intel

EXTENDED iRMX®II.3
OPERATING SYSTEM
DOCUMENTATION

VOLUME 1
INTRODUCTION, INSTALLATION,
AND OPERATING INSTRUCTIONS

Order Number: 461844-001

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright @ 1988, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly before the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any ervors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Inte] Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are impliad

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9{a)(9).

No part of this decument may be copied or reproduced in any form or by any means without prier
written consent of Intel Corporation,

The following are trademarks of Intel Corporation and its effiliates and may be used only to
identify Intel products:

Above iLBX iPSC OpenNET

BITBUS i IRMX ONCE

COMMputer iMDDX 1SBC Plug-A-Bubble

CREDIT iMMX iSBX PROMPT

Data Pipeline Insite iSDM Promware

g-enius intgl 1558 QUEST

1 inta|BOS i15SXM QueX

i Intelevision Library Manager Ripplemode

12ICE intpligent Identifier MCS RMX/80

ICE intgligent Programming Megachassis RUPI

iCEL Intellec MICROMAINFRAME Seamless

iC8 Intellink MULTIBUS SLD

iDBP iosp MULTICHANNEL UPI

iDIS iPDS MULTIMODULE VLSICEL
iPSB

XENIX, MS-DOS, Multiplan, and Microseft are trademarks of Microsoft Corporation, UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronivs Duly Compuier Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayea are trademarks of Hayes Microcomputer Products, Ine. IBM is a
registered trademark of International Business Machines. Soft-Scope 1s a registered trademark of
Concurrent Sciences,

Copyright® 1988, Intel Corporation

MANUALS IN THIS VOLUME

This volume (Iniroduction, Installation, and Operating Instructions) contains the following
manuals:

Introduction to the Extended iRMX® II Operating System
Extended iRMX® IT Hardware and Software Installation Guide
Operator’s Guide to the Extended iIRMX® IT Human Interface
Master Index

The Introduction to the iIRMX® II Operating System gives a high-level description of the
Extended iRMX 1I Operating System.

The Extended iRMX® II Hardware and Software Installution Guide provides instructions on
how to instail the Extended iRMX II Operating System on Intel microcomputers. It also
provides information on how to modify both peripheral controller boards and processor
boards to meet special needs.

The Operator’s Guide to the Extended iRMX® II Human Interface provides detailed
descriptions of the Human Interface and Command Line Interpreter (CLI) commands.
These command are the interface between the user at a terminal and the operating
system.

The Master Index is a guide to the entire five-volume documentation set for Extended
iRMX I1.3. This index provides an alphabetic list of topics followed by the title of the
manual that contains the desired information.,

Installation and Operating Instructions

iii

VOLUME PREFACE

VOLUME CONTENTS

Manuals are listed in the order they appear in the volumes. For a synopsis of each
manual, refer to the Introduction to the Extended iRMX® II Operating System.

VOLUME 1. Extended iRMX® II Introduction, Installation, and Operating Instructions

Introduction to the extended iRMX® IT Operating System
Extended iRMX® II Hardware and Software Installation Guide
Operator’s Guide to the extended iRMX® {1 Human Interface
Master Index

VOLUME 2: Extended iRMX® II Operating System User Guides

Extended iRMX® II Nucleus User's Guide

Extended iRMX® I Basic 1/0 System User’s Guide

Extended iRMX® II Extended 1/0 System User’s Guide

Extended iRMX®II Human Interface User’s Guide

Extended iRMX® [T Application Loader User’s Guide

Extended iRMX® II Universal Development Interface User’s Guide
Device Drivers User’s Guide

VOLUME 3: Extended iRMX® II System Calls

Extended iRMX® II Nucleus System Calls Reference Manual

Extended iRMX® II Basic 1/0 Systern Calls Reference Manual
Extended iRMX® II Extended 1/0 System Calls Reference Manual
Extended IRMX® I Application Loader System Calls Reference Manual
Extended iRMX® II Human Interface System Calls Reference Manual
Extended IRMX® II UDI System Calis Reference Manual

VOLUME 4: Extended iRMX® II Operating System Ultilities

Exiended iRMX® I Bootstrap Loader Reference Manual
Extended iIRMX® II System Debugger Reference Manual
Extended iRMX® II Disk Verification Utility Reference Manual
Extended iRMX® II Programming Techniques Reference Manual
Guide to the Extended iRMX® II Interactive Configuration Utility

VOLUME 5. Extended iRMX® II Interactive Configuration Utility Reference

Extended iRMX® [I Interactive Configuration Utility Reference Manual

iv Installation and Operating Instructions

VOLUME PREFACE

RELATED PUBLICATIONS
IAPX 286 Utilities User’s Guide for iRMX® I Systems

IAPX 286 System Builder User’s Guide for iRMX® I Systems
IRMX Networking Software User’s Guide

Installation and Operating Instructions v

REV.

REVISION HISTORY

DATE

-001

Original [ssue,

01/88

INTRODUCTION TO THE
EXTENDED iIRMX®11
OPERATING SYSTEM

Intel Corporation
3065 Bowers Avenue
Santa Clara, Califorma 95051

Copyright ©# 1988, Intel Corporation, All Rights Reserved

INTRODUCTION
This manual is a high-level introduction to the Extended iIRMX® II Operating System. It

provides you with an overview of the operating system that helps you to develop your
application system in less time with less expense.

READER LEVEL

This manua! is written for readers who are unfamiliar with the Extended iRMX II
Operating System, but who have general micro-computing experience.

MANUAL OVERVIEW

This manual is organized as follows:

Chapter 1 This chapter provides a brief introduction to the Extended
iRMX II Operating System and defines terms used in later
chapters.

Chapter 2 This chapter introduces some of the obstacles an operating system
should try to eliminate.

Chapter 3 This chapter discusses the economic benefits of using the Extended
iIRMX II Operating System.

Chapter 4 This chapter discusses the features of the Extended iRMX I1

Operating System, and defines the vocabulary used in the other
iRMX IT manuals,

Chapter 5 This chapter describes a relatively simple application system.

Chapter 6 This chapter describes the other manuals associated with the
Extended iRMX II Operating System.

Introduction

PREFACE

CONVENTIONS

This manual uses the following conventions:

Information appearing as UPPERCASE characters when shown in keyboard
examples must be entered or coded exactly as shown. You may, however, mix lower
and uppercase characters when entering the text,

Fields appearing as lowercase characters within angle brackets (< >) when shown in
keyboard examples indicate variable information. You must enter an appropriate
value or symbol for variable fields.

Information appearing in print indicates user input.
The term "IRMX II" refers to the Extended iRMX I1.3 Operating System.
The term "IRMX I" refers to the iRMX I (iIRMX 86) Operating System.

All numbers unless otherwise stated are assumed to be decimal. Hexadecimal
numbers include the "H" radix character (for cxample, OFFII).

Introduction

CHAPTER 1
OVERVIEW OF THE iRMX® Il OPERATING SYSTEM

1.1 Overview Of the SYSIEM .. crrcnererere st sases et sesesarararereressoseresssseseas
1.2 Major System FUNCHIONS ... csernererenennmssses s ssssesesesesnses
1.3 Protected Virtual Address MOGE.......ccmmmecniininsisssssssnisisissssins
1.4 IRMX® TEIMUNOIOZY ..e.vevueiueeaeorirererirssreerisesesessesasesriosraserssiesesmesssesessserssessssssesnseosens

CHAPTER 2
CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

2.1 INELOAUCHION oottt e et cateae e e st ear et e e ras ettt sar s sbas et easearanate
2.2 EVENTE DEIECHIDN ot ieee e revess v se et s s ssss st sttt san s aranerenane
2.3 Scheduling of Processing ...

2.4 Err0r ProCesSINgG ...ccvcvcrriririererarsnensnisermssmsnsisnssorones

2.5 Device Independence . mnnnnnnmoinnnmnnsns s —.n
2.6 Mass Storage File Allocation Tradeoffs ...t
2.7 Featire SEIECTION ., oottt se et abaas s
2.8 Multiple ApPPlICAtIONS. ..ottt serensereens
2.9 Memory REQUITEMENLS........cirererecerrreriissasessee st siase e sass st atssenasasasissosssanases
2.10 Files and MUltiple USEIScovcreirerevcrerinmiiricnmescicic st ss s s sasssesas
2.11 The Human Element...........cccovcrrcnciiccnisnse s
2.12 Application Developmentt 2
2.13 DEDULLING ...vvvrrvriecmerreirirererssrrirrrar st satsssssasssasesenas s isssesessisssssssssisnss
2.14 Hardware Bus ArChiteCtUre.. ...,

CHAPTER 3
BENEFITS OF THE iRMX® Il OPERATING SYSTEM

3.1 INtOQUCHION cevv s esmes st s e
3.2 Development TiMe .o
3.3 Cost of Implementation ...
3.4 Costs After DevelOpmENT... ...t

CHAPTER 4
FEATURES OF THE iRMX® Il OPERATING SYSTEM

4.1 TRITOUUCIION 1ooveer st reri et sessrsss e ssrens s s s s mssesese s emessssssessamsasssasbetssaesssnses
4.2 Architectufral FEATUIES ...t e ns s s s s
4.2.1 Object-Oriented Architecturecoocoveermrervrnvevcrnnemniinininii

4.2.2 MUltitasKingcocovrerasrerasirimrssimsmimisisrsssse

4.2.3 Interrupt PrOCESSINZ v iiminseiiasinrisssssiararsissssnrissessisssans
4.2.4 Scheduling AlGorithmscocoiriceiviriise e
4.2.4.1 Pre-emptive, Priority-Based Scheduling.........c.cccoecvvinvinnn
4.2.42 Round-Robin Scheduling........coorvccivcriinniiniiinienns,

Introduction

CONTENTS

CHAPTER 4 (continued) PAGE
4.2.5 MUltiPTOBIAMMING covvvvrerererarrisensrannsssenresesssssssisssssiscssesosmsosesessresesssesessessessssssesnssee -8
4.2.6 Intertask COOTUNALIONcviircvccrrreceeesse st st es s esas e s s enessaes 4-9

4.2.6.1 Exchanging Information ... ssscssssssnans 4-10
4.2.6.2 Mutual EXClUSIONcccouirerenrencinciniinsiesaensiens s eoseoreseresssseenanes =11
4.2.6.3 SYNCHIONIZALION......ovvvrevreriieneennsrsesessesscsss s seses s ereseseesessseesenssases 4-12
4.27 Bus Architecture SUPPOLt......cooiiriermienieresesesess s st sseseesesesosenes s e ssenas 4-13
4.2.8 EXENdIDIlILY ..o ssss st eerresesesisesessaeseseessessessonens 40 13
4.3 INPUL/OULPUL FEATUIES .v.vvveiveoceeeeee s eeeeee e ese s ee s essee s e ee e es s 4-14
4.3.1 Choice of I/O SYStEMS.......cccresircernriirisiesiiee st cee s s tesseees e esseren s 4-14
4.3.1.1 Basic I/O System (BIOS)......ccouecovrormmrornimiverneeseensioeeesseresoseseseresenensns 4o 14
4.3.1.2 Extended I/O System (EIOS)oovrvcerercinrirriscsctsteceess oo 4-15
4.3.2 Device-Independent Input and QULPULueveeveverrveocesee e erienee e, 416
4.3.3 Hierarchical Naming of Mass Storage Filescoo..ovieicoeoreeoseorerserereneeseonns 4-17
4.3.4 File AcCess CONIOL.......cvorcrcennmnririrerssesnssesimesesssssssssesssssseesesereesesesseeseserenss 4220
4.3.5 Control Over File Fragmentation.......c.eiecereonsis s esssoreresseans 4-20
4.3.6 Selection of DeviCe DIIVELS ..ot er s cesssessssesesssessesso 4-21
4.3.7 ReMOLE FUlES ...ooiireitisisiec e sess s e ren s es e see e s esse s saeen 4-22
4.3.8 Terminal SUPPOIT COe ... s eeeee e 4-22
4.4 CuStOMIZING FEATUIESocooiiiiiii et e abess et ereensten s 4-23
4.4.1 Custom Interactive COMMAaNS......uurvmmuvuresivorsisenieeeeoneoseresessemscer s ess oo 4-23
4.4.1.1 Command Line PArsingcccovumrviveeivccoroieeseeseeseessssssses s esssesssans 4-24
4.42 ApPPLCation LOAding. ..o vrmoreeiveonmseicnseserisssosensesioersvereseseessrecreseesssessresssesss 424
44.2.1 Dynamic LoadiNg.......ccoowvecremmrrmnsrinsiminnsssisssirenereossesnsessessosesssssessssssseees 4-25
4.4.2.2 Overlay Loading.........cconvuiviiivonnessereresisseisssse s seesssess s eneeesssssss s 4-25
4.4.3 Simultaneous Multiple Terminal SUPPOTt..............comvvecreveceerorereeoresrerernreee. 4-25
4.4.3.1 Multi-User Feature of the Human Interface.........cocoveovoeecorovrivinnn, 4-25
4.4.3.2 Muitiple Terminal Support with I/O Programs............ccooo..coomrconerrrenes 4.28
4.4.4 Run-Time BindIng. ...t seosesscesaeees s es s sss s oo 4-28
4.4.4.1 Binding ObjJects t0 TASKS ...ouvevervevumusirrsserissineosossseoseeseressereessseeresesassseonsons 4-29
4.4.4.2 Binding Files and Devices to TasKS ..o..courererereeorrecssrssreeeneorosessen, 4-30
4.4.4.3 Binding Application Software to the Operating System...................... 4-30
4.4.5 Error Handling ... sesssseseeosesesesees s s sssee s 4-30
4.4.6 Dynamic Memory AlOCAtIONooo.vemmrevecnrceisoneeerensecoreseerossesecorsresssssesnnen 431
4.4.7 BoOtStrap LOAadiNg.........evcveneirrrmmreeesncsisoneeosesessesessssseeseseeeeeeeee s oo 4.32
4.5 TOOLS coivesretsirttt et esasassesssrassesssessssssnessesereensosesonsseessssrsseseesmesesoes s G 32
4.5.1 System DebUGEET ...t sreses st es s 4-33
4.5.2 SOft-SCOPEP 286.......ocoiereirereii et ereesemessereesess e s s 4-33
4.3.3 SATt-UP SYSLEIMS ovvvevvicreeccreeritrinsmrssssssesssss e sesoseeesecaeesessesssssess s e eeeeres s 4-34
4.5.4 Interactive Configuration Utility (ICU)c.ooeveeoororereoseeeeeeecseeeces e 4-34
4.54.1 Configuration is Making ChOiCESovvveeerceoremerresoeeesereeseoeseseeesoon, 4-35
4.5.4.2 Configuration is INEELACHVE ...vvvvereerireonseoeereeeeeeosee e, 4-37
4.5.5 File Maintenance PrOGramS........cmrivcrmvieeinsoseoseeresoseeeeeneeessessssssessssseoeeeoe o 4-37
4.6 On-Target Program DeVCIOPIMENL.....urrrorieinreossonesessseesesessssssssssssesssssssesosoes 4-40

vi Introduction

CONTENTS

CHAPTER 5 PAGE

A HYPOTHETICAL SYSTEM
5.1 INETOAUCHION ..t ettt bs b s bbb bt b
5.2 INEETTUPE PrOCESSINGocvuirvercerrirerirersesansinntsereserassssesesis s esenesssras s ss st sessessssesssns
5.3 Human INterface....... oottt ensssscssssstossissssesasssasssessanes
54 MULEEASKING ..ot st st seriss st s b s s bsasas st sasas s st naseasesa s ssass
5.5 Intertask COOTAINAIONcooerirerrirnsrnsrnsses st ssessrssesisesimssssarssassasees
5.6 MUltIPTOGIAMIMING.....coorurirmirrcrrisneseresnesessaonesssssesssesesessat st st srssestassssessnarantsassesasssasssas
5.7 Run-Time BINAINGcvmromireimimniseirermieinmimsimeseressiissiessmsssesssmsmissiessesasio
5.8 Mass SLOrage Files. .t en e
5.9 Device Independence........co i

5-1

w3

5-4

.5-4
w3-5
.5-5
w35

5-6

.56

CHAPTER 6 PAGE

iRMX® Il LITERATURE
6.1 Introduction... -
6.2 Volume 1: Introductlon, Installanon and Operatmg Instructlons
6.3 Volume 2: Operating System User Guides...
6.4 Volume 3: System Calls ..ottt
6.5 Volume 4: Operating System Utilitics... o
6.6 Volume 5: Interactive Configuration Utlhty Reference
6.7 Related Manuals ...t et

Introduction

. 0.1

6-3

. 0-4

6-5

ven 66
- 0-7

6-7

vii

CONTENTS

TABLE PAGE

6-1 iIRMX® [I Volume Contents and Order NUMbBErs........ooo.oeeveeeveeeeeooosnn 622

FIGURE PAGE

The iRMX® II Foundation for Application SYStemSceerereeeeeecerrmrmresssvrons 1
The iRMX® II System Provides Economic Benefits...............coovoonvescrsrcveronnes 3
Features of the iIRMX® IT Operating SYStem........oo...eveeereeeserreroeeressseesssressscessrons 4-
Object-Oriented SOIULION.uvvmvemrererieneerirsecsisiessssisessssasesoseseesseressesessesseressssses e sesens 4
An Engineering DIFECOTYc.uereecrcnmmrminrsrinnssssssssisioesimseseseesesessssssossssosessssssenserss 418
A Marketing Directory.... YTV USSUUOUOTRR - 1 £
Hierarchical Naming of Files... e YTV RRRUUOTOOTOO: B |
Configuration of an iIRMX® 286 System et enssssennss 3230
The Hardware of the Dialysis Apphcauon System bbb r s ene D7D

mhh-&f-&&m»—l
2T B NS N Ry Y

viii Introduction

1.1 OVERVIEW OF THE SYSTEM

The iRMX II Operating System is a software package designed for use with Intel’s 80286-
or 80386-based Single Board Computers and other 80286- and 80386-based
microcomputers. The operating system uses the 80286 and 80386 processors in protected
virtual address mode, so it takes advantage of the full memory-addressing range and
protection features offered by the processor.

The iRMX II Operating System offers high-performance and real-time processing. Asa
real-time systern, it can respond to external events called interrupts and immediately set
tasks in motion to process the interrupts. Because interrupts can occur simultaneously
and at seemingly random times, the operating system supports multitasking operations to
handle the multiple events concurrently. In addition, the operating system allows a
multiprogramming environment in which several unrelated applications can run
independently.

The iRMX I Operating System is a collection of subsystems, or layers, each of which
provides one or more features that can be used in your application. The reason they are
called layers is that each one builds on the capabilities of the previous ones. You decide
which features you need and then choose which subsystems you want. You then combine
these subsystems to form a tailored operating system,

Because all of the layers except the Nucleus depend on other layers, when you include a
layer (for example, the Extended I/O System), you must also include the layers it requires
(the Nucleus and Basic I/O System). The following list shows the major layers of the
operating system and briefly describes the purpose of each layer:

» Nucleus The Nucleus is the heart of the iIRMX IT Operating
System and the only required layer. All other layers
of the operating system are optional.

Introduction 1-1

OVERVIEW OF THE iRMX® II OPERATING SYSTEM

» 1/O Systems The 1/O Systems (Basic and Extended) provide file
management and the device-independent interface
to input and output devices. The I/O Systems are
optional components of the iRMX II Operating
System, so you can exclude them if you don’t need
them. You can include the Basic I/O System
without including the Extended 1/O System, but the
Extended I/O System requires the Basic I/O
System.

Device drivers are part of the Basic 1/O System that
provide the interface between an application and
the I/O devices connected to the application. Any
device drivers selected during configuration
(including terminal drivers and Terminal Support
Code) become part of the Basic I/Q System.

* Application Loader The Application Loader enables your application to
load programs and overlays from disk into main
memory. The Application Loader is an optional
part of a system, but if included, requires at least
the Basic I/O System.

+ Human Interface The Human Interface may control the application
system with commands entered at a terminal. The
Human Interface includes a set of commands for
commonly used operations. You can also create
your own commands. Like the I/O Systems, the
Human Interface is an optional component and can
be excluded. If the Human Interface is included, it
requires all the previously described layers.

+ System Debugger The System Debugger (SDB) extends the
capabilities of the iSDM System Debug Monitor
and the D-MON386 monitor by supplying "static"
debugging information about the system after a
"hang condition” or at any time you need to freeze
and examine the system. The SDB requires only
the Nucleus to run. You can include the SDB in
your system during development, then remove it to
reduce the size of your finished application system.

1-2 Introduction

OVERVIEW OF THE iRMX® II OPERATING SYSTEM

* Universal Development The Universal Development Interface (UDI) is a
Interface software interface that allows language transiators
and other software development tools to access the
facilities of the iIRMX II Operating System. The
UDI is the outermost layer of any application
system but may be excluded if not needed. If it is
included, it requires all other system layers.

1.2 MAJOR SYSTEM FUNCTIONS
The iRMX II Operating System offers a broad range of functions. For example, the

operating system can

+ Simultaneously monitor and control unrelated events occurring outside the single
board computer.

« Communicate with a wide variety of input, output, and mass storage devices.

e Execute on the 80286 or 80386 microprocessor in protected virtual address mode,

giving it the ability to address a full 16 megabytes of memory and to provide
protection features including segment length protection, stack overflow detection,
invalid selector detection, and access rights protection.

+ Provide a base on which to run a number of languages and other software tools.

These functions make the iRMX II Operating System an excellent foundation for your
software-based products (Figure 1-1).

Introduction 1-3

OVERVIEW OF THE iRMX® IT OPERATING SYSTEM

APPLICATION SOFTWARE

Application System

¥ — - ._—/ x-180A

Figure 1-1. The iRMX® II Foundation for Application Systems

1.3 PROTECTED VIRTUAL ADDRESS MODE

1-4

The iIRMX 1T Operating System runs on the 80286 or 80386 microprocessor in protected
virtual address mode, enabling the operating system to take advantage of many of these
microprocessor’s extended features.

First, the iRMX II Operating System takes full advantage of the microprocessor’s ability
to address 16 megabytes of memory. This allows code and data sizes to increase over the
1 megabyte range permitted in operating systems running on 8086, 83, 186, and 188
processors or the 80286 processor running in real mode.

In addition to accessing the full range of memory, the iRMX II Operating System
supports these protection features of the 80286 and 80386 processors.
» Segment-length protection that prevents segment accesses beyond their defined sizes.

» Stack-overflow detection that prevents out-of-control programs from overflowing the
stack and overwriting important information.

Introduction

OVERVIEW OF THE iRMX® II OPERATING SYSTEM

¢ Invalid-selecior detection that prevents programs from referring to segments of
memory that haven’t been defined.

» Access-rights protection that allows programs to set the read, write, or execute
privileges of a segment and prevents access to those segments in other than the
defined mode.

These advanced protection features, plus the ability to address the full range of memory,
make the iRMX II Operating System an ideal choice for advanced applications.

1.4 iRMX® TERMINOLOGY

This manual uses the following terms frequently

Application An application is the problem that you solve with
your product.

Application Software The application software is all the software you
must add to the iRMX II Operating System to
complete your application system.

Application System An application system is the product that satisfies
the requirements of the application.

Job A job is the environment in which tasks do their
work. An environment consists of tasks, the objects
tasks use, a directory where tasks catalogue objects,
and a memory pool. For example, a user on a
multiuser system is a job.

Objects Objects are the building blocks of the iIRMX 11
Operating System. They are classified into the
following categories:

. Segments ¢ Mailboxes
. Semaphores » Regions

. Extension objects ¢« Jobs

. Composite objects o Tasks

. Buffer pools

Object-oriented Architecture Object-oriented architecture is a system design
marked by a relationship between data and a token
for the data. This relationship gives form to the
data and relieves the programmer from having to
provide this structure.

Introduction 1-5

OVERVIEW OF THE iRMX® II OPERATING SYSTEM

Protected Virtual Address Protected virtual address mode supports 16

Mode megabytes of physical memory in RAM or ROM
and 1 gigabyte of virtual memory per user. It
provides an on-chip memory management facility
that translates virtual addresses to physical memory
addresses. It also protects the operating system
from unauthorized modification by application
programs and isolates each user from other users.
Protected Virtual Address Mode is supported in
both 80286- and 80386-based systems.

Real Address Mode Real address mode is the method of 80286
execution that supports 1 megabyte of physical
memory in RAM or ROM. The iRMX II
Operating System does not run in real address
mode except for a short time when the system boots
up. However, 8086 or 8088 programs that do run in
real address mode can execute in an iIRMX II
system with some slight modification. Refer to the
Extended iIRMX II Programming Techniques
Reference Manual for a description of converting
tRMX I applications to iRMX II applications.

Segments Segments are contiguous pieces of memory existing
within the environment of the job in which they
were created. They form the fundamental piece of
system memory for such uses as task stacks, data
storage, and system buffers.

Tasks Tasks are the active objects that do the work of the
system. Tasks are written as parameterless
procedures.

User The user is the individual or organization who uses

your application system.

1-6 Introduction

CONSIDERAT

2.1 INTRODUCTION

The problems encountered in real-time programming differ from those found in other
types of programming. This chapter briefly introduces some of the problems that face
designers of real-time systems. Note that this chapter only poses questions--it provides no
answers. You can find the answers in the discussion of IRMX II features in Chapter 4,

2.2 EVENT DETECTION

Real-time application systems monitor events in the real world. These events occur
asynchronously, that is, at seemingly random intervals, When an event occurs, the system
could be in the midst of processing information associated with a previous event. So the
system must be able to detect and record the occurrence of the second event without
affecting the processing associated with the previous event.

2.3 SCHEDULING OF PROCESSING

Assuming that the system can detect and record the occurrence of an event, it still must
decide in what order to process recorded events. For example, when the system is
processing a relatively unimportant event and a critical event occurs, it must be able to
postpone processing of the less significant event until the more important one has been
processed. Then it must resume where it left off with the less significant event.

2.4 ERROR PROCESSING

Suppose that during the processing of real-time events, an error is detected. How can the
error be corrected, or how can its impact be limited, without adversely affecting the
systcm? The whole system, for instance, should not be shut down merely because an error
is detected; the system should be able to recover from these errors and continue
processing.

Introduction

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

2.5 DEVICE INDEPENDENCE

Many real-time applications use one or more input or output devices. Occasionally the
devices associated with an application system must be changed. By allowing devices to be
changed without requiring recompilation, the operating system can save time and effort.

2.6 MASS STORAGE FILE ALLOCATION TRADEOFFS

In any real-time system, file allocation performance is an important consideration. One
factor that relates directly to mass storage file allocation performance is the size of each
contiguous piece of data written to and read from a file (the file’s "granularity”). In some
applications, large granularity results in much faster retrieval. In other applications, large
granularity does not improve performance, but does waste space on the storage device.
The operating system must contend with the tradeoff between performance and optimal
use of space on the device.

2.7 FEATURE SELECTION

An operating system should be flexible enough to let you select required features and
eliminate unneeded features. Because operating systems are complex, the process used to
select features should be efficient, easy to use, and easy to understand.

2.8 MULTIPLE APPLICATIONS

Sometimes you may need to run more than one application on the same computer.
Several applications might need to share some resources, such as hardware and perhaps
some files, while reserving other resources for themselves.

2.9 MEMORY REQUIREMENTS

The memory requirements of some applications change according to the events that occur
in the real world. If a system can share memory between applications, then the total
amount of mcmory required for the system might be less than the sum of the maximum
amounts required by each application.

2.10 FILES AND MULTIPLE USERS

Some applications, such as data entry and database management systems, support more
than one user at a time. In such systems, three major problems must be dealt with:

¢ File naming--users must be able to name files without concern for duplicate names. If
they cannot, each user may be forced to create unique names.

2-2 Introduction

CONSIDERATIONS RELATING TO REAL-TIME SOFTWARE

s Selective file sharing--multi-user systems often must be able to share and protect files.
For instance, in a data entry system, one operator may be entering data while another
simultaneously verifies the entered data (file sharing). Or perhaps the file contains
confidential information. Once verified, the file must be protected against
unauthorized reading and writing (file protecting).

e Responding simultaneously to more than one terminal--the system must respond
quickly to each terminal and must be able to keep track of tasks and other resources
associated with a particular terminal.

2.11 THE HUMAN ELEMENT

Applications must be controlled by people. Systems often contain critical processes that
operators must control with a minimum chance of error. An application system should
provide a set of interactive commands and messages that are easy to use and understand.

2.12 APPLICATION DEVELOPMENT

Frequently the hardware on which an application system is installed (called the target
system) includes mass storage devices and file structures. The operating system running
on the target system should allow application system development using existing
hardware. This process, termed on-target development, enables you to use language
processors (such as assemblers, compilers, and run-time support systems), linking utilities,
editors, and file maintenance utilities. You should be able to install such development
tools on the operating system quickly and easily.

2.13 DEBUGGING

Object-oriented application systems require debugging tools that are sensitive to the
objects that make up the operating system. Tools such as these allow engineers to
concentrate on the logic errors or "bugs” in their code instead of being distracted by the
details of operating-system implementation code. If the system crashes (becomes
inoperative), it might be necessary to "freeze” the system and examine its state. This type
of debugging is called "static” debugging.

2.14 HARDWARE BUS ARCHITECTURE

To handle the needs of your hardware, a real-time software package should support
industry standard buses, or a custom bus, without sacrificing performance or usability.

Introduction 2.3

3.1 INTRODUCTION

By serving as a foundation for your application software (Figure 3-1), the iRMX IT
Operating System can help you develop your application system quickly using the latest
technology, minimize your development costs, and minimize your costs after development.

iRMX~ 1] OPERATING SYSTEM

- —
y ~" LESS COSTLY ~
MAINTENANCE by
) g

REDUCED DEVELOPMENT
COSTS

SHORTER DEVELOPMENT
CYCLE

~ - x-181A

Figure 3-1, The iRMX® II System Provides Economic Benefits

Introduction 3-1

BENEFITS OF THE iRMX® I1 OPERATING SYSTEM

3.2 DEVELOPMENT TIME

The iRMX IT Operating System helps you develop real-time application systems quickly.
As the base for your application software, the operating system provides services required
by many real-time applications. Since these services are already supplied, application
engineers spend no time writing software to manage real-time functions such as
multitasking and dynamic memory allocation and can instead concentrate on the software
that relates specifically to the application. This concentration of effort greatly reduces the
time needed to develop your application system.

3.3 COST OF IMPLEMENTATION

The iRMX I Operating System helps reduce the cost of implementation in the following
ways:

By supplying the general services required by many real-time applications, the
operating system reduces your manpower requirements.

» Industry-standard languages are available for use with the operating system.

» The features of the operating system simplify the process of development. Chapter 4
discusses these features, which include object-oriented architecture and device
independence.

* Support for the latest 86 family microprocessors is available now, resulting in
immediate improvements in speed and performance.

3.4 COSTS AFTER DEVELOPMENT

After your application system is developed, your major expense is maintenance--the
process of correcting logic errors, making changes, and adding features. The iRMX II
Operating System helps minimize these costs in the following ways:

* A number of features, such as multitasking and multiprogramming, smooth the
process of system design, reducing the probability of major design errors, Chapter 4
discusses these features.

» When errors do reveal the presence of bugs in your application software, you need
tools to help find the errors. The operating system provides these tools, which include
error handlers, a static system debugger, and an interactive debugger. Chapter 4 also
discusses these features.

» The modularity provided by multiple jobs and tasks enables you to make changes and
additions without severely affecting the system’s overall design. This feature is a
direct result of an object-oriented system. Chapter 4 discusses object-oriented
architecture.

3.2 Introduction

4.1 INTRODUCTION

This chapter discusses the major features of the iRMX II Operating System. Figure 4-1
presents a conceptual view of these features,

CUSTOMIZING

]
iRMX* 1) OPERATING SYSTEM
I !

R

x-182A

Figure 4-1. Features of the iRMX® II Opcrating System

Introduction

4-1

FEATURES OF THE iRMX® Il OPERATING SYSTEM

4-2

This chapter describes the following features:

ARCHITECTURAL FEATURES

Object-Oriented Architecture
Multitasking

Interrupt Processing

Pre-emptive Priority-Based Scheduling
Round-Robin Scheduling
Multiprogramming

Intertask Coordination

Bus Architecture Support
Extendibility

INPUT/OQUTPUT FEATURES

Choice of /O Systems
Device-Independent Input and Qutput
Hierarchical Naming of Mass Storage Files
File Access Control

Control over File Fragmentation

Selection of Device Drivers

Remote Files using iRMX-NET®
Terminal Support Code

CUSTOMIZING FEATURES

Custom Interactive Commands
Applications Loading
Terminal Support

Run-Time Binding

Error Handling

Dynamic Memory Allocation
Bootstrap Loading

TOOLS

System Debugger

Soft-Scope® 286

Start-up Systems

Interactive Configuration Utility (ICU)
File Maintenance Programs

ON-TARGET PROGRAM DEVELOPMENT

Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

4.2 ARCHITECTURAL FEATURES

When Intel software engineers designed the IRMX II Operating System, they specified
the basic processes and data structures of the system, including such characteristics as the
partitioning of programs into "tasks," task scheduling, and task communication. These
characteristics are referred to as the "architecture” of the system. The important
architectural features of the operating system are described here.

4.2.1 Object-Oriented Architecture

An ohject-oriented solution uses a collection of smaller solvable tasks or objects to
collectively solve a much larger more complex problem. For example, suppose you have a
problem that needs solving. On the whole, the problem is very large and complex. To
solve it with one solution of entwined hardware and software would be a very difficult
task. Because of the complexity of the problem, the length of design would be long and
the chance for system problems great. Furthermore, once the problem was solved and the
design of the system complete, any change to the system or the requirements of the
problem would cause a massive rippling effect of changes throughout the system. For
instance, something as common as changing a hardware device could cause coding
changes throughout the entire system.

An object-oriented solution, however, breaks the large complex problem up into smaller
more manageable tasks or objects. Each task can then be designed with minimum
dependence upon other tasks within the system. Taken all together, the effort of the
many smaller tasks provides the solution for the original complex problem.

The iRMX II Operating System uses an object-oriented architecture designed to facilitate
object-oriented solutions. The operating system is object-oriented because it supports
small individual tasks by providing system calls to manage such things as task
communication, regions of memory, and exception handlers.

You can view the iRMX object-oriented architecture as a collection of defined building
blocks manipulated by users. The building blocks of the iRMX II Operating System are
called objects and are of several types. Some object types are tasks, jobs, mailboxes,
semaphores, segments, buffer pools, and connections. The characteristics of the building
blocks are easy to learn and subsequently use to build a solution to your problem. The
reason for their ease of use is because they are well-defined and consistent. Each object
type (such as a mailbox), for example, has a specific set of attributes. Once you become
familiar with the attributes of a mailbox, you are familiar with all mailboxes. There are no
special cases. Also, each type of iIRMX II object has an associated set of system calls.
These calls cannot be used to manipulate objects of another type without causing an error.
Thus, you are guided into compliance with the rules of the operating system.

Introduction 4.3

FEATURES OF THE iRMX® [T OPERATING SYSTEM

44

The objects in an iRMX system are acted on by system calls, In other words, your
application software uses system calls to manipulate the tasks or objects in your
application system. For instance, the CREATE MAILBOX and DELETE MAILBOX
system calls do precisely what their names suggest. They create and delete
communication vehicles called mailboxes that are used between two tasks.

Figure 4-2 summarizes how a problem that requires several types of input to be processed
into several types of output can be solved in an object-oriented operating system. Each
input task is a complete solution in itself to the problem of receiving and processing
different types of data. After each task processes its data, the data exits the task vsing a
similar format. System calls are responsible for moving data from input tasks to a waiting
mailbox (object). From here, a manager task gathers the like messages and processes
them. Depending upon where the data is to be sent, the manager task sends the similar
data messages to the appropriate output task. Finally, the individual output tasks receive
and process their data.

It is important to note that because the data can be sent in a universal format, the input
and output tasks are independent of the manager task. This fact eliminates dependency
problems between tasks. Also, the object-oriented architecture of the operating system is
designed to easily create mailboxes, tasks, and other objects needed to create the
environment necessary to provide a solution.

Introduction

FEATURES OF THE iRMX® IT OPERATING SYSTEM

Equivalent Equivalent
Messages Messages

Figure 4-2, Object-Oriented Solution

4.2.2 Multitasking

A real-time application system can process numerous events occurring at seemingly
random times. These events are asynchronous because they can occur at any time, and

they are potentially concurrent because one event might occur while another is being
processed.

Any single program that attempts to process multiple, concurrent, asynchronous events is
bound to be complex. The program must perform these functions:

¢ process events
¢ remember which events have occurred and the order in which they occurred

+ remember which events have occurred but have not been processed

As the system monitors more events, the complexity of the program increases.

Introduction 4-5

FEATURES OF THE iRMX® IT OPERATING SYSTEM

Multitasking is a technique that unwinds this confusion. Rather than writing a single
program to process a number of events, you can write individual programs, each of which
processes a single event. Each of these individual programs forms an iRMX II task, one
of the types of objects mentioned earlier. In many cases, this technique eliminates the
need to monitor the order in which events occur.

Multitasking simplifies the process of building an application system, enabling you to build
your system faster and at less expense. Also, because of the one-to-one relationship
between events and tasks, your system’s code is less complex and easier to maintain.

4.2.3 Interrupt Processing

4-6

The iRMX II Operating System is an interrupt processor. When an interrupt occurs, the
operating system schedules a task to process the interrupt. This method of event
detection improves the performance of your application system.

Computer systems detect and control events in the real world using two processing
schemes: polling and interrupt. In polling, the software periodically checks to see if
certain events have occurred. For example, imagine a class of students and a teacher. If,
rather than spotting raised hands, the instructor specifically asks each student in the class
if the student has any questions, then the instructor is polling the students.

Polling has major shortcomings: two of which are a significant amount of the processor’s
time is spent testing to see if events have occurred, and immediate attention cannot be
given to an interrupt that needs servicing immediately.

Interrupt processing is the processing scheme that the iRMX IT Operating System uses.
When an event occurs, the processor is literally interrupted. Rather than executing the

next sequential instruction, the processor begins to execute a task associated specifically
with the detected event.

The example of a classroom can illustrate interrupt processing. If a student has a
question, she raises her hand and speaks the instructor’s name. The instructor,
interpreting this as an interrupt, finishes his sentence and deals immediately with the
student’s question. Once the instructor has answered the student’s question, he returns to
what he was doing before he was interrupted.

Interrupt processing of external events provides your application system with the
following benefits:

e More Efficiency Interrupt processing enables your system to spend
all of its time running the tasks that process events,
rather than executing a polling loop to see if events
have occurred.

Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

* More Flexibility Because of the direct correlation between interrupts
and tasks, your system can easily be modified to
process different events. All you need to do is write
the tasks to process the new interrupts.

¢ Economic Benefits Because interrupt processing enables your system to
respond to events using modularly coded tasks, your
system’s code is more structured and easier to
understand than monolithic code. Modular code is
less costly to develop and maintain and can be
developed more quickly than monolithic code.

+ Better Performance Faster response to external events results in better
performance.

4.2.4 Scheduling Algorithms

The iRMX II Operating System uses a combination of two scheduling algorithms to
determine which task runs at any instant. It uses pre-emptive, priority-based scheduling
to determine when tasks of unequal priority will run. It also includes a round-robin
scheduling feature that grants tasks of equal priority equal access to the processor.

4.2.4.1 Pre-emptive, Priority-Based Scheduling

When the priorities of tasks are different, the iIRMX II Operating System uses
pre-emptive priority-based scheduling to decide which task runs at any instant. This
technique ensures that if a more important task becomes ready while a less important task
1s running, the more important task begins execution immediately.

In multitasking systems, there are two common techniques for deciding which task is to be
run at any given moment. Time slicing, where tasks are run in rotation for a period, or
"slice" of time, is the technique used in time-sharing systems (the iRMX II Operating
System uses a variation of this technique to decide among equal-priority tasks). The
second technique, priority-based scheduling, uses assigned priorities to decide in which
order tasks are run.

Within priority-based scheduling are two approaches: Nonpre-emptive scheduling and
pre-emptive scheduling. Nonpre-emptive scheduling allows a task to run until it
relinquishes the processor. Even if a higher-priority task becomes ready for execution,
the original task continues to run until completion. With pre-emptive scheduling, the
system always executes the highest-priority task that is ready to run. In other words, if the
running task or an interrupt causes a higher-priority task to become ready, the operating
system switches the processor to the higher-priority task.

Introduction 4-7

FEATURES OF THE iRMX® II OPERATING SYSTEM

Pre-emptive, priority-based scheduling goes hand-in-hand with the interrupt processing
discussed earlier. Task priorities can be tied to the relative importance of the events that
they process. This enables the processing of more important events to pre-empt the
processing of less important events without abandoning the less important events.

4.2.4.2 Round-Robin Scheduling

In addition to pre-emptive, priority-based scheduling, the iRMX II Operating System
includes round-robin scheduling to ensure that equal-priority tasks all get a chance to run.
With round-robin scheduling, each task is allocated a time quota. When the time quota
expires, the task is preempted and the next task of the same priority is allowed to run.
This technique allows equal-priority tasks to take turns running.

Of course, higher priority tasks can still preempt any running task, regardless of the
amount of time left in its quota. However, without this feature, when the higher-priority
task finishes, the first task regains control and can continue running indefinitely until
another higher-priority task preempts it. This blocks out all other tasks of the same

priority.

Round-robin scheduling is especially useful for multi-user systems, in which several users
might have tasks running at the same priority. Round-robin scheduling prevents one
user’s processor-intensive task (such as a program compilation) from stopping other
users’ work.

Round-robin scheduling is not desirable for high-priority tasks, such as interrupt tasks,
where immediate response is crucial. Therefore, the round-robin feature is normally
configured to take effect only for tasks whose priorities are below a specified threshold.
The length of the time quota can also be adjusted.

4.2.5 Multiprogramming

Multiprogramming is a technique used to run several applications on a single application
system, thus using the system hardware more fully. To take full advantage of
multiprogramming, you must provide each application with a separate environment; that
is, separate memory, files and objects. This isolation prevents independently developed
applications from causing problems for each other.

For instance, suppose that two unrelated applications share a temporary file on a disk. If
the first application writes information to the file and the second application writes over
the file, the first application has problems. The only way to avoid this kind of problem
with shared files is to create some form of mutual exclusion. But if the two applications
must interact even to the point of excluding each other, they cannot be developed
independently. The two engineers creating the applications must coordinate with each
other and spend valuable time that could be used within, rather than between,
applications. The only alternative would be to avoid sharing the file.

4-8 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

The iRMX II Operating System providcs a typc of object that can be used to obtain this
kind of isolation. This object, called a job, has these characteristics:

¢ Unlike tasks, jobs are passive. They cannot invoke system calls.
¢ Each job includes a group of tasks and the resources they need.

» Jobs serve as useful boundaries for dynamically allocating memory. When two tasks
of one job request memory, they share the memory associated with their job. Two
tasks in different jobs do not directly compete for memory.

* One or more jobs make up an application.

» Each job serves as an error boundary. When the application detects an error, or when
the operator decides to abort an application, a job is a convenient object to delete.

Multiprogramming provides your application system with two benefits:

» It increases the amount of work your system can do. By using your hardware more
fully, your system can run several applications rather than one. Thus, more processing
is squeezed out of your hardware investment.

+ Because of the correspondence between jobs and applications, new jobs can be added
to your system {or old jobs removed) without affecting other jobs. This makes your
system much easier and faster to modify.

4.2.6 Inter-Task Coordination

The iRMX II Operating System provides simple techniques for tasks to coordinate with
one another. These techniques allow tasks in a multitasking system to mutually exclude,
synchronize, and communicate with each other.

As we have already seen, multitasking is a technique used to simplify the designing of
real-time application systems that monitor multiple, concurrent, asynchronous events.
Multitasking enables engineers to focus their attention on the processing of a single event

rather than having to contend with numerous other events occurring in an unpredictable
order.

However, the processing of several events may be related. For instance, the task
processing one event may need to know how many times another event has occurred since
the first event last occurred. This kind of processing requires that tasks be able to
coordinate with each other. The iRMX II Operating System provides for this
coordination.

Tasks interact with each other in three ways: exchanging information, mutually excluding
cach other, and synchronizing with cach other.

Introduction 4-9

FEATURES OF THE iRMX® II OQPERATING SYSTEM

4.2.6.1 Exchanging Information

Tasks exchange information for two purposes. One purpose is to pass data from one task
to another. For instance, suppose that one task accumulates keystrokes from a terminal
until it receives a carriage return. It then passes the entire line of text to another task that
is responsible for decoding commands.

The second reason for passing data is to draw attention to a specific object in the
application system. In effect, one task says to another, "I am talking about that object.”

The iRMX II Operating System facilitates intertask communication by supplying objects
called "mailboxes” along with system calls that manipulate mailboxes. The system calls
associated with mailboxes are CREATE MAILBOX, DELETE MAILBOX, SEND
DATA, RECEIVE DATA, SEND MESSAGE, and RECEIVE MESSAGE. Tasks use
the first two system calls to build and remove a particular mailbox. They use the
remaining calls to communicate with each other (SEND/RECEIVE DATA and
SEND/RECEIVE MESSAGE are simply two different ways of communicating via a
mailbox).

Let’s see how tasks can use a mailbox for communicating and for sending information. If
Task A wants Task B to become aware of a particular object, Task A uses the SEND
MESSAGE system call to mail that object to the mailbox. Task B uses the RECEIVE
MESSAGE system call to get the object from the mailbox. (Note that this example is
somewhat simplified to serve as an introduction. For detailed information, see the
Extended iRMX Il Nucleus User’s Guide.)

Tasks can also use mailboxes to send information to each other. If Task A wants to send
information to Task B, it can use the SEND DATA system call to mail that information to
a mailbox. Task B uses the RECEIVE DATA system call to retrieve the information
from the mailbox.

Why don’t tasks talk directly to each other, rather than through mailboxes? Tasks are
asynchronous--they run in an unpredictable order.

If two tasks want to communicate with each other, they need a place to store messages
and to wait for messages. If the receiver uses the RECEIVE MESSAGE system call
befure the message has been sent, the receiver can wait at the mailbox until a message
arrives. Similarly, if the sender uses the SEND MESSAGE system call before the receiver
is ready to receive, the message is held at the mailbox until a task requests a message from

the mailbox. In other words, mailboxes allow tasks to communicate with each other even
though tasks are asynchronous.

4-10 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

4.2.6.2 Mutual Exclusion

Occasionally, when tasks are running concurrently, the following kind of situation arises:
1. Task A is reading information from a memory segment.

2. Aninterrupt occurs and Task B, which has higher priority than Task A, pre-empts
Task A.

3. Task B modifies the contents of the memory segment that Task A was in the midst
of reading.

4. Task B finishes processing its event and surrenders the processor.

5. Task A resumes reading the memory segment.

The problem is that Task A might now have invalid information. For instance, suppose
the application is air traffic control. Task A is responsible for detecting potential
collisions, and Task B is responsible for updating the Plane Location Table with the new
X- and Y-coordinates of each plane’s location. Unless Task A can gain exclusive use of
the Plane Location Table, Task B can make Task A fail to spot a collision.

Here’s how it could happen. Task A reads the X-coordinate of the plane’s location and is
pre-empted by Task B. Task B updates the entry that Task A was reading, changing both
the X- and Y-coordinates of the plane’s location. Task B finishes its function and
surrenders the processor. Task A resumes execution and reads the new Y-coordinate of
the plane’s location. Since Task B changed the Plane Location Table while Task A was
reading it, Task A now thinks the plane is at old X and new Y.

This problem can be avoided by mutual exclusion. If Task A can prevent Task B from
modifying the table until after Task A has finished using it, Task A can be assured of valid
information. Somehow, Task A must obtain exclusive use of the table,

The iRMX II Operating System provides two types of objects that can be used to provide
mutual exclusion: the semaphore and the region. A semaphore is an integer counter that
tasks can manipulate using four system calls: CREATE SEMAPHORE, DELETE
SEMAPHORE, SEND UNITS, and RECEIVE UNITS. The creation and deletion
system calls are used to build and remove semaphores. The send and receive system calls
can be used to achieve mutual exclusion.

Regions allow tasks to share data. Mutual exclusion is achieved because only one task
may access a region at a time. The use of regions should be restricted to programmers
who have a firm understanding of the IRMX II Operating System. For more information
on regions, see the Extended iRMX II Nucleus User’s Guide.

Introduction 4-11

FEATURES OF THE iRMX® IT OPERATING SYSTEM

Before discussing how semaphores can provide exclusion, we must examine their
properties. As mentioned above, a semaphore is a counter. It can take on only
nonnegative integer values. Tasks can modify a semaphore’s value by using the SEND
UNITS or RECEIVE UNITS system calls. When a task sends n units (n must be zero or
greater) to a semaphore, the value of the counter is increased by n. When a task uses the
RECEIVE UNITS system call to request x units (x must be zero or greater) from a
semaphore, one of the following two things happens:

» If the semaphore’s counter is greater than or equal to x, the operating system reduces
the counter by x and continues to execute the task.

» Otherwise, the operating system begins running the task having the next highest
priority, and the requesting task waits at the semaphore until the counter rcachcs x or
greater.

How can tasks use a semaphore to achieve mutual exclusion? Create a semaphore with
an initial value of 1. Before any task uses the shared resource, it must receive one unit
from the semaphore. As soon as a task finishes using the resource, it must send one unit
to the semaphore. This technique ensures that at any given moment, no more than one
task can use the resource, and any other tasks that want to use it await their turn at the
semaphore.

Semaphores allow mutual exclusion; they don’t enforce it. All tasks (there can be more
than two) sharing the resource must receive one unit from the semaphore before using
the resource. If one task fails to do this, mutual exclusion is not achieved. Also, each task
must send a unit to the semaphore when the resource is no longer needed. Failure to do
this can permanently lock all tasks out of the resource.

4.2.6.3 Synchronization

As mentioned earlier, tasks are asynchronous. Nonetheless, occasionally a task must
know that a certain event has occurred before the task starts running, For instance,
suppose that a particular application system requires that Task A cannot run until after
Task B has run. This kind of requirement calls for synchronizing Task A with Task B.

Your application system can achieve synchronization by using semaphores. Before
executing either Task A or Task B, create a semaphore with an initial value of zero. Then
have Task A issue RECEIVE UNITS requesting one unit from the semaphore. Task A is
forced to wait at the semaphore until Task B sends a unit. This achieves the desired
synchronization.

Scmaphores and mailboxes can accommodate # wide variety of situations. The only limit

on the number of mailboxes and semaphores is the maximum number of objects allowed
in the system (2000H).

4-12 Introduction

FEATURES OF THE iRMX® Il OPERATING SYSTEM

4.2,7 Bus Architecture Support

To handle the needs of your hardware, the iRMX IT Operating System supports two
industry-standard bus architectures: MULTIBUS® I and MULTIBUS 1L

Some benefits and features of the MULTIBUS I architecture as follows:
e Use of a 16-bit wide data word.

e A wide installation base exists. MULTIBUS I architecture has existed for some time
and is very common in the industry.

¢ The bus offers intelligent board-to-board communications via hardware signals and
similar signal processing techniques between boards.

Some benefits and features of the MULTIBUS II architecture are as follows;
o Use of a 32-bit wide data word.

+ Enhanced board-to-board communication through additional internal buses and a
well-defined data transfer protocol. The internal buses allow for a virtual interrupt
processing scheme that lets any board communicate with any other, regardless of
hardware limitations, such as eight physical interrupt lines used in MULTIBUS I
systems.

« Efficient bus use through a "data packet” transfer scheme. Transferring data by
packets (in smaller portions) eliminates a slower device on the bus from stealing all
the bus time. With this transfer method, the bus is no longer limited in speed to the
slowest device using it.

4.2.8 Extendibility

Something is extendible if you can add to it. Since the iRMX II Operating System is
extendible, system programming engineers can build their own types of objects and the
system calls to manipulate those objects. These custom features become a part of the
operating system. From the programmer’s point of view, there is no way to distinguish
custom objects from those supplied by Intel.

The advantage of extendibility is that you can add your own features to the iRMX 11
Operating System and obtain the same benefits as supplied by its object-oriented
architecture. These benefits include the ability to send custom-made objects to mailboxes
and put them in object directories. Also, application engineers can more quickly become
familiar with thosc custom featurcs. This familiarization shrinks development time and
costs, enabling you to bring your application system to market sooner.

Introduction 4-13

FEATURES OF THE iRMX® I[I OPERATING SYSTEM

4.3 INPUT/OUTPUT FEATURES

Input and output operations are a large part of most applications, so the operating system
offers a collection of I/O features to speed development of application systems, and to
make the I/O of those systems efficient.

4.3.1 Choice of |/0 Systems

To meet the 1/O needs of a wide variety of applications, the iRMX II Operating System
provides two I/O systems: the Basic 1/O System (BIOS) and the Extended 1/O System
(EIOS). You can use only the Basic 1/O System, or you can combine the two. You
cannot use only the Extended 1/0 System,

4.3.1.1 Basic 1/O System (BIOS)

For some applications, the performance or flexibility of the system is more critical than
the time necessary to produce the system. For these applications, the iRMX II Operating
System provides the Basic I/O System.

The BIOS is the more flexible of the two /O systerns. It provides very powerful
capabilities, and it makes few assumptions about the requirements of your application.
The following features illustrate the flexibility of the BIOS:

¢ Enables Design of Rather than automatically providing a buffering
Buffering Algorithm algorithm, the BIOS enables you to design and
implement your own buffering technique. Using
the BIOS, you control the synchronization between
I/O and processing.

» Appropriate for Random Perhaps the [/O in your application is random
I/O Operations access. This means that rather than reading or
writing data in sequential blocks, the application
accesses data in blocks that are not adjacent to each
other. The BIOS is more appropriate for these
operations because of the explicit control the
programmer has over I/O operations.

» Gives Task Control of ~ The system calls of the BIOS often have many
I/O Details parameters. Using these parameters, your tasks can
closely tailor the behavior of each system call to
match the performance requirements of your
application system.

The BIOS emphasizes flexibility rather than ease of use. It provides I/O features useful
in time-critical or memory-critical applications, and enables the performance of a system
to be optimized.

4-14 Introduction

FEATURES OF THE iRMX® IT OPERATING SYSTEM

4.3.1.2 Extended /O System (EIOS)

The Extended I/O System is designed (o be easy to use and efficient for sequential 1/0.
Here are some of the important features of the EIOS:

+ Automatic Buffering of
I/O Operations

Introduction

If you want to use multiple-buffered 1/O but do not
want to be burdened with writing complex code to
check and switch buffers, you can use EIOS system
calls. When the application program issues a
system call to perform an I/O operation, the
operating system performs the input or output
operation and then returns control to the user
program after the data transfer is complete. Before
returning control to the user program, the operating
system starts reading or writing the next block.

For example, if the application is reading a file from
disk, the following sequence will occur:

1. When the application program opens a file
using an EIOS system call, the operating
system starts reading the first block of the file
("initiates” the input).

2. The operating system returns control to the
application program.

3. Later, the program requests an EIOS read.
The operating system has already started
reading this data. When the input is complete,
the operating system initiates a read of the
next block of the file (called "reading ahead")
and returns control to the calling program.

Thus, whenever the user requests an EIOS read, the
data is either immediately available or is in the
process of being read.

The equivalent output process is performed by
"writing behind." When an application program
requests an EIOS write, the operating system copies
the data to a buffer maintained by the EIOS and
returns to the calling program. Whenever this
buffer is filled, the system initiates an output
operation.

4-15

FEATURES OF THE IRMX® Il OPERATING SYSTEM

« Efficient Sequential I/O Another characteristic of the EIOS is that when it
Operations does a "read ahead" operation, the operating system

assumes that a series of sequential reads are to be
performed. For example, the operating system will
read data from disk address 23, then from disk
address 24, and so on. So, when your I/O is mostly
sequential (for example, if you were examining
consecutive records of a file), EIOS system calls are
particularly efficient. You can also perform random
access of a file with the EIOS by preceding
operations with a seek call specifying the offset into
the file. This method, however, is less efficient than
using the BIOS.

» Free of Tedious Details The system calls of the EIOS have relatively few
parameters and are easy to code. In most cases, a
single EIOS call serves the purpose of several BIOS
calls. This correlation simplifies your application
system, which reduces development time and costs.

The iRMX II Operating System enables you to select the features you want. The BIOS
gives maximum control of I/O operations for applications requiring finely tuned
performance, especially while doing random access I/O. The EIOS is easy to use and
saves in cost and development time, especially in applications that use sequential I/O.

Finally, you can use both I/G systems when your application uses 1/O for several
purposes, some that can best be done by the Basic I/O System and some by the Extended
I/O System.

4.3.2 Device-Independent Input and Output

A system provides device-independent I/O if it has one set of system calls for
communicating with all I/O devices. The alternative to device independence is to provide
different calls for each type of device. Let’s first examine the alternative and then move
on to device independence.

Consider an operating system that does not provide device independence. The system
calls controlling I/O are explicitly related to the I/O devices being used. For instance, the
system call for writing to the line printer might be PRINT, while the system call for writing
to the terminal might be TYPE. Once you have written a procedure in such a system, the
procedure is locked into a particular combination of devices. The only way you can
reroute input or output is to regenerated the operating system and edit and recompile the
application source code.

4-16 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

Now consider a device-independent operating system: the iRMX II Operating System.
Because it supports device-independent I1/O, the system calls are not device-dependent.
The READ system call is always used for input, and the WRITE system call is always used
for output. The device is specified by a parameter within the system call. Consequently,
by using a variable as the parameter that selects the device, you create I/O procedures
that are completely independent of the devices they use.

Device independence makes your application system very flexible. If you write a
procedure to log events on a line printer, you can use the same procedure to log events on
a terminal or on a disk. You need not regenerate your operating system, but only need to
edit and recompile the application source code.

4.3.3 Hierarchical Naming of Mass Storage Files

Hierarchical naming is one of three common techniques used to name files on mass
storage devices such as disks and bubble memories. The other two techniques are called
simple naming and directory naming. The advantages of hierarchical naming become
clear when comparing them to the other two naming methods. First, we’ll look at simple
naming.

Simple naming enables you to provide files with a descriptive name. For instance, you
might decide to name files ACCOUNTS PAYABLE, ACCOUNTS RECEIVABLE,
TRANSACTIONS, and INVENTORY. These names are certainly descriptive, but what
happens when a different application running in the same system also decides to use one
of these names? A conflict occurs. The use of a more powerful naming technique avoids
this conflict.

Directory naming allows different applications (or even different users) to use the same
tile name. Each application (or user) is given one special-purpose file called a directory.
This directory contains only file names; it does not contain data. Figures 4-3 and 4-4
provide examples of directories. When application software refers to a specific file, it first
names the directory and then names the file. For instance, in Figure 4-3, the
TRANSACTIONS file associated with Engineering would be designated
ENGINEERING/TRANSACTIONS. The comparable file for Marketing, in Figure 4-4,
would be designated MARKETING/TRANSACTIONS.

The advantage of directory naming over simple naming is directory naming allows file
names to reflect relationships between files. In Figure 4-3, files related to Engineering are
in the directory called ENGINEERING. This grouping of related files is not supported by
simple naming.

What about situations where more than one level of directory is required? This is
illustrated in Figure 4-5, which differs from Figure 4-4 only in that a second level of
grouping has been included.

Introduction 4-17

FEATURES OF THE iRMX® II OPERATING SYSTEM

ENGINEERING

ACCOUNTS
PAYABLE
ACCOUNTS a
RECEIVABLE O
TRANSACTIONS = m ez
ol =
INVENTORY =3 2z AEE 2z -~
Z0 o2 moZ oW FLE
m 5 =
& E' % E"E‘ g g ; 3 S NAMES
0% oz ¥ 5
nZ mTa z
MHRAFCTORY 2z zZo =
FILE a
-— —
DATA
FILES
183
. L] L3 3
Figure 4-3. An Engineering Directory
MARKETING
ACCOUNTS
PAYABLE
ACCOUNTS &
HECEIVABLE 3z
TRANSACTIONS - c>
= E-B E:] <
INVENTQRY -z r2 033 32 e
Z: 2 mox 23 names
m D 3] =ct >z
4 zz 83 5%z =®
i 3 a2z Con 2
DIRECTORY $z 20 me g
FILE <9 @ n

DATA
FILES

#-1B4

Figure 4-4. A Marketing Directory

4-18 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

MARKETING

ACCOUNTS
PAYABLE

ACCOUNTS
RECEtVABLE

TRANSACTIONS

INVENTORY

CAPITAL ACE
EQUIPMENT BOOKINGS TRILOBITE STATIONARY
MEMCRIES SMITH
NONCAPITAL BlLLNGS PLEISTOCENE ADVERTISING
EQUIPMENT ELECTRONICS SMUDGE
PENCILS
'
i ..
z -
gzs l LT T T 7
CEZmD 28=% DIRECTOAY
IxZy pRZzA FILES
Ex3a EEE T
RET T22Z NAMES
HEx@ 3 =0
-—

DATA
FILES
x 165

Figure 4-5. Hierarchical Naming of Files

Just as Figure 4-5 shows that single-level directory naming is not sufficient for alfl
collections of files, another figure could be constructed to show that two-level directory
naming is not always sufficient. Consequently, the iRMX II Operating System supports
any number of levels of directories. This multi-level directory naming is called
hierarchical naming of files.

Hierarchical naming of files simplifies the process of adding new applications to your
system. One concern about expanding your system is the naming of mass storage files
associated with a new application. Names of new files must differ from names of existing
files. If your system uses only a few mass storage files, you can expect little difficulty in
assigning unique file names. But if your system uses a large number of files, the problem
of ensuring uniqueness becomes more significant.

Introduction 4.19

FEATURES OF THE iRMX® IT OPERATING SYSTEM

This uniqueness problem becomes particularly difficult in a multi-user system.
Hierarchical file naming eliminates the problem. Whenever you add a new user or
application to your system, you can assign the user or application a directory. The new
user or application can then use this directory to provide unique names to any number of
files.

4.3.4 File Access Control

The iRMX II Operating System enables your application system to control access to
hierarchically named files. This facilitates file sharing while still preventing vaiuable data
from being copied, modified, or destroyed by unauthorized users.

In the multiprogramming environment provided by the iRMX II Operating System, the
sharing of files can be useful. But the job that owns a file may wish to share it with only
certain other jobs rather than all other jobs. Furthermore, the job owning a file may wish
to restrict the nature of the shared access. For example, the owning job may wish to allow
a particular file to be read but not written. The ability to specify how and with whom a file
is shared is called file access control.

In the iRMX II Operating System, the owner of a file can specify who can use the file and
how they can use it. In fact, the owner can even grant different combinations of access

(reading only, writing only, reading and writing, etc.) to each user. Refer to the Operator’s
Guide to the Extended iRMX II Human Interface for more information on file access rights.

By controlling which jobs or who can access a file and how it is accessed, your system
becomes more reliable in a real-time environment and more secure in a multi-user
environment. Less risk exists that an unauthorized job or user accidentally modifies a
valuable file or reads a confidential file.

Your application software can, in fact, expand file access protection into a file security
system. For instance, suppose that your application involves several users accessing files
on disk. By providing each user with a password, so an individual’s identity can be
verified, your application software can strictly control which users have what types of
access to which files.

4.3.5 Control Over File Fragmentation

In the iRMX II Operating System, you can specify the granularity of each mass storage
file. This control allows you to trade faster I/O for more efficient use of space on the
mass storage device, or vice-versa.

When information is stored on a mass storage device, space is allocated in chunks rather
than one byte at a time. These chunks, called granules, can be large or small, but all
granules within one file must be the same size. This size is called the file granularity, and
it 1s specified by the user who creates the file.

4-20 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

Within limits, a file’s granularity affects file access time and file storage as follows:

* Sequential File Access ~ With this type of access, larger granularity sizes
generally improve access time. Each access can
handle more amounts of data.

¢ Random File Access With this type of access, smaller granularity sizes
generally improve access time. Each access handles
less data that is not needed (less time is spent
transferring needless data).

» Wasted Device Space The file granularity directly affects the amount of
wasted space on the device. More device space is
wasted with larger granularity.

Here’s an example. (For the sake of simplicity, we will ignore any data stored on the
device needed for the operating system.) Consider a file containing 20,010 bytes. If the
granularity is 10,000 bytes, the file occupies three granules, each of which is 10,000 bytes
long. The first two granules are full and the third contains only 10 useful bytes. Although
this file wastes 9,990 bytes of storage space, the data transfer rate is quicker than with a
similar file of smaller granularity.

If we change the file granularity to 200 bytes, the file occupies 101 granules. Each of the
first 100 granules is full, while the last granule contains only 10 useful bytes. The file now
wastes only 190 bytes of storage space, but the data transfer rate is slower than the
preceding example.

Since you can control granularity, you can trade device space for performance. If your
application system has many mass storage units and space is readily available, you can
specify a large file granularity. This gives you faster average transfer rates and shorter
access times at the expense of device space.

If you have only one small mass storage unit, you might want to sacrifice some
performance for better use of space. This consideration is especially true if you do not
use the device often enough to notice the rate of data transfer.

4.3.6 Selection of Device Drivers

A device driver is a software module that serves as the interface between a device
controller (which is essentially hardware and firmware) and the iRMX II Basic I/O
System. The driver makes all devices look alike to the Basic I/O System. In effect, it
hides the idiosyncrasies of a device from the Basic I/O System.

For use with the iRMX II Operating System, you can either select an Intel-supplied device
driver (that is, one that supports Intel hardware) or create your own custom device driver.

Introduction 421

FEATURES OF THE iRMX® Il OPERATING SYSTEM

By selecting and creating device drivers, you can attach any device to your application
system. This means that you are not limited to a few specific devices. You can select
devices on the basis performance, cost, reliability, availability, or whatever you choose.

4.3.7 Remote Files

In addition to supporting files on a number of secondary-storage devices, the iRMX IT
Operating System also supports the concept of remote files. With remote files, a user or
task on one system can store or have access to files on another system. This access
includes tiles resident on systems running an operating system other than iRMX. Remote
files enable iRMX to be connected via OpenNET™ to XENIX-, MS-DOS-, VAX/VMS-,

and iNDX™-based systems. The iRMX Networking Software package (available
separately) provides the facilities for implementing remote file support.

4.3.8 Terminal Support Code

Even systems that do not include the Human Interface or the standard Command Line
Interpreter (CLI) can have the ability to communicate with a wide variety of keyboard
terminals. The iIRMX II Terminal Support Code provides a programmable interface
between a terminal driver and the Basic 1/O System. This support code enables terminal
operators to communicate with the system and gain access to a variety of special terminal

modes and operations.

The major capabilities of the Terminal Support Code include:

» Editing and Controlling A variety of characters available for controlling and

Terminal Input editing terminal input exist. You can replace

default control characters with different characters.

You can also switch a terminal to "transparent
mode," so that the use of editing and control
characters has no effect on the input line.

» Type-Ahead If you type faster than the operating system can
read, interpret, and respond, the Terminal Support

Code stores the data you type in a type-ahead

buffer. The operating system then uses the data

from this buffer when it is ready for it.

¢ Controlling Terminal You can set the Terminal Support Code so that
Qutput output sent to your terminal displays continuously,
scrolls a few lines at a time, stops, or is completely

discarded.

4-22

Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

» Translation The Terminal Support Code accepts escape
sequences (characters preceded by an ESC
character) to define characteristics of a terminal.
This feature enables you to "characterize" terminals
so that the I/O system can use standard control
codes and sequences of codes for all terminals.
This process is called translation. Escape sequences
are also used to set terminal variables, such as the
number of lines displayed when in scrolling mode.
You can change terminal behavior by keying in
escape sequences or by running a program that
sends the escape sequences.

4.4 CUSTOMIZING FEATURES

The iIRMX H Operating System is designed specifically for Original Equipment
Manufacturers (OEM) and Volume End User (VEU) applications. For this reason, the
application system as a whole can appear unique to the user. Certain features of the
operating system allow an application to be customized in its capabilities and in how it
appears to the end user. The next few sections describe these features.

4.4.1 Custom Interactive Commands

Users interact with your applications by entering commands and receiving information.
The iRMX II Operating System enables you to define commands that are meaningful to
the operator and appropriate to the application. This command facility is called the
Human Interface.

By designing commands appropriate to your users, you can control the
human-to-application interface. This control can make a system appear "friendly," give
the application a unique character, and reduce operator errors.

The first word in a command is the name of an executable program file on a mass storage
device such as a disk. This facility gives you great flexibility in defining commands. When
a user enters a command, the program having the command name is loaded from the
secondary storage and is run by the operating system. This gives you the following
advantages:

* You may add or modify commands simply by writing new programs.

* The number of custom commands for a system is not limited by the amount of
dynamic memory.

Introduction 4-23

FEATURES OF TIHE iRMX® I1 OPERATING SYSTEM

» You do not have to "rebuild" the system to change commands.

« Programs used infrequently do not take up memory space when they are not being
run.

4.4.1.1 Command Line Parsing

System calls are available for retrieving and interpreting parameters of a command. This
process is called "parsing a command line.”

Consider an application that monitors toxins in the blood of hospital patients. An
operator (perhaps a nurse or doctor) can run a task that displays the toxin level of an
individual patient, or of all the patients being monitored.

One approach would be to have the operator run the task using the following command:

The program might prompt with the following message:

In a more "friendly" approach, the operator could use commands oriented to the
application and to his or her skills, rather than using computer-oriented commands. In
the example, a better command might be as follows:

The program TOXIN issues a system call to receive the parameter "John Doe." Because
file names are frequently parameters for commands, specialized system calls are also
available to interpret file name parameters.

4.4.2 Application Loading

The iRMX II Application Loader gives a programmer great flexibility in the way
programs use memory. The system can load programs anywhere in available memory,
and programs can execute even though they are actually larger than the memory available.

The operating system enables your application to read programs from disk into memory
and to run them. Also, the opcrating system allows a program to be broken into pieces
called overlays, so that the entire program does not have to be in memory at one time.
The following two sections describe the two methods in which program loading occurs:

4-24 Introduction

FEATURES OF THE iRMX® 11 OPERATING SYSTEM

4.4.21 Dynamic Loading

The loader modifies appropriate addresses in the program at the time the program is
loaded. This capability, Dynamic Loading, offers great flexibility in the design of
application systems. As new programs are added, existing programs do not have to be
rebuilt ("linked") to run together. Or, if more memory is added to the system, the
memory can be readily used.

4.4.2.2 Overlay Loading

Overlay loading is a design decision made by the programmer in the interest of conserving
memory. If the programmer knows that, because of the logical flow of the program, two
moduies are mutually exclusive (that is, will never be required in memory at the same
time), he may designate these modules as "overlays.” The operating system will assign the
same space in memory to both modules and load each module into that space when it is
required.

Each overlay occupies the same area of memory but runs at a different time. A program
containing overlays consists of a "root” that is always present in memory while the
program 1s running, and of two or more overlays. The overlays are loaded when needed
by system calls issued from the root.

An overlay facility allows programs to be run even if the programs are too large to fit in
memory. Naturally, you must ensure that functions performed by separate overlays do
not have to run simultaneously. Also, a program with overlays executes somewhat slower
than one that does not contain overlays.

4.4.3 Simultaneous Multiple Terminal Support

More than one terminal can access the iRMX I1 Operating System at the same time. Two
ways exist to implement this multiple-terminal support: the multi-user feature of the
Human Interface and simultaneous multiple terminal support with 1/O programs. The
advantage of this flexibility is that more than one person at a time can access your system
regardless of whether or not you employ the Human Interface.

4.4.3.1 Multi-User Feature of the Human Interface

'The Human Interface layer of the operating system provides high-level multi-user support
for multiple terminal communication. From a terminal in a multi-user system, an
operator can execute commands, run development programs (e.g., editors, compilers, and
linkers), and run application programs.

Introduction 4-25

FEATURES OF THE iRMX® II OPERATING SYSTEM

Here is how multi-user support works through the Human Interface. When the system is
booted, the Human Interface initializes each terminal as either a static logon terminal or
a dynamic logon terminal. The type depends on how the terminals were specified during
configuration. If the terminal is "static," a specific user is always associated with that
physical terminal. If the terminal is "dynamic," any valid user can log on and use the
terminal.

After terminal initialization occurs, the operating system starts up an initial program. The
initial program can be either the one that comes with the Human Interface or your own
custom inttial program.

Intel supplies an initial program called a Command Line Interpreter (CLI). The CLIisa
program running under the iRMX II Human Interface that enables an operator to
communicate with the operating system by entering commands at a terminal. As each
command is entered, the CLI divides it into a program name and parameters, runs the
program indicated by the command, and passes the parameters to the program. The
following list describes the major attributes of the CLI:

* Support for Different The CLI is designed to support various types of
Kinds of Terminals terminals. To determine the attributes of any user’s

terminal, the CLI examines a terminal specification
file called :CONFIG: TERMCAP. In this file, each
terminal type is given a name and assigned
characteristics. Operators can edit this file to
change the characteristics of a terminal or to add
support for new terminals. The CLI provides a
command called SET that enables operators to
dynamically switch terminal types.

» Editing and Controlling The CLI is always ready to accept input from the
Terminal Input terminal. You simply type characters at the
keyboard and press Carriage Return (or some other
Enter key that is defined in the TERMCAP file} to
send the command.

In addition, the CLI contains special function keys.
These function keys enable you to move the cursor
right or left within the command line, replace the
current command line with a previous command
line, execute a command line, delete characters
within a command line, abort the current command,
and continue a command onto the next line.

4-26 Introduction

* Type-Ahead

¢ Recalling Commands

+ Special CLI Commands

¢ 1/0 Redirection

Introduction

FEATURES OF THE iRMX® IT OPERATING SYSTEM

When you enter characters at the terminal, you
automatically use the type-ahead feature to
continuously enter command lines. The CLI sends
the first line to the operating system for processing
and saves additional data in a type-ahead buffer.
After the operating system finishes with a line, the
CLI fetches, displays, and begins processing the
next line.

The CLI is capable of recalling the last 40 command
lines entered. Using function keys, or the CLI
command HISTORY, you can retrieve any of the
previously entered lines that the CLI can recall.
Once you retrieve a command line, you can edit the
line to make any changes needed, and then execute
the command line.

When you enter a Human Interface command, or
run a program that you have written, you enter the
name of the command or program, plus any
associated parameters. Normally, the command or
program is then loaded into memory (usually from
disk) and executed. The CLI also provides some
commands of its own that allow you to perform
special operations provided by the CLI. Some of
these operations include the following;

» Recalling command lines

¢ Running commands in background mode,
displaying a list of background jobs, and
canceling background jobs

¢ Assigning and canceling abbreviations (aliases)
for commands

+ Altering the CLI environment

« Invoking a set of commands in a batch file

The I/O redirection feature of the CLI allows
programs that normally receive their input from the
keyboard and transmit their output to the screen, to
receive data from and send data to files or other
I/O devices. This feature permits programs to run
without user intervention, a condition that is
especially useful when running in the background
mode.

4-27

FEATURES OF THE iRMX® I OPERATING SYSTEM

In addition to all of its features, you can expand the CLI to include user extensions. This

characteristic enables you to add your own features and still retain the capabilities of the
CLL

You also have the option of providing your own initial program. This initial program
might be a CLI of your own design, or it might be a completely different kind of program.
For example, if you want a particular terminal to be used only for BASIC programs, you
might design a BASIC interpreter to use as the initial program.

Multi-user support through the Human Interface is particularly versatile because you
select, on a terminal-by-terminal basis, what initial program runs. For example, one
terminal might run the Intel CLI, another might run a special CLI, and a third might
always run a word-processing program.

4.4,3.2 Multiple Terminal Support with /O Programs

You can implement multiple terminal support with your own programs. That is, you can

replace the Human Interface iRMX I1 multi-user mechanism just described with your own
programs.

In this case, your programs communicate with terminals through I/O system calls. You
might do this if you need to implement functions not available with the Human Interface
multi-user feature, or if you want to exclude the Human Interface layer from the
operating system entirely. (A later section, "Interactive Configuration Utility," describes
how you include and exclude layers of the iIRMX II Operating System.)

4.4.4 Run-Time Binding

The iRMX 1l Operating System uses "run-time binding," the process of binding objects,
files, devices, and application software with the tasks that use them. This binding method
provides your system with three kinds of flexibility:

¢ Tasks in different jobs can share objects.
» Your procedures use logical names for files and devices,
» The process of attaching your application software to the iIRMX II Operating System

is simplified.

Before we look into run-time binding, let’s consider binding as it relates to a program.
Binding is the process of letting each program know the locations of the variables and
procedures that it uses.

4-28 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

Binding can occur several times during the development and execution of a program.
Some binding takes place during the process of compilation. For example, as a program
compiles, the compiler assigns addresses relative to the beginning of the program to
variables or procedures the program references. This process occurs whenever the
compiler has sufficient information about a variable or procedure. Sometimes, however, a
program refers to variables or procedures that are part of a separate program. When this
happens, the compiler cannot resolve the reference, and binding must be delayed.

Some binding also takes place during linking. Linking is the process of combining several
programs that have been compiled separately. The binding that occurs during linking
allow a program to refer to variables and procedures defined in different programs. (Such
references are called external references because they refer to information outside of the
program.) When the linking process resolves an external reference, it performs binding
that cannot be completed during compilation.

Run-time binding means binding while the system is actually running, The iRMX II
Operating System provides three kinds of run-time binding:

* binding ubjects to tasks
» binding files and devices to tasks

 binding application software to the operating system

The first two kinds of run-time binding are based on the use of object directories. An
object directory is an attribute of a job that allows tasks to provide ASCII names for
objects. Tasks use the CATALOG OBJECT, LOOKUP OBJECT, and UNCATALOG
OBJECT system calls to define, look up, or delete the name of an object. In each case,
the task using the system call must specify the job whose object directory is to be accessed.

The next three sections expand on each type of run-time binding,
4.4.4.1 Binding Objects to Tasks

When two tasks use a mailbox to pass information, they must both access the same
mailbox. But, if the programs for the two tasks are compiled and linked independently of
one another (as they probably would be if they are in separate jobs), the tasks must use
run-time binding to access the same mailbox.

The run-time binding of objects to tasks is accomplished as follows. When a task creates
an object that it wishes to share with other tasks, the task that created the object
catalogues the object in an object directory. Other tasks can then access the catalogued
object if they know its ASCII name and its object directory.

Programmers can control the sharing of objects by selectively broadcasting object names.
If two programmers wish to share an object, they must agree on both the name and the
object directory that is to contain the name. One task then creates the object and the
other accesses it through the object directory.

Introduction 4-29

FEATURES OF THE iRMX® II OPERATING SYSTEM

4.4.4.2 Binding Files and Devices to Tasks

Suppose you wish to code an application utility program that takes input from any
supported input device or from a disk file. Run-time binding can help do this. The utility
program can be coded to look up an input connection under a particular name. Then any
program that needs the utility program can create the input connection, catalog it under
the agreed-upon name, and invoke the utility program. In effect, the ASCII name in the
object directory is the logical name of the input file.

4.4.4.3 Binding Application Software to the Operating System

Whenever your application software invokes a system call, an Intel-supplied interface
routine redirects control to a protected-mode call gate. This call gate transfers program
control to a procedure within the operating system that performs the desired function. In
other words, the call gates bind the system calls of your application software to the iRMX
Il procedures.

Run-time binding provides your application system with flexibility. By allowing your
system to name objects, the iIRMX II Operating Systecm providcs a means of sharing
dynamically created objects between jobs. By supporting logical names for files and
devices, the iRMX II Operating System allows tasks to work with any combination of files
and devices rather than with a single, fixed combination. By providing call gates to bind
your application software to the operating system, you can reconfigure the operating
system without having to recompile or relink your application software.

4.4.5 Error Handling

Error handling is the process of detecting and reacting to unexpected conditions. The
iRMX II Operating System supports error handling by doing a large amount of validity
testing and condition checking within system calls. Although a great amount of this type
of checking occurs, the operating system cannot detect every error.

The iRMX II Operating System protects your system from most types of errors by using
condition or exception codes and exception handlers.

+ Condition Codes Whenever a task invokes a system call, the IRMX II
Operating System attempts to perform the
requested function. Whether or not the attempt is
successful, the operating system generates a
condition code. This code gives you two pieces of
information: it shows whether the system call
succeeded or failed; and, in the case of failure, the
code returned (an exception code) indicates which
unexpected condition prevented successful
completion.

4-30 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

» Exception Handlers An exception handler is a procedure that the
operating system can invoke when a task receives a
condition code indicating failure of the function
requested. As each task is created, it is assigned an
exception handler, either one written by the
programmer or a default exception handler
provided by the operating system.

The alternative to using exception handlers is to process exception codes in the procedure
that issued the system call.

Because you can write the exception handler, you can control the behavior of an
application when it receives an exception code. For example, you can code the exception
handler to recover from the error, delele the task containing the error, warn the operator
of the error, or ignore the error altogether.

In summary, exception handling works as follows. The operating system generates a
condition code for each system call. If the condition code indicates successful completion
(the system call returns the mnemonic E$OK), the operating system detected no
problems. If the condition code indicates a failure occurred, the exception code can be
processed in either one of two ways: within the procedure that used the system call or by
an exception handler invoked by the operating system. The technique used is a
characteristic of a task and is established when the task is incorporated into the system.

Error handling provides your application system with two methods for reacting to unusual
conditions. The first method, having the operating system automatically invoke your
task’s error handling procedure, greatly simplifies error processing. The second method,
dealing with some or all of the unusual conditions within your application task, enables
you to provide special processing for unusual circumstances.

4.4.6 Dynamic Memory Allocation

The iRMX II Operating System supports dynamic allocation of memory. Dynamic
memory allocation reduces your implementation costs because you can build systems in
which applications share memory. Also, your applications can change the amount of
memory they use as their needs change.

Although there are numerous techniques for assigning memory to jobs, each technique
falls into one of two classes: static memory allocation or dynamic memory allocation. In
static memory allocation, memory is assigned to jobs when the system is starting up. Once
the memory is allocated, it cannot be freed to be used by other jobs. Thus, the total
memory requirement of the system is always the sum of the memory requirements of each

job.

Introduction 4-31

FEATURES OF THE iRMX® II OPERATING SYSTEM

In dynamic memory allocation, jobs share memory. Memory is allocated to jobs only
when tasks request it. When a job no longer needs the memory, one of its tasks can free
the memory for use by other jobs. Dynamic allocation is also useful within a job. Some
tasks can use additional memory to improve efficiency. An example of this is a task that
allocates large buffers to speed up input and output operations.

Dynamic memory allocation provides your application system with reduced
implementation costs. If your application system runs more than one application, chances
are the memory demands for the various jobs will probably be out of phase. That is, one
job will be freeing memory while another needs more. Dynamic memory allocation allows
jobs to take advantage of this. Consequently, your application system requires less
memory than it would when using static memaory allocation.

4.4.7 Bootstrap Loading

The iRMX II Operating System contains a Bootstrap Loader that allows your application
system to reside on disk and be loaded into RAM (random access memory).

A bootstrap loader is a program that resides in ROM on your application hardware.
When your system is reset, the bootstrap loader receives control, and loads the rest of the
software, including the iRMX II Operating System and the application software, into
RAM.

The iIRMX 1T Bootstrap Loader provides these advantages:

* By placing the iRMX II Bootstrap Loader in ROM, you can shift the rest of your
application system to RAM. Since the rest of your system is probably much larger
than the Bootstrap Loader, this shift decreases the amount of ROM required for your
application.

Keeping the rest of your application system in RAM decreases the amount of ROM
required for your application. This savings in ROM space leads directly to reduced
manufacturing costs. ROM, unlike RAM, requires that information be "burned" or
masked into memory. By decreasing the amount of ROM in your system, the
Bootstrap Loader reduces your masking or "burning” expenses.

» The iRMX I Bootstrap Loader simplifies the process of providing updated software
to your customers. Rather than shipping ROM devices containing the modified
software, you can ship diskettes, greatly reducing the cost of updating your software.

4.5 TOOLS

Along with the iRMX II Operating System, Intel provides software tools to help you
develop an application system. Sometimes you will use the features listed in this section
as part of your system, and sometimes you will use them only during development. Each
feature simplifies the process of developing a complex system.

4-32 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

4.5.1 System Debugger

The iRMX II Operating System includes a System Debugger (SDB}, which extends the
capabilities of your system debug monitor (either the iSDM monitor or the D-MON386
monitor). The System Debugger provides "static” debugging facilities for those times
when the system hangs or crashes, when you wish to "freeze” the system and examine it, or
when synchronization requirements preclude the debugging of selected tasks. You can
include the SDB as part of your application system during development, then remove it
from your application when it has stabilized, thus reducing the size of the application

system.

The SDB enabies you to perform the following:

o identify and interpret iIRMX II system calls

e display information about iRMX II objects

e examine a task’s stack to determine system call history

» display information about the job hierarchy

The System Debugger provides the facilities necessary for diagnosing system crashes. By
stopping the system, the SDB provides a global view of the system. Development time
and costs are reduced because you can track down and fix errors quickly. For more

information on the System Debugger, refer to the Extended iRMX II System Debugger
Reference Manual.

4.5.2 SOFT-Scope® 286

The Soft-Scope 286 debugger is an interactive, source-level, symbolic debugging tool
designed to accelerate software development. The Soft-Scope 286 debugger frees
programmers from having to deal with the details of the CPU’s machine code, or with the
inner workings of the IRMX TT Operating System. Features of the Soft-Scope 286
debugger include the following:

= automatic trapping of iRMX I protection exceptions

¢ source code interface and on-line listings

e access to program variables, including arrays and structures
v high-level break points

« disassembly of instructions

» second terminal option for remote debugging

» unlimited size of source files and number of symbols

¢ run-time exception handling

» iRMX multitasking support

Introduction 4-33

FEATURES OF THE iRMX® II OPERATING SYSTEM

» iRMX exception handling
+ access to iIRMX objects such as mailboxes and tasks

+ ability to suspend and resume tasks

For more information on Soft-Scope 286, refer to the Soft-Scope 286 Source-Level
Software Debugger User's Guide.

4.5.3 Start-Up Systems

The iRMX 11 Operating System is a configurable operating system, with pieces you can
put together to create a custom system. However, the release package also contains
versions of the iIRMX IT Operating System that are ready to use. The definition files used
to create this system are also included. These ready-to-run systems are referred to as
start-up systems.

The start-up system concept provides these specific advantages:

» Start-up systems can be used without modification on Intel’s System 310 and 320
Microcomputers. No hardware or software changes are required to install the iRMX
IT Operating System on these systems.

* You can become familiar with the operating system immediately, and perhaps even
run your application software without redefining or reconfiguring the operating
system.

+ The actual files used to create the start-up systems provide an example of how to put
together an iRMX II system and may be used as a starting point for creating a custom
system. Use these files to create the start-up system, then apply the appropriate
iRMXII Update. Finally regenerate your system using the ICU generate (G)
command. Refer to the Guide to the Extended iRMX II Interactive Configuration Utility
for more information on generating a system.

4.5.4 Interactive Configuration Utility (ICU)

By selecting only the parts of the operating system you need, you reduce the amount of
memory required for your application system. The Interactive Configuration Utility
(ICU) supplies you with a straightforward method of choosing the parts of the operating
system you want. This selection process is called configuration.

Two advantages to using Intel’s ICU are as follows:
» Configuration of application systems, even complex systems, is relatively easy.

« The choices you make during the configuration process are saved in a file (definition
file). You can later make changes to this file and reuse it. This technique allows for
easy configuration changes based on an already configured system.

4-34 Introduction

FEATURES OF THE iRMX® II OPERATING SYSTEM

4.5.4.1 Configuration is Making Choices
As discussed in Chapter 1, the iRMX 1T Operating System consists of the following major
subsystems or layers:
+ Nucleus
e /O Systems (Basic and Extended)
s Application Loader
e Iluman Interface
¢ System Debugger
e Universal Development Interface

To configure an application system based on the iRMX II Operating System, you first
select the layers of the operating system that your application system requires.

After selecting which layers make up your system, you combine these layers with your
application software, Intel-supplied software, and software from vendors. This combining
forms the complete application system.

Finally, you install the application system on the target hardware.

Figure 4-6 illustrates the advantage of a configurable operating system. In the figure, an
iRMX II Operating System consisting of the Nucleus, Basic I/O System, and Application
Loader is combined with application software. By excluding unnecessary layers, you
reduce the amount of memory your system needs.

Introduction 4-35

FEATURES OF THE iRMX® [OPERATING SYSTEM

INTEL-SUPPLIED
START-UP SYSTEM

UNIVERSAL
DEVELOPMENT
INTERFACE

APPLICATION e
LOADER

iRMX* Il APPLICATION SYSTEM

HUMAN
INTERFACE

DYNAMIC
DEBUGGER

SYSTEM
DEBUGGER

EXTENDED
IO SYSTEM

DEVICE
DRIVERS

BASIC
/O SYSTEM

NUCLEUS

APPLICATION SOFTWAR

NEXT
COMBINE APPLICATION
SOFTWARE WITH iRMX? 11
OPERATING SYSTEM TO FORM
APPLICATION SYSTEM

= - >
Z |6 o ah T
A E APEIRE
clael52|Z2i28
m (5186|495 (8x] FmsT
& m|emM|mm|BD SELECT PARTS OF iAMX: It
z e g OPERATING SYSTEM
REQUIRED BY
APPLICATION SOFTWARE *-680B

Figure 4-6. Configuration of an iRMX® II System

4-36 Introduction

FEATURES OF THE iRMX® Il OPERATING SYSTEM

4.5.4.2 Configuration is Interactive

The Interactive Configuration Utility (ICU) guides you through the configuration process
by displaying a series of "menus.” Each menu describes a number of features. You can
use the menu to accept or change an existing (or default) value for each feature. After
you have made all your choices, you use the ICU generate command to generate your
system. Generating the system produces a custom definition file that holds the
information specific to the ICU session you are in.

4.5.5 File Maintenance Programs

As you develop an application, you need to work with files. You could write programs to
perform these operations, but the operating system already has programs to perform
operations usually necessary in developing an application system. These programs
operate as commands to the system, as explained in the earlier section "Custom
Interactive Commands.”

Here is a list of some of the programs supplied with the operating system:

¢« ACCOUNTING creates and modifies the file containing logon and
logoff activities of all dynamic users in the system

« ADDLOC integrates a data stream file image into an
application system (used with the LOCDATA
command)

s ATTACHDEVICE attaches a physical device to the operating system

e ATTACHFILE associates a logical name with an existing file

¢ BACKUP and saves and restores all of the files on a device

RESTORE

« COPY copies or creates files

« CREATEDIR creates a new file directory

« DATE sets a new system date or displays the current date

+« DEBUG invokes the debugger to debug application jobs

(used only if either the iSDM monitor or
D-MON386 monitor is configured into the system)

« DELETE removes data files and empty directories from
secondary storage

Introduction 4-37

FEATURES OF THE iRMX® II OPERATING SYSTEM

4-38

DETACHDEVICE

DETACHFILE

DIR

DISKVERIFY

DOWNCOPY and

UPCOPY

FORMAT

INITSTATUS

JOBDELETE

LOCDATA

LOCK

LOGICALNAMES

LOGOFF

MEMORY

PASSWORD

PATH

PAUSE

PERMIT

RENAME

detaches a physical device from the operating
system

ends association of a logical name with a file

displays a directory of the files on an iRMX If
device

checks the data structures of iRMX II physical and
named volumes

moves files between Intellec® development system
devices and iRMX IT devices

formats an iRMX II secondary storage device such
as a disk or diskette

displays the initialization status of Human Interface
terminals

deletes an interactive job
integrates a data stream file image into an
application system (used with the ADDLOC

command)

prevents users from logging onto a dynamic logon
terminal

lists all the current logical names available to the
User

logs the user off a dynamic logon terminal

displays the memory currently allocated to the user
and the total system memory available to the user

adds or deletes users, or changes a logon password
lists the pathname of a directory or file

echos an optional message to the screen and waits
fora <CR>

sets user access to files

renames files

Introduction

» RETENSION

« SHUTDOWN

« SUBMIT

« SUPER

« TIME

« UNLOCK
« VERSION
« WHOAMI
e ZSCAN

FEATURES OF THE iRMX® Il OPERATING SYSTEM

Retensions a tape

provides the system with an orderly shutdown
procedure

automatically executes a sequence of commands
contained in an iRMX II file

changes the user identification number (ID} to the
system manager 1D

sets the local or global system time, or displays the
current time

enables terminals locked out of the system to log on
displays the version number of a file

lists the current user’s identification and access
rights

displays the identification number of all iRMX II
fixes applied to that file

The most important advantage of these programs is that you save time and cost in
developing your application system, because you already have the software tools necessary
to manipulate files during the development process. Also, you can include the file
maintenance programs as part of your application system if you need them.

Introduction

4.39

FEATURES OF THE iRMX® II OPERATING SYSTEM

4.6 ON-TARGET PROGRAM DEVELOPMENT

The iIRMX I Operating System provides an ideal program development environment,
allowing you to develop your programs on the same computer that will eventually run your
code. The features of the operating system that make this on-target development work
possible have already been described. Here is how they combine to provide a program
development system:

» File Support The iRMX 1I file system supports creation of
source, object, and loadable files. Several
programmers can use the same disk because of the
hierarchical structure and protection mechanisms of

the iRMX 11 file system.
¢ Command Line The CLI provides several commands that make
Interpreter on-target development more convenient. Included

are commands to assign abbreviations for long
command sequences, to run programs in
background mode, to retrieve previously entered
commands, and to run commands from batch files.

4-40 Introduction

FEATURES OF THE iRMX® IT OPERATING SYSTEM

» Languages and Software The Universal Development Interface is a standard

tools

Introduction

flexible protocol that enables you to run various
language translators (PASCAL-286,
FORTRAN-286, PL/M-286, ASM286 Macro
Assembler, etc.), language run-time packages, and
other software development tools on the iIRMX II
Operating System.

The UDI protocol is a set of system calls by which
language software uses the operating system.
(Language software might be compilers,
interpreters, assemblers, or run-time systems.) Any
language may be run on the iRMX II Operating
System as long as the language processor uses the
UDI standard system calls and the Object Module
Format (OMF) is compatible. In addition, the
same language processor can, without modification,
be run on any other opcrating system that includes
the UDI system calls. (Intel markets a variety of
operating systems that use UDI for language

support.)

The UDI software interface gives you two major
advantages:

-- A language processor can use well-defined,
appropriate, standard calls to communicate
with the IRMX 1T Operating System. Existing
languages can be adapted easily to run on the
operating system.

- Any language processor or software
tool (including user-written programs) using
UDI system calls can run on several Intel
operating systems. This feature, commonly
termed "portability,” is a major consideration
in software design because it gains you
economic benefits.

For the phases of program development, Intel
provides the following software tools that run on the
iRMX 1I Operating System:

- Text editor (AEDIT)

-~ Builder (BLD286)
Binder (BND286)

4-41

FEATURES OF THE iRMX® II OPERATING SYSTEM

» Convenience The Application Loader makes it easy to load and
execute software. The Human Interface also
provides a powerful facility for parsing the names of
files used by language processors, editors, and
hnkers.

+ Debuggin Programs developed on an iRMX II Operating
geing &r P
System can be debugged using the iRMX 1I static
System Debugger or Soft-Scope 286.

On-target program development using the iRMX II Operating System is useful for the
following reasons:

s If your application system has spare resources (processing time, memory,
mass-storage space), you can use the system more efficiently.

e Programmers can make changes on-site, which has economic and scheduling
advantages.

If on-target development is not practical for the system you are developing, you can also
develop an iRMX 1I application system on a host computer system and then transfer the
system to a target computer. Intel Series IV Development Systems can be used as host
systems for developing iRMX 11 code.

4-42 Introduction

5.1 INTRODUCTION

The previous chapter discussed the iRMX II Operating System features individually. This
chapter revisits some of these features, now incorporated into a hypothetical system, to

show you how features combine to form a powerful environment for your application

software.

This hypothetical application system monitors and controls kidney machines in a hospital.

These machines remove toxins from the blood of patients whose kidneys are not

functioning correctly. The system, shown in Figure 5-1, consists of these main hardware

components:

» Bedside Units

Introduction

One of these units is located at the side of each
patient’s bed. Each unit runs on an Intel iSBC®
286/12 processor board with the iRMX II
Operating System. Each of these units performs
four functions:

- measures the level of toxins in the blood as the
blood enters the unit

-- displays information so medical personnel at
the bedside can monitor the dialysis process

-- accepts commands from the bedside personnel
-- removes toxins from the blood

Each bedside unit performs these functions under
the control of the central processing unit (CPU) on
the processor board. That is, commands and
measurements are sent Lo the CPU, which then
adjusts the rate of dialysis and generates the
bedside display.

A HYPOTHETICAL SYSTEM

+ Master Control Unit The system’s master control unit (MCU) is an Intel
System 320 Microcomputer, which consists of an
iISBC 386/28 processor board, and a terminal with a
screen and a keyboard. This system also runs the
iRMX II Operating System. The MCU monitors
the status of each bedside unit, enabling one person
to monitor and control the entire system.

» RMX-NET This network connects the bedside units to the
masler control unit.

o 5 - .

oz (SN a

% T o |

BEDSIDE UNITS i s

Containing
iSBCE 28612 —— "
Processor Boards]
L X T) *ww
iAMX* -NET
iSBC® 386128
SINGLE BOARD SYSTEM 320
COMPUTER (Master Controi Unit)
Y TERMINAL

X 17DEA

Figure 5-1, The Hardware of the Dialysis Application System

5-2 Introduction

A HYPOTHETICAL SYSTEM

In summary, the system consists of software within the MCU’s iSBC 386/28 processor
board monitoring the entire system, and software within an iSBC 286/12 processor board
controlling cach bedside unit. Now, let’s look at the software.

The application software controls the dialysis process by doing the following:

+ obtains commands from the master control unit (MCU)

« obtains commands (if any) from each of the active bedside units

e reconciles the commands from the MCU and from the active bedside units

« obtains a toxicity level from each of the active bedside units

» creates a display at each active bedside unit

e creates a display at the MCU

 controls the rate of dialysis at each of the active bedside units

Now that we have roughly examined the nature of the system, let’s investigate how the
iIRMX II Operating System f{its in, starting with interrupt processing.

5.2 INTERRUPT PROCESSING

Three kinds of information flow from the bedside units to the MCU: toxicity levels,
commands, and emergency signals when something has gone wrong.

The toxicity levels, measured as the blood enters the bedside unit, are not subject to
abrupt change. The machine slowly removes toxins from the blood while the patient’s
body, even more slowly, puts toxins back in. The result is a steadily declining toxicity level.

Because of their nature, toxicity levels must be monitored regularly, but not too
frequently. Let’s suppose that the bedside unit computes the toxicity levels once every ten
seconds then sends an interrupt signal to the MCU when the computation is complete.

The command information changes less predictably than the toxicity levels. Persons at the
patient’s bedside can enter commands through the bedside unit. Let’s suppose that after
encoding the information they press a button labeled ENTER that sends an interrupt
signal to the MCU.

An emergency is not predictable and requires immediate attention. If the patient’s toxic

level begins to rise, the bedside unit sends a signal overriding all other interrupt signals to
the MCU.

Each time the MCU receives an interrupt signal, the MCU stops executing the current
instruction and begins to execute an interrupt task designed to handle the condition
caused by the interrupt. In our example, when the MCU is interrupted by the ENTER
signal, it begins running the interrupt task for bedside commands.

Introduction 5-3

A HYPOTHETICAL SYSTEM

You must write the interrupt tasks for your system’s custom devices, so the
bedside-command task may serve as an example for you. The task performs the following
steps:

» It checks a predetermined mailbox for a message from the MCU. The only task that

waits at this mailbox is the task that reconciles bedside commands with the commands
from the MCU.

» It puts the command information, along with the number of the bedside unit that
received the command, into a message.

» It sends the message to the predetermined mailbox.

o It surrenders the CPU to the operating system.

One advantage of interrupt processing now becomes clear. Instead of wasting time
polling the bedside units to see if a command has been issued, the application system can
do other things until interrupted by the unit. When an interrupt (an event) does occur, it
is quickly converted into a message and placed into a mailbox for processing by a task.
The system then returns to its normal priority-based, pre-emptive scheduling, This
technique cnables your system to deliver more throughput.

Interrupt processing also provides the application system with flexibility. For instance,
you can add more bedside units without modifying the system’s software.

Finally, interrupt processing enables the system to respond immediately in applications
demanding prompt responses to events,

5.3 HUMAN INTERFACE

Interaction between medical personnel and the system can be very smooth since the
commands can be displayed in a form meaningful to the system operators. Also, new
capabilities can be added to the system by simply adding new programs.

5.4 MULTITASKING

The entire application system is based on the multitasking capability of the iRMX II
Operating System. Tasks are run using the pre-emptive, priority-based scheduling
discussed in Chapter 4. This allows the more important tasks (such as those controlling
the bedside units) to pre-empt lower-priority tasks.

Introduction

A HYPOTHETICAL SYSTEM

5.5 INTER-TASK COORDINATION

The only form of intertask coordination used in our hypothetical dialysis system is
intertask communication. The system uses a number of mailboxes to send information
from one task to another. The simplicity of maithoxes enables engineers to divide the
system into tasks on the basis of modularity rather than on minimizing intertask
communication.

5.6 MULTIPROGRAMMING

Suppose that we extend the example to include statistical analysis in addition to dialysis.
The two functions could advantageously be performed in different jobs, Why? Because
they need to share very few resources.

If the statistical application has very little to do with the kidney application, they don’t
need to share mailboxes, tasks, or any other objects. Splitting them into two different jobs
minimizes the chance that one application can affect the environment of the other.

But what if the two applications need to share only a little information? How can the
shared data be passed from one job 1o another without losing the benefits of isolation?

The iRMX II Operating System provides for this contingency in its implementation of
run-time binding.

5.7 RUN-TIME BINDING

As mentioned earlier in this manual, run-time binding enables tasks of different jobs to
share objects. As tasks create objects to be shared, the tasks catalogue the objects in an
object directory. Then the tasks that need the objects can look them up by using their
catalogued names.

Run-time binding also enables you to change the configuration of the iRMX II Operating
System without recompiling or relinking your application softwarc. For instancc, supposc
you have been including the iIRMX II System Debugger in systems delivered to your
customers. But now, a year or so after you started delivering systems, your product has
stabilized: virtually no new bugs are being found. If you delete the SDB from your
system, you can reduce the amount of memory required in any new systems you sell. The
run-time binding of the system to your application software enables you to remove the
SDB without making any changes to your application software,

Introduction 5-5

A HYPOTHETICAL SYSTEM

5.8 MASS STORAGE FILES

As specified, the hypothetical system does not require mass storage files. However, a very
reasonable extension of the current specification could include recording information
about patients.

The iRMX I11/O System enables you to record information in files on flexible and hard
disks, on tape, and in bubble memory. The system provides device handlers and disk
formatting and allocating, and gives you a way to move information between main
memory and the disk. Your application software need not include code to perform these
functions.

If you added mass storage devices to the system, you could do program development on
the system, so that new programs could be written and tested at the site. This is a
powerful addition to a system, although it is not appropriate for every application.

5.9 DEVICE INDEPENDENCE

5-6

Even If the application system uses mass storage devices, device independence is not
necessarily required. But, if the application is extended to allow the operator at the
master control unit to send recorded data to any of several devices (e.g., teletypewriter,
line printer, magnetic tape or disk), device independence becomes more important. The
device-independent 1/O System enables you to implement recording without adding code
specific to each possible device.

Introduction

6.1 INTRODUCTION

The iRMX II documentation set consists of five volumes organized into these five
categories:

e Introduction, installation, and operating information

descriptions of each operating system layer and its use (User Guides)

system calls

system utilities and programming information

configuration instructions

This chapter describes the contents of each volume and the manuals in that volume. The
descriptions assume two types of programmers: system programmers and application
programmers. System programmers configure the system, extend the operating system,
write interrupt handlers, and perform other functions that affect the entire application
system. Application programmers write application software.

This distinction is made because a system programmer’s actions have a more global effect
on the operating system and the application. Specifically, some system calls can, if used
improperly, cause problems for all the tasks in the system; these calls should be used only
by system programmers and, even then, only within operating system extensions. Other
system calls affect only the task invoking the call.

Introduction

iRMX® II LITERATURE

6-2

Table 6-1 lists the contents of each volume of the documentation set.

Table 6-1. iIRMX® I Volume Contents

VOLUME 1: Introduction, Installation, and Operating Guides

introduction to the Extended iAMX If Qperating System
Extended IAMX If Hardware and Software Installation Guide
Operator's Guide to the Extended iRMX If Human Interface
Master Index

VOLUME 2: Operating System User Guides

Extended iRMX I Nucleus User's Guide

Extended iAMX i Basic 1/0 System User's Guide

Extended iAMX I Extended 1/Q System User's Guide

Extended iRMX il Human Interface User's Guide

Extended IRMX I Application Loader User's Guide

Extended iRMX It Universal Devalopment Interface User's Guide
Extended iAMX If Device Drivers User's Guide

VOLUME 3: System Calls

Extended iRMX I Nucleus System Calls Reference Manual

Extended iAMX If Basic 1/0 System Calls Reference Manual
Extendad IAMX It Extended 1/0 Systern Cails Reference Manual
Extended IAMX It Application Loader System Calls Reference Manual
Extended iRMX It UDI System Calls Reference Manual

Extended iRMX }i Human Interface System Calls Reference Manua!

VOLUME 4: Operating Systemn Utilities

Extended IAMX If System Debugger Reference Manual
Extonded iAMX If Bootstrap L oader Reference Manual
Extended iRMX Il Programming Techniques Reference Manual
Extended IRMX It Disk Verification Utility Reference Manual
Guide to the Extended iRMX il Interactive Configuration Utility

VOLUME 5: Interactive Configuration Utility Reference

Extended iRMX Il Interactive Configuration Utility Reference Manual

Introduction

iRMX® IT LITERATURE

6.2 VOLUME 1: INTRODUCTION, INSTALLATION, AND
OPERATING INSTRUCTIONS

This volume contains three types of information: introductory material,
hardware/software installation, and operating information.

Introduction To The Extended iRMX II Operating System -- This manual addresses the
reader who is unfamiliar with the concepts and benefits of the iRMX II Operating System.
Written at a less technical level than the other manuals, it introduces you to the iRMX I
Operating System.

Extended iRMX 11 Hardware and Software Installation Guide -- This manual describes
everything necessary to get the start-up systems installed on Intel System 300 Series
Microcomputers. This includes instructions for installing wire jumpers on Intel single-
board computers and device controllers, loading and running a start-up system, and using
the Human Interface commands included in the start-up systems.

Operator’s Guide to the Extended iRMX IT Human Interface -- This manual describes the
Command Line Interpreter (CLI} and Human Interface commands. The CLI provides
commands that perform the following:

» show previously entered command lines
* provide aliases for command lines

» run programs in background mode

The Human Interface provides commands that perform functions such as the following:
» copy, delete, and otherwise manage files
+ display directories

o format and verify mass storage volumes

The manual also describes the following subjects:

» file pathnames and other file information needed to use commands
+ standard logical names

¢ the Human Interface

This manual also explains non-resident configuration--the process of adding new users to
the system.

Master Index for the Extended iRMX IT Operating System -- The Master Index is a complete
by-subject index to the five-volume IRMX II documentation set.

Introduction 6-3

iRMX® II LITERATURE

6.3 VOLUME 2: OPERATING SYSTEM USER GUIDES

This introductory and operations-specific information is designed for first-time users.

Extended iRMX II Nucleus User’s Guide -- Written for engineers planning to use the iRMX
1I Nucleus, this manual is the information warehouse for the Nucleus. It contains concise,
yet detailed, discussions of these topics:

+ the nature of objects in general and of tasks, jobs, semaphores, mailboxes, segments,
and descriptors in particular

s task scheduling

s error processing

s interrupt processing

» the creation and deletion of extensions to the operating system

» region exchanges

» enabling and disabling the deletion of objects

» adding new types of objects to the operating system

Extended iRMX II Basic 1/0 System User’s Guide -- This manual describes the iRMX II
Basic 1/0O System and includes these topics:

o file directories and the types of files supported (named, stream, remote, and physical)
s user objects, and access rights associated with user objects

+ [/O operations you may use with the operating system

+ attaching and detaching devices

+ system calls you may use in accessing the facilities of the Basic I/O System

Extended iRMX II Extended 1/0 System User's Guide -- This manual describes the iRMX II
Extended I/O System. It covers the different types of iRMX I files. The Extended I/O
System relieves programmers from the burden of details of I/O operations. In particular,
the Extended I/O System data transfers are synchronous, meaning the operating system

performs multiple-buffering operations, automatically synchronizing 1/O operations with
processing.

Extended iRMX II Human Interface User’s Guide -- This manual describes the iRMX II
Human Interface and includes these topics:

+ a description of the command line interpreter (CLI), which provides line-editing
features and commands for operations such as background and aliasing

» descriptions of Human Interface system calls used to parse custom commands, control

programs run by the Human Interface, and send and receive messages to and from a
terminal

6-4 Introduction

iRMX® II LITERATURE

* an explanation of the multi-user Human Interface, which lets the operating system
communicate with many terminals simultaneously

» instructions for constructing command programs

Extended iRMX II Appiication Loader User’s Guide -- This manual describes the
Application Loader, which is used for two purposes:

s toload and run programs that reside on secondary storage (these programs are
invoked by Human Interface commands)

e to load overlays by invoking system calls

Extended iRMX II Universal Development Interface User’s Guide -- Designed for system and
application programmers, this manual outlines general programming considerations for
using the Universal Development Interface (UDI). The UDI is a software interface that
allows language translators and other software development tools to access the facilities of
the iRMX II Operating System, The manual also describes each of the UDI system calls
that provide this access.

Extended iRMX IT Device Drivers User’s Guide -- This manual describes the device drivers
contained in the IRMX II package and gives detailed instructions for writing a device
driver that is compatible with the iIRMX II I/O System. It also describes how to use the
User Device Support (UDS) utility to add menus to the ICU to support user-written
device drivers. Application programmers can use this manual to find out about existing
drivers. System programmers can use this manual to add new devices to application
systems.

6.4 VOLUME 3: SYSTEM CALLS

This volume describes all the system calls used within application programs. It details the
structure and use of each system call and contains a list of the condition codes that the
calls generate. (Since the contents of the manuals follow the same style and format, their
contents are not listed here.)

Extended iRMX II Nucleus System Calls Reference Manual

Extended iIRMX II Basic I/O System Calls Reference Manual
Extended iIRMX II Extended 1/0 System Calls Reference Manual
Extended iRMX H Application Loader System Calls Reference Manual
Extended iRMX Il Human Interface System Calls Reference Manual
Extended iRMX IT UDI System Calls Reference Manual

Intraduction 6-5

iRMX® II LITERATURE

6.5 VOLUME 4: OPERATING SYSTEM UTILITIES

This volume contains documentation for all the operating system utilities.

Extended iRMX II System Debugger Reference Manual -- This manual describes the System
Debugger, a static debugging tool that enables you to diagnose system crashes and other
"freeze” situations. The System Debugger is a memory-resident extension of the iSDM
System Debug Monitor and D-MON386 debug monitor. This manual includes
descriptions of System Debugger commands.

Extended iIRMX IT Bootstrap Loader Reference Manual -- This manual describes the iRMX
11 Bootstrap Loader, a program that can stand alone or be combined with the iSDM
monitor. It is designed to load absolute code into memory.

Extended IRMX Il Disk Verification Utility Reference Manual -- This manual documents the
Disk Verification Utility, a software tool that runs as a Human Interface command,
verifying and modifying the data structures of iRMX II named and physical volumes. The
manual describes how to invoke the utility and contains detailed descriptions of all utility
commands. Because users of the Disk Verification Utility must be familiar with the
structure of IRMX II volumes, the manual describes iRMX II file and directory structures
in detail. This manual also documents how to back up and restore volume file descriptor
nodes.

Guide to the Fxtended iRMX II Interactive Configuration Utility -- The iRMX 1I Interactive
Configuration Utility (ICU) leads a system programmer through configuration by
displaying a series of "menus” or "screens" that describe each choice to be made. The
programmer then selects the default answer or changes it. Using these answers, the ICU
creates a file that automatically links and locates the application system software.

This manual describes the following:

o purpose of the ICU

» invocation of the ICU

» definition files

o editing commands

¢ ICU configuration screen formats

» upgrading a previous release of the operating system to the current release

Extended iRMX II Programming Technigues Reference Manual -- This manual provides

system and application programmers with techniques to help save time and avoid
common mistakes during system development.

6-6 Introduction

iRMX® II LITERATURE

6.6 VOLUME 5: INTERACTIVE CONFIGURATION
UTILITY REFERENCE

This volume contains one manual: the Extended iRMX II Interactive Configuration Utility
Reference Manual.

Extended iRMX I Interactive Configuration Utility Reference Manual -- This manual
describes all the configuration parameters for every feature the ICU supports.

6.7. RELATED MANUALS

The manuals listed in this section are not contained in the iIRMX IT document set and
must be ordered separately.

iIRMX Networking Software User’s Guide -- This manual describes how to implement
iRMX-NET.

Each of the language manuals below is primarily a reference for use when you are writing

and compiling (or assembling) programs in that language, but it also contains introductory
information to familiarize you with the language.

s PASCAL-286 User's Guide for iRMX 286 Systems
o PL/M-286 User's Guide for IRMX 286 Systems

o FORTRAN-286 User’s Guide for iRMX 286 Systems
o ASM286 Assembly Language Reference Manual

Introduction 6-7

A

Application 1-5
Development 2-3
Loader 1-2,4-24
Software 1-5
System 1-5

Benefits 3-1, 4-9, 13, 14, 15, 22, 26, 28
BIOS 1-2,4-14

Bootstrap loading 4-32

Bus architecture 2-3, 4-13

C

Command Line Interpreter (CLI) 4-26, 40
Command line parsing 4-24

Configuration 4-34

Conventions iv

Cost of development 3-2

Cost of implementation 3-2
Customization 4-23

D

Dcbugging , 2-34-33, 42
Development time 3-2

Device drivers 4-21

Device independence 2-2, 4-16, 5-6
Dynamic loading 4-25

Dynamic memory allocation 4-31

Introduction Index-1

INDEX

E

EIOS 1-2,4-15

Error handling 4-30

Error processing 2-1

Event detection 2-1, 4-6, 3-3
Exchanging information 4-10
Extendibility 4-13

F

Feature selection 2-2
Features 4-1, 5-1
Architectural 4-3
Customization 4-23
I/O 4-14
Tools 4-32
File access control 4-20
File fragmentation 4-20
File granularity 4-21
File maintenance programs 4-37
File security 4-20
Files and multiple users 2-2, 4-17

H

Hardware bus architecture 2-3, 4-13
Hierarchical naming of files 4-17
Human Interface 1-2, 4-25, 5-4

Hypothetical systems 5-1
|

1/O systems 1-2, 4-14
Inter-task coordination 4-9, 5-5
Interactive Commands 4-23, 37

Interactive Configuration Utility (ICU) 4-34

Interrupt processing 4-6, 5-3
J

Job 1-5

Index-2

Introduction

L

Layers 1-1
Literature 6-1

Manual overview 1ii, 6-1

Mass storage file allocation tradeoffs 2-2
Memory requirements 2-2
MULTIBUS®T 4-13

MULTIBUS® II 4-13

Multiple applications 2-2, 4-8, 5-5
Multiprogramming 4-8, 5-5
Multitasking 4-5, 5-4

Mutual exclusion 4-11

N
Nucleus 1-1
O

Object-oriented architecture 1-5, 4-3
Objects 1-5,4-3

On-target program development 4-40
Overlay loading 4-25

Overview 1-1

P

Pre-emptive, priority-based scheduling 4-7
Product overview 1-1

Program devclopment 4-40

Protected virtual address mode 1-4, 6

R

Reader level iii

Real address mode 1-6
Real-time programming 2-1, 4-5
Related manuals 6-1

Remote files 4-22

Round-robin scheduling 4-8
Run-time binding 4-28, 5-5

Introduction

INDEX

Index-3

INDEX

S

Scheduling of processing 2-1, 4-7
Segments 1-6

SOFT-Scope® 286 4-33

Start-up systems 4-34
Subsystems 1-1

Supported processor features 1-4
Synchronization 4-12

System Debugger 1-2, 4-33
System functions 1-3

T

Tasks 1-6

Terminal support 4-22, 25, 28
Terminology 1-5

Time slices 4-7

Tools 4-32

U

Universal Development Interface (UDT) 1-3
User 1-6

Index-4 Introduction

EXTENDED iRMX®I1

HARDWARE AND SOFTWARE
INSTALLATION GUIDE

Intel Corporation
3065 Bowers Avenu e
Santa Clara, California 95051

Copyright © 1988, intel Corperation, All Rights Reserved

The Extended iRMX II Operating System is a software package that provides a real-time,
multitasking environment for Intel sixteen bit single board computers and Intel-built
microcomputers. This manual provides you with the information required to install your
operating system on an Intel System 300 Series mircocomputer or a system that you build
from Intel Single Board Computers.

The manual offers the following information:

¢ Describes the iRMX II Operating System Package you receive from Intel when you
purchase the software.

+ Steps you through the software installation procedure.

» Lists the information required to make the hardware modifications to support the
extended iRMX II Operating System.

READER LEVEL

If you have an Intel System 300 Series microcomputer, then you do not need to know the
following information.

If you are building your own system based on Intel single computer boards, you should be
familiar with the following Intel software and hardware elements:

« The INTELLEC Microcomputer Development System and the iNDX Operating
System.

« The ASM286 Macro Assembly Language and/or the PL/M-286 programming
language.

s The iSDM System Debug Monitor.

o The individual hardware components that make up an extended iRMX II target
system.

You may wish to read the Introduction To The Extended iRMX II Operating System
manual.

Installation iii

PREFACE

NOTATIONAL CONVENTIONS

The following conventions are used in this manual:

<CR> This symbol is used to represent a carriage return entered by the
user.
<lowercase > Fields appearing in lowercase in angle brackets (< >) indicate

variable information. You must enter the appropriate value or

symbol for variable fields.

Information appearing in blue print indicates user input.

iv Installation

CHAPTER 1 PAGE
CONTENTS OF THE EXTENDED iRMX® || PACKAGE
1.1 INEEOAUCTION 1ovuvviieieiisisrseseeraes e senesesese sttt b A ra s sh a1 ESA s s b st e EaE R e b e s enenenememba s 1-1
1.2 Intel StArt-Up SYSLEIMIS ..o errermrircrrcisississsassss s niasse st sanse et ienes -1
L I 011 11707 o T UO OO OUOT VOO TS TSTSPSPRRPRPRPRRS SO 1-1
1.3.1 MARLALS ..o bbb 1-2
1.3.2 DHSKELLES ittt et s e ra s s bbb s s e 1-3
13,3 TAPC v cvrssersirscesnisisseniseresesesessesereemssssssss s ssasssssssnssrnsssssassssssssenasasasessssessensasanss. 173
1.4 ReCOMMENAALIONS ... orreiecieriee s ves i seemimeena bbb et 1-4
CHAPTER 2 PAGE
THE EXTENDED iRMX® Il DEVELOPMENT ENVIRONMENT 2-1
2.1 TRIFOQUCTION oot veereriss i isecresersere s resobsr s abnas b b asran st e s st ss s et b s b 2-1
2.2 General REQUITEIMIENTS ...ccoorririresrrrerecrrs s s nisss s sabs s esas st 2-3
2.3 An iRMXITI System As Your Development And Target System ..., 2-4
2.4 Using Separate Development And Target SYStemS. ..o 24
2.5 Application-Dependent ReqUIrEMENtS......cco..cueivrsseesemmimssssemnerssssissssissnisnsasssnsensess 2-6
CHAPTER 3 PAGE
CARTRIDGE TAPE INSTALLATION OF iRMX® 1.3 OPERATING SYSTEM
FOR 80286- 80386-BASED SYSTEM
3.1 INIPOTUCHION ottt 3-1
3.2 The Extended iIRMX®II Software Installation ... 3-1
3.3 Preparing for Software Installationcccovemmriieiniisniinnnn s 32
3.4 Installing the Operating SYSLEIM ...t eseens 3-2
STEP 1
Backing Up Your Old FIIEs ...t st 3-2
STEP2
The System COnfIdence TeSt ... ssesesssesssssanssenss 373
SCT for System 310 MICTOCOMPULELSccocoiicrirvreiisie s s esennesenians 3-3
SCT for System 320 MiCTOCOMPULELScverrcremmrenrsisrnnsissnsrasisissaseseseasssessesssinsss 34
SCT for iIRMX MDP MICIOCOMPULELS.......evcriiiirininiirassisrssisiesssessssssisssiaienss 3-5
STEP 3
Booting From The Start-up System Boot DisKettecooncivniiiinniinnnns. 3-6
STEP 4
Installing the IRMX 1L SOItWAre ...t 3-9
OPTION A
Formatting Your Microcomputer’s Entire Hard Disk DIive ..o, 3-9
OPTION B
Formatting Only Track 0 of Your Hard DIive.......comcc s 3-14

Installation

CONTENTS {continued)

vi

STEP 5
Copying The Boot System Onto The Hard Disk...... .. 3-16
STEP 6
Installing The Language Utilities.... . IORNC 23 |
STEP 7. Preparing The AEDIT Edltor For Use Wlth Your System..................... 3-21
STEP 8
Installing iIRMX Networking SOftWareo..orueeeersnreeseeeoneeseoss e ereeesenesen 3-22
STEP 9. Installing The Update Package...................... . 3-23
STEP 10
Combining Directories when Upgrading to Release 3.0....ccovuvvvvrrercrnennnn. 3-24
Upgrading From iRMX® 286 Release 2.0ccccoevuermeeeereereciossiere e essinrranes 3224
Upgrading From iRMX® 86 Release 7.0ccu.corerirrmureeoioscrissieeseseroneresres e 3-24
STEP 11
Generating An Updated Version Of The Operating System................ O 3-25
STEP 12
Booting The Operating System From A Hard DisKo.cooveeveevecrereor oo, 3-29
STEP 13
Retaining an Older Version of the Operating SyStem.......c.oc..c.vcorererrsrenecennr. 3-31
3.5 System Maintenance... - irierenesseniieenes 3733
Where to Look For Informatton to Get Started Usmg Your system ..3-33
CHAPTER 4 PAGE
DISKETTE INSTALLATION OF THE iRMX® 11.3 OPERATING SYSTEM
FOR 80286- 80386-BASED SYSTEMS
4.1 Introdcution... e 41
4.2 The Extended 1RMX® Softwarc Insta].latlon B OO OPUTOU - £ |
4.3 Preparing for Software INStallationcccccocreonervieeeivrneroresverenecorsssrssesesssssesesrorsons 42
4.4 Installing the Operating SYStEMc.oovuirivimiersessicsiesimseresereseeseresessssssssssesseesesssoens 42
STEP 1
Backing Up Your Old FILESouuveuumveearecicieemreseeeeseeoeseees e 4-2
STEP2
The System Confidence Test..........o..oreeeiioeriresenesesnseneeenenseesesereememeessseessenns 423
SCT for System 310 MiCTOCOMPULELSvuuvrvenveecesceererees s ieeaeessses s sesseesssens 4-3
SCT for System 320 MiCTOCOMPULETSvvuveiveeeerveveneresesesisseseseses s seeneaeesessssens 4-4
SCT for iRMX MDP Microcomputers................. W
STEP 3
Booting From The Start-up System Boot DisKettecoovovvereeecoreereserescosn, 4-6
STEP 4
Preparing the Hard Disk....... .49
OPTION A
Formatting Your Microcomputer’s Entire Hard Disk DIive oo eeeoervvosvesrennn, 4-9
OPTION B
Formatting Only Track 0 of Your Hard Drive...........oooooooeooo 4-14

Installation

CONTENTS (continued)

STEP 5
Diskette Installation of The Directory Structure.........ow.oecannesrocsrssnnnsser. 4216
STEP 6
Installing The Extended iIRMX® I Files.....c.ooovoceimecenreeeceieceececreevreverrenn, 4-18
STEP 7
Copying The Boot System Onto The Hard DisKc.coocooceovmrrnrionnrevinineernrernscenens 420
STEP 8
Installing The Language Utilities ... s S = |
STEP 9. Preparing The Aedit Editor For Use Wlth Your System crsreriresseninnensns 4224
STEP 10
Installing iRMX® Networking SOftware...........oomonnnninicnnnenen 425
STEP 11. Installing The Update Package.........ccouevcrcieniineueecemnnennernecsssvecsassesenns 4226
STEP 12
Combining Directories when Upgrading to Release 3.0, 427
Upgrading From iRMX® 286 Release 2.0ccervvrreeivinenmeeneivnsseinsseessssssnsenns 4527
Upgrading From iIRMX® 86 Releast 7.0 wviiiiinvicnesnsnernnessssssenes 427
STEP 13
Generating An Updated Version Of The Operating System......ccocvrnrerennnen. 4-28
STEP 14
Booting The Operating System From A Hard Disk.....ooooic . 4-32
STEP 15
Retaining an Older Version of the Operating System....c..cc.ccveveevevecemerncnenenn. 434
4.5 System MaINteNANCEceiiniriereseninisirsssssresssessssirsasesesssssssassressssnsssasererssasnsaseress 3-30

CHAPTER 5§ PAGE
DISKETTE INSTALLATION OF THE iRMX® I1.3 OPERATING SYSTEM
FOR INTELLEC® SERIES-IV SYSTEMS

5.1 Introduction............... wresinrenstentrennstsssenisenanire 9% 1
5.2 Overview of Software Installatlon For Serles IV Systems RO o |
5.3 The Software Installation Procedure... et e b bbb b sesessars e nnns O}

STEP 1
Booting The Series-IV SYStEIN ..o ssssssesens 952

STEP2
Preparing The Hard Disk Platterccoovmeciiiicrmnrsisresereserinsmseseresssmmeressnere 32

STEP 3
Installing The Extended iRMX® 1T Files On Your Hard Disk............................ 5-2

STEP 4
Installing The Language ULILIEIEScccoveircrreinsosnesnisenrsrerrarisserisssssssisssissressess 979

STEP 5
Installing The Update Package............ccoriimnmciiissmen: 9=

STEP 6
Generating An Updated Version Of The Operating Systemc.cccccovivines 3-6

CHAPTER 6 PAGE
THE STANDARD DEFINITION FILES FOR EXTENDED iRMX® I

6.1 Introduction............... SOOI OOTOTOTIODTHIUOTOTRRRRTRORY s o3 |
6.2 The Intel- Supphed Standard Deflmtlon Flles ceraraneneneerersesnsssnssssesssssssratavenenens O 1

Installation vii

CONTENTS (contlinued)

6.2.1 Changes in Release 3.0 Definition Files........ccoooiiecniinnconncnccnccrennnes 6-2
6.3 Nucleus Configuration In the Standard Definition Files ... 6-2
6.4 System Debugger Configuration In the Standard Definition Files ..., 6-3
6.5 BIOS Configuration In The Standard Definition Files ..., 6-3
6.6 Extended I1/O System Configuration In The Standard Definition Files 6-4
6.7 Application Loader Configuration In The Standard Definition Files 6-5
6.8 HI Configuration In the Standard Definition Files.........cccvviiiiininionninnnn, 6-5
6.9 UDI Configuration In The Standard Definition Files........ccovvmmrrmvvomiiceccenns 6-8
6.10 1/O Controller Boards In The Standard Definition Files.........c.ococconvire 6-8
6.11 Intcrrupt Levels Used In The Standard Definition Files .., 6-10
6.11.1 Interrupt Level Assignments In 28612.DEFcccccccovvmmmcvcnmncinincnes 6-11
6.11.2 Interrupt Level Assignments In 38620 DEF 6-12
6.11.3 Interrupt Level Assignments In SXM386.DEF ... 6-13
6.12 Memory Addresses Used In The Standard Definition Filescccccoovivvneicvnens 6-16
6.13 I/O Addresses Used In The Standard Definition Files.........c..cocoooioninnnnn. 6-17
CHAPTER 7 PAGE
MODIFYING PROCESSOR BOARDS
7.1 INEPOAUCHION oot e eresnessms e enenasemensarosenrs 7-1
7.2 How To Use This Chapter...... ..ot 7-1
7.3 Specific Modifications To Intel Processor Boards..........cocoveeccnrncicrnceicnncrenes 7-2
731 ISBO® 286/ 10A ...c.oorirererirrirerrensieis s s tesrases s ib st asen st st en e s anas 7-2
733 SSBUPB 286/ 12 ...t bbbt 7-4
7.3.2 iSBC® 286/ 100A ...t s ess s s esmcs s enasessnsecones 7-5
734 1SBC® 380/ 2X /3K .ciirirercrrereirereiisse s essese st s bbbt e raen 7-6
7.3.5 ISBC® 386/ 100/ 116/ 120......cc v iencsinerereresereararasasscarassissassarasssasasasesessasasares 7-7
CHAPTER 8 PAGE
SPECIFIC MODIFICATIONS TO CONTROLLER BOARDS
8.1 INTOAUCLION ..o ar et ns s bt ses rer s bbbk er s bbbt 8-1
8.2 How To Use This CHapler.. ..o sss s sssnsesesesssseres 8-1
8.3 Specific Modifications To Intel Controller Boards..........coveevvecrinmicrcvieemseiessenons 8-2
8.3.1 ISBOB 208......coereeererrerineeeieisenee sttt sstss oo sass st bt eb st s st et ens e 8-2
8.3.2 ISBOP 214ttt et r bbbt 8-3
B.3.3 ISBCB 215G oo ss s s ms s s sm s sessasesessassresesasesen 8-3
B.3.4 ISBOP 2200.....oerrererrereremteresremms s ssss s ess s et s s sna s s st 8-5
8.3.5 ISBUB 534...ouctireerircecrsenrneisssssisesasssssesssass s s s ss st s ese e snrssesssssesssensens 8-6
8.3.6 ISBOB/ISXM S44A ...t st s bss b et bt 8-7
8.3.7 ISBC® 546 BOAITeocverercrvrcrmeiseresreieneneinasensrer s sesssssssssssss st sssssasssesssasssnssonas 8-9
8.3.8 ISBC® 547 BOAIH ...ttt esiees s sarenas s st ree 8-9
8.3.9 ISBC® 548 BOAIToeorercrercercerreiire s sssisssess s sses s s sbas s s sms st ssssanss 8-10
8.3.10 iSBC® 188/48 and iSBC 188/56......... 8-10
8.3.11 iSBC® 188/224A.... 8-13
8.3.12 iSBC® 186/410 Serlal Commumcauons Controller 8-13
B.3.14 ISBX™ 218A ...t s s s s snes 8-15

viii

Installation

CONTENTS (continued)

APPENDIX A PAGE
ORIGINAL JUMPER CONNECTIONS

A.1 Default Jumper Settingsc..coocvuviinirisecnrinrnrinrnsinsissessesssrsssrsasssesesrsrssinssnssassens A 1

APPENDIX B PAGE
iRMX® Il SOFTWARE VERSION NUMBERS

B.1 Introductionl

APPENDIX C PAGE
HARDWARE REQUIREMENTS FOR CUSTOM CONFIGURATIONS

C.1 INtrOADOHION ot s e s etetesas e s s e e e seeeeseveneassesemseressensssarasessssassrsseseres Lom]

APPENDIX D PAGE
FILES ON EACH RELEASE DISKETTE

D1 INITOQUCHION ..ottt eeeeeeeeessess e e sesrsrseesesessssesesssessssvasassensssssssssessenssnsssess D" 1

Table 1-1. Extended iRMX® II Operating System Volume Setowenivvssnmmnsion 1-2
Table 1-2. Inventory of Extended iRMX® II Release DisKettesoovevvnieisereonninn 1-4
Table 3-1. Interleave ValUES ... sssssssssesasisesssssssssssesssssessssessssesssanss 3= 10
Table 3-2. Physical Device NAMEScc.ovvrrerirnnerirerironsieeresens e sssernsssssseeeessssssssssssssnns 3= 11
Table 3-3. Number of Files..... .o 3212
Table 4-1. Interleave VAluesccccoorvcvrrsvircnneinssrnesinsrommsrsesesssrmsesssesnaessanns 4210
Table 4-2. Physical Device NAMESccovvererereroriseneeronsseniosssiersesssssessssssssssssrsssserseerees 4= 11
Table 4-3. NUmber of FILES ... cesesestsnscesssssnnssnssanisassessssssnssansenss =12
Table 7-1. iSBC® 286/ 10A.........coneccvvrmrernvrrmnrsersresesaseresesesasssesessssssaessassssanssasssssosssssssns 13
Table 7-2. iSBC® 286/ 12.........ccorrimirinverineisseissssssessssssssesesemsisssesssasesessmssssosesssesenses 10
Table 7-3. ISBC® 286/ 100A.............c.cvimiiminienresnsienseesarsosssssensissensossersrersssssssessssssssessssserans 7-5
Table 7-4. ISBCP 386/2X /3X ..ccoonmrrrirrirrinsnsmisiesssssstsssesssssesssrssssssssessssssssssessssssessssens 120
Table 7-5. ISBC® 386/ 100/ 116/ 120 ..o ssensssssnarenisssisssssssssrssssassssssssarssas 7-7
Table 8-1. iSBC® 208 Flexible Diskette Controller... ST ORONIONE . =)
Table 8-2. iSBC® 214 Winchester, Floppy and Tape Controller VOO . 2.
Table 8-3. iSBC® 215 Generic Winchester Controller .. cerrnranenarararansesesesessossesssannss 84
Table 8-4. iSBC® 220 SMD Disk Controller ... - ISUIUTRIURINOION . 251
Table 8-5. iISBC® 534 Four Channel Commumcatmm Fxpammn Bnard 8-6
Table 8-6. iISBC® 544A Intelligent Communication Controller ... SOOI . O |

Installation ix

CONTENTS (continued)

Table 8-7. iSBC® iSXM 544A Intelligent Communication Controller ... 8-8
Table 8-8. iSBC® 546 High Performance Communication Controllerccnvcunene. 8-9
Table 8-9. iSBC® 547 High Performance Communication Controller ..., 8-9
Table 8-10. iSBC® 548 High Performance Communication Controller ..., 8-10
Table 8-11. iSBC® 188/48(56) Communications Board ..., 8-11
Table 8-12. iSBC® 186/224A Peripheral Controller ..., 8-13
Table 8-13. iSBC® 186/410 Serial Communications Controller 8-13
Table 8-14. iSBX™ 217C Cartridge Tape Controller ... 8-14
Table 8-15. iSBX™ 218A Flexible Diskette Controller ... 8-15
Table 8-16. iISBX™ 251 Magnctic Bubble Memory ... 8-16
Table 8-17. iSBC® 264 Bubble Memory Board ... 8-16
Table 8-18. iISBX™ 350 Parallel I/0 MULTIMODULE Boardccccccococvvevvrcnenne.. 8-17
Table 8-19. Line Printer Pin ASSIZNMENLSocovveriivrervivieseriieiessmmer e 8-18
Table 8-20. iSBX™ 351 Serial I/O MULTIMODULE Boardccccvvrcrarrernnnnes 8-19
Table 8-21. iSBX™ 354 Serial IO MULTIMODULE Boardccccovveivivvenvriecenienenn. 8-20
Table A-1. Original iSBC® 286,/ 10 JUMPELScvcrerurerieriniiecrenirenererrcenarsereneseneseresenavenae A2
Table A-2. Original iISBC® 286/10A JUMPELS ...ccvvvvririvrnrivinierenrinisesisinessssssesssreessenss A-3
Table A-3. Original iSBC® 286/12 JUMPETSccvvrivrirvineinseiesiniesesisnssnenssessessossnrens A-4
Table A-4. Original iSBC® 286/ T00A JUMPETScccvrercrnenrirerrrererctreeserresesesseseseneseses A-4
Table A-5. Original ISBC® 386/2X/3X JUMPELS ...vvvrvrneivirieiimminireresieeasssesesssessnssnns A-S
Table A-6. Original iISBC® 386/ 100 JUINPETS ...ocoverererererieiininarerernisesesessssarsasesssesenseres A-5
Table A-7. Original iISBC® 386/116 JUMPETLS ..ccvvrrniernrnrervrsrrerorssanisssessessssssesesaseseneress A5
Table A-8. Original iSBC® 386/120 JUMPELS .c.ovcvirvvniumrervresisienerimnesssesensmsmsersrsescsesns 2=
Table A-9. Original ISBC® 208 JUMPELS.......ccccoerrmermmeremrmverrerserssssssssssssssssssississesseceoss A-5
Table A-10. Original ISBC® 214 JUMIPEIS.coormiriuimirererirerire e emseiee s A-6
Table A-11. Original iSBC® 215G JUMPELS ...covvveriverrirereresesnierssrensisie e ssssssssnssosasens A-6
Table A-12. Original iISBC® 220 JUMPETS......covviiiriiiiiseine st semssssssssassssss A-6
Table A-13. Original iSBC® 264 JUMPETS.....c...covmmiririsarersirisssis s sessssssssasssanss A7
Table A-14. Original iSBC® 534 JUMPETS.......cconrmmmmrerersmsrnsssssssesssssrsssesmsssssesssanssss 207
Table A-15. Original iSBC® 544A JUMPETScconvrvvrernrirrinsssessssssssesssesssesssasssassssssinss A8
Table A-16. Original ISBC® 546 JUMPETS..........ccovumrrirvinrsrossesiraniesrssessssesosssesesesas A-8
Table A-17. Original iSBC® 547 JUMPETS......cocovcniieieneerrneinnsinesesssisssssesesssssonssnss A-8
Table A-18. Original iISBC® 548 JUMPETS........ccovvruimmeinceimisrssrisersssssensssssssesssssssssessssosne A-8
Table A-19. Original iSBC® 188 /48 JUIMPELSc.ccvueirererieenenirereiinininisssenrsisssanessesnssens A-9
Table A-20. Original iISBC® 188/56 JUMPETScovvevererrerriresvenesesenrersnsiersosssressnsrersies A= 10
Table A-21. Original iISBC® 186/224A JUMPETS ...ccocvvrrvvrnirivrnriresmsercnmissessesenersransensnes A= 10
Table A-22. Original iISBC® 186/410 JUMPETSccvvvonicreerirnriinitiecri s nreeenssnesssronns A-10
Table A-23. Original iSBX™ 217C JUMPELSoercvecienerireineeericnssisssssssssssenssssssssssens A-10
Table A-24. Original iSBX™ 218A JUMPELS ..ot sssssenianssse o, A-11
Table A-25. Original iSBX™ 251 JUMPETSvovvrrcvvreeneirnreernesseensseieeceseseeesireeeneeeneenn A= 11
Table A-26. Original iSBX™ 350 JUMPETScorreverirerererieineererns s testess s esnesnene A-11
Table A-27. Original iSBX™ 351 JUMPEISocrererecenrcirrsnrssissssisssssssssessesssssssssannns A-11
Table A-28. Original iSBX™ 354 JUMPELScocooveerieririiiinnienessssssessss s snsssnssansanss A-11
Table B-1. iRMX® II Software Version NUmMDELSccocueereereneronsensienseneienssesses s B-1

Installation

CONTENTS (continued)

Figure 2-1. iRMX® II On-target Development Environment...........c.co.ceomm 2-2

Figure 2-2. iRMX® II Cross Development Environment

Installation

xi

1.1 INTRODUCTION

This manual provides you with instructions to install the Extended iRMX 1I Operating
System software on Extended iRMX II-based or Series-IV Development Systems. Tt also
gives you instructions on how to configure your hardware to run the Operating System if
you are building a custom system.

This chapter describes the package of materials you receive from Intel when you purchase
the iIRMX II Operating System. The diskettes you receive with the iIRMX LI Operating
System are called the Release Diskettes.

1.2 INTEL START-UP SYSTEMS

Intel provides you with four ready-to-run versions of the iRMX II Operating System,
called Start-up Systems. The Start-up Systems are provided on diskettes called the Start-
up System Boot Diskettes. You can bootstrap load the Operating System from the Start-
up Boot Diskettes on the following Intel microcomputers: the System 286/310, the
System 320, and MULTIBUS IT MDP microcomputers. After booting, these versions of
the Operating Systemn are used to install iRMX II.

Bootstrap loading the iRMX IT Operating Systcm requires the use of two diskettes. One
diskette contains only the bootloadable Operating System and the appropriate third stage.

The second diskette contains all the system commands.

Bootstrap loading from the Start-up diskettes is described later in this manaul.

1.3 INVENTORY

Your shipment of the Extended iRMX II Operating System contains a set of manuals, onc
cartridge tape and a set of diskettes. Soft-scope, a source-level debugger, and the iRMX-
NET Networking software, are sold separately.

Installation 1-1

CONTENTS OF THE EXTENDED iRMX® II PACKAGE

1.3.1 Manuals

The set of iRMX 1II manuals is in five volumes. Each volume contains separate manuals
that describe the Operating System. Table 1-1 lists the volumes and the manuals in each

volume.

Table 1-1. Extended iRMX® II Operating System Volume Set

VOLUME 1 INSTALLATION AND PROGRAMMERS'S GLIDES

Introduction To The Extended iRMX 1l Operating System
Extended iRMX {i Hardware And Software Installation Guide
Operator's Guide To The Extended iRMX 1| Human Interface

Master Index

VOLUME 2 USER GUIDES

Extended iRMX Il Nucleus Uses’s Guide

Extended iRMX |l Basic /0 System User's Guide

Extended iRMX Il Extended | /O System User's Guide

Extended iRMX Il Human Interface tser's Guide

Extended iRMX Il Application Loader User's Guide

Extended iRMX Il Universal Development Interface User's Guide
Extended iRMX Il Device Drivers User's Guide

VOLUME 3 SYSTEM CALLS

Extended iRMX il Nucleus Systern Calls Reference Manual

Extended iRMX Il Basic 1/Q System Calls Reference Manual

Extended iRMX ! Extended 1/0 System Calls Reference Manual

Estended iRMX Il Appiication Loader System Calis Reference Manual

Extended iRMX Il Universal Development Interface System Calls Reference Manual
Extended iRMX Il Human Interface System Calls Reference Manual

VOLUME 4 SYSTEM UTILITIES

Extended iRMX || System Debugger Reference Manual
Extended iRMX Il Bootstrap Loader Reference Manua!
Extended iRMX Il Disk Verification Utility Reference Manual
Extended iRMX Il Programming Techniques Reference Manual
Guide To The Extended iIRMX Il Interactive Configuration Utility

VOLUME 5 INTERACTIVE CONFIGURATION UTILITY REFERENCE MANUAL

Extended iIRMX Il Interactive Configuration Utility Reference Manual

1-2

Installation

CONTENTS OF THE EXTENDED iRMX® II PACKAGE

1.3.2 Diskettes

The iRMX II Operating System is supplied on a set of twenty flexible diskettes. The
format type available for the iRMX II Operating System is Double Sided/Double Density
5 1/4-inch iRMX-format soft-sectored diskettes. These diskettes can be read on an
iRMX II-based microcomputer or on a SERIES-IV Development System. Table 1-2 lists
the Release Diskettes that you receive from Intel.

1.3.3 Tape

The iRMX II Operating System is supplied on a single tape with the label "iIRMX II
Release 3 Operating System".

Installation 13

CONTENTS OF THE EXTENDED iRMX® II PACKAGE

Table 1-2. Inventory of Extended iRMX® II Release Diskettes

Diskette Number

Disketta Name

Release Diskette Number 1:

iIRMX Il Start-up System Boot Diskette for System 286/310 Microcomputers

Release Diskette Number 2:

iRMX |l Start-up Systern Boot Diskette for System 320 Microcomputers

Release Disketta Number 3:

iRMX 11 Start-up System Boot Diskette for iAPX 288-based MULTIBUS i

Systerns

Release Diskette Number 4;

iRMX |l Start-up System Boot Disketie for iAPX 386-based MULTIBUS I

Systems

Release Diskette Nurmber 5:

IRMX Il Start-up Systern Commands

Release Diskette Number 6:

{RMX Il Nucleus and Communication Service

Release Diskette Number 7:

iRMX 11 BIOS, EIOS, and Application Loader

Release Diskette Number B:

iRMX Il Device Drivers and Systam Debugger

Releasa Diskette Number 9:

iRMX Il Human Interface and UDI

Release Diskette Number 10:

iRMX Il Include Files and Interface Libraries

Release Diskette Number 11:

iIRMX I} ICU Screen Master

Release Diskette Number 12:

iIRMX it ICU Template and Definition Files

Release Diskette Number 13;

IRMX 1 1ICU286 and ICU wutilities

Release Diskette Number 14;

iIRMX Il Human Interface Commands, Diskette 1 of 3

Release Diskette Number 15;

iRMX Il Human Interface Commands, Diskette 2 of 3

Release Diskette Number 16:

iRMX Il Human Interface Commands, Diskette 3 of 3

Release Diskette Number 17:

iRMX Bootstrap Loader V7.0, Diskette 1 of 2

Release Diskette Number 18;

iIRMX Bootstrap Loader V7.0, Diskette 2 of 2

Release Diskette Number 19:

iRMX || Demonstration Software

Release Diskette Number 20:

iRMX 11 ICU for Series-IV

1.4 RECOMMENDATIONS

To prevent the possibility of accidentally destroying system software, you should never
remove the write-protect tabs on the release diskettes. When you have completed the

software installation, be

sure to store the release diskettes in a safe place.

Installation

3.1 INTRODUCTION

This document tells you how to use a cartridge tape to install the Extended iRMX 11
Operating System on 80286- and 80386-based microcomputers. Please read this entire
chapter before you begin the actual installation of the Operating System. If you are
installing from diskettes, refer to the next chapter for instructions.

Installing the Extended iRMX II Operating System means copying the contents of the

iRMX I tape to your system. After you have completed the installation procedure
outlined here, your system will be ready to:

» Develop and execute programs.

* Run the Interactive Configuration Utility (ICU).

3.2 THE EXTENDED iRMX® || SOFTWARE INSTALLATION

Installing the Extended iRMX II Operating System on your microcomputer involves the
following:

¢ Backing up the files on your hard disk, and optionally retaining your existing iRMX
files, if you have previously installed an operating system.

» Bootstrap loading the Operating System from the specially designated Start-up System
diskettes.

+ Executing an Intel-supplied SUBMIT file to preparc your hard disk.
¢ Installing the iRMX II Operating System.
+ Installing the latest iRMX II Update package.

» Executing Intel-supplied SUBMIT files to copy the language diskettes onto your hard
disk.

» Generating a version of the Operating System with the latest Update applied.

+ Referring to other manuals before running your system.

Installation 3-1

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® IT OPERATING SYSTEM

3.3 PREPARING FOR SOFTWARE INSTALLATION

Before you install the Operating System, make certain that all the system hardware is
working properly. Consult the Installation, Owner’s Manual, and HARDWARE AND
SOFTWARE INSTALLATION manual you received with your Intel microcomputer to
ensure that the equipment is correctly set up and your terminal is connected with the
correct cable before proceeding with this installation. Note that the terminal connected to
the CPU board in the Intel microcomputer is referred to as the "system console.” The
system console is the terminal on which the monitor displays its output and is the only
terminal from which you can bootstrap load the Opcrating System.

Once you have verified that the hardware is properly installed, inspect the diskettes you
received from Intel to ensure that you have the proper number and the proper type.
Table 1-2 lists the diskettes that you must have to install the Operating System.

One tape is required to install Extended iRMX IL.3. It is labeled "Extended iRMX I1.3
Operating System".

3.4 INSTALLING THE OPERATING SYSTEM

This section describes how to install the iRMX II Operating System onto your 80286- or
80386-based microcomputer using cartridge tape.

STEP 1: Backing Up Your Old Files

32

If you are installing the iRMX IT Operating System onto a system for the first time (that is
the system’s hard disk has never been formatted) this step does not apply to you and you
should proceed to Step 2 of the installation process.

This step applies if you have previously installed an operating system onto your
microcomputer’s hard disk and have created files of your own. Later in the installation
process, you will have the option to format your microcomputer’s hard disk. Whether or
not you choose that option, we recommend that you use the Human Interface BACKUP
command to save all of your files. This should be done now, using your present iRMX
system, hefore starting the installation process. If you are unfamiliar with this command,
refer to the Operator’s Guide to The Human Interface for descriptions of both the
BACKUP and RESTORE commands.

If you want to retain the ability to execute the iRMX II Release 2.0 Operating System

after this installation is complete, refer to the section on Retaining an Older Version of
the Operating System later in this chapter.

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® If OPERATING SYSTEM

STEP 2: The System Confidence Test

The System Confidence Test (SCT) is a power-on diagnostic routine. There are three
versions; one for System 310 Microcomputers, one for System 320 Microcomputers and
one for the iRMX MDP. Refer to the section below which describes the system you are
using.

SCT for System 310 Microcomputers

Turn on the power for your system. In about five seconds, a prompt will be displayed on
the system console consisting of a single asterisk "™, a series of asterisks, a single
lowercase "x," or a series of "x"'s depending on the version of the SCT your microcomputer
uses. Within ten seconds of the display of any of these prompts, type in uppercase "U’s"
until the SCT begins to cxccute.

When the SCT starts executing, you will see status reports displayed on the system
console. For specific information on the meaning of the reports, consult the Diagnostics
or Owner’s Manual supplied with your microcomputer,

After the SCT begins, it prompts you to enter a response to the question:

"Exit to iSDM after testing ? Enter "y" or "n" [n]

After displaying the prompt, the SCT waits for your response. Respond witha to enter
the iSDM monitor at the end of the execution of the SCT; don’t try to bootstrap load the
extended iRMX 1I Operating System yet,

Once the SCT has completed, the iSDM monitor will display

Interrupt 3 at <xzxx:yyyy>

where:
The period (".") is the prompt for the iSDM monitor.
<xxxx:yyyy > is the address where the entry into the monitor occurred.

At this point, you are ready to go on to Step 3.

Installation 33

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® IT OPERATING SYSTEM

SCT for System 320 Microcomputers

Turn on the power for your system. In about five seconds, a prompt will be displayed
consisting of a series of "x’s." Within ten seconds of the display of this prompt, type in
uppercase "U’s" until the SCT begins to execute.

When the SCT starts executing, you will see status reports displayed on the system
console. For specific information on the meaning of the reports, consult the Owner’s
Manual supplied with your microcomputer.

After the SCT has tested memory and other hardware, the SCT prompts you to enter a
response to the question:

Break to DMON-386 moniter (y or [n]} ?

Enter in response to this prompt.

or, the SCT prompts you to enter a response to the question:
Break to iSDM monitor {(y or [n])} ?

Enter in response to this prompt. If you answered "n", the Bootstrap Loader would
attempt to bootstrap load the default system from the hard disk.

At this point, the SCT has completed and it turns control over to the iSDM monitor which
will display:

Interrupt 3 at <xXXXX:yyyy>
The period (".") is the prompt for the iSDM monitor.

< XXXK:YYYY > is the address where the entry into the monitor occurred.

At this point, you are ready to go on to Step 3.

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® IT OPERATING SYSTEM

SCT for iRMX MDP Microcomputers

Turn on the power for your system. In about five seconds, a prompt will be displayed
consisting of a series of "x’s." Within ten seconds of the display of this prompt, type in
uppercase "U’s” until the SCT begins to execute.

When the SCT starts executing, you will see status reports displayed on the system
console. For specific information on the meaning of the reports, consult the Owner’s
Manual supplied with your microcomputer.

After the SCT has tested memory and other hardware, the SCT prompts you to enter a
response to the question:

Do you want to do more Testing or use DMON-386 ? Enter "y" or "a"[n] ?
Enter in response to this prompt.

At this point, the SCT has completed and it turns control over to the DMON-386 monitor
which will display:

Interrupt 3 at <xxxx:yyyy>
=

where:
The greater-than symbol (">" is the prompt for the DMQON-386 monitor.

< X0 YYYY > is the address where the entry into the monitor occurred.

At this point, you are ready to go on to Step 3,

Installation 3.5

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

STEP 3: Booting From The Start-up System Boot Diskette

Select the appropriate Start-up System Boot Diskette for your microcomputer from
iRMX 1.3 release diskettes Number 1, 2, 3, or 4. This is the diskette that you will use to
bootstrap load iRMX IL

Insert the diskette so that the label is positioned toward the door handle of the diskette
drive. The portion of the diskette on which the label is fastened is the last part of the
diskette to be inserted.

Enter the following iSDM or DMON monitor command for your system to bootstrap load
the Operating System:

(all systems except the two exceptions below)
(iSDM monitor with SCSI controller)
> (DMON monitor with 1SBC 186/224A controller)

The monitor "b" command instructs the Bootstrap Loader to load a file. When bootstrap
loading, the diskette drive is referred to by the device name ":wf0:". When no pathname is
specified, the default boot system "/SYSTEM/RMX86" is loaded. The invocation given
above instructs the Bootstrap Loader to load the default boot system from the Start-up
Systemn Boot Diskette you selected.

On completion of the bootstrap loading process, the Extended iRMX 1I Start-up System
has been loaded into memory and the system console displays the following instruction:

Insert the Start-up System Commands Diskette and type "G<cr>"

Interrupt 3 at <xxxxX:yyyy>

or

Interrupt 3 at <xxXXX:yyyy>

-

where:

< XXXXYYYY > is the address where the entry into the monitor occurred.
.or > is the monitor prompt.

Remove the Start-up Sysiem Boot Diskette from the diskette drive and insert the release
diskette Number 5 labeled "Start-up System Commands Diskette” diskette. Then enter
your monitor’s GO command, as rcquested on the system console, to complete the system
initialization process:

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® 11 OPERATING SYSTEM

<CR> (iSDM monitor)
> <CR> (DMON monitor)
On completion of the Extended iRMX II system initialization process, the system console
displays the following message:
Tk okok ok kK KKK KKk ok kK ok ko kKKK KKKk K kKKK

Extended iRMX II Release 3,0

Kokokokokokak ok ok_kokok_k_kokokokohokoh ok okok ok ook ok okok-ko%

Logon:

Enter

to logon as the system manager. Now the system prompts you for the password by
displaying the prompt:

Password:
Enter the default password for the system manager:

(This must be in all lowercase letters.)

Now the iRMX II Operating System will sign on with the banner:

iRMX II HI CLI, V3.0: USER=0
Copyright <years> Intel Corporation

Note that "super” is the name of the system manager. This is a special iIRMX user whose
user ID is 0. All installation of iRMX II files must be done while logged in as the system
manager. The system manager has access to all files used during the installation process.
This user also has Change Access rights to all iRMX files.

Next, the system prompts you for the correct date and time. Enter the date in any one of
the following three formats:

Installation 3.7

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

month/date/year (e.g., 05/15/1987)
date month year (e.g., 15 JUN 1987)
date month year (e.g., 15 JUNE 1%87)

After entering the date, the system echoes the information and prompts you for the time.
Enter the time in the format HOURS:MINUTES:SECONDS (e.g.,, 15:20:00). You can
omit the minutes and seconds fields; the system sets them to zero. The system responds
by echoing the entered time.

After the date and time are entered and echoed, the system executes a command file
named :prog:alias.csd. This file will define the following aliases for your convenience:

alias command name

a ALIAS

ad :sd:sys286/attachdevice

adf :8d:5ys286/attachdevice wmf0 as :f:
aed :lang:aedit

af :sd:sys286 fattachfile

bk BACKGROUND

crdir :sd:sys286/createdir

dd :3d:3ys286/detachdevice

df :sd:s5ys286/detachfile

h HISTORY

install submit :config:cmd/instal{wmf0)
logs :sd:sys286/logicalnames

Is :sd:sys286/dir $ sort

Ipr BACKGROUND(100,100) copy #0 to :lp:
mksys submit :configicmd/mksys(#0)
pmw :sd:sys286/permit #0 drau u=world
sh :5d:sys286/shutdown w=0

iRMX IT HI Command Line Interpreter (CLI) commands are indicated in upper case
characters. After the aliases are echoed to the console, the system displays the lines:

END SUBMIT :prog:alias.CSD

END SUBMIT :prog:r?logon

The iRMX II system is now ready to execute your commands.

3.8 Installation

2.1 INTRODUCTION

The development of an Extended iRMX II-based application system requires several
hardware and software components. Some of these components are always required and
others are a function of the particular application system. Figures 2-1 and 2-2 show
typical development hardware environments.

Figure 2-1 shows the easiest way of developing your application system. In this method,
you develop your application on a System 300 Series or MDP Microcomputer. With such
a microcomputer, your development and target systems are the same. This type of
development environment is referred to as "On-target Development”.

Installation 2-1

THE EXTENDED iRMX® II DEVELOPMENT ENVIRONMENT

Figure 2-1. iRMX® II On-target Development Environment

Figure 2-2 illustrates a second way of developing your application system. A second
IRMX I1-based system or the Series-IV Development System is used to develop the
application software. The application system must be down-loaded to the target system
where the application actually runs. This type of development environment is referred to
as "Cross Development”. The figure shows devices that are commonly attached to the
target system; however, you can also attach other available devices.

22 Installation

THE EXTENDED iRMX® II DEVELOPMENT ENVIRONMENT

DISKETTES

DISKETTE 1AICE ™

DRIVE I l—‘

HARD DISK . on
. i
CAar ﬁ.- - H
KEYBOARD

DEVELOPMENT
SYSTEM

MAGCESSORN BOAND —.
"

CPU
SOCKET s

SECOMNDARY STORAGE
CONTROLLER

MULTIBUS*
CONNECTOR

T — MEMORY BOARDS)

TARGET
--— SYSTEM
CHASSIS

SECONDARY
STORAGE x-260B
DEYICE

Figure 2-2. iRMX® II Cross Development Environment

2.2 GENERAL REQUIREMENTS

To develop your iRMX 1I-based application, you need one of the following environments:

¢ AniRMX II-based System 300 Series or MDP microcomputer (development and

target system are in one package). A custom built iIRMX II microcomputer may also
be used. This type of development environment is called "On-target development”.

o A development system and a separate target system. This type of development
environment is called "Cross development”.

Installation

2-3

THE EXTENDED iRMX® [I DEVELOPMENT ENVIRONMENT

These sets of equipment are discussed in the following sections.

2.3 ANIRMX® Il SYSTEM AS YOUR DEVELOPMENT AND TARGET
SYSTEM

One method of developing your iRMX II application system is to use a development
system (the iIRMX II Operating System) and a target system contained in one package.
Intel provides the System 300 Series and the MDP microcomputers for on-target
development. With Intel microcomputer systems, you can develop and test iRMX IT
application programs in an iRMX I development environment.

The Start-up Systems supplied with iRMX I are specifically designed to be run on System
300 Series and MDP MULTIBUS II microcomputers. This affords you the quickest
method for starting the development of your application system.

Another method of developing your iIRMX II-based application system is to build your
own iRMX Il-based system. Using the system you build, you can develop your application
in an iRMX II Operating System environment. To use this mcthod, you need the
following equipment for your development system:

* An Intel single board computer (iSBC) based on the 80286 or 80386 microprocessor.
» A flexible diskette controller with at least one 5 1/4-inch drive.

» A hard disk drive and controller.

* A terminal connected to the serial line on your single board computer.

» A chassis/cardcage/power supply unit.

» The Bootstrap Loader in PROM and a monitor in PROM.

* At least one Megabyte of RAM.

» The iRMX I1.3 Operating System and languages.

2.4 USING SEPARATE DEVELOPMENT AND TARGET SYSTEMS

A second method of developing your iRMX II-based application system is to use a
development system on which to develop your software and a separate target system on
which to run your application. To use this method, you must have the following software:

» The ASM286 Macro Assemblcr, the PL/M-286 compiler and the iAPX 286 Family
Utilities.

o RMXII Release Diskettes.

You must have one of the following development systems:

Installation

THE EXTENDED iRMX® II DEVELOPMENT ENVIRONMENT

iRMX II-Based Development System

« The requirements are the same as were described earlier when your development and
target systems are the same system.

INTELLEC Series-1V Development System

¢ INTELLEC Series-IV Development System with CRT, keyboard, at least one flexible
diskette drive, one hard disk drive, and 128K-bytes of RAM.

o A diskette containing the INDX Operating System (version 3.2 or later) for the Series
Iv.

Additionally, you must have a target system consisting of the following equipment:

e An 80286- or 80386-based microprocessor as the basic element of the application
system,

« A chassis to supply power to the processor board(s) and any other system boards.

« Enough memory to contain the Nucleus, selected subsystems, and your application
jobs. Most application systems require at least one Megabyte of RAM.

« If your application uses the Application Loader, the Human Interface, or the
Bootstrap Loader, you must have secondary storage device(s) and appropriate
controllers.

If you configure all of your software with an iRMX II-based Development System, you can
use the following product to transfer code to the target system RAM for execution:

» The iSDM Monitor (Release 3.0 or newer.)

If you configure all of your software with a Series-IV Development System, you can use
any of the following products to transfer code to the target system RAM for execution:

» The :SDM Monitor (Release 3.0 or newer.)
+ The I?ICE In-Circuit Emulator.

The IICE In-Circuit Emulator and the iSDM Monitor transfer code from a secondary
storage device on an Series-1V Development System, while the Bootstrap Loader, used in
On-target development, transfers code from an iRMX II secondary storage device. The
Bootstrap Loader is a much faster way to load the application system than either the
IICE In-Circuit Emulator or iSDM monitor.

After you have tested the code, you can burn it into PROM and place the PROM on the
target system to eliminate using the I2ICE emulator or the iSDM Monitor to load the
code.

Installation 2-5

THE EXTENDED iRMX® II DEVELOPMENT ENVIRONMENT

2.5 APPLICATION-DEPENDENT REQUIREMENTS

You may need additional hardware for your target system, depending on your application
requirements. If your application includes an I/O System and you intend to use named or
physical files, place at least one controller board in the chassis with the processor board.
(Series 300 systems already contain the needed controller board(s).) You can use any of
the following I/O and terminal controller boards:

1/0O Controllers Terminal Controllers
iSBC 214 iSBX 351

ISBC 215G /iSBX 218A/iSBX 217C iSBX 354

iSBC 220 iSBC 534

1ISBX 251 iISBC 544A

iSBC 264 1ISBC 546

1ISBC 208 ISBC 547

iSBC 186/224A ISBC 548

iSBX 350 (line printer) iSBC 188/48

iSBC 188/56
iSBC 186,410

NOTE

You can use controller boards other than those discussed in this section,
but you must write the device drivers for them. The controller boards
discussed in this section are the only ones for which Intel supplies device
drivers,

Connect the controllers to their associated secondary storage devices. If only stream files
are used, the I/O System can be used without a controller board.

Connect an RS-232C interface terminal to the serial I/O port of the processor board or
terminal controller board if your application includes any of the following layers: the
Basic 1/0 System, the I/O System, or the Human Interface. One or more of the following
terminal controller drivers must be configured into the Basic I/O System: 8251A, 8274,
82530, iSBC 534, iSBC 544A, , iSBC 186/410 or the Terminal Communications Controller
(TCC) driver. The TCC driver is used with the iSBC 546, iSBC 547, iSBC 548,

ISBC 188/48 and iSBC 188/56 terminal controller boards.

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® 11 OPERATING SYSTEM

STEP 4: Installing the iRMX Il Software

This step explains how to install the iRMX II software from cartridge tape to your
system’s hard disk. This step executes a SUBMIT file that performs all of the steps of
installing the iRMX IT files to your hard disk.

Two installation options are provided:

Option Action
A, Format your microcomputer’s entire hard disk
B. Format only Track 0 of the hard disk with the second stage of the iIRMX II

Bootstrap Loader

In the description of each option, you will read reasons for selecting that option. Betore
executing either option, insert the tape cartridge into the drive.

To do this, first remove the tape from the protective box. Next, grasp the tape cartridge
by the end nearest the write-protect switch (labelled "SAFE"). Insert the tape into the
tape drive with the write-protect switch nearest the drive’s door handle. Push the tape
cartridge in until it shifts slightly and does not eject when you release it. Move the drive’s
door handle toward the tape to the locked position.

OPTION A: Formatting Your Microcomputer’s Entire Hard Disk Drive

You should choose this option if:

» You have a new microcomputer system that has nothing on the hard disk. All new
Intel systems are shipped with unformatted (empty) hard disks.

¢ You wish to use the RESERVE feature of the Human Interface FORMAT command.
This feature is used to create a copy of the maps that the iRMX II Operating System’s
uses to find keep track of your data. This copy is used if the working copy becomes
corrupted. Corruption of a computer’s file structure can be caused by power failure or
other equipment failures.

The Intel-supplied SUBMIT file that you execute to format a hard disk automatically
specifies the RESERVE feature. Refer to the Operator's Guide To The Extended
IRMX Il Human Interface manual for details on the RESERVE feature of the
FORMAT command.

+ You have already backed up this disk and want to rebuild your file structure. The
process of backing up your files, formatting the disk, and then restoring your files will
improve the disk’s file structure, which can become fragmented during normal usage.
Fragmentation occurs when files are deleted, freeing space on various sectors;
subsequently, when new files are created, this free space is used by placing parts of
new files in them. This can cause the disk to spend a large amount of time seeking to
the location where the next part of a file is located.

Installation 3.9

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® 1T OPERATING SYSTEM

Step 1 of the Software Installation process contains information on how to backup
your system.

The following Intel-supplied SUBMIT commands will format the entire hard disk. Type

in the following command using Tables 3-1, 3-2, and 3-3 to fill in the three parameters.
(et v }/ 4 Tt

i
P

where:

device is the physical name of your hard disk. Refer to Table 3-2 for the
appropriate physical device names for hard disks used in Intel
microcomputers. Note that the device name is not a logical name
so it does not have colons surrounding it.

interleave varies depending on the type of controller and hard disk you are
using. Refer to Table 3-1 for the appropriate interleave value.

files is the maximum number of files you want to be able to create on
your hard disk. This number depends on your application. A good
rule of thumb is, if the microcomputer is to be used for
development purposes, specify 125 files per megabyte of your hard
disk’s capacity. Thus, a 40 M-byte hard disk can reasonably be
formatted to contain 5000 files. However, if the number of files
needs to be changed later, you will have to backup your files and
reformat your hard disk.

Table 3-1. Interleave Values

Controfler 5 1/4-inch Peripherals 8-inch Peripherals

iSBC 214 Interieave is 1 -
iSBC 215G Interleave is 4 Interleava is §
iISBC 186/224A interleave is 1 -

SCSI Interface Interleave is 4 -

3-10 Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® Il OPERATING SYSTEM

Examples of Option A, Formatting the Entire Hard Disk
Remember! You must insert the cartridge tape before invoking this command.

A valid command to use for a microcomputer containing a Quantum Model Q540 hard
disk configured as unit 0 controlled by the iSBC 186/224A or the iSBC 214 board would
be:

SUBMIT :TAPE:FORMDISK(QMAC, 1, 5000) <CR>

A valid command to use for a microcomputer containing a Maxtor Model XT-1140 hard
disk configured as unit 0 controlled by the iSBC 186/224A or the iSBC 214 board would
be:

SUBMIT :TAPE:FORMDISK(MMAO, 1, 17500) <CR>

A valid command to use for 4 microcomputer containing a Toshiba Model MK56FB hard
disk configured as unit 1 controlled by the iSBC 215G board would be:

SUBMIT :TAPE:FORM DISK(TMAL, 4, 10625) <CR>

After the formatting of the hard disk is complete, the FORMAT command will issue a
summary of the alternate tracks it assigned on the hard disk. Most hard disks contain bad
tracks when they are delivered from the manufacturer so this is a normal condition, and
assigning alternates is the method iIRMX II uses to compensate for bad tracks. The
message printed starts with the line:

The following tracks have been assigned an alternate:

{disk information}

Next, the DISKVERIFY command is executed to check the formatting of the hard disk.
Following the DISKVERIFY command, the FORM _DISK.CSD SUBMIT f{ile contains a
series of the character 'y’. The 'y’ is placed in the SUBMIT file to respond to any queries
the DISKVERIFY command may issue. If the DISKVERIFY command does not make
any queries, the error message ’illegal command’ is issued which has no effect on the
installation process. You should ignore this error message.

The iRMX I files will be added to your system from the tape automatically when the
SUBMIT file invokes the Human Interface RESTORE command.

Installation 313

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED lRMX® IT OPERATING SYSTEM

OPTION B: Formatting Only Track 0 of Your Hard Drive

3-14

This option formats only track zero of your system’s hard disk and then places the second
stage of the Bootstrap Loader on this track. No files on the disk will be affected by this
option. You should choose this option if your disk was formatted using iRMX 286
Release 2.0 or iRMX 86 Release 7.0.

Note that you can also boot load the iRMX 286 Release 2.0 or iRMX 86 Release 7.0
Operating System from the same hard disk using the new second stage.

In selecting this option, you obtain the capabilities of the Bootstrap Loader’s DEBUG
switch. Refer to the Extended iRMX II Bootstrap Loader Reference Manual for details on
the DEBUG switch.

Remember! You must insert the cartridge tape before invoking this following command.

To format only track 0 of your hard disk and install the Release 3.0 files, type the
SUBMIT command below:

where:

device name is the physical name of your microcomputer’s hard disk. Refer to
Table 3-2 for the appropriate physical device names for hard disks
used in Intel microcomputers. Note that the device name is not a
logical name so it does not have colons surrounding it.

This SUBMIT file will ensure the system manager has full access to the directories and
files affected by the installation process. It will also rename the following iRMX 286 R3.0
directories and then will re-create them for Release 2 installation:

Release 2.0 Name Renamed to
SD:SYS286 :SD:SYS286 R2
SD:RMX286 :SD:RM X286 R2
:SD:USER SD:USER_R2
:SD:BOOT SD:BOOT R2

This is done as a precautionary measure to avoid inadvertantly modifying any of your
existing files. A later section describes how to merge the contents of the renamed
directories with the newly created directories.

Performing this option will cause the DISKVERIFY command to be invoked using the

"FIX" option. The "FIX" option automatically upgrades the file structure by including
accurate checksums for each file.

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

As the DISKVERIFY utility executes, it will correct discrepancies it finds on the hard
disk. Refer to the Extended iRMX II Disk Verification Utility Reference manual for
information on the meaning of these messages. If your hard disk was previously
formatted using the iIRMX 86 Release 7 or iRMX 286 Release 1 Operating System, this
SUBMIT file will compute checksum values for the file structure on the disk. When this
occurs, the following message, indicating that corrective action has been taken, will be
repeatedly printed to the screen.

FILE=(file name, fnode):LEVEL=level:PARENT=parent:TYPE=type
Bad Checksum : value, Should Be : checksum ... FIXED

Following the DISKVERIFY command, the FORM_TRK0.CSD SUBMIT file contains a
series of the character y’. The 'y’ is placed in the SUBMIT file to respond to any queries
the DISKVERIFY command may issue. If the DISKVERIFY command does not make
any queries, the error message 'illegal command’ is issued which has no effect on the
installation process. You should ignore this error message.

This option saves the old version and temporarily creates new versions of the system
configuration files :CONFIG:TERMCAP, :CONFIG: TERMINALS, :CONFIG:UDF and
all the :CONFIG:USER/ < user_name:> user configuration files.

Your old iRMX files now exist in the /RMX286 R2 directory. You may wish to generate
Release 2 versions of the Operating System. Refer to Retaining An Older Version of the

Operating System for instructions on how to do this.

The iRMX I files will be added to your system from the tape automatically when the
SUBMIT file invokes the Human Interface RESTORE command.

Installation 3-15

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

STEP 5: Copying The Boot System Onto The Hard Disk

The last command in the INSTALL file, from the previous step, switches the system
device from being the tape drive to the hard disk and restarts the system. The system
device is the device from which the Operating System reads its commands. When you
invoked the SUBMIT file "FORM_DISK.CSD" or "FORM_TRKO.CSD", it was read from
the Start-up System Commands diskette. Now the system will re-initialize and future
commands will be read from the hard disk. You must again logon to the system specifying
the name "super” and the password "passme” when prompted for them. You will be
prompted to resct the date and time again. In any system that has a Global Clock (as on
the iSBC 546 or MULTIBUS II iCSM boards) the date and time have not been set yet.

To set the DATE in the Global Clock, type:

date <date> global <CR>
where:

<date> has the form described in Step 3.
To set the TIME in the Globa] Clock, type:

time <time> global <CR>
where:
<time> has the form described in Step 3.

In this step you will install a bootable version of the Operating System on your hard disk.
The default boot system will be changed during this installation. This file has the
pathname "/SYSTEM/RMX86.286". You must either rename the default boot
system (e.g. /system/rmx286r2.286) or rename the /SYSTEM directory. If you
choose the first method, be sure to also rename the iRMX 286 third stage (e.g.
/system/rmx286r2) to match the boot system name. If your boot system is in the
/BOOT directory, it will be saved when the /BOOT directory is renamed.

Remove Release Diskette Number 5 and re-insert Diskette Number 1, 2, 3, or 4. Use the
same diskette that you used to boot the system in Step 3. Enter the following command:

The command "INSTALL" is the alias for the HI command invocation "SUBMIT
:CMD/CONFIG:INSTAL(WMF0)".

3-16 Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® IT OPERATING SYSTEM

The parameter "WMFQ" is the physical device name of the diskette drive and is
appropriate for the System 310 and 320 microcomputers. Use "WMF(" on MDP systems
using the iSBC 186/224A controller. If you are installing from a diskette that is not
named "WMF0", you must issue the full command invocation, specifying the correct
device name for the diskette drive. Use "SMF0" on systems using the SCSI interface.

The :CONFIG:CMD/INSTAL.CSD file attaches and detaches the diskette drive for you
automatically. It is commonly used to install the contents of Release Diskettes onto the

iRMX II system. It requires that the diskette whose contents are being installed contains
a SUBMIT file named "INSTAL.CSD".

As the SUBMIT command copies the iRMX II boot file to the hard disk, a series of
messages appear. If the system encounters an error during the process, it displays an
error message but does not stop; the system will continue executing the SUBMIT
command until it reaches the end of the command.

When the system displays an error message, stop the system by typing a CONTROL-C,
detach the diskette drive by typing: DD :F:<CR> and correct the fault. For example,
errors can be caused by inserting the diskette incorrectly. After entering the CONTROL-
C, detach the diskette drive, remove the diskette, reinsert the diskette correctly, and enter
the SUBMIT command again.

Also, if you are not logged on as the system manager, access rights to files may cause
errors. After entering the CONTROL-C, detach the diskette drive and logoff. Then
logon as the system manager, correct the access rights and enter the SUBMIT command
again while logged on as the system manager. Remember, you should always install files
on your iRMX II system while logged on as the system manager.

Installation 3-17

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX

® 1 OPERATING SYSTEM

STEP 6: Installing The Language Utilities

3-18

The next step is to install the iRMX II Language Ultilities, supplied in a separate box from
the rest of the iIRMX II Operating System.

Before beginning the installation of the language utilities, check that you have these
diskettes:

L.
2

e A ol

10.
11.

iAPX286 BINDER AND LIBRARIAN FOR iRMX II-BASED SYSTEMS 1 OF 5

iAPX286 MAPPER AND OVERLAY GENERATOR FOR iRMX II-BASED
SYSTEMS 2 OF 5

iAPX286 SYSTEM BUILDER FOR iRMX II-BASED SYSTEMS 3 OF 5
iAPX286 MACRO ASSEMBLER FOR iRMX [I-BASED SYSTEMS 4 OF 5
80287 SUPPORT LIBRARY FOR iRMX II-BASED SYSTEMS 5 OF 5
PL/M-286 COMPILER FOR iRMX II-BASED SYSTEMS

iAPX86 UTILITIES PACKAGE FOR iRMX II-BASED SYSTEMS 1/2
iAPX86 UTILITIES PACKAGE FOR iRMX II-BASED SYSTEMS 2/2
iAPX86 MACRO ASSEMBLER PACKAGE FOR iRMX II-BASED SYSTEMS
PL/M-86 COMPILER FOR iRMX II-BASED SYSTEMS

iIRMX IT AEDIT Text Editor

The Soft-Scope source-level debugger is supplied in a separate package. The installation
procedure for the Soft-Scope debugger is described in the Soft-Scope manual.

To copy the IRMX II Language Utilities, insert each diskette into the diskette drive and
enter the following command:

Where:

device name is the physical name of the diskette drive. The parameter "WMF("

is the physical device name of the diskette drive and is appropriate
for the System 310 and 320 microcomputers. Use "WMF(" on
MDP systems using the iISBC 186/224A controller. If you are
installing from a diskette that is not named "WMF(", you must
issue the full command invocation, specifying the correct device

name for the diskette drive. Use "SMF0" on systems using the
SCSI interface.

This SUBMIT file will attach and detach the diskette drive for you automatically.

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® 11 OPERATING SYSTEM

Again, if the system displays an error message, stop the system by typing a CONTROL-C,
detach the diskette drive by typing "DD :F:" and correct the fault. Then re-invoke the
SUBMIT file.

Once you have installed all the language diskettes, enter the following command:

This SUBMIT file copies the various libraries supplied with the languages you have just
installed to the appropriate directories.

INSTALLING THE iC-2 MPILER

To install the iC-286 compiler, Intel provides two SUBMIT files. To install the contents
of the first iC-286 diskette, insert disk 1/2 and type:

To install the contents of the second iC-286 diskette, insert disk 2/2 and type:

INSTALLING THE FORTRAN-286 COMPILER

To install the Fortran-286 compiler, Intel provides two SUBMIT files. To install the
contents of the first Fortran-286 diskette, insert disk 1/2 and type:

To install the contents of the second Fortran-286 diskette, insert disk 2/2 and type:

INSTALLING THE PASCAL-286 COMPILER

To install the Pascal-286 compiler, Intel provides three SUBMIT files. To install the
contents of the first Pascal-286 diskette, insert disk 1/3 and type:

Installation 319

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® 11 OPERATING SYSTEM

To install the contents of the second Pascal-286 diskette, insert disk 2/3 and type:

To install the contents of the third Pascal-286 diskette, insert disk 3/3 and type:

3-20 Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® I OPERATING SYSTEM

STEP 7. Preparing The AEDIT Editor For Use With Your System

If you use Intel’s Aedit text editor, your system must contain a macro filc named
AEDIT.MAC. This macro file must be located in either the directory :LANG: (logical
name for the directory which has the pathname /LANG286) or the directory :HOME:.
The purpose of this macro is to define the attributes of your terminal to Aedit. Intel
provides a number of macro files that at this point have been installed in the :LLANG:
directory. These macro files are named for the type of terminal that they define (For
example, VT100.mac defines the VT100 terminal.)

Enter;

The system displays the files located in the :LANG: directory with the . MAC extension.
Locate one that matches the type of your terminal. If you are not sure what terminal a
macro defines, you can use the COPY command to print the macro on the system
console. Each macro starts with a comment giving the full name of the terminal.

Once you have located the macro that defines your terminal, assuming you are still in
SUPER mode from the previous step, type:

When this command completes, you can use AEDIT as the user "world". You should
always be the system manager when you manipulate system files.

In cases where there is no macro that defines your terminal, first check to see if your
terminal can emulate one of the terminals for which a macro is supplied. If this fails, you
must write your own macro. Refer to the AEDIT manual included in the languages
package for information on writing macros.

If you are installing the iRMX II Operating System on a microcomputer which will host
multiple users (will be multi-user), you can copy the appropriate AEDIT macro file into
each user’s :HOME: directory, This will allow the AEDIT editor to be invoked by users
who have different types of terminals. In this case, there should be no copy of

AEDIT.MAC in the :LANG: directory.

Installation 3-21

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® 11 OPERATING SYSTEM

STEP 8: Installing iRMX Networking Software

3-22

Intel provides the iRMX Networking Software product (iRMX-NET) for use in building
Ethernet-based Local Area Networks (LANs). iRMX-NET allows extended iRMX II
systems to share files with other extended iRMX II systems as well as iRMX 86, Xenix,
INDX, MS-DOS and VAX/VMS systems. If you are not installing the iRMX-NET
Software, proceed to the next step.

If you have previously installed iRMX-NET and you chose the "Format Track Zero"
option of Step 4 your iRMX-NET files have been saved. They now reside in a different
directory than prior to this installation. This is a normal function of the "Format Track
Zero" option of Step 4. You must install the iRMX 1I Update and execute the
RMXMRG.CSD SUBMIT file described in the next step.

The information beyond this point is for users who are installing iRMX-NET for the first
time or are installing a new release of iRMX-NET.

To install the iRMX-NET Networking Software, refer to the iRMX-NET Networking
Software User’s Guide which contains a description of the product and how to install it on
System 300 Series Microcomputers. You can use the alias command 'INSTALL’ to install
the iRMX-NET files. After completing the iRMX-NET installation, return to the next
step in this manual. Do not try to generate a version of the extended iRMX II Operating
System which includes the IRMX-NET software at this time.

Note that the definition files supplied with IRMX-NET are very similar to those supplied
with the iRMX 1l Operating System. But since they are released at different times, the
iRMX-NET definition files may indicate that they do not match the version of the ICU
when the ICU is invoked. This is normal,and you must use the ICU Restore feature to
upgrade the definition files. (This Restore feature is not the HI RESTORE command.)
Refer to the Guide To The Extended iRMX I Interactive Configuration Utility for details on
the Restore feature of the ICU.

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

STEP 9. Installing The Update Package

An important phase of installing the iRMX II Operating System is the installation of the
current iRMX II Update Package. You must perform this step even if you are instailing a
new release of the operating system. The update package is Intel’s mechanism for fixing
any software problems identified in the current version of the software. If you do not
apply the update, you will be working with an outdated version of the iIRMX II Operating
System.

The Update Package accompanies all the shipments of the iRMX II Operating System.
(The Update Package is shipped in a separate box.) Each Update consists of one or more
Update Diskettes, an Update Instaliation Guide, Update change pages to the manual set
and a customer letter.

The Update Diskette contains all of the fixes (ZAPs) to be applied to the iRMX I1
Operating System. The diskette is labeled:

"RMXII UPxRy.z "

where

X is the release level of the Update Package
y.2Z is the release level of the Operating System

The Update Installation Guide contains both detailed descriptions of each fix (ZAP) and
detailed instructions on how to install the Update Package.

To install the Update to your system, find the Update Package, which is shipped in a
separate box from the iRMX II Operating System, and follow the instructions in the
Update Installation Guide. Also, make certain to read the Update Package Customer
Letter for additional information on the Update Package.

Installation 3-23

Cartridge Tape Installation of Extended iRMX® II Operating System

STEP 10: Combining Directories when Upgrading to Release 3.0

If you invoked the FORM_DISK.CSD SUBMIT file in Step 4 (you formatted your entire
hard disk), this step does not apply to you. Proceed to the next step.

Upgrading From iIRMX® 286 Release 2.0

The following command combines the required files from iRMX 286 Release 2.0 into this
release of the iRMX II Operating System. To perform this step, type the following
command:

Upgrading From iRMX® g6 Release 7.0

If you are upgrading to iRMX II from iRMX 86 Release 7.0, type the following command
to combine the required files from iRMX 86 directories inta the iRMX II directory
structure:

If you are upgrading 1o IRMX II from an carlier IRMX release, there are no files to
merge and you should proceed to the next step.

3-24 Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

STEP 11: Generating An Updated Version Of The Operating System

Now that you have installed the latest Update, you will gencrate an updated version of the
Operating System. The version of the Operating System you loaded from the Start-up
system Boot Diskette was generated from the original iRMX II libraries and, as such,
does not contain any enhancements or corrections to problems. (Note that the version
you generate in this step contains the System Debugger, the Start-up System does not).

Logoff from the system by typing:

-LOGOFF <CR>

The logon banner and prompt will be displayed. Now log back on to the system using the
name "world" and a carriage-return for the password. It is not necessary to be the system
manager to generate a configuration of the Operating System. You will be prompted to
reset the date and time again. If your system contains a Global Clock, the date and time
are still correct. Respond with "e" (EXIT) to leave the date and time at their current
values.

Select an ICU definition file from those provided with iRMX I1. Choose the default
definition file which matches your microcomputer from those listed below.

ICU Definition File CPL Boards Supported
28612.DEF 1ISBC 286/10(A), iISBC 286/12
38620.DEF iSBC 386/2x, iSRC 386/3x

286100A.DEF ISBC 286/100A
386100.DEF 1ISBC 386/116, iSBC 386/120

To generate the IRMX II Operating System, you will select the example commands that
match your system. These examples follow the explanation below.

"boot_file name" is the name of an ICU definition file without the .DEF extension. The
ALIAS "CRDIR" is created for the HI command ":SYSTEM:CREATEDIR". Typing this
alias will create a directory in which to generate an Updated system. The system
generated is specified by the ICU definition file you select. The command "AF" is the
alias for the HI command ":SYSTEM:ATTACHFILE". Typing these commands will
create a directory for the system generation underneath your :HOME: directory and
attach it as your current default directory.

Installation 325

(DARTTU[NSE'RAPEIDH?RKLLATICEU(Hf]TUﬁthFEhﬂDEI)ﬂUMD€®]Tl)PEHlAT[NC}SYSTFmd

3-26

The command "MKSYS" is the alias for the HI command invocation SUBMIT
:CONFIG:CMD/MKSYS(#0). The #0 parameter in the MKSYS alias command
receives the "boot_file_name". This convention of using the same name for the generation
directory, definition file and created system is helpful if you generate several systems
during the development of your application.

The Bootstrap Loader requires both a third stage and the Operating System itself in order
to bootstrap load. The MKSYS command copies a third stage, which has a name that
matches the "boot_file name” used in the MKSYS invocation, from the directory
/RMX286/BOOT to the directory /BOOT. The installation process places third stages
with the following names in the directory /RMX286/BOOT: 28612, 38620, 2861004,
SXM386, and 386100.

If you invoked the FORM_TRKO0.CSD SUBMIT file in Step 4, you will probably have a
directory in your :HOME: directory with a name identical to the one you will create next.
Rename this directory now by typing:

An example of doing this, assuming that your system contains an iSBC 28612 processor
hoard is:

RENAME 28612 to 28612 r2

I your processor board is the iSBC 286/10(A) or the iSBC 286/12 in a System 286/310
Microcomputer, select the 28612 DEF definition file and type:

-CRDIR 28612 <CR>
-AF 28612 <CR>
-MKSYS 28612 <CR>

This will create a new version of the iIRMX II System named "/BOOT/28612.286". The
MKSYS command will also make a copy of the Bootstrap Loader third stage appropriate
for the new version of the Operating System named "/BOOT/28612".

If your processor board is the iISBC 386,/2x or iSBC 386/3x, select the 38620.DEF
definition file and type:

-CRDIR 38620 <CR>
-AF 38620 <CR>
-MKSYS 38620 <CR>

This will create a new version of the iRMX II System named "/BOOT/38620.286". The

MKSYS command will also make a copy of the Bootstrap Loader third stage appropriate
for the new version of the Operating System named "/BOOT/38620".

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® Il OPERATING SYSTEM

If your processor board is the iSBC 286/ 100A, select the 286100A.DEF definition file and
type:

-CRDIR 286100A <CR>
-AF 286100A <CR>
-MKSYS 286100A <CR>

This will create a new version of the iRMX II System named "/BOOT/286100A.286".
The MKSYS command will also make a copy of the Bootstrap Loader third stage
appropriate for the new version of the Operating System named "/BOOT/286100A",

If your processor board is the iSBC 386/100/116/120 type:

-CRDIR 386100 <CR>
-AF 386100 <CR>

-MKSYS 386100 <CR>

This will create a new version of the System named "/BOOT/386100.286". The MKSYS
command will also make a copy of the Bootstrap Loader third stage appropriate for the
new version of the Operating System named "/BOOT/386100".

Execution of MKSYS may cause the main screen of the ICU to scroll several times. This
is expected and does not indicate a problem.

After the MKSYS command completes, check the file, <boot file name>.out, for any
errors that may have occurred during system generation. There are two methods of doing
this check, you can use AEDIT if you installed it, or you can use the Human Interface
COPY command. To use the COPY command, type:

You can use CONTROL-W to page through the file; each time you enter CONTROL-W
your display will scroll one screen. Entering a CONTROL-Q exits this scrolling mode.
CONTROL-S can also be used to halt the file during printing to the terminal,
CONTROL-Q resumes printing to the terminal. Any errors indicate a problem. A
complete listing of a generation output file is shown in the Guide To The iRMX II
Interactive Configuration Unility.

Do not invoke the MKSYS command after you have successfully used it once to generate
the Operating System. Instead, use the local copy of the definition file created for you by
the MKSYS command. This version of the definition file can be the starting point to
develop your custom application system.

Installation 3-27

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED lRMX® IT OPERATING SYSTEM

You can create an ALTAS that makes invoking the ICU easier. To do this, use your
editor to add the following line to your :PROG:ALIAS.CSD file:

To initialize the new ALIAS, type:

After doing this you can invoke the ICU by typing:
icu <pathname>/<definition file> DEF <CR>
If you do not add this ALIAS, when you invoke the ICU, type:

/RMX286/ICU/ICU286 <pathname>/<definition file>.DEF <CR>

<pathname > is the optional directory pathname.

You can also use an ICU definition file that you created in Release 2.0 of the iRMX 286
Operating System with the Release 3.0 ICU.

3-28 Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

STEP 12: Booting The Operating System From A Hard Disk

After the system has executed the SUBMIT command described in Step 11, the hard disk
contains a version of the iRMX IT Operating System suited to your CPU board. To test
this version of the Operating System, you must shutdown the system properly by invoking
the SHUTDOWN command. To do this, invoke the SUPER command and enter the
password ’'passme’ when prompted. This causes you to become the system manager
without logging on as the user "super”. Type:

Respond with the password ‘passme’ to the password prompt. Now, type:

The command "SH" is the alias for the HI command invocation mSYSTEM:SHUTDOWN
Ww=(". After the SHUTDOWN command displays its shutdown complete message, reset
the system by pressing the RESET button or turning the RESET switch on the front panel
of your microcomputecr.

The SCT, described earlier, starts executing, enter an uppercase U in response to the x’s
being printed on the screen. When your system console displays the monitor prompt,
enter one of the following monitor commands to bootstrap load the newly created version

of the Operating System:

iSDM Monitor
> DMON-386 Monitor
where:

<boot_file name> is the same name you used in Step 11 which reflects the particular
CPU board in your microcomputer.

If you used the definition {ile, 28612.DEF, type: b /boot /28612

If you used the definition file 38620.DEF type: b /boot /38620

If you used the definition file SXM386.DEF type: b /boot/sxm386

If you used the definition file, 286100A.DEF, type: b /boot/286100A.

If you used the definition file, 386100.DEF, type: b /boot/386100.

Installation 3-29

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

3-30

Once the Operating System bootstrap loads and signs on, it indicates you have successfully
generated a version of the Operating System. The logon banner and prompt will be
displayed. Now log back on to the system using the name "world" and a carriage-return
for the password. You will also be asked to set the date and time again. If you do not
wish to do this again, respond with "e"” when asked to enter the values.

Once you are satisfied with the new system, copy the new version of the system over the
previous version. To do this, you must invoke the SUPER command and enter the
password ’passme’. Now, type:

where:

<boot file name> is the same name you used in Step 11 to generate the Operating
System.

1f you do not specify a path name when entering the iSDM or DMON boot command, the
Boatstrap Loader will load the default boot system. The pathname /SYSTEM/RMXS86 is
the default pathname for the Bootstrap Loader.

Note that a valid Bootstrap Loader third stage is provided in this step. When you create
your own systems, you must remember to copy the correct third stage to the /BOOT path.

For a detailed description of the standard definition files, refer to Chapter 6.

Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® II OPERATING SYSTEM

STEP 13: Retaining an Older Version of the Operating System

This step is intended for users who chose the "Format Track Zero" option of Step 4. If
you did not choose this option, skip this step. It explains how to move your renamed files
to the directories where you want them. The following paragraphs explain the effects of
the installation process on a iRMX II Release 2.0 system and an iRMX I Release 7.0
system.

An iRMX I Release 1.0 directory structure on the hard disk will be affected by the
Release 3.0 installation process in these ways:

o The directory /USER will be re-created and will contain the logon file "R?LOGON"
which is specific for IRMX T1.3. It will execute a SUBMIT command named
"ALIAS.CSD" which is not valid for an iRMX 286 R1.0 system but will have no
adverse action if executed. If this is not acceptable, you should change the user’s
configuration file in the Release 1.0 configuration directory
JCONFIG/USER/ <user 1D > to select the user’s Release 1.0 renamed home
directory. Later you can combine the files in the home directories.

An iRMX II Release 2.0 directory structure on the hard disk will be affected by the
Release 3.0 installation process in these ways:

¢ The installation process renames the contents of the iRMX II Release 2.0 directories
affected by this installation. The directories affected are: :SD:SYS$286, :SD:RMX286
and :SD:BOOT. The FORM_TRK0.CSD SUBMIT file executed in Step 4
automatically renames them for you. The following names are the names used by the

SUBMIT file:

Release 2.0 Name Renamed to

:SD:SYS286 :SD:SYS286 R2
:SD:RMX286 :SD:RMX286 R2
$SD:BOOT :SD:BOOT_R2

An iRMX 86 directory structure on the volume will be affected by this installation process
in three ways:

1. The default boot system will be changed. This file has the pathname
"/SYSTEM/RMX86". You must either rename the default boot system (e.g.
/system/rmx86.86), make a copy of the boot system (e.g. copy /system/rmx86 to
/boot86/rmx86) which you can use for booting, or you must rename the SYSTEM
directory.

2. The directory /USER will be renamed to /USER_R2 and a new /USER directory
will be created.

3. Asan effect of change 2, the logon file "R?LOGON" will be specific for iRMX IL. It
will execute a SUBMIT command named "ALIAS.CSD" which is not valid for

Installation 31.31

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED 1RMX® IT OPERATING SYSTEM

iRMX 86 systems. If this is not acceptable, you should create a new home directory
for the iRMX 86 user.

You can bootstrap load either Release 1.0, 2.0 or Extended iRMX 11.3 versions of the
Operating System, as well as the iRMX 86 Release 7.0 Operating System from the same
hard disk after you have completed the installation instructions in this chapter.

You must use the Release 2.0 Interactive Configuration Utility (ICU) to modify the
definition file that defines your Release 2.0 version of the Operating System and
regenerate that version. You must modify three screens of the definition file which
specify the pathnames of files the Operating System uses.

1. Change the pathname of the System Directory on the Human Interface screen using
the SYS prompt to correspond to the new name of the SYSTEM directory (logical
name :SYSTEM:):

SYS=:SD:SYS286_R2

2. Change all the pathnames on the Includes and Libraries screen, except the
Development Tools Prefix (the DTF prompt), to correspond to the new name of the
Release 2.0 RMX286 directory. The following example shows how you can change
the pathnames:

UDF=/RMX286 R2 /UDI/
HIF=/RMX286 R2 /HI/

3. Change the pathname of the boot system, using the RAF prompt on the Generation
Pathnames screen, to reflect the new pathname for the BOOT directory:

RAF=/BOCT R2 /<boot file name>,286

Now regenerate your Release 2.0 system by executing the SUBMIT file created by the
ICU.

3-32 Installation

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® Il OPERATING SYSTEM

3.5 SYSTEM MAINTENANCE

From now on, whenever you logon to the system, Intel recommends that you do not logon
as the system manager (user ‘super’) for security reasons. Instead, logon as either the
user 'world’ or as some other user that you have defined. Then, when system files need
manipulation, invoke the SUPER command to temporarily become the system manager.
This will afford significant protection from inadvertent deletion or modification of system
files. Also, for system security, you should change the system manager password, using
the PASSWORD command, as soon as you complete the installation process.

If problems occur, follow these steps:

o Reboot from the Start-up System Boot Diskette.
o Fix the problems on the hard disk.

» Reboot from the hard disk.

3.6 WHERE TO LOOK FOR INFORMATION TO GET STARTED

Once you have completed the steps listed in the previous sections, the iIRMX 1T Operating
System is fully installed and ready to use. Refer to the following manuals for additional
help:

¢ For basic information about your system and the manuals in your documentation set,
refer to the Introduction To The Extended iRMX 11 Operating System.

« For information about the commands that you can run from a terminal, refer to the
Operator’s Guide to the Extended iRMX I Hurnan Interface.

s For an example program that discusses iRMX programming concepts refer to
Appendix A of the Extended iRMX II Programming Technigues Reference Manual in
Volume 4. In order to use these files, create a directory, and copy the contents of the
/RMX286/DEMC/PLM/INTRO directory into it. Use these copies of the files and
keep the ones in the original directory as backup copies. The following commands will
accomplish this:

For example programs that discuss MULTIBUS I1 objects and programming, refer to
the Extended iRMX II Nucleus User's Guide in Volume 2.

o For information on how to add users to your system refer to the Operator’s Guide to
the iRMX IT Human Interface .

» For information about memory partition sizes and further insights into the
Installations (including information on how to generate a custom version of the

Installation 333

CARTRIDGE TAPE INSTALLATION OF THE EXTENDED iRMX® 11 OPERATING SYSTEM

Operating System), refer to Chapter 5 of this manual, the Guide To Using The
Extended iRMX II Interactive Configuration Utility and to the Extended iRMX 11
Interactive Configuration Utility Reference Manual.

3-34 Installation

4.1 INTRODUCTION

This document tells you how use the iRMX II diskettes to install the Extended iRMX 11
Operating System on 80286- and 80386-based microcomputers. Please read the entire
guide before you begin the actual installation of the Operating System. If you are
installing from a cartridge tape, refer to Chapter 3 for instructions.

Installing the Extended iRMX II Operating System means copying the contents of the

iRMX II Release Diskettes to your system. After you have completed the installation
procedure outlined here, your system will be ready to:

* Develop and execute programs.

» Run the Interactive Configuration Utility (ICU).

4.2 THE EXTENDED iRMX® Il SOFTWARE INSTALLATION

Installing the Extended iRMX II Operating System on your microcomputer involves the
following:

« Backing up the files on your hard disk, and optionally retaining your existing iRMX
files, if you have previously installed an operating system.

o Bootstrap loading the Operating System from the specially designated Start-up System
diskettes.

« Executing an Intel-supplied SUBMIT file to prepare your hard disk.
» Installing the iRMX IT Operating System.
¢+ Installing the latest IRMX II Update package.

» Executing Intel-supplied SUBMIT files to copy the language diskettes onto your hard
disk.

» Generating a version of the Operating System with the latest Update applied.

¢ Referring to other manuals before running your system.

Installation 4-1

DISKETTE INSTALLATION OF TIIE EXTENDED iRN[X® I1.3 OPERATING SYSTEM

4.3 PREPARING FOR SOFTWARE INSTALLATION

Before you install the Operating System, make certain that all the system hardware is
working properly. Consult the Installation, Owner’s Manual, and HARDWARE AND
SOFTWARE INSTALLATION manual you received with your Intel microcomputer to
ensure that the equipment is correctly set up and your terminal is connected with the
correct cable before proceeding with this installation. Note that the terminal connected to
the CPU board in the Intel microcomputer is rcferred to as the "system console." The
system console is the terminal on which the monitor displays its output and is the only
terminal from which you can bootstrap load the Operating System.

Once you have verified that the hardware is properly installed, inspect the diskettes you
received from Intel to ensure that you have the proper number and the proper type.
Table 1-2 lists the diskettes that you must have to install the Operating System.

4.4 INSTALLING THE OPERATING SYSTEM

This section describes how to install the iIRMX II Operating System onto your 80286- or
80386-based microcomputer using the release diskettes.

STEP 1: Backing Up Your Old Files

If you are installing the iRMX II Operating System onto a system for the first time (that is
the system’s hard disk has never been formatted) this step does not apply to you and you
should proceed to Step 2 of the installation process.

This step applies if you have previously installed an operating system onto your
microcomputer’s hard disk and have created files of your own. Later in the installation
process, you will have the option to format your microcomputer’s hard disk. Whether or
not you choose that option, we recommend that you use the Human Interface BACKUP
command to save all of your files. This should be done now, using your present iRMX
system, before starting the installation process. If you are unfamiliar with this command,
refer to the Operator's Guide to The Human Interface for descriptions of both the
BACKUP and RESTORE commands.

If you want to retain the ability to execute the iRMX II Release 2.0 Operating System

after this installation is complete, refer to the section on Retaining an Older Version of
the Operating System later in this chapter,

4-2 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

STEP 2: The System Confidence Test

The System Confidence Test (SCT) is a power-on diagnostic routine. There are three
versions; one for System 310 Microcomputers, one for System 320 Microcomputers and
one for the iRMX MDP. Refer to the section below which describes the system you are
using.

SCT for System 310 Microcomputers

Turn on the power for your system. In about five seconds, a prompt will be displayed on

Mk A

the system console consisting of a single asterisk "*," a series of asterisks, a single
lowercase "x," or a series of "x"'s depending on the version of the SCT your microcomputer
uses. Within ten seconds of the display of any of these prompts, type in uppercase "U’s"
until the SCT begins to execute.

When the SCT starts executing, you will see status reports displayed on the system
console. For specific information on the meaning of the reports, consult the Diagnostics
or Owner’s Manual supplied with your microcomputer.

After the SCT begins, it prompts you to enter a response to the question:
"Exit to iSDM after testing ? Enter "y" or "n" [n]

After displaying the prompt, the SCT waits for your response. Respond with a to enter
the iISDM monitor at the end of the execution of the SCT; don’t try to bootstrap load the
extended iRMX II Operating System yet.

Once the SCT has completed, the iSDM monitor will display

Interrupt 3 at <xxxx:!yyyy>

where:
The period (".") is the prompt for the iSDM monitor.
<XXXX:yyyy > is the address where the entry into the monitor occurred,

At this point, you are ready to go on to Step 3.

Installation 4-3

DISKETTE INSTALLATION OF THE EXTENDED iRl\rIX® I1.3 OPERATING SYSTEM

SCT for System 320 Microcomputers

Turn on the power for your system. In about five seconds, a prompt will be displayed
consisting of a series of "x’s." Within ten seconds of the display of this prompt, type in
uppercase "U’s" until the SCT begins to execute.

When the SCT starts executing, you will see status reports displayed on the system
console. For specific information on the meaning of the reports, consult the Owner’s
Manual supplied with your microcomputer.

After the SCT has tested memory and other hardware, the SCT prompts you to enter a
response to one of the following two questions (depending on your monitor):

Break to DMON-386 (y or [m]} ?
Enter in response to this prompt.

or, the SCT prompts you to enter a response to the question:

Break to iSDM monitor (y or [m]) ?

Enter in responsc to this prompt. If you answered n, the Bootstrap Loader would
attempt to bootstrap load the default system from the hard disk.

At this point, the SCT has completed and it turns control over to the iSDM monitor which
will display:

Interrupt 3 at <XxXxX:yyyy>

where:

The period (".") is the prompt for the iSDM monitor.
<xxxx:yyyy > is the address where the entry into the monitor occurred.

At this point, you are ready to go on to Step 3.

4-4 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

SCT for iRMX MDP Microcomputers

Turn on the power for your system. In about five seconds, a prompt will be displayed
consisting of a series of "x’s." Within ten seconds of the display of this prompt, type in
uppercase "U’s" until the SCT begins to execute.

When the SCT starts executing, you will see status reports displayed on the system
console. For specific information on the meaning of the reports, consult the Owner’s
Manual supplied with your microcomputer.

After the SCT has tested memory and other hardware, the SCT prompts you to enter a
response to the question:

Do you want to do more Testing or use DMON-386 ? Enter "y" or "n" [n]
Enter in response to this prompt.

At this point, the SCT has completed and it turns control over to the DMON-386 monitor
which will display:

Interrupt 3 at <xXxxx.yyvyy>
>

where:
The greater-than bracket (">") is the prompt for the DMON-386 monitor.
<xxxx:yyyy> is the address where the entry into the monitor occurred.

At this point, you are ready to go on to Step 3.

Installation 4-5

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

[N
r. - E iyl

STEP 3: Booting From The Start-up System Boot Diskette

Select the appropriate Start-up System Boot Diskette for your microcomputer from
iRMX 11.3 release diskettes Number 1, 2, 3, or 4. This is the diskette that you will use to
bootstrap load iRMX 1L

Insert the diskette so that the label is positioned toward the door handle of the diskette
drive. The portion of the diskette on which the label is fastened is the last part of the
diskette to be inserted.

Enter the following iSDM or DMON monitor command for your system to bootstrap load

the Operating System: .
o S b,

T (all systems except the two exceptions below)

¢

(iSDM monitor with SCSI controller)
> (DMON monitor with iSBC 186/224A controller)

The monitor "b" command instructs the Bootstrap Loader to load a file. When bootstrap
loading, the diskette drive is referred to by the device name ":wf0:". When no pathname is
specified, the default boot system "/SYSTEM/RMX86" is loaded. The invocation given
above loads the default boot system from the Start-up System Boot Diskette you selected.

On completion of the bootstrap loading process, the Extended iRMX II Start-up System
has been loaded into memory and the system console displays the following instruction:

Insert the Start-up System Commands Diskette and type "G <cr>"

Interrupt 3 at <xXXXX:Yyyyy>

or

Interrupt 3 at <xxxx:yyyy>

>

where:

< XOYYYY > is the address where the entry into the monitor occurred.
.or > is the monttor prompt.

Remove the Start-up System Boot Diskette from the diskette drive and insert the release
diskette Number 5 labeled "Start-up System Commands Diskette” diskette. Then enter

your monitor’s GO command, as requested on the system console, to complete the system
initialization process:

4-6 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I3 OPERATING SYSTEM

(1SDM monitor) B
> (DMON momnitor)

On completion of the IRMX II system initialization process, the system console displays
the following message:
P P N S P R N NN L L S PR R

Extended iRMX II Release 3.0

FaRKahokakak Rk F-F_d_ok_d ok F_R_k_k_k_F_k_k_F_k_ ok b _h.d.dak

Logon:

Enter

to logon as the system manager. Now the system prompts you for the password by
displaying the prompt:

Password:
Enter the default password for the system manager:
(This must be in all lowercase letters.)
Now the iRMX II Operating System will sign on with the banner:

iRMX TIT HI CLI, V3.0: USER=0
Copyright <years> Intel Corporation

Note that "super"” is the name of the system manager. This is a special iRMX user whose
user ID is 0. All installation of IRMX II files must be done while logged in as the system
manager. The system manager has access to all files used during the installation process.
This user also has Change Access rights to all iRMX files.

Next, the system prompts you for the correct date and time. Enter the date in any one of
the following three formats:

Installation 4-7

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

month/date/year (e.g., 05/15/1987)
date month year (e.g., 15 JUN 1987)
date month year (e.g., 15 JUNE 1987)

After entering the date, the system echoes the information and prompts you for the time.
Enter the time in the format HOURS:MINUTES:SECONDS (e.g., 15:20:00). You can
omit the minutes and seconds fields; the system sets them to zero. The system responds
by echoing the entered time.

After the date and time are entered and echoed, the system executes a command file
named :prog:alias.csd. This file will define the following aliases for your convenience:

alias command name

a ALIAS

ad :sd:s8ys286/attachdevice

adf :3d:sys286 /attachdevice wmf0 as :f:
aed zlang:aedit

af :sd:sys286/attachfile

bk BACKGROUND

crdir :sd:sys286/createdir

dd :5d:sys286/detachdevice

df :sd:sys286/detachfile

h HISTORY

install submit :config:cmd/instal(wmf0)
logs :sd:sys286/logicalnames

Is :sd:sys286/dir § sort

lpr BACKGROUND(100,100) copy #0 to :lp:
mksys submit :configiemd/mksys(#0)
pmw :sd:sys286 /permit #0 drau u=world
sh :sd:sys286/shutdown w=0

iRMX II HI Command Line Interpreter (CLI) commands are indicated in upper case
characters. After the aliases are echoed to the console, the system displays the lines:

END SUBMIT :prog:alias.CSD
END SUBMIT :prog:r?logon

The iIRMX II system is now ready to execute your commands.

4-8 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

STEP 4. Preparing the Hard Disk

This step cxplains how to install the iRMX IT software from diskcttes to your system’s
hard disk. Two installation options are provided:

Option Action
A, Format your microcomputer’s entire hard disk
B. Format only Track 0 of the hard disk with the second stage of the iIRMX II

Bootstrap Loader
In the description of each option, you will read reasons for selecting that option.
OPTION A: Formatting Your Microcomputer’s Entire Hard Disk Drive

You should choose this option if:

e You have a new microcomputer system that has nothing on the hard disk. All new
Intel systems are shipped with unformatted (empty) hard disks.

¢ You wish to use the RESERVE feature of the Human Interface FORMAT command.
This feature is used to create a copy of the maps that the iIRMX II Operating System’s
uses to find keep track of your data. This copy is used if the working copy becomes
corrupted. Corruption of a computer’s file structure can be caused by power failure or
other equipment failures.

The Intel-supplied SUBMIT file that you execute to format a hard disk automatically
specifies the RESERVE feature. Refer to the Operator’s Guide To The Extended
IRMX II Human Interface manual for details on the RESERVE feature of the
FORMAT command.

¢ You have already backed up this disk and want to rebuild your file structure. The
process of backing up your files, formatting the disk, and then restoring your files will
improve the disk’s file structure, which can become fragmented during normal usage.
Fragmentation occurs when files are deleted, freeing space on various sectors;
subsequently, when new files are created, this free space is used by placing parts of
new files in them. This can cause the disk to spend a large amount of time seeking to
the location where the next part of a file is located.

Step 1 of the Software Installation process contains information on how to backup
your system.

The following Intel-supplied SUBMIT commands will format the entire hard disk. Type
in the following command using Tables 4-1, 4-2, and 4-3 to fill in the three parameters.

!)
e oA
where; CoTg LRy

Installation 4-9

DISKETTE INSTALIATION OF THE EXTENDED iRMX

device

interleave

files

® |13 OPERATING SYSTEM

is the physical name of your hard disk. Refer to Table 4-2 for the
appropriate physical device names for hard disks used in Intel
microcomputers. Note that the device name is not a logical name
so it does not have colons surrounding it.

varies depending on the type of controller and hard disk you are
using, Refer to Table 4-1 for the appropriate interleave value.

is the maximum number of files you want to be able to create on
your hard disk. This number depends on your application. A good
rule of thumb is, if the microcomputer is to be used for
development purposes, specify 125 files per megabyte of your hard
disk’s capacity. Thus, 2 40 M-byte hard disk can reasonably be
formatted to contain 5000 files. However, if the number of files
needs to be changed later, you will have to backup your files and
reformat your hard disk.

Refer to Table 4-3 for the number of files.

Table 4-1. Interleave Values

Contraller

! 5 1/4-inch Peripherals 8-inch Peripherals

iSBC 214
iSBC 215G
ISBC 186/224A

SCSI Interface

Interleave is 1 -

Interleave is 4 Interieave is 5

interleave is 1 -

Interleave is 4 ’ -

4-10

Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I3 OPERATING SYSTEM

Table 4-2. Physical Device Names

Device MDP* System 310 * System 310AP * System 320 * Hard Disk
Name Option Codes Designation Option Codes QOptiont Codes Model Number
cmi 10 M-byte - none - - none - CMI 5412
emi 5 1/4-inch Peripheral - none -
emb0 17 M-byte GK9 or GK10 - none - CMI 5419 or
cmbi 5 1/4-inch Peripheral - none - Fuji M2235
gmal 42 M-byte GK2 T1GF2 Quantum Q540
gmat 5 1/4-inch Peripheral T1GF7
mma0 140 M-byte GK3 T1GF4 Maxtor XT-1140
mma1 5 1/4-inch Peripheral T1GF9
mmb0 86 M-byte GK8 - none - Maxtor XT-1085
mmix1 & 1/4-inch Peripheral - NeNe -
mmc) - none - -none - T1GF10 Maxtor EXT-4175
mmei - nene - T1GF12
mmdd - none - - none - T1GF11 Maxtor EXT-4380
mmadi - none - TIGF13
smal 43 M-byte GK12 T1GF14 Seagate SR251
smat 5 1/4-inch Peripheral T1GF15
tmal T2GF3 85 M-byte GK5 T1GF3 Toshiba MKESEFB
tmai T2GF8 5 1/4-inch Peripheral TiGFa
* Refer to the Option List for the hard disk option codes. The Option List is supplied as either
a separate sheet of paper in your kit and for permanently fixed to the bottomn of your system.

Installation

4-11

DISKETTE INSTALLATION OF THE EXTENDED iR.MX® 1.3 OPERATING SYSTEM

Table 4-3. Number of Files

Davice Name Number of Files
cm and cm 1250
emb and cmbx1 2125
gmad and gmat 5000
mmal and mmal 17800
mmb0 and mmix1 10750
mmecd and mmel 21875
mmd0 and mmd1 47500
smap and smai 6375
tmal and trma 10625

4-12

iRMX II supports other hard disk drives. Refer to the section on ATTACHDEVICE in
the Operator’s Guide to the Extended iRMX Il Human Interface for the names of other

drives.

All device names reflect the unit number of the drive. All device names that end with a
"0" designate unit zero of the device; all device names that end with a "1" designate unit

one of the device,

Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

Examples of Option A, Formatting the Entire Hard Disk

A valid command to use for a microcomputer containing a Quantum Model Q540 hard

disk configured as unit 0 controlled by the iSBC 186/224A or the iSBC 214 board would
be:

SUBMIT :DISKETTE:FORMDISK{ QMAO, 1, 5000) <CR>

A valid command to use for a microcomputer containing a Maxtor Model XT-1140 hard
disk configured as unit 0 controlled by the iSBC 186/224A or the iSBC 214 board would
be:

SUBMIT :DISKETTE:;FORM DISK(MMAG, 1, 17500) <CR>

A valid command to use for a microcomputer containing a Toshiba Model MK56FB hard
disk configured as unit 1 controlled by the iISBC 215G board would be:

SUBMIT :DISKETTE:FORM DISK(TMALl, &, 10625)

After the formatting of the hard disk is complete, the FORMAT command will issue a
summary of the alternate tracks it assigned on the hard disk. Most hard disks contain bad
tracks when they are delivered from the manufacturer so this is a normal condition, and
assigning alternates is the method iRMX II uses to compensate for bad tracks. The
message printed starts with the line:

The following tracks have been assigned an alternate:

{disk information}

Next, the DISKVERIFY command is executed to check the formatting of the hard disk.
Following the DISKVERIFY command, the FORM_DISK.CSD SUBMIT file contains a
series of the character 'y’. The 'y’ is placed in the SUBMIT file to respond to any queries
the DISKVERIFY command may issue. If the DISKVERIFY command does not make
any queries, the error message 'illegal command’ is issued which has no effect on the
installation process. You should ignore this error message.

Installation 4-13

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

OPTION B: Formatting Only Track 0 of Your Hard Drive

This option formats only track zero of your system’s hard disk and then places the second
stage of the Bootstrap Loader on this track. No files on the disk will be affected by this
option. You should choose this option if your disk was formatted using iRMX 286
Release 2.0 or iRMX 86 Release 7.0.

Note that you can also boot load the iIRMX 286 Release 2.0 or iIRMX 86 Release 7.0
Operating System from the same hard disk using the new second stage.

In selecting this option, you obtain the capabilities of the Bootstrap Loader’s DEBUG
switch. Refer to the Extended iRMX 1T Bootstrap Loader Reference Manual for details on
the DEBUG switch.

To format only track 0 of your hard disk, type the SUBMIT command below:

where:

device name is the physical name of your microcomputer’s hard disk. Refer to
Table 4-2 for the appropriate physical device names for hard disks
used in Intel microcomputers. Note that the device name is not a
logical name so it does not have colons surrounding it.

This SUBMIT file will ensure the system manager has full access to the directories and
files affected by the installation process. It will also rename the following iRMX 286 R2.0
directories and then will re-create them for Release 3 installation:

Release 2.0 Name Renamed to
SD:SYS286 :SD:SYS286 R2
:SD:RM X286 :SD:RMX286 R2
SD:USER SDUSER R2
SD:BOOT :SD:BOOT_R2

This is done as a precautionary measure to avoid inadvertantly modifying any of your
existing files. A later section describes how to merge the contents of the renamed
directories with the newly created directorics.

Performing this option will cause the DISKVERIFY command to be invoked using the
"FIX" option. The "FIX" option automatically upgrades the file structure by including
accurate checksums for each file.

4-14 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

As the DISKVERIFY utility executes, it will correct discrepancies it finds on the hard
disk. Refer to the DISK VERIFICATION UTILITY USER’S GUIDE for information
on the meaning of these messages. If your hard disk was previously formatted using the
iRMX 86 Release 7 or iIRMX 286 Release 1 Operating System, this SUBMIT file will
compute checksum values for the file structure on the disk. When this occurs, the
following message, indicating that corrective action has been taken, will be repeatedly
printed to the screen.

FILE=(file name, fnode) :LEVEL=level : PARENT=parent: TYPE=type
Bad Checksum : value, Should Be : checksum .,., FIXED

Following the DISKVERIFY command, the FORM_TRK0.CSD SUBMIT file contains a
series of the character ’y’. The 'y’ is placed in the SUBMIT file to respond to any queries
the DISKVERIFY command may issue. If the DISKVERIFY command does not make
any queries, the error message ’illegal command’ is issued which has no effect on the
installation process. You should ignore this error message.

This option saves the old version and temporarily creates new versions of the system
configuration files :CONFIG.TERMCAP, :CONFIG:TERMINALS, :CONFIG:UDF and
all the :CONFIG:USER/ <user_name> user configuration files.

Your old iRMX files now exist in the /RMX286 R2 directory. You may wish to generate

other Release 2 versions of the Operating System. Refer to Retaining An Older Version
of the Operating System for instructions on how to do this.

Installation 4-15

DISKETTE INSTALLATION OF THE EXTENDED iRMX® IL.3 OPERATING SYSTEM

L : 4 L

STEP 5: Diskette Installation of The Directory Structure

This step creates the standard directory structure on your hard disk. This step is required
regardless of the the option chosen for formatting the hard disk.

The SUBMIT file will copy files from the Start-up System Commands Diskette over the
corresponding files, if any exist, on your hard disk. The only way that this is possible is if
you did not select any option from Step 4. If this is not acceptable, go back to Step 1.
This SUBMIT file will also automatically cause the hard disk to become the system device
for the iIRMX II system.

To create the iRMX II directory structure and copy the Start-up System commands to
your hard disk, enter the following command:

Where:

device name is the physical name of your hard disk you used in the previous
step. Refer to Table 4-2 for the appropriate physical device names
for hard disks used in Intel microcomputers. Note that the device
name is not a logical name so it does not have colons surrounding
it.

As the SUBMIT command creates the iRMX II directory structure, a series of messages
appear. If the system encounters an error during the process, it displays an error message
but does not stop; the system continues executing the SUBMIT command until it reaches
the end of the command. In the case where the directory already exists (as a result of

choosing Option B in the previous step), or no file exists yet in the directory, the SUBMIT
file will generate the warning messages:

<directory name>, file already exists
<file name>, file does not exist

These error messages are expected and can be ignored.

When the system displays any other error message, stop the system by typing a
CONTROL-C and correct the fault. For example, errors can be caused by permission
rights not being assigned correctly. After entering the CONTROL-C, detach the hard
disk drive by typing: DD :W:<CR>, correct the problem, and enter the SUBMIT
command again.

4-16 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

The last command in this SUBMIT file switches the system device from being the diskette
drive to be the hard disk and restarts the system. The system device is the device from
which the Operating System reads its commands. When you invoked the SUBMIT file
"INSTAL RMX.CSD", it was read from the Start-up System Commands diskette. Now
the system will re-initialize and future commands will be read from the hard disk. You
must again logon to the system specifying the name "super” and the password "passme”
when prompted for them. You will be prompted to reset the date and time again. In any
system that has a Global Clock (as on the iSBC 546 or MULTIBUS II iCSM boards) the
date and time have not been set yet.

To set the DATE in the Global Clock, type:

date <date> global <CR>
where:

<date> has the form described in Step 3.
To set the TIME in the Global Clock, type:

time <time> global <CR>
where:

<time> has the form described in Step 3.

Installation 4-17

DISKETTE INSTALLATION OF THE EXTENDED iRMX® II.3 OPERATING SYSTEM

STEP 6: Installing The Extended iRMX® Il Files

During this step you will use the diskettes from the iRMX II package. You will install the
contents of the remaining Release Diskettes except diskette number 20 which is for
SERIES-IV systems only.

Note that the device name you specify in this command is different from the device name
you used to format the hard disk. The SUBMIT filc will attach and detach the diskette
drive for you automatically. All the remaining diskettes can be installed by repeating this
single SUBMIT command. Remove Release Diskette Number 5 and insert Release
Diskette Number 6. Enter the following command:

The command "INSTALL" is the alias for the HI command invocation "SUBMIT
:CONFIG:CMD / INSTAL(WMF0)".

When the SUBMIT command finishes successfully, remove the diskette and insert
Release Diskette Number 7 and enter the INSTALL command again. Repeat this step
for each Release Diskette up through Release Diskette Number 19. You will have
installed Release Diskettes Number 6 through 19 in this manner. Release Diskette
Number 20 is used on Series-I'V systems only.

The parameter "WMF(" is the physical device name of the diskette drive and is
appropriate for the System 310 and 320 microcomputers. Use "WMF(0" on MDP systems
using the iISBC 186/224A controller. If you are installing from a diskette that is not
named "WMFO0", you must issue the full command invocation, specifying the correct
device name for the diskette drive. Use "SMF0" on systems using the SCSI interface.

The :CONFIG:CMD/INSTAL.CSD file attaches and detaches the diskette drive for you
automatically. It is commonly used to install the contents of Release Diskettes onto the

iRMX II system. It requires that the diskette whose contents are being installed contains
a SUBMIT file named "INSTAL.CSD".

As the SUBMIT command copies the iIRMX II files to the hard disk, a series of messages
appear. If the system encounters an error during the process, it displays an error message
but does not stop; the system will continue executing the SUBMIT command until it
reaches the end of the command.

When the system displays an error message, stop the system by typing a CONTROL-C,
detach the diskette drive by typing: DD :F:<CR> and correct the fault. For example,
errors can be caused by inserting the diskette incorrectly. After entering the CONTROL-
C, detach the diskette drive, remove the diskette, reinsert the diskette correctly, and enter
the SUBMIT command again.

4-18 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

Also, if you are not logged on as the system manager, access rights to files may cause
errors. After entering the CONTROL-C, detach the diskette drive and logoff. Then
logon as the system manager, corrcet the access rights and enter the SUBMIT command

again while logged on as the system manager. Remember, you should always install files
on your iRMX II system while logged on as the system manager.

Installation 4-19

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

STEP 7: Copying The Boot System Onto The Hard Disk

In this step you will install a bootable version of the Operating System on your hard disk.
The SUBMIT file used in this step will attach and detach the diskette drive for you
automatically. Remove Release Diskette Number 19 and re-insert Diskette Number 1, 2,
3, or 4. Use the same diskette that you used to boot the system in Step 3. Enter the
following command:

4-20 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

STEP 8: installing The Language Utilities

The next step is to install the iIRMX 1T Language Utilities, supplied in a separate box from
the rest of the iRMX II Operating System. Perform this step whether you installed the
Operating System from tape or diskettes.

Before beginning the installation of the language utilities, check that you have these
diskettes:
1. 1APX286 BINDER AND LIBRARIAN FOR iRMX II-BASED SYSTEMS 1 OF 5

2. iIAPX286 MAPPER AND OVERLAY GENERATOR FOR iRMX II-BASED
SYSTEMS 2 OF 5

1IAPX286 SYSTEM BUILDER FOR iRMX II-BASED SYSTEMS 3 OF 5
iAPX286 MACRO ASSEMBLER FOR iRMX 1I-BASED SYSTEMS 4 OF 5
80287 SUPPORT LIBRARY FOR iRMX II-BASED SYSTEMS 5 OF 5
PL/M-286 COMPILER FOR iRMX II-BASED SYSTEMS

iAPX86 UTILITIES PACKAGE FOR iRMX II-BASED SYSTEMS 1/2
IAPX86 UTILITIES PACKAGE FOR iRMX II-BASED SYSTEMS 2/2
iAPX86 MACRO ASSEMBLER PACKAGE FOR iRMX II-BASED SYSTEMS
10. PL/M-86 COMPILER FOR iRMX II-BASED SYSTEMS

11. iRMXII AEDIT Text Editor

A

To copy the iRMX II Language Utilities, insert each diskette into the diskette drive and
enter the following command:

Where:
device name is the physical name of the diskette drive. The parameter

"WMF(" is the physical device name of the diskette drive and is
appropriate for the System 310 and 320 microcomputers. Use
"WMF(0" on MDP systems using the iSBC 186/224A controller. If
you are installing from a diskette that is not named "WMF0Q", you
must issue the full command invocation, specifying the correct
device name for the diskette drive. Use "SMF0" on systems using
the SCSI interface.

This SUBMIT file will attach and detach the diskette drive for you automatically.

Installation 4-21

DISKETTE INSTALLATION OF THE EXTENDED IRMX® 113 OPERATING SYSTEM

Again, if the system displays an error message, stop the system by typing a CONTROL-C,
detach the diskette drive by typing "DD :F:" and correct the fault. Then re-invoke the
SUBMIT file.

Once you have installed all the language diskettes, enter the following command:

This SUBMIT file copies the various libraries supplied with the languages you have just
installed to the appropriate directories.

INSTALLING THE iC-286 COMPILER

To install the iC-286 compiler, Intel provides two SUBMIT files. To install the contents
of the first iC-286 diskette, insert disk 1/2 and type:

To install the contents of the second iC-286 diskette, insert disk 2/2 and type:

INSTALLING THE FORTRAN-286 COMPILER

To install the Fortran-286 compiler, Intel provides two SUBMIT files. To install the
contents of the first Fortran-286 diskette, insert disk 1/2 and type:

To install the contents of the second Fortran-286 diskette, insert disk 2/2 and type:

INSTALLING THE PASCAL-286 COMPILER

To install the Pascal-286 compiler, Intel provides three SUBMIT files. To install the
contents of the first Pascal-286 diskette, insert disk 1/3 and type:

4-22 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

To install the contents of the second Pascal-286 diskette, insert disk 2/3 and type:

To install the contents of the third Pascal-286 diskette, insert disk 3/3 and type:

Installation 4-23

DISKETTE INSTALLATION OF THE EXTENDED 'LRMX® I1.3 OPERATING SYSTEM

STEP 9. Preparing The Aedit Editor For Use With Your System

If you use Intel’s Aedit text editor, your system must contain a macro file named
AEDIT.MAC. This macro file must be located in either the directory :LANG: (logical
name for the directory which has the pathname /LANG286) or the directory :HOME:.
The purpose of this macro is to define the attributes of your terminal to Aedit. Intel
provides a number of macro files that at this point have been installed in the :LANG:
directory. These macro files are named for the type of terminal that they define (For
example, VT100.mac defines the VT100 terminal.)

Enter:

The system displays the files located in the :LANG: directory with the MAC extension.
Locate one that matches the type of your terminal. If you are not sure what terminal a
macro defines, you can use the COPY command to print the macro on the system
console. Each macro starts with a comment giving the full name of the terminal.

Once you have located the macro that defines your terminal, assuming you are still in
SUPER mode from the previous step, type:

When this command completes, you can use Aedit as the user "world". You should always
be the system manager when you manipulate system files.

In cases where there is no macro that defines your terminal, first check to see if your
terminal can emulate one of the terminals for which a macro is supplied. If this fails, you
must write your own macro. Refer to the Aedit manual included in the langnages package
for information on writing macros.

If you are installing the iRMX II Operating System on a microcomputer which will host
multiple users (will be multi-user), you can copy the apprapriate Aedit macro file into
each user’s :HOME: directory. This will allow the Aedit editor to be invoked by users
who have different types of terminals. In this case, there should be no copy of
AEDIT.MAC in the :LANG: directory.

4-24 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

STEP 10: Installing IRMX® Networking Software

Intel provides the iRMX Networking Software product (iIRMX-NET) for use in building
Ethernet-based Local Area Networks (LANs). iRMX-NET allows extended iRMX I1
systems to share files with other extended iRMX TI systems as well as iRMX 86, Xenix,
iNDX, MS-DOS and VAX/VMS systems. If you are not installing the iRMX-NET
Software, proceed to the next step.

If you have previously installed iIRMX-NET and you chose the "Format Track Zero"
option of Step 4 your iRMX-NET files have been saved. They now reside in a different
directory than prior to this installation. This is a normal function of the "Format Track
Zero" option of Step 4. You must install the iRMX IT Update and execute the
RMXMRG.CSD SUBMIT file described in the next step.

The information beyond this point is for users who are installing iIRMX-NET for the first
time or are installing a new release of iRMX-NET.

To install the iIRMX-NET Networking Software, refer to the iIRMX-NET Networking
Software User’s Guide which contains a description of the product and how to install it on
System 300 Series Microcomputers. You can use the alias command 'INSTALL’ to install
the iIRMX-NET files. After completing the iRMX-NET installation, return to the next
step in this manual. Do not try to generate a version of the extended iRMX II Operating
System which includes the iIRMX-NET software at this time.

Note that the definition files supplied with iRMX-NET are very similar to those supplied
with the iRMX Tl Operating System. But since they are released at different times, the
iIRMX-NET definition files may indicate that they do not match the version of the ICU
when the ICU is invoked. This is normal,and you must use the ICU Restore feature to
upgrade the definition files. (This Restore feature is not the HI RESTORE command.)
Refer to the Guide To The Extended iRMX II Interactive Configuration Utility for details on
the Restore feature of the ICU,

Installation 4.25

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

STEP 11. Installing The Update Package

An important phase of installing the iRMX IT Operating System is the installation of the
current iRMX II Update Package. You must perform this step even if you are installing a
new release of the operating system. The update package is Intel’s mechanism for fixing
any software problems identified in the current version of the software. If you do not

apply the update, you will be working with an outdated version of the iRMX II Operating
System.

The Update Package accompanies all the shipments of the iRMX II Operating System.
{The Update Package is shipped in a separate box.} Each Update consists of one or more

Update Diskettes, an Update Installation Guide, Update change pages to the manual set
and a customer letter.

The Update Diskette contains all of the fixes (ZAPs) to be applied to the IRMX 11
Operating System. The diskette is labeled:

"RMXII UPxRy.z "
X is the release level of the Update Package
y.2Z is the release level of the Operating System

The Update Installation Guide contains both detailed descriptions of each fix (ZAP} and
detailed instructions on how to install the Update Package.

To install the Update to your system, find the Update Package, which is shipped in a
separate box from the iRMX 1T Operating System, and follow the instructions in the
Update Installation Guide. Also, make certain to read the Update Package Customer
Letter for additional information on the Update Package.

4-26 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

STEP 12: Combining Directories when Upgrading to Release 3.0

If you invoked the FORM DISK.CSD SUBMIT file in Step 4 (you formatted your entire
hard disk), this step does not apply to you. Proceed to the next step.

Upgrading From iRMX® 286 Release 2.0
The following command combines the required files from iRMX 286 Release 2.0 into this

release of the IRMX II Operating System. To perform this step, type the following
command:

Upgrading From iRMX® 86 Release 7.0
If you are upgrading to iRMX II from iRMX 86 Release 7.0, type the following command

to combine the required fites from iRMX 86 directories into the iRMX IT directory
structure:

If you are upgrading to iRMX II from an earlier iRMX release, there are no files to
merge and you should proceed to the next step.

Instalation 4-27

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

STEP 13: Generating An Updated Version Of The Operating System

4-28

Now that you have installed the latest Update, you will generate an updated version of the
Operating System. The version of the Operating System you loaded from the Start-up
System Boot Diskette was generated from the original iRMX I libraries and, as such,
does not contain any enhancements or corrections to problems. (Note that the version
you generate in this step contains the System Debugger, the Start-up System does not).

Logoff from the system by typing:

The logon banner and prompt will be displayed. Now log back on to the system using the
name "world" and a carriage-return for the password. It is not necessary to be the system
manager to generate a configuration of the Operating System. You will be prompted to
reset the date and time again. If your system contains a Global Clock, the date and time
are still correct. Respond with "e" (EXIT) to leave the date and time at their current
values.

Select an ICU definition file from those provided with iRMX II. Choose the default
definition file which matches your microcomputer from those listed below.

ICU Definition File CPU Boards Supported
28612.DEF iSBC 286/10(A), iSBC 286/12
38620.DEF iSBC 386/2x, iSBC 386,/3x

286100A.DEF iSBC 286/ 100A
386100.DEF iSBC 386/116, iSBC 386/120

To generate the iRMX II Operating System, you will select the example commands that
match your system. Thesc cxamples follow the explanation below.

<boot_file name> is the name of an ICU definition filc without the .DEF extension.
The ALIAS "CRDIR" is created for the HI command ".SYSTEM:CREATEDIR". Typing
this alias will create a directory in which to generate an Updated system. The system
generated is specified by the ICU definition file you select. The command "AF” is the
alias for the HI command ":SYSTEM:ATTACHFILE". Typing these commands will
create a directory for the system generation underneath your :HOME: directory and
attach it as your current default directory.

Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I13 OPERATING SYSTEM

The command "MKSYS" is the alias for the HI command invocation SUBMIT
:CONFIG:CMD/MKSYS(#0). The #0 parameter in the MKSYS alias command
receives the "boot_file_namc”. This convention of using the same name for the generation
directory, definition file and created system is helpful if you generate several systems
during the development of your application.

The Bootstrap Loader requires both a third stage and the Operating System itself in order
to bootstrap load. The MKSYS command copies a third stage, which has a name that
matches the "boot_file_name" name used in the MKSYS invocation, from the directory
/RMX286/BOOT to the directory /BOOT. The installation process places third stages
with the following names in the directory /RMX286/BOOT: 28612, 38620, 286100A,
SXM386, and 386100.

If you invoked the FORM_TRKO0.CSD SUBMIT file in Step 4, you will probably have a
directory in your :HOME: directory with a name identical to the one you will create next.
Rename this directory now by typing:

An example of doing this, assuming that your system contains an iSBC 28612 processor
board is:

RENAME 28612 to 28612 12

If your processor board is the iISBC 286/10(A) or the iSBC 286/12 in a System 286/310
Microcomputer, select the 28612.DEF definition file and type:

-CRDIR 28612 <CR>
-AF 28612 <CR>
-MKSYS 28612 <CR>

This will create a new version of the iIRMX II System named "/BOOT/28612.286". The
MKSYS command will also make a copy of the Bootstrap Loader third stage appropriate
for the new version of the Operating System named "/BOOT/28612".

If your processor board is the iSBC 386/2x or iSBC 386/3x, select the 38620.DEF
definition file and type:

-CRDIR 38620 <CR>
-AF 38620 <CR>»
-MRSYS 38620 <CR>

This will create a new version of the iRMX II System named "/BOOT/38620.286". The

MKSYS command will also make a copy of the Bootstrap Loader third stage appropriate
for the new version of the Operating System named "/BOOT/38620".

Installation 4.29

DISKETTE INSTALLATION OF THE EXTENDED [RI\'IX® I1.3 OPERATING SYSTEM

If your processor board is the iISBC 286/100A, select the 286100A. DEF definition file and
type:

-CRDIR 286100A <CR>
-AF 286100A <CR>
-MKS5YS 286100A <CR>

This will create a new version of the IRMX II System named "/BOOT/286100A.286".
The MKSYS command will also make a copy of the Bootstrap Loader third stage
appropriate for the new version of the Operating System named "/BOOT/286100A".

If your processor board is the iSBC 386/100/116/120, type:

-CRDIR 386100 <CR>
-AF 386100 <CR>»
-MKSYS 386100 <CR>

This will create a new version of the System named "/BOOT/386100.286". The MKSYS
command will also make a copy of the Bootstrap Loader third stage appropriate for the
new version of the Operating System named "/BOOT/386100".

Execution of MKSYS may cause the main screen of the ICU to scroll several times. This
is expected and does not indicate a problem.

After the MKSYS command completes, check the file, <boot file name>.out, for any
errors that may have occurred during system generation. There are two methods of doing
this check, you can use AEDIT if you installed it, or you can use the Human Interface
COPY command. To use the COPY command, type:

You can use CONTROL-W to page through the file; each time you enter CONTROL-W
your display will scroll one screen. Entering a CONTROL-Q exits this scrolling mode.
CONTROL-S can also be used to halt the file during printing to the terminal,
CONTROL-Q resumes printing to the terminal. Any errors indicate a problem. A
complete listing of a generation output file is shown in the Guide To The iRMX 11
Interactive Configuration Utility.

Do not invoke the MKSYS command after you have successfully used it once to generate
the Operating System. Instead, use the local copy of the definition file created for you by
the MKSYS command. This version of the definition file can be the starting point to
develop your custom application system:.

4-30 Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

You can create an ALIAS that makes invoking the ICU easier.To do this, use your editor
to add the following line to your :PROG:ALIAS.CSD file:

To initialize the new ALIAS, type:

After doing this you can invoke the ICU by typing:

icu <pathname>/<definition file> DEF <CR>

If you do not add this ALIAS, when you invoke the ICU, type:
/RMX286/ICU/ICU286 <pathname>/<definition file>.DEF <CR>

You can also use an ICU definition file that you created in Release 2.0 of the iRMX 286
Operating System with the Release 3.0 ICU.

Installation 4-31

DISKETTE INSTALLATION OF THE EXTENDED iRMX

® 13 OPERATING SYSTEM

STEP 14: Booting The Operating System From A Hard Disk

4-32

After the system has executed the SUBMIT command described in Step 13, the hard disk
contains a version of the iIRMX 1T Operating System suited to your CPU board. To test
this version of the Operating System, you must shutdown the system properly by invoking
the SHUTDOWN command. To do this, invoke the SUPER command and enter the
password ’passme’ when prompted. This causes you to become the system manager
without logging on as the user "super”. Type:

Respond with the password ’passme’ to the password prompt. Now, type:

The command "SH" is the alias for the HI command invocation ":SYSTEM:SHUTDOWN
W=0" After the SHUTDOWN command displays its shutdown complete message, reset
the system by pressing the RESET button or turning the RESET switch on the front panel
of your microcomputer.

The SCT, described earlier, starts executing, enter an uppercase U in response to the x’s
being printed on the screen. When your system console displays the monitor prompt,
enter one of the following monitor commands to bootstrap load the newly created version
of the Operating System:

{(i5DM monitor)

> {DMON-386 monitor)
where:

<definition name> is the same name you used in Step 13 which reflects the particular
CPU board in your microcomputer.

If you used the definition file, 28612.DEF, type: b /boot /28612

If you used the definition file 38620.DEF type: b /boot /38620

If you used the definition file SXM386.DEF type: b /boot/sxm386

If you used the definition file, 286100A.DEF, type: b /boot /286100A.

If you used the definition file, 386100.DEF, type: b /boot/386100.

Installation

DISKETTE INSTALLATION OF THE EXTENDED iRMX® 113 OPERATING SYSTEM

Once the Operating System bootstrap loads and signs on, it indicates you have successfully
generated a version of the Operating System. The logon banner and prompt will be
displayed. Now log back on to the system using the name "world” and a carriage-return
for the password. You will also be asked to set the date and time again. If you do not
wish to do this again, respond with "e" when asked to enter the valucs.

Once you are satisfied with the new system, copy the new version of the system over the
previous version. To do this, you must invoke the SUPER command and enter the
password "passme’. Now, type:

where:

<boot_file name> is the same name you used in Step 13 to generate the Operating
System.

If you do not specify a path name when entering the iSDM or DMON boot command, the
Bootstrap Loader will load the default boot system. The pathname /SYSTEM/RMX86 is
the default pathname for the Bootstrap Loader.

Note that a valid Bootstrap Loader third stage is provided in this step. When you create
your own systems, you must remember to copy the correct third stage to the /BOOT path.

For a detailed description of the standard definition files, refer to Chapter 6.

Installation 4-33

DISKETTE INSTALLATION OF THE EXTENDED iRMX® I1.3 OPERATING SYSTEM

STEP 15: Retaining an Older Version of the Operating System

4-34

This step is intended for users who chose the *Format Track Zero" option of Step 4. It
explains how to move your renamed files to the directories where you want them. The
following paragraphs explain the effects of the installation process on a iRMX II Release
2 system and an iRMX I Release 7.0 system.

An iRMX II Release 1.0 directory structure on the hard disk will be affccted by the
Release 3.0 installation process in these ways:

e The directory /USER will be re-created and will contain the logon file "R?LOGON"
which is specific for iIRMX I1.3. It will execute a SUBMIT command named
"ALIAS.CSD" which is not valid for an iRMX 286 R1.0 system but will have no
adverse action if executed. If this is not acceptable, you should change the user’s
configuration file in the Release 1.0 configuration directory
/CONFIG/USER/ <user ID> to select the user’s Release 1.0 renamed home
directory. Later you can combine the files in the home directories.

An iRMX II Release 2.0 directory structure on the hard disk will be affected by the
Release 3.0 installation process in these ways:

+ The installation process renames the contents of the iRMX IT Release 2.0 directories
affected by this installation. The directories affected are: :SD:SYS286, :SD:RMX286
and :SD:BOOT. The FORM_TRK0.CSD SUBMIT file executed in Step 4
automatically renames them for you. The following names are the names used by the
SUBMIT file:

Release 2.0 Name Renamed to

:SD:SYS286 :SD:SYS286 R2
SD:RMX286 :SD:RMX286_R2
SD:BOOT :SD:BOOT R2

An iRMX 86 directory structure on the volume will be affected by this installation process
in three ways:

1. The default boot system will be changed. This file has the pathname
"/SYSTEM/RMX86". You must either rename the default boot system (e.g.
/system/rmx86.86), make a copy of the boot system (e.g. copy /system/rmx86 to
/boot86/rmx86) which you can use for booting, or you must rename the SYSTEM
directory.

2. The directory /USER will be renamed to /USER _R2 and a new /USER directory
will be created.

3. As an effect of change 2, the logon file "R?LOGON" will be specific for iIRMX II. It
will execute a SUBMIT command named "ALIAS.CSD" which is not valid for

Installation

sl

2.1 INTRODUCTION

This chapter discusses how to use the Human Interface. It doesn’t provide detailed
descriptions of individual commands; these are in Chapters 3 and 4. However, it does
address the following topics:

» Requirements for including the Human Interface in your system.
» Configurable features of the Human Interface.

« The process of loading and accessing the Human Interface, including static and
dynamic logon.

+ The iRMXII file structure and file-naming conventions (including wild cards).
¢ Devices supported by the Human Interface.

+ Automatic Device Recognition.

¢ The general syntax of a command.

s The system manager.

+ Adding non-resident users to the system

2.2 SOFTWARE REQUIREMENTS

The Human Interface is a layer of the iRMX II Operating System. Therefore, it requires
the inclusion of other layers to make it a part of your application system. To include the
Human Interface in your application system, you must also include

s Nucleus

« Basic I/O System

» Extended I/O System

o Application Loader

During command execution, the Human Interface invokes the services of these layers in a

way that is transparent to the operator. Therefore, an operator needs little knowledge of
operating system structures to load and execute programs from the console keyboard.

Operator’s Guide 2-1

USING THE HUMAN INTERFACE

2.3 CONFIGURABLE FEATURES OF THE HUMAN INTERFACE

The Human Interface, like the other layers of the Operating System, is configurable.
Thus, any description of how to use the Human Interface depends on its configuration.
This manual describes several features of the Human Interface that may be different (or
not present at all) in your system. The configurable items most visible to the operator
include:

¢ Multi-user support: If your Human Interface is configured for multi-user support,
several users can access the Human Interface at once using separate terminals. One
of the users, the system manager, has more capabilities than other users and is
responsible for managing system resources and controlling who can use the system.
Users of a multi-user Human Interface must know about user 1Ds, access rights to
files, and attaching and detaching devices--all in relation to the other system users.

It your Human Interface is configured for single-user support (you are the only user
accessing the system.), you are less interested in this informatton. You have no great
concern about file access rights since all the files on the system are yours. You may
wish to deny yourself delete access to prevent accidental deletion of important files.

This manual contains information for both types of users. It explains all the
information needed for a multi-user system, but it also points out cases where
information does not apply to single-user systems. In all cases, the information for
single-user systems is a subset of the information for multi-user systems.

e Dynamic and Static Logon: In a multi-user environment, the Human Interface uses a
logon procedure to ensure that operators are valid users. You can configure any
Human Interface terminal for one of two kinds of logon: dynamic or static.

With dynamic logon, the Human Interface assumes that different operators will be
using the same terminal at different times. Therefore, it prompts operators to enter a
logon name and a password before granting them access to the system. If you want to
use the networking capabilities provided by IRMX Networking Software, you must use
dynamic logon.

With static logon, the Human Interface assumes that only a single operator uses a
particular terminal. Therefore, the Human Interface knows which logon name to use
and does not require the operator to enter that information.

This manual describes both static and dynamic logon, and how to add non-resident
users (users that need to log in) to the system.

2-2 Operator’s Guide

USING THE HUMAN INTERFACE

» Initial program: Immediately after logon, the Human Interface starts an initial
program for each terminal. This initial program is usually a Command Line
Interpreter (CLI), a program that reads and executes commands.

This manual assumes that the initial program for all users is the CLI supplied by the
Human Interface. If your Human Interface is configured with a different initial
program, the information in this manual might not describe your interaction with the
Human Intertace accurately. The system prompts might be different, the command
syntax might be different, or you might be restricted to using a special program such
as 4n interpreter or a transaction processor. Contact your system manager to
determine what your initial program is.

Other configuration options also affect how the system appears to a user. If you are not
involved in iRMX II configuration, contact your system manager for more information.

2.4 LOADING THE OPERATING SYSTEM

Before you can access the Human Interface, the operating system must be loaded into
memory and started. (I1f you have previously burned your system into PROM, it will be
loaded automatically at power on.) This process can vary from system Lo system
(depending on such things as the monitor you use), but generally it involves one of these
procedures:

» Using the iRMX Bootstrap Loader to load the operating system from iRMX IT
secondary storage to memory. This can be done during development or after the
system is completed. The Bootstrap Loader will load a system on both an iSBC
386/2X-bascd computer (MULTIBUS I system) and an iSBC 386/ Ixx-based
computer (MULTIBUS II system) in about one minute,

» Connecting the target system (the iRMX II system) to an Intel Microcomputer
Development System and using the iSDM package to load the operating system from
the host development system to memory in the iRMX 1T target system. This
procedure is normally done during the development phase of an application system,
when some of the system elements arc still undergoing development. Refer to the
ISDM System Debug Monitor Reference Manual for more information. Note that this
method cannot be used if you are using the D-MON386 monitor The D-MON386
monitor resides only on a target system.

2.4.1 Loading the Operating System on an OEM System
If your system is not one of Intel’s family of integrated systems you should perform these
steps:

1. Reset the system; usually, reset involves pressing a RESET button on the system
chassis. A series of characters (usually lowercase x’s) should appcar at 9600 baud
on the system terminal (the one connected to the processor board).

Operator’s Guide 2-3

USING THE HUMAN INTERFACE

2. Type a series of uppercase U’s at the system terminal; this allows the resident
monitor to determine the system terminal’s baud rate. The monitor displays the
following information:

PYRIGHT ‘<year> Intel Cor

po

rat

The period (.) is the monitor prompt. The term <monitor> indicates which
monitor you are using and Vx.y the version of the monitor.

3. Use the monitor’s B command to bootstrap load the operating system. In most
cases, you do this by entering

For the default configuration of the Bootstrap Loader, this command loads a file with
pathname/SYSTEM/RMX86.286 from the first available boot device. 1t loads the
command using a Bootstrap Loader whose third stage is located in /SYSTEM/RMX86.
If your operating system resides in a file with a different pathname, you must specify the
full pathname when you enter this command. An example of this is

Refer to the Extended iRMX II Bootstrap Loader Reference Manual for instructions on
booting such a system.

2.4.2 Loading the Operating System on Intel Integrated
Systems

On Intel System 300 Series microcomputers (such as the System 286/310), you should
perform these steps:

1. Turn on the power to the terminals and to the system. If your system contains
multiple chassis (such as the 286/380 Microcomputer System), turn on the power to
the PROCESSOR chassis before turning on the power to the PERIPHERAL
chassis.

2. Within a few seconds, the terminal connected to the system’s processor board
should display a series of lowercase x’s. There is no user input required to load the
operating system from your hard disk. In approximately 12 seconds, the System
Confidence Test (SCT), a diagnostic program residing in PROM which performs an
initial check of your hardware, begins to run automatically. The system assumes a
baud rate of 9600 for your terminal.

2-4 Operator’s Guide

USING THE HUMAN INTERFACE

3. When the SCT is successful, it invokes the Bootstrap Loader, which attempts to
load a file with the pathname /SYSTEM/RMX86. The Bootstrap Loader and the
SCT reside in PROM.

4. When the Bootstrap Loader completes loading, you can access the Human Interface
from any terminal, as described in the next section.

2.4.3 Loading the Operating System Without a Resident
Monitor

If your system does not include the monitor, simply ensure that an iRMX Il-formatted
volume containing the operating system resides on the proper device, and reset the
system.

2.4.4 Loading a PROM-Based Operating System

Some systems contain the entire operating system in PROM and do not require you to
load additional information from secondary storage. The usual process for starting these
systems Is simply to reset the system.

If you were not involved in the configuration of your system and are unsure about how to
load and start the operating system, contact the system manager who configured your
system.

2.5 ACCESSING THE HUMAN INTERFACE

Once the operating system software has been loaded, you access the Human Interface by
logging on. If you're using a modem to communicate between your terminal and the
iRMX II system, you must set up the modem link before you log on. The type of logon
procedure you perform depends on the classification of your terminal. In an iIRMXII-
based system, there are two terminal classifications: static logon terminals and dynamic
logon terminals.

Dynamic Logon Terminal:

+ Dynamic logon terminals are not permanently associated with any user. A temporary
association is formed whenever an operator logs onto the system. Therefore, a
dynamic terminal can be associated with any number of user.

¢ To log onto a dynamic logon terminal, a user must enter a logon name and a
password.

o Users should log off dynamic terminals when they finish their work. Once one user
logs off a terminal, another user can use it.

Operator’s Guide 2-5

USING THE HUMAN INTERFACE

Static Logon Terminal:

« Static logon terminals are permanently associated with a particular user. Whenever a
static logon terminal is used, all the actions (creating files or invoking commands, for
example) are performed under the same user name and ID, no matter which operator
is actually using the terminal. This means that any number of opcrators can use the
terminal, but the operating system recognizes them as a single user. The user
associated with the static terminal is set during system configuration.

« With static logon terminals, users do not enter a name and password information to
logon. Instead, the Human Interface handles the logon automatically. After powering
up a static logon terminal and booting the operating system, a user must only perform
the start up actions determined by the contents of the :PROG:R?LOGON file.
Typically, this file contains commands that enable the user to set the date and time for
the Human Interface, if there is no global clock in the system.

» Users cannot log off static logon terminals. Once the operating system associates a
user with the static logon terminal, that terminal is set up with a permanent set of
resources. The association between the static logon terminal and the user can be
modificd only by changing the :CONFIG:TERMINALS file and rebooting the
application system.

» When a user stops using (logoffs) a static logon terminal, another user with the same
attributes is initialized.

Special configuration files list information about all the terminals through which operators
can communicate with the operating system. The information in these files specifies
whether the terminals are static or dynamic logon terminals. Refer to the section titled
"Adding Non-resident Users to Your System” at the end of this chapter for information on
how to configure the terminals in your application system.

To log onto the operating system, either from a static logon terminal or a dynamic logon
terminal, you must include other configuration files that list your logon name, your
password, your user ID, and other information about you. Refer to the section titled
"Adding Non-resident Users to Your System" at the end of this chapter for information
about adding new users.

2.5.1 Modem Control

You may wish to use modems to communicate with the Operating System. This section
explains how to set up a modem for use on the iIRMX II end of a modem link. No
information is given on how to attach or use the modem on the terminal end of the link.

Operator’s Guide

USING THE HUMAN INTERFACE

Before attempting to use a modem with an iRMX II system, ensure that the iRMX II port
you are connecting the modem to is configured as a modem link. Use the Interactive
Configuration Utility (ICU) to set the "(MC) Modem Control” parameter of your
terminal driver to "Yes" Refer to the Fxtended iRMX Il Device Driver’s User’ Guide for

more information.
2.5.1.1 Setting Up Your Modem

The following instructions detail how to set the switches for the Hayes-compatible smart

modem.

SWITCHES SETTING
DTR (Data Terminal Ready) Normal
DSR (Data Set Ready) Normal
Carrier Detect Normal
Auto Answer Enabled
Command Response Suppress
Command Mode Disabled

Once these switches have been set, and both sides of the modem link are properly cabled,
your modem link is ready. The next section explains what to enter from the terminal to
access iIRMX 1II.

2.5.1.2 Establishing a Connection

Use the modem on the terminal end of the link to dial up the iIRMX II system. When the
modem on the iRMX 11 system answers, the Dynamic Logon cusp will assert the DTR
signal. The word "CONNECT" will appear on your terminal. If the modem on the iRMX
IT end of the link has an auto-baud search, enter four capital "U’s” (at a rate of about two
per second) and a carriage return <CR>. If your terminal is not configured for auto-
baud search enter a carriage return <CR>. Your terminal should now respond as if it
were connected to the IRMX II system by a dedicated line. Note that the response from a
modem link operates at the baud rate of the modem and therefore may be noticeably
slower than a true dedicated line.

2.5.2 Accessing the Human Interface From a Static Logon

Terminal

Assuming that the operating system is loaded, you can access the Human Interface
through a static logon terminal simply by powering on the terminal. If the terminal is
configured for automatic baud rate recognition, you must also enter the following
character at the keyboard:

(uppercase U)

Operator’s Guide 2-7

USING THE HUMAN INTERFACE

2-8

Continue to enter this character until it is echoed on the screen, then enter a carriage
return

This character allows the operating system to determine the baud rate of your terminal.

When the Human Interface starts running, it logs you onto the system automatically and
creates an environment for you to enter commands. This environment is an iRMX I job,
which this manual refers to as an interactive job.

As part of the automatic logon process, the Human Interface assigns you a user ID. This
user ID is your "identity” in the system. It determines your access to files and devices.
Whenever you create files, the Human Interface assigns your user ID as the owner ID of
the file. Being the owner of a file gives you complete control over the file; you can read it,
delete it, write to it, update it, and grant access rights to other users. Thus, your ability to
access files created by other users depends on the access they grant you.

Once the interactive job has been created by the operating system, an initial program
begins execution. The initial program that runs in your interactive job (at your terminal)
may be different from one that runs at another terminal. (A configuration option
specifies which initial programs are associated with which user IDs.) Initial programs are
generally Command Line Interpreters (CLIs), which read and parse command input and
start programs running based on that input. The Human Interface supplies a standard
CLI, which this manual assumes you are using.

The standard CLI begins by displaying the following header message and prompt:

where
Vaxy> The version number of the CLL

USER = <user ID> A display of your user ID. The Human Interface uses this ID to
determine the type of access you have to files and devices.

Most single-user systems are set up to give you an 1D of WORLD
(65535 decimal), but some may differ. Every multi-user user has
read and write access to files created by WORLD. For this reason,
multi-user systems should use the ID WORLD (65535 decimal) for
files that will be accessed by multiple users.

<configurable The contents of the file :CONFIG:SIGNON.MSG copied to the

sign-on message > screen.

Operator’s Guide

USING THE HUMAN INTERFACE

- (hyphen) The Human Interface default prompt. This prompt tells you the
CLI is ready to accept command input. (You can change the
prompt with the CLI SET command; see Chapter 3.)

1f the information that appears at your terminal is different from this, contact your system
manager to determine the differences between your initial program and the standard CLI.

Next, the standard CLI searches for the logon command file, a file whose pathname is
:PROG:R?LOGON (later sections of this chapter discuss pathnames of files). A
:PROG:R?LOGON file may exist for each user of the system and may include commands
which assign the date or the minimum and maximum memory pool sizes for background
jobs (see Chapter 3). The CLI expects to find command invocation lines in this file.
When it finds this file, the CLI automatically invokes the SUBMIT command to process
all the commands in the file (refer (o Chapter 3 for more information about SUBMIT).
You can modify the information in your :PROG:R?LOGON file to change the amount of
processing that occurs automatically when the operating system recognizes your terminal.
If the Human Interface does not find a R?LOGON file, it returns the message "file does
not exist”, and continues executing.

As supplied with the start-up versions of the operating system (on the Installation media),
the R?LOGON file for each user contains the DATE and TIME commands which ask
you for the correct date and time as follows:

-date-q
<cur_3_:_en:t__:_:
DATE:

If the application systen uses a global clock supported by the Basic I/O System, then the
time and date are automatically initialized to the values in the clock.

In response, enter the date in any of these formats:

or

Entering just an "e" and a carriage return will retain the current date.If you use an
improper format, the DATE discards your entry and prompts you for another date. For
more information, refer to the description of the DATE command in Chapter 4.

Operator’s Guide 2-9

USING THE HUMAN INTERFACE

After you enter the date correctly, DATE responds by displaying the date. You are then
prompted for the time as follows:

In response, enter the correct time in this format:

hours:minutes:seconds

You can omit the last field or the last two fields. TIME sets the omitted fields to zero.
The following are all valid times:

or

Entering "e” followed by a carriage return retains the current time.

For more information, refer to the description of TIME in Chapter 4. TIME responds by
displaying the date and time. After issuing "DATE" and "TIME", the default logon file
submits :PROG:ALIAS.CSD". After processing all the commands in the logon file, the
CLI issues its prompt and returns control to you. You can then enter CLI or Human
Interface commands, or invoke application programs.

2.5.3 Accessing the Human Interface From a Dynamic Logon
Terminal

Assuming that the operating system is running, you can access the Human Interface
through a dynamic logon terminal by powering on the terminal and supplying information
about who you are. This dialogue with the Human Interface is called dynamic logon.

During dynamic logon, you supply 4 logon name and a password. Then the Human
Interface scans the appropriate configuration files to ensure that you are a valid user. The
configuration filcs also contain other information about you, such as your user ID,
priority, and memory partition size. The Human Interface uses this information to create
your interactive job--the environment in which you enter commands.

After logging on, any files you create are assigned your user ID. Your ability to access
other users files depends on the access they grant to your user ID.

2-10 Operator’s Guide

USING THE HUMAN INTERFACE

Dynamic logon is different than static logon because a terminal designated as a dynamic
logon terminal is not permanently associated with one user ID. A terminal defined as
static, however, is always associated with one user ID. Therefore, the operating system
identifies any process started from a static terminal by the one user ID associated with
that terminal, regardless of the opcrator who invoked the process. On the other hand, the
operating system identifies a process started from a dynamic logon terminatl by the ID of
the person currently logged on.

Once someone logs off a dynamic logon terminal, other users with different user IDs can
use it. As a result, an application system can accommodate many different kinds of users.
The system manager can maintain security by assigning unique user IDs and by limiting
access to files based on those IDs.

In addition to freeing a terminal for further use by other operators, logging off a dynamic
logon terminal frees the memory pool given to the interactive job by the operating system.
This frecd memory pool can then be uscd by other jobs within the application systcm.

Before you attempt to perform dynamic logon, do the following:

¢ Be sure you are using a dynamic terminal. If you access the Human Interface from a
static terminal, the files and programs you creatc will be associated with the static
terminal’s user ID, not the ID that you originally desired.

+ Ensure that you have the correct logon name and password. If you don’t know this
information, consult your system manager.

Now you are ready to log onto the system. If your terminal is configured for automatic
baud rate recognition, you must also enter the following character at the keyboard:

{uppercase U)
until the "U" is echoed on the screen, then enter <CR>.
This character allows the operating system to determine the baud rate of your terminal.

Once the baud rate has been determined, the following prompt appears:

<logon message>
Logon: o

Where <logon message > is the contents of the file :CONFIG:LOGON.MSG.

Operator’s Guide 2-11

USING THE HUMAN INTERFACE

Type the lagnn name assigned ta you (followed by a carriage return). Once you have
entered your logon name, the system prompts you for a password. If you have been
assigned a logon name, but no password, press carriage return. Once you gain access to
the Human Interface, you can give yourself a password by invoking the Human Interface
command PASSWORD.

1f you enter an incorrect logon name or password, the operating system keeps prompting
you with the "logon” and "password” messages. There is no limit to the number of logon
attempts that you can make, unless your terminal is connected to a modem. In this case,
thrce unsuccessful attempts to log onto the system cause the modem to "drop” the Data
Terminal Ready (DTR) line, which hangs up the phone. If this happens, you must dial the
phone number again to relink to the remote IRMX II system.

After you enter a valid logon name and password, an initial program begins running, If
there is not enough memory in the system to activate the initial program, the Human
Interface will display a warning. In this case, consult your system manager.

The initial program that runs in your interactive job (at your terminal) might be different
than one that runs at another terminal. This manual assumes that the initial program for
all users is the Human Interface CLI, which displays the following (configurable) header
message and prompt:

IRMX IT HI CLI, ¥<x.y>: USER = <user ID>
“Copyright <year> Intel Go¥poration
configurable sign-on message>

where
V<xy> The version number of the CLL

USER = <user ID> A display of your user ID. The Human Interface uses this ID to
determine the type of access you have to files and devices.

<configurable A message that can vary from system to system. The

sign-on message > text for this message is contained in the file
:CONFIG:SIGNON.MSG. The Human Interface automatically
displays this text whenever you log on.

- (hyphen) The Human Interface default prompt. This prompt implies that
the CLI is ready to accept command input. (You can change the
prompt with the SET command; see Chapter 3.)

2-12 Operator’s Guide

USING THE HUMAN INTERFACE

Once the header message is displayed, the system reacts the same way it does for input
from a static terminal. This means, the CLI searches for the file ;PROG:R?LOGON and
invokes the commands in that file as explained in the previous section. After processing
the commands, the CLI issues its prompt (-) and returns control to you. You can then
enter CLI or Human Interface commands, or invoke application programs.

You end a session at dynamic logon terminal hy typing TOGOFF. Tf your initial program
18 the standard CLI, the CLI searches for the file :PROG:R?LOGOFF and invokes all the
commands in that file. As with the logon file, you can place any commands you wish into
this logoff file, and they will be invoked whenever you log off.

If you are using a customized CLI, the LOGOFF command can be entered. However, it
performs differently (see Chapter 4).

2.5.4 Relationship Between Dynamic Logon and Remote File
Access

If your ikRMX 11 system is configured to include the iIRM X networking software, any user
on your system who gains access to the Human Interface through dynamic logon
automatically becomes a "verified user." In an OpenNET network system, a verified user
can access files on remote systems through iRMX-NET. For more information about
iIRMX-NET, refer to the iRMX Networking Software User’s Guide.

2.6 FILE STRUCTURE

One of the primary uses of Human Interface commands is to manipulate files. Before you
use the Human Interface commands described in Chapter 4, you should have an
understanding of the types of files that exist in an iRMX 1I environment and how to
access those files.

2.6.1 Types of Files

The iRMX II environment has four types of files: named, physical, stream, and remote.

Named files Named files divide the data on mass storage devices into
individually accessible units. Users and programs refer to these
files by name when they want to access information stored in them.
Operators access named files more often than any other file type.

Operator’s Guide 2-13

USING THE HUMAN INTERFACE

Physical files Physical files are mechanisms by which the operating system
accesses an entire 1/0 device as a single file. The Human
Interface accesses backup volumes and devices such as line printers
and terminals in this manner.

It also accesses secondary storage devices (such as disk drives) as
physical devices when formatting them. When operators access
physical files, it is usually in a manner that is transparent to them
(such as copying a named file to the line printer or formatting a
disk).

Stream files Stream files are mechanisms for communicating between
programs. Two programs can use a stream file for communication
if one program writes information to the stream file while another
program reads the information. Terminal operators seldom use
stream files directly.

Remote files Remote files are the same as named files, except that they reside
on a remote system connected to the OpenNET network using the
iRMX Networking Software. No special semantics are needed to
access remote files. For more information on remote files, see the
iRMX Networking Software User’s Guide.

When manipulating data with Human Interface commands, you are usually dealing with

named files. Therefore it is important that you know about the hierarchy of named files
and file-naming conventions. The next sections discuss these topics in detail.

2-14 Operator’s Guide

USING THE HUMAN INTERFACE

DEPT1
DEPT2
DEPTA

DEPT1 ‘ DEPT2 DEPTa ‘

BiLL GHEERRH%E SUE
TOM SAM BILL
| l
b '
1
BILL TOM GEDQRAGE HARRY | SAM | SUE | BILL .
SIM-SQURCE TEST-DATA
SIM-OBJECT TEST-OBJECT
‘ i
SIM-SOURCE SIM-OBJECT TEST-OBJECT

TEST-DATA ,

BATCH-1
BATCH-2

A = DATA FILE
x-053

BATCH-1 BATCH.2

- DIRECTCRY

Figure 2-1. Example of a Named-File Tree

2.6.2 Named File Hierarchy

You can organize named files into structures calied file trees, as shown in Figure 2-1.
Figure 2-2 (parts 1 through 4) shows the actual default file structure that the installation
process builds on your system. Intel recommends that you retain the default file structure
because the update service process assumes this structure.

As you can see from the figure, the file tree has two kinds of files: data files and
directories. Data files (shown as triangles in Figure 2-1) contain the information that you
manipulate during your terminal session (for example, inventory, accounts payable, text,
source code, and object code). Directories (shown as rectangles in Figure 2-1) contain
only pointers to other files (either named files or directories). You can have multiple
directories in a hierarchical structure so that instead of having a single directory
containing an enormous number of files, you can organize your files into logical groups
under several directories. You can display the list of files in any directory by invoking the
DIR command for that directory (refer to Chapter 4 for more information).

Operator’s Guide 2-15

USING THE HUMAN INTERFACE

Another advantage of a hierarchical file structure is that duplicate file names are
nermitted unless the files reside in the same directory. Notice in Figure 2-1 that the file
tree contains two directories named BILL. (These directories are on the extreme left and
extreme right of the figure.) However, the operating system recognizes them as unique
files because each resides in a different directory.

Each file tree resides on a secondary storage volume--the storage medium that contains
the data. Examples of volumes include flexible disks, hard disks, RAM disks, and bubble
memories. Before you can place named files on a volume, you must format the volume to
accept named files. The formatting process writes a numbcr of data structures on the
volume to aid the operating system in creating and maintaining files. You can use the
FORMAT command (described in Chapter 4) to format your volumes.

The uppermost point of each file tree is a directory called the root directory. When
formatted for named files, each secondary storage volume has only one root directory, for
these reasons:

s There can be only one file tree per secondary storage volume.

+ A file tree cannot extend to more than one volume.

2-16 Operator’s Guide

USING THE HUMAN INTERFACE

® Tresystem manager (user d = 0} owns ali directories and
oata files and has compiete access rights ta them.

* User WORLD (user .d-65535) has list access 1o the
directoresand read access ta the files,

Only present if RMX Aetwarking Software has been installed.

*

Oinly present if INA 961 nas been insta:led

50
| | | | [|
WORK . 8507 A UTIL286
LA i RMX236 5Y5206 INC ‘ S5¥STEM WORLD - DUACH LANGZE6 i HET [WGRLE < BLaC! USE !
] L J |
|
| !
» .
L} L] 1
- [LVAN "e e WORLD
\ VRN \ oo~ SIWPFR
B b AL
HUMAN INTERFACE ARAXBE RMXBE.286 LANGUAGE UTIITIES iNA 961°*
CDMMANDS IWDHL = N IWORL I =N J: ‘
|
I PROG
! MOALD - PROG
= Directary . e
{ﬁ =DataF & ,
N = N Access ‘
DLAC = All Access .
NOTE: Jmiess athenwise indicated, *he follawing strae for ALIAS.CSD RILOGON ALIASCSD RILOGON
all girector:es and data fies.n astart-up system cwoci:nco-. lWD(i‘:.cI}I=
\ '

* yghd

Figure 2.2 (Part 1). File Structure of a Start-Up System

Operator’s Guide

2-17

USING THE HUMAN INTERFACE

LB
T I
| -
RMX266 PLM286 NDP2B? PAS2BG | ftn2l6 CC286 PLMEE MOPRT amaEs PASCES " FORTEB :
! ; : i
i i LR R ; 2
NUMERIC SUPPORT
LIBRARIES LT
Figure 2-2 (Part 2}, File Structure of a Start-Up System
2-18

Operator’s Guide

USING THE HUMAN INTERFACE

AM 286
T T]
|] '
LONBG HUELEUS T2 tigs Loapsn bpa~ Hi uoi iy e sop Lie RMKNETT wPpaTE
T T
H ! H
. : '
. - H R S .
- H i ; | :
» i H
. ifooofi ifoooif | ijoao ooaif . if-ooft ftaocif ifoooft
@ SlICLFLIR ' HITIN ROOT NADFR 1l RME 1 RMX 11 Hnen&aTr
LIBRARES ; LIERARIES LIBRARIES LIBRERILS WL UDF INTERTACE 7APS
! AND DELAULT GLES BRARIES
i THIRD STAGES :
—'—| —_— . — : i
ifo-oif iia--if .cofz ij-o-if fj...if ff-o-if
BIQIS AND H: LM UTILITIES [1u:] . .
DEVICE DRIVES LTS:&?‘TE’S LIBRARIES AMLE S ! ANLH HL LIBRARIES AME T
LIBRARIES, CEFIN-TION FILES LIBRARGES
-irmutNET
AERADITE €I F
DRIVER
(IBRARIES [T

Figure 2.2 (Part 3). File Structure of a Start-Up System

Operator's Guide

USING THE HUMAN INTERFACE

T
e’

CONFIG

LOGON MG TERMINALS [¥]e13

[l J i
| 1
£y N
P Y AR
AN Y PN . DEFALLT ‘
s n : it AN -

| usen

oMo

TERMCAD

I

NS

)

WORLD SUPER

Ao h |
FARIIAN | ‘

MISCELLANEQUS
INSTALLATION
SUBMITFILES

‘ TAPE ‘ DISKETTE ‘
I : r ‘
a0 LR
/\ / \ /N /R
TAFE DISKETTE
INSTALLATION INSTALLATION
SUBRMIT FILES SUBMITFILES

AANANAANANANANY

HUZ86.5CH ICU286. TRL ALIAS CSD RLOGON

A

LOGON M5G

TERMINALS

TERMCAF

WORLD SUPER

[FTEI

Figure 2-2 (Part 4). File Structure of a Start-Up System

2-20

Operator’s Guide

USING THE HUMAN INTERFACE

NOTE
Figure 2-3 shows the minimum necessary file structure to allow vou to boot
iRMXII.
:SD:
$Y5286 SYSTEM RMX286 USER WORK uTIL286
CONEIG SUPER LANG286

RMX86 RMX86.286 PROG

A

RILOGON

=1 A A A A

TERMINALS LOGON.MSG TERMCAP
SUPER F-0829

Figure 2-3 Minimum File Structure Needed to Boot iRMX®

Operator’s Guide 2-21

USING THE HUMAN INTERFACE

2.6.3 Pathnames

This section describes how to specify a particular file in a named-file tree. For
simplification, it assumes that all files reside in the same file tree, and thus in the same
volume. To identify the volume as well as the file, you must include a logical name for the
device as the first portion of the file specification. Refer to the "Logical Names" section
later in this chapter for more information about logical names.

In a file tree, each file (data or directory) has a unique shortest path connecting it to the
root directory. For example, in Figure 2-1, the path from the root directory to file
BATCH-2 goes through directory DEPT, through directory TOM, through directory
TEST-DATA, and finally stops at data file BATCH-2. When you want to perform an
operation on a file (for example, using the COPY command to copy one file to another),
you must specify not only the file’s name, but also the path through the file tree to the file,
This description is called the file’s pathname. For file BATCH-2 in Figure 2-1, the
pathname is

DEPT1/TOM/TEST-DATA /BATCH-2

This pathname consists of the names of files (in uppercase or lowercase characters; the
operating system treats them the same) and separators. In this case, slashes (/) separate
the individual components of the pathname and tell the operating system that the next
component resides down one level in the file tree. You can use another separator, the
circurnflex or up-arrow (), between path components. Each circumflex tells the operating
system that the next path component resides up one level in the file tree. The following
pathname, although not the shortest possible pathname, indicates another path to file
BATCH-2:

DEPT1/BILL"TOM/TEST-DATA/BATCH-2

If you always start at the root directory, the circumflex separator is not very useful, since
you usually want to move down the file tree. However, in some systems, your starting
point in the file tree may be a directory other than the root directory. Then you would use
the circumflex separator to access files in other branches of the file tree. Your default
prefix (discussed later in the "Logical Names" section of this chapter) determines your
starting point in the file tree.

For example, suppose your starting point in the file tree is the directory DEPT1/TOM
shown in Figure 2-1. To access a file in directory BILL from this starting point, you can
use the circumflex in the pathname. To indicate file SIM-SOURCE in directory BILL,
you could center the pathname

“BILL/SIM-SOURCE

2-22 Operator’s Guide

USING THE HUMAN INTERFACE

This path tells the operating system to go up one level in the file tree from the starting
point (to directory DEPT1 from directory TOM), search in that directory for directory
BILL, and search in directory BILL for file SIM-SOURCE.

You can use more than one circumflex to go up any number of levels within the file
structure. For example, if your starting point is TOM, then you can go up to the root
directory by using two circumflexes.

Another way to specify files in different branches of the file tree is by including the slash
separator as the first character in the pathname. The slash tells the operating system to
ignore your normal starting point and begin the path from the root directory. Using the
previous example where the starting point is directory TOM, another way to specify SIM-
SOURCE is with this pathname:

/DEPT1/BILL/SIM-SOURCE

The initial slash causes the operating system to search in the root directory for directory
DEPT]1 instead of starting the search in the current starting directory (TOM).

2.6.4 Logical Names

Although you can use pathnames to refer to files, you can also create symbolic names that
correspond to files or devices. These symbolic names are called logical names. You can
create logical names that represent devices, data files, or directories. After creating a
logical name, you can refer to the entity it represents by specifying the logical name. The
rules for logical names are

» Each logical name must contain between 1 and 10 ASCII characters, excluding the
colons surrounding the name,

» The hexadecimal representation of each character must be between 021H and 07FH
inclusive (ASCII printable characters).

» The logical name cannot include the characters colon (:), slash (/), up-arrow or
circurnflex (*), asterisk (*), or question mark (?).

+ When you specify a logical name, you must surround it with colons.
When referring to logical names, this manual always lists the surrounding colons. You can

use the LOGICALNAMES command to view all the current logical names. The
LOGICALNAMES command is described in Chapter 4.

Operator’s Guide 2-23

USING THE HUMAN INTERFACE

For an example of how to use logical names, refer again to Figure 2-1. Suppose you have
created a logical name called :ME: that represents the pathname /DEPT1/TOM/TEST-
DATA (a later paragraph in this section discusses how to create this logical name). If you
want to refer to the directory TEST-DATA, you can either specify its pathname as before
or specify the logical name ;:ME:. If you want to refer to the file BATCH-1 under
directory TEST-DATA, you can do this in either of the following ways:

/DEPT1/TOM/TEST-DATA/BATCH-1
or
:ME:BATCH-1

The second line shows that you can use a logical name as a beginning portion (or prefix)
of a pathname. The logical name tells the operating system where to begin in its search
for the file. However, you cannot use a logical name in the middle or at the end of a
pathname. If you use a logical name, you must specify it at the beginning,

Notice that you must not include a slash or circumflex between the logical name and the
next path component if you want the operating system to search down one level. If you
include the slash, the operating system ignores the normal starting point (the directory
TEST-DATA) and searches for the file BATCH-1 in the root directory of the volume. If
you include the circumflex, the operating system searches up one level from the starting
point.

As a Human Interface user, you deal with two general classes of logical names: logical
names for devices and logical names for files.

2.6.4.1 Creating Logical Names for Devices

Logical names for devices are created in two ways: by invoking the ATTACHDEVICE
command (refer to Chapter 4 for details) or configuring the operating system to create
them. Section 2.6.4.4 lists the logical names created by the operating system.

By using device logical names as the prefix portion of your pathname specifications, you
can refer to any file on any device. For example, suppose your system contains two
flexible disk drives for which you have established logical names :F0: and :F1:. (You used
the ATTACHDEVICE command to attach the devices as :F0: and :F1:.) If you have a
diskette containing the file DEPT2/HARRY in drive :F0:, you could access the file with
this pathname:

'FO:DEPT2/HARRY

2-24 Operator’s Guide

USING THE HUMAN INTERFACE

If you put the same diskette in drive :F1:, you could access the file by specifying this
pathname:

‘F1:DEPT2/HARRY

You can see that for devices containing named files, the device logical name is actually a
logical name for the root directory on that device. Entering the DIR command (described
in Chapter 4) as follows lists the root directory of the :F1: device:

DIR :F1:
2.6.4.2 Creating Logical Names for Files

Logical names for files are created in two ways: by invoking the ATTACHFILE
command (refer to Chapter 4 for details), or by configuring the operating system to create
them. The operating system establishes a number of logical names for files during system
initialization. (Section 2.6.4.4 lists these.)

A logical name for a file provides a shorthand way of accessing that file. For example,
suppose you have a file that resides several levels down in the file tree, such as

:F1:DEPT1/TOM/TEST-DATA/BATCH-2

where :F1. is the logical name for the device that contains the file. You can establish a
short logical name for this long pathname, such as :-BATCH:. (You could also say that
you attached the file with the logical name :BATCH:.) Then, whenever you want to refer
to the file in a command, you can specify the logical name instead of the pathname,

If your logical names refer to directories instead of data files, you can use the logical
names in the prefix of a pathname. For example, consider the same pathname

:F1:DEPT1/TOM/TEST-DATA/BATCH-2

Suppose you have attached the pathname :F1:DEPT1/TOM/TEST-DATA as logical
name . TEST:, so it is a logical name for the directory TEST-DATA. To refer to file
BATCH-2, you could enter

"TEST:BATCH-2

Operator’s Guide 2-25

USING THE HUMAN INTERFACE

2.6.4.3 Where Logical Names are Stored

When the operating system creates logical names at initialization time, or as a result of
ATTACHFILE or ATTACHDEVICE commands, it places the logical name, along with a
token for a connection to the file or device, into an object directory. This process is
referred to as cataloging the logical name (refer to the iIRMX II Extended 1/0 System
User’s Guide for more information about this process). The object directory that receives
this information determines the scope of the logical name (that is, who can use the logical
name). Object directories fall into three categories:

Root object directory Logical Names cataloged in the object directory of the root
job can be accessed by every user. When you use
ATTACHDEVICE to create logical names for devices, the
operating system catalogs the logical names in the root
directory.

Logical names cataloged in the root object directory remain
valid until deleted or until the system is reinitialized.

Global object directory Logical names can be cataloged in the object directory of a
job designated as a global job (refer to the iRMX II
Extended I/0 System User’s Guide for more information
about global jobs). Each interactive job (user session) is a
global job. When you use ATTACHFILE to create logical
names for files, the operating system catalogs the logical
names in your global job. Likewise, if you invoke any
commands that issue ATTACHFILE commands (such as a
SUBMIT command), the operating system catalogs the
logical names in your global job. You (and any commands
you invoke) can use the logical names cataloged in your
interactive job. However, other users have no access to
these logical names.

Logical names cataloged in your interactive job remain
valid for the life of your interactive job or until deleted.

Logical names are also valid in a background environment.
When the BACKGROUND command is invoked by the
CLI, it creates a global job for the commands invoked
within the background environment. All the logical names
that were valid when the BACKGROUND command was
entered are also valid in the background environment.
Logical names can be assigned in either a background or a
foreground environment as they are independent of each
other.

2-26 Operator’s Guide

USING THE HUMAN INTERFACE

Local object directory Logical names can be cataloged in the object directory of
the job itself. When you invoke a command (such as DIR),
the operating system creates a job for that command and
catalogs certain objects in its object directory. A command
that you create and invoke might also use iIRMX 1II system
calls to catalog logical names in its own object directory.

Logical names cataloged in a local job can only be used in
the context of that job. They remain valid only until the job
exits or is deleted.

Whenever you (or one of the commands you invoke) use a logical name, the operating
system searches for that logical name in as many as three different object directories. It
first looks in the local object directory. If the logical name is not defined there, it then
looks in the global object directory and finally, if necessary, in the root object directory. It
uses the first such logical name it finds.

Because of this order of search, you can override the system logical names (those
cataloged in the root object directory) by cataloging the same logical names (but
representing different files or devices) in the object directory of your interactive job. For
example, suppose you used the ATTACHFILE command to attach a file with the logical
name :UTIL:. Then, whenever you specify :UTIL:, the operating system refers to your
file and not the one represented by the same logical name in the root object directory.

2.6.4.4 Logical Names Created by the Operating System

The operating system establishes several logical names that you can use without first
having to create them. It catalogs some of these logical names in the root object directory
(where they are available to all users). It catalogs others in global object directories
(these are specific to each interactive job). It catalogs others in local object directories
(these are specific to each interactive job and to each command invoked).

The Human Interface catalogs system wide logical names in the root object directory.
These logical names are available to all users, and they represent the same file or device
for all users. The number of logical names created and their identities depend on the
configuration of your operating system. However, the following logical names are
available on systems that use the default configuration.

:BB: A device treated as an infinite sink (byte bucket). Anything written
to :BB: disappears, and anything read from :BB: returns an end-of-
file.

:CONFIG: A directory in which the Human Interface expects to find user

configuration files.

LANG: A directory used to store language products, such as assemblers,
compilers, and linkers.

Operator's Guide 2-27

USING THE HUMAN INTERFACE

AP A logical name for the line printer.

:SD: The system device. If you used the Bootstrap Loader to load your
system, and your system is configurcd to include the automatic
boot-device recognition feature, this logical name refers to the
device from which the Bootstrap Loader read the operating system
file. You should never change the default logical name for the
system device.

:STREAM: The stream file connection. To create a connection to a stream
file, you must use this logical name as the prefix portion of the
pathname.

:SYSTEM: The directory containing the Human Interface commands.

:UTILS: A directory used to store utility programs such as the iRMX-NET
commands.

‘WORK: A directory that Intel language translators and utilities use to store

their temporary and work files.

The following logical names are cataloged in each user’s global object directory. Although
each user has access to these names, the names represent different files or devices for
each user.

:3: Your default prefix. This is the path to your default directory. If
you do not specify a logical name (a prefix) or a’/’ at the beginning
of a pathname, the operating system automatically uses :§: as the
prefix. In this case, the operating system assumes that the file
resides in the directory corresponding to :3:. During an interactive
session, you can use the ATTACHFILE command to change the
directory corresponding to :$:. For instance, the DIR command
without any parameters is equivalent to entering "DIR :§:".

‘HOME: Your default prefix when you first start using the Human Interface.
Initially, :HOME: and :3: represent the same directory. Using this
logical name, you can re-establish your original :$: logical name.
Issuing the ATTACHFILE command with no parameters sets :§:
equal to :HOME:. You cannot use ATTACHFILE to change the
directory corresponding to :HHOME:, which is established during
system configuration.

:PROG: A directory in which to store your programs.

2-28 Operator’s Guide

USING THE HUMAN INTERFACE

The following logical names are cataloged in the local object directory of each user and
each command that a user invokes. These logical names can have different meanings for
cach user and each command.

:CIL: The terminal keyboard (or command input). As the name implies,
each user’s :CI: refers to the terminal associated with that user.

:CO: The terminal screen (or command output). As the name implies.
each user’s :CO: refers to the terminal associated with that user.

On initialization, your Human Interface may create additional logical names. These
logical names are configuration parameters. Contact the system manager for more
information about the logical names initially available to you. The Extended iRMX IT
Interactive Configuration Utility Reference Manual discusses this subject in more detail.

2.6.4.5 Removing Volumes from Devices

Removing volumes from devices (such as removing flexible disks from drives) destroys
any connections that may have existed to files on that device. Therefore, any logical
names that represent files on the volume are no longer valid once you remove the volume.
The names remain cataloged in the directories, but they do not represent valid
connections. Therefore, before removing volumes, invoke DETACHFILE commands (as
described in Chapter 4) to detach the files. This removes the invalid names from the
directories.

2.6.5 Wild Cards

Wild cards provide a shorthand notation for specifying several files in a single reference
when you enter commands. You can use either of these wild card characters in the last
component of a pathname to replace some or all of the characters in that component:

? The question mark matches any single character. The Human
Interface allows any character to appear in that character position.
It selects every file that meets this requirement. For example, the
name "FILE?" could imply all of the following files:

FILE1
FILE2
FILEA

Operator’s Guide 2.29

USING THE HUMAN INTERFACE

* The asterisk matches any number of characters (including zero
characters). The Human Interface allows any number of
characters to appear in that character position. It selects every file
that meets this requirement. For example, the name "FILE*"
could imply all of the following files:

FILE1
FILE.OR]
FILE
FILECHANGE

You can use multiple wild cards in a single pathname. For example, the name
IF?.

matches every file containing the sequence "IF" followed by any character and a period.
These files could include all of the following files:

RMXIFC.LIB
IFL.P28
LNKIFC.

You can use wild cards in both input pathnames (files that commands read for
information) and output pathnames (files into which commands write information). For
example, in the command

COPY A* TO B*

the A* represents the input pathname and B* represents the output pathname.In this
command (which copies information from one file to another}, the Human Interface
searches the appropriate directory for all files that begin with the "A" character. Then it
copies each file to a file of the same name, but beginning with the "B" character. If the
directory contains the following files:

ALPHA
All12
A

The previous command would copy files in the following manner:

ALPHA TOBLPHA
Al12 TOB112
A TOB

2-30 Operator’s Guide

USING THE HUMAN INTERFACE

Note these characteristics when using wild cards:

» Wild cards are valid in the last component of the pathname only. Therefore,
'FL:SYSTEM/APP1/FILE* is a valid pathname, but :F1:SYSTEM/APP* /FILE1 is
not.

* You can negate the meaning of a wild card character by enclosing it in quotes, either
single () or double ("). For example, if you have a file named F*123, you can refer to
it alone in a command by specifying F'*'123 or 'F*123".

» When you specify input and output pathnames in commands, you can specify lists of
pathnames, separated by commas. For example

COPY A,B,C TO D,E,F

copies A to D, B to E, and C to F. If you use wild cards in any one of the output
pathnames, you must use the same wild cards in the same order in the corresponding
input pathname. The term "same order" means that if you use both the "™*" and the "?"
characters, their ordering must be the same in both the input and output pathnames.
For example, the following is valid:

COPY A*B7C* TO *DE?FGH*I
Howcver, the following is invalid because the wild cards are out of order:
COPY A*B?C* TO *DE*FGH?I

» Ifyou use wild cards in an input pathname, you can omit all wild cards from the
corresponding output pathname to cause the Human Interface to concatenate files.
For example, suppose a directory contains files A1, B1, and C1. The following
command is valid:

COPY *1 TO X
It copies files in the following manner:

A1TO X
B1 AFTER X
ClAFTER X

But if X is a directory, the Human Interface does not concatenate these files. Instead,
thie Human Interface copies each file over to the new directory. Refer to the
"Command Name" section later in this chapter for more information about the
prepositions TO, OVER, and AFTER.

Operator’s Guide 2-31

USING THE HUMAN INTERFACE

« The "*" character matches as close to the end of the pathname as possible. For
example, suppose the directory contains the file "ABXCDEFXGH", and you enter the

command
COPY *X* TO :PROG:*1*
This command copies
ABXCDEFXGH TO :PROG:ABXCDEF1GH

The first asterisk matches the characters "ABXCDEF", and the second asterisk
matches the characters "GII".

2.7 DEVICES

You can communicate with various types of devices (disks, terminals, etc.). Each device
supports one or more types of files (named or physical). The list below shows which kinds
of devices you can communicate with and the types of files supported on those devices.

Terminals You need the terminal to communicate with the Human Interface.
You can also write programs that read from and write to terminals.
Terminals are accessed as physical files.

Disks Disks provide permanent storage for programs and data. You can
communicate with a variety of disk devices: Winchester disks,
other hard disks, and flexible disks. During format, backup,
restore, and disk verification operations, disks are treated as
physical files. Other operations can access named files.

RAM Disk A RAM disk provides you with an area of memory that acts like a
secondary storage device in the system. The RAM disk creates a
disk image within your memory and provides faster accessibility to
your files. 1t is similar to a physical disk in all aspects except that it
does not provide permanent storage. If there is a power failure or
if the system fails for some reason, the data on the RAM disk is
lost.

Tapes Tapes provide a quick and convenient method of backing up hard
disks. You can use those tape drives only for backing up and
restoring files (via the BACKUP and RESTORE commands). The
Operating System does not support tape drives for any other uses.

Bubble Memory You can reconfigure the operating system to support bubble
memory. Once you have done this, you can treat the bubble
memory as a physical device, or you can use it as a disk to store
named files.

2-32 Operator’s Guide

USING THE HUMAN INTERFACE

2.8 AUTOMATIC DEVICE CHARACTERISTICS RECOGNITION

Automatic device recognition gives the operating systern the ability to recognize and
access named disks of different formats without requiring you to reattach the device. This
feature does not work with physical files. Automatic device recognition is described
briefly in the following sections. Refer to the Extended iRMX II Interactive Configuration
Utility Reference Manual for more detailed information than is given here.

2.8.1 How Automatic Device Characteristics Recognition Works

The Basic I/O System, the Extended I/O System, and the FORMAT command combine
to provide automatic device characteristics recognition as follows:

1.

When the FORMAT command formats a flexible diskette as a named volume, it
formats it with the same characteristics that match the name you specified when you
used ATTACHDEVICE to attach the device. (Characteristics were defined for the
name during system configuration.) However, when the diskette is configured to be
in "standard" format, it formats track 0 with a fixed density (single density) and a
fixed sector size (128 bytes) regardless of the way it formats the rest of the disk. On
track 0, FORMAT places the iRMX II volume label, a table that describes the
characteristics of the remainder of the volume (granularity, density, number of
sides, etc.). Refer to the Extended iRMX II Disk Verification Utility Reference
Manual for a description of the iIRMX 11 volume label.

Because track 0 is formatted the same way for all named disks, the Basic I/O
System can access the information on track 0 without knowing the format of the
remainder of the disk.

When you attach a device to the system as a named device (using the
ATTACHDEVICE command), you specify the name of a DUIB (device-unit
information block) as one of the ATTACHDEVICE parameters. The DUIB names
you can use are the ones that are specified as input to the "Device-Unit
Information” screen of the ICU.

The DUIB tells the Basic I/O System which device-unit (disk drive) to attach and
which characteristics (granularity, density, number of sides, etc.) to assume about
the disk drive.

Operator's Guide 2-33

USING THE HUMAN INTERFACE

3. During the attach process, the Basic I/O System reads the information from track 0
(the volume label) and compares it with the information in the DUIB you specified
when attaching the device. If the information does not match, the Basic I/O System
does the following:

a. It compares the information in the volume label with all the other DUIBs
defined for that device-unit. If it finds a match, it "switches" DUIBs and uses
the matching one as the current DUITB.

b. If none of the DUIBs defined for that device-unit matches the information in
the volunie label, the Basic 1/O System creates a temporary DUIB that does
match. It uses the information from the DUIB that you specified when
attaching the device and modifies it with information from the volume label.
The Basic I/O System names the temporary DUIB by placing a question mark
() at the beginning of the DUIB name specified when the device was attached.

4. Whenever you remove a disk from a drive (assuming that the drive can recognize
when a disk has been removed, such as with 8-inch diskettes), the operating system
automatically detaches the device. If it was accessing the device through a
temporary DUIB (as opposed to the one you specified as an ATTACHDEVICE
parameter), it deletes the DUIB. However, it remembers the name of the DUIB
that you specified as input to ATTACHDEVICE.

If the drive cannot recognize and signal disk changes, such as with 5.25-inch
diskettes, the operating system is unable to handle these disk changes automatically.

5. When you insert a new disk into the drive and attempt to access it as a named
volume (by invoking the DIR command, for example), the operating system
automatically reattaches the device using the same process listed in step 3.

From these steps, you can see that you can continue to change diskettes without having to
detach and reattach the device. The operating system makes this change for you
automatically. However, this process occurs only for named-file operations. Whenever
the operating system performs physical-file operations, it cannot use the temporary or
"switched" DUIBs. Instead, it must use the DUIB you specified as a parameter to
ATTACHDEVICE.

CAUTION

If the device cannot signal the operating system when a volume changes
(such as with 5.25-inch diskettes), the process described above cannot
take place automatically. In this case, you must detach the device, insert
the new diskette, and reattach the device. Otherwise, chances are you wiil
destroy the file system on the new volume,

2-34 Operator’s Guide

USING THE HUMAN INTERFACE

2.8.2 Commands That Cannot Recognize Device Characteristics

Because the device characteristics recognition feature does not apply to physical-file
operations, the following Human Interface commands cannot use this feature:

FORMAT
BACKUP
RESTORE

Each of these commands must detach the device and reattach it as a physical device,
preventing the Basic I/O System from recognizing the characteristics of the volume.
These commands assume that the device characteristics are those listed in the DUIB you
specified as an ATTACHDEVICE parameter. If you do not include, for example, a
DUIB for a double-sided, double-density Jisk in your configuration, you cannot format
such a disk. You cannot create a backup volume in this format or restore information
from one.

If you plan to use one of these commands and you are not sure how your device was
attached, use DETACHDEVICE and ATTACHDEVICE :o reattach the device with the
characteristics you require.

2.8.3 Operational Considerations for MSC Devices

If your system contains an 8-inch floppy disk drive and an Mass Storage Controller (MSC)
controller, you may receive error messages that are not appropriate when switching
diskettes. For example, if you attach your device as a double-sided, double-density device
and insert a single-sided, single-density diskette, you will receive an I/O error message
when attempting an [/O operation. In this situation, the message does not indicate a
problem. H you try the I/O operation again, it will usually succeed.

2.9 HUMAN INTERFACE COMMAND SYNTAX

This section describes the general syntax rules that apply when entering Human Interface
commands (not CLI commands) at a terminal. These rules apply equally to both the
supplied Human Interface commands and any user-created commands that may have
been added to your system. The commmand descriptions in Chapter 4 contain more
information about these commands.

The elements that form a standard command entry include a command name, required
input parameters (if any), and optional parameters. The general structure of a command

line 1s as follows (brackets [] indicate optional portions):

command-name [inpath-list [preposition outpath-list]] [parameters] <CR>

Operator’s Guide 235

USING THE HUMAN INTERFACE

where

command-name Pathname of the file containing the command’s executable object
code.

inpath-list One or more pathnames, separated by commas, of files to be read
as input during command execution.

preposition A word that tells the executing command how to handle the output.
The four prepositions used in Intel-supplied commands are TO,
OVER, AFTER, and AS.

outpath-list One or more pathnames, separated by commas, of files to receive
the output during command execution.

parameters Parameters that cause the command to perform additional or
cxtended services during execution.

<CR> A line terminator character. This character terminates the current

line and causes the cursor to go to a new line. This character also
causes a command to be loaded and executed if the <CR>
character is not preceded by the ampersand (&). The RETURN
{or CARRIAGE RETURN) key and NEW LINE (or LINE
FEED) key are both line terminators.

You can enter all elements of a command line in uppercase characters, lowercase
characters, or a mix of both. The Human Interface makes no distinction between cases
when it reads command line items. In addition, you can include the following optional
command line entries:

continuation mark An ampersand (&) indicates that the command continues
on the next line. When you include the ampersand, the
Human Interface displays two asterisks (**) on the next
line to prompt for the continuation line. All characters
appearing after the continuation mark but before the line
terminator are interpreted as comments.

Within available memory limits, you can use as many
continuation lines for a given command as you desire.
After you enter the line terminator without a preceding
ampersand, the invoked command receives the entire
command string as a single command.

comment character A semicolon (;) indicates that all text following it on the
current line is a nonexecutable comment. You can also
enter comments after a continuation mark (&) but before

the line terminator. A common use of comments in
commands is in a SUBMIT file (see the SUBMIT
command in Chapter 3).

2-36 Operator’s Guide

USING THE HUMAN INTERFACE

quoting characters Two single-quotes (’) or double-quotes (") remove the
semantics of special characters they surround. For
example, if you surround an ampersand (&) with single
quotes, the ampersand is not recognized as a continuation
character, The same holds for other characters such as
asterisk (*), question mark (?), equals (=), and semicolon
(;)- The only special characters not affected by the quoting
characters are the pathname separators (/) and dollar sign

3.

Although you can use either single quotes or double quotes as quoting characters, you
must use the same quoting character at the beginning and at the end of your quoted
string. If you want to include the quoting character inside your quoted string, you must
specify the character twice. For example

‘can®'t’
You can accomplish the same effect by using the other quoting characters follows:
"Can,t"

Although the Human Interface places no restriction on the number of characters in a
command, each terminal line can have a maximum of 76 characters, including any
punctuation, embedded blanks, continuation marks, nonexecutable comments, and line
terminator. If your command requires more characters, use continuation lines.

The following sections discuss the elements of command syntax in more detail.

2.9.1 Command Name

Each Human Interface command is a file of executable code that resides in secondary
storage. When you specify a command name, you actually specify the name of the file
containing the command’s code. If you write your own command (refer to the Extended
IRMX II Human Interface User's Guide for information), you invoke it by entering the
name of the file that contains it. After you invoke a command, the operating system loads
it from secondary storage into memory and executes it with the parameters you specify.

When you enter a command name, you can enter the complete pathname of the
command, or, in many cases, you can enter just the last component of the pathname.

¢ Ifyou enter the complete pathname of the command (that is, if you include a logical
name as the prefix portion of the pathname}, the operating system searches only the
device and directory you specify for the command. If it cannot find the command
there, it returns an error message.

Operator’s Guide 2-37

USING THE HUMAN INTERFACE

« TIf you enter only the last component of the pathname (such as COPY instead of
.SYSTEM:COPY), the operating system automatically searches previously designated
directories for the command. It does not return an error message until it has searched
each of the directories. The number of directories searched and the order of search
are determined during the Human Interface configuration. The standard search path
of directories is:

:PROG:
[UTILS:
SYSTEM:
:LANG:

3

When writing your own commands, you can take advantage of the order in which the
operating system searches directories. For example, suppose you write your own COPY
command, one that provides more or different functions than the Human Interface
COPY command. If you want to invoke your own program whenever you type the
command "COPY", you can simply place your copy program in a file called COPY in your
‘PROG: directory. Since the operating system searches the :PROG: directory before
searching the :SYSTEM.: directory (the directory that normally contains Human Interface
commands), it will invoke your copy program when you enter the command "COPY". Any
command needed only by you can be placed in your :PROG: directory.

[t you still want to be able to invoke the Human Interface COPY command, you can do so
by entering iis complete pathname as follows:

SYSTEM:COPY

Using the ALIAS command (see Chapter 3) provides a faster more direct means of
retrieving a command from one of the directories. To improve performance and create a
shorter name, you might define the Human Interface ATTACHFILE command with an
alias

alias af =:SYSTEM:ATTACHFILE
In this case, every time you enter AF, the operating system replaces it with

SYSTEM:ATTACHFILE and invokes the ATTACHFILE command found in the
:SYSTEM: directory.

2-38 Operator’s Guide

2.9.2 Prepositions

USING THE HUMAN INTERFACE

Preposition parameters in a command line tell the command how you want it to process
the output file or files. The Human Interface commands usually provide three
prepositions: TO, OVER, and AFTER. The preposition AS is also available for use in
the ATTACHDEVICE and ATTACHFILE commands. The TO preposition and :CO:
(console screen) will be used by default if you do not specify a preposition and an output
file. The prepositions have the following meaning:

TO

OVER

AFTER

Operator's Guide

Causes the command to send the processed output to new files;
that is, to files that do not already exist in the given directory. If a
listed output file already exists, the command displays the following
query at the console screen:

<pathname>, alreatd

Entera Y, y, R or r if you wish to write over the existing file. Enter
any other character if you do not wish the file to be overwritten. In
the latter case, the command does not process the corresponding
input file but rather goes to the next input file in the command line.
Commands process input files and write to output files on a one-
for-one basis. For example

copies file A to file C and file B to file D.

Causes the command to write your input files to the output files in
sequence, destroying any information currently contained in the
output files. It creates new output files if they do not exist. For
example

copies the data from file SAMP1 over the present contents of file
OUT], and copies the data of SAMP2 over the contents of file
ouTz2,

Causes the command to append the contents of one or more files
to the end of one or more new or existing files (file concatenation).
For example

appends the contents of file IN1 to the the end of file DEST1, and
appends the contents of IN2 to the end of DEST2.

2.39

USING THE HUMAN INTERFACE

AS A special preposition used with the ATTACHDEVICE and
ATTACHFILE commands. When you use the AS preposition, the
operating system does not assume that the command contains
input pathnames and output pathnames. Rather, it sees the
parameters as entities that it must associate. For example,
ATTACHFILE associates a pathname with a logical name as
follows:

2.9.3 Inpath-List and Outpath-List

An inpath-list specifies the files on which a command is to operate. An outpath-list
defines the destination of the processed output. Each inpath-list or outpath-list consists
of a pathname (or logical name) or list of pathnames. If you specify multiple pathnames,
you must separate them with commas. Embedded blanks between the commas and
pathnames are optional. You can also use wild cards to indicate multiple pathnames
(refer to the "Wild Cards" section earlier in this chapter).

Usually when you specify multiple pathnames, each pathname in the inpath-list has a
corresponding pathname in the outpath-list. For example, the command

copies file A to file C and also copies file B to file D. Therefore, A and C are
corresponding pathnames, and so are B and D. However, there are some instances when
the number of input pathnames you enter differs from the number of output pathnames.
The validity of the operation depends on whether the pathname lists contain single
pathnames, lists of pathnames, a wild-card pathname, or lists of wild-card pathnames.
Table 2-1 lists the possibilities and describes the Human Interface’s action in each
instance. The following sections discuss the Human Interface’s actions in more detail.

2-40 Operator’s Guide

USING THE HUMAN INTERFACE

Table 2-1. Input Pathname and Output Pathname Combinations

Human Interface
Inpath-tist Qutpath-list Action
single pathname singte pathname one-for-one match
single pathname list of pathnames error
single pathname wild-card pathname error
single pathname list of wild cards error
single pathname pathname to directory one-for-one match
list of pathnames single pathname concatenate
list of pathnames list of pathnames one-for-one match
list of pathnames wild-card pathname error
list of pathnames list of wild cards error
list of pathnames pathname to diractory one-for-one match
wild-card pathname single pathname concatenata
wild-card pathname list of pathnames Brror
wild-card pathname wild-card pathname one-for-one match
wild-card pathname list of wild cards error
wild-card pathname pathname to directory one-for-one match
list of wild cards single pathname concatenate
list of wild cards list of pathnames concatenate
list of wild cards wild-card pathname concatenate
list of wild cards list of wild cards one-for-one match
list of wild cards pathname to directory one-for-one match

2.9.3.1 One-for-One Match

The combinations in Table 2-1 marked "one-for-one match” are those in which each
element in the inpath-list is matched with an element of the outpath-list. For example

In this casc, the Human Interface copies all files beginning with the character "A" to
corresponding files beginning with the character "C". When it finishes this operation, it
advances past the comma to the next set of pathnames (copies all files beginning with "B"
to corresponding files beginning with "D").

2.59,3.2 Concatenate

‘The combinations in Table 2-1 marked "concatenate” have multiple input pathnames that
correspond to a single output pathname. In this situation, the operating system
automatically appends the remaining input files to the end of the specified output file,
regardless of the preposition you specify.

Operator’s Guide 2-41

USING THE HUMAN INTERFACE

This allows you to combine one-for-one file operations (as in TO or OVER preposition)
with file concatenation (as in the AFTER preposition) in a single command, and thus
avoid entering an extra command to perform a separate concatenation operation. The
following example explains this situation.

Assume that in a COPY command, you use the TO preposition and specify the following
input and output pathnames:

When the Human Interface processes the command line, it copies file "A" to file "D" and
appends files "B" and "C" to the end of file "D" as follows:

Notice that this concatenation occurs only when there are multiple elements in the inpath-
list that correspond to a single element of the outpath-list. This means that the following
commands are invalid:

2.9.3.3 Error Conditions

The combinations in Table 2-1 marked "error" indicate invalid operations. For these
combinations, the Human Interface returns an error message without performing the
requested operation.

2.9.4 Other Parameters

With most commands, you can enter parameters other than inpath-lists, outpath-lists, and
prepositions. These other parameters are known as keyword parameters, because you
must enter a particular word, called a keyword, to obtain the additional or extended
services provided by the parameter.

For example, the DIR command (described in Chapter 4) lists the contents of a directory.

You can enter several different keyword parameters to specify the amount of information
displayed and the format of the display. A command such as

displays the contents of the :SYSTEM: directory in extended format. You could
substitute other keywords such as SHORT or LONG to obtain different formats.

2-42 Operator’s Guide

USING THE HUMAN INTERFACE

The command descriptions in Chapter 4 list the keyword parameters available with each
command. Although the descriptions list the complete names for the keywords, you need
enter only enough characters to uniquely identify the keyword. For example, you could
enter the previous command as

For the DIR command, the character E uniquely identifies the EXTENDED parameter.
Other keywords might require additional characters to make them unique.

Some keyword parameters also require an associated value. An example of this is the
FORMAT command (described in Chapter 4), which prepares secondary storage volumes
for IRMX Il use. A command such as

formats a volume on device :F1: and sets the number of files to 10. The keyword in this
command (FILES) has an associated value (10). Although this example and the
descriptions in Chapter 4 use the equal sign (=) to associate keywords and values, you can
do this two ways:

keyword = value
keyword (value)

The blanks are optional; you can use either method to enter Human Interface commands.

2.10 SYSTEM MANAGER

The multi-user Human Interface supports & user called the system manager. The system
manager maintains the multi-user configuration files. The system manager can modify
these files to add or delete user IDs, add or delete terminals, and changc terminal or uscr
characteristics (refer to the Extended iRMX II Interactive Configuration Utility Reference
Manual for more information). For security reasons, no user other than the system
manager can write to these files. (Although user passwords are kept in one of these files,
:CONFIG:UDF, and other users can read that file, the passwords are encrypted and there
is no way to decrypt them.)

The system manager has a special user ID that gives privileges that other users do not
have, such as
s Change the access rights of any file, regardless of the file’s owner.

+ Read access to all data files and list access to all directories, unless specifically denying
himself or herself those access rights.

* Detach devices attached by any user.

¢ Delete any user from the system.

Operator's Guide 2-43

USING THE HUMAN INTERFACE

Any operator can become the system manager by invoking the SUPER command. This
command (which requires entering a password) changes the operator’s user ID from its
normal value to that of the system manager. Once an operator invokes SUPER, that
operator has all the privileges of the system manager. Refer to Chapter 3 for more
information about the SUPER command.

2.11 ADDING USERS TO THE SYSTEM

To function correctly, a Human Interface system requires information about all users
{operators) and terminals that intend to access the system via the Human Interface. You
can supply information about one of these users via the ICU during the configuration of
the Human Interface. This user is called the resident user, and the process of configuring
it is called resident user configuration (refer to the Extended iRMX II Interactive
Configuration Utility Reference for information on resident user configuration). Other
users, if any, and their terminals must be defined in iRMX TI files that you set up during
system installation. These users are called non-resident users, and the process of
configuring them and their terminals is called non-resident user configuration. The files
are called non-resident configuration files.

The system manager (who has user ID 0) can modify these files to add users or terminals,
delete users or terminals, or change characteristics of users or terminals. Depending on
the type of modifications made, the changes take effect either the next time the affected
user logs onto the system or the next time the system is initialized. To prevent
unauthorized users from changing the system configuration, the system manager should
be the only user with change access to these files.

This section describes the types of system terminals you can configure, defines the names
you must use for the non-resident configuration files, and describes the information you
must place in these files. it also provides an example of adding a non-resident user to
your system.

2.11.1 System Terminals
With the configuration files described in this chapter, you can assign Human Interface

terminals to be one of two kinds: static logon terminals or dynamic logon terminals. The
following sections discuss these terms further.

2-44 Operator’s Guide

USING THE HUMAN INTERFACE

2.11.1.1 Static Logon Terminals

Each static logon terminal is configured to service a specific operator. Therefore, the
logon process is automatic and invisible to the operator. When the Human Interface
starts running, it has information about the operator, such as the user ID, the amount of
memory available to this operator, and the interactive job’s maximum priority. To change
the Human Interface specifications for a static logon terminal, you must change the non-
resident configuration files and reboot the operating system.

2.11.1.2 Dynamic Logon Terminals

Dynamic logon terminals can service many different operators on a request-by-request
basis. To determine which operator wants access to the operating system via a dynamic
logon terminal, the Human Interface requests information before allowing the operator to
access the system. This information consists of a logon name and a password. The
Human Interface verifies that the information entercd is valid by checking the non-
resident configuration files. Then it sets up the terminal based on other information listed
in those files.

To change the Human Interface specifications for a user who accesses the system from a
dynamic logon terminal, you must change the non-résident configuration files. The
changes take effect the next time the user logs on.

Each user that logs onto the system is allocated a memory partition. If the Human
Interface cannot allocate the amount of memory requested, but it has enough memory to
activate the user’s initial program, the Human Interface allocates all the free memory
available and displays this warning on the user’s screen:

is a problem cond he System Hanage

If there is not enough memory for the user’s stack, the following message is displayed:

*#% HI LOGON ERROR: Insufficii available:

Try .to logon again

Operator’s Guide 2-45

USING THE HUMAN INTERFACE

2.11.2 Non-Resident Configuration Files

Before non-resident users can access the Human Interface, you must prepare four
configuration files that describe all users and terminals. The files are

:CONFIG:TERMINALS

:CONFIG:-TERMCAP

:CONFIG:UDF

:CONFIG:USER /username

2-46

The terminal-configuration file. This file contains the
device names of the terminals, the names of the static users
(if any) that are associated with each terminal, and the
terminal type.

There is only one terminal-configuration file per
application system, and its name is fixed. It contains
information about all the terminals in the system.

The terminal definition file. This file defines each terminal
type with its configuration commands and default values.
Included in this file is a string of ASCII characters defining
the terminal name. To use a specific terminal name in the
:CONFIG:TERMINALS file, it must have been previously
defined in this file.

There is only one terminal definition file per application
system. For detailed information on defining the
:CONFIG. TERMCAP file, see Appendix B

The vser-definition file. This file contains the names of the
users that can log onto static or dynamic terminals, their
user IDs, and their passwords (if any).

There is only one user-definition file per application
system, and its name is fixed. It contains information about
all non-resident users in the system. This file has a non-
standard formatting that allows users to access, over the
iRMX-NET network, microcomputer systems running the
Xenix operating system. Therefore, the only way to add or
delete information in this file is to use the Human Interface
PASSWORD command.

The user-attribute files. Each of these files Lists iIRMX II-
specilic information about 4 user. This information

includes the user’s minimum and maximum partition size,
maximum task priority, default prefix, and initial program.

There is one user-attribute file for each non-resident user
in the system. These user-attribute files must be in the
:CONFIG:USER directory and the name of the file must
be identical to the user (logon) name of the corresponding
user.

Operator’s Guide

USING THE HUMAN INTERFACE

Each of these configuration files resides on the system device in the :CONFIG: directory.
You specify the pathname of this directory during the configuration of the Extended I/0O
System. Changing the definition of the :CONFIG: logical name later has no effect on the
configuration files checked, because the Extended 1/O System (and the Human Interface)
use the complete pathname as specified during EIOS configuration.

The following paragraphs describe :CONFIG:TERMINALS, :CONFIG:UDF, and
:CONFIG:USER in detail.

2.11.2.1 Terminal Configuration File (:CONFIG:TERMINALS)

The terminal-configuration file (:CONFIG:TERMINALS) defines all terminals through

which non-resident users intend to access the system through the Human Interface. It
contains several lines of information, as follows:

1. Aninteger indicating the number of terminals to be connected. This is the first line
of the file.

2. Device name and attributes of the terminals, one line of information for each
terminal.

The device name and attributes of a terminal must reside on a single line, with commas
separating the individual elements. Embedded blanks within a name are not allowed.
The {format of this information is as follows. (Square brackets ([]) indicate optional
elements. Spaces are allowed between elements.)

device-name,[user-name],reserved,[terminal-name)

where

device-name Name of the terminal. This name must be the physical device-unit
name (DUIB) specified for the terminal during configuration.

Operator’s Guide 247

USING THE HUMAN INTERFACE

user-name The presence or absence of this parameter indicates whether the
terminal is a static logon terminal or a dynamic logon terminal, as
follows:

o If this parameter is present, the terminal is a static logon
terminal. The parameter must be a string of three to eight
ASCII characters specifying a user name. When the Human
Interface starts running, it automatically logs this user onto the
system from this terminal.

For any name you specify here, there must be a corresponding
entry in the UDF and a corresponding user-attribute file
available.

« If this parameter is absent, the terminal is a dynamic logon
terminal. Before users can access the Human Interface from
this terminal, they must supply a user name and password
during the logon process.

reserved Reserved for future use. Enter a null value (comma or line
terminator used as a place holder).

terminal-name An ASCII string equivalent to the terminal name in the
:CONFIG:TERMCAP terminal definition file. ANY is the default
value. The ANY option applies to all terminal types, however, it
has a limited number of functions. Its main purpose is to provide
compatibility with IRMX IL.1. To get all the added editing features
of iIRMX I1.2 and I1.3, you can change this value to a specific
terminal name, such as VT100. :CONFIG: TERMCAP defines the

following terminal names:

« 1510E

¢ 1510T

o ADM3A
o QVTI102
s TVI10P
o TV9I50

o VTI00

o VTI02

» V52

¢ WYSES)
« ZENTEC

2-48 Operator’s Guide

USING THE HUMAN INTERFACE

If you omit the user-name parameter but specify the terminal-name parameter, you must
include two commas as a placeholder for the omitted parameter.

When the Human Interface starts running, it assigns memory for all static logon terminals
in the order they are defined in the terminal-configuration file. Therefore, you should
define the terminals in order of their importance, to guarantee that the high priority
terminals have access to the system.

The following is an example of a terminal-configuration file that defines two static logon
terminals and one dynamic logon terminal:

3
Tl, ted, ,VT100
T3, ,ZENTEC
T4, kim

T6

Terminals T1 and T4 are static logon terminals associated with users ted and kim. The
sizes of their memory partitions are determined from their user-attribute files. Ted is
assigned to terminal T1 which is a VT100 terminal. Terminal T3 is a dynamic logon
terminal.

Terminal T6 is not included in the list of terminals the Human Interface initializes
because it is the fourth terminal in the Iist. The first line of the terminal-configuration file
indicates that only three terminals are present.

2.11.2.2 User-Definition File (:CONFIG:UDF)

This file defines the names, user IDs, and passwords of all non-resident users (those who
access the Human Interface from static or dynamic logon terminals). The passwords
maintained in this file are encrypted to prevent unauthorized users from obtaining
privileged information by viewing this file.

To accommodate the iRMX-NET network, in which both iRMX 1I systems and
microcomputer systems such as the iIRMX I and Xenix operating systems can share files
on the same network, the format of the user-definition file (UDF) has the same format as
the Xenix password file. Passwords are encrypted in the same manner, and each line of
the file ends in a line feed only (not a carriage return/line feed pair). This common
format enables operators to log onto either the IRMX I, iRMX II, or Xenix operating
systems using the same user name and password.

Because the UDF requires a special format (encrypted passwords and nonstandard line
terminators), ordinary text editors cannot be used to create this file. Instead, the system
manager must use the Human Interface PASSWORD command to add entries to the file.
PASSWORD automatically encrypts passwords, and sets up the appropriate line
terminators.

Operator’s Guide 2-49

USING THE HUMAN INTERFACE

In brief, the system manager can specify the following information about each user with
the PASSWORD command:

user name A three- to eight-character name that the user supplies when
logging onto the system.

password A zero- to eight-character, case-sensitive password that the user
must also supply when logging onto the system. If this user is
associated only with static logon terminals, the password is
optional. In other cases, a password is required.

A null password indicates that the user does not need to enter a
password during logon, just a carriage return when the password
prompt appears. If the system manager specifies the characters
"“NO LOGIN" as the password, the associated user cannot log onto
the system from a dynamic logon terminal. (This "NO LOGIN"
password can be assigned to static logon users to prevent them
from logging onto dynamic logon terminals.) '

The PASSWORD command automatically encrypts the password
before placing it into the UDT,

user 1D Decimal number in the range 0 through 65535. This number
represents the user’s ID. The 1D 65535 represents the WORLD
user. ID Q represents the system manager. IDs 32768 through
65534 are reserved for future use by the operating system.

group ID A second type of user ID in the range of O through 65535. This
parameter is optional. If you enter both a user ID and a group ID,
the system assigns a user ID, a group 1D and the WORLD ID. If
you do not enter a group ID, the system assigns the user 11 and
the WORLD ID.

Other fields in the UDF are reserved for Xenix systems or for future use.
2.11.2.3 User-Attribute Files (:CONFIG:USER/username)

The UDF doesn’t contain all the information the Human Interface needs to set up a user.
The remaining information is contained in files in the :CONFIG:USER directory. Each
user must have a separate file (the name of the file is the same as the user’s logon name),
Each file contains user information (called attributes). The attributes must be separated
by commas; embedded blanks are not allowed. The format of each user definition file is
as follows (attributes may be entered on one line):

minimum partition-size,
maximum partition-size,
max-task-priority,
default-prefix-pathname,
initial-program

2-30 Operator’s Guide

where;

minimum partition-size

maximum partition-size

max-task-priority

default-prefix-pathname

Operator’s Guide

USING THE HUMAN INTERFACE

Decimal number specifying the minimum size,
in 1024-byte (1K) units, of the memory partition
that the Human Interface assigns to the
interactive jobs for this user. The Human
Interface assigns a memory partition of this size
when the user logs onto a terminal that uses
dynamic memory partitions.

Decimal number specifying the maximum
amount of memory, in 1024-byte (1K) units, the
user job can have. The difference between the
maximun and minimum values is borrowed
from the parent, if necessary.

Decimal number in the range 0 through 255.
This number specifies the maximum priority
(lowest numerically) that any task associated
with this user can have. Intel highly
recommends that you assign a priority value
greater than 141 (assign yourself a number less
than 141).

Pathname of the directory that serves as this
user’s default prefix (corresponding to the
'HOME: and initia] :§: directory). This
directory is normally the :SD:USER /username
directory, where username is the same as the
name of the user. The directory specified in
this field must exist or the user will be unable to
access the Human Interface.

2-51

USING THE HUMAN INTERFACE

initial-program Pathname of the file containing the user’s initial

program. This is the program that begins
running immediately after the user logs on. If
you omit this value or enter :SD:SYS$286/CLI,
the Human Interface uses its standard
command line interpreter (CLI) as the initial
program. If you want to continue using the
Release 1.0 CLI, enter :SD:SYS286/R1CLI in
this field.

The following is an example of a user-attribute file:

pathname contents
:CONFIG:USER/STEVE 200,800,150,:SD:USER/STEVE,:SD:SYS286/CLI

2.11.3 Setting up a Protected Environment

With a single-user Human Interface, there is no need to restrict access to files or devices.
There is only one user, and that user requires access to all files and all devices in the
system. However, with a multi-user Human Interface, file and device access becomes a
much more important issue. For example

2-52

A multi-user Human Interface requires a terminal-configuration file, a terminal
definition file, a UDF, and user-attribute files. To maintain system security and
integrity, you should limit access to these files.

Many users might want to prohibit other users from viewing the files in their default
directories. However, some users might want to grant other users the ability to access
those files. To allow for this, users should be the owners of their default directories.

Many users should be able to run Human Interface commands and utilities (such as
compilers or editors). To do this, they require the ability to list the directories
containing the commands and utilities and the ability to execute and read the
commands and utilities themselves. However, to protect the files from damage, you
should limit the number of users who are able to modify or delete those files.

Some devices (such as a hard disk or the device that serves as the system device)
should be available to all users. However, to protect users who access these devices,
only one user (the system manager) should be able to detach the devices.

Operator’s Guide

USING THE HUMAN INTERFACE

To create a multi-user system that provides all these protection features, the system
manager must set up the correct file structure before allowing other users to access the
system. The installation of the iIRMX II Operating System, as described in the Extended
IRMX II Hardware and Software Installation Guide, sets up the protected environment
described here, enabling the system manager to maintain control of the application
system.

2.11.4 File Structure of a Protected Environment

There are many ways to set up a file structure to support a multi-user Human Interface.
The ICU and the definition files provide options to support many different configurations.
However, unless you have specific reasons for setting up a special structure, you should
use the standard file structure described in this section. This standard file structure is
created when you install the Operating System. All of the Updates to the operating
system also assume this standard file structure.

Figure 2-2 shows the standard directories and data files that exist on a system device after
you have completed the installation of an IRMX II Start-up system. The figure aiso lists
the user ID of each file’s owner and the access rights of WORLD. The owner is
important because that user always has the ability 1o change the access rights associated
with the file or the directory. WORLD access is important because it indicates that all
users have access rights. The Human Interface always ensures that the WORLD ID is
included in the ID’s that define a Human Interface user.

In the figure, :SD: indicates the root directory of the system device. You establish this
logical name for the default system device via input to the ICU during configuration of the
Extended I/O System. If you specify automatic boot device recognition, and if you use
the :SD: logical name when specifying other files and directories during configuration
(such as when specifying the default prefixes in the user attribute files), you can bootstrap
load the system from any device. The "Automatic Boot Device Recognition” feature is
described in the Extended iRMX II Interactive Configuration Utility Reference Manual and

in the Extended iRMX Il Bootstrap Loader Reference Manual,

NOTE

For systems that include the Human Interface, you must assign the logical
name :SD: as the name of the system device during EIOS configuration.
Assigning a different logical name causes some Human Interface
commands to function incorrectly.

Operator’s Guide 2-53

USING THE HUMAN INTERFACE

During the configuration of the Extended T/O System, you should specify the system
manager as the owner of the :SD: device. This prevents users other than the system
manager from detaching the system device. Before allowing users to access the system,
you should ensure that only user 0 has all access rights to the root directory. Other users
should have list access (L) to allow them to view the files in the root directory. However,
they should not have change entry (C) or delete (D) access to the root directory. Add
entry (A) is optional. The correct access rights are established during installation. (Refer
to the Extended iRMX II Hardware and Software Installation Guide for more information.)

Three first-level directorics klisted in Figure 2-2 are used to store commands and utilities.
They are LANG286, UTIL286, and SYS$286. The system manager should be the owner of
these directories and the files they contain. To protect the commands and utilities from
damage or deletion, other users should have only list access to the directories (to be able
to see what is available) and read access to the data files (to be able to run the
commands). If you have the iRMX I Operating System on the same volume, the
directories LANG, UTILS, and SYSTEM have the same functions as LANG286,
UTIL286, and SYS286, but with iRMX I equivalents.

The directory SYSTEM is present whether you have both iRMX T and iRMX I1
Operating Systems on the same volume or not. This directory contains the bootloadable
system since, by default, the Bootstrap Loader loads from /SYSTEM/RMX86. If you
want to change the default, you can configure the Bootstrap Loader to load any other file,
or you can specify the file explicitly during invocation of the Bootstrap Loader. In this
case, the directory SYSTEM may be deleted.

The first-level directory BOOT is where all Intel-supplied ICU definition files place the
generated bootloadable system. You should place files containing new versions of the
operating system Into this directory. When you use the ICU, you specify the location of
these files with the "RAF" prompt on the Generate File Names screen. Specify the name
/BOOT/your file name.286 for your boot file.

The first-level directory USER contains the directories that are the default prefixes of the
users. The system manager should be the owner of USER, and other users should have
only list (L) access. However, each directory contained in USER should be owned by the
user with the corresponding user name and should not be accessible by other users. By
owning the directory that serves as its default prefix, each user can change the access
rights of the directory. This ability enables a user to decide what access rights other users
should have to the first user’s files. However, because no other users have automatic
access to the default directory, the first user can maintain privacy if desired.

2-54 Operator’s Guide

USING THE HUMAN INTERFACE

Another first-level directory, RMX286, contains all the files necessary to configure your
own version of the operating system. It also contains the CONFIG directory which
includes the terminal-configuration, user-definition, and user-attribute files. The system
manager should be the owner of the directory and the files contained in it. Other users
can have list or read access to the subdirectories and files it contains, but they should not
be able to add, modify, or delete any information. This prevents everyone but the system
manager from modifying the terminal and user configuration,

2.11.5 Adding a Non-Resident User to a Multi-User System

This section provides an example of how to add new users to a multi-user application
system. It assumes that the directory structure of the system device is set up as shown in
Figure 2-2.

The directories that are important when adding new users are the :SD:USER directory,
the :SD:RMX286/CONFIG directory (also accessed by the logical name :CONFIG:), and
the :SD:RMX286/CONFIG/USER directory (also accessed as :CONFIG:USER). The
:SD:RMX286/CONFIG directory can be changed to any other directory during
configuration. Using the "EIOS" screen of the ICU you can define any pathname as the
directory for the non-resident user configuration information. For more information see
the Extended iRMX II Interactive Configuration Utility Reference Manual.

The :SD:USER directory contains the default prefixes (HOME: directories) of all the
users in your application system. As part of adding a new user, you can use the
PASSWORD command to automatically create a subdirectory in the :SD:USER directory
that has the same name as the logon name of the user you are adding. This subdirectory
is the user’s new home directory.

The :CONFIG: directory contains the terminal-configuration file
(:CONFIG:TERMINALS), the user-definition file (:CONFIG:UDF), and a subdirectory
that holds the user-attribute files :CONFIG:USER). As part of adding a new user, you
must modify the user-definition file and add a new user-attribute file to the
:CONFIG:USER directory. You can use the PASSWORD command to do this for you.
The user-attribute file must have the same name as the logon name of the user you are
adding.

Operator’s Guide 2-55

USING THE HUMAN INTERFACE

As an example, let’s add a user to the system, assuming the following information about

that user:
Type of user: Able to access the Human Interface from any
dynamic logon terminal,
Logon name jean
Password HOME
Group ID 03
User ID 15
Minimum partition size 200K
Maximum partition size 600K
Task priority 200
Default prefix pathname SD:USER/JEAN
Initial program Human Interface CLI

Perform the following steps to add this user to the system, enabling him to log on from
any dynamic logon terminal:

1. Logonto the system from a Human Interface terminal.

2. Ifyou arc not the system manager (user ID 0), invoke the SUPER command to
become the system manager. (This step requires that you know the system
manager’s password.) Enter the following command:

3. Invoke the PASSWORD command to create the file :SD:USER/JEAN and add a
new entry for this user in the UDF, as follows:

The command displays the following information and waits for your response:

ng.c Ommands ‘are available:

stothe .UD.F;E?E:} - _
ge the password

2-56 Operator’s Guide

USING THE HUMAN INTERFACE

The command then displays several prompts. Respond as follows:

Enter the“user name: -

Respond with "y". PASSWORD updates the copy of the UDF it maintains in
memory (the permanent copy is updated when you invoke the Exit command), and
displays this message:

7 Do you want to :i;feate the use urieg?y

Answering "y" causes PASSWORD to automatically update your user file
:SD:USER adding a subdirectory JEAN and a subdirectory under it PROG
(:SD:USER/JEAN/PROG). It copies the file :CONFIG:DEFAULT/RLOGON to
R?LOGON and creates an empty R?LOGOFF file in the
:SD:USER/JEAN/PROG directory. The logon file contains DATE and TIME
commands and the command that invokes the ALIAS.CSD file. Thus, each time
jean logs onto the system, DATE, TIME, and ALIAS.CSD execute.

After the files are updated, you are prompted for the pathname of the initial
program as follows:

t

If you are using the standard CLI, enter a carriage return. After adding the new
user, PASSWORD responds with

Operator’s Guide 2-57

USING THE HUMAN INTERFACE

The PASSWORD main menu then reappears. Enter the E command to save your
changes, as follows:

following commands

4,

The user jean is now added to the system. Jean can go to any dynamic logon terminal and
log onto the application system, using the logon name and password assigned.

2-58 Operator’s Guide

 _CHAPTER3
_CLI COMMANDS

3.1 INTRODUCTION

This chapter presents the CLI commands (not to be confused with the Human Interface
commands) in alphabetical order. CLI commands are part of the standard Human
Interface Command Line Interpreter, and are executed directly by the CLI instead of
being loaded from a file and executed as part of the Human Interface. If you have written
your own initial program or are using the Release 1 CLI, you may wish to skip this
chapter as these commands are only available with the standard CLIL

The commands LOGOFF, SUBMIT, and SUPER can be both CLI and HI commands. If
you are using the standard CLI, these commands function as CLI commands and
recognize all the CLI features. If vou are using your own initial program, these
commands are also available as Human Interface commands, but without the CLI
features such as altasing, advanced line-editing, and background processing.

3.2 COMMAND SYNTAX

CLI commands have a general syntax that you should follow when entering them at the
terminal. The elements that form a standard command entry include a command name,
required input parameters (if any), and optional parameters. The structure of a
command line is as follows (brackets [| indicate optional elements):

command-name [parameters] [1/O redirection] <CR>

where

command-name Name of the command.

parameters Define the subject on which the command is to perform during
execution. For example, when you use the SET TERMINAL
command, the CLI must know which terminal is being defined.

1/O redirection Causes the command’s :CO: and :CI: to be replaced by the file
specified. This parameter can be anywhere after the command
name,

Operator’s Guide 3-1

CLI COMMANDS

<CR> A carriage return indicating the end of the command.
<escape> An additional method of invoking the command line entered at the
terminal.

3.2.1 1/O Redirection

You can use I/O redirection with both CLI and HI commands. It causes the CLI to
replace the commands :CO: and :CI: with the specified file,. The operator’s terminal
(:EO:) remains the same. All error messages, user inputs, and program outputs are
transmitted to the new files specified rather than to your terminal. This option is
particularly useful when executing the BACKGROUND command. By redirecting your
output messages to a file, you free the terminal for other operations.

To use I/O redirection, you should include either or both of these parameters anywhere
in the command line. The parameters are formatted as follows and may be in any order:

<infile > outfile

where
infile The name of the input file that replaces the terminal as standard input.
outfile The name of the output file that replaces the terminal as standard output.

The angle brackets (<,>) have a specific meaning to the CLI. If you wish to use them for
anything other than I/O redirection, include them either in single quotes (*) or double
quotes ("). The CLI then passes them to the Human Interface as is.

The examples below illustrate the use of the I/O redirection feature.

1. This example uses I/O redirection with the BACKGROUND command to redirect
output to a file called COPY.LOG.

2. This example uses I/O redirection to change the source of input from the keyboard
to a file named IN.DAT and to redirect the output to a file named QUT.DAT.

32 Operator’s Guide

CLI COMMANDS

3.2.2 Syntax Conventions

You can enter all elements of a command line in uppercase characters, lowercase
characters, or a mix of both. The CLI makes no distinction when it reads the commands.
The CLI does not recognize continuation marks, comment characters, or quotation marks
within its commands. These characters, however, are recognized by Human Interface
commands. If the result of a CLI command causes the execution of an HI command, the
HI command is governed by HI command syntax rules. For example, this may occur when
executing the BACKGROUND command as follows:

Since executing BACKGROUND causes the Human Interface COPY command to be
executed, the rules for Human Interface commands apply. This means that a semicolon is
recognized. You might compare this to a telephone exchange. First, you dial the CLI,
using CLT rules, then, if necessary, the CLI transfers you to the Human Interface
command which has its own set of rules.

3.3 COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented in a "railroad track”
schematic, with syntactic elements scattered along the track. Your entrance to any
schematic is always from left to right, beginning with a command name entry.

Elements shown in uppercase characters must be typed in a command line exactly as
shown in the command schematics except that you can type them in either uppercase or
lowercase; the CLI makes no distinction between cases. Syntactic elements shown in
lowercase characters are generic terms, which means that you supply the specific item,
such as the pathname for a file.

The vertical dotted line separates the position-dependent parameters from those that are
position-independent. Parameters to the left of the dotted line must be entered in the
order listed (from left to right). Parameters to the right of the dotted line can be entered
in any order {as long as they obey the rest of the syntax).

"Ratilroad sidings" go through optional parameter elements. In some cases, you have a
choice of going through one of several possible sidings before returning to the main track.
In still other cases, the main track itself diverges into two separate tracks, which means
that you must select one track or the other but not both.

Operator’s Guide 3.3

CLI COMMANDS

The example that follows shaws all the possible paths through a railroad track schematic.
Notice that the main track goes through required elements in a given command.

|
Oy
' N
|
(D . e
, S
(= 1 (o)
]
o x-224

In this example
s A s arequired element. It is position-dependent; it must be entered first.

+ Either B or Cis required. These elements are also position-dependent. Whichever
element you enter must follow A immediately.

« D, E, or F are all optional but only one can be selected. These are position-
independent elements. If you select one of these elements, you can enter it before or
after G.

Operator’s Guide

Table 3-1. CLI1 Command Dictionary

CLI COMMANDS

Command Function Page
1 Recalls a specified command lina. 36
ALIAS Assigns an abbreviation to a command. 38
BACKGROUND Causes a command to be executed in

background mode. 313
CHANGEID Changes the current user ID to any value

between 0 and 65535. 3-16
DEALIAS Cancels the abbreviation assigned by

ALIAS. 3-18
EXIT Leaves the SUPER mode, 3-20
HISTORY Recalls the last 40 lines entered at the

terminal. 321
JOBS Displays a list of background jobs by

their job identification number. 324
KILL Cancels a background job. 325
LOGOFF Ends a user session at a dynamic iogon

terminal. 3-26
SET Afters the CLI environment by allowing

on-line changes to the terminal name,

the minimum and maximum background

memcry pool size, the memory for alias

tablas, or the prompt string. 327
SUBMIT Reads, ioads, and executes a string of

commands from a secondary storage file

instead of from the keyboard, 3-31
SUPER Changes the operator to the system

manager by changing the user (D. 3-36

Operator’s Guide

3.5

This command recalls a specific command line. It has the following format:

o

INPUT PARAMETER

variable The command line number (in decimal) or prefix of the command
to be recalled. The command line number must not be greater
than 999.

DESCRIPTION

By entering the ! command, you can recall a specific command line by either its number or
its prefix. The CLI searches its history buffer from the most recently entered command,
going backward until it finds the specified line number. It then replaces the current
command line with the command that was located. You can edit the recalled line, if you
wish. If you are recalling a command prefix rather than a line number, be sure to enter
enough of the command prefix to make it unique. The CLI recalls the first command line
it encounters with the specified command prefix. For example, if you enter

and you have previously entered

FORMAT :d:
FTN286 myfile.f28

the CLI will display FTN286 myfile.f28 . If you want to recall FORMAT :d:, you should

enter

To recall 4 command line by its number, for example line 29, enter

Operator’s Guide

ERROR MESSAGES
¢ <number>, history number not found

The number you entered cannot be found in the history buffer.
¢ <number>, history number out of range

The number you entered is greater than 999,

» <pumber>, illegal history number

Your entry is not a legal number. It may include non-numeric characters.

¢ <prefix>, history line not found

The command prefix you entered does not appear in the history buffer.

Operator’s Guide

37

-

3-8

This command assigns an abbreviation to a commonly used command pathname. The
format of this command is

)

—
parameters (010 9)
F-0308
INPUT PARAMETERS
abbreviation A short term that will replace the command prefix. Whenever the

abbreviation is entered, it is replaced with the command prefix.
Then the entire command is executed.

command A command (and optionally parameters) that replaces the
abbreviation during execution.

parameters Formal parameters, #0 to #9, that are replaced by actual
parameters in the invocation line.

DESCRIPTION

The ALIAS command provides a shorthand method of entering data at the terminal. Tt
assigns an abbreviation to a command prefix. Once the alias has been assigned, the CLI
recognizes the abbreviation as if it were the entire command and executes the command.
The alias stays in effect until you enter either a DEALIAS or a LOGOFF command.
Alias expansion can be nested up to five times for ease of use (see example 5 below).

Entering ALIAS with no parameters causes the CLI to list all your previously defined
aliases. However, if you have not previously defined any aliases, the CLI displays

USER ALIASES ARE: - |

Aliases are displayed page by page. If your list of aliases requires more than one screen,
the CLI displays one screen followed by this message:

display more ? ([y] or m) — .]

If you wish to see more, respond "Yes". Otherwise respond "No*, and the CLI will return
to the Human Interface.

Operator’s Guide

ALIAS

You can create an alias for any command including the ALIAS command. The alias
command prefix can be entered with or without formal parameters, which are replaced
with actual parameters in the commmand invocation. Formal parameters should be
preceded by a pound sign (#).

You can specify a maximum of ten formal parameters in a command prefix. Formal
parameters are replaced in order. You cannot skip a parameter. This means that if you
have three formal parameters and only two actual parameters, a null string will replace
the third formal parameter, not the first or second. If you enter more actual parameters
than formal parameters, the extra parameters are considered as another command
parameter (see example 4 below). Separate actual parameters with blanks.

To assign an ALIAS for the first time, enter

It is also possible to change an existing alias. For example, if you have defined the alias
a=mer, and now you wish to change it to a=merrr, you can enter

The CLI changes the alias and issues this message:

The following list shows some commonly used aliases. These may be helpful in defining
your own set of aliases, however, they are not required.

ALIAS COMMAND NAME

a ALIAS

ad :system:attachdevice

adf :system:attachdevice wmf0 as :f:
aed lang:aedit

af :system:attachfile

bk BACKGROUND

crdir :system:createdir

dd system:detachdevice

df :system:detachfile

h HISTORY

install submit :configiemd/instal(wmf0)
logs :system:logicalnames

Is :system:dir $ sort

Ipr BACKGROUND(100,100) copy #0 to :Ip:
mKksys submit :config:cmd /mksys(#0)
pmw :system:permit #0 drau u=world
sh :system:shutdown w=0

Operator’s Guide 3-9

ALIAS

EXAMPLES
For the examples in this section, assume that these aliases have previously been assigned:
ALTAS PIM = :lang:plm286 #0.p28 noli

ALIAS 5 = ;system:subrit
ALTAS SU = super

1. To display all of your aliases, enter

The CLI responds with a list of the aliases currently defined.

USER ALIASES ARE:

ilang :plm286 #0.p28 noli
$ = :system:submit

" SU = super . ;i

If you enter ALIAS and have not previously assigned any abbreviations, you receive
the message

2. To see only one specific alias, enter

The CLI responds with

3. Tosee all of your aliases starting with the letter S, enter

The response is

rsystem:submit
= super

3-10 Operator’s Guide

ALIAS

4. To execute the PLM command displayed in example 2 and replace its parameter,
enter

The CLI replaces the formal parameter #0 with MINE and executes the command
as though :LANG:PLM286 MINE.P28 NOLIST had been entered.

If you enter

the CLI executes

:LANG:PIM286 MINE.P28 NOLIST PAGEWIDTH(132)

adding PAGEWIDTH(132) as an additional command parameter. The CLI does
not echo this command on the screen.

5. To use the nested alias feature, assume you have defined the following aliases.

ALIAS PILM=:LANG:PLM286
ALTAS PNI-PIM #0.P28 NOLIST

Now when you enter PNL SOURCE, ALIAS first replaces "PNL" with
"PLM #0.P28 NOLIST". It then assigns "SOURCE" to #0, and finally it replaces
"PLM" with ": LANG:PLM286". The command that is executed is

:LANG:PLMZ86 SOURCE.PZ8 NOLIST

ERROR MESSAGES
» ALTAS, wrong alias syntax
The command syntax is not correct.
s <parameter>, alias not found
The alias you entered is not in the list of declared aliases.
» <parameter>, wild card is allowed only in the last character

You tried to list your aliases with a wild card, but the wild card was not the last
character in the string.

Operator's Guide 3-11

ALIAS

3-12

<parameter>, wild card not allowed in alias abbreviation

You declared an alias with a wild card. You can use wild cards only to display a list of
aliases, not to define them.

ALIAS, no space in alias table

The alias table is full. No more aliases can be assigned unless you increase the size of
the alias table or delete some less frequently used aliases. The default alias table size
is 2K. You can use the SET command (described later in this chapter) to modify the

size of the alias table.

Operator’s Guide

This command causes the CLI to execute the command entered in a background
environment. The format of this command is

{ BACKGROUND }»— command _line
(,

paol min

F-0505

INPUT PARAMETERS

pool min The minimum memory pool size to be allocated for background
jobs. This value overrides the default pool min value defined using
the SET command. The default pool min size is 6K.

pool max The maximum memory pool size to be allocated for background
jobs. This value overrides the default pool max value defined using
the SET command. The default pool max size is calculated as
either 300K or user$pool$max - 200K, whichever is smaller.
(user$pool$max is defined during configuration of the terminal
configuration file.) If pool max is less than 300K, the CLI sets pool
max to zero.

command line A user command to be executed in the background.
DESCRIPTION

When you enter this command, the CLI creates a background job to execute the
command line. Background jobs are executed as they are submitted and are not quened.
Each background job is assigned a four-digit hexadecimal job identification number (job
ID) that you can display by entering the JOBS command. You can cancel background
jobs by entering the KILL command. (JOBS and KILL are described later in this
chapter.)

If the BACKGROUND command is invoked when the pool max value is zero, the CLI
issues a message asking you to set the parameter with the SET command (described later
in this chapter). The CLI then stops executing,

When the BACKGROUND command is entered, the active foreground environment is
copied to the background job and becomes its initial environment. This means that the
same logical names and aliases used in the foreground are also available to the
background job. However, changes made to logical names and aliases in the background
environment do not affect the foreground, and vice-versa. Each environment is
independent of the other.

Operator’s Guide 3-13

BACKGROUND

You can control the amount of memory allocated for the background jobs by entering the
pool min and pool max parameters. The CLI checks that pool min is less than pool max.
If pool max is less than pool min, the CLI issues this warning:

These modifiers are recommended for large programs such as compilers, ensuring the
minimum memory pool for the application but leaving enough memory for other jobs
(mainly in the foreground).

The BACKGROUND command will prompt for a redirect if you don’t supply one. If you
do not use the I/O redirection feature, the background process queries you for a log file
to replace the terminal. The message displayed is

.the log file is ?

The CLI expects you to respond with an iRMX II pathname. If you enter :CO: as the log
file, the CLI displays the message

However, if you have a system with multiple terminals, you can redirect :CI: and :CO: to
another terminal that acts as a background terminal. A background job that tries to send
a message to the operator’s physical terminal (:EO:) canses the following message to
appear on your screen:

*8085: E$ERROR:.QUTPUT - .

When the background job begins running, the CLI displays this message:

*HkCLT -

> "command" has be

When the background job is complete, the CLI displays

314 Operator’s Guide

BACKGROUND

The command given in the above messages is always enclosed in quotation marks ("). The
first 15 characters of the command are displayed.

EXAMPLES

1. This example illustrates using the BACKGROUND command and the 1/O

redirection feature to create a background job and send the output to a file named
OUuT.

BACKGROUND COPY X.ASM T0 ¥ >0'“
*#%CLI : background job {

When the background job is complete, the following message is displayed at the
terminal:

*%%CLI : background job <0168 i¥é§@;t° y" cbhp

The output file, OUT, contains all the output messages, such as

. X.asm copied to y

2. This example shows the CLI prompt if you do not redirect your output:

BACKGROUND - COPY X.ASM TO Y <CR>
the log file is 7 OUT <CR>
***%CLI : background job <OE78:

3. This example changes the default pool sizes of a background job by entering the
pool min and pool max parameters (MINBACKPOOL, MAXBACKPOOL).

.. ®%*CLI background job <OC68

ERROR MESSAGES

o **¥%CLI . background job <job id> "<command>" . failed
**klerror message>

The BACKGROUND command failed for the reason given in the error message.
¢ BACKGRCUND, parameter required

You entered the command without parameters.

Operator’s Guide 3-15

This command can be issued only while in SUPER mode. With this command, a system

manager can change your current user ID to any value between 0 and 65535 decimal. The
format of the CHANGEID command is as follows:

CHANGEID

o ®-20G7

INPUT PARAMETER

id Value to which you want to change your user ID. This integer can be any
numeric value from 0 to 65535 decimal, or the characters "WORLD",
specifying ID 65535 decimal. If you omit this value, CHANGEID sets
your user ID to that of the system manager (user ID 0).

DESCRIPTION

With CHANGEID you can change your current user ID to any value between 0 and 65535
decimal after entering the SUPER command. If you change your user ID to anything
other than that of the system manager (user ID 0), the system prompt changes to the

following:
SUPER (id)ysi- -
where
id Decimal equivalent of your new user ID (or the ASCII characters

"WORLD" if the ID is 65535).

The new user ID created by entering CHANGEID is not a verified user. This means the
new user cannot access the files available on the iRMX-NET network. You are nota
verified user until you return to user ID 0.

ERROR MESSAGES
» <user-id>, invalid user id

The user ID you specified contained invalid characters or was not in the range 0 to
65535 decimal.

¢ CHANGEID, allowed only in SUPER maode

You were not in SUPER mode when you invoked this command.

3-16 Operator’s Guide

CHANGEID

s <parameter>, unexpected parameter
Too many parameters entered.
¢ <exception value> : <exception mnemonic>, while executing CHANGEID

An internal system problem occurred which prevented the CLI from setting the
default user,

Operator’s Guide 3-17

This command deletes an alias. It has the following format:

¢
J

DEALIAS

abbreviation

F-0507

INPUT PARAMETERS

abbreviation The short term representing the alias abbreviation to be deleted.

query Causes the CLI to prompt you for permission before deleting an
alias.

DESCRIPTION

The DEALIAS command causes the CLI to delete an abbreviation established by the
ALIAS command. If you enter the DEALIAS command with the query option, the CLI
displays the alias and its command prefix followed by a question mark (?), then waits for
your response before deleting the alias. NO is the default option. Entering anything
other than Y(es), such as a carriage return, is equivalent to entering NO. If you wish to
delete the alias, you must enter Y{es) or y(es).

EXAMPLE
This example ilfustrates the use of the query option. It demonstrates how to list all the
aliases that start with the letter S and choose the one to delete. In this example, SU is

deleted.

If you enter

The CLI displays

3-18 Operator’s Guide

DEALIAS

ERROR MESSAGES
s <parameter>, alias not found
You tried to delete an alias that was not defined in the alias table.
e <parameter>, wild card is allowed only in the last character

You tried to delete a number of aliases with a wild card, but the wild card was not the
last character.

Operator’s Guide 3-19

This command exits from the SUPER mode. The format of this command is

— o >

%-208

DESCRIPTION

After you enter this command, the CLI changes your user ID back to the ID you had
before entering the last SUPER command. It also changes the system prompt back to the
prompt that was in effect before the SUPER command.
ERROR MESSAGES
¢« EXIT, allowed only in SUPER mede
You invoked this command when you were not in SUPER mode.
+ <parameter>, unexpected parameter
You entered a parameter. EXIT does not require any parameters.
¢ <exception value>» : <exception mnemenic>, during EXIT execution

An internal system problem occurred which prevented the CLI from setting the
default user.

3-20 Operator’s Guide

This command displays the last 40 command lines on the screen. The format of this
command is

DESCRIPTION

The HISTORY command causes the CLI to display the last 40 command lines, including
the HISTORY command, on the screen in chronological order. The command lines are
displayed one screen at a time and are numbered from 1 to 999. After 999, the numbers
wraparound. When displaying the command lines, the CLI lists the first page (20 lines) of
command lines followed by the query

:@jsplay moere ? {[y] or n)

The default is y. If you enter anything other than n(0), the CLI displays the next page of
command lines (assuming there are more command lines in the history buffer).

You can use the HISTORY command with the ! command to recall a specific line number
or command line. For example, you might enter the HISTORY command to see the last
20 command lines. You could then recall Line 10, modify it, and execute it. You would
enter

This would display line 10 as the current line. You can then edit line 10. However, the
original line 10 remains unchanged in the history. The edited line becomes the last line in
the history record.

To recall a specific command, enter ! followed by the actual command as you have
previously entered it. If you try to recall a line number or a command that cannot be
found in the history buffer, the CLI issues one of the following messages:

<number>, -history. Huiber notf ound

<prefix>, histdf&iline not found

Operator’s Guide 3-21

HISTORY

EXAMPLE
A typical session at the terminal may look like this. The CLI echoes exactly what you

enter. If your input is in lowercase, the display on the screen will be in lowercase. First,
you might enter

The response would be

4 HISTORY-

Now suppose you decide to edit line 1. You can use the ! command and enter

The CLI displays

~COPY X TO Y.PIM

You can edit that line as follows:

This line is then entered into the history buffer as line number 5. Now, if you enter the
HISTORY command, you will see:

3 AEDIT Y.PLM Lo _ -
4 HISTORY L D
5 COPY NEW.PIM TO Y.PLM ;

6 HISTORY,.

Operator’s Guide

HISTORY

If you have previously entered a series of command lines, in lowercase, that include a
continuation line, entering the HISTORY command will cause the following screen
display:

copy X to ¥
. copy z &
** to &
‘%% t.asm
3 dir e
4 history ...

= g

ERROR MESSAGES
¢ <prefix>, history line not found
You tried to recall a command that cannot be found in the history buffer.
o <number>, history number not found
You tried to recall a line number that cannot be found in the history buffer.
« <parameter>, unexpected parameter

You entered a parameter. HISTORY does not accept parameters. If you want to
recall a specific line, enter the ! command.

¢ <exception value> : <exception mnemonic>, while history displayed

An error occurred when the CLI tried to write the history buffer to the screen.

Operator’s Guide 3-23

This command displays all the existing background jobs by job identification number. The
format of this command is

10385 F o512

DESCRIPTION

The JOBS command displays all the existing background jobs as a list of four-digit
hexadecimal numbers. The jobs are displayed in reverse order, (last-in first-out) and are
the job IDs assigned when the background jobs were invoked. If you wish to cancel a
background job, enter the KILL command with a job 1D displayed in the JOBS command.

The following example shows the use of this command;

5

"< ob>
© "<job>"

Where the term <job> is a truncated copy of the command line running in the
background.

ERROR MESSAGE
¢ <parameter>, unexpected parameter

You entered a parameter. JOBS does not accept any parameters.

3-24 Operator’s Guide

This command cancels a specitic background job. The format of this command is

F-0510

()
./
INPUT PARAMETER
jobid The job identification number established when the background job
was invoked.
* All background jobs.
DESCRIPTION

This command causes the CLI to cancel the specified background job(s). You can use the
JOBS command to obtain a list of the jobs by ID number. Note, however, if you cancel
several background jobs at once and then immediately issue the JOBS command, some of
the canceled jobs may list at the console. Even though these jobs appear on the console,
they have been canceled. To reassure yourself, issue another JOBS command. When the
job has been canceled, you will receive the following message:

%*#CLI @ background job &3

If you use the * (asterisk) parameter when you invoke the KILL command, all
background jobs will be canceled and you will receive the following message:

***%CLI : all background jobs were cancéled

ERROR MESSAGES
¢ KILL, the job parameter is not a valid BAGKGROUND job of the caller

You tried to kill a background job that is not in your list of background jobs.
* KILL, a job parameter is required

‘The command you entered has a syntax error.

Operator’s Guide 3-25

This command logs the user off of a dynamic logon terminal. The format of the command
is as follows:

LOGOFF

F-0664

DESCRIPTION

The LOGOFF command frees a dynamic logon terminal for use by other operators. It
deletes the user’s interactive job, executes the :PROG:R?LOGOFF file, and issues the
logon prompt. On static logon terminals, LOGOFF simply terminates the session and
restarts a new session for the same user.

If there are any active background jobs when the LOGOFF command is issued, you will
receive the message

o you want _to exit ? ([n] or)

bs. are runming,

By default, there are no logoffs while background jobs are active. If you respond with
"Yes", your background jobs are canceled and you are logged off.

This command is also available as a Human Interface command, without background
checking, for users who have a customized CLIL

ERROR MESSAGES
o :prog:r?logoff, file does not exist

The CLI could not find the logoff file.

s <parameter>, unexpected parameter

You have a syntax error. LOGOFF does not require any parameters.

3-26 Operator’s Guide

This command alters the CLI environment by allowing on-line changes to the terminal
name, the minimum and maximum memory pool sizes for background jobs, the size of the
alias table, and the prompt. The format of this command is

SET
parameter F-050%
INPUT PARAMETERS
parameter One of the following keywords: TERMINAL, MINBACKPOOL,
MAXBACKPOOL, ALTASTABLE, OR PROMPT.
value The corresponding string or numerical value for each keyword.
DESCRIPTION

The SET command consists of five subcommands that alter the CLI environment.

» TERMINAL defines the terminal on which the CLI line-editing features will be
supported.

» MINBACKPOOL and MAXBACKPOOL establish the minimum and maximum
memory pool sizes for background jobs.

» ALIASTABLE sets the size of the alias table.
* PROMPT defines the CLI prompt.

If you enter this command with no parameters, the CLI displays the current values as
follows:

get <CBE>
CLI PARAMETERS ARE:

TERMINAL = ANY
PROMPT = -

ALIAS" TABLE SIZE = 2K

Operator’s Guide 3.27

SET

If you enter the command with an illegal parameter, the CLI prompts you as follows:

If you enter the command with a parameter but without the = value, the CLI displays the
existing value. For example, suppose you change the prompt from hyphen (-) to + + +,
and then enter PROMPT with no parameters, the display would look like this:

5 PROHPT = +++

SET TERMINAL

The SET TERMINAL command changes the current terminal definition to the new
terminal name entered. (The initial terminal name is defined in the
:CONFIG:TERMINALS file.) The format of the TERMINAL subcommand is

SET TERMINAL = <terminal name >

where <terminal name> is a string defining the terminal on which the CLI line-editing
features are to be supported. The terminal must have been previously defined in the
terminal definition file (see Appendix B for a sample definition file) or the CLI will issue
the error message

found in config termcap

default ANS i

After Issuing this message, the CLI assumes the terminal name is the default ANSI
standard until you redefine it using the SET command.

If you wish to add a terminal to the terminal definition file, you should edit the
:CONFIG:.TERMCAF file.

All assignments made with the SET TERMINAL command are valid for one logon
session only. To change the terminal definition permanently, you must change the

terminal configuration file, :CONFIG: TERMINALS (usually the system manager’s
responsibility).

3-28 Operator’s Guide

SET

SET MINBACKPOOL and SET MAXBACKPOOL
The format of these subcommands is

SET MINBACKPOOL =size
SET MAXBACKPOOL =size

MINBACKPOOL establishes the minimum memory pool to be allocated for background
jobs. The default is 6K. This value can be overridden for a specific background job by
entering the BACKGROUND command.

MAXBACKPOOL establishes the maximum memory pool to be allocated for background
jobs. The default is 0, if this user has a maximum memory partition less than S00K.

Otherwise, the default is 300K. This value can be overridden for a specific background
job by entering the BACKGROUND command.

The values entered in these subcommands are decimal numbers that represent the
amount of memory in Kbytes. However, the letter K should not be entered. For example,
you should enter 1 for 1K bytes, 100 for 100K bytes etc.

These subcommands should be invoked with a minimum value large enough to
accommodate the background stack and a maximum value less than (user$pool$max -
200K). If the maximum value is greater than (user$pool$max - 200K), you may not have
enough memory to execute foreground jobs. Therefore, the CLI issues this warning:

CWARNING: MAXBACKPOOL attribu
R due to memory 1i

This is only a warning. The values are set as you enter them. However, you may want to
re-examine the values you entered.

If the maximum value you enter is less than the minimum value, the CLI issues this
warning:

 WARNING:

The default values provide enough memory for most ordinary jobs.

Operator’s Guide 3-29

SET

SET ALIASTARLE

The ALIASTABLE subcommand establishes the size of the memory pool for the alias
table. The size can be increased or decreased during a user session. The default is 2K,
The format of this subcommand is

SET ALIASTABLE =size

The size value entered should be a decimal number representing the amount of memory
in Kbytes. However, the letter K should not be entered. For example, you should enter 1
for 1K bytes, 5 for 5K bytes, etc.

SET PROMPT

The format of the PROMPT subcommand is

SET PROMPT =string

where string is a string of up to 14 characters that defines the CLI prompt. The default is

ERROR MESSAGES

3-30

<terminal name>, is not found in :config:termcap:
default ANSI standard assumed

The terminal name you entered is not defined in the terminal definition file. The
default ANSI standard is assumed to be the terminal name until you redefine it using
the SET command.

<alias size>, new alias table is not enough to hold user aliases

The new value you entered is too small to contain all the aliases you have assigned.
The actual table size is not changed.

This message does not appear if you reduce the size of the alias table and the new size
is still large enough for all the aliases you have assigned. For example, if you reduce
the alias table from 2K to 1K and all your aliases fit into 1K bytes of memory, no
message is issued.

SET, wrong syntax
You have entered the command incorrectly.

SET illegal parameter, parameters are:
TERMINAL PROMPT ALTASTABLE
MINBACKPOOL MAXBACKPOOL

You entered the command with an illegal parameter.

Operator’s Guide

This command reads and executes a set of commands from a file in secondary storage
instead of from the console keyboard. The format of SUBMIT is

]

M58

INPUT PARAMETERS

pathname Name of the file from which the commands will be read. This file
may contain nested SUBMIT commands.

parameter-list Actual parameters that are to replace the formal parameters in the
SUBMIT file. You must surround this parameter list with
parentheses. You can specify as many as ten parameters,
separated by commas, in the SUBMIT command. If you omit a
parameter, you must reserve its position by entering a comma. If a
parameter contains a comma, space, or parenthesis, you must
enclose the parameter in single quotes. The sum of all characters
in the parameter list must not exceed 512 characters.

OUTPUT PARAMETERS

TO Causes the output from each command in the SUBMIT file to be
written to the specified new file instead of the console screen. If
the output file already exists, the SUBMIT command displays the
following message:

Operator’s Guide 33

SUBMIT

Enter Y, y, R, or r if you wish the existing output file to be deleted.
Enter any other character if you do not wish the existing file to be
deleted. A response other than Y, y, R, or r causes the SUBMIT
command to be terminated, and you will be prompted for a new
command entry.

OVER Causes the output for each command in the SUBMIT file to be
written over the specified existing file instead of the console screen.
AFTER Causes the output from each command in the SUBMIT file to be

written to the cnd of an existing file instead of the console screen.

out-pathname Pathname of the file to receive the processed output from each
command executed from the SUBMIT file. If no preposition or
output file is specified, TO :CO: is assumed.

ECHO ECHO causes a copy of the data read from the first level of a
SUBMIT file to be sent to the screen. This parameter lets you
know which action specified within a SUBMIT file is currently
executing. Nested SUBMIT commands do not have their contents
sent to the console screen, unless they are invoked with their own
ECHO.

DESCRIPTION

To use the SUBMIT command, you must first create a data file that defines the command
sequence and formal parameters (if any). The operating system first looks for the
pathname with the extension ".CSD". If no such file is found, then the operating system
looks for the file specified in the pathname.

Any program that reads its commands from the console input (:CI:) can be executed from
a SUBMIT file. If another SUBMIT command is itself used in a SUBMIT file, it causes
another SUBMIT file to be invoked. You can nest SUBMIT files to any level of nesting
until memory is exhausted. When one nested SUBMIT file completes execution, it
returns control to the next higher level of SUBMIT file.

If, during the execution of SUBMIT (or any nested SUBMIT), you enter the CONTROL-
C character to abort processing, all SUBMIT processing exits and control returns to you.

When you create a SUBMIT file, you indicate formal parameters by specifying the
characters %n, where n ranges from 0 through 9. When SUBMIT executes the file, it
replaces the formal parameters with the actual parameters listed in the SUBMIT
command (the first parameter replaces all instances of 90, the second parameter replaces
all instances of %1, and so forth). If the actual parameter is surrounded by quotes,
SUBMIT removes the quotes before performing the substitution. If there is no actual
parameter that corresponds to a formal parameter, SUBMIT replaces the formal
parameter with a null string,

3-32 Operator’s Guide

SUBMIT

When you specify a preposition and output file (other than :CO:) in a SUBMIT
command, only your SUBMIT command entry will be echoed on the console screen; the
individual command entries in the submit file are not displayed on the screen as they are
loaded and executed. However, if you specify the ECHO parameter in the same
SUBMIT command, the command entries from the first level of the SUBMIT file wiil be
sent to the screen. SUBMIT files invoked with nested SUBMIT commands will not have
their contents sent to the screen unless they were invoked with their own ECHO
parameter,

The SUBMIT command will display the following message when all commands in the
submit file have been executed:

END SUBMIT <pathname>

You may use the CLI commands such as ALIAS and BACKGROUND within a SUBMIT
file. In fact, the SUBMIT command is especially useful in background mode. You can
use it to execute large tasks while you continue entering data from the terminal.

If you have a customized CLI or the Release 1 CLI of the Operating System, you can use
the SUBMIT command as a Human Interface command. However, when using it as an
HI1 command, you cannot take advantage of the CLI features such as aliasing and
background.

EXAMPLE

This example shows how to use the SUBMIT command with the BACKGROUND
command. It also shows how to replace formal parameters in the command that you
enter to invoke this SUBMIT file. Assume the SUBMIT file, which resides in the file
HLLCSP.CSD, contains the following lines:

END286

&

:F1:%0.08J, Z2 %3

:LANG:P1M286.LIB,

&

/RMX286 /HI /HUTIL . LIB,
FIr

Operator’s Guide

JRMX286/LIB/RMXIFC, LIE &
RENAMESEG (HI_CODE TO CODE, HI DATA TO DATA) NODB NOTY &
SEGSIZE (STACK{1200H)) OBJECT(F1: z0) RC(DM(zl OFFFFFH))

The SUBMIT command you use to invoke this file is as follows:

3-33

SUBMIT

From this example you can see that the SUBMIT file contains four formal parameters.
However, the invocation line has only two. This means that when the command 1s
executed, COPY replaces %0 as the name of the object file, 5000 replaces %1 as the
minimum dynamic memory requirement, and a null string replaces %2 and %?3. After
execution, the output file OUTFILE contains the following:

BND286 & . T
:FL:HCOPY.OBJ,. &

/RMX286/HI/HUIIL LB, &

SEGSTZE (STACK(lZOOH)) OBJ (‘Fl GOPY) RC(DM(SOOO OFFFFFH))

The execution of the above example takes place in the background environment, leaving
you free to enter other data from the terminal. The CLI requires only a terminal to
display a message that the job has started and that it has completed. When the
background job starts, the CLI displays

hﬁ##ﬁﬁfﬂf-background job <1808>-""qubmit théﬁﬁ" Wd4 been started

When the background job is complete, the CLI displays

“UR#%CLI @ background job <1808> " submit hllesp” completed

Only the first 15 characters in the job name are displayed.

ERROR MESSAGES

* <pathname>, end of file reached before end of command

The last command in the input file was not specified completely. For example, the last
line might contain a continuation character.

¢ <parameter>, incorrectly formed parameter

You separated the individual parameters in the parameter list with a separator
character other than a comma.

¢ <pathname>, output file same as input file
You attempted to place the output from SUBMIT into the input file.
s <pathname>, too many input files

You specified more than one pathname as input to SUBMIT. SUBMIT can process
only one file per imnvocation.

3-34 Operator’s Guide

SUBMIT

¢ <parameter>, too many parameters
You specified more than ten parameters in your parameter list.
¢ <pathname>, UPDATE or add access required

SUBMIT cannot write its output to the output file because you do not have update
access to the file (if it already exists) or because you do not have add access to the
file’s parent directory (if the file does not exist).

s <exception value> : <exceptien mnemonic>», during SUBMIT execution

The code in your SUBMIT file produced the error indicated.

Operator’s Guide 335

With this command, you can change your user ID to the system manager ID (user ID 0).
The format of this command is as follows:

#-208

DESCRIPTION

With SUPER you can change your user 1D to that of the system manager. After entering
SUPER. you can invoke the two related commands, CHANGEID and EXIT.
CHANGEID changes your user ID to any valid value. EXIT exits the SUPER utility.

To invoke SUPER, you must know the password associated with the system manager.
This password is stored in the file :CONFIG:UDF for user name SUPER (refer to the
Guide to the Extended iRMX II Interactive Configurarion Utility for more information).
After you enter the SUPER command, SUPER prompts for the password by displaying

-enter. password: i o

You must then enter the correct password. (SUPER does not echo your input at the
terminal.) After you enter the correct password, SUPER changes your user 1D to user ID
0 and issues the following prompt:

| . SUPER-

This prompt is a system prompt (replacing the current prompt). It also indicates that you
are now a verifted user with the privileges of the system manager. Being a verified user
allows you to access files via iRMX-NET. You can enter any commands and access any
files available to the system manager. If you create new files, they will be listed as owned
by user ID 0. You can also invoke the commands available with SUPER.

SUPER can be used only in the foreground. If you try to invoke it from a
BACKGROUND command, you will receive the background failed message.

*RACLT :
**%CLI
*%%005 1 * ~ ESCONTEXT

This command is also available as a Human Interface command to users with a
customized CLI. However, SUPER as an HI command does not recognize any of the CLI
features such as line-editing and aliasing.

3-36 Operator’s Guide

SUPER

ERROR MESSAGES

s <exception value> : <exception mnemonic> cannot set default user

A problem prevented the CLI from changing your user ID. The UDF may be
corrupted.

¢ <exception value> : <exception mnemonic>

An internal system problem occurred. For example, the CLI could not find the
default user.

s <exception value> : <exception mnemonic>, SUPER is unavailable

The CLI encountered an error while reading the password you entered or while
accessing the user definition file (to determine if the password is correct).

+ <parameter>, unexpected parameter

You entered a parameter. The SUUPER command does not require any parameters.

Operator’s Guide 3-37

4.1 OVERVIEW

This chapter presents the Human Interface commands in alphabetical order. The Human
Interface Command Dictionary (Table 4-1) lists the commands in functional groups for
quick reference.

These commands are supplied for Extended iRMX IT Operating Systems configured with
the Human Interface. If you are a new user of the Human Interface, you should review
the information on file-naming conventions and invocation considerations in Chapter 2
before reading this chapter.

This chapter does not describe how to specify the names of the devices and directories
that contain the Human Interface commands. This is because during the Human
Interface configuration process, you can specify a number of directories that the Human
Interface automatically searches for commands. When the Hl commands are installed,
they are copied into the :SYSTEM: directory. This allows them to be invoked by entering
only their names, However, if your commands reside in a directory that the Human
Interface does not search automatically, or if you have multiple commands with the same
name in different directories, you must use the complete pathname for the command.
For example, if the DIR command resides in directory COMMANDS on device :F6: (a
directory not normally searched by the Human Interface), you can invoke the command
by entering

4.2 ERROR MESSAGES

Each command can generate a number of error messages that indicate errors in the way
you specified the command. The messages that apply to a specific command are listed
with that command. However, the following are general error messages that can appear
with many of the commands:

« command not feound

There is no file with the pathname you specified, and the Human Interface cannot
find the file in any of the directories it automatically searches.

Operator’s Guide

HUMAN INTERFACE COMMANDS

-

<logical name>, device does not belong to you

The device specified was originally attached by a user other than WORLD or you.
<pathname>, file does not exist

The pathname specified does not represent an existing file.

<pathname>, invalid file type

A data file was specified for an operation that required a directory, or vice versa.
<logical name>, invalid logical name

The logical name specified contains unmatched colons, is longer than 12 characters, or
contains invalid characters.

<pathname>, invalid pathname

The pathname specified contains invalid characters, or a component of the pathname
(other than the last one) does not exist or does not represent a directory.

<logical name>, is not a device connection

The logical name specified does not represent a connection to a physical device.
<leogical name>, logical name does not exist

The logical name specified does not exist,

parameters required

The command specified cannot be entered without parameters.

program version incompatible with system

The command and the operating system are not compatibie. The command expects to
obtain information from internal tables that are not present. Therefore the command
cannot run successfully.

<control>, unrecognized control
The parameter entered is not valid for the specified command.
<exceplion value> : <exception mnemonic>, while loading command

The operating system encountered an exceptional condition while attempting to load
the command into memory from secondary storage. The <exception value> and

<exception mnemonic> portions of the message indicate the exception code
encountered.

<exception value> : <exception mnemonic>

An operational error occurred during the execution of the command. The <exception
value> and <exception mnemonic> portions of the message indicate the exception
code encountered.

Operator’s Guide

HUMAN INTERFACE COMMANDS

* <parameter>, <exception value> : <exception mnemonic>

The command encountered an exceptional condition while attempting to process the
<parameter> portion of the command. The <exception value> and <exception
mnemonic> portions of the message indicate the exception code encountered.

4.3 COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented in a "railroad track"
schematic, with syntactic elements scattered along the track. Your entrance to any
schematic is always from left to right, beginning with the command name entry.

Elements shown in uppercase characters must be typed in a command line exactly as
shown in the command schematics except that you can type them either in uppercase or
lowercase characters; the Human Interface makes no distinction between cases. Syntactic
elements shown in lowercase characters are generic terms, which means that you supply
the specific item, such as the pathname for a file.

The vertical dotted line separates the position-dependent parameters from those that are
position-independent. Parameters to the left of the dotted line must be entered in the
order listed (from left to right). Parameters to the right of the dotted line can be entered
in any order (as long as they obey the rest of the syntax).

The example that follows shows all the possible paths through a railroad track schematic.
Notice that the main track goes through required elements in a given command.

Operator’s Cuide 4-3

RUMAN INTERFACE COMMANDS

"Railroad sidings" go through optional parameter elements. In some cases, you have a
choice of going through one of several possible sidings before returning to the main track.
In still other cases, the main track itself diverges into two separate tracks, which means
that you must select one track or the other but not both.

o ()

U

x-224

In this example
» Alsarequired element. It is position-dependent; it must be entered first.

« Either B or C is required but not both. These elements are also position-dependent.
Whichever element you enter must follow A immediately.

o D, E, or F are all optional but only one can be selected. These are position-
independent elements. If you select one of these elements, you can enter it before or
after G.

* Gisrequired. It is a position-independent parameter. You can enter it before or
after D,E, or F.

4-4 Operator’s Guide

HUMAN INTERFACE COMMANDS

Table 4-1. Human interface Command Dictionary

Command Function Page

File Management Commands

ATTACHFILE Associates a logical name with an existing file. 4-26
COoprY Copies files specified in an input list to

files specified in an output list. 4-38
CREATEDIR Creates one or more new directories, 4-42
DELETE Deletes data files and empty directories from a

secondary storage devics. 4-51
DETACHFILE Remaovaes the association of a logical name with

a file. 4-55
DIR Lists a diractory’s filanames {and, optionally,

file attributes). 4-57
DOWNCOPY Copies files from an Extended iRMX I volume mounted

on a secondary storage device to an Intellec
Development System secondary storage device via

the iSDM monitor, 4-74
PERMIT Grants or rescinds user access 1o a file, 4-126
RENAME Changes the names of files or directories. 4132
UPCORY Copies files, via the iSDM monitor, from an

Intellec Development System secondary storage
device to an Extended iRMX [l velume mounted on a
secondary storage device. 4-157

Operator’s Guide 4-5

Table 4-1. Human Interface Command Dictionary (continued)

HUMAN INTERFACE COMMANDS

Command Function Page
Voiume Managerment Commands

ATTACHDEVICE Attaches a new physical device to the system

and catalogs its logical name in the root

job's object directory. 4.16
BACKUP Copies namad files to a backup volume. 4-29
DETACHDEVICE Removes a physical device from system use and

deletes its logical name from the root job's

object directory. 4-53
DISKVERIFY Verifias the data structures of named and

physical volumes. 4-66
FORMAT Writes format information an an iRMX |l volume. 4-77
RESTORE Copies files from a backup volume to a named

volume., 4-135

System Management Commands

ACCOUNTING Tracks activities of dynamic logon users. 4-8
INITSTATUS Displays the inkialization status of Human

Interface terminals. 4-95
JOBDELETE Deletes a running interactive job. 4-98
LOCK Pravents the Human Interface from automatically

creating an interactive job. 4-105
LOGOTF Ends a user sessicn for users with a customized CLI. 4-111
PASSWORD Changes passwords for dynamic logon users

and creates new users when invoked by the

system manager. 4-113
SUPER Changes the operator's user |D into that of

the system manager (user ID 0) for users who

are using a custom CLI. 4-151
UNLOCK Permits the Human Interface to create an

interactive job, after the terminal has heen

locked by the LOCK command. 4-155

Operator’s Guide

Table 4-1. Human Interface Command Dictionary (continued)

HUMAN INTERFACE COMMANDS

Command Function Page
General Utiity Commands

ADDLOC Combines tha output of LOCDATA and an iRMX I

boctloadable file. The output of ADDLOC is

ancther iRMX Il hootloadable fila. 412
DATE Sets or resets the system date, or displays

the current date. 4-44
DEBUG Transfers eontrol to the iSDM monitor

1o debug an iIRMX Il application program. 4-48
LOCDATA Reads the specified data and creates a "located"

file that can be processed by the ADDLOC

command, 4-100
LOGICALNAMES Lists ail the logical names avaiiable to

the user, 4-107
MEMORY Displays the memory available to the user. 4-112
PATH Shows the pathname for a file, 4123
PAUSE Displays cptional messags to the console. 4125
RETENSION Retensions a tape. 4-143
SHUTDOWN Provides orderly shutdown of the system. 4144
SuBMIT Reads, loads, and executes a string of commands

from secondary storage instead of from the

keybeard for users with a custom CLI. 4-150
TIME Sets or resets the system clock, or displays

the current system time. 4-152
VERSION Displays the version numbers of commands. 4-160
WHOAMI Displays the current 1D associated with

the user. 4-162
ZSCAN Lists the ZAPs (updates) applied to an object

moduie, library, or bootloadable file. 4-163

Operator’s Guide

ACCOUNTING creates, lists the contents of, or reduces the size of the file
:CONFIG:ACCOUNT.LOG. This file contains the logon and logoff history of dynamic
logon users. The format of the command is as follows:

ACCOUNTING

=

x-1113

INPUT PARAMETERS

CREATE Creates a new accounting file to store the logon and logoff history.
You must be the system manager to use this parameter. If
:CONFIG:ACCOUNT.LOG already exists, ACCOUNTING
displays the following message:

Enter Y, y, R, or r to delete the old accounting file and create a
new empty file. Enter any other character to leave the old
accounting file intact.

SAVE Reduces the size of the accounting file by saving only the most
recent num event entries, where num is a decimal number. All
earlier entries are deleted from the file. You must be the system
manager to use this parameter.

DESCRIPTION

ACCOUNTING enables you to observe the logon and logoff activities of all dynamic
users in your application system. It also enables you to create and modify the file that
stores this information,

For the ACCOUNTING command to be effective, the system manager must first use the
CREATE parameter to create an empty :CONFIG:ACCOUNT.LOG accounting file.
The CREATE parameter places special information in the file. Therefore, you must use
this method, not a text editor, to create the :CONFIG:ACCOUINT.I.OG file.

4-8 Operator’s Guide

ACCOUNTING

Once :CONFIG:ACCOUNT.LOG exists, the Human Interface then records all logon and
logoff activities in that file. When you invoke the ACCOUNTING command with no
parameters, the command lists the logon and logoff activities, beginning with the most
recent activity. Figure 4-1 illustrates the format of the ACCOUNTING display.

USER USER TERMINAL

world newusexr
- world mewusers
e 0 bob
D 0 bob

Figure 4-1. ACCOUNTING Display
The columns listed in Figure 4-1 contain the following information:

USER ID User ID associated with the user who engaged in a
logon or logoff activity at a dynamic logon terminal.

USER NAME Logon name used in the logon or logoff attempt.

TERMINAI. DEVICE Physical name of the terminal, as defined during the
NAME configuration of the Basic I/O System and as attached
by the Human Interface. Periods surround each name.

DATE Date of the logon or logoff activity.

TIME Time of the logon or logoff activity.

Operator’s Guide 4-9

ACCOUNTING

EVENT Event that occurred. Three types of events can be
listed:
logon Indicates a successful logon.
logon Indicates an unsuccessful logon
error attempt. The resulting

exception code is also listed.

logoff Indicates that the user logged off
the terminal.

logoff job Indicates that the JOBDELETE command
deleted was used to terminate a job. Note that
the SHUTDOWN command can also cause
this event to occur.

logoff Indicates that a terminal connected
carrier to a modem lost the carrier.
lost

The system manager can use this command to determine system usage.

If the :CONFIG:ACCOUNT.LOG file grows too large to be manageable, or if some of
the earlier information is not needed, the system manager can use the SAVE parameter
to save only the most recent information. When the system manager invokes the
ACCOUNTING command with the SAVE parameter, the command displays the
following message to indicate the number of events saved and the number discarded:

In the actual message, <n> and <m?> are decimal numbers. The command then lists the
events still recorded in the accounting file.

To stop the operating system from Keeping track of logon and logoff activity, delete or
rename the file :CONFIG:ACCOUNT.LOG.

4-10 Operator’s Guide

ACCOUNTING

ERROR MESSAGES
¢ <exception-code>: <exception-name>, ACCOUNT.IOG is not available

The file ACCOUNT.LOG exists but is not currently available for reading or writing.
The ACCOUNTING command terminates when this occurs.

e .config:account.log, file does not exist
The accounting file for dynamic logon users does not exist.

* not a valid accounting log file

The file :CONFIG:ACCOUNT.LOG exists, but it is corrupted, it doesn’t contain
accounting information, or it wasn’t created with the CREATE parameter. Use the
ACCOUNTING command with the CREATE parameter to create a new
:CONFIG:ACCOUNT.LOG file.

* only the system manager may change the accounting log file

Someone other than the system manager attempted to use the ACCOUNTING
command with the CREATE or SAVE parameters.

* program version incompatible with accounting log file

The :CONFIG:ACCOUNT.LOG file contains accounting information but is
incompatible with this version of the ACCOUNTING command.

* <exception-code>: <exception-name>, while attaching accounting log
file

ACCOUNTING encountered an exceptional condition while attaching the existing
accounting file. This message lists the resulting exception code.

*» <exception-code>: <exception-name>, while creating accounting log
file

ACCOUNTING encountered an exceptional condition while creating a new
accounting file. This message lists the resulting exception code.

Operator’s Guide 4-11

ADDLOC, along with the Human Interface command LOCDATA, integrates the image
of a data stream file (such as a RAM disk) into an existing application system boot file.
ADDLOC adds the output of the LOCDATA command to a hootable application system.
The result is an application system boot file that includes the data stream file (usually the
RAM disk). ADDLOC also creates a map file that provides information about the new
bootloadable file and the process that created it. The format of this command is as
follows:

ADDLOC datafile @ @7

outpath x

%x=1080

INPUT PARAMETERS

datafile Pathname of the located data file (the output of the LOCDATA
command) to be added to the bootloadable application system file.
Multiple or wild-card pathnames are not allowed.

sysfile Pathname of an object module format (OMF286) bootloadable
application system file, to which the located data file is added. This
file must have been created by the iAPX 286 SYSTEM BUILDER
(invoked by the iRMX II ICU system generation file). Multiple or
wild-card pathnames are not allowed.

OUTPUT PARAMETERS

TO Writes the processed output to a named file. If the specified file
already exists, ADDLOC displays the following message:

<pathname>; alréady ex EE;g;f;"}i'V.i'.:\::’i{T.«?IlI'I'El?

To overwrite the existing file, enter Y, y, R, or r. If you do not wish
to overwrite the existing file, enter E, e, N, or n. ADDLOC then
exits without processing the data.

4-12 Operator’s Guide

ADDLOC

OVER Overwrites the existing output file. If the specified file does not
already exist, ADDLOC creates it.

outpath The pathname of the file (up to ten characters) to receive the
output of ADDLOC (the new OMF286 bootloadable file). This
same pathname with the extension "MPA" is also the print file of
the process. Multiple or wild-card pathnames are not allowed.

DESCRIPTION

The Extended iRMX IT Operating System supports the use of a RAM disk, an area of
memory that is treated as a secondary storage device. To use the RAM disk feature you
must configure a system with an area of RAM dedicated to the RAM disk. When the
system boots, you can attach the RAM disk memory to your system, format it, and move
data into and out of it just as you would with any other secondary storage device. If you
use the RAM disk to store part of the application system (for instance, the Human
Interface CUSPs), the stored data must be available in the RAM disk area when the
system boots. This data cannot be copied into the RAM disk until you have configured
the application system into a bootable file. (The RAM disk area does not exist until you
define it through the configuration process.) Therefore, you must integrate a copy of a
RAM disk data structure into an existing application system boot file.

ADDLOC uses the application system bootfile and the file output by LOCDATA (from
the RAM disk) to create a file containing a new bootloadable version of the application
system. The new version includes a copy of the RAM disk data structure. When this new
file is booted, the RAM disk data structure is loaded into memory in the area defined for
the RAM disk through the configuration process. The Human Interface LOCDATA
command (later in this chapter) describes this process. (Users familiar with the iRMX 1
Operating System may remember that this mechanism was provided by the Human
Interface LOCDATA command and the LIB86 utility in the iRMX I Operating System.
LOCDATA transformed an image of the RAM disk into a module that L.IB86 could add
to the library containing the bootloadable application system.)

When you invoke ADDLOC, thc first parameter you supply must be the pathname of the
RAM disk datafile output by LOCDATA; the second parameter must be the pathname of
the bootloadable application system file created by the IAPX 286 Builder; the third
parameter must specify the pathname to be assigned to the new version of the application
system. If the first parameter is a file that has not been processed by LOCDATA or if the
second parameter is a file that has not been created by BLD286, ADDLOC will issue the
following error message:

usage: ADDLOC <locatéd data file>, <system file> TO/OVER <outpath>|

and exit without processing the data.

Operator's Guide 413

ADDLOC

When processing has successfully completed, ADDLOC displays one of the following
messages:

‘ <located dataf11e> add

‘ <located data-file> added to :

In addition to the new iRMX II bootloadable file, ADDLOC also creates a print file. The
print file is named by adding the extension * MPA" to the name of the bootloadable
output file. (Thus, if the bootloadable file output by ADDLOC is named "NEWSYS.286",
the print file is named "NEWSYS.MPA") The print file contains a header that provides
the name of the input and output files, the address space used by both the system file and
the located data file, and the base address of the located data file. Following the header is
a list of any error messages ADDLOC may have generated.
ERROR MESSAGES
» ADDLOC, twe input files only

ADDLOC requires exactly two input files. You specified more (or less) than two.
s ADDLOC, one output file only

ADDLOC requires exactly one output file. You specified more than one.
¢« ADDLOC, missing parameters

In your invocation line you failed to enter one or more required parameters.

¢ AFTER, is an illegal preposition for ADDLOC

The AFTER preposition, which you entered in your invocation line, is not a legal
ADDLOC preposition.

* <string>, illegal preposition
The preposition entered in your invocation line is not a legal ADDLOC preposition.
¢ <pathname>, output file same as input file

You specified that the input file name also be used as the output file name.
ADDLOC does not allow this.

¢ <pathname>, print file same as output file

The output file name you specified has the same name as the print file. {The MPA
extension denotes a print file.)

s <pathname>, cutput pathname teo long
The name of the file you specified in the output pathname exceeded ten characters.
* <string>, unrecognized control

You entered an unrecognized control character in the invocation line.

4-14 Operator’s Guide

ADDLOC

s <pathname>, write error

A system error caused an incorrect number of bytes to be written to the output file.
Retry the command.

* <pathname>, read error

A system error caused an incorrect number of bytes to be read from the input file.
Retry the command.

¢ <pathname>, not a located data file
The file was not processed by LOCDATA.
¢ <pathname>, file does not exist
The file does not exist.
o <pathname>, not a bootloadable file
The system filc was not a system image file.
In addition to the error messages listed abave, ADDLOC produces the three warning
messages listed below. After each message, the ADDLOC command lists the file that

caused the warning, the physical address, and the length of the section containing the
faulty parameter.

» OVERLAPPING AREAS IN MEMORY

The section read from the system file overlaps memory that was assigned to the
located data stream. Although the process continues, the output is invalid.

e BAD SEQUENCE

The located data file contains a section that is not contiguous to the previous section.
Although the process continues, the output is invalid.

» BAD CHECKSUM
One of the input files you specified has a bad checksum. Output is invalid.

Operator’s Guide 4-15

ATTACHDEVICE attaches a physical device to the operating system and associates a
logical name with the device. The command catalogs the logical name in the root object
directory, making the logical name accessible to all users. The format of the command is

as follows:

(n'rTACHDEWCE}—(physical rame)—@—-@ S > va

4
Gon)
{ remote } F-0314

INPUT PARAMETERS

physical name

AS

logical name

NAMED

PHYSICAL

REMOTE

4-16

Physical device name of the device to be attached to the system.
This name must be the name used in one of the Basic 1/0O Systemn’s
Device Unit Information Blocks (DUIB), as defined at system
configuration time (see Table 4-2).

Preposition; required for the command.

The name (1 to 10 characters, or 1 to 12 characters if colons are
included) to be associated with the device. Colons surrounding the
logical name are optional; however, if you use them, you must use
them in pairs.

Specifies that the volume mounted on the device is already
formatted for NAMED files. Examples of volumes that can
contatn named files are diskettes or hard disk platters. If
NAMED, PHYSICAL or REMOTE are not specified, NAMED is
the default. See the FORMAT command in this chapter for a
further description of NAMED volumes.

Specifies that the volume mounted on the logical device is
considered to be a single, large file. Examples include line printers,
terminals, and tape drives. See the FORMAT command in this
chapter for a further description of PHYSICAL volumes.

Specifies that the volume mounted on the logical device is a remote
file server. If this parameter is selected, a logical name is created
for the public system directory of the file server. The logical name
can then be used to access files residing at the file server without
any concern as to whether the file is local or remote. See the iIRMX
Networking Software User's Guide for more information on
REMOTE volumes.

Operator’s Guide

ATTACHDEVICE

WORLD Specifies that user ID WORLD (65535 decimal) is the owner of
the device. This implies that any user can detach the device. If you
omit this parameter, your user ID is listed as the owner of the
device. In this case, only you and the system manager can detach
the device.

DELAY Use with named volumes. Causes the device to be attached
logically as a named volume, but postpones the reading of the
volume label until the first access.

DESCRIPTION

ATTACHDEVICE attaches a device to the system and catalogs a logical name for it in
the root job’s object directory. The logical name is the means by which all users can
access the device. Devices must have their characteristics listed in the Basic I/O System’s
Device Unit Information Block (DUIB) at configuration time before they can be attached
with the ATTACHDEVICE command.

Table 4-2 lists the physical device names normally used with the Basic I/O System. Your
system might support a subset of these devices or it might support devices not listed. If it
supports the devices listed, it might support them under different names. Therefore,
consult the person who configured your system to determine the correct device names for
your system.

One frequent use of the ATTACHDEVICE command is to attach a new device, such as a
new disk drive or a line printer, without having to reconfigure portions of the operating
system. (See the DETACHDEVICE command in this chapter for a description of how to
detach a device from the system without reconfiguring.)

Unless you have a user ID of WORLD (65535) or specify the WORLD parameter, once
you attach a device, only you and the system manager can detach the device. This
limitation prevents users from detaching devices belonging to other users and prevents
you from accidentally detaching system volumes. However, if you have a user ID of
WORLD or specify the WORLD parameter, any device that you attach can be detached
by any other user. Refer to the DETACHDEVICE command for more information.

When the device attachment is completed, the ATTACHDEVICE command displays the
following message:

where <physical name> and <logical name > are as specified in the ATTACHDEVICE
command and <user id> is your user ID (or WORLD, if you specify the WORLD
parameter).

Operator’s Guide 4-17

ATTACHDEVICE

If you try to attach a device that has not been shutdown properly, you will receive this
message:

<logical-name>, device was notshutdown properly

where <logical-name > is the logical name of the device you are trying to attach.

Table 4-2 lists the physical device names supplied in the standard definition files. If you
purchased a System 300 Series Microcomputer and are formatting the hard disk drive,
refer to the Extended iRMX IT Hardware and Software Installation Manual for the Feature
Code or Option Code describing the exact hard disk drive in your microcomputer. All
standard definition files for System 300 Series Microcomputers define the hard disk drives
with the same device names.

4-18 Operator’s Guide

Table 4-2. Physical Device Names in the Standard Definition Files For Devices Controlled

ATTACHDEVICE

by the iSBC 214/215G/iSBX 217C/218A Controller

Physical Bytes Tracks
Device Device Unit per per
Names Type Number Sides Deansity Sector Inch
5.25-Inch Diskette Drives
WMFQ Shugan 450 8 2 Double 512 48
WMF1 Shugan 450 8 2 Double 512 48
WMFDY) Shugart 460 8 2 Doubte 512 96
WMFDY1 Shugart 460 9 2 Double 512 96
8-Inch Diskette Drives
WFO Shugar SABDO 8 1 Single 128 7
WF1 Shugan SA800 9 1 Single 128 77
WFDO Shugart SA800 8 1 Double 256 77
WrD1 Shugart SAB00 9 1 Double 256 77
WFDDO Shugart SAB50/SAB51 8 2 Double 256 77
WFDBD1 Shugart SAB50/8A851 & 2 Double 256 77
WFDX0 Shugart SAB50/SAB51 8 2 Double 1024 77
WFDX1 Shugart SABS0/SA851 9 2 Dauble 1024 77
Physical
Device Names Device Type Unit Number Bytes per Sector
Hard Disk Drives
w0 generic drive 0 1024
W1 generic drive 1 1024
WO Priam 3450 (8% 0 1024
CMO CMi 5412 0 1024
CM1 CMi 5412 1 1024
CMBO CMI 5419 and 0 1024
Fujitsu M2235
CMB1 CMI 5419 and 1 1024
Fujitsu M2235
MMAG Maxtor XT-1140 0 1024
MMA1 Maxtor XT-1140 1 1024
MMBO Maxtor XT-1085 0 1024
MMBA Maxtor XT-1085 1 1024
QMAD Quantum Q540 0 1024
QMAA1 Quantum Q540 1 1024
TMAD Toshiba MKS6FB 0 1024
TMA1 Toshiba MKS6FB 0 1024
5.25-Inch Cartridge Tape Drives
WTAD Archive 12 N/A

Operator’s Guide

4-19

ATTACHDEVICE

Table 4-3 lists the physical device names of the terminals supported in the standard
definition files. Unit/Board refers to the unit number and board number of the terminal
controller. Where no board number appears, only one board has been selected in the
ICU definition file. Where a board number appears, the ICU definition file selects

multiple reincarnations of the controller board.

Table 4-3. Physical Device Names in the Standard Definition Files

For Terminals
Device Terminal Unit/Board Supptied in the fallowing
Names Controller Number Standard Definition File(s)
TO 82514 o 38620.DEF, SXM386.DEF
To 8274Ch B 1 28612.DEF
T1 8274 Ch A 0 28612.DEF
T0 82530 Ch B 1 286100A.DEF
T 82530 Ch A 0 286100A.DEF
TO 82530 Ch A C 386100.DEF
T 82530 Ch B 1 386100.DEF
T2 SBC 544A 0 28612.DEF, 3XM386.DEF
T3 SBC 544A 1 28612.DEF, SXM386.DEF
T4 SBC 544A 2 28612.DEF, 3XM386.DEF
T5 SBC 544A 3 28612.DEF, SXM3856.0EF
T48 0 iSBC 188/56(48) 0 28612.DEF, 38620.DEF, SXM386.DEF
T48_1 iSBC 188/56(48) 1 28612.DEF, 38620.DEF, SXM386.DEF
T48_2 iSBC 188/56(48) 2 28612.DEF, 38620.DEF, SXM386.DEF
T48_3 iSBC 188/56(48) 3 28612.DEF, 38620.DEF, SXM386.DEF
T48_4 {SBC 188/56(48) 4 28612.DEF, 38620.DEF, SXM386.DEF
T48_5 iISBC 188,/56({48) 5 28612.DEF, 38620.DEF, SXM386.DEF
T4B_6 iSBC 188/56(48) 6 28612.DEF, 38620.0EF, SXM386.DEF
T48_7 ISBC 188/56(48) 7 28512.DEF, 38620.DEF, SXM386.DEF
T410 0 iSBC 186/410 0 286100A.DEF, 386100.DEF
T410 1 iSBC 186/410 1 2861004 DEF, 386100.DEF
T410 2 iSBC 186/410 2 286100A.DEF, 386100.DEF
T410 3 iSBC 186/410 3 286100A.DEF, 386100.DEF
T410 4 iSBC 186/410 4 286100A.DEF, 386100.DEF
T410 5 iSBC 186/410 5 286100A.DEF, 386100.DEF
Toa8 O iSBC 548 9] 28612.DEF, 3XM386.0EF
T548 1+ iSBC 548 1 28612 DEF, 3XM386.DEF
T548 2 iSBC 548 2 28612.DEF, SXM386.DEF
T548_3 iSBC 548 3 28612.DEF, SXM386.DEF
T548_4 iSBC548 4 28612.0EF, SXM3856.DEF
T548 5 iSBC 548 5 28612, DEF, SXM386.DEF
T548 6 iSBC 548 6 28612.DEF, 5XM386.DEF
T548 7 iSBC 548 7 28612.DEF, SXM386.DEF

4-20

Operator’s Guide

ATTACHDEVICE

Table 4-3. Physical Device Names in the Standard Definition Files
For Terminals (continued)

Device Termina Unit/Board Supplied in the following
Names Controilier Number Standard Definition Fila(s)
T546_0 ISBC546 0 38620.DEF
T546_1 iSBC 546 1 38620.DEF
T548 2 iSBC 546 2 38620.DEF
T546_3 iSBC546 3 38620.DEF
T547_0 iSBC 547 0/1 38620.DEF
T547_1 iSBC 547 11 38620.DEF
T547_2 iSBC 547 2/1 38620.DEF
T547_3 iSBC 547 3N 38620.DEF
T547_4 iSBC 547 4/1 38620.DEF
T547 5 iSBC 547 5/1 38620.DEF
T547 & iSBC 547 6/1 38620.DEF
T547 7 iSBC 547 7/ 38620.DEF
T547 8 iSBC 547 0/2 38620.DEF
T547 9 iSBC 547 1/2 38620.DEF
To4/_10 iSBC 547 2/2 38620.DEF
T547 11 iSBC 547 3/2 38620.DEF
T547 12 iSBC 547 42 38620.DEF
T547 13 iSBC 547 5/2 38620.DEF
T547 14 iSBC 547 8/2 38620.DEF
T547_15 iSBC 547 7/2 38620.DEF
T547_16 iSBC 547 0/3 38520.DEF
T547_17 iSBC 547 1/3 38620.DEF
T547_18 iSBC 547 2/3 38620.DEF
Tsa7_19 iSBC 547 3/3 38620.LEF
T547 20 iSBC 547 4/3 38620.DEF
T547 21 iSBC 547 5/3 38620.DEF
T547_22 iSBC 547 8/3 38620.0EF
T547 23 iSBC 547 7/3 38620.DEF

Operator’s Guide

4-21

ATTACHDEVICE

Table 4-4 lists suggested physical devices names for other devices.

Table 4-4. Suggested Physical Device Names For Other Devices

Physical Bytes Tracks
Device Device Unit per per
Names Type Number Sides Density Sector Inch
g-inch Diskette Drives Controlled by the iSBC 208 Board
AFOQ Shugart SAB00 0 1 Single 128 77
AF1 Shugart SA800 1 1 Single 128 77
AFDO Shugart SA800 o 1 Double 255 77
AFD1 Shugart SA800 1 1 Double 256 77
AFDDO Shugarn SAB50/5A851 0 2 Double 256 77
AFDD1 Shugart SABS0/5A851 1 2 Double 256 77
AFDX0 Shugart SA850/5A851 0 2 Double 1024 77
AFDX1 Shugart SAB50/5A851 1 2 Double 1024 77
5.25-inch Diskette Drives Controlled by the iSBC 208 Board
AMFD Shugart 450 0 2 Double 512 48
AMF1 Shugart 450 1 2 Double 512 48
AMFDY0 Shugart 460 0 2 Double 512 96
AMFDY1 Shugart 460 1 2 Double 512 06
5.25-inch Disketie Drives Controlled by the iSBX 218A Board
When Mounted on a Processor Board
PMFO Shugart 450 0 2 Double 512 48
PMF1 Shugart 450 1 2 Doubie 512 48
5.25-inch Diskette Drives Controlled by the iSBC 186/224A Board
WFO This controller 4 2 Boubie 128 48
WF1 supports any 5 2 Double 128 48
WMFO double-sided, 4 2 Double 512 48
WMF1 double-density] 2 Double 512 48
WMFDYD flexible disk 4 2 Double 512 96
WMFDY1 drive 5 2 Double 512 96

4-22

Operator’s Guide

ATTACHDEVICE

Table 4-4. Suggested Physical Device Names For Other Devices (continued)

Physical Bytes Tracks
Cavice Device Unit per per
Names Type Number Sides Density Sector Inch

Winchester Disk Drives Controlied by the iSBC 186/224A Board

WO generic 0 1024
W1 generic 1 1024
CMOQ CMI 5412 0 1024
CM1 CMI 5412 1 1024
CMBO CMI 5419 and 0 1024
Fujitsu M2235
CMB1 CMI 5419 and 1 1024
Fujitsu M2235
QMAD Quantum Q540 0 1024
QMA1 Quantum Q540 1 1024
MMAQD Maxtor XT-1140 o] 1024
MMA1 Maxtor XT-1140 1 1024
MMBO Maxtor XT-1085 ¥ 1024
MMB 1 Maxtor XT-1085 1 1024

5.25-Inch Cartridge Tape Drives Controlled by the iSBC 186/224A Board

WTAO QIC-02 12 N/A

Storage Module Disk (SMD) Drives Controlled by the iSBC 220 Board

SMDO 0 1024
SMD1 1 1024

Bubble Memory Devices Controlled by the iSBX 251

BX0 0 256

Bubble Memory Devices Controlled by the iSBX 264

BAG 0 258

Operator's Guide 4-23

ATTACHDEVICE

Table 4-5 lists SASI/SCSI controllers connected to an iSBC® 286/100A or iSBC® 386/100
host.

Table 4-5. SASI/SCSI Controllers Connected to an iSBC® 286/100A or iSBC® 386/100 Host

Device Unit Bytes per
Names Controller Drive Number Sector
50 Generic any 0 512
SATC Adaptec ACB-4000 CMI 5618 0 512
SX1410A0* Xebec 1410 CMI 56819 G 812
SX1410B0* Xebec 1410 Quantum Q540 0 512
SX1420A0* Xebec 1420 CMIs619and O 512
Fujitsu M2235
$X1420B0* Xebec 1420 Quantum Q540 0 512
SX1420C0* Xahac 1420 Maxtor XT-1140 0 512
SMFC Xebec 1420 Teac F55B 2 512
SMF1 Xebec 1420 Teac F55B 3 512
* These controllers support the ST506 Winchester Interface

ERROR MESSAGES
¢ <physical name>, cannot attach device
There is a hardware problem.
s <physical name>, cannct be ATTACHED as <type> device

The device specified by <device name> cannot support the type of files specified by
<type> (NAMED, PHYSICAL or REMOTE). ATTACHDEVICE does not attach
the device. For example, the NAMED option is not valid for a device such as a line
printer.

¢ <physical name>, device already attached

The specified device has already been attached. ATTACHDEVICE does not attach
the device.

*» <physical name>, device does not exist

The physical device name you specified does not correspond to a name the Basic I/O
System recognizes. That is, the person who configured your application system did

not specify <physical name> as the name of a device-unit during configuration of the
Basic 1/O System. ATTACHDEVICE does not attach the device.

¢ <logical name>, logical name already exists

The specified logical name is already cataloged in the root job’s object directory.
ATTACHDEVICE does not attach the device.

4-24 Operator’s Guide

ATTACHDEVICE

e« 0085 : ESLIST, too many device names

You tried to attach more than one physical device with a single ATTACHDEVICE
command. ATTACHDEVICE cannot attach more than one device.

» <logical name>, device was not shut down properly

The device you attached was not previously shutdown using either the SHUTDOWN
or the DETACHDEVICE command.

¢ <logical name>, volume is not a NAMED volume

ATTACHDEVICE attempted to attach a device as a named device and discovered a
physical volume was mounted. However, ATTACHDEVICE does attach the device.
You can use the device after formatting the volume as a named volume or after
inserting a named volume in the device.

» <logical name>, volume not formatted
<logical name>, <exception value> ; <exception wremonic>

ATTACHDEVICE attempted to attach a device as a named device and encountered
an I/O error while searching for the volume’s root directory. This usually indicates
that the volume is not formatted. However, ATTACHDEVICE does attach the
device.

¢ <logical name>, volume not mounted

The specified device does not contain a volume. However, ATTACHDEVICE does
attach the device.

¢ <exception value> : <exception mnemonic>, while collecting device
name

ATTACHDEVICE encountered an exceptional condition while parsing the device
name from the command line. This message lists the resulting exception code.
ATTACHDEVICE does not attach the device.

* <exception value> : <exception mnemonic>, while collecting logical

name

ATTACHDEVICE encountered an exceptional condition while parsing the logical
name from the command line. This message lists the resulting exception code.

Operator’s Guide 4-25

With this command you can associate a logical name with an existing file. The command

catalogs the logical name in your global object directory. The format of this command is
as follows:

ATTACHFILE

‘logical name:

¥-193

INPUT PARAMETERS

pathname Pathname of the file to which the Human Interface associates a
logical name,

:logical name: The name (1 to 10 characters, or 1 to 12 characters if you include
the colons) that represents the logical name to be associated with
the file. Colons surrounding the logical name are optional;
however, if you usc them, you must usc them in pairs. If you omit
this parameter, the default logical name is :§:.

If you enter the ATTACHFILE command without parameters, the default is
ATTACHFILE :HOME: AS :§:
DESCRIPTION

Using the ATTACHFILE command you can associate a logical name with an existing file
or directory. After making this association, you can use the logical name, instead of the
entire pathname, to refer to the file.

When the attachment is complete, ATTACHFILE displays the following message:

riame>; attsched AS <10g,--i&5-:§:§

where <pathname> and <logical name> are as specified above.

4-26 Operator’s Guide

ATTACHFILE

ATTACHFILE makes the association between a file and a logical name by cataloging a
connection to the file in your global object directory (this is normally the object directory
of your interactive job). It catalogs the connection under the name specified as the logical
name. If there is another connection cataloged in the object directory under the same
logical name, ATTACHFILE uncatalogs and deletes the previous connection before
cataloging the new one. If an object other than a connection is cataloged in the directory
under the specified logical name, ATTACHFILE leaves the previous object as is, does not
catalog the new connection, and displays an error message to describe the situation.

Because ATTACHFILE catalogs the connection in your global object directory, the
logical name has effect only within your interactive job. Therefore, several users can
specify the same logical name without affecting the others, Background jobs can also
attach files without affecting the tasks being run in the foreground since the background
and foreground environments are independent of each other.

If you specify a pathname for a file but omit the logical name, ATTACHFILE attaches
the file as :3:. This enables you to change your default prefix. Changing your default
prefix can be useful when you want to manipulate files that reside in a directory other
than the one specified by your original default prefix. For example, suppose you have a
file that you normally refer to as

:PROG:SOURCE/PLM/INTERRUPT/TEST.P28
You can change your default prefix with the command
ATTACHFILE :PROG:SOURCE/PLM/INTERRUPT
Then, you can refer to the file as simply
TEST.P28

When you finish using the files in directory :PROG:SOURCE/PLM/INTERRUPT, you
can return your default prefix to its original setting by entering

This is the same as entering

‘HOME: is a logical name that refers to the samc directory as your original default prefix.
Therefore, you can change your default prefix as much as you like with ATTACHFILE
and return to the original setting by making reference to :-HOME:. However, you cannot
use ATTACHFILE to change the meaning of :HOME:. Also, you cannot use
ATTACHFILE to change the meaning of :CI: and :CO:. Refer to Section 2.6.4.4 for a
description of the logical names in a standard system.

Operator’s Guide 4-27

ATTACHFILE

The logical name created with ATTACHFILE remains valid until one of the following
situations occurs:

» A DETACHFILE command (described later in this chapter) dissolves the association
between file and logical name.

o The interactive session that specified the ATTACHFILE command terminates
processing. This event occurs when a user, in response to the Human Interface
prompt, logs off. In this case, the operating system deletes the interactive job.

» A background job created by the standard CLI exits or is KILLED. In this case, only
the logical names attached in the background environment are removed.

« A task deletes the connection to the file via a Basic I/O System or Extended I/O
System call. In this instance, the logical name remains cataloged in the global
directory, but the connection to which it refers does not exist.

+ A user forcibly detaches the volume containing the file via the DETACHDEVICE
command (described later in this chapter).

s A user removes the volume from the drive. In this instance, the logical name remains
cataloged in the global directory, but the connection to which it refers does not exist.
ERROR MESSAGES
¢+ <logical name>, list of logical names not allowed
You entered more than one logical name as input to ATTACHFILE.
» <pathname>, list of pathnames not allowed
You entered more than one pathname as input to ATTACHFILE.
¢ <logical name>, legical name not allowed

You attempted to attach a file using a logical name :HOME:, :CIL:, or :CO:. You
cannot change the meaning of these logical names.

*» <logical name>, not a file connection

The logical name you specified, <logical name>, is already cataloged in the object
directory of the session and does not represent a connection object.

s <pathname>, not allowed as default prefix

You attempted to attach a physical or stream file as your default prefix (:§:). Only
named files are valid.

* <logical name>, too many logical names

Your global object directory is full. Therefore ATTACHFILE cannot catalog the

logical name in the object directory. Delete some logical names you are no longer
using.

4-28 Operator’s Guide

This command saves files on a named volume by copying them to a physical volume that
serves as a backup storage device. This command provides a way of saving a large volume
(a Winchester disk, for example) onto a number of volumes such as diskettes or tape
cartridges. Later, you can use the RESTORE command (described later in this chapter)
to retrieve these files and copy them to a named volume.

CAUTION

While you use this command, no other activity should be occurring on the
volume you are backing up. If other users are accessing the volume
during a BACKUP operation, the volume’s data could become corrupted,
possibly requiring the volume to be reformatted.

——

———-< BACHUP

e ———

pathrarg

NACk.LL GavITE
_—

AFTER

CATE =
mmiddiyy

TIME = NAME - - - -~
hh:mTiss name FORMAT GUERY

x-G67-3

INPUT PARAMETERS

pathname Pathname of a file on the source volume. BACKUP saves all the
files starting from this point on the file tree. If you specify the
logical name of the device only, BACKUP saves all files in the
volume, beginning with the root directory. If you specify a file and
not a directory, then only the specified file is saved.

DATE BACKUP saves all files created or modified on or after the date
and time specified with the DATE/TIME parameters. If the
DATE parameter is omitted, the date defaults to the current
system date. If both date and time parameters are omitted
(DATE/TIME), then the date and time default to 1/1/78 and
00:00:00.

Operator’s Guide 4-29

BACKUP

mm/dd/yyyy Form used to specify the DATE.

mm Numerical designation for the month. (For example: 1
represents January, 2 represents February, etc) Mustbe a
digit.

dd Numerical designation for the day of the month. Value
must be in digits.

vy Designation for the year. You enter this as a two- to
four-digit number, as follows:

Entered year Actual year
0 through 77 2000 through 2077
78 through 99 1978 through 1999
100 through 1977 error
1978 through 2099 1978 through 2099
2100 and up €rror
TIME TIME is used in conjunction with the DATE parameter to

determine which files to save. If TIME is omitted, the default is
00:00:00. BACKUP saves only those files modified since the
specified date or time,

hh:mm:ss The format for the TIME parameter.

hh Hours specified as 0-23
mm Minutes specified as 0-59
s Seconds specified as 0-59

NAME Causes BACKUP to name the set of data you are backing up with
this command. Depending on the amount of data being backed up,
this named data set can consist of a portion of a single backup
volume, or it can span muitiple volumes.

If you plan to store multiple data sets on a single backup volume
(using the AFTER preposition), it is important to name each data
set. Only by naming the data sets can you restore them individually
with the RESTORE command.

name A 1-9 character string that names the volume being backed up
during this invocation of the BACKUP command.

To restore a logical volume from a backup volume that contains
multiple volumes, you must supply the name of the volume when
you invoke the RESTORE command. There is no way to get a
Listing of these names from the volume itself. Therefore, carefully
label the backup volume with the file names present on the volume.

4-30 Operator’s Guide

FORMAT

QUERY

BACKUP

Causes BACKUP to format each volume before writing to it.
Interleave is set to one on diskette media. FORMAT should be
inscrted whencver a new volume is used.

Causes the Human Interface to prompt for permission to save each
file. The Human Interface prompts with one of the following
queries:

_pathname, BACKUP Data File? = i [

or

pathname, BACKUP. Directory? e - |

Enter one of the following responses to the query:
Entry Action
Yory Save the file.
Eore Exit from BACKUP.
Rorr Continue saving files without further query.

Norn If a dara file, do not save the file; ifa
directory, do not save the directory or any file
in that part of the directory tree. Query for
the next file, if any.

Other Error message and reprompt.

OUTPUT PARAMETERS

TO

OVER

AFTER

Operator’s Guide

Causes BACKUP to send the processed output to a new backup
volume. This preposition also causes BACKUP to read the volume
label from each newly mounted physical volume in an attempt to
determine the volume type. This is an attempt to ensure that the
volume is compatible with any previously mounted volumes in the
backup set.

Causes BACKUP to begin writing on each fresh volume without
checking the label for compatibility. BACKUP writes over any
previous files or directories on the backup volume.

Causes BACKUP to search the mounted volume looking for the
end of a previous backup operation. BACKUP then appends the
file or directory after the previous backup operation. If more
volumes are needed to complete the backup operation, then
BACKUP behaves as if the TO preposition had been specified for
subsequent volumes. If FORMAT was specified, BACKUP
formats any new volumes required to finish the backup operation.

BACKUP

‘backup device: The logical name of the device to which BACKUP copies the files.

DESCRIPTION

BACKUP is a utility which saves named files on backup volumes such as tapes or
diskettes. For BACKUP to save files (rom a named volume, you must have read access to
the files and to the directories that contain them.

After using the BACKUP command to save named files, you should immediately invoke
the RESTORE command with the VERIFY option to make sure that the data on the
backup volume has been recorded correctly. Enter the RESTORE command as follows:

RESTORE <backup wvolume> TO :bb: VERIFY
whcere

<backup volume> The logical name of the backup volume you want to
verify.

RESTORE will only verify that BACKUP produced a restorable backup volume; no files
are actually restored.

BACKUP saves the following information for each file:

« File name

o Access list, including owner

+ Extension data

s File granularity

¢ Contents of the file

When you enter BACKUP, the command displays the following sign-on message:

iBRMX IT Backup Utility, Vx.y i .
Copyright <year> Intel Corporation

where Vx.y is the version number of the utility.

Once the command line has been scanned, the following message is displayed to indicate
what DATE and TIME have heen used to save files:

| All Files Modified After <date> , <time> Will Be Saved ~

where <date> and <time> are the values you specified in the date and time parameters
(or defaults). BACKUP then prompts you to mount the backup volume.

4-32 Operator’s Guide

BACKUP

When you use the BACKUP command, you do not have to format a volume previous to
issuing the command. BACKUP has a FORMAT parameter which you can use to format
any volume while a backup operation is occurring.

Whenever BACKUP requires a new backup volume, the command displays the following
message:

[<dev1ce> Mount Backup Vol am

where <device> is the logical name of the backup device, (name) is the name of the
physical volume set, and <nn> is the identifying number of the requested volume. In
response to this message, you place a volume in the backup device and enter one of the
following responses:

Entry Action

Y.v.R,orr Continue the backup process.
Eore [Cxit from the BACKUP command.
Any other character Invalid entry; reprompt for entry.

A response of Y, y, R, or r causes the BACKUP command to display this buffer summary
message:

1/0 Buffer Summary
"Buffer Size <number> -
Number of Buffers_{pumbgr)

BACKUP continues prompting for a backup volume until you supply one that it can
access.

If BACKUP detects that a volume cannot be read, that a volume is a named volume, that
the volume is a backup volume, or that the volume is a physical volume contzining data,
the command informs you with one the following messages:

Operator’s Guide 4-33

BA

CKUP

where <device> is the logical name of the backup device, <name> is the volume name

as recorded in the label, <nn> is the volume number of the backup volume, and <date>
and <time> are the date and time when the last backup operation was performed. If the
situation is appropriate, the command may prompt you with a request to FORMAT or to

OVERWRITE the mounted volume in the following way:

In response to this prompt, enter one of the following:

Entry Action
Yory Use the volume as a backup volume.
Rorr Use the volume and do not query for permission again. This is

equivalent to specifying "OVER’ on the command line for the rest of

the BACKUP operation.

Eore Exit from the BACKUP command.
Norn Reprompt for another volume.
Other Invalid Response; reprompt for entry.

When BACKUP fills & backup volume, it prints the following message:

Physical Volume (<name>), f<rn>, Complete

BACKUP prompts for additional volumes if it needs them.

After BACKUP finishes, 1t displays the number of data files and directories it saved, as

follows:

Summary For Logical Volume (<name>)
<nre> Data File[s] Saved
<nr> Director{y] [ies] Saved

Backup Complete

Operator’s Guide

BACKUP

ERROR MESSAGES

Some error messages require a response. If you cncounter one of these error messages,
enter one of the following:

Entry Action

Y,v,Rorr Continue the backup process.
Eore Exit from the BACKUP command.
Any other character Invalid entry; reprompt for entry.

The error messages for the BACKUP command are:

<backup device>, Backup NOT complete

You specified an "E" to exit BACKUP. This message reminds you that the backup
operation 1s not complete. The last file on the last backup volume may be incomplete.

<backup device>, Backup Volume (<name>), #i<nn>, <date>, <time>,
Mounted <backup device>, Enter Y to Overwrite:

The backup volume you supplied already contains backup information. BACKUP lists
the logical name of the hackup device, the volume number, and the date on which the
original backup occurred. It overwrites this volume if you enter Y, y, R, or r.

<backup device>, Cannot Attach Volume
<backup device>, <exception value> : <exception mnemonic:
<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:

BACKUP cannot access the backup volume. This could be because there is no
volume in the backup device or because of a hardware problem with the device. The
second line of the message indicates the iRMX IT exception code encountered.
BACKUP continucs to issue this message until you supply a volume that BACKUP
can access,

<pathname>, <exception value> : <exception mnemonic>, Cannot Back up
File

For some reason BACKUP could not copy a file from the named volume, possibly
because you do not have read access to the file or because there is a faulty area on the
named volume. The message lists the pathname of the file and the exception code
encountered. BACKUP copies as much of the file as possible and continues with the
next file,

<backup device>, Device in Use
<backup device>, <exception value> : <exception mnemonic>

The device you specified for the backup device is being used by another process.
Continuing would result in damage to the files on the input volume.

Operator’s Guide 4.35

BACKUP

<backup device>, Error Writing Volume Label
<backup device>, <exception value> : <exception mnemonic>

BACKUP encountered an error condition when attempting to write a volume label on
the backup volume. The second line lists the exception code encountered. This error
is probably the result of a faulty area on the volume.

<backup device>, Input and Output are on Same Device

The device you specified for the backup device is the same device that contains your
input pathname. Continuing would result in damage to the files on the input volume.

<backup device>, Invalid Backup Device

The logical name you specified for the backup device was not a logical name for a
device. Example invalid names are :CI:, :CO:, and :HOME..

<exception value> : <exception mnemonic>, Invalid Date OR Time

For either the DATE or TIME parameter, you entered a value that is out of range
(such as 31/02/86 or 26:03:62). The message lists the exception code encountered as
a result of this entry.

Invalid Output Specification

You did not supply the logical name of the backup device when you entered the
BACKUP command.

<backup device>, <exception value> : <exception mnemonic>
backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:

When BACKUP attempted to write a label on the backup volume, it encountered an
error condition, possibly because of a faulty area on the volume, or because the
volume is write-protected. The second line of the message indicates the iIRMX I1
exception code encountered. BACKUP reprompts for a different backup volume.

<backup device>, Named Volume <volume name>, Enter Y to Overwrite:

The backup volume you supplied is a named volume. BACKUP lists the logical name
of the device containing the volume and the volume name. It overwrites this volume if
youenter Y,y, R,orr.

<backup device>, Not Correctly Formatted, Enter Y to Format:
The backup volume was not correctly formatted.
Requescted Date/Time Later Than System Date/Time

Either the date and time you specified in the BACKUP command are in error or you
did not set the system date and time.

<pathname>, too many input pathnames

You attempted to enter a list of pathnames or use a wild-carded pathname as the
input pathname. You can enter only one input pathname per invocation of BACKUP.

Operator’s Guide

BACKUP

* <pathname>, toc many output pathnames

You attempted to enter a list of logical names for the backup device. You can enter
only one output logical name per invocation of BACKUP.

¢ <pathname>, Unable to Complete Directory

BACKUP encountered an error when accessing a file in the <pathname> directory.
It skips the rest of the files in the directory and goes on to the next directory. This
error could occur if you do not have list access to the directory.

*» <backup device>, Unrecognized Volume, Enter Y to Overwrite:

The backup volume you supplied is a formatted volume, but it has a label that is not
readable. BACKUP will overwrite this volume if you enter Y, y, R, or r.

¢ <backup device>, Volume Not Formatted
<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:

The backup volume you supplied was not formatted. BACKUP continues to issue this
message until you supply a formatted backup volume.

» <backup device>, Write Error On Backup Volume
<backup device>, <exception value> : <exception mnemonic>

BACKUP encountered an error condition when writing information to the backup
volume. The second line of the message lists the exception code encountered. This
error is probably the result of a faulty area on the volume.

¢+ NAME Required If AFTER Is Selected

You must use the NAME parameter when using the AFTER preposition.

Operator’s Guide 4-37

This command reads data from the specified input file list and writes the data to the
specified destination file or file list.

The format of the command is as follows:

co PT\— inpath-_ll‘s_;\ 1
(10} QUERY
o) __QUERY

outpath-list

-7

INPUT PARAMETERS

inpath-list One or more pathnames for the files to be copied. Multiple
pathnames must be separated by commas. Separating blanks are
optional. To copy files on a one-for-one basis, you must specify the
same number of files in the inpath-list as in the outpath-list.

QUERY Causes the Human Interface to prompt for permission to copy
each file. Depending on the specified preposition (TO, OVER, or
AFTER), the Human Interface prompts with one of the following
queries:

<pathname>;,

Enter one of the following (followed by a carriage return) in
response to the query:

Entry Action

Yory Copy the file.

Eore Exit from the COPY command.

Rorr Continue copying files without further query.

Any other Do not copy this file; go to the next file
character in the inpath list.

4-38 Operator’s Guide

COPY

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

DESCRIPTION

Writes the listed input files to output files. The specified output
file or files should not already exist. If they do, COPY displays the
following message:

<pathname>. ;-;-:-:-&331?{:

Enter Y, y, R, or r if you wish to write over the existing file. Enter
any other character or a carriage return alone if you do not wish to
overwrite the existing file. In the latter case, the COPY command
will pass over the corresponding input file without copying it, and
will attempt to copy the next input file to its corresponding output
file.

If you specify multiple input files and a single output file, COPY
appends the remaining input files to the end of the output file.

Writes the input files over (replaces) the existing output files on a
one-for-one basis, regardless of file size. If an output file does not
already exist, its corresponding input file is written to a new file
with the corresponding output file name. If you specify multiple
input files and a single output file, COPY appends the remaining
input files to the end of the output file.

Appends the input file or files to the current data in the existing
output file or files. If the output file does not already exist, all
listed input files will be concatenated into a new file with the listed
output file name.

One or more pathnames for the output files. Multiple pathnames
must be separated by commas. Separating blanks are optional. If
you omit the preposition and outpath-list parameters, COPY
displays the output at your console screen (TO :CO:).

The COPY command can be used to perform several different operations. Some of these

include

o Creating new files (TO preposition).

+ Copying over existing files or creating new files (OVER preposition).

» Adding data to the end of existing files (AFTER preposition).

» Copying a list of files to another list of files on a one-for-one basis.

* Concatenating two or more files into a single output file.

+ Copying many files to one directory.

Operator’s Guide

COPY

As each file is copied, the COPY command displays one of the following messages:

When you copy files, the number of input pathnames you specify must equal the number
of output pathnames, unless you specify only one output pathname. In the latter case,
COPY appends the remainder of the input files to the end of the output file. As each file
is appended, the following message is displayed on the console screen:

If you specify multiple output files, and there are more input files than output files, or if
you specify fewer input files than output files, COPY returns an error message.

Also, if you specify a wild-card character in an output pathname, you must specify the
same wild-card character in the corresponding input pathname. Other combinations
result in error conditions.

You cannot successfully use COPY to copy a directory to a data file or to another
directory. Although a dircctory can be copied, the attributes of the directory are lost.
That is, the directory can no longer be vsed as a directory. However, a file listed under
one directory can be copied to another directory. For example

This would copy data file A to a different volume, directory, and filename.

The user 1D of the user who invokes the COPY command is considered the owner of new
files created by COPY. Only the owner or the system manager can change the access
rights associated with the file (refer to the PERMIT command later in this chapter).

When COPY creates new files, it sets the access rights and list of accessors as follows:

« It sets the file for ALL access (delete, read, append, and change).

o It sets the owner as the only accessor to the file.

Refer to the PERMIT command for more information about access rights and the list of
AcCCessors,

The COPY command cannot be used with tape cartridges.

4-40 Operator’s Guide

COPY

ERROR MESSAGES

e <pathname>, output file same as input file
You attempted to copy a file to itself.

* <pathname>, UPDATE or add access required

Either you cannot overwrite the information in a file because you do not have update
access to it, or you cannot copy information to a new file because you do not have add
entry access to the file’s parent directory.

Operator’s Guide 4-41

This command creates one or morc uscr directories. The format is as follows:

CREATEDIR @

vl

INPUT PARAMETER

inpath-list One or more pathnames of the iRMX II directories to be created.
Multiple pathnames must be separated by commas. Embedded
blanks between commas and pathnames are optional.

DESCRIPTION

CREATEDIR creates a directory with all access rights available to you, the owner. That
is, you can delete, list, add, and change the contents of the directory you created with
CREATEDIR. Other users {except the system manager) have no access to the directory
unless you use the PERMIT command (described later in this chapter) to change the
access rights and list of accessors.

The following message is displayed if a directory is successfully created:

l <directory-name>, directory created

You can create new directories that are subordinate to other directories.
For example

causes the newly-created directory GH to be nested within existing directory EF, which in
turn, is nested vithin directory DC, and so on. The directories AB, DC, and EF must
already exist before entering this command.

You can check the contents of the directory at any time by using the DIR command to list
the directory (see the DIR command in this chapter).

ERROR MESSAGES
s <directory-name>, file already exists

The pathname of the directory to be created already exists.
e <file-name>, file does not exist

One of the directories in the specified pathname does not exist.

4-42 Operator’s Guide

CREATEDIR

¢ <directory-name>, invalid file type
One of the directories specified in the pathname is not a valid directory.
s <directory-name>, logical name does not exist

The logical name you entered as the directory name does not exist.

Operator’s Guide 4-43

This command sets a new system date or displays the current date. This command sets
the date portion of either the local or global time-of-day clock. The format is as follows:

dd month year

SYNCHRONIZE

INPUT PARAMETERS

dd

month

min

year

4-44

GLOBAL

x-1958

Two-digit number that specifies the day of the month. Both digits
are not required to set this parameter,

Designation for the month. You can enter the whole name (such
as AUGUST) or enough characters to distinguish one month from
another (for example, AU, to distinguish AUGUST from APRIL).
You can use this form for specifying the month only when using the

"dd month year” format.

Numerical designation for the month (for example: 1 represents
January, 2 represents February, etc.). You can use this form for
specifying the month only when using the "mm/dd/year" format.
Both digits are not required to set this parameter.

Designation for the year. You can enter this as a two- or four-digit

number, as follows:

Entered vear

0 through 77

78 through 99

100 through 1977
1978 through 2099
2100 and up

Actual year

2000 through 2077
1978 through 1999
error

1978 through 2099
error

Operator’s Guide

QUERY

GLOBAL

LOCAL

SYNCHRONIZE

DESCRIPTION

DATE

Causes DATE to display the current date, time and clock type
followed by the promp

DATE continues 1o issue this prompt until you enter a valid date
or the letter E (or) to exit.

Applies only to systems with hardware clock/calendar components.
Such clock/calendar components are usually powered by batteries
so they continue keeping time when power to the system is turned
off. These clock/calendar components are referred to as global
clocks. This parameter causes DATE to display or set the date
portion of the global time-of-day clock. Any user can display the
current value of the global clock, but only the system manager can
set the global clock. If the global clock is modified, the local clock
automatically takes on the new value of the global clock. LOCAL
is the default if the LOCAL and GLOBAL parameters are
omitted.

DATE displays an error message if you specify this parameter and
your system does not have a global clock/calendar.

Causes DATE to display or set the date portion of the local time-
of-day clock maintained by the operating system. All users can
display the current value of the local clock or set it to a new value.
LOCAL is the default if the LOCAL and GLOBAL parameters
are omitted.

Applies only to systems with global clock/calendars. This
parameter causes DATE to set the date portion of the local time-
of-day clock to the current date value in the global clock. If you are
modifying the global clock, this parameter is unnecessary.

DATE displays an error message if you specify this parameter and
your system does not have a global clock/calendar.

Entering this command causes the current date and time, and the clock type to be
displayed. If you set only one or two date parameters, the omitted parameters are
replaced by their defaults. If you enter only one parameter, it is assumed to be the day.
Two parameters represent day and month. For example, assume the current date in the
system is 9 Sept 86. If you enter

Operator’s Guide

4-45

DATE

DATE will display

18 Sep 86, <current ti'meﬁ-_;"-:_f-.'."-'*? :

You must separate the day, month, and year entries with single blanks.

If you omit the date parameters, DATE displays the current date and time in the
following form:

When the operating system displays the date, it displays only the first three characters of
the month and the last two digits of the year. It separates the hours, minutes, and seconds
with colons.

If you have a system without a global clock/calendar (such as a System 310), whenever
you start up or reset the operating system, the date is automatically set to the date you last
accessed the :SYSTEM: directory. You can reset the date to any acceptable value.

If your system has a global clock/calendar and the operating system is configured to
recognize it, the local clock is automatically set to the date maintained in the global clock
whenever you turn on or reset your system.

The DATE command enables you to set and/or display the date portion of two time-of-
day clocks: the local clock and the global system clock. You access the local clock by
specifying the LOCAL parameter; you access the global clock by specifying the GLOBAL
parameter. If neither LOCAL nor GLOBAL is specified, the local clock is accessed by
default. Any user can display the date (and time) portion of the local and global clocks.
However, only the system manager can set the date portion of the global clock. If the
system manager sets the global clock to a new value, the local clock will automatically be
set to that value.

ERROR MESSAGES
e <date>, invalid date

You entered an invalid date. This error could result from specifying a day that is
invalid for the month you specified (such as 31 FEB 86), entering characters for the
year parameter that do not fall into the legitimate ranges listed under the year

parameter, entering a month parameter that does not uniquely identify the month, or
entering invalid characters.

» <parameter>, invalid syntax

You specified an illegal combination of parameters. For example, you may have
entered a date with the QUERY option.

¢ only the system manager may set the global clock

You specified the GLOBAL parameter, but you are not the system manager.

4-46 Operator’s Guide

DATE

*» <exception value> : <exception mnemonic>, getting system time

You specified the GLOBAL or SYNCHRONIZE parameter, but there is no global
clock in the system.

» E$SSHARE, global clock busy

You attempted to access the global time-of-day clock while another job was accessing
it. Try the command again.

e ESINVALIDSDATE, global date read was invalid

The date returned from the global clock was invalid. This condition will usually occur

when the global clock has never been initialized or when power to the clock has been
interrupted. The BIOS system call GETSGLOBALSTIME sets the date to a valid
date, 1 Jan 1978, which the DATE command then displays.

s ESINVALIDSTIME, global time read was invalid

The time returned from the global clock was invalid. This condition will usually occur
when the global clock has never been initialized or when power to the clock has been
interrupted. The BIOS system call GETSGLOBALSTIME sets the time to a valid
time, which the DATE command then displays.

Operator’s Guide 4-47

This command allows you to debug your iRMX II application jobs if your system is
configured with the iSDM monitor.

pathname

cutpath

m-0500

INPUT PARAMETERS

pathname Pathname of the file containing the application program to be
debugged.

parameter-string String of required and optional parameters used by the application
program to be debugged.

OUTPUT PARAMETERS

TO Writes the debug information to the named new output file. The

specified output file should not already exist. If it does, DEBUG
displays the following message:

any other character or a carriage return alone if you do not wish to
overwrite the existing file.

OVER Writes the debug information over (replaces) the existing output
file, regardless of file size. If an output file does not already exist,
the debug information is written to a new file with the
corresponding output file name.

AFTER Appends the debug information to the current data in the existing
output file. If the output file does not already exist, all debug
information will be concatenated into a new file with the listed
output file name.

4-48 Operator’s Guide

DEBUG

outpath-list A pathname for the output file or logical device to receive the
debug information. The most commonly used names are :Ip: and
:n:file where :fn: is the logical name of a secondary storage device
onto which the debug information will be written. If no output file
is specified, DEBUG displays the output at the console screen (TO
:CO).

DESCRIPTION

DEBUG loads your specified application program into main memory, puts the debug
information into an output file (or on the screen, if you did not specify an output
filename), and transfers control to the system monitor. You can then use the monitor to
single-step, display registers, and set breakpoints within the program. Refer to the iSDM
Systern Debug Monitor Reference Manual for more information.

The DEBUG command cannot be used to debug CLI level commands, only HI commands
and application programs.

When you invoke the DEBUG command with no output file, it displays the following
message:

DEBUG file, <pathname>

where <pathname> is the pathname of the file containing the application job to debug,
Then DEBUG loads the application job and displays the debug information on the
console screen (or writes it to an output file if you specified one). Figure 4-2 shows an
example of this output. After writing the debug information, DEBUG waits until you
indicate that you’re ready to enter the monitor by entering <RETURN>. This allows
you to access the optional debug file from a remote system (using iRMX-NET) to aid in
the debug process.

As Figure 4-2 shows, the first line of the debug information lists the token for the job that
was created. The remaining lines list the selector portions of all segments (under the
heading BASE) assigned by BND286 when the code was bound. The LDT(n) values are
the same as those that appear on the bind map. Therefore, you can match the selector
values shown in this display with the offset values shown in the bind map to determine the
exact location of a symbol listed in the bind map. Refer to the i4PX 286 Utilities User’s
Guide for information about BND286 and the bind map.

Operator’s Guide 4-49

DEBUG

 SEGMENT MAP FOR JOB:

fE. BASE . NAME BASE

LDT(2) 2E40 LDT(3) 2E30: &
LDT(7) 2220 LDT(8) 2158

-.._:Ijni:crrupt: 3 at XU IYYYY

Figure 4-2, Sample DEBUG Display

If you invoke the DEBUG command with output redirection, the information displayed in
Figure 4-2 is written to the output file specified. After the debug information has been
written to the output file, the following message is displayed:

‘I'he system breaks to the monitor immediately atter a < RETURN > is entered.

When DEBUG executes, the monitor in your system disables interrupts. This causes the
time-keeping function to stop when code is not executing. This slowing of the timing
function

» Affects the ability of the Nucleus to execute time-out tasks that have provided time
limils to system calls, such as RECEIVESUNITS and RECEIVESMESSAGE.

» Affects the ability of the Basic [/O System to keep track of the time-of-day and write
its data structures to secondary storage.

When DEBUG is invoked to debug an application program, it loads the application
program into its own dynamic memory. As a result of this process, the application
program obtains dynamic memory from the memory pool of DEBUG, not from the
memory pool of the user session. Because DEBUG uses a different set of default values
than the CLIL it is possible that the program may behave differently than when it is run
independently.

ERROR MESSAGE

* <exception value> : <exception mnemonic> command aborted by EH

While processing, the DEBUG command encountered an exceptional condition.
Therefore, the Human Interface’s exception handler aborted the command. The
message lists the exception code that occurred.

4-5() Operator’s Guide

This command removes data files and empty directories from secondary storage. The
format is as follows:

INPUT PARAMETERS

inpath-list One or more pathnames for the named data files or empty
directories to be deleted. Multiple pathname entries must be
separated by commas. Separating blanks are optional.

QUERY Causes the DELETE command to ask for permission to delete
each file in the list. Prior to deleting a file, the DELETE command
displays the following query:

<pathname>, DELETE?

Enter one of the following (followed by a carriage return) in
response to the query:

Entry Action

Yory Delete the file.

Eore Exit from the DELETE command.
Rorr Continue deleting without further query.

Any other Do not delete the file; query for the
character next file in sequence.,

Operator’s Guide 4-51

DELETE

DESCRIPTION

The DELETE command allows you to release unused secondary storage space for new
uses by removing empty directories and unneeded data files. To delete a file, you need
not be the owner of the file; however you must have delete access to the file. If a user or
program is accessing the file (has a connection to the file) when you enter the DELETE
command, DELETE marks the file for deletion and deletes it when all connections to the
file are gone.

Directories that are not empty cannot be deleted. If you wish to delete a directory that
contains files, you must first delete all its contents. For example, if you wish to delete a
directory named ALPHA whose entire contents consist of a directory BETA containing a
data file SAMP, you would enter the following command:

DELETE ALPHA/BETA/SAMP, ALPHA/BETA, ALPHA

This command sequence would delete all the files contained under ALPHA before
deleting the directory itself.

DELETE displays the following message as it deletes each file or marks the file for
deletion:

WARNING

Be careful when using wildcards with the DELETE command. For
example, entering DELETE *,a instead of DELETE *.a can erase all your
files. As a precaution, the DELETE command displays this message
before deleting any files in this case:

Do you really want to delete your files? (y or [n])

ERROR MESSAGE
s <pathname>, DELETE access required

You do not have permission to delete the specified file.

4-52 Operator’s Guide

This command detaches the specified devices and deletes their logical names from the
root job’s object directory. The format of this command is as follows:

Croree >— o0

INPUT PARAMETER

logical-name-list One or more Iogical names of the physical devices that are to be
detached. Colons surrounding each logical name are optional;
however, if you use colons, you must use matching colons. Multiple
logical names must be separated by commas.

FORCE Causes DETACHDEVICE to detach the device even if
connections to files on the device currently exist.

DESCRIPTION

The DETACHDEVICE command allows you to detach a device without having to
reconfigure the system. After a device is detached, no volume mounted on that device is
accessible for system use until the device is reattached.

Unless you are the system manager (user ID 0), you can detach only the following devices:
» Devices that are configured with your user ID as the owner ID

» Devices you originally attached using the ATTACHDEVICE command

« Devices originally attached using the WORLD parameter of ATTACHDEVICE

» Devices originally attached by user WORLD (user ID 65535)

DETACHDEVICE returns an error message if you attempt to detach devices originally
attached by other users. This error prevents users from detaching devices belonging to

other users and from accidentally detaching system volumes. However, the system
manager can detach all devices.

Operator's Guide 4-53

DETACHDEVICE

Unless you specify the FORCE parameter, you cannot detach a device if any connections

exist to files on the device (that s, if other users are currently accessing the device).
However, the FORCE parameter causes DETACHDEVICE to delete all connections to
files on the device before detaching the device.

After detaching the device and deleting its logical name from the root job’s object
directory, the DETACHDEVICE command displays the following message:

NOTE

Using the DETACHDEVICE command to detach the device containing
your Human Interface commands causes loss of access to Human Interface
functions until the system is restarted.

ERROR MESSAGES

e <logical name>, can't detach device
<logical name>, <exception value> : <exception mnemonic>

An exceptional condition occurred which prevented DETACHDEVICE from
detaching the device. This message lists the resulting exception code.

¢ <logical name>, device does not belong to you

The device was originally attached by a user other than WORLD or you. Thus, you
cannot detach the device.

s <logical name>, device has outstanding file connections

There are existing connections to files on the device. Because you did not specify the
FORCE parameter, DETACHDEVICE does not detach the device.

¢ <logical name>, device is in use

Another user or program is accessing the device (has a connection to a file).
Therefore, you must specify the FORCE parameter in order to detach the device.

¢+ <logical name>, outstanding connections to device have been deleted

There were outstanding connections to files on the volume. However, because you
specified the FORCE parameter, DETACHDEVICE deleted those connections. This
is a warning message only; it does not prevent the device from being detached.

4-54 Operator’s Guide

This command allows you to terminate the association of a logical name with a file, The
format of this command is as follows:

@ logical-name-list

x-198

PARAMETERS

logical-name-list List of logical names, separated by commas, that represent the files
to be detached, Each logical name must contain 1 to 10 characters
or 1to 12 characters if surrounding colons are used. Colons
surrounding each logical name are optional; however, if you use
colons, you must use matching colons.

DESCRIPTION

You establish an association between a file and a logical name by entering the
ATTACHFILE command. DETACHFILE breaks this association. It does this by
uncataloging the logical name from your interactive job’s global object directory. When
DETACHFILE detaches a file in this manner, it displays the following message:

where <logical name > is the name you specified.

You cannot use DETACHFILE to detach logical names that do not represent files.
DETACHFILE returns an error message if you make such an attempt. In particular, you
cannot use DETACHFILE to detach devices.

You cannot use DETACHFILE to detach logical names originally created by other users.
DETACHFILE searches for logical names in the global object directory of your
interactive job only. It does not search the root job’s object directory nor the object
directories of any other interactive jobs.

Operator’s Guide 4-55

DETACHFILE

ERROR MESSAGES
o <exception value> : <exception mnemonic> invalid global job

The Human Interface encountered an internal system problem when it attempted to
remove the logical name from the global job’s object directory. The message lists the
resulting exception code.

e <logical name>, logical name does not exist
The logical name is not cataloged in the global object directory of your interactive job.
e <logical name>, logical name not allowed

The logical name you specified was either :$:, :HOME:, :CI:, or :CO:. You cannot
detach the files associated with these logical names.

» <logical name>, not a file connection

The logical name you specified is cataloged in the global object directory of your
interactive job, but it is not the logical name of a file.

4-56 Operator’s Guide

This command lists the names and attributes of the data and directory files contained in a
given directory. The format of the command is as follows:

A

FAZT FREE
e

T o e T)

INPUT PARAMETERS

inpath-list

FAST

SHORT

ONE

Operator’s Guide

One or more pathnames of the directories to be listed (the
pathnames can represent data files if the PARENT parameter is
also specified). Multiple directory pathname entries must be
separated by commas. Separating blanks are optional. If no
pathname is specified, the user’s default directory is listed.

Lists only the filenames and directory names in the directory. The
output format contains five columns of filenames unless you also
specify the ONE parameter (see Figure 4-3 at the end of this
command description). FAST is assumed if you omit the listing
format.

Lists the file information in a two-column format unless you also
specify the ONE parameter (see Figure 4-4 at the end of this
command description).

Lists the output of a FAST or SHORT listing in single-column
format. ONE is the assumed number of columns for EXTENDED
or LONG listings.

2. B02

4-57

DIR

LONG Lists file information in a one-line format (see Figure 4-5 at the
end of this command description).

EXTENDED Lists all available information for each data file or directory file in
the directory. The first line for each file is the same as for the
LONG form. The next line contains the last access date, the
creation date, the last modified date, and the accessor list. The
listing is in a double-column format (see Figure 4-6 at the end of
this command description).

FREE Lists the amount of free space available on the volume containing
the given directory. The listing shows the number of free files, free
volume blocks, and free bytes.

SORT Lists the filenames and directories in the directory in alphabetical
order.
INVISIBLE Lists the invisible files (those beginning with the characters "R?" or

“t?7") in addition to the rest of the files in the directory. If you omit
this parameter, DIR does not display invisible files.

PARENT Causes DIR to display an entry for the directory specified in the
inpath-list in addition to the files contained in the directory. This
parameter is useful for obtaining information about the root
directory of a volume when using the LONG or EXTENDED
parameters.

QUERY Causes the DIR command to prompt you for permission to list a
directory by issuing the following message:

Enter one of the following (followed by a carriage return) in
response to the query:

Entry Action

Yory List the directory.

Eore Exit from DIR command.

Rorr Continue listing directories without further
query.

Any other Do not list directory; query for the next
character directory, if any.

FOR path-list Selects only those files that match one of the names in the path-list.
The path-list can include wildcard file designators.

4-58 Operator’s Guide

DIR

OUTPUT PARAMETERS

TO Copies the directory listing to the specified destination data file. If
the destination file already exists, DIR displays the following
information:

already exists, OVERWRIT

Enter Y, y, R, or r if you wish to delete the existing file. Enter any
other character if you do not wish to delete the file.

If you omit the TO/OVER/AFTER preposition and the output
pathname, TO :CO: is assumed.

OVER Copies the directory listing to the specified output file and writes
over (replaces) its previous contents.

AFTER Appends the directory listing to the current contents of the
specified output file.

outpath-list One or more pathnames of the files to receive the directory listing.
Muitiple pathname entries must be separated by commas.
Separating blanks are optional. If you omit the preposition and the
outpath-list, the default destination is the user’s console screen
(TO :CO).

DESCRIPTION

You do not need to be the owner of a directory to list its contents with DIR; however, you
must have list access to the directory.

The amount of information listed for each file depends upon what listing format you
specify (FAST, SHORT, LONG, or EXTENDED). The end of the SHORT, LONG, and
EXTENDED DIR listings show the amount of space used (first line) by the files and the
amount of free space left over (second line).

An example of each type of listing format is provided at the end of the DIR command
description in Figures 4-3 through 4-6 respectively. Table 4-6, which follows the figures,
provides an explanation of the directory listing headings.

If you want to list the default directory but also wish to specify a listing format other than
FAST, use the default directory name explicitly. For example:

displays a listing of the default directory in the EXTENDED format. Note that the
identity of your default directory is a configuration option.

Operator’s Guide 4-59

DIR

If a file name begins with the characters "R?" or "r?", it is an invisible file. Normally DIR
does not display invisible files. However, you can specify the INVISIBLE parameter to
display these files.

fname5 o
€9 fnameld .-

namel. fname?
"'1'1_1'36 fname?

Figure 4-3, FAST Directory Listing Example (Default Listing Format)

Figure 4-4. SHORT Directory Listing Example

4-60 Operator’s Guide

DIR

133 FILES . 3,000 BLKS

54 BLKS

Operator's Guide

Figure 4-5. LONG Directory Listing Example

4.61

DIR

DIR mydir E <CR>

. DIRECTORY OF

.. GRAN
VOL FIL OWNER
1,024 1 §# 47

04:05:44
05:52:33

NAME
v Programs.,

‘CREATION:
LAST ACC;
LAST MOD:
DRAU 1
GREATION:
LAST ACC:
LAST MOD:

testdir DR DLAC

1 : o
GREATION: ACCESSORS
LAST ACGC: 4 a7 :
4 FILES - 43 BLKS

33 FILES 3,000 BLKS

Figure 4-6. EXTENDED Directory Listing Example

4-62 Operator’s Guide

Table 4-6. Directory Listing Headings

DIR

Heading Meaning
NAME Up to 14-character file nama.
AT File attribute, where:
CR = Directory
MP = Bit map file
blank = Data file
ACC File access rights of the user who entered the DIR command, where:
Delete
List
Directories: Add
‘ l——Change
DLAC
DRAU
l—-—-——-Updat.e
Data Files: l—Append
Read
Delete
BLKS Nine-digit number {five digits on SHORT listing) giving the volume-granularity
units allocated to the file. On the SHORT display, if the number of digis
exceeds five, DIR displays the file in the nine-digit form (see the LEMONADEIT
fila in Figura 4.4},
LENGTH 10-digit number (7 digits on SHORT listing} giving the length of the file in bytes.
{On the SHORT form, if the number of digits exceeds 7, the file is displayed in
the 10-digit form {see the LEMONADEIT file in Figure 4-4),
vOL Five-digit number glving the volume granularity in bytes,
Fit Three-digit number giving the granularity of the file in multiples of volume
granularity,
OWNER 14-character, alphanumeric owner name,
LAST MOD Date of last file modification.
LAST ACC Date of last file access.
CREATION Date of file creation,
ACCESSORS User IDs of users who have access to the file.
ACC Access rights of the corresponding user. The format of this field is identical to
ACC as descrihed previously.

Operator’s Guide

4-63

DIR

ERROR MESSAGES
¢ no directory files found
None of the files you specified were directories.
» <pathname>, READ access required
You do not have read (list) access to the directory.
s <pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because you do not have update
access to it, or you cannot copy information to a new file because you do not have add
entry access to the file’s parent directory. The outpath-list is at fault.

EXAMPLES

The examples that follow show how a directory’s files are listed when you use your default
prefix in a directory’s pathname. In the examples, directory names are enclosed in
rectangles; data file names are enclosed in triangles.

Assume you have the following directory structure for your files:

bh CB d

x-3324

4-64 Operator’s Guide

DIR

Cxample 1:

Suppose your default prefix is :F0:Q. This example shows the files that would be listed in
response to various DIR commands. It shows the pathnames that you could enter and the
resulting files that DIR would list.

Pathname Files Listed

omitted Af

f not allowed because f is a data file

A bb, CB, d

A/d not allowed because d is a data file

A/CB e f

A/CB/e not allowed because e is a data file
Example 2:

Suppose your default prefix is :F0:Q/A. This example also shows the files that would be
listed in response to various DIR commands.

Pathname Files Listed

omitted bb, CB, d

A not allowed because directory A does not
contain an entry A

CB e f

Operator’s Guide 4-65

This command invokes the disk verification utility which verifies the data structures of
iIRMX II physical and named volumes. This utility can also be used to reconstruct
portions of the volume and perform absolute editing on the volume. The format of the
DISKVERIFY command is as follows:

GETBADTRACKINFO

\-{ YERIFY } ~)

CUTRATH
AFTER

H00 REO0

N

W

NAMED J

LIST

ALL

N2

PHYSICAL * "BEE

INPUT PARAMETERS

‘logical-name: Logical name of the secondary storage device
containing the volume to be verified.

If you don’t specify any parameters, the utility
displays a sign-on message and the utility
prompt (*). You can then enter individual disk
verification commands. These commands are
described in the Extended iRMX II Disk
Verification Utility Reference Manual.

4-66 Operator’s Guide

DISK

GETBADTRACKINFO or
GB

VERIFY or V

Operator’s Guide

DISKVERIFY

Displays the attributes of the volume (such as
type of volume, device granularity, block size,
number of blocks, interleave factor, extension
size, volume size, and number of fnodes) and
returns control to you at the Human Interface
level. You can then enter any Human Interface
command, provided that the device verified is
not the system disk. You must reboot your
system if the device verified is the system
device.

Reads the bad track information from the
volume and displays it. Bad track information
that is redirected to a file can be used as input
to the FORMAT command by removing the
header information.

Performs a verification of the volume. If you
specify this parameter and omit the options, the
utility performs the NAMED verification.

If you specify this parameter, the utility
performs the verification function and returns
control to you at the Human Interface level.
You can then enter any Human Interface
command, provided the device verified is not
the system device. You must reboot your
system if the device verified is the system
device.

4-67

DISKVERIFY

FIX Performs the same functions as VERIFY. In
addition, FIX tries to fix several types of
inconsistencies on the volume after performing
the verification. You should be careful when
using FIX as it changes the data on the disk
(which may prove dangerous). For example,
during NAMED1 verification, FIX corrects the
checksums on fnodes with bad checksums.
However, an fnode with a badchecksum may
indicate another problem with the fnode which
should not be ignored. As a result, it is
recommended that you use FIX only after
performing the following steps.

1. Use DISKVERIFY with the VERIFY

option.

2. Examine the output and the problems
on the volume to determine the type of
"fix" needed.

3. If the problems can be fixed using
DISKVERIFY, run DISKVERIFY
with the FIX option to correct the
problem.

NAMED1 or N1 VERIFY or FIX option that applies to named
volumes only. This option checks the fnodes of
the volume to ensure that they match the
directories in terms of file type and file
hierarchy. (Refer to the description of the
FORMAT command for more information
about fnodes.) This option also checks the
information in each fnode to ensurc that it is
consistent. As a result of this option,
DISKVERIFY displays a list of all files on the
volume that are in error, with information about
each file.

When used with FIX, the NAMED1 option
corrects bad checksums and attaches orphan
fnodes to their parents. Refer to the Extended
IRMX IT Disk Verification Utility Reference
Manual for more information.

4-68 Operator’s Guide

NAMED?2 or N2

NAMED or N

PHYSICAL

LIST

Operator’s Guide

DISKVERIFY

VERIFY or FIX option that applies to named
volumes only. This option checks the allocation
of fnodes on the volume, checks the allocation
of space on the volume, and verifies that the
fnodes point to the correct locations on the
volume.,

When used with FIX, the NAMED?2 option
saves the correct bit maps that were constructed
during N2 verification, on the volume. It also
removes fnodes with multiple references from
their illegal parents. Refer to the Extended
IRMX II Disk Verification Utility Reference
Manual for more information.

VERIFY or FIX option that performs both the
NAMED1 and NAMED? verification functions
on a named volume. If you omit the VERIFY
option, NAMED is assumed.

VERIFY or FIX option that applies to both
named and physical volumes. For named
volumes, this option performs both the
NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs only the PHYSICAL verification
function.

VERIFY or FIX option that applies to both
named and physical volumes. This option reads
all blocks on the volume and checks for [/O
errors.

A control that you can use with any option that
activates NAMED1 verification (NAMED,
NAMED], or ALL). When you use this option,
the file information generated by VERIFY or
FIX is displayed for every file on the volume,
even if the file contains no errors. Refer to the
Extended iRMX II Disk Verification Utility
Reference Manual for more information.

4-69

DISKVERIFY

OUTPUT PARAMETERS

TO Copies the output from the disk verification utility to the specified
file. If the file already exists, DISKVERIFY displays the following
information:

ready exists, OVERWRITE? -

Enter Y, y, R, or r to write over the existing file. Enter any other
character if you do not wish to overwrite the file.

If no preposition is specified, TO :CO: is assumed.

OVER Copies the output from the disk verify utility over the specified file.

AFTER Appends the output from the disk verify utility to the end of the
spectfied file.

outpath Pathname of the file to receive the output from DISKVERIFY. If

you omit this parameter and the TO/OVER/AFTER preposition,
the utility copies the output to the console screen (TO :CO:). You
cannot direct the output to a file on the volume being verified. If
you attempt this, the utility returns an ESNOT CONNECTION

error message.
DESCRIPTION

When you enter the DISKVERIFY command, the utility responds by displaying the
tollowing line:

{RMX .1T- Disk Verify Utility, -Vx.y

where Vx.y is the version number of the utility.

If you specify the VERIFY, FIX, GETBADTRACKINFO, or DISK parameter in the
DISKVERIFY command, the utility performs the operation specified in the parameter
and copies the output to the console (or to the file specified by the outpath parameter).
Refer to the Extended iRMX I Disk Verification Utility Reference Manual for a description
of the output. After generating the output, the utility returns control to the Human
Interface, which prompts you for more Human Interface commands. The following is an
example of a DISKVERIFY command that uses the VERIFY option:

4-70 Operator’s Guide

DISKVERIFY

DEVICE NAME - Fl

s 'NAMED2' VERIFICATIO
.;ﬂf”w”BIT MAPS O.X:

The following is an example of a DISKVERIFY command with the FIX option. It
performs both named and physical verification of a named volume and corrects the
problems on the volume.

 f“DEvIcE NAME = F1 |

! NAMEDl - YVERIFICATION
' NAMED?2 * _VERIFI CATION.

-2 PHYSTCALY VERIFICATION
. ..NO ERRORS

free fnode map saved

free space map saved

The following example uses the GETBADTRACKINFO option. (This example may be
useful when migrating from a 214 controller to a 224A controller.)

Operator’s Guide 4-71

DISKVERIFY

D},skVerlfy Utility
ght <year> Intel Corpora

Device name = W

However, if you omit the VERIFY and DISK parameters from the DISKVERIFY
command, the utility does not return control to the Human Interface. Instead, it issues an
asterisk (*) as a prompt and waits for you to enter individual DISKVERIFY commands.
The following is an example of such a DISKVERIFY command:

After you receive the asterisk prompt, you can enter any of the DISKVERIFY commands
listed in the Extended iRMX II Disk Verification Utility Reference Manual.

4-72 Operator’s Guide

DISKVERIFY

ERROR MESSAGES
¢ argument error
The option you specified is not valid.
e command syntax error
You made a syntax error when entering the command.

¢+ device size Inconsistent
size in volume label = <valuel> . computed size = <value2>

When the disk verify utility computed the size of the volume based on the physical
name used to attach, the size it computed did not match the information recorded in
the iRMX II volume label. It is likely that the volume label contains invalid or
corrupted information. This error is not a fatal error, but it is an indication that
further error conditions may result during the verification session. You may have to
reformat the volume or use the disk verify utility to modify the volume label. Refer to
the Extended iRMX II Disk Verification Utility Reference Manual for more information
about the disk verify utility commands,

*» not a named disk

You tried to perform a NAMED, NAMED1, or NAMED?2 verification on a physical
volume.

The NAMED1, NAMED?, and PHYSICAL verification options can also produce error
messages. Refer to the Extended iRMX II Disk Verification Utility Reference Manual for
more information about these messages.

Operator’s Guide 4-73

This command copies files from a volume on an iRMX Il secondary storage device to a
volume on a Series I, II, or IV secondary storage device. The format is as follows:

GQUERY

®-320

DOWNCOPY inpath-list

outfile-1lst

INPUT PARAMETERS

inpath-list One or more iRMX II pathnames for files, separated by commas,
that are to be copied to development system secondary storage.
Separating blanks between pathnames are optional. The files can
be copied in the listed sequence either on a one-for-one basis or
concatenated into one or more files.

QUERY Causes the Human Interface to prompt for permission to copy
each iRMXII file to the listed destination file. Depending on
which preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following queries:

<pathname>, copy

<pathname>,""

Enter one of the following in response to the query:

Entry Action

Yory Copy the file.

Eore Exit from the DOWNCOPY command.
Rorr Continue copying files without further query.

Any other Do not copy this file; query for the next file in
character the sequence.

4-74 Operator’s Guide

DOWNCOPY

OUTPUT PARAMETERS

TO Reads iRMX I files and copies them TO new development system
files in the listed sequence. If the specified output files already
exist in the development system directory when the TO parameter
is used, DOWNCOPY displays the following message:

Enter Y, y, R, or r if you wish to delete the existing file. Enter any
other character if you do not wish the existing file to be deleted.

If no preposition is specified, TO :CO: (console screen) is
assumed. If more input files than output files are specified, the
remaining input files are appended to the end of the last-specified
output file.

OVER Copies the IRMX II input files OVER the existing development
system files in the specified sequence. If you specify multiple input
files and one output file, DOWNCOPY displays an error message.

AFTER Copies the iIRMX 11 input files, in sequence, AFTER the end of
data on the existing development system destination files.

outfile-list One or more development system filenames for the output files.
Multiple filenames must be separated by commas. Separating
blanks are optional. If the preposition and output file parameters
are not used in the command line, the defauit is :CO:.

DESCRIPTION

The DOWNCOPY command cannot be used to copy directories from an iRMX II system
to a Series 1L, 1, or IV Microcomputer Development System; only files can be copied.

Before you enter a DOWNCOPY command on the iRMX II console keyboard, your
iRMX 1I system must be connected to the development system via the iSDM package. To
do this, you must start your iRMX II system from the development system terminal
(either by loading the software into the target system and using the monitor G command
to start execution, or by using the monitor B command to bootstrap load the software).
DOWNCOPY does not function if you start up your system from the iRMX II terminal or
if you establish the link between the development system and target system after starting
up your IRMX II system.

When DOWNCOPY copies files to the development system, it turns off all development
system file attributes.

Operator’s Guide 4-75

DOWNCOPY

As each file in the input list is copied, one of the following messages will be displayed on
the Human Interface console output device (:CO:):

|
|
|

When the DOWNCOPY command is executing, the monitor disables interrupts. This
event affects services such as the time-of-day clock. Also, the operating system is unable
to receive any characters that you type-ahead while the monitor is disabling interrupts.

ERROR MESSAGES
¢ <pathname>, ISIS ERROR: <nnmn>

A development system error occurred when DOWNCOPY tried to transfer the file to
the Microcomputer Development System. Refer to the appropriate operating and
and programming guide for a description of the resulting error code.

e ISIS link not present

The 1IRMX 1II system is not connected to the development system via the monitor.

4-76 Operator’s Guide

This command formats or reformats a volume on an iRMX I secondary storage device,
such as a diskette, tape drive, hard disk, or bubble memory. The format is as follows:

(FE)RI\J"IMT)—(:Iegical-narne:jw
files = num named

e - . f
w {firaene eerve)y { amery

./.
S Pionly
.= llename

I averwrite l

(FORMAT)—(:iog:cal-name:.

U 1 |
{ vatume-name physical foree
imerleave = num .(gadir_ackfile L.j
LCDI (Padvact i

(

DVErwWrite

7 bronly]
A = filaname

GORMA'T_)—-QIugical-name:)—(bcols[rap)—

FoDEgE-1

INPUT PARAMETERS

Parameters that can be abbreviated have the abbreviation(s) listed under the complete
parameter name,

:logical-name: Logical name of the physical device-unit to be
formatted. You must surround the logical name
with colons. Also, you must not leave space
between the logical name and the succeeding
volume name parameter.

Operator’s Guide

4-77

FORMAT

volume-name An alphanumeric ASCII name, of up to six
characters, without embedded blanks, to be
assigned to the volume. If you include this
parameter, you must not leave spaces between
the logical name and the volume name.

FILES =num Defines the maximum decimal number of user

FI files that can be created on a NAMED volume.
(This parameter is not meaningful when
formatting a PHYSICAL volume and is ignored
if specified for such volumes.) FORMAT uses
the information specified in this parameter to
determine how many structures {called fnodes)
to create on the NAMED volume. The range
for the FILES parameter is 1 through 65,528,
although the maximum number of user files you
can define depends on the settings of the
GRANULARITY and EXTENSIONSIZE
parameters {as explained in the "Description”
portion of this command write-up). When you
use this parameter, FORMAT creates five
additional fnodes for internal system files (six if
you include the RESERVE parameter), and an
additional fnode for the root directory. If not
specified, the default is 200 user files.

FORCE Forcibly deletes any existing connections to files
on the volume before formatting the volume. If
you do not specify FORCE, you cannot format
the volume if any connections to files on the
volume still exist.

MAPSTART =num Gives the volume block number where the
MS fnodes file, bit map files, and the root directory
M should start. The size of the block is set by the

GRANULARITY parameter. If no number is
given, the operating system puts the fnodes file
in the center of the volume. If the number is
too low, the operating system places the map
files at the lowest available space on the volume.

4-78 Operator’s Guide

FORMAT

GRANULARITY =num Volume granularity; the minimum number of
GU bytes to be allocated for each increment of file
G size on a NAMED volume. (This parameter is

not meaningful for PHYSICAL volumes, and is
ignored if specified for such volumes.)
FORMAT rounds the value you specify up to
the next multiple of the device granularity.
Then it places the decimal number in the
header of the volume, where it becomes the
default file granularity when a file is created on
the volume,

The range is 1 through 63,535 (decimal) bytes,
although the maximum allowable volume
granularity depends on the settings of the
FILES and EXTENSIONSIZE parameters (as
explained in the "Description” portion of this
write-up).

If not specified, the default granularity is the
device granularity. Once the volume granularity
is defined, it applies to every file created on that
volume.

NOTE

Using a large volume granularity (in
excess of 1024), might cause users to
exceed their memory limits when
executing programs that reside on the
volume. This error can occur because
the operating systcm uscs the volume
granularity as a minimum buffer size
when reading and writing files.

Operator’s Guide 4-79

FORMAT

EXTENSIONSIZE =num Size, in bytes, of the extension data portion of
ES each file. (This parameter is not meaningful for
E PHYSICAL volumes, and is ignored if specified

for such volumes.) The range is 0 through 255
(decimal), although the maximum allowable
extension size depends on the settings of the
FILES and GRANULARITY parameters (as
explained in the "Description” portion of this
write-up). If not specified, the default extension
size is 3 bytes.

INTERLEAVE =num Interleave factor for a NAMED or PHYSICAL
iL volume. Acceptable values are 1 through 255
1 decimal. If not specified, the default value is 5.

See the interleave discussion under
"Description” in this section.

NAMED The volume can store only named files; that is,

NA the volume can hold many files, each of which
can be accessed by its pathname. A diskette or
hard disk surface are examples of devices that
would be formatted for named files. If neither
NAMED nor PHYSICAL is specified, the
volume is formatted for the file type specified
when you attached the device (with the

ATTACHDEVICE command).
PHYSICAL The volume can be used only as a single,
PI physical file. The GRANULARITY, FILES,
P and EXTENSIONSIZE parameters are not

meaningful when PHYSICAL is specified for
the volume. If neither NAMED nor
PHYSICAL is specified, the volume is
formatted for the file type specified when you
attached the device (with the
ATTACHDEVICE command).

4-80 Operator’s Guide

BADTRACKFILE
BTFILE
BT

BTONLY

OVERWRITE
ow
O

QUERY

BOOTSTRAT
BS

Operator’s Guide

FORMAT

Names the file containing the bad track/sector
information to be written to the volume. When
this parameter is entered, the bad track/sector
information area of the volume is read and user
supplied information is merged with it and
written to the disk before the volume is
formatted. This parameter allows
manufacturer’s bad track information to be
entered before actually formatting the disk. See
the badtrack information discussion under
“Description” in this section.

Identical to BADTRACKFILE, however, the
rest of the volume is not formatted after the bad
track/sector information is written.

Indicates whether to overwrite the information
existing on the volume with the bad track/sector
information you provide. This parameter is
only meamingful if the BADTRACKFILE
option has been entered. If no option is entered
and BADTRACKFILE has been given, the
default option is merge. This means that
FORMAT combines the bad track/sector
information that you supply with the bad
track/sector information already on the device.

Prompts the user for permission to format the
volume. The Human Interface displays the
following:

If the user replies with a ’Y?, ’y’, 'R’, or ’r’, then
the volume is formatted. Any other response is
considered by the Human Interface to be a 'no’,

Writes the second stage of the Bootstrap
Loader onto track 0 without formatting the
volume. When this parameter is specified, all
other parameters are ignored.

4-81

FORMAT

RESERVE Creates the special file R?SAVE at the end of a

R volume after the volume has been initialized.
The volume label file and the fnode file are then
copied to R?SAVE. Later this fite can be used
in conjunction with the DISKVERIFY utility to
back up the fnodes file on the volume.
R?SAVE is not updated when files are altered.
You update the R?SAVE file by using
DISKVERIFY or by specifying backup in the
SHUTDOWN command (discussed later in this
chapter).

DESCRIPTION

Every physical device-unit used for secondary storage must be formatted before it can be
used for storing and then accessing its files. For example, every time you mount a
previously unused diskette into a drive, you must enter a FORMAT command to format
that diskette as a new volume before you can create, store and access files on it.

Once a volume is formatted, its name becomes a volume identifier when you display any
directory of the volume, and the name appears in the directory’s heading.

VOLUME NAME

The Human Interface requires a volume name for its own internal processing of your
read/write accesses to the volume. Once the volume is formatted, however, you need
never specify the volume name in a command; you only specify the logical name for the
device on which you later mount the volume.

For diskettes, a volumne name gives you a method for identifying a volume in case the
stick-on label on the diskette gets lost or destroyed. You need only mount the disk on a
drive and enter a DIR command for that drive to get a directory listing that specifies the
volume name.

FNODES

The number of fnodes on a volume defines the number of files that can exist on the
volume. You can specify the number of fnodes reserved for user files with the FILES
parameter. Each fnode is a data structure that contains information about a file. Each
time you create a file on the volume, the operating system records information about the
file in an unused fnode. Later, it uses the fnode to determine the location of the file on
the volume. You can enter the MAPSTART option to locate fnodes anywhere on a
volume. If no MAPSTART option is entered, the operating system puts the fnodes in the
center of the volume.

4-82 Operator’s Guide

FORMAT

INTERNAL FILES

When you format a named volume, FORMAT creates six or seven (depending on whether
the RESERVE option is set) internal system files. It names four (or five) of these files
and lists their names in the root directory of the volume. The remaining two files are not
listed in the root directory. Unless you specify the INVISIBLE option, none of these files
appears when the DIR command is invoked. The files are:

File Description
RYSPACEMAP Volume free space map
R?FNODEMAP Free fnodes map

R?BADBLOCKMAP Bad blocks map
R?VOLUMELABEL VYolume label
R?SAVE Save area for fnodes and volume label

The operating system grants the user WORLD read access to these files. The Save area
file is only created if the RESERVE option is set. The volume label file is a special file
occupying the first 3328 bytes of the volume. Refer to the Extended iRMX I Disk
Verification Utility Reference Manual for more information about these files.

ROOT DIRECTORY

FORMAT also uses one of the fnodes for the root directory. It lists the user who formats
the volume as the owner, giving that uscr all access rights. No other user has access to the
root directory until the owner explicitly grants access. The owner can grant other users
access to the volume via the PERMIT command described later in this chapter. However,
because the owner has all access rights to the root directory, the owner can obtain
exclusive access to the volume, and can obtain delete access to any file created on the
velume, even files created by other users.

EXTENSION DATA

Each fnode contains a field that stores extension data for its associated file. An operating
system extension can access and modify this extension data by invoking the
AJGETSEXTENSION$DATA and A$SETSEXTENSIONSDATA system calls (refer to
the Extended iRMX 11 Basic 1/0 System Calls Reference Manual for more information).
When you format a volume, you can use the EXTENSIONSIZE parameter to set the size
of the extension data field in each fnode. Although you can specify any size from 0 to 255
bytes, the Human Interface requires all fnodes to have at least 3 bytes of extension data.

Operator’s Guide 4-83

FORMAT

BADTRACK INFORMATION

It is possible to format only the bad track area of the disk and to write the bad
track/sector information to this area from a file. Using the BADTRACKFILE parameter
allows you to designate a file that will contain the bad track/sector information that is
written to the volume. The existing bad track/sector information is read and user
supplied information is merged with it and written to the area before the disk is
formatted. If you specify the OVERWRITE parameter, any bad track/sector information
existing on the volume is overwritten with the bad track/sector information you provide.
The bad track information in the file must be in the format:

cylinder number head number sector number <CR> <L.F>

where

cylinder number the cylinder number of the bad track/sector

head number head number of the bad track/sector

sector number the number of the bad sector on the track indicated. On devices
which only support bad track information, this value must be set to
zero.

Remember that information entered in the badtrack file is not checked for validity, and
only the first 255 triplets are used. The triplets may be separated by blanks, commas,
carriage returns, or line feeds.

MAP FILES

If you have specified a map-files location {either implied or explicit) in an area which has
a bad-track or for which an alternate was assigned, FORMAT allocates these files to the
nearest available area, and then asks for permission to move the files in one of the
following ways:

"M

A response of Y causcs the files to be relocated and the following message to be
displayed:

map

focated to <hex- loge

This means you do not have to compute the location of the maps.

4-84 Operator’s Guide

FORMAT

VOLUME GRANULARITY

The default volume granularity is always the granularity of the physical device for the
volume. For example, if the default granularity for a device is 128 bytes of secondary
storage, the I/O System will automatically allocate permancnt storage to each new file
you create on that volume in multiples of 128 bytes, regardless of whether the file requires
the full amount.

RELATIONSHIP BETWEEN FILES, GRANULARITY, and EXTENSIONSIZE

Although the FILES, GRANULARITY, and EXTENSIONSIZE parameters have
maximum values which are listed in the parameter descriptions, the combination of these
parameters must also satisfy the following formula:

(87 + EXTENSIONSIZE) x (FILES + 6) / GRANULARITY < 65535

where all numbers are decimal. FORMAT displays an error message if the combination
of parameter values exceeds the limit.

INTERLEAVE FACTOR

The interleave factor applies to volumes formatted either for NAMED or PHYSICAL
files. The interleave factor specifies the logical sector sequence. If the consecutively-
accessed sectors of a disk are staggered (that is, if they are not consecutive physical
sectors), disk access time can decrease considerably. The reason for this decrease is that
although a controller cannot read a sector and issue another read command in the time it
takes for the next sector to be positioned under the head, the controller can perform this
operation in less time than it takes for the disk to revolve once. Therefore, if the
consecutively-accessed sectors are staggered correctly, the next accessed sector will be
positioned under the read head just as the controller becomes ready to read it.

Operator’s Guide 4-85

FORMAT

The amount of staggering is called the interleave factor. An interleave factor of two
means that as the disk rotates, the controller consecutively accesses every second sector.
An interleave factor of five means that the controller consecutively accesses every fifth
sector. The following diagram illustrates how a controller accesses sectors on a 12-sector

disk with an interleave factor of two.

Sector Number

Sector

0

Sector

Sector

Sector

Sector

Sector

Sector

Sector

Sector

Sector

Sector

10

Sector

11

Access Numbet

10

11

Rotation Number

The interleave factor also implies the number of disk rotations necessary to access all the
sectors on a given track in order. Thus from the previous diagram you can see that an
interleave factor of two implies that it takes two rotations of the disk to access all the
sectors on a track.

4-86

Operator’s Guide

FORMAT

WHEN THE INTERLEAVE FACTOR IS IMPORTANT

The interlcave factor is important when large transfers of consecutive data take place at

speeds that approach the maximum transfer rate of the disk. This type of transfer occurs
in the following cases:

» When you bootstrap load the operating system from disk.
« When you use the Application Loader to load an application program from disk.

» When you invoke programs that perform large transfers of consecutive data, such as
the Human Interface COPY command.

HOW TO SELECT AN INTERLEAVE FACTOR

Suitable interleave factors depend on the turnaround time of the software that controls
the I/O operations; that is, the time between reading a sector and becoming ready to read
the next sector. In the cases listed in the previous paragraph, the turnaround time
between sector accesses s different. Therefore the ideal interleave factors could be
different. The differences are

» 'The Bootstrap Loader instructs the disk controller to read one sector at a time. Thus,
the turnaround time depends on the execution overhead of the Bootstrap Loader and
is comparatively long. A large interleave factor is optimal for flexible disks that you
use with the Bootstrap Loader. For hard disks however, the Bootstrap Loader has no
cffect on the turnaround time because revolution speed is so great that more than one
disk revolution occurs between sector reads.

» The Application Loader reads several sectors at a time into its interna] buffer. Then
it takes a relatively long time to process the object records in this buffer. The ideal
mterleave factor here is one that optimizes for the object record processing time
between disk accesses. For flexible diskettes, this interleave factor is somewhat
smaller than that for thc Bootstrap Loader. However, hard disks, as in the previous
paragraph, are not affected by the Application Loader.

» Applications which transfer large amounts of consecutive data (such as the COPY
command) can initiate data transfers involving many sequential sectors. Thus the
controller accesses sectors on a given track as fast as possible. Here, the ideal
interleave factor is one that optimizes for the turnaround speed of the disk controller.

The ideal interleave factor depends heavily on the application. However, because the
revolution speed of hard disks is so high, you should format them with interleave factors
that are optimized for the turnaround speed of the disk controller.

Operator’s Guide 4-87

FORMAT

The value to use for flexible diskettes depends on how you are going to use the diskettes.
For flexible diskettes that contain bootstrap-loadable information (system disks), you
should select an interleave factor that optimizes for Bootstrap Loader performance. This
ensures that the bootstrap loading process completes in a reasonable amount of time,
despite using a device that is relatively slow-turning. For non-system diskettes that
contain loadable files (such as Human Interface commands), select an interleave factor
that optimizes for Application Loader performance. Otherwise, select a value that
optimizes for copying.

if you do not know the optimal value for an interlcave factor, it is better to specify an
interleave factor that is too large than one that is too small. An interleave factor that is
slightly larger than optimal causes the disk to move only an extra sector or two before
reaching the correct sector. However, an interleave factor that is less than optimal causes
the disk to make nearly a complete revolution before reaching the sector.

OUTPUT DISPLAY

The FORMAT command displays one of the following messages when volume formatting
is completed. For physical volumes:

where

<number > Decimal number as specified in the command (or the default).

<k-number > Volume size in K (1024-byte units) or M (1048576-byte units).
FORMAT displays the volume size in Kbyte units unless the size is
greater than 25 Mbytes.

4-88 Operator’s Guide

FORMAT

For named volumes:

where

<volume name > Volume name specified in the FORMAT command.

<number > Decimal number as specified in the command (or the default).

< block-number > Volume block number where the fnodes file, bit map files, and the
root directory start.

<k-number > Volume size in K (1024-byte units) or M (1048576-byte units).
FORMAT displays the volume sizc in Kbyte units unless the size is
greater than 25 Mbytes,

<sides > Number of sides of the volume that will be formatted (1 or 2). This
field is displayed only for flexible diskettes in which FORMAT can
recognize this characteristic.

<density > Density at which the volume will be formatted (single or double).
This field is displayed only for flexible diskettes in which FORMAT
can recognize this characteristic.

<d-size > Size of the volume (8 or 5.25). This field is displayed only for
flexible diskettes in which FORMAT can recognize this
characteristic.

<yes/no> Yes or no. Indicates whether the R?SAVE file has been reserved

for backing up the label and the fnode file. This response also
specifies whether or not bad track/sector information is to be
written.

While the storage device is being formatted, FORMAT displays the letter "T" on the
console for every 100 tracks formatted. For example, if you see three T’s on the screen,
the operating system has finished formatting at least 300 tracks. Displaying the T's on the
screen is useful when you format large capacity disks. A continuous stream of T’s lets you
know that the system hasn’t failed during the FORMAT operation.

Operator’s Guide 4-89

FORMAT

If the BOOTSTRAP parameter is specified, the message:

detstré

is displayed upon completion instead of volume formatted.

When the BTONLY parameter is specified, the message:

is displayed instead of volume formatted.

It the ESIOSALTSASSIGNED error code is returned by a driver when formatling a track,
the track number is entered into a table and displayed as follows when volume format is
complete.

‘hdf cyl# hdf cylf

There should be an entry in this table for every BTI track specified, except those that
reside in the alternate track area.

If the ESIONOSPARES error code is returned by a driver when formatting a track, this
means that the number of alternate tracks reserved is exhausted. The sectors of that track
are marked in the Bad Block Map File and entered in the Volume Space Map File as they
were assigned. The track is entered into a table and displayed as follows when volume
format is complete.

‘hd .. eyl cyl

hd# . cyl_'j .

where
eyl The cylinder number in hexadecimal
hd## The head number in hexadecimal.

4-90 Operator’s Guide

FORMAT

BOOTSTRAP LOADER AND THE FORMAT COMMAND

The Bootstrap Loader operatcs in three stages. The second stage must reside on track 0
of any iRMX-named volume. The second stage that is placed in track 0 by the iRMX I
FORMAT command (for users upgrading from an iRMX I Operating System) cannot be
used to bootload an iRMX II Operating System. Therefore, if you want to bootload the
iRMX II Operating System from a named volume, be sure that the volume has been
formatted using the iRMX I FORMAT command. The iRMX II second stage can be
used to load iRMX 1.

To avoid forcing you to reformat entire disks when the second stage of the Bootstrap
Loader changes, you can specify the BOOTSTRAP parameter to write the second stage of
the Bootstrap Loader onto track 0 without reformatting the rest of the volume.

To install the second stage of the Bootstrap Loader onto a named volume, invoke the
FORMAT command, indicating the logical name of the appropriate volume and
specifying the BOOTSTRAP parameter. When the BOOTSTRAP parameter is specified,
any other parameters entered with the command are disregarded. FORMAT writes the
second stage of the Bootstrap Loader onto track 0 without reformatting the volume.

CAUTION

If you fail to specify the BOOTSTRAP parameter, FORMAT will format
the entire volume.

For example, assume that you have a disk formatted by the iIRMX I version of the
FORMAT command. You plan to use iRMX I1.2 or iRMX 1I1.3 versions of the Bootstrap
Loader with some of the files on this disk. To avoid the time-consuming process of saving
the disk, reformatting and restoring its contents, you can invoke the FORMAT command
with the BOOTSTRAP switch. This copies the second stage of the Bootstrap Loader onto
track 0 of the iRMX I disk.

Any of the following commands will copy the second stage of the iRMX IL.2 Bootstrap
Loader onto track 0 of the device that was attached with the logical name :f:.

When the FORMAT command has completed executing, track 0 of the volume contains
the iRMX I1.2 or iRMX I1.3 version of the Bootstrap Loader’s second stage. The
remainder of the files on the volume are unaffected. (Notice, in the third example, the

FILES, GRANULARITY, and FORCE switches are ignored because the BOOTSTRAP
parameter has precedence over any other FORMAT parameter.)

Operator's Guide 4-91

FORMAT

ERROR MESSAGES

4-92

<logical name>, can’t attach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot attach the device for formatting, or it cannot reattach the device
(that is, restore it to its original condition) after formatting takes place.

<logical name>, can't detach device
<logical name>, <exception value> ! <exception mnemonic>

FORMAT cannot detach the device for formatting, which means that the volume does
not exist, the volume is busy, or the device on which the volume is mounted is not
currently attached to the system.

<logical name>, device is in use

You cannot format the volume because there are outstanding connections to files on
the volume and you did not specify the FORCE parameter.

<vol-name>, fnode file size exceeds 65535 volume blocks

The values you specified for fnode size, granularity, and extension data size cause the
formula listed in the "Description” section to exceed jts limit.

<number>, invalid number

You specified an out-of-range number for any of the FILES, GRANULARITY,
EXTENSIONSIZE, or INTERLEAVE parameters.

<logical-name>, map files do not fit

The volume is too small for the map files or the map start block is too high to allow
room for the map files.

map files do net fit

Either the volume is too small for the map files, or the map start block is too high in
disk storage memory to allow for the map files.

map files do not fit with save area

Either the volume is too small for both the map files and the save area, or the map
start block is too high in disk storage memory to allow for the map files and the save
area.

<logical name>, outstanding connections to device have been deleted

There were outstanding connections to files on the volume. However, because you
specified the FORCE parameter, FORMAT deleted those connections. This is a
warning message that does not prevent FORMAT from formatting the volume.,

0083 : ESLIST, too many values

You entered multiple logical-name/volume-name combinations separated by commas.
FORMAT can format only one volume per invocation.

Operator’s Guide

FORMAT

¢ <logical-name>: <exception code>: <exception name>
unit status <unit status code> while writing block number

An]/O error occurred while writing the label, map files, or save area to a named file.

¢ <logical-name>: <exception code>. <exception name>

unit status <unit status code> while formatting track

An 1/0 error occurred while physically formatting the volume. If an
ES$IOSALTSASSIGNED error code has been returned, you can consider this message
as a warning,

¢ <volume name>, volume name is too long

The volume name must not be longer than six characters.
*» Track zero bad, cannot write

The volume label track (track zero) is marked in the Bad Block Map.
s cannot relocate

A warning message displayed when the map files are localed on a seclor or sectors
which have been assigned an alternate and a suitable location on the disk cannot be
found.

¢+ cannot relocate...aborting

An error message displayed when the map files are located on a sector or sectors
which have been marked in the Bad Block Map and an alternate location cannot be
found.

¢ Save file located on a bad track, cannot write

The save area is located on a sector or sectors which have been marked In the Bad
Block Map.

¢ <file name>, cannot open bad track/sector information file
<file name>, <exception code>

The file containing the bad track/sector information cannot be opened for reading,
* too many bad track/sector information entries

The file containing the bad track/sector information has too many entries or the
combination of the file entries and the information existing on the volume cannot be
merged.

Operator’s Guide 4-93

FORMAT

o <«<file mame>, illegal bad track/sectar information

The file containing the bad track/sector information has the wrong format.

BADTRACKFILE option missing, cannot replace Bad Track/Sector
Informatioa Block

The OVERWRITE option was entered without the BADTRACKFILE parameter.

4-94 Operator’s Guide

This command displays the initialization status of Human Interface terminals. The

format of this command is

DESCRIPTION

as follows;

x-201

INITSTATUS displays at the user terminal the initialization status of all Human Interface
terminals. Figure 4-7 illustrates the format of the INFTTSTATUS display.

\Té, 0021

USER

‘USER

TERMINAL. . . CONFIG DEVICE INIT

DEVICE NAME EXCEP EXCEP EXCE . POOL - NanD

.TO. 0000 0000 1,400k rmx.

.TL. 0000 0000 SO0K ol

LT3, 0000 Q002" D-- &
D--

Figure 4-7. INITSTATUS Display

The columns listed in Figure 4-7 contain the following information.

TERMINAL DEVICE The physical name of the terminal, as defined

NAME

CONFIG EXCEP

QOperator’s Guide

during the configuration of the Basic I/O
System and as attached by the Human Interface.
Periods surround each name.

Hexadecimal condition code that the Human
Interface received when it attempted to
interpret the terminal definition and user
definition files. A zero value indicates a normal
condition. Nonzero values indicate exceptional
conditions. Refer to Appendix A for a list of
exception codes.

4-95

INITSTATUS

4-96

DEVICE EXCEP

INIT EXCEP

TERM STATE

JOBID

USER ID

Hexadecimal condition code that the Human
Interface received when it originally attached
the terminal as a physical device.

Condition code that the Human Interface
received when it created a job for the
interactive session.

Three characters that indicate the current state
of the terminal. The first character can be
either:

D The terminal is a dynamic logon
terminal.

S The terminal is a static logon terminal.
The second character can be either:

L The terminal is locked (refer to the
LOCK command and UNLOCK
commands later in this chapter).

- The terminal is unlocked.
The third character can be either:

E The Human Interface created the
interactive job associated with this
terminal and the job exists.

- The interactive job does not exist.

A sequential number that the Human Interface
assigns to the interactive job during
Initialization. You must specify this number as
the parameter in the JOBDELETE command
in order to delete the corresponding interactive
job.

User 1D associated with the interactive job.
This ID is the identification of the user that the
Human Interface associates with the job when
the user begins a Human Interface session.

Operator’s Guide

INITSTATUS

USER POOL The maximum size of the memory partition that
is associated with the interactive job.

USER NAME The logon name of the user who is accessing
this terminal.

ERROR MESSAGE
+ not a multi-user system

The Human Interface cannot return information about terminals because it is not
configured for multi-users.

Operator’s Guide 4-97

This command deletes a running interactive job. The system manager can use this
command to delete any interactive job. Other users can delete only those interactive jobs
that have the same user ID that they have. The format of this command is as follows:

JOBDELETE m

x-202

where

job-id-list One or more job IDs, separated by commas, of the interactive jobs
to be deleted. You can obtain the IDs of jobs by invoking the
INITSTATUS command (described earlier in this chapter).

DESCRIPTION

The JOBDELETE command allows users to delete interactive jobs. Deleting an
interactive job causes the Human Interface to terminate the corresponding user session.
JOBDELETE cannot be used to delete background jobs. To delete a background job, you
must use the CLI command KILL (see Chapter 3).

When JOBDELETE attempts to delete a job, it first attempts to delete the job’s offspring
jobs (for example, a SUBMIT file or a program invoked as a result of an
RQESCREATESIOSIOB system call). Tt deletes multiple levels of offspring jobs.
However, JOBDELETE cannot delete any interactive job (or offspring) that contains
extension objects. Refer to the Extended iRMX II Nucleus User’s Guide for more
information about deleting jobs containing extension ohjects.

Normally, when a user’s interactive job is deleted, the Human Interface logs the user off
the system and issues the prompts for a new user to log on (unless the user is at a static
logon terminal, in which case, the Human Interface automatically recreates the interactive
job, thus restarting the user session). However, if the LOCK command (described later in
this chapter) has been specified for the user’s terminal, the Human Interface does not
prompt for logon or recreate interactive jobs after a JOBDELETE command. Therefore,
the system manager can use the combination of LOCK and JOBDELETE to remove
users from the system before a system shutdown.

4-98 Operator’s Guide

JOBDELETE

Unless you delete your own interactive job, JOBDELETE displays the following message
at the user terminal (:CO:) as it deletes each job:

where <job-ID> is the identifier of the deleted job. If you delete your own interactive
job, you will see the logon prompt (for dynamic logon terminals) or your interactive job
will be restarted (static logon terminals).

ERROR MESSAGES

<job-ID>, does not exist

The interactive job associated with the identifier <job-ID> does not exist. It has
already been deleted or never existed.

<job-ID>, invalid job id

The number <job-ID> is not a job ID that is associated with any terminal managed
by the Human Interface.

<job-ID>, job does mot belong to you

The user who attempted to delete the interactive job does not have the same user ID
as the interactive job or is not the system manager.

<job-ID>, not deleted
<job-ID>, <exception value> : <exception mnemonic>

An exceptional condition occurred, preventing JOBDELETE from deleting the job
<job-ID>. JOBDELETE displays the exception code that resulted.

Operator’s Guide 4-99

This command, in conjunction with the Human Interface ADDLOC command, integrates
the image of a data stream (such as a RAM disk) into an existing application system boot
file. LOCDATA transforms a data stream (the physically attached RAM disk) into a
located data file (that is, a file that identifies the absolute address at which the Bootstrap
Loader must load the RAM disk). Using the located data file, ADDLOC creates a new
boot file containing a version of the application system that includes the RAM disk image.
The format of this command is as follows:

LOCDATA

outpath ADDRESS =
value

x-1079

INPUT PARAMETERS

inpath

ADDRESS =value

The logical name of the physically attached RAM disk. Multiple or
wild-card pathnames are not allowed.

The address at which the Bootstrap Loader is Lo load the data
stream (for example, the address of a RAM disk). The address
must specify a WORD boundary. Be careful when assigning this
address that you do not overlay any part of the system or the third
stage of the Bootstrap Loader.

You can specify a radix character of "O" or "H" at the end of the
value to indicate octal or hexadecimal, respectively. If the radix
character is omitted, decimal is the default.

OUTPUT PARAMETERS

TO

4-100

Writes the processed output to a named file. If the specified file
already exists, LOCDATA displays the following message:

To overwrite the existing file, enter Y, y, R, or r. If you do not wish

to overwrite the existing file, enter E, e, N, or n. LOCDATA then
exits without processing the data.

Operator’s Guide

LOCDATA

OVER Overwrites the existing output file. If the specified file does not
already exist, LOCDATA creates it.
outpath Pathname of the file to receive the output of LOCDATA. Multiple

or wild-card pathnames are not allowed.
DESCRIPTION

The iRMX II Operating System supports the use of a RAM disk, an area of memory that
is treated as a secondary storage device. To use the RAM disk feature you must
configure a system with an area of Random Access Memory dedicated to the RAM disk.
When the system hoots you can attach the RAM disk memory to your system, format it,
and move data into and out of the RAM disk just as you would with any other disk device.
If you use the RAM disk to store part of the application system (for instance, the Human
Interface commands), the stored data must be available in the RAM disk area when the
system boots. This data can not be copied into the RAM disk until you have configured
the application system into a bootable file. (The RAM disk area does not exist until it is
defined through the configuration process.) Therefore, there must be some method of
integrating a copy of a RAM disk data structure into an existing application system boot
file.

In the iRMX II Operating System, this mechanism is provided by the Human Interface
LOCDATA and ADDLOC commands. Using the address assigned to the RAM disk
during the configuration process, LOCDATA creates a "located® data file containing the
image of the RAM disk. (A "located" file is a file that specifies the starting address at
which it is to be loaded by the Bootstrap Loader.) ADDLOC uses the application system
bootfile and the file output by LOCDATA to create a new bootable version of the
application system. The new version includes a copy of the RAM disk data structure.
When this new file is booted, the RAM disk data structure is loaded into memory in the
area defined for the RAM disk through the configuration process.

When invoking LOCDATA, the first parameter you supply must be the logical name of a
physically attached RAM disk. (You should have already formatted the RAM disk and
created the neccessary data structurcs before detaching and reattaching it as a physical
device.) The second parameter must be the pathname to be assigned to the located data
file. The third parameter must specify the starting address where the Bootstrap Loader is
to load the RAM disk. This address must be the same starting address assigned to the
RAM disk when you configured the application system.

After processing the data, LOCDATA displays one of the following messages:

<inpath>, located OVER <outpath>

Operator’s Guide 4-11

LOCDATA

Creating an Application System that Includes a Bootable RAM Disk

To create an application system that contains a RAM disk that is initialized through the
Bootstrap Loader, perform the following steps:

1. Configure a version of the operating system that includes a RAM disk. (Refer to
Extended iRMX II Interactive Configuration Utility Reference Manual for more
information.) Make a special note of the starting address you specify for the device.

2. Bootstrap load this new version of the operating system.

3. Attach the RAM disk as a named device. For example:

4. Format the RAM disk as 2 named file. For example:

5. Create the appropriate data structure on the RAM disk and copy the files that you
need, such as the Human Interface commands, to the appropriate directory on the
RAM disk. An error message oceurs if you run out of room in the RAM disk.

6. Detach the RAM disk. For example:

7. Attach the RAM disk as a physical device. For example:

This allows you to access all the data in the device, including the formatting
information.

8. Usethe LOCDATA command to process the information from the RAM disk and
place the output in another file. Use the RAM disk starting address (specified
during configuration) as the value for the ADDRESS parameter. Thus, if you
configured your RAM disk to have a base address of 0100000H, the following
example applies:

9, Use the ADDLOC command to add the processed output (in this case, the file
COMMANDS) to the file that contains the bootstrap loadable version of the
operating system. For example:

The processed output file of the LOCDATA command (in the example, the file
COMMANDS) will be combined with a bootloadable file (in the example, the file
RMX86.286) to produce a new bootloadable file (in the example, RAMDISK.286).
The ADDLOC process will generate a print file (RAMDISK.MPA).

4-102 Operator’s Guide

LOCDATA

10. Create a Bootstrap Loader third stage for the newly created bootable file. For
example:

Now, whenever you bootstrap load this new version of the operating system, the RAM
disk will contain the commands and files copied to it during Step 5.

ERROR MESSAGES
The error messages listed below are in addition to the standard Human Interface error
messages.
¢ <pathname>, is a keyword not a file name
One of the pathnames you specified was a keyword not a file.
¢ LOCDATA, one input file only
LOCDATA requires exactly one input file. You specified more than one input file.
¢+ LOCDATA, one output file only
LOCDATA requires exactly one output file. You specified more than one output file.
e AFTER, is an illegal preposition for LOCDATA

The AFTER preposition, which you entered in your invocation line, is not a legal
LOCDATA preposition.

¢ <string>, illegal preposition
The preposition entered in your invocation line is not a legal LOCDATA preposition.
¢ LOCDATA, ADDRESS parameter is missing
You failed to specify the ADDRESS parameter in the invocation line.
¢ LOCDATA address value is missing
You failed to enter the address value in the invocation line.
*» LDOCDATA, no more than one address wvalue
You entered more than one address value in the invocation line
» LOCDATA, illegal address value
The address value you specified is not within the range of 0 to OFFFFFFH.
¢ <string>, unrecognized control
You specified an unrecognized control in the invocation line.
¢ <pathname>, output file same as input file

You have entered the same name for both the input and output file. LOCDATA does
not allow this.

Operator’s Guide 4-103

LOCDATA

s <pathname>, write error

A system error caused an incorrect number of bytes to be written to the output file.
Retry the command.

o <pathname>, physical address exceeded 16M bytes
The base address added to the size of the input file you specified exceeds 16M bytes.
¢ <pathname>, read error

A system error caused an incorrect number of bytes to be read from the input file,
Retry the command.

4-104 Operator’s Guide

‘This command prevents the Human Interface from recreating an interactive job or issuing
a logon prompt for a particular terminal once the interactive job that was active on that
terminal has been deleted. As a result, users cannot access the Human Interface through
that terminal. This process is called locking the terminal. The system manager can use
this command to lock any terminal. Other users can lock only those terminals whose
interactive jobs have the same user ID that they have. The format of this command is as

follows:
%)
u x-203
where
terminal-name-list One or more terminal device names, separated by commas, of
the terminals to be locked. You can obtain the terminal device
names by invoking the INITSTATUS command (described
earlier In this chapter).
* A special character indicating that all configured terminals
should be locked.
DESCRIPTION

The system manager can use the LOCK command in conjunction with the JOBDELETE
command either to selectively delete users from the system or to shut down the entire
system. LOCK prevents users from logging onto a dynamic logon terminal (or the
Human Interface from recreating an interactive job on a static logon terminal} once the
previous interactive job has been deleted. Interactive jobs can be deleted in any of the
following ways:

+ By entering the JOBDELETE command (described earlier in this chapter)
* By entering the LOGOFF command (described in Chapter 3)

As LOCK locks each terminal, it displays the following message to the user terminal
(:CO:):

locked -
<t

Operator’s Guide 4-105

LOCK

where <terminal-name> is the terminal device name of the locked terminal.

However, if a terminal is currently displaying a logon prompt, LOCK cannot prevent a
user from trying to logon. If that logon attempt fails the terminal will be locked for all
subsequent logon activities.

ERROR MESSAGES

¢ Jlock not allowed

You attempted to lock your own terminal. Only system managers can lock their own
terminals.

s+ <terminal-name>, not found

A terminal with device name <terminal-name> is not configured into your
application system.

¢ not a multi-user system

The LOCK command does not function if the Human Interface is configured for
single-user only.

4-106 Operator’s Guide

This command lists all the current logical names available to the user. The format of the
command is as follows:

”_--—'_____-—-\\\
LOGICALNAMES

outpath-list

%-B62-2

INPUT PARAMETERS

FAST Lists the logical names in a system without providing any additional
information beyond the name itself. FAST is the default
parameter.

SHORT Lists all the logical names with the following additional

information: type of logical name, the physical device name, owner
of the logical name, and the current connections to the file or

device.

LONG Like the SHORT parameter, but also adds the complete pathname
associated with a logical name,

RCOT If ROOT is specified with the LONG parameter, the full pathname
(back to the root device) associated with the logical name is
displayed.

USER Displays all the logical names associated with the current user.

SYSTEM Displays the logical names of system defined files and devices.

Operator's Guide 4-107

LOGICALNAMES

OUTPUT PARAMETERS

TO Writes the listed logical names to the named output files. The
specificd output file or files should not already exist. If they do, the
following message is displayed:

' «phthnatie>, already exists, OVERWRITE?

Enter Y, v, R, or r if you wish to write over the existing file. Enter
any other character or a carriage return alone if you do not wish to
overwrite the existing file.

OVER Writes the input files over (replaces) the existing output files on a
one-for-one basis, regardless of file size. If an output file does not
already exist, its corresponding input file is written to a new file
with the corresponding output file name.

AFTER Appends the input file or files to the current data in the existing
output file or files. If the output file does not already exist, all
listed input files will be concatenated into a new file with the listed
output file name.

outpath-list The pathname of the file to receive the output of the command.
DESCRIPTION

The following is an example of the listing you get when you invoke the command with a
FAST control (FAST is also the default parameter):

~ WORK STEM
XLP *STREAM *BB

When an asterisk precedes a name, the logical name refers to a logical device.

4-108 Operator’s Guide

LOGICALNAMES

The following example shows the output listing when you use the SHORT parameter:

-LOGICALNAMES SHORT <CR>'
User Logical Names: .
coDARmEY type

dev name
smd0
smd0

In the listing, type refers to the kind of logical name: file, directory, map (system file), or
logical device (ldev). Fdr (file driver) indicates whether the connection is to a named,
physical, stream, or remote file. The number of connections which a file or device has is
under the con heading. The dev name heading shows the physical device associated with
the logical name. In the case of a directory or file, the name shows on what device the file
or directory exists. The originator of the connection to the logical name is shown under
the owner heading.

Operator’s Guide 4-109

LOGICALNAMES

The use of the LONG parameter produces the same type of listing as the SHORT
parameter with the addition of the complete pathname of the logical name. Following is
an example of the LONG listing:

-_:_-LdGICALNAﬁES_ _L.ONG <CR> S

dev némé OWner
smdld WORLD
P .

Sy_s'tet'n_::Logical Names :

name type ”_fdr' c

on
SYSTEM 1 - smd0
“WORK 1 smdd
8D 1 smd0
BB BB
STREAM STREAM

" REMSYS - - -tahoe?

The ROOT parameter, in conjunction with the LONG parameter, produces the same type
of listing as the LONG parameter except that the pathname starts at the root directory.
Thus, you get a complete description of the pathname associated with the logical name.

[f the pathname has ellipses before it (.../user/dir1/dir2/dir3 /filename),
LOGICALNAMES truncated the pathname because it was too long to fit in its column.
The pathname only shows the last elements of the pathname which describes a file or
directory.

4-110 Operator’s Guide

This command logs the user off a dynamic logon terminal. For users operating under the
Human Interface supplied CLI, this is a CLI command. LOGOFF is only used as a
Human Interface command if your system has its own custom CLI. For a complete
description of this command, see Chapter 3.

Operator’s Guide 4-111

This command displays the memory currently allocated to the user and the total system
memory available to the user.

z BES

DESCRIPTION

This command requires no parameters. The following is an example of the listing
produced by this command:

.. -MEMORY <CR>
User Private Memory (pool minimum) : 300 k
Available Memoty «{Private:+:Sharedy: 1.545
where:
User Private Memory the amount of memory currently allocated to the user
Available Memory the amount of memory available for the user, that is, the

private memory and the amount of memory the user job
can borrow from its parents. For example, if your private
memory is 300K bytes and your total memory is 1.545M
bytes, as shown above, you can still borrow 1.245M bytes.

4-112 Operator’s Guide

PASSWORD performs a number of actions depending on the user ID of the operator
invoking the command. For the system manager (user ID 0), this command can add a
uscr to the User Definition File (UDF), delete a user from the UDF, read the UDF, or
change a logon password. For non-system managers (user ID greater than 0), this
command enables the user to change his or her logon password. The UDF must have
read access rights for WORLD. The format of the command is as follows:

—-—PASSWO RD 0665

DESCRIPTION

If you are not the system manager, you can invoke the PASSWORD command to change
the password you enter when logging onto the Human Interface from a dynamic logon
terminal. However, if your system’s UDF resides on a remote system, the system
manager must change your password for you (or allow you to do it on the system
manager’s behalf).

After you invoke the command, the following messages appear:

- --Enter the old password -

In response, enter your logon name and your current password {the one you want to
change). For security reasons, the password you enter is not echoed on the screen. The
command then prompts you for the new password with the following message:

Enter the new password -

In response, enter your new password. The new password must be no longer than eight
characters (more will be ignored). To minimize the effect of typing errors, the command
asks you to repeat the password, as follows:

Operator’s Guide 4-113

PASSWORD

4-114

In response, again type your new password. After confirming that both entries of the new
password are identical, the command associates that new password with your logon name
and displays the messages:

Password change successfu
Updating the ma -

The next time you log onto the system, you must use this new password. Continue using it
until you change your password again with the PASSWORD command.

If you are the system manager (user ID 0), the PASSWORD command performs a varicty
of functions, including maintaining the User Definition File (UDF).

The UDF contains the logon name, user ID, and password of all users who can access the
Human Interface via a dynamic logon terminal. Because this file is also used to validate
user access to an OpenNET environment, the file requires a nonstandard format (one
that precludes using an ordinary text editor to maintain the file). In addition, the
passwords listed in the UDF are encrypted to prevent unauthorized access by those who
happen to see a listing of the UDF. The PASSWORD command is the sole mechanism
for maintaining the UDF, and only the system manager can use this mechanism.
PASSWORD adheres to the nonstandard formatting of the file, and it automatically
encrypts the passwords it adds or changes.

As the system manager, when you invoke the PASSWORTD command, the following menu
appears on the terminal screen:

following command$ dreravailable:

Add a user
Delete a user
List the UDF
Change password

To perform any of the operations listed on the menu, enter the letter associated with that
operation. I'or example, to add a new user to the system, type the letter "A" and press
carriage return.

The following sections explain the operations listed in the PASSWORD menu.

Operator’s Guide

PASSWORD

Adding a User to the UDF

Choose the A option to add a new user to the UDF. PASSWORD responds by prompting

you to enter information about the new user, The prompts (and valid answers) are as
follows:

Enter the logon name of the new user. This name must be three to eight
characters long. If you respond with more than eight characters, the command
ignores the extra characters. You must respond to this prompt.

Enter the password for the new user. This password must be eight characters or
less (additional characters are ignored). If you enter a carriage return only, the
new user will not have a password initially.

Entering the characters:

prevents the user from logging onto the system.

Repeat the. fiew passw

Enter the new password again. This double checking validates the password and
ensures that you spelled it carrectly. PASSWORD returns an error message if
the two passwords don’t match and reprompts for the new password. This
continues until you enter the new password correctly twice.

Enter a user ID to associate with this user. The user ID must be a decimal
number in the range of 0 to 65535. If you cnter a carriage return only in
response to this prompt, PASSWORD assigns the next higher user ID that is not
in use and responds with:

~ Assigned user ID of <ID>

If there are no unique user IDs available or the ID you enter is not unique,
PASSWORD displays the warning:

Assigning a user ID that is not unique can cause problems in a network
environment.

Operator’s Guide 4-115

PASSWORD

Entering any other value causes the command to display an error message and
repeat the prompt. This will continue until you enter a valid user ID, a carriage
return, or a "Q" (to abort this session of adding a user).

If your system is part of the OpenNET and includes XENIX workstations, refer
to the XENIX documentation for more information on the appropriate
responses to this prompt. Otherwise, enter a second user ID which will be added
to this user’s IRMX user object. If neither of the user TD’s are 65535 (WORLD),
the HI will automatically add 65535 (a third ID) to the user object when the user
logs on.

Respond to this prompt with a carriage return unless your iRMX I system is an
OpenNET workstation. The iRMX IT Operating System does not use this field.
Refer to the XENIX documentation for more information.

Respond to this prompt with a carriage return unless your iRMX II system is an
OpenNET workstation. For OpenNET workstations, answer this prompt with
the complete pathname of the new user’s XENIX home directory.

Respond to this prompt with a carriage return unless your iRMX II system is an
OpenNET workstation. For OpenNET workstations, supply the new user’s
default shell. Refer to the XENIX documentation for more information.

Once you have responded to all the prompts, PASSWORD summarizes and displays all of
your answers in the following way:

- namie - prompt>

to “Eﬁter the default.TEHIX shell

ntito add this user

4-116 Operator’s Guide

PASSWORD

Respond with a "Y" or "y" to add the user. If you respond to this prompt with any
character other than "Y" or "y", PASSWORD disregards your previous input and returns
to the initial menu.

Entering a "Y" or "y" causes PASSWORD to update the copy of the User Definition Filc
(UDF) it maintains in memory, (the permanent copy will be updated when you invoke the
Exit (E) command) and displays this message:

Do you want - ToF Y

directories?’

A response of "No" means the system manager must manually create the user’s home
directorics. In this case, PASSWORD will create the user configuration file
:‘CONFIG:user/ <username > unless it already exists.

A response of "Yes" creates directories, copies the alias.csd and R?ZLOGON files from the
:config:default directory, and creates an empty R?LOGOFF file in the new user’s PROG
directory. After the files are created, you are prompted for the pathname of the initial
program as follows:

If you are using the standard CLI, enter a carriage return. If you are not using the
standard CLI, enter the full pathname of the CLI you are using. After adding the new
user, PASSWORD responds with the following message:

Refer to the Extended iRMX II Interactive Configuration Utility Reference Manual for more
information about configuration files.

Operator’s Guide 4-117

PASSWORD

Deleting a User from the UDF

Choose the I option to delete a user from the UDF. PASSWORD responds by
prompting you to enter information, as follows:

Enter the logon name of the user to be deleted. If the name you enter is
currently listed in the UDF, PASSWORD deletes the entry from the copy of the
UDF it maintains in memory and responds with the following message:

The permanent copy of the UDF will be updated when you invoke the Exit (E)

command.
Listing the Contents of the UDF

Choose the L option to list the contents of the User Definition file. PASSWORD
responds by displaying the following information:

name>: <password>:<use
ort name>:<password>:<user

where:

<logon name> Logon name.

<password > Encrypted password. No entry indicates that the user does not
require a password to log onto the system. The characters "NO
LOGIN" indicate that the user is prohibited from logging on.

<user id> Decimal number representing the user ID. Values that represent

special kinds of users include:

Value User
0 System manager
65535 WORLD

4-118 Operator’s Guide

PASSWORD

<group id> A second ID that can be implemented as a group convention. This
second ID is added to the user’s IRMX user object.

<comment> Comment field (used only in OpenNET systems).

<dir> XENIX directory (used only in OpenNET systems).

<shell> XENIX shell (used only in OpenNET systems).

Changing Passwords

Choose the C option to change the logon password. PASSWORD responds by prompting
you to enter information, as follows:

In response, enter the logon name and the current password (the one you want to
change). If you do not type the correct old password, the following message will be
displayed:

and you will be prompted again to enter the old password.

When you have entered the old password correctly, the command prompts you for
the new password with the following message:

In response, enter the new password. The new password must be no longer than
eight characters. Entering the characters:

prevents the user from logging onto the system. To minimize the effect of typing
errors, the command asks you to repeal the password, as follows:

Repeat the new password =

Operator’s Guide 4-119

PASSWORD

In response, again type the new password. If the passwords are not identical,
PASSWORD returns the following error message:

and reprompts you for the new password. This process continues until you enter
the new password correctly twice. After confirming that both entries of the new
password are identical, the command associates the ncw password with the logon
name and displays the following messages:

Quitting the PASSWORD Command

To abort the PASSWORD command without saving any of the changes you made during
this session, choose the Q command. If you have made any changes that will be lost,
PASSWORD responds with the following message:

Tf you want to abort the session and lose all of the changes you made, enter "Y" in
response. Entering any other character returns you to the main menu without discarding
your changes.

Exiting the PASSWORD Command

To leave the PASSWORD command and save all of the changes you made during this
scssion, choose the E command. PASSWORD writes to the User Definition File all of
the changes it previously held only in memory. Your screen then displays the Human
Interface prompt.

4-120 Operator’s Guide

PASSWORD

ERROR MESSAGES

Cannot attach to the UDF

The operating system encountered an error, either when attempting to read the
password you entered or when attempting to access the UDF.

Illegal name

The logon name you specified is invalid. The name must be between three and eight
characters long, contain no embedded blanks, and contain no unprintable characters.

Invalid command

You entered an invalid command at the PASSWORD menu. The valid commands
are A,D,L,C, Q,and E.

Invalid Password

Either the password you entered was longer than eight characters, or you made a
typing error when you confirmed the password by entering it again.

Invalid respense

Your response to a prompt was invalid. For example, you might have entered
alphabetic characters when a numeric value was expected.

Maximum size of UDF reached

The User Definition File can grow to a maximum of 32K bytes. It has reached this
limit, and no more new users can be added.

<Master/Local> UDF is not available

An error occurred while PASSWORD was attempting to attach the UDF. If your
system is part of an iRMX-NET environment, the error occurred while attaching the
remote master UDF. If your system is not part of an iRMX-NET environment, the
error occurred while attaching the local UDF. In either case, PASSWORD did not
change the UDF.

0ld Password is incorrect
The password you entered did not match the password listed in the UDF.
UDF does not exist.

Your iRMX II system is not configured to support nonresident users. Therefore, the
User Definition File does not exist.

UDF does net exist. Creating new UDF.

The User Definition File did not exist on your system before, because your system is
not configured to support nonresident users. As the system manager, you can add a
UDF. The PASSWORD command creates a UDF to contain your additions.

Operator’s Guide

4-121

PASSWORD

¢« UDF iz corrupted

The User Definition File has an invalid format that must be fixed. This might have
been caused by editing the file with a text editor. To correct this problem, the system
manager might need to delete the UDF (with the DELETE command) and use the
PASSWORD command to rcbuild it. A copy of the original IRMX IT UDF is kept in
:CONFIG:default /udf.

» UDF is not available

The User Definition File can be written by only one user at a time. Someone else is
using the PASSWORD command now and has exclusive write access to the UDF. Try
again in a few seconds.

¢ User <logon name> is already defined in the UDF
The user you attempted to add is already listed in the UDF.
¢ User <logon name> is not defined in the UDF

The user you attempted to delete is not listed in the UDF.

4-122 Operator’s Guide

This command lists the pathname of a data file or directory.

PATH

npath _iist

x-941

INPUT PARAMETERS

inpath-list The list of files whose pathnames you want to know. The default
inpath-list file directory is the current working directory (:3:).

ROOT Specifies that the pathname should start from the root directory of
whatever device holds the file or directory.

OUTPUT PARAMETERS

TO Writes the pathnames of the input files to the specified output files.
The specified output file or files should not already exist. If they
do, PATH displays the following message:

Enter Y, y, R, or r if you wish to write over the existing file. Enter
any other character or a carriage return alone if you do not wish to
overwrite the existing file. In the latter case, the PATH command
will pass over the corresponding input file, and will attempt to write
the pathname of the next input file to the corresponding output
file.

If you specify multiple input files and a single output file, PATH
appends the remaining input file pathnames to the end of the
output file.

Operator’s Guide 4-123

PATH

OVER Writes the input file pathname over (replaces) the existing output
files on a one-for-one basis, regardless of file size. If an output file
does not already exist, the corresponding input file pathname is
written to a new file with the corresponding output file name. If
you specify multiple input files and a single output file, PATH
appends the remaining input file pathnames to the end of the
output file.

AFTER Appends the input file pathname(s) to the current data in the
existing output file or files. If the output file does not already exist,
all listed input file pathnames will be concatenated into a new file

with the listed output file name.

outpath-list One or more pathnames for the output files.
DESCRIPTION

This command is useful for finding where you are located within the file structure. The
command gives the following listing when it is invoked with no input file listing:

4-124 Operator’s Guide

This command displays an optional message on the console and waits for you to enter a
carriage return.

L{ MESSAGE-TEXT)f

F-QB3L
INPUT PARAMETERS
message-text The text that appears on the console when the PAUSE command is
executed.
DESCRIPTION

This command prompts the user’s console with a message and waits for a carriage return.
PAUSE works ideally when executed from within a SUBMIT file. PAUSE, however,
aborts if you attempt to use it as part of a BACKGROUND job.

Entering PAUSE without a message causes the console to display a blank line before
waiting for the carriage return.

Operator’s Guide 4-125

This command aliows you to grant or revoke user access to files that you own. The format
of this command is as follows:

@ pathname-list

,

— m

INPUT PARAMETERS

pathname-list One or more pathnames, separated by commas, of the files that are
to have their access rights or list of accessors changed.

access Access characters that grant or cancel the corresponding access to
the file, depending on the value parameter that follows. The
possible values include:

Value Access

D Delete

LorR List (for directories) and Read
(for data files)

A Add entry (for directories) and

Append (for data files)

CorU Change (for directories) and
Update (for data files)

N Cancels all access not explicitly

granted (used without an
accompanying value)

4-126 Operator’s Guide

PERMIT

If specified without an accompanying value, each access character
grants the specified access. Specifying N alone rescinds all access
and removes the users specified with the USER parameter from
the file’s access list. Specifying N with other characters grants the
access specified by those characters and rescinds all other access.
You can use L and R interchangeably for both data files and
directories; likewise C and U.

value Value which specifies whether to grant or rescind the associated
access right. Possible values include:

Value Meaning
0 Cancel the access right
1 Grant the access right

The default value is 1. That is,
speeifying an access character
without a value grants the
corresponding access.

user-list User IDs for whom the previously-specified access rights apply.
User IDs must consist of decimal or hexadecimal characters. Two
special values are also acceptable for this parameter. They are:
WORLD Special user ID (65535) giving all users access to
the file.

* Designator indicating that the access rights apply
to all users currently in the file’s access list.

The operating system limits each file to three user IDs in the
access list. If you omit this parameter, PERMIT takes on the user
ID associated with your interactive job.

DATA Specifies that the access information applics to the data files in the
pathname list. If you omit both the DATA and DIRECTORY
parameters, PERMIT assumes both.

DIRECTORY Specifies that the access information applies to the directories in
the pathname list. If you omit both the DATA and DIRECTORY

parameters, PERMIT assumes both.

Operator’s Guide 4-127

PERMIT

MAP : Specifies that access information also applies to the map and
volume label files in the pathname list. If you use the MAP
parameter, you must specify the full pathname of any map files or
volume label files in the pathname list. For example:

changes the access rights for all map files and volume label files on
the volume (with the exception of R’SAVE which is unaffected by
the MAP parameter). Notice that in this instance the Human
Interface does not interpret the "?" as 4 wild card character.

QUERY Causes PERMIT to prompt for permission to modify the access
rights associated with each file. It does this prompting by
displaying the following message:

- - ~<pathname>, o
‘accessor = <new id»,“<rnew access>, . PERMIT?

Enter one of the following (followed by a carriage return) in
response to the query:

Yory Change the access.
Eore Exit from the PERMIT command.
Rorr Change the access and continue with

the command without further query.

Any other Do not change access; continue with
character PERMIT command and query for next
access change, if any.

DESCRIPTION

You can use thc PERMIT command to update the access information for the following
files:

¢ Files for which you are listed as the owner.

o Files for which you have change access to the file’s parent directory.

You cannot change the access information for other files. PERMIT can perform the
tollowing functions:

¢ Add or subtract users from a file’s list of accessors. This list determines which users
have access to the file.

4-128 Operator’s Guide

PERMIT

» Set the type of access (access rights) granted to the users in the accessor list.

Currently the operating system allows only three user IDs in the list of accessors, but one
of these IDs can be the special ID WORLD, which grants access to all users.

You specify the type of access to be granted or canceled by means of access characters
and values. You can concatenate access characters and values together or you can
separate the individual access specifications with commas. For example, if you want to
grant delete access and cancel add and update access, you could enter any of the following
combinations:

As you can see from the previous lines, D is equivalent to D1. Also, the order in which
you specify access characters is not important.

If there are multiple occurrences of an access character in the PERMIT command,
PERMIT uses the last such character to determine the access. For example, the
combination:

is the same as the combination:

In the first combination, the D1 overrides the DQ.

You can use the N character to cancel all access to the file. If specified alone, it removes
all user IDs from the accessor list. However, the N character can also be useful when
changing access rights, if you don’t remember the specified user’s current access rights. In
this case you can specify the N character first, to clcar all the aceess rights, and follow it
with other characters to grant the desired access. For example, if you want to grant list
access only, you could specify "NL" instead of "DOAOCOL".

File access rights for remote files are computed somewhat differently than for local files.
For information on remote files, see iRMX Networking Software User’s Guide.

QOperator’s Guide 4-129

PERMIT

After changing the access information for a file, PERMIT displays the following
information:

. .<pathname>,

accessor. <accass>

wmmoCaccessor Ly .

where

<pathname > the pathname of the specified file

<accessor 1D > the user ID of one of the file’s accessors

<access> the access rights that the corresponding user has. PERMIT
displays the access rights as access characters: DLAC for
directories and DRAU for data files. If a particular access right is
not allowed, the display replaces the corresponding character with
a dash (-). For example, the display:

-L-C

indicates that the corresponding user has list and change access.

ERROR MESSAGES

4-130

<pathname>, accessor limit reached

The operating system permits only three IDs in the accessor list of a file. Before you
can add another accessor, you must remove one of the current accessors by setting its
access rights to N.

<pathname>, directory CHANGE access required

Either you are not the owner of the file specified by <pathname>, or you do not have
change access to the file’s parent directory. You must satisfy one of these two
conditions in order to use the PERMIT command.

<user ID>, duplicate USER control

You must specify the keyword and parameter combination USER = userlist only once
during the PERMIT command. However, you can specify multiple user IDs by
separating them with commas in the userlist. PERMIT exits without updating the
access rights.

<character>, invalid access switch

The character you entered to indicate the access rights for the file was not a valid
access character. PERMIT exits without updating the access rights.

Operator’s Guide

PERMIT

s <invalid id>, invalid user id

The user IDs you supply with the USER parameter must consist of decimal or
hexadecimal characters, the characters WORLD, or the character *. PERMIT exits if
supplied other characters.

* nmissing access switches

You must specify one or more access characters with the PERMIT command.
PERMIT exits without updating the access rights.

¢ no files found

There were no files of the type you specified (data, directory, or both) in the
pathname list,

Operator’s Guide 4-131

This command allows you to change the pathname of one or more data files or
directories. RENAME is effective across directory boundaries on the same volume. The

format is as follows:

RENAME

ingath-hst

INPUT PARAMETERS

outpalh-list
[S
QUERY
—

x 321

inpath-list One or more pathnames, separated by commas, of files or
directories that are to be renamed. Blanks between pathnames are

optional separators.

QUERY Causes the Human Interface to prompt for permission to rename
each pathname in the input list by issuing one of the following
messages:

Enter one of the following (followed by a carriage return) in

response to the query:
Entry
Yory
Eore
Rorr

Any other
character

Action

Rename the file,

Exit from the RENAME command.

Continue renaming without further

query.

Do not rename file; query for the

next file in sequence.

Operator’s Guide

RENAME

OUTPUT PARAMETERS

TO Moves the data to the new pathnames in the output list. A new
pathname in the output list should not already exist. If the output
pathname already exists, RENAME displays the following
message:

character if you do not wish to delete the file. In the later case,
RENAME skips over the specified file without changing it and
attempts to rename the next pathname in the list,

OVER Changes each old pathname in a list to the corresponding new
pathname, even if the new pathname already exists. OVER cannot
be used to rename a directory over another non-empty directory.

outpath-fist List of new pathnames. Multiple pathnames must be separated by
commas. Separating blanks are optional.

DESCRIPTION

The primary distinction between the RENAME command and the COPY command is
that, as the RENAME command runs, it releases the pathnames of the input files for new
uses without performing any further operation on the files.

Another distinction between RENAME and COPY is that RENAME cannot be used
across volume boundaries; that is, you cannot use the RENAME command to rename a
file or move data from a volume located on one secondary storage device to a volume
located on another secondary storage device (for example, from one diskette to another).
An attempt to do so causes an ESNOT SAME DEVICE error message. Use the COPY
command or a combination of COPY and DELETE commands if you wish to rename
files or move data across volume boundaries.

To use RENAME, you must have delete access to the current file and add-entry access to
the destination directory. If you rename a file OVER an existing file, you must also have
delete access to the second file.

Although RENAME can be used to rename an existing directory pathname TO a new
pathname, it cannot be used to rename an existing directory OVER another existing
directory (an ESDIR_NOT EMPTY exception code is returned). For example:

RENAME ALPHA TO DELTA - ;allowe
RENAME ALPHA' OVER BETA ;not -l
RENAME ALPHA/SAMP1 OVER BETA/TEST

Operator's Guide 4-133

RENAME

NOTE

Changing the name of a directory also changes the pathnames of all files
listed in that directory. All subsequent accesses to those files must specify
the new pathnames for the files.

As each file in a pathname list is renamed, the RENAME command displays one of the
following messages, as appropriate:

":___ﬁjéfhnamez renamed TO <ne

or

na

ERROR MESSAGES
» <old pathname>, DELETE access required

You cannot rename a file unless you have delete access to that file.
s <new pathname>, directory ADD ENTRY access required

You cannot rename a file unless you have add-entry access to the destination
directory.

¢ <new pathname>, new pathname same as old pathname

You specified the same name for the input pathname as you did for the output
pathname.

+ TO or OVER preposition expected

Either you used the AFTER preposition with the RENAME command or the number
of files in your inpath-list did not match the number in your outpath-list.

4-134 Operator’s Guide

This command transfers files from a backup volume to a named volume.

CAUTION

While you use this command, no other activity should be occurring on the
volume to which you are restoring, If other users are accessing the
volume during a RESTORE operation, the volume’s data could become
corrupted, possibly requiring the volume to be reformatted.

pathname

'\\

)

INPUT PARAMETERS
:backup device: Logical name of the backup device from which
RESTORE retrieves files.
QUERY Causes the Human Interface to prompt for

permission to restore each file. The Human
Interface prompts with one of the following
queries:

. <p

Enter one of'the following responses to the

query:

Operator’s Guide 4-135

RESTORE

Entry Action
Yory Restore the file.
Eore Exit from the
RESTORE command.
Rorr Continue restoring
files without
further query.
Any other If data file, do not
character restore the

file; if directory
file, do not restore
the directory or any
file in that portion
of the directory
tree. Query for the
next file, if any.

VERIFY Verifies that BACKUP has produced a
restorable set of volumes. Usually, when you
use the VERIFY parameter you should specify
the Byte Bucket (:BB:) as the output pathname.
When you select VERIFY, no file is actually
restored from the backup volume. Only the
data on the volume is validated. RESTORE
produces one of the following messages:

NAME =name NAME begins restoration from a specific data
set. If no name is given, RESTORE restores
only the first logical volume it encounters.

4-136 Operator’s Guide

RESTORE

SELECT= (pathname-list) A list of pathnames, separated by commas,

designating the specific files or directories to be
restored. The complete list must be enclosed in
parentheses. The pathnames cannot include the
logical volume name and must be the exact
pathnames used in the BACKUP command. If
you don’t know the pathnames, use RESTORE
with the VERIFY parameter and note the
pathnames that appear on the screen. Then use
RESTORE again, this time with the SELECT

parameter and the pathnames you noted.

OUTPUT PARAMETERS

TO

OVER

pathname

Operator’s Guide

Restores the files from the backup volume to new files on the
named volume, if the files do not already exist. If a file being
restored already exists on the named volume, RESTORE displays
the following message:

Entry Action
Y.y, Rorr Delete the file and replace it
with the one from the backup
volume.
Eore Exit from the RESTORE command.
Any other Do not restore the file; go
character on to the next file.

Restores the files from the backup volume over (replaces) the files
on the named volume. If a file does not exist on the named
volume, RESTORE creates a new file on the named volume.
When you specify the OVER preposition, RESTORE does not
prompt you for permission to overwrite existing files,

Pathname of a file which receives the restored files (you must
specify a directory pathname when restoring more than one file).
If you specify a logical name for a device, RESTORE places the
files under the root directory for that device. However, the device
must contain a volume formatted as a named volume. If you wish
to restore files to the directory in which they originated, you should
specify the same pathname parameter as you used with the
BACKUP command.

4-137

RESTORE

DESCRIPTION

RESTORE is a utility which copies files from backup volumes (where the BACKUP
command originally saved them) to named volumes. RESTORE copies the files to any
directory you specify, maintaining the hierarchical relationships between the backed-up
files,. RESTORE allows the transfer operation to begin at any named data set or at any
physical volume in a backup volume set. By using the SELECT parameter you can specify
which files or directories will be restored.

Normally, when RESTORE copics files, it copies only those files to which you have
access. When it copies these files to the named volume, it establishes your user ID as the
owner 1D (regardless of what the previous owner ID was). However, if you are the system
manager (user ID 0), RESTORE restores all files from the backup volume and leaves the
owner ID and access rights the same as they were.

When copying files, RESTORE reconstructs the following information:

¢ File name

s Access list

¢ Extension data

o File granularity

» Contents of the file

Each backup volume that is used as input to the RESTORE command must contain files
placed there by the BACKUP command. In addition, if the backup operation required

multiple backup volumes, you must restore these volumes in the same order as they were
backed up.

The output volume which receives the restored files must be a named volume. You must
have sufficient access rights to the files in that volume to allow RESTORE to perform all
necessary operations. For RESTORE to create new files on a named volume, you must
have add entry access to directories on that volume. For RESTORE to restore files over
existing files, you must have add entry and change entry access to the files in that volume
and delete, append, and update access to data files.

When you enter the RESTORE command, RESTORE displays the following sign-on
message:

sUtilic
<year> Intel -Corpo

where Vx.y is the version number of the utility. Then the command prompts you for a
backup volume.

4-138 Operator’s Guide

RESTORE

Whenever RESTORE requires a new backup volume, it issues the following message:

i, Biiter Y to Cont

where <backup device > indicates the logical name of the backup device and <nn> the
number of the requested volume. (RESTORE in some cases displays additional
information to indicate problems with the current volume.) In response to this message,
place the next backup volume in the backup device.

Enter one of the following:

Entry Action

Y,v,Rorr Continue the restore process.

Eore Exit from the RESTORE command.
Norn Reprompt for a new volume.

Any other Invalid entry; reprompt for entry.
character

If you supply the requested volume, RESTORE starts restoring files from that volume
and, if necessary, requests additional backup volumes. Once you supply the first backup

volume, you must supply all the other backup volumes in the data set, in numerical order,
when RESTORE requests them.

However, when RESTORE requests the first backup volume, you can supply a higher-
numbered backup volume, if you know that all the files you want to restore reside on
higher-numbered volumes. RESTORE will start restoring from that higher-numbered
volume and maintain the proper directory structure for the files it restores. However,
once you supply the first volume, you must still supply all the remaining backup volumes,
in numerical order, when RESTORE requests them.

If a data file with the same pathname already exists when you use the TO proposition,
RESTORE displays the following message:

To continue or exit from the RESTORE command, enter one of the response characters
listed above.

Operator’s Guide 4-139

RESTORE

As it restores each file, RESTORE displays one of the following messages at the Human
Interface console output device (:CO:):

If a "not restored" prompt is displayed, then a more detailed error message is printed.

ERROR MESSAGES
¢ <pathname>, access to directory or file denied

RESTORE could not restore a file, either because you did not have add entry access
to the file’s parent directory or because you did not have update access to the file.
RESTORE continues with the next file.

s <backup device>, Backup Volume #<nn>, <date>, Mounted
<backup device>, Backup Volume fi<nn>, <date>, Required

<backup device>, Mount Backup Volume #<nn>, Enter Y to Continue:

RESTORE cannot continue because the backup volume you supplied is not the one
that RESTORE expected. Either you supplied a volume out of order or you supplied
a volume from a different backup session. RESTORE reprompts for the correct
backup volume.

s <backup device>, Cannot Attach Volume
<backup device>, <exception value> : <exception mnemonic>

<backup device>, Mount Backup Volume #<muurr, Euter Y to Continue:

RESTORE cannot access the backup volume. This could be because there is no
volume in the backup device or because of a hardware problem with the device. The
second line of the message indicates the iRMX II exception code encountered.
RESTORE continues to issue this message until you supply a volume that RESTORE
can access.

¢ <pathname>, <exception value> : <exception mnemonic>, error during
BACKUP, file not restored

The BACKUP utility encountered an error when attempting to save the file indicated
by this pathname. RESTORE is unable to restore this file. The message lists the
1IRMX II exception code encountered.

4-140 Operator’s Guide

RESTORE

¢ <pathname>, <exception value> :@ <exception mnemonic>, error during
BACKUP, restore incomplete

When the BACKUP utility saved the files, it encountered an error when attempting to
save the file indicated by this pathname. RESTORE restores as much of the file as
possible to the named volume. The message lists the IRMX II exception code
encountered.

¢+ <backup device>, error reading backup volume
<backup device>, <exception wvalue> : <exception mnemonic>

RESTORE tried to read the backup volume but encountered an error condition,
possibly because of a faulty area on the volume. The second line of the message
indicates the iRMX II exception code encountered.

¢ <pathname>, <exception value> ; <exception mnemeonic>, error writing
output file, restore incomplete

RESTORE encountered an error while writing a file to the named volume. This
message [ists the IRMX II exception code encountered. RESTORE writes as much of
the file as possible to the named volume.

¢ <pathname>, extension data not restored, <nn> bytes required

The amount of space available on the named volume for extension data is not
sufficient to contain all the extension data associated with the specified file. The value
<nn> indicates the number of bytes required to contain all the extension data. This
message indicates that the named volume on which RESTORE is restoring files is
formatted differently than the named volume which originally contained the files. To
ensure that you restore all the extension data from the backup volume, you should
restore the files to a volume formatted with an extension size set equal to the largest
value reported in any message of this kind. Refer to the description of the FORMAT
command for information about setting the extension size.

s <backup device>, invalid backup device

The logical name you specified for the backup device was not a logical name for a
device.

¢ <backup device>, Not a Backup Volume
<backup device>, Mount Backup Volume #<nr>, Enter Y to Continue:

The volume you supplied on the backup device was not a backup volume. RESTORE
continues to 1ssue this message until you supply a backup volume.

¢ <pathname>, Not Restored

For some reason, RESTORE was unable to restore a file from the backup volume.
RESTORE continues with the next file. Another message usually precedes this
message to indicate the reason for not restoring the file.

Operator's Guide 4-141

RESTORE

s+ output specification missing
You did not specify a pathname to indicate the destination of the restored files.
¢ <pathname>, READ access required

You do not have read access to a file on the backup volume; therefore RESTORE
cannot restore the file.

s <pathname>, tov many input pathnames

You attempted to enter a list of logical names for the backup devices. You can enter
only one input logical name per invocation of RESTORE.

s Select List Too Long

The pathname list you supplied with the SELECT parameter exceeded 255 bytes. In
this case, you should invoke RESTORE again with a shorter pathname list.

s TInvalid Select : select = (filename [, filelist])

You supplied a single pathname with the SELECT parameter and it was not enclosed
in parentheses.

» select, unrecognized control

You supplied a list of pathnames with the SELECT parameter and the list was not
enclosed in parentheses.

4-142 Operator’s Guide

This command retensions a tape. Occasionally, while a tape is being read or written, it
winds or lays unevenly on the spool. This command causes a tape to be wound evenly on
the spool. The format of the command is

RETENSION :logical-name: >7

F-0a31

INPUT PARAMETERS

logical-name: A logical name of a device that supports the RETENSION
command. Currently, the only devices that support the
RETENSION command are tape devices.

DESCRIPTION

The RETENSION command evenly winds tape media. Invoking this command causes a
fast-forward operation to occur on the tape associated with :logical-name: until the end of
the tape is reached. Alter the tape fast-forwards, a rewind operation occurs back to the
load point. These two operations together provide for an evenly wound tape.

EXAMPLE

The following example invokes the RETENSION command on a physical tape device
whaose logical name is :tape:.

The command displays the following message:

Starting RETENSION Operation

ERROR MESSAGES
¢ Invalid logical name
The logical name does not exist.
* Device does not support retension

This error message is caused by the parameter :logical-name: pointing to a file
(ESIFDR) or a device other than a tape drive (ESDDR).

Operator’s Guide 4-143

This command provides for the orderly shutdown of the system. All Human Interface
users are warned of an impending shutdown, at fixed intervals until the shutdown takes
place. The format of this command is

(SHUTDOWN } -\/

~——{ 5D = devicename }

NN
—

DEVICES =

INPUT PARAMETERS

PARTIAL Requests a partial shutdown. This parameter only locks HI
terminals and aborts all HI jobs other than the operator’s.

WAIT=nn Sets the delay period requested before shutdown procedures begin.
The wait value is entered in minutes. The maximum value which
may be entered is 30 and the default value is 10. A value of zero
indicates no delay.

SD=device name Defines the system device containing the system directory and the
volume master files. The device name must be a named volume
that is currently attached. The default value is :SD:. Even though
the system device can be different than the default, do not change
it unless you have a specific reason to do so.

BACKUP Instructs the SHUTDOWN utility to create a backup of the system
device volume master files and any other devices specified in the
DEVICES parameter.

DEVICES= Marks the designated devices as shutdown. If the BACKUP

parameter has been entered, the fnode file on all the specified
devices is backed up. The devices to be shutdown can be specified
in two ways:

list A list of devices to be marked as shutdown.

ALL All attached EIOS logical named devices are marked as
shutdown.

4-144 Operator’s Guide

SHUTDOWN

DESCRIPTION

The SHUTDOWN command provides the system with an orderly shutdown procedurc.
All Human Interface terminals are locked, and the associated Human Interface User Job
Tree is deleted. This command can only be invoked by the system manager (user 0).

The SHUTDOWN utility provides a number of options such as a time delay or only a
partial shutdown. When you are entering these parameters it is not necessary to enter the
entire parameter. It is only necessary to enter enough to create a unique selection. For
example, you might enter:

to indicate a 10 minute wait, a backup of the fnode file, and the marking of :dev1: and
:dev2: as shutdown on the volumes.

When SHUTDOWN is invoked all named devices, including the system device, that have
been logically attached using the Extended I/O System are detached. This closes all file
connections on the devices, and flushes all EIOS and BIOS buffers associated with these
devices. These volumes are marked as properly shutdown and the following message is
displayed:

:8D:, outstanding cofiriéctions to device have be
*%*SHUTDOWN COMPLETED

The system manager job tree is then deleted.

If you enter SHUTDOWN without parameters, SHUTDOWN displays:

Any errors detected during the shutdown process cause the utility to abort and display the
message:

*%% SHUTDOWN® ABORTED e

If a syntax error is encountered in the invocation of SHUTDOWN, the proper usage is
displayed as follows:

USAGE: SHUTDOWN [WAIT=nn] (SD=sys dev] {BACKUP] [DEVICES=list] [PARTIAL]

The utility then aborts and returns control to the system command level. (A complete list
of syntax errors is given in the "Error Messages" section.)

Operator’s Guide 4-145

SHUTDOWN

If SHUTDOWN is unable to delete one of the Human Interface users, it displays the
following message:

nable to:del
Continive?. (Y/

where <hi_user> is the user name as defined by the Human Interface. This message is
displayed after waiting five minutes for the user job to be deleted.

During the shutdown process, SHUTDOWN catalogs the R?SHUTDOWN object in the
root directory to ensure that first-level jobs will be able to close down and exit in an
orderly fashion. When SHUTDOWN is aborted the R?SHUTDOWN object is

uncataloged.
Wait

You may specify a delay in the invocation to allow time to complete any cleanup
procedures. When SHUTDOWN is invoked a warning message is issued at five minute
intervals until less than five minutes remain, and from then on at one minute intervals.
The message displayed is

*k% SYSTEM WILE

where nn is the time remaining before shutdown.
Partial Shutdown

The system manager may need to delete only a limited number of Human Interface users
such as when backing up a disk. This is possible by including PARTIAL in the invocation.
When the system is ready to return to general use, the UNLOCK command (described
later in this chapter) can be entered to reinitiate all users.

Backup

The system manager can request that the system volume fnode file be copied to its
duplicate file: R?SAVE, by invoking the BACKUP parameter. If the DEVICES
parameter is entered, the fnode files of the logical device names specified are also backed
up. When a successful backup has been made, the Human Interface displays:

4-146 Operator’s Guide

SHUTDOWN

where log_dev is the logical name of the device(s) specified in the DEVICE option, and
sys_dev is the logical name of the system device as specified in the command invocation.
If the DEVICES option is not selected, only the system device is backed up. :SD: is the
default system device.

Any errors detected while trying to backup the files are displayed immediately as follows:

*4% error iﬁ.._._devic’é' _ hode.(m‘l_m
%% SHUTDOWN COMPLETED -

The system directory on the system device volume is stamped to enable the Human
Interface initialization to set the system clock the next time the system is booted. This
ensures that the system clock, used in time stamping files, always moves forward
chronologically.

Devices

The system manager can indicate that specified logical named devices be marked as
shutdown by including the DEVICES parameter in the invocation. If no devices are
specitied, all EIOS logical named and remote devices are shutdown. Whenever the
DEVICES parameter is entered, the BACKUP option must also be entered. This canses
the fnode files on the designated devices to be backed up. If an error is detected while
detaching a named device, the following message is displayed:

An error encountered when marking a volume as shutdown, causes this message:

#%* error marking shutdown devic

When an error is detected during the backup and marking process of a logical named
device, as opposed to the system device, the processing continues.

Aborting the Shutdown

During the operation of the SHUTDOWN Ultility, the system manager can enter
CONTROL-C to abort the procedure. SHUTDOWN can be aborted only at the
completion of a logical operation. That is, SHUTDOWN can only be aborted after all the
terminals have been locked, but not during the terminal lock process. If you use
CONTROL-C to abort SHUTDOWN, the UNLOCK command must be used to free each
terminal. The following logical operations are defined in the SHUTDOWN Ultility.

Operator’s Guide 4-147

SHUTDOWN

Operation Function

Terminal locking Locks all HI terminals.

Warnings Issues a warning every 5 minutes until 5
minutes before shutdown, then issues 4 warning
every minute.

Job deletion Deletes all HI user jobs, excluding the
caller’s job.

Time stamping Time stamps the system directory.

Backup Backs up all fnode files.

Detaching Detaches all EIOS named and remote devices.

Marking Marks the volume as shutdown.

Delete job tree Deletes the caller’s job tree.

ERROR MESSAGES

The errors listed in this section are syntax errors not previously explained in the
"Description” section.

s <keyword>, unknown keyword or switch

A keyword other than PARTIAL, WAIT, SD, BACKUP or DEVICES was
encountered.

o illegal keyword
A switch was used as a keyword.
¢ illegal value
A keyword was assigned an illegal value.
*» <system_dev>, not a logical device name

The name you entered is not cataloged as a logical device.

* <sys_dev>, not a named device

The logical device name entered is not a named device.

4-148 Operator’s Guide

SHUTDOWN

o <log_dev>, not a logical device name

The name you entered is not cataloged as a logical device.

¢ <log_dev>, not a named device

The logical device name entered is not a named device.

Operator's Guide 4-149

This command is for users with a customized CLL It reads and executes a set of
commands from a file in secondary storage instead of from the console keyboard. If you
are using the Intel-supplied CLI, SUBMIT is a CLI command supporting all the CLI
features. The syntax and rules for SUBMIT as a CLI command or an HI command are
almost the same. The only exception is that when using SUBMIT as an HI command,
none of the CLI features, such as aliasing, can be included in the SUBMIT file. For a
complete description of SUBMIT, see Chapter 3.

4-150 Operator’s Guide

This command allows users with a customized CLI to change their user IDs to the system
manager ID. If you are using the Human Interface CLI, this command is available as a
CLI command. For a complete explanation of SUPER, see Chapter 3.

Operator’s Guide 4-151

This command sets the local or global system time or displays the current time. The
format is as follows:

1
TIME "
)
—— I"._._'___‘_‘_‘-"‘-n.
: hh SYNCHRAONIZE

w205 A

INPUT PARAMETERS

kh Hours specified as 0 through 23.

mm Minutes specified as 0 through 59. If you omit this parameter, 0 is
assumed.

$8 Seconds specified as 0 through 59. If you omit this parameter, 0 is
assumed.

QUERY Causes TIME to display the current date, time and clock type

followed by the prompt:

or the letter E (or e) to exit.

GLOBAL Applies only to systems with hardware clock/calendar components.
Such clock/calendar components are usually powered by batteries
so they continue keeping time when power to the system is turned
off. These clock/calendar components are referred to as global
clocks, This parameter causes TIME to display or set the time
portion of the global time-of-day clock. Any user can display the
current value of the global clock, but only the system manager can
set the global clock. If the global clock is modified, the local clock
automatically takes on the new value of the global clock. LOCAL
is the default if the LOCAL and GL.OBAL parameters are
omitted.

TIME displays an error message if you specify this parameter and
your system does not have a global clock/calendar.

4-152 Operator’s Guide

TIME

LOCAL Causes TIME to access (to display or set) the time portion of the
local time-of-day clock maintained by the operating system. All
users may display and set the local clock to a new value. Local is
assumed if the LOCAL and GLOBAL parameters are omitted.

SYNCHRONIZE Applies only to systems with global clock/calendars. This
parameter causes TIME to set the time portion of the local time-
of-day clock to the current time value in the global clock. If you
are modifying the global clock, this parameter is unnecessary.

TIME displays an error message if you specify this parameter and
your system does not have a global clock/calendar.

DESCRIPTION
You must separate the individual time parameters with colons.

If you omit the time parameters, TIME displays the current date and time in the following
format:

where dd mmm yy indicates the date, hh:mm:ss indicates the time, and clock type
designates either a global or local clock type.

If you have a system without a global clock/calendar, whenever you start up or reset the
operating system, the time is automatically set to the time you last accessed the
:SYSTEM: directory plus the time that elapsed since the system was started. You can
reset the time to any acceptable value.

If your system has a global clock/calendar and the operating system is configured to
recognize it, the local clock is automatically set to the time maintained in the global clock
when you turn on or reset your system.

The TIME command enables you to set and/or display the time portion of two time-of-
day clocks: the local clock and the global system clock. You access the local clock by
specifying the LOCAL parameter; you access the global clock by specifying the GLOBAL
parameter. If neither LOCAL nor GLOBAL is specified, the local clock is accessed by
default. Any user can display the time and date portion of the local and global clocks.

However, only the system manager can set the time portion of the global clock. If the
system manager sets the global clock to a new value, the local clock will automatically be
set to that value.

Operator’s Guide 4-153

TIME

ERROR MESSAGES
s <time>, invalid time

You specified an invalid or out-of-range entry for one or more of the time parameters.
s <parameter>, invalid syntax

You specified an illegal combination of parameters such as, both a time and the
QUERY parameter.

s only the system manager may set the global clock
You specified the GLOBAL parameter, but you are not the system manager.
¢ ESSHARE, global clock busy

You attempted to access the global time-of-day clock while another job was accessing
it. Try the command again.

» <exception value>:<exception mnemonic>, while getting system time

The indicated exception occurred while the TIME command was getting the time
from the global time-of-day clock.

e ESINVALIDSDATE, global date read was invalid

The date returned from the global clock was invalid. This condition will usually occur

when the global clock has never been initialized or when power to the clock has been
interrupted. The BIOS system call GETSGLOBALSTIME gets the date from the
global clock, which the TIME command then displays.

¢ ESINVALIDSTIME, global time read was invalid

The time returned from the global clock was invalid. This condition will usually occur
when the global clock has never been initialized or when power to the clock has been
interrupted. The BIOS system call GETSGLOBALSTIME gets the time from the
global system clock, which the TIME command then displays.

4-154 Operator’s Guide

This command enables users who have been locked out of the system to log back on. The
format of the UNLOCK command is

UNLOCK >—

x-1846
INPUT PARAMETERS
Terminal-id-list A list of the terminals to be unlocked.
* A wildcard indicating that all configured terminals are to be
unlocked.
DESCRIPTION

The UNLOCK command can be used only by the system manager to unlock terminals
that were locked out by either the LOCK or SHUTDOWN commands. This command
allows all the terminals or only those listed in the invocation to log back into the system.
UNLOCK causes the Human Interface to initiate the log in procedure for the appropriate
terminal, if logged off,

When the terminal is unlocked, the following message is displayed:

unlocked o
<terminal-id>, .un

If the terminal specified is not configured into the system, the UNLOCK command issues
this message:

Operator’s Guide 4-155

UNLOCK

ERROR MESSAGES

¢ not multi-user system

You entered more than one terminal number in a system that is not a multi-access
system.

s unlock not allowed to non-S5UPER users

You are not the system manager and therefore, are not entitled to issue this
command.

¢ parameters required
You entered UNLOCK with no parameters.
¢+ <terminal-id>, not found

The terminal-id you specified is not configured into the system.

4-156 Operator’s Guide

This command copies files from a Series II, I,or IV Microcomputer Development System
to iRMX II secondary storage using the iSDM monitor.

T e T
upcopﬁ—n inpath-hs
S~ .

INPUT PARAMETERS

inpath-list

QUERY

Operator’s Guide

]

—

- e
(. gutpath-nst

x 323

List of one or more filenames of the development system files to be
copied to iRMX II secondary storage, either on a one-for-one basis

or concatenated into one or more IRMX 11 output files.

Causes the Human Interface to prompt for permission to copy
each development system file to the listed IRMX I output file.
Depending on which preposition you specify (TO, OVER, or

AFTER), the Human Interface prompts with one of the following

queries:

Enter one of the following (followed by a carriage return) in
response to the query:

Entry Action

Yory Copy the file.

Eore Exit from the UPCOPY command.

Rorr Continue copying files without
further query.

Any other Do not copy this file; go to the

character next file in the sequence.

4-157

UrCcory

OUTPUT PARAMETERS

TO Copies the development system file or files to a new iIRMX II file
or files in the listed sequence. If the output file already exists,
UPCOPY displays the following message:

Enter Y, y, R, or r if you wish to write over the existing file. Enter
any other character if you do not wish the file to be overwritten.

If no preposition is specified, TO :CO: is assumed. If more input
files than output files are specified in the command line, the
remaining input files will be appended to the end of the last listed
output file.

OVER Copies the listed development system input file or files over
existing IRMX I destination files in the listed sequence. If more
input files than output files are listed in the command line, the
remaining input files will be appended to the end of the last listed

output file.

AFTER Appends the listed development system input file or files after the
end-of-data on an existing iRMX II output file or files in the listed
sequence.

outpath-list One or more pathnames of the iIRMX II destination files. Multiple

pathnames must be separated by commas. Separating blanks are
optional. If the preposition and output parameter defaults are
used in the command line, the output will go to the iRMX 1
console screen.

DESCRIPTION

Before you enter an UPCOPY command on the iRMX II console keyboard, you must
have your target system connected to a development system via the iSDM monitor. To
do this, you must start your iRMX I system from the development system terminal
{either by loading the software into the target system and using the monitor G command
to start execution, or by using the monitor B command to bootstrap load the software).
UPCOPY does not function if you start up your system from the iRMX II terminal or if
you establish the link between the development system and target system after starting up
your iRMX II system.

The user ID of the user who invokes the TIPCOPY command is considered the owner of

new files created by UPCOPY. Only the owner can change the access rights associated
with the file (refer to the PERMIT command).

4-158 Operator’s Guide

UPCOPY

As it copies each development system file in the input list, UPCOPY displays one of the
following messages at the terminal, as appropriate:

When the UPCOPY command is cxceuting, the monitor disables interrupts. This action
affects services such as the time-of-day clock. Also, the operating system is unable to
receive any characters that you type-ahead while the UPCOPY command is executing.
ERROR MESSAGES

¢ <pathname>, ISIS ERROR: <nnn>

A development system error occurred when UPCOPY tried to transfer the file from

the Microcomputer Development System. Refer to the Intellec Series IV Operating
and Programming Guide for a description of the resulting error code.

¢ ISIS link not present
The iRMX II system is not connected to the development system via the monitor.
* <pathname>, UPDATE or add access required

Either you cannot overwrite the information in a file because you do not have update
access to it, or you cannot copy information to a new file because you do not have add
entry access to the file's parent directory.

Operator’s Guide 4-159

This command displays the version number of a file if that file has a version number. The
file can be an object file or library. The format of this command is as follows:

VERSION pathname-list) >
)

INPUT PARAMETERS

pathname-list One or more pathnames, separated by commas, or a wild-card
expression of commands for which a version number is desired.

LONG Displays all the version numbers residing in the input file.

DESCRIPTION

When you enter the VERSION command, it displays the version number of each file, if
there 1s one, in the following format:

where

<pathname> Pathname of the file containing the command.

<module-name > Name of the specified command or library; Intel-supplied
commands have names as listed in this manual.

Xy Version number of the command.

You can use VERSION to determine the version number of any Human Interface
command. You can also use it to determine the version numbers of commands that you
write. If the file is a library, the command shows the current and previous version
numbers. However, for VERSION to work on your commands, you must include a literal
string in the command’s source code to specify the name of the command and its verston.

The string must contain the following information:

‘program_version number =x00¢,
‘program name = yyyy...yyy',0

4-160 Operator’s Guide

VERSION

where

program_version_number= You must specify this portion exactly as shown (lower case,
underscore separating the words, no spaces).

XXXX Version number of the product. This can be any four
characters, but it must be exactly four characters long.

program_name= This portion is optional. However, if you want VERSION
to recognize and display the program name, you must
specify this portion exactly as shown.

YYYY..YYY Name of the command. This name can be any number of
characters.

0 The literal string must be terminated with a byte of binary
zero.

An example of such a literal string is:

DECLARE version (*} BYTE DATA(’program_version_number= V8.5,
‘program_name=MYPROG’,0);

If your program includes this declaration, when you invoke VERSION, it will display the
following information:

A literal string that does not include the program name is:
DECLARE vers2(*) BYTE DATA(’program version number =1986",0);

If your program includes this declaration, when you invoke VERSION, it will display the
following information:

<pathname>, version is 1986

ERROR MESSAGES
* <pathname>, does not contain a pregram version number.

The command you specified does not contain version number information.
¢ <pathname>, is not an object module.

The pathname you specified does not represent a file containing executable object
code.

Operator’s Guide 4-161

This command lists the current user’s identification and access rights.

x-BGEH

DESCRIPTION

This example shows the output from WHOAME:

User id: # 5

The number after User id is the user’s ID number. The numbers after Access id’s are the
IDs of other users who have granted the user aceess to their files.

4-162 Operator’s Guide

This command reads an object file or an object library and displays the identification
number of all iRMX II ZAPs (fixes) that have been applied to that file.

INPUT PARAMETER

input-path The pathname of the object or object library to be scanned. The
pathname cannot contain wildcard characters. The pathname must
specify a file, not a directory.

DESCRIPTION

Fixes for problems discovered in the operating system software are distributed through
the iRMX II Update Service. Intel refers to these fixes as "ZAPs". ZAPs are new
modules that replace the corresponding modules in the operating system.

Each update diskette contains an accumulation of all ZAPs issued during the current
release of the operating system. When you install the latest update, all ZAPs (from the
current update and from previous updates) are automatically applied to your system.

The ZSCAN command allows you to check which ZAPs have been applied to an object
file or an object library. All ZAPs are marked by a unique identifier string, ZSCAN finds
occurrences of these strings and returns information about the associated ZAPs.

When you invoke ZSCAN, you must specify an object file or an object library. You
cannot invoke the command to find all of the ZAPs applied within a specified directory.
Furthermore, you cannot use wildcard characters in the pathname of the file to be
scanned.

By default, the iRMX II system object files are not accessible to user WORLD.
Therelore, il you intend to use ZSCAN on a bootable system object file, you must grant
user WORLD read access rights to that file (using the Human Interface PERMIT
command) or invoke ZSCAN from the SUPER mode.

Operator’s Guide 4-163

ZSCAN

OUTPUT DISPLAY

Upon successful execution, the ZSCAN command displays one of the two following

messages.

When ZSCAN encounters ZAPs:

where
<filename >

<zap id>

<class>

<product >

<layer>

<release >

4-164

the name of the file being scanned
the identification code for the ZAP:
ZPCxoxx where:

Z = a ZAP identifier string

P = product code

B = iRMXITMBII

R = iIRMX1I

X = iIRMX I

N = iRMX I-based iIRMX-NET

P = iRMX II-based iRMX-NET
C = the class of ZAP

A = fully evaluated
B = developer tested

xxx = the unique number assigned to the ZAP

the class of the ZAP. Class A indicates a supported ZAP
distributed through the iRMX II Update Service. Class B indicates
an un-supported ZAP with limited distribution.

the product the ZAP is associated with.

the layer of the operating system (e.g. Nucleus, BIOS, etc.) that the
ZAP pertains to.

the release level of the operating system layer that the ZAP
pertains to.

Operator’s Guide

ZSCAN

When ZSCAN encounters no ZAPs:

<Eilename>, Mo ZAPs applied;

where
<filename> the name of the file being scanned.

ERROR MESSAGES
¢ USAGE: zscan <object file>
No filename was specified when the command was entered.
o <filename>, file does not exist
There is no file with the pathname specified in the command.
» <filename> is not an object module

The file specified in the command is not an object module and cannot be scanned for
ZAPs.

¢ <parameter>, Unrecognized control

An unknown parameter was specified when the command was entered.

Operator’s Guide 4-165

5.1 OVERVIEW

This chapter shows examples of some of the most frequently used Human Interface
commands. It is written to introduce first time operators to the basic techniques needed
to use the Human Interface commands. If you are a more experienced operator, you may
want to skip this chapter.

5.2 COMMAND EXAMPLES FORMAT

To make it easier to follow the interactive dialogue between the operator and the Human
Interface in the examples, the user keyboard entries are printed in or bolded if within
a gray box. All other items displayed in the examples are Human Interface command
output. For instance, in the following example,

émpsto test <CR>

. samp copied TO tes
" -copy test <CR¥

the bolded items are operator command entries; all other characters and lines are output
by the Human Interface or the supplied commands.

Control characters, such as (CONTROL-Z), are enclosed in parentheses in the examples

to indicate that such entries are not echoed at the console screen as they are entered. Do
not actually enclose control key entrics in parentheses.

Operator’s Guide 5-1

HUMAN INTERFACE EXAMPLES

5.3 BEGINNING A CONSOLE SESSION

You can begin an interactive dialogue with the Human Interface after the initial program
displays a sign-on message at your console screen. Although the sign-on message is a
system configuration option, the message supplied with the default initial program of the
Human Interface is as follows:

CHL GLI Vx.y: USER = <

This message tells you the Human Interface is running; it also tells you your user ID. The
hyphen (-) is a CLI default prompt indicating that the initial program is ready to accept
your first command line. Begin entering a command on the same line as the prompt. For
example:

5.4 CREATING A SIMPLE DATA FILE

You can use the COPY command to create data files during a console session. Assume
you wish to create a file called ALPHA and write two lines of data into the file. Also
assume you wish the data file to be listed under your default directory, :$:. Enter the
following command and data:

The HI responds:

In this example, the :ci: in the COPY command line tells the command to read data from
the keyboard (ici: = console input) and write the data (aaaaa and bbbbb) to a new file
named ALPHA. Because you did not preface the file name with a directory name, COPY
places the file ALPHA in your default directory.

5-2 Operator’s Guide

HUMAN INTERFACE EXAMPLES

'The command does not prompt you for the data lines; you simply begin entering data
after you press RETURN at the end of the command line. Your (CONTROL-Z) entry
writes an end-of-file mark at the end of your data to inform the COPY command that
there is no more data to be copied.

Note that after you enter the last line of data, you must press the RETURN key <CR >
before you enter a (CONTROL-Z) to insert an end-of-file. Otherwise, the (CONTROL-
Z) will be ignored.

Since control characters are not echoed on the screen as you enter them, (such as a
RETURN or CTRL function), the above file creation sequence would be displayed on the
screen as follows:

1pha

Now, assume that when you entered the COPY command line, the Human Interface sent
you the following message and query:

Whenever you create a new data file, the COPY command expects a new pathname
rather than one already listed in the directory file. If your entry to the query is:

the COPY command deletes the data in the existing file and waits for you to enter new
data under that pathname.

If your response to the query is:

your COPY command is ignored and the Human Interface prompts for a new command.

Operator’s Guide 53

HUMAN INTERFACE EXAMPLES

5.5 COPYING FILES

The COPY command options provide a number of different ways for you to copy existing
files. You exercise these options either by specifying one of the TO/OVER/AFTER
prepositions, by the way in which you specify your input file and output file pathname
lists, or by a combination of both techniques. The services of the COPY command
include:

» Copying files on a one-for-one basis.

» Displaying the contents of files at the console screen.

« Creating multiple copies of the same file.

« Copying data from multiple files to a new or existing file.

+ Replacing data in one file with data from another file.

+ Adding data from one or more files to the end of the data in another file.

« Combining one-for-one file copying with file concatenation in a single COPY

command.

The examples that follow show you how to use these services. They also call your
attention to certain file handling considerations when using the COPY command.

5.5.1 Copying to New Files

5-4

Copying existing files to new files is most frequently done on a one-for-one basis; that is,
you list a number of existing files to be copied and a matching list of files to receive the
copies. The files are copied in the same sequence you specify in the input list and output
list on the command line. For example, assume you wish to copy files A1, A2, and A3 to
files B1, B2, and B3 respectively. Enter the following command:

The Human Interface responds:

You can also make use of the wild card feature when copying files. If the files A1, A2, and
A3 are the only files in the directory that begin with the character "A", you can use the
following command to perform the same operation:

Operator’s Guide

HUMAN INTERFACE EXAMPLES

-copy a* "ty
al copied TO: b¥
2 copied TO-b2
opied TO b3

The asterisks in the command are the wild card characters. In this instance, the command
copies all files in the default directory that start with the character "A" to new files starting

with the character "B, If files other than A1, A2, and A3 also begin with the character
"A", this command will copy them also.

When you copy files, you can specify wild card characters (as in the previous example),
lists of file names (as in the example before that), or 2 combination of both. However,
some of the possible combinations are invalid. When copying files, remember the
following rules:

» Ifyou specify multiple input pathnames and a single output pathname, file
concatenation takes place. If the output parameter is simply a directory with no wild
card in its pathname, then the Human Interface copies all the files listed in the input

parameter into the directory. Each file keeps its original name in the new directory
{such as alpha).

o Ifyou specify multiple output pathnames, you must specify the same number of input
pathnames as output pathnames. Specifying more input pathnames than output
pathnames results in an error message. For example, the command:

- (invalid)
returns an error message. The command:
- {(invalid)

also returns an error message. Refer to the "Inpath-List and Outpath-List" section of
Chapter 2 for more information.

Operator’s Guide 5-5

HUMAN INTERFACE EXAMPLES

5.5.2 Displaying the Contents of Files

When you perform a number of file manipulations during a single session, it is
occasionally advisable to display a file’s contents at the terminal before proceeding
further. Assume you wish to display the contents of a file named ALPHA that is
contained in your default directory. Simply enter the command:

-copy alpha <CR>
aaaaa
“=glpha copied TCO :cot

This COPY command example uses the default preposition (TO) and default output file
(:CO:), which means that the command copies the output to the console screen.

You can halt the scrolling of a displayed list to examine the data more closely. Press the
following CTRL keys to control scrolling of the output:

CONTROL-W Puts the terminal into scrolling mode. In this mode, output stops
after a single screen of data appears. Entering another
CONTROL-W displays the next screen of data.

CONTROL-S Stops the data from scrolling off the screen until you press a
CONTROL-Q.
CONTROL-Q Resumes scrolling of listed data until the end-of-file is reached or

you enter a CONTROL-C.

CONTROL-C Cancels listing of the data and returns control to the Human
Interface, which prompts for a new command.

5.5.3 Replacing Existing Files

There may be occasions when you wish to update the contents of an existing file. One way
to do this updating is to create a new file and then replace the contents of the old file with
the new data. Although you can use the RENAME command to perform this operation,
this section shows how to replace the contents of a file with the COPY command’s OVER
preposition.

Assume the following conditions:

» You have a file named ALPHA that is accessed under that name by a number of
different programs. ALPHA has outmoded data.

« Since you cannot change the name without also modifying the programs that access
ALPHA, you must retain the name but update the outmoded file contents.

5-6 Operator’s Guide

HUMAN INTERFACE EXAMPLES

Enter the following command sequence:

nu hu nu na <CR>
nu ny nu nu <CR>
(CONTROL-Z)
~ ¢l copied TO temp)
.. -copy temp over alpha <CR>
£emp copied OVER alpha
~copy- alpha <CR>
nu Ny nu ng
nu nu nu nu i
. .alpha copied TO :co:

The last COPY ALPHA command lists the file at the terminal to show that the old file
contents have been successfully replaced.

You could have used the TO preposition in the COPY command to write TEMP over
ALPHA,; but since the Human Interface always expects a new output file when the TO
preposition is used, this would have caused unnecessary keystrokes, as shown in the
following:

~-copy temp to alpha <CR>
alpha, already exists, OVERWRITE?. : :
temp copied TO alpha _ ' N R

Note that you now have two copies of the same new data; one in the TEMP file and one
in the ALPHA file. If you had used the OVER preposition in a RENAME command
instead of the COPY command, file TEMP would have been deleted automatically when
RENAME was executed. However, if you did not want two existing copies of the same
data, you could update the existing file directly from the keyboard. Enter the following
command:

-copy :ci: over alpha <CR>
‘newnewnew <CR> IR
(CONTROL-Z) LT
:eit copied .QVER alpha =" :

Operator’s Guide 5.7

HUMAN INTERFACE EXAMPLES

5.5.4 Concatenating Files

Concatenation is the process of combining a number of files by appending them in
sequence into a single file. You can use the COPY command in several ways to
concatenate files:

» by specifying the AFTER preposition in the command line

o by specifying multiple input pathnames and a single output pathname (if the output
pathname is a directory, concatenation does not occur)

« by using a combination of both techniques

Assume you have four existing files named A, B, C, and D respectively, and you want to
append the contents of B, C, and D to the end of file A. Although you could specify the
TO preposition in the COPY command line, the TO preposition would force you to enter
extra keystrokes because your listed output file (A) already exists. It would also force you
to delete the previous contents of A, which is not always desirable. Therefore, use the
AFTER preposition, as follows:

copyib;c,d
J:gopied AFTER a
‘cicopied AFTER
’d -copied AFTER

Now, assume you wish to concatenate all four files into a new file called ALL. You can
still use the AFTER preposition, or you can use the TO parameter, as follows:

rasgopied TQ all
‘brcopled AFTER -
¢
d

copied AFTER all
copied-AFTER=~all

In this example, file A is copied to ALL and the remaining input files are automatically
appended to the end of ALL.

You can save keystrokes when listing a series of files on the screen by using this automatic
concatenation in a single command line. Assume you wish to list files named ALPHA,
BETA, and GAMMA. Enter the following command, using the default TO preposition
and default output file (:CO:):

Operator’s Guide

HUMAN INTERFACE EXAMPLES

aaaaa .
- ﬁ}pha copled TO :co:

When data sequence and/or data format are important in a concatenated file, remember
that all copy operations are performed in the sequence you specify in the command line.

Assume you have formatted data in a group of files named A, B, C, D, and E, and you
wish to concatenate their contents into a new file named SQUARE in that sequence,
However, if you list the input files on the command line in a haphazard sequence, as
follows:

the format of the total data block is destroyed, as can be seen in the following incorrect
and correct versions of the listed output. Although the data block of Latin words shown in
the left-hand example seems correct when read horizontally, the intent and meaning of
the vertical columns has been lost. The right-hand example shows the corrected file

sequence:

b,a,d,ce a,bcde

sequence scquence
AREPO SATOR
SATOR AREPO
OPERA TENET
TENET OPERA
ROTAS ROTAS

In the right-hand example, the Latin "magic square” now reads the same both horizontally
and vertically, which was the intended operation.

Operator’s Guide 59

HUMAN INTERFACE EXAMPLES

5.6 DELETING FILES

It is vital to good file housekeeping that you routinely delete obsolete or unused files and
empty directories. (Deleting unused directories is described later in this chapter.) In
addition to the obvious benefit of recovering unused secondary storage, deleting your
obsolete files reduces confusion and file manipulation errors.

Assume that you want to delete files ALPHA and BETA from the system. Enter the
following command:

e;éééwélpﬁa,beta <CR>
. alpha, deleted
" beta, deleted

Now, assume that you entered the following command line and received the following
Error message:

... ~delete ay,bee, key <CR>
ay, deleted
bee, deleted

key, does not exist

The error message for the KEY file telis you one of three things:
¢ There is a spelling error in the name of the KEY file.
¢ The file does not exist.

« The file exists in a directory other than the one you are currently accessing (see the
directory examples later in this chapter).

5.7 USING DIRECTORIES

A directory is a kind of file under which you assign and maintain other files or directories.
[t is distinguished from a data file by a directory heading that is automatically created
when you create a new directory. Under that heading, the directory matntains a
formatted list of the files and directories it contains. This heading ts updated whenever
you assign new files to the directory. Directories provide you with a convenient and
efficient technique for organizing large numbers of files into logical groupings. Creating
your own directories aids you in two ways:

« It allows you to organize your files into logical groupings. This capability eases the
task of maintaining large numbers of files on the system.

5-10 Operator’s Guide

HUMAN INTERFACE EXAMPLES

« Itrreduces the possibility of accidental destruction of files, either by yourself or other
System users.

A directory contains a list of all files assigned under its name, which you can display by
using the DIR command. Optional DIR command parameters also allow you to access
and display other pertinent information about each file, such as file size and other file
attributes.

Previous command examples in this chapter, when creating and accessing files, have used
the default directory configured for your user ID. The following examples show you how
to create and use your own directories for easier file management.

5.7.1 Creating a New Directory

Whenever you wish to group a series of files under a single topical structure, you normally
create a new directory in which to assign them before creating the files themselves. (You

can also move existing files under a new directory name by vsing the RENAME or COPY
commands.}

You create new directories by using the CREATEDIR command to specify a list of
directory names for the new directories. You will find it easier to keep track of both your
directories and files if you use directory names that give some hint of a directory’s topical
structure.

Assume you wish to create two directories named MYTEST and NUTEST under which
you will assign several practice files. Enter the following command:

-createdir MYTEST,NUTEST <CR> SR
MYTEST, directory createdo
NUTEST, directory created"

Once you create directories and data files, you can enter their pathnames in either
lowercase or uppercase characters in subsequent commands; the Human Interface
commands are not case sensitive.

5.7.2 Referring to a Directory

After you create a new directory, all named files or directories that you assign to that
directory will have a hierarchical relationship to this "parent” directory. This relationship
to the parent is called a path. When you wish to access any file or other directory
assigned to the parent, you must specifically identify the path in the form of a pathname
in your command.

Operator’s Guide 5-11

HUMAN INTERFACE EXAMPLES

For example, assume your default directory has a directory named NUTEST under which
you have another directory named SAMP. SAMP, in turn, has a data file named TEST.
NUTEST is then the parent directory for the SAMP directory and SAMP, in turn, is the
parent for the TEST data file. In a command, the pathname for the SAMP directory
would be NUTEST/SAMP, where the slash characters separate the individual
hierarchical components of the pathname. The pathname for the TEST data file would be
NUTEST/SAMP/TEST.

If the files are contained in your default directory, you can refer to them without
specifying a logical name as a prefix. When you enter the pathname:

NUTEST/SAMP/TEST

the Human Interface automatically appends the prefix :$: to the beginning. However, if
the files are contained in a directory other than your default directory, you must enter the
complete pathname for the file. For example, if the files reside on a device whose logical
name is :AD3:, you must include this logical name as the prefix portion of the pathname,
as follows:

:AD3:NUTEST/SAMP/TEST

If you omit the :AD3: portion, the Human Interface assumes the files reside in the default
directory.

5.7.3 Adding New Entries to a Directory

Previous data file examples in this chapter used the default directory (as configured for
your system) for all file creation and access. Consequently, each example that created a
new file or accessed an existing file specified only the last component of the file’s
pathname; it did not need to specify a logical name or intermediate pathname
components. However, whenever you wish to create a new data file to be assigned to a
specific directory, you must precede the filename with the directory name and separate
the two names with a slash (/}, as described in the previous subsection. You might also
need to specify a logical name, if there Is a logical name assigned to part of the pathnamec.
Such a case is when you are copying across volume boundaries (discussed later in this
chapter).

3-12 Operator’s Guide

HUMAN INTERFACE EXAMPLES

For example, assume you wish to create files named SAMP1 and SAMP2 and assign them
to the MYTEST directory (MYTEST resides in your default directory). Enter the

following commands:

i: to mytest/samp

Remember that once you have added files to a specific directory, every subsequent
operation involving those files must specify a preceding directory name and the slash
separator (unless you change your default directory, as described in a later section). For
example, assume you want to delete files SAMP1 and SAMP2 from the MYTEST
directory. You might enter the following command:

delete mytest/sampl,samp2 <CR>
mytest/sampl, deleted N
samp?; "f1le does not exist

The Human Interface issues the "file does not exist" message for SAMP2 because it
looked for the file in your default directory instead of the MYTEST directory. The
correct command line entry should have been:

so that the Human Interface would search the correct directory for each listed file.

5.7.4 Creating a Directory Within a Directory

In the same manner that you create new directories in your default directory, you can also
create new directories in other directories, thereby expanding the file hierarchy. For
example, assume you have data files ALPHA, BETA, and GAMMA assigned to the
MYTEST directory and now wish to add a new directory file named URTEST to the
directory. Enter a CREATEDIR command, as follows:

Operator’s Guide 5-13

HUMAN INTERFACE EXAMPLES

Now, assume you wish to create a new data file named NOMOR and assign it to the
URTEST directory. Enter the following COPY command:

The "MYTEST/URTEST" sequence is the path from your default directory to the
URTEST directory, and the "MYTEST/URTEST/NOMOR" sequence is the path from
your default directory to the NOMOR file. When you use file-handling commands, you
must always specify a path to the file, either a path from your default directory to the file,
or a path from some other known point (such as from the root directory for another
device). For example, assume you have another data file in URTEST named SUMOR
and wish to list both NOMOR and SUMOR on the console screen. Enter the following
command and specify the pathname for each file:

test/urtest/sumor <CR>

5-14 Operator’s Guide

HUMAN INTERFACE EXAMPLES

If the directory MYTEST resides on a device (for example, :F6:) other than your default
device, you would specify the previous command as follows:

nononon .
nononon
:f6:mytest/urte
sumsumsum
- SUMS UMSUM '
:f6:mytest/urtest/sumor copled TO :co:

You can also spccify file operations involving two or more different directories, and these
directories need not be on the same path. Assume you wish to list the ALPHA file from
MYTEST and a file named DIFF on a directory path ONE/MOR. Enter the following

command:

-copy mytest/alpha,one/mor/diff <CR>
ddada
aadaa
mytest/alpha copied TO
YYyyy

YIYYYy
one/mere/diff copied TO

M ol 1

a1+ SRR

5.7.5 Listing Directories

Previous examples have shown you how to list the contents of data files by specifying a
directory pathname in a COPY command. However, you should not use the COPY

command to list the contents of directories, because COPY lists the directory as though it

were a data file. Instead, use the DIR command to list the directory’s catalog of files as
follows:

-dir mytest <GR>
- 01 JaN 87 00:00:00 _
- DIRECTORY OF mytest ON VOB
. alpha beta gai

See the DIR description in Chapter 4 for examples of the available listing formats.

QOperator’s Guide

5-15

HUMAN INTERFACE EXAMPLES

5.7.6 Moving Files Between Directories

There may be situations when you wish to reorganize a large group of existing files under
new headings (directories). You can copy files from one directory to another by using the
COPY command. For example, assume you wish to copy files ALPHA, BETA, and
GAMMA from your default directory to the existing directory MYTEST. Enter the
following command line, using the QUERY parameter (optional):

COPIE “T0 MYTEST/gamma

Assume you later decide to move file ALPHA back to your default directory. You need
not specify the default directory in the new pathname for ALPHA. Enter the following
command:

Any subsequent operations involving file ALPHA would only require the file name. For
example:

5-16 Operator’s Guide

HUMAN INTERFACE EXAMPLES

5.7.7 Deleting a Directory

You delete unused directories from secondary storage by using the DELETE command.

However, the Human Interface protects you from accidentally destroying valuable files by

refusing to delete a directory that is not empty. For example, assume your default
directory contains files FILE1, FILE2, FILE3, and directory MYDIR containing the file
NODEL. Now suppose you want to delete the files in your default directory, but you
accidentally enter:

The DELETE command will only delete the files but not the directory MYDIR because it

is not empty. You will see the following display on your screen:

ilel, dele

ilez. deleted
ile3, deleted

At this point you should list the MYDIR directory by using the DIR command to
determine the contents of MYDIR, as follows:

-dir mydir <Cis

01 JAN 87 00:00:00
DIRECTORY OF mydir ON VOL
NODEL -

You now have two options. You can use the RENAME or COPY commands to move any

files to be saved to a different directory, or you can use the DELETE command to delete
the entire contents of MYDIR before deleting the directory.

Assume you wish to move NODEL to the NUTEST directory so that MYDIR itself can
be deleted. Enter the following commands:

e§t/nodel <CR>

-rename mydir/nodel to. mut
utest/nodel

-~ mydir/nodel rename

QOperator’s Guide

5-17

HUMAN INTERFACE EXAMPLES

The RENAME command automatically changes the NODEL pathname from the
MYDIR directory to the nutest directory, making MYDIR empty.

5.7.8 Changing Your Default Directory

Suppose your default directory contains a directory called MYTEST which contains
another directory called URTEST which in turn contains several data files called MOR,
SUMOR, STILMOR, and NOMOR. If you plan to manipulate these data files
extensively, your Human Interface commands can become very cumbersome, due to the
length of the pathnames involved.

For example, suppuse you wish to copy the data files to files called ALPHA, BETA,
DELTA, and GAMMA in the same directory. The command to do this is

't':/urtest/sumor & <Cl
t/urtest/nomor to & ~<C‘R>--
urtest/beta, & <CR>

If there are more levels in the directory structure, your commands can become even
longer.

To eliminate some of these long pathnames, you can use the ATTACHFILE command to
change your default directory to be a directory closer to the level of the files with which
you are working. To make the previous command shorter, you could change your default
directory to the URTEST directory, as follows:

Y _...hfile mytest/urtest <CR>
mytesit/urtest attached AS :§:-

Now, when you make references to files without specifying the entire pathname, the
Human Interface assumes that they reside in the URTEST directory, not your previous
default directory. Therefore, to perform the same operation as in the previous COPY
command, you could now enter the following command:

You can use the ATTACHFILE command to change your default directory to any
directory that you wish, so that you can manipulate the files in that directory more easily.
To return to your original defauit directory, enter the following command:

5-18 Operator’s Guide

HUMAN INTERFACE EXAMPLES

o -attachf“
=E HOME

This command uses the default parameters and has the same effect as "ATTACHFILE
:HOME: AS :§:". The :HOME: logical name represents your original default directory;
therefore the command returns :$: to its original value.

If you use several directories at one time, you may want to use the ATTACHFILE
command to assign short logical names to these directories and thus, reduce the length of
the pathname you need to enter each time you specify a directory. For example, you may
assign the logical name :MY: to the MYDIR/NEWDIR directory as follows:

“.attachfile mydir/mewdir as :my: <CR>

pydir/newdir dttached AS :MY:

From now until you logoff you can refer to files in the MYDIR/NEWDIR directory with
the logical name :MY': as the prefix.

5.8 RENAMING FILES AND DIRECTORIES

The most direct method to save the contents of a file or directory but change its pathname
is to use the RENAME command. To make the process easier to follow, this section
discusses the renaming of files and directories separately.

5.8.1 Renaming Files

Assume you wish to change the name of file ALPHA to a new name of OMEGA, where
OMEGA does not already exist. Enter the following command:

-rename -alpha to omega <
alpha renamed TO omega

The ALPHA pathname is automatically deleted from the system when the RENAME
command is executed. You can also rename lists of files to new pathnames In this case, it
is useful to include the QUERY parameter in your command line to make certain that
your old pathnames and new pathnames are matched up in the way you intend.

Operator’s Guide 5-19

HUMAN INTERFACE EXAMPLES

5-20

Assume you wish to rename files ALPHA, BETA, and GAMMA to TOM, DICK, and
HARRY respectively. Enter the following command sequence:

Remember that when using the RENAME command, you must always have a one-for-one
match of pathnames between the new list and the old file list. For example, more old
pathnames than new pathnames would cause the following exchange at the terminal:

beta to tom <CR>
énamed- TO tom
ilready exists, DELETE?

Similarly, specitying fewer old pathnames than new pathnames would cause the following
exchange:

So far, these RENAME examples have used the TO parameter to give new names to
existing files. However, you can also use the OVER preposition with RENAME. The
primary purpose of OVER is to move data from one named file over the data in another
existing file. This use of the OVER preposition matches the action of the OVER
preposition in the COPY command with one important distinction. RENAME
automatically deletes the input file when the command is executed.

Be careful here! It’s easy to get into semantic confusion when using the OVER
preposition in a RENAME command. Just remember a few simple rules:

+ Use the pathname of the data to be moved to a different but existing pathname as the
input parameter; that is, on the left-hand side of the OVER preposition. This
pathname will be deleted when the command is executed.

» Use the pathname that receives the input data as the output parameter; that is, on the
right-hand side of the OVER preposition. The previous contents of this file will be
replaced when the command is executed.

Operator’s Guide

HUMAN INTERFACE EXAMPLES

For example, assume you have a file named ABLE whose contents consist ot the data line
aaaaa, and another file named BAKER whose contents consist of the data line bbbbb.
You wish to rename ABLE with the name BAKER. Enter the following command:

-rename able over baker <CR>

*'ble renamed OVER baker

Now display the contents of the file previously named ABLE but now named BAKER:

-copy baker <CR>
aaaaa - - '
baker copied TO™

The previous contents of BAKER have been deleted, and pathname ABLE has been
deleted from its directory. You can also use the TO preposition to rename files with
other existing pathnames. Using TO might be slightly less confusing but you must enter
extra keystrokes. For example, assume you wish to rename ALPHA and BETA with the
existing file names GAMMA and DELTA. Enter the following command:

“:+* -rename alpha,beta to gamma,delta <CR>

. gamma, already exists, DELETE? <CR>:

~ “alpha renamed T0 gamma ’ -
delta, already exists, DELETE? y <CR>¥
beta renamed TO delta B

5.8.2 Renaming Directories

A directory can be renamed to a new pathname on the same volume (but not to an
existing pathname). Assume you have a directory whose pathname is ALPHA/BETA
and you wish to rename it with a new pathname of ALPHA/BEE. Enter the following
command:

-rename alph&/beta to ALPHK/BEE?ECR>

-dir alpha/beta <CRS
alpha/beta, does not exist

Operator’s Guide

HUMAN INTERFACE EXAMPLES

Be careful when renaming directories! The last message explains the consequences of
renaming a directory to a new pathname. ONCE YOU RENAME A DIRECTORY,
ALL FILES LISTED UNDER THAT DIRECTORY WILL ALSO HAVE THEIR
PATHNAMES CHANGED. If your system has other programs that use data files that
are listed under the old directory name, those programs will never find the files. In such a
case, you must either rename the directories to their original names or modify the
programs.

In summary, the distinctions between using the RENAME and COPY commands are as
follows:

o When you use COPY to move the contents of an existing file TO a new file or OVER
an existing file, the input file still exists.

o When you use RENAME to move the contents of an input file TO a named new file
or OVER an existing file, the input pathname is automatically deleted,

5.9 MOVING FILES ACROSS VOLUME BOUNDARIES

You can use all Human Interface file-handling commands except RENAME to
manipulate files across volume boundaries. That is, you can copy files or directories from
one diskette or disk platter to another one mounted on a different drive. The restriction
against using RENAME across volume boundaries is intended for the protection of files
against accidental deletion.

You access a ditferent volume by entering the logical name for the device (the drive on
which the volume is mounted) as the first item in the pathname. For example, assume
you have a volume mounted on a drive whose logical name is :f1:. Further assume you
wish to list the root directory for that volume to see what directories and data files you
have on the volume. Enter the following command:

Assume you wish to copy file ABLE from this volume mounted on :fl: to the MYTEST
directory (which resides in your default directory). Enter the following command:

5-22 Operator’s Guide

HUMAN INTERFACE EXAMPLES

If you then wish to delete files ABLE and BAKER from the :f1: volume, simply enter the
command:

delete :flidble,:fl:baker <CR>
fl:able, deleted

fl:baker, de’}.éted

Now, assume the following conditions:

* You have two data files on the :f1: volume with the pathnames STATS/SALES/FEB
and STATS/SALES/MAR.

+ You wish 10 merge both files to a new file with the pathname
MYTEST/PEEK/SUBTOT on your system’s default volume.

Enter the following command:

‘-copy :fl:stats/sales/feb, :fl:stats/sales/mar & <CR> ..
*¥to mytest/peek/subtot <CR> o ' o
:fl:atdts/sales/feb copied TO myte:

+fl:svars/sales/mar copied AFTER .

Note that a volume prefix must be specified for each pathname in any command that
crosses volume boundaries. A volume uses the prefix of the drive on which it is mounted.

5.10 FORMATTING A NEW VOLUME

Whenever you wish to use a new volume on a secondary storage device (such as a
diskette, disk platter, or bubble memory), you must format the volume before you can
write any information in it. Assume you are going to place a new 5.25-inch diskette in a
disk drive and attach it with the logical name :d:, which you have attached with the
ATTACHDEVICE command as a named device.

Operator’s Guide 5-23

ITUMAN INTERFACE EXAMPLES

Enter the following command:

-format 1di<CRS
i+ -velume () will be formatted as a

.I.:"::';granularlty - 512 .map start =301
interleave : gides =2
files S density:. = do

extens ions iz

disk size ='Hini (5. 25")

volume formatted

This formatting example exercised all the default options. It did not specify a volume
name as a parameter of FORMAT. A volume name is not required; however, for
diskettes, a volume name gives you a method for identifying a volume in case the stick-on
label on the diskette gets lost or destroyed. You need only insert the disk in a drive and
enter a DIR command for that drive to get a directory listing that specifies the volume
name.

The GRANULARITY, INTERLEAVE, EXTENSIONSIZE, MAPSTART, and FILES
parameters tell the FORMAT command how you want the physical space (for instance,
disk surface space) on the volume allocated and accessed for maximum efficiency. The
default parameters caused the example to be formatted with the following attributes:

+ Since the device is attached as a named device, the NAMED parameter is the default
with FORMAT. It specifies that you will be using the volume only to handle named
files and directories. If you specified the PHYSICAL parameter, the entire volume
would be treated as a single, large physical file. Once you define the volume as
NAMED or PHYSICAL, you can only use it for that purpose.

+ The GRANULARITY parameter specifies the minimum number of bytes to be
allocated for each increment of file size on the volume. The default granularity is the
granularity of the physical device. Once the volume granularity is defined, it is applied
1o every file you create on the volume.

For example, assume the default volume granularity for your device is 1024 bytes.
Each time you create a new file on the volume, the I/O System automatically allocates
1024 bytes of primary storage to that file, whether or not the file requires the full 1024
bytes. If the size of your file exceeds 1024 bytes, the 1/0 System will increment your
file size by still another block of 1024 bytes, and so on, until the end-of-file is reached.

5-24 Operator’s Guide

HUMAN INTERFACE EXAMPLES

e The INTERLEAVE default specifies that you want an interleave factor of 5. The
interleave factor defines the number of physical sectors that occur between sequential
logical scctors. This value maximizes access speed for the files on a given volume,
depending upon the intent of the volume and the device configuration of your system.

For example, an interleave value of 5 for a flexible disk system means that, for each
file, the [/O System will read every fifth sector on the diskette, starting from an index
ol 1 (other hard disk systems may be different, depending on your hardware
configuration). Therefore, the /O System does not need to wait for the disk to make
a complcte revolution before it accesses the next sector; the next sector by an
increment of 5 is ready to be accessed for read/write by the time the first accessed
sector has been processed.

Note that the INTERLEAVE is the only optional parameter that is meaningful for
volumes formatted for PHYSICAL files; the FILES, EXTENSIONSIZE, and
GRANULARITY options are ignored in FORMAT commands that specify a
PHYSICAL file format for the volume,

s The default FILES parameter specifies that you wish to create a maximum of 200 user
files on the volume. Although the actual number of files you can specify is 1 through
65,528, at a practical level, one of your determining factors will be the incremental file
size you specify in the GRANULARITY parameter.

e The default EXTENSIONSIZE parameter specifies that you wish to create three
bytes of extension data for each file. The Human Interface requires that at least three
bytes of extension data be available. Other system programs included in your system
may require larger values.

o The MAPSTART gives the volume block number where the fnode and map files start.
If you do not specify a number, the Human Interface places the fnode and map files in
the center of the volume.

5.10.1 iRMXe - INDX Compatible Diskettes

It is possible to format a diskette with iRMX 11 that can be read by the iINDX Operating
System. Use the following parameters when attaching and formatting the diskette:

Operator’s Guide 5-25

HUMAN INTERFACE EXAMPLES

5.11 DISKETTE SWITCHING PROCEDURES

If your system contains 5.25-inch diskette drives, you might need to perform special
procedures when switching diskettes.

Most 5.25-inch diskette drives are unable to signal the operating system when an operator
changes diskettes. Therefore, you must always perform the following steps when changing

diskettes:

1. Before removing the first diskette, invoke the DETACHDEVICE command.

2. Remove the first diskette and insert the replacement diskette.

3. Invoke the ATTACHDEVICE command (or an alias) to gain access to the new

diskette.

If you don’t follow this procedure, the operating system assumes that the first diskette is
still in the drive. At some point it will update the diskette’s directory from the
information it maintains in memory. Because the directory information it writes to disk
applies to the previous diskette, all the directory entries and file pointers will be wrong,
causing the diskette to be unusable.

5-26 Operator’s Guide

6.1 INTRODUCTION

Every terminal connected to an iRMX II application system must be able to communicate
with the system. As stated in Chapter 1, the initial program provides that means of
communication. The iRMX I Human Interface provides a standard CLI with line-editing
features as its initial program. However, systems that do not include the standard CLI or
a standard CLI with user extensions (see the Extended iRMX H Human Interface User’s
Guide) can communicate with the system and gain access to linc-editing features by using
the Terminal Support Code feature of the Basic 1/O System.

The Terminal Support Code is a software package that interfaces to terminal device
drivers to provide terminal communication for systems that include the Basic I/O System.
It is available to all application programs and can be used with all the Human Interface
commands. However, some of the Terminal Support Code features cannot be used when
you are issuing CLI commands.

The Terminal Support Code provides a type-ahead feature and a set of line-editing and
control characters that give you the basic editing and control functions you need when
entering text at a terminal. You can use these characters in addition to the Human
Interface commands. This chapter discusses, along with the Terminal Support Code, the
line-editing features and control characters which are available. However, the Terminal
Support Code contains many features other than those discussed in this chapter. Refer to
the Extended iRMX II Device Drivers User’s Guide for information about the other features
of the Terminal Support Code.

6.2 TYPE-AHEAD

When you enter characters at the terminal, the type-ahead feature allows you to enter a
number of lines at one time. The Terminal Support Code sends the first line to the
operating system for processing and stores additional lines in a type-ahead buffer. It
sends the next line in the buffer to the operating system after the operating system
finishes with the first line. If the type-ahead buffer becomes full, the Terminal Support
Code sounds the terminal bell and refuses to accept input.

(For an explanation of how the CLI uses this feature, see Chapter 3.)

QOperator’s Guide

TERMINAL SUPPORT CODE

6.3 CONTROLLING INPUT FROM A TERMINAL

The Terminal Support Code provides several characters that you can enter to control and
edit terminal input. Some of these characters correspond to single keys on your terminal
(such as carriage return or rubout). For others, called control characters, you must press
the CTRL key, and while holding it down, also press an alphabetical key. This manual
designates control characters as follows:

CONTROL-character

The editing and control characters are processed by the Terminal Support Code. With
the exception of the line terminator, they are not normally included in the input line that
is sent to the operating system.

The control characters listed in this section are the default characters. Each can be
replaced with a different character by means of a selection procedure described in the
Extended iRMX II Device Drivers User’s Guide. The default editing and control characters
for terminal input include:

CARRIAGE RETURN or Terminates the current line and positions the

LINE FEED cursor at the beginning of the next line.
Entering either of these characters adds a
carriage return/line feed pair to the input line.

RUBOUT Deletes (or rubs out) the previous character in
the input line. In response to the RUBOUT,
your terminal display changes in one of two
ways, depending on the configuration of the
Terminal Support Code. In one configuration,
each RUBOUT removes a character from the
screen and moves the cursor back to that
character position. In the other configuration,
each RUBOUT echoes the deleted character
back to the terminal. In the second
configuration, also called hard-copy mode, the
Terminal Support Code surrounds the echoed
characters with the "#" character to distinguish
the echoed characters from the surrounding
Lext.

6-2 Operator’s Guide

CONTROL-p

CONTROL-r

CONTROL-u

CONTROL-x

CONTROL-z

Operator’s Guide

TERMINAL SUPPORT CODE

A "quoting" character, which removes, from a
control character that immediately follows it,
any meaning that is special to the Terminal
Support Code. CONTROL-p causes the next
character to become a literal, causing it to be
sent on to the operating system, even if it is an
input control character that the Terminal
Support Code understands. All input control
characters sent to the operating system in this
manner are not processed as control characters.
Output control characters (such as
CONTROL-s, and CONTROL-q) perform their
special functions even if preceded by a
CONTROL-p. The CONTROL-p does not
echo at the terminal.

If the current input line is not empty, this
character reprints the line with editing already
performed. This control character enables you
to see the effects of the editing characters
entered since the most recent line terminator,
If the current line is empty, this character
reprints the previous line, up to the point of the
line terminator. Additional CONTROL.-r
characters display previous lines, until there are
no more lines in the type-ahead buffer.
Subsequent CONTROL-r characters display the
last line found. This use of CONTROL-r is a
convenient way to repeat a previously-entered
command.

Discards the entire contents of the type-ahead
buffer.

Discards the current input line. This character
echoes the "#" character, followed by a carriage
return/line feed, at the terminal.

If entered as the only character in a line, this
character specifies an end-of-file, terminating a
read from the terminal. If entered on a non-
empty line, it terminates the line without
appending a carriage return/line feed pair to
the line.

6-3

TERMINAL SUPPORT CODE

6.4 CONTROLLING OUTPUT TO A TERMINAL

The following section applies to both the standard CLI and the Terminal Support Code.
The modes and control characters described here are recognized by the standard CLI and
are used in the same way as described for the Terminal Support Code.

When sending output to a terminal, the Terminal Support Code always operates in one of
four modes. You can switch the curreat output mode dynamically to any of the other
output modes by entering output control characters. The output modes and their
characteristics are as follows:

Normal The Terminal Support Code accepts output from the application
system and immediately passes the output to the terminal for
display.

Stopped The Terminal Support Code accepts output from the application

system, but it queues the output rather than immediately passing it
to the terminal.

Scrolling The Terminal Support Code accepts output from the application
system, and it queues the output as in the stopped mode.
However, rather than completely preventing output from reaching
the terminal, it sends a predetermined number of lines {called the
scrolling count) to the terminal whenever the operator enters a
control character at the terminal.

Discarding The Terminal Support Code discards output from the application
system without displaying or queuing the output.

‘The following control characters, when entered at the terminal, change the output mode
for the terminal. Like the input control characters, these are defaults. They can be
changed by a selection process described in the Extended iRMX II Device Drivers User's
Guide.

CONTROL-o0 Places the terminal in discarding mode if the terminal is in a mode
other than discarding mode. If the terminal is already in discarding
mode, the CONTROL-o character returns the terminal to its
previous output mode.

CONTROL-q Resumes previous output mode. If you enter this character after
stopping output with the CONTROL-s character, output continues
in the same manner as before you entered the CONTROL-s (that
is, if your terminal was in scrolling mode before you entered
CONTROL-s, output resumes in scrolling mode). Entering
CONTROL.-q at any other time places your terminal in normal
mode (that is, all output is displayed at the terminal without
waiting for permission to continue). Therefore, you can use
CONTROL.-q to reverse the effect of a CONTROL-w and get your
terminal out of scrolling mode.

6-4 Operator’s Guide

CONTROL-s

CONTROL-t

CONTROL-w

TERMINAL SUPPORT CODE

Places the terminal in stopped mode (stops output). You can
resume output without loss of data by entering the CONTROL-q
character. If the terminal is in discarding mode (as a result of a
CONTROL-o character), the CONTROL-s character has no effect

on output.

Places the terminal in scrolling mode and sets the scroll count to
one. This means that you must enter another CONTROL-t
character after each displayed line in order to continue the display.

Places the terminal in scrolling mode. In this mode, the terminal
displays output 18 lines at a time (usually, 18 lines fills 2/3 of the
the screen) and then waits for user input to continue. When you
enter another CONTROL-w character, the terminal displays the
next screen of information. The scrolling count is selectable; refer
to the extended iRMX II BASIC 1/0 USER’S GUIDE for more

information,

An additional control character is supported which, although it doesn’t affect the output
mode of the terminal, can affect output to the terminal. This character is:

CONTROL-

Flushes the type-ahead buffer and causes the operating system to
abort the currently-executing program. If you enter a Human
Interface command to initiate a program, you can generally enter

CONTROL-c to stop it.

For an overview of the control characters, refer to Table 6-1.

Operator’s Guide

6-5

TERMINAL SUPPORT CODE

Table 6-1. Overview of Default Control Characters

Characters Results

Default Input Control Characters

carriage return or terminates current line and puts cursor at start of next line
tine feed

rubout deletes single character

CONTROL-p removes any speclal meaning from input control characters

except CONTROL-c; has no affect on output control characters ‘.

CONTROL-r reprints line

CONTROL-u flushes type-ahead huffer

CONTROL-x discards current input line :

CONTROL-z specifies an end of file
Default Qutput Contrel Characters ‘I

CONTROL-o places terminat in discarding mode

CONTROL-q resumes output mode

CONTROL-s stops output

CONTROL-t scrolls output one line at a time

CONTROL-w scrolls output one screen at a time

CONTROL-¢ aborts currently executing program .

6.5 ESCAPE SEQUENCES

6-6

The Terminal Support Code also accepts escape characters that allow you to further
define your terminal. (For example, you could set the scroll count or switch your terminal
into transparent mode so that control characters have no effect.) You can enter these
escape characters from the terminal, or you can write them to the terminal from a
program. For information about these escape codes, refer to the Extended iRMX 1 Device
Drivers User’s Guide.

Operator’s Guide

TERMINAL SUPPORT CODE

NOTE

This feature, like many of the other features of Terminal Support Code,
does not apply when using the Human Interface CLI as your initial
program.,

Operator’s Guide 6-7

A.1 INTRODUCTION

This appendix provides a complete list of the IRMX II condition codes that can occur
during system operations. The condition codes are divided into two categories:

¢ environmental conditions

& programmer errors

A programmer error is a condition that your program can prevent whereas, an
environmental condition is caused by a problem in the operating system that you cannot
control.

Table A-1 lists the condition codes by layer with their numeric values and mnemonics.

In addition, a separate section at the end of this appendix lists condition codes that exist
in iIRMX L.7, but do not exist tn iRMX I1.2 or iIRMX I1.3.

Operator’s Guide

CONDITION CODES

Table A-1, Conditions And Their Codes

Hex Decimal

i Category/Mnemonic Code Code Description
|
L
ESOK OH 0 The last system call that returned a status was
successful.

Nucleus Environmental Conditions

ESTIME 01H 1 A time limit (possibly a limit of zero time) expired
without a task's request being satisfied.

E$MEM o2H 2 There is not sufficient memory available to satisfy
atask’s request.

E$BUSY 03H 3 Another task currently has access to the data
protected by a region.

C3LIMIT 04H 4 A task attemptod an operation which, if it had
been successful, would have violated a Nucleus-
enfarced limit.

ESCONTEXT 05H 5 A system call was issued out of context or the _
operating system was asked to perform an i
impossible operation.

ESEXIST 0eH 8 A token parameter bas a value which is not the
token of an existing cbject.

ESSTATE O7H 7 A task attempted an operation which would have
caused an impossible transition of a task’s state.

ESNOTSCONFIGURED 08H 8 This system call is not pan of the present
configuration.

E$INTERRUPT$SATURATION 0OSH 9 An interrupt task has accumulated the maximum
aflowable number of SIGNALSINTERRUPT
requests.

A-2 Operator’s Guide

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimal
Category/Mnemonic Code Code Description
ESINTERRUPT$OVERFLOW 0AH 10 An interrupt task has accumulated more than the
i maximum allowable amount of
! SIGNALSINTERRUPT requests.
E$TRANSMISSION 0BH 11 A NACK, timeout, or bus error occurred.
ESSLOT OCH 12 There are no available GDT slots.
E3DATASCHAIN QDH 12 A data chain has been retumed. The TOKEN

points to the beginning of the data chain block,

1/0 System Environmental Congitions

ESFEXIST

E$FNEXIST

ES$DEVFD

E$SUPPORT

ESEMPTYSENTRY

E$DIRSEND

ESFACCESS

ESFTYPE

20H

21H

22H

23H

24H

25H

26H

27H

32

7

39

The specified file already exists.

The specified file does not exist.

The device driver and file driver are incompatible,

The combination of parameters entered is not
supported.

The specified entry in a directory file is empty.

The specified directory entry index is beyond the
end of the directory file.

The connection does not have the correct access
to the file.

The requested operation is not valid for this file
type.

Opcrator’s Guide

A-3

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimal

Category/Mnemonic Code Code Description
{
E$SHARE 28H 40 The requestad operation attempted an improper |
kind of fila sharing.
E$SPACE 29H 41 There is no space left on the volume.
E$IDDR 2AH 42 An invalid device driver request occurred.
ESIO 2BH 43 An 1 /O error occurred.
ESFLUSHING 2CH 44 The connection specified in the call was deleted

before the operation completed.

E$ILLVOL 2DH 45 The device contains an invalid or improperly-
formatted volume.

ESDEVSOFFLINE 2EH 48 The device being accessed is now offline.

E$IFDR 2FH a7 An invalid file driver request occurred.

E$FRAGMENTATION 30H 48 The volume is too fragmented for a file to be
extended.

E$DIRSNOTSEMPTY 31H 49 The call is attempting to delete a directory that is
not empty.

E$NOTSFILESCONN 32H 50 The connection parameter is a device connection,

not a file connection.

ESNOTSDEVICESCONN 33H 51 The connection parameter is not a device
connection.

ESCONNENOTSOPEN 34H 52 The cornection is not apen for reading, writing or
updating.

A4 Operator’s Guide

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Category/Mnemonic

Hex

Code

Decimal
Code

Description

ESCONNSOPEN

E$BUFFERED$CONN

ESOUTSTANDINGSCONNS

E$ALREADYSATTACHED

E$DEVSDETACHING

ESNOTSSAMESDEVICE

ESILLOGICALSRENAME

ESSTREAMS$SPECIAL

ESINVALIDSFNODE

ESPATHNAMESSYNTAX

35H

36H

I7H

38H

39H

3AH

3BH

3CH

3DH

3EH

53

54

55

56

57

59

61

The task attempted to open a connection that is
already open,

The specified connection was opened by the
EIOS, and used by tha BIOS which is not aflowed.
Once you have an open connection, you must
manipulate it with a system call provided by the
same 1/O System.

A soft detach was specified, but connections to
the device still exist.

The specified device is already attached.

The file specified is on a device that the operating
systam is in the process of detaching.

The existing pathname and the new pathname
refer to different devices. You cannot
simultaneously rename a file and move it to
anather device.

The call is attempting to rename a directory tc a
new path containing itsalf.

A stream file request is out of context. Eitheritis a
query request and another query request is
already queued, or it is a satisfy request and either
the request queue is empty or a query request is
queued.

The connection refers to a file with an invalid
fnode. You should delete this file.

The specified pathname contains invalid
characters.

Opecrator's Guide

A-5

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimai
i Category/Mnemonic Code Code Description
i_

E$SFNCDESLIMIT 3FH 63 The volume already contains the maximum
number of files. No more incdes are available for
new files.

ESLOGSNAMESSYNTAX 40H 64 The specified pathname starts with a colon {:}, but
it does not contain a second, matching colon; the
specified pathname has more than 12 characlers
or contains invalid characters.

E$CANNOTS$CLOSE 41H 65 The buffers cannot be written to the device to
completa the | /O request.

ESIOMEM 42H 66 The Basic |/0 System has insufficient memory to ;
process a request. i

E$MEDIA 44H &8 The device containing a specified file is not on-
tina,

E$SLOGSNAMESNEXIST 45H 69 The specified path contains an explicit logical
name, but the Extended 1/0 System was unable
to find the name in the object directories of the
local job, the global job, and the root job.

ESNOT3OWNER 46H 70 The user who attempted to detach the davice is
not the owner of the device.

ESIO$JOB 47H 71 The Extended | /O System cannot create an {/0
job because the size specified for the object
directory is too smalll.

ESUDFSFORMAT 48H 72 The User Definition File is not in the right format.

ESNAMESNEXIST 49H 73 The user name specified in the call is not listed in
the User Definition File,

A-6 Operator’s Guide

CONDITION CODES

Table A-1, Conditions And Their Codes (continued)

i Hex Decimal
Category/Mnemonic Code Code Description

ESUIDSNEXIST 4AH 74 The user ID in the specified user object does not
match the ID listed in the User Definition File for
the corresponding user name,

E$PASSWORD$MISMATCH 4BH 75 The password specified in the call does not match
the one listed in the User Definition File for the
corresponding user name.

E$UDFS$IO 4CH 76 The User Definition File specified cannot be !
found. This helps you know when an error cada
came from a remote UDF and not ancther remote |

file.

ESIOSUNCLASS 50H 80 An unknown type of | /O error cceurred,

ESIO$SOFT 51H B1 A soft 1/0 error occurred. A retry might be
successful.

ESIO$HARD 52H 82 A hard 1/0 error occurred. A retry is probably
useless.

ESIOSOPRINT 53H 83 The device was off-line. Qperator intervention is
required.

ESIO$WRPROT 54H 84 The volume is write-protected.

ESIOSNOSDATA 55H 85 A tape drive attempted to read the next record, but
it found no data.

E$IOSMODE 56H 88 A tape drive attempted a read /write operation
before the previous write (read) completed.

Operator’s Guide A7

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimal
Category/Mnemonic Code Ceode Description

Application Loader Environmental Conditions

E$BADSHEADER 62H a8 The object file contains an invalid header record.

E$EOF 65H 101 The Application Loader encountered an
unexpected end-of-file whila reading a record.

E$NOSLOADER$SMEM 67H 103 There is insutficient memory to satisfy the memory
| requirements of the Application Loader.

ESNO$START 6CH 108 The Application Loader could not find the start
address.
EJOBSIZE 6DH 109 The maximum memory-pool size of the job being

loaded is smalier than the amount of memeory
required to load its object file.

ESOVERLAY 6EH 110 The overlay name does not match any of the
overlay mociille names.

ESLOADER$SUPPORT 6FH 111 The file requires features not supported by the
Application Loader as configured.

Human Interface Environmental Conditions

ESLITERAL 80H 128 The parsing buffer containg a literal with no
closing guote.
E$STRING$BUFFER 81H 129 The string to be returnad excesds tha size oftha

buffer the user provided in the call.

E$SEPARATOR 82H 130 The parsing buffer contains a command
Separator.

A-8 Operator’s Guide

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Dacimal
Category/Mnemonic Code Code Description
ESCONTINUED 83H 131 The parse buffer contains a continuation
character.
|
ESINVALIDSNUMERIC 84H 132 A numneric value contains invalid characters.
ESLIST B5H 133 A value in the value fist is missing.
E$WILDCARD 86H 134 A wild-card character appears in an invalid
context, such as in an intermadiate companent of
a pathname,
ESPREPOSITION 8rH 135 The command line contains an invalid preposition.
ESPATH 88H 136 The command line contains an invalid pathname,
E$CONTROLSC asH 137 The user typed a CONTROL-C to abort the
command.
ESCONTROL 8AH 138 The command line contains an invalid control,
ESUNMATCHEDSLISTS 88H 139 The number of files in the input and output
pathname lists is not the same.
ESINVALIDSDATE 8CH 140 The operator entered an invalid date,
ESNOSPARAMETERS 8DH 141 A command expected parameters, but the
operator didn’t supply any.
ESVERSION 8EH 142 The Human Interface is not compatible with the
version of the command the operater invoked.
EGETPATH$ORDER 8FH 143 A command called

CGETOUTPUTSPATHNAME before calling
CSGETSINPUTSPATHNAME.

Operator’'s Guide

A9

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimal
Category/Mnemaonic Code Cada Description

|
ESPERMISSION o0H 144 The user does not have permission to access the
requested resource.

ESINVALIDSTIME 91iH 145 The operator entered an invalid time.

UDI Environmental Conditions

ESUNKNOWNSEXIT OCOH 192 The program exited normally.

ESWARNINGSEXIT OC1H 193 The pregram issued warning messages.
ESERRORSEXIT 0C2H 194 The program detected arrors.

E$FATALSEXIT 0C3H 195 A fatal error occurred in the program.

ESABORTSEXIT 0C4AH 126 The operating system aborted the program. '

ESUDISINTERNAL 0Cs5H 197 A UDI internal error occurred.

Communications Systern Environmental Conditions

E$SCANCELLED OE1H 225 A SENDSRSVP transaction has been remotely
canceled.
ESHOSTSID OE2H 226 The host$id portion of the socket parameter does

not refer to an agent (board} that is currently in the
Message space.

A-10 Operator’s Guide

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimal
Category/Mnemonic Code Code Description

ESNOSLOCALSBUFFER QE3H 227 This error applies in the following two cases:

1) If the receive$type parameter indicates a
request message, the local port's buffer pool does
_ not contain a buffer large enough to hold the

i message so the RQ$RECEIVESFRAGMENT

j system call is required {message fragmentation).

2) If the receive$type parameter indicates a
response message, the RSVP buffer supplied in
the RQ$SENDSRSVP system calt is not large
enocugh to hold the response.

E$NOSREMOTE$BUFFER OE4H 228 The remote port's buffer poot does not have a
buffer large enough to hold the message and
message fragmentation is turned off.

ESRESOURCESLIMIT OQEEH 230 Either the number of simultaneous messages, or
simuitanecus transactions, has been reached.
These fields are set during system configuration.

_ E$TRANSSID CEBH 232 The specified transaction ID is not valid, This is
i the rsvp$trans$id that was sent in the initial
i SEND$RSVP call.

ESDISCONNECTED OESH 233 The port sending the message has previously

issued an RQ$CONNECT to a remote port. The
board on which the remote port is located has
been reset,

ESTRANSSLIMIT OEAH 234 A transmissicon resource limitation has been
encountered.

Nucleus Programmer Errors

E$ZERO$DIVIDE 800CH 32768 Atask attempted a divide in which the quotient
was larger than 16 bits.

Operator’s Guide A-11

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimal

Category/Mnemonic Code Code Dascription

E$OVERFLOW 8001H 32769 An overflow interrupt occurred.,

E$TYPE 8002H 32770 A token referred to an existing object that is not of |
the required type. |

E$PARAM 8004H 32772 A parameter that is neither a token nor an offset

has an invalid value,

| E$BADSCALL 8005H 32773 An OS extension received an invalid function
' code.
E$ARRAYSBOUNDS B8006H 32774 Hardware or software has detected an array
overfiow.
ESNDPSERROR 8007H 32775 A Numeric Processor (NPX) error has occurred.

0S5 extensions can return the status of the NPX 1o
the exception handier,

ESILLEGALSOPCODE 8008H 32776 The processor tried to execute an invalid
instruction.
ESEMULATORSTRAP BOO9H 32777 An ESC instruction was encountered with the

emulator bit set in the machine status word.

ESCHECKSEXCEPTION BODAH 32778 A Pascal task has exceeded the bounds cf a
CASE statement.

ESCPUSXFERS$DATASLIMIT BOOBH 32779 The NPX tried to access an address that is out of

segment boundaries.
E$PROTECTION 800DH 32781 A general protection error.
ESNOTS$PRESENT BOOEH 32782 A request has been made to load a segment

register whose segment is ot present.

A-12 Operator’s Guide

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimal
Category/Mnemonic Code Code Description
E$BADSADDR B00FH 32783 Tha logical address is illegal. Either the selector
does not point to a valid segment, or the offset is
not within the segment boundaries.
1/0 System Programmaer Errors
E$SNOUSER 8021H 32801 No default user is defined.
ESNOPREFIX 8022H 32802 No default prefix is defined.
E$SBADSBUFF 8023H 32803 lllegal usage of memory buffers in read or write
requests.
ESNOTSLOGSNAME 8040H 32832 The specified object is not a device connaction or
file connection.
E$NOTSDEVICE 8041H 32833 Atoken parameter referred to an existing objact
that is not, but shouid be, a davice connection,
ESNOTSCONNECTION B042H 32834 Atoken parameter referred to an existing object
that is not, but should be, a fila connaction,
Application Loader Programmer Error
ESJOBSPARAM 8080H 32884 The maximum memory poof size specified for the
joby is less than the minimum pool size specified.

Operator’s Guide

A-13

CONDITION CODES

Table A-1. Conditions And Their Codes (continued)

Hex Decimal
Category/Mnemonic Code Code Dascription

Human interface Programmer Errors

E$PARSES$TABLES 8080H 32896 There is an error in the internal parse tables.

E$JOBSTABLES 8081H 32897 An internal Human Interface table was overwritten,
causing it to contain an invalid value.

ESDEFAULTSS0O 8083H 32859 The default output name string is invalid.

ESSTRING 8084H 32000 The pathname to be returned exceeds 255
characters in length.

E$ERRCR$OUTPUT 8085H 32901 The command invoked by C$SEND$COMMAND
includes a calt to C$SENDSEOSRESPONSE, but
the command connection does not permit
CS$SENDSEQO$RESPONSE calls.

UDI Pregrammer Errors

E$RESERVESPARAM 80CBH 32966 The calling program tried to reserve memory for
mora than 12 fites or buffars.

E$OPENS$PARAM BOC7H 32967 The caliing program requested more than two
buffers when opening a file,

A-14 Operator’s Guide

CONDITION CODES

Table A-1, Conditions And Their Codes (continued)

Category/Mnemonic

Hex Decimal

Code Code

Description

Communication System Programmer Errors

ESPROTOCOL

E$PORTS$ID$USED

ESNUCSBADSBUF

80ECH 32992

BOE1H 32993

B0EZH 32994

The port specified in the port$tkn parameter is of
the signal type, not the data communication type.

The pont$id specified for a data transaction port is
in usa

The info$ptr is invalid or poirts to a buffer that is
net large enough.

A.2 OBSOLETE CONDITION CODES

The following condition codes exist in iRMX 1.7, but do not exist in iRMX I1.2 or iRMX
I1.3:

*

L

ESABSSADDRESS
ESBADSGROUP
E$BADSSEGDEF
E$CHECKSUM
ESFIXUP
ESIOSALTSASSIGNED
ESIOSNOSSPARES
ESNOSMEM
ESREL$FORMAT
ESRELSLENGTH
ESRELSTYPE
E$SEGSBOUNDS

Operator’s Guide

A-15

B.1 INTRODUCTION

The CLI is designed to run in several environments and with various terminals. The
characteristics of your environment/terminal are specified with configuration commands
in the :CONFIG: TERMCAP file. The parameters and control sequences that must be
specified for the CLI function keys are listed in Table B-1.

The iRMX II Operating System supplies a file (: CONFIG:TERMCAP) which includes
the default configuration commands with values for various terminals. The terminal types
configured in the :CONFIG:TERMCAP are listed here:

Terminal Name {as in file) Terminal Type
1510E Hazeltine 1510 with escape lead-in
1510T Hazeltine 1510 with tilda lead-in
ADM3A Lear Seigler ADM-3A
QVT102 Qume QVT102, in VT102 mode
TVI10P Televideo 910 Plus
TV950 Televideo 950
VT100 Digital Equipment Corporation VT100,

VT101, VT102

VT52 Digital Equipment Corporation VT52
WYSES0 Wyse 50
ZENTEC Zentec Zepher and Cobra

In addition to the terminals listed, you may also define a terminal by the name "ANY",
The "ANY" option applies to all terminal types, however, it has a limited number of
functions. Its main purpose is to provide compatibility with previous iRMX TT releases. Tt
also provides a generic terminal type as a starting point.

Operator’s Guide

B-1

TERMINAL SPECIFICATIONS

B.2 TERMINAL CONTROL SEQUENCES

Table B-1 lists the control sequences which must be used to define the CLI function keys.

Table B-1. Control Sequences

Codes Meaning
[

NAME = string string is the terminal name ||

Input Codes |,
AB= hhbh Sets <ESC>
AFCL= hhhh Sets <LEFT>
AFCR = hhhh Sets <RIGHT >
AFCU = hhhh Sets <UP>
AFCD= hhhh Sets <DOWN>
AFCH = hhhh Sets <HOME >
AR = hhhh Sets <RUBOUT >
AFXF = hhhh Sets delete character

<DELCH>
AFXA = hhbh Sets delete right <DELR>
AFXX= hhhh Sets delete left <DELL>
Output Codes

AFMB = hhhh Moves cursor to start of line
AFML= hhhh Moves cursor left
AFMR = hhhh Movaes cursor right
AFEK = hhhh Erases entire line
AFEL= hhhh Erases to the end of the line

Operator’s Guide

TERMINAL SPECIFICATIONS

The following legend provides an explanation of the symbols in Table B-1.

Symbol Meaning

hhhh One to four-byte hexadecimal number

string iRMX II string with a maximum of 7
characters

In addition to the symbols in Table B-1, there are two delimiting characters that are used
when defining the terminal specification file. These are

; Terminal specifications separator (optional)

!/ Terminal specifications terminator (after each terminal definition)

A null specification can he entered as part of any control sequence. In the case of a null
specification, the CLI tries to bypass the missing output character by simulating its
function. For example, if a terminal has no rubout character, you would enter:

AR=;

B.3 A SAMPLE DEFINITION FILE

The following example shows how to use the terminal definition file to define a terminal.
The example assumes you are entering data from a Digital Equipment Corporation
VT100 terminal. The values shown are the default values used by the CLI. Note that
blank characters between control sequences are optional.

NAME= VT100

AB= 1B4F53;AFCL~ 1B5B44;AFCR= 1B5B43:AFCU= 1BSB41;
AFCD= 1B5B42;AFCH= 1B5B50;AR- 7F;AFXF= ;AFXX- 18;
AFXA= 01; AFMB= OD;AFML~ 1B5B44:

AFMR= 1B3B43; AFEK= 1B5B324B;AFEL~ 1BS5B4B;//

In the example above, it is possible to use the PF4 function key for <ESC> (AB), and the
PF1 key for <HOME> (AFCH).

Opecrator’s Guide B-3

TERMINAL SPECIFICATIONS

If you are not sure which terminal your system will include, or if you need to be
compatible with previous iRMX II releases, you may want to define a terminal using the
ANY option as shown below.

NAME= ANY;

AB= 1B;AFCL= FF;AFCR= FF;AFCU= 12;

AFCD= QA;AFCH= FF;AR= 7F;AFXF= FF;AFXX= FF;
AF¥A- FF;

AFMB= OD;AFML= 08;AFMB=;

AFEK= ;AFEl= ;BELL- 07;//

A value of FF means the function is not available on this terminal. In the above example,
there is no key which performs the <HOME > function, the delete character, the delete
left and the delete right functions.

B-4 Operator’s Guide

! command 3-5, 6

:$: logical name 2-28

:BB: 2-27

:Cl: logical name 2-29

:CO: logical name 2-29

:CONFIG: 2-27
:CONFIG:ACCOUNT.LOG 4-8
‘CONFIG:LOGON.MSG 2-11
:CONFIG:SIGNON.MSG 2-8, 12
:CONFIG:TERMCAP 1-2, 2-46, 3-28
‘CONFIG:TERMINALS 2-6, 46, 47, 3-28
:CONFIG:UDF 2-43, 46, 49
:CONFIG:USER/username 2-46, 50
‘HOME: 2-28

LANG: 2-27

LP: 2-28

:PROG: 2-28

:PROG:ALIAS.CSD 2-10
:PROG:R?LOGOFF 2-13
‘PROG:R?LOGON 2-6, 9, 13

:SD: 2-28

:STREAM: 2-28

SYSTEM: 2-28

(UTILS: 2-28

‘WORK: 2-28

A

Abbreviating commands 3-8, 18

Accessing the Human Interface 2-5, 7, 10
ACCOUNTING command 4-6, 8

Adding users to the system 2-44

ADDLOC command 4-7, 12

ALIAS command 2-38§, 3-5, 8

Appending files 2-39, 41, 4-38, 5-8
ATTACHDEVICE command 2-26, 4-6, 16
ATTACHFILE command 2-20, 27, 28, 4-5, 26

Operator’s Guide

Index-1

INDEX

Attaching devices 2-33, 35, 4-16
Attaching files 4-26

Automatic baud rate recognition 2-7, 11
Automatic device recognition 2-33

B

BACKGROUND command 2-26, 3-5, 13
Background environment 2-26, 3-13, 24, 25, 29
BACKUP command 2-35, 4-6, 29

Bad track information 4-84

Batch files 3-31, 4-150

Baud rate recognition 2-7, 11

Bell warning 1-5

Bootstrap Loader 4-91

Bubble memory device types 2-32

C

Canceling background jobs 3-25
Cataloging logical names 2-26
CHANGEID command 3-5, 16
Changing user ID 3-16
Character matching 2-29, 30
CLI 1-1
Commands 3-1

'3.56

ALIAS 3-5,8

BACKGROUND 3-5, 13

CHANGEID 3-5, 16

DEALIAS 3-18

EXIT 3-5,20

Function keys 1-3

HISTORY 3.5,21

JOBS 3-5,24

KILL 3-5,25

Line editing 1-2

LOGOFF 3-5,26

Recalling previous commands 1-3, 4

SET 3-5,27

SUBMIT 3-5, 31

SUPER 3-5, 36

syntax 3-1

Terminal support 1-2

Index-2 Operator’s Guide

INDEX

CLI commands (cont.)

Environment 3-27

Prompt 3-30

Recalling previous commands 3-6, 21
Command line interpreter (CLI) 1-1
Commenting CLI commands 1-3
Commenting Human Interface commands 2-36
Communication between programs 2-14
Compatibility between IRMX® and iNDX diskettes 5-25
Condition codes A-1
Configurable features 2-2
Configuring users into the system 2-44
Continuing input lines 1-2
Control sequences for terminals B-2
Controlling input from a terminal 6-2
Controlling output to a terminal 6-4
Conventions iv, 3-3
COPY command 4-5, 38, 5-4
Copying files 2-39, 40, 4-38, 74, 157, 5-4, 16
CREATEDIR command 4-5, 42
Creating directories 4-42, 5-11, 13
Creating passwords 2-49, 4-113
Creating user names 2-49

D

DATE command 2-9, 4-7, 44
DEALIAS command 3-18

DEBUG commund 4-7, 48

Default directory 2-28, 5-18

Default prefix 2-28

Defining II)’s to the system 2-49
Defining initial aliases 2-10

Defining passwords 2-49

Defining terminals 2-47

Defining users to the system 2-49
DELETE command 4-5, 51, 5-10
Deleting directories 5-17

Deleting files 4-51, 5-10

Deleting jobs 4-98
DETACHDEVICE command 4-6, 53
DETACHFILE command 2-29, 4-5, 55
Detaching devices 2-33, 35, 4-53
Dectaching files 4-55

Device recognition, automatic 2-33

Operator’s Guide Index-3

INDEX

Devices 2-32

Attaching 4-16

Bubble memory 2-32

Detaching 4-53

Disks 2-32

Names 4-19, 20, 22

RAM disk 2-32

Tapes 2-32,4-143

Terminals 2-32
DIR command 4-5, 57
Directories 2-15, 4-42, 123, 5-10
Directory search path 2-38
Disk verification 4-66
Diskette switching in 5.25-inch diskette drives 5-26
Disks device types 2-32
DISKVERIFY command 4-6, 66
Displaying background jobs 3-24
Displaying current users 4-162
Displaying file contents 5-6
Displaying file version numbers 4-160
Displaying fixes in a file 4-163
Displaying terminal initialization status 4-95
DOWNCOPY command 4-5, 74
DUIB 2-33
Dynamic logoff procedure 2-13
Dynamic logon procedure 2-2, 5, 10, 11
Dynamic logon terminal 2-5, 10, 11
Dynamic logon terminals 2-45

E

Entering Human Interface commands 2-35
Error conditions A-1
Escape sequences 6-6
Examples
Appending files 5-8
Beginning a console session 5-2
Changing the default directory 5-18
Copying files 5-4
Creating a file 5-2
Creating directories 5-11, 13
Deleting a directory 5-17
Directories 5-10

Index-4 Operator’s Guide

INDEX

Examples (cont.)
Displaying the contents of a file 5-6
Formatting a new volume 5-23
Human Interface commands 5-1
Listing files and directories 5-15
Moving files 5-16
Moving files across volume boundaries 5-22
Pathnames 5-11
Renaming files and directories 5-19
Replacing existing files 5-6

EXIT command 3-5, 20

Extension data 4-83

F

File access 4-126
File creation 5-2
File fixes, displaying 4-163
File structure 2-13
Hierarchy 2-14, 15, 4-123
Internal system files 4-83
Listing 4-57, 5-15
Logical names 2-22, 23, 26
5 2-28,29
Devices 2-24
Files 2-25
Initial 2-27
Listing 4-107
Removing volumes from devices 2-29
Storage location 2-26, 27
Minimum structure needed to boot iRMX® 2-21
Named files 2-13
Pathnames for files 2-22
Physical files 2-14
Protected environment 2-53
Remote files 2-14
Restrictions 2-16
Start-up system 2-17
Stream files 2-14
Wild cards 2-29
File types 2-13
FORMAT command 2-33, 35, 4-6, 77
Formatting disks 4-77, 5-23
Function keys (CLI) 1-3

Operator’s Guide Index-5

INDEX

G

Global object directory 2-28
Granularity 4-85, 5-24
Group [D 2-50

H

Hierarchy of named files 2-14, 15
HISTORY command 1-4, 3-5, 21
Human Interface
Command name 2-37
Command syntax 2-35
Commands 4-1, 95
ACCOUNTING 4-6, 8
ADDLOC 4-7, 12
ATTACHDEVICE 4-6, 16
ATTACHFILE 4-5, 26
BACKUP 4-6, 29
COPY 4-38, 54
CREATEDIR 4-5, 42
DATE 4-7, 44
DEBUG 4-7, 48
DELETE 4-5, 51, 5-10
DETACHDEVICE 4-6, 53
DETACHFILE 4-5, 55
DIR 4-5, 57
DISKVERIFY 4-6, 66
DOWNCOPY 4-5,74
Error messages 4-1
FORMAT 4-6, 77, 5-23
INITSTATUS 4-6
JOBDELETE 4-6, 98
JUNK 4-5
LOCDATA 4-7, 100
LOCK 4-6, 105
LOGICALNAMES 4-7, 107
LOGOFF 4-6, 111
MEMORY 4-7, 112
PASSWORD 4-6, 113
PATH 4-7, 123
PAUSE 4-7, 125
PERMIT 4-5, 126

Index-6

Operator’s Guide

INDEX

Human Interface commands (cont.)
RENAME 4-5, 132, 5-19
RESTORE 4-6, 135
RETENSION 4-7, 143
SHUTDOWN 4.7, 144
SUBMIT 4-7, 150
SUPER 4-6, 151
Syntax 4-3
TIME 4.7, 152
UNLOCK 4-6, 155
UPCOPY 4-5, 157
VERSION 4-7, 160
WHOAMI 4-7, 162
ZSCAN 4-7, 163

Examples 5-1
Inpath and outpath lists 2-40
Prepositions 2-39

Image file integration into an existing application system 4-12, 100
INDX compatible diskettes 5-25

Initial file access rights 2-8, 10

Initial program 2-3, 8, 12, 13, 52, 6-1

INITSTATUS command 4-6, 95

Input pathnames 2-30

Inputting data from a terminal 1-2, 6-2

Interactive job 2-8, 10, 12, 26

Interleave in volumes 4-85, 87, 5-25

J

Job 2-8
JOBDELETE command 4-6, 98
JOBS command 3-5, 24

K
KILL command 3-5, 25

L

Leaving SUPER mode 3-20

Line continuation character 1-3, 2-36
Line editing (CLI} 1-2

Listing current users 4-162

Operator's Guide Index-7

INDEX

Listing files 4-57, 5-15
Loading the operating system 2-3
LOCDATA command 4-7, 100
LOCK command 4-6, 105
Locking users out of terminals 4-105
Logging off 2-13, 3-26, 4-111
Logical names 2-22, 23, 26

5. 2-28

:BB: 2-27

CI: 2-29

:CO: 2-29

:CONFIG: 2-27

"HOME: 2-28

:LANG: 2-27

:LP: 2-28

'PROG: 2-28

SD: 2- 28

:STREAM: 2-28

SYSTEM: 2-28

:UTILS: 2-28

WORK: 2-28

Devices 2-24

Files 2-25

Initial 2-27

Listing 4-107

Removing volumes from devices 2-29

Storage location 2-26, 27

Types 2-24
LOGICALNAMES command 2-23, 4-7, 107
LOGOFF command 3-3, 26, 4-6, 111
Logon command file 2-9
Logon procedure 2-2, 5, 9, 10, 12, 45
Long terminal input lines 1-2

Manual Organization iii
Map files 4-84
Memory allocated to the user 4-112
MEMORY command 4-7, 112
Minimum file structure needed to boot IRMX® 2-21
Modems
Control 2-6
Establishing a connection 2-7
Setting up 2-5,7

Index-8

Operator’s Guide

INDEX

Moving around the directory structure 4-55

Moving files 5-16

Moving files across volume boundaries 5-22

MSC devices, attaching and detaching considerations 2-35
Multi-user support 2-2, 8

N

Named files 2-16

Naming files and directories 2-22
Non-resident configuration files 2-46
Non-resident users 2-44, 55

O

Ohbject directory 2-26

Global 2-28

Local 2-27,29

Root 2-26
Output pathnames 2-30
Overwriting existing files 2-39, 4-38

P

PASSWQORD command 4-6, 113

Passwords 2-50, 4-113

PATH command 4-7, 123

Pathnames for files and directories 2-22, 4-123, 5-11
PAUSE command 4-7, 125

PERMIT command 4-5, 126

Physical device names 4-19, 20, 22

Physical files 2-14

Protected environments 2-52

Q

Quoting characters 2-37

R

R?BADBLOCKMAP 4-83
R?FNODEMAP 4-83
R?SAVE 4-83
R?SPACEMAP 4-83
R?VOLUMELABEL 4-83
RAM disk device types 2-32

Qperator’s Guide Index-9

INDEX

Reader level iii

Recalling previous commands 3-6, 21
Remote file 2-13

Remote files 2-14

Remote systems 2-13, 14

Removing volumes from devices 2-29
RENAME command 4-5, 132, 5-19
Renaming files 4-132, 5-19

Replacing existing files 5-6
Requirements 2-1

Resident user 2-44

RESTORE command 2-35, 4-6, 135
Restoring files from backed up media 4-135
RETENSION command 4-7, 143
Root directory 2-16, 22, 4-83
Routing output 2-40, 3-2

S

SASI/SCSI controllers 4-24
Saving files 4-29
Scrolling terminal output 6-4
Search path of directories 2-38
SET command 3-5, 27
Setting the system date 2-9, 4-44
Setting the system time 2-10, 4-152
SHUTDOWN command 4-7, 144
Shutting the system down 4-144
Sign-on message 2-8, 12
Single-user support 2-2, 8
Software requirements for using the Human Interface 2-1
Sourcing input 2- 40
Start-up system file structure 2-17
Static logoff procedure 2-6
Static logon procedure 2-2, 6
Static logon terminal 2-6, 7, 11, 45
Static logon terminals 2-45
Stream files 2-14, 4-12
SUBMIT command 2-26, 3-5, 31, 4-7, 150
SUPER command 2-44, 3-5, 36, 4-6, 151
Support code for terminals 6-1
Switching diskettes in 5.25-inch diskette drives 5-26
Syntax

CLI commands 3-1

Human Interface commands 2-35, 4-3

Index-10 Operator’s Guide

INDEX

System logical names 2-27, 28

System manager privileges 2-43, 3-36, 4-151
System prompt 3-30

System security 2-52, 4-113, 126, 155
System shutdown 4-144

T

Tape device 2-32

Tape retension 4-143

Terminal control sequences B-2
Terminal definitions 1-2, 2-47, 3-28
Terminal device types 2-32, B-1
Terminal initialization status 4-95
Terminal input control 6-2
Terminal keyboard logical name 2-29
Terminal output control 6-4
Terminal screen logical name 2-29
Terminal specifications B-1
Terminal support code 6-1

TIME command 2-10, 4-7, 152
Type ahead 1-1, 6-1

U

UNLOCK command 4-6, 155
UPCOPY command 4-5, 157
User access to files 4-126

User ID 2-50, 3-16

User memory 4-112

Liser names 2-50

Using the Human Interface 2-1
Using wild cards 2-30

A/

Verified user 2-13

Verifying disks 4-66
VERSION command 4-7, 160
Volume granularity 4-85, 5-24
Volumes 2-16, 4-82

Operator’s Guide Index-11

INDEX

W

Warning bell 1-5

Where logical names are stored 2-26, 27
WHOAMI command 4-7, 162

Wild cards 2-29

y 4

Zaps in a file, displaying 4-163
ZSCAN command 4-7, 163

Index-12 Operator’s Guide

MASTER INDEX

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

Copyright® 1988, intel Corporation, All Rights.Reserved

PRE

FACE

INTRODUCTION

This manual contains the Master Index for the five-volume Extended iRMX II Operating
System documentation set. Use this manual to locate information in the volumes.

This preface explains how to use the Master Index to find information in the manuals.
The abbreviations used to identify each manual are underlined in the table below.

Manual Title Volume
Extended iRMX I Application I oader User’s Guide (Vol. 2)
Extended iRMX II Basic 1/0 System User’s Guide (Vol. 2)
Extended iIRMX II Bootstrap Loader Reference Manual (Vol. 4)
Extended iRMX II Device Driver’s User’s Guide (Vol. 2)
Extended iRMX I Disk Verification Utility Reference Manual {Vol. 4)
Extended iRMX 1l Extended I/0 System User’s Guide {Vol. 2)
Extended iRMX 1l Human Interface User’s Guide {Vol. 2)
Guide to the Extended iIRMX [T Interactive Configuration Utility {Vol. 4)
Extended iRMX I Interactive Configuration Utility Reference Manual {Vol. 5)
Introduction to the Extended iRMX II Operating System (vol. 1)
Extended iRMX II Hardware and Software [nstallation Guide (Vol. 1)
Extended iRMX II Nucleus User'’s Guide {Vol. 2)
Operator’s Guide to the Fxtended iRMX I Human Interfuce (Vol. 1)
Extended iIRMX IT Programming Technigues Reference Manual (Vol. a)
Extended IRMX H System Debugger Reference Manual (Vol. 4)
Extended iRMX 11 Application Loader System Calls Reference Manual (vol. 3)
Extended iIRMX Il Basic 1/0 System Calls Reference Manual (Vol. 3)
Extended iRMX II Extended I/0 System Calls Reference Manual (Vol. 3)
Extended iRMX II Human Interface System Calls Reference Manual (Vol. 3)
Extended iRMX I Nucleus System Calls Reference Manual (vol. 3)
Extended iRMX 11 UDI System Calls Reference Manual {(Vol. 3)
Extended iRMX Il Universal Development Interface User's Guide (Vol. 2)

Master Index

PREFACE

HOW TO USE THIS INDEX

This index contains an alphabetic list of topics. After locating a particular topic read the
manual abbreviation to the right of your topic. Refer to the table on page iii of this index
for the full name of the manual and the volume that contains it. For example:

Your topic Manuals that contain information
ACCEPTSCONTROL Nucleus System Calls; Nucleus Users Guide

To find this reference in the documentation, follow these steps:

1. Locate the indicated manual, in this example it is the Extended iRMX II Nucleus
System Calls Reference Manual in Volume 3. In the case of several manuals being
listed as reference, the primary source of information will be underlined.

2. After finding the correct volume, locate the particular manual that contains the
information you are looking for. The same alphabetic reference will be in the
manual’s individual index. The primary reference contained in the manual will be

underlined.
Your topic Manuals that contain information
ACCEPTS$CONTROL 8

iv Master Index

"B edit command Guide to the ICU

~C edit command Guide to the ICU

*CO edit command Guide to the ICU

“D edit command Guide to the ICU

“F edit command Guide to the ICU

“H edit command Guide to the ICU

1 edit command Guide to the ICU

"N edit command Guide to the ICU

"R edit command Guide to the ICU

S edit command Guide to the ICU

' command Operator’s Guide

$ Extended 1/0 System User’s Guide

% AGAIN macro Bootstrap Loader
%AUTO Bootstrap Loader
ZAUTO_CONFIGURE _MEMORY Bootstrap Loader
%B208 macro Bootstrap Loader

%B215 macro Bootstrap Loader

%B218A macro Bootstrap Loader

%B220 macro Bootstrap Loader

%B251 macro Bootstrap Loader

%B254 macro Bootstrap Loader

%B264 macro Bootstrap Loader

%BIST macro Bootstrap Loader

%BMPS Macro Bootstrap Loader
%BSCSI macre Bootstrap Loader
%CICO macro Bootstrap Loader
%CLEAR SDM EXTENSIONS Bootstrap Loader
9% CONSOLE macro Bootstrap Loader
%COPY Macro Bootstrap Loader
%CPU_BOARD macro Bootstrap Loader
%CPU macro Bootstrap Loader
%DEFAULTFILE Bootstrap Loader
%DEVICE macro Bootstrap Loader
%END macro Bootstrap Loader

%END macro Bootstrap Loader
%iAPX_186_INIT Bootstrap Loader
%INSTALLATION macro Bootstrap Loader
%INT1 macro Bootstrap Loader

%INT3 macro Bootstrap Loader

%LIST macro Bootstrap Loader

Master Index Page-1

MASTER INDEX

%LOADFILE macro Bootstrap Loader
%MANUAL macro Bootstrap Loader
% RETRIES Bootstrap Loader
%SASI_UNIT _INFO macro Bootstrap Loader
9%SERIAL CHANNEL macro Bootstrap Loader
%TEXT macro Bootstrap Loader
MP1 map file Programming Technigues
28612.DEF Guide to the ICU; [nstallation Guide
38620.def Installation Guide
5.25-inch diskette proccdures Operator’s Guide
8086 Programming Technigues
80286 Programming Techniques
80386 Programming Techniques
8251A Terminal Driver sce the specific tab in JCU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
82530 terminal driver Device Drivers; see specific tab in ICU Reference
Device-Unit Information screen fCU Reference
Driver screen ICU Reference
Unit Information screen JCU Reference
8254 ICU Reference
8259A mastcer port JCU Reference
8274 terminal driver Device Drivers; see specific tab in JCU Reference
Device-Unit Information screen ICU Reference
Driver screen ICU Reference
Unit Information screen ICU Reference
:$: directory Guide to the ICU
:$: logical name Operator’s Guide
:BB: logical name Operator’s Guide
:CI: logical name Operator's Guide
:CO: logical name Operator’s Guide
:CONFIG: logical name Operator’s Guide
:CONFIG:ACCOUNT.LOG fite Operaror’s Guide
:CONFIG:TERMCAP file Guide to the ICU, Operator’s Guide
:CONFIG:TERMINALS filc Guide to the ICU; Operator’s Guide
:CONFIG:UDF Guide to the ICU
:CONFIG:USER /username Guide to the ICU
:HOME: Guide to the ICU; Operator’s Guide
:LANG: logical name Operator’s Guide
:LP: logical name Operator’s Guide
:‘PROG: directory Human Interface User’s Guide; Operator’s Guide
:PROG:R?LOGOFF file Operator’s Guide
:PROG:R7LOGON file Operator’s Guide
:SD: logical name Operator’s Guide

Page-2 Master Index

MASTER INDEX

SD:RMX286/ICU Guide to the ICU
:SD:user /username Guide to the ICU
‘STREAM: logical name Operator’s Guide
:SYSTEM: logical name Operator's Guide
:UTILS: logical name Operator’s Guide
:WORK: logical name Operator’s Guide

A

ASATTACHSFILE Basic I/O System User’s Guide; Extended 1/O System User’s Guide;
Programming Technigues; Basic 1/0 System Calls
ASCHANGESACCESS Basic 1/0 System User’s Guide; Basic 1/O System Calls
ASCLOSE Basic 1/O System User’s Guide; Basic I/Q System Calls
ASCREATESDIRECTORY Basic I/0O System User’s Guide, Basic 1/0 System Calls
ASCREATESFILE Basic I/0 System User’s Guide; Basic 1/0 System Calls
ASDELETESCONNECTION Basic /0O System User’s Guide; Basic 1/0 System Calls
ASDELETESFILE Basic I/O System User's Guide; Basic 1/0 System Calls
ASGET$CONNECTIONS$STATUS Basic 1/0 System User’s Guide;
Basic 1/Q System Calls
ASGET$DIRECTORYS$SENTRY system call Basic 1/O System Calls
ASGETSEXTENSIONSDATA Basic 1/0 System User’s Guide; Basic 1/Q System Calls
ASGETSFILESSTATUS Basic 1/O System User’s Guide:; Basic 1/0 Systern Calls
ASGETSPATHSCOMPONENT Basic 1/0 System User’s Guide; Basic 1/0 System Calls
ASLOAD Application Loader System Calls
ASLOADSIOSIOB Application Loader System Calls
ASOPEN Basic 1/O System User’s Guide; Basic I/0O System Calls
ASPHYSICALSATTACHSDEVICE Basic I/O System User’s Guide;
Basic 1/0 System Calls
ASPHYSICALSDETACHSDEVICE Basic 1/O System User’s Guide;
Basic 1/0 System Calls
ASREAD Basic I/O System User’s Guide; Basic 1/Q Systern Calls
ASRENAMESFILE Basic I/O System User’s Guide; Basic 1/0O System Calls
ASSEEK Basic I/O System User’s Guide; Basic 1/O System Calls
ASSETSEXTENSIONSDATA Basic I/O System User’s Guide, Basic 1/0 System Calls
AS$SPECIAL Basic 1/0 System User’s Guide; Basic I/O System Calls
bad sectors
bad tracks
disk drives
fonts
formatting a track
keyboard
signal characters
stream file operations
stream file transactions
tape drive functions

Master Index Page-3

MASTER INDEX

tape drive information
terminal attributes
volume unavailable notification
Winchester disk drives
AS$TRUNCATE Basic 1/0 System User’s Guide; Basic I/0 System Calls
ASUPDATE Basic I/0 System User’s Guide; Basic 1/0 System Calls
ASWRITE Basic 1/O System User’s Guide; Basic 1/0 System Calls
aborting DISKVERIFY commands Disk Verification
ACCEPTS$CONTROL Nucleus System Calls; Nucleus User’s Guide
access byte
for code segment Nucleus System Calls
for data segment Nucleus System Calls
access control Introduction
access mask UDI System Calls
access rights Extended I/0 System Calls; Guide to the ICU; Operator’s Guide;
UDI System Calls
access rights for objects Nucleus System Calls
access time Introduction
accessing the global time-of-day clock Basic I/O System User’s Guide
accessing the Human Interface Operator’s Guide
ACCOUNT.LOG file Operator’s Guide
ACCOUNTING Introduction; Operator’s Guide
accounting file Disk Verification
actions taken by the bootstrap loader after an error Boofstrap Loader
ADD command Disk Verification
add entry access Guide to the [CU
adding a new first stage driver to BS1.AR& Bootstrap Loader
adding a non-resident user Guide to the ICU
adding users Operator’s Guide
ADDLOC Introduction; Human Interface User’s Guide; Operator’s Guide
ADDRESS command Disk Verification
address of the first stage Bootstrap Loader
address of the generic third stage Bootstrap Loader
address of the second stage Bootstrap Loader
address, RAM driver ICU Reference
after invoking the ICU Guide to the ICU
AFTER preposition Human Interface User’s Guide; Operator’s Guide
ALIAS command Human Interface User’s Guide; Operator’s Guide
aliases defined by the start-up systems Installation Guide
aliasing Human Interface User’s Guide
ALL option Disk Verification
ALLOCATE command Disk Verification
allocated volume block Disk Verification
allocating memory Nucleus User's Guide; UDI User’s Guide
ALTER$COMPOSITE Nucleus System Calls; Nucleus User’s Guide

Page-4 Master Index

MASTER INDEX

alternate cylinders see specific device ICU Reference
ampersand Operator’s Guide; Human Interface User’s Guide
analyzing bootstrap errors without a displayed message Bootstrap Loader
APC sequences Device Drivers
application defined Introduction
Application Loader screen ICU Reference
Application Loader Nucleus User’s Guide, Application Loader User’s Guide
environmental conditions Nucleus User’s Guide
programmer errors Nucleus User's Guide
Application Loader and application loading Introduction
Application Loader pool sizes for new jobs Application Loader User’s Guide
application software defined Introduction
application system defined Introduction
application-software-hardware model UDI User’s Guide
architectural features Introduction
Arithmetic technique for estimating stack size Programming Technigues
AS preposition Operator’s Guide
asleep state Nucleus User’s Guide
ASM286 Programming Technigues; Introduction;
ASM286 programs UD{ User’s Guide
assemblers Introduction
assembling configuration files Guide to the ICU
Assembly Language Programming Techniques
assigning
exception handler Nucleus User’s Guide
interrupt levels to external sources Nucleus User’s Guide
asterisk prompt (*) Disk Verification
asynchronous events Introduction
asynchronous system calls Application Loader User'’s Guide; Basic I/O System User's Guide
attach device calls Device Drivers
attach device task priority ICU Reference
ATTACHDEVICE Introduction; Operators Guide
ATTACHFILE Introduction; Guide to the ICU; Operator's Guide
attaching files Operator’s Guide
attaching a logical device Extended /0O System User’s Guide
auto-answer modem Device Drivers; Operator's Guide
automatic boot device recognition Extended I/0 System User’s Guide
screen ICU Reference
how to include Bootstrap Loader
how to exclude Bootstrap Loader
automatic buffering of 1/O operations Extended 1/0 System User’s Guide
automatic device recognition Disk Verification; Operator's Guide
automatic I/O buffering Introduction; Extended 1/0 System User’s Guide
automatic retries see specific device ICU Reference
automatic seek see specific device JCU Reference

Master Index Page-5

MASTER INDEX

auxiliary parameters Device Drivers
axes sequence and orientation Device Drivers
axes sequence control Device Drivers

B215.A86 Bootstrap Loader
B264.A86 Bootstrap Loader
BACKGROUND command Human Interface User’s Guide; Operator’s Guide
background processing Human Interface User’s Guide
backing up Disk Verification
fnodes on a volume Disk Verification
volume label Disk Verification
Backup (B) command Guide to the ICU
backup and restore Disk Verification
BACKUP command Hurnan Interface User’s Guide, Introduction; Operator’s Guide
backup files Disk Verification
BACKUP option Disk Verification
backup volumes Operator’s Guide
BACKUPFNODES Disk Verification
bad blocks Disk Verification
in FREE command Disk Verification
map file Disk Verification
file Disk Verification
bad checksum Disk Verification
bad track information Device Drivers; ICU Reference
iISBC 186/224A ICU Reference
bad track/sector information Basic I/O System User's Guide; Device Drivers
bad tracks Disk Verification; Device Drivers
base memory address ICU Reference
base time ICU Reference
Basic I/O System configuration ICU Reference
parameters
screens
Basic I/O System, high-level explanation Introduction
baud rate Device Drivers: UDI System Calls
8251A Terminal Driver ICU Reference
8274 Terminal Driver ICU Reference
82530 Terminal Driver ICU Reference
iSBC 186/410 Terminal Driver ICU Reference
iSBC 534 Terminal Driver ICU Reference
iSBC 544A Terminal Driver JCU Reference
Terminal Communications Controller ICU Reference
input Device Drivers
output Device Drivers

Page-6 Master Index

MASTER INDEX

BEGINSLONGSTERMSOP procedure Device Drivers
beginning a console session Operator’s Guide
bell warning Operator’s Guide
BG3.A86 Bootstrap Loader
BG3.CSD Bootstrap Loader
binding (BND286) Introduction; Programming Techniques
binding application jobs Guide to the ICU
binding the subsystems Guide to the ICU
BIOS screen ICU Reference
BIOS System Calls screen Basi¢ 1/0 System Calls; ICU Reference
BIOSGETADDRESS procedure Device Drivers
BLD286 Guide to the ICU
BLOCK command Disk Verification
BND?286 Guide to the ICU; UDI System Calls; Human Interface User’s Guide; -
Programming Techniques
controls Programming Technigues
board ID Bootstrap Loader; ICU Reference
iSBC 186/224A ICU Reference
iSBC 186/410 ICU Reference
board initialization procedure ICU Reference
board instance Bootstrap Loader; [CU Reference
iSBC 186/224A ICU Reference
iSBC 186/410 ICU Reference
board size ICU Reference
BOOT directory Guide to the ICU
BOOTSTRAP_ENTRY Bootstrap Loader
bootstrap loader ICU Reference; Operator’s Guide; Introduction
first stage Bootstrap Loader
second stage Bootstrap Loader
third stage Bootstrap Loader
generic
device specific
borrowing memory Nucleus User’s Guide
Boundaries, job Programming Technigues
boundary buffer address ICU Reference
breakpoints System Debugger
BS1.A86 Bootstrap Loader
BS1.CSD Bootstrap Loader
BSIMB2.A86 Bootstrap Loader
BS3.A86 Bootstrap Loader
BS3.CSD Bootstrap Loader
B33MB2.A86 Booistrap Loader
BSERR.A86 Booftstrap Loader
bubblc memory Operator’s Guide
buffer UDI System Calls; Device Drivers; ICU Reference

Master Index Page-7

MASTER INDEX

line-edit Device Drivers
pools Nucleus User's Guide, Nucleus System Calls
raw input Device Drivers
Terminal Support code Device Drivers
8251A Terminal Driver ICU Reference
82530 Terminal Driver ICU Reference
Application Loader ICU Reference
ISBC 186/224A Driver ICU Reference
iSBC 186/410 Terminal Driver JCU Reference
iSBC 208 Driver ICU Reference
iSBC 220 Driver ICU Reference
iISBC 286/10(A) line printer ICU Reference
iSBC 534 Terminal Driver ICU Reference
iSBC 544A Terminal Driver ICU Reference
i1SBC 264 Driver ICU Reference
iISBX 251 Driver ICU Reference
line printer - iSBX 350 ICU Reference
Mass Storage Controller (MSC) Driver ICU Reference
RAM driver ICU Reference
remote file server ICU Reference
Terminal Communications Controller /CU Reference
buffer, type-ahead Device Drivers
Buffer pool Nucleus User’s Guide Nucleus System Calls, Programming Techniques
buffered devices Device Drivers
buffering Introduction
buffers multiple Nucleus User’s Guide
Buffers, recycling Programming Technigues
Build File Comments screen ICU Reference
building a system Guide to the ICU
in RAM Guide to the ICU
ROM-based Guide to the ICU
bus structure, MULTIBUS I1 Nucleus User’s Guide
byte bucket (:BB:) Operator’s Guide
byte bucket driver Device Drivers
byte count, for SCSI Driver ICU Reference
BYTE data type see "DATA TYPE" appendixes in user’s guides (VOL. 2)

C

C Programming Language Programming Technigues
C$BACKUPSCHAR Human Interface System Calls; Human Interface User's Guide
CSCREATESCOMMANDSCONNECTION Human Interface System Calls;
Human Interface User’s Guide
C$DELETESCOMMANDSCONNECTION Human Interface System Calls,
Human Interface User’s Guide

Page-8 Master Index

MASTER INDEX

CIFORMATSEXCEPTION Human Interface System Calls;
Human Interface User’s Guide
CSGETSCHAR Human Interface System Calls; Human Interface User’s Guide
CSGETSCOMMANDSNAME Human Interface System Calls,
Human Interface User’s Guide

C$GETSINPUTSCONNECTION Human Interface System Calls;

Human Interface User's Guide
CSGETSINPUTSPATHNAME Human Interface System Calls;

Human Interface User’s Guide

CSGETSOUTPUTSCONNECTION Human Interface System Calls,

Human Interface User's Guide
CSGETSOUTPUTSPATHNAME Human Interface System Calls;

Human Interface User’s Guide
CSGETSPARAMETER Human Interface System Calls; Human Interface User’s Guide
example Human Interface User’s Guide

CISENDSCOSRESPONSE Human Interface System Calls; Human Interface User’s Guide
CISENDSCOMMAND Human Interface System Calls; Human Interface User’s Guide
C$SENDSEOSRESPONSE Human Interface System Calls; ITwman Interface User’s Guide
CS$SETSCONTROLIC Huwmnan Interface System Calls; Human Interface User’s Guide
C3SETSPARSEIBUFFER Human Interface System Calls; Human Interface User's Guide
call-gates Nucleus User’s Guide
cancel [/O procedure Device Drivers
cancel requests Device Drivers
CANCELSIO procedure Device Drivers
caret (") character Guide to the ICU
carriage return Operafor’s Guide
cascade mode Nucleus User’s Guide
CATALOGSOBIECT Nucieus System Calls; Human Interface User’s Guide;

Nucleus User’s Guide, Programming Techniques
cataloging logical names Operator’s Guide
cataloging objects Introduction
CAUSESINTERRUPT(3) Programming Techniques; PL/M-286 User’s Guide
Change (C) command Guide to the ICU
CHANGEID command Operator’s Guide
changing a definition file Guide to the ICU
changing BS3.A86 to include a new third-stage driver Bootstrap Loader
changing the parsing buffer Human Interface User’s Guide
character length Device Drivers; ICU Reference

iSBC 186/410 Terminal Driver JCU Reference

characteristics of diskettes Device Drivers
checksum Disk Vertfication
child job Nucleus User’s Guide; System Debugger
choosing a third stage Bootstrap Loader
choosing an 1/O system Extended 1/0 System User's Guide
CI (console input) UDI System Calls

Master Index Page-9

MASTER INDEX

circumflex separator (*) Operator’s Guide
CLI Human Interface User's Guide
CLI commands Human Interface User’s Guide; Operators Guide
clock ICU Reference
global
interrupt level
interval
system Nucleus User's Guide
close calls Device Drivers
closing connections UDI User’s Guide
closing files Device Drivers
CO (console output) UDI System Calls
Code sections Programming Techniques
command
dictionary Operator’s Guide; Basic I/0 System Calls; Disk Verification
file Operator’s Guide
line interpreter (CLI) Operator’s Guide; Human Interface User’s Guide
name Operator's Guide
syntax Operator’s Guide
command connection Human Interface User’s Guide
creating Human Interface User’s Guide
example Human Interface User’s Guide
command creation Human Interface User’s Guide
command error messages Disk Verification
command line UDI System Calls
Command Line Interpreter (CLI) Human Interface User’s Guide; Introduction;
Operator's Guide;
command line size ICU Reference
command line
interpreter (CLI) see Command Line Interpreter
parsing Human Interface User’s Guide
structure Human Interface User’s Guide
command mede Guide to the ICU
command name Disk Verification, Human Interface User’s Guide; ICU Reference
command port ICU Reference
command priority [fuman Interface User’s Guide
command processing system calls Human Interface User’s Guide
example Human Interface User’s Guide
command syntax Disk Verification
commands, short description Introduction
commands (System Debugger) Systermn Debugger
categories System Debugger
directory System Debugger
syntax System Debugger
comment Operator’s Guide

Page-10 Master Index

MASTER INDEX

comment characters Human Interface User’s Guide
common drivers Device Drivers
common update see specific device or layer in ICU Reference
BIOS ICU
1ISBC 186/224A Driver
iSBC 208 Driver
ISBC 220 Driver
ISBC 264 Driver
iSBX 251 Driver
Mass Storage Controller (MSC) Driver
RAM Driver
SCSI Driver
communicating with devices Operator’s Guide
communicating with the terminal Human Interface User’s Guide
communication between tasks and device units Basic I/0 System User’s Guide
communication board considerations ICU Reference
communication levels Device Drivers
COMPACT segmentation model Programming Techniques
restrictions Programming Techniques
COMPACT subsystems Prograrmming Technigues
compatibility UDI System Calls
compatibility between 1/O systems, Extended 1/0 System User’s Guide
Compiler controls see specific topic in Programming Techniques
OPTIMIZE(3)
$CODE
$NOCODE
compiling example UDI User’s Guide; Programming Techniques
component objects Nucleus User’s Guide
composite objects see topic in Nucleus User’s Guide; Programming Techniques
deleting
manipulating
system debugger Systern Debugger
BIOS named file connection display
BIOS physical file connection display
BIOS remote file connection display
BIOS stream file connection display
BIOS user object display
non-BIOS object display
computing access for file connections Basic I/O System User’s Guide
concatenating files Operator’s Guide
concurrent (environmental) exception codes Basic 1/0 System User’s Guide
concurrent (programmer error) exception code Basic I/O System User’s Guide
concurrent events Intfroduction
concurrent seek ICU Reference
condition Codes Operator’s Guide, see user’s guides and system call manuals

Master Index Page-11

MASTER INDEX

for Asynchronous Calls
for Synchronous Calls
Sequential Condition Codes
mnemonics Nucleus User’s Guide
ranges Nucleus User’s Guide
types Nucleus User’s Guide
values Nucleus User’s Guide
configurability of the Application Loader Application Loader User’s Guide
configuration Human Interface User’s Guide; Operator’s Guide; System Debugger
hardware Nucleus User’s Guide
system characteristics Nucleus User's Guide
configuration and the configuration utility Introduction
configuration directory ICU Reference
configuration environments Guide to the ICU
configuration file for BSERR.A86 Bootstrap Loader
configuration files Human Interface User’s Guide; Operator's Guide
configuration files generated Guide to the ICU
configuration information for custom bootstrap loader drivers Bootstrap Loader
configuring 8 ROM-based system ICU Reference
configuring device drivers Device Drivers
configuring the Application Loader Application Loader User’s Guide
configuring the Basic I/O System
Basic 1/O System performance Basic I/O System User’s Guide
buffers Basic I/O System User’s Guide
choosing devices Basic I/O System User’s Guide
creating a file with an existing pathname Basic 1/0 System User’s Guide
service task priorities Basic I/O System User’s Guide
system initialization error reporting Basic I/O System User’s Guide
system manager Basic I/0 System User’s Guide
timing facilities Basic I/O System User's Guide
configuring the Extended I/O system: Extended 1/O System User’s Guide
connection Extended I/0 System Calls; UDI System Calls
device
file
status
connection flags Device Drivers
connection job delete priority, BIOS ICU Reference
connection modes Device Drivers
connection object displays Systermn Debugger
connections Basic I/0 System User’s Guide
paths Basic I/O System User's Guide
prefix and subpath Basic 1/0 System User’s Guide
default prefix Basic I/0 System User's Guide
connections Human Interface User's Guide
input Human Interface User's Guide

Page-12 Master Index

MASTER INDEX

output
connections Operator’s Guide
connections UDI User’s Guide
connections between tasks and device units Extended I/0 System User’s Guide
connections to physical files Extended I/0 System User’s Guide
contents of a custom third-stage driver Bootstrap Loader

device initialization procedure Bootstrap Loader

device read procedure Bootstrap Loader
continuation characters Human Interface User’s Guide
continuation lines Human Interface User’s Guide
continuation mark Operator’s Guide
control byte, for SCSI Driver ICU Reference
control character, for the ICU Guide to the ICU
control character redefinition Device Drivers
control characters Device Drivers; Operator’s Guide, see device list below

8251A Terminal Driver JCU Reference

8274 Terminal Driver ICU Reference

82530 Terminal Driver ICU Reference

BIOS ICU Reference

iSBC 534 Terminal Driver ICU Reference

1SBC 544A Terminal Driver ICU Reference

Terminal Communications Controller JCU Reference
control characters, output Device Drivers
control port ICU Reference
control sequence translation ICU Reference
control strings Device Drivers
CONTROL-C Operator’s Guide
Control-C UDI System Calls
CONTROL-C handling Human Interface User’s Guide, Guide to the ICU
CONTROL-Q Operator’s Guide; Device Drivers
CONTROL-Y Operator’s Guide; Device Drivers
CONTROL-Q Operator’s Guide;, Device Drivers
CONTROL-R Operator’s Guide; Device Drivers
CONTROL-S Operator’s Guide; Device Drivers
CONTROL-T Operator's Guide; Device Drivers
CONTROL-U Operator's Guide, Device Drivers
CONTROL-W Operator’s Guide; Device Drivers
CONTROL-X Operator’s Guide, Device Drivers
CONTROL-Z Operator’s Guide; Device Drivers
controller (device) Introduction
controlling access to files Basic I/O System User’s Guide
controlling file fragmentation Basic I/O System User’s Guide
Converting iRMX I applications Programming Techniques
COPY command Introduction; Operator’s Guide
counter ICU Reference

Master Index Page-13

MASTER INDEX

counter number JCU Reference
CREATESCOMPOSITE Nucleus System Calls; Nucleus User’s Guide
CREATESEXTENSION Nucleus System Calls, Nucleus User’s Guide
CREATESIOS$JOB Extended 1/0 System Calls
CREATES$JOB Nucleus System Calls; Nucleus User’s Guide, Programming Techniques
CREATESMAILBOX Nucleus System Calls; Nucleus User’s Guide
CREATESREGION Nucleus System Calls; Nucleus User’s Guide
CREATESSEGMENT Nucleus System Calls; Nucleus User’s Guide
CREATESSEMAPHORE Nucleus System Calls; Nucleus User’s Guide,
Human Interface User’s Guide, Programming Techniques

CREATESTASK Nucleus System Calls; Nucieus User’s Guide
CREATESUSER Basic 1/0O Systemn: Calls; Basic I/0 System User's Guide
CREATEDIR command Operator’s Guide; Introduction; Guide to the ICU
creating

jobs Nucleus User’s Guide

new objects Nucleus User’s Guide

operating system extension Nucleus User’s Guide

command connections Human Interface User’s Guide

commands Human Interface User’s Guide

data files Operator’s Guide

directories Operator’s Guide; Guide to the ICU

existing files, BIOS ICU Reference
CS:IP (code segment:instruction pointer) System Debugger
cursor addressing offset Device Drivers
cursor positioning Device Drivers
custom bootstrap loader driver

device initialization procedure Bootstrap Loader

device read procedure Bootstrap Loader
custom commands Introduction
custom drivers Device Drivers
custom hardware requirements Installation Guide
custom interactive commands Infroduction
customized initial program Human Interface User's Guide
customizing features Introduction
cylinders see specific device ICU Reference

alternate [CU Reference

reduce write current ICU Reference

write precompensation ICU Reference
cylinder size Device Drivers; see specific device list below

iSBC 208 Driver ICU Reference

iSBC 220 Driver ICU Reference

Mass Storage Controller (MSC) Driver ICU Reference

SCSI Driver ICU Reference

Page-14 Master Index

MASTER INDEX

D

D-MON386 command summary Systemn Debugger
data files Operator’s Guide
data port see the specific device ICU Reference
8274 Terminal Driver
82530 Terminal Driver
Data sections Programming Techniques
DATA statement Guide to the ICU
data structure UDI System Calls; System Debugger
data transfer rate Introduction
data type see "DATA TYPE" appendixes in user guides (VOL. 2)
data
sharing Nucleus User’s Guide
Data, passing between jobs Programming Techniques
DATE Qperator’s Guide; Introduction; UDI System Calls; Guide to the ICU
deadlock Nucleus User's Guide
DEALIAS command Operator’s Guide
DEBUG command QOperator’s Guide;, Introduction; Programming Techniques;
System Debugger
debug option Bootstrap Loader
examples of bootloading with debug Bootstrap Loader
DEBUG switch of Bootstrap Loader System Debugger
debugging Introduction
System Debugger Introduction
Soft-Scope Introduction
debugging session example System Debugger topics covered are listed below
changing disassembled code
displaying instructions
entering monitor
modifying register contents
moving between tasks
sctting breakpoints
viewing system objects
debugging tools Guide to the ICU
DEC command Disk Verification
Declarations, external Programming Techniques
default directory ICU Reference

Master Index Page-15

MASTER INDEX

default jumpers for supported boards Instaliation Guide

iSBC 286/10(A)

1ISBC 286 /12

iSBC 386/2X

iSBC 186/224A

iSBC 186/410

1ISBC 188/48

iSBC 188/56

iSBC 208

iSBC 214

ISBC 215G

ISBC 220

iSBC 264

iSBC 534

1ISBC 544A

iSBC 546

iSBC 547

iSBC 548

ISBX 217C

iISBX 218A

iISBX 251

iISBX 350

iSBX 351

iISBX 354
default prefix Operator’s Guide; Extended I/Q System User’s Guide
default user UDI System Calls; JCU Reference
default

exception handler ICU Reference

prefix, I/O job ICU Reference

user ICU Reference, UDI System Calls
DEFAULTSFINISH procedure Device Drivers
DEFAULTSINIT procedure Device Drivers
DEFAULTS$STOP procedure Device Drivers
definition files Installation Guide; Guide to the ICU
DELETE Introduction
delete access Guide to the ICU
delete character Device Drivers
DELETE command Operator’s Guide
DELETESCOMPOSITE Nucleus System Calls; Nucleus User’s Guide
DELETES$EXTENSION Nucleus System Calls; Nucleus User’s Guide
DELETESIOB Nucleus System Calls; Nucleus User’s Guide
DELETESMAILBOX Nucleus System Calls; Nucleus User’s Guide
DELETESREGION Nucleus System Calls; Nucleus User’s Guide
DELETESSEGMENT Nucleus Svstem Calls; Nucleus User’s Guide;

Programming Techniques

Page-16 Master Index

MASTER INDEX

DELETESSEMAPHORE Nucleus System Calls; Nucleus User’s Guide
DELETESTASK Nucleus System Calls; Nucleus User’s Guide
DELETE$USER Basic /O System Calis; Basic 1/0 System User’s Guide
deleting
command connections Human Interface User's Guide
composite objects Nucleus User’s Guide
connections UDI User's Guide
data from a screen Guide to the ICU
extension types Nucleus User’s Guide
files Operator’s Guide
files UDI User's Guide
jobs Nucleus User’s Guide
lines Device Drivers
nested composites Nucleus User’s Guide
protection from deletion Nucleus User’s Guide
users Operator’s Guide
deletion mailbox for RQSCREATESEXTENSION Nucleus System Calls
delimiter UDI System Calls
density Disk Verification
depth of disabling Nucleus User’s Guide
descriptor Nucleus User’s Guide
descriptor table Nucleus User's Guide; Programming Techniques
Global Programming Technigues
Local Programming Techniques
detach device calls Device Drivers
DETACHDEVICE command Operator’s Guide; Introduction
DETACHFILE command Operator’s Guide; Introduction
detaching
devices Operator’s Guide
files Operator’s Guide
Detail-level (D) command Guide to the ICU
determining
memory locations Guide to the ICU
the processor’s mode Bootstrap Loader
development software and utilities Introduction
development tools ICU Reference
device
characteristics recognition Operator’s Guide
communications Operator’s Guide
logical names Operator’s Guide
name Operator's Guide
device and unit source code pathname ICU Reference
device
connections Basic I/0 System User's Guide
controller Introduction

Master Index Page-17

MASTER INDEX

controller and device units Basic I/O System User’s Guide
controllers and device units Extended I/0 System User’s Guide
data storage area Device Drivers
driver configuration Device Drivers; Bootstrap Loader
driver interfaces Device Drivers
driver parameters [CU Reference
driver types Device Drivers
drivers Device Drivers; Bootstrap Loader, Introduction; System Debugger
examples Device Drivers
Intel-supplied Device Drivers
finish procedure Device Drivers
granularity Device Drivers; Disk Verification; ICU Reference
independence Application Loader User’s Guide
independence Extended I/0 System Calls
information screen Device Drivers
device information table Device Drivers
initialization procedure Device Drivers
interfaces Device Drivers
interrupt procedure Device Drivers
interrupt-driven Device Drivers
message-passing Device Drivers
name, see specific device ICU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
iSBC 186/224A Driver
iSBC 186/410 Driver
iSBC 208 Driver
iSBC 220 Driver
iSBC 534 Terminal Driver
iSBC 544A Terminal Driver
iSBC 264 Driver
iSBX 251 Driver
Mass Storage Controller (MSC) Driver
SCSI Driver
number Device Drivers
numbering ICU Reference
recognition Disk Verification; ICU Reference
sensitivity Introduction
size see specific device ICU Reference
iSBC 186/224A Driver
iSBC 208 Driver
iSBC 220 Driver
iSBC 264 Driver
iSBX 251 Driver

Page-18 Master Index

MASTER INDEX

Mass Storage Controller (MSC) Driver
RAM Driver
SCSI Driver
start procedure Device Drivers
stop procedurc Device Drivers
device unit
information block (DUIB) Device Drivers; Operator’s Guide
creating Device Drivers
information screens Device Drivers
name see the specific device ICU Reference
8274 Terminal Driver
8251A Terminal Driver
82530 Terminal Driver
iSBC 186/224A Driver
iSBC 186/410 Driver
iSBC 208 Driver
1SBC 220 Driver
iSBC 264 Driver
iSBC 286/10(A) line printer
1ISBC 534 Terminal Driver
iSBC 544A Terminal Driver
iSBX 251 Driver
line printer--iSBX 350
Mass Storage Controller (MSC) Driver
RAM Driver
SCSI Driver
Terminal Communications Controller
number Device Drivers
device-independent I/Q Infroduction
dictionary Operator’s Guide
differences between IRMX T and iRMX IT see each layer's user’s guide
DIR command Qperator’s Guide; Introduction
directories Operator’s Guide; Introduction
creating Operator’s Guide
deleting Operator’s Guide
Directories, object Nucleus User’s Guide; Prograrmming Techniques
DISABLE system call Nucleus System Calls; Nucleus User's Guide
DISABLESDELETION system call Nucleus Systern Calls; Nucleus User’s Guide
disabling Nucleus User’s Guide
deletion
depth
interrupts
disabling an interrupt level Nucleus System Calls
Jdiscarding mode Device Drivers
discarding output Device Drivers

Master Index Page-19

MASTER INDEX

DISK command Disk Verification

5 1/4-inch Disk Verification

8-inch Disk Verification
disk integrity Basic I/O System User’s Guide
disk size, for specific device ICU Reference

iSBC 208 Driver

Mass Storage Controller (MSC) Driver

SCSI Driver
diskette characteristics Device Drivers
diskette format, standard Device Drivers
diskette switching Operator’s Guide
DISKVERIFY command Disk Verification; Operator’s Guide

error messages Disk Verification

output Disk Verification
DISPLAYBYTE command Disk Verification
DISPLAYDIRECTORY command Disk Verification
DISPLAYFNODE command Disk Verification
displaying exception codes Human Interface User’s Guide
displaying files Operafor’s Guide
DISPLAYNEXTBLOCK command Disk Verification
DISPLAYPREVIOUSBLOCK command Disk Verification
DISPLAYSAVEFNODE command Disk Verification
DISPLAYWORD command Disk Verification
DIV command Disk Verification
DMA for specific device ICU Reference

SCSI Driver
documentation Introduction
DOWNCOPY command Operator’s Guide; Introduction
DQSALLOCATE system call UDI System Calls; UDI User's Guide
DQSATTACH system call UDI System Cails; UDI User’s Guide
DQSCHANGESACCESS system call UDI System Calls
DQICHANGESEXTENSION UD{ System Calls
DQSCLOSE system call UDI System Calls; UDI User's Guide
DQS$CREATE system call UDI System Calls; UDI User’s Guide
DQIDECODESEXCEPTION system call UDI System Calls; UDI User’s Guide
DQSDECODESTIME system call UDI System Calls; UDI User’s Guide
DQSDELETE system call UDI System Calls; UDI User’s Guide
DQSDETACH system call UDI System Calls; UDI User’s Guide
DQSEXIT system call UDI System Calls, UDI User’s Guide
DOSFILESINFO UDI System Calls
DQSFREE system call UDI System Calls; UDI User's Guide
DQSGETSARGUMENT system call UD{ Systern Calls; UDI User’s Guide
DQSGET$CONNECTIONSSTATUS UDI System Calls
DQSGETSEXCEPTIONSHANDLER UD/ System Calls
DQIGETIMSIZE UDH{ System Calls

Page-20 Master Index

MASTER INDEX

DQS$SGETSSIZE system call UDI System Calls; UDI User's Guide
DQSGETISYSTEMSID system call UDI System Calls;
DQSGETSTIME system call UDI Systern Calls; UDI User’s Guide
DQSMALLOCATE UDI System Calls
DQSMFREE UDI System Calls
DQSOPEN system call UDI System Calls; UDI User’s Guide
DQSCVERLAY system call UDI System Calls; UDI User’s Guide
DQSREAD system call UDI System Calls; UDI User’s Guide
DQSRENAME UDI System Calls
DQSRESERVES$IOSMEMORY system call UDI System Calls; UDI User's Guide
DQS$SEEK system call UDI System Calls; UDI User’s Guide
DQSSPECIAL UDI System Calls

baud rate

line editing

polling

transparent mode
DQS$SWITCHSBUFFER system call UDI System Calls; UDI User's Guide
DQSTRAPSCC UDI System Calls
DQSTRAPSEXCEPTION system call UDI System Calls; UDI User’s Guide
DQSTRUNCATE system call UDJ System Calls; UDI User’s Guide
DQSWRITE system call UDI System Calls; UDI User’s Guide
drive characteristics Device Drivers
driver interfaces Device Drivers
driver

device Device Drivers; Extended 1/0 System Calls

file Extended 1/0 System Calls
drivers, Intel-supplied Device Drivers
dual port memory size JCU Reference
DUIB (device unit information block) Device Drivers, Operator’s Guide

source code pathname ICU Reference

creating Device Drivers
duplex Device Drivers
duplex mode see specific device JCU Reference

8251A Terminal Driver

8274 Terminal Driver

82530 Terminal Driver

iSBC 186/410 Terminal Driver

1SBC 534 Terminal Driver

ISBC 544A Terminal Driver

Terminal Communications Controller
DWORD data type see "DATA TYPE" appendixes in individual user’s guides
dynamic

logon terminals Human Interface User’s Guide

memory partitions Hurnan Interface User’s Guide

memory size Human Interface User's Guide

Master Index Page-21

MASTER INDEX

dynamic logon Operator’s Guide; Introduction
dynamic memory allocation Infroduction
DYNAMICMEM option of BIND Application Loader User's Guide

E

ESMEM Programming Techniques
ESSLOT Nucleus User's Guide; Programming Technigues, Operator’s Guide
ESTIME Nucleus User’s Guide
e(cho) Guide to the ICU
echo control Device Drivers
echo mode see the specific device ICU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
iSBC 186/410 Terminal Driver
iSBC 534 Terminal Driver
iSBC 544A Terminal Driver
Terminal Communications Controller
echoing Device Drivers
EDITFNODE command Disk Verification
editing commands for the ICU Guide to the ICU
editing
command buffer contents UDI System Calls
file names UDI System Calls
lines UDI System Calls
editor Introduction
EDITSAVEFNODE command Disk Verification
EIOS screen ICU Reference
EIOS task priorities fCU Reference
Empirical technique for estimating stack size Programming Techniques
ENABLE system call Nucleus System Calls, Nucleus User's Guide
ENABLESDELETION system call Nucleus System Calls; Nucleus User’s Guide
enabling an interrupt level Nucleus System Calls
enabling interrupt levels from within a task Nucleus User’s Guide
encoded level for interrupts Nucleus System Calls
ENCRYPT system call Basic I/O System Calls
encrypted password Guide to the ICU
end of file UDI System Calls, Extended 1/0 System Calls
end of file character Device Drivers
ENDSINITSTASK Nucleus System Calls
ENDS$LONGITERMSOP procedure Device Drivers
ENTERSINTERRUPT system call Nucleus System Calls; Nucleus User’s Guide
entry point name ICU Reference
entry procedure Nucleus User's Guide

Page-22 Master Index

MASTER INDEX

environmental conditions Operator’s Guide see also condition codes
error messages Disk Verification
CIIor messages
access rights Guide to the ICU
BLD286 Guide to the ICU
BND286 Guide to the ICU
ICUMRG Guide to the ICU
interactive error messages Guide to the ICU
internal error messages Guide to the ICU
invocation Guide to the ICU
system initialization Guide to the ICU
UPDEF Guide to the ICU
UDS Device Drivers
error reporting ICU Reference
errors system debugger System Debugger
link System Debugger
errors returned to :CO: from
CIGETSINPUTSCONNECTION Hurnarn Interface System Calls
CSGETSOUTPUTSCONNECTION Human Interface System Calls
escape sequences Device Drivers; Operator’s Guide;, Introduction
event detection [néroduction
events during an asynchronous system call Application Loader User’s Guide
examples
device drivers Device Drivers
MULTIBUS II code Nucleus User’s Guide
Nucleus Communication Service code Nucleus User’s Guide
of configuring a system Guide to the ICU
of user IDs, access masks, access lists, and user objects Basic 1/0O System User’s Guide
using asynchronous system calls Application Loader User's Guide
code listings UDI User’s Guide
BIND Progrumming Technigues, Human Interface User's Guide, UDI User’s Guide
human interface commands Operator’s Guide
of interrupt servicing Nucleus User’s Guide
of a ring buffer Nucleus User’s Guide
BIND processing code to be loaded Application Loader User’s Guide
using the Application Loader Application Loader User’s Guide
DQSGETSARGUMENT UDI System Calls
DQSSWITCH$BUFFER UDI System Calls
simulation Device Drivers
translation Device Drivers
exception code formatting Human Interface User's Guide
exception codes Operator’s Guide; Introduction
exception handler Nucleus User’s Guide; ICU Reference; Programming Technigues
assigning Nucleus User’s Guide
invoking Nucleus User's Guide

Master Index Page-23

MASTER INDEX

entry point JCU Reference
object module ICU Reference
exception handlers Nucleus User's Guide; Introduction
exception mode Nucleus User's Guide; ICU Reference
exception
codes see individual layer user’s guides
handling Nucleus User’s Guide; Extended 1/0 System User’s Guide
exceptional condition Nucleus User’s Guide, Operator’s Guide
exchange management Nucleus User’s Guide
executable command Human Interface User's Guide
execution state Nucleus User’s Guide
EXIT command
for the ICU Guide to the ICU
for Disk Verify Disk Verification
Human Interface Operator’s Guide
EXIT$SINTERRUPT system call Nucleus System Calis; Nucleus User’s Guide
EXITIOSJOB system call Extended 1/0 System Calls; Human Interface User's Guide
Extended 1/0O System Extended 1/0O System User’s Guide
ICU parameters ICU Reference
screens [CU Reference
general configuration information Guide 1o the ICU
high-level explanation Introduction
features
M-byte addressability
protection features
support for various devices
device independence
four file types
file independence
separation of file lookup and file open operations
file sharing
file access
buffering with overlapped I/O
logical names for files and devices
automatic reattachment of devices
extension data Basic I/O Systern User’s Guide; Operator’s Guide
extension objects Human Interface User’s Guide; Nucleus User’s Guide,
System Debugger
display of System Debugger
extensions to Operating System Nucleus User’s Guide; Introduction
examples of Programming Techniques
external references Programming Technigues, Introdtction
external sources of interrupts Nucleus User’s Guide
external symbols Guide to the ICU
External,

Page-24 Master Index

MASTER INDEX

declarations Programming Technigues
procedures Programming Techniques
references Prograrmuming Technigues; Introduction

F

F$ATTACH requests Device Drivers
F$CLOSE requests Device Drivers
F$DETACH requests Device Drivers
FSOPEN requests Device Drivers
FSREAD requests Device Drivers
F3SEEK requests Device Drivers
F$SPECIAL requests Device Drivers
F$WRITE requests Device Drivers
features of the Basic I/O system: see Basic I/O System User’s Guide
M-byte addressability
protection features
synchronous and asynchronous calls
device independence
support for various devices
four file types
file sharing
access to files, controlling
separation of file lookup and file open operations
file, topics Operator’s Guide
data
directory
length
logical names
named
physical
remote
root directory
stream
structure
trees
file, topics general
access control Introduction
access list Basic I/O System User’s Guide
connection displays (BIOS) Systern Debugger
connections Basic I/O System User’s Guide; Extended I/0 System User’s Guide
deletion UDI User’s Guide
drivers Device Drivers
maintenance programs Introduction
marks Device Drivers

Master Index Page-25

MASTER INDEX

names Guide to the ICU
pointers Extended I/O System User’s Guide
sharing Application Loader System Calls
structure Guide fo the ICU
version numbers Guide to the ICU
file, topics in Extended 1/0 System User’s Guide
access
connection
creation
data
deletion
directory
driver
end-of-file
named
pathname
pointer
physical
remote
stream
type
file, topics in UD{ System Calls
access
creation
deletion
extension
information
operations
pathname
pointer
size
file, topics in Disk Vertfication
driver
granularity
type
file-handling system calls for UDI UD{ User’s Guide
files Basic I/0O System User’s Guide
files contained on the release diskettes Installation Guide
files created by the ICU Guide to the ICU
Files, topics in Programming Technigues
external declaration
include
MP1 map
named
physical

Page-26

Master Index

MASTER INDEX

stream
finish I/O procedure Device Drivers
FINISH3$IO procedure Device Drivers
first-level jobs Guide to the ICU; ICU Reference
FIX command Disk Verification
fixed screen format Guide to the ICU
fixed update Device Drivers
flags Basic 1/0O System User’s Guide
flow control Device Drivers
flush mode Device Drivers
fnode (file descriptor node) file Disk Verification
FNODE checksum Basic 1/0 System User’s Guide
fnodes, topics in Disk Verification; Operator’s Guide
fnode 0
fnode 1
fnode 2
fnode 3
fnode 4
fnode 5
fnode 6
fnode 7
other fnodes
FORCESDELETE system call Nuclews System Calls; Nucleus User’s Guide
FORMAT command Operator's Guide; Disk Verification; Introduction
format exception, for specific device ICU Reference
SCSI Driver
format, exception codes from CSFORMATSEXCEPTION Human Interface System Calls
format of the Loader Result Segment Application Loader System Calls
ASLOAD system call
ASLOADSIOS$JOB system call
RQEJASLOADSIOS$IOB
formatting tracks Device Drivers
FORTRAN-286 Guide to the ICU; Introduction
four methods of placing the bootstrap loader in memory Bootstrap Loader
fragmentation (of files) Introduction
fragmentation buffers ICU Reference
FREE command Disk Verification
free fnodes map file Disk Verification
free space map file Disk Verification
free space pool UDI System Calls; UDI User’s Guide
frequency see specific device ICU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
FS$FORMATSTRACK requests Device Drivers

Master Index Page-27

MASTER INDEX

FSGETBADSINFO requests Device Drivers
FS$GETSDRIVESDATA requests Device Drivers
FS$SGETS$TERMINALSATTRIBUTES requests Device Drivers
FSSNOTIFY requests Device Drivers

FS$QUERY requests Device Drivers
FSSREADSFILESMARK requests Device Drivers

FS$RESET requests Device Drivers

FSSRETENSIONSTAPE requests Device Drivers
FSS$SATISFY requests Device Drivers

FSSETBADSINFO requests Device Drivers
FS$SETSSIGNAL requests Device Drivers
FS$SETSTERMINALSATTRIBUTES requests Device Drivers
FS$SWRITESFILESMARK requests Device Drivers

function keys Operator’s Guide

function procedure Nucleus User’s Guide

fundamental concepts of the EIOS Extended 1/0 System User’s Guide

G

G (Generate) command Guide to the ICU
GDT Programming Techniques
entries, Nucleus ICU Reference
RAM GDT ICU Reference
ROM Master GDT ICU Reference
slot numbers JCU Reference
general driver Device Drivers
asynchronous system calls for loading files Application Loader User's Guide
Generate File Names screen ICU Reference
generating a first stage that contains a new driver Bootstrap Loader
generating a new third stage containing the custom driver Bootstrap Loader
generating a system Guide to the ICU
generating the first stage Bootstrap Loader
generating the third stage Bootstrap Loader
GET$DEFAULTSPREFIX system call Basic 1/0 System Calls;
Basic 1/0 System User’s Guide
GET$DEFAULTSUSER system call Basic 1/O System Calls;
Basic I/O System User’s Guide
GETS$EXCEPTIONSHANDLER system call Nucleus System Calls; Nucleus User’s Guide
GETSGLOBALSTIME Basic 1/C System Calls; Basic 1/0 System User’s Guide
GETSIORS procedure Device Drivers
GETSLEVEL system call Nucleus System Calis; Nucleus User’s Guide
GETSLOGICALSDEVICES$STATUS Extended 1/0 System Calls
GET$POOLSATTRIB system call Nucleus System Calls; Nucleus User’s Guide
GETS$PRIORITY system call Nucleus System Calls; Nucleus User’s Guide;
Programming Techniques

Page-28 Master Index

MASTER INDEX

GETSSIZE system call Nucleus System Calls; Nucleus User’s Guide
GETS$TASKSTOKENS system call Nucleus System Calls; Nucleus User’s Guide;
FProgramming Techniques
GETSTIME system call Basic 1/0 System Calls
GETSTYPE system call Nucleus System Calls; Nucleus User’s Guide
GETSUSERSIDS Extended I/0 System Calls
GETBADTRACKINFO command Disk Verification
getting a 24-bit physical address Nucleus System Calls
global clock ICU Reference; Operator’s Guide, Nucleus User’s Guide
global descriptor table (GDT) Nucleus User’s Guide; Programming Technigues
global job Extended 1/0 System User’s Guide
global object directory Operator’s Guide
global time-of-day clock Basic I/O System User’s Guide
granularity Basic I/O System User's Guide; Disk Verification; Operator’s Guide
iSBC 186/224A Driver ICU Reference
ISBC 208 Driver ICU Reference
ISBC 220 Driver ICU Reference
iSBC 264 Driver ICU Reference
iSBX 251 Driver ICU Reference
Mass Storage Controller (MSC) Driver ICU Reference
RAM Driver ICU Reference
SCSI Driver ICU Reference
granularity, device Device Drivers; ICU Reference
granules and granularity Introduction
group ID Operator's Guide
guidelines for writing portable programs for the UDI UDI User’s Guide

H

handlers Nucleus User’s Guide
handling exceptions Nucleus User's Guide
in-line Nucleus User's Guide
handling interrupts Nucleus User’s Guide
spurious Nucleus User’s Guide
hard-copy mode Operator’s Guide
hardware System Debugger
hardware configuration Nucleus User’s Guide
Hardware screen ICU Reference; Guide to the ICU
hardware-related parameters ICU Reference
head load and unload time see specific devices in ICU Reference
iSBC 208 Driver
Mass Storage Controller (MSC) Driver
heads, topics ICU Reference
number of
per fixed disk

Master Index Page-20

MASTER INDEX

per removable disk
HELP commands
for debugging System Debugger
for Disk Verify Disk Verification
for ICU Guide to the ICU
help information Device Drivers
help messages, ICU Guide to the ICU
HEX command Disk Verification
HI Jobs screen ICU Reference
HI Logical Names screen ICU Reference
hierarchical file structure Introduction
hierarchical naming of files Basic I/0 System User’s Guide
hierarchy Operator’s Guide
high water mark Device Drivers
high water mark, special Device Drivers
high-performance portion of object queue Nucleus User’s Guide
High-performance queue, mailbox Programming Technigues
HISTORY command Operator’s Guide; Human Interface User’s Guide
host ID see specific device ICU Reference
SCSI Driver
how automatic boot device recognition (ABDR) works Bootstrap Loader
how to bootload from the iSDM monitor prompt Boofstrap Loader
examples Bootstrup Loader
Human Interface
topics in JCU Reference
parameters
screens
topics in Introduction
multi-user Infroduction
topics in Human Interface User's Guide
creating
processing
general information Operafor's Guide
HYBRIDSDETACHSDEVICE Extended 1/0 System Calls
hypothetical system Introduction

I2ICE in-circuit emulator Guide to the ICU
I/0O addresses in the standard definition files Installation Guide
1/O boards in the standard definition files Installation Guide
1/0 buffering Introduction
I/0 job, topics in ICU Reference

default prefix

directory size

Page-30 Master Index

MASTER INDEX

screen
I/O job characteristics Extended I/0 System User’s Guide
I/O job objects Extended 1/0 System User’'s Guide
I/0 job system calls Application Loader User’s Guide
1/O jobs Extended I/0 System User's Guide
I/O processing Human Interface User’s Guide
I/O Processor Block Address ICU Reference
1/O redirection Human Interface User’s Guide; Operator’s Guide
1/O request/result segment (IORS) Device Drivers; System Debugger
I/O requests Device Drivers
1/O System, topics in Nucleus User’s Guide
environmental conditions
programmer errors
1/0O task priority ICU Reference
I/O Users screen ICU Reference
1/0,
sequential Programming Technigues
random Programming Technigues
ICU files Guide to the ICU
ICU Merge (ICUMRG) utility Device Drivers; Guide to the ICU
ID, topics in Extended 1/0 System Calls
owner
System Manager
idle time see specific device JCU Reference
1SBC 186/410 Terminal Driver
IDT entries ICU Reference
implied seeks Device Drivers
Improving Nucleus performance Programming Techniques
in-line exception handling Nucleus User’s Guide
in-service register Nucleus User’s Guide
INCLUDE files Guide 1w the ICU, Human Interface User's Guide;
Programming Techniques
Include statement Programming Techniques
Includes and Libraries screen /CU Reference
iINDX compatible diskettes Operaror’s Guide
INITSIO procedure Device Drivers
initial files Disk Verification
initial program Human Interface User’s Guide; ICU Reference; Operator’s Guide
INITIAL statement Guide to the ICU
initialization command, for SCSI Driver ICU Reference
initialization error reporting Human Interface User’s Guide
initialization errors Bootstrap Loader, ICU Reference
initialization order Guide o the ICU
initialization task Guide ro the ICU
initialize I/O procedure Device Drivers

Master Index Page-31

MASTER INDEX

initialize on-board functions ICU Reference
initializing your system Guide to the ICU
INITSTATUS command Operator’s Guide; Introduction
inpath-list Operator’s Guide
input
baud rate Device Drivers
connections Human Interface User’s Guide
parity Device Drivers
input/output (I1/0), topics in UDI System Calls
buffers
console
error
job
operations
input/output (I/0O) job Extended /O System Calls
input/output features Infroduction
inserting data into the input stream Device Drivers
inserting data on a screen Guide to the ICU
INSPECT$COMPOSITE system call Nucleus Systey Calls, Nucleus User’s Guide
INSPECTS$USER Basic 1/0O System Calls; Basic 1/0 System User’s Guide
installing iRMX-NET [nstallation Guide
installing the operating system on
80286,/80386 based microcomputers Installation Guide
Series IV Installation Guide
instance Bootstrap Loader; ICU Reference
iSBC 186/224A Driver ICU Reference
iSBC 186/410 Driver ICU Reference
INT2 Programming Techniques
INT3 Programming Technigues
INTEGER Nucleus User's Guide
integer constants Guide to the ICU
INTEGER data type see "DATA TYPE" appendixes in each user guide { VOL. 2)
Intel Device Drivers screen ICU Reference
Intel-supplied bootstrap loader drivers Bootstrap Loader
Intel-supplied device drivers Device Drivers
INTELLEC Series IV Microcomputer Development System Guide to the ICU
Interactive Configuration Utility (ICU) Guide to the ICU; Introduction; System Debugger,
UDI User's Guide
interactive job Human Interface User’s Guide; Operator’s Guide
interactive programs UDJ System Calis
interface libraries ICU Reference; Programming Techniques
Interface libraries as a function of P1L./M-286 models Guide to the ICU
RMXIFC.LIB library
RMXIFL.LIB library
UDIIFC.LIB library

Page-32 Master Index

MASTER INDEX

UDIIFL.LIB library
UDIIFS.LIB library
interface libraries for the UDI UD/{ User’s Guide
interface library Extended I/0 System Calls
interface procedure Nucleus User’s Guide
interfaces, device Device Drivers
interleave factor Operator’s Guide; Disk Verification
selection of
importance of
interleave values for the iSBC 214/215G Installation Guide
internal buffer size Extended I/0 System User’s Guide; ICU Reference
internal files Operator’s Guide
interpreting condition codes UDI User’s Guide
interrupt controller Nucleus User’s Guide
interrupt descriptor table (IDT) Nucleus User’s Guide
interrupt handler, topics in Nucleus User’s Guide
duties
setting up
using
interrupt level Device Drivers; Nucleus User’s Guide
specific devices see the ICU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
iSBC 208 Driver
1SBC 220 Driver
iSBC 264 Driver
ISBC 286/10(A) line printer
iSBC 534 Terminal Driver
iSBC 544A Terminal Driver
iSBX 251 Driver
line printer--iSBX 350
Mass Storage Controller (MSC) Driver
SCSI Driver
System Debugger
Terminal Communications Controller
interrupt levels in standard definition files Installation Guide
28612.def
38620.def
SXM386.def
interrupt lines Device Drivers; Nucleus User’s Guide
interrupt management Nucleus User’s Guide
interrupt mechanisms Nucleus User’s Guide
interrupt procedure UDI System Calls
Interrupt screens JCU Reference

Master Index Page-33

MASTER INDEX

interrupt servicing, topics in Nucleus User’s Guide
patterns
examples
multiple buffers
interrupt slaves ICU Reference
interrupt task Nucleus User’s Guide
duties
priorities
using
interrupt task, display System Debugger
interrupt task priority see ICU Reference for the following devices
iSBC 208 Driver
iSBC 220 Driver
iSBC 264 Driver
iSBC 286/10(A) line printer
iSBX 251 Driver
line printer
Mass Storage Controller (MSC) Driver
SCSI Driver
interrupt tasks and handlers Device Drivers
interrupt time out ICU Reference
interrupt type Device Drivers
INTERRUPTSTASK Device Drivers
interrupts Nucleus User’s Guide
interrupts and intcrrupt processing Infroduction
Interrupts,
maskable Programming Techniques
non-maskable Programming Techniques
intertask coordination Jntroduction
introduction Device Drivers
invisible files Operator’s Guide
invocation of SDB System Debugger
invocation error messages Disk Verification
invoking an exception handler Nucleus User’s Guide
Invoking system calls Programming Techniques
from Assembly Language
from C Programming Language
from P/LM-286
invoking the BS1.CSD file Bootstrap Loader
invoking the BS3.CSD file Bootstrap Loader
invoking the ICU Guide to the ICU
IORS Device Drivers
iPSB (Parallel System Bus) Nucleus User's Guide
iRMX TI and iRMX I differences see appendix in each user’s guide
iIRMX 11 file structure Operator’s Guide

Page-34 Master Index

MASTER INDEX

iRMX 1I System Debugger System Debugger; Guide to the ICU
iIRMX II volume label Disk Verification
iRMX II-based system Guide to the ICU
IRMX I environment UDI User’s Guide
iIRMX-NET Human Interface User’s Guide; Operator’s Guide
iSBC 186/224A Driver ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
1SBC 186/224A multi-peripheral controller driver Device Drivers
iSBC 186/410 terminal driver Device Drivers; ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
1ISBC 208 disk driver Device Drivers
iSBC 208 Driver ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
iISBC 214/215G /iSBX 217/218 devices Operator’s Guide; Guide to the ICU
Mass Storage Controller (MSC) Driver ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
iSBC 220 Driver ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
iISBC 220 SMD disk driver Device Drivers
iSBC 264 bubble memory driver Device Drivers; ICU Reference
iSBC 264 Driver ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
iSBC 286/10(A) line printer driver Device Drivers; ICU Reference
Device-Unit Information screen
Driver screen
1SBC 534 terminal driver Device Drivers; ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
ISBC 544A terminal driver Device Drivers; ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen

Master Index Page-35

MASTER INDEX

iSBX 251 bubble memory driver Device Drivers; ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
ISBX 350 line printer driver Device Drivers; ICU Reference
iSBX 351 terminal driver Device Drivers; ICU Reference
iSDM Monitor Programming Techniques; Guide to the ICU, Introduction;
Operator’s Giiide
iSDM System Debug Monitor System Debugger
command directory Syster Debugger
B command
C command
D command
E command
F command
G command
I command
K command
L command
M command
N command
Q command
P command
Q command
R command
S command
X command
Y command
ISO volume label Disk Verification

J

job Introduction; Nucleus User’s Guide
creation
deletion
management
tree
Job, topics general
boundaries Programming Technigues
cataloging Nucleus System Calls
delete priority ICU Reference
exit interval JCU Reference
ID Operator’s Guide
memory [CU Reference
name /CU Reference

Page-36

Master Index

job, topics in Extended I/0 System Calls
child
creation
default attributes
deletion
execution
initial
initial task
I/O
memory pool
object directory
start address
termination
jobs, topics in System Debugger
display
hierarchy
object directory
objects
offspring

job$flags for RQ(E)SCREATESJIOB system calls Nucleus Systern Calls

JOBDELETE Introduction: Operator’s Guide
JOBS command Operator’s Guide
Jobs,
passing data between Programming Techniques
passing objects between Programming Techniques
jumpers for controller boards Installation Guide
iSBC 208
iISBC 214
iSBC 215G
iSBC 220
iSBC 534
iISBC/iSXM 544A
ISBC 546
ISBC 547
iSBC 7-13
iSBC 188/48/56
iSBX 217C
iISBX 218A
iSBX 251
iSBC 264
iISBX 350
1ISBX 354
jumpers for processor boards Installation Guide
iSBC 286/10(A)
iSBC 286/12

Master Index

MASTER INDEX

Page-37

MASTER INDEX

iSBC 386/2X
keyword Disk Verification; Human Interface User’s Guide
parameters Operator’s Guide

K

KILL command Operator’s Guide
L

language requirements Guide to the ICU
languages and language translators Introduction
Large segmentation model Programming Techniques, Guide to the ICU
restrictions Programming Techniques
LDT Programming Technigues
level, interrupt Nucleus User’s Guide
levels of communication Device Drivers
Libraries topics in Programming Technigues
interface
object
library files ICU Reference
line edit mode for devices /CU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
iSBC 186/410 Terminal Driver
iSBC 534 Terminal Driver
iSBC 544A Terminal Driver
Terminal Communications Controller
line editing control Device Drivers
line editing mode Device Drivers; UDI System Calls
line feed Operator's Guide
line number see specific device ICU Reference
iISBC 186/410 Terminal Driver
Line Printer--iSBX 350 Driver ICU Reference
Device-Unit Information screen
Driver screen
line printer pin assignments for the iSBX 350 Installation Guide
line protocol Device Drivers
line terminator Device Drivers, Operator’s Guide
special Device Drivers
line-edit buffer Device Drivers
line-editing Operator's Guide
features Human Interface User's Guide
functions Device Drivers

Page-38 Master Index

MASTER INDEX

link parameters Device Drivers
Linking object modules Programming Techniques
List (L) command Guide to the ICU
LIST option Disk Verification
LISTBADBLOCKS command Disk Verification
listing directories Operator’s Guide
literature Introduction
load file names Bootstrap Loader
loading (program and overlay) Introduction
application
bootstrap
loading
the DS register with a base address Nucleus System Calls
the operating system Operator’s Guide
the system Guide to the ICU
local area networks (LANSs) Basic I/0 System User’s Guide see also iRMX-NET
local clock Operator’s Guide
local descriptor table (LDT) Nucleus User’s Guide; See LDT Progranuning Technigues
local object directory Operator’s Guide
LOCDATA Introduction; Human Interface User's Guide; Operator’s Guide
LOCK command [ntroduction; Operator's Guide
locking the terminal Device Drivers
logical addresses Device Drivers
logical device object Extended 1/0 System User’s Guide
logical device, topics Extended I/0 System Calls
name
status
logical job Extended 1/O System User's Guide
logical name ICU Reference; Extended [/0 System User’s Guide; Operator’s Guide
device Operator’s Guide
files Operator’s Guide
screen JCU Reference
LOGICALSATTACHSDEVICE Basic 1/0 System User’s Guide; Extended 1/0O System
User’s Guide
LOGICALSDETACHSDEVICE Extended 1/0 System Calls
LOGICALNAMES command Introduction; Operator’s Guide
logoff Human Interface User’s Guide
LOGOFF command Operator’s Guide; Introduction
interval JCU Reference
logon, topics general
dynamic Operator’s Guide
dynamic terminals Human Interface User’s Guide
file Human Interface User's Guide; Operator’s Guide
name Operutor’s Guide
static Operator’s Guide

Master Index Page-39

MASTER INDEX

static terminals Human Interface User’s Guide
long files Disk Verification
long-term operations Device Drivers
looking up objects Nucleus User’s Guide
LOOKUPSOBIECT system call Nucleus System Calls; Programming Techniques; Human
Interface User's Guide; Nucleus User’s Guide
low water mark Device Drivers

mailbox Introduction; Nucleus User’s Guide; System Debugger
flags Nucleus System Calls
mechanics Nucleus User’s Guide
queues Nucleus User’s Guide
high-performance Programming Techniques
overflow Programming Technigques
passing objects through Programming Techniques
CREATESIOSIOB Extended I/0 System Calls
RQE$SCREATESIOS$IOB Extended 1/0 System Calls
EXIT$IOSIOB Extended 1/0 System Calls
maintaining file independence Extended I/0 System User’s Guide
maintenance of software Introduction
management Nucleus User’s Guide
Manager, type Programming Technigues
managing, topics in Nucleus User’s Guide
exceptional conditions
exchanges
interrupts
jobs
memory
objects
tasks
Maskable interrupt Programming Techniques
Mass Storage Controller (MSC) driver Device Drivers; ICU Reference
Device-Unit Information screen
Driver screen
Unit Information screen
mass storage device Introduction
mass storage file allocation Introduction
Master Level Interrupt screen ICU Reference
master PIC Nucleus User’s Guide
maximum buffers, see specific devices ICU Reference
ISBC 186/224A Driver
iSBC 186/410 Terminal Driver
SCSI Driver

Page-40 Master Index

MASTER INDEX

maximum memory Nucleus User's Guide
maximum retries, see specific devices ICU Reference

iSBC 208 Driver

iSBC 220 Driver

iISBC 264 Driver

iSBX 251 Driver

Mass Storage Controller (MSC} Driver

SCSI Driver
Medium segmentation model Programming Technigues
MEMORY Introduction

allocation Nucleus User’s Guide

management Nucleus User’s Guide

pool Nucleus User’s Guide

address Guide to the ICU; ICU Reference

base ICU Reference
space, minimizing Guide to the ICU

addresses in the the standard definition files Installation Guide

allocation Introduction

command Operator’s Guide

for Free Space Manager screen ICU Reference

System screen ICU Reference

management system calls U7DI User's Guide

needed for BIOS connections and objects Basic 1/0O System User’s Guide
memory block Extended 1/0 System Calls
memory parameters ICU Reference
memory partitions Human Interface User’s Guide
memory pool

EIOS ICU Reference

Human Interface ICU Reference

1/O job ICU Reference

user job ICU Reference

for new jobs Application Loader User’s Guide
memory requirements Human Interface User’s Guide; ICU Reference
message scheme for mailboxes Nucleus System Calls
message task Nucleus User’s Guide; Device Drivers
MESSAGESTASK Device Drivers
message-passing devices Device Drivers
messages between tasks Introduction
minimum memory Nucleus User’s Guide
minimum partition size Guide to the ICU
minimum stack sizes for IRMX I1 layers Application Loader User’s Guide
Miscellaneous Commands for Disk Verify Disk Verification

ADD

ADDRESS

BLOCK

Master Index Page-41

MASTER INDEX

DEC
DIV
HEX
MOD
MUL
SUB
error messages
examples
MOD command Disk Verification
mode UDI System Calls
mode
cascade Nucleus User’s Guide
exception Nucleus User's Guide
flush Device Drivers
line-editing Device Drivers
terminal Device Drivers
transparent Device Drivers
transparent Device Drivers
model of segmentation Programming Technigues; UDI System Calls;
and error handling UDI User's Guide
COMPACT Programming Techniqies
LARGE Programming Techniques
MEDIUM Programming Techniques
restrictions Programming Techniques
SMALL Programming Technigues
modem Device Drivers; Operator’s Guide
modem control availability of JCU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
iSBC 186/410 Terminal Driver
iSBC 534 Terminal Driver
ISBC 544A Terminal Driver
Tcrminal Communications Controller
modem indicator Device Drivers
modes Device Drivers
connection
terminal
terminal
modifying
controller boards Installation Guide
the BS1.CSD file Bootstrap Loader
the SUBMIT files Bootstrap Loader
monitor Operator’s Guide
considerations ICU Reference

Page-42 Master Index

MASTER INDEX

motor delay {CU Reference
movement of memory between jobs Nucleus User’s Guide
moving the file pointer UDI User’s Guide
MUL command Disk Verification
multi-user support Human Interface User’s Guide; Operator’s Guide
MULTIBUS II Nucleus User’s Guide
multiple buffers Nucleus User’s Guide
example
multiple terminal support Introduction
multiple units on one Winchester disk ICU Reference
multiple users Introduction; Operator’s Guide
multiple-buffered 1/C Introduction
multiples files on a single device Basic I/0O System User’s Guide
multiprogramming Infroduction
systems Programming Techniques
multitasking Introduction
mutual exclusion Infroduction; Nucleus User’s Guide
using regions Nucleus User's Guide
using semaphores Nucleus User’s Guide

N

name of server ICU Reference
named file driver, see specific device ICU Reference
SCSI Driver
named file system calls, BIOS ICU Reference
named files Operator’s Guide
NAMED verification Disk Verification
named volume structure Disk Verification
NAMEDI1 verification Disk Verification
CIrTors
output
NAMED? verification Disk Verification
errors
output
names for Intel-supplied third stage drivers Bootstrap Loader
naming the third stage Bootstrap Loader
nested composites Nucleus User’s Guide
network access Human Interface User’s Guide
new objects Nucleus User’s Guide
NMI exception handler ICU Reference
non-1/O job system calls Application Loader User’s Guide
Non-maskable interrupt (NMI) Programming Techniques, System Debugger
non-resident configuration ICU Reference

files Guide to the ICU

Master Index Page-43

MASTER INDEX

user Human Interface User’s Guide
nonstandard command lines Human Interface User's Guide
normal mode Device Drivers; Operator’s Guide
notification of drive door open Device Drivers
NOTIFY procedure Device Drivers
requests Device Drivers
NPX, see "Numeric Processor Extension" ICU Reference; UDI User’s Guide
parameters ICU Reference
screen ICU Reference
Nucleus Nucleus User’s Guide, Guide to the ICU; Infroduction
optimizing performance
NUMS$BUFFERS Device Drivers
number of boards, for specific devices ICU Reference
iSBC 264 Driver
iSBC 534 Terminal Driver
iSBC 544A Terminal Driver
number of buffers Device Drivers; ICU Reference
ISBC 186/224A Driver ICU Reference
iSBC 208 Driver ICU Reference
iSBC 220 Driver ICU Reference
iSBC 264 Driver ICU Reference
iSBX 251 Driver ICU Reference
Mass Storage Controller (MSC) Driver ICU Reference
RAM Driver ICU Reference
SCSI Driver ICU Reference
remote files ICU Reference
number of cylinders ICU Reference
number of heads ICU Reference
number of tracks ICU Reference
iSBC 208 Driver ICU Reference
Mass Storage Controller (MSC) Driver
number of user-defined devices ICU Reference
number of users possible with different 1/O boards Installation Guide
Numeric Processor Extension (NPX) ICU Reference; Programming Technigues;
Nucleus User’s Guide

o)

object Nucleus User’s Guide; Extended I/O System Calls
default user Extended 1/0 Systemn Calls
directory Nucleus User's Guide
management Nucleus User’s Guide
new Nucleus User’s Guide
queue Nucleus User’s Guide
type Nucleus User’s Guide

Page-44 Master Index

MASTER INDEX

code Human Interface User’s Guide
code pathname ICU Reference
counts Extended I/0 System User's Guide
directories Operator’s Guide; Programming Techniques
global Operator’s Guide
local Operator’s Guide
root Operator’s Guide
caller job Extended I1/0 System Calls
global job Extended I/0 System Calls
root object Extended I/0 System Calls
directory Introduction
size ICU Reference
file UDI System Calis
libraries Programming Techniques
module, linking Programming Techniques
passing protocol Programming Techniques
types and resource requirements Basic 1/0 System User’s Guide
numeric codes Extended 1/0 Systerm User’s Guide
user UDI System Calls
object-oriented architecture Introduction
objects see object
objects Introduction
obtaining a command name Human Interface User’s Guide
OFFSET Nucleus User’s Guide
OFFSPRING system call Nucleus System Calls; Nucleus User’s Guide
on-target program development Introduction
open calls Device Drivers
open-mode indicator Basic 1/0 System User’s Guide
opening a connection Extended 1/O System User’s Guide; UDI User’s Guide
opening files Device Drivers
OpenNet environment Operator's Guide
operating system extensions Nucleus User’s Guide
creating
procedures
operating system identification UDJ System Calls
operating systems, switching UDI User’s Guide
operations performed by
C3SENDSCOSRESPONSE Human Interface System Calls
C3$SENDSEOSRESPONSE Human Interface System Calls
operator’s role in bootstrap loading Bootstrap Loader
OPTIMIZE(3) compiler control Programming Techniques
Optimizing performance,
Nucleus Programming Techniques
sequential I/O Programming Technigues
optimizing seeks Device Drivers

Master Index Page-45

MASTER INDEX

OS Extension parameters ICU Reference
OSC controls ICU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
BIOS
iSBC 186/410 Terminal Driver
iSBC 534 Terminal Driver
1SBC 544 A Terminal Driver
Terminal Communications Controller
OSC sequences Device Drivers; UDI System Calis
outpath-list Human Interface User’s Guide; Operator’s Guide
output
baud rate Device Drivers
connection Human Interface User’s Guide
characters Device Drivers
control in input see specific device ICU Reference
8274 Terminal Driver
8251A Terminal Driver
82530 Terminal Driver
iSBC 186/410 Terminal Driver
iSBC 534 Terminal Driver
iSBC 544 A Terminal Driver
Terminal Communications Controller
output
medium Device Drivers
mode Device Drivers; Operator’s Guide
parity Device Drivers
OVER preposition Human Interface User's Guide; Operator's Guide
overflow
offset Device Drivers
portion of object queue Nucleus User’s Guide; Programming Techniques
overlapping seeks Device Drivers
overlay UDI Systerm Calls; Introduction
OVL286 see overlay
owner Disk Verification; Operator’s Guide; Introduction
ID Extended 1/0 System Calls; UDI System Calls

P

P/LM-286 Programming Techniques

parameter definition Guide to the ICU

parameter object Nucleus System Calls, Programming Techniques
passing Programming Techniques

parameter validation ICU Reference; Nucleus User’s Guide

Page-46 Master Index

MASTER INDEX

Nucleus ICU Reference
user job ICU Reference
parameters Disk Verification, Hurnun Interface User's Guide;, Operator’s Guide,
Programming Techniques
parent
directory Disk Verification
job Nucleus User’s Guide; ICU Reference
parity, specific devices ICU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
ISBC 186/410 Terminal Driver
ISBC 534 Terminal Driver
iSBC 544A Terminal Driver
Terminal Communications Controller
parity
input Device Drivers
output Device Drivers
parsing of command lines Introduction
parsing, Human Interface User’s Guide
buffer
commands
input and output pathnames
nonstandard command lines
parameters
partitions Human Interface User’s Guide
PASCAL Guide to the ICU; Introduction; Programming Technigues
Passing Programming Techniques
data between jobs
objects between jobs
parameter objects
through mailboxes
through object directories
PASSWORD command Introduction; Human Interface User’s Guide
Operator’s Guide; Guide to the ICU
PATH command Operator’s Guide; Introduction
path$ptr parameter Extended I/0 System User’s Guide
pathname
changing a UDI System Calls
device and unit source code ICU Reference
initial program JCU Reference
object code ICU Reference
separator (/) Human Interface User’s Guide
source code ICU Reference
pathnames Human Interface User’s Guide, Operator’s Guide

Master Index Page-47

MASTER INDEX

listing of Operator’s Guide
separators Operator’s Guide
PAUSE command Operator’s Guide
performance UDI System Calls
PERMIT command Operator’s Guide; Introduction
physical addresses Device Drivers
physical device Extended I/0 System Calls
attaching/detaching
physical device names Installation Guide
physical file driver, for specific device ICU Reference
iSBC 208 Driver
iSBC 220 Driver
iSBC 264 Driver
iSBX 251 Driver
Mass Storage Controller (MSC) Driver
RAM Driver
SCSI Driver
physical files Operator’s Guide; Extended 1/0 System User’s Guide
system calls, BIOS ICU Reference
physical link Device Drivers
physical link parameters Device Drivers
physical names Operator’s Guide
PHYSICAL verification Disk Verification
€ITors
output
PIC, see: programmable interrupt controller
PL/M-286 Introduction; UDI System Calls, Extended 1/0 System Calls; Guide to the ICU
PL/M-86 programs UDI User’s Guide
POINTER Nucleus User's Guide; System Debugger
programming with Programming Techniques
POINTER data type see "DATA TYPES" appendixes in each user’s guide (Vol. 2)
polling Introduction; UDI System Calls
pool size, Application Loader ICU Reference
pool$max for Application Loader calls Appiication Loader User’s Guide
pool$min for Application Loader calls Application Loader User’s Guide
pool, memory Nucleus User’s Guide
size Nucleus User's Guide
port, object Nuclews User's Guide, Nucleus System Calls
port ID, for specific devices ICU Reference
iSBC 186/410 Driver
port address, for specific devices ICU Reference
8274 Terminal Driver
iSBC 208 Driver
iSBC 286/10(A) line printer
ISBC 534 Terminal Driver

Page-48 Master Index

MASTER INDEX

iSBX 251 Driver

Mass Storage Controller (MSC) Driver

SCSI Driver

Terminal Communications Controller
port separation JCU Reference
portability Introduction; UDI System Calls
positioning the cursor Device Drivers
pre-emptive priority-based scheduling Introduction
prefix ICU Reference; Operator’s Guide

option Guide to the ICU

screen ICU Reference
preparing application code Guide to the ICU, Programming Techniques
preparing code to be loaded Application Loader User’s Guide
preposition Human Interface User’s Guide; Operator’s Guide
priority Device Drivers; ICU Reference

EIOS ICU Reference

I/O task ICU Reference

ISBC 186/224A Driver ICU Reference

iSBC 186/410 Driver ICU Reference

iSBC 208 Driver ICU Reference

ISBC 220 Driver ICU Reference

iSBC 264 Driver ICU Reference

iSBC 286/10(A) line printer ICU Reference

iSBX 251 Driver ICU Reference

line printer--iSBX 350 JCU Reference

Mass Storage Controller (MSC) Driver ICU Reference

resident/recovery user ICU Reference

SCSI Driver ICU Reference

user job JCU Reference

of tasks Introduction

of the interrupt task Nucleus User’s Guide
procedure names for Intel-supplied first stage drivers Bootstrap Loader
Procedures Programming Techniques

external

interface

public
program control Human Interface User’s Guide, UDI System Calls
program environment Introduction
programmable interrupt controller (PIC) Nucleus User’s Guide
programmer errors for all layers Operator’s Guide; also see each layer’s

systern call and user manuals

programming a system into PROM Guide to the ICU
PROM-based loading Operator’s Guide
prompt Operator’s Guide
prompt line Guide to the ICU

Master Index Page-49

MASTER INDEX

protected
environment file structure Guide to the ICU
mode considerations Bootstrap Loader
Virtual Address Mode(PVAM) Programming Techniques, Introduction
protecting resources from being deleted Nucleus User's Guide
protection (of files) Introduction
protocol for stream files Extended 1/0 System User’s Guide
the creating task
the writing task
the reading task
Public
procedures Programming Techniques
variable name ICU Reference
PVAM, See Protected

Q

query requests Device Drivers
queue [/O procedure Device Drivers
QUEUESIO procedure Device Drivers
queue
mailbox Nucleus User’s Guide
Mailbox high-performance Programming Techniques
Mailbox overflow Programming Techniques
semaphore Nucleus User’s Guide
task Nucleus User’s Guide
queuing scheme for semaphores Nucleus System Calls
Quit {q) command, for ICU Guide to the ICU
QUIT command Disk Verification
quoting character (" or ") Device Drivers; Operator’s Guide; Human Interface User’s Guide

R

R?BADBLOCKMAP file Disk Verification; Operator’s Guide
R7ERROR Human Interface User's Guide

R?’FNODEMAP file Disk Verification, Operator’s Guide
R?IOJOB Extended I/0 System User’s Guide

R?”IOUSER Extended I/0 System User’s Guide

R?LOGOFF file Operator’s Guide

R?LOGON file Human Interface User’s Guide; Operator’s Guide
R?MESSAGE Extended I/0 System User’s Guide

R?SAVE file Disk Verification; Operator's Guide
R?SPACEMAP file Disk Verification, Operator's Guide
R?VOLUMELABEL file Disk Verification; Operator’s Guide
radices Guide to the ICU; Disk Verification

Page-50 Master Index

MASTER INDEX

RAM ICU Reference
code file name ICU Reference
Device-Unit Information screen fCU Reference
disk Operator’s Guide; Guide to the ICU
driver Device Drivers; ICU Reference
driver screen ICU Reference
memory considerations [CU Reference
parameters ICU Reference
Unit Information screen ICU Reference
start address JCU Reference
random access drivers Device Drivers
random 1/O Programming Techniques
random 1/O operations Jntroduction
ranges of condition codes Nucleus User’s Guide
raw input buffer Device Drivers
RCONFIGURE control of BIND Appiication Loader User’s Guide;
Programming Techniques
read
access Guide to the ICU
calls Device Drivers
requests Device Drivers
READ command Disk Verification
reading ahead (file operation) Introduction
reading information UDI User’s Guide
ready
state Nucleus User’s Guide
tasks System Debugger
real address mode Introduction
real-time events, software Introduction
recalling data Operator’s Guide
RECEIVE$CONTROL system call Nucleus System Calls; Nucleus User’s Guide
RECEIVESDATA system call Nucleus Systern Calls; Programming Techniques;
Nucleus User’s Guide
RECEIVESMESSAGE system call Nucleus System Cails; Nucleus User’s Guide
RECEIVESUNITS system call Nucleus System Calls; Programming Techniques,
Human Interface User’s Guide; Nucleus User’s Guide
recording density, of a specific device ICU Reference
iSBC 208 Driver
Mass Storage Controller (MSC) Driver
SCSI Driver
recording surfaces, of a specific device ICU Reference
iSBC 208 Driver
Mass Storage Controller (MSC) Driver
SCSI Driver
recording, topics Disk Verification

Master Index Page-51

MASTER INDEX

density
sides
size
recovery resident user Human Interface User’s Guide; ICU Reference
Recursive programs Programming Technigues
redefining control characters Device Drivers
redisplaying lines Device Drivers
reduce write current cylinder see specific device ICU Reference
iSBC 186/224A
region Introduction; Nucleus User’s Guide; Human Interface User’s Guide; System Debugger
register, in-service Nucleus User’s Guide
Registers Programming Technigues
release diskettes Guide to the ICU
Remote File Access ICU Reference
parameters
SCreens
Remote File Servers Screen ICU Reference
remote files Introduction; Operator’s Guide
RENAME command Introduction; Operator’s Guide
repetitive screen format Guide to the ICU
repetitive-fixed screen format Guide to the ICU
Replace (R) Command for the ICU Guide to the ICU
replacing files Operator’s Guide
reporting initialization errors ICU Reference
request queue Device Drivers
request update timeout see specific device ICU Reference
iSBC 186/224A Driver
SCSI Driver
RESERVE option Disk Verification
reserving memory UDI System Calls; UDI User’s Guide
RESETSINTERRUPT system call Nucleus System Calls; Nucleus User’s Guide
resident
CLI Human Interface User's Guide
commands Human Interface User's Guide
configuration Human Interface User’s Guide; ICU Reference
user Guide to the ICU; Human Interface User's Guide; ICU Reference
screen ICU Reference
initial program ICU Reference
resource, topics Nucleus User’s Guide
requirements
sharing
task
Response Mailbox Parameter Application Loader System Calls
asynchronous system calls Application Loader User’s Guide
restart-CLI feature Sysrem Debugger

Page-52 Master Index

MASTER INDEX

RESTORE command fntroduction; Operator’s Guide
restore process Guide to the ICU
RESTOREFNODE command Disk Verification
RESTOREVOLUMELABEL command Disk Verification
restoring fnodes Disk Verification
restoring volume labels Disk Verification
restricted system calls Human Interface User’s Guide
restricting system access Guide to the ICU
Restrictions,

segmentation model Programming Techniques

communication Programming Techniques
RESUMESTASK system call Nucleus System Calls; Nucleus User’s Guide
RETENSION command Operator’s Guide
retries Device Drivers; ICU Reference
retrying I/O requests Device Drivers
returning to application System Debugger
RFD system calls fCU Reference
ring buffer example Nucleus User’s Guide
RMX-NET Basic I/O System User’s Guide
ROM code ICU Reference

address

configuring ROM-hased system

file name

initialization procedure

parameters

. screen

ROM compiler control Guide to the ICU
root

of overlaid program Infroduction

directory Disk Verification; Operator’s Guide

job Extended 1/0 System User’s Guide; Guide 1o the ICU; ICU Reference

module UDJ System Calls

object directory Operator’s Guide

size ICU Reference

task Guide to the ICU
round robin scheduling ICU Reference; Introduction;, Nucleus User’s Guide
RQ$ and RQES system calls Application Loader User’s Guide
ROSASSPECIAL Basic 1/0 System Calls; System Debugger
RQSATTACHSBUFFERS$POOL Nucleus System Calls
RQSATTACHSPORT Nucleus Systern Calls
RQIBROADSCAST Nucleus System Calls
RQICANCEL Nucleus System Calls
RQ$CATALOGSOBIECT Nucleus System Calls; System Debugger
RQPICONNECT Nucleus System Calls
RQSCREATESBUFFERSPOOL Nucleus System Calls

Master Index Page-53

MASTER INDEX

RQSCREATESEXTENSION Nucleus System Calls; System Debugger
RQ$ICREATESIOB Nucleus System Calls; System Debugger
RQS$SCREATESMAILBOX Nucleus System Calls; System Debugger
RQS$CREATESPORT Nucieus System Calls
RQ$CREATESREGION Nucleus System Calls; System Debugger
RQSCREATESSEGMENT Nucleus System Calls; System Debugger
RQS$CREATESSEMAPHORE Nucleus System Calls; System Debugger
RQSCREATESTASK Nucleus System Calls; Programming Techniques; System Debugger
RQ$DELETESBUFFERSPOOL Nucleus Systerm Calls
RQ$DETACHSBUFFERS$POOL Nucleus System Calls
RQ$DETACHSPORT Nucleus Systemn Calls
RQSENDSINITSTASK system call Nucleus System Calls; Guide to the ICU
RQSERROR UDI User’s Guide

procedure Nucleus User’s Guide
RQSGETSHOSTSID Nucleus System Calls
RQSGETSINTERCONNECT Nucleus System Calls
RQSGETSPORTSATTRIBUTES Nucleus System Calls
RQSLOOKUPSOBIECT Nucleus System Calls; System Debugger
RQSRECEIVE Nucleus System Calls
RQSRECEIVESFRAGMENT Nucleus System Calls
RCOSRECEIVESREPLY Nucleus Systern Calls
RQSRECEIVESSIGNAL Nucleus Systenm Calls
RQ$RELEASESBUFFER Nucleus System Calls
RQS$RESUMESTASK Nucleus Systens Calls; System Debugger
ROQSREQUESTSBUFFER Nucleus System Calls
RQS$SEND Nucleus System Calls
RQISENDSREPLY Nucleus System Calls
RQS$SENDSRSVP Nucleus System Calls
ROS$SENDSSIGNAL Nucleus System Calls
RQ$SETSEXCEPTIONSHANDLER Nucleus System Calls; System Debugger
RQSSETSINTERCONNECT Nucleus System Calls
RQS$SETSINTERRUPT Nucleus System Calls; System Debugger
RQS$SIGNALSINTERRUPT Nucleus System Calls; System Debugger
RQ3ISLEEP Nicleus Systern Cully; Systern Debugger
RQS$SUSPENDSTASK Nucleus System Calls; System Debugger
RQSWAITSIO Basic I/O System Calls; Systermn Debugger
RQESASLOADSIOS$IOB Application Loader System Calis
RQESCHANGESDESCRIPTOR Nucleus Systerm Calls; Nucleus User’s Guide
RQESCHANGESOBJECTSACCESS Nucleus System Calls
RQESCREATESDESCRIPTOR Nucleus System Calls; Nucleus User’s Guide
RQESCREATESIOS$IOB Extended I/O System Calls
RQESCREATESIOB Nucleus System Calls; Nucleus User’s Guide
RQESDELETESDESCRIPTOR Nucleus System Calls; Nucleus User’s Guide
RQESGETSADDRESS Nucleus System Calls; Nucleus User’s Guide
RQESGETSOBJECTSACCESS Nucleus System Calls; Nucleus User’s Guide

Page-54 Master Index

MASTER INDEX

RQESGET$POOLSATTRIB Nucleus System Calls; Nucleus User’s Guide
RQESOFFSPRING Nucleus System Calls; Nucleus User’s Guide
RQESSSLOADSIOSIOB Application Loader System Calls
RQESSETSOSSEXTENSION Nucleus System Calls; Nucleus User’s Guide
RQESTIMEDSINTERRUPT Nucleus Systern Calls; Nucleus User's Guide
RQGLOBAL Extended 1/0 System User's Guide
rubout Operator's Guide
run-time binding Introduction
running state Nucleus User’s Guide
running the system confidence test Instullation Guide

System 310

System 320
Rx see specific device ICU Reference

iSBC 186/410 Terminal Driver

S

SSATTACHSFILE Extended I/0 System Calls
S$CATALOGSCONNECTION Extended I/0 System Calls
SSCHANGESACCESS Extended 1/0 System Calls
S$CLOSE Extended 1/0 System Calls
S$CREATE$SDIRECTORY Extended 1/0 System Calls
S$CREATESFILE Extended 1/0 Systern Calls; Extended 1/O System User’s Guide
S$DELETE$CONNECTION Extended 1/0 System Calls
SSDELETESFILE Extended 1/0O System Calls
SSGET$CONNECTIONSSTATUS Extended 1/0 System Calls
SSGETSDIRECTORYSENTRY Extended 1/0 System Calls
SSGETSFILESSTATUS Extended 1/O System Calls
S$GETSPATHSCOMPONENT Extended 1/0 System Calls
S$LOADSIOS$IOB Application Loader System Calls
S$LOOKS$UPSCONNECTION Extended I/O System Calls
S$OPEN Extended /O System Calls
SSOVERLAY Application Loader System Calls
SSREADSMOVE Extended 1/0 System Calls
S$RENAMESFILE Extended 1/0 System Calls
S$SEEK Extended I/0 System Calls
S$SPECIAL Extended 1/0 System Calls

formatting a track

stream file operations

stream file transactions

tape drive functions

terminal characteristics

volume availability
SSTRUNCATESFILE Extended I/0 System Calls
SSUNCATALOGSCONNECTION Extended 1/0 System Calls

Master Index Page-55

MASTER INDEX

SSWRITESMOVE Extended 1/0 System Calls
satisfy requests Device Drivers
Save (S) command for the ICU Guide o the ICU
SAVE command Disk Verification
scheduling of tasks Introduction
screen
abbreviation Guide to the ICU
elements Guide to the ICU
format Guide to the ICU
height Device Drivers
master file (SCM) Guide to the ICU
names Guide to the ICU
width Device Drivers
scroll number, for specific devices ICU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
iSBC 186/410 Terminal Driver
iSBC 534 Terminal Driver
iSBC 544A Terminal Driver
Terminal Communications Controller
scrolling Introduction
count Device Drivers
mode Device Drivers; Operator’s Guide
number Device Drivers
SCSI driver for ISBC 286/100A Device Drivers; ICU Reference
Device-unit Information screen
Driver screen
Unit Information screen
SCT Operator’s Guide; Installation Guide
search order Operator’s Guide
sector Basic 1/0 System User’s Guide
sectors per track, for specific devices ICU Reference
iSBC 186/224A
iISBC 208 Driver
iSBC 220 Driver
Mass Storage Controller (MSC) Driver
security (of files) Introduction
seek
calls Device Drivers
optimization Device Drivers
overlap Device Drivers
SEEK$COMPLETE procedure Device Drivers
seeking Device Drivers; UDI User’s Guide
segment Nucleus User’s Guide, UDI Systern Calls, Operator’s Guide

Page-56 Master Index

MASTER INDEX

code Extended I/0 System Calls

data Extended I/0 System Calls

register changes Prograrnming Technigues

switches Programming Technigues
Segmentation models,

COMPACT Programming Techniques

LARGE Programming Techniques

MEDIUM Programming Technigues

restrictions Programming Techniques

SMALL Programming Techniques
SEGSIZE control of BIND Application Loader User’s Guide
selection scheme for the token returned from RQSGET$TASK$TOKENS NUCLEUS
system calls see each layer's SYSTEM CALL manual
SELECTOR Extended [/O Systemm Calls; Nucleus User’s Guide
SELECTOR data type see the "DATA TYPE" appendixes in each user guide (Vol. 2)
semaphore Human Interface User’s Guide; Introduction;, Nucleus User’s Guide;

Programming Techniques; System Debugger
semicolon (;) Human Interface User’s Guide; Operator’s Guide
SENDSCONTROL system call Nucleus System Calls; Nucleus User's Guide
SEND$DATA system call Nucleus System Calls; Nucleus User’s Guide;
Programming Technigues
SENDSMESSAGE system call Nucleus System Calls; Programming Technigues
SEND3UNITS system call Nucleus System Calls; Nucleus User’s Guide
sending command lines to command connections Human Interface User’s Guide
separators Operator’s Guide
sequential exception codes Operator’s Guide; see each layer’s system calls
server name JCU Reference
session history Human Interface User’s Guide
SET command Human Interface User’s Guide; Operator's Guide
SETSDEFAULTSPREFIX Basic I/Q System Calls; Basic 1/0 System User’s Guide
SET$DEFAULT$USER Basic 1/0O System Calls; Basic 1/0 System User’s Guide
SETSEXCEPTIONSHANDLER Nucleus System Calls; Nucleus User’s Guide;
Human Interface User's Guide

SET$GLOBALSTIME Basic I/O System Calls; Basic I/O System User’s Guide
SETSINTERRUPT Nuclews System Calls; Nucleus User’s Guide
SET$POOLSMIN Nucleus System Calls
SET$PRIORITY Nucleus System Calls
SETSTIME system call Basic I/O System Calls
setting up a protected environment Guide to the ICU
setting up an interrupt handler Nucleus User’s Guide
setting when an exception handler gets control Nucleus System Calls
share-mode indicator Basic I/0 System User’s Guide
shared data regions Infroduction
sharing data Nucleus User’s Guide
short files Disk Verification

Master Index Page-57

MASTER INDEX

SHUTDOWN command Operator’s Guide; Introduction; Disk Verification
signal characters Device Drivers
SIGNALSEXCEPTION Nucleus System Calls; Nucleus User’s Guide; UDI User’s Guide
SIGNALSINTERRUPT Nucleus System Calls, Nucleus User's Guide
simulation Device Drivers
simultaneous multiple terminal support Infroduction
single buffer example Nucleus User’s Guide
single-user Operator’s Guide
size of ICU Reference
buffers
command line
memory pool
stack
size, memory pool Nucleus User's Guide
Slave Interrupt Levels screen ICU Reference
slave
level-sensitive ICU Reference
number ICU Reference
programmabile interrupt controller Nucleus User’s Guide
SLEEP system call Nucleus System Calls; Nucleus User’s Guide
sleeping tasks Systern Debugger
slot ID see specific device ICU Reference
iSBC 186/410
slots Programming Techniques
SMALL segmentation model Programming Techniques; Guide to the ICUJ
restrictions Programming Technigues
Soft-Scope 286 Guide to the ICU
software control strings Device Drivers
software interface Introduction; also UDI manuals
software version numbers Installation Guide
special Device Drivers
array
calls
character mode
character recognition
characters
high water mark
line terminator
spurious interrupts Nucleus User’s Guide
SS:SP (stack segment:stack pointer) System Debugger
stack System Debugger
pointer for RQ§SIGNALSEXCEPTION Nucleus System Calls
sections Programming Techniques
segment address ICU Reference
size Device Drivers; Human Interface User’s Guide; ICU Reference

Page-58 Master Index

MASTER INDEX

arithmetic technique for estimating Programming Technigues
empirical technique for estimating Programming Techniques
guidelines Programming Techniques
requirements for system calls Programming Technigues
pointer Extended I/O System Calls
standard definition file configurations for
nucleus [nstallation Guide
system debugger Installation Guide
basic I/0 system Installation Guide
extended 1/O system Installation Guide
application loader Instailation Guide
universal development system Installation Guide
standard diskette format Device Drivers
iISBC 186/224A ICU Reference
iSBC 208 Driver ICU Reference
Mass Storage Controller (MSC) Driver ICU Reference
SCSI Driver ICU Reference
standard initial program Human Interface User’s Guide
STARTSIOSIOB Extended I/0 System Calls
start-up systems Introduction
starting
output Device Drivers
sector JCU Reference
states, task Nucleus User’s Guide
static
debugging Introduction see also System Debugger
logon Introduction; Operator’s Guide; Human Interface User’s Guide
status port, for specific devices ICU Reference
8274 Terminal Driver
82530 Terminal Driver
iSBX 251 Driver
step rate, for specific devices ICU Reference
iISBC 186/224A Driver
1SBC 208 Driver
Mass Storage Controller (MSC) Driver
steps in configuring the third stage Bootstrap Loader
stop bits Device Drivers; ICU Reference
iSBC 186/410 Terminal Driver ICU Reference
stopped mode Device Drivers; Operator’s Guide
stopping output Device Drivers
stream file system calls, BIOS JCU Reference
stream files Operator’s Guide, Programming Techniques
writing task Basic I/O System User’s Guide
reading task Basic 1/O System User’s Guide
STRING data type see each user’s guide "DATA TYPE" appendix (Vol. 2)

Master Index Page-59

MASTER INDEX

STRINGS$TABLE data type Human Interface User’s Guide
strings Human Interface User’s Guide
structure of command lines Human Interface User’s Guide
structure of files Operator’s Guide
structure of named volumes Disk Verification
structure of the I/O Result Segment Basic I/0 System User’s Guide
stuffing data into the input stream Device Drivers
SUB command Disk Verification
sub-systems parameters JCU Reference
SUBMIT command QOperator’s Guide; Introduction; Guide to the ICU
SUBSTITUTEBYTE command Disk Verification
SUBSTITUTEWORD command Disk Verification
SUPER command Operator’s Guide; Introduction
supplied commands Human Interface User’s Guide
supplying configuration information to the third stage Boofstrap Loader
support for overlaid programs Application Loader User’s Guide
supporting multiple terminals Human Interface User’s Guide
SUSPENDSTASK system call Nucleus System Calls; Nucleus User’s Guide
suspended state Nucleus User’s Guide
suspension depth Nucleus User’s Guide
switching of diskettes Operaror's Guide
switching operating systems UDI User’s Guide
SXM386.def Installation Guide
synchronization Introduction
synchronous and asynchronous system calls Applicatinn Loader User's Guide
Synchronous initialization Guide to the ICU
synchronous system calls Application Loader User's Guide
RQ(E)$SSLOADSIOSIOB Application Loader User’s Guide
SSOVERLAY Application Loader User’s Guide
user parameter Basic 1/0 System User’s Guide
file-path parameters Basic I/O System User’s Guide
response mailbox parameters Basic I/O System User’s Guide
I/O buffers Basic 1/0O System User’s Guide
Synchronization Programming Technigues
syntax diagram System Debugger
syntax, command Operator’s Guide
system call command dictionary see each layer’s system call manual
system calls see each layer’s system call manual
command-processing Human Interface User’s Guide
descriptions UDI System Calls
dictionary UDI System Calls
exception handling Nucleus User’s Guide; UDI User’s Guide
exception-handling UDI System Calls
file-handling UDI System Calls
file-handling UDI User’s Guide

Page-60 Master Index

MASTER INDEX

[/O-processing Human Interface User’s Guide
invoking Programming Techniques
memory management UDI System Calls; UDI User's Guide
named files Basic 1/0 System User’s Guide
program control UD{ Systern Calls; UDI User's Guide
See entries for specific system calls
stack size requirements, See stack size requirements for system calls
utility and command parsing UDI System Calls
System Confidence Test (SCT) Operator’s Guide; Installation
System Debugger System Debugger; Guide to the ICU; ICU Reference
parameters ICU Reference
system device Extended 1/0 System User’s Guide; Operator’s Guide; ICU Reference
system initialization Guide to the ICU; Nucleus User’s Guide
error reporting Extended 1/0 System User’s Guide
system manager Basic I/O System User's Guide; Guide to the ICU,
Human Interface User’s Guide; Operator’s Guide
system terminals, types of Guide to the ICU
system
device ICU Reference; Operator’s Guide
directory ICU Reference
manager ID ICU Reference

T

Table,
Global Descriptor Programming Techniques
Local Descriptor Programming Techniques
tabs, for printers ICU Reference
1ISBC 286/10(A) line printer
line printer
tandem mode see specific device ICU Reference
ISBC 186/410 Terminal Driver
tape drive Extended 1/0 System Calls; Device Drivers; ICU Reference
tape file marks Device Drivers
tape requests Device Drivers
tape support, BIOS ICU Reference
task, EIOS Extended I/0 System Calls
attaching/detaching devices
calling
deletion
execution
initial
interrupt
priority
terminating

Master Index Page-61

MASTER INDEX

task entry point JICU Reference
task priority ICU Reference
EIOS
I/O task
iSBC 186/224A Driver
iSBC 186,/410 Driver
iSBC 208 Driver
iSBC 220 Driver
iSBC 264 Driver
iSBC 286/10(A) line printer
iSBX 251 Driver
line printer--iSBX 350
Mass Storage Controller (MSC) Driver
resident/recovery user
user job
task$flags for RQSCREATESTASK Nucleus System Calls
task$flags parameter for RQ(E)}SCREATESJOB call Nucieus System Calls
task, for system debugger System Debugger
interrupt task display
non-interrupt task display
state
tokens
tasks ICU Reference; Nucleus User's Guide; Programming Technigues
interrupt Nucleus User’s Guide; Device Drivers
message Nucleus User's Guide; Device Drivers
management Nucleus User’s Guide
priority Nucleus User’s Guide
queue Nucleus User’s Guide
resources Nucleus User’s Guide
state transitions
states Nucleus User's Guide
tasks and task scheduling Introduction
tasks defined Introduction
template (TPL) file Guide to the ICU
temporary file Basic I/O System Calils; UDI User’s Guide
terminal
attributes Device Drivers
character sequences Device Drivers
check procedure Device Drivers
configuration file Guide to the ICU
device name ICU Reference; Operator’s Guide
drivers Device Drivers
finish procedure Device Drivers
flags Device Drivers
hangup procedure Device Drivers

Page-62 Master Index

MASTER INDEX

initialization procedure Device Drivers
1/O Device Drivers
mode information Device Drivers
modes Device Drivers
name Human Interface User’s Guide
output Device Drivers
output procedure Device Drivers
setup procedure Device Drivers
Terminal Communications Controller Driver ICU Reference; Device Drivers
Device-Unit Information screen
Driver screen
Unit Information screen
Terminal Support Code Device Drivers; Introduction; Operator’s Guide
Terminal Support Code (TSC) data area Device Drivers
Terminal Support Code input buffer Device Drivers
terminal type ICU Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
1SBC 186/410 Terminal Driver
iSBC 534 Terminal Driver
1ISBC 544A Terminal Driver
Terminal Communications Controller
terminal utility procedure Device Drivers
terminals Human Interface User’s Guide
dynamic logon
static logon
terminating programs UDI System Calls
terminating the command Human Interface User's Guide
testing the system Guide to the ICU
text editor Introduction
TIME Introduction
time UDI System Calls
time a task is willing to wait
at a mailbox Nucleus System Calls
at a semaphore Nucleus System Calls
TIME command Operator’s Guide
time out, interrupt {CU Reference
iSBC 286/10(A) line printer
line printer--iSBX 350
timeout JCU Reference
1SBC 186/410 Terminal Driver
timer ICU Reference; Nucleus User’s Guide
port separation
task priority, BIOS

Master Index Page-63

MASTER INDEX

type
TO preposition Human Interface User’s Guide; Operator’s Guide
TOKEN data type see each user’s guide "DATA TYPE" appendix (Vol. 2)
tokenS$list structure for RQSCREATESCOMPOSITE Nucleus System Cails
Tokens Programming Techniques; System Debugger
buffer pool Systern Debugger
composites Systermn Debugger
display Sysrem Debugger
extensions Systerm Debugger
job Systermn Debugger
mailbox Systerm Debugger
object System Debugger
regions Systermn Debugger
segment System Debugger
semaphore System Debugger
task System Debugger
tools (for developing applications) Introduction
track
formatting Device Drivers
size Device Drivers
skew Disk Verification
transitions, task state Nucleus User’s Guide
translation Device Drivers
translation {Terminal Support Code) Intreduction
transparent mode Device Drivers
transparent mode UDI System Calls
transport protocol Nucleus User’s Guide
transporting code UDI User’s Guide
truncate file Basic I/0 System Calls
TSSMUTEXSUNIT procedure Device Drivers
TS$SETSOUTSBUFSSIZE procedure Device Drivers
Tx see specific device ICU Reference
iSBC 186/410 Terminal Driver
type Nucleus User’s Guide
exceptional condition Nucleus User’s Guide
managers Nucleus User’s Guide
object Nucleus User’s Guide
type definitions Human Interface User’s Guide
Type manager Programming Technigues
type of terminal interrupt Device Drivers
type-ahead buffer Infroduction; Operator’s Guide; Device Drivers
emptying Device Drivers
typed architecture Introduction

types of
access to a file Basic 1/0 System User’s Guide

Page-64 Master Index

MASTER INDEX

data UDI Users Guide
device drivers Device Drivers

U

UDF file Operator’s Guide
UDI1 UDI User’s Guide; ICU Reference; Guide to the ICU; Programming Technigues
libraries Guide to the ICU;, UDI System Calls
UDs
Device Drivers screen ICU Reference
error messages Device Drivers
invocation Device Drivers
utility Device Drivers
UNCATALOGSOBIECT Nucleus System Calls; Nucleus User's Guide
uniform diskette format, for specific device ICU Reference
iSBC 186/224A Driver
iSBC 208 Driver
Mass Storage Controller (MSC) Driver
SCSI Driver
unit information name, for specific device TCI7 Reference
8251A Terminal Driver
8274 Terminal Driver
82530 Terminal Driver
iSBC 186/224A Driver
iSBC 186/410 Driver
iSBC 208 Driver
iISBC 220 Driver
iSBC 264 Driver
iSBC 534 Terminal Driver
iSBC 544A Terminal Driver
iSBX 251 Driver
Mass Storage Controller (MSC) Driver
RAM Driver
SCSI Driver
Terminal Communications Controller
unit information screen ICU Reference
unit information table Device Drivers
unit number Device Drivers
8251A Terminal Driver ICU Reference
8274 Terminal Driver ICU Reference
82530 Terminal Driver ICU Reference
iSBC 186/224A Driver ICU Reference
iSBC 186/410 Terminal Driver ICU Reference
1ISBC 208 Driver ICU Reference
iSBC 220 Driver ICU Reference

Master Index Page-65

MASTER INDEX

iSBC 264 Driver ICU Reference
iSBC 534 Terminal Driver ICU Reference
iSBC 544A Terminal Driver ICU Reference
1ISBX 251 Driver ICU Reference
Mass Storage Controller (MSC) Driver ICU Reference
RAM Driver ICU Reference
SCSI Driver ICU Reference
Terminal Communications Controller ICU Reference
unit status for iISBC 214/215G controller Basic 1/0O System User’s Guide
units (semaphore) Introduction; Nucleus User’s Guide
universal development interface
environmental conditions Nucleus User’s Guide; ICU Reference
programmer errors Nucleus User’s Guide
UNLOCK command Operator’s Guide; Introduction
unlocking the terminal Device Drivers
UPCOPY command Operator’s Guide; Introduction
update timeout Device Drivers
update timeout, for JCU Reference
BIOS
iSBC 186/224A Driver
iSBC 208 Driver
ISBC 220 Driver
iSBC 264 Driver
iSBX 251 Driver
Mass Storage Controller (MSC) Driver
RAM Driver
SCSI Driver
UPDEF Utility Guide to the ICU
upgrading definition files Guide to the ICU
USART ICU Reference
data port
status port
user attributes Guide to the ICU
USER
definition file (UDF) Guide to the ICU; Operator’s Guide
defined Introduction
description files Human Interface User’s Guide
Device Support (UIDS) utility Device Drivers
Device Support Utility (UDS) Guide to the ICU
devices Guide to the ICU
Devices screen ICU Reference
extension Human Interface User's Guide; ICU Reference
ID Human Interface User’s Guide; ICU Reference; Operator’s Guide
job parameters ICU Reference
Jobs screen ICU Reference

Page-66 Master Index

MASTER INDEX

Modules screen ICU Reference
USER EIOS Extended 1/0 System Calls
default
iD
name
object
owner id
password
USER UDI UDI System Calls
default
ID
object
WORLD
user-supplied drivers Bootstrap Loader
users Operator’s Guide
adding
deleting
users and user objects Basic I/0O System User’s Guide
user IDs
user objects
default user object for a job
using physical files Basic I/O System User’s Guide; Extended I/0 System User’s Guide
using the displayed bootstrap loader errors Bootstrap Loader
using the Loader Result Segment (A$LOAD) Application Loader System Calls

v

validating parameters Nucleus User’s Guide

values of encoded types returned from RQSGETSTYPE Nucleus Systern Calls

values of the preposition parameter of
C$GETSOUTPUTSCONNECTION Human Interface System Calls
C$GETSOUTPUTSPATHNAME Human Interface System Calls

VC System Debugger

VD System Debugger

verified user Operator’s Guide

VERIFY command Disk Verification
errors Disk Verification

VERIFY$USER Extended I/0 System Calls

VERSION command Operator’s Guide

version numbers Guide to the ICU

VH System Debugger

virtual interrupt Nucleus User’s Guide, Device Drivers

VI System Debugger

VK System Debugger

VO System Debugger

Master Index Page-67

MASTER INDEX

volume change notification Device Drivers
volume free space map file Disk Verification
volume labels Disk Verification
volume

backup Operator’s Guide

boundaries Operator’s Guide

name Operator’s Guide
volumes Basic I/O System User’s Guide; Extended I/0 System User’s Guide
VR System Debugger
VS System Debugger
VT System Debugger
VU System Debugger

w

WAITSINTERRUPT Nucleus System Calls; Nucleus User's Guide

WAITSIO Basic I/0 Systemn Calls; Basic 1/0 System User’s Guide

wakeup port ICU Reference

warm-start feature Systern Debugger

when to use physical files Basic I/O System User’s Guide; Extended I/0 System User’s

Guide

WHOAMI command Operator’s Guide; Introduction

wild cards Operator’s Guide;, Human Interface User’s Guide

WORD data type see each user’s guide "DATA TYPE" appendix (Vol. 2)

working buffer Disk Verification

WORLD Operator’s Guide

WORLD access Guide to the ICU

World user Basic I/0 System User’s Guide, UDI System Calls

write calls Device Drivers

WRITE command Disk Verification

write precompensation cylinder, see specific device ICU Reference
ISBC 186/224A

write protection ICU Reference

write requests Device Drivers

writing behind (file operation) Introduction

writing information [7DF User’s Guide

X

Xenix Operator’s Guide
directory
shell

Page-68 Master Index

MASTER INDEX

Z

ZSCAN command QOperator's Guide; Introducrion; Human Interface User’s Guide

Master Index Page-69

INTERNATIONAL SALES OFFICES

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051

BELGIUM

intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK

Intel Denmark A/S
Glenteve] 61-3rd Floor
dk-2400 Copenhagen

ENGLAND

intel Corporation (U.K.) LTD.
Piper's Way

Swindon, Wiltshire SN3 1R)

FINLAND

Intel Finland OY
Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris

1 Rue Edison-BP 303

78054 5t.-Quentin-en-Yvelines Cedex

ISRAEL

Intel Semiconductors LTD.
Atidim Industrial Park
Neve Sharet

P.O.Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation 5.P.A.
Milandfiori, Palazzo E/4
20090 Assago (Milano)

JAPAN

Intel Japan K.K.
Flower-Hill Shin-machi
1-23-9, Shinmachi
Setagaya-ku, Tokyo 15

NETHERLANDS

Intel Semicanductor (Netherland 8.V.)
Alexanderpoort Building

Marten Meesweg 93

3068 Rotterdam

NORWAY

Intel Norway A/S
P.O.Box 92
Hvamveien 4
N-2013, Skjetten

SPAIN

intel Iberia

Calle Zurbaran 28-1ZQDA
28010 Madrid

SWEDEN

Intel Sweden AB.
Dalvaegen 24
$-171 36 Scina

SWITZERLAND

Intel Semiconducteor A.G.
Talackerstrasse 17

8125 Glattbrugg
CH-B06S Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.
Seidlestrasse 27

D-8000 Munchen

