April 1995

Order Number: 312491-003

Paragon” System
Fortran Compiler User’'s Guide

Intel® Corporation

Copyright ©1995 by Intel Scalable Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or copied in
any form or by any means...graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems...without
the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. -

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel’s software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara-
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 1386 Intel : iPSC
287 1387 Intel386 Paragon
1 1486 Intel387

1487 Intel486

1860 Intel487

APSO is a service mark of Verdix Corporation

DGL is a trademark of Silicon Graphics, Inc.

Ethemnet is a registered trademark of XEROX Corporation

EXABYTE is a registered trademark of EXABYTE Corporation

Excelan is a trademark of Excelan Corporation ‘

EXOS is a trademark or equipment designator of Excelan Corporation

FORGE is a trademark of Applied Parallel Research, Inc.

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.

GVAS is a trademark of Verdix Corporation

IBM and IBM/VS are registered trademarks of International Business Machines

Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.

NFS is a trademark of Sun Microsystems

OpenGL is a trademark of Silicon Graphics, Inc.

OSF, OSF/1, OSF/Motif, and Motif are trademarks of Open Software Foundation, Inc.

PGI and PGF77 are trademarks of The Portland Group, Inc.

PostScript is a trademark of Adobe Systems Incorporated

ParaSoft is a trademark of ParaSoft Corporation

SCO and OPEN DESKTORP are registered trademarks of The Santa Cruz Operation, Inc.

Seagate, Seagate Technology, and the Seagate logo are registered trademarks of Seagate Technology, Inc.
SGI and SiliconGraphics are registered trademarks of Silicon Graphics, Inc.

Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Ltd.
VADS and Verdix are registered trademarks of Verdix Corporation

VAST2 is a registered trademark of Pacific-Sierra Research Corporation

VMS and VAX are trademarks of Digital Equipment Corporation

VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.

XENIX is a trademark of Microsoft Corporation

M”T

¥
™

-
o

wl

_—
[|

4

E

4

¥

|

.

A - - — —
i i £ E]

|] [
t § L |

4

o

1

.

Lo

_

i

i

(.

-

I

WARNING

Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in-
stalled, and the front of the diagnostic station. There are no user service-
able areas inside the system. Refer any need for such access only to tech-
nical personnel that have been qualified by Intel Corporation.

CAUTION

This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer-
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara-
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. Ill shall apply. Unpub-
lished—rights reserved under the copyright laws of the United States.

axd
]
ki
)
Y

J
=

i
|
|
|
,
1
w
|
|
|
M

B £ 4 Eoo4 b 4 Eod R | T |

4 £ i

Besw e e e
1 i L S |

B 5= LS | [£ § ¢

Preface

This manual describes the ParagonTM system Fortran compiler and driver. This manual assumes that
you are an application programmer proficient in the Fortran language and the UNIX operating

system.

Organization

Chapter 1

Chapter 2
Chapter 3

Chapter 4

Chapter 5

Chapter 6
Appendix A

Appendix B

Introduces the software development environment and shows how to create
executable files from Fortran source code. This chapter contains enough
information to get you started creating executable files for the Paragon
system.

Describes if77, the command for compiling, assembling, and linking Fortran
source code for execution on the Paragon system.

Gives you a strategy for using the compiler’s optimization features to help
maximize the single-node performance of your programs.

Tells how to use the compiler’s function inliner.

Tells how to write Fortran routines that are callable from C and how to call C
functions from Fortran.

Describes the language that the Fortran compiler accepts (ANSI Fortran 77)
and extensions to the standard language (i.e., features and capabilities not
defined for the ANSI standard language, such as VAX and Cray extensions).

Lists the error messages generated by the compiler, indicating each
message’s severity and, where appropriate, the probable cause of the error
and how to correct it.

Lists the error messages generated by the Fortran runtime system, indicating,
where appropriate, the probable cause of the etror and how to correct it.

Preface Paragon™ System Fortran Compiler User's Guide

Appendix C Describes the internal structure of the compiler, with special emphasis on the
vectorizer and optimizer.

Appendix D Contains reference manual pages for the Paragon software development
commands and compiler-related system calls.

Notational Conventions

This manual uses the following notational conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be entered exactly as shown.

Ttalic Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dashis to be held down
while the key following the dash is pressed. For example:
{Break> <s> {Ctrl-Alt-Del>
[] Surround optional items.
Indicate that the preceding item may be repeated.

| Separates two or more items of which you may select only one.

{ 1 Surround two or more items of which you must select one.

Applicable Documents

For more information, refer to the ParagonTM System Technical Documentation Guide.

vi

™
.

(N

Y

&

il
-l

.13
-

4 B 4 4

E.

#

£

4

§

i £ 3 £ % £ 3

vk boe

L T B R
(D B

o Bl Bl

Paragon™ System Fortran Compiler User's Guide

Preface

Comments and Assistance

Intel Scalable Systems Division is eager to hear of your experiences with our new software product.
Please call us if you need assistance, have questions, or otherwise want to comment on your Paragon

system.

U.S.A/Canada Intel Corporation
Phone: 800-421-2823
Internet: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

20090 Assago

Milano

Italy

1678 77203 (toll free)

France Intel Corporation

1 Rue Edison-BP303

78054 St. Quentin-en-Yvelines Cedex
France

0590 8602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division

Pipers Way

Swindon SN3 IRJ

England

0800 212665 (toll free)

(44) 793 491056 (answered in French)

(44) 793 431062 (answered in Italian)

(44) 793 480874 (answered in German)

(44) 793 495108 (answered in English)

Germany Intel Semiconductor GmbH
Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

Japan 0130 813741 (toll free)
0298-47-8904
World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006

US.A.

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

vii

Preface

viii

Paragonm System Fortran Compiler User's Guide

.
e 3

oA

k|

| SR [

k]

8

4

i

A

£

#

[

+

i ¢ S | e #

|] f]] [g
[L i

Table of Contents

Chapter 1
Getting Started
The Software Development ENVIronment ... 1-1
SYSIEM HAMAWANE ..ottt s et e s pas e s saa s e sr s s e ae s sb s n st e e 1-1
SYSIEM SOMWATE ...cceeeceieceieece st ereretr et st e ree s see s s e sra e s sres s as e s e s e st e s s aesamassme s st e nassrnnessassanasasnnsansens 1-2
Software Development ENVIFONMENTScooieiiriniieeniie et sneess st s s st st s 1-2
COMPIIET DIIVETeeeecerreeesceererrsesereee e st s s ssessassn s srass e sassstessessesanssnessnesessnsssnesnesseesnesenssnnsasssnsans 1-4
IBB0™ ASSEIMIDIETovvveveseeseessssnssscssssssenssessasssssssssssessesssessssssassssssasssesssessanssassssssassssassessanssensans 1-4
IBB0™ LINMKEE cvvvuvvversesseesussesssnssssnsssssssssssssssessssesssssssassesssnssssnesssnsssenssesessssesssssssssnssasnssasassasasssnes 1-5
Execution ENVIFONMENTS ...ttt sttt enaneans 1-5
RunNing 0N @ SiNGIE NOGEcccevierireeeiiereiescre e srer st s s see s senn e se s s s ssnssss e e s sasnesnnensseassnessanessnansssens 1-5
Running on MUtiple NOAESccciiiiiieiiii st s 1-5
1D o0 o 1 1o RS SR 1-6
Example Driver Command Lines ...ttt seasn s 1-7

Table of Contents Paragon™ System Fortran Compiler User's Guide
Chapter 2
The if77 Driver
INVOKING the DIIVET ...ttt es sttt e s st s b et e s 2-1
Controlling the DIVET ...ttt se e es s et s ea et st 2-4
Specific Passes and OPLONS ..ottt e e s asese s st esseesreeese s sn s e meea e e sa e e sasennens 2-4
PreproCeSS ONIYciceeiiieieerresere e esese e s s sm e se s e sese e s eeee st s st samn st e sae e sen b srmean et st asseensensssanesnsases 2-5
Preprocess and COmMPile ONY ...ttt e st s s s s e e sae e e e 2-6
Preprocess, Compile, and ASSEMDIE ONIYcccconiiiriiniiirir et e s 2-6
Add and Remove PreproCeSSOr MACIOScccvviccerrrerisssrmeserssasisssssssssnsssssssesssssenssssssssssssssssssnsesssnssenens 2-6
Controlling the Compilation STEP ...ttt 2-7
T o T=T 1T o (1o TP 2-7
Location of INCIUAE FIlES ..ot e s s s 2-16
OPUMIZAON LEVEI ...ttt st e e e s s sa e s s e 2-16
Generating Debug INFOrMAON ... st e s 2-17
Controlling the LINK STEP ...t sss s 2-17
Sy (] o1 aTo I3 Y0 T P 2-18
Generating a Relinkable ObJECt File ... 2-18
L oTo (BTo g o = T I 1 =T o 2-18
LINKEE LIDFAMIESc.veveriieerirerresissseeresestassesstssssesassssssssssasesessesnesssssnansssssessanssssssssssss snesssssssssssnsnsanesn 2-18
Controlling Mathematical SemMantiCs ... s 2-19
Controlling the Driver QULPUL ...t eese st esess s ess s s e 2-20
Executable for Multiple NOAESccociiieiiierr ettt s 2-20
Name of Executable File ..ot e s 2-21
VEIDOSE MOGE ..einiiiiiie et et s s e b sn s sa e s e e s ber e e s e e st srae Rt aRa e e 2-21
Overriding Compiler Defaults ... e 2-22
X

E 2

|

,':i

E_

E

E

il

k] I 4 ¢ 4

[Lon

4

S - 8 L 1 =

-

p

E

Paragon™ System Fortran Compiler User's Guide Table of Contents
CONLrOl DIFECHIVES ..ottt e et st 2-23
DiIreCtive DESCIIPHONS ...ccvvicieeeeerrescnisrrsssessressressnsesneessessasssanesnessnssssassnsessserasenssssssesaasssnessnsessnensseennn 2-26
=L (00T = 4] [0 oo U PPN 2-26
altcode[N]CONCUITEAUCTIONeeviiciiiieeiresecierecrteereerrseneser e s s sesee s s s e e s ae s ae e sasaesames s senansnnnesann 2-26
[NOJASSOC ..veeieriiiieericeeriettr e ee s rmssrrereees s seeeerrse s sane et ersaaesssssasnasenesassssnnsssneeesssssansnaneeeenessansns 2-27
[NOIDOUNGS ...oiiecereii it et e ee et re s e enr s s s er s st e s e san e e se s e e ee s s snaesanssan e es s seeenssnsanssessnannesnssnsnennas 2-27
L0 [Lo 1| TSRS 2-27
L) (oo 2 o2 U T SO UU PSR 2-27
70 o L= oo 11 SRR 2-27
7Y =T 1Yo o | PRSPt 2-27
L0 L8 [0 7P 2-28

LAY o PP 2-28
1)1 | P 2-28

Y oL SO 2-28

L [0) (=T oo [PP 2-28
[NOJSMANVECT ... et ceee s e s sse e s smee s s e e e e an e e s ssmneae s manens s snnanenan 2-29

L) 1T 1o T o] o PRSP 2-29
[NOISWPIPE coiireeciiriemienmeiesseeresrssae st s aes s n s e s e eassessensssmnsessae s st assnmesasnensessssrsnanesnassssnssesnnanssnnnns 2-29

L Lod L= L3 0] 1 14 O O 2-29

LT V=T 2 (o PP POPRPTTOROt 2-29
L) AL L SRS 2-30
DireCtive EXAMPIES ..ccocieiiiiceie et ce s s teses s e sssse s s s e sesenar e e s s seen s s s e s e e s n e e naneenennnmeeenenan 2-30

Chapter 3
Optimizing Programs

INTPOAUCTION ...ttt e s e e s s s e et s s e s s e et et senensas e e senssnnn 3-1
OPtIMIZAtioN PrOCEAUIE ...ttt ettt saee s sss s s sasssssssssessssase s sessas s seneen 3-1
Shortening TUMArOUNd TIMEcccceivircrcrrireitrrserseerrsessseesnesseessasssanssnses st srsnrasassssesssssrassssnsesnassasesasesan 3-2

Xi

Table of Contents Paragon' System Fortran Compiler User's Guide
Compiler Switches for Optimization ... 3-3
General OptimiIZatioNS (FO)ciciiiiiirrii e s e st s 3-3
Scalar Optimizations (-1, “02)ciciivcieiirrerrniriersessrreeessesees e ssr s s s sesessae s et esseesassaresanasesnessnesnsnases 3-3
Software Pipelining (03, “04) ... oiirreccctecir s rmns e s es et s sees st s st s sn s s e ssae s saessne s st s sransnne snnens 3-4
AVZ=T0r (o T2z 1 To g IV LY o 4 SRRt 3-5
HOW VeCtOrzation WOTKSc.cceoiriieeeie s e e s s e st seme s s e s e s e e s me s s san s s s et e s e n e 3-5
Controlling Vectorization (-MVECE=...) ...ciiccececieciinnin st sae s s sr e s e e s e s smnssre e seaeas 3-6
Preventing Associativity Changes (-MVECE=N0ASSOC)ccceirerrertrerrrrrrerrernrsssersesneesssnesesassessnenas 37

Getting Information About Vectorization (-Minfo=100p)ccoreminiinniesccire e 3-8

IeToT o2 U] 4] o)1 1aTe G Y LT o (o) T 3-10
Making LOOPS Parallelcociiiiiiiiiiciirsiies e inesss s sscsnnsssesssmsrses s snasessssssssnsnsssss s sssss s sessnsnns 3-11
General Loop Parallelization (-MCONCUL)ccovceieererreeiccersetnssercresseessseseessresssesssessesesssessscsesensnns 3-11
Parallelizing Loops with Calls (-MCNCAl)coveeiicceeeere et s s 3-12

Getting Information About Parallelizationcccevrveeiiiinicsniicrcrecee e 3- 12
NON-IEEE Math (-KNOIEEE)eeiieeiieecceti ittt r e r e s s e s an e sessr s s s snnnese s a e e e s e me e e nnnn 3-12
Non-IEEE Divides (Compiling with -KnOIEEE)ccrcereerniriciiiiicernr et 3-13
Non-IEEE Math Library (Linking with -KNoi€€e)cccceeeceiniiiirccinnncen e 3-13

BLAS Library (-IkmMath)ccccovuericeereriinnrnesesriies e seesise s scesene s ess s ssssss sssesanesssnssssssasesssssssrasasssnessesas 3-14

0] gL aTo T Y 1171 T RS 3-14
Ignoring Potential Data Dependencies (-MnodepeChk)ccccienninnencnncn s 3-14
Code Changes for Optimization ... enseeeas 3-15
General IMPrOVEMENTEScccvveeeieercenercsreesniserssresese e e sssnessesesnesasssnesssessnssessnssssesansrssssssaessansssnesans 3-15
LOOP IMPrOVEMENTS ...cceereiireriicirsrerstsseteseesersseeeseesns s sasssnessseessnsssssssesssesssesseessassnneesnssassansassnsessensns 3-16

File 1/O IMPrOVEMENLS ...coeiieinriectiree st siee s s s s e e sss s e sat st e ens s s eneen e sanesnesmaa e snenns 3-17

Chapter 4
Using the Inliner

Compiler INHNG SWILCK ...t s st s 4-1
Creating an INlNer LIDrary ...t e ssssss s st 4-2
Using INHNEr LIDraries ... sse s s se s ssnsnes 4-3
xii

E

E 4

4

il

1

™
Ll
o

oA PR |

£ E s & 4 k& o

E |

£

E]

1

Y
)

£ £

1

B

=

4

|

b

4

£ f L [¢

IS

Paragon™ System Fortran Compiler User's Guide Table of Contents
Restrictions on INKNING ...t 4-4
Error Detection DUring INHNING ...t ssssnaees 4-5
EfficienCy CONSIAEIAtIONScoocecerrrereessssssssmssmsssssessesseesessssssssssssssssssssssssssssesssssssessersssss B8
EXAMPIES ...ttt e e e e s e e st 4-6
1] o o PP R R STOR 4-6
FIDO ettt et ete ettt e e sae sr e e e e R e ae st eRenRe R an e s e en et s s enaneseann 4-7
Y= 10] =TSR 4-7
Chapter 5
Interfacing Fortran and C
Calling a C FUuNction from FOIRran ...t sens e enee e eeaes 5-1
Calling a Fortran Routine from € ... eaees 5-3
Chapter 6
Extensions to ANSI Fortran
Standard LANGUAGE ..o s ssseses s st sass st nensees 6-1
Extensions Derived from VAX/VMS and IBM/VS ... 6-2
L0701 170711t gl DT (=Y (1Y = OO 6-2
OPTIONS SHAtEMENLcoccieeerreriernirieersetrrsesesesees e e s sesemesssesesnessessseessnesesesssasesansssesssesssmssnsessssnsseeasaes 6-3
Control Statements (DO, DO WHILE, and ENDDO)ccovviiieerrrerecenercsercssseeesesssssessessssssensesssnenes 6-4
Data EXTENSIONS ..uvveecuirereisniissteeesinrissesresssssssssestessncssnassssssnssstnsesssssosssssnssasasassssssessesnasssssesssssanssnssasas 6-4
(D7 122 R N o= 6-4
Decimal Integer CONSIANES ..ot st s e s s 6-7
Octal/Hexadecimal CONSLANESccoicoiiceirircee ittt s s s s e s s s 6-7
HOllErith CONSIANTScccceeieeeererieretrcere e sesset s e reaene st s sssr s s nee e s s sesnsansassasneasseessressssanrasnenssaanes 6-9
Character CONSIANESccciveiecrreernrereerriseseersasessssessesssessessmesaessmsssnsasassssrsasnsensaenssassnnessssasssnssnes 6-10
Logical REPreSentationccccceeeeerserescinnecrmsnesseersanssreseesemsanasssensesesssnsssssssasssnesssessansasmsssneasnes 6-10
xiii

Table of Contents Paragon™ System Fortran Compiler User's Guide
EDF: L v= T 1) 7= 12 (T o SR 6-10
PARAMETER Statementc.ccccennnnininiesisncscnnennes teesesseeernesnee e e nrraneeesnne e sreraenne s e s aerenan 6-10
1070111101 ToT g8 =TT o7 1< 6-11
EQUIVALENCE Statementcccceeereerererrersensssessessssessssssssssssssssssssssessssssssssssssssssssssessssssnssssns 6-11
LY IOl S =1 (=447 o | OSSP 6-11
VOLATILE SEAtEMENL ...ccceeeeeeereeresscecerasseseese e see e s seeeasassensessessmsasmsemssntsstesamssss sansssssassnsessansenns 6-12
ENTRY StateMENtcoiieeeeieeeirscer ettt sre s ene st e s e s st s e sn s e 6-12
] (0T (3 (T OSSR 6-13
TS0 0T (oL OO 6-14
UNION/MAP ..ttt st se st s s st st s st ses st st e enesaa st saesm e se e nsae s bs st s s s eneanen 6-15
EXCIUSIVE OR ottt st e s s s e s s s s e 6-17

FOrmat EXTENSIONSoeeiiicirciit ettt sees st s s s e e s e s s st e sr s s e s se s anesanas 6-17
A,0,Z,Q, and $ Field DESCHPIOIScccecereureerierseesssssssesesssssesesasssessessessssessessessessssssssessssnesessan 6-17
(07 17 To T @ 0T 011 o 0 1 - 1= o (=Y £ Ot 6-18
Commas in EXErNal FIElAScvueeeeieiniie ittt st sn e e s sans s s ssneseenes 6-18
Reading Non-Quoted Data into CHARACTER Variablesccccvecvrecereierncemnnencmrecresnese e seennenne 6-18
Variable Format EXPreSSiONS KEXPIS>cccceeererrrneserseessrsressesasassssesssessseessassssnessessssnssnsesesssesans 6-18
Format Specification SEParators ... s s 6-19
ENCODE/DECODE Statementscccceenmrmmimrerirmsiisseesssss s sessesesss s ssasesssssssas sassas ssssessessns 6-19
L=y (Tor= LI b (=T = o g T ROt 6-19
L0 T=T 411 1= g N T =T 6-19
Character CONSIANESccuirieereeriisersirir e eess s sn s st sse s s s s se s saesaeas s s saessenas s s snensresnannens 6-20
INHNE COMMENLSciiiiuiiiieirie s st e s st s s s e sa e s s n s 6-20
(D= oo RS - (T4 T o1 O 6-20
INCLUDE STateMENTSccoceireeisiriestirenisrcns st sess s s sssss e essse s se s ssessnssasssnes s sssssssssssn s ssessmssnsusssnsan 6-20
Statement OrAEIING ...ccccovveereercriierrcserrersesesreesessms s et eseesasssesnessnssnsesssssesasessasasasanensan J— 6-21
INPUL File FOMMALcoiciieiici et sannsssc s s s s rass s e sme s s sn ee s st n s s msnesmnsannsnan s 6-21
FLO T 3 (= g TS T gL P 6-22
Namelist DIreCted /O ..ot st 6-22
ACCEPT and TYPE StatemMeNtSccccceeeeecereereeemresnecesesscese e sesnessssesssesessesasssseessesessessesseness 6-22
O LISES c.eeeieceecerenneersncst st et ssse s sses s saessnss s e se s s se s sesas e st sas et ses st sne st seemanaesss st ssnnssssesassnnsssnsnnaneas 6-22
CoNtrol LiSt EXIENSIONScocvvieinireiiescsncnis st sssssses st sesassssesssassass s sessssssnsssassasassnsssas 6-23
Xiv

-y
"

3 | R |

E

]

4 L B4

Paragon"‘ System Fortran Compiler User's Guide Table of Contents
Extensions Derived from Cray FOrtran ... eeseeseenenens 6-23
POINTER STAEMENEcieieiiiieniiiiiss st sas s e sam s s sa s eas s e sas s s smes st snas e st snassnnanes 6-23
DyNamiC COMMONocciriecrircireccrsnesrae s snss s e se e rsss s saneme s e ss e e s sansanmee e e e se s ssnenmeessssnsensasansessnrans 6-25
Memory AlIOCation STAtEMENES ..ot re e e e e st s e sme e smnnas 6-26
ALLOCATE STat@MENTcocveerreercrecteecerssesseanserassesssnesressessssseseesssssassasssessasanseesssssnsssseessassnns 6-26
DEALLOCATE StatemMENtcccoeirerirenirieeieressreescesiesesesenssce e st e s ssesssssasssssssessansssassessssssssssens 6-27

Using Memory AlloCcation StatemMeNts ...ttt 6-27

Other /O EXTENSIONS ...ttt es ettt sttt st 6-28
General INPUYOULPUL ..ottt st e st s e s e sb et 6-28
L= 0T O 6-29
OPEN STALEMENL ...ttt e e s e e s s e e e e e s emessraesemtems s massane 6-29
(@10 1S s (=T =T | O 6-30
BACKSPACE StatEMENtcooeiiice ittt sets e s e s s s st s e st s s sn et e 6-30
READ/WRITE StatemMeNntccccoieciiiiitinei et ee e s e e e s s e st e e messmen e smee s e e e e sams s arassnanssnen 6-30
Subroutine and INtrinSic EXENSIONS ...t ee e sseesesse e neens 6-31
BUilt-IN FUNCHONS ..ttt s s s s s a1 6-31
VAX/VMS SyStem SUDIOULNESccceeieiiriiieeisece et sece s e saesms s se e sne e e seanssame s snseass smsenas 6-31
DATE oottt et st st e s e e e et st s et st et e et ea neeaeea e R R ne R et Re et s et e et ere st ens 6-31

IDATE ettt et ss st eaes s e e e s e et s et e et st et s e e Re e e R e en R e R e et s e e et ereennns 6-32

) RO RURUPUPRPRIRINt 6-32
SECNDS ...ttt s e st s ss e sn s sesas s e e st e s R s s e sae st en e seean e b sean seennanen 6-32

TIME ettt et st et sa e et e e e e e et S e R enEnR e e n e n s ar e st s 6-33
MVBITS e e sttt e e s s e s e s s e e e s ame e s st e e s e saae s saaeae st an s easesesnnsssase e snensssansnnnsnnes 6-33

RAN ettt ettt s s e s et s n e s se e et eae neeae S ae R R R R e e et nE e neeresannes 6-34
VAXIVMS INMNSICS weuuiieieiiiiiineitinnst ittt s st st eas s sas s s ss s s st e s s e e sar e nns s snsense e 6-34
UNIX Related System SUDIOUNNESccceciveriinreriersercensenesnsrssensscsseresanssesasssssessesssessssssssmesnessaessess 6-36
GETARG ...ttt ses e s st se s et e esssae st saa s e et s s s s st sadseentnens st s snsasasensansn 6-36

TARGIC ..ot crrer et r s resr e s ce s s e s e sass s st e ses s ae s em e s s an e e s s s mnanassspes s e esssenssnsannssrnnasnessassnnanans 6-36
Additional IntrinSic FUNCUIONS ...ttt sa e ssn e 6-37
VECTOF INTFINSICS ..ot ce et st sr e e s st 6-41
XV

Table of Contents Paragon'" System Fortran Compiler User's Guide
Appendix A |
Compiler Error Messages

Appendix B
Runtime Error Messages

Appendix C

Compiler Internal Structure

SCANNEE ANA PAISEI ...ttt sttt sa e asa s st s ea st s s sss s ass s s asnaen C-3

EXPANAEE ...ttt s st et a st st s s et st s et a st nt e C-3

Optimizer @and VECTOKIZEN ...ttt ss st sass s sss s ss s ssseesass s snaen C-3
Procedure INTEgrationcicciciieni it e s C-3
91 =Y (g F=TIVA=To: (o 2= 1 (Lo IR PSP RRRRRNt C-4
(€1loloT- TN @] 011134172 11 [o] o[-0 O SRS C-4
o To7 L@ o) 1141122 (1 o < T C-4
Flexible Memory UIlZEHONccciiiiieinii it C-5

Scheduler and PIPeliNer ... e ssss st ssenaes C5

XVi

L
b

¥

-

i |

¥

4

E

i

3

4

K

E

H

: B

_—

i

k.

4

s [i

£ |

i

L

S |

|

— [] L] [] |]
i Lo

b

Paragon™ System Fortran Compiler User's Guide Table of Contents
Appendix D
Manual Pages
ARBBO ..ottt s e s SaseaRaeeR e e R e RS e a e e an s D-7
ASBO0 ...oeeeeirise ittt A eSS SR e SR e s R e et e e sRE e s D-9
DL L D-11
L N D-13
L D | PR D-34
D 0N D-35
Y0 2 PSP D-40
INIMBB0.... .. cecrceeite e sere ettt s e e et e e e s e e st s s aas e e s e e et he e eaas s ea et se e b e et e R e e R et eR bRt e aesrae e ns D-41
SIZEBBO ... ceeeeeeeie et e et st s e e et e RS e s aas RaAe e R e R e st ssa b e nannne D-43
STRIPBBO.......oiieiieitemsre et re sttt s s st st s e e s sate st sas s b e et saae s aa b e s e et ab b e saassan b s nneans D-45
Y21 L I | TP D-46
ACCESS() cvvvveeeeerereeemeessseeeemesssesesmseesseesssesessesssesesseasessesssaessemmesesssse s seessessssessesessensesseesssessemmsssseess D-47
I {1) O N D-48
12] L) T D-49
L0 1 1 PSR eeetrerenenas D-51
L0 170 T) P D-62
O 1Y [T PO D-53
9 I N D-55
L X0 1T | T O D-56
o D-62
IV | D-63
) I T D-64
L0 I D-65
L= I | TS D-66
LI 1 D-67
L IR] o)PP N D-68
8 1 T D-69
L U 10 O T D-70
L e TS D-71
Xvii

Table of Contents Paragon™ System Fortran Compiler User's Guide

FSEEK() cvuuuucessrerenssssssssssesssssse et sssssssssssssesssesessesssssssssesesssasssesssesssssssssessesessssssesessassssssssesessnsnses D-72
FTELL() cvuvecurecsesseessesscssssessessessssesssssassssssssassssssssesssesessssassssasssessssessssssassssasssssssssasssssssssesssssssssssses D-73
(eT=1 21210 = 1) J O D-74
(g Y2 1T D-75
GET () evureurerereeeeeeeseesesseeeeassesmmsessesssssesessesessesessaseessesssseeesseseseesesteseaseetssesstasestasessesesseseenssesesasnsssases D-76
GETOWD() .evcuecveercreenesesssssssessassssssssssssssssssssssssssssssssss asessssesas essssses s s s ssss s st esbes s sssesssanssnsas D-77
L =g 1= N1 D-78
GETGID() cvvvereeeeeaceseesessessesssesesssesssssssssssssssssssesssssssssssssssssssassassasessesesssssssssassessessasssesessassassssesssssnsanes D-79
GETLOG() 1 evvueeresrasesnssssssesesssas esssssessassnssessssssesssssssassesssssesssasens D-80
GETPID() cvurvvuemeeessssesssesssessessasssessssssssssssssssssssssssssssesssssssssssssssssssmssssssssassssssssssassasssssessassesssstassasasens D-81
GETUID() cvvvveeeeescesessessesseasssessessassssssssssssessssesssssssssssssssssssassessaseasesesessasssssessesssssasssesessassassrssessassnssees D-82
LT 1Y = T D-83
HOSTINM() cevvucerercteisesesessssssssssssesssssssses s sessssssssassesesssessasssssssssssessnsssssassssassssssessssnesesssssnsssssssassens D-85
TARGC() cvuveeecressresssssssssessssssssessssessssssessss s sessssssesassassssssssesssssessesssssnsssesassssasssessnsassssssssssssnsssssasassnes D-86
10 1 =) YU D-87
IERRNO() .vveveenreacessemssasssssssssssessssssssssssssssassessssssssassassanssssasssssssssesessssssssassssasssassessessssssssssessssessssans D-88
TOINIT() 1ovurevereesssscsessssessssesssssssssssssssssessesessssssesassase s smsssssasseesesssssessessnsasssessessssaresessessnssssassssans D-89
ISATTY () currereeruersssssrsssessssssee s sssssssssssssssasssssssssssssssssns s sassssssssssessesssesessessesssets s sesssssssbessasssssasans D-90
ITIME() cuvveeueereeessesssssssssssssssssessssesasasssessessss s s e s nsb st s s assb s s se st s e s asa s b e et s sasb s s s s sasaspans D-91
KILL() torvueureremscesnsesssssssssacesssssa sensssssessessesssasesesssessessssessasssesessesanesssasesssessassssessssssassasssnsassansassansrssas D-92
LINK()vuvveerersresessessessesssssssssaseass sesesssssesssssssasessssssssssessssssessssnssssssssnssessessssensassasssssassenssessssasssssassassens D-93
LINBLNK() c1vucuvevssesassseessessssssssssesssssssssssesssssessssesssssssssssssssssssssssesssssssassasssssessasssssessasssssassesssssassassons D-94
LOG() wruerernrsmsmssresnsssrsssssssssessssesasssssessessesassssssssssssnsessssesasssssessessesssssessessssassassssssssassssssssansansassassens D-95
LTIME() ovteuecueeseseeessesssessssssssesssessssssesssesesasssssses s st essse s sssssss s sesssesssassessassssssssesssssasssssssastassans D-96
Y o Yo | J O D-98
MVBITS() evuvuceecssscsnsssssssssssssssssssasssssssss s ssssssssssassasease s assssssssessesssssssessnssssssssessessnsssssssssssesssssssans D-99
OUTSTR() +.cvreusreseeressessssscssssesssssssssessssesssssssssesssssssssssssessesssesss st ssssssssassssssssasssssssssssssssesssssssssssnsssas D-100
PERROR() cv.vueveeceecsesssssssssessssssssssssssessssassssssssssassnsss sesssssssssssssssssssssssnsassessssssssssssassossessssnstessssassans D-101
2108 (o3| FE eviesresareesasesasesee s e s eres s s s er e e e e cnme et D-102
PUTENV/() vuvecerreetsaseescsssssssesssssssssssssssssssssssssessssssssssssssesssssassssssssssassessessessasssssassas st snsassassassassens D-103
(0101 1 (| D-104
RAND(). .veterueceeeseesnsssssasssssssssssssssssssssssssse s st enses e ssassss e sasssns s e sasssse st ssssasssse s sssssessnssnssssanes D-105

xviii

ol
"

e
"=

[|

E

il

k|

Paragon™ System Fortran Compiler User's Guide Table of Contents
RANDOM() .t eeeeteierstressecssie st srce st e st st e sesest s s eme st e s e e smme e s heas s st s aee s ae s srmresmen st s s nesenneassbeannesen D-106
RENAME() coiitiietiismeiniieini s sens s s s s st s et s s e s s s e nmas s enns s suas e st ensnmasseansasssnsnssnnns D-107
RINDEX() eeuuteeeeeasieeistneestss e st te e ssaes e sste s s e senss s sn s st e maas s seme st s hear s eae e se e sian s eans sames st e s nesramesamtesanessen D-108
SECNDS () evevereeeereseeremesessessesemssesseesesssessseesssesssessssssseesmmens esessesesssesssmsessnaseseseseesessessssaseesssesessase D-109
SIGINAL()ceueeereetreemsutrieees et e ss e se s see s ese e st e e s e s e seea e sar s s eeeme s bre e sm e e s e s et r e s nn et e e r s b e sraten D-110
SLEEP() cvverreveusseeeeesseesssnesesssessesssesmsssseesasesssseseessesesessess e eesssssessmmesee s seesessesesssesseaseseseasesensesessee D-112
RS 12 I) D-113
STIME() tetrttitte ettt ettt e s e e e s s same e see e e n s assens st e s nt et e eabeseaannannan D-115
SV_ACOS() errrrreeeeeeresseseseemesseeessesesessessessassessessssseeseseesesmssessesesssesssessesesessesesesmassseseseemseeessssenee D-116
SYMLNK() -ereeeereeerreeesteeeseereasesreseneest s e s sseeesesssessanneseessse sesssasessnssansssaesessasssssasnsansesssenssesnsessasnesass D-122
LS} ST I = TN D-123
LI = D-124
LT D-125
TTYNAM() et et re s e e e ec e e se s cresee st s smras s en e s s n e s saes e s amssase et e s esansemtsasanreneseeenssenanan D-126
UNLINK() . cerermiseeiisseiinss it s s s st s ssss s sae s sas s ae s sans s e s seen e s b s e ansameansane D-127
LY D-128

Xix

Table of Contents Paragon™ System Fortran Compiler User's Guide

List of lllustrations

Figure C-1. COMPIIEr SIUCIUTEceceeeececerrceee e s e e e s e s e e e s se e se e sat e sm e e e s s st e s emeeneean C-2
Figure C-2. Parallel Activities of i860™" MICrOPrOCESSOFveereererssesanesnens e e C-6
XX

i

]
Ed

1

=

Lt B
J

E

Paragon’" System Fortran Compiler User's Guide Table of Contents

Table 1-1.

Table 2-1.
Table 2-2.

Table 5-1.
Table 5-2.

Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.

Table D-1.
Table D-2.

List of Tables

Software Development COMMANGScccocvreirieierniermrnr et se e e e s s rne s 1-3
Summary of if77 Driver SWItChESo.vieiiiincii i e 2-2
DireCtive SUMMAIYciiciiiiiieeeitrccsir i stescsnesee s cssee s seesssase st eesseessanasssses ssesessnansnsnen 2-25
Fortran Data Types for Called C FUNCHONScceciieerieriresrrniseircrnssersseeesessssesssnesansssanans 5-2
C Data Types for Called Fortran ROULINESccccceieeeirieririneicsercreectees e ssne e essnesssnsesns 5-3
Data TYPe EXIENSIONSveeeccrminieeiisisrsirscseesssnesssresensessessessssnssassssssssesssessssssssansesssssensses 6-5
Data TYPE RANKS ...coieiiiieceirirnise st n st st s e seat s sm e e s sae s s e e e e namsfme e smt e amn s 6-6
Intrinsics That Support The New Data TYPES ...ccceeceretrrrsmereeseessssessemssesmssesseressessaenas 6-35
Other NEeW INHNSICScvcceirrciiiiirreerierierere s e seecer s e s s s sessasessesssassne s seessasensessnnssananas 6-35
Additional IntrinSiC FUNCHONSccccceiiieriiiiirrrrrn e s resseesssseessseenesnresssnessnesssas e sssseenss 6-37
Vector INtrNSIC FUNCHONScoccicrrec et s sses s sae st s sn s s s s e e s snnsnnnas 6-42
Commands Discussed in This APPENAIXccceeorerrecerrrseraereres s e serenmee e sse e e sreessneeeas D-2
System Calls Discussed in ThisS APPENAIXccceveeeirreierriecerrere et e s et se s see s D-3

XXi

Table of Contents

Paragon™ System Fortran Compiler User's Guide

xxii

i

i

A
sl

A
@ w
‘Mw
"

e

4 b

-

|

L

- EA A A Fod
b

|

b

A

r

1

)

i

| S |

-

| A8

b4 e 8 e 4

4

&

£

sl

b

£

E

i
I3

4

k

g

i] & . i i !

¥

Getting Started

This chapter introduces the software development environment and shows how to create executable
files from Fortran source code.

This chapter contains enough information to get you started using the compiler driver to create
executable files from Fortran source code that conforms to the ANSI Fortran 77 standard. For
information on extensions to the standard language, refer to Chapter 6.

The Software Development Environment

The software development environment consists of a Paragonm system and its supporting software.

System Hardware

A ParagonTM system consists of an ensemble of nodes connected by a high-speed internal network.
Each node contains one or more i860 processors and 16M bytes or more of memory. Each node’s
memory is directly accessible only to that node; nodes share information with other nodes by passing
messages over the network. All nodes run the operating system. Multiple processes can run on each
node, and each process can have multiple threads (also known as lightweight processes).

The nodes appear to the programmer and user to be a single system. For example, every process has
a different process ID from any other process running anywhere in the system, no matter what node
the processes are running on. In addition, all nodes share a single file system and have equal access
to the system’s I/O facilities.

The nodes of the system are divided into a service partition and a compute partition. The compute
partition may be subdivided into smaller pattitions.

1-1

Getting Started Paragon" System Fortran Compiler User's Guide

« Nodes in the service partition run a variety of system services, such as user shells, editors, and
compilers. Programs run in the service partition consist of single, independent processes.

» Nodes in the compute partition run parallel applications—user-written programs that consist of
groups of cooperating processes. All the processes in a single application run in the same
compute partition; they may or may not use all the processors in the partition.

See the ParagonTM System User’s Guide for more information about partitions and applications.

System Software

The system software is a complete implementation of the OSF/1 operating system. It includes all the

calls and commands of OSF/1, plus extensions for parallel programming.

» For information on the standard OSF/1 calls and commands, see the OSF/1 User’s Guide,
OSF/1 Command Reference, and OSF/1 Programmer’s Reference.

+ For information on the parallel extensions, see the Paragon™ System User’s Guide, Paragon™
System Commands Reference Manual, and ParagonTM System Fortran Calls Reference Manual.

Software Development Environments

The operating system includes a complete set of commands for compiling, linking, executing, and

debugging parallel applications. These commands are available in two different software

development environments:

e The cross-development environment runs both on the Paragon system and on supported
workstations.

» The native development environment runs only on the Paragon system itself.

1-2

|

Getting Started

Table 1-1 lists the commands in the two software development environments.

Table 1-1. Software Development Commands

Name in Name in
Cross-Development Native
Environment Environment Description
ar860 ar Manages object code libraries
as860 as Assembles i860"" source code
dump860 dump860 Dumps object files
if77 77 Compiles Fortran programs
ifixlib ifixlib Updates inliner library directories.
1d860 Id Links object files
mac860 mac Preprocesses assembly-language programs
nm860 nm Displays symbol table (name list) information
size860 size Displays section sizes of object files
strip860 strip Strips symbol information from object files

With minor exceptions, these commands work the same in both environments and on all supported
hardware platforms. The biggest difference between the two environments is the names of the
commands, as shown in Table 1-1 For convenience, the cross development name is also supported
in the native environment. Where other differences exist, they are noted in Appendix D.

NOTE

This manual uses the cross-development names for these
commands. However, except where noted, all discussions of the
cross-development command names apply equally to the
corresponding native command names.

This manual gives complete information on the compiler and provides manual pages for the other
commands shown in Table 1-1 The Paragon system also provides a symbolic debugger, parallel
performance analyzer, and other software tools; for information on these tools, see the Paragon™
System Application Tools User’s Guide.

1-3

Getting Started

14

Paragon™ System Foriran Compiler User's Guide

Compiler Driver

The Fortran driver provides an interface to the compiler, assembler, and linker that makes it easy to
produce executable files from Fortran source code. For example:

« It automatically sets appropriate compiler, assembler, and linker switches.

« Itlets you pass switches directly to the assembler and linker. All functionality of the as860
assembler and 10860 linker is available through the driver.

« Itlets you stop after the preprocessor, compiler, assembler, or linker steps.

« Itlets you retain intermediate files.

The driver creates an executable file for execution on a Paragon system node.

The if77 command invokes the Fortran driver. For example, the following command line compiles,
assembles, and links the Fortran source code in the file myprog.f (using the default driver switches)
and leaves an executable version of the program in the file a.out:

% if77 myprog.f

Chapter 2 describes the if77 driver in detail, and Appendix D contains a manual page for if77.

NOTE

You can invoke the assembler and linker directly (as indicated in
the next two sections). However, if you do so, you must explicitly .
specify switches, libraries, and other information that is provided
automatically by the driver. Therefore, such usage is
recommended for advanced users only.

860" Assembler

The as860 command invokes the 1860 assembler to assemble the output of the compiler. For
example, the following command line assembles the file myprog.s and leaves the resulting object
code in the file myprog.o:

% as860 myprog.s

For more information on using the i860 assembler, refer to the as860 manual page in Appendix D.

+

M“"’?
A
L
LW

I

y -

Py

v -
-

W",

ud

.

Ll

.
d.

"

-l

¥ ﬂ

B8

g

E

El

€

B

<
5

i

4
3

i

1 P 3

i

i

E

A

3 B i] ¢ I | £ .

B

Paragon™ System Fortran Compiler User's Guide Getting Started

. ™ .

i860 Linker

The 1d860 command invokes the i860 linker to link the output of the as860 assembler. For example,
the following command line links the file myprog.o with the library mylib.a and leaves the resulting
executable in the file a.out:

% 1d860 myprog.o mylib.a

For more information on using the i860 linker, refer to the 1d860 manual page in Appendix D.

Execution Environments

The software tools can create executable files for execution on one node or multiple nodes.

Running on a Single Node

By default, the if77 driver creates a file for execution on a single node. For example, the following
command line compiles myprog.fto the executable a.out:

% if77 myprog.f

When you run the resulting executable by typing a.out on the Paragon system, it runs on one node
in the service partition.

Running on Multiple Nodes

To run a program on multiple nodes, you must use calls from the library libnx.a. This library contains
the calls that you use to start processes on multiple nodes and communicate with processes running
on other nodes. (All of the calls in libnx.a are described in the ParagonTM System Fortran Calls
Reference Manual.)

The if77 driver does not automatically search libnx.a. To search libnx.a, you can use either the -nx
or -Inx switch when linking:

» The-nx switchlinks inlibnx.a, libmach.a, and options/autoinit.o, and creates an executable that
automatically starts itself on multiple nodes when invoked. For example, the following
command line compiles myprog.fto the executable a.out:

% if77 -nx myprog.f

»
Getting Started Paragon™ System Fortran Compiler User's Guide Kj

m
‘When you run the resulting executable by typing a.out on the Paragon system, it runs on all the h -
nodes in your default partition. You can use the command line switches and environment -
variables described in the Paragon™ System User’s Guide to control its execution v
characteristics. 4.
For compatibility with the iPSC system, the -node switch is equivalent to -nx. For example, the l ”1 :
following command is equivalent to the previous command: L
% if77 -node myprog.f ﬁw
However, continued support for this switch is not guaranteed. .
¢ The -Inx switch links in /ibnx.a, but you should use the -nx switch if your program is going to W
run on multiple nodes. For example, the following command line compiles myprog.fto the .
executable a.out: E i
% 1if77 myprog.f -1lnx v~
Note that -Inx must appear after the filenames of any source or object files that use calls from L
libnx.a. _
v
'
Debugging -
To debug programs, use the Interactive Parallel Debugger (IPD). IPD can debug any program that a
runs on the Paragon system. e
To compile an application for debugging, use the -g compile-time switch. The -g switchis equivalent .=
to the following switches: r’ -
-00 Do not optimize code. s
-Mdebug Include symbol table and line table information. g |
-Mframe Include stack frame traceback information.

4

If you do not use the -g switch you can still debug the program, but debugging will be limited. For
example, at optimization levels higher than 0, access to individual source lines will be decreased,
and display or modification of variables and registers will probably have unpredictable results. In
addition, without stack frame traceback information turned on, the information displayed by the
debugger for a stack traceback will be incomplete.

4

t

For more information on using the Interactive Parallel Debugger, refer to the Paragon™" System
Interactive Parallel Debugger Reference Manual and the ParagonTM System Application Tools
User’s Guide.

ﬁﬁafaﬁa
L4

&

L

LA | S |

E]

E

4

E

il

ad

L L [

Wi ——
£

i

£l & #

t

Paragon™ System Fortran Compiler User's Guide Getting Started

Example Driver Command Lines

The following example command lines show how to use the if77 driver to perform typical tasks:

Compile and link for a single node, leaving the executable in a file called x:
% if77 -o x x.f
Compile and link for multiple nodes with automatic start-up:
§ if77 -nx -o x x.f
Compile and link in libnx.a.
% if77 -o x x.f -1Inx
Compile, but skip assemble and link steps (-S); leaves assembly language output in file x.s:
% if77 -S x.f
Compile and assemble, but skip link step (-c); leaves object output in file x.o:
% if77 -c x.f

Compile and assemble with optimizations:

% if77 -¢c -02 x.f (level 2 - global optimizations only)
& if77 -c¢ -03 x.f (level 3 - adds software pipelining)
& if77 -c¢ -03 -Mvect x.f (level 3 optimizations plus vectorization)

See Chapter 3 for more information on optimization.

]
Getting Started Paragon™ System Foriran Compiler User's Guide : {ﬂ

i

r
o

A

4

e Ea
B

B
R T

k.

o

&

Ea s a4
Job

b

4

e |
b

D
1-8 &

.

T B

E

B

1

E

k]

|

4

1 ©

L I |

4

§

H

i

S e

4

K

[

I

The if77 Driver

This chapter describes if77, the driver for compiling, assembling, and linking Fortran source code
for execution on the ParagonTM system.

The following sections tell how to invoke if77 and how to control its inputs, processing, and outputs.

Invoking the Driver

The if77 driver is invoked by the following command line:

if77 [switches] source_file...

where:
switches Is zero or more of the command line switches listed in Table 2-1. Note that
case is significant in switch names.
source_file Is the name of the file that you want to process. if77 bases its processing on

the suffixes of the files it is passed:

file.F is considered to be a Fortran program with
preprocessor directives. It is preprocessed, compiled
and assembled. The resulting object file is placed in
the current directory.

The Fortran preprocessor is similar to the standard
UNIX preprocessor cpp. See The C Programming
Language by Kernighan and Ritchie for information
on the preprocessor control directives used by this
Preprocessor.

The if77 Driver

filef

file.s

file.o

file.a

file.c

Paragon™ System Fortran Compiler User's Guide

is considered to be a Fortran program. It is compiled
and assembled. The resulting object file is placed in
the current directory.

is considered to be an i860 assembly language file. It
is assembled and the resulting object file is placed in
the current directory.

is considered to be an object file. It is passed directly
to the linker if linking is requested.

is considered to be an ar library. It is passed directly to
the linker if linking is requested.

is considered to be a C program. It is passed to the C
compiler.

All other files are taken as object files and passed to the linker (if linking is
requested) with a warning message. If a file’s suffix does not match its actual
contents, unexpected results may occur.

Table 2-1. Summary of if77 Driver Switches (1 of 2)

Switch

Description

-C

Skip link step; compile and assemble only (to file.o for each file.f).

-Dname[=def]

Define preprocessor symbol name to be def.

-E

Preprocess each file.F to stdout.

-F

Preprocess each file.F to filef.

2

Synonymous with -Mdebug -O0 -Mframe.

-Idirectory

Add directory to include file search path.

-Koption

Request special mathematical semantics (ieee, ieee=enable, ieee=strict,
noieee, trap=fp, trap=align).

llibrary

Load liblibrary.a from library search path (passed to the linker).

-Ldirectory

Add directory to library search path (passed to the linker).

~-m

Gernerate a link map (passed to the linker).

2-2

l1
&

£ %

—
[S |

3

*‘f

L

E

]

E

_#

b

{

L4

E|

S |

4

: (IR | £

i

t

4

Bl wrBay e Bl oSy

Paragon™ System Fortran Compiler User's Guide

The if77 Driver

Table 2-1. Summary of if77 Driver Switches (2 of 2)

Switch Description

-Moption Request special compiler actions (alpha, anno, beta, [no]bounds, clr_reg,
cray, concur, cncall, cpp860, [nojdclchk, [no]ldebug, [no]depchk,
[no]dlines, dollar, extend, extract, [no]frame, [no]i4, info, inline, keepasm,
[no]list, [no]longbranch, neginfo, noansi, nostartup, nostdinc, nostdlib,
onetrip, [no]perfmon, [no]quad, [no]r8, [nojr8intrinsics, [no]recursive,
[noJreentrant, reloc_libs, safealloc, [no]save, [no]signextend,
[no]split_loop_ops, [no]split_loop_refs, standard, [no]streamall,
[no]stride0, [noJunixlogical, [nolunroll, [noJupcase, vect, [no]vintr,
[no]xp).

-nostdinc Remove the default include directory from the include files search path.

-nx Create executable application for multiple nodes.

-ofile Use file as name of output file.

-Ollevel] Set optimization level (0,1, 2, 3, 4).

-r Gererate a relinkable object file (passed to the linker).

-S Skip assemble and link step; compile only (to file.s for each file.f or file.F).

-S Strip symbol table information (passed to the linker).

-Uname Remove initial definition of name in preprocessor.

-V Print the entire command line for assembler, linker, etc. as each is invoked in
verbose mode.

-V Print the version banner for assembler, linker, etc. as each is invoked.

-VV Displays the driver version number and the location of the online release notes,

but performs no compilation.

-Wpass,option[,option...]

Pass options to pass (0, a, I).

-Ypass.directory

Look in directory for pass (0, a,1, S, I, L, U, P).

The rest of this chapter discusses these switches in more detail.

NOTE

The switches that discuss loop parallelization are available only
with the Paragon System MP product.

The if77 Driver

Paragon™ System Fortran Compiler Users Guide

Controlling the Driver

The following switches let you control how the driver processes its inputs:

-W

Y

-E

-F

-S

-C

-D

-U

Pass specified options to specified tool.

Look in specified directory for specified tool.

Skip compile, assemble, and link step; preprocess only (output to stdout).
Skip compile, assemble, and link step; preprocess only (output to file.f).

Skip assemble and link step; compile only (output to file.s).

Skip link step; compile and assemble only (output to file.0).

Define (create) preprocessor macro.

Undefine (remove) preprocessor macro.

Specific Passes and Options

The following switch lets you pass options to specific passes (tools):

-Wpass,option[,option...]

where:

pass

option

2-4

Is one of the following:

0 (zero) Compiler.
a Assembler.
1 Linker.

Is a comma-delimited string that is passed as a separate argument.

e A A A B
B

M
|
"

L3

I

4

b

a

K]

Paragon™ System Fortran Compiler User's Guide The if77 Driver

The following switch lets you tell the driver where to look for a specific pass:
-Ypass,directory

where pass is one of the following:

0 (zero) Search for the compiler executable in directory.

a Search for the assembler executable in direcrory.

1 Search for the linker executable in directory.

S Search for the start-up object files in directory.

I Set the compiler’s standard include directory to directory.

L Set the first directory in the linker’s library search path to directory (passes
-YLdirectory to the linker).

U Set the second directory in the linker’s library search path to directory (passes
-YUdirectory to the linker).

| Set the linker’s entire library search path to directory (passes -YPdirectory to
the linker).

See the if77 manual page in Appendix D for the defaults for these directories; see the 1d860 manual
page in Appendix D for more information on the -YL, -YU, and -YP switches.

Preprocess Only

By default, the driver preprocesses, compiles, assembles, and links each file.F. However, the
following switches suppress the compile, assemble, and link steps:

-E After preprocessing each file.F, send the result to standard output (stdout).
-F After preprocessing each file.F, send the result to a file named file.f.

Note that these switches have meaning only for files with the uppercase “.F” suffix.

The if77 Driver Paragon™ System Foriran Compiler User's Guide i

oo

l ki
A
'™
-
Yl
Preprocess and Compile Only “
" T
By default, the driver preprocesses, compiles, assembles, and links each file.F and compiles, \‘ M‘
assembles, and links each file.f. However, the following switch tells the driver to suppress the
assemble and link steps and produce an assembler source file: -
-s
After compiling each file.F or file.f, the assembler source file is sent to a file named file.s. b 2
. w -
Preprocess, Compile, and Assemble Only L
By default, the driver preprocesses, compiles, assembles, and links each file.F and compiles, v
assembles, and links each file.f. However, the following switch tells the driver to suppress the link -
step:
. m
-c 4.
After assembling each file.F or file.f, the output is sent to a file named file.o. If you are compiling a v
single source file, you can specify a different output file name with the -0 switch. "
"
Add and Remove Preprocessor Macros a
The following command line switches let you predefine preprocessor macros and undefine Mo
predefined preprocessor macros: a
-Dname[=def] Define name to be def in the preprocessor. If defis missing, it is assumed to w
be empty. If the “=" sign is missing, then name is defined to be the string 1 .
(one).
"
-Uname Remove any initial definition of name in the preprocessor. ! al
Because all -D switches are processed before all -U switches, the -U switch overrides the -D switch. Y
The -U switch affects only preprocessor macros defined with the -D switch, not macros defined in A .
source files. The only macro predefined by the preprocessoritselfis __LINE__, whose value is the
current source ﬁle line number, and it cannot be undefined with -U. l 7
Note that these switches have meaning only for files with the uppercase “.F” suffix.

I

iy
)

»
&

l%
"y

e

——
L |

4

€

£oa £

4

9

£

I

£

i

t

S R

#

3

4

4

B

E4

E o4

_—
rl

-

Paragon™ System Fortran Compiler User's Guide The if77 Driver

Controlling the Compilation Step

The following switches let you control the compilation step:

-Moption

I

Specific Actions

Request special compiler actions.
Add a directory to include file search path.
Set the optimization level.

Include symbolic debug information in the output file (synonymous with
-Mdebug -O0 -Mframe).

The following command line switch lets you request specific actions from the compiler:

-Moption

where option is one of the following (an unrecognized -M option is passed directly to the compiler,
which often removes the need for the -W0 switch):

alpha

anno

beta

[no]bounds

clr_reg

Activate alpha-release compiler features.

Produce annotated assembly files, where source code is intermixed with
assembly language. -Mkeepasm or -S should be used as well.

Activate beta-release compiler features.

[Don’t] enable array bounds checking (default -Mnobounds). With
-Mbounds enabled, bounds checking is not applied to subscripted pointers or
to externally-declared arrays whose dimensions are zero (extern arr]]).
Bounds checking is not applied to an argument even if it is declared as an
array. If an array bounds checking violation occurs when a program is
executed, an error message describing where the error occurred is printed and
the program terminates. The text of the error message includes the name of
the array, where the error occurred (the source file and line number in the
source), and the value, upper bound, and dimension of the out-of-bounds
subscript. The name of the array is not included if the subscripting is applied
to a pointer.

Clear the internal registers after every procedure invocation. This option is
used for diagnostic purposes.

2-7

The if77 Driver

2-8

Paragon™ System Fortran Compiler User's Guide

concur=[option|,option...]]

cpp860

cncall

Make loops parallel as defined by the specified options. option can be any of
the following:

altcode:count ~ Make innermost loops without reduction parallel only
if their iteration count exceeds count. Without this
switch, the compiler assumes a default count of 100.

altcode_reduction:count
Make innermost loops with reduction parallel only if
their iteration count exceeds count. Without this
switch, the compiler assumes a default count of 200.

dist:block Make the outermost valid loop parallel. This is the
default option.
dist:cyclic Make the outermost valid loop in any loop nest

parallel. If an innermost loop is made parallel, its
iterations are allocated to processors cyclically. That
is, processor O performs iterations 0, 3, 6, ...; processor
1 performs iterations 1, 4, 7, ...; and processor 2
performs iterations 2, 5, 8, and so on.

global_vcache Directs the vectorizer to locate the cache within the
area of an external array when generating codes for
parallel loops. By default, the cache is located on the
stack for parallel loops.

noassoc Do not make loops with reductions parallel. This is the
same as -Mvect=noassoc.

Direct the internal preprocessor to not compress white space.

Make loops with calls parallel. By default, the compiler does not make loops
with calls parallel since there is no way for the compiler to verify that the
called routines are safe to execute in parallel. When you specify -Mcncall on
the command line, the compiler also automatically specifies -Mreentrant.
-Mcncall also allows several other types of loops to be made parallel:

e loops with I/O statements

» loops with conditional statements

» loops with low loop counts

+ non-vectorizable loops

If the compiler can detect a cross-iteration dependency in a loop, it will not
make the loop parallel, even if -Mcncall is specified.

'F"
-

B
x|

A

¥

E

] b

b

.

=

E

A

-

=—a
G

-y
v oo

L |

oA I

¥

4

#

#

¥

[O |

4

&

3

0% v 3 e

¢

1

2

#

[

4

-3

B o i 4 5

wlw

Paragon™ System Fortran Compiler User's Guide The if77 Driver

cray
[no]dclchk

[no]debug

[no]depchk

[no]dlines

dollar,char

extend

Enable Cray compatibility mode for various options.
[Don’t] require that all variables be declared (default -Mnodclchk).

[Don’t] generate symbolic debug information (default -Mnodebug). If
-Mdebug is specified with an optimization level greater than zero, line
numbers will not be generated for all program statements. -Mdebug increases
the object file size.

[Don’t] check for potential data dependencies (default -Mdepchk).
-Mnodepchk is especially useful in disambiguating unknown data
dependencies arising from use of array subscripts that cannot be derived at
compile time. For example, if an array is referenced in a loop using the
induction variable plus some other unknown non-induction-based variable as
a subscript, the compiler must assume that the array conflicts with a similar
array reference based on the induction variable alone. If it is known that the
two array references do not conflict, then this switch may resultin better code.
Do not use this switch if such data dependencies do exist, because incorrect
code may result.

[Don’t] treat lines beginning with D in column 1 as executable statements,
ignoring the D (default -Mnodlines).

Specify char as the character to which the compiler maps the dollar sign. The
compiler allows the dollar sign in names.

Allow 132-column source lines (normally only 72 columns are allowed).

extract=[option|,option...]]

Pass options to the subprogram extractor (see the inline option for more
information). The options are:

[name:]subprogram
Extract the specified subprogram. name: must be used
if the subprogram name contains a period.

[size:lnumber Extract subprograms containing less than
approximately number statements.

If both number(s) and subprogram(s) are specified, then subprograms
matching the given name(s) or meeting the size requirements are extracted.

The -ofile switch must be used with -Mextract to tell the compiler where to
place the extracted subprograms. The name of the specified file must contain
a period.

There are some restrictions on the types of subprograms that can be extracted.

See Chapter 4 for these restrictions and other information on using the
compiler’s subprogram extractor.

29

The if77 Driver Paragon™ System Fortran Compiler User's Guide
[no]frame [Don’t] include the frame pointer (default -Mnoframe). Using -Mnoframe
can improve execution time and decrease code, but makes it impossible to get
a call stack traceback when using a debugger.
[noli4 [Don’t] treat integer as integer*4 (default -Mid4). -Mnoi4 treats integer as
integer*2.
info=[option|,option...]]
Produce useful information on the standard error output. The options are:
time or stat Output compilation statistics.
loop Output information about loops. This includes
information about vectorization, software pipelining,
and parallelization.
concur Same as -Minfo=loop.
inline Output information about subprograms extracted and
inlined.
cycles or block or size
Output block size in cycles. Useful for comparing
various optimization levels against each other. The
cycle count produced is the compiler's static estimate
of freeze-free cycles for the block.
ili Output intermediate language as comments in
assembly file.
all All of the above.
inline=[option[,option...]1]
Pass options to the subprogram inliner. The options are:
[lib:]library Inline subprograms in the specified inliner library
(produced by -Mextract). If lib: is not used, the
library name must contain a period. If no library is
specified, subprograms are extracted from a temporary
library created during an extract prepass.
[mame:]subprogram
' Inline the specified subprogram. If name: is not used,
the subprogram name must not contain a period.
[size:Jnumber Inline subprograms containing less than
approximately number statements.
levels:number Perform number levels of inlining (default 1).
2-10

|
i

r
ol

m

E

2
i

g a =
e 3

E A
4 oo

B
|4

3

E

3

E

a4 pa B
E

-
[S

=
[

B

=
E A

A |

E]

E] [] [

&

E]

E

+

p—
; 4

Paragon System Fortran Compiler User's Guide The if77 Driver

iomutex

keepasm

list[=name]

nolist

[no]longbranch

neginfo=concur

noansi

nostartup

nostdinc

nostdlib

onetrip

If both number(s) and subprogram(s) are specified, then subprograms
matching the given name(s) or meeting the size requirements are inlined.

There are some restrictions on the types of subprograms that can be inlined.
See Chapter 4 for these restrictions and other information on using the
compiler’s subprogram extractor.

Place critical sections around I/O statements.

Keep the assembly file for each Fortran source file, but continue to assemble
and link the program. This is mainly used in compiler performance analysis
and debugging.

Create a source listing in the file name. If name is not specified, the listing file
has the same name as the source file except that the “.£” suffix is replaced by
a “Ist” suffix. If name is specified, the listing file has that name; no extension
is appended.

Don't create a listing file (this is the default).
[Don’t] allow compiler to generate bte and btne instructions (default

-Mlongbranch). -Mnolongbranch should be used only if an assembly error
occurs.

Print information for each countable loop that is not made parallel stating why
the loop was not made parallel.
Allow multiple implicit statements.

Don’t link the usual start-up routines (cr#0.0 and ifinain.o), which contain the
entry point for the program.

Remove the default include directory (/usr/include for £77,
$(PARAGON_XDEYV)lparagonlinclude forif77) from the include files search
path (the list of directories searched for files referenced by include
statements, such as fix.h).

Don’t link the standard libraries (libpm.o, guard.o, libf.a, libm.a, libc.a,
iclib.a, and libmach3.a) when linking a program.

Force each do loop to be iterated at least once (for compatibility with
Fortran 66).

2-11

The if77 Driver

[no]perfmon

[no]quad

[nolr8

[no]r8intrinsics

[no]Jrecursive

[no]reentrant

reloc_libs

[no]save

2-12

Paragon™ System Fortran Compiler User's Guide

[Don’t] link the performance mrgnitoring module (libpm.o) (default
-Mperfmon). See the Paragon = System Application Tools User’s Guide for
information on performance monitoring.

[Don’t] force top-level objects (such as local arrays) of size greater than or
equal to 16 bytes to be quad-aligned (default -Mquad). Note that -Mquad
does not affect items within a top-level object; such items are quad-aligned
only if appropriate padding is inserted. Common blocks are always
quad-aligned.

[Don’t] treat real as double precision and real constants as double precision
constants (default -Mnor8).

[Don’t] treat intrinsics as follows (default -Mnor8intrinsics):
cmplx as demplx
real as dble
alog as dlog
alog10 as dlog10
amax1 as dmax1
aminl as dminl
amod as dmod
csqrt as cdsqrt
clog as cdlog
cexp as cdexp
csin as cdsin
ccos as cdcos

[Don’t] allocate local variables on the stack, thus allowing recursion (default
-Mnorecursive). SAVE(, data-initialized, or namelist members are always
allocated statically, regardless of the setting of this switch.

[Don’t] generate reentrant code (default -Mnoreentrant). -Mreentrant
disables certain optimizations that can improve performance but may result
in code that is not reentrant. Even with -Mreentrant, the code may still not
be reentrant if it is improperly written (for example, if it declares static
variables).

Causes -1 switches that appear before source or object file names on the
compiler command line to appear after these file names on the Id command
line. :

[Don’t] allocate all local data in static locations instead of on the stack
(default -Msave). The effect is similar to using the save statement for all local
variables. Recursion is not allowed with this switch in effect. -Msave may
allow some older Fortran programs to run, but may decrease performance.

S

4

£a sa
1

= e
SIS T S S

4

b

|

i
-

4 & A

b

k|

#

sk

|

e

| | W L] —— —— —— ——] —_
. E .)

i

ey e ey
4 H &

Paragon™ System Fortran Compiler User's Guide The if77 Driver

[nolsignextend [Don’t] sign-extend the result of a conversion of a signed integer to a smaller
signed type (default -Mnosignextend). For example, if -Msignextend is in
effect and an integer*4 containing the value 65535 is converted to an
integer*2, the value of the integer*2 will be -1. This option is provided for
compatibility with other compilers. -Msignextend will decrease
performance.

split_loop_ops=n
Set a threshold of n floating-point operations within a 1oop. Innermost loops
whose number of floating-point operations exceeds #n are split. Each
floating-point operation counts as two. The default for » is 40 when -Mvect
is used.

nosplit_loop_ops
Do not split loops when the floating-point operation threshold is exceeded.
When -Mvect is specified, innermost loops whose number of floating point
operations exceed 40 are split by default. This switch turns the default off.

split_loop_refs=n
Set a threshold of n array element loads and stores within a loop. Innermost
loops whose number of loads and stores exceeds n are split. The default forn
is 20 when -Mvect is used

nosplit_loop_refs
Do not split loops when the array element loads and stores threshold is
exceeded. When -Mvect is specified, innermost loops whose number of array
element loads and stores exceeds 20 are split by default. This switch turns the
default off. 4

standard Flag non-ANSI-Fortran77 usage.

[no]streamall [Don’t] stream all vectors to and from cache in a vector loop (default
-Mstreamall). When -Mnostreamall is in effect, the compiler chooses one
vector to come directly from or go directly to main memory, without being
streamed into or out of cache.

[no]stride0 [Don’t] inhibit certain optimizations and allow for stride O array references.
-Mstride0 may degrade performance, and should only be used if zero stride
induction variables are possible. (default -Mnostride0).

unixlogical Set the value of a logical expression to one if the result is TRUE..

2-13

The if77 Driver Paragon™ System Fortran Gompiler User’s Guide

unroll[=option [,option ...]]
Invoke the loop unroller and set the optimization level to 2 if it is set to less
than 2. option is one of the following:

cim ’ Completely unroll loops with a constant loop count
less than or equal to m. If m is not supplied, the default
value is 4.

n:u Unroll loops that are not completely unrolled or have

anon-constant loop count « times. If u is not supplied,
the unroller computes the number of times a loop is
unrolled. '

nounroll Do not unroll loops.

[noJupcase [Don’t] preserve case in names (default -Mnoupcase). -Mnoupcase causes
all names to be converted to lower case. Note that, if -Mupcase is used, then
variable name Q is different than variable name ¢, and keywords must be in
lower case.

vect[=option|[,option...]]
Perform vectorization (also enables -Mvintr). If no options are specified,
then all vector optimizations are enabled. Note that -Mvect causes -00, -O1
optimization levels to be prevented; -O2 is the default while -O3 and -O4 are
supported. The available options are:

altcode([:number]
Produce non-vectorized code to be executed if the loop
count is less than or equal to number. Otherwise
execute vectorized code. The default value for number

is 10.
noaltcode Generate no non-vectorized alternate code.
cachesize:number

This sets the size of the portion of the cache used by
the vectorizer to number bytes. Number must be a
multiple of 16, and less than the cache size of the
microprocessor (16384 for the i860 XP, 8192 for the
i860 XR). In most cases the best results occur when
number is set to 4096, which is the default (for both
MiCroprocessors).

noassoc When scalar reductions are present (for example, dot

product), and loop unrolling is turned on, the compiler
may change the order of operations so that it can

2-14

"
i

-
el

Wl
A

N‘”’W
"

]

v
.

™
o

Rl

.
"
ﬁ il
-
u b

L
L

S |

[|

3

4

4

{ k|

-

Paragon™ System Fortran Compiler User's Guide

[no]vintr

[nolxp

recog

The if77 Driver

generate better code. This transformation can change
the result of the computation due to round-off error.
The use of noassoc prevents this transformation.

Recognize certain loops as simple vector loops and
call a special routine.

smallvect[:number]

streamlim:n

transform

This option allows the vectorizer to assume that the
maximum vector length is no greater than number.
number must be a multiple of 10, If number is not
specified, the value 100 is used. This option allows the
vectorizer to avoid stripmining in cases where it
cannot determine the maximum vector length. In
doubly-nested, non-perfectly nested loops this option
can allow invariant vector motion that would not
otherwise have been possible. Incorrect code may
result if this optionis used, if a vector takes onalength
greater than specified.

This sets a limit for application of the vectorizer data
streaming optimization. If data streaming requires
cache vectors of length less than », the optimization is
not performed. Other vectorizer optimizations are still
performed. The data streaming optimization has a high
overhead compared to other loop optimizations, and
can be counter-productive when used for short vectors.
The n specifier is not optional. The default limit is 32
elements if streamlim is not used.

Perform high-level transformations such as loop
splitting and loop interchanging. This is normally not
useful without -Mvect=recog.

-Mvect with no options means the following:
-Mvect=recog,transform,cachesize:4096,altcode:10.

[Don’t] perform recognition of vector intrinsics (default -Mmnovintr, unless

-Mvect is used).

[Don’t] use i860 XP microprocessor features (default -Mxp). See the i860™
64-Bit Microprocessor Family Programmer’s Reference Manual for
information on the differences between the i860 XP microprocessor and the
original i860 XR microprocessor.

2-16

The if77 Driver / Paragon™ System Fortran Compiler User's Guide

Location of Include Files

The following command line switch lets you add a specified directory to the compiler’s search path
for include files:

-Idirectory

where directory is the pathname of the directory to be added. If you use more than one -I switch, the
specified directories are searched in the order they were specified (left to right).

The INCLUDE statement directs the compiler to begin reading from another file. The compiler uses
two rules to locate the specified file. Note that the Fortran INCLUDE statement is different from
the #include statement, whcih uses the C preprocessor.

1. If the filename specified in the INCLUDE statement includes a pathname, the compiler begins
reading from the file it specifies.

2. If no pathname is provided in the INCLUDE statement, the compiler searches for the file in the
following order:

» any directories specified with -1
» the directory containing the source file

« the current directory

Optimization Level
The following command line switch lets you set the optimization level explicitly:
-O[level]
where level is one of the following:

0 A basic block is generated for each Fortran statement. No scheduling is done
between statements. No global optimizations are performed.

1 Scheduling within extended basic blocks is performed. Some register
allocation is performed. No global optimizations are performed.

2 All level 1 optimizations are performed. In addition, traditional scalar

optimizations such as induction recognition and loop invariant motion are
performed by the global optimizer.

2-16

m‘”\

E 3
B i

Ea ma
&

B

=
)

.

.

4

£

4

il Sa & a

L

1

B

i

el

e oo [[

E

4

-

il

Paragon™ System Fortran Compiler User's Guide The if77 Driver
3 All level 2 optimizations are performed. In addition, software pipelining is
performed.
4 All level 3 optimizations are performed, but with more aggressive register

allocation for software pipelined loops. In addition, code for pipelined loops
is scheduled several ways, with the best way selected for the assembly file.

If -0 is used without a level, the optimization level is set to 2. If you do not use the -O switch, the
default optimization level is 1.

NOTE

When compiling an application for debugging, you will get the best
results using -00.

If you prefer optimized code to “debuggability,” use -02. See Chapter 3 for information on
additional compiler optimization features.

Generating Debug Information

To compile for debugging you should use the -g compiler switch. The -g switch is equivalent to
-Mdebug -Mframe -O0. These switches have the following effects:

-Mdebug Generate symbol and line number information.

-Mframe Generate stack frames on function calls. (Default -Mnoframe.) Debugging
code without stack frames generated on function calls will result in stack
tracebacks that have missing calls when you use the frame command.

-00 Optimization off. If you do not turn optimization off, access to individual
source lines will be decreased, and display or modification of variables and
registers will probably have unpredictable results.

You can debug programs not compiled for debugging, but your ability to debug will be very limited.
The debugging information generated by -g increases the object file size.

Note that -Mvect causes the compiler to ignore optimization levels less than 2. For example, -g
-Muvect is the same as -g -Mvect -02. Optimization cannot be turned off when+ -Mvect is used.

Controlling the Link Step

The following switches let you control the link step (they are all passed directly to the linker):

2-17

The if77 Driver Paragon™ System Fortran Compiler User's Guide
-S Strip symbol table information.
-r Generate a relinkable object file.
-m Produce a link map.
-L Change the default library search path.
-1 Load a specific library.
Stripping Symbols

The following command line switch strips all symbols from the output object file:
-S

This results in a smaller object file, but makes it more difficult to debug.

Generating a Relinkable Object File
The following command line switch generates a relinkable object file:
-r

When you use the -r switch, the linker keeps internal symbol information in the resulting object file.
This lets you link the object file together with other object files later.

Producing a Link Map
The following command line switch produces a link map on the standard output:
-m

The link map lists the start address of each section in the object file. To get more information about
the object file, use the dump860 command.

Linker Libraries
The following switch adds a directory to the head of the linker’s library search path:
-Ldirectory

where directory is the pathname of a directory that the linker searches for libraries. The linker
searches directory first (before the default path and before any previously specified -L paths).

2-18

M{

"

L

e
—

| = | o |
b

- a
Eod

k|

[

a3 =
| S

| S|

.4

B4 &

4
3

4

A

lm
&

I |

3

B

B [|

E

E.

4

E

4

[o4

|

4

4

E]

£

g4

il

Paragon™ System Fortran Compiler User's Guide The if77 Driver

The following switch tells the linker to use a specific linker library:

-llibrary

The linker loads the library liblibrary.a from the first library directory in the library search path in
which a file of that name is encountered.

See the 1d860 manual page in Appendix D for more information on the linker’s library search path.

Controlling Mathematical Semantics

The following command line switch lets you request special mathematical semantics from the

compiler and linker:

~-Koption

where option is one of the following:

ieee

ieee=enable

ieee=strict

noieee

If used while linking, links in a math library that conforms with the IEEE 754
standard.

If used while compiling, tells the compiler to perform real and double
precision divides in conformance with the IEEE 754 standard.

If used while linking, has the same effects as -Kieee, and also enables floating
point traps and underflow traps. If used while compiling, has the same effects
as -Kieee.

If used while linking, has the same effects as -Kieee=enable, and also enables
inexact traps. If used while compiling, has the same effects as -Kieee.

If used while linking, produces a program that flushes denormals to O on
creation (which reduces underflow traps) and links in a math library that is
not as accurate as the standard library, but offers greater performance. This
library offers little or no support for exceptional data types such as INF and
NaN, and will trap on such values when encountered.

If used while compiling, tells the compiler to perform real and double
precision divides using an inline divide algorithm that offers greater
performance than the standard algorithm. This algorithm produces results that
differ from the results specified by the IEEE standard by no more than three
units in the last place.

The if77 Driver . Paragon™ System Fortran Compiler User's Guide

trap=fp If used while compiling, disables kernel handling of floating point traps. Has
no effect if used while linking,

trap=align If used while compiling, disables kernel handling of alignment traps. Has no
effect if used while linking.

-Kieee is the default. See “Non-IEEE Math (-Knoieee)” on page 3-12 for more information on the
-K switch.

Controlling the Driver Output

The following switches let you control the driver’s outputs:

-nx Create an executable application for multiple nodes.

-0 Specify the name of the output file.

-V Print the version banner for each tool (assembler, linker, etc.) as it is invoked.
-VV Display the driver version number and the location of the online release notes.

but do not perform any compilation.

-V Print the entire command line for each tool as it is invoked, and invoke each
tool in verbose mode (if it has one).

Executable for Multiple Nodes

By default, the if77 driver creates an executable for a single node. The following command line
switch creates an executable for multiple nodes:

-nx
The -nx switch has no effect if used while compiling. If used while linking, it has two effects:

» Itlinksin libnx.a, the library that contains all the calls in the ParagonTM System Fortran Calls
Reference Manual. 1t also links in libmach.a and options/autoinit.o.

2-20

4

e pea A
E 4

b

—
[]

e

4

B

B

] — ==
E4 F]

E

£

E

E

4

4

] | Sl J— —
k i i

E

4

4

i}] D
: E4

&

b b

E]

L

K

ke

B i

ko4

il

Paragon™ System Fortran Compiler User's Guide The if77 Driver

« Itlinks in a special start-up routine that automatically copies the program onto multiple nodeTsﬁ
as specified by standard command line switches and environment variables. See the Paragon
System User’s Guide for information on these command line switches and environment
variables.

For compatibility with the iPSC® system, the if77 driver currently accepts the following command
line switch, which is synonymous with -nx:

-node

However, support for this switch may be dropped in a future release.

Name of Executable File

By default, the executable file is named a.out (or file.o if you use the -¢ switch). However, the
following command line switch lets you name the file anything you like:

-ofile

where file is the desired name.

Verbose Mode

By default, the driver does its work silently. However, the following command line switch causes
the driver to display the version banner of each tool (assembler, linker, etc.) as it is invoked:

'

The following command line switch causes the driver to identify itself in more detail than the -V
switch and display the location of the online compiler release notes. No compilation is performed:

A

The following command line switch causes the driver to display the entire command line that
invokes each tool, and to turn on verbose mode (if available) for each tool:

-V

2-21

‘ -
The if77 Driver , Paragon™ System Fortran Compiler User's Guide i
-

&l

=
P

Overriding Compiler Defaults

You can override the default switch settings for the Paragon Fortran compiler by creating a compiler K m
default file in your home directory, your current working directory, or the directory where the
compiler driver resides. This file must be named .icfrc. The default file contains compiler switches L
as they would appear on the command line, delimited by spaces, tabs, or new lines. The file can l |
contain any number of lines.
Rl
The following is an example of the contents of a default file: »
-03 -Mvect ™
-Knoieee -Mframe -Mnoperfmon .
The compiler searches the following directories in the order listed for the .icfrc file. rw -
o
1. your current working directory
2. your home directory K o
3. The directory where the compiler driver resides. If you place a .icfrc file in usr/ccs/bin on a L
Paragon system, you should also have the system administrator create a link to that directory in &
usr/bin.
L
If you have default files in more than one of these directories, the compiler uses the first one found. “
NOTE i
The .icfrc file is used by both the Paragon C compiler and the w
Paragon Fortran compiler. It is suggested that .icfrc files that b
reside in your home directory or the directory where the compiler
driver resides contain only switches that are common to both N
compilers. &

4

B

When you invoke the compiler, the compiler driver reads the default file, if it exists, and constructs
anew command line. The command line consists of the switches in the .icfrc file first, then the
switches in the command line you used to invoke the compiler. Because of this order, you should
not put arguments in the default file if they must go at the end of the command line. An example
would be directives to link to libraries. The following is the order of precedence for compiler
switches:

B

ol | Bl
P

3

1. specific entries on the command line

2. entries in the .icfrc file [Jw‘
3. default switch settings lw ;
ol

[
2-22 ‘ | v

e -
Nt | B

4

¥

_d

[

E |

[

sl

]

§

A

&

™l

—— iy — — [] —] — — — —
{ t Lo ;

¢

B

#

B

B

— — —
£ 4 1

4

ko

nnn—

Paragon™ System Fortran Compiler User's Guide The if77 Driver

For example, suppose you have the following entries in your .icfrc file:
-03 -Mvect
If you use the following command line to invoke the compiler:
icc -04 example.c
The compiler will generate the following command line:
icc -03 -Mvect -04 example.c
Because the -O4 switch from the compiler invocation comes after the -O3 switch from the default

file, the explicit command line switch overrides the default file switch, and the optimization level is
set to 4.

NOTE

Although you can include file names and switches such as -¢ in
the default file, this is not advisable because all arguments in the
default file will appear on all compiler command lines. Arguments
other than those needed to override default settings of switches
should go in a make file.

Control Directives

Control directives alter the effects of certain command line switches or the default behavior of the
compiler. While a command line switch effects the entire source file being compiled, control
directives affect only selected subprograms or loops in the source file. Control directives allow you
to fine tune selected routines or loops.

Directives have the following syntax:

cdir$[scope] directive_body

The c¢ in the directive syntax must be in column 1. For compatibility with other compilers, you can
substitute cvd for cdir in a directive.

scope can be 1 (loop), r (routine), or g (global)

For directives that allow loop, routine, and global scope, the following rules apply:

2-23

The if77 Driver

2-24

-1doop)

r(routine)

g(global)

Paragon™ System Fortran Compiler User's Guide

Indicates the directive applies to the next lexical loop. The directive does not
apply to any loops that are enclosed by the next loop. Loop-scoped directives
are only applied to DO loops.

Indicates the directive applies to the code that follows the directive until the
end of the routine.

Indicates the directive applies to the code that follows the directive until the
end of the file.

For directives where loop scope is not allowed, the scope rules fall into two groups.

The following rules apply to directives func32, frame, and opt:

r(routine)

g(global)

Indicates the directive applies to the current routine, if it is in a routine. If it
is not in a routine, it applies to the next routine.

Indicates the directive applies to all routines that follow it.

The following rules apply to directive bounds:

r(routine)

g(global)

Indicates the directive applies to the code that follows the directive until the
end of the routine.

Indicates the directive applies to the code that follows the directive until the
end of the file.

If scope is not specified, the default scope for each individual directive is applied. Table 1-1 lists
these defaults. Additional scope rules are described in the following section.

directive_body can include any of the directives listed in Table 2-2.

The body of the directive can immediately follow scope, or any number of blanks can separate scope
from the body of the directive. Case is not significant in a directive name, so the names can include
upper or lowercase characters. Case is significant for any variable names that appear in the body of
the directive if the -Mupcase switch has been specified on the command line.

Table 2-2 provides a summary of the supported directives. The default column specifies the default
condition for each directive. The scope column lists the permitted scopes for each directive, with the
default scope in parentheses. The name of a directive can be preceded by a -M. For example,
-Mnoassoc is equivalent to noassoc.

o
A

L A
aul

N

o

L
o

———
[T

1 I T

E

4

|3

4 ‘ P4

e

H

3

4

E

i
k|

b

B R

Paragon™ System Fortran Compiler Users Guide

Table 2-2. Directive Summary (1 of 2)

The if77 Driver

DIRECTIVE

DESCRIPTION

DEFAULT

SCOPE

altcode[n]concur

Execute inner loops without
reductions in parallel only if
their iteration count exceeds n.

n=100

rg

altcode[n]concurreduction

Execute inner loops with
reductions in parallel only if
their iteration count exceeds n.

n=200

(rg

[no]assoc

[Don’t] perform associative
transformations

assoc

(Mrg

[no]bounds

[Don’t] perform array bounds
checking

nobounds

g

[no]concur

[Don’t] consider loops for
parallelization

noconcur

Mrg

[no]cncall

[Don’t] consider loops for
parallelization even if they
contain calls or conditionals,
their loop counts do not exceed
thresholds, or they contain inner
non-vectorizable 100ps

nocncall

Org

dist=block

Change concurrency
characteristics to block

N/A

(MDrg

dist=cyclic

Change concurrency
characteristics to cyclic

N/A

Org

[no]depchk

[Don’t] check for potential data
dependencies

depchk

MOrg

[noleqvchk

[Don’t] check EQUIVALENCE
statements for data
dependencies

eqvchk

Org

[nolfunc32

[Don’t] align functions on
32-byte boundaries

nofunc32

(g

ivdep

Ignore potential data
dependencies

depchk

Org

[no]lstval

[Don’t] compute last values

Istval

Drg

2-25

The if77 Driver

Paragon" System Fortran Compiler User's Guide

Table 2-2. Directive Summary (2 of 2)

DIRECTIVE DESCRIPTION DEFAULT | SCOPE

opt Select optimization level N/A g

[noJrecog [Don’t] recognize vector idioms | recog Org

[no]smallvect [Don’t] assume short loop count | nosmallvect | (Drg

[no]shortloop [Don’t] assume short loop count | noshortloop | (Drg

[no]swpipe [Don’t] perform software swpipe Org
pipelining transformations

[noltransform [Don’t] perform vector transform Drg
transformations

[no]vector [Don’t] perform vectorizations | vector WOrg

[no]vintr [Don’t] recognize vector vintr Mrg
intrinsics

NOTE

-
roa

B
3

|3

4

T = a
& b

b A

B
roo4

E T 5 o4
B 3

A
o

E @
.

The Cray directive cdir$ [no]vector has routine scope instead of
loop. The default scope for [nolvector when any other prefix is
used, such as cvd$, is loop. “

Directive Descriptions

2-26

The following sections provide descriptions of each control directive.

altcode[njconcur

This directive alters the effect of the -Mconcur=altcode:n command line switch. The directive
makes innermost loops without reduction parallel only if their iteration count exceeds n. Without this
directive, the compiler assumes a default of 100.

altcode[n]cbncurreduction

This directive alters the effect of the -Mconcur=altcode_reduction:n command line switch. The
directive makes innermost loops with reduction parallel only if their iteration count exceeds n.
Without this directive, the compiler assumes a default of 200.

€ 4

o4
3

W=l N s
oo

b

sl

I

o4

o

'

| 4

1

£

: & [

4

&

t L

B

b

b

Paragon™ System Fortran Compiler User's Guide The if77 Driver

[nolassoc

This directive alters the effects of the -Mvect=noassoc or -Mconcur=noassoc command line
switches. By default, when scalar reductions are present the vectorizer may change the order of
operations to generate better code and allow parallelization of loops. Such transformations change
the result of the computation due to roundoff error. The noassoc directive disables these
transformations.

[no]bounds

This directive alters the effects of the -Mbounds command line switch. The bounds directive
enables the checking of array bounds when subscripted array references are performed. By default,
array bounds checking is not performed.

[no]cncall

This directive alters the effects of the -Mcncall command line switch. The encall directive causes
the compiler to consider loops within the specified scope for parallelization, even if they contain
calls to user-defined routines, they contain conditional statements, their loop counts do not exceed
the usual thresholds, or they contain inner non-vectorizable loops. If you use the cncall directive,
you must specify -Mconcur on the compiler command line.

[no]lconcur
This directive alters the effects of the -Mconcur command line switch. The concur directive causes

the compiler to consider loops within the specified scope for parallelization. If you use the concur
directive, you must specify -Mconcur on the compiler command line.

[no]ldepchk
This directive alters the effects of the -Mdepchk command line switch. When potential data
dependencies exist, the compiler, by default, assumes that a data dependency exists which may

inhibit certain optimizations or vectorizations. The nodepchk directive directs the compiler to
ignore these potential data dependencies.

[nolegvchk

The noeqvchk directive causes the compiler to ignore any dependencies between variables
appearing in EQUIVALENCE statements. By default, the compiler checks for dependencies.

2-27

The if77 Driver

2-28

Paragon™ System Fortran Compiler User’s Guide

[no]func32

This directive alters the effects of the -Mfunc32 command line switch. The func32 directive causes
the compiler to align functions on a 32-byte boundary. By default, functions are aligned on an 8-byte
boundary.

ivdep

The ivdep directive is equivalent to the nodepchk directive.

[no]istval

The compiler determines whether or not the last values for loop iteration control variables and
promoted scalars must be computed. When the compiler determines it is necessary, it computes the
last values. The nolstval directive causes the compiler to not compute last values.

There is no command line switch that corresponds to this directive.

opt

This directive overrides the value specified by the -O command line switch. The syntax for the opt
directive is as follows:

cdir$[<scope>] opt=<level>

scope can be either r or g, and level is an integer constant representing the optimization level desired
for the subprogram (routine scope) or all subprograms in a file (global scope).

[noJrecog

This directive alters the effects of the -Mvect command line switch. If the -Mvect=transform
switch is included on the command line, vector recognition is disabled for the entire compilation.
The norecog directive allows selective disabling of vector recognition when the -Mvect switch is
selected. The recog directive toggles a previous norecog.

The recog directive only affects the compiler when -Mvect is included on the command line.

-
L

B4

4

A o .
L L |

ko

E

4

o

B4

| = | .
L

BER
13 {

5 4
S

i |

=a

,

Eoa
o F

fz

]

oA
b

4

[

3

=
.

£

E | S

1

Al

™
»

—
o

S]

&

i

5 [| E

&

E]

E

4 [|

&

4

L

+ : SR | IS £

e 4

Paragon™ System Fortran Compiler User's Guide The if77 Driver

[no]smallvect

This directive alters the effects of the -Mvect=smallvect command line switch. The smallvect
directive has the following syntax:

cdir$[scope] smallvect[=count]

scope canbe g, 1, or r. count is an integer constant that specifies the maximum iteration count for a
loop whose count is not a constant. If count is not specified, the default value is 100.

The default condition is nosmallvect, where the vectorizer does not make assumptions about the
maximum iteration count for loops whose counts are not constants.

[no]shortioop

This directive is identical to the [no]}smallvect directive.

[no]swpipe

The noswpipe directive causes the compiler to suppress software pipelining transformations that
normally occur at optimization levels greater than 2.

There is no command line switch that corresponds to this directive.

[no]transform
This directive alters the effects of the -Mvect=transform command line switch. The notransform
directive can be used to inhibit vector transformations when the -Mvect switch is in effect. The

transform directive can be used to toggle a previous notransform. The transform directive only
affects compilation when the -Mvect switch is specified on the command line.

[no]vector

The novector directive disables vector transformations and vector recognitions. This directive only
affects compilation when the -Mvect switch is specified on the command line.

2-29

The if77 Driver

Paragon™ System Fortran Compiler User's Guide

[no]vintr

The novintr directive disables recognition of vector intrinsics. This directive only affects
compilation when the -Mvect switch is specified on the command line. If both the norecog and vintr
directives are present, the norecog directive takes precedence.

Directive Examples

2-30

This section presents several examples that illustrate the effects of directives and the use of the scope
specifiers. During compilation, a directive either turns a switch on or off, and the directive only
applies to the section of code following the directive and defined by the scope specified. The scope
can be the following loop, the current or following routine, or the rest of the program.

The following program is used for the first example:

subroutine sl(a,b,x,y,n)
double precision a(n),b(n), x(n,n), y(n,n)

do i=1,n
a(i) = sin(b(i))
do j=1,n
x(3j,1i) = cos(y(j,i))
enddo
enddo
end

When this subroutine is compiled using the -Mvect command line switch as follows, the sine and
cosine functions are both recognized as operations on vectors, and the compiler produces code using
the vector versions of the sine and cosine routines:

if77 -Mvect -c -ovect.o subsl.f
You can use directives in the source code to alter the compiler behavior as follows:
subroutine sl(a,b,x,y,n)

double precision a(n), b(n), x(n,n), y(n,n)
cdir$l novintr

-
u

»
il

"
E

ry

B

k.3

S

E

ssa A Ea
| S

[T T T |

4

H £ £ K|

wl

4

4

[

E]

L.

E

Paragon™ System Fortran Compiler User's Guide The if77 Driver

do i=1,n
a(i) = sin(b(i))
cdir$l vintr

do j =1, n
x(j,1) = cos(y(3,1))
enddo
enddo
end

In this version of the program, the compiler does not use the vector intrinsic sine routine, since the
first directive turns off vector intrinsic recognition for the loop containing the sine. The second
directive toggles the vintr switch before the nested loop, so the compiler uses a vector intrinsic
routine for the cosine.

The following example uses the r (routine) directive scope:

cdir$r novintr

subroutine s2(a,b,x,y,n)

double precision a(n), b(n), c(n), d(n)
cdir$l vintr

do i=1,n

a(i) = sin(b(i))
enddo
do j =1, n

c(3) = cos(d(3))
enddo
end

When subroutine s2 is compiled using the -Mvect command line switch, the sine intrinsic is
recognized as an operation on a vector and the compiler produces code using the vector intrinsic sine
routine:

if77 -Mvect -c -ovect.o subs2.f

Since the scope of the novintr directive is for the routine, vector recognition is disabled for the
subroutine s2. However, the loop-scoped directive vintr appears before the do loop containing the
reference to sin(), so vector intrinsic recognition is enabled only for that loop. Since the loop
containing the reference to cos() does not have a loop-scoped vintr directive in effect, the vector
version of cos() is not recognized.

2-31

The if77 Driver

2-32

In the following example, the
entire file:

cdir$g novintr
subrouti
double p
do i=1,n
a(i)
do j
x(
enddo
enddo
end

Paragon™ System Fortran Compiler User's Guide
y

global novintr directive turns off vector intrinsic recognition for the

ne s3(a,b,x,y,n)
recision a(n), b(n), x(n,n), y(n,n)

= sin(b(i))

=1, n
j,i) = cos(y(j,1))

8 |

e 4

e

O B

4

E

| =] =a — | = |

4

B

1

Fa o ma pa Ea
| S

b

£

3

A

t

aa A A A
[

wm

o

L.
,,w“

3

B

ki

&

i

L —— — —— Iisuaig
B4 i

k4

=8

9
13

4

.
E

K

[

(T |

e i

Optimizing Programs

Introduction

This chapter gives you a strategy for using the compiler’s optimization features to help maximize
the single-node performance of your programs. It also explains what the most commonly-used
compiler optimization switches do and how they interact with each other. Finally, it gives you a few
tips for changes you can make in your code to help the program run faster.

The techniques discussed in this chapter are single-node optimizations only. They make the program
run faster on each node, but do not improve the program’s internode communications. See the
ParagonTM System User’s Guide for information on improving the performance of a multi-node
application.

Optimization Procedure

This section presents the recommended procedure for optimizing a new or ported program. The
fundamental characteristics of this procedure are adding optimizations in a controlled manner and
testing the program after each optimization.

1. Compile your program with the -O2 switch for scalar optimizations. The optimizations
performed at level 2 are considered “safe”—if your program works at all, it should continue to
work (and work faster) with -O2.

2. Test the program to be sure it works as you expect.

3. When the program is working, use the performance analysis tools to determine which parts of
the code are taking the most time. (See the Paragon' System Application Tools User’s Guide
for information on performance analysis.)

4. Inspect the time-consuming code to see if will benefit from vectorization. In general,
vectorization helps floating-point math on large vectors or in loops. It does not help integer
math, string operations, or file operations.

31

Optimizing Progréms - Paragon™ System Fortran Compiler User's Guide

5. Recompile only those files that will benefit from vectorization with the -O4 and -Mvect
switches.

6. Test the vectorized program to be sure it is still working and has not slowed down. (If the
program gives unexpected results or runs more slowly than it did before, try recompiling the
vectorized files with -O3 -Mvect instead; if loop counts are small, try -O4 without -Mvect
instead.)

7. Examine your program to see if it is “numerically stable.” A program is said to be numerically
stable if it does not depend on the behavior specified by the IEEE standard for floating-point
mathematics, such as proper behavior in case a denormal, infinity, or “not-a-number” occurs
during a calculation. Recompile and/or link only those files that are numerically stable with the
-Knoieee switch. (The differences between using -Knoieee when compiling and using
-Knoieee when linking are described later in this chapter.) You may get different results with
-Knoieee on compile and link, and on different source files; try a variety of combinations.

8. If you have MP nodes, compile with -Mconcur -O4 -Mvect. Programs with large loop counts
can often run faster on two CPUs.

9. Test the program after each attempt to be sure it is still working and has not slowed down.

Further optimizations may be possible at this point. Depending on the program, you may be able to
use additional compiler optimization switches (as described under “Compiler Switches for
Optimization” on page 3-3) and/or modify your code for greater performance (as described under
“Code Changes for Optimization” on page 3-15). Be sure to test the program after each change.

Shortening Turnaround Time

3-2

As you can see, optimizing a program can involve many “compile, link, run” cycles. You may be
able to reduce the time consumed by each run by using one or more of the following techniques:

» Use a smaller input file.

e Temporarily reduce the count in the outermost loop of the program.

« Add a call to exit() after a key subroutine.

¢ Extract key subroutines into a separate program for testing.

These techniques can help you to optimize your program more quickly by performing more tests per

unit time. However, when you use these techniques, be sure that the reduced data or program
fragment is representative of the whole program.

[|

L

)

r 4

b

W’*‘t
R’ s

I

-

-
&

I
]

—m

I3

p—
E %

#

4 3 £

3

E

i

E

4

E

]

=8

E}

4

4

- 13 L]

Paragon™ System Fortran Compiler User's Guide Optimizing Programs

Compiler Switches for Optimization

The if77 command has a number of switches you can use to request compiler optimizations:

-0 Performs general code optimizations.

-Mvect Performs vectorization.

-Mconcur Performs loop parallelization.

-Mcncall Parallelizes loops with calls.

-Munroll Unrolls loops.

-Knoieee Uses faster but less accurate floating-point math.
-Ikmath Links to an optimized BLAS library.

-Minline Replaces subprogram calls with inline code.

-Mnodepchk Ignores potential data dependencies.

-Mstreamall Instructs the compiler to stream all vector stores in a loop to the processor
cache.Best used with -Mvect.

These switches are discussed in the remainder of this section.

General Optimizations (-O)
The -O switch performs general code optimization. The -O can be followed by a number that
specifies the optimization level, from O (no optimization) to 4 (all optimizations). Each optimization
level performs all the optimizations that the levels below it perform.

If you don’t use the -O switch, you get optimization level 1. If you use -O with no number following
it, you get optimization level 2.

Programs optimized at levels above O cannot be debugged easily with a symbolic debugger. If you
are compiling an application for debugging, you should use the -00 switch.

Scalar Optimizations (-O1, -02)
Optimization levels 1 and 2 perform scalar optimizations. These optimizations do not use the special

features of the i860" microprocessor, but they can improve the performance of most code and are
unlikely to break working code.

3-3

-
-Optimizing Programs Paragon™ System Fortran Compiler User's Guide lﬂ

)

-

™

o

‘ﬂ']

¢ Level 1 performs only local optimizations: those that affect only a single Fortran statement. -

These optimizations include algebraic identity removal (removal of subexpressions that do

nothing, such as a=a), and redundant load and store elimination (elimination of unnecessary E M

mMemory accesses). S

« Level 2 performs global optimizations: those that can affect multiple Fortran statements. These . [J
optimizations include invariant code motion (moving code that is the same on each iteration of
aloop out of the loop) and global register allocation (assigning variables to registers based on

how and when they are used). nr

Software Pipelining (-03, -O4)

Optimization levels 3 and 4 make the compiled program use the i860 microprocessor’s pipelining -
and dual-instruction mode features. These optimizations are beneficial only for code that performs E
intensive floating-point mathematics, particularly in loops. Since this type of code is also usually
vectorizable, the -O3 and -04 switches are usually used together with -Mvect.

Pipelining and dual-instruction mode allow the i860 microprocessor to work on more than one x
operation at a time. v
i

» Pipelining means that the 1860 microprocessor’s floating-point unit can accept new input while
previous inputs continue to move toward the result. For example, a floating-point addition takes _
three clock cycles, but the adder can accept new input every clock cycle. (The results of each E
input emerge from the adder three clock cycles after the operands entered.) -

Pipelining means that a sequence of similar operations can be performed in less time. However, E v
it takes a few cycles to prime the pipeline and a few cycles to drain it; this means that a pipeline -
must have a certain minimum number of operations to be efficient. .
The exposed pipeline of the i860 microprocessor allows floating-point adds and multiplies to .-
occur simultaneously (this is called dual-operation mode). v
* Dual-instruction mode means that the i860 microprocessor’s floating-point unit and integer unit d
can be active at the same time. For example, the floating-point adder can perform an addition at -
the same time the integer unit is loading the operands for the next addition. ﬂ f
A
Optimization levels 3 and 4 both attempt to schedule the program’s operations to make the most use .
of pipelining and dual-instruction mode. This procedure is called software pipelining. For example, ﬂ

if the program contains an addition and a multiplication that are near each other but do not depend
on the other’s results, the compiler can schedule the two operations to occur at the same time.

« Level 3 uses a single scheduling algorithm on all candidates for software pipelining.

» Level 4 considers several scheduling algorithms for each candidate, and chooses the one that l m
gives the best performance (or none of them, if the non-pipelined code is faster). =

e A

Paragon™ System Fortran Compiler User's Guide Optimizing Programs

[B

1

[

In theory, the code produced by level 4 should always be faster than the code produced by level 3,
at the cost of a very small increase in compilation time. You should try -O4 first, then try -O3 if the
results are not satisfactory.

Keep in mind that optimization levels 3 and 4 benefit code that is floating-point intensive. Code that
spends most of its time in string handling, disk operations, or other non-floating-point operations
will generally not benefit from optimization levels greater than 2.

B

E

E

Vectorization (-Mvect)

The -Mvect switch performs vectorization. Vectorization consists of three processes, which are
described in the next section. Vectorization is beneficial only for code that performs floating-point
calculations on long vectors, typically in loops of 10 or more iterations.

; i [

The difference between -03/-04 and -Mvect is that optimization levels 3 and 4 (by themselves)
perform pipelining on your code as written, while -Mvect attempts to rearrange your code to make
more effective pipelining possible. This is why -03/-04 and -Mvect are usually used together.
-Mvect with an optimization level less than 3 will rearrange the code, but no pipelining will be
performed; -O3 or -04 without -Mvect will perform software pipelining, but will not find as many
candidates for pipelining as they would with -Mvect. (However, if vector lengths are short, -O4
alone may work better than -O4 -Mvect.)

] P
4

l i The vectorization performed by -Mvect affects only single nodes. The compiler cannot parallelize
vectors by splitting them up among several processors; you must do that yourself.

l -Mvect will force an optimization level greater than or equal to 2. -Mvect -O1 results in the -O1
being ignored.
I .
How Vectorization Works
S
l B Vectorization consists of three processes:
* Nested loop transformation—the compiler attempts to rearrange nested loops to increase
l N possibilities for pipelining. For example:
- do 100 j = 1, 1000
l do 100 i =1, 3
x(1i,3) = x(i,3) * a(i,J)
l»»a 100 continue
B Given this code, the compiler may rearrange the loops so that the loop over j becomes the inner
lw loop, resulting in 3 vectors of length 1000 instead of 1000 vectors of length 3.
ul

[“:
P 35

Optimizing Programs

Paragon™ System Fortran Compiler User's Guide

* Cache management—the compiler attempts to perform streaming (loading all the operands for
a loop into the microprocessor’s data cache before beginning the loop) and stripmining
(breaking a loop into smaller chunks so that the operands for each chunk will fit into the cache).

e - Vector idiom recognition—the compiler scans the code for certain common vector operations
and replaces them with calls to hand-written assembly routines that do the same thing faster. For
example, the following source code performs a dot product:

doi=1,
s
enddo

100
s + a(i) * b(i)

The vector idiom recognizer will replace the code produced by these statements with a single
call to a hand-coded dot-product routine.

Controlling Vectorization (-Mvect=...)

You can control the vectorizer by specifying options to -Mvect. The available options are as follows:

-Mvect=recog

-Mvect=transform

-Mvect=noassoc

-Mvect=smallvect[:number)

-Mvect=cachesize:number

streamlim:n

Perform vector idiom recognition and cache management.

Perform nested loop transformation. transform is not
normally useful without recog.

Do not rearrange the order of operands in scalar reductions
(such as dot product). Rearranging operands can result in
faster code, but may give different results due to round-off
€ITOor.

Assume that no vectorizable do loop is iterated more than
number times. Number must be a multiple of 10; if :number
is omitted, the value 100 is used. This option improves the
performance of doubly-nested, non-perfectly-nested loops,
but may result inincorrect code if any vectorizable loop has
more iterations than the specified number.

Use at most number bytes of the data cache for cache
management of vector operations. Number must be a
multiple of 16, and less than the cache size of the
microprocessor (16384 for the i860 XP, 8192 for the
i860 XR).

This sets a limit for application of the vectorizer data
streaming optimization. If data streaming requires cache
vectors of length less than n, the optimization is not
performed. Other vectorizer optimizations are still
performed. The data streaming optimization has a high

-

I‘"m
2l

]

e

4

E

4

B

4

4 E

3

i

£ 4

i

4

[4

k|

E

1

E

E

B

! 1 [S |

[|

o B R

Paragon™ System Fortran Compiler User's Guide

-Mvect=altcode:number

Optimizing Programs

overhead compared to other loop optimizations, and can be
counter-productive when used for short vectors. The n
specifier is not optional. The default limit is 32 elements if
streamlim is not used.

Produce non-vectorized code to be executed if the loop
count is less than or equal to number. Otherwise execute
vectorized code. The default value for number is 10.

-Mvect with no options means -Mvect=recog,transform,cachesize:4096,altcode:10.

You can also control vectorization by using the following switches:

-Msplit_loop_ops=n

-Mnosplit_loop_ops

-Msplit_loop_refs=n

-Mnosplit_loop_refs

Set a threshold of » floating-point operations within a loop.
Innermost loops whose number of floating-point
operations exceeds n are split. Each floating-point
operation counts as two. The default for n is 40 when
-Mvect is used.

Do not split loops when the floating-point operation
threshold is exceeded. When -Mvect is specified,
innermost loops whose number of floating point operations
exceed 40 are split by default. This switch turns the default
off.

Set a threshold of n array element loads and stores within a
loop. Innermost loops whose number of loads and stores
exceeds n are split. The default for n is 20 when -Mvect is
used

Do not split loops when the array element loads and stores
threshold is exceeded. When -Mvect is specified,
innermost loops whose number of array element loads and
stores exceeds 20 are split by default. This switch turns the
default off.

Preventing Associativity Changes (-Mvect=noassoc)

The switch -Mvect=noassoc requires a bit more explanation than the others.

In most cases, the rearrangements performed by -Mvect do not affect the results of the calculations
performed by your program. One exception is that the compiler takes advantage of the associativity
of floating-point operations to produce faster code. For example, consider the following dot product.

37

Optimizing Programs Paragon™ System Fortran Compiler User's Guide

doi=1, 100
s = s + a(l) * b(i)
enddo

The order of evaluation of this dot product is as follows:

s = ((((s *+ (a(l)*b(1))) + (a(2)*b(2))) + (a(3)*b(3))) + ...)
However, the vector idiom recognizer takes advantage of the associativity of floating-point addition
to rearrange it as follows:

s = s *+ (((((a(l)*b(l)) + (a(2)*b(2))) + (a(3)*b(3))) + ...)

The rearranged equation is the same algebraically as the original, and runs faster than the original
(because it presents a more uniform series of operations for pipelining), but may give slightly
different results. You can prevent this type of rearrangement by using the switch -Mvect=noassoc.

Getting Information About Vectorization (-Minfo=Ioop)

You can find out what the vectorizer is doing by using the switch -Minfo=loop while compiling with
-Mvect. This switch sends information about what vectorizations the compiler is performing to the
standard error output. For example:

% if77 -04 -Mvect -Knoieee -Minfo=loop -c nas.f

// SW pipelined loop w/ 21 cycles and 2 columns w/ cnt 7 gend for line 27
Vect: streaming data and stripmining loop at line 64. strip size = 1008.
Interchanging loop lines 125, 126

Vect: streaming data and stripmining loop at line 127. strip size = 200.
Vect: loop at line 122 replaced by call to __fill4.

// Software pipelined loop w/ 8 cycles and 3 columns for line 127

// Pipe/Dual-inst 1 column 21 cycle loop gend for line 127

Vect: streaming data for loop at line 164. No stripmine loop required.

// SW pipelined loop w/ 5 cycles and 2 columns w/ cnt 128 gend for line 164
Vect: streaming data and stripmining loop at line 392. strip size = 336.
Vect: loop at line 392 replaced by call to __zxmyi4s.

Distributing loop at line 751, 2 new loops

Note that optimizations may not be performed in order by line number (for example, the fifth
message refers to line 122, while the fourth, sixth, and seventh messages refer to line 127). The
meanings of the messages in this example are as follows:

// SW pipelined loop w/ 21 cycles and 2 columns w/ cnt 7 gend for line 27

i

==
B

o

_— =
S

i

.

eod

4

E

| b4

L]

3

+

4 L

|

4 B

2

4 £%

£

4
3

E

—— D
| .

Paragon™ System Fortran Compiler Users Guide Optimizing Programs

This means that the optimizer has performed software pipelining for a loop beginning at line 27 of
the source file. Each iteration of this loop takes 21 machine cycles (best-case) to execute. Two
“columns” of operations are logically scheduled into the pipelines; that is, there are two sequences
of instructions “in the pipeline” at once. The phrase “cnt 7” indicates that the loop has seven
iterations, and the word “gend” is an abbreviation for “generated.”

Vect: streaming data and stripmining loop at line 64. strip size = 1008.

This means that the vectorizer has performed cache management by inserting a call to a built-in
routine that fills the 1860 microprocessor’s data cache before the beginning of the 1oop. Each “strip”
(that is, each chunk of data) contains 1008 data values.

The size of the strip is chosen to fill the portion of the cache used by the vectorizer. The larger the
amount of data required by each iteration of the loop, the smaller the maximum strip size for that
loop. The default for the vectorizer’s portion of the cache is 4096 bytes, so in this case each iteration
of the loop probably requires four bytes of data. You can change the vectorizer’s portion of the
cache, and thus the strip size, with the switch -Mvect=cachesize:number.

Interchanging loop lines 125, 126

This means that the vectorizer has performed nested loop transformation by exchanging two lines of
code. This transformation typically gives either more iterations or unit stride in the innermost loop.

Vect: streaming data and stripmining loop at line 127. strip size = 200.
This message is similar to the previous “streaming data and stripmining loop” message, discussed
earlier. This loop has a smaller strip size because it has more data (in this case, about 20 bytes of data
are probably required in each loop iteration).

Vect: loop at line 122 replaced by call to __fill4.

This means that the vectorizer has performed vector idiom recognition by replacing an initialization
of an array in a loop with a call to an optimized routine that performs the same function more
quickly. ‘

// Software pipelined loop w/ 8 cycles and 3 columns for line 127
This message is similar to the “SW pipelined loop” message, discussed earlier, except that the
number of iterations in the loop could not be determined at compile time (as shown by the lack of a
“cnt” phrase in the message). This loop has three columns, so it will be more efficient than the
two-column loop shown eatlier.

// Pipe/Dual-inst 1 column 21 cycle loop gend for line 127

This means that the optimizer has made use of the i860 microprocessor’s pipelining and
dual-instruction mode to optimize a loop.

‘39

Optimizing Programs Paragon™ System Fortran Compiler User’s Guide

This message is similar to the previous message, except that a “Software pipelined loop” message
means that the vectorizer has inserted loop start-up and shut-down code, while a “Pipe/Dual-inst”
message means that the vectorizer is using pipelining and dual-instruction mode within the loop but
has not generated any start-up or shut-down code.

Vect: streaming data for loop at line 164. No stripmine loop required.
This message is similar to the previous “streaming data and stripmining loop” messages, discussed
earlier, except that in this case it was not necessary to “stripmine” the loop by gathering data

together. For example, this might be an operation on a single array that fits in the cache.

// SW pipelined loop w/ 5 cycles and 2 columns w/ cnt 128 gend for line 164
Vect: streaming data and stripmining loop at line 392. strip size = 336.

These messages are similar to messages discussed earlier.

Vect: loop at line 392 replaced by call to __ zxmyis.
This means that the vectorizer has performed vector idiom recognition by replacing user code with
a call to an optimized built-in routine (in this case __zxmy4s(), a single-precision complex

multiply). The list of these routines is not documented because it is subject to change.

Distributing loop at line 751, 2 new loops

This means that the vectorizer has split a loop with two or more sequences of operations in it into
two separate loops, one or both of which may be vectorizable.

Loop Unrolling (-Munroll)

The loop unroller expands the contents of a loop and reduces the number of times a loop is executed.
With the -Munroll option, you can unroll loops either partially or completely. There are several
possible benefits from loop unrolling, including the following:

¢ Reducing the loop’s branching overhead.
« Providing better opportunities for instruction scheduling.

Branching overhead is reduced when a loop is unrolled two or more times, since each iteration of
the unrolled loop corresponds to two or more iterations of the original loop. The number of branch
instructions executed is proportionately reduced. When a loop is unrolled completely, the loop’s
branch overhead is eliminated altogether.

Loop unrolling can also be beneficial for the instruction scheduler. When a loop is completely
unrolled or unrolled two or more times, opportunities for improved scheduling may be presented.
The code generator can take advantage of more possibilities for instruction grouping or filling
instruction delays found within the loop.

3-10

”
&

i

T.'l
-

1

oA
-

= |

-
|

B4

ST == T o
-

B

|

4

. Py L = | | 2 |
A i

[

4

| L]
3

W ST |

4 P

E

Ed

2

.

A

¥ ; : 3 i § ; | ¥
3 i BH % : ;

4

Paragon™ System Fortran Compiler User's Guide Optimizing Programs

You can use the -Minfo or -Minfo=loop option to have the compiler inform you when code is being
unrolled. The compiler displays a message indicating the line number and the number of times the
code is unrolled.

Making Loops Parallel

The compiler is able to use the three separate processors of an MP node by making some loops
parallel by splitting execution of the loop among two or three processors. Each processor is allocated
certain iterations of the loop to perform. This can resultin greater performance. Both inner and outer
loops can be parallelized. For nested loops, the compiler selects the outermost parallelizable loop
and makes it parallel.

Aloop can be parallelized if its iterations can be performed in any order without affecting the results
computed by the loop. For example, one type of loop that cannot be parallelized is one in which the
results of some iteration are used in a later iteration. Loops with reductions, such as vector sum or
dot product, fit this description. The compiler will try to parallelize this type of loop, but can only
do so by performing the sums in a different order than defined by the original loop. As a result, the
final sum computed may be slightly off due to roundoff error. If exact results are important, you can
use the -Mconcur=noassoc switch to prevent parallelization of loops with reductions.

The following sections describe the compiler switches associated with parallelizing 1oops.

General Loop Parallelization (-Mconcur)

The -Mconcur switch causes the compiler to parallelize certain loops. The following options are
available:

-Mconcur=altcode:count Make innermost loops without reduction parallel only if
their iteration count exceeds count. Without this switch, the
compiler assumes a default count of 100.

-Mconcur=altcode_reduction:count
Make innermost loops with reduction parallel only if their
iteration count exceeds count. Without this switch, the
compiler assumes a default count of 200.

-Mconcur=dist:block Make the outermost valid loop parallel. This is the default
option.
-Mconcur=dist:cyclic Make the outermost valid loop in any loop nest parallel. If

an innermost loop is made parallel, its iterations are
allocated to processors cyclically. That is, processor O
performs iterations O, 3, 6, ...; processor 1 performs
iterations 1, 4, 7, ...; and processor 2 performs iterations 2,
5, 8, and so on.

3-11

Optimizing Programs k Paragon™ System Fortran Compiler User's Guide

-Mconcur=global_vcache - Directs the vectorizer to locate the cache within the area of
an external array when generating codes for parallel loops.
By default, the cache is located on the stack for parallel
loops.

-Mconcur=noassoc Do not make loops with reductions parallel.

Parallelizing Loops with Calls (-Mcncall)

By default, the compiler does not parallelize loops with calls, since there is no way for the compiler
to verify that the called routines are safe to execute in parallel. The -Mcncall switch forces the
compiler to parallelize loops with calls. When you specify -Mcncall on the command line, the
compiler also automatically specifies -Mreentrant.

-Mcncall also allows several other types of loops to be made parallel:

* loops with I/O statements

¢ loops with conditional statements

» loops with low loop counts

¢ non-vectorizable loops

If the compiler can detect a cross-iteration dependency in a loop, it will not make the loop parallel,
even if -Mcncall is specified.

Getting Information About Parallelization

In addition to providing information about vectorization, the -Minfo=loop switch also provides
information about any loop parallelization that has occured.

The -Mneginfo=concur switch prints information for each countable loop that is not made parallel
stating why the loop was not made parallel.

Non-IEEE Math (-Knoieee)

3-12

The -Knoieee switch makes the compiled program use faster but less accurate floating-point math.
This can result in a substantial improvement in performance, but may give unacceptable numeric
results. If your program relies on the accuracy and exception handling provided by the IEEE 754
standard for floating-point mathematics, do not use this switch. If you do use it, be certain to check
your program’s results against the expected values.

A
.

N
a

v

el

B A | 2
vood B

o

B oA
b

[

4

R A bR
[

v

>

-

B
S

lbwII
Y
l "

Y

— ey
E o4 B o4

4

£

i

[TS BN B
|

k|

E

4

4

|3

4

|3

Paragon™ System Fortran Compiler User's Guide Optimizing Programs

The effect of the -Knoieee switch depends on whether you use it while compiling, while linking, or
both.

« Touse -Knoieee for compilation but not linking, use -Knoieee in conjunction with the -¢ switch
to compile a source file to a .o file, then link the .o file into a compiled program without
-Knoieee. For example:

$ if77 -c -Knoieee myprog.f
% if77 myprog.o

« To use -Knoieee for linking but not compilation, compile the source file without -Knoieee,
using the -¢ switch to produce a .o file, then use the -Knoieee switch while linking the .o file
into a compiled program. For example:

% if77 -c myprog.f
& if77 -Knoieee myprog.o

« To use -Knoieee for both compilation and linking, compile the source file to an executable
program with -Knoieee. For example:

% if77 -Knoieee myprog.f

Non-IEEE Divides (Compiling with -Knoieee)

The i860 microprocessor does not include a hardware divide unit. By default, the compiler performs
floating-point division by calling a routine that conforms to the IEEE standard. This routine correctly
handles overflow, underflow, and other exceptional conditions.

If you use the -Knoieee switch while compiling a program, the compiler uses a faster but less
accurate division routine. This routine is substantially faster than the IEEE routine, but gives results
that may differ from the correctly rounded result by as much as three units in the last place.

The non-IEEE division routine is also implemented as inline code rather than a subroutine call,
resulting in even greater performance improvements at some increase in code size.

Non-lIEEE Math Library (Linking with -Knoieee)

By default, the standard math library conforms to the IEEE standard. The routines in this library
handle out-of-range inputs in a well-defined manner and call an exception handler when a denormal
is generated in a calculation.

If you use the -Knoieee switch while linking a program, the linker uses a different set of math and
runtime libraries. These libraries replace the standard math library with compatible routines, many
of which are faster but less accurate than their IEEE counterparts. (The rest are identical to their
IEEE counterparts.) The square root function in particular has been very carefully optimized.
However, the non-1EEE libraries may give unexpected results in response to arguments that are out
of the defined domain for the given operation (such as the tangent of 90 degrees).

3-13

Optimizing Programs Paragon™ System Fortran Compiler User's Guide

Using the -Knoieee switch when linking also causes the compiler to link in a different initialization
routine. The non-IEEE initialization routine sets a flag that causes the microprocessor to
immediately flush all denormals to zero on creation. This can make the program run faster, but may
give erroneous results if the denormal range is necessary to the result.

BLAS Library (-lkmath)

The -Ikmath switch links to a highly-optimized math library. This library includes the BLAS (Basic
Linear Algebra Subroutines) levels 1, 2, and 3 and some FFT (fast Fourier transform) routines. See
the CLASSPACK Basic Math Library User’s Guide for complete information on this library. You
may have to re-code part of your program to use the routines in this library.

Inlining (-Minline)

The -Minline switch replaces subprogram calls with inline code. See Chapter 4 for information on
using the inliner.

In general, inlining must be used judiciously. Inlining trades the overhead of a subprogram call for
larger code, which can overrun the instruction cache and actually decrease performance. Y ou should
inline only those routines that meet the following criteria:

» The routine is very small (10 lines of source code or less).

» The routine is called in only one place in the source code, or a few widely-separated places.

» The call (or calls) to the routine occurs in a section of code that is called very often or is
otherwise time-critical.

Inlining routines that do not meet these criteria generally results in little or no improvement.

Ignoring Potential Data Dependencies (-Mnodepchk)

3-14

The -Mnodepchk switch ignores potential data dependencies.

CAUTION

The -Mnodepchk switch can give incorrect or erroneous results,
and gives no improvement for many programs, but is provided for
those programmers who can make use of it.

)

i

L
R

™
o
I

v

& .

oy

__

3

| = | | -
¢ L

m

E
E

7

| =}
b

4

Ea =4
) |

£ b

b4

»

-
‘N‘

|

Paragon™ System Fortran Compiler User's Guide Optimizing Programs

LS]

4 e 4

&

Normally, the compiler emits code that will work properly even where data dependencies exist. For
example, consider the following code:

4

4

a(i) = value
variable = a(j)

4

x

If the compiler does not know the values of the variables i and j at compile time, it normally assumes
that they may have the same value. This is a data dependency: if i has the same value as j, the second
statement depends on the first. This is only one example of data dependency; many other types of
data dependency exist.

4

4

If you use the -Mnodepchk switch, the compiler assumes that no data dependencies exist. This can
allow the compiler to generate faster code in some cases. In this example, -Mnodepchk would allow
the compiler to execute the second statement before the first if it results in a more efficient program.
However, if any data dependencies do exist, the results will be unpredictable.

Use the -Mnodepchk switch only if you understand the program very well and are sure that no data
dependencies exist.

A4

"™

Code Changes for Optimization

This section lists some changes you may be able to make in your code that will make the code more
efficient or make the jobs of the optimizer and vectorizer easier.

General Improvements

k]

These changes can improve almost all types of code:

i

« Splitlarger programs into smaller pieces and use appropriate optimization levels on each piece.
For example, -Mvect makes vector codes faster, but can make non-vector codes slower. If a
single source file contains both vector and non-vector code, you should split it into vector and
non-vector pieces and compile the two pieces separately, with and without -Mvect. The
program fsplit can be used to help split your program up.

4 ek

&
L

« Keep basic blocks under 30 lines of code. A basic block is a group of program statements in
it which the flow of control enters at the beginning and leaves at the end without the possibility
ul of branching (except at the end). Small basic blocks give the compiler more opportunities to
rearrange code for optimizations.

=
I « Avoid type conversions (for example, the assignment of a double-precision value to a
single-precision variable). Type conversions are time-consuming operations that are often
l b unnecessary. Conversions between floating-point and integer types are particularly difficult.
= Examine your code and be sure that variables that are used together are of the same type, except

where different types are needed.

™ :
L 3-15

Optimizing Programs

Paragonm System Fortran Compiler User's Guide

Loop Improvements

These changes make it easier for the vectorizer to assemble long sequences of similar operations,
which allow the i860 microprocessor to work the most efficiently. These changes can be very
effective in improving the performance of code that uses floating-point vectors.

3-16

Use unit stride (each iteration of a loop works on the next vector element, rather than skipping
elements). This results in efficient pipelines. This is one of the most important changes you can
make.

Use countable loops (loops which are iterated a loop-invariant number of times). The compiler
can create more efficient code for a loop whose iteration count is known at compile time than it
can for a loop whose iteration count is not known until the program executes (such as a loop
from 1 to n or a loop that terminates when a certain condition is true).

Use constants for the bounds and increment value in do statements.

Use perfectly-nested loops (loops that have no code outside the innermost loop). Here is an
example of a perfectly-nested loop:

do 100 k = 1,10
do 100 j = 1,10
do 100 i = 1,2000

. all loop operations here

100 continue

Perfectly-nested loops also terminate only at a loop-control statement; they do not have any
“early outs.”

In nested loops, make the loop with the highest iteration count in the innermost 1oop. This gives
the vectorizer the longest uninterrupted string of operations to work with.

Keep data dependence distances short. The data dependence distance of a loop is determined
by the proximity in memory of the different data objects that are accessed in the body of a loop.
For example, a loop that accesses vector elements a(n) and a(n+5) has a data dependence
distance of 5. For best results, inner loops should have a data dependence distance of less than
8 for double-precision vectors and less than 16 for real vectors.

i
i

b

Al

il
i

»

A

w

i

A

E

4

3

i I T
| S

B4

-

e

o

j [N

E:

!

H i i [S

i
2

¢ & 3 i

#

aid

Paragon™ System Fortran Compiler User's Guide ' Optimizing Programs

Avoid if statements within loops. If the compiler can’t be sure that the code that is executed on
each iteration of a loop is the same as the code in the previous iteration, it cannot set up a
pipeline. Instead of writing an if statement within a loop, write the loop within the if statement.
For example, if your code looks like this:

do 100 i = 1, 1000

c code for all conditions
if(a .gt. b) then

c code for a > b
endif

100 continue
Rewrite it as follows:

if(a .gt. b) then
do 100 i = 1, 1000

c code for all conditions
c code for a > b
100 continue

else

do 101 i =1, 1000

c code for all conditions
101 continue

endif

Note that this example assumes that the variables a and b are not changed in the loop body. If
the condition in the if statement depends on code within the loop, you cannot rearrange the loops
in this way.

Avoid divides and type conversions within loops. Division and type conversion are operations
that cannot be performed in hardware by the 1860 microprocessor, so 1oops containing these
operations cannot be pipelined as effectively.

File /O Improvements

If your program reads and writes sizeable data files, you can obtain substantial improvements in
performance with these changes:

£

[1 e 4 i

L |

il

Move the data files to PFS™" (Parallel File Systemm) file systems. Access to PFS file systems
is substantially faster than access to ordinary non-parallel file systems for large files.

Use sequential unformatted I/O rather than formatted I/O. Formatted file I/O guarantees
portability between different Fortran programs, but uses a lot of compute cycles on each read or
write. If you don’t need this portability (for example, if the file is used only by one or two
programs), you can improve the efficiency of file I/O by using unformatted I/O.

3-17

Optimizing Programs - Paragon™ System Fortran Compiler User's Guide

» Use parallel I/O calls (cread(), cwrite(), Iseek()) rather than Fortran I/O. These calls are more
- efficient than Fortran’s built-in I/O statements.

» Use asynchronous I/O (iread(), iwrite()). The asynchronous calls let your program work while
reads or writes are in progress. You can also use asynchronous I/O to perform double buffering:
reading data into a buffer, then reading into a second buffer while simultaneously processing
the data in the first buffer.

See the ParagonTM System User’ s Guide for more information on the techniques discussed in this
section.

3-18

B

o O wmE

.

S |

&
1

| | S |
£ B

Ea
E

l“'.'
-

(ot |

|

E

3

E

E]

&

¢ [N

4

12

i

b

Using the Inliner

This chapter describes the compiler’s subprogram inlining capability.

Subprogram inlining is a compiler optimization under which the body of a subprogram is expanded
in place of a call to the subprogram. This can speed up execution by eliminating the parameter
passing and subprogram call and return overhead. Inlining a subprogram body also creates
opportunities for other compiler optimizations. Inlining will usually result in larger code size
(although in the case of very small subprograms, code size can actually decrease). Using inlining
indiscriminately can result in much larger code size and no increase in execution speed; there may
even be a decrease in execution speed.

There are basically two ways to accomplish inlining:

» Automatic inlining as part of the compilation process. When you use the -Minline switch
during compilation, the compiler first looks in the source files for subprograms that can be
inlined, then replaces calls to those subprograms with the equivalent code automatically.

+ Use of inliner libraries. When you use the -Mextract switch during compilation, the compiler
looks for subprograms that can be inlined and extracts them into an inliner library. Later, when
compiling a program that calls subprograms in the inliner library, you use the -Minline switch

and specify the library; the compiler replaces calls to the subprograms in the library with the
equivalent code.

Compiler Inline Switch

To request subprogram inlining, use the -Minline switch:

-Minline=option[,option...]

4-1

Using the Inliner Paragon™ System Foriran Compiler User’s Guide

where option is one of the following:

[name:]subprogram
Specifies a particular subprogram to inline. If name: is not used, the
subprogram name must not contain a period. Any number of names can be
specified.

NOTE

Inlining in Fortran is case sensitive. You must use lowercase when
specifying the names of subprograms to be inlined with the
-Minline switch.

[size:Jnumber Specifies an upper bound on subprogram size to inline. Any subprogram less
than the specified number of lines (approximately) will be inlined.

[lib:library Specifies alibrary of inlined subprograms. If lib: is not used, the library name
must contain a period. Any number of libraries can be specified. A
subprogram is inlined if it is found in any of the libraries.

levels:number Specifies the number of levels of inlining to perform (default 1). Forexample,
suppose subprogram a calls b and b calls c. If you want to completely inline

a (including the calls to b and c), you must use -Minline=a,b,c,levels:2.

You must specify at least one name, size, or library. If both subprogram name(s) and a size limit are
specified, a subprogram is inlined if it is named or if it satisfies the limit.

Inlining can be either automatic or manual. If you do not specify any inliner libraries, the compiler
performs a special pass for all source files named on the command line before any of them are
compiled. This pass extracts subprograms that meet the requirements for inlining and puts them in
a temporary library for use by the compilation pass.

If you specify one or more inliner libraries, the compiler does not perform an initial extract pass.

Instead, subprograms to be inlined are selected from the specified libraries. If neither subprogram
names nor a size limit are specified, any subprogram in the library meets the conditions for inlining.

Creating an Inliner Library

To create or update an inliner library, use the -Mextract switch:
-Mextract[=option[,option...]]

where option is one of the following:

4-2

——
[]

R

&

4

¥ 4 & 4k

A

4

E!

b

i

4

4

[

: |

I

i b

P

|

L

B

Paragon™ System Fortran Gompiler User's Guide Using the Inliner

[name:]subprogram
Extracts the specified subprogram. name: must be used if the subprogram
name contains a period.

[size:lnumber Extracts subprograms containing less than approximately number statements.

If you don’t specify any options with -Mextract, the compiler attempts to extract all subprograms
of a reasonable size.

When you use -Mextract, only extraction is performed; compilation and linking are not performed.

If the -Mextract switch is present, you must also specify a single inliner library name on the
compiler command line. For example:

-0 inliner_library_name

This specifies the inliner library in which the extracted forms of subprograms are placed. The library
may or may not already exist; it is created if it does not.

You can use the -Minline switch at the same time as the -Mextract switch. In this case, the extracted
form of the subprogram can have other subprograms inlined into it. This makes it possible to obtain
more than one level of inlining. In this situation, if no library is specified with -Minline, processing
will consist of two extract passes. The first pass is the hidden pass implied by -Minline during which
subprograms are extracted into a temporary library. The second pass uses the results of the first pass
but puts its results into the library specified with the -0 switch. See examples below.

Using Inliner Libraries

An inliner library is implemented as a directory. For each element of the library, the directory
contains a file containing the encoded form of the inlinable subprogram.

A special file named TOC serves as a directory for the library. This is a printable, ASCII file that can
be examined to find out information about the library contents, such as names and sizes of
subprograms, the source file from which they were extracted, the version number of the extractor
that created the entry, etc.

Libraries and their elements can be manipulated using ordinary system commands, for example:

* You can rename a library with mv.

¢ You canremove an element from a library with rm, or remove an entire library with rm -r.

* You can copy an element from one library to another with ¢p, or copy an entire library with
cp -r.

¢ You can examine the contents of a library with Is, or determine the modification date of an
element with Is -1

4-3

Using the Inliner

Paragon™ System Fortran Compiler User's Guide
Yy

Since deleting or adding an element can cause the TOC file to become out of date, a utility program
ifixlib is provided to recreate a correct TOC file. Use it as follows:

% ifixlib library name

When use of the if77 command causes an entry to be created or updated, the date of the most recent
change of the library directory itself is updated also. This allows a library to be listed as a
dependency in a makefile, in order to ensure that the necessary compilations are performed again
when a library is changed.

Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

Main or BLOCK DATA programs

Subprograms containing alternate return, computed GOTO, assigned GOTO, DATA, SAVE,
or EQUIVALENCE statements

Subprograms containing FORMAT statements

Subprograms containing multiple entries

A Fortran subprogram is not inlined if any of the following applies:

It is referenced in a statement function.

There exists a common block mismatch; i.e., the caller must contain all common blocks
specified in the callee, and elements of the common blocks must agree in name, order, and type
(except that the caller’s common block can have additional members appended to the end of the
common block).

There exists an argument mismatch; i.e., the number of actual and formal parameters must be
equal.

There exists a name clash; e.g., a call to subroutine xyz in the extracted subprogram and a
variable named xyz in the caller.

A constant actual parameter in the caller has an assignment to its associated formal parameter
in the extracted subprogram.

The compiler gives you an error message if you violate any of these restrictions. The severity of the
error varies, depending on the type of the error and how far the compiler has gone in the inlining
process before detecting it.

44

I'T
-

m

™

i .

™

4 |

bl

sl

W

m
|

[[

4

E-a
t

l,
I ®
&

al

B
A

l' "
&
l el
el
lk)
wl

L
b

4

1

[

i

Ll ‘

|

Es :

k

4

i

— — —
L |

b

Paragon System Fortran Compiler User's Guide Using the Inliner

Error Detection During Inlining

When invoking the inliner, you should always set the diagnostics reporting switch (-Minfo=inline).
An additional feature associated with inlining is enhanced compiler error detection. For example:

« Ifaninlinable subprogram is called with the wrong number of arguments, a warning message
is issued and the subprogram is not inlined.

« Ifaninlinable subprogram is called in a context which assumes that a value is returned, but the
body of the subprogram does not contain any statements that set the return value, a severe error
is issued.

» If the declaration of an external variable referenced by an inlinable subprogram does not match
the declaration in the source file being compiled, a severe error is issued.

Efficiency Considerations

To ensure that compiler vectorizer optimizations are not impeded, observe the following guidelines
when inlining Fortran subprograms:

» Avoid inlining subprograms whose formal parameters are adjustable arrays. For example, this
fragment will vectorize well:

subroutine x(a)

integer n

parameter (n = 100)
double precision a(n, n)

However, this fragment will not vectorize well:
subroutine x(a, n)

integer n
double precision a(n, n)

45

Using the Inliner ' Paragon™ System Fortran Compiler User's Guide

« Avoid actual parameters that are elements of arrays, except when the element specified is the
first element of the array. For example:

program p
integer actparam(3:10,2:8,9)

C The next call will not inline efficiently
call inline_sub(actparam(4,6,2))

C The next call will inline efficiently

call inline_sub(actparam(3,2,1))

end

Examples

This section contains examples of using the inliner.

Dhry

Assume the program dhry consists of a single source file dhry.f. Then, the following command line
builds an executable for dhry in which Proc7 has been inlined wherever it is called:

% if77 dhry.f -Minline=Proc7

The following command line builds an executable for dhry in which Proc7 plus any subprograms
of roughly three or fewer statements have been inlined (1 level only).

% if77 dhry.f -Minline=Proc7,3

The following commands build an executable for dhry in which all subprograms of roughly ten or
fewer statements are inlined. Two levels of inlining will have been performed. This means that if
subprogram A calls subprogram B, and B calls C, and both B and C are inlinable, then the version
of B that is inlined into A will have had C inlined into it.

% if77 dhry.f -Mextract=10 -Minline=10 -o temp.ilib

% if77 dhry.f -Minline=temp.ilib
% rm -r temp.ilib

4-6

[m
't
")
l
B
N

™

|
i b

=
b

E

px mam A
Eoaox

.o

-

l B4
L]
l'"‘ﬂ

]

il
w

] —
3 i

[E

k|

3

i

E

4

j‘

#

£

E}

r

q

(S !

i

—
|

Paragon System Fortran Compiler User's Guide Using the Inliner

Makefiles

Assuming fibo.f contains a single subprogram fibo that calls itself recursively. Then, the following
command line creates file fibo.o in which fibo has been inlined into itself:

% if77 fibo.f -c -Minline=fibo -0

Because this version of fibo recurses only half as deeply, it should execute noticeably faster.

The following fragment of a makefile assumes that file utils.f contains a number of small
subprograms that are used in the files parser.f and alloc.f. An inliner library wtils.ilib is maintained.
Note that the library must be updated whenever utils.for one of the include files it uses is changed.
In turn, parser.f and alloc.f must be compiled again whenever the library is updated.

main.o: $(SRC)/main.f $(SRC)/global.h
$(F77) $(F77FLAGS) -c $(SRC)/main.f
utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
$(F77) $(F77FLAGS) -c $(SRC)/utils.f
utils.ilib: $(SRC)/utils.f $(SRC)global.h $(SRC)/utils.h
$(F77) $(F77FLAGS) -Mextract=15 -o utils.ilib
parser.o: $(SRC)/parser.f $(SRC)/global.h wutils.ilib
$(F77) $(F77FLAGS) -Minline=utils.ilib -c¢ $(SRC)/parser.f
alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.ilib
$(F77) $(F77FLAGS) -Minline=utils.ilib -c¢ $(SRC)/alloc.f

myprog: main.o utils.o parser.o alloc.o
$(F77) -o myprog main.o utils.o parser.o alloc.o

47

Using the Inliner

48

Paragon™ System Fortran Compiler User’s Guide

Rl

-l

B

Pa ma
_—

A

3

b

H :

oy

ra ra ro

i

E

S |

E# |

4

k

'

F

i

b
3

E e oo B4 b

- b i

38

—
k4

Interfacing Fortran and C

This chapter describes how to use C and Fortran routines together in the same program.

Calling a C Function from Fortran

The Fortran compiler adds an underscore () at the beginning and end of every external name
(function, subroutine and common), and expects all external names to begin and end with an
underscore. However, the C compiler only adds an underscore at the beginning of each external
name. This means that to make a C function callable from Fortran, the name that you give it (in the
C source) must end with an underscore. If you want to call an existing function whose name does
not end with an underscore, you must write a “wrapper” function, whose name does end with an
underscore, which just calls the existing function.

Also, any dollar signs in a C external name are replaced with underscores (or you can choose another
replacement character by using the -Mdollar switch when you compile the program). For example,
to call the C function my$func_() from Fortran, you would call it as my_func().

You can also use a C pragma to prevent the compiler from appending an underscore to the function
name. The C pragma directive has the following form:

comment_char$pragma C (id [,id] ...)
where
comment_char C,D,or *incolumn 1 or a! in any column
pragma either pragma or PRAGMA
ia iname of an external function

The C pragma directive marks external functions writen in C. The compiler does not append an
underscore to the specified identifiers. The following example shows a sample C pragma.

EXTERNAL FUNC1l, FUNC2 !$PRAGMA C(FUNC1l, FUNC2)

51

Interfacing Fortran and C Paragon™ System Fortran Compiler User's Guide

All Fortran arguments are passed by reference. (Temporary storage for non-addressable objects such
as literals is provided by the compiler.) Therefore, each parameter in the called C routine must be a
pointer of the appropriate type, as shown in Table 5-1.

Table 5-1. Fortran Data Types for Called C Functions

Fortran Passes C Receives
REAL*4 float *
REAL*8 double *
INTEGER*4 long *
INTEGER*2 short *
INTEGER*1 char *
LOGICAL*4 long *
LOGICAL*2 short *
LOGICAL*1 char *
COMPLEX struct complex {float realpart, imagpart;} *
COMPLEX*16 struct dcomplex {double realpart, imagpart;} *
CHARACTER char *

In the case of a passing a CHARACTER argument, Fortran not only passes a pointer to the char
variable, but also passes the length of the CHARACTER variable, as an int (nor as an int *) at the
end of the argument list. Fortran CHARACTER string constants are null terminated.

If the C function being called from Fortran returns a value, then the return types correspond as
follows:

e Anint C function must be declared either as INTEGER or LOGICAL in the calling Fortran
routine.

« Afloator double C function must be declared as DOUBLE PRECISION in the calling Fortran
routine. Since C usually promotes float return values to double, REAL return values usually
cannot be returned from C.

« COMPLEX, DOUBLE COMPLEX, and CHARACTER are returned by passing the address
where the return value is to be stored as an extra first parameter to the C function. The length of
a CHARACTER return value is passed as an extra second int parameter to the C function.

If a Fortran caller calls a C function as a subroutine with alternate return parameters, the value
returned by the C function (using return(e)) is interpreted as the expression in the Fortran alternate
return statement RETURN e. The Fortran caller does a computed GOTO on the return value to
implement the alternate return.

5-2

b
w

i

—

‘-

"

S
il

-
M

Rl

i

™

o
.
‘&M

[’1
-

W
-

]

L |

[T S

|3

E

4

o1

oo

i

3

- ;

oA

Paragon™ System Fortran Compiler User's Guide Interfacing Fortran and C

Calling a Fortran Routine from C

The Fortran compiler adds an underscore () at the beginning and end of every external name
(function, subroutine and common), while the C compiler only adds an underscore at the beginning
of each external name. This means that to call a Fortran routine or refer to a Fortran COMMON
block from C, you must append an underscore to its name. For example, to call the Fortran routine
myfunc() from C, you would call it as myfunc_().

All Fortran parameters are passed by reference. Therefore, the corresponding argument in the C call
must be a pointer of the appropriate type, as shown in Table 5-2. For example, to pass the scalar
variable x from C to Fortran, use the argument value &x.

Table 5-2. C Data Types for Called Fortran Routines

C Passes Fortran Receives
float * REAL*4
double * REAL*8
long * INTEGER*4
short * INTEGER*2
char * INTEGER*1
long * LOGICAL*4
short * LOGICAL*2
char * LOGICAL*1
struct complex {float realpart, imagpart;} * COMPLEX*8
struct dcomplex {double realpart, imagpart;} * COMPLEX*16
char * CHARACTER

In the case of a passing a CHARACTER argument, C must not only pass a pointer to the char
variable, but must also pass the length of the char variable, as an int (not as an int *) at the end of

the argument list.

If the Fortran routine being called from C is a FUNCTION, then the return types correspond as

follows:

« AnINTEGER or LOGICAL Fortran FUNCTION must be declared as int in the calling C

routine.

« A DOUBLE PRECISION Fortran function must be declared as double in the calling C
routine. Since C usually promotes float return values to double, a REAL return value may not
be accessible in C. (You can use the -Msingle switch when compiling the calling C program to

suppress the promotion of float to double.)

Interfacing Fortran and C Paragon™ System Fortran Compiler User's Guide

54

« COMPLEX, DOUBLE COMPLEX, and CHARACTER are returned from the called Fortran
routine by passing the address where the return value is to be stored as an extra first parameter
to the C function. The length of a CHARACTER return value is passed as an extra second int
parameter to the C function.

The alternate return statement of Fortran, RETURN e, has no equivalent in C.

T |

% e

E

1

&

E

¥

@l

3

] b

|4

E]

H
3

£

El

E

i

©
B

3

% # & ¥
& # 3 4
£ i £ #

i

Extensions to ANSI Fortran

This chapter describes the following extensions to the standard language (i.e., features and
capabilities not described in the American National Standard Programming Language FORTRAN,
ANSI x3.9-1978):

Extensions derived from VAX/VMS and IBM/VS
Extensions derived from Cray Fortran

Other IO extensions

Subroutine and intrinsic extensions

Additional intrinsic functions

Vector intrinsics

See the ParagonTM System Fortran Language Reference Manual for a complete description of the
language accepted by the if77 compiler and more details on the extensions described in this chapter.

Standard Language

The Fortran compiler compiles programs written in a true superset of ANSI standard Fortran 77, as
described in the American National Standard Programming Language FORTRAN, ANSI x3.9-1978.
There are no deviations from this language standard.

The compiler also supports the requirements of the Military Standard, MIL-STD-1753.

Instead of fully specifying the language accepted by the compiler, this chapter describes only those
features that differ from the Fortran language specified in the ANSI standard cited above. Most of
the differences (incompatibilities and extensions) are VAX/VMS and IBM/VS features.

6-1

Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide

Extensions Derived from VAX/VMS and IBM/VS

The Fortran compiler provides partial or full support for the following VAX/VMS and IBM/VS
extensions:

« Compiler directives

» Control statements

+ Datarelated

» Format related

e Lexical related

+ 1/Orelated

The following VMS Fortran statements are not supported:

DELETE FIND REWRITE
UNLOCK DICTIONARY

Compiler Directives

The Fortran compiler recognizes three VMS compiler directives:

%NOLIST Turns off listing of source lines in the listing file (including the %2NOLIST

line itself).
%LIST Turns the listing back on for the next line.
%EJECT Causes a new listing page to be started.

These directives have an effect only when the -Mlist command line switch is used. All directives
must begin in column one.

6-2

-

»

e
E 4

3

B

b

3

P

-

o4 oA w

€

s

|

£ e

|

&

E

E

1

¢ & 4

&

Paragon™ System Fortran Compiler User's Guide

OPTIONS Statement

Extensions to ANSI Fortran

The OPTIONS statement can be used to override or confirm certain compiler command-line
switches. The statement has the form:

OPTIONS /option [/opti

The recognized options are:

CHECK=ALL
CHECK=[NOJOVERFLOW
CHECK=[NOJBOUNDS
CHECK=[NOJUNDERFLOW
CHECK=NONE

NOCHECK
[NOJEXTEND_SOURCE
INOIF77

[NOJG_FLOATING

[NOJI4

[NOJRECURSIVE
[INOJREENTRANT

[NOISTANDARD

Restrictions:

on ...]

No effect (recognized, but ignored).

No effect.

No effect.

No effect.

No effect.

No effect.

(Don’t) enable the -Mextend switch.
(Don’t) enable the -Mstandard switch.
No effect.

(Don’t) enable the -Mi4 switch.
(Don’t) enable the -Mrecursive switch.
(Don’t) enable the -Mreentrant switch.

(Don’t) enable the -Mstandard switch.

See Chapter 2 for more information on these switches.

The OPTIONS statement must be the first statement in a program unit, preceding the
PROGRAM, SUBROUTINE, FUNCTION, and BLOCKDATA statements.

The options override the values from the compiler command line for the program unit
immediately following the OPTIONS statement.

Any prefix of the option sufficiently long to uniquely identify the optionis a legal abbreviation.

Upper or lower case is not significant, unless the switch -Mupcase is present on the command
line. If -Mupcase has been selected, the options must be in lower case.

6-3

Extensions to ANSI Fortran : Paragon™ System Fortran Compiler User's Guide

Control Statements (DO, DO WHILE, and ENDDO)
« The DO statement has the form:
DO [s][,]]lv=el,e2[,e3]

Support is provided for the VMS Fortran extension that allows the statement 1abel to be omitted.
If the optional label, s, is not included, the DO statement must be terminated by an ENDDO
(details follow in this section). VAX/VMS “Extended Range” DO loops are supported.

o The DO WHILE statement has the form:
DO [s[,]] WHILE (e)

where e is a logical expression and s is an optional label of a statement that must physically
follow in the same program unit. The DO WHILE statement executes for as long as the logical
expression e continues to be true when tested at the beginning of each iteration. If e is false,
control transfers to the statement following the loop. The label s is optional when an ENDDO
is used to terminate the loop (see below).

+ An ENDDO statement may optionally terminate an indexed DO or DO WHILE statement (see
previous section). The ENDDO statement is required for a DO or DO WHILE statement which
does not contain a terminal-statement label. The ENDDO statement may also be used as a
labeled terminal statement if the DO or DO WHILE statement contains a terminal-statement
label.

Data Extensions

Data Types

The size of a data type may be specified by appending a data type length specifier of the form *n to
the data type name. For example, REAL*8 is equivalent to DOUBLE PRECISION.

b 3

L

L

by B4 E

A4

Ea mmm R Ew pem geam mea
4

B

I S

4

L4

k

[|

AJ

Fa s@ Ea E4 F I F A
)

¢

e I
ST B S

™

&

£ 4

1

1

oA

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

Table 6-1 shows the lengths of data types and their meanings.
Table 6-1. Data Type Extensions

Type Meaning Size
LOGICAL*1 Small Logical 1 byte
LOGICAL*2 Short Logical 2 bytes
LOGICAL*4 LOGICAL 4 bytes
BYTE Small Integer 1 byte
INTEGER#*2 Short Integer 2 bytes
INTEGER*4 INTEGER 4 bytes
REAL*4 REAL 4 bytes
REAL*8 DOUBLE PRECISION 8 bytes
COMPLEX*8 COMPLEX 8 bytes
COMPLEX*16 DOUBLE COMPLEX 16 bytes

The new BYTE type is treated as a signed one-byte integer.

Assignment of a value too big for the data type to which it is assigned is an undefined operation.

VMS data type length specifiers are fully supported except for REAL*16 (Quad Precision).

A symbolic name can be followed by a data type length specifier of the form *s, where s is one of

the acceptable lengths for the data type being declared. Such a specification overrides the length

attribute that the statement implies and assigns a new length to the specified item. If a data type

length specifier is specified with an array declarator, the data type length specifier goes immediately

after the array name. Unlike VAX/VMS Fortran, a specifier is allowed after a CHARACTER

function name even if the CHARACTER type word has a specifier. For example:
CHARACTER*4 FUNCTION C*8()

is allowed by the Fortran compiler, but not by VAX/VMS Fortran.

The storage given to INTEGER and LOGICAL types is four bytes. A compiler switch to allow the
default for these types to be two bytes is not supported.

The storage given to REAL type is four bytes; for DOUBLE PRECISION, it is eight bytes.

The floating point format supported is machine-dependent. VAX/VMS supports its own floating
point format.

6-5

Extensions to ANSI Fortran : Paragon™ System Fortran Compiler User’s Guide

Intrinsic support for the new data types is provided.

VAX/VMS Fortran supports logical data items to be used with any operation where a similar sized
integer data item is permissible and vice versa. The logical data item is treated as an integer or the
integer data item is treated as a logical of the same size without any conversion.

VAX/VMS Fortran sign extends the result when a logical data item is assigned an integer or logical
value of a different size. This is supported.

Floating point data items may be used as array subscripts and in computed GOTOs. VAX/VMS
Fortran allows this and the float is converted to integer. Floating point data items are not permitted
in array bounds and alternate returns.

The type of an arithmetic expression corresponds to the type specified for VAX/VMS Fortran. The
type of an expression is determined by the rank of its elements. Table 6-2 shows the ranks of data
types from lowest to highest.

Table 6-2. Data Type Ranks
Data Type Rank
LOGICAL 1 (lowest)
INTEGER#*2 2
INTEGER*4 3
REAL*4 4
REAL*8 (Double precision) 5
COMPLEX#*8 (Complex) 6
COMPLEX*16 (Double complex) 7 (highest)

The data type of a value produced by an operation on two arithmetic elements of different data types
is the data type of the highest-ranked element in the operation, except that an operation involving a
COMPLEX*8 data type and a REAL*8 data type produces a COMPLEX*16 result (The REAL*8
element is not rounded).

The type of alogical expression is always a LOGICAL*4 result.

wean i“i
oA L |

ko4

4

e T
L

B

A

i

A poa
& b

3

py e |]
4 E

| I |

R
@

l v
&
l b4

g

—
£

L]

&

E)

| 3

b

4

¢ [

4 £ 8

A

B4

n

bl

4

E

#

E

1

&

[S o

| T |

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

Decimal Integer Constants
The form for a decimal integer constant is:
[s1d 1d2'"dn
where d. is a digit in the range O to 9 and where s is an optional sign. The value of an integer constant

must be within the range -2147483648 to 2147483647 inclusive (-2°! to 23! - 1)). All integer
constants assume a data type of INTEGER*4 and have a 32-bit storage requirement.

NOTE

VAX/VMS Fortran stores integer constants as either 16-bit
quantities or 32-bit quantities depending on their size. Passing
integer constants as actual arguments to dummy arguments of
smaller size is machine-dependent and is an undefined operation.

Octal/Hexadecimal Constants
Octal and hexadecimal constants are handled alike.
The form for an octal constant is:
’clcz...cn’O
The form for a hexadecimal constant is:
‘a Iaz...an’X
where c; is a digit in the range O to 7 and where a_. is a digit in the range O to 9 or a letter in the range

A to For ato f (case mixing is allowed). You can specify up to 64 bits (22 octal digits, 16
hexadecimal digits).

NOTE

VAX/VMS Fortran supports up to 128 bits.

6-7

Extensions to ANSI

Fortran Paragon™ System Foriran Compiler User's Guide

Octal and hexadecimal constants stored as either 32-bit or 64-bit quantities. If their number of digits
are represented by less than the necessary size, they are padded on the left with zero. They assume
data types based on the way they are used. The rules for data type conversion of constants are as
follows:

» The size of the constant is always either 32 or 64 bits and has a typeless data type.
Sign-extension and type-conversion are never performed. All binary operations are performed
on 32-bit or 64-bit quantities. This implies that the rules to follow are only concerned with
mixing 32-bit and 64-bit data.

» When the constant is used with an arithmetic binary operator, including the assignment
operator, and the other operand is not typeless, the constant assumes the type and size of the
other operand.

« When the constant is used in a relational expression, such as .EQ., the size is chosen from the
operand having the largest size. This implies that 64-bit comparisons are possible.

+ When the constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or
COMPL function, a 32-bit operation is performed if no argument is more than 32 bits in size,
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

When the constant is used as an actual argument in any other context, no data type is assumed;
however, a length of four bytes is always used. If necessary, truncation on the left occurs.

« When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant. An
example of a required specific data type is in array subscripting.

* When the constant is used in a context other than that mentioned above, an INTEGER*4 data
type is assumed. Examples include arithmetic binary operations with other untyped constants
and in logical expressions.

» When the required data type for the constant implies that the length needed is more than the
number of digits specified, the leftmost digits have a value of zero. When the required data type
for the constant implies that the length needed is less than the number of digits specified, the
constant is truncated on the left. Truncation of nonzero digits is allowed.

In the example below, the INTEGER*4 I and INTEGER*2 J will have the hex value 1234
and 4567 respectively. The REAL*8 D variable will have the hex value
0x4000012345678954 after its second assignment.

I = "'1234"X ! Leftmost Pad with zero.

J = '1234567’'X ! Truncate Leftmost 3 hex digits
D = 74000012345678%ab’X

D = EQV(D,’ff’X) ! 64-bit Exclusive Or

"
-

"
Y

n
™

R

I

l"?
&
”

&

_—
E 4 £ 4

4

¥

3

4

2

. k4

[k3 |

3 & v

£

4

E

1

51;4

E

son
!u;j b i

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

Hollerith Constants

Hollerith constants and character constants are handled alike but in a manner somewhat different
from hexadecimal and octal constants.

The form of a Hollerith constant is:
nHc 162,

where n specifies the positive number of characters in the constant and cannot exceed 2000
characters. A Hollerith constant is stored as a byte string with four characters per 32-bit word.
Hollerith constants are untyped arrays of INTEGER#*4. The last word of the array is padded on the
right with blanks if necessary. Hollerith constants cannot assume a character data type and cannot
be used where a character value is expected. Unlike VAX/VMS Fortran, Hollerith constants are
permitted with the % REF Built-In function. (Refer to the section “Subroutine and Intrinsic
Extensions” (on page E-25) for details on %REF). A Hollerith constant used in a numeric
expression assumes the data type according to the following rules. (Note, these rules also apply to
character constants used in a numeric context.)

« Sign-extension is never performed.

« The byte size of the Hollerith constant is determined by its context and is not strictly limited to
32 or 64 bits like hexadecimal and octal constants.

« When the constant is used with a binary operator, including the assignment operator, the data
type of the constant assumes the data type of the other operand.

« When a specific data type is required, that type is assumed for the constant. When an integer or
logical is required, INTEGER*4 and LOGICAL*4 are assumed. When a float is required,
REAL*4 is assumed. An example of a required specific data type is in array subscripting.

+ When the constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or
COMPL function, a 32-bit operation is performed if no argument is more than 32 bits in size,
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

When the constant is used as an actual argument, no data type is assumed and the argument is
passed as an INTEGER*4 array. Character constants are passed by descriptor only.

« When the constant is used in any other context, a 32-bit INTEGER*4 array type is assumed.
When the length of the Hollerith constant is less than the length implied by the data type, spaces are

appended to the constant on the right. When the length of the constant is greater than the length
implied by the data type, the constant is truncated on the right.

6-9

Extensions to ANSI Fortran Paragon™ System Fortran Compiler User’s Guide

6-10

Character Constants

Character constants may be used in a numeric context (for example, as the expression on the right
side of an arithmetic assignment statement). The rules for typing and sizing of character constants
used in a numeric context follows the same rules given for Hollerith constants as outlined in the
preceding section. Note that character constants as actual arguments are always passed by descriptor.

Logical Representation

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and O
respectively. A logical expression is defined to be true if its least significant bit is 1 and false
otherwise. This definition conforms exactly to the VAX/VMS definition.

The abbreviations, T and F, can be used as an alternative to .TRUE. and .FALSE. in data
initialization statements or in namelist input.

Data Initialization

The VAX/VMS extension to allow data initialization within data type declaration statements is
supported fully. Data is initialized by placing values bounded by slashes immediately following the
symbolic name (variable or array) to be initialized. Initialization of fields within structure
declarations is allowed. Unnamed fields cannot be initialized. Initialization of records is not allowed.

Hollerith, octal or hexadecimal constants can be used to initialize data in both data type declarations
or in DATA statements. Truncation and padding occur for constants that differ in size from the data
item declared as specified in the previous section on constants.

The requirement that the data initialization part must agree with the number of variable elements is
relaxed for declaration statements in order to support an IBM/VS extension. DATA statement
initialization requirements are not relaxed. For example, the following declaration statement is
acceptable and will initialize the first ten elements of the array A to the value 3.

INTEGER A(20)/10%*3/

PARAMETER Statement

The extensions to the PARAMETER statement supported by VAX/VMS Fortran are fully
supported. The two extensions to the PARAMETER statement are as follows:

e Its list is not bounded with parentheses.

» The form of the constant rather than the implicit or explicit typing of the symbolic name,
determines the data type of the variable.

!
1

2= T

4 B4

Ea
4

Kl

g3 E 3
3 b

E

£

F
L&

E}

[

k|

. Ea R
b

¥

-

[| [SE | 3

i e 4 4 koA

£ o 2 B4

k|

.
£

4

P —— | |
= [|

H

.

i

E | [| s £

”
a

[
e
rna

e

Paragon™ System Fortran Compiler User’s Guide Extensions to ANSI Fortran

The form of the alternative PARAMETER statement is:
PARAMETER p=c [,p=c]...

where p is a symbolic name and c is a constant, symbolic constant, or a compile time constant
. ™ .
expression. See the Paragon — System Fortran Language Reference Manual for details.

Common Blocks

Records are allowed to be named within common blocks. Since the storage requirements of records
are machine-dependent, the size of a common block containing records may vary between machines.
Note that this may also affect subsequent equivalence associations to variables within common
blocks that contain records.

Both character and non-character data may reside in one common block. Data is aligned within the
common block in order to conform to machine-dependent alignment requirements.

A common block may be data initialized in more than one program unit if the existing system
environment allows it (note that COFF-based systems do not). It is up to the programmer to make
sure that data within one common block is not initialized more than once.

Blank common may be data initialized.

EQUIVALENCE Statement

An array element may be identified with a single subscript in an EQUIVALENCE statement even
though the array is defined to be a multidimensional array. See the Paragon = System Fortran
Language Reference Manual for details.

Equivalence of character and non-character data is allowed as long as misalignment of non-character
data does not occur.

Records and record fields cannot be specified in EQUIVALENCE statements.

IMPLICIT Statement
The use of the keyword NONE with the IMPLICIT statement is supported. The form is:
IMPLICIT NONE

See the ParagonTM System Fortran Language Reference Manual for details.

6-11

Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide

6-12

Since symbol names may begin with dollar sign ($) or underscore (_), these characters by default

are of type REAL. In an IMPLICIT statement, these characters may be used in the same manner

as other characters. They cannot be used in a range specification. A valid example is:

IMPLICIT INTEGER (A-D,$,_)

VOLATILE Statement

The VOLATILE statement inhibits all optimizations on the variables, arrays, and common blocks
that it identifies. The form of this statement is:

VOLATILE nitem [,nitem]...
where each nitem is the name of a variable, array, or common block. The name of a common block
must be enclosed in slashes. If nitem names a common block, all members of the common block are
volatile.

The volatile attribute of a variable is inherited by any direct or indirect equivalences. For example:

COMMON /COM/ Cl, C2

VOLATILE /COM/, /DIR/ ! /COM/ and /DIR/ are volatil
EQUIVALENCE (DIR, X) | X is volatile :
EQUIVALENCE (X, Y) I Y is volatile

ENTRY Statement

The ENTRY statement provides multiple entry points within a subprogram. Entry names within a
FUNCTION subprogram need not be of the same data type as the function name, but they all must
be consistent within one of the following groups of data types:

* BYTE,INTEGER#*2,INTEGER*4, LOGICAL*1, LOGICAL*2, LOGICAL*4, REAL*4,
REAL*8, COMPLEX*8

« COMPLEX*16
¢« CHARACTER

If the function is of character data type, all entry names must also have the same length specification
as that of the function.

¥

m

™

7
&

T

.

oA B

A4

=
t

4

(=
L

4

o

T

4 S [E oA

E

1

i

3

4

B

4 S | "

. ¢ £ 4

4

["ﬁ
= -

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI| Fortran

Structures

A structure is an aggregate data type that may consist of multiple heterogeneous data types. A
structure declaration block is used to declare this user-defined type. This declaration is composed of
a STRUCTURE statement followed by the declaration body that declares one or more fields and is
finally followed by the END STRUCTURE statement. Fields within structures are aligned in order
to conform to machine-dependent alignment requirements. Alignment of fields also provides a
C-like “struct” building capability and allows convenient inter-language communications. Note that
aligning of structure fields is not supported by VAX/VMS Fortran. Refer to the “Records” section
(on page E-12) for an example. The form of a structure declaration is as follows:

STRUCTURE [/structure_name/][field namelist]
field declaration
[field declaration]

[field_declaration]
END STRUCTURE

where structure_name is unique, is used to identify a structure and is used in subsequent RECORD
statements to refer to the structure. Field namelist is a list of fields having the structure of the
associated structure declaration. A field namelist is allowed only in nested structure declarations.
Field declaration can consist of any combination of substructure declarations, typed data
declarations, union declarations or unnamed field declarations.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict. Also,
since periods are used in record references to separate fields, it is not legal to use relational operators
(for example, .EQ., .XOR.) logical constants (TRUE. or FALSE.) and logical expressions
(.AAND., .NOT., .OR.) as field names in structure declarations.

Fields declared in a structure are aligned according to the dependencies imposed by the hardware
and hence a structure’s storage requirement is machine-dependent. Note that VAX/VMS Fortran
does no padding. The %FILL feature is not functionally supported since explicit padding of arecord
is not necessary. However, the %FILL will be recognized and result in no action.

Data initialization can occur for the individual fields.

The UNION statement and MAP statement are supported.

See the Paragon™ System Fortran Language Reference Manual for details. The next section on
Records provides an example.

6-13

Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide

6-14

Records

A record is a VAX/VMS Fortran extension that is an aggregate entity containing one or more record
fields. Each field of a record can be named. This allows one to organize heterogenous data items
within one structure and to operate on them individually or collectively.

The form of a record is defined with a “structure definition” block (STRUCTURE statement). The
record is established in memory by specifying the name of the structure in a RECORD statement.
The format of a RECORD statement is as follows:

RECORD /structure_name/record _namelist
[,/structure_name/record_namelist]

[,/structure_name/record_namelist]

where structure_name is the name of a previously declared structure and record _namelist is alist of
one or more variable or array names separated by commas. Records initially have undefined values
unless their values have been defined in their corresponding structure declarations.

Individual fields of a record may be referenced by referring to the parent record name, a period (.),
and finally the field name. A scalar reference is defined to mean a reference to a name that resolves
to a single typed data item (e.g., INTEGER). An aggregate reference is defined to mean a reference
that resolves to a structured data item.

As in VAX/VMS Fortran, scalar field references may appear wherever normal variable or array
elements may appear with the exception of COMMON, SAVE, NAMELIST, DATA and
EQUIVALENCE statements. Aggregate references may only appear in aggregate assignment
statements, unformatted I/O statements, and as parameters to subprograms.

VAX/VMS Fortran allows aggregates to be assigned as a whole entity. This type of RECORD
assignment is fully supported.

RECORDS are fully supported except for the functional support of %FILL. See the Paragon™
System Fortran Language Reference Manual for a detailed description and use of the RECORD
statements and structure declarations. The following is an example of RECORD and
STRUCTURE usage.

STRUCTURE /person/ ! Declare a structure to define a person
INTEGER id
LOGICAL living
CHARACTER*50 first, last, middle
INTEGER age
END STRUCTURE
! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /person/ population(1000), me

P9

A

kB

b

|

ke

A mma e A e
J‘

£ A

|

B
v

B4
b

2 E oA
EI S

3

- -

mo

1

E

o

4

A =4 § a2

E ko

L

=

|

.4

B

pan g A pa A
|

|

O |

o

-3

v SR |

E|

E

1 ke

.

!

| 2

£

b 4 1

13

wr I B

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran
me.age = 34 ! Assign values for the variable me to
me.living = .TRUE. ! some of the fields.

me.first = ’Steve’

me.id = 542124822
population(l).last = ’'Jones’ Assign the "last" field of
element 1 of array population.
Assign all the values of record
"me" to the record population(2)

population(2) = me

[-

UNION/MAP

A union declaration is a multistatement declaration defining a data area that can be shared
intermittently during program execution by one or more fields or groups of fields. It declares groups
of fields that share a common location within a structure. Each group of fields within a union
declaration is declared by a map declaration, with one or more fields per map declaration.

Union declarations are used when one wants to use the same area of memory to alternately contain
two or more groups of fields. Whenever one of the fields declared by a union declaration is
referenced in a program, that field and any other fields in its map declaration become defined. Then,
when a field in one of the other map declarations in the union declaration is referenced, the fields in
that map declaration become defined, superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are two or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields
is defined by a separate map declaration. The format of a UNION statement is as follows:

UNION
map_declaration
[map_declaration]

[map_declaration]
END UNION

where the format of the map_declaration is as follows:

MAP
field _declaration
[field declaration]

[field declaration]
END MAP

where field declaration is a structure declaration or RECORD statement contained within a union
declaration, a union declaration contained within a union declaration, or the declaration of a typed
data field within a union. Refer to the section “Structures” (on page E-11) and the ParagonTM System
Fortran Language Reference Manual for more on field declarations.

6-156

’!1
Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide -

L I
-

| S

Data can be initialized in field declaration statements in union declarations. Note, however, that if
fields within multiple map declarations in a single union are initialized, the initialization of the
overlapping data is undefined.

4
3

E4

Field alignment within multiple map declarations are performed as previously defined in structure
declarations.

The size of the shared area for a union declaration is the size of the largest map defined for that union.
The size of a map is the sum of the sizes of the field(s) declared within it along with area reserved
for alignment purposes.

[oo

Manipulating data using union declarations is similar to what happens using EQUIVALENCE
statements. However, union declarations are probably more similar to union declarations for the
language C. The main difference here is that the language C requires one to associate a name with
each MAP and uses that name to differentiate multiple “maps” in a single union. The Fortran
compiler’s requirement that field names be unique within the same declaration nesting level
eliminates the need for naming the MAPs.

L

= T
-

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each &l
element of the recarr array would be the size of typerag (4 bytes) plus the size of the largest
MAP—the employee map (24 bytes). A
"
STRUCTURE /account/
INTEGER typetag ! Tag used to determine defined il
map. L
UNION
MAP ! Structure for an employee IW 1
CHARACTER*12 ssn ! Social Security Number “
REAL*4 salary
CHARACTER*8 empdate ! Employment date m
END MAP [
MAP ! Structure for a customer
INTEGER*4 acct_cust Y
REAL*4 credit_amt =
CHARACTER*8 due_date
END MAP i
MAP ! Structure for a supplier ol
INTEGER*4 acct_supp
REAL*4 debit_amt K "
BYTE num_items -
BYTE items(12) ! Items supplied
END MAP LA
END UNION i el
END STRUCTURE
-
RECORD /account/ recarr(1000) [MJ |
For more on UNIONSs and MAPs, sec the Paragon’ System Fortran Language Reference Manual. l:]
W

6-16 r'E

&

"

EY

B

—
4 S]

&

Ed
kS

| £ 3

4

E

. |

&

4

£

3

3

v

4

¥

1

£

a S |

&

Ed B 4 & 4

Paragon™ System Fortran Compiler User's Guide Extensions to ANS! Fortran

Exclusive OR

The Exclusive Or operator, .XOR., is supported. See the ParagonTM System Fortran Language
Reference Manual for details.

Format Extensions

A, O, Z, Q, and $ Field Descriptors
The O, Z, Q and $ field descriptors are new; the A edit descriptor is extended.

The A field descriptor is extended to process any data type. When not specified, the width is
determined by the size of the data item. Note that the A field descriptor is the only repeatable edit
descriptor whose field width specifier is optional as specified in Fortran 77.

The O field and Z field transfers octal or hexadecimal values and can be used with any data type.
They have the form:

ow[.m] and Zwl[.m)]
Where w specifies the field width and m indicates minimum field width on output.

Oninput, the external field to be input must contain (unsigned) octal or hexadecimal characters only.
An all blank field is treated as a value of zero. If the value of the external field exceeds the range of
the corresponding list element, an error occurs.

On output, the O and Z field descriptors transfers the octal and hexadecimal value of the
corresponding I/0 list element (respectively), right-justified, to an external field that is w characters
long. If the value to be transmitted does not fill the field, leading spaces are inserted,; if the value is
too large for the field, the entire field is filled with asterisks. If m is present, the external field consists
of at least m digits, and is zero-filled on the left if necessary. Note that if m is zero, and the internal
representation is zero, the external field is blank-filled.

A typeless value output with list directed I/O is output in hexadecimal form by default. There is no
other octal or hexadecimal capability with list directed I/O.

The Q edit descriptor calculates the number of characters remaining in the input record and stores
that valucT: in the next I/0 list item. On output, the Q descriptor skips the next I/O item. See the
Paragon " System Fortran Language Reference Manual for details. It has the form:

Q

6-17

Extensions to ANSI Fortran 7 Paragon System Fortran Compiler User’s Guide

6-18

The $ descriptor allows the programmer to control carriage control conventions on output. It is o~
ignored on input. For example, on terminal output, it can be used for prompting. See the Paragon
System Fortran Language Reference Manual for more details. It has the form:

$

For F, E, and D output editing, the VAX/VMS Fortran output format is adhered to. See the
ParagonTM System Fortran Language Reference Manual for details on output processing for F, E,
and D field descriptors.

Carriage Control Characters

The /O system recognizes characters as carriage controls when appearing as the first character of a
record being written. In addition to the standard “1”, “ ” (blank), “+”, and “0”; the “$” and “\0”
(ASCII NUL) are supported. The “$” allows for prompting by causing output to start at the
beginning of the next line, and suppressing carriage return at the end of the line. The “\0” overprints
with no advance; that is, it starts output at the beginning of the current line and does not return to the
left margin after printing.

Note that a “$” appearing as the first character in a record to be written is interpreted as a carriage
control character and is different from the “$” being used as an edit descriptor in a format statement.
See the ParagonTM System Fortran Language Reference Manual for details.

Commas in External Fields

Use of the comma in an external field eliminates the need to “count spaces” to have data match
format edit descriptors. The use of a comma to terminate an input field and thus avoid padding the
field is fully supported, as described in the ParagonTM System Fortran Language Reference Manual.

Reading Non-Quoted Data into CHARACTER Variables

When reading string data from a formatted file into a character#*n variable, the string need not be
quoted. Characters are read until the character*n variable is full or until a linefeed is read,
whichever comes first. See the Paragon“‘M System Fortran Language Reference Manual for more
information.

Variable Format Expressions <expr>

Variable format expressions are supported in full. They provide a means for substituting runtime
expressions for the field width and other parameters for the field and edit descriptors ina FORMAT
statement (except for the H field descriptor). Variable format expressions are evaluated each time
they are encountered in the scan of a format. If the value of a variable used in the expression changes
during the execution of the I/O statement, the new value is used the next time the format item
containing the expression is processed. Restrictions apply as indicated in the Paragon’ System
Fortran Language Reference Manual.

e

P |

£

L

&

4

&

4

it

4

4

§

3

3

|
]

3

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

Format Specification Separators

The ANSI Fortran 77 requirement that a format specification separator within a format statement be
acomma or a slash (/) is relaxed. The comma may be eliminated as a format specifier whenever the
end of the specifier and the beginning of the next specifier can be unambiguously determined. For
example the following is legal:

format(’1’7H123456716)
Commas were eliminated between the following format specifiers:

Ill
7H1234567
I6

ENCODE/DECODE Statements

The ENCODE and DECODE statements are unique to VAX/VMS Fortran and are fully supported.
The ENCODE and DECODE statements transfer data between variables or arrays in internal
storage and translate that data from internal to character form, and vice versa, according to format
specifiers. Similar results can be accomplished using internal files with formatted sequential
WRITE and READ statements. The ENCODE and DECODE statements have the form:

ENCODE (¢, f,b[,IOSTAT=ios] [,ERR=s])[list]
DECODE (c, f,b[,I0OSTAT=ios] [,ERR=s])[list]

where c is an integer expression specifying the number of bytes involved in translation, fis the
format identifier, b is a scalar or array reference for the buffer area and list is the buffer area either
containing data or receiving data. See the ParagonTM System Fortran Language Reference Manual
for details and restrictions.

Lexical Extensions

Identifier Names

Identifiers may be arbitrarily long. The number of significant characters is 30. In addition to
alphabetic and numeric characters, identifiers may contain the dollar sign ($) and the underscore ().
The first character of a name must be either alphabetic, the dollar sign, or an underscore. The default
data type for identifiers beginning with “$” or “_” is REAL.

By default, all uppercase letters, except those in character or Hollerith constants are translated to
lower case. As aresult, keywords may be in either upper or lower case, and case is not significant in
identifier names. This can be changed by use of the -Mupcase switch. When this switch is used,
keywords must be in lower case and case is significant in identifier names.

6-19

Extensions to ANSI Fortran Paragon"“ System Fortran Compiler User's Guide

6-20

Character Constants

For compaﬁbility with C usage, the following backslash escapes are recognized within character
string constants:

\v vertical tab
\a alert (bell)
\n newline
tab
\b backspace
\f formfeed
\r carriage return
\0 null
\ apostrophe (does not terminate a string)
\" double quotes (does not terminate a string)
\ \
\x - x, where x is any other character
\ddd character with the given octal representation.

Character string constants may be delimited using either an apostrophe () or a double quote ("). If
a string begins with one variety of quote mark, the other may be embedded within it without using
the repeated quote (as in standard Fortran 77) or backslash escape.

Inline Comments

An exclamation point () can be used anywhere in the statement field (except when used in a
Hollerith or character constant) to start an end-of-line comment.

Debug Statements
The letter “D” in column 1 designates the statement on that line to be a debugging statement. The
compiler will treat the debugging statement as a comment unless the command line switch -Mdlines

is used during the compilation. In that case, the compiler acts as if the “D” were a blank and compiles
the line according to the standard rules.

INCLUDE Statements

The INCLUDE statement directs the compiler to start reading from another file. The format for the
INCLUDE statement is:

INCLUDE ’pathname[/[NO]JLIST]’

P o4 o A e 4

ER

£

4

5 R EFa @Ema Ea Ea
b4

l“!
&
Iaw

E-

T

i

l'w
@l
l ;

N

‘ 8 04

E—
i 4

El

i

& B

3

. | || . | |
i 4

£

W _— — —any [
& 1 i

— —
€ 4

[

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

The INCLUDE statement may be nested to a depth of 20 and can appear anywhere within a program
unit as long as the statement-ordering restrictions for Fortran statements are not violated. The
directory search rules are as follows:

» If pathname is a fully qualified pathname, then that pathname specifies the directory to search.
« The current directory is searched.

« The directories specified via the -I switch on the compile line are searched in the order in which
they occurred.

The qualifiers /LIST or ANOLIST can be used to control whether the include file is expanded in the
listing file (if generated).

Note that there is no support for VAX/VMS “text libraries.” Also note the lack of support for the
“module_name” pathname qualifier that exists in the VAX/VMS version of the INCLUDE
statement.

Statement Ordering

The rules defining the order in which statements appear in a program unit have been relaxed as
follows:

< DATA statements can be freely interspersed with PARAMETER statements, other
specification statements and executable statements.

« NAMELIST statements are supported and have the same order requirements as FORMAT and
ENTRY statements.

+ The IMPLICIT NONE statement can precede other IMPLICIT statements.

See the ParagonTM System Fortran Language Reference Manual for details on statement ordering.

Input File Format

Input source file format has been extended from Fortran 77 to allow a number of VAX/VMS Fortran
extensions. Fortran 77 input source file format is supported in full as indicated in the ANSI standard.

» A continuation line may also be indicated by using an ampersand (&) in column one of a line.

e Tab-Format lines are supported. A tab in columns 1-6 ends the statement label field and begins
an optional continuation indicator field. If a non-zero digit follows the tab character, the
continuation field exists and indicates a continuation field. If anything other than a non-zero
digit follows the tab character, the statement body begins with that character and extends to the
end of the source statement. Note that this does not override Fortran 77°s source line handling
since no valid Fortran statement can begin with a non-zero digit. The tab character is ignored if
it occurs anywhere else in a line except in Hollerith or character constants.

6-21

Extensions to ANSI Fortran Paragon™ System Fortran Compiler User’s Guide

« Inputlines niay be of varying lengths. If there are fewer than seventy two characters, the line is
padded with blanks; characters after the 72nd are ignored unless the -Mextend switch is used
on the compile line.

» If the -Mextend switch is used on the command line then the input line can extend to 132
characters. The line is padded with blanks if it is fewer than 132; characters after the 132nd are
ignored. Note that use of this switch extends the statement field to position 132.

» Blank lines are allowed at the end of a program unit.

» The number of continuation lines allowed is extended to 99.

VAX/VMS Fortran’s Sequence Number Field support is not provided.

/O Extensions

6-22

I/O statements are composed of three basic components: the statement keyword, the control list, and
the I/0 list. The statement keywords supported are READ, ACCEPT, WRITE, TYPE, and
PRINT. ACCEPT and TYPE are VAX/VMS extensions. ENCODE and DECODE are supported
as previously described. The control list and I/O list have a few extensions and are discussed in this
section. The concept of namelist directed I/O is a VAX/VMS Fortran extension and is supported.

Namelist Directed 1/O
The NAMELIST statement is fully supported. This feature allows for the definition of namelist

groups for namelist directed I/O. See the Paragonm System Fortran Language Reference Manual
for details on namelist directed I/O.

ACCEPT and TYPE Statements

The ACCEPT statement has the same syntax as the PRINT statement and causes formatted input
to be performed on stdin. It is identical to the READ statement with a unit specifier of asterisk (*).
The ACCEPT statement is supported.

The TYPE statement has the same syntax and effect as the PRINT statement and is supported.

I/O Lists

Aggregate references can be used in unformatted input and output statements.

An extension that allows the programmer to freely parenthesize I/O items and groups of VO items
within I/O lists is supported as in VAX/VMS Fortran.

[|

L |

4k 4

13

. Ea W e g e
LI |

oo

]

¥4

i
3

-
o

E I w oA

3

4

&

n-q_
[T T

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

Control List Extensions

VAX/VMS allows a much larger set of I/O specifiers than Fortran 77. A subset of VAX/VMS
extensions is supported by the Fortran compiler.

A namelist specifier is a parameter that specifies that namelist directed /O is being used and
identifies the group-name of the list of entities that may be modified on input or written on output.
The namelist specifier has the form:

[NML=] group_name
where group name is the name of a list previously defined in a NAMELIST statement.
The keyword NML is optional only if (1) the namelist specifier is the second parameter in the

control list and (2) the first parameter is a logical unit specifier without an optional keyword UNIT.
A namelist specifier cannot be used in a statement that contains a format specifier.

Extensions Derived from Cray Fortran

The Fortran compiler supports the following Cray extensions:
» Pointer-based variables (POINTER statement).
« Dynamic COMMON blocks (ALLOCATABLE attribute).

+ Memory allocation statements (ALLOCATE and DEALLOCATE statements).

POINTER Statement

A pointer variable is an integer variable that contains the address of a corresponding pointer-based
variable. The storage located by the pointer variable is viewed according to what’s implied by the
pointer-based variable (subscripted, data type, etc.). A reference to a pointer-based variable appears
in FORTRAN statements like a normal variable reference (such as a local variable, common block
variable, or dummy variable). When the pointer-based variable is referenced, the address to which
it refers is always taken from its associated pointer (that is, its pointer variable is dereferenced).

The POINTER statement declares a scalar variable to be a pointer and another variable to be its
pointer-based variable. The syntax of the POINTER statement is:

POINTER (pl, v1) [, (P2, Vv2) ...]

6-23

Extensions to ANSI Fortran

Paragon™ System Fortran Compiler User's Guide

Where:
pl,p2, .. are the pointer variables; a pointer variable must have type INTEGER and
must not be an array.
vi,v2,... are the corresponding pointer-based variables; a pointer-based variable can

be of any type, including structure.

A pointer-based variable can be dimensioned in the POINTER statement or in a separate type or
DIMENSION statement. The dimension expression may be adjustable, where the rules for
adjustable dummy arrays regarding any variables which appear in the dimension declarators apply.

The pointer-based variable does not have an address until its corresponding pointer is defined. A
pointer can be defined by any of the following:

» Assigning the value of the LOC function to the pointer variable.

» Assigning a value defined in terms of another pointer variable to the pointer variable.

« Dynamically allocating a memory area for the pointer-based variable.

Also, if a pointer-based variable is dynamically allocated, it may also be freed (see “Memory
Allocation Statements” on page 6-26).

For example:

REAL XC(10)

COMMON IC, XC

POINTER (P,
POINTER (Q,
P = LOC(IC)

I=0

P = LOC(XC)
Q= P+ 20
X(1) =0

ALLOCATE (X)

Restrictions:

X(3))

o—

IC gets O

same as LOC(XC(6))
XC(6) gets O

Q locates a dynamically allocated
memory area

» No storage is allocated when a pointer-based variable is declared.

« If a pointer-based variable is referenced, it’s assumed that its pointer variable is defined.

6-24

L |

LI

B4

S T S

Ea pEma BOA A em Ea gew
3 B3 B3 4

£
14

3

@
P

q
2

= a
¥

B oE
|

J

E 4
3

"
#

oA

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI| Fortran

|

i P

E
.

A pointer-based variable may not appear in the argument list of a SUBROUTINE or
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SAVE statements.

4

B

+ A pointer-based variable can only be adjustable in a SUBROUTINE or FUNCTION
subprogram. If a pointer-based variable is an adjustable array, it’s assumed that the variables in
the dimension declarator(s) are defined with an integer value at the time the subroutine or
function is called. For a variable which appears in a pointer-based variable’s adjustable
declarator, modifying its value during the execution of the subroutine or function does not
modify the bounds of the dimensions of the pointer-based array.

3

E

4

« A pointer-based variable is assumed not to overlap with another pointer-based variable.

3

Dynamic COMMON

A dynamic, or allocatable, common block is a common block whose storage is not allocated until
an explicit ALLOCATE statement is executed.

#

&

The syntax of the COMMON statement is extended to allow an attribute (ALLOCATABLE) after
the COMMON keyword:

1

: S

COMMON [, ALLOCATABLE] named_common_list

where named_common_list is the same form used to declare named (statically allocated) common
blocks.

If the ALLOCATABLE attribute is present, all named common blocks appearing in the common
statement are marked as allocatable. Like a normal COMMON statement, the name of an
allocatable common block may appear in more than one COMMON statement. Note that the
ALLOCATABLE attribute need not appear in every COMMON statement.

COMMON, ALLOCATABLE /alll/ a, b, /all2/aa, bb
COMMON /stat/d, /alll/ c

l) For example:
These statements declare alll and all2 as allocatable common blocks whose members are a, b, c,

! and aa, bb, respectively, and stat as a statically-allocated common block (whose member is d).

. A reference to a member of an allocatable common block appears in a FORTRAN statement just

l like a member of a normal (static) common block. No special syntax is required to access members

of allocatable common blocks. For example, using the above declarations, the following statement

islegal:

L 6-25

-
Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide lv*’

Restrictions: ! ‘*‘
« Before members of an allocatable common block can be referenced, the common block must A
have been explicitly allocated using the ALLOCATE statement. LW
« Members of an allocatable common block cannot be data initialized. I "}
« The memory used for an allocatable common block may be freed using the DEALLOCATE
statement. I
ko
« If a subprogram declares a common block to be allocatable, all other subprograms containing 3
COMMON statements of the same common block must also declare the common to be Mo
allocatable. &
Memory Allocation Statements 4
The ALLOCATE and DEALLOCATE statements provide a mechanism to allocate and free ; :}
memory during the execution of a program.)
m
P
ALLOCATE Statement
Fo
The syntax of the ALLOCATE statement is: "
ALLOCATE (al [, al 1 ... [, STAT=var]) y
g
Where:
i
al is a pointer-based variable or the name of an allocatable common enclosed &
in slashes.
B
var is an integer variable, integer array element, or an integer member of a ﬂ u
structure.
The ALLOCATE attempts to allocate storage for each of the pointer-based variables and ﬂ m

allocatable common blocks which appear in the statement. For a pointer-based variable, its
associated pointer variable is defined with the address of the allocated memory area. If the STAT=
specifier is present, successful execution of the ALLOCATE statement causes the status variable to
become defined with the value O (zero). If an error occurs during the execution of the statement and
the STAT= is present, the status variable is defined with the value 1 (one). If an error occurs and the
STAT-= specifier is not present, program execution is terminated.

| =]
¢

4

(]

It

-
(S

- | I

_—
|

[]

4 E 8

4

E

E

E

] E

v

4

£

]

E

£

£

1

£

4

&

i
8

¥

3

e e
| o4

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran
DEALLOCATE Statement
The syntax of the DEALLOCATE statement is:
DEALILOCATE (al [, al] ... [, STAT=var])
Where:
al is a pointer-based variable or the name of an allocatable common enclosed
in slashes.
var is an integer variable, integer array element, or an integer member of a
structure.

The DEALLOCATE statement causes the memory allocated for each of the pointer-based variables
or allocatable common blocks which appear in the statement to be deallocated (freed). An attempt
to deallocate a pointer-based variable or an allocatable common block which was not created by an
ALLOCATE statement results in an error condition.

If the STAT= specifieris present, successful execution of the DEALLOCATE statement causes the
status variable to become defined with the value O (zero). If an error occurs during the execution of
the statement and the STAT= is present, the status variable is defined with the value 1 (one). If an
error occurs and the STAT= specifier is not present, program execution is terminated.

Using Memory Allocation Statements
Here is an example of the ALLOCATE and DEALLOCATE statements:

COMMON P, N, M
POINTER (P, A(N,M))

COMMON, ALLOCATABLE /ALL/X(10), Y
ALLOCATE (/ALL/, A, STAT=IS)
PRINT *, IS

X(5) = A(2, 1)

DEALLOCATE (A)

DEALLOCATE (A, STAT=IS)

PRINT *, ’should be 1’, IS
DEALLOCATE (/ALL/)

6-27

Extensions to ANSI Fortran Paragon System Fortran Compiler User's Guide

Other I/O Extensions

This section describes the following /O extensions:
* How the underlying I/O is performed

+ The different file organizations

» Extensions to the OPEN statement

» Extensions to the CLOSE statement

» Extensions to the BACKSPACE statement

« Extensions to the READ/WRITE statement

General Input/Output

6-28

The Fortran compiler supports the full I/O facilities of ANSI Standard Fortran 77 along with several
extensions as listed in the following sections. A number of different file and access types are also
supported. They include:

¢ Internal and external files

« Fixed and variable record length files
» Formatted and unformatted /O

« Direct and sequential /O

The Fortran 77 standard gives a certain amount of latitude to compiler implementors concerning
default features of Fortran I/O. Unless specified otherwise, all file units opened are initially
connected for sequential, formatted, variable length record, synchronous buffered I/O, and have a
default value of NULL for the BLANK specifier in the OPEN statement. All STATUS and LIMIT
variables must be of type INTEGER*4,

The operating system provides three standard data streams called standard input, standard output,
and standard error. All of these streams are normally connected to the user’s terminal, but this can
be overridden by using I/O redirection on the command line (see the OSF/I User’s Guide for more
information on I/O redirection). Standard input is preconnected to logical unit 5, standard output is
preconnected to logical unit 6, and standard error is preconnected to logical unit O. This means that
you can read from unit 5 and write to units 6 and O without opening them first.

L A

L
[:i
"

-

P

E

A

E

E]

“

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

File Formats

Four kinds of extemal files are supported by the Fortran compiler: variable length and fixed length,
formatted and unformatted records. To promote portability, files are implemented as ordinary UNIX
files with their internal structure defined by the method used to write them.

A file is opened for fixed length record 1/O by specifying the record length of the records using the
RECL specifier of the OPEN statement. This is used by the I/O system to make the file look as if
it is made up of records of the given length. The record length must be in units of bytes. For
unformatted files, the size of the data items in a record must be added up (e.g., an INTEGER*2 item
requires two bytes). Each data item in an unformatted file immediately follows the previous item
with no alignment requirements.

For fixed length record formatted files, each record consists of exactly the number of bytes that is
specified by the user.

Each record of a variable length unformatted file is preceded and followed by a four-byte integer
containing the record’s length in bytes.

For variable length record formatted input, each newline character is interpreted as a record
separator. On output, the I/O system writes a newline at the end of each record. If a program writes
a newline itself, the single record containing the newline will appear as two records when read or
backspaced over. The maximum allowed length of a record in a variable length record formatted file
is 2000 characters.

Any file opened for direct access must be via fixed length records.

OPEN Statement

VAX/VMS Fortran introduces a number of extensions to the OPEN statement. Many of these relate
only to the VMS file system and are not supported (e.g., KEYED access for indexed files). All of the
standard Fortran 77 features for the OPEN statement are supported. The following keywords for the
OPEN statement have been added or augmented as shown below. See the ParagonT System
Fortran Language Reference Manual for details on these keywords.

ACCESS The value of ' APPEND’ will be recognized and implies sequential access
and positioning after the last record of the file. Opening a file with append
access means that each appended record is written at the end of the file (i.e.,
the Iseek() system call has no effect on the file pointer).

ASSOCIATEVARIABLE
This new keyword specifies an INTEGER#*4 variable which is updated to the
next sequential record number after each direct access I/O operation. Only for
direct access mode.

6-29

Extensions to ANSI Fortran ’ Paragon™ System Fortran Compiler User's Guide

DISPOSE and DISP
 These new keywords specify the disposition for the file after it is closed.
"KEEP’ or ' SAVE’ is the default on anything other than
STATUS="SCRATCH?’ files. 'DELETE" indicates that the file is to be
removed after itis closed. The PRINT and SUBMIT values are not supported.

NAME This new keyword is a synonym for FILE.

READONLY This new keyword specifies that an existing file can be read but prohibits
writing to that file. The default is read/write.

RECL=1en The record length given is interpreted as number of words in a record if the
runtime environment parameter FORTRANOPT is set to vaxio. This is to
ease porting of VAX/VMS programs. The default is that /en is given in
number of bytes in a record.

TYPE This new keyword is a synonym for STATUS.

CLOSE Statement
The DISPOSE or DISP keyword is added to the CLOSE statement. It is synonymous with the
STATUS keyword. This new keyword specifies the existence of the file after closing. The default

is “SAVE’ or 'KEEP'. The value of ' DELETE ' will delete the file after closing. These new values
can be used with the STATUS keyword also.

BACKSPACE Statement

The BACKSPACE statement is supported as defined by Fortran 77. However, you must not issue
a BACKSPACE statement for a file that is open for direct or append access.

READ/WRITE Statement

List directed reads or writes on internal files is supported in addition to the Fortran 77 standard of
formatted reads or writes on internal files.

Namelist directed formatting is not permitted with internal reads or writes.

6-30

sl

i

Bl

il

o
i .

"
y

J‘J

k|

E

£

!

‘ S

i

b

1

P

[1]] []]
; ¢ B4

|

e
i

B

B

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

Subroutine and Intrinsic Extensions

This section describes added system built-in function and subroutine support and non-Fortran 77
intrinsic support. Table 6-5 (on page 6-37) summarizes the intrinsic functions.

Built-In Functions

The following built-in functions are fully supported:

* %VAL
* %REF
* %DESCR
* %LOC

See the PazragonTM System Fortran Language Reference Manual for details.

VAX/VMS System Subroutines

The following VAX/VMS Fortran system subroutines are provided.

DATE
Returns a nine-byte string containing the ASCII representation of the current date. It has the form:
CALL DATE(buf)

where bufis a nine-byte variable, array, array element, or character substring. The date is returned
as a nine-byte ASCII character string of the form:

dd-mmm-yy
where:
dd Is the two-digit day of the month
mmm Is the three-character abbreviation of the month
yy Is the last two digits of the year

6-31

Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide

6-32

IDATE

The IDATE subroutine returns three integer values representing the current month, day, and year.
It has the form:

CALL IDATE(i, j, k)
If the current date were October 9, 1984, the values of the integer variables upon return would be:
i=10

j=9
k=84

EXIT

The EXIT subroutine causes program termination, closes all open files, and returns control to the
operating system. It has the form:

CALL EXIT[(exit_status)]

where exit_status is an optional integer argument used to specify the image exit value.

SECNDS

Provides system time of day, or elapsed time, as a floating point value in seconds. It has the form:
y = SECNDS(x)
where (REAL or DOUBLE PRECISION) yis set equal to the time in seconds since midnight,
minus the user supplied value of the (REAL or DOUBLE PRECISION) x. Elapsed time
computations can be performed with the following sequence of calls.
X = SECNDS(0.0)
! Code to be timed

DELTA = SECNDS(X)

The accuracy of this call is the same as the resolution of the system clock.

!m,
o
ﬂ
x

[

e

-l
Food

-
E S

- —_— -
B4 -

ad

o4 5 4 i v od B oW

E}

E .

™

2

E]

B [B

——
4

e

- -

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

TIME

Returns the current system time as an ASCII string. It has the form:
CALL TIME(buf)

where buf'is an eight-byte variable, array, array element, or character substring. The TIME call
returns the time as an eight-byte ASCII character string of the form:

hh:mm:ss
For example:
16:45:23

Note that a 24-hour clock is used.

MVBITS

The MVBITS subroutine transfers a bit field from one storage location (source) to a field in a second
storage location (destination). MVBITS transfers a3 bits from positions a2 through (a2 + a3 - 1) of
the source, al, to positions a5 through (a5 + a3 - 1) of the destination, a4. Other bits of the
destination location remain unchanged. The values of (a2 + a3) and (a5 + a3) must be less than or
equal to 32. It has the form:

CALL MVBITS(al, a2, a3, a4, ab5)

where:

al Is an integer variable or array element that represents the source location.

a Is an integer expression that identifies the first position in the field transferred
fromal.

a3 Is an integer expression that identifies the length of the field transferred from
al.

a4 Is aninteger variable or array element that represents the destination location.

as Is an integer expression that identifies the starting position within a4, for the
bits being transferred.

Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide

RAN

Returns the next number from a sequence of pseudo-random numbers of uniform distribution over
the range O to 1. The result is a floating point number that is uniformly distributed in the range
between 0.0 and 1.0 exclusive. It has the form:

¥y = RAN(i)

where yis set equal to the value associated by the function with the seed argument i. The argument
i must be an INTEGER*4 variable or INTEGER*4 array element.

The argument i should initially be set to a large, odd integer value. The RAN function stores a value
in the argument that it later uses to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different values on
separate runs in order to obtain different random numbers. The seed is updated automatically, and
RAN uses the following algorithm to update the seed passed as the parameter:

SEED = 69069 * SEED + 1 ! MOD 2%%32

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point and
returned as the result.

VAX/VMS Intrinsics

6-34

Additional intrinsics are added to support the new data types of INTEGER*2, LOGICAL*1,
LOGICAL#*2, and COMPLEX*16. Typeless generic intrinsics (AND, OR, NEQV, EQV,
SHIFT, and COMPL) are added to support 64-bit constant manipulations. VAX/VMS Fortran
Bit-manipulation intrinsic functions are supported. The REAL*16 intrinsic functions are not
supported. Table 6-5 (on page 6-37) lists only supported VAX/VMS intrinsics not part of ANSI
Fortran 77.

Support for trigonometric functions with arguments in degrees is provided as well as for arguments
of type COMPLEX*16.

g
B

{
|

It

.

o

4

4 oA 3

E

4

E

E

&

w

P

3

=

¢

dad

™

8

t

l
3

] —— —
!"j m ¥4 & 4

Paragon™ System Fortran Compiler User's Guide

Extensions to ANSI Fortran

Table 6-3 lists the intrinsics that support the new data types.

Table 6-3. Intrinsics That Support The New Data Types

Intrinsic Function Generic Name
Absolute Value ABS
Truncation INT, IINT
Nearest Integer ININT
Conversion to REAL*4 REAL
Conversion to REAL*8 DBLE
Conversion to COMPLEX*8 CMPLX
Imaginary part of COMPLEX*16 (no generic name, specific names only)
Complex Conjugate (no generic name, specific names only)
Maximum and Minimum MAX, MIN
Positive Difference DIM
Remainder MOD
Transfer of Sign SIGN
Trigonometrics SIN, COS
Misc SQRT, LOG, EXP

Table 6-4 lists other new intrinsics (generics).

Table 6-4. Other New Intrinsics (1 of 2)

Intrinsic Function

Generic Name

Trigometrics with degree arguments

SIND, COSD, TAND, ASIND, ACOSD,
ATAND, ATAN2D

Zero-Extend Functions ZEXT, IZEXT
Conversion to COMPLEX*16 DCMPLX

Bitwise AND IAND, AND

Bitwise OR IOR, OR

Bitwise Exclusive OR IEOR, XOR, NEQV
Bitwise Exclusive NOR EQV

Bitwise Complement NOT, COMPL

Extensions to ANSI Fortran Paragon™ System Fortran Compiler User's Guide

Table 6-4. Other New Intrinsics (2 of 2)

Intrinsic Function Generic Name
Bitwise Shift ISHFT, LSHIFT, RSHIFT, SHIFT
Bitwise Circular Shift ISHFTC
Bit Extract IBITS
Bit Set IBSET
Bit Test BTEST
Bit Clear IBCLR

Table 6-5 (on page 6-37) lists generic and intrinsic names for all intx}nsics supported by the Fortran
compiler that are not defined by ANSI Fortran 77. See the Paragon " System Fortran Language
Reference Manual for details on these new and extended intrinsic functions.

UNIX Related System Subroutines

The following subroutines are supplied to support C-like command line argument processing by
Fortran routines.

GETARG

SUBROUTINE GETARG(N, ARG)
INTEGER*4 N
CHARACTER* (*) ARG

Returns Nth command line argument in character variable ARG. For N equal to zero, the name of the
program is returned.

IARGC

INTEGER*4 FUNCTION IARGC()

Returns the number of command line arguments following the program name.

6-36

L

Fﬁ‘l

5
£

4

4 [

£

4

(T = T T =
B4

It

I

T T |

E

]

E

]

¥

4

4 E

€

t

[3 3 £ 4 E]

El

i

£ : H 8 = [T ‘

£

E

k

| o S
- |

il

Paragon™ System Fortran Compiler User's Guide

Additional Intrinsic Functions

Table 6-5 lists intrinsic functions that are in addition to those described for Fortran 77. All the
Fortran 77 intrinsics are supported and are detailed in the American National Standard
Programming Language FORTRAN, ANSI x3.9-1978. See the Paragon™ System Fortran Language
Reference Manual for details on the intrinsics in this chapter.

Table 6-5. Additional Intrinsic Functions (1 of 4)

Extensions to ANSI Fortran

Number | Generic Specific Type of
Function of Args Name Name Argument Type of Result

Square Root 1 SQRT CDSQRT COMPLEX*16 COMPLEX*16

Natural Logarithm 1 LOG CDLOG COMPLEX*16 COMPLEX*16

Exponential 1 EXP CDEXP COMPLEX*16 COMPLEX*16

Sine (degree) 1 SIND SIND REAL*4 REAL*4
DSIND REAL*8 REAL*8

Cos (degree) 1 COSD COSD REAL*4 REAL*4
DCOSD REAL*8 REAL*8

Tan (degree) 1 TAND TAND REAL*4 REAL*4
DTAND REAL*8 REAL*8

ArcSine (degree) 1 ASIND ASIND REAL*4 REAL*4
DASIND REAL*8 REAL*8

ArcCosine (degree) 1 ACOSD ACOSD REAL*4 REAL*4
DACOSD REAL*8 REAL*8

ArcTangent (degree) 1 ATAND ATAND REAL*4 REAL*4

Arc Tana DATAND REAL*8 REAL*8

ArcTangent (degree) 2 ATAN2D ATAN2D REAL*4 REAL*4

Arc Tan al/a2 DATAN2D REAL*8 REAL*8

Sine 1 SIN CDSIN COMPLEX*16 COMPLEX*16

Cos 1 COS CDCOS COMPLEX*16 COMPLEX*16

Absolute Value 1 ABS IABS INTEGER*2 INTEGER*2
JIABS INTEGER*4 INTEGER*4
CDABS COMPLEX*16 | REAL*8

6-37

Extensions to ANSI Fortran

Table 6-5. Additional Intrinsic Functions (2 of 4)

Paragon™ System Fortran Compiler User's Guide

Number | Generic Specific Type of
Function of Args Name Name Argument Type of Result
Truncation 1 IINT IINT REAL*4 INTEGER#*2
IDINT REAL*8 INTEGER*2
COMPLEX*8 INTEGER*2
COMPLEX*16 INTEGER*2
INT COMPLEX*16 INTEGER*4
JINT JINT REAL*4 INTEGER*4
JIDINT REAL*8 INTEGER*4
COMPLEX*8 INTEGER*4
COMPLEX*16 INTEGER*4
Nearest Integer 1 ININT ININT REAL*4 INTEGER*2
[a + .5*sign(a)] HIIDNNT REAL*8 INTEGER*2
JNINT JNINT REAL*4 INTEGER*4
JIDNNT REAL*8 INTEGER*4
Zero-Extend Function 1 IZEXT LOGICAL*1 INTEGER*2
(Conversion Routine) LOGICAL*2 INTEGER*2
INTEGER*2 INTEGER*2
ZEXT JZEXT LOGICAL#*1 INTEGER*4
LOGICAL*2 INTEGER*4
LOGICAL*4 INTEGER*4
INTEGER*2 INTEGER*4
INTEGER*4 INTEGER*4
Convert to REAL#*4 1 REAL FLOATI INTEGER*2 REAL*4
FLOAT]J INTEGER*4 REAL*4
COMPLEX*16 REAL*4
Convert to REAL*8 1 DBLE DFLOTI INTEGER#2 REAL*8
DFLOAT INTEGER*4 REAL*8
DFLOTJ INTEGER*4 REAL*8
DREAL COMPLEX*16 REAL*8
Fix 1 IFIX REAL*4 INTEGER*2
JIFIX REAL*4 INTEGER*4
Conv to 1,2 CMPLX INTEGER*2 COMPLEX*8
COMPLEX*8 or COMPLEX*16 COMPLEX*8
COMPLEX*8 from
two arguments
Conv to 1,2 DCMPLX INTEGER*2 COMPLEX*16
COMPLEX*16 or 1,2 INTEGER*4 COMPLEX*16
COMPLEX*16 from 1,2 REAL*4 COMPLEX*16
two arguments 1,2 REAL*8 COMPLEX*16
1 COMPLEX*8 COMPLEX*16
1 COMPLEX*16 COMPLEX*16
6-38

| S

A

o4

=
i

-

v 4

»

|3

F

&

4

S | E

4

b3

i

K

4

A

£

#

4

[2

i

. — I | |]
Lood [i

4

#

£ oA

e i

'3

Paragon™ System Fortran Compiler User's Guide Extensions to ANSI Fortran

Table 6-5. Additional Intrinsic Functions (3 of 4)

Number | Generic Specific Type of
Function of Args Name Name Argument Type of Result
Imag Part of Cmplx 1 AIMAG COMPLEX*8 REAL*4
DIMAG COMPLEX*16 | REAL*8
Complex Conjugate 1 CONJG DCONJG COMPLEX*16 | COMPLEX*16
Maximum n>1 MAX IMAXO0I INTEGER#*2 INTEGER*2
MAX1 REAL*4 INTEGER*2
AIMAXO0 INTEGER#*2 REAL*4
JMAXO0 INTEGER*4 INTEGER*4
JMAX1 REAL*4 INTEGER*4
AJMAXO INTEGER*4 REAL*4
Minimum n>1 MIN IMINO INTEGER*2 INTEGER*2
IMIN1 REAL*4 INTEGER*2
AIMINO INTEGER*2 REAL*4
JMINO INTEGER*4 INTEGER*4
JMIN1 REAL*4 INTEGER*4
AJMINO INTEGER*4 REAL*4
Positive Difference 2 DIM IIDIM INTEGER*2 INTEGER*2
JIDIM INTEGER*4 INTEGER*4
Remainder 2 MOD IMOD INTEGER*2 INTEGER*2
JMOD INTEGER*4 INTEGER*4
Transfer of Sign 2 SIGN IISIGN INTEGER*2 INTEGER*2
JISIGN INTEGER*4 INTEGER*4
Bitwise AND 2 IAND HAND INTEGER*2 INTEGER*2
Performs a logical JIAND INTEGER*4 INTEGER*4
AND on bits AND See note 1 typeless
Bitwise OR 2 IOR IOR INTEGER#*2 INTEGER*2
Performs a logical OR JIOR INTEGER*4 INTEGER*4
on bits OR See note 1 typeless
Bitwise XOR 2 IEOR HEOR INTEGER*2 INTEGER*2
Performs a logical XOR JIEOR INTEGER*4 INTEGER*4
Exclusive Or NEQV See note 1 typeless
Bitwise Excl. NOR 2 EQV See note 1 typeless
Performs a logical
Exclusive Nor
Bitwise Complement 1 NOT INOT INTEGER*2 INTEGER*2
Complements each bit JNOT INTEGER*4 INTEGER*4
COMPL See note 1 typeless

6-39

Extensions to ANSI Fortran

Paragon™ System Fortran Compiler User's Guide

Table 6-5. Additional Intrinsic Functions (4 of 4)

Number | Generic Specific Type of
‘Function of Args Name Name Argument Type of Result

Address Extraction 1 LOC INTEGER#*2 INTEGER*4

The address of a data INTEGER*4 INTEGER*4

item is returned. REAL*4 INTEGER*4

(Assumes 32-bit REAL*8 INTEGER*4

address) COMPLEX*8 INTEGER*4
COMPLEX*16 INTEGER*4

Bitwise Shift 2 ISHFT IISHFT INTEGER*2 INTEGER*2

al logically shifted left JISHFT INTEGER*4 INTEGER*4

a2 bits. If a2 < 0 then SHIFT See note 2 typeless

right logical shift.

Bitwise Left Shift 2 LSHIFT INTEGER*2 INTEGER*2

al logically shifted left INTEGER*4 INTEGER*4

Bitwise Right Shift 2 RSHIFT INTEGER*2 INTEGER*2

al logically shifted INTEGER*4 INTEGER*4

right

Circular Shift 3 ISHFTC HOSHFTC INTEGER*2 INTEGER*2

Rightmost a3 bits of al JISHFTC INTEGER*4 INTEGER*4

are shifted circularly

by a2 bits;

remaining bitsinal are

unaffected.

Character 1 CHAR LOGICAL*1 CHARACTER

Returns a character INTEGER#*2 CHARACTER

that has the ASCII CHAR INTEGER*4 CHARACTER

value specified by the

argument.

Bit Extraction 3 IBITS IBITS INTEGER#*2 INTEGER*2

Extracts bits a2 JIBITS INTEGER#*4 INTEGER*4

through (a2+a3-1)

from al.

Set Bit 2 IBSET IOBSET INTEGER#*2 INTEGER*2

Returns al with bit a2 JIBSET INTEGER*4 INTEGER*4

set to 1.

Bit Test 2 BTEST BITEST INTEGER*2 LOGICAL*2

.TRUE. if bit a2 of al BJTEST INTEGER*4 LOGICAL*4

isal.

Bit Clear 2 IBCLR OBCLR INTEGER*2 INTEGER*2

Returns al with bit a2 JIBCLR INTEGER*4 INTEGER*4

set to O.

6-40

™
T

4l

h
"
N

gl

.o
[P

L
"

™
"

B

-
ko

o
1

™
o

TR T

[B

£

&

Lo ¢ ‘ e 9 :

4

- —— — ——
i i £ # &

- e

Paragon™ System Fortran Compiler User's Guide Extensions to ANS| Fortran

1. The arguments to the intrinsics AND, OR, NEQV, EQV, and COMPL may be of any type except
CHARACTER and COMPLEX.

2. The first argument to the SHIFT intrinsic may be of any type except CHARACTER and COMPLEX.
The second argument is any integer type.

Vector Intrinsics

Fortran provides a suite of vector intrinsics: subroutines that perform certain mathematical
operations on vectors very efficiently. These vector intrinsics are available in both single-precision
and double-precision forms. You can specify the number of vector elements and the strides of each
input vector and the result vector.

NOTE

To use the vector intrinsics, you must link your program with the
switch -lvect.

Table 6-6 on page 6-42 lists the vector intrinsics. The names of the arguments in Table 6-6 indicate

their meaning and type:
n The number of elements in the vectors x, y, and z. This argument is always of
type integer.
X, ¥, 2 The argument vectors. x and y are the input vectors (not all vector intrinsics

have a y argument); z is the result vector. These arguments are vectors of type
double precision for vector intrinsics whose names start with dv_, and of
type real for vector intrinsics whose names start with sv_.

incx, incy, incz The strides (increments) of vectors x, y, and z, respectively (may be zero).
These arguments are always of type integer.

alpha A scalar multiplier fordv_recp and sv_recp. This argument is of type double
precision for dv_recp, and of type real for sv_recp.

For example, the following call to sv_cos() performs a single-precision vector cosine of the first n
elements of the real vector x with stride incx, storing the results in the real vector z with stride incz:

call sv_cos(n, X, incx, 2z, incz)

Extensions to ANSI Fortran

It is similar in effect to the following code (the actual code for sv_cos() is written in assembler):

ix =1
iz =1

if (inecx .1t. 0) ix =
if (incz .1t. 0) iz =

do 10 i =1, n

z(iz) = cos(x(ix))

ix = ix + incx
iz = iz + incz
10 continue

Paragon™ System Fortran Compiler User’s Guide

(-nt+l)*incx + 1
(-nt+l)*incz + 1

Table 6-6. Vector Intrinsic Functions (1 of 2)

Vector Intrinsic Function

Description

dv_acos(n, x, incx, z, incz)
sv_acos(n, X, incx, z, incz)

Vector arccosine (z(i) = acos(x(i)))

dv_asin(n, x, incx, z, incz)
sv_asin(n, x, incx, z, inc?)

Vector arcsine (z(i) = asin(x()))

dv_atan(n, x, incx, z, incz)
sv_atan(n, x, incx, z, incz)

Vector arctangent (z(i) = atan(x(?)))

dv_atan2(n, x, incx, y, incy, z, incz)
sv_atan2(n, x, incx, y, incy, z, incz)

Vector arctangent from two arguments

(z() = atan2(x(d), y())))

dv_cos(n, x, incx, z, incz)
sv_cos(n, x, incx, z, incz)

Vector cosine (z(i) = cos(x(?))

dv_div(n, x, incx, y, incy, z, incz)
sv_div(n, x, incx, y, incy, z, incz)

Non-IEEE vector divide (z() = y(@)/x@))

dv_exp(n, x, incx, z, incz)
sv_exp(n, x, incx, z, incz)

Vector exponential (z(i) = exp(x(})))

dv_log(n, x, incx, z, inc2)
sv_log(n, x, incx, z, incz)

Vector natural log (z({) = log(x(})))

dv_logl0(n, x, incx, z, incz)
sv_log10(n, x, incx, z, incz)

Vector logarithm log;q (z() = log10(x(®)))

dv_pow(n, x, incx, y, incy, z, incz)
SV_pow(n, x, incx, y, incy, z, incz)

Vector power (z() = xGY®)

dv_recp(n, alpha, x, incx, z, incz)
sv_recp(n, alpha, x, incx, z, incz)

Non-IEEE reciprocal times a scalar
(zQ) = alpha/x(i))

dv_rsqrt(n, x, incx, z, incz)

sv_rsqrt(n, x, incx, z, incz)

Non-IEEE vector reciprocal square root
(20) = U/sqrt(x()))

4

&

A

e B I
E 4

EIE 1 3

4

3

| =]] = a
L .|

&

{

| |
o i

= 3
B3

£ a
o

E 4
B T

b

= a E 4
4

3

l bid
al
»

.

Eo# o A

O T S B4 rod

wl

4

i ¢ 5 £ 4 -

Paragon™ System Fortran Compiler User's Guide

Extensions to ANSI Fortran

Table 6-6. Vector Intrinsic Functions (2 of 2)

Vector Intrinsic Function

Description

dv_sin(n, x, incx, z, incz)
sv_sin(n, x, incx, z, incz)

Vector sine (z(i) = sin(x(?)))

dv_sqrt(n, x, incx, z, incz)
sv_sqrt(n, x, incx, z, incz)

Non-IEEE vector square root

(2@ = sqr(x()))

dv_tan(n, x, incx, z, incz)
sv_tan(n, x, incx, z, incz)

Vector tangent (z(i) = tan(x()))

Extensions to ANSI Fortran

Paragon™ System Fortran Compiler User's Guide

rx
,.y‘

-
-

-

il

M -
)

w
&

l‘ﬂ
£

T

i}
=
l N
i

4

s

4

{
i

K

i

E |

&

E E B

E

£q [

]

k [. |

Compiler Error Messages

This appendix lists the error messages generated by the ParagonTM system Fortran compiler,
indicating each message’s severity and, where appropriate, the error’s probable cause and
correction. In the error messages, the dollar sign ($) represents information that is specific to each
occurrence of the message.

Each error message is numbered and preceded by one of the following letters, indicating its severity:

I Informative
w Warning

S Severe error
F Fatal error
\Y Variable

V000 1Internal compiler error. $ $

This message indicates an error in the compiler. The severity may vary; if it is informative or
warning, the compiler probably generated correct object code, but there is no way to be sure.
Regardless of the severity, please report any internal error to Intel Supercomputer Systems Division
Customer Support.

F001 Source input file name not specified

On the command line, the source file name should be specified either before all the switches, or after
them.

Compiler Error Messages Paragon™ System Fortran Compiler User's Guide

F002

FO003

FO00O4

F005

S006

FO07

F008

FO009

FO010

S011

A-2

Unable to open source input file: $

Source file name misspelled, file not in current working directory, or file is read protected.

Unable to open listing file

Probably, user does not have write permission for the current working directory.

Unable to open object file

Probably, user does not have write permission for the current working directory.

Unable to open temporary file

Compiler uses directory /usr/tmp or /tmp in which to create temporary files. If neither of these
directories is available on the node on which the compiler is being used, this error will occur.

Input file empty

Source input file does not contain any Fortran statements other than comments or compiler
directives.

Subprogram $ too large to compile at this optimization level
Internal compiler data structure overflow, working storage exhausted, or some other
non-recoverable problem related to the size of the subprogram. If this error occurs at optimization
level 2, reducing the optimization level to 1 may work around the problem. Moving the subprogram

being compiled to its own source file may eliminate the problem. If this error occurs while compiling
a subprogram of fewer than 2000 statements it should be reported as a possible compiler problem.

Error limit exceeded

The compiler gives up after 50 severe errors.

Unable to open assembly file

Probably, user does not have write permission for the current working directory.
<reserved message number>

Unrecognized command line switch: $

Refer to the if77 manual page for a list of the allowed compiler switches.

M‘W
o
i
&
]
o

.

L A

d

"

Bt

N
A

W hat
.

-
al

-
&

-

»

=

!

E

4

£

4

4 E

B Sy BNy e eew eew ey
e

E

S
Lo

4

4

k|

ey L] "y i |] ——
[| & E 4

E|

e
4

E

vy O

Paragon™ System Fortran Compiler User’s Guide Compiler Error Messages

s012

s013

S014

w015

I016

sS017

s018

S019

S020

5021

s022

S023

Value required for command line switch: $

Certain switches require an immediately following value, such as -O 2.
Unrecognized value specified for command line switch: $

Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.
Hexadecimal or octal constant truncated to fit data type

Identifier, $, truncated toc 31 chars

Anidentifier may be at most 31 characters in length; characters after the 31st are ignored.

Unable to open include file: $

File is missing, read protected, or maximum include depth (10) exceeded. Remember that the file
name should be enclosed in quotes.

Illegal label field

The label field (first five characters) of the indicated line cohtains a non-numeric character.

Illegally placed continuation line

A continuation line does not follow an initial line, or more than 99 continuation lines were specified.

Unrecognized compiler directive

Refer to the if77 manual page for a list of the allowed compiler directives.

Label field of continuation line is not blank

The first five characters of a continuation line must be blank.
Unexpected end of file - missing END statement

Syntax error - unbalanced parentheses

A-3

Compiler Error Messages Paragon™ System Foriran Compiler User's Guide

W024

w025

5026

s027

s028

s029

S030

s031

W032

A-4

CHARACTER or Hollerith constant truncated to fit data type
A character or Hollerith constant was converted to a data type that was not large enough to contain
all of the characters in the constant. This type conversion occurs when the constant is used in an
arithmetic expression or is assigned to a non-character variable. The character or Hollerith constant

is truncated on the right, that is, if 4 characters are needed then the first 4 are used and the remaining
characters are discarded.

Illegal character ($) - ignored
The current line contains a character, possibly nonprinting, which is not a legal Fortran character
(characters inside of character or Hollerith constants cannot cause this error). As a general rule, all
non-printing characters are treated as white space characters (blanks and tabs); no error message is

generated when this occurs. If for some reason, a non-printing character is not treated as a white
space character, its hex representation is printed in the form dd where each d is a hex digit.

Unmatched quote

Illegal integer constant: $

Integer constant is too large for 32-bit word.
Illegal real or double precision constant: $

Illegal hexadecimal constant: $

A hexadecimal constant consists of digits 0-9 and letters A—F or a—f. Any other character in a
hexadecimal constant is illegal.

Illegal octal constant: $

An octal constant consists of digits 0-7. Any other digit or character in an octal constant is illegal.

Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that is a member
of the set of allowed values for this particular data type.

Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER®*4) is not allowed in the given syntax (€.g.
DIMENSION A(10)*4).

)

aul

4

-
¥

4

i

A

b

iy :—-i e
4

4

E

4

E "

T

)

{

|] —— | | [~]
i [|

p—
R |

¥

i

b

i

L1] A] =
4 E| i

4

i
5

—— —
A

B

il

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages

S033

S034

I035

S036

S037

s038

w039

S040

w041

Illegal use of constant $

A constant was used in an illegal context, such as on the left side of an assignment statement or as
the target of a data initialization statement.

Syntax error at or near $

Predefined intrinsic $§ loses intrinsic property

An intrinsic name was used in a manner inconsistent with the language definition for that intrinsic.
The compiler, based on the context, will treat the name as a variable or an external function.

Illegal implicit character range

First character must alphabetically precede second.

Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and different data
types are specified for it.

Symbol, $, has not been explicitly declared

The indicated identifier must be declared in a type statement; this is required when the IMPLICIT
NONE statement occurs in the subprogram.

Symbol, $, appears illegally in a SAVE statement

An identifier appearing in a SAVE statement must be a local variable or array.

Illegal common variable $

Indicated identifier is a dummy variable, is already in a common block, or has previously been
defined to be something other than a variable or array.

Illegal use of dummy argument $

This error can occur in several situations. It can occur if dummy arguments were specified on a
PROGRAM statement. It can also occur if a dummy argument name occurs in a DATA,
COMMON, SAVE, or EQUIVALENCE statement. A PROGRAM statement must have an empty
argument list.

A-5

Compiler Error Messages Paragon™ System Fortran Compiler User's Guide

S042

s043

S044

5045

s046

5047

5048

A-6

$ is a duplicate dummy argument

Illegal attempt to redefine $ $

An attempt was made to define a symbol in a manner inconsistent with an earlier definition of the
same symbol. This can happen for a number of reasons. The message attempts to indicate the
situation that occurred:

intrinsic Anattempt was made to redefine an intrinsic function. A symbol that
represents an intrinsic function may be redefined if that symbol has not been
previously verified to be an intrinsic function. For example, the intrinsic sin
can be defined to be an integer array. If a symbol is verified to be an intrinsic
function via the INTRINSIC statement or via an intrinsic function reference
then it must be referred to as an intrinsic function for the remainder of the

program unit.
symbol An attempt was made to redefine a symbol that was previously defined. An

example of this is to declare a symbol to be a PARAMETER which was
previously declared to be a subprogram argument.

Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a
symbol as an ENTRY when that symbol was previously declared as an ENTRY.

Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsistent with the data type of the current
function. For example, the function returns type character and an entry point returns type complex.

Data type length specifier in wrong position
The CHARACTER data type specifier has a different position for the length specifier from the
other data types. Suppose, we want to declare arrays ARRAYA and ARRAYB 10 have 8 elements each
having an element length of 4 bytes. The difference is that ARRAYA is character and ARRAYB is

integer. The declarations would be CHARACTER ARRAYA(8)*4 and INTEGER
ARRAYB*4(8).

More than seven dimensions specified for array

Illegal use of '*' in declaration of array $

An asterisk may be used only as the upper bound of the last dimension.

S |

E 4

|

.3

! B

E

o B T I T
j

b 4

™

.|

-

Fa om oA
|2

|

.

o
b

kil
&

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages

s049

S050

S051

s052

S053

w054

W055

W056

S057

S058

s059

Illegal use of '*' in non-subroutine subprogram

The alternate return specifier * is legal only in the subroutine statement. Programs, functions, and
block data are not allowed to have alternate return specifiers.

Adjustable or assumed size array, $, is not a dummy argument

Unrecognized built-in % function

The allowable built-in functions are % VAL, %REF, %LOC, and %FILL. One was encountered
that did not match one of these allowed forms.

Illegal argument to %VAL or %LOC

$REF or %VAL not legal in this context

The built-in functions % REF and % VAL can only be used as actual parameters in procedure calls.

Implicit character $ used in a previous implicit statement

Animplicit character has been given an implied data type more than once. The implied data type for
the implicit character is changed anyway.

Multiple implicit none statements

The IMPLICIT NONE statement can occur only once in a subprogram.

Implicit type declaration

The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE statement will
produce a warning message for IMPLICIT statements.

Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.

Equivalenced variables $ and $ not in same common block

A common block variable must not be equivalenced with a variable in another common block.

Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.

A-7

Compiler Error Messages Paragon™ System Foriran Compiler User's Guide

S060

s061

w062

1063

s064

S065

S066

s067

s068

S069

S070

s071

A-8

Illegal equivalence of structure variable, $§

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.
Equivalence of $ and $ extends common block backwards

Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an alignment not
optimal for variables of its data type. This can occur when INTEGER and CHARACTER data are
equivalenced, for instance.

Gap in common block $ before $

Illegal use of $ in DATA statement implied DO loop

The indicated variable is referenced where it is not an active implied DO index variable.
Repeat factor less than or equal to zero
Too few data constants in initialization statement
Too many data constants in initialization statement

Numeric initializer for CHARACTER $ out of range 0 through 255

A CHARACTER#*1 variable or character array element can be initialized to an integer, octal, or
hexadecimal constant if that constant is in the range O through 255.

Illegal implied DO expression

The only operations allowed within an implied DO expression are integer +, -, ¥, and /.

Incorrect sequence of statements $

The statement order is incorrect. For instance, an IMPLICIT NONE statement must precede a
specification statement which in turn must precede an executable statement.

Executable statements not allowed in block data

HAH
&
w

"

N
A

e

e

i

i

E

b

T T
b

A oF 1 pa
P B A

| S

P

.
U

7l

il

[|

[C 1

%

¥

4

£

1

4 §

#

4

'E

4

PN N MR R e
E_ b4

o Bl

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages

S072 Assignment operation illegal to $ $

S073

S074

S075

S076

sS077

s078

5079

s080

s081

S082

The destination of an assignment operation must be a variable, array reference, or vector reference.
The assignment operation may be by way of an assignment statement, a data statement, or the index
variable of an implied DO-loop. The compiler has determined that the identifier used as the

destination, is not a storage location. The error message attempts to indicate the type of entity used:

entry point An assignment to an entry point that was not a function
procedure was attempted.
external procedure An assignment to an external procedure or a Fortran

intrinsic name was attempted.
Intrinsic or predeclared, $, cannot be passed as an argument

Illegal number or type of arguments to $

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function,
requiring a certain number of arguments of a fixed data type.

Subscript, substring, or argument illegal in this context for $

This can happen if you try to doubly index an array such as ra(2)(3). This also applies to substring
and function references.

Subscripts specified for non-array variable $

Subscripts omitted from array $

Wrong number of subscripts specified for $

Keyword form of intrinsic argument illegal in this context for $
Subscript for array $ is out of bounds

Matrix/vector $ illegal as subprogram argument

A matrix/vector reference cannot be used as a subprogram argument.

Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.

A-9

Compiler Error Messages , Paragon™ System Fortran Compiler User’s Guide

s083

S084

s085

s086

s087

s088

S089

S090

s091

S092

W093

A-10

Vector expression used where scalar expression required

A vector expression was used in an illegal context. For example, iscalar = iarray, where a scalar is
assigned the value of an array. Also, character and record references are not vectorizable.

Illegal use of symbol $ $

- This message is used for many different errors.

Incorrect number of arguments to statement function $

Dummy argument to statement function must be a variable

Non-constant expression where constant expression required

Recursive subroutine or function call of $

A function may not call itself.

Illegal use of symbol, $, with character length = *
Symbols of type CHARACTER*(*) must be dummy variables and must not be used as statement

function dummy parameters and statement function names. Also, a dummy variable of type
CHARACTER*(*) cannot be used as a function.

Hollerith constant more than 4 characters

In certain contexts, Hollerith constants may not be more than 4 characters long.
Constant expression of wrong data type

Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within I/O statements, must
not consist of a concatenation involving a passed length character variable.

Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of some other
data type. The compiler generates code to convert the expression into the required type.

m}
-

n
al

4

B

o

4 b

-

| S

A

k.

3
3

a4 pa Ea Ea F A

it
i

-
A

[¥

3

4 ;4 ¥

E

]

3

8
i

4]

£

3

L L | —]

E 4 2 4 Lo h ¥]

e 4

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages

S094

S095

S096

S097

s098

5099

s100

s101

5102

s103

Variable $ is of wrong data type $

The indicated variable is used in a context which requires a variable of some other data type.

Expression has wrong data type

An expression of some data type appears in a context which requires an expression of some other
data type.

Illegal complex comparison

The relations .LT., .GT., .GE., and .LE. are not allowed for complex values.

Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the subprogram.
Divide by zero

Illegal use of an aggregate RECORD
Aggregate record references may only appear in aggregate assignment statements, unformatted I/O

statements, and as parameters to subprograms. They may not appear, for example, in expressions.
Also, records with differing structure types may not be assigned to one another.

Expression cannot be promoted to a vector
An expression was used that required a scalar quantity to be promoted to a vector illegally. For

example, the assignment of a character constant string to a character array. Records, too, cannot be
promoted to vectors.

Vector operation not allowed on $

Record and character typed entities may only be referenced as scalar quantities.

Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or double
precision scalar expression.

Type conversion of subscript expression for $

The data type of a subscript expression must be integer. If it is not, it is converted.

A-11

Compiler Error Messages Paragon™ System Foriran Compiler Usér‘s Guide

S104

s105

s106

s107

s108

I109

I110

A-12

Illegal control structure $
This message is issued for a number of errors involving IF-THEN statements and DO loops. If the

line number specified is the last line (END statement) of the subprogram, the error is probably an
unterminated DO loop or IF-THEN statement.

Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN
statement. ‘

DO index variable must be a scalar variable

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a
function name, a structure name, etc.

Illegal assigned goto variable $

Illegal variable, $, in NAMELIST group $

A NAMELIST group can only consist of arrays and scalars which are not dummy arguments and
pointer-based variables.

Overflow in hexadecimal constant $, constant truncated at left

A hexadecimal constant requiring more than 64 bits produces an overflow. The hexadecimal
constant is truncated at left (e.g. '1234567890abcdefl1'x becomes '234567890abcdef1'x).

Overflow in octal constant $, constant truncated at left

An octal constant requiring more than 64 bits produces an overflow. The octal constant is truncated
at left (e.g. '2777777777777777777777'0 becomes '777777777777777777777'0).

o I I T B
b4

A

e

B4

4

E

b

-3

%

B

E
4

B
L

Foa
| S

W
o

m
o o

M" 1

h‘u

m
-

| -

a e
w4

wj
-1

J
1

wry

el

—

4

§

¥]

| 3

Paragon™ System Fortran Compiler User's Guide

I111

I112

S113

S114

s115

s116

s117

s11s

I119

I120

I121

I122

w123

Underflow of real or double precision constant

Overflow of real or double precision constant

Label $ is referenced but never defined

<reserved message number>

<reserved message number>

Illegal use of pointer-based variable $ $

Statement not allowed within STRUCTURE definition

Statement not allowed in DO, IF, or WHERE block

Redundant specification for $

Data type of indicated symbol specified more than once.

Label $ is defined but never referenced

Operation requires logical or integer data types

Compiler Error Messages

An operation in an expression was attempted on data having a data type incompatible with the
operation. For example, a logical expression can consist of only logical elements of type integer or

logical. Real data would be invalid.

Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER statement

has been truncated to fit the declared size of the corresponding identifier.

Hollerith length specification too big, reduced

The length specifier field of a Hollerith constant specified more characters than were present in the
character field of the hollerith constant. The length specifier was reduced to agree with the number

of characters present.

A-13

Compiler Error Messages

S124

I125

I126

I127

w128

I129

I130

I131

I132

I133

W1l34

W135

W136

A-14

Relational expression mixes character with numeric data

A relational expressionis used to compare two arithmetic expressions or two character expressions.

A character expression cannot be compared to an arithmetic expression.

Dummy procedure $ not declared EXTERNAL

A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram

name in a CALL statement, or is called as a function, and is therefore assumed to be a dummy
procedure. This message can result from a failure to declare a dummy array.

Name $ is not an intrinsic function
Optimization level for $ changed to opt 1 $

Integer constant truncated to fit data type: $

An integer constant will be truncated when assigned to data types smaller than 32 bits, such as a
BYTE.

Floating point overflow. Check constants and constant expressions
Floating point underflow. Check constants and constant expressions
Integer overflow. Check floating point expressions cast to integer
Floating pt. invalid oprnd. Check constants and constant expressions
Divide by 0.0. Check constants and constant expressions

<reserved message number>

Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.

Field-namelist not allowed

The field-namelist field of the STRUCTURE statement is disallowed on the outermost structure.

Paragon™ System Fortran Compiler User's Guide

g

e S
§ L

sa s
3 | S |

4
4

g
o4 1

=a E 3
L | S | [

. .

T e T S
i

b
B b

4

=
3

e
B A EooA

3

=

L

L
L

L. |

-

E o

M ey e e

s

bl

sl

e

ary

@l

4

d
3

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages
W137 Field-namelist is required in nested structures
W138 Multiply defined STRUCTURE member name $
A member name was used more than once within a structure.
W139 Structure $ in RECORD statement not defined
A RECORD statement contains a reference to a STRUCTURE that has not yet been defined.
$140 vVariable $ is not a RECORD
S141 RECORD required on left of
S142 $ is not a member of this RECORD
W1l43 <reserved message number>
W1l44 NEED ERROR MESSAGE $ $
This is used as a temporary message for compiler development.
W1l45 S%FILL only valid within STRUCTURE block
The %FILL special name was used outside of a STRUCTURE multiline statement. It is only valid
when used within a STRUCTURE multiline statement even though it is ignored.
S146 Expression must be character type
S147 Character expression not allowed in this context
S148 Non-record where aggregate record reference required
An aggregate reference to arecord was expected during statement compilation but another data type
was found instead.
S$149 Record where arithmetic value required

An aggregate record reference was encountered when an arithmetic expression was expected.

A-15

Compiler Error Messages Paragon™ System Fortran Compiler User's Guide

S150

S151

s152

S153

S154

S155

S156

S157

S158

S159

S160

sliel

W162

S163

A-16

Structure, Record, or member $ not allowed in this context

A structure, record, or member reference was found in a context which is not supported. For
example, the use of structures, records, or members within a data statement is disallowed.

Empty STRUCTURE, UNION, or MAP

A STRUCTURE-ENDSTRUCTURE, UNION-ENDUNION, or MAP-ENDMAP declaration
contains no members.

<reserved message number>
<reserved message number>
<reserved message number>
<reserved message number>
<reserved message number>
<reserved message number>

Alternate return not specified in SUBROUTINE or ENTRY

An alternate return can only be used if alternate return specifiers appeared in the SUBROUTINE or
ENTRY statements.

Alternate return illegal in FUNCTION subprogram

An alternate return cannot be used in a FUNCTION.
ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top
<reserved message numbef>
Not equal test of loop control variable $ replaced with < or > test.

Cannot data initialize member $ of the ALLOCATABLE COMMON $

.
!

a
lm
a
.
K;M

—a .
E

|

| = —
booea

=
B4

4

E 3

)

[""T

J

P
b

[

A Fa
4

|3

L

"

i
i

[| o

4

4 e 4 e

e

al

#

=

4

|
&

T |

il

Paragon™ System Fortran Compiler User’s Guide Compiler Error Messages

5164

S165

5166

1167

5168

w169

W170

W1i71

W172

Overlapping data initializations of $

An attempt was made to data initialize a variable or array element already initialized.

$ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is applicable only
when an assembly file is the output of the compiler.

$ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is applicable only
when an assembly file is the output of the compiler.

Inconsistent size of common block $
A common block occurs in more than one subprogram of a source file and its size is not identical.

The maximum size is chosen. The message is applicable only when an assembly file is the output of
the compiler.

Incompatible size of common block $
A common block occurs in more than one subprogram of a source file and is initialized in one

subprogram. Its initialized size was found to be less than its size in the other subprogram(s). The
message is applicable only when an assembly file is the output of the compiler.

Multiple data initializations of common block $

A common block is initialized in more than one subprogram of a source file. Only the first set of
initializations apply. The message is applicable only when an assembly file is the output of the
compiler.

F77 extension: $

Use of a nonstandard feature. A description of the feature is provided.
F77 extension: nonstandard statement type $

F77 extension: numeric initialization of CHARACTER $

A CHARACTER#*1 variable or array element was initialized with a numeric value.

A-17

Compiler Error Messages

w173

W1l74

W175

W1l76

W177

w178

W179

w180

wWisl

wig2

w183

S197

s198

w199

S200

S201

$202

A-18

F77

F77

F77

F77

F77

Fr77

F77

F77

F77

F77

F77

extension:

extension:

extension:

extension:

extension:

extension:

extension:

extension:

extension:

extension:

extension:

Paragon™ System Fortran Compiler User's Guide

nonstandard use of data type length specifier

type declaration contains data initialization

IMPLICIT range contains nonalpha characters

nonstandard operator $

nonstandard use of keyword argument $

matrix/vector reference $

use of structure field reference $

nonstandard form of constant

& alternate return

mixed numeric and CHARACTER elements in COMMON $

mixed numeric and CHARACTER EQUIVALENCE ($,$)

Invalid qualifier or qualifier value (/$) in OPTIONS statement

Anillegal qualifier was found or a value was specified for a qualifier which does not expect a value.
In either case, the qualifier for which the error occurred is indicated in the error message.

$ $ in ALLOCATE/DEALLOCATE

Unaligned memory reference

A memory reference occurred whose address does not meet its data alighment requirement.

Missing UNIT/FILE specifier

Illegal I/0 specifier - $

Repeated I/O specifier - $

¥
koo

E

L

4

b

!

e
B4

iy
i

oA

it

A

E

Lo T s B |
e 4

|]

B

i

E |

E

1

.4

b

[I B B B

el

£

E

| S

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages

S203 FORMAT statement has no label

5204 Syntax error - unbalanced angle brackets

$205 Illegal specification of scale factor
The integer following + or - has been omitted, or P does not follow the integer value.

S206 Repeat count is zero

S207 1Integer constant expected in edit descriptor

S208 Period expected in edit descriptor

S209 1Illegal edit descriptor

S$210 Exponent width not used in the Ew.dEe or Gw.dEe edit descriptors

S$211 1Internal I/O not allowed in this I/0O statement

S212 1Illegal NAMELIST I/O
Namelist I/O cannot be performed with internal, unformatted, formatted, and list-directed /O. Also,
VO lists must not be present.

S213 $ is not a NAMELIST group nhame

S214 1Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/O item or specifier
An assumed sized array was used as an item to be read or written or as an I/O specifier (i.e.,
FMT = array_name). In these contexts the size of the array must be known.

S216 STRUCTURE/UNION cannot be used as an I/0 item

S217 ENCODE/DECODE buffer must be a variable, array, or array element

A-19

Compiler Error Meséages Paragon™ System Fortran Compiler User's Guide

s221

S222

§223

5224

w225

F226

5227

5228

S229

A-20

#elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this
context.

#else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this
context.

#if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).

Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the maximum
allowed (currently 2048).

Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the number
of parameters in the macro's definition.

Can't find include file $

The indicated include file could not be opened.

Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum allowed (currently
2048).

EOF in comment

The end of a file was encountered while processing a comment.

EOF in macro call to $

The end of a file was encountered while processing a call to the indicated macro.

1.

>
i

»
&

i

y
"W

4

4 f

b

A

t

E

Eia pew pea EoA B oA
B

b

I
'

S| A [

4

&

4

B

E)

&

3

E_

‘ SR

)

% 4

B4

e

Paragon™ System Fortran Compiler User's Guide

S230

s231

$232

5233

w234

W235

S236

F237

w238

W239

S240

EOF in string

The end of a file was encountered while processing a quoted string.

Formal parameters too long for $

Compiler Error Messages

The total length of the parameters in the definition of the indicated macro exceeded the maximum

allowed (currently 2048).

Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).

<reserved message number>

Illegal directive name

The sequence of characters following a # sign was not an identifier.

Illegal macro name

A macro name was not an identifier.

Illegal number $

The indicated number contained a syntax error.

Line too long

The input source line length exceeded the maximum allowed (currently 2048).

Missing #endif
End of file was encountered before a required #endif directive was found.

Missing argument list for $

A call of the indicated macro had no argument list.

Number too long

The length of a number exceeded the maximum allowed (currently 2048).

A-21

Compiler Error Messages ' 7 Péragon"“ System Fortran Compiler User's Guide

w241

1242

F243

S244

W245

S246

5247

w248

W249

w250

w251

A-22

Redefinition of symbol $

The indicated macro name was redefined.

Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.

String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.

Syntax error in #define, missing blank after name or arglist

There was no space or tab between a macro name or argument list and the macro's definition.

Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.

Syntax error in #include

The #include directive was not correctly formed.

Syntax error in #line

A #line directive was not correctly formed.

Syntax error in #module

A #module directive was not correctly formed.

Syntax error in #undef

A #undef directive was not correctly formed.

Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.

E |

r o4

S Y

4

[

| S

A

b

B

»a
|

4

|3

Fa ma
A

—m

-

N

1

| T |

E5 T |

4

E

3

|

|3

4

E

4

]

¥

1

&

]

£

4

i

2 k k #

£

v ba

Paragon™ System Fortran Compiler User's Guide Compiler Error Messages

W252

§253

S254

F255

W256

$257

S258

5259

5260

5261

Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.

Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently
31).

Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed (currently
310). .

Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be recursive.

Undefined directive $

The identifier following a # was not a directive name.

EOF in #include directive

End of file was encountered while processing a #include directive.

Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.

Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.

Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.

Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).

A-23

Compiler Error Messages

S262

5263

I264

w268

w269

F270

w271

I272

S273

F274

8275

F276

A-24

Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

Possible nested comment

The characters /* were found within a comment.

Cannot inline subprogram; common block mismatch

Cannot inline subprogram; argument type mismatch

This message may be Severe if the compiler has gone too far to undo the inlining process.

Missing -ex;ib option

Can't inline $ - wrong number of arguments

Argument of inlined function not used

Inline library not specified on command line (-inlib switch)
Unable to access file $/TOC

Unable to open file $ for inlining

Assignment to constant actual parameter in inlined subprogram

Messages 280-300 are reserved for directive handling.

Paragon™ System Foriran Compiler User's Guide

1.

m

el

el

al

LB |

[R
4

Boa
b

n |
-

-]

ol

£]

F
ly -
Ll
R

il

'.} g.g F.j e e e e B e e e e L D O R
o B R e e L L L L O I T R S T S

200

201

202

203

204

205

Runtime Error Messages

fortran i/o internal error

This message indicates an error in the runtime library, rather than a user error. It is possible for a user
error to cause an internal error. Report internal errors to Customer Support.

i/o call contained bad value for specifier

An improper specifier value has been passed to an I/O runtime routine. Example: within an OPEN
statement, form='unknown’.

i/o call contained conflicting specifiers

Conflicting specifiers have been passed to an I/O runtime routine. Example: within an OPEN
statement, form="unformatted’,blank="null’.

i/o specifier required but never set
A specifier required for an I/O runtime routine has not been passed. Example: within an OPEN

statement, access='direct’ has been passed, but the record length has not been specified
(recl=specifier).

attempt to perform a write or open-for-write on a read only file

Self explanatory. Check file and directory modes.

file disposition conflict - check ’‘status’ and ’‘dispose’

Inan OPEN statement, a file deposition conflict has occurred. Example: within an OPEN statement,
status=’scratch’ and dispose='keep’ have been passed.

Runtime Error Messages Paragon™ System Fortran Compiler User's Guide

206

207

208

209

210

211

212

213

214

215

216

217

218

B-2

attempt to open a scratch file as a named file
attempt to connect two units to the same file
attempt to open a previously existing file as ’‘new’
attempt to open a non-existent file as ’old’

memory allocation operation failed or fixed buffer overflow

Memory allocation operations occur only in conjunction with namelist I/O. The most probable cause
of fixed buffer overflow is exceeding the maximum number of simultaneously open file units.

invalid file name

invalid unit number

A file unit number less than or equal to zero has been specified.

invalid operation on an un-opened file

Unable to open file specified in ENDFILE statement.

invalid operation for an unconnected unit

Unit specified in BACKSPACE statement not connected.

file format conflict in read/write operation

Formatted/unformatted file operation conflict.

record number error in read/write operation

For direct access, a record number less than one has been specified.
attempt to read past end of file

item to read/write out of rahge or smaller than stride

For unformatted files, the I/O item to be read/written is not of a recognizable type, or is smaller than
the specified stride. This is an internal error. Report it to Customer Support.

p=a
LS|

[S | | |

|
3

13

el Eea EA A e g
- -

E oA

ko
AJ

L

M
"o

"l
.

™
i
Y

N

L

ki
&

o

B

4 [|

€

i

»

St

3

i

2

g

BEEN SNEN BOEN BN SRNE e By B e e e 0 RS BN NN MESE BNy BeE BEw e

E

Paragon™ System Fortran Compiler User's Guide Runtime Error Messages

219

220

221

222

223

224

225

226

227

230

231

attempt to read/write value(s) larger than record length

For direct access, the record to be read/written exceeds the specified record length.
attempt to read/write an unopened file

fio$encode_fmt: parsing error

A runtime encoded format contains a lexical or syntax error.

fio$encode_fmt: parse/semantic stack overflow

While attempting to encode a runtime format, the parsing or semantic stacks have overflowed. This
is an internal error. Report it to Customer Suppott.

fmtscan: error in integer constant conversion

Integer constant conversion error while encoding a runtime format.

fmtscan: lexical error within quoted string

While attempting to encode a runtime format, an error occurred while scanning a quoted string.
Check quote nesting.

fmtscan: lexical error--unknown token type

An unknown token type has been found in a runtime encoded format.

fmtsemant: unexpected FED in format list

An unexpected Fortran edit descriptor has been found in a runtime format item.

fio$fmt_read: unacceptable input

Scan of data fails for indicated data type.

fio$fmt_read/write: scale factor out of range

Fortran P edit descriptor scale factor not within range of -128 to 127.

fio$fmt_read/write: error on data conversion

An internal data conversion error has occurred. Report this error to Customer Support.

B-3

Runtime Error Messages

232

234

235

236

237

238

240

241

242

243

244

fio$fmt_read/write: attempt to read/write past end of record

For an intemal or direct access file, an attempt to read or write past the end of record has been

detected.

fio$fmt_read/write: invalid edit descriptor

An invalid edit descriptor has been found in a format.

fio$fmt_read/write: i/o list / format edit descriptor mismatch

Data types specified by I/O list item and corresponding edit descriptor conflict.

fio$format_decode: parsing error

A runtime encoded format contains a syntax error. .

fio$fmt_read/write: quad precision type unsupported

fio$fmt_read/write: tab value out of range

A tab value of less than one has been specified.

fio$fmt_write: item list empty

An unexpected empty write item list has been encountered.

fio$fmt_read/write: unix file system error

fio$ld_get_token: error in integer constant conversion

Integer constant conversion error while scanning list/namelist-directed input.

fio$ld_get_token: lexical error-- unknown token type

Lexical error while scanning list/namelist-directed input.

fio$nmlparse: parsing error

Syntax error while parsing namelist-directed input.

Paragon™ System Fortran Compiler User's Guide

"

i

‘!1

¥

I

N

Y

)

o

_M i

4

—
e 4

-

i i L B e 4

)

El

3

BENN NN EE PEER W BeeR eew s e —
i £ 4 ¥ o

B

Paragon™ System Fortran Compiler User's Guide Runtime Error Messages

245 fio$Snmlparse: parse/semantic stack overflow

While attempting to parse namelist input, the parsing or semantic stacks have overflowed. Thisis an
internal error. Report it to Customer Support.

246 fio$fmt_read/write: infinite reversion in format
Format does not exhaust item list in WRITE statement. Example:

write(6,10) 1i
10 format (3p)

247 fioSopen: file exists but cannot be opened (check file mode)

Likely cause is no user rights (read, write, or execute) to file.

B-5

Runtime Error Messages

Paragon™ System Fortran Compiler User's Guide

[1

P

E

4

[

o

4

=
I

s .
& 4

b4

W
P

i

.
] i

|

-

[2

4

E

#

4

E

3

E

Compiler Internal Structure

This appendix describes the internal structure of the compilers as shown in Figure C-1:

« Scanner and Parser

« Expander

» Optimizer and Vectorizer
» Scheduler and Pipeliner

The front-end of the compiler translates the program into an internal representation called
Intermediate Language Macros (ILMs). The ILMs are grouped into basic blocks during the
translation phase. A basic block represents a sequence of language statements in which the flow of
control enters at the beginning and leaves at the end, without the possibility of branching except at
the end.

While the source code is translated and grouped into basic blocks, function inlining may occur. Once
the translation is complete, optimizations are applied. Depending on the switches selected by the
user, a hierarchy of optimizations may be applied: global optimizations, local optimizations,
vectorization, and software pipelining.

C-1

Compiler Internal Structure

Paragon™ System Fortran Compiler User's Guide

| Fortran Source l

Scanner/Parser
Schematic Analyzer

Intermediate

Procedure
Inliner

Expander

Language
Macros

ILM

(Intermediate \

- Procedure
Inliner
Libraries

Optimizer
Vectorizer

Language
Instructions

ILI

Optimized
Intermediate
Language

Scheduler
Pipeliner

Instructions

Assembler

Figure C-1. Compiler Structure

C-2

4

3

|

| S |

R AR A e S .
B E s

B A

B4

F 4 Ea
A

t

Paragon™ System Fortran Compiler User's Guide Compiler Internal Structure

Scanner and Parser

The compiler has a Scanner and Parser that performs syntax and semantic analysis of its respective
source language input. The Scanner and Parser create a set of ILMs and a symbol table and various
data structures referring back to the original source code for diagnostics and symbolic debugging.
They perform error detection and recovery using an advanced multiple parse stack technology.

Expander

The Expander expands the macros in the ILM set along with the semantic analysis information and
generates a set of Intermediate Language Instructions (ILIs) and associated data structures including
extended basic block tables and information about referenced variables. The Expander also performs
certain optimizations, such as constant folding, elimination of identity expressions, and branch
folding. The ILI data structure is a directed graph, instead of a tree structure, which simplifies
common subexpression elimination.

Optimizer and Vectorizer

The internal, integrated Optimizer/Vectorizer provides both a faster compile time and more efficient
code generation than traditional source-to-source preprocessors. The Optimizer/Vectorizer uses
advanced optimizations to achieve superior performance. Among these techniques are:

e Procedure Integration

e Internal Vectorization

¢ Global Optimization

¢ Local Optimization

« Flexible memory utilization schemes

Procedure Integration

Procedure Integration, also known as function inlining, allows a function to be executed as a part of
the originating program instead of having parameters passed and making a call. This results in
removing the call overhead and allowing the function to be optimized along with the rest of the

program.

Compiler Internal Structure) Paragon™ System Fortran Compiler User's Guide

Internal Vectorization

The internal vectorizer is oriented to the Intel i860™" microprocessor, which involves
transformations that create better opportunities for software pipelining. Recognition of vector forms
is only performed when the hand-coded vector library calls will outperform the scheduler. Having
aninternal vectorizer and software pipeliner allows the compiler to make more precise and informed
decisions on code generation opportunities. Other advantages of an internal vectorizer over a
source-to-source vectorizer include enhanced debugging capabilities as well as a significant increase
in compilation speeds.

Global Optimizations

Global optimizations are those that optimize code over all basic blocks created for a function.
Control flow analysis and data flow analysis are performed over a flow graph, where each node of
the graph is a basic block. All loops (not just loops created by the language’s loop constructs) are
detected, and loop optimizations are performed on each loop. These include:

e Invariant Code Motion

¢ Induction Variable Elimination

« Global Register Allocation

» Dead Store Elimination

+ Copy Propagation

Local Optimizations

Local optimizations are performed on an extended basic block. Most of the local optimizations are
performed by the code generating phase of the multiple functional units. This technique allows
computations from more than one statement to utilize the functional units in parallel, thus providing
a fine-grain parallelism that is completely transparent to the program. For loops containing if
statements (multiple blocks) that are software pipelinable, the compiler provides fine-grain
parallelism across multiple blocks. Local optimizations provided by the compilers include:

+ Common Subexpression Elimination

¢ Constant Folding

» Algebraic Identities Removal

e Redundant Load and Store Elimination

» Strength Reduction

[3 E

3

&

4

I T
3 E}

[

8

|

t

E

Ea Ea A F W
-

i

3

|
i

]

t

e 4

b=

4

58

3

&

E

E

£ 3

,4-‘
L

3

£]

[

4

&

4

¥

SR § i b :

L |

Paragon™ System Fortran Compiler User's Guide Compiler Internal Structure

Scratch Register Allocation

Register Aliasing

The types of code transformations performed on loops include:

Invariant if statement removal

Loop interchange when advantageous

Loop invariant vector recognition within nested loops
Loop fusion

Common idiom recognition

Flexible Memory Utilization

Support is provided for architectures having an integral data caching scheme. Some techniques
provided are:

Streaming of vectors into cache

Streaming of invariant vectors into cache and their reuse

Explicit bypassing of cache for accessing array elements within loops
Dual and quad loads and stores from and to memory

Mixing access of arrays from both cache and memory within a loop

Scheduler and Pipeliner

The 1860 microprocessor supports parallel activities two ways:

Dual Instruction Mode
The “core” unit and the floating-point sections can operate independently and
in parallel with each other. An example would be aload occurring at the same
time that a floating-point add occurs. The compilers test for situations where
dual instructions are advantageous and schedules instructions accordingly.

C-5

Compiler Internal Structure Paragon™ System Fortran Compiler User's Guide

Dual Operation Mode
The floating-point units for some instructions can initiate floating-point adds
and multiplies at the same time. In dual operation mode, the two
floating-point arithmetic units can operate independently each providing
results at the clock rate of the machine. See Figure C-2.

|< DUAL INSTRUCTION >|

CORE OPERATION DUAL OPERATION

a /b x\‘ y
Core
Unit
a+b X*y

Figure C-2. Parallel Activities of i860"" Microprocessor

The Optimized Intermediate Language Instruction set becomes the input for the Scheduler and
Pipeliner, which takes advantage of the i860 microprocessor’s dual instruction and operations
modes. These unique machine characteristics permit parallel scheduling to multiple functional units
and software pipelining.

< Parallel scheduling takes advantage of fine-grain parallelism occurrences in the code and
schedules to multiple functional units when possible.

« Software pipelining schedules code so that operations from several iterations of a loop are
overlapped. This allows multiple iterations of aloop to be executed during the same instruction.
Software pipelining relies on information provided by the global optimizer and vectorizer. This
information includes loops that are pipelinable, data dependence information, recurrences, and
array references.

The output of the Scheduler and Pipeliner is a list of assembly language instructions that is passed
to an assembler to create the final object file.

4

| 2

&]

| 3

B4

4 B4 B

e e e e T
A

B

—
(O |

PORT |

[T T S S TR

4

E

A

E

1

£}

4

E

1

¥

.

&

E

E : H E E b 2

B

Manual Pages

This appendix contains manual pages for compiler-related commands and system calls.

» See the OSF/1 Command Reference and OSF/1 Programmer’s Reference for manual pages for
the standard commands and system calls of the operating system.

e Seethe ParagonTM System Commands Reference Manual and the ParagonTM System Fortran
Calls Reference Manual for manual pages for parallel commands and system calls unique to the
Paragon system.

The manual pages in this appendix are also available on-line, using the man command.

D-1

Manual Pages

D-2

Paragon™ System Fortran Compiler User's Guide

Table D-1 lists the commands described in this appendix.

Table D-1. Commands Discussed in This Appendix

Manual Page Commands Description
ar860 ar860 (cross) Manages object code libraries.
ar (native)
as860 as860 (cross) Assembles i860™" source code.
as (native)
dump860 dump860 (cross and native) | Dumps object files.
if77 if77 (cross) Compiles Fortran programs.
£77 (native)
ifixlib ifixlib (cross and native) Updates inliner library directories.
1d860 1d860 (cross) Links object files.
1d (native)
mac860 mac860 (cross) Preprocesses assembly-language programs.
mac (native)
nm860 nm860 (cross) Displays symbol table (name list)
nm (native) information.
size860 size860 (cross) Displays section sizes of object files.
size (native)
strip860 strip860 (cross) Strips symbol information from object files.
strip (native)

Except for their names, the cross-development and native versions of each command work the same
(with minor exceptions). These commands are available by their cross-development names on the
Paragon system and on supported workstations; they are available by their native names on the

Paragon system only.

3

ko

4

-4

&

A mma Ea A
3

|

¥

1

£

[} 38

E|

Paragon™ System Fortran Compiler User’s Guide

Manual Pages

Table D-2 lists the system calls described in this appendix.

Table D-2. System Calls Discussed in This Appendix (1 of 4)

Manual Page System Calls Description
abort(abort() Terminates caller abruptly; writes memory
image to core file.
access() access() Determines access mode or existence of a
file.
alarm() alarm() Executes a subroutine after a specified time.
besj0() besj0(), besj1(), besjn(), Bessel functions.
besy0(), besy1(), besyn(),
dbesj0(), dbesj1(),
dbesjn(), dbesy0(),
dbesy1(), dbesyn()
chdir() chdir() Changes default directory.
chmod() chmod() Changes protection mode of a file.
ctime() ctime() Returns system time as a string.
date() date() Returns system date as a string.
dv_acos(dv_acos(), dv_asin(), Double-precision vector intrinsics.
dv_atan(), dv_atan2(),
dv_cos(), dv_div(),
dv_exp(), dv_log0),
dv_log10, Odv_pow(),
dv_recp(), dv_rsqrt(),
dv_sin(), dv_sqrt(),
dv_tan()
erf() erf(), erfc(), derf(), derfc() | Error functions.
etime() etime(), dtime() Gets elapsed CPU time.
exit() exit() Terminates program with status.
fdate() fdate() Returns system date and time as a string.
fgetc() fgetc() Gets a character from a logical unit.
flmin() fimin(), flmax(), ffrac(), Range functions.
dflmin(), dflmax(),
dffrac(), inmax()
flush() flush() Flushes a logical unit.

Manual Pages

D-4

Paragon™ System Fortran Compiler User’s Guide

Table D-2. System Calls Discussed in This Appendix (2 of 4)

Manual Page System Calls Description
fork() fork() Creates a child process.
fputc() fputc() Writes a character to a logical unit.
free() free() Frees memory allocated by malloc().
fseek() fseek() Positions file pointer.
ftell) ftell(Determines position of file pointer.
gerror() gerror() Returns latest system error message.
getarg() getarg() Gets the nth command line argument.
getc() getc() Gets a character from logical unit 5.
getewd() getewd() Gets the pathname of the current working
directory.
getenv() getenv() Gets the value of an environment variable.
getgid() getgid() Gets user’s group ID.
getlog() getlog() Gets user’s login name.
getpid() getpid() Gets calling process’s OSF/1 process ID.
getuid() getuid() Gets user’s numeric user ID.
gmtime() gmtime() Formats system time for GMT.
hostnm() hostnm() Gets name of current host.
iarge() iarge() Returns index of the last command line
argument.
idate() idate() Returns current system date in numerical
form.
ierrno() ierrno() Returns latest system error number.
ioinit() ioinit() Initializes I/O.
isatty() isatty() Determines if logical unitis a TTY.
itime() itime() Returns current system time in numerical
form.
kill() kill() Sends a signal to a process.

4

L]

B

4

Paragon™ System Fortran Compiler User's Guide

Manual Pages

Table D-2. System Calls Discussed in This Appendix (3 of 4)

Manual Page System Calls Description
link() link() Makes a link.
Inbink() Inbink() Returns index of last non-blank in a string.
loc() loc() Returns the address of an object.
Itime() Itime() Formats system time for local time zone.
malloc() malloc() Allocates memory.
mvbits() mvbits() Moves bits.
outstr() outstr() Prints a character string to a logical unit.
perror() perror() Prints error message corresponding to
current system error code.
putc() putc() Writes a character to logical unit 6.
putenv() putenv() Changes or adds an environment variable.
gsort() gsort() Quick sort.
rand() rand(), irand(), srand() Random number generator.
random() random(), irandm(), Random number generator.
drandm()
rename() rename() Renames a file.
rindex() rindex() Returns index of substring within a string.
secnds() secnds(), dsecnds() Returns elapsed time.
signal() signal() Establishes signal handler.
sleep() sleep() Suspends execution for a period of time.
stat() stat(), Istat(), fstat() Gets information about a file.
stime() stime() ' Sets system time.
sv_acos() sv_acos(), sv_asin(), Single-precision vector intrinsics.
sv_atan(), sv_atan2(),
sv_cos(), sv_div(),
sv_exp(), sv_log(),
sv_logl0(),sv_pow(),
sv_recp(), sv_rsqrt(),
sv_sin(),sv_sqrt(),sv_tan()

D-5

Manual Pages

D-6

Paragon™ System Fortran Compiler User's Guide

Table D-2. System Calls Discussed in This Appendix (4 of 4)

Manual Page System Calls Description
symlnk() symink() Makes a symbolic link.
system() system() Issues a shell command.
time() time() Returns system time.
times() times() Gets process and child process CPU time.
ttynam() ttynam() Gets pathname of a terminal.
unlink() unlink() Removes a file.
wait() wait() Waits for child process to terminate.

i B

[

B

El

¥

El

Fa A Fa pa Fa
4

4 L

&

pan e mea
[S |

ko

-
]

e

o4

4

E

1

&

1

3

-4

5

§

E

4

1

£

E

i

[

&

K

R | e

£

o B

Paragon™ System Fortran Compiler User's Guide Manual Pages

AR860 AR860

ar860, ar: Creates and maintains archives for the Paragon(TM) system.

Cross-Development Syntax
ar860 [-V] key [options] libname | filename ...]

Native Syntax
ar [-V] key [options]| libname | filename ...]

Arguments
libname The name of the archive.
filename The name of the target file.

You must specify one, and only one, key from the following list:

d Delete filename from the archive.

e Display the symbol tables of COFF objects in the archive.

p Display the archive version of filename (may result in binary data being sent to
standard output).

q Quickly add the file filename to the archive libname by appending the file(s) to the

end of the archive without checking to see if they duplicate existing files in the
archive. If libname does not exist, then create it (unless the ¢ option is specified).
If filename does not appear in the archive, then add it.

r Replace the file filename in the archive libname. If libname does not exist, then
create it. If filename does not appear in the archive, then add it.

t Display the archive table of contents.
X Extract filename from the archive. If no file is named, extract all files.

The key argument may be preceded by a dash. For example, ar860 -t file.a and ar860 t file.a are
equivalent.

D-7

Manual Pages

Paragon™ System Fortran Compiler User's Guide

AR860 (cont.) AR860 (cont.)
You may specify the following options in any order:
c Suppress the creation message. This option is used with the -r key.
1 Use the current working directory for temporary files.
u Replace the archive version only if filename is newer. This option is used only
with the -r key.
\4 Verbose mode. For -r, display the names of the archive members as they are

Description

See Also

replaced (or added). For -d, display the names of the archive members as they are
deleted. For -t, display the file mode, the uid, the gid, the size, and the timestamp
of the specified files. For -x, display the names of the files as they are extracted.

No space may appear between the key and any options.

You must specify the following argument, if used, before the key:

-V Display the tool banner (tool name, version, etc.).

No space may appear between -V and the following key, and the key may not be preceded by a dash.

The dash preceding the V is optional. For example, ar860 -Vt file.a and ar860 Vt file.a are
equivalent.

Use ar860 to manage archives for the Paragon system.

as860, dump860, icc, if77, 1d860, nm860, size860, strip860

H

A

e T S|

b

5

FA oma
_A

B

4

£

4

e B
E 4 g

E 5

.
.
®

!

wl

—

Y

l.;.,g
il

ja

[|

|

3

Hn:-—

Paragon™ System Fortran Compiler User's Guide) Manual Pages

as860, as: Assembles i860 code for the Paragon(TM) system.

Cross-Development Syntax
as860 [switches | [filename]

Native Syntax
as [switches | [filename]

Arguments

filename

The name of the i860 assembly language file. If no file is specified, as860 reads
from standard input.

You may specify the following switches in any order:

-I[listfile]

-L

-0 obffile

-R

=X

Do not automatically import symbols that are referenced but otherwise undefined.
Issues an error message for each occurrence.

Write source listing in the file listfile, a file in the current working directory. If you
omit listfile, the listing goes to standard output.

Preserve text symbols starting with “.L” in the debug section.

Put the output object file in objfile. If you omit this switch, the default object file
name is produced by stripping any directory prefixes from filename, stripping any
of the suffixes “.n10”, “.s”, “.mac”, or “.860”, and appending “.0”. An existing file

with the same name is silently overwritten.

Suppress all .data directives. Code and data are both assembled into the .text
section.

Display the tool banner (tool name, version, etc.).

Enable additional checks of the source file to find illegal sequences of
instructions.

D-9

Manual Pages

Paragon™ System Foriran Compiler User's Guide

AS860 (con:.) AS860 (cont.)

Description

See Also

D-10

Use as860 to assemble the named file.

You can ensure that the proper switches are passed to as860 by accessing as860 using the compiler
drivers (icc or if77).

Not all illegal sequences are detected when the -x switch is used.

ar860, dump860, icc, if77, 1d860, nm860, size860, strip860

o
el

4

|

*

e 8

B4

3

t

B A

¥4

B4

}

A L

b

| | E A L = 3 B4
d T [S |

o4

Bz

B3

4

=4 FAa EaAa F 3 F A
E

3

1

B

—— | | =
E A

| S]

[|

E)

&

S B & }v :

i i
: i

k]

4

¥

4

— —— —— I —— —— -
H i 3 E H

¥

-

Paragon™ System Fortran Compiler User's Guide Manual Pages

DUMP860

DUMP860

Dumps parts of a Paragon(TM) system object file.

Syntax

Arguments

dump860 [switches] filename

filename

The name of the object file.

You may specify the following switches in any order:

-a

-C

-d number

+d number

-f

=N name

-0

P

Display archive headers.

Dump the string table.

Dump section headers starting at section number. Only effective if the -h switch
is also specified. Sections are numbered starting at 1. If the +d switch is not
specified, then only the single section header is dumped.

Dump section headers ending at section number. Only effective if the -h switch is
used.

Display file headers.

Display the archive symbol table.

Dump section headers.

Dump line numbers.

Dump only sections named name. Only effective if the -h switch is used.
Dump (in formatted hexadecimal) optional headers.

Do not display headers.

Dump relocation data.

Dump section data.

D-11

Manual Pages

DUMP860 (cont.)

Description

See Also

D-12

<t [number]

+t number

-u

-V

Y
-z name number

+2z number

Paragon™ System Fortran Compiler User's Guide

DUMP860 (cont.)

Dump symbol table, starting at symbol index number. If the +t switch is not used,
then only the single symbol is displayed.

Dump symbol table, through symbol index number. If -t was not specified, the
start index is zero.

Underline mode. Only works on devices supporting backspace.

Verbose mode. Display some headers and informationin aneasier-to-comprehend
form.

Display the tool banner (tool name, version, etc.).
Dump line numbers for function name, starting at line number.

Dump line numbers for function name (specified by -z), ending at line number.

Use dump860 to dump (in formatted hexadecimal) parts of the named object file.

ar860, as860, icc, if77, 1d860, nm860, size860, strip860

puam geay g
[] e o e 3

| ==]
ro4

=-a
4

L B
[T [I

g2
4

i
8

|

4

3 g 3
B

¥

-

ki

A

ro3 & 4 8 4 B 4 & d4 B & & W

ey e
E i i k]

——— —— -
£ 3 S | g 4

Paragon™ System Fortran Compiler User's Guide Manual Pages

IF77 IF77

if77, £77: Driver for compiling, assembling, and linking Fortran programs for the Paragon(TM) system.

Cross-Development Syntax

if77 [switches] sourcefile...

Native Syntax
£77 [switches] sourcefile...

Description

The if77 command invokes the Fortran compiler, assembler, and linker with switches derived from
if77’s command line switches.

if77 bases its processing on the suffixes of the files it is passed:

fileF is a Fortran program with preprocessor directives. It is preprocessed,
compiled and assembled. The resulting object file is placed in the current
directory.

file.f is a Fortran program. It is compiled and assembled. The resulting object file

is placed in the current directory.

file.s is an i860 assembly language file. It is assembled and the resulting object file
is placed in the current directory.

file.o is an object file. It is passed directly to the linker if linking is requested.
filea is an ar library. It is passed directly to the linker if linking is requested.
file.c is a C program. It is passed to the C compiler.

All other files are taken as object files and passed to the linker (if linking is requested) with a warning
message. If a file’s suffix does not match its actual contents, unexpected results may occut.

If a single Fortran program is compiled and linked with one if77 command, then the intermediate
object and assembly files are deleted.

By default, Fortran local variables are placed on the stack. Some Fortran programs assume that all
variables are allocated statically. Static allocation can be forced with the -Msave switch.

D-13

Manual Pages

IF77 (cont.)

Switches

D-14

-Dname[=def]

-E

-F

2
I-

-Idirectory

-Koption

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

Skips the link step; compiles and assembles only. Leaves the output from the
assemble step in a file named file.o for each file named file.f (unless you also
use the -0 switch).

Defines name to be defin the preprocessor. If def is missing, it is assumed to
be empty. If the = sign is also missing, then name is defined to be the string 1.

Preprocesses each “.F” file and sends the result to stdout. No compilation,
assembly, or linking is performed.

Preprocesses each “.F” file and leaves the output in a file named file.f for each
file named file.F.

Equivalent to -Mdebug -O0 -Mframe.

Accepted, but has no affect.

Add a specified directory to the compiler’s search path for include files where
directory is the pathname of the directory to be added. If you use more than
one -I switch, the specified directories are searched in the order they were
specified (left to right).

The INCLUDE statement directs the compiler to begin reading from another
file. The compiler uses two rules to locate the specified file. Note that the
Fortran INCLUDE statement is different from the #include statement, whcih

uses the C preprocessor.

1. If the filename specified in the INCLUDE statement includes a
pathname, the compiler begins reading from the file it specifies.

2. If no pathname is provided in the INCLUDE statement, the compiler
searches for the file in the following order:

+ any directories specified with -1
» the directory containing the source file
« the current directory

Requests special mathematical semantics. The option values are:

o

b

4

A F A
€

3

b

boa

4

| | | | _—n
4 ¥

e 3

o

B

4

&

1

it S | T T £ £ e I S O L4 L4

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

ieee (default)

ieee=enable

ieee=strict

noieee

trap=fp

trap=align

Manual Pages

IF77 (cont.)

If used while linking, links in a math library that
conforms with the IEEE 754 standard.

If used while compiling, tells the compiler to perform
real and double precision divides in conformance
with the IEEE 754 standard.

If used while linking, has the same effects as -Kieee,
and also enables floating point traps and underflow
traps. If used while compiling, has the same effects as
-Kieee.

If used while linking, has the same effects as
-Kieee=enable, and also enables inexact traps. If used
while compiling, has the same effects as -Kieee.

If used while linking, produces a program that flushes
denormals to O on creation (which reduces underflow
traps) and links in a math library that is not as accurate
as the standard library, but offers greater performance.
This library offers little or no support for exceptional
data types such as INF and NaN, and will trap on such
values when encountered.

If used while compiling, tells the compiler to perform
real and double precision divides using an inline
divide algorithm that offers greater performance than
the standard algorithm. This algorithm produces
results that differ from the results specified by the
IEEE standard by no more than three units in the last
place.

If used while linking, disables kernel handling of
floating point traps. Has no effect if used while
compiling.

If used while linking, disables kernel handling of
alignment traps. Has no effect if used while compiling

D-15

Manual Pages

IF77 (cont.)

D-16

-llibrary

-Ldirectory

-Moption

Paragon™ System Fortran Compiler User's Guide

\F77 (cont.)

Load the library liblibrary.a. The library is loaded from the first library
directory in the library search path (see the -L switch) in which a file of that
name is encountered. (Passed to the linker.)

Adds directory to beginning of the library search path. Also see the nostdlib
and nostartup options of the -M switch. (Passed to the linker; see the 1d860
manual page for more information on the library search path.)

Produces a link map. (Passed to the linker.)

Requests specific actions from the compiler. The option values are as follows
(an unrecognized -M option is passed directly to the compiler):

alpha

anno

beta

[no]bounds

clr_reg

Activate alpha-release compiler features.

Produce annotated assembly files, where source code
is intermixed with assembly language. -Mkeepasm or
-S should be used as well.

Activate beta-release compiler features.

[Don’t] enable array bounds checking (default
-Mnobounds).

Clear the internal registers after every procedure
invocation. This option is used for diagnostic

purposes.

concur[=option[,option...]]

Make loops parallel as defined by the specified
options. option can be any of the following:

altcode:count - Make innermost loops without
reduction parallel only if their iteration count exceeds
count. Without this switch, the compiler assumes a
default count of 100.

altcode_reduction:count - Make innermost loops
with reduction parallel only if their iteration count
exceeds count. Without this switch, the compiler
assumes a default count of 200.

dist:block - Make the outermost valid loop in any loop
nest parallel. This is the default option.

e 4

k|

-

b

4

b

b %

A

|

B

2
|)

E

4

Ea Ewm sa
S

¥

3

—1 | L]
Ed T

B4

—a_
e 3

—
e 4

-

i3

{

2

]

3

k ; i i E] E . £

(3 |

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

cncall

Manual Pages

\IF77 (cont.)

dist:cyclic - Make the outermost valid loop in any loop
nest parallel. If an innermost loop is made parallel, its
iterations are allocated to processors cyclically. That
is, processor O performs iterations 0, 3, 6, ...; processor
1 performs iterations 1, 4, 7, ...; and processor 2
performs iterations 2, 5, 8, and so on.

global_vcache - Directs the vectorizer to locate the
cache within the area of an extemal array when
generating codes for parallel loops. By default, the
cache is located on the stack for parallel loops.

noassoc - Do not make loops with reductions parallel.
Make loops with calls parallel. By default, the
compiler does not make loops with calls parallel since
there is no way for the compiler to verify that the
called routines are safe to execute in parallel. When
you specify -Mcncall on the command line, the
compiler also automatically specifies -Mreentrant.

-Mcncall also allows several other types of loops to be
made parallel:

- loops with I/O statements

- loops with conditional statements

- loops with low loop counts

- non-vectorizable loops

If the compiler can detect a cross-iteration dependency

in a loop, it will not make the loop parallel, even if
-Mcncall is specified.

D-17

Manual Pages

IF77 (cont.)

D-18

cpp860

Paragon"‘ System Fortran Compiler User's Guide

IF77 (cont.)

Direct the internal preprocessor to not compress white
space.

cray=option|,option...]

[no]dclchk

[no]debug

[no]depchk

Force Cray Fortran (CF77) compatibility with respect
to listed options. Currently, only one option is
supported.

pointer For puposes of optimization is is assumed
that pointed-based variables do not overlay the storage
of any other variable.

[Don’t] require that all variables be declared (default
-Mnodclchk).

[Don’t] generate symbolic debug information (default
-Mnodebug). If -Mdebug is specified with an
optimization level greater than zero, line numbers will
not be generated for all program statements.

[Don’t] check for potential data dependencies (default
-Mdepchk). -Mnodepchk is especially useful in
disambiguating unknown data dependencies arising
from use of array subscripts that cannot be derived at
compile time. For example, if an array is referenced in
a loop using the induction variable plus some other
unknown non-induction-based variable as a subscript,
the compiler must assume that the array conflicts with
a similar array reference based on the induction
variable alone. If it is known that the two array
references do not conflict, then this switch may result
in better code. Do not use this switch if such data
dependencies do exist, because incorrect code may
result.

L |

e

B

4

e e e B
[

3

4

L] .
b

£ 4
Lo L

B3
Lo

4

3

4

B

B

3

pa BW Ea Ea F d
B

| | =n =R
[B4 [3

o

-

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

[no]dlines

dollar,char

extend

Manual Pages

IF77 (cont.)

[Don’t] treat lines beginning with D in column 1 as
executable statements, ignoring the D (default
-Mnodlines).

Specify char as the character to which the compiler
maps the dollar sign. The compiler allows the dollar
sign in names.

Allow 132-column source lines (normally only 72
columns are allowed).

extract=[option[,option...]]

[no]frame

[noli4

Pass options to the subprogram extractor (see the
inline option for more information). The options are:

[name:]subprogram—Extract the specified
subprogram. name: must be used if the subprogram
name contains a period.

[size:]number—Extract subprograms containing less
than approximately number statements.

If both number(s) and subprogram(s) are specified,
then subprograms matching the given name(s) or
meeting the size requirements are extracted.

The -ofile switch must be used with -Mextract to tell
the compiler where to place the extracted
subprograms. The name of the specified file must
contain a period.

[Don’t] include the frame pointer (default
-Mnoframe). -Mnoframe can improve execution
time and decrease code, but makes it impossible to get
a call stack traceback when using a debugger.

[Don’t] treat integer as integer*4 (default -Mid4).
-Mnoi4 treats integer as integer*2.

D-19

Manual Pages

IF77 (cont.)

D-20

Paragon™ System Fortran Compiler User's Guide

\F77 (cont.)

info=[option|,option...]]

Produce useful information to the standard error
output. The options are:

time or stat—Output compilation statistics.

loop—Output information about 1oops. This includes
information about vectorization, software pipelining,
and parallelization.

concur—Same as -Minfo=loop.

inline—Output information about subprograms
extracted and inlined.

cycles or block or size—Output block size in cycles.
Useful for comparing various optimization levels
against each other. The cycle count produced is the
compiler's static estimate of freeze-free cycles for the
block.

ili—Output intermediate language as comments in
assembly file.

all—All of the above.

inline=[option[,option...]]

Pass options to the subprogram inliner. The options
are:

[lib:]library—Inline subprograms in the specified
inliner library (produced by -Mextract). If lib: is not
used, the library name must contain a period. If no
library is specified, subprograms are extracted from a
temporary library created during an extract prepass.

[name:]subprogram—Inline the specified
subprogram. If name: is not used, the subprogram
name must not contain a period.

[size:Jnumber—Inline subprograms containing less
than approximately number statements.

mmy AR FA pm pm
B4

E]

E

L]

|

E]

1

4

3

wo

F T3
3

t

= =
)

[

e
b

4

>

| &

E

E |

N
E 4

E

E

E Eoa

—
£ 4

[B S |

4

E

]

i

E]

£

4

i

[

1

t

E
£

E

K|

b

¢ i ' E 4 ¥ + H

B3

p—
(T |

["1
.y‘

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

iomutex

keepasm

Manual Pages

\IF77 (cont.)

levels:number—Perform number levels of inlining
(default 1).

If both number(s) and subprogram(s) are specified,
then subprograms matching the given name(s) or
meeting the size requirements are inlined.

Place critical sections around I/O statements.

A critical section is a portion of the code that is only
executed by one thread. The switch -Miomutex places
critical sections around all I/O statements whether they
are in loops or not. This is a switch that should be
active if you want to parallelize loops that contain I/O
statements.

You must specify -Mecncall or use a directive to
parallelize loops that contain I/O statements.

The switch -Mconcur includes an imbedded
-Miomutex. Also, the switch -Mcncall includes an
imbedded -Miomutex.

If you are not parallelizing loops with I/O statements,
specify -Mnoiomutex. This is because, if you are not
parallelizing loops with I/O statements, you do not
need to put I/O statements in critical sections.

-Miomutex does not affect correct execution of the
program. It makes sure that only one thread is
executing the I/O statement at a time.

Keep the assembly file for each Fortran source file, but
continue to assemble and link the program. This is
mainly for use in compiler performance analysis and
debugging.

D-21

Manual Pages

IF77 (cont.)

D-22

list[=name]

nolist

[no]longbranch

neginfo=concur

noansi

nostartup

nostdinc

nostdlib

onetrip

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

Create a source listing in the file name. If name is not
specified, the listing file has the same name as the
source file except that the “.£” suffix is replaced by a
“l1st” suffix. If name is specified, the listing file has
that name; no extension is appended.

Don’t create a listing file (this is the default).

[Don’t] allow compiler to generate bte and btne
instructions (default -Mlongbranch).
-Mnolongbranch should be used only if an assembly
€ITor occurs.

Print information for each countable loop that is not
made parallel stating why the loop was not made
parallel.

Allow multiple implicit statements.

Don’t link the usual start-up routines (cr?0.0 and
ifmain.o), which contain the entry point for the
program.

Remove the default include directory (/usr/include for
77, $(PARAGON XDEV)/paragonlfinclude for if77)
from the include files search path.

Don’t link the standard libraries (libpm.o, guard.o,
libf.a, libm.a, libc.a, libic.a, and libmach3.a) when
linking a program.

Force each do loop to be iterated at least once.

mo

"
o
" -
LA
-
w
&

|l

M"T

i

M"“’T

o}

4

E

4

¥

i

3

4

i

4

3

#

£

i

b

i

1

: [| ‘ b

3

- -

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

[no]perfmon

prof=x

[no]quad

[no]r8

[no]r8intrinsics

[no]Jrecursive

Manual Pages

| F77 (cont.)

[Don’t] link the performance monitoring module
(libpm.o) (default -Mperfmon). Sec the Paragon(TM)
System Application Tools User’s Guide for
information on performance monitoring.

This option is ignored.

[Don’t] force top-level objects (such as local arrays) of
size greater than or equal to 16 bytes to be
quad-aligned (default -Mquad). Note that -Mquad
does not affect items within a top-level object; such
items are quad-aligned only if appropriate padding is
inserted. Common blocks are always quad-aligned.

[Don’t] treat real as double precision and real
constants as double precision constants (default
-Mnor8).

[Don’t] treat intrinsics as follows (default
-MnorS8intrinsics):

cmplx as demplx
real as dble

alog as dlog
amax] as dmax1
aminl as dminl
amod as dmod
csqrt as cdsqrt
clog as cdlog
cexp as cdexp
csin as cdsin
ccos as cdcos

[Don’t] allocate local variables on the stack, thus
allowing recursion (default -Mnorecursive). SAVEd,
data-initialized, or namelist members are always
allocated statically, regardless of the setting of this
switch.

D-23

Manual Pages

IF77 (cont.)

D-24

[no]Jreentrant

reloc_libs

safealloc

[no]save

[no]signextend

split_loop_ops=n

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

[Don’t] generate reentrant code (default
-Mnoreentrant). -Mreentrant disables certain
optimizations that can improve performance but may
result in code that is not reentrant. Even with
-Mreentrant, the code may still not be reentrant if it is
improperly written (e.g., declares static variables).
You may need to increase the stacksize before
executing programs compiled with -Mreentrant. A
segmentation violation occurs if stacksize is too low.

Causes -1 switches that appear before source or object
file names on the compiler command line to appear
after these file names on the ld command line.

Informs the compiler that all allocatable commons are
allocated once and can be treated as ordinary
commons for optimization purposes. This option can
improve performance for some applications, but
should be used with caution.

[Don’t] allocate all local datain static locations instead
of on the stack (default -Msave). The effect is similar
to using the save statement for all local variables.
Recursion is not allowed with this switch in effect.
-Msave may allow some older Fortran programs to
run, but may decrease performance.

[Don’t] sign-extend the result of a conversion of a
signed integer to a smaller signed type (default
-Mnosignextend). For example, if -Msignextend is in
effect and an integer*4 containing the value 65535 is
converted to an integer*2, the value of the integer*2
will be -1. This option is provided for compatibility
with other compilers. -Msignextend will decrease
performance.

Set a threshold of » floating-point operations within a
loop. Innermost loops whose number of floating-point
operations exceeds n are split. Each floating-point
operation counts as two. The default for n is 40 when
-Mvect is used.

e 4

L I
E 4 E 3

3

.

-

4

Ed

b

-

B

|

.

L

b

T T |

i

B

Wl [] || L]
: § EoA :

|
4

P

_— —— — —— —— -
[i :

B4

— -

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

Manual Pages

IF77 (cont.)

nosplit_loop_ops

Do not split loops when the floating-point operation
threshold is exceeded. When -Mvect is specified,
innermost loops whose number of floating point
operations exceed 40 are split by default. This switch
turns the default off.

split_loop_refs=n

Set a threshold of »n array element loads and stores
within a loop. Innermost loops whose number of loads
and stores exceeds n are split. The default for n is 20
when -Mvect is used.

nosplit_loop_refs

standard

[no]streamall

[no]stride0

unixlogical

[no]upcase

Do not split loops when the array element loads and
stores threshold is exceeded. When -Mvect is
specified, innermost 1oops whose number of array
element loads and stores exceeds 20 are split by
default. This switch turns the default off.

Flag non-ANSI-Fortran77 usage.

[Don’t] stream all vectors to and from cache in a vector
loop (default -Mstreamall). When -Mnostreamall is
in effect, the compiler chooses one vector to come
directly from or go directly to main memory, without
being streamed into or out of cache.

[Don’t] inhibit certain optimizations and allow for
stride O array references. -Mstride0 may degrade
performance, and should only be used if zero stride
induction variables are possible. (default
-Mnostride0).

Set the value of a logical expression to one if the result
is .TRUE..

[Don’t] preserve case in names (default -Mnoupcase).
-Mnoupcase causes all names to be converted to
lower case. Note that, if -Mupcase is used, then
variable name Q is different than variable name g, and
keywords must be in lower case.

D-25

Manual Pages

IF77 (cont.)

D-26

Paragon™ System Fortran Compiler User's Guide

IF77 (cont.)

unroll[=option [,option ...]]

nounroll

Invoke the loop unroller and set the optimization level
to 2 if it is set to less than 2. option is one of the
following:

¢:m - Completely unroll loops with a constant loop
count less than or equal to m. If m is not supplied, the
default value is 4.

n:u - Unroll loops that are not completely unrolled or
have a non-constant loop count u times. If u is not
supplied, the unroller computes the number of times a
loop is unrolled.

Do not unroll loops.

vect[=option[,option...]]

Perform vectorization (also enables -Mvintr). If no
options are specified, then all vector optimizations are
enabled. The available options are:

altcode[:number] - Produce non-vectorized code to be
executed if the loop count is less than or equal to
number. Otherwise execute vectorized code. The
default value for number is 10.

cachesize:number—This sets the size of the portion of
the cache used by the vectorizer to number bytes.
Number must be a multiple of 16, and less than the
cache size of the microprocessor (16384 for the

i860 XP, 8192 for the i860 XR). In most cases the best
results occur when number is set to 4096, which is the
default (for both microprocessors).

noassoc—When scalar reductions are present (for
example, dot product), and loop unrolling is turned on,
the compiler may change the order of operations so
that it can generate better code. This transformation
can change the result of the computation due to
round-off error. The use of noassoc prevents this
transformation.

[nolrecog—[Don’t] Recognize certainloops as simple
vector loops and call a special routine.

¥

4

F 4 ¥ A

| SR

4

B4

B

Ll]

LA

g

|

#

|3

4

-

4

IS

]

%

E
E

cE

E|

3

]

E

B

4 E|

E

E

i B ; : ;
£ 4 e : & k| ¢ i i

LS

Paragon™ System Fortran Compiler User's Guide

|F77 (cont.)

Manual Pages

IF77 (cont.)

smallvect[:number]—This option allows the
vectorizer to assume that the maximum vector length
is no greater than number. Number must be a multiple
of 10. If number is not specified, the value 100is used.
This option allows the vectorizer to avoid stripmining
in cases where it cannot determine the maximum
vector length. In doubly-nested, non-perfectly nested
loops this option can allow invariant vector motion
that would not otherwise have been possible. Incorrect
code may result if this option is used, and a vector
takes on a length greater than specified.

streamlim:n This sets a limit for application of the
vectorizer data streaming optimization. If data
streaming requires cache vectors of length less than n,
the optimization is not performed. Other vectorizer
optimizations are still performed. The data streaming
optimization has a high overhead compared to other
loop optimizations, and can be counter-productive
when used for short vectors. The n specifier is not
optional. The default limitis 32 elements if streamlim
is not used.

transform—Perform high-level transformations such
as loop splitting and loop interchanging. This is
normally not useful without -Mvect=recog.

-Mvect with no options means
-Mvect=recog,transform,cachesize:4096,altcode:1
0.

[no]vintr [Don’t] perform recognition of vector intrinsics
(default -Mnovintr, uniess -Mvect is used).
[nolxp [Don’t] use 1860 XP microprocessor features (default
-Mxp).
Equivalent to -Mnostdinc.

D-27

Manual Pages

IF77 (cont.)

D-28

-ofile

-Oflevel]

Paragon"'I System Fortran Compiler User’s Guide

IF77 (cont.)

Creates an executable application for multiple nodes.

« Using -nx while compiling has no effect.

» Using -nx while linking creates an application that automatically copies
itself into multiple nodes. It also links in libnx.a, the library that contains
the calls in the Paragon(TM) System Fortran Calls Reference Manual.
You can control the execution of an application linked with -nx by using
command-line switches and environment variables, as described in the
Paragon(TM) System User’s Guide.

To link in libnx.a without creating an application that automatically copies
itself into multiple nodes, use -Inx instead. An application linked with -Inx
can use operating system calls to create node processes under program

control.

-node is currently accepted as a synonym for -nx, but this support may be
dropped in a future release.

Uses file for the output file, instead of the default a.out (or file.o if used with

the -¢ switch).
Set the optimization level:

0 A basic block is generated for each Fortran statement.
No scheduling is done between statements. No global
optimizations are performed.

1 Scheduling within extended basic blocks is performed.
Some register allocation is performed. No global
optimizations are performed.

2 All level 1 optimizations are performed. In addition,
traditional scalar optimizations such as induction
recognition and loop invariant motion are performed
by the global optimizer.

3 All level 2 optimizations are performed. In addition,
software pipelining is performed.

4 All level 3 optimizations are performed, but with more

aggressive register allocation for software pipelined
loops. In addition, code for pipelined loops is
scheduled several ways, with the best way selected for
the assembly file.

B 4 [S]

E

i

B4

-l
4

s 4 B4

o

4

|4

. pea ey ey
[|

2

4

Paragon™ System Fortran Compiler User's Guide Manual Pages

IF77 (cont.)

-r

-S

-S

-Uname

-V

-V

Vv

IF77 (cont.)

If alevel is not supplied with -O, the optimization level is set to 2. If -O is not
specified, the default level is 1. Setting optimization to levels higher than O
may reduce the effectiveness of symbolic debuggers.

This option is ignored.

Generates a relinkable object file. (Passed to the linker.)

Strips symbol table information. (Passed to the linker.)

Skips the link and assemble s