitwiseXOR 2 IEOR IIEOR INTEGER*2 INTEGER*2 
Performs a logical XOR JIEOR INTEGER*4 INTEGER*4 
Exclusive Or NEQV See note 1 typeless 

Bitwise Excl. NOR 2 EQV See note 1 typeless 
Performs a logical 
Exclusive Nor 

Bitwise Complement 1 NOT INOT INTEGER*2 INTEGER*2 
Complements each bit JNOT INTEGER*4 INTEGER*4 

COMPL See note 1 typeless 

6-39 



Extensions to ANSI Fortran Paragon'" System Fortran·Compiler User's Guide 

Table 6-5. Additional Intrinsic Functions (4 of 4) 

Number Generic Specific Type of 
Function of Args Name Name Argument Type of Result (J 

Address Extraction 1 LOC INTEGER*2 INTEGER*4 
The address of a data INTEGER*4 INTEGER*4 (] 
item is returned. REAL*4 INTEGER*4 
(Assumes 32-bit REAL"'8 INTEGER"'4 
address) COMPLEX *8 INTEGER"'4 

COMPLEX*l6 INTEGER*4 

Bitwise Shift 2 ISHFT llSHFT INTEGER"'2 INTEGER*2 
allogically shifted left JISHFT INTEGER*4 INTEGER"'4 
a2 bits. If a2 < 0 then SHIFT See note 2 typeless 
right logical shift. 

Bitwise Left Shift 2 LSIDFf INTEGER*2 INTEGER"'2 
allogically shifted left INTEGER*4 INTEGER*4 

Bitwise Right Shift 2 RSHIFT INTEGER*2 INTEGER"'2 
al logically shifted INTEGER"'4 INTEGER"'4 
right 

Circular Shift 3 ISHFTC llSHFTC INTEGER*2 INTEGER "'2 
Rightmost a3 bits of al nSHFTC INTEGER*4 INTEGER"'4 
are shifted circularly 
by a2 bits; 
remainingbitsinal are 
unaffected. 

Character 1 CHAR LOGICAL"'l CHARACTER 
Returns a character INTEGER*2 CHARACTER 
that has the ASCII CHAR INTEGER*4 CHARACTER 
value specified by the 
argument. 

Bit Extraction 3 mITS llBITS INTEGER"'2 INTEGER"'2 
Extracts bits a2 JIBITS INTEGER"'4 INTEGER*4 
through (a2+a3-l) [J 
from a1. 

Set Bit 2 mSET llBSET INTEGER"'2 INTEGER"'2 [
--"l. : I 

_.J 
Returns al with bit a2 HBSET INTEGER*4 INTEGER "'4 
settol. 

Bit Test 2 BTEST BITEST INTEGER*2 LOGICAL"'2 
.TRUE. if bit a2 of al BJTEST INTEGER"'4 LOGICAL"'4 
is a 1. (J 
Bit Clear 2 mCLR llBCLR INTEGER*2 INTEGER"'2 
Returns al with bit a2 JIBCLR INTEGER"'4 INTEGER"'4 
set to O. (J 

6-40 



r: 
I: 

1-: 

I : 
r

-~ 

,"' 

( .,' 

.. , 

I: 

r= 
I ~~ 

(J 

Paragon TM System Fortran Compiler User's Guide Extensions to ANSI Fortran 

1. The arguments to the intrinsics AND, OR, NEQV, EQV, and COMPL may te of any type except 
CHARACTER and COMPLEX. 

2. The first argument to the SmFf intrinsic may te of any type except CHARACTER and COMPLEX. 
The second argument is any integer type. 

Vector Intrinsics 
Fortran provides a suite of vector intrinsies: subroutines that perform certain mathematical 
operations on vectors very efficiently. These vector intrinsics are available in both single-precision 
and double-precision forms. You can specify the numter of vector elements and the strides of each 
input vector and the result vector. 

NOTE 

To use the vector intrinsics, you must link your program with the 
switch -Ivect. 

Table 6-6 on page 6-421ists the vector intrinsics. The names of the arguments in Table 6-6 indicate 
their meaning and type: 

n The number of elements in the vectors x, y, and z. This argument is always of 
type integer. 

x, y, z The argument vectors. x and y are the input vectors (not all vector intrinsics 
have a y argument); z is the result vector. These arguments are vectors of type 
double precision for vector intrinsics whose names start with dv _, and of 
type real for vector intrinsics whose names start with sv_. 

inex, iney. inez The strides (increments) of vectors x, y, and z. respectively (may be zero). 
These arguments are always of type integer. 

alpha A scalar multiplier for dv Jecp and sv Jecp. This argument is of type double 
precision for dv Jeep, and of type real for sv Jecp. 

For example, the following call to sv _ eosO performs a single-precision vector cosine of the first n 
elements of the real vector x with stride inex, storing the results in the real vector z with stride inez: 

call sv_cos(n, x, incx, z, incz} 

6-41 



Extensions to ANSI Fortran Paragon TM System Fortran Compiler User's Guide 

6-42 

It is similar in effect to the following code (the actual code for sv _cosO is written in assembler): 

10 

ix = 1 
iz = 1 
if (inex .It. 0) ix 
if (inez .It. 0) iz 
do 10 i = 1, n 

z(iz) = eos(x(ix» 
ix = ix + inex 
iz = iz + inez 

continue 

(-n+l)*inex + 1 
(-n+l)*inez + 1 

Table 6·6. Vector Intrinsic Functions (I of 2) 

Vector Intrinsic Function Description 

dv _ acos(n, x, inex, z, inez) Vector arccosine (z(i) = acos(x(i») 
sv _ acos(n, x, incx, z, inez) 

dv _ asin(n, x, inex, z, inez) Vector arcsine (z(i) = asin(x(i» ) 
sv _ asin(n, x, incx, z, inez) 

dv _ atan(n, x, inex, z, inez) Vector arctangent (z(i) = atan(x(i» ) 
sv _ atan(n, x, inex, z, inez) 

dv _ atan2(n, x, inex, y, iney, z, inez) Vector arctangent from two arguments 
sv _ atan2(n, x, inex, y, iney, z, inez) ( z(i) = atan2(x(i), y(i) ) 

dv _ cos(n, x, inex, z, inez) Vector cosine (z(i) = cos(x(i» ) 
sv _cos(n, x, inex, z, inez) 

dv _ div(n, X, inex, y, iney, z, inez) Non-IEEE vector divide ( z(i) = y(i)/x(i) ) 
sv _ div(n, x, inex, y, iney, z, inez) 

dv _ exp(n, X, inex, z, inez) Vector exponential ( z(i) = exp(x(i» ) 
sv _ exp(n, x, inex, z, inez) 

dv _Iog(n, X, inex, z, inez) Vector natural log (z(i) = log(x(i» ) 
sv _Iog(n, X, inex, z, inez) 

dv _IogIO(n, x, inex, z. inez) Vector logarithm IOglO ( z(i) == logIO(x(i» ) 
sv _logIO(n, x, inex, z, inez) 

dv JlOw(n, x, inex, y, incy, z, inez) Vector power ( z(i) == x(i'f<i) ) 
sv JlOw(n, x, inex, y, iney, z, inez) 

dv Jecp(n, alpha, x, incx, z,inez) Non-IEEE reciprocal times a scalar 
sv Jecp(n, alpha, x, inex, z, inez) ( z(i) = alpha! x(i) ) 

dv Jsqrt(n, x, inex, z, inez) Non-IEEE vector reciprocal square root 
sv Jsqrt(n, x, inex, z, inez) ( z(i) = lIsqrt(x(z» ) 

[: 

IJ 

I: 
IJ 
[J 

IJ 
[J 
I, 

. .1 

() 



I: 
r: 
[
~ 

, .1* 

r--, 
.;, 

I~' 

I : 
I: 
(--... 

-" 

I ',-~'! 

... J 

r~ 

I: 
('-,' 

,j 

I
'~ 

•• 

IJ 

Paragon'" System Fortran Compiler User's Guide Extensions to ANSI Fortran 

Table 6-6. Vector Intrinsic Functions (2 of 2) 

Vector Intrinsic Function Description 

dv _ sin(n, x, inex, z, inez) Vector sine ( z(i) = sin(x(i» ) 
sv _ sin(n, x, inex, z, inez) 

dv _ sqrt(n, x, inex, z, inez) Non-IEEE vector square root 
sv _ sqrt(n, x, inex, z, inez) ( z(i) = sqrt(x(i» ) 

dv_tan(n, x, inex, z, inez) Vector tangent ( z(i) = tan(x(i» ) 
sv _ tan(n, x. inex. z. inez) 

6-43 



Extensions to ANSI Fortran Paragon 1M System Fortran Compiler User's Guide 

[) 

( ',"'1" " 

...J 

( 1'1 

lJ 

IJ 

( ' . .J ' 

[J 

( i 
, , 

...J 

( i 
--.l 

[J 



(: 

I: 
r: 
1-.-... 
(

e ... 

... 

1-"'"'1 

"': 

1""'1 

'" 

I: 

vooo 

r: 
FOOl 

1"1 .. -" 

Compiler Error Messages 

This appendix lists the error messages generated by the Paragon TM system Fortran compiler, 
indicating each message's severity and, where appropriate, the error's probable cause and 
correction. In the error messages, the dollar sign ($) represents information that is specific to each 
occurrence of the message. 

Each error message is numbered and preceded by one of the following letters, indicating its severity: 

I Informative 

W Warning 

S Severe error 

F Fatal error 

V Variable 

Internal compiler error. $ $ 

This message indicates an error in the compiler. The severity may vary; if it is informative or 
warning, the compiler probably generated correct object code, but there is no way to be sure. 
Regardless of the severity, please report any internal error to Intel Supercomputer Systems Division 
Customer Support. 

Source input file name not specified 

On the command line, the source file name should be specified either before all the switches, or after 
them. 

A-l 



Compiler Error Messages Paragon 1M System Fortran Compiler User's Guide 

F002 Unable to open source input file: $ 

Source file name misspelled, file not in cUrrent working directory, or file is read protected. 

F003 Unable to open listing file 

Probably, user does not have write permission for the current working directory. 

F004 Unable to open object file 

Probably, user does not have write permission for the current working directory. 

FOOS Unable to open temporary file 

Compiler uses directory lusrlOOp or loop in which to create temporary files. If neither of these 
directories is available on the node on which the compiler is being used, this error will occur. 

5006 Input file empty 

Source input file does not contain any Fortran statements other than comments or compiler 
directives. 

F007 Subprogram $ too large to compile at this optimization level 

Internal compiler data structure overflow, working storage exhausted, or some other 
non-recoverable problem related to the size of the subprogram. If this error occurs at optimization 
level 2, reducing the optimization level to 1 may work around the problem. Moving the subprogram 
being compiled to its own source file may eliminate the problem. If this error occurs while compiling 
a subprogram of fewer than 2000 statements it should be reported as a possible compiler problem. 

FOOS Error limit exceeded 

The compiler gives up after 50 severe errors. 

F009 Unable to open assembly file 

Probably, user does not have write permission for the current working directory. 

FOIO <reserved message number> 

5011 Unrecognized command line switch: $ 

Refer to the if77 manual page for a list of the allowed compiler switches. 

A-2 

---"-~"-~-~---"-----"---

IJ 

(J 

[ "' , , 

-J 

[J 

(: 
"",ti 



Paragon'"' System Fortran Compiler User's Guide Compiler Error Messages 

r~ 

8012 Value required for command line switch: $ 

Certain switches require an immediately following value, such as -0 2. 

8013 Unrecognized value specified for command line switch: $ 

8014 Ambiguous command line switch: $ 

r: Too short an abbreviation was used for one of the switches. 

~ W015 Hexadecimal or octal constant truncated to fit data type 

I ~ 1016 Identifier, $, truncated to 31 chars 

An identifier may be at most 31 characters in length; characters after the 31 st are ignored. 

8017 Unable to open include file: $ 

r~ File is missing, read protected, or maximum include depth (10) exceeded Remember that the file 
name should be enclosed in quotes. 

I: 

I~ 

I
··~ 

--'01 

l! 

C 

8018 Illegal label field 

The label field (first five characters) of the indicated line contains a non-numeric character. 

8019 Illegally placed continuation line 

A continuation line does not follow an initial line, or more than 99 continuation lines were specified. 

8020 Unrecognized compiler directive 

Refer to the if77 manual page for a list of the allowed compiler directives. 

8021 Label field of continuation line is not blank 

The first five characters of a continuation line must be blank. 

8022 Unexpected end of file - missing END statement 

8023 8yntax error - unbalanced parentheses 

A-3 



Compiler Error Messages Paragon 1M System Fortran Compiler User's Guide 

W024 CHARACTER or Hollerith constant truncated to fit data type 

A character or Hollerith constant was converted to a data type that was not large enough to contain 1= 
all of the characters in the constant. This type conversion occurs when the constant is used in an 
arithmetic expression or is assigned to a non-character variable. The character or Hollerith constant 
is truncated on the right, that is, if 4 characters are needed then the ftrst 4 are used and the remaining I ' 
characters are discarded. ~ 

W025 Illegal character ($) - ignored 

The current line contains a character, possibly nonprinting, which is not a legal Fortran character 
(characters inside of character or Hollerith constants cannot cause this error). As a general rule, all 
non-printing characters are treated as white space characters (blanks and tabs); no error message is 
generated when this occurs. If for some reason, a non-printing character is not treated as a white 
space character, its hex representation is printed in the form dd where each d is a hex digit. 

8026 Unmatched quote 

8027 Illegal integer constant: $ 

Integer constant is too large for 32-bit word. 

8028 Illegal real or double precision constant: $ 

8029 Illegal hexadecimal constant: $ 

A hexadecimal constant consists of digits 0-9 and letters A-F or a-f. Any other character in a 
hexadecimal constant is illegal. 

8030 Illegal octal constant: $ 

An octal constant consists of digits 0-7. Any other digit or character in an octal constant is illegal. 

8031 Illegal data type length specifier for $ 

( ~!. 
' , 

.JiJ 

(J 

The data type length specifter (e.g. 4 in INTEGER "'4) is not a constant expression that is a member [= 
of the set of allowed values for this particular data type. 

W032 Data type length specifier not allowed for $ 

A-4 

The data type length specifter (e.g. 4 in INTEGER"'4) is not allowed in the given syntax (e.g. 
DIMENSION A(lO)*4). [J 

[J 



r: 

(
-~ 

..:J 

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages 

S033 Illegal use of constant $ 

A constant was used in an illegal context, such as on the left side of an assigmnent statement or as 
the target of a data initialization statement 

S034 Syntax error at or near $ 

1035 Predefined intrinsic $ loses intrinsic property 

An intrinsic name was used in a manner inconsistent with the language definition for that intrinsic. 
The compiler, based on the context, will treat the name as a variable or an external function. 

S036 Illegal implicit character range 

First character must alphabetically precede second. 

S037 Contradictory data type specified for $ 

The indicated identifier appears in more than one type specification statement and different data 
types are specified for it. 

I ~ S038 Symbol, $, has not been explicitly declared 

The indicated identifier must be declared in a type statement; this is required when the IMPLICIT 
NONE statement occurs in the subprogram. 

1= W039 Symbol, $, appears illegally in a SAVE statement 

An identifier appearing in a SA VE statement must be a local variable or array. 

S040 Illegal common variable $ 

I~ Indicated identifier is a dummy variable, is already in a common block, or has previously been 
defined to be something other than a variable or array. 

,~-; 

1- W041 Illegal use of dummy argument $ 

(~ 

IJ 
IJ 

This error can occur in several situations. It can occur if dummy arguments were specified on a 
PROGRAM statement. It can also occur if a dummy argument name occurs in a DATA, 
COMMON,SAVE,orEQUIVALENCEstatement A PROGRAM statement must have an empty 
argument list. 

A-5 



Compiler Error Messages Paragon 1M System Fortran Compiler User's Guide 

8042 $ is a duplicate dummy argument 

8043 Illegal attempt to redefine $ $ 

An attempt was made to define a symbol in a manner inconsistent with an earlier definition of the 
same symbol. This can happen for a number of reasons. The message attempts to indicate the 
situation that occurred: 

intrinsic 

symbol 

An attempt was made to redefine an intrinsic function. A symbol that 
represents an intrinsic function may be redefined if that symbol has not been 
previously verified to be an intrinsic function. For example, the intrinsic sin 
can be defined to be an integer array. If a symbol is verified to be an intrinsic 
function via the INTRINSIC statement or via an intrinsic function reference 
then it must be referred to as an intrinsic function for the remainder of the 
program unit. 

An attempt was made to redefine a symbol that was previously defined. An 
example of this is to declare a symbol to be a PARAMETER which was 
previously declared to be a subprogram argument. 

8044 Multiple declaration for symbol $ 

A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a 
symbol as an ENTRY when that symbol was previously declared as an ENTRY. 

8045 Data type of entry point $ disagrees with function $ 

l: 

r: 
1= 
IJ 

The current function has entry points with data types inconsistent with the data type of the current 
function. For example, the function returns type character and an entry point returns type complex. (J 

8046 Data type length specifier in wrong position 

The CHARACTER data type specifier has a different position for the length specifier from the 
other data types. Suppose, we want to declare arrays ARRAY A and ARRAYB to have 8 elements each 
having an element length of 4 bytes. The difference is that ARRAY A is character and ARRAYB is 
integer. The declarations would be CHARACTER ARRAYA(8)"'4 and INTEGER 
ARRA YB"'4(8). 

8047 More than seven dimensions specified for array 

8048 Illegal use of '*' in declaration of array $ 

An asterisk may be used only as the upper bound of the last dimension. 

A-6 

lJ 

[~ 

r: 
IJ 
(J 

(~ 



r: 

I: 

r: 

Paragon TM System Fortran Compiler User's Guide Compiler Error Messages 

8049 Illegal use of '*' in non-subroutine subprogram 

The alternate return specifier'" is legal only in the subroutine statement. Programs, functions, and 
block data are not allowed to have alternate return specifiers. 

I-~' 8050 Adjustable or assumed size array, $, is not a dummy argument 

I: 8051 Unrecognized built-in % function 

I: 

The allowable built-in functions are % VAL, %REF, %LOC, and %FILL. One was encountered 
that did not match one of these allowed forms. 

8052 Illegal argument to %VAL or %LOC 

8053 %REF or %VAL not legal in this context 

The built-in functions %REF and % V AL can only be used as actual parameters in procedure calls. 

I~ W054 Implicit character $ used in a previous implicit statement 

An implicit character has been given an implied data type more than once. The implied data type for 
the implicit character is changed anyway. 

1':1 W055 Multiple implicit none statements 

The IMPLICIT NONE statement can occur only once in a subprogram. 

W056 Implicit type declaration 

I-'~ The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE statement will 
produce a warning message for IMPLICIT statements. 

I :~ 8057 Illegal equivalence of dummy variable, $ 

r' .... i 

Dummy arguments may not appear in EQUIVALENCE statements . 

8058 Equivalenced variables $ and $ not in same common block 

A common block variable must not be equivalenced with a variable in another common block. 

8059 Conflicting equivalence between $ and $ 

The indicated equivalence implies a storage layout inconsistent with other equivalences. 

A-7 



-- ---~----

Compiler Error Messages Paragon TM System Fortran Compiler User's Guide 

S060 Illegal equivalence of structure variable, $ 

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements. 

S061 Equivalence of $ and $ extends common block backwards 

W062 Equivalence forces $ to be unaligned 

EQUIVALENCE statements have defined an address for the variable which has an alignment not 
optimal for variables of its data type. This can occur when INTEGER and CHARACTER data are 
equivalenced, for instance. 

I063 Gap in common block $ before $ 

S064 Illegal use of $ in DATA statement implied DO loop 

The indicated variable is referenced where it is not an active implied DO index variable. 

S065 Repeat factor less than or equal to zero 

S066 Too few data constants in initialization statement 

S067 Too many data constants in initialization statement 

S068 Numeric initializer for CHARACTER $ out of range 0 through 255 

A CHARACTER"'! variable or character array element can be initialized to an integer, octal, or 
hexadecimal constant if that constant is in the range 0 through 255. 

8069 Illegal implied DO expression 

The only operations allowed within an implied DO expression are integer +, -, "', and I. 

8070 Incorrect sequence of statements $ 

The statement order is incorrect. For instance, an IMPLICIT NONE statement must precede a 
specification statement which in turn must precede an executable statement. 

8071 Executable statements not allowed in block data 

A-8 

----~-- ---------'-----~---------------

lJ 
[] 

IJ 

IJ 

[J 

IJ 
lJ 



I-~ 

.$ 

r: 

(: 

r: 

1-"" 
.,; 

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages 

S072 Assignment operation illegal to $ $ 

The destination of an assignment operation must be a variable, array reference, or vector reference. 
The assignment operation may be by way of an assignment statement, a data statement, or the index 
variable of an implied DO-loop. The compiler has determined that the identifier used as the 
destination, is not a storage location. The error message attempts to indicate the type of entity used: 

entry point 

external procedure 

An assignment to an entry point that was not a function 
procedure was attempted. 

An assignment to an external procedure or a Fortran 
intrinsic name was attempted. 

S073 Intrinsic or predeclared, $, cannot be passed as an argument 

S074 Illegal number or type of arguments to $ 

(~ The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function, 
requiring a certain number of arguments of a fixed data type. 1_·.,., 

"-' 
S075 Subscript, substring, or argument illegal in this context for $ 

r: This can happen if you try to doubly index an array such as ra(2)(3). This also applies to substring 
and function references. 

I ...• S076 Subscripts specified for non-array variable $ 

S077 Subscripts omitted from array $ 

1_·" 
.-"' 

S078 Wrong number of subscripts specified for $ 

I~ 
S079 Keyword form of intrinsic argument illegal in this context for $ 

S080 subscript for array $ is out of bounds 

1_-'" 
"-' 

S081 Matrix/vector $ illegal as subprogram argument 

A matrix/vector reference cannot be used as a subprogram argument. 

(: _..J 

S082 Illegal substring expression for variable $ 

Substring expressions must be of type integer and if constant must be greater than zero. 

A-9 



Compiler Error Messages Paragon TTl System Fortran Compiler User's Guide 

8083 Vector expression used where scalar exp~ession required 

A vector expression was used in an illegal context. For example, iscalar = iarray, where a scalar is 
assigned the value of an array. Also, character and record references are not vectorizable. 

8084 Illegal use of symbol $ $ 

This message is used for many different errors. 

8085 Incorrect number of arguments to statement function $ 

8086 Dummy argument to statement function must be a variable 

8087 Non-constant expression where constant expression required 

8088 Recursive subroutine or function call of $ 

A function may not call itself. 

8089 Illegal use of symbol, $, with character length = * 

Symbols of type CHARACTER .(.) must be dummy variables and must not be used as statement 
function dummy parameters and statement function names. Also, a dummy variable of type 
CHARACTER .(.) cannot be used as a function. 

8090 Hollerith constant more than 4 characters 

In certain contexts, Hollerith constants may not be more than 4 characters long. 

8091 Constant expression of wrong data type 

8092 Illegal use of variable length character expression 

A character expression used as an actual argument, orin certain contexts within 110 statements, must 
not consist of a concatenation involving a passed length character variable. 

W093 Type conversion of expression performed 

A-10 

An expression of some data type appears in a context which requires an expression of some other 
data type. The compiler generates code to convert the expression into the required type. 

[J 

I: 

(J 

~~I 

IL.J 

[J 

[J 

[J 

IJ 



I: 

r: 

I
~ ~1 

kl 

I~ 

I ~1 

•. J 

r
~·~ 

w 

(-: 

I: 

Paragon TM System Fortran Compiler User's Guide Compiler Error Messages 

S094 Variable $ is of wrong data type $ 

The indicated variable is used in a context which requires a variable of some other data type. 

S095 Expression has wrong data type 

An expression of some data type appears in a context which requires an expression of some other 
data type. 

8096 Illegal complex comparison 

The relations .LT., .GT., .GE., and .LE. are not allowed for complex values. 

S097 statement label $ has been defined more than once 

More than one statement with the indicated statement number occurs in the subprogram. 

S098 Divide by zero 

S099 Illegal use of an aggregate RECORD 

S100 

Aggregate record references may only appear in aggregate assignment statements, unformatted 110 
statements, and as parameters to subprograms. They may not appear, for example, in expressions. 
Also, records with differing structure types may not be assigned to one another. 

Expression cannot be promoted to a vector 

An expression was used that required a scalar quantity to be promoted to a vector illegally. For 
example, the assignment of a character constant string to a character array. Records, too, cannot be 
promoted to vectors. 

8101 Vector operation not allowed on $ 

Record and character typed entities may only be referenced as scalar quantities. 

8102 Arithmetic IF expression has wrong data type 

The parenthetical expression of an arithmetic if statement must be an integer, real, or double 
precision scalar expression. 

S103 Type conversion of subscript expression for $ 

The data type of a subscript expression must be integer. If it is not, it is converted. 

A-11 



CoinpUer Error Messages Paragon 1M System Fortran Compiler User's Guide [J 

l: 
8104 Illegal control structure $ I: 

This message is issued for a number of errors involving IF-THEN statements and DO loops. If the ~ .~ 
line number specified is the last line (END statement) of the subprogram, the error is probably an It 
unterminated DO loop or IF-THEN statement. 

8105 Unmatched EL8EIF, ELSE or ENDIF statement 

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN 
statement. 

S106 DO index variable must be a scalar variable 

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a r- I 

function name, a structure name, etc. t... . .J 

8107 Illegal assigned goto variable $ 

8108 Illegal variable, $, in NAMELI8T group $ 

A NAMELIST group can only consist of arrays and scalars which are not dummy arguments and 
pointer-based variables. 

1109 Overflow in hexadecimal constant $, constant truncated at left 

A hexadecimal constant requiring more than 64 bits produces an overflow. The hexadecimal 
constant is truncated at left (e.g. '1234567890abcdefl'x becomes '234567890abcdefl'x). 

1110 Overflow in octal constant $, constant truncated at left 

A-12 

An octal constant requiring more than 64 bits produces an overflow. The octal constant is truncated 
at left (e.g. '2777777777777777777777'0 becomes '777777777777777777777'0). 

~1 

lLj 
(If"", 
~J 

( 1 . 
. ..o.J 

[J 

[J 

[J 

IJ 



r: 

I: 
r: 
r: 

I : 

r: 

I'"' 

I ~ 

(] 

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages 

Illl Underflow of real or double precision constant 

Il12 Overflow of real or double precision constant 

Sl13 Label $ is referenced but never defined 

Sl14 <reserved message number> 

S115 <reserved message number> 

S116 Illegal use of pointer-based variable $ $ 

S117 Statement not allowed within STRUCTURE definition 

S118 statement not allowed in DO, IF, or WHERE block 

I119 Redundant specification for $ 

Data type of indicated symbol specified more than once. 

I120 Label $ is defined but never referenced 

I121 Operation requires logical or integer data types 

An operation in an expression was attempted on data baving a data type incompatible with the 
operation. For example, a logical expression can consist of only logical elements of type integer or 
logical. Real data would be invalid. 

Il22 Character string truncated 

Character string or Hollerith constant appearing in a DATA statement or PARAMETER statement 
bas been truncated to fit the declared size of the corresponding identifier. 

W123 Hollerith length specification too big, reduced 

The length specifier field of a Hollerith constant specified more characters than were present in the 
character field of the hollerith constant. The length specifier was reduced to agree with the number 
of characters present. 

A-13 



Compiler Error Messages Paragon TIl System Fortran Compiler User's Guide 

S124 Relational expression mixes character with numeric data 

A relational expression is used to compare two arithmetic expressions or two character expressions. 
A character expression cannot be compared to an arithmetic expressioIL 

I125 Dummy procedure $ not declared EXTERNAL 

A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram 
name in a CALL statement:. or is called as a function, and is therefore assumed to be a dummy 
procedure. This message can result from a failure to declare a dummy array. 

I126 Name $ is not an intrinsic function 

I127 Optimization level for $ changed to opt 1 $ 

W128 Integer constant truncated to fit data type: $ 

An integer constant will be truncated when assigned to data types smaller than 32 bits, such as a 
BYTE. 

I129 Floating point overflow. Check constants and constant expressions 

I130 Floating point underflow. Check constants and constant expressions 

I131 Integer overflow. Check floating point expressions cast to integer 

I132 Floating pt. invalid oprnd. Check constants and constant expressions 

I133 Divide by 0.0. Check constants and constant expressions 

W134 <reserved message number> 

W135 Missing STRUCTURE name field 

A STRUCTURE name field is required on the outermost structure. 

W136 Field-namelist not allowed 

The field-namelist field of the STRUCTURE statement is disallowed on the outermost structure. 

A-14 

[) 

(~ .. ' I 
.. ..1 

[J 

(] 

(J 

(J 

(J 

( "". '. : , 
d 

[J 

() 

IJ 



r: 

I : 
r: 

1-."' 
,~ 

I ~ 

I~ 

(J 

Paragon TM System Fortran Compiler User's Guide Compiler Error Messages 

W137 Field-namelist is required in nested structures 

W138 Multiply defined STRUCTURE member name $ 

A member name was used more than once within a structure. 

W139 Structure $ in RECORD statement not defined 

A RECORD statement contains a reference to a STRUCTURE that has not yet been defined. 

S140 variable $ is not a RECORD 

S141 RECORD required on left of " 

S142 $ is not a member of this RECORD 

W143 <reserved message number> 

W144 NEED ERROR MESSAGE $ $ 

This is used as a temporary message for compiler development. 

W145 %FILL only valid within STRUCTURE block 

The % FILL special name was used outside of a STRUCTURE multiline statement. It is only valid 
when used within a STRUCTURE multiline statement even though it is ignored. 

S146 Expression must be character type 

S147 Character expression not allowed in this context 

S148 Non-record where aggregate record reference required 

An aggregate reference to a record was expected during statement compilation but another data type 
was found instead. 

S149 Record where arithmetic value required 

An aggregate record reference was encountered when an arithmetic expression was expected. 

A-15 



Compiler Error Messages Paragon 1M System Fortran Compiler User's Guide 

S150 structure, Record, or member $ not allowed in this context 

A structure, record, or member reference was found in a context which is not supported. For 
example, the use of structures, records, or members within a data statement is disallowed. 

S151 Empty STRUCTURE, UNION, or MAP 

A STRUCTURFr-ENDSTRUCTURE, UNION-ENDUNION, or MAP-ENDMAP declaration 
contains no members. 

S152 <reserved message number> 

S153 <reserved message number> 

S154 <reserved message number> 

S155 <reserved message number> 

S156 <reserved message number> 

S157 <reserved message number> 

S158 Alternate return not specified in SUBROUTINE or ENTRY 

An alternate return can only be used if alternate return specifiers appeared in the SUBROUTINE or 

[J 

[J 

( i 
. ---J 

IJ 

ENTRY statements. r·"'1 
iA..J 

S159 Alternate return illegal in FUNCTION subprogram 

An alternate return cannot be used in a FUNCTION. 

S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top 

S161 <reserved message number> 

W162 Not equal test of loop control variable $ replaced with < or > test. ... "' 

i.~ 
S163 Cannot data initialize member $ of the ALLOCATABLE COMMON $ 

A-16 



I: 

I: 

I: 

I
·~ 

. ~ 

r: 
I: 
I '9 

j 

1-·,., 
.. ..., 

r: 

I: 

Paragon 1M System Fortran Compiler User's Guide Compiler Error Messages 

8164 Overlapping data initia1izations of $ 

An attempt was made to data initialize a variable or array element already initialized. 

8165 $ appeared more than once as a subprogram 

8166 

A subprogram name appeared more than once in the source file. The message is applicable only 
when an assembly file is the output of the compiler. 

$ cannot be a common block and a subprogram 

A name appeared as a common block name and a subprogram name. The message is applicable only 
when an assembly file is the output of the compiler. 

I167 Inconsistent size of common block $ 

A common block occurs in more than one subprogram of a source file and its size is not identical . 
The maximum size is chosen. The message is applicable only when an assembly file is the output of 
the compiler. 

8168 Incompatible size of common block $ 

A common block occurs in more than one subprogram of a source file and is initialized in one 
subprogram. Its initialized size was found to be less than its size in the other subprogram(s). The 
message is applicable only when an assembly file is the output of the compiler. 

W169 Multiple data initializations of common block $ 

A common block is initialized in more than one subprogram of a source file. Only the first set of 
initializations apply. The message is applicable only when an assembly file is the output of the 
compiler. 

W170 F77 extension: $ 

Use of a nonstandard feature. A description of the feature is provided. 

W171 F77 extension: nonstandard statement type $ 

W172 F77 extension: numeric initialization of CHARACTER $ 

A CHARACTER*1 variable or array element was initialized with a numeric value. 

A-17 



Compiler Error Messages Paragon 1M System Fortran Compiler User's Guide 

W173 F77 extension: nonstandard use of data type. length specifier 

W174 F77 extension: type declaration contains data initialization 

W175 F77 extension: IMPLICIT range contains nonalpha characters 

W176 F77 extension: nonstandard operator $ 

W177 F77 extension: nonstandard use of keyword argument $ 

W178 F77 extension: matrix/vector reference $ 

W179 F77 extension: use of structure field reference $ 

W180 F77 extension: nonstandard form of constant 

W181 F77 extension: & alternate return 

W182 F77 extension: mixed numeric and CHARACTER elements in COMMON $ 

W183 F77 extension: mixed numeric and CHARACTER EQUIVALENCE ($,$) 

S197 Invalid qualifier or qualifier value (/$) in OPTIONS statement 

An illegal qualifier was found or a value was specified for a qualifier which does not expect a value. 
In either case, the qualifier for which the error occurred is indicated in the error message. 

S198 $ $ in ALLOCATE/DEALLOCATE 

W199 Unaligned memory reference 

A memory reference occurred whose address does not meet its data alignment requirement. 

S200 Missing UNIT/FILE specifier 

S201 Illegal I/O specifier - $ 

S202 Repeated I/O specifier - $ 

A-18 

(J 

(J 

IJ 

[J 

[J 

r: 



I: 
I ·.·~ .. 

r: 

I : 

1"" 
~I 

I ·~ 
.00 

I: 

IJ 

Paragon"" System Fortran Compiler User's Guide Compiler Error Messages 

S203 FORMAT statement has no label 

S204 Syntax error - unbalanced angle brackets 

S205 Illegal specification of scale factor 

The integer following + or - has been omitted, or P does not follow the integer value. 

S206 Repeat count is zero 

S207 Integer constant expected in edit descriptor 

S208 Period expected in edit descriptor 

S209 Illegal edit descriptor 

S210 Exponent width not used in the Ew.dEe or Gw.dEe edit descriptors 

S211 Internal I/O not allowed in this I/O statement 

S212 Illegal NAMELIST I/O 

Namelist 110 cannot be performed with internal, unformatted, formatted, and list-directed 110. Also, 
110 lists must not be present. 

S213 $ is not a NAMELIST group name 

S214 Input item is not a variable reference 

S215 Assumed sized array name cannot be used as an I/O item or specifier 

An assumed sized array was used as an item to be read or written or as an 110 specifier (Le., 
FMT = arraL name). In these contexts the size of the array must be known. 

S216 STRUCTURE/UNION cannot be used as an I/O item 

S217 ENCODE/DECODE buffer must be a variable, array, or array element 

A-19 



Compiler Error Messages Paragon TM System Fortran Compiler User's Guide 

8221 #elif after #else 

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this 
context. 

8222 #else after #else 

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this 
context. 

8223 #if-directives too deeply nested 

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10). 

8224 Actual parameters too long for $ 

The total length of the parameters in a macro call to the indicated macro exceeded the maximum 
allowed (currently 2048). 

W225 Argument mismatch for $ 

[J 

(J 

( l"1.; 
.. ....1 

I] 

The number of arguments supplied in the call to the indicated macro did not agree with the number 1"'= 
of parameters in the macro's definition. It. ~ 

F226 can't find include file $ 

The indicated include file could not be opened. 

8227 Definition too long for $ 

The length of the macro definition of the indicated macro exceeded the maximum allowed (currently 
2048). 

8228 EOF in comment 

The end of a file was encountered while processing a comment. 

8229 EOF in macro call to $ 

The end of a file was encountered while processing a call to the indicated macro. 

A-20 

[J 

IJ 



Paragon'" System Fortran Compiler User's Guide Compiler Error Messages 

I: 
[: S230 EOF in string 

The end of a file was encountered while processing a quoted string. 

I~ 
S231 Formal parameters too long for $ 

I: 
The total length of the parameters in the definition of the indicated macro exceeded the maximum 
allowed (currently 2048). 

S232 Identifier too long 

The length of an identifier exceeded the maximum allowed (currently 2048). 

I: S233 <reserved message number> 

I: W234 Illegal directive name 

The sequence of characters following a # sign was not an identifier. 
I

~...., 

.. , 
W235 Illegal macro name 

I: A macro name was not an identifier. 

I~ S236 Illegal number $ 

The indicated number contained a syntax error. 

1'1 
F237 Line too long 

(J The input source line length exceeded the maximum allowed (currently 2048). 

W238 Missing #endif 

End of file was encountered before a required #endif directive was found. 

I: 
W239 Missing argument list for $ 

A call of the indicated macro had no argument list. 

S240 Number too long 

The length of a number exceeded the maximum allowed (currently 2048). 

A-21 



Compiler Error MeSsages P~ragon 1M System Fortran Compiler User's Guide 
[.~ 

. ill 

c 
W24l Redefinition of symbol $ 

[
.~ 

..... 

The indicated macro name was redefined. [: 
1242 Redundant definition for symbol $ 

A definition for the indicated macro name was fOWld that was the same as a previous definition. 

F243 string too long 
[ ! 

.il 

The length of a quoted string exceeded the maximum allowed (currently 2048). 

S244 Syntax error in #define, formal $ not identifier 

A formal parameter that was not an identifier was used in a macro definition. 

W245 Syntax error in #define, missing blank after name or arglist 

There was no space or tab between a macro name or argument list and the macro's definition. 

S246 Syntax error in #if 

A syntax error was found while parsing the expression following a #if or #elif directive. 

S247 Syntax error in #include 

The #include directive was not correctly formed. 

W248 syntax error in #line 

A #line directive was not correctly formed. 

W249 Syntax error in #module [J 
A #module directive was not correctly formed. 

W250 Syntax error in #undef 

A #Undef directive was not correctly formed. 

W25l Token after #ifdef must be identifier [J 
The #ifder directive was not followed by an identifier. (J 

A-22 



I.: Paragon™ System Fortran Compiler User's Guide Compiler Error Messages 

I.: ..... 

I: W252 Token after #ifndef must be identifier 

I: 
r: 
[: 

The #ifndef directive was not followed by an identifier. 

8253 Too many actual parameters to $ 

8254 

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently 
31). 

Too many formal parameters to $ 

The number of formal arguments to the indicated macro exceeded the maximum allowed (currently 
31). 

F255 Too much pushback 

I: The preprocessor ran out of space while processing a macro expansion. The macro may be recursive. 

I ,", 
->iI...' 

W256 Undefined directive $ 

The identifier following a # was not a directive name. 

8257 EOF in #include directive 

( ~ End of file was encountered while processing a #include directive. 

8258 Unmatched #elif 

A #elif directive was encountered with no preceding #if or #eUf directive. 

8259 Unmatched #else 

I: A #else directive was encountered with no preceding #if or #eUf directive. 

I: 8260 Unmatched #endif 

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive. 

8261 Include files nested too deeply 

The nesting depth of #include directives exceeded the maximum (currently 20). 

A-23 



Compiler Error Messages Paragon™ System Fortran Compiler User's Guide 

8262 Unterminated macro definition for $ 

A newline was encountered in the formal parameter list for the indicated macro. 

8263 unterminated string or character constant 

A newline with no preceding backslash was found in a quoted string. 

I264 possible nested comment 

The characters 1* were found within a comment. 

W268 Cannot inline subprogram; common block mismatch 

W269 Cannot inline subprogram; argument type mismatch 

This message may be Severe if the compiler has gone too far to undo the inlining process. (J 

F270 Missing -exlib option 

W27l Can't inline $ - wrong number of arguments 

I272 Argument of inlined function not used 

8273 Inline library not specified on command line (-inlib switch) 

F274 Unable to access file $/TOC 

8275 Unable to open file $ for inlining 

F276 Assignment to constant actual parameter in inlined subprogram [~ ... ~ 
Messages 280-300 are reserved for directive handling. 

[J 

[J 

lJ 
A-24 (J 



1-. 
, . 

. ;iIi 

I
'~ 

..... 

I: 
r: 

r: 

11 
~i 

r: 

I~ 

c 

-~----- .---.-.~ ..• - -~-... 

Runtime Error Messages 

200 fortran i/o internal error 

This message indicates an error in the runtime library, rather than a user error. It is possible for a user 
error to cause an internal error. Report internal errors to Customer Support. 

201 i/o call contained bad value for specifier 

An improper specifier value has been passed to an 110 runtime routine. Example: within an OPEN 
statement, form=' unknown' . 

202 i/o call contained conflicting specifiers 

Conflicting specifiers have been passed to an 110 runtime routine. Example: within an OPEN 
statement, form=' unformatted', blank=' null'. 

203 i/o specifier required but never set 

A specifier required for an 110 runtime routine has not been passed. Example: within an OPEN 
statement, access=' direct' has been passed, but the record length has not been specified 
(reel =specif ier). 

204 attempt to perform a write or open-for-write on a read only file 

Self explanatory. Check file and directory modes. 

205 file disposition conflict - check 'status' and 'dispose' 

In an OPEN statement, a file deposition conflict has occurred. Example: within an OPEN statement, 
status=' scratch' and dispose=' keep' have been passed. 

B-1 



Runtime Error Messages Paragon 1M System Fortran Compiler User's Guide 

206 attempt to open a scratch file as a named file 

207 attempt to connect two units to the same file 

208 attempt to open a previously existing file as 'new' 

209 attempt to .open a non-existent file as 'old' 

210 memory allocation operation failed or fixed buffer overflow 

Memory allocation operations occur only in conjunction with namelist I/O. The most probable cause 
of fixed buffer oveIflow is exceeding the maximum number of simultaneously open file units. 

211 invalid file name 

212 invalid unit number 

A file unit number less than or equal to zero has been specified. 

213 invalid operation on an un-opened file 

Unable to open file specified in ENDFILE statement. 

214 invalid operation for an unconnected unit 

Unit specified in BACKSPACE statement not connected. 

215 file format conflict in read/write operation 

Formatted/unformatted file operation conflict. 

216 record number error in read/write operation 

For direct access, a record number less than one has been specified. 

217 attempt to read past end of file 

218 item to read/write out of range or smaller than stride 

B-2 

For unformatted files, the I/O item to be read/written is not of a recognizable type, or is smaller than 
the specified stride. This is an internal error. Report it to Customer Support. 

[: 

r: 

I] 

IJ 

[ I 
" ' 

'...I 

l: 
( 1 

,.J 



r: 
I: 

r: 

( '''" 
).!..i 

1_"" 
,,w 

I: 

r: 

Paragon'"' System Fortran Compiler User's Guide Runtime Error Messages 

219 attempt to read/write value(s) larger than record length 

For direct access, the record to be read/written exceeds the specified record length. 

220 attempt to read/write an unopened file 

221 fio$encode_fmt: parsing error 

A runtime encoded fonnat contains a lexical or syntax error. 

222 fio$encode_fmt: parse/semantic stack overflow 

While attempting to encode a runtime format, the parsing or semantic stacks have overflowed. This 
is an internal error. Report it to Customer Support. 

223 fmtscan: error in integer constant conversion 

Integer constant conversion error while encoding a runtime fonnat. 

224 fmtscan: lexical error within quoted string 

While attempting to encode a runtime format, an error occurred while scanning a quoted string. 
Check quote nesting. 

225 fmtscan: lexical error--unknown token type 

An unknown token type has been found in a runtime encoded format. 

226 fmtsemant: unexpected FED in format list 

An unexpected Fortran edit descriptor has been found in a runtime fonnat item. 

227 fio$fmt_read: unacceptable input 

Scan of data fails for indicated data type. 

230 fio$fmt_read/write: scale factor out of range 

Fortran P edit descriptor scale factor not within range of -128 to 127. 

231 fio$fmt_read/write: error on data conversion 

An internal data conversion error has occurred. Report this error to Customer Support. 

B-3 



Runtime Error Messages Paragon TM System Fortran Compiler User's Guide 

232 fio$fmt_read/write: attempt to read/write past end of record 

For an internal or direct access file, an attempt to read or write past the end of record has been 
detected. 

234 fio$fmt_read/write: invalid edit descriptor 

An invalid edit descriptor has been found in a fonnat. 

235 fio$fmt_read/write: i/o list / format edit descriptor mismatch 

Data types specified by I/O list item and corresponding edit descriptor conflict. 

236 fio$format_decode: parsing error 

A runtime encoded fonnat contains a syntax error. 

237 fio$fmt_read/write: quad precision type unsupported 

238 fio$fmt_read/write: tab value out of range 

A tab value of less than one has been specified. 

240 fio$fmt_write: item list empty 

An unexpected empty write item list has been encountered. 

241 fio$fmt_read/write: unix file system error 

242 fio$ld_get_token: error in integer constant conversion 

Integer constant conversion error while scanning listlnamelist-directed input. 

243 fio$ld_get_token: lexical error-- unknown token type 

Lexical error while scanning listlnamelist-directed input 

244 fio$nmlparse: parsing error 

Syntax error while parsing namelist-directed input. 

[) 

r: 
(] 

lJ 
[J 

[J 

[: 
[J 



r: 
r: 
r: 
I: 

I ,,' 
"' 

r: 
[ ~.., 

'" 

r: 
( '"""'1,', 

~ ,1Iri 

Paragon™ System Fortran Compiler User's Guide Runtime Error Messages 

245 fio$nmlparse: parse/semantic stack overflow 

While attempting to parse namelist input. the parsing or semantic stacks have overflowed. This is an 
internal error. Report it to Customer Support. 

246 fio$fmt_read/write: infinite reversion in format 

Format does not exhaust item list in WRITE statement. Example: 

10 
write(6,10) i 
format(3p) 

247 fio$open: file exists but cannot be opened (check file mode) 

Likely cause is no user rights (read, write, or execute) to file. 

8-5 



Runtime Error Messages Paragon™ System Fortran Compiler User's Guide 

B-6 

[: 

l: 

J.~ 
'-. ..,J 

[J 

I] 

[J 

iJ 

[: 

r: 
(J 



r: 
I: 

I: 
(., 

I~ 

I: 
r: 
I: 
I ~, 

I
---~I 

A 

r~ 

I: 
(

~""1 

.oJ 

1_-' 
..iOI 

C 
C 

~~~~---- _._- -------.~-.-.. ---.~--. 

Compiler Internal Structure
.. : '. :": :": .:..' .. :.... .": :. ":: .". . "., .

'Ibis appendix describes the internal structure of the compilers as shown in Figure C-I:

• Scanner and Parser

Expander

• Optimizer and Vectorizer

• Scheduler and Pipeliner

The front-end of the compiler translates the program into an internal representation called
Intermediate Language Macros (ILMs). The ILMs are grouped into basic blocks during the
translation phase. A basic block represents a sequence of language statements in which the flow of
control enters at the beginning and leaves at the end, without the possibility of branching except at
the end.

While the source code is translated and grouped into basic blocks, function inlining may occur. Once
the translation is complete, optimizations are applied. Depending on the switches selected by the
user, a hierarchy of optimizations may be applied: global optimizations, local optimizations,
vectorization, and software pipelining.

C-1

Compiler Internal Structure

---~.------~------

Paragon 1M System Fortran Compiler User's Guide

Fortran Source

Figure C-l. CompHer Structure

Intermediate
Language

Macros

ILM

Intermediate
Language

Instructions

III

Optimized
Intermediate
Language

Instructions

(J

(
.~

111

If.' WiJ

[J

(J

(: ·.1
.,.J

'Ii
Ii...;

(--..
. I

.---!

lJ
U

1-:
(

-'''I

..

I:

r:
r-,'"

...

I :
r--'

"

1_--.,
~j

I:

1-"

I-~

I~:

I :
roo-""

~,

r:
IJ

Paragon'" System Fortran Compiler User's Guide Compiler Internal Structure

Scanner and Parser
The compiler has a Scanner and Parser that performs syntax and semantic analysis of its respective
source language input. The Scanner and Parser create a set of ILMs and a symbol table and various
data structures refening back to the original source code for diagnostics and symbolic debugging.
They perform error detection and recovery using an advanced multiple parse stack teclmology .

Expander
The Expander expands the macros in the ILM set along with the semantic analysis information and
generates a set ofIntermediate Language Instructions (ILls) and associated data structures including
extended basic block tables and information about referenced variables. The Expander also performs
certain optimizations, such as constant folding, elimination of identity expressions, and branch
folding. The ILl data structure is a directed graph, instead of a tree structure, which simplifies
common subexpression elimination.

Optimizer and Vectorizer
The internal, integrated OptimizerN ectorizer provides both a faster compile time and more efficient
code generation than traditional source-to-source preprocessors. The OptimizeriVectorizer uses
advanced optimizations to achieve superior performance. Among these techniques are:

• Procedure Integration

• Internal Vectorization

• Global Optimization

• Local Optimization

Flexible memory utilization schemes

Procedure Integration

Procedure Integration. also known as function inlining, allows a function to be executed as a part of
the originating program instead of having parameters passed and making a call. This results in
removing the call overhead and allowing the function to be optimized along with the rest of the
program.

-_ .. _ ----.. -.. - ._ .. _._._- _ - _- -------.-~--... -----.. " .. ----.. ---- "-, .. ~ .. ~~.-, ----.~,,-.. -~ ... --,---~.~- -'_ .. _--_.-_ .. __ . __ ... _--_. - -_. ---- ---

Compiler Internal Structure Paragon 1M System Fortran Compiler User's Guide

Internal Vectorization

The internal vectorizer is oriented to the Intel i860™ microprocessor, which involves
transformations that create better opportunities for software pipelining. Recognition of vector forms
is only performed when the hand-coded vector library calls will outperform the scheduler. Having
an internal vectorizer and software pipeliner allows the compiler to make more precise and informed
decisions on code generation opportunities. Other advantages of an internal vectorizer over a
source-to-source vectorizerinclude enhanced debugging capabilities as well as a significant increase
in compilation speeds.

Global Optimizations

Global optimizations are those that optimize code over all basic blocks created for a function.
Control flow analysis and data flow analysis are performed over a flow graph, where each node of
the graph is a basic block. All loops (not just loops created by the language's loop constructs) are
detected, and loop optimizations are performed on each loop. These include:

• Invariant Code Motion

• Induction Variable Elimination

• Global Register Allocation

• Dead Store Elimination

• Copy Propagation

Local Optimizations

Local optimizations are performed on an extended basic block. Most of the local optimizations are
performed by the code generating phase of the multiple functional units. This technique allows
computations from more than one statement to utilize the functional units in parallel, thus providing
a fine-grain parallelism that is completely transparent to the program. For loops containing if
statements (multiple blocks) that are software pipelinable, the compiler provides fine-grain
parallelism across multiple blocks. Local optimizations provided by the compilers include:

• Common Subexpression Elimination

• Constant Folding

• Algebraic Identities Removal

• Redundant Load and Store Elimination

• Strength Reduction

-- --- ,--- ,-----------------------

(:

(:
[:

[J

r '1

~ .. ~

[J

(J

[I
-l

U
I~

r:
r:
I :

I ~

1-
1_--

""

I:

I:
I~:

c

Paragon TM System Fortran Compiler User's Guide Compiler Intemal Structure

• Scratch Register Allocation

• Register Aliasing

The types of code transfonnations perfonned on loops include:

Invariant if statement removal

• Loop interchange when advantageous

Loop invariant vector recognition within nested loops

Loop fusion

• Common idiom recognition

Flexible Memory Utilization

Support is provided for architectures having an integral data caching scheme. Some techniques
provided are:

• Streaming of vectors into cache

• Streaming of invariant vectors into cache and their reuse

• Explicit bypassing of cache for accessing array elements within loops

• Dual and quad loads and stores from and to memory

• Mixing access of arrays from both cache and memory within a loop

Scheduler and Pipeliner
The i860 microprocessor supports parallel activities two ways:

Dual Instruction Mode
The "core" unit and the floating-point sections can operate independent! y and
in parallel with each other. An example would be a load occurring at the same
time that a floating-point add occurs. The compilers test for situations where
dual instructions are advantageous and schedules instructions accordingly.

Compiler Internal Structure Paragon TM System Fortran Compiler User's Guide

Dual Operation Mode
The floating-point units for some instructions can initiate floating-point adds
and multiplies at the same time. In dual operation mode, the two
floating-point arithmetic units can operate independently each providing
results at the clock rate of the machine. See Figure C-2.

DUAL INSTRUCTION ~I

CORE OPERATION DUAL OPERATION

Core
Unit

a+b

Figure C-2. Parallel Activities of i860™ Microprocessor

x*y

The Optimized Intermediate Language Instruction set becomes the input for the Scheduler and
Pipeliner, which takes advantage of the i860 microprocessor's dual instruction and operations
modes. These unique machine characteristics permit parallel scheduling to multiple functional units
and software pipelining.

• Parallel scheduling takes advantage of fine-grain parallelism occurrences in the code and
schedules to multiple functional units when possible.

• Software pipelining schedules code so that operations from several iterations of a loop are
overlapped. This allows multiple iterations of a loop to be executed during the same instruction.
Software pipelining relies on information provided by the global optimizer and vectorizer. This
information includes loops that are pipelinable, data dependence information, recurrences, and
array references.

The output of the Scheduler and Pipeliner is a list of assembly language instructions that is passed
to an assembler to create the final object ftle.

I:

[
'"'1, " I

.1

[J

(J

IJ

r:
r:

r:

I:
r:

I~
(""""

.,,~j

I >#1

~I

IJ
[]

Manual Pages

This appendix contains manual pages for compiler-related commands and system calls.

See the OSFII Command Reference and OSFII Programmer's Reference for manual pages for
the standard commands and system calls of the operating system.

• See the Paragon™ System Commands Reference Manual and the Paragon™ System Fortran
Calls Reference Manual for manual pages for parallel commands and system calls unique to the
Paragon system.

The manual pages in this appendix are also available on-line, using the man command.

0-1

Manual Pages Paragon System Fortran Compiler User's Guide

l:
c

Table D-llists the commands described in this appendix.
[~

... ~

Table D-1. Commands Discussed in This Appendix r:
Manual Page Commands Description

ar860 ar860 (cross) Manages object code libraries.
ar (native) IJ

as860 as860 (cross) Assembles i860™ source code.
as (native) (J

dump860 dump860 (cross and native) Dumps object files.

if77 if77 (cross) Compiles Fortran programs.
f77 (native)

if'Ixlib if'Ixlib (cross and native) Updates inliner library directories.

Id860 Id860 (cross) links object files.
Id (native)

mac860 mac860 (cross) Preprocesses assembly-language programs.
mac (native)

nm860 run860 (cross) Displays symbol table (name list)
run (native) information.

size860 size860 (cross) Displays section sizes of object files.
size (native)

strip860 strip860 (cross) Strips symbol information from object files.
strip (native)

Except for their names, the cross-development and native versions of each command work the same
(with minor exceptions). These commands are available by their cross-development names on the ~l
Paragon system and on supported workstations; they are available by their native names on the IIL..J
Paragon system only.

r:

[J

0-2

---------------------------------------~-.---.--- -

I:

r:
r:
I:

I ""
..d,:

r
""~

~'.'

r:
I:

[J

IJ

l:

Paragon™ System Fortran Compiler User's Guide Manual Pages

Table D-2lists the system calls described in this appendix.

Table D·2. System Calls Discussed in This Appendix (1 of 4)

Manual Page System Calls Description

abortO abortO Tenninates caller abruptly; writes memory
image to core fIle.

accessO access() Determines access mode or existence of a
file.

alarmO alarmO Executes a subroutine after a specified time.

besjOO besjOO. besj10. besjnO. Bessel functions.
besyO(). besy10. besynO.
dbesjOO. dbesj10.
dbesjnO. dbesyOO.
dbesy10. dbesynO

chdir() chdirO Changes default directory .

chmodO chmodO Changes protection mode of a fIle.

ctimeO ctimeO Returns system time as a string.

dateO dateO Returns system date as a string.

dv_acosO dv_acos(). dv_asinO. Double-precision vector intrinsics.
dv_atanO. dv_atan20.
dv_cosO.dv_divO.
dv_expO. dv_logO.
dv}og10. Odv yowO.
dv JecpO. dv JsqrtO.
dv_sinO. dv_sqrtO.
dv_tanO

erfO erfO. erfcO. derfO. derfcO Error functions.

etimeO etimeO. dtimeO Gets elapsed CPU time.

exitO exitO Tenninates program with status.

fdateO fdateO Returns system date and time as a string.

fgetcO fgetcO Gets a character from a logical unit

ftminO ftminO. ftmaxO. ffracO. Range functions.
dOminO. dDmaxO.
dffracO. inmaxO

ftushO ftushO Flushes a logical unit.

Manual Pages Paragon 1M System Fortran Compiler User's Guide

Table D-2. System Calls Discussed in This Appendix (2 of 4)

Manual Page System Calls Description

forkO forkO Creates a child process.

fputcO fputeO Writes a character to a logical unit

freeO freeO Frees memory allocated by mallocO.

fseekO fseekO Positions file pointer.

ftellO fteUO Determines position of file pointer.

gerrorO' gerrorO Returns latest system error message.

getargO getargO Gets the nth command line argument

getcO getcO Gets a character from logical unit 5.

getcwdO getcwdO Gets the pathname of the current working
directory.

getenvO getenvO Gets the value of an environment variable.

getgidO getgidO Gets user's group ID.

getlogO getlogO Gets user's login name.

getpidO getpidO Gets calling process's OSF/1 process ID.

getuidO getuidO Gets user's numeric user ID.

gmtimeO gmtimeO Fonnats system time for GMT.

hostnmO hostnmO Gets name of current host.

iargeO iargeO Returns index of the last command line
argument.

idateO idateO Returns current system date in numerical
fonn.

ierrnoO ierrnoO Returns latest system error number.

ioinitO ioinitO Initializes I/O.

isattyO isattyO Determines iflogical unit is a TIY.

itimeO itimeO Returns current system time in numerical
fonn.

kiU() kiUO Sends a signal to a process.

I:

I.; .,
JoJ

(
'~

....

(J

IJ

r: Paragon'" System Fortran Compiler User's Guide Manual Pages

I:
I:
I"",",

4Ii< Table D·2. System Calls Discussed in This Appendix (3 of 4)

r: Manual Page System Calls Description

linkO IinkO Makes a link:.

InblnkO InblnkO Returns index of last non-blank: in a string.

locO locO Returns the address of an object.

ItimeO ltime() Formats system time for local time zone.

mallocO maIIocO Allocates memory.

r- mvbitsO mvbits() Moves bits.

outstr() outstrO Prints a character string to a logical unit.
(

""<'I

_I
perrorO perrorO Prints error message corresponding to

current system error code.

1"1

.IJ

putcO puleO Writes a character to logical unit 6 .

putenvO putenvO Changes or adds an environment variable.

qsortO qsortO Quick sort.

randO randO. irandO. srandO Random number generator.

randomO randomO. irandmO. Random number generator.
drandmO

renameO renameO Renames a file.

rindexO rindexO Returns index of substring within a string.

secndsO secndsO. dsecndsO Returns elapsed time.

signalO signalO Establishes signal handler.

s1eepO s1eepO Suspends execution for a period of time.

statO statO.lstatO. fstatO Gets information about a file.

stimeO stimeO Sets system time.

I "~
1.1

sv_acos() sv_acosO. sv_asinO, Single-precision vector intrinsics.
sv_atanO. sv_atan20.
sv_cosO. sv_divO,

r~
sv _expO. sv _logO,
sv }oglO().sv J)owO,
sv JecpO, sv JsqrtO,

I"~

"jOJ

sv _sinO, sv _ sqrtO, sv _ tanO

I:
0-5

Manual Pages Paragon 1M System Fortran Compiler User's Guide [:

Table D-2. System CalIs Discussed in This Appendix (4 of 4)

Manual Page System Calls Description

syminkO syminkO Makes a symbolic link:.

systemO systemO Issues a shell command. IJ
timeO timeO Returns system time.

times() times() Gets process and child process CPU time. IJ
ttynamO ttynamO Gets pathname of a terminal.

unIinkO unlinkO Removes a me.

waitO waitO Waits for child process to terminate.

(J

[i
, , -,.,

[:

! r
<II

I··~

.11

1·41'1

. ..!

r:
I··..,.,

'"

I· ""
~I

I:
I ""

.. J

I:

1··""1

oJ

Paragon'" System Fortran Compiler User's Guide Manual Pages

AR860 AR860

ar860, ar: Creates and maintains archives for the Paragon(fM) system.

Cross-Development Syntax
ar860 [-V] key [options] libname [filename ...]

Native Syntax

Arguments

ar [-V] key [options] lib name [filename ...]

libname The name of the archive.

filename The name of the target file.

You must specify one, and only one, key from the following list:

d

e

p

q

r

t

x

Delete filename from the archive.

Display the symbol tables of COFF objects in the archive.

Display the archive version of filename (may result in binary data being sent to
standard output).

Quickly add the file filename to the archive libname by appending the file(s) to the
end of the archive without checking to see if they duplicate existing files in the
archive. If libname does not exist, then create it (unless the c option is specified) .
If filename does not appear in the archive, then add it.

Replace the file filename in the archive libname. If libname does not exist, then
create it. If filename does not appear in the archive, then add it.

Display the archive table of contents.

Extract filename from the archive. If no file is named, extract all files.

The key argument may be preceded by a dash. For example, ar860 -t file.a and ar860 t r.Ie.a are
equivalent.

D-7

Manual Pages Paragon TM System Fortran Compiler User's Guide

AR860 (cont.) AR860 (cont.)

Description

See Also

0-8

You may specify the following options in any order:

c

I

u

v

Suppress the creation message. This option is used with the -r key.

Use the current working directory for temporary files.

Replace the archive version only if filename is newer. This option is used only
with the -r key.

Verbose mode. For or, display the names of the archive members as they are
replaced (or added). For -d, display the names of the archive members as they are
deleted. For -t, display the file mode, the uid, the gid, the size, and the timestamp
of the specified files. For -x, display the names of the files as they are extracted.

No space may appear between the key and any options.

You must specify the following argument, if used, before the key:

-v Display the tool barmer (tool name, version, etc.).

No space may appear between -V and the following key, and the key may not be preceded by a dash.
The dash preceding the V is optional. For example, ar860 -Vt me.a and ar860 Vt file.a are
equivalent.

Use ar860 to manage archives for the Paragon system.

as860, dump860, icc, if77, Id860, nm860, size860, strip860

I
·~

.JiI

[.~

. .1

IJ

I:
I:
I:

r:
I~

1-

1_...,.
;.J

(
-"'I

~J

~

c

Paragon'" System Fortran Compiler User's Guide Manual Pages

AS860 AS860

as860, as: Assembles i860 code for the Paragon(TM) system.

Cross-Development Syntax
as860 [switches] [filename]

Native Syntax

Arguments

as [switches] [filename]

filename The name of the i860 assembly language file. If no file is specified, as860 reads
from standard input.

You may specify the following switches in any order:

-a

-I[lisgile]

-L

-oobjfile

-R

-v

-x

Do not automatically import symbols that are referenced but otherwise undefined.
Issues an error message for each occurrence.

Write source listing in the file lisgile, a file in the current working directory. If you
omit lisgile, the listing goes to standard output.

Preserve text symbols starting with ".L" in the debug section.

Put the output object file in objfile. If you omit this switch, the default object file
name is produced by stripping any directory prefixes from filename, stripping any
of the suffixes" .nl 0", ". s", ".mac", or" .860", and appending" .0". An existing file
with the same name is silently overwritten.

Suppress all .data directives. Code and data are both assembled into the .text
section.

Display the tool banner (tool name, version, etc.).

Enable additional checks of the source file to find illegal sequences of
instructions.

D-9

Manual Pages Paragon 1M System Fortran Compiler User's Guide

AS860 (cont.) AS860 (cont.)

Description

See Also

[)-10

Use 88860 to assemble the named file.

You can ensure that the proper switches are passed to as860 by accessing as860 using the compiler
drivers (icc or iffl).

Not all illegal sequences are detected when the -x switch is used.

ar860, dump860, icc, ir17, Id860, nm860, size860, strip860

r:
l:
[~

_AI<

[J

IJ \

~=
~:

l:

I:

I:
I .""

>i,

f:

I :
r~

I .,"
,-,

I:

Paragon'" System Fortran Compiler User's Guide Manual Pages

DUMP860 DUMP860

Dumps parts of a Paragon(fM) system object file.

Syntax

Arguments

dump860 [switches] filename

filename The name of the object file.

You may specify the following switches in any order:

-a

-c

-dnumber

+dnumber

-f

-g

-h

-I

-nname

-p

-r

-s

Display archive headers.

Dump the string table.

Dump section headers starting at section number. Only effective if the -h switch
is also specified. Sections are numbered starting at 1. If the +d switch is not
specified, then only the single section header is dumped.

Dump section headers ending at section number. Only effective if the -h switch is
used.

Display file headers.

Display the archive symbol table.

Dump section headers.

Dump line numbers.

Dump only sections named name. Only effective if the -h switch is used.

Dump (in formatted hexadecimal) optional headers.

Do not display headers.

Dump relocation data.

Dump section data.

0-11

Manual Pages Paragon 1M System Fortran Compiler User's Guide

DUMP860 (cont.) DUMP860 (cont.)

Description

See Also

0-12

-t [number]

+tnumber

-u

-v

-v

Dump symbol table, starting at symbol index number. If the + t switch is not used,
then only the single symbol is displayed.

Dump symbol table, through symbol index number. If -t was not specified, the
start index is zero.

Underline mode. Only works on devices supporting backspace.

Verbose mode. Display some headers and infonnationin aneasier-to-comprehend
fonn.

Display the tool banner (tool name, version, etc.).

-z name,number Dump line numbers for function name, starting at line number.

+znumber Dump line numbers for function name (specified by -z), ending at line number.

Use dump860 to dump (in formatted rexadecimal) parts of the named object file.

ar860, as860, icc, if77, Id860, nm860, size860, strip860

r:
[
.~

. .JIi

(.. "
.. Ai

[:
[, ~.'

.,.j

[J

IJ

[J

(J

[J
[

.~

. ..J

[J

(J

r:
r:

r~
(- ..

,~

("'.,

I~

I~:
I ·..,

.M

I:
1_'"'"

. ,,-,

Paragon™ System Fortran Compiler User's Guide Manual Pages

IF77 1F77

if77, f77: Driver for compiling, assembling, and linking Fortran programs for the Paragon(TM) system.

Cross-Development Syntax
i177 [switches] sourcefile ...

Native Syntax

Description

177 [switches] sourcefile ...

The if77 command invokes the Fortran compiler, assembler, and linker with switches derived from
if77's command line switches.

if77 bases its processing on the suffixes of the files it is passed:

file.F

file.f

file.s

file.o

file. a

file.c

is a Fortran program with preprocessor directives. It is preprocessed,
compiled and assembled. The resulting object file is placed in the current
directory.

is a Fortran program. It is compiled and assembled. The resulting object file
is placed in the current directory.

is an i860 assembly language file. It is assembled and the resulting object file
is placed in the current directory.

is an object file. It is passed directly to the linker if linking is requested.

is an ar library. It is passed directly to the linker if linking is requested.

is a C program. It is passed to the C compiler.

All other files are taken as object files and passed to the linker (iflinking is requested) with a warning
message. If a file's suffix does not match its actual contents, unexpected results may occur.

If a single Fortran program is compiled and linked with one if77 command, then the intetmediate
object and assembly files are deleted.

By default, Fortran local variables are placed on the stack. Some Fortran programs assume that all
variables are allocated statically. Static allocation can be forced with the -Msave switch.

0-13

Manual Pages

IF77 (cont.)

Switches

0-14

----- --~ _________________________ • ______ ·_·_· __ ~ __ ~_. __ ~_.C __ •. -~ _______ • __ • ____ .. ______ _

Paragon 1M System Fortran Compiler User's Guide

IF77 (cont.)

·c Skips the link step; compiles and assembles only. Leaves the output from the
assemble step in a file named file.o for each file namedfile.f (unless you also
use the ·0 switch).

·Dname[=defJ Defines name to be de/in the preprocessor. If de/is missing, it is assumed to
be empty. If the = sign is also missing, then name is defined to be the string 1.

·E Preprocesses each ".F' file and sends the result to stdout. No compilation.
assembly, or linking is performed .

• F Preprocesses each" .F' file and leaves the output in a file named file.f for each
file namedfile.F.

.g Equivalent to ·Mdebug ·00 ·Mframe.

·1· Accepted, but has no affect.

·Idirectory Add a specified directory to the compiler's search path for include files where
directory is the pathname of the directory to be added. If you use more than
one ·1 switch, the specified directories are searched in the order they were
specified (left to right).

.Koption

The INCLUDE statement directs the compiler to begin reading from another
file, The compiler uses two rules to locate the specified file. Note that the
Fortran INCLUDE statement is different from the #include statement, whcih
uses the C preprocessor.

1. If the filename specified in the INCLUDE statement includes a
pathname, the compiler begins reading from the file it specifies.

2. If no pathname is provided in the INCLUDE statement, the compiler
searches for the file in the following order:

any directories specified with·1

• the directory containing the source file

• the current directory

Requests special mathematical semantics. The option values are:

I:
1.=
[~

- ...

IJ
(J

[:
~""1

l. "~J

r:
1_."

..

r:

I .. ~
,-'"
(

~"

.. '

I '"
;jo'

I
~~

:..,.

I:
I:

I:
c
c

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

ieee (default)

ieee=enable

ieee=strict

noieee

trap=fp

trap=aIign

Manual Pages

IF77 (cont.)

If used while linking, links in a math library that
confonns with the IEEE 754 standard.

If used while compiling, tells the compiler to perfonn
real and double precision divides in confonnance
with the IEEE 754 standard.

If used while linking, has the same effects as -Kieee,
and also enables floating point traps and undertlow
traps. If used while compiling, has the same effects as
-Kieee.

If used while linking, has the same effects as
-Kieee=enable, and also enables inexact traps. If used
while compiling, has the same effects as -Kieee.

If used while linking, produces a program that flushes
denonnals to 0 on creation (which reduces underflow
traps) and links in a math library that is not as accurate
as the standard library, but offers greater perfonnance.
This library offers little or no support for exceptional
data types such as INF and NaN, and will trap on such
values when encountered.

If used while compiling, tells the compiler to perfonn
real and double precision divides using an inline
divide algorithm that offers greater perfonnance than
the standard algorithm. This algorithm produces
results that differ from the results specified by the
IEEE standard by no more than three units in the last
place.

If used while linking, disables kernel handling of
floating point traps. Has no effect if used while
compiling.

If used while linking, disables kernel handling of
alignment traps. Has no effect if used while compiling

0-15

Manual Pages

IF77 (cont.)

-Ilibrary

-Ldirectory

-m

-Moption

0-16

Paragon TN System Fortran Compiler User's Guide

IF77 (cont.)

Load the library Iiblibrary.a. The library is loaded from the first library
directory in the library search path (see the -L switch) in which a file of that
name is encountered. (passed to the linker.)

Adds directory to beginning of the library search path. Also see the nostdlib
and nostartup options of the -M switch. (passed to the linker; see the Id860
manual page for more information on the library search path.)

Produces a link map. (passed to the linker.)

Requests specific actions from the compiler. The option values are as follows
(an unrecognized -M option is passed directly to the compiler):

alpha

anno

beta

[no]bounds

Activate alpha-release compiler features.

Produce annotated assembly files, where source code
is intermixed with assembly language. -Mkeepasm or
-S should be used as well.

Activate beta-release cQmpiler features.

[Don't] enable array bounds checking (default
-Mnobounds).

Clear the internal registers after every procedure
invocation. 'This option is used for diagnostic
purposes.

concur[=option[,option ...]]
Make loops parallel as defined by the specified
options. option can be any of the following:

a1tcode:count - Make innermost loops without
reduction parallel only if their iteration count exceeds
count. Without this switch, the compiler assumes a
default count of 100.

a1tcode Jeduction:count - Make innermost loops
with reduction parallel only if their iteration count
exceeds count. Without this switch, the compiler
assumes a default count of 200.

dist:block - Make the outermost valid loop in any loop
nest parallel. 'This is the default option.

(
'.~

. .AI

(:

(.: ''1.':
AI

IJ
IJ

,."
Il->d

[~

[:
[J

r:
1-:
I:

(
-~

.. I

('.,

",..I

r~

1_--,.,
.,j;..!

[',"'"
~I

I,
.. .&1

~

c

Paragon™ System Fortran Compiler User's Guide

IF77 (com.)

cneall

Manual Pages

IF77 (com.)

dist:cyclic -Make the outermost valid loop in any loop
nest parallel. If an innermost loop is made parallel, its
iterations are allocated to processors cyclically. That
is, processor ° performs iterations 0, 3, 6, ... ; processor
1 petforms iterations 1, 4, 7, ... ; and processor 2
performs iterations 2, 5, 8, and so on.

global vcache - Directs the vectorizer to locate the
cache within the area of an external array when
generating codes for parallel loops. By default, the
cache is located on the stack for parallel loops.

noassoc - Do not make loops with reductions parallel.

Make loops with calls parallel. By default, the
compiler does not make loops with calls parallel since
there is no way for the compiler to verify that the
called routines are safe to execute in parallel. When
you specify -Mcncall on the command line, the
compiler also automatically specifies -Mreentrant

-Mcneall also allows several othertypes ofloops to be
made parallel:

- loops with I/O statements

- loops with conditional statements

- loops with low loop counts

- non-vectorizable loops

If the compiler can detect a cross-iteration dependency
in a loop, it will not make the loop parallel, even if
-Mcncall is specified.

0-17

Manual Pages

IF77 (cont.)

0-18

cpp860

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

Direct the internal preprocessor to not compress white
space.

cray=option[,option ...]

[no]dclchk

[no]debug

[no]depchk

Force Cray Fortran (CF77) compatibility with respect
to listed options. Currently, only one option is
supported.

pointer For puposes of optimization is is assumed
that pointed-based variables do not overlay the storage
of any other variable.

[Don't] require that all variables be declared (default
-Mnodclchk).

[Don't] generate symbolic debug information (default
-Mnodebug). If -Mdebug is specified with an
optimization level greater than zero, line numbers will
not be generated for all program statements.

[Don't] check for potential data dependencies (default
-Mdepchk). -Mnodepchk is especially useful in
disambiguating unknown data dependencies arising
from use of array subscripts that cannot be derived at
compile time. For example, if an array is referenced in
a loop using the induction variable plus some other
unknown non-induction-based variable as a subscript,
the compiler must assume that the array conflicts with
a similar array reference based on the induction
variable alone. If it is known that the two array
references do not conflict, then this switch may result
in better code. Do not use this switch if such data
dependencies do exist, because incorrect code may
result.

c
l.·~

..ill

[J

~J

~=

(
I
j

(~

r:
I:
r:
r:
(:
I:
I

·",~

_~J

(.""
.... j

I :

I:

11
C

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

[no]dlines

dollar ,char

extend

Manual Pages

IF77 (cont.)

[Don't] treat lines beginning with D in column 1 as
executable statements, ignoring the D (default
-Mnodlines).

Specify char as the character to which the compiler
maps the dollar sign. The compiler allows the dollar
sign in names.

Allow 132-column source lines (normally only 72
columns are allowed).

extract=[option[,option ...]]

[no]frame

[no]i4

Pass options to the subprogram extractor (see the
inUne option for more information). The options are:

[name:]subprogram-Extract the specified
subprogram. name: must be used if the subprogram
name contains a period.

[size:]number-Extract subprograms containing less
than approximately number statements.

If both number(s) and subprogram(s) are specified,
then subprograms matching the given name(s) or
meeting the size requirements are extracted.

The -ofile switch must be used with -Mextract to tell
the compiler where to place the extracted
subprograms. The name of the specified file must
contain a period

[Don't] include the frame pointer (default
-Mnoframe). -Mnoframe can improve execution
time and decrease code, but makes it impossible to get
a call stack traceback when using a debugger.

[Don't] treat integer as integer*4 (default -Mi4).
-Mnoi4 treats integer as integer*2.

0-19

Manual Pages

IF77 (cont.)

0-20

Paragon TM System Fortran Compiler User's Guide

IF77 (cont.)

info=[option[,option ...]]
Produce useful infonnation to the standard error
output. The options are:

time or stat-Output compilation statistics.

loop-Output information about loops. This includes
information about vectorization, software pipelining,
and parallelization.

concur-Same as -Minfo=loop.

inline-Output information about subprograms
extracted and inlined

cycles or block or size---Output block size in cycles.
Useful for comparing various optimization levels
against each other. The cycle count produced is the
compiler's static estimate of freeze-free cycles for the
block.

i1i-Output intermediate language as comments in
assembly file.

all-All of the above.

inline=[option[,option ...]]
Pass options to the subprogram inliner. The options
are:

[lib:]library-Inline subprograms in the specified
inliner library (produced by -Mextract). If lib: is not
used, the library name must contain a period. If no
library is specified, subprograms are extracted from a
temporary library created during an extract prepass.

[name:]subprogram-Inline the specified
subprogram. If name: is not used, the subprogram
name must not contain a period.

[size:]number-Inline subprograms containing less
than approximately number statements.

(:

l~.~-,
I

--1

,.-,
I'" , ,
~..J

,'" l...;

[J

[~~
• .JIII

(:

I~

r~

r--
."

1_-'"
'"'

I:

r~

I:

[J

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

iomutex

keepasm

Manual Pages

IF77 (cont.)

levels:number-Perfonn number levels of inlining
(default 1).

If both numberCs) and subprogram(s) are specified,
then subprograms matching the given name(s) or
meeting the size requirements are inlined.

Place critical sections around I/O statements.

A critical section is a portion of the code that is only
executed by one thread. The switch -Miomutex places
critical sections around all I/O statements whether they
are in loops or not. This is a switch that should be
active if you want to parallelize loops that contain I/O
statements.

You must specify -Mcncall or use a directive to
parallelize loops that contain I/O statements.

The switch -Mconcur includes an imbedded
-Miomutex. Also, the switch -Mcncall includes an
imbedded -Miomutex.

If you are not parallelizing loops with I/O statements,
specify -Mnoiomutex. This is because, if you are not
parallelizing loops with I/O statements, you do not
need to put I/O statements in critical sections.

-Miomutex does not affect correct execution of the
program. It makes sure that only one thread is
executing the I/O statement at a time.

Keep the assembly file for each Fortran source file, but
continue to assemble and link the program. This is
mainly for use in compiler perfonnance analysis and
debugging.

0-21

Manual Pages

IF77 (cont.)

0-22

............. -------.••... -.......... --.. ---~~-.- .. __ .. _--- .. _------ .. ---- _._--_ .. _----_.

Iist[=name]

nolist

Paragon 1M System Fortran Compiler User's Guide

IF77 (cont.)·

Create a source listing in the file name. If name is not
specified, the listing file has the same name as the
source file except that the ".f' suffix is replaced by a
".1st" suffix. If name is specified, the listing file has
that name; no extension is appended.

Don't create a listing file (this is the default).

[no]longbranch [Don't] allow compiler to generate bte and btne
instructions (default .Mlongbranch) .

neginfo=concur

noansi

nostartup

nostdinc

nostdlib

onetrip

• Mnolongbranch should be used only if an assembly
error occurs.

Print infonnation for each countable loop that is not
made parallel stating why the loop was not made
parallel.

Allow multiple implicit statements.

Don't link the usual start-up routines (crtO.o and
ifrnain.o), which contain the entry point for the
program.

Remove the default include directory (lusr/include for
rT7, $(PARAGON _ XDEV)/paragon/include for irT7)
from the include files search path.

Don't link the standard libraries (libpm.o, guard.o,
libf.a, libm.a, libc.a, libic.a, and libmach3.a) when
linking a program.

Force each do loop to be iterated at least once.

[j

r:

(J

r:

[J

(J

r:

r:
('"'"

'"

I:

('"

(''' ..
.1.1

(
'41'"

~:

I ~I
""

(.,

~,

I:

("-
"~J

I·""",
. ...,

l:
n.,! L:

II

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

[no]perfmon

prof=x

[no]quad

[no]rS

Manual Pages

IF77 (cont.)

[Don't] link the perronnance monitoring module
(Ubpm.o) (default -Mperfmon). See theParagon(TM)
System Application Tools User's Guide for
information on perfonnance monitoring.

This option is ignored.

[Don't] force top-level objects (such as local arrays) of
size greater than or equal to 16 bytes to be
quad-aligned (default -Mquad). Note that -Mquad
does not affect items within a top-level object; such
items are quad-aligned only if appropriate padding is
inserted. Common blocks are always quad-aligned

[Don't] treat real as double precision and real
constants as double precision constants (default
-MnorS).

[no]r8intrinsics [Don't] treat intrinsics as follows (default
-MnorSintrinsics):

cmpIx as dcmpIx
real as dble
alog as dlog
amaxl as dmaxl
aminl as dminl
amodasdmod
csqrt as cdsqrt
clog as cdIog
cexp as cdexp
csin as cdsin
coos as cdoos

[no]recursive [Don't] allocate local variables on the stack, thus
allowing recursion (default -Mnorecursive). SAVEd,
data-initialized, or namelist members are always
allocated statically, regardless of the setting of this
switch.

0-23

Manual Pages Paragon TM System Fortran Compiler User's Guide

IFn (cont.) IF77 (cont.)

0-24

[no]reentrant [Don't] generate reentrant code (default
-Mnoreentrant). -Mreentrant disables certain
optimizations that can improve performance but may
result in code that is not reentrant. Even with
-Mreentrant, the code may still not be reentrant if it is
improperly written (e.g., declares static variables).
You may need to increase the stacksize before
executing programs compiled with -Mreentrant. A
segmentation violation occurs if stacksize is too low.

reloc _ Ubs Causes -I switches that appear before source or object
flle names on the compiler command line to appear
after these flle names on the Id command line.

safealloc Informs the compiler that all allocatable commons are
allocated once and can be treated as ordinary
commons for optimization purposes. This option can
improve performance for some applications, but
should be used with caution.

[no]save [Don't] allocate all local data in staticlocations instead
of on the stack (default -Msave). The effect is similar
to using the save statement for all local variables.
Recursion is not allowed with this switch in effect.
-Msave may allow some older Fortran programs to
run, but may decrease performance.

[no]~gnextend [Don't] sign-extend the result of a conversion of a
signed integer to a smaller signed type (default
-Mnosignextend). For example, if -Msignextend is in
effect and an integer·4 containing the value 65535 is
converted to an integer·2, the value of the integer·2
will be -1. This option is provided for compatibility
with other compilers. -Msignextend will decrease
performance.

spIiUoop_opS=n
Set a threshold of n floating-point operations within a
loop. Innermost loops whose number of floating-point
operations exceeds n are split. Each floating-point
operation counts as two. The default for n is 40 when
-Mvect is used.

l:
I:
r:

IJ
(~

~
~-r]

, '

'.J

r i
ilL..;

~=
LJ
[J

[
~~

~..J

I:
I ""

"'·1

r~:

I:

r:
I~J

I~'

I:
(~

r:

Paragon™ System Fortran Compiler User's Guide

IFn (cont.)

Manual Pages

IF77 (cont.)

nospliUoop_ops
Do not split loops when the floating-point operation
threshold is exceeded. When -Mvect is specified.
innennost loops whose nwnber of floating point
operations exceed 40 are split by default. This switch
turns the default off.

spliUoop Jefs=n
Set a threshold of n array element loads and stores
within a loop. Innennost loops whose nwnber of loads
and stores exceeds n are split. The default for n is 20
when -Mvect is used.

nospliUoop _refs
Do not split loops when the array element loads and
stores threshold is exceeded. When -Mvect is
specified, innennost loops whose nwnber of array
element loads and stores exceeds 20 are split by
default. This switch turns the default off.

standard Flag non-ANSI-Fortran77 usage.

[no]streamall [Don't] stream all vectors to and from cache in a vector
loop (default -MstreamaIl). When -MnostreamaII is
in effect, the compiler chooses one vector to come
directly from or go directly to main memory, without
being streamed into or out of cache.

[no]strideO [Don't] inhibit certain optimizations and allow for
stride 0 array references. -MstrideO may degrade
perfonnance, and should only be used if zero stride
induction variables are possible. (default
-MnostrideO).

unixlogical Set the value of a logical expression to one if the result
is.TRUE..

[no]upcase [Don't] preserve case in names (default -Mnoupcase).
-Mnoupcase causes all names to be converted to
lower case. Note that, if -Mupcase is used, then
variable name Q is different than variable name q, and
keywords must be in lower case.

0-25

Manual Pages

IF77 (cont.)

0-26

Paragon 1111 System Fortran Compiler User's Guide

IF77 (cont.)

unroll [=option [,option ...]]

nounroll

Invoke the loop unroller and set the optimization level
to 2 if it is set to less than 2. option is one of the
following:

c:m - Completely unroll loops with a constant loop
count less than or equal to m. If m is not supplied, the
default value is 4.

n:u - Unroll loops that are not completely unrolled or
have a non-constant loop count u times. If u is not
supplied, the unroller computes the number of times a
loop is unrolled.

Do not unroll loops.

vect[=option [,option ...]]
Perform vectorization (also enables -Mvintr). If no
options are specified, then all vector optimizations are
enabled. The available options are:

aItcode[:number] -Produce non-vectorized code to be
executed if the loop count is less than or equal to
number. Otherwise execute vectorized code. The
default value for number is 10.

cachesize:number-This sets the size of the portion of
the cache used by the vectorizer to number bytes.
Number must be a multiple of 16, and less than the
cache size of the microprocessor (16384 for the
i860 XP, 8192for the i860 XR). In most cases the best
results occur when number is set to 4096, which is the
default (for both microprocessors).

noassoc-When scalar reductions are present (for
example, dot product), and loop unrolling is turned on,
the compiler may change the order of operations so
that it can generate better code. This transformation
can change the result of the computation due to
round-off error. The use of noassoc prevents this
transformation

[no]recog-[Don't] Recognize certain loops as simple
vector loops and call a special routine.

(:

IJ

[]

[J

(J

r~

I:
r:
r:
(

--'"'I

l:.J

I:
1-4

I:
r:

r:

Paragon™ System Fortran Compiler User's Guide

I F77 (cont.)

[no]vintr

[no]xp

Manual Pages

IF77 (cont.)

smallvect[:number]-This option allows the
vectorizer to assume that the maximum vector length
is no greater than number. Number must be a multiple
of 10. If number is not specified, the value 100 is used.
This option allows the vectorizer to avoid stripmining
in cases where it cannot determine the maximum
vector length. In doubly-nested, non-perfectly nested
loops this option can allow invariant vector motion
that would not otherwise have been possible. Incorrect
code may result if this option is used, and a vector
takes on a length greater than specified.

streamlim:n This sets a limit for application of the
vectorizer data streaming optimization. If data
streaming requires cache vectors of length less than n,
the optimization is not performed. Other vectorizer
optimizations are still performed. The data streaming
optimization has a high overhead compared to other
loop optimizations, and can be counter-productive
when used for short vectors. The n specifier is not
optional. The default limit is 32 elements if streamlim
is not used.

transform-Perform high-level transformations such
as loop splitting and loop interchanging. This is
normally not useful without -Mvect=recog.

-Mvect with no options means
-Mvect=recog,transform,cachesize:4096,a1tcode:l
o.

[Don't] perform recognition of vector intrinsics
(default -Mnovintr, unless -Mvect is used).

[Don't] use i860 XP microprocessor features (default
-Mxp).

-nostdinc Equivalent to -Mnostdinc.

~27

---------- ----~--------- --~->. ,.' "~'""~,~~~. ~ .. ~. -.~. ,---._'"----- --, .. _.- - -- ---- --- ---------------

Manual Pages

I F77 (cont.)

-ox

-ofile

-O[level]

0-28

Paragon TM System Fortran Compiler User's Guide

I F77 (cont.)

Creates an executable application for multiple nodes.

• Using -ox while compiling has no effect.

• Using -ox while linking creates an application that automatically copies
itself into multiple nodes. It also links in libnx.a, the library that contains
the calls in the Paragon(TM) System Fortran Calls Reference Manual.
You can control the execution of an application linked with -ox by using
command-line switches and environment variables, as described in the
Paragon(TM) System User's Guide.

To link in libnx.a without creating an application that automatically copies
itself into multiple nodes, use -lox instead. An application linked with -lox
can use operating system calls to create node processes under program
control.

-node is currently accepted as a synonym for -ox, but this support may be
dropped in a future release.

Uses file for the output file, instead of the default a.out (or file.o if used with
the -c switch).

Set the optimization level:

o

1

2

3

4

A basic block is generated for each Fortran statement.
No scheduling is done between statements. No global
optimizations are perfotmed.

Scheduling within extended basic blocks is perfotmed.
Some register allocation is perfotmed. No global
optimizations are perfOtmed.

All level 1 optimizations are perfotmed. In addition,
traditional scalar optimizations such as induction
recognition and loop invariant motion are perfotmed
by the global optimizer.

All level 2 optimizations are performed. In addition,
software pipelining is performed.

All level 3 optimizations are performed, but with more
aggressive register allocation for software pipelined
loops. In addition, code for pipelined loops is
scheduled several ways, with the best way selected for
the assembly file.

l:
[:
[

."'1

. .111

l:
(~

[J

[i
. ..J

[J

[J

r:
(

-111

... i:i

I:

r: ,_.'"

~i

r:

I '1'1

~

r:

1<'

r~

(~

I:
I~

[:

r:
IJ

Paragon Til System Fortran Compiler Users Guide Manual Pages

IF77 (cont.)

-p

-r

-s

-s

-Uname

-v

-v

-vv

I F77 (cont.)

If a level is not supplied with -0, the optimization level is set to 2. If -0 is not
specified, the default level is 1. Setting optimization to levels higher than 0
may reduce the effectiveness of symbolic debuggers.

This option is ignored.

Generates a relinkable object file. (passed to the linker.)

Strips symbol table infonnatioIL (passed to the linker.)

Skips the link and assemble steps. Leaves the output from the compile step in
a file named file.s for each file named file.f.

Remove any initial definition of name in the preprocessor. Since all -D
switches are processed before all -U switches, the -U switch can be used to
override the -D switch.

Prints the entire command line for each tool as it is invoked, and invokes each
tool in verbose mode (if it has one).

Prints the version banner for each tool (assembler, linker, etc.) as it is
invoked.

Display the driver version number and the location of the online release notes.
No compilation is performed.

-Wpass,option[,option ...]
Passes the specified options to the specified pass:

o (zero) Compiler.

a Assembler.

linker.

Each comma-delimited string is passed as a separate argument.

0-29

Manual Pages

IF77 (cont.)

-Ypass,directory

Files

a.out

Jik.a

Jik.f

Jik..F

Jik..lst

Jik.o

Jik.s

D-30

Paragon 1M System Fortran Compiler User's Guide

IF77 (cont.)

Looks for the executable file for the specified pass in the specified directory
(rather than in the default location), where pass is one of the following:

o (zero)

a

s

I

L

u

p

Compiler executable file.

Assembler executable file.

Linker executable file.

Startup object files.

Standard include meso

Standard libraries (passes -YLdirectory to tre linker).

Secondary libraries (passes -YUdirectory to the
linker).

All libraries (passes -VPdirectory to the linker).

See the Id860 manual page for more infonnation on tre -YL, -YU, and -VP
switches.

Executable output file.

Library of object files.

Fortran source file.

Fortran source file for preprocessing.

Listing file produced by -Mlist.

Object file.

Assembler source file.

r:

IJ

[
"1

" I
_,JI,J

[J

(J

[~

r:
1---.

Ai

I :

I.,

r"'

I:
r~

I~

r:

Paragon™ System Fortran Compiler User's Guide Manual Pages

IF77 (coot.) IF77 (cont.)

The following files and directories are used in the cross-development environment (if77).
PARAGON _ XDEV is an environment variable that can be set to the root of the compiler installation
directory. If PARAGON _ XDEV is not set. the default is lusrlparagonlXDEV. The directory where
the driver, compiler, and tools are located must be included in your path. For Sun4 users, for
example, $P ARAGON _ XDEVlparagonlbin.sun4 would be included in the path.

$(PARAGON _ XDEV)lparagonlbin.fJ!Jil Directory containing executables for system fJ!Jil
(fJ!Jil identifies the architecture of the system, e.g.
sgi or sun4).

$(PARAGON _ XDEV)lparagoolbin.grQJjif17 Fortran compiler driver.

$(PARAGON _ XDEV)lparagonlbin.grQJjiftn Fortran compiler.

$(PARAGON _ XDEV)lparagonlbin.grQJjas860 Intel (COFF) assembler.

$(PARAGON_XDEV)lparagonlbin.w:d1Ild860 Intel (COFF) linker.

$(PARAGON _ XDEV)lparagonlinclude Standard include directory.

$(PARAGON _ XDEV)lparagonllib-cof! Standard library directory.

$(PARAGON _ XDEV)lparagonllib-cofficrtO.o C start-up routine.

$(PARAGON _ XDEV)lparagonllib-cofflijmain.o Fortran initial routine.

$(PARAGON _ XDEV)lparagonllib-coffllibpm.o Performance monitoring module.

$(PARAGON _ XDEV)lparagonllib-coffiguard.o Barrier between user and system code.

$(PARAGON _ XDEV)lparagonllib-coffllibf.a Fortran runtime library.

$(PARAGON _ XDEV)lparagonllib-cofJllibm.a Math library.

$(PARAGON _ XDEV)lparagonllib-coffllibc.a Standard C library.

$(PARAGON _ XDEV)lparagonllib-coffilibic.a C built-in intrinsic library.

$(PARAGON _ XDEV)lparagonllib-coffllibmach.a
Mach operating system library.

$(PARAGON _ XDEV)/paragonllib-cofflnoieee Library directory used when linking with
-Knoieee (contains non-IEEE versions of libf.a
and libm.a).

$(PARAGON _ XDEV)lparagonllib-coffioptionslautoinit.o
Routine linked in when -ox is used.

0-31

Manual Pages

IF77 (cont.)

0-32

Paragon 1M. System Fortran Compiler User's Guide

IF77 (cont.)

The following files and directories are used by default in the native environment (r77). If! is not the
root of the compiler installation directory, you must set PARAGON _ XDEV to this directory and add
$PARAGON_XDEVlusr!ccslbin to your path.

lusrlccslbin

lusrlccslbinlf77

lusrlccslbinliftn

lusrlccslbinlas

lusrlccslbinlld

lusrlinclude

lusrllib

lusrlliblcrtO.o

lusrlliblijmain.o

lusrllibllibpm.o

I usrllibl guard.o

I usrllibllibf.a

I usrllibllibm.a

I usrllibllibc.a

I usrllibllibic.a

lusrllibillibmach.a

lusrlliblnoieee

I usrllibl optionslautoinit.o

Directory containing executables.

Fortran compiler driver.

Fortran compiler.

Assembler.

Unker.

Standard include directory.

Standard Ii brary directory.

C start-up routine.

Fortran initial routine.

Performance monitoring module.

Barrier between user and system code.

Fortran runtime library.

Math library.

Standard C library.

C built-in intrinsic library.

Mach operating system library.

Ubrary directory used when linking with
-Knoieee (contains non-IEEE versions of libf.a
and libm.a).

Routine linked in when -ox is used.

I:
r:
~:
," . .>oJ

~=
IJ

[J

.--""' pt,

l_~

r:
l:
r:

I:
r-:

Paragon'" System Fortran Compiler User's Guide Manual Pages

IF77 (cont.) I F77 (cont.)

Environment Variables

The environment variable MAKECPP is supported. MAKECPP is a colon-separated list of
directories that is added to the compiler search path for include files.

If you use the -Knoieee switch and define LP ATH or PARAGON _ LPATH, be sure that the directory
containing the noieee versions of libJ.a and libm.a is listed before a directory containing the ieee
versions of these libraries. If in doubt, compile with the -v switch to see which libraries are linked
in. See the Id860 manual page for more information.

I'~ Diagnostics

The compiler produces information and error messages as it translates the input program. The linker

I ""~", _ and assembler may generate their own error messages.

r-'
1 ''''i

;.1

I .J

('-"

... ,"

1-­

I:

See Also

ar860, as860, dump860, icc, ifixlib, Id860, nm860, size860, strip860

0-33

---------"-, .. -----~-

Manual Pages Paragon 1M System Fortran Compiler User's Guide

IFIXLIB IFIXLIB
. '". . "." :.."' ' ."

Update an inliner library directory.

Syntax

Arguments

Description

See Also

0-34

itixlib library_name

library JIllT1te The name of an inliner library.

An inliner library is implemented as a directory. For each element of the library, the directory
contains a file containing the encoded form of the inlinable function. A special file named TOe
serves as a directory for the library. This is a printable ASCII file that can be examined for
information about the library contents. When an element is added to or removed from the library,
the TOe file becomes out of date. The i6x1ib command updates the TOe file for the specified inliner
library.

icc, it'77

[:

l:
[

'II!

.JiJ

(-~
· .. cJIIi

(.. ~
."""

I]

l:

(
-~

.. .;ou

l:

I :
(-,.,

,,"'

(-'"

''''

I
'~

.iJ.;

I :

I ::
(:
1'-"'1

, ' '"

I ~I
,,,

I-~

r-..."
. ...Li

I]

Paragon™ System Fortran Compiler User's Guide Manual Pages

LD860 LD860

Id860, Id: link editor for Paragon(TM) system object files.

Cross-Development Syntax

Id860 [switches] filename ...

Native Syntax

Arguments

Id [switches] filename ...

filename The name of the object file or Ii brary.

You may specify the following switches in any order:

-B integer

-contig

-d integer

-debug

-D

-D integer

-e symbol

-r filelist

-k

Specify the address to use for the base of the .bss section for all following object
modules. This switch may be used multiple times, and affects only objects that
appear after the switch in the command line.

Force the .data section to follow the .text section. Overrides -d.

Specify the address at which the .data section is to be loaded. The default is
Ox4010000.

Provide a listing of where routines are referenced.

Display the C++ .debug section.

Specify the length of the .data section to be integer bytes. The .data section is
padded with zero to the specified length. which may not be less than the summed
length derived from the object modules.

Specify symbol as the entry-point. The default entry-point is start.

Read in a list of files to be linked from file filelist. Names in the file can be
separated by a comma, a space, a tab, or a linefeed. This switch may be used
multiple times.

Start the .text and .data sections exactly at the addresses specified by the -T and
-d switches (or at the defaults if the switches are not given) without performing
the normal modifications to those addresses to make the file pageable.

Manual Pages Paragon 1M System Fortran Compiler User's Guide

LD860 (cont.) LD860(cont.)

D-36

-Uibrary Load the library liblibrary.a. The library is loaded from the first library directory
in the library search path in which a file of that name is encountered.

-L Display the C++ Jine section.

-Ldirectory Add directory to the beginning of the library search path.

-m Generate a link map (listing of modules and addresses).

-0 objfile Put the output object file in ob jfile.1f this switch is not specified, the default object
file name is a.out.1f a file with the same name already exists, it is silently replaced

-p Align the .data section of the following module on a logical page boundary.
(Other switches may appear between -p and the filename.) This switch may be
repeated as necessary, and applies only to the next object file.

-P integer Set the logical page size to integer bytes (default 65536). The value of integer
must be a power of two multiple of 4096 bytes.

-r Retain relocation entries in the output object file to allow incremental linking. The
output object file produced with -r can be used as an input object file in another
link. When -r is used, -0 must also be specified.

-s Strip all symbols from the output object file.

-t Display the name of each object file or library as it is processed.

-T integer Specify the address at which the .text section is to be loaded. The default is
Ox 10000. If used without -d, implies -contig.

-u symbol Initialize the symbol table with symbol. The linker considers symbol to be
undefined.

-v Display the tool banner (tool name, version. etc.).

-yfile Load the library file. The library is loaded from the first library directory in the
library search path in which a file of that name is encountered. (-y is like -I, but
uses the specified filename without modifications.)

-YLdirectory Replace the standard library directory (the first directory in the library search
path) with directory.

-YUdirectory Replace the secondary library directory (the second directory in the library search
path) with directory.

-YPdirectory Replace the entire library search path with directory.

l:
[~

[J

(J

[J

[~

(."1.
.Ai

[)

r:
(:

r:

I ~,

I
~-"'I

,,'

I 'j
'"""

r~

I~ ,''''
~I

1:'/

1-· .J

Paragon TM System Fortran Compiler User's Guide Manual Pages

LOS60 (cont.) LOS60 (cont.)

Description

Use Id860 to link-edit the named file(s).

Object files and libraries are processed in the order specified.

Libraries are searched for unsatisfied externals when they are processed, and are not reopened to
satisfy any symbols that might not have been satisfied. The search for libraries is done in the
following order:

If PARAGON _ LP ATH is defined, it is searched.

If PARAGON _ LP ATH is not defined and LPATH is defined, it is searched.

Any directories specified using the -L switch prior to -Ilibname on the command line are
searched.

The standard default libraries are searched. In the cross-development environment, the default
library directories are:

$P ARAGON _ XDEVlparagonllib-coff:$P ARAGON _ XDEVlparagonllib-cofflopnons

In the native environment, the default library directories are:

$P ARAGON _ XDEVlusrllib :$P ARAGON _ XDEVlusrllibloptions

If PARAGON _ XDEV is not set, lusrllib:/usrllibloptions is the default.

The search path used by the -1 switch can be modified by any -L, -YL, -YU, or -yP switch to the
left of the -I switch on the command line. The effect of these switches is cumulative.

The -r switch requires the -0 switch.

If the -r and the -s switches are used together, the -s switch is ignored.

If the -r and the -e switches are used together, the -e switch is ignored.

If the -f switch is used, the -B and -p switches are applied as if the object file names appeared in
place of the -f switch.

0-37

Manual Pages Paragon 1M System Fortran Compiler User's Guide

LD860 (cont.) LD860 (cont.)

The -d (data start address) and -T (text start address) switches interact as follows:

• If neither the -d nor the -T switch is used, the data and text start addresses default.

If the -d switch is used without -T (that is, if a data start address is specified, but no text start
address is specified), then the data start address specified is used, and the text start address
defaults.

• If the -T switch is used without -d (that is, if a text start address is specified, but no data start
address is specified), then the specified text start address is used, and the data section starts on
the next logical page boundary following the end of the text section.

• If both the -d and -T switches are used, the specified data and text start addresses are used.

Special Symbols

NOTE

Specifying addresses for the text and data sections different from
the defaults may preclude the usage of profiling and performance
monitoring tools. These tools require a gap between the text and
data sections that is at least as long as the text section.

The profiling tools cannot be used on executables with a text
section larger than 32 Mb, although such applications can be
executed.

The following symbols have special meanings to Id860:

The next available address after the end of the output section .text.

The next available address after the end of the output section .data.

The next available address after the end of the output section .bss.

Programs should not use any of these as external symbols.

The symbols described above are those actually seen by Id860. Note that C and several other
languages prepend an underscore 0 to external symbols defined by the programmer. This means
that, for example, you cannot use end as an external symbol. If you use any of these names, you must
limit its scope by using the static keyword in the declaration or declare the symbol to be local to the
function in which it is used. If this is not possible, you will have to use another name.

r:
[:

r=

(J
rf"1
I_-*,

[.
j;iI

I·.···,.
.~

I:
I''l''

, _~I'

I
""~

4'

r~

I :

I
I .

I"~:

1=
I

I
I,e

I~

I
I ~

[~

I:
I~ J "..,

I,
..Ii

Paragon™ System Fortran Compiler User's Guide Manual Pages

LD860 (cont.) LD860 (cont.)

See Also

ar860, as860, dump860, icc, it77, nm860, size860, strip860

0-39

Manual Pages Paragon TV System Fortran Compiler User's Guide

MAC860 MAC860

mac860, mac: Macro preprocessor for the Paragon(TM) system.

Cross-Development Syntax
mac860 [switches] sourcefile

Native Syntax

Arguments

Description

See Also

0-40

mac [switches] source file

source file Source file containing assembler and macro preprocessor commands.

You may specify the following switches in any order:

-Dsym=val

-Iincfile

-oobifile

-v

-y

Defines sym as a local symbol with the value val in the macro preprocessor.

Includes the file incfile before the first statement of source file. You can use at
most one -I switch in a single mac860 command.

Sets the output file name to obifile (the default is the name of the source file with
any .s suffix removed and .mac appended).

Displays the tool banner (tool name, version, etc.).

Makes the macro preprocessor output special directives that the assembler can use
for better reporting of line numbers in the source file when errors are detected.

The mac860 command preprocesses the specified source file with the macro preprocessor and
produces a source file ready to be assembled with as860.

as860,ar860,dummp860,ld860,nmm860,mze860,~ip860

l:
I

-~

. .i!

r:
[-:

r:
I '". "'

r:
I~

I ,"'

I:
1

~"1

_.1

I ~
.:oJ

I ~"

I~
(

--.. !

~I

r~:
I~

r:
('''"

"""

I)

~

Paragon 1M System Fortran Compiler User's Guide Manual Pages

NM860 NM860

nm860, run: Displays symbol table infonnation for Paragon(fM) system object files.

Cross-Development Syntax
nm860 [switches] filename ...

Native Syntax
nm [switches] filename ...

Arguments

filename The name of the object file or library.

You may specify the following switches in any order:

-d Display numbers in decimal.

-e Display external relocatable symbols only.

-f Display all symbols, including redundant symbols. Overrides -e.

-h Suppress headers.

-0 Sort symbols by name.

-0 Display numbers in octal.

-p Use short fonn output (See "Description" section.)

-r Prepend the cmrent file name to symbols.

-T Truncate symbol names to 19 characters, plus an asterisk to indicate truncation.

-u Display a list of undefined symbols.

-v Sort symbols by value.

-v Display the tool banner (tool name, version, etc.).

-x Display numbers in hexadecimal (default).

0-41

Manual Pages Paragon no System Fortran Compiler User's Guide

NM860 (cont.) NM860 (cont.)

Description

See Also

0-42

Use nm860 to display the symbol tables of the named file(s).

For each symbol in the output of the -p switch. one of the following characters identifies its type:

a Absolute.

b BSS section symbol.

c Common symbol.

d Data section symbol.

f File tag.

r Register symbol.

s Other symbol.

t Text section symbol.

u Undefined.

In addition. the characters associated with local symbols appear in lowercase and the characters
associated with external symbols appear in uppercase.

When using the -v or -n switches (sort by value or name, respectively), the scoping information is
jumbled, so it is advisable to use the -e (externals only) switch.

as860, ar860, dump860, icc, if77, Id860, size860, strip860

(:

r:
r::
J~
l_.~

IJ

£:

~

I:
r:
r:
r-..,

"-I

(''''
.,..,.]

I:
r~

I ·:
""

I ~

r~

I'~

I~

r
'~

~,

Paragon™ System Fortran Compiler User's Guide Manual Pages

SIZE860 SIZE860

size 860, size: Displays section sizes of Paragon(TM) system object files.

Cross-Development Syntax
size860 [switches] jilefUJmes

Native Syntax
size [switches] jilefUJmes

Arguments

filename The name of the object file.

You may specify the following switches in any order:

-d Display sizes in decimal (default).

-f Full output.

-n Display the sizes of non-loading sections, as well.

-0 Display sizes in octal.

-v Display the tool banner (tool name, version, etc.).

-x Display sizes in hexadecimal.

Description

Use size860 to display the section sizes of the named files.

Note that the total size of an executable object may be greater than or less than the total of the sizes
of all the compiled objects that make up the executable. This is because the true size of the BSS
section is not known until after a set of objects is loaded, and because padding is done by Id860 on
other sections.

0-43

Manual Pages Paragon 1M System Fortran Compiler User's Guide

(
"1

.. . JJ

[:

SIZE860 (cont.) SIZE860 (cont.)

See Also

as860, ar860, dump860, icc, if77, Id860, nm860, strip860 [J

[1. '..J

I:
(]

r:
(

4!I

t.1

I:
r:
I
-·~ .,

I~
r

·~

,,,

(~

I~
1···"1

oJ

I-).:
1·<1

-",

I,

r~

I:
I'·'
I

~"I

~I

r·~

~

I=,
.iJ

Paragon™ System Fortran Compiler User's Guide Manual Pages

STRIP860 STRIP860

strip860, strip: Strips symbol infonnation from Paragon(TM) system object files.

Cross-Development Syntax

strip860 [switches] filename ...

Native Syntax

strip [switches] filename ...

Arguments

filename The name of the target object file.

You may specify the following switches in any order:

-I Strip line number information only.

-r Do not strip static, external, or relocation information.

-v Display the tool banner (tool name, version, etc.).

Description

Use strip860 to strip symbol information from object files.

The default is to strip all symbols. This is generally only acceptable for executables.

See Also

8s860, ar860, dump860, icc, ir77, Id860, nm860, size860

0-45

Manual Pages Paragon™ System Fortran Compiler User's Guide

ABORTO ABORTO
.::. " .. " .. ::. :: '". "

Tenninates caller abruptly; writes memory image to core file.

Synopsis
SUBROUTINE ABORTO

Discussion

Cleans up the I/O buffers and then aborts, producing a core file in the current directory.

D-46

l:

[J

[l
-'oJ

[J

[J

[J

[J

r:
I·".

oil

r:

I:
r-

(---
,j';-

I
··~

>lJ

I~

["-
... ~i

Paragon 1M System Fortran Compiler User's Guide Manual Pages

ACCESSO ACCESSO

Detennines access mode or existence of a file.

Synopsis
INTEGER FUNCTION ACCESS(fil, mode)

CHARACTER *(*) fil
CHARACTER *(*) mode

Return Value

Returns zero if the file exists and is accessible in the ways specified by mode. Returns a nonzero error
code if the mode argument is incorrectly fonnatted or the file does not exist or is not accessible in
all the ways specified by mode.

Description of Parameters

fil

mode

Pathname of the file to check.

Access modes to check. May include, in any order and in any combination, one or
more of the following letters:

r Test for read pennission.

w Test for write pennission.

x Test for execute pennission.

(blank) Test for existence.

D-47

- - --~-----.--- - ."- .-.---- .. ---------.---~---~---~-- ---.-----~---------------------

Manual Pages Paragon TM System Fortran Compiler User's Guide

ALARMO ALARMO

Executes a subroutine after a specified time.

Synopsis
INTEGER FUNCTION ALARM(time, proc)

INTEGER time
EXTERNAL proc

Return Value

Time remaining on previous alarm, if any.

Description of Parameters

Discussion

D-48

time Length of time until alarm, in seconds, or 0 to turn off the alarm.

proc Name of procedure to call after time seconds.

Establishes subroutine proc to be called after time seconds. If time is 0, the alarm is turned off and
no routine will be called. The return value of alarmO is the time remaining on the last alarm.

I:

[~.'
oJ

[J

~' Ii. . .-J

[J

[J
[J
[-.,."
, '

c..I

l:

r:

I '.'."' ,ji

r-:
I:
I:
(",.,

-",

r-:
I:
r~',

1_-.,
i ~.I

I:
I :

r:
I ~"

I ~.

r:
I:
(:
I:
r:
I:
r:

Paragon™ System Fortran Compiler User's Guide Manual Pages

BESJOO BESJOO

besjOO. besjlO. besjnO. besyO(). besylO. besynO. dbesjOO. dbesjlO. dbesjnO. dbesyOO. dbesylO. dbesynO:
Bessel functions.

Synopsis
REAL FUNCTION BESJO(x)

REAL x

REAL FUNCTION BESJl(x)

REAL x

REAL FUNCTION BESJN(n, x)

INTEGERn
REAL x

REAL FUNCTION BESYO(x)

REAL x

REAL FUNCTION BESYl(x)

REAL x

REAL FUNCTION BESYN(n, x)

INTEGERn
REAL x

D-49

-----------~

Manual Pages Paragon"" System Fortran Compiler User's Guide

BESJOO (cont.) BESJOO (cont.)

Discussion

0-50

DOUBLE PRECISION FUNCTION DBESJO(x)

DOUBLE PRECISION X

DOUBLE PRECISION FUNCTION DBESJl(x)

DOUBLE PRECISION X

DOUBLE PRECISION FUNCTION DBESJN(n, X)

INTEGERn
DOUBLE PRECISION X

DOUBLE PRECISION FUNCTION DBESYO(x)

DOUBLE PRECISION X

DOUBLE PRECISION FUNCTION DBESYl(x)

DOUBLE PRECISION X

DOUBLE PRECISION FUNCTION DBESYN(n, X)

INTEGERn
DOUBLE PRECISION X

These functions calculate Bessel functions of the flrst and second kinds for real and double precision
arguments and integer orders.

l:
(:

r:
[~

I:
I]

lJ
[:

A!

l:
[J

IJ

r:

I -~
AI

r:

1_--
.1.11

I --Ol

,iIJ

1-.,
_.,

I¥I

(
--""'I

""I

1=
I ~

I:
I':
[:
I'~

_.'"

Paragon TM System Fortran Compiler User's Guide Manual Pages

CHDIRO CHDIRO

Changes default directory.

Synopsis
INTEGER FUNCTION CIIDIR(path)

CHARACTER *(*) path

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

path Pathname of new current directory.

Discussion

Changes the default directory for creating and locating files to path.

See Also

getcwdO

0-51

Manual Pages Paragon'" System Fortran Compiler Users Guide

CHMODO CHMODO
.. . ".". . .. :.. . .. :." .: . .".

Changes protection mode of a file.

Synopsis
IN1EGER FUNCTION CHMOD(nam, mode)

CHARACTER *(*) nam
IN1EGER mode

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

Discussion

0-52

nam Pathname of the file to change.

mode File's new protection mode.

Changes the protection mode of file nam to mode. See chmod(2) in the OSFll Programmer's
Reference for information on the mode parameter.

I :

l:
, '"
It ...

l 1
j

IJ
(J

[_I
-""

[:

r:
r:
I:

1_·-
's.,

I .. '"
Jill

r-

I ""
.~

I~

Paragon TM System Fortran Compiler User's Guide Manual Pages

CTIMEO CTIMEO

Returns system time as a string.

Synopsis
CHARAClER *(*) FUNCTION CTIME(stime)

INlEGER stime

Return Value

Ascn representation of the time indicated by stime, in the following fonnat:

Day Mon DD HH:MM:SS YYYY

For example:

Mon Aug 31 16:02:05 1992

The string does not end with a newline or a null character.

Description of Parameters

slime An integer representing a time in seconds since 00:00:00 GMT, January I, 1970,
as returned by timeO.

r: Discussion

I '"
. w

I '.,.,
~-'

(-~

~ .,
~

U

Example

Converts the system time slime to its ASCII fonn and returns the converted fonn.

c

program main
integer stime, time
character*24 cur_time, ctime

c get the system time
c

stime = time()
c

0-53

Manual Pages Paragon'" System Fortran Compiler User's Guide

DV _ACOSO (cont.) DV _ACOSO (cont.)

See Also

c convert the system time using ctime
c

c

10

cur_time = ctime(stime)

write(6, 10) cur_time
format(A)

call exit
end

The program prints the converted system time. For example:

Thu Oct 21 08:32:38 1993

dateO, fdateO, gmtimeO, idateO, itimeO, ItimeO, timeO

(:

[~

l:
I·~

.!

r:

[~

r:
[

"111
'I

.Iii

r:

I:

Paragon™ System Fortran Compiler User's Guide Manual Pages

DATEO DATEO

Returns system date as a string.

Synopsis
CHARACTER *(*) FUNCTION DA TE(buj)

CHARACTER *(*) bUf

Return Value

The current date. as a string in the fonn dd- mmm- yy. The string does not end with a newline or a
null character.

Description of Parameters

Example

See Also

buj

c

Character array (at least 9 bytes) that receives a copy of the returned string.

program main
character*9 today, date

c get today's date
c

today = date ()
c

write(6,10)today
10 format (A)

call exit
end

The program prints the current date. For example:

21-0ct-93

cdmeO. fdateO. gmtimeO. idateO. idmeO. ItimeO, dmeO

1)-55

.------.-----------------"---,-----.-----.--~-"-------~-.---~.-.-------- ~-------

Manual Pages Paragon ™ System Fortran Compiler User's Guide

.".:

dv_acos(). dv_asinO. dv_atanO. dv_atan20. dv_cos(). dv_divO. dv_expO. dv_logO. dv_logIO(). dvJlOwO.
dv JecpO. dv Jsqrt(). dv _sinO. dv _ sqrtO. dv _ tanO: Perfonn mathematical operations on double precision vectors.

Synopsis

0-56

SUBROUTINE DV _ACOS(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV _ ASIN(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV _ATAN(n, x, incx, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

l:
[

'''1

,:iii

[~

,-",

l:

IJ

(J

[:

~=
1""1
I
I,lL ...

[
, "Y1

, ,

-J

c
r:
I:
I:
1'--'"

-'"'

r~

[-""

~,

1_.."
"-;

(~

I:
r:
1=
I~

r:
(

-"'I

- _-~I

I ~
r:
[~'

IJ
u
c

Paragon™ System Fortran Compiler User's Guide

DV _ACOSO (cont.)

SUBROUTINE DV ATAN2(n, x, inex, y, incy, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION y(*)
INTEGER incy
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV _ COS(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV DIV(n, x, inex, y, incy, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION y(*)
INTEGER incy
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV _ EXP(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

Manual Pages

.--~-~~.-------- '-'--'-'~- -,-_ .. _---_._---------'., .. -. --.-. __ ... _--._--- ------_.-. __

Manual Pages Paragon ™ System Fortran Compiler User's Guide

DV _ACOSO (cont.)

SUBROUTINE DV _ LOG(n, x, inex, z, inez)

INfEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV _LOGIO(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INfEGER inex
DOUBLE PRECISION z(*)
INfEGERinez

SUBROUTINE DV POW(n, x, inex, y, incy, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INfEGER inex
DOUBLE PRECISION y(*)
INTEGER incy
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV RECP(n, alpha, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION alpha
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INfEGER inez

(:
I :
I :
(~

1=
[1 '

.J

[J

(. ~!
JOi

(J
(l

I:
1°:

I:
r:
r:
r:
I:
14

[".
I '~

~.iL1

I~

I:
I~I

I
~l

.ill

I:
I:
r
r:
IJ

~

C

Paragon 1M System Fortran Compiler User's Guide

DV_ACOSO (cont.)

SUBROUTINE DV _RSQRT(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV _SIN(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV _SQRT(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

SUBROUTINE DV _TAN(n, x, inex, z, inez)

INTEGERn
DOUBLE PRECISION x(*)
INTEGER inex
DOUBLE PRECISION z(*)
INTEGER inez

Manual Pages

DV _ACOSO (cont.)

1)..59

---.-- ---.--~---~----.-.---"-"._----------_ .. -

Manual Pages Paragon TM System Fortran Compiler User's Gyicle

DV _ACOSO (cont.) DV_ACOSO (cont.)

Description of Parameters

Discussion

n The number of elements in the vectors x, y, and z.

x, y Input (argument) vectors.

z Output (result) vector.

incx, incy, incz The strides (increments) of vectors x, y, and z, respectively (may be zero).

alpha A scalar multiplier for dv]eep.

These subroutines, called the vector intrinsics, perfonn the following mathematical operations on
arrays (vectors) very efficiently. You can specify the number of vector elements and the strides of
each input vector and the result vector.

dvJJOwO

dv]sqrtO

Vector arccosine (z(i) = acos(x(i»).

Vector arcsine (z(i) = asin(x(i)).

Vector arctangent (z(i) = atan(x(i»).

Vector arctangent from two arguments (z(i) = atan2(x(i), y(i»).

Vector cosine (z(i) = cos(x(i»).

Non-IEEE vector divide (z(i) = y(i)/x(i)).

Vector exponential (z(i) = exp(x(i)).

Vector natural log (z(i) = log(x(i»).

Vector logarithm loglo (z(i) = loglO(x(i»).

Vector power (z(i) = x(iy<i)).

Non-IEEE reciprocal times a scalar (z(i) = alpha/xCi)).

Non-IEEE vector reciprocal square root (z(i) = l/sqrt(x(i»).

I:

[J

r:
[J

(J

(J

[... 1J

[J

(~ .. "II!. -,
:J

I ',"
~I

1=

r:
I:

I
-~

-",",

r:

Paragon TM System Fortran Compiler User's Guide Manual Pages

DV _ACOSO (eont.) DV _ACOSO (eont.)

Example

See Also

Vector sine (z(i) = sin(x(i»).

Non-IEEE vector square root (z(i) = sqrt(x(i»).

Vector tangent (z(i) = tan(x(i»).

NOTE

To use these calls, you must link your program with the switch
-Ivect.

The following call to dv _cos() perfonns a double-precision vector cosine of the first n elements of
the double precision vector x with stride inex, storing the results in the double precision vector z
with stride inez:

call dv_cos(n, x, incx, z, incz)

It is similar in effect to the following code (the actual code for dv _cosO is written in assembler):

10

ix = 1
iz = 1
if (incx .It. 0) ix
if (incz .It. 0) iz
do 10 i = 1, n

z(iz) = cos(x(ix»
ix = ix + incx
iz = iz + incz

continue

(-n+l)*incx + 1
(-n+l)*incz + 1

D-61

Manual Pages Paragon"" System Fortran Compiler User's Guide

ERFO ERFO
.: "." ."..."..

erfO. erfcO. derfO. derfcO: Error fWlctions.

Synopsis
REAL FUNCTION ERF(x)

REAL x

REAL FUNCTION ERFC(x)

REAL x

DOUBLE PRECISION FUNCTION DERF(x)

DOUBLE PRECISION x

DOUBLE PRECISION FUNCTION DERFC(x)

DOUBLE PRECISION x

Discussion

erfO and derfO return the error function of x.

erfcO and derfcO return 1.O-erf(x) and 1.O-derf(x). respectively.

[:
[:
~'"
11..,

[J

(J

[J

[J

I:
i r:
I:

1,,-",
. J...'

I ~

'"'

I ~:

I~
(-'

",

Paragon™ System Fortran Compiler User's Guide Manual Pages

ETIMEO ETIMEO

etimeO, dtimeO: Gets elapsed CPU time.

Synopsis
REAL FUNCTION ETIME(tarray)

REAL tarray(2)

REAL FUNCTION DTIME(tarray)

REAL tarray(2)

Return Value

etimeO returns the total processor run-time in seconds for the calling process.

dtimeO ("delta time") returns the processor time since the previous call to dtimeO. The first time it
is called, it returns the processor time since the start of execution.

Description of Parameters

tarray

See Also

times()

An array into which is stored the user time (first element) and system time (second
element) for the calling process. The returned value is the sum of these two times.

D-63

Manual Pages Paragon TN System Fortran Compiler User's Guide

EXITO EXITO
.... " .. ." .. .' :. ". "':'. . ".... . .:

Terminates program with status.

Synopsis
SUBROUTINE EXIT(s)

INTEGERs

Description of Parameters

s Exit status.

Discussion

Flushes and closes all of the program's files, and returns the value of s to the parent process.

See Also

waitO

D-64

(--
-~

(]

rJ

[J

[J

l.l _OAJ

[J

U

(-.
*'

I'~
_ ...

I:
I ''''

. ..,

r-'
1=
I ".'"

"I

(=

I:
IJ
(~

---_._------..... .

Paragon™ System Fortran Compiler User's Guide Manual Pages

FDATEO FDATEO

Returns system date and time as a string.

Synopsis
CHARACTER *(*) FUNCTION IDA TEO

Return Value

The current date, as a string in the fonn ddd mmm nn hh: rom : s s yyyy (for example,

Example

See Also

Mon Nov 9 10: 48 : 45 1992). The string does not end with a newline or a null character.

program main
character*24 today, fdate

c
c get today's date
c

c

10

today = fdate()

write(6,10)today
format(A)

call exit
end

The program prints the current date and time. For example:

Thu oct 21 09:30:16 1993

ctimeO, dateO, gmtimeO, idateO, itimeO, ItimeO, timeO

Manual Pages Paragon™ System Fortran Compiler User's Guide

FGETCO FGETCO
. .:: ... :"., : :. . . ." . '".

Gets a character from a logical unit.

Synopsis
INTEGER FUNCTION FGETC(lu, ch)

INTEGERlu
CHARACTER *(*) ch

Return Value

Returns zero if successful; returns -1 for end-of-file; any other nonzero value is an error code.

Description of Parameters

Discussion

See Also

lu Logical unit to read from.

ch Variable into which is stored the next character from lu.

Stores the next character from the file connected to the logical unit lu into the variable ch, bypassing
normal Fortran I/O statements. If successful, returns zero; a return value of -1 indicates that
end-of-file was detected. Any other value is an error code.

NOTE

This routine bypasses normal Fortran 1/0.

If normal Fortran I/O is also performed on logical unit lu, the results are unpredictable.

getcO

(
-III!

JII

l:

[J

~ Yl

l~

[J

(J

[J

IJ

r:
I~

.. 1J

I· .. ~ ...
1_-..,

;.j

r:
r:
1_·_'"

-.,

1--

1_""
~.'

r~

r~

I -.-"
,,,,,

1_"

1--'
r--"

,d

I:,
r~

'"

[:
r-"""

_.""

u
r:

Paragon™ System Fortran Compiler User's Guide Manual Pages

FLMINO FLMINO

ftminO, OmaxO, ffracO, dOminO, dftmaxO, dffracO, inmaxO: Range functions.

Synopsis
REAL FUNCTION FLMINO

REAL FUNCTION FLMAXO

REAL FUNCTION FFRACO

DOUBLE PRECISION FUNCTION DFLMINO

DOUBLE PRECISION FUNCTION DFLMAXO

DOUBLE PRECISION FUNCTION DFFRACO

INTEGER FUNCTION INMAXO

Return Value

ftminO returns the minimum single-precision value.

OmaxO returns the maximum single-precision value.

ffracO returns the smallest positive single-precision value.

dOminO returns the minimum double-precision value.

dOmaxO returns the maximum double-precision value.

dffracO returns t:re smallest positive double-precision value.

inmaxO returns the maximum integer.

0-67

----- ----------------- -------- ----- --- -- ------ - - -- --- ---~----~-------------------------

Manual Pages Paragon TM System Fortran Compiler User's Guide (:

I:
[-"

Ali

FLUSHO FLUSHO [:
". '.. . .. " : :. ." ... :.:.: ... ::" :': ""

Flushes a logical unit

Synopsis
IJ

SUBROUTINE FLUSH(lu)

INTEGERlu

Description of Parameters

lu Logical unit to flush.

Discussion
1'"'1

Flushes the contents of the buffer associated with logical unit lu to the corresponding file or device.lL....!

0-68

1"""-,

1....1

[:
l:

(
--'II

.111

I:
r:
1_--111

.IJ

1_--'"
'"

1_--,.,
4>

(~I

(--'

~,

I:
I

-·~

_IJ

(---
""

Paragon™ System Fortran Compiler User's Guide Manual Pages

FORKO FORKO

Creates a child process.

Synopsis
INTEGER FUNCTION FORKO

Return Value

Discussion

If successful, returns the process ID of the child (new process) to the parent (calling process) and
zero to the child. If unsuccessful, returns a negative value that is the negation of the system error
code.

Creates a copy of the calling process. After the call to forkO, both processes can examine the
returned value to determine whether they are the copy or the original.

D-69

Manual Pages Paragon 1M System Fortran Compiler User's Guide

FPUTCO FPUTCO
. ." .:" :.:.:. ".

Writes a character to a logical unit.

Synopsis
INTEGER FUNCTION FPUTC(lu, ch)

INTEGERlu
CHARACTER *(*) ch

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

lu Logical unit to write to.

ch Character to write.

Discussion

Writes the character ch to the file connected to logical unit lu, bypassing nonnal Fortran I/O.

NOTE

This routine bypasses normal Fortran 1/0.

If nonnal Fortran I/O is also perfonned on logical unit lu, the results are unpredictable.

See Also

outstrO, putcO

0-70

IJ

I:
I:
I:
r:

I:
1_---1

.J

1--
, ._'

I~

I~

(~

I:

I]

I]

Paragon™ System Fortran Compiler User's Guide Manual Pages

FREEO FREEO

Frees memory allocated by malJocO.

Synopsis
SUBROUTINE FREE(P)

INTEGERp

Description of Parameters

p Address of the block of memory to free.

Discussion

Deallocates the block of memory whose address is p. The block of memory specified by p must have
been allocated by mallocO.

See Also

mallocO

0-71

Manual Pages Paragon System Fortran Compiler User's Guide

FSEEKO FSEEKO
::." :..' "... .." .. " ." .. '"'::'":':." "::.. ."

Positions file pointer.

Synopsis
INTEGER FUNCTION FSEEK(lu, offset,from)

INTEGERlu
INTEGER offset
INTEGER from

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

Discussion

See Also

0-72

lu

offset

from

Logical unit to seek on.

New position of the file pointer, expressed as an offset in bytes from the position
specified by from.

One of the following values:

o Beginning of the file.

1 Current position.

2 End of the file.

Repositions the read/write file pointer in the file connected to logical unit lu.

ftellO

(
. Yi

.. .101

l:
1

~"9

.. A

r,)

(J

l.:
I:
I:

r·.-..;
. .:J

r:
I:
I~·:

(
-""1

.~

I -ffl
.~I

I:

[~
.J&l

C
C

Paragon"" System Fortran Compiler User's Guide Manual Pages

FTELLO FTELLO

Detennines position of file pointer.

Synopsis
INTEGER FUNCTION FTELL(lu)

INTEGERlu

Return Value

Returns the current position of the read/write file pointer in the file connected to logical unit lu,
expressed as an offset in bytes from the beginning of the file.

If any error occurs, returns the negation of the system error code.

Description of Parameters

lu Logical unit to query.

See Also

fseekO

0-73

Manual Pages Paragon 1M System Fortran Compiler User's Guide

GERRORO GERRORO
." .' :: " ".:."." '.

Returns latest system error message.

Synopsis
CHARACTER *(*) FUNCTION GERRORO

Return Value

Example

See Also

0-74

Returns the system error message corresponding to the last detected system error.

program main
character*80 gerror, myerror

c
c cause a runtime error by opening a non-existent file
c with status='old'
c

open(l,file='garbage',status='old' ,iostat=istat,error=20)
c
c get error detected
c
20

c

myerror=gerror()
print *, myerror

call exit
end

Executing the program produces the following output

No such file or directory

iermoO, perrorO

[.~ ,

.. AI

l:
[-". -joj

[:

I r1 !
1.1

I:

(J

IJ

[J

I:

r:
I:
r:
I~

r:
1_",·

-~, '

1_"
"~

[~~

I'"
(-""

~

(~

1='
r~

1_-,
-""

I~

(~

r:
(

-'""'I

-"-" ... :

[J

U

~

Paragon'" System Fortran Compiler User's Guide

GETARGO

Gets the nth command line argument.

Synopsis
SUBROUTINE GETARG(n, arg)

INTEGERn
CHARACTER *(*) arg

Description of Parameters

n Argument number.

arg Variable into which is stored the value of argument n.

Discussion

Manual Pages

GETARGO

Stores the nth command line argument into argo The "zero-th" argument is the command name.

See Also

iargcO

0-75

.- ---~--~----- ~-" .. " ... -.. ----.-.-. -._-_. __ ._-_ __ ... _-- -----------~

Manual Pages Paragon TN System Fortran Compiler User's Guide

GETCO GETCO
. . . ." '." : '::. ,'" :.' .

Gets a character from logical unit 5.

Synopsis
INTEGER FUNCTION GETC(ch)

CHARACTER *(*) ch

Return Value

Returns zero if successful; returns -1 for end-of-file; any other nonzero value is an error code.

Description of Parameters

Discussion

See Also

0-76

ch Variable into which is stored the next character from logical unit 5.

Stores the next character from the file connected to logical unit 5 into the variable ch, bypassing
nonnal Fortran J/O statements.

NOTE

This routine bypasses normal Fortran 1/0.

If nonnal Fortran J/O is also perfonned on logical unit 5, the results are unpredictable.

fgetcO

I :
I :
I:

r-i
i~

(J

[~

[~

[:

I:
I:

1-"1

oJ

r:
r:
I:
r:

1_--'"
.1

I ~1

-~

1---'1

••• 1

I~

1_'-
..Jd

[4>!

..J

(' ..J

[!

r:

Paragon System Fortran Compiler User's Guide Manual Pages

GETCWDO GETCWDO

Gets the pathname of the current working directory.

Synopsis
INTEGER FUNCTION GETCWD(dir)

CHARACTER *(*) dir

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

dir Variable into which is stored the pathname of the current working directory.

See Also

chdirO

D-n

Manual Pages Paragon TM System Fortran Compiler User's Guide

GETENVO GETENVO

Gets the value of an environment variable.

Synopsis
SUBROUTINE GETENV(en, ev)

CHARACTER *(*) en
CHARACTER *(*) ev

Description of Parameters

Discussion

See Also

0-78

en Name of an environment variable.

ev Variable into which is stored the value of en.

Checks for the existence of the environment variable en. If it does not exist or if its value is not
present, ev is filled with blanks. Otherwise stores the value of en, a string, in ev.

putenvO

I:
(:
r:
l_=

IJ
IJ

[J

~l
~..J

[J

[J

[J

(J

[" -.
(' ,~

I:
r:
r:
(--'"

idj

r~

('

I "'

I -..., '.",

r~
I ~1

~I

I ~

r­
r~
1-'"

•. 1

r:
(""'"

. ...:OJ

I:
l:
u

Paragon™ System Fortran Compiler User's Guide Manual Pages

GETGIDO GETGIDO

Gets user's group ID.

Synopsis
INTEGER FUNCTION GETGIDO

Return Value

Returns the numeric group ID of the user of the process.

See Also

getuidO

0-79

Manual Pages Paragon 1M System Fortran Compiler User's Guide

GETLOGO GETLOGO
." .. " .:.' . . . "." "." .:-.: . " : .. :: :: :.:':. :.":: ... ':." " .. : :. .

Gets user's login name.

Synopsis
CHARACTER *(*) FUNCTION GETLOGO

Return Value

Returns the user's login name, or blanks if the process is running detached from a terminal.

See Also

getuidO

D-80

[
•. '!'i

.'"

[:

i=
[J
,-~

~-"I

r:

I :
(--.

Jo\oi

r·'.""
'"

1_-'>'

..,.:

(-~

('"

("',

I ---n

•.. J

r:
I:
I~

1-'
1_.."

.~J

I_~

r~

I"...,
~,

I"~

I:
l:

Paragon™ System Fortran Compiler User's Guide Manual Pages

GETPIDO GETPIDO

Gets calling process's aSP/1 process 10.

Synopsis
INTEGER FUNCTION GETPIDO

Return Value

Returns the aSPIl process 10 of the current process.

0-81

Manual Pages Paragon 1M System Fortran Compiler User's Guide

GETUIDO GETUIDO
.. . ': . ."." :." . ..".... .." ..

Gets user's numeric user ID.

Synopsis

INTEGER FUNCTION GETUIDO

Return Value

Returns the numeric user ID of the user of the process.

See Also

getgidO

D-82

[:

[)

I~

I'. "'1
.tIJ

lJ

(J

IJ
U

r:

1-" ..
I:

1_..,
•. 1

r:
I:
I·.··• -~!

1-

(... ,.,
--'"

Paragon™ System Fortran Compiler User's Guide Manual Pages

GMTIMEO GMTIMEO

Fonnats system time for GMT.

Synopsis
SUBROUTINE GMTIME(stime, tarray)

INTEGER stime
INTEGER tarray(9)

Description of Parameters

Discussion

stime An integer representing a time in seconds since 00:00:00 GMT, January 1, 1970,
as returned by timeO.

tarray An array into which is stored numeric representations of the components of stime.

Dissects the system time, stime, into month, day, etc., for GMT and returns it in tarray. The elements
of tarray contain the following values:

tarray(l) Seconds (0 - 59)

tarray(2) Minutes (0 - 59)

tarray(3) Hours (0 - 23)

tarray(4) Day of month (1- 31)

tarray(5) Month of year (0 - 11)

tarray(6) Year - 1900 (for example, 92 = 1992, 102 = 2002)

tarray(7) Day of week (Sunday = 0)

tarray(8) Day of year (0 - 365)

tarray(9) 1 if Daylight Saving Time is in effect, 0 otherwise

0-83

Manual Pages Paragon 1M System Fortran Compiler User's Guide

GMTIMEO (cont.) GMTIMEO (cont.)

See Also

. ctimeO. dateO. fdateO. idateO. itimeO. ItimeO. timeO

D-84

r:
[~

(

"1

.. .j

[. --J:
.A1

(
'"I.

--iii

I:
(:

r:
r:
r'-

,,-"Ii

I:
r..",

.. ,

1_-
'"

I~

I '"
I .~.i

(~

I:
I :
I~'

I'"'

I:
[~

("'"
...:

1-""","
,",

I "
.,

D
C

Paragon™ System Fortran Compiler User's Guide Manual Pages

HOSTNMO HOSTNMO

Gets name of current host.

Synopsis
INTEGER FUNCTION HOSTNM(nm)

CHARACTER *(*) nm

Return Value

Returns zero if successful; otherwise. returns a nonzero error code.

Description of Parameters

nm Variable into which is stored the hostname of the system on which the calling
process is running.

D-85

- ---- ---- --- -,.- --- -"~----'---'---"---"-'----'------~~-.- .. '------.-------.. ~~- ---- ----_. __ ._----_.

Manual Pages Paragon TM System Fortran Compiler User's Guide

IARGCO IARGCO

Returns index of the last command line argument.

Synopsis

INTEGER FUNCTION IARGCO

Return Value

See Also

D-86

Returns the index of the last command line argument, which is also the number of arguments after
the command name.

getargO

[:

IJ
(J

1""-;
it..J

1""\

~.~

If.l i ... J

l:
I:

(-.. ...
(.

JiI

r:
r:
(.. ~

...

I :

I ,.,
"..;

I:

I:

Paragon™ System Fortran Compiler User's Guide Manual Pages

IDATEO IDATEO

Returns current system date in numerical fonn .

Synopsis
SUBROUTINE IDATE(im, id, iy)

INTEGER im, id, iy

Description of Parameters

Discussion

See Also

im

id

iy

Variable into which is stored the current month (a value from 1 to 12 inclusive).

Variable into which is stored the current day of the month (a value from 1 to 31
inclusive).

Variable into which is stored the he last two digits of the current year (a value from
o to 99 inclusive).

Stores numeric representations of the current date into im, id, and iy.

ctimeO, dateO, fdateO, gmtimeO, itimeO. ltimeO, timeO

D-87

-- -----~--- --~-.---. _ ... _--_ ... _-----_._._------------- -- -... _ _. --_._-..... __ .

Manual Pages Paragon TM System Fortran Compiler User's Guide

[
~.

'"

l:

IERRNOO IERRNOO

Returns latest system error number.

Synopsis IJ
INTEGER FUNCTION IERRNOO rJ

Return Value

Returns the system error number of the last detected system error.

See Also

perror(), gerrorO

[J

D-88

I:
r:
r:
[""""

:;;.J

1'" .,

14'1

I:
r:
I "' .. '

J.,

I"

I:
I:
I:
I-~

[""'"
__ .,J

I:
l:
IJ

Paragon™ System Fortran Compiler User's Guide

IOINITO

Initializes I/O.

Synopsis

Discussion

SUBROUTINE IOINIT(cctl, bzro, apnd, prefix, vrbose)

INTEGER cctl
INTEGER bzro
INTEGER apnd
CHARACTER *(*) prefix
INTEGER vrbose

Currently, no action is performed.

Manual Pages

lOIN ITO

. _._- -----~---------------,.--,----~-,. -_.----_._.,------ .,,----_. ---_. ----------

Manual Pages - Paragon TM System Fortran Compiler User's Guide

ISATTYO ISATTYO
. . .". . " .. " .. ::.":::: ," "."::":':.: .. ,"

Detennines if logical unit is a TIY.

Synopsis
LOGICAL FUNCTION ISATTY(lu)

INTEGERlu

Return Value

Returns. TRUE. if logical unit lu is connected to a teoninal; otherwise, returns .F ALSE •.

Description of Parameters

lu Logical unit number to check.

0-90

[:

(:

[:

l:

[J

r:

(~

r:
I :
r:
1_"",

.. ;

(-'"

.. ,

I:
I~ ,,,'''

-'

r~

I
~,..,

~".

I 'l

~!

I ~'

r:
I:
I :
[~

(---
.. "":

("i
-'IJ

n u

I]

Paragon™ System Fortran Compiler User's Guide Manual Pages

ITIMEO ITIMEO

Returns current system time in numerical fonn.

Synopsis
SUBROUTINE ITIME(iarray)

IN1EGER iarray(3)

Description of Parameters

iarray Array into which is stored a numeric representation of the current time:

iarraY(l) Current hour (0-23).

iarray(2) Current minute (0-59).

iarray(3) Current second (0-59).

Discussion

Stores the current time into the array ia"ay.

See Also

dimeO, dateO, fdaleO, gmtimeO, idateO, ItimeO, timeO

0-91

Manual Pages Paragon no System Fortran COfnpiler U.ser's Guide

KILLO

Sends a signal to a process.

Synopsis
INTEGER FUNCTION KILL(pid, sig)

INTEGERpid
INTEGERsig

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

Discussion

See Also

0-92

pid Process ID to signal.

sig Signal number.

Sends signal number sig to the process whose process ID is pid. See kill(2) in the OSFIl
Programmer's Reference for more information on the pid and sig parameters.

NOTE

To kill all the processes in the current application, call kill(0,9).

signalO

KILLO

[~,
.A1

IJ
IJ

r~
1L...i

r~
Wl.""

,.."
~-~

r:

I:
I~

r~

I~

I ~
.<J

I~
-'

I:
I "'i

"

r=
I"''" •

.. ~

1 ~,
"oj

I:

[J

Paragon'" System Fortran Compiler User's Guide Manual Pages

LINKO LINKO
::":. ". . .". . '." ".".. ,"

Makes a link.

Synopsis
INTEGER FUNCTION LINK(nl, n2)

CHARACTER *(*) nl
CHARACTER *(*) n2

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

nl Patlmame of an existing file.

n2 Patlmame for the new link.

Discussion

Creates a link, n2, to an existing file, nl.

See Also

symInkO

0-93

______________________________ ~ __ ------_,.~.·.". __ ~ __ ~T._< __ _

Manual Pages Paragon 1M System Fortran Compiler User's Guide

LNBLNKO LNBLNKO
: : .. :.: ... :' . :.: ..

Returns index of last non-blank in a string.

Synopsis
INTEGER FUNCTION LNBLNK(al)

CHARACTER *(*) al

Return Value

Returns the index of the last non-blank character in the string al.

Description of Parameters

al Any string.

See Also

rindexO

[J

[:

("";

, i

.... .1

[]

IJ
rr i
~d

(.-

I ""
....

I:

r:
['

,&:

(~

,'"

r:
r:
r

'~'

,-",

I:
r~
(-'

I '~
-'.!

I~
I

-~I

.J

I ~
1~1

I~

I:
1 :

I~

rJ
I)

I]

Paragon™ System Fortran Compiler User's Guide Manual Pages

LOCO LOCO

Returns the address of an object

Synopsis
INTEGER FUNCTION LOC(a)

INTEGER a

Return Value

Returns the address of Q.

Description of Parameters

Q Any variable.

0-95

.-.--.-.----~------ .. -.-------.----"-----------.--.. -.--_._--.- -------_ _--_ ... __ ..

Manual Pages Paragon ™ System Fortran Compiler User's Guide

LTIMEO LTIMEO

Formats system time for local time zone.

Synopsis
SUBROUTINE LTIME(stime, tarray)

INTEGER stime
INTEGER tarray(9)

Description of Parameters

Discussion

0-96

stime

tarray

An integer representing a time in seconds since 00:00:00 GMT, January 1, 1970,
as returned by timeO.

An array into which is stored numeric representations of the components of slime.

Dissects the system time, stime. into month, day, etc., for the local time zone and returns it in tarray.
The elements of tarray contain the following values:

tarray(l) Seconds (0 - 59)

tarray(2) Minutes (0 - 59)

tarray(3) Hours (0 - 23)

tarray(4) Day of month (1 - 31)

tarray(5) Month of year (0 - 11)

tarray(6) Year - 1900 (for example, 92 = 1992, 102 == 2(02)

tarray(7) Day of week (Sunday = 0)

tarray(8) Day of year (0 - 365)

tarray(9) 1 if Daylight Saving Time is in effect, 0 otherwise

[J

[J

[J

[J

[J

[J

IJ

r:
I
-·~

.JOi

I:
I~
(

-~

.'"

('''''
,,:

r-:,
I~

I~':

I :
r~

I~

I ~'
r~

I ·""
_i

1 :
r~

I··...,.
""

1="']
....

C
C

Paragon 1M System Fortran Compiler User's Guide Manual Pages

L TIMEO (cont.) LTIMEO (cont.)

See Also

ctimeO, dateO, fdateO, gmtimeO, idateO, itimeO, timeO

0-97

Manual Pages Paragon 1111 System Fortran Compiler User's Guide

MALLOCO MALLOCO
. ":. ." :":":.:: . "." :.".. ".".. .. ::..... ::":., :":: ""::' .. :.:.:::.:.: .. : : :. :.

Allocates memory.

Synopsis
INTEGER FUNCTION MALLOC(n)

INTEGERn

Return Value

Address of the new block of memory.

Description of Parameters

n Size, in bytes, of the new block of memory.

Discussion

Allocates a block of n bytes of memory and returns a pointer to the block of memory.

See Also

rreeO

0-98

[:
l:

IJ

I ~"I ' " \

.-'oJ .

r~ fA- ___

(=

ffi
L

(J

[J

I
···~

.&j

r:
, .. -'1'

.. ,

I~

r:
r:
(
~

""

I::

Paragon TM System Fortran Compiler User's Guide

MVBITSO
. :. :.". .". :.".

Moves bits.

Synopsis
SUBROUTINE MVBITS(src, pos, len, dest, posd)

INTEGERsrc
INTEGERpos
INTEGER len
INTEGER dest
INTEGER posd

Description of Parameters

src Variable containing bits to be moved.

pos Beginning position within src of the bits to be moved.

len Number of bits to be moved.

dest Variable to receive bits.

posd Beginning position within dest for the received bits.

Discussion

Manual Pages

MVBITSO

Moves len bits, beginning at position pos of argument src, to position posd of argument dest.

____ ·_~_~ _____ ~~ __ • •• v _____ • __ ·~ ____ __ • __ ~ ____ ._." ____ "~ •• __ " _______ ~ ___________ _

Manual Pages ParagontM System Fortran Compiler User's Guide

OUTSTRO OUTSTRO
."...".. . .:. :: ::.. ".:.". :

Prints a character string to a logical unit

Synopsis
INTEGER FUNCTION OUTSTR(ch)

CHARACTER *(*) ch

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

ch String to be output.

Discussion

Outputs the character string ch to the file connected to logical unit 6, bypassing nonnal Fortran 110.

NOTE

This routine bypasses normal Fortran 1/0.

If nonnal Fortran 110 is also perfonned on logical unit 6, the results are unpredictable.

See Also

fputcO, putcO

1).100

l:
r:
l:

[J
[J
r'"
I

.-- >.'l ,.
I
~..,;

[J

I~

r:
r:
I

~~

. ."

I:
I '"",

.,w

(~

I:
("~. '.\

. ..1

r~

I :
I"
I

~'

';';'

I
'~

,.,

r=
r=
I""""

.. .:..J

lJ
U
C

Paragon'" System Fortran Compiler User's Guide Manual Pages

PERRORO PERRORO

Prints error message corresponding to current system error code.

Synopsis
SUBROUTINE PERROR(str)

CHARACTER*(*) str

Description of Parameters

str String to precede system error message.

Discussion

Writes the message indicated by str, followed by the message for the last detected system error, to
logical unit o.

See Also

ierrnoO. gerrorO

0-101

_______________________ ••• ___________ • ___________ ~ ____ ••• _____ • ____ •• ________________ c ___ _

Manual Pages ParagontM System Fortran Compiler User's Guide

PUTCO PUTCO
.: .. ".: .. "." ..". ::... . . .:. ". .

Writes a character to logical unit 6.

Synopsis
INTEGER FUNCTION PUTC(ch)

CHARACTER *(*) ch

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

ch Character to be output

Discussion

Writes the character ch to the file connected to logical unit 6, bypassing normal Fortran 110.

NOTE

This routine bypasses normal Fortran I/O.

If normal Fortran 110 is also performed on logical unit 6, the results are unpredictable.

See Also

fputcO, outstrO

0-102

-~-----~~---.------------------

(:

[. .."

. ~.~

/r "' . . ~
[~

[:

r:
I:

I
~ ...

. .J

1"1

I:

r·.",.
.',..j

I::

1=
I~

I~

I':
I·~

.....

(]

Paragon'M System Fortran Compiler User's Guide Manual Pages

PUTENVO PUTENVO

Changes or adds an environment variable.

Synopsis
INTEGER FUNCTION PUTENV(str)

CHARACTER*(*) str

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

str A string of the fonn name=value.

Discussion

Sets the value of a variable in the process's environment. The argument str must contain a character
string of the fonn name=value; putenvO makes the value of the environment variable name equal
to value.

See Also

getenvO

0-103

Manual Pages Paragon 1M System Fortran Compiler User's Guide

QSORTO QSORTO
. . .. ". . .': :.. : :.:".:.. .". : ".". .:. . .: :. ::.:.:: :... "."

Quick sort.

Synopsis
SUBROUTINE QSORT(array, len, isize, com par)

DIMENSION array(*)
INTEGER len
INTEGER isize
EXTERNAL com par
INTEGER com par

Description of Parameters

Discussion

[)-104

array

len

isize

compar

Array to be sorted.

Number of elements in the array.

Size of each array element, in bytes.

Integer function that determines the sorting order. This function is called by
qsortO with two arguments (arg1 and arg2) which are elements of array. This
function must return a negative value if arg1 is considered to precede arg2, zero
if arg1 is equivalent to arg2, or a positive value if arg1 is considered to follow
arg2.

Sorts the elements of the one-dimensional array array according to the comparison function compar.

r:

(:

r:
I:
I:
r:
r:

I ',",
.4-

r~

(~'

("
1_,.

~,

I '0

~-:

I'

I:

Paragon™ System Fortran Compiler User's Guide Manual Pages

RANDO RANDO

randO, irandO, srandO: Random number generator.

Synopsis
DOUBLE PRECISION FUNCTION RANDO

INTEGER FUNCTION IRANDO

SUBROUTINE SRAND(iseed)

INTEGER iseed

Return Value

randO returns a pseudo-random double-precision number, irandO returns a pseudo-random integer.

Description of Parameters

Discussion

See Also

iseed Seed value used by the random-number generator.

randO generates successive pseudo-random double-precision numbers; irandO generates
successive pseudo-random integers. srandO uses its argument, iseed, to re-initialize the seed for
successive invocations of ran dO and irandO.

randomO

0-105

Manual Pages Paragon 1M System Fortran Compiler User's Guide

RANDOMO RANDOMO
'". ..".. ".: ... : ... " .":.:. .':" ".:.

randomO, irandmO, drandmO: Random. number generator.

Synopsis
REAL FUNCTION RANDOM(flag)

INTEGER flag

INTEGER FUNCTION IRANDM(flag)

INTEGER flag

DOUBLE PRECISION FUNCTION DRANDM(flag)

INTEGER flag

Return Value

A pseudo-random number. Values for randomO and drandmO range from 0.0 to 1.0 inclusive;
values forirandmO range from 0 to 2147483647 inclusive.

Description of Parameters

Discussion

See Also

0-106

flag Zero to generate the next pseudo-random number in the current series, or nonzero
to restart the random-number generator.

These functions return the next pseudo-random number value of the appropriate type. If the
argument flag is nonzero, the random number generator is restarted before the next random number
is generated.

randO

I:
(:

(:

lJ

!J

,"1
&"'"

.i
11
~~

(:
(-.

jJ

I :

I:

I r

"'

I:
~

Paragon'" System Fortran Compiler User's Guide

RENAMEO

Renames a file.

Synopsis
INTEGER FUNCTION RENAME (from, to)

CHARACTER *(*) from
CHARACTER *(*) to

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

from Pathname of an existing file.

to New pathname for the me.

Discussion

Renames the file whose pathname is from to the new pathname to.

Manual Pages

RENAMEO

0-107

Manual Pages Paragon™ System Fortran Compiler User's Guide

RINDEXO RINDEXO
.:.... .' :. :' .. : :: .. "

Returns index of substring within a string.

Synopsis
INTEGER FUNCTION RINDEX(a1, a2)

CHARACTER *(*) a1
CHARACTER *(*) a2

Return Value

Returns the index of the last occurrence of string a2 in string al.

Description of Parameters

al String to search.

a2 String to look for.

See Also

InblnkO

D-108

l:
I:
I:

[I -....

[:

r:
I:
r:

I
'~

--""

I~"",-
-'"

(~

(
-.-'9

,",

1-"'1

.J

1_,

I~'

I ,.
('''''

_I

I~

I -',
- ,

(~

I;
-J._

I "-,
"

I-~

I"~
";)"'1

IJ
IJ

U

Paragon System Fortran Compiler User's Guide Manual Pages

SECNDSO SECNDSO

secndsO. dsecnds(): Returns elapsed time.

Synopsis
REAL FUNCTION SECNDS(x)

REAL x

DOUBLE PRECISION FUNCTION DSECNDS(x)

DOUBLE PRECISION x

Return Value

Returns the elapsed time in units of seconds since midnight. minus the value of x.

Description of Parameters

x Base time.

0-109

Manual Pages Paragon 1M System ForiranCompiler User's Guide

SIGNALO SIGNALO
.:. ::.:.:.::. :.

Establishes signal handler.

Synopsis
INTEGER FUNCTION SIGNAL(signum, proc,flag)

INTEGER signum
EX1ERNAL proc
INTEGER flag

Return Value

If successful, returns a nonnegative value representing the previous signal handler. Values 0 and 1
represent system signal handlers; a positive value greater than 1 is the address of the subprogram that
was the previous signal handler. The returned value can be used to restore the previous signal
handler.

If an error occurs, returns the negation of the system error code.

Description of Parameters

Discussion

0-110

signum

proc

flag.

Signal number to handle.

Fortran subprogram to use as signal handler.

Any negative value to establishproc as a signal handler; any nonnegative value to
use one of the system's predefined signal handlers.

Establishes proc as a signal handler. When the signal signum is received, the routine proc is called.

Ifjlag is negative, proc is a Fortran subprogram and is established as the signal handler for the signal.
Otherwise, proc is ignored and the value of flag is passed to the system as the signal action
definition. In particular, this how previously saved signal actions can be restored. There are two
special cases ofjlag: 0 means "use the default action" and 1 means "ignore this signal." See signalO
in the OSFII Programmer's Reference for more information.

.-'------------~-~----

, '"
Ii •

r:
I~"

.ei

1".' I;.;J

[
''II;

,,:

(~

I'"
('

I:
I"
r~'

I
['

1".'

I:
r~
I~'

[~~

Ie:

Paragon™ System Fortran Compiler User's Guide Manual Pages

SIGNALO SIGNALO

See Also

kino

0-111

Manual Pages Paragon 1M System Fortran Compiler User's Guide

SLEEPO SLEEPO
:::: .. " . .' . : :". ". :. :.' . . .

Suspends execution for a period of time.

Synopsis
SUBROUTINE SLEEP(t)

INTEGERt

Description of Parameters

t Number of seconds to sleep.

Discussion

Suspends the process for t seconds.

0-112

I"
J ~,

I.
Il D

~~I
Iii '
IIL~

l:

~
[...

},I

1"1Jl

. .-.&1

I''''. '
..J

r:

I "I

-,

(,"

('''''
. .Ll

1''''1

. ..J

I~

I '""
,-,-,

1-.,
~J

(
-I

"J

Ie:

I:
Il 1,>IIl

()

(]

Paragon™ System Fortran Compiler User's Guide

STATO

statO, IstatO, rstatO: Gets infonnation about a file.

Synopsis
INTEGER FUNCTION STAT(nm, statb)

CHARACTER *(*) nm
INTEGER statb(*)

INTEGER FUNCTION LSTAT(nm, statb)

CHARACTER *(*) nm
INTEGER statb(*)

INTEGER FUNCTION FSTAT(lu, statb)

INTEGERlu
INTEGER statb(*)

Return Value

Returns zero if successful; otherwise, returns -1.

Description of Parameters

nm Pathname of the file or symbolic link to get infonnation about.

statb Array into which is stored infonnation about the file.

lu Logical unit number of the file to get infonnation about.

Manual Pages

STATO

0-113

Manual Pages Paragon 1M System Fortran Compiler User's Guide [:
r:

STATO (cont.) ST A TO (cont~)

Discussion

0-114

These functions store infonnation about a file into the array statb. The elements of statb contain the
following values:

statb(l) Device file resides on

statb(2) File serial number

statb(3) File mode

statb(4) Number of hard links to the file

statb(5) User ID of owner

statb(6) Group ID of owner

statb(7) Device identifier (special files only)

statb(8) Total size of file, in bytes

statb(9) File's last access time

statb(lO) File's last modification time

statb(ll) File's last status change time

statb(12) Actual number of blocks allocated

I.~.':
J.J

[J

[=
[:

statO obtains information about the file whose name is nm; if the file is a symbolic link, information I!l
is obtained about the file the link references. __ -ad

lstat() is similar to statO except IstatO returns infonnation about the link. [J
fstatO obtains infonnation about the file which is connected to logical unit lu.

[J

IJ
I:

£:
Ie, •.

r

..i.l

[:
(~'

"~

r:
r~

(:
I:
I-
1'''1

~

I':
le:

1

(~

I~~

I~
I ".,

.J

I
'~'

,."

1'-9

,.w

1-..... '
IIIii

U
IJ

Paragon ™ System Fortran Compiler User's Guide Manual Pages

STIMEO STIMEO

Sets system time,

Synopsis
INTEGER FUNCTION STIME(tp)

INTEGERtp

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

tp A time in seconds since 00:00:00 GMT January 1, 1970.

Discussion

Sets the system time and date to the value specified by tp.

NOTE

Only the superuser can use this call.

0-115

Manual Pages Paragon ™ System Fortran Compiler User's Guide

. ": ".' : ... : : .. ':. : .. , ':.- "'. .".". .. ":.: .. :. :

sv _aoosO, sv _asinO, sv _atanO, sv _atan20. sv _cosO. sv _divO. sv_expO. sv _logO. sv _logIOO. sv JlOwO. SV JecpO.
SV JsqrtO. SV _sinO, SV _ sqrtO. sv _ tanO: Perronn mathematical operations on single-precision real vectors.

Synopsis

0-116

SUBROUTINE SV _ ACOS(n, x, inex, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

SUBROUTINE SV _ASIN(n, x, inex, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

SUBROUTINE SV _ATAN(n, x, inex, z. inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

l:
[~

[:

~ ~

Ff~-""'!

~L.J

r-' ... ~

(J

[J
[:

(:
l:
[~

r:
I:
[

C'II\

. -'"

(""'"
,.,..;

r·~,

I~
I "
(--

I~

I:
r:
I ""

(':

(":

I~,

I:
(-..,

~

IJ
C

~

Paragon"" System Fortran Compiler User's Guide

SV _ACOSO (cont.)

SUBROUTINE SV _ATAN2(n, x, inex, y, incy, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALy(*)
INTEGER incy
REALz(*)
INTEGER inez

SUBROUTINE SV _ COS(n, x, incx, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

SUBROUTINE SV _DIV(n, x, inex, y, incy, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALy(*)
INTEGER incy
REALz(*)
INTEGER inez

SUBROUTINE SV _ EXP(n, x, inex, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

Manual Pages

SV _ACOSO (cont.)

0-117

Manual Pages Paragon 1M System Fortran Compiler User's Guide

SV _ACOSO (cont.) SV _ACOSO (cont.)

0-118

SUBROUTINE SV _ LOG(n. x. inex. z. inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

SUBROUTINE SV _LOGIO(n. x. inex. z. inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

SUBROUTINE SV _POW(n. x. inex. y. incy, z. inez)

INTEGERn
REALx(*)
INTEGER inex
REALy(*)
INTEGER incy
REALz(*)
INTEGER inez

SUBROUTINE SV RECP(n, alpha, x. inex, z. inez)

INTEGERn
REAL alpha
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

1_=

(:

[J

[J
,

i.IIL-J

r-.,
, I

. ..J

I ~,

.,

""

I:
I:

l:
[!

I:
(

""1
. ,J

[-:

r~

1_--
'"

I ~

(._-!

(-.~-..,

-~

(~

I. ",
. ..j

(~~

r~

I:
I~:

I:
1_""

-.;'

IJ
C

I:

Paragon™ System Fortran Compiler User's Guide

SV_ACOSO (cont.)

SUBROUTINE SV _ RSQRT(n, x, inex, z, inez)

INTEGERn
REALx(*)
INTEGER incx
REALz(*)
INTEGER inez

SUBROUTINE SV _SIN(n, x, inex, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

SUBROUTINE SV _SQRT(n, x, inex, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

SUBROUTINE SV _TAN(n, x, incx, z, inez)

INTEGERn
REALx(*)
INTEGER inex
REALz(*)
INTEGER inez

Manual Pages

SV _ACOSO (cont.)

0-119

Manual Pages Paragon 1M System Fortran Compiler User's Guide

SV _ACOSO (cont.) SV _ACOSO (cont.)

Description of Parameters

Discussion

0-120

n The number of elements in the vectors x, y, and z.

x,Y Input (argument) vectors.

z Output (result) vector.

incx, incy, incz The strides (increments) of vectors x, y, and z, respectively (may be zero).

alpha A scalar multiplier for sv Jeep.

These subroutines, called the vector intrinsics, perfonn the following mathematical operations on
arrays (vectors) very efficiently. You can specify the number of vector elements and the strides of
each input vector and the result vector.

sv_acosO

SVJJOwO

SVJsqrtO

Vector arccosine (zCi) = acos(x(i»).

Vector arcsine (z(i) = asin(x(i»).

Vector arctangent (z(i) = atan(x(i»).

Vector arctangent from two arguments (z(i) = atan2(x(i), y(i»).

Vector cosine (z(i) = coS(xCi»).

Non-IEEE vector divide (z(i) = y(i)/x(i)).

Vector exponential (z(i) = exp(x(i»).

Vector natural log (z(i) = log(x(i»).

Vector logarithm log}O (z(i) = loglO(x(i»).

Vector power (z(i) = x(rri)).

Non-IEEE reciprocal times a scalar (z(i) = alpha/xCi)).

Non-IEEE vector reciprocal square root (z(i) = 1/sqrt(x(i»).

(:
(""
" ..

r:

I:
[:

('"
, . .Iii

I:

I, ~',
~,

(-.."

-"

I
"~

~,

1'-"'"
,d

r:
(J

I~ A

Paragon™ System Fortran Compiler User's Guide Manual Pages

SV_ACOSO (eont.) SV _ACOSO (eont.)

Example

See Also

Vector sine (z(z) = sin(x(i»).

Non-IEEE vector square root (z(i) = sqrt(x(i»).

Vector tangent (z(i) = tan(x(i)).

NOTE

To use these calls, you must link your program with the switch
-Iveet.

The following call to sv _cos() performs a single-precision vector cosine of the first n elements of the
real vector x with stride incx, storing the results in the real vector z with stride inez:

call sv_cos(n, x, incx, z, incz)

It is similar in effect to the following code (the actual code for sv _cosO is written in assembler):

ix = 1
iz = 1
if (incx .It. 0) ix
if (incz .It. 0) iz
do 10 i = 1, n

z(iz) = cos(x(ix))
ix = ix + incx
iz = iz + incz

10 continue

(-n+1)*incx + 1
(-n+1)*incz + 1

[)"121

Manual Pages Paragon 1M System Fortran Compiler User's Guide

SYMLNKO SYMLNKO
. :' . :".,: :.. '. :." . .. ". .

Makes a symbolic link.

Synopsis
INTEGER FUNCTION SYMLNK(nl, n2)

CHARACTER *(*) nl
CHARACTER *(*) n2

Return Value

Returns zero if successful; othelWise, returns a nonzero error code.

Description of Parameters

nl Pathname of an existing file.

n2 Pathname for the new symbolic link.

Discussion

Creates a symbolic link, n2, to an existing file, nl.

See Also

linkO

0-122

, T

l ,.

I~

[:
r~
...=!

[J

I:
l:
£:

r:

1''1
,.I

(~,

("'"
,,:'1

1'·'1

"

I:~
r~

1_-
,:l.i

Paragon'"' System Fortran Compiler User's Guide Manual Pages

SYSTEMO SYSTEMO

Issues a shell command.

Synopsis
INTEGER FUNCTION SYSTEM(str)

CHARACTER *(*) str

Return Value

Exit status of the shell after executing str.

Description of Parameters

str A shell command line.

Discussion

Gives the string str to the Bourne shell Csh) as input The current process waits until the shell has
completed.

0-123

Manual Pages Paragon™ System Fortran Compiler User's Guide I:

TIMEO TIMEO

Returns system time.

Synopsis

INTEGER FUNCTION TIMEO

Return Value

Returns the time since 00:00:00 GMT, January 1, 1970, measured in seconds.

See Also

ctimeO, dateO, fdateO, gmtimeO, idateO, itimeO, ItimeO

0-124

I· '.~. ,

1_·-
... ".1

[J

[~

1-.·"']
.J

(."
.J

c
c

Paragon™ System Fortran Oompiler User's Guide Manual Pages

TIMESO TIMESO

Gets process and child process CPU time.

Synopsis
INTEGER FUNCTION TIMES(bujJ)

INTEGER buff(*)

Return Value

Returns zero if successful; otherwise. returns the negation of the system error code.

Description of Parameters

Discussion

See Also

buff Array that receives time-accounting infonnation for the current process and any
terminated child processes, as follows:

bufj{1)

bujJ{2)

bujJ{3)

bujJ{4)

User time .

System time.

User time of children.

System time of children.

Stores the time-accounting infonnation for the current process and for any terminated child
processes of the current process into the array buff.

etimeO

0-125

Manual Pages Paragon 1M System Fortran Compiler User's Guide

TTYNAMO TTYNAMO
. . ":.":" ":. ." . .:. ":.' :":.: .. " ": . ". :

Gets pathname of a terminal.

Synopsis
CHARACTER *(*) FUNCTION TTYNAM(lu)

INTEGERlu

Return Value

Returns the blank-padded pathname of the terminal device connected to the logical unit lu. If lu is
not connected to a terminal, blanks are returned.

Description of Parameters

lu

Example

c

Logical unit to check.

program main
character*10 mytty, ttynam
integer lu

c get ttyname
c

c

10
c

lu = 5
mytty = ttynam(lu)

write(6,10)mytty
format (A)

call exit
end

The program prints the name of the terminal device connected to logical unit 5. For example:

/dev/ttyp1

0-126

---~.---------------

l:

(:
'C,
Ie .,

l=
1",-

-""

I:

I!
C
[j

r:
r:
I~

I '"
,--"

I~:
I~~

(:
I:
I '9

..J

I "'"
-,

I:"
I

'~

=,

I~

I '"
--w

I~
1-"',
LI

~ U

I:

Paragon™ System Fortran Compiler User's Guide Manual Pages

UNLINKO UNLINKO

Removes a file.

Synopsis
INTEGER FUNCTION UNLINK(fil)

CHARACTER *(*) fil

Return Value

Returns zero if successful; otherwise, returns a nonzero error code.

Description of Parameters

fil Patlmame of the file to remove.

Discussion

Removes the file specified by the pathname fil.

0-127

Manual Pages Paragon TM System Fortran Compiler User's Guide

WAITO WAITO
. . ':.' .. ". : .".. ":: .: .:":: ".':'. ".:." " : :., ":" ":." ".

Waits for child process to tenninate.

Synopsis
INTEGER FUNCTION WAIT(st)

INTEGERst

Return Value

Returns the aSP/1 process ID of the last child to tenninate. If an error occurs, returns the negation
of the system error code.

Description of Parameters

Discussion

0-128

st Variable into which is stored the exit status of the child whose process ID is
returned.

wait() causes its caller to be suspended until a signal is received or one its child processes terminates.
If any child has tenninated since the last waitO, return is immediate. If there are no child processes,
return is immediate with an error code.

If the return value is positive, it is the process ID of the child and sf is its tennination status. If the
return value is negative, it is the negation of an error code.

J "'

(J

[:
[=

r~
(=

I~

I~

I:
I
-~

-~

A

abort 0-46

ACCEPT statement 6-22

access 0-47

access types 6-28

aggregate references 6-22

alarm 0-48

ALLOCATABLE attribute 6-25

ALLOCATE statement 6-26

ANSI Fortran
extensions to 6-2
language 6-1

applications 1-2

ar manual page 0-7

ar860 manual page 0-7

as manual page 0-9

as860 assembler
manual page 0-9
overview 1-4

assembler (as860) 1-4

B
backslash escapes 6-20

BACKSPACE statement 6-30

besjO 0-49

besj1 0-49

besjn 0-49

besyO 0-49

besy10-49

besyn 0-49

built-in functions 6-31

BYTE data type 6-5

c
c switch (driver) 2-6

carriage control characters 6-18

character constants 6-10, 6-20

chdir 0-51

chrnod 0-52

CLOSE statement 6-30

Index

Index-1

Index

commas in external field 6-18

comments, inline 6-20

common blocks 6-11

COMMON, dynamic 6-25

compiler directives 6-2
%EJECT6-2
%LlST 6-2
%NOLlST6-2

COMPLEX*16 data type 6-5

COMPLEX*8 data type 6-5

compute partition 1-1

control list extensions 6-23

control statements 6-4

controlling the if77 driver 2-4

cross-development environment 1-2

ctime D-53

o
D switch (driver) 2-6

data initialization 6-1 0

data types
Fortran extensions 6-4
Fortran extensions (table) 6-5
ranking (table) 6-6

date D-55

DATE system subroutine 6-31

dbesjO D-49

Index-2

Paragon TM System Fortran Compiler User's Guide

dbesj1 D-49

dbesjn D-49

dbesyO D-49

dbesy1 D-49

dbesyn D-49

DEALLOCATE statement 6-27

debugging 1-6

decimal integer constants 6-7

DECODE statement 6-19

DELETE statement 6-2

dert D-62

dertc D-62

%DESCR built-in function 6-31

development environments 1-2

dffrac D-67

dflmax D-67

dflmin D-67

DICTIONARY statement 6-2

DO statement 6-4

DO WHILE statement 6-4

drandm D-106

driver
command lines, example 1-7
controlling 2-4
if77 v, 1-4,2-1
overview 1-4

lJ
~I
i""

(=

(~

[! Paragon™ System Fortran Compiler User's Guide Index

[]

I:
1-: driver switches dv...,POw 0-56

c2-6
dv _recp 0-56

r: 02-6
E2-5 dv_rsqrt 0-56
F2-5

dv_sin 0-56

r"""
g2-17
12-16 dv_sqrt 0-56

~,

if77 (table) 2-2
dv_tan 0-56

I: K2-19
L2-18 dynamic COMMON 6-25
12-19

1=
Inx 1-5
M2-7 E
m2-18

E switch (driver) 2-5 node 1-6, 2-21

1= nx 1-5,2-20 %EJECT compiler directive 6-2
02-16

ENCODE statement 6-19
I~

02-21

.~: r 2-18 END MAP statement 6-15
S2-6

END STRUCTURE statement 6-13

r: s2-18
U2-6 END UNION statement 6-15
V 2-21

ENOOO statement 6-4 1"1 v 2-21
VV 2-21 ENTRY statement 6-12 __ iaJ

W2-4
environment

(~
Y2-5

execution 1-5
-'CJ dsecnds 0-109 software development 1-1, 1-2

1~1
dtime 0-63 EQUIVALENCE statement 6-11

..JW dump860 manual page 0-11 ert 0-62

Il dv_acos 0-56 ertc 0-62

-~ dv_asin 0-56 escapes, backslash 6-20

(4 dv_atan 0-56 etime 0-63
_..J dv _atan2 0-56 example driver command lines 1-7

('" dv_cos 0-56 exclusive or operator (.XOR.) 6-17

-..I dv_div 0-56 execution environments 1-5

I:
dv_exp 0-56 exit 0-64

dv_log 0-56 EXIT system subroutine 6-32

IJ
dv_log10 0-56 extensions to Fortran language 6-2

external field, commas in 6-18

D
D Index-3

Index

F
F switch (driver) 2-5

fl7 manual page 0-13

fdate 0-65

ffrac 0-67

fgetc 0-66

field descriptors: A, 0, Z, Q, $ 6-17

file format, input 6-21

file formats 6-29

file types 6-28

FIND statement 6-2

flmax 0-67

flmin 0-67

flush 0-68

fork 0-69

format expressions, variable 6-18

format specification separators 6-19

FORMAT statement 6-18

Fortran driver 1-4
manual page 0-13

Fortran extensions
%DESCR built-in function 6-31
%EJECT compiler directive 6-2
%LlST compiler directive 6-2
%LOC built-in function 6-31
%NOLIST compiler directive 6-2
%REF built-in function 6-31
%VAL built-in function 6-31
ACCEPT statement 6-22
access types 6-28
aggregate references 6-22
ALLOCATABLE attribute 6-25
ALLOCATE statement 6-26
backslash escapes 6-20
BACKSPACE statement 6-30

·lndex-4

Paragon TM System Fortran Compiler User's Guide

built-in functions 6-31
BYTE data type 6-5
carriage control characters 6-18
character constants 6-10, 6-20
CLOSE statement 6-30
commas in external field 6-18
comments, inline 6-20
common blocks 6-11
compiler directives 6-2
COMPLEX*16 data type 6-5
COMPLEX*8 data type 6-5
control list 6-23
control statements 6-4
data initialization 6-10
data types 6-4

ranking (table) 6-6
data types (table) 6-5
DATE system subroutine 6-31
DEALLOCATE statement 6-27
debug statements 6-20
decimal integer constants 6-7
DECODE statement 6-19
DO statement 6-4
DO WHILE statement 6-4
dynamic COMMON 6-25
ENCODE statement 6-19
END MAP statement 6-15
END STRUCTURE statement 6-13
END UNION statement 6-15
ENDDO statement 6-4
ENTRY statement 6-12
EQUIVALENCE statement 6-11
exclusive or operator (.XOR.) 6-17
EXIT system subroutine 6-32
field descriptors: A, 0, Z, Q, $ 6-17
file format, input 6~21
file formats 6-29
file types 6-28
fixed length formatted and unformatted records

6-29
format specification separators 6-19
FORMAT statement 6-18
formatted variable and fixed length records

6-29
general I/O 6-28

l:
(:

I:
(""

" .

[J

[.:

1'" .,
I
'& rl

If "1

I ..

I:
I:

Il

r'lO

. ..itl

r=
(--

... '

I.
r-
(
"~

.. ~

(--."
.....:.J

I:

r:
1=

Paragon TM System Fortran Compiler User's Guide

GETARG system subroutine 6-36
hexadecimal constants 6-7
Hollerith constants 6-9
IARGC system subroutine 6-36
10ATE system subroutine 6-32
identifier names 6-19
IMPLICIT statement 6-11
INCLUOE statement 6-20
inline comments 6-20
input file format 6-21
INTEGER*2 data type 6-5
INTEGER*4 data type 6-5
intrinsic functions 6-34
logical constants 6-10
LOGICAL*1 data type 6-5
LOGICAL*2 data type 6-5
LOGICAL*4 data type 6-5
MAP statement 6-13, 6-15
maps 6-15
memory allocation statements 6-26
MVBITS system subroutine 6-33
NAMELIST statement 6-22
namelist-directed 1/0 6-22
octal constants 6-7
OPEN statement 6-29
OPTIONS statement 6-3
order of statements 6-21
other 1/0 6-28
PARAMETER statement 6-10
POINTER statement 6-23
pointer-based variables 6-23
RAN system subroutine 6-34
REAO statement 6-30
reading non-quoted data 6-18
REAL *4 data type 6-5
REAL*8 data type 6-5
RECORO statement 6-13, 6-14
records 6-14
SCNOS system subroutine 6-32
statement ordering 6-21
STRUCTURE statement 6-13
system subroutines 6-31
TI ME system subroutine 6-33
TYPE statement 6-22
unformatted variable and fixed length records

6-29
UNION statement 6-13, 6-15
unions 6-15

UNIX-related system subroutines 6-36
variable format expressions 6-18

Index

variable length formatted and unformatted
records 6-29

VAXNMS I/O 6-22
vector intrinsics 6-41
VOLATILE statement 6-12
WRITE statement 6-30

Fortran identifiers, length of 6-19

Fortran language
extensions to 6-2
standard 6-1

fputc 0-70

free 0-71

fseek 0-72

fstat 0-113

ftell 0-73

G
g switch (driver) 2-17

general I/O, Fortran 6-28

gerror 0-74

getarg 0-75

GET ARG system subroutine 6-36

getc 0-76

getcwd 0-77

getenv 0-78

getgid 0-79

getlog 0-80

getpid 0-81

getting started 1-1

getuid 0-82

gmtime 0-83

Index-5

Index

H
hardware,system 1-1

hexadecimal constants 6-7

Hollerith constants 6-9

hostnm 0-85

I switch (driver) 2-16

1/0 extensions
other 6-28
VAX/VMS 6-22

i860
assembler invocation command 1-4
linker invocation command 1-5

iargc 0-86

IARGC system subroutine 6-36

idate 0-87

IDATE system subiOutine 6-32

identifiers
length of 6-19
names of 6-19

ierrno 0-88

if77 driver v, 1-4
controlling 2-4
invocation command 1-4, 2-1
manual page 0-13
switches (table) 2-2

ifixlib 4-4

ifixlib manual page 0-34

IMPLICIT statement 6-11

INCLUDE statement 6-20

inline comments 6-20

inmax 0-67

Index-6

Paragon™ System Fortran Compiler User's Guide

input file format 6-21

INTEGER*2 data type 6-5

INTEGER*4 data type 6-5

intrinsic functions 6-34

invoking
i860 assembler 1-4
i860 linker 1-5
if77 driver 1-4,2-1

ioinit 0-89

irand 0-105

irandm 0-1 06

isatty 0-90

itime 0-91

K
K switch (driver) 2-19

kill 0-92

L
L switch (driver) 2-18

I switch (driver) 2-19

Id manual page 0-35

Id860 linker
manual page 0-35
overview 1-5

length of Fortran identifiers 6-19

libnx.a 1-5

link 0-93

linker (ld860) 1-5

%LlST compiler directive 6-2

Inblnk 0-94

I '"
~,

If '"

~.

~=
I:

11
(]

r: ,_.,.,

_.~J

1='
(

-""'1

-""

I:
1_""

_.w

[J

£:
IJ

D

Paragon™ System Fortran Compiler User's Guide

Inx switch (driver) 1-5

%LOC built-in function 6-31

loc 0-95

logical constants 6-10

LOGICAL *1 data type 6-5

LOGICAL *2 data type 6-5

LOGICAL*4 data type 6-5

loops
making parallel 3-11

Istat 0-113

Itime 0-96

M
M switch (driver) 2-7

m switch (driver) 2-18

mac manual page 0-40

macB60 manual page 0-40

malloc 0-98

manual, organization of v

MAP statement 6-13, 6-15

maps 6-15

memory allocation statements 6-26

Military Standard, MIL-STO-1753 6-1

mvbits 0-99

MVBITS system subroutine 6-33

N
NAMELIST statement 6-22

namelist-directed I/O 6-22

native development environment 1-2

nm manual page 0-41

nm860 manual page 0-41

node switch (driver) 1-6,2-21

nodes 1-1

%NOLIST compiler directive 6-2

non-quoted data in files 6-18

nx switch (driver) 1-5,2-20

o
o switch (driver) 2-16

o switch (driver) 2-21

octal constants 6-7

OPEN statement 6-29

OPTIONS statement 6-3

order of statements 6-21

organization of manual v

other 1/0 extensions 6-28

outstr 0-1 00

overview

p

assembler (as860) 1-4
driver (if77) 1-4
linker (ld860) 1-5

parallel applications 1-2

parallel loops 3-11

parallel software development environment 1-1

PARAMETER statement 6-10

partitions 1-1

perror 0-101

POINTER statement 6-23

pointer-based variables 6-23

putc 0-102

putenv 0-103

Index

Index-7

Index

Q

qsort 0-104

R
r switch (driver) 2-18

RAN system subroutine 6-34

rand 0-105

random 0-106

READ statement 6-30

reading non-quoted data 6-18

REAL*4 data type 6-5

REAL*8 data type 6-5

RECORD statement 6-13, 6-14

records 6-14

%REF built-in function 6-31

rename 0-107

REWRITE statement 6-2

rindex 0-108

running a program

s

on a single node 1-5
on multiple nodes 1-5

S switch (driver) 2-6

s switch (driver) 2-18

SCNOS system subroutine 6-32

secnds 0-109

separators, format specification 6-19

service partition 1-1

signal 0-110

size manual page 0-43

Index-8

Paragon 1M System Fortran Compiler User's Guide (:

size860 manual page 0-43

sleep 0-112

software
development environment 1-1

software development environments 1-2

software, system 1-2

srand 0-105

Standard Fortran language 6-1

stat 0-113

statement ordering 6-21

statements, debug 6-20

stime 0-115

strip manual page 0-45

strip860 manual page 0-45

STRUCTURE statement 6-13

subroutines, system 6-31

SV_BCOS 0-116

sv_asin 0-116

sv_atan 0-116

sv_atan20-116

sv_cos 0-116

sv_div 0-116

sv_exp 0-116

sv-,og 0-116

sv-,og10 0-116

SV.J>ow 0-116

sv_recp 0-116

sv_rsqrt 0-116

sv_sin 0-116

sv_sqrt 0-116

sv_tan 0-116

~ :
~ :

I '.
.'"

I:

Il Paragon"" System Fortran Compiler User's Guide Index

II
IJ
[J switches (driver) T

c2-6

r: 02-6 time 0-124

E2-5 TI ME system subroutine 6-33
F 2-5
g 2-17 times 0-125

r: 12-16 ttynam 0-126
if77 (table) 2-2

TYPE statement 6-22
I~

K2-19
L2-18

.....-k,:

12-19

r Inx 1-5 U
M2-7 U switch (driver) 2-6
m 2-18

[=
node 1-6, 2-21 UNION statement 6-13, 6-15

nx 1-5,2-20 unions 6-15
02-16

C
02-21 unlink 0-127

r 2-18 UNLOCK statement 6-2
82-6

E
s 2-18 updating library directories 4-4

U2-6
V 2-21

(~~
v 2-21 V
VV2-21 V switch (driver) 2-21 --- W2-4

I~~
Y2-5 v switch (driver) 2-21

symlnk 0-122 %VAL built-in function 6-31

r: system 0-123 variable format expressions 6-18

system hardware 1-1 VAXNM8 1/0 extensions 6-22

r=:
system software 1-2 vector intrinsics 6-41

system subroutines 6-31 VOLATILE statement 6-12
OATE 6-31 W switch (driver) 2-21

1= EXIT 6-32
GETARG 6-36
IARGC6-36 W

l: IOATE6-32
MVBIT86-33 W switch (driver) 2-4
RAN 6-34 wait 0-128

£: 8CN086-32
TIME 6-33 WRITE statement 6-30
UNIX-related 6-36

I) Y

D
Y switch (driver) 2-5

D Index-9

~---~

Index Paragon 1M System Fortran Compiler User's Guide

Index-10

