GETTING STARTED
WITH THE iRMX™86
SYSTEM

Order Number: 144349-001

Copyright © 1982 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

PRINT
REV. REVISION HISTORY DATE

-001 Original Issue 3/82

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel- Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The Information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined as
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Insite iSBC Multibus
CREDIT Intel iSBX Multimodule

i intel Library Manager Plug-A-Bubble
ICE Intelevision MCS PROMPT

iCS Intellec Megachassis RMX/80

im iOSP Micromainframe System 2000
iMMX iRMX Micromap UPI

[A594/3827 6K DD

PREFACE

Here is the information you will need in order to use the Configured
iRMX 86 Operating System (iRMX 86 PC), a ready-to-use version of Intel's
general, configurable iRMX 86 Operating System. "Ready-to-use” means
that Intel has selected the individual software features and then put
this system software together. In order to do so, we have made some
assumptions about the hardware on which you will run the system, and we
describe this hardware in the manual. The iRMX 86 PC product allows you
to use the Operating System as soon as you have the correct hardware
environment, without going through the configuration process.

READERS AND CONTENTS OF THIS MANUAL

Except for Chapter 5, this manual is written for programmers who will use
the Operating System. Chapter 5 is written for a hardware technician or
engineer who assembles the hardware, if the programmer is not the person
who does this.

Here is how the manual is organized.

Chapter 1 OVERVIEW. This chapter describes the characteristics
of the Operating System. You will want to read this-
chapter to become familiar with iRMX 86 concepts and
terms.

Chapter 2 USING THE SYSTEM. This chapter shows how to start up
(bootstrap load) the Operating System, and shows
examples of iRMX 86 Commands.

Chapter 3 iRMX 86 COMMANDS. This chapter contains complete
descriptions of the iRMX 86 Commands, arranged
alpabetically.

Chapter 4 UDI SYSTEM CALLS. This chapter contains general

information about the Universal Development Interface
(UDI), followed by descriptions of each UDI System
Call.

Chapter 5 PREPARING YOUR HARDWARE. This chapter describes the

hardware required to run the Operating System, and how
to prepare that hardware.

iii

PREFACE (continued)

Appendix A This appendix lists the codes that the iRMX 86

Operating System uses to indicate exceptional
conditions, such as hardware failures and mistakes in
how a program uses the system.

Appendix B This appendix provides a list of "internal” iRMX 86

System Calls. You will not need to use these system
calls to write and run programs. But the information

in this appendix provides an overview of the services
provided by the iRMX 86 Operating System.

Appendix C This appendix describes how to use the monitor that is

delivered as part of the iRMX 86 PC System.

WHAT YOU GET

The iRMX 86 PC Release Package contains:

The System Diskette, which is labeled
Preconfigured iRMX 86 Operating System
The Library Diskette, which is labeled
iRMX 86 Interface Libraries
Four (4) EPROM devices which contain the Monitor and a Bootstrap
Loader (you install these on your i1APX 86 Single Board
Computer)
This manual

One Software Problem Report Form

One Software Registration Card, which you should complete and
return when you receive the package

iv

PREFACE (continued)

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful

to users of this manual. These manuals are described in Chapter 6.

Manual
Introduction to the iRMX™ 86 Operating System
iRMX™ 86 Nucleus Reference Manual
iRMX™ 86 Basic I/0 System Reference Manual
iRMX™ 86 Extended I/0 System Reference Manual
iRMX™ 86 Loader Reference Manual
iRMX™ 86 Human Interface Reference Manual
iRMX™ 86 Disk Verification Utility Reference Manual
iRMX™ 86 System Programmer's Reference Manual
iRMX™ 86 Programming Techniques Manual

Guide to Writing Device Drivers for the iRMX™ 86 and
iRMX™ 88 I/0 Systems

iRMX™ 86 Configuration Guide
iRMX™ 86 Installation Guide

EDIT Reference Manual

Guide to Using iRMX™ 86 Languages

8086/8087/8088 Macro Assembly Language Reference Manual for
8086-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions for
8086-Based Development Systems

PL/M-86 User's Guide for 8086-Based Development Systems

Number
9803124
9803122
9803123
143308
143318
9803202
144133
142721

142982

142926
9803126
9803125
143587

143907

121627

121628

121636

PREFACE (continued)

Manual Number
FORTRAN-86 User's Guide 121570
Pascal-86 User's Guide 121539
iAPX 86,88 Family Utilities User's Guide 121616
Run—-Time Support Manual for iAPX 86, 88 Applications 121776
User's Guide for the iSBC® 957B iAPX 86, 88 Interface and
Execution Package 143979
iSBC® 86/12A Single Board Computer Hardware Reference Manual 9803074

iSBC® 86/14 and iSBC® 86/30 Single Board Computer Hardware Reference
Manual 144044

iSBX™ 208 Flexible Disk Drive Controller Hardware Reference
Manual 143078

iSBC® 337 Multimodule™ Numeric Data Processor Hardware
Reference Manual 142887

vi

CONTENTS

CHAPTER 1
SYSTEM OVERVIEW
Hardware Environment For the iRMX 86 PC SysteMecccececccccccccscccse
Language Translators and UtilitieSececccecccececccccccascsasansance
Universal Development Interfac@eececesececscccccsessccsscsssscscscsasas
The iRMX 86 File SySteMecccccecccecsccscccccscscsccccsssssasnoscsncnas
Hierarchical Naming Of FileSeeececseoecccccccccccossccccccsscocccnse
iRMX 86 File Terminologyecesecceseccceccccccccesccsccssccsccccssccccs
Device Logical NameSeeeececcossecccsecsccccccsecsccsncscccccssscessne
File Operations From a Terminaleccocccccccccccsccscccsccccccccccnse
File Operations From ProgramSececcccecccecscescsccccccscssccccccccs
Files and Directories with the iRMX 86 PC Operating Systemeeececcee.
System Disketteececeecccccasscccssssccscscccscscscscssossccscscoscsscsnscscs
Default Directory ($)ecececcececscccecsscsssscscscsscocssscsccsssscce
System Directory (SYSTEM)ececcceecccccscccccccccocsceanccscsscscnss
Program Directory (PROG)ecececcscccccccscsscscsosssccsccscssscccncs
Work Directory (WORK)ecececocooossecsecocscccscesscscsccsssccccccnse
Library Diskett@ecececsecccsecsscscccscccccccsccssscssccsccccscnce
Program Loadinge eoceeccessecccccesecesscsssecscctsosscscscocsccsccssacsconcos
Bootstrap Loadingececsccccscscseccccscossccccsccccscssosscsccscscscccsccs
MOnitoreeesseeeeeceecceeccoscsccsassocsssccccscsessscscccccssccsccnse
Selective Error ProcesSingeccccccccssccccccsccossscccscscsccsscsccnns

Summary.oﬁco..'o.oc!.00.0000'....0..0.....-o-co.o.ocooo-..oou'-oc..

CHAPTER 2
USING THE SYSTEM
Starting the SysSteMecccecscccccsccsccssccccccnssosscccscccscsccscscnse
Invoking iRMX 86 CommandSeeeccecccceccccccsccscscscssscscsccssccscascccnsns
Preposition ParameterSeeccecccccssccccccscccscscsscsscssscscsscccccsccnse
Terminal ControlSeccccccccccsecscsocsscsssscscsosscccssscscsscsccsccccs
Unequal Number of Files in Input and Output LiStSeececcccccccccccese
More Input Files Than Output FileSecscceccccsscccccccccccsccccs
More Output Files Than Input FileSeeceecccccscsccsccccasccccccs
SafeguardScececcecccecscecsescscscssscscssccsscssscsessscccccssscccns
Example CommandSecscececcccccscsscscescscscsccoscsossscsssscscssscsassnccnss
How To Set the System Date and TimEeececcceseccccscecccccccccccnas
How to Display the Contents of a Directoryececceccccceccecccccssce
Using the DIR Command with No ParameterSscecsecccsccccessccccces
Directory Displayed in an Alternate Formateescecsccccccccccccene
Directory Listing of System Directoryeceeccecccccecccceccccccnne
Directory Listing of SYSTEM/UDIcccecsceccsccsocsscsccccscsccncce
How To COpPY FlleSeeeceocccccccsscsccccsseccsoscssasccscsscsssssoscsnsce
Creating a New Copy Of @ Fileeeceeeeeesecesocccccccsnccccsnccccns
Copying Multiple Files With One Commandescecescccscccccccccccce
Copying One File OVER AnoOtheTrececcecceccccsccccsccssscsccscscocnee
Creating a Directoryeeeeccceccescssctccoscssssssccscscsnssscoscnscscsscansne
Displaying The Contents of a File On The Terminalececceccccccscccs
Giving a File a New Nameeeeeoscoccesoccocccooscccscsccsccccnccnns
How to Make Coples of Your System Disketteescececccescocoscoccsose

vii

PAGE

1-2
1-4
1-5
1-5
1-5
1-6
1-7
1-8
1-8
1-9
1-9
1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-12
1-12
1-12

2-2
2-3
2-5
2-6
2-7
2-7
2-8
2-8
2-8
2-8
2-10
2-10
2-12
2-13
2-14
2-14
2-15
2-15
2-16
2-17
2-17
2-18
2-19

CONTENTS (continued)

CHAPTER 3

iRMX 86 COMMANDS

Command Syntax SchematiCSececececsccccsscsccvscscscoscscsssscsccsssnse

Command Dictionaryecceccessccesccecscscccsccsccsscscsosscssssoscsssscscsscss
ATTACHDEVICE«ccecoeosscocccsososscccoscssssoscsssssscssscscssssccnses
BACKUP:ceeooooossosoccasscoscscscscsoscsscsesocsssosnessososssssossesss
COPY.cecoocesocsccccscoocsososooncoscsssssocncsscscosccscssatsoscscccscsosce
CREATEDIRcccococesoccccosscsssccossssasnosssasooessssccssccssssnscs
DATE ceceeccoocecooscsccscscsessossssscssscsocssssoscccsscsossscssscsssssses
DEBUG: coeeccoeoceocscscscssocsssoscscscsscsosssooscssosscosssnscsscssssesnse
DELETE . ccescesccocsocsocossosccosssoescssassossssassssossssscoscsnsasscse
DETACHDEVICE e coceccocecccocccssscssoccccsscecsosssssccssscssssssasse
DIRccecescosoccsccsssscoscsscascscscescsscscssoscscsooscsssscscssscscsssocsssscse
DISKVERIFYceocoocooccocsosoecsocssossosscscnssossscsscoososccsssoscnssass
DOWNCOPY e cooeccoscoeosscoscsssssascsscsssssooscsssssscsssssscssossccs
FORMAT ¢ccococscocescocccccsoeesssscsscssoscocscssoncssasscsonsscsscssncssses
RENAME. ccceecccccccssconsccssscsccsoccsoscsosscscssscsccsosssscnccosnssse
RESTORE:cccecoccssoscososcseascososscscscscsscscscsessascesossssasssosasncsssss
SUBMITeececoscccscsscocscssoosccsocesscssosscsssscccscscsscssccsscosccscsce
TIMEeeococcocsocessscooesccscoososcsscsssascscssocscnsscscscnsscsecssocnes

UPCOPY.-........ooo-no...ooouo'...aoo...oooo..oonoo.ooouo.oo.o..o

CHAPTER 4

UDI SYSTEM CALLS

Using the UDIeeeccccecscccscssccosssccoscsossssesossesocsscsssscscscscssose
UDI LibrarieScecccccccccccecsscscscscscccccsscscccscscsscscssscsssscass
Include FileSeceseccccoccccsccccncssccsccscscsscscscsosscsoscsssossccssocsse
Exceptional ConditionSecceeccceccesocccosccscccccssscscscascccsccccns
Data TypESeceecccscccccssssocscscsssssscscsascsosscscsssncecscsnscssscss

Descriptions of System CallScecececccecccsocscccsccsccsccsosccssoccsnsacccse
Memory Management System CallSecccececsccescccccccccsccsscsessscscsnse
File-Handling System CallSescccceccscecscccccescscccasssccsccccccsnss
Exception-Handling System CallSececsececocecsccccscscsssscsscssassaase

System Call Dictionaryeeccecscccccscescccscccscscscsscccsssssscssccssoss
DQSALLOCATE: ccoccccocccoscssossecssoscscscsscssscssososccscssosscssccsssccs
DQSATTACH ¢ s e e eevossoavsacsscscsassssccscoscssassoscscsascsssasss
DQSCHANGESEXTENSIONe e esecococscsscsscccsoscssscscossossascsssscssosscss
DQSCLOSEcccccecosscscccccssccsccoscsncsssascsscssscocscssssossssssscssscs
DQSCREATE. ceccoceocssscccccosscssscsccssscscsoscsssscssccsssscsscsscsscss
DQSDECODESEXCEPTION s e o eeososcascsocsccacsocascscsscasssssasccncs
DQSDELETE . oo cooecocccsccoccceccsasosssessossasssssscscacsosssssssscsses
DQSDETACH: e cceeecececcecocsscscsscosscsccsassssncsssoscsscessnsssscsss
DQSEXITeeoceecsccacescsscocsocssasscsncsecsnsssssccccsccscsccccscacncsss

DQ$FREE..'OO000oo-oooooo.oooco'o.oooooooo"oc-.oo.ot-occo.oo.ooo-

DQSGETSARGUMENT « ¢ ¢ e e eeevvesccssaccsncnsansasscacscscnasncccscsnes
DQSGETSCONNECTIONSSTATUS « « o o eeeenenssssoascccsssssnssssosssnssons
DQS$GETSEXCEPTIONSHANDLER < « « ¢ oo eeecoveoscecnccccsccoasosnnncncenns
DQSGETSSIZE e ¢ e eeeeecaaccsascsaseasessssessesssssssssassasnsssasas
DQSGETSS YSTEMSIDe e e eeeeeececncsacececsacasssssesessssnasassesssns
DQSGETSTIME e ¢ ¢ ¢ eeeveoocosocccecssosssasesccecscssssssssasssnsanes

viii

PAGE

“ 3-1

3-3

3-5

3-8

3-15
3-19
3-20
3-21
3-22
3-24
3-25
3-32
3-37
3-40
3-45
3-48
3-55
3-58
3-59

b~¢~&-#~f~#~#-bnb

|

|
:\O\IO\U!-I-\J-\L»NNNN

R0

4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-22
4-24
4-25
4-26
4-27

CONTENTS (continued)

CHAPTER 4 (continued)
DQSOPEN e e e aeeeesanceccsscessessessscosesessossosnsasscsscssannes
DQSOVERLAY e ¢ ¢ e o0 e eaeecessssecasnscesnnsaseesnsosnnasssanasassnnas
DQSREAD. ¢ ¢ e eeeeeooccccsecseessscoesssensesssscssansssssscsssasans
DQIRENAME. ¢ ¢ e e e o eeeeescaceccsnascessasaseenansnnsassossasssnnones
DQSSEEK-. « e e eeeveoeocecncosescsssasensesocssasssasoscssssssasassss

DQ$SPECIAL.OCOOQ.-00‘0..00000‘.oooo.oocoooooo.'o.ooo'oo.o.ooo.o.o

DQSSWITCHSBUFFER. « ¢ e e eeevcescccccscescacscaseessssasasseacaannsas
DQSTRAPSEXCEPTION: ¢ e e e veeceeecacacecenscsssnseasssassasssasonnss
DQSTRUNCATE « « ¢ o eeeeeeecccceccsoceosnnsesseessnssssosscasesansanan
DQSHRITE e ¢ e oo eeeeecccceanacssccsesennssasoscescnsnsssssassnnsasnse

EXample Program..-.oooo-.o.‘oooa.oooioooloooonloo'o.ocooocoo.ouoooo

CHAPTER 5
PREPARING YOUR HARDWARE
The iRMX 86 PC Hardware Environmentecccccecccecccsscccccsccscscsccsses
Single Board COmMPULEreecceeosscocccccssscoccccssssscssssscosccnsss
Flexible Diskette Controller And DriveS:cecccecscocescccccccccssese
MEeMOTYeoeeeececescececscosccacoscscoscosossossscssssocssssssccoscssosces
Line Printereccccccccccecccecscescosscccsccscsscsosccscsscsccsccscoccs
iSBC 957B Packageeccecccccceccssscscscessassscsossscsosscscsssssssnsss
Modifying BoardSecececccescccccsssccccccssscscccsssscscsoscsssassoscssces
Modifying the iSBC 208 Controllerescecccccecosccscscssccsssssccsses
Modifying the iSBC 86/12A Single Board Computereecesscscecccccccss
Interrupt Level JUumMpErSeecececccccsccscssccscscscssocscssccossccscss
Additional JUMpPErSeeecccccccccccccccscscsscscssssscscccsccsccccsccs
Parallel POTtececccccccocscscccoscosccsosscssscsscssocsssoscascsasoccss
Switch SettingSeecceccecscccecccossccosscccaccscscscsssscsssscsosccss
DeviceSecscceccceocsccssscscccscsccssosscsscoscosossesssscssscssscnnse
Modifying the iSBC 86/14 Single Board Computer..cecceececccccscses
JUNPErSeeccecccecescsseocossescssccscsscsccscsssssssscsscscsscsssossos
DevViCeSeeseecsccsccecccossscscsssssssscssssssassssssssssssssens
Modifying the iSBC 86/30 Single Board Computerecececccccssscccccsscs
JUMPErSecccccccceccscccesoscsosscsssscssscsssscsosscssososssscssssocsscscce
DeviceSeeeecececcececcccscscccocssscocscccosscescssccscsccscsscocnse

ConVenience Charts.o.looo...ooo'oo.o0000.000.00000.0'0.0.oo.oio....

CHAPTER 6

DOCUMENTATION

This Manualecececsoocoososoccocssoscccccsccsssscsecscsoscsscssossessssscscccs
iIRMX 86 ManualSececccececccoccosascscsocsssssscssscscascsosscssscscscscscsocse
Language Translators and Utilities ManualSececcscececceccccccccccns
Hardware ManualSeecececccccceccesceccccssosccsocscscsssccsscoscscsscccs

APPENDIX A
1RMX 86 EXCEPTION CODES-..O‘..‘o'.o.oo'.ooooo'o..oooa‘ooooo.o...too

ix

PAGE

4-28
4-30
4-32
4-34
4-35
4-37
4-39
4-40
4-41
4-42
4-44

U'lU'|U'IU'IU1UlU1kIJ1 (LN, IV, G, BV T
WO NNYNOITUVT T LWWWINDN

5-10
5-10
5-11
5-12
5-12
5-13
5-14

CONTENTS (continued)

APPENDIX B

iRMX 86 SYSTEM CALLS

Layers of the iRMX 86 Systemeecececccccsccscscccccsccsccccsccscssnnnsnns
Nucleus System CallSecececccocccocecssescscsncccscssscscsnssscssscscssass
Basic I/0 System CallS.cecscesscecsescsacssscscsscscsscssscassssnsene
Extended I/o System CallSececscocccccrocscscscsscsccscscscssscocscsssncscssse
Human Interface System CallSeecceccsccccccceccsccccsccsccssccscsccsnsse
System Programmer System CallSececsccccccccccccscccsscsccccosscsscse

APPENDIX C

MONITOR COMMANDS

Command StrUCLUTEecssscsscssccscsocsssscscscsoscnssscsasccsssscncsssss
Byte and Word VariableSeceecseescsscsccccccocecsscscccsscccsscsaces
Numeric (Real, Integer and BCD) VariableSecscceccscccccccccasccnsns
Address SpecificationNececcsccsceccecccccccccoscscscccscosccscassnce
Multiple Commands on a Single Lineececsecccccccsccccsoccssesccccss

iAPX 86 and iAPX 88 CPU RegisterSceccecccccccccccccccsccsccccccccnns

NPX RegiSterSceccecceesscsescccosssssocscscscssoscscssscnscncsescssscsssssss

ErTOrSeeccsescesessscssossacossceocsssocssscsscscscsccccsscsccccsssccssscssse

Entering CommandS..cscceccecccccsccsscscscssscccssssscsscsassssssssssse

Command DesScriptionSececccscccscccecsscescsscesscccccscssccsccsssccssnscs

FIGURES

1-1. iRMX 86 Operating System LayerScecceccccccscccscscscsssssscse
1-2. iRMX 86 PC Hardware Environmentececcccceccecscsccccesccssccccss
1-3. Memory Layout of iRMX 86 Systemeccececcccscecssscscsccsassssns
1-4. Hierarchical File StructuUreecccccescccccscccscscscscscscsscsces
1-5. iRMX 86 PC File and Directory StrucCtur@ccecsceccceccccccssscs
2-1. Using the iRMX 86 Operating System from a Terminaleeeccecoee

2-2. DATE and TIME CommandSeececccecccccccsscccsscscsssscssssssscss
2-3. DIR, Default FOYmateoecoscoccccecscccacccssssscsncsncssssnsne
2-4, SHORT, ONE-Column Directory Displayeececcecccccccscssccscscccscs
2-5. Display of System Directoryececscesccccccccccsccsssccscsccsce

2-6. SYSTEM/UDI DirectOryeeesscececscsscscccccsasscscsscsccsscscscanss
2-7. Copying a File into the Same Directoryeececececcecccsscccscas
2-8. Copying Multiple Files with One Commandececcceccecccscccccccss
2-9. Copying One File OVER Anothereccccscscecsccscscscscsccsccsccce
2-10. Copying a File TO an Existing Fileececceccccscoscccccccccccs
2-11. Creating a New Directoryeceseccceccecccccccccsccccsccanasnes
2-12. Displaying Contents of a File on a Terminaleeccecccecccosccee
2-13. Renaming A Fileceeeesooerescsccscssseccesccsccscscsscscncsccssnasse
3-1. EXTENDED Directory Listing Examplecececececcecesccscccscccces
3-2. FAST Directory Listing Exampleeccecccccececccecccscccsccccacce
3-3. LONG Directory Listing Examplecccccececcceccccsccccccoccccces
3-4, SHORT Directory Listing Examplececccececcccccccccccacccscccs

4-1. Chronology of System CallSecscececscccesccssccsscsssssscscccs
5—1. Th.e iRm 86 PC Hardware.......’...............O..'.'.......
A—l‘ Exception Code Ranges...‘.’I..............Q-..-....0.‘.0...

A-2. iRMX 86 Condition CoOdeSececcvececccccscsccssccsscscscccccnsce

PAGE

B-1
B-3
B-5
B-6
B-7
B-8

c-2
c-2
Cc-3
C-6
c-7
c-8
c-8
c-9
c-9
C-11

3-1.
3-2.
4-1.
4-2.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
A-1.
A-2.
c-1.
C—Z.
C—3o
C-4.

CONTENTS (continued)

TABLES

iRMX 86 Command Dictionaryececcecccececcscescsccccacscccnssccne
Directory Listing HeadingSeeececececececccoccccecccccoccccces
System Call Dictionaryeececceccscecccscceccccescscsccssscasscsce
Command Parsing ExXamplececccccceccscecscccsssscscsscsssssnes
1SBC 208 Physical NameSeeccecccscccccscccsccctscccscsccnncns
Line Printer Pin AssignmentSecccccccccccccccccccccccsccscscens
1SBC 208 JumperSeeccecccsccsccscscccscscssrsasssssssssccscccsses
Interrupt Jumpers for iSBC 86/12A..ccccccccvccccsccccccnnnes
Other iSBC 86/12A JUMpPErSecececccccccccccesosescssccasscasses
iSBC 86/12A Parallel POrt JUMpPEIrSeceeccesccssssscacsssscscsns
iSBC 86/12A Switch lecececcseccscsccscsssasssssscscassasnnas
1SBC 86/12A DevicCeSececcecscsccosssssccssssncsnscsascsssccnnas
Interrupt Jumpers for iSBC 86/1l4ccccceccccccccccccccccccane
iSBC 86/14 Parallel Port JUmMpPErSeecceccccccccsccccscccccsscas
Other iSBC 86/14 JumperSeececececcccccsscccccsccscscoascscccscne
iSBC 86/14 On—Board DeviceSeecececccescccscscsssccccccscnnes
Interrupt Jumpers for iSBC 86/30..cccccccecccccacecccccsace
iSBC 86/30 Parallel Port JUmMpPErSeececccecscccccccccsccasscnss
Other iSBC 86/30 JUmMperSeccceccececssccocsscccccccsssassonss
iSBC 86/30 On—Board DevicCeSeececececcccccsssccsescsccccccccsnee
Exception Code RangeScceccscccccccccsssccccssccscsscscsccscance
iRMX 86 Condition CodeSececcsccesccsccccsscscssscccsccccsccces
NPX Data TypeSBeecscscceosccecsccosccsscccrscccessscccsssscccsas
1APX 86, 88 CPU RegilsterSceccceccscscscsscscscscssccccscsonces
NPX RegisSterScescceccsceccosscsscecscsoscescscscscosnsascanscccns
Summary of Loader And Monitor CommandSeccesecescecscoccccase

xi

PAGE

3-3
3-31

4-21

5-10
5-10
5-11
5-11
5-12
5-12
5-13
5-13
A-1
A-2
c-4
Cc-8
c-9
C-11

CHAPTER 1. SYSTEM OVERVIEW

The iRMX 86 Operating System manages and extends the resources of iSBC 86
Single Board Computers. Figure 1-1 shows the structure of the Operating
System; the "layers” of the system are described in Appendix B. The

iRMX 86 PC Operating System —- a version of the general, configurable
Operating System —— is specifically designed to allow you to develop and
run programs. The features of the Operating System that are described in

this chapter are:

° Support for language translators and utilities, including a
standard software interface that simplifies addition of software
packages to your system

° The iRMX 86 file system, including file utilities and system
calls to manipulate files

° Mechanisms to bootstrap load the Operating System and to load and
run programs

® Error-handling procedures

Since you will have to prepare the hardware on which the Operating System
runs, the first section describes this hardware environment.

HUMAN INTERFACE

EXTENDED 10 SYSTep

BASIC /O SYSTEpm

USER APPLICATIONS

Figure 1-1. 1iRMX™ 86 Operating System Layers

1-1

SYSTEM OVERVIEW

HARDWARE ENVIRONMENT FOR THE iRMX 86 PC SYSTEM

The iRMX 86 PC System software is already configured for you. This
section describes the hardware on which you will install the Operating
System. Figure 1-2 shows the hardware, and Figure 1-3 shows a memory
layout. Chapter 5, HOW TO PREPARE YOUR HARDWARE, is a self-contained
guide to setting up this hardware.

INTELLEC® LINE PRINTER
DEVELOPMENT
SYSTEM
CHASSIS/IPOWER SUPPLY

PARALLEL
PORT

2732A EPROMS
(with Bootstrap Loader
and Monitor)

SYSTEM DISKETTE

Backplane with
MULTIBUS®
Connectors

FLEXIBLE DISK CONTROLLER

PROCESSOR BOARD VIDEO TERMINAL

MEMORY BOARD(S)

Figure 1-2. iRMX™ 86 PC Hardware Environment

1-2

SYSTEM OVERVIEW

To use the iRMX 86 PC Operating System, you require the following
hardware components:

e an Intel iSBC 86/12A, iSBC 86/14, or iSBC 86/30 Single Board
Computer

e an iSBC 208 diskette controller with at least two drives (you can
connect as many as four drives)

® a video terminal
[} an appropriate chassis/power—-supply unit

In addition, you can connect either a line printer or an iSBC 957B
package to the parallel port on the computer board. The iSBC 957B

package allows you to connect your system directly to an Intellec
Microprocessor Development System. Neither the line printer nor the
iSBC 957B package is required to run the Operating System.

Figure 1-3 shows a memory layout. The area labelled FREE SPACE is where
your programs and iRMX 86 utilities (the commands described in Chapters 2
and 3) run. The question mark (?) on the drawing indicates that it is
your choice how much free space you have on your system. You will need
about 32K-bytes of free space to run the iRMX 86 commands, and more

memory to run Intel compilers.

ADDRESS
(hex) SIZE
FFFFF } 16K BYTES: on EPROM
. BOOTSTRAP AND devices delivered with
MONITOR (ROM) £ system
FC000 — — £
UNPOPULATED
ADDRESS
SPACE
?
Your programs and
FREE SPACE system utilities
(RAM)
30000
. 19K BYTES:
OPER A?I%E?YSTEM (from system diskette)
(RAM)
00000

Figure 1-3. Memory Layout of iRMX™ 86 System

1-3

SYSTEM OVERVIEW

LANGUAGE TRANSLATORS AND UTILITIES

To develop programs you need language translators and utilities that
allow you to compile or assemble programs, link programs together, assign
absolute addresses to programs, create libraries of programs, and convert
absolute object modules to hexadecimal format. Software packages
available from Intel include:

EDIT The standare iRMX 86 editor.

ASM86 The 8086/8087/8088 macro assembler.

PLM86 The PL/M~-86 compiler.

LINK86 The 8086 Linker, which combines individually-compiled

object modules into a single, relocatable object module.

LOC86 The 8086 Locater, which assigns absolute addresses to
relocatable object modules.

LIB86 The 8086 Librarian, which creates and maintains object
module libraries.

OH86 A program which converts absolute object modules to
hexadecimal format.

Pascal-86 A Pascal compiler that is a strict implementation of the
proposed ISO standard. It also provides extensions of
the language for microcomputers.

FORTRAN-86 A FORTRAN compiler that is compatible with existing
FORTRAN-86 code, and also includes new FORTRAN-77
language features.

With these products you can create executable programs that can be
invoked from the terminal. If you are an OEM (original equipment
manufacturer) you can include these languages with your end product.

You can refer to the GUIDE TO USING iRMX 86 LANGUAGES for general
information about invoking language products in an iRMX 86 environment.
For detailed information about the software products listed here, you
should refer to the manuals for the individual products. Chapter 5
contains a list of manuals assoaciated with the iRMX 86 Operating System.

Contact your local Intel sales representative or distributor to order any
of these software packages.

SYSTEM OVERVIEW

UNIVERSAL DEVELOPMENT INTERFACE

The iRMX 86 PC Operating System supports the Universal Development

Interface (UDI). The UDI provides a standard method for your programs

and for Intel software packages to use Operating System services. The

UDI can be viewed as a "software bus,” with the set of UDI system calls
being equivalent to a hardware bus protocol. There are three important
advantages to using UDI software.

o INDEPENDENCE FROM OPERATING SYSTEM CHANGES. The set of system
calls for UDI remain stable regardless of changes in the
Operating System, so software that you develop or install on your
system can remain intact.

e PORTABILITY. With the UDI "software bus"”, a language translator,
utility, or any other software package that uses only UDI system
calls to communicate with the underlying Operating System can be
installed on any operating system that supports UDI.

® INDEPENDENT VENDOR'S SOFTWARE. The UDI standard allows
independent software vendors to provide a variety of programs
that run on the iRMX 86 Operating System.

Chapter 4 describes how to use the UDI system calls that are available on
your iRMX 86 PC Operating System.

THE iRMX 86 FILE SYSTEM

A fundamental function of the iRMX 86 Operating System is to provide a
file system. Programs you write, as well as utilites and language
processors, need to create and delete files; to open, close, read, and
write files; and to perform other file operations. These files exist on
mass storage devices such as flexible diskettes. This section describes
the major characteristics of the iRMX 86 file system.

HIERARCHICAL NAMING OF FILES

People manipulate files with commands invoked from a terminal; programs
manipulate files with system calls. The iRMX 86 Operating System allows
your application system to organize its named files into a tree-like
structure like the one shown in Figure 1-4. This hierarchical structure
consists of files (represented by triangles in the figure) and
directories (represented by rectangles in the figure). This hierarchy
allows data to be grouped logically and accessed with a minimum of
overhead.

SYSTEM OVERVIEW

mﬂ'l DEPT2 ' wﬂﬂl

W sl R B

i
:

TEST-DATA
TEST-OBJECT

SIM-SOURCE SIM-OBJECT TEST-OBJECT

TEST-DATA)

BATCH-1 =
ATen DIRECTORY

1 A

BATCH-1 BATCH-2

Figure 1-4. Hierarchical File Structure

iRMX 86 FILE TERMINOLOGY

Here are the meanings of terms used to describe the iRMX 86 file system:

File: In a computer system, a file is simply a collection of
related data known by a single name. Typically, files reside on
secondary storage such as disks.. An iRMX 86 file name is the
last component of a pathname that implicitly or explicitly
identifies the volume and directory to which the file belongs.

Volume: A volume is a secondary storage device, such as a

diskette, hard disk platter, or a bubble memory that you have

formatted to accept files and directories. Before you can use a
new volume, that volume must be formatted by using the Human

Interface FORMAT command (see the FORMAT command description in
Chapter 3).

1-6

SYSTEM QVERVIEW

® Directory: A directory is used to catalog (that is, to logically
group and locate) files and other directories. You do not
directly place information in directories as you do in a file.
Rather, the Operating System maintains the directory information,
adding, deleting, or changing directory entries as you add,
delete, or rename files that are cataloged in the directory.
Like files, directories are identified by pathnames. Files and
directories contained within a particular directory must be on
the same volume as the directory.

) Pathname: Normally, both system calls and commands identify a
file or directory with a pathname. Pathnames can be viewed as
the exact name of a file or directory. A pathname describes one
path through the directory tree, so that it specifies not only
the name of a file or directory, but also the particular
directories and device to which it belongs.

Referring again to Figure 1-4, the name "BILL" is not exact,
because there are two directories named Bill. But the pathname
DEPT1/BILL is valid because it is unique. (Slash (/) characters
separate the elements of a pathname.) The pathname
DEPT1/TOM/TEST-OBJECT is a valid identifier for a file.

® Logical Name: Logical names are used to identify devices, and
are delimited by colons (:); for example, :LP:. You assign
logical names to physical devices with the ATTACHDEVICE command
(see Chapter 3). Logical names that the iRMX 86 PC Operating
System has already assigned to devices are described in the next
section.

The reason logical names are used to identify devices is so that
the same name can be used for a device even if the device is
changed. For example, the iRMX 86 PC System is delivered on a
single-sided, double-density diskette, and it is assumed that at
the first two drives on your system have this characteristic.
But it is possible to add one or two more drives, or to use the
same drives with other physical characteristics (if you do the
latter, you will first have to create a System Diskette in the
new format). In this case you attach each drive (using the
ATTACHDEVICE command) with a physical name appropriate to the
characteristics of the drive. These name are listed in Chapter
5, PREPARING YOUR HARDWARE.

DEVICE LOGICAL NAMES

The logical names for devices that are used with the iRMX 86 PC Operating
System are

:CI: and “Console Input” and "Console OQutput”. Logical devices

:CO: that establish the source of commands and the command
destination, respectively. Typically, :CI: is the
terminal keyboard and :CO: is the terminal screen.

SYSTEM OVERVIEW

:LP: "Line Printer”. This is the logical name for the line
printer.
¢:BB: "Byte-Bucket”. This is not an actual physical device.

Anything written to :BB: disappears, and a read from
:BB: returns an EOF (end-of-file).

:AFDO: Logical names for the iSBC 208 flexible disk drives O
:AFD1: and 1.

FILE OPERATIONS FROM A TERMINAL

You manipulate iRMX 86 files and directories interactively with programs
run from a terminal; the programs are invoked as single word commands
followed by parameters. The iRMX 86 Operating System provides programs
to perform operations that are usually necessary in a development
system. These include:

e COPY, which copies files

° DIR, which displays the contents of a particular directory
° RENAME, which gives a new name to a file or directory

) CREATEDIR, which creates a new file directory

o SUBMIT, which automatically executes other commands contained in
a file

Chapter 2 describes how to invoke commands and shows examples of some
commands. Chapter 3 describes all of the commands.

FILE OPERATIONS FROM PROGRAMS

Programs must be able to manipulate files. An assembler, for example,
must open and read source files, and it must create and write object
files. Programs that you write will read, write, delete, and otherwise
deal with files. Your programs perform these operations by means of UDI
system calls. In addition to file operations, other Operating System
services are available with UDI system calls. Chapter 4 contains the
information you need to use UDI system calls, including individual
descriptions of each call that is provided with the iRMX 86 PC Operating
System. The chapter ends with a listing of a program that uses many of
the UDI system calls.

1-8

SYSTEM OVERVIEW

FILES AND DIRECTORIES SUPPLIED WITH THE iRMX 86 PC OPERATING SYSTEM

The iRMX 86 PC Package contains two diskettes, a System Diskette, and a
Library Diskette. The identifying labels on the outside of each are
specified in the Preface.

SYSTEM DISKETTE

Figure 1-5 shows the file structure of the iRMX 86 PC System Diskette as
it is delivered from Intel. The elements of this file structure are
explained below.

WORK SYSTEM PROG

RMX 86
uDI
* l | COPY DIR (other)
DIRECTORY

URXSML. URXCOM. URXLRG. uDl.
LiB LIB LIB EXT

FILE

Figure 1-5. iRMX™ 86 PC File and Directory Structure

1-9

SYSTEM OVERVIEW

Default Directory ($)

The uppermost (root) directory on Drive 0 is the default directory. If

you do not specify a directory, the system will assume you are referring
to this one. The root directory of a volume contains all other

directories that are on the volume.

System Directory (SYSTEM)
This directory contains the following directories and files:

° iRMX 86 COMMAND PROGRAMS. When you type an iRMX 86 Command at a
terminal, one of the programs in this directory is loaded and
run. For example, the command "COPY" runs the program of the
same name. Only a few representative command files are shown in
Figure 2-4. There are 17 commands delivered with the system.

e OPERATING SYSTEM. The file RMX86 contains the iRMX86 PC
Operating System; this is the file that is read in by the
Bootstrap Loader (see BOOTSTRAP LOADING in a later section).

° UDI LIBRARIES. The directory UDI contains three library files
that allow programs to use the UDI system calls. When you use a
language processor like the PL/M-86 compiler to write a program,
you link the resultant object modules to one of these libraries.
This is explained more fully in Chapter 4.

Program Directory (PROG)

You can use this directory for programs that you write, and you can
create other directories within this one to provide a logical grouping of
your files.

The PROG directory has one special characteristic. When you type a
single-word command at a terminal, the iRMX 86 Operating System will
first look for the program file with that name in the default directory,
then in the PROG directory, and finally in the SYSTEM directory. Two
effects of this are:

l. Programs in the PROG directory will be executed as commands when
you simply type the single-word file name. For example, if you
have a program file PROG/UPPER, you can run the program by simply
typing the command UPPER.

2. If you have a program named, for example, "COPY" in the PROG
directory, when you type "COPY" the system runs your program
rather than the COPY program supplied by Intel.

If a program file is contained in a directory other than one of these

three ($, PROG, or SYSTEM), you can still run the program by typing its
complete pathname.

1-10

SYSTEM OVERVIEW

Work Directory (WORK)

Compilers, interpreters, editors, linkers, and other development
utilities need to create temporary files while they are running. This
directory is specifically provided for that use.

LIBRARY DISKETTE

Besides the System Diskette, you receive another diskette with the
iRMX 86 PC product, labelled "iRMX 86 Interface Libraries.” This
diskette contains:

e Libraries that you need if you use iRMX 86 System Calls not
described in Chapter 4 (these calls are listed in Appendix B).

. Files of symbolic names for exception codes (listed in Appendix
A).

) Files of external declarations associated with each layer of the
Operating System (the layers are briefly described in Appendix B).

The Library Diskette is not required for normal program development. If

you use these files, you will probably need one or more of the manuals
listed in Chapter 6.

PROGRAM LOADING

Bringing programs into memory (loading) from the disk is one of the basic
services provided by the iRMX 86 Operating System; you load and run
language processors, utilities, and the programs you write. Typically,
you load programs by simply typing the single-word name of a program file
at a terminal, sometimes followed by other information needed by the
program when it begins executing.

BOOTSTRAP LOADING

To get the iRMX 86 PC Operating System into the computer from disk, the
system is bootstrap loaded. This process is described in Chapter 2. The
Bootstrap Loader is in the set of EPROM devices delivered with the

iRMX 86 PC Package.

1-11

SYSTEM OVERVIEW

MONITOR

Your iRMX 86 PC System is delivered with a Monitor. Like the Bootstrap
Loader, the Monitor is in EPROM devices you receive with the iRMX 86 PC
Package. It can be used to examine memory, set breakpoints, and (with a
hardware package available separately) to communicate between your system
and an Intellec Development System.

Monitor commands are described in Appendix C.

SELECTIVE ERROR PROCESSING

When a program issues an iRMX 86 system call, the results may be other
than what the programmer expected. For example, a program might request
memory that is not available, or it might use an invalid parameter. The
iRMX 86 PC Operating System contains a default exception handler that
will terminate a program if such a condition occurs; the default
exception handler will identify the problem by displaying on the console
terminal one of the exception codes listed in Appendix A.

If you want to provide your own exception handler, rather than using the
default exception handler, the Operating System provides a mechanism for
transferring control to your exception handler. The system calls used to
write an exception handler are described in Chapter 4, UDI SYSTEM CALLS.

SUMMARY

The iRMX 86 Operating System is a flexible operating system that is used
for many types of systems. This chapter has discussed only those
features that directly relate to using the Configured iRMX 86 Operating
System for program development. For more complete discussions of iRMX 86
Operating System features, refer to the INTRODUCTION TO THE iRMX 86
OPERATING SYSTEM.

1-12

CHAPTER 2. USING THE SYSTEM

You communicate with the iRMX 86 Operating System by using commands
entered at a terminal keyboard (Figure 2-1); the Operating System
communicates with you by displaying messages on the terminal screen.

This chapter describes the process of using the Operating System, showing
some examples of iRMX 86 commands and system responses. Chapter 3
describes all of the commands that Intel provides with the iRMX 86 PC
Operating System.

Figure 2-1. Using The iRMX™ 86 Operating System From A Terminal

USING THE SYSTEM

The chapter is organized as follows: \

STARTING THE SYSTEM. A section showing how to start (bootstrap
load) the system.

INVOKING iRMX 86 COMMANDS. General information including
definition of terms used to describe individual commands.

EXAMPLE COMMANDS. A section showing examples of iRMX 86
commands, most of which manipulate files.

STARTING THE SYSTEM

Once you have prepared your iAPX 86,88-based hardware, as described in
Chapter 5, you can bootstrap load ("boot") the Operating System.
Bootstrap loading is the process of reading the iRMX 86 Operating System
in from a disk and giving it control of the processor. Here is how to
boot the system.

1.

2

3.

4.

Turn on power to the disk drive, processor, and terminal.

Insert a copy of the System Diskette into Disk Drive 0. (You
should make a copy of the diskette that you receive from Intel,
and use the copy rather than the original diskette. How to do so
is explained at the end of this chapter.)

When the terminal shows a series of "*" (asterisk) characters,

respond by typing an upper—case "U". (The system continues
sending asterisks to the screen until you type a "U.” The "U" is
not echoed on the screen.)

The terminal shows a message identifying the Monitor, followed on
the next line by a prompt of "." (period):

iAPX 86, 88 Monitor, V1.0

You respond by typing the single character "B"” (upper- or
lower-case) followed by a carriage return (CR).

Now the Bootstrap Loader reads the Operating System into memory
from your diskette, and passes control to it. (This takes about

one-half minute.)

The Operating System displays a message identifying itself,
followed on the next line by a prompt of "-" (hyphen):

iRMX 86 PC V1.0: wuser = WORLD

At this point the system is loaded and you can enter any iRMX 86 command.

USING THE SYSTEM

If your system has a button connected to the RESET line on the iSBC 86
board, you can use it to re-boot: after hitting RESET the system will
begin displaying astericks (*) on the screen, and you continue from step
3 above.

The command DEBUG can be used to get to the Monitor, and from the Monitor
you can also re-boot the system. See the descrption of DEBUG in Chapter
3, and the Monitor commands described in Appendix C.

CAUTION

To prevent destroying data on your
diskettes while re-booting, wait at
least 2 seconds before you RESET the
computer.

INVOKING iRMX 86 COMMANDS

This section describes procedures and defines terms that apply to iRMX 86
commands. Examples of actual commands are shown in the next section, and
additional information about individual commands is in Chapter 3.

When you enter a command at the console keyboard, the Operating System
loads the associated program file and executes the program. After the
command has been executed, the Operating System displays a status message
that confirms the effect of the command.

The Operating System displays error messages if you attempt an invalid
operation (e.g., trying to access a file that doesn't exist) or if some
error is encountered while the command is being executed (such as a
hardware failure). These error messages are defined as part of
individual command descriptions in Chapter 3.

USING THE SYSTEM

An example command is:

-COPY first, second TO third, fourth QUERY

A carriage return terminates each command, and a LINE-FEED key has the
same effect. From here on we will assume a carriage return is the
terminator. The general structure of a command is shown next.

command—-name

where:

command—-name

inpath-list

preposition

outpath-list

parameters

inpath-list preposition outpath-list parameters

Name of the program file to be executed. After the
command is entered, the Operating System loads the
program file into memory from the diskette and
executes the command. In the example, the command
name is:

COPY

One or more pathnames of files to be used as input
during command execution. Multiple pathnames in an
input file list must be separated by commas. You can
type spaces (blanks) between pathnames. In the
example, the inpath-list is:

first, second

A word that tells the executing command how you want
the output handled. The four prepositions used in
iRMX 86 commands are TO, OVER, AFTER, and AS. In the
example the preposition is:

TO

One or more pathnames for the files that receive the
output or are changed in some way. As with the
inpath-list, multiple files names must be separated by
commas, and embedded spaces are optional. In the
example, the outpath-list is:

second, third

Most commands have have a default form, but also offer
one or more optional ways that the system can execute
the command. You specify options with one or more
parameters at the end of a command. Individual
descriptions of commands in Chapter 3 define the
effect of parameters. 1In the previous example, the
parameter is:

 QUERY

USING THE SYSTEM

You can also continue a command beyond one line, and you can add comments
at the end of a command:

continuation If you need to type a command that is so long it

mark cannot be typed on one line, you can continue it by
typing an ampersand (&) character and carriage
return. The system prompts with two asterisks (**) on
the next line, and you can then continue the command.

You can continue the command for as many lines as are
necessary. A carriage return key without an ampersand
ends the command line. A command line can have a up
to 255 characters, including punctuation, embedded
blanks, continuation mark, comments, and carriage
return.

comment A semicolon (;) character causes the system to ignore
anything typed between the semicolon and the
succeeding carriage return. You can also type
comments between a continuation mark (&) and the
carriage return. A common use of comments is in

SUBMIT files (see the SUBMIT command in Chapter 3).

You can type all elements of a command in uppercase characters, lowercase
characters, or a mix of both. For example, you can create a new file
with the pathname "MY/TEST" and then specify the file as "my/test” in
subsequent file accesses.

PREPOSITION PARAMETERS

Most file management commands recognize three prepositions: TO, OVER, and
AFTER. (The preposition AS is used in the ATTACHDEVICE command and is
explained with that command in Chapter 3.) The prepositions have the
following meaning:

TO Causes the command to send the output to new files;
that is, to files that do not already exist in the
specified directory. If the output file does exist,
the command will display the following message on the
console screen:

pathname, already exists, DELETE?

In general, you can reply "Y" (for yes) if you accept
destroying the output file contents. Usually any
other character means "no", but there are some
exceptions to this. Check individual command
descriptions in Chapter 3.

USING THE SYSTEM

OVER Causes the command to replace the contents of files
specified in the outpath-list with the contents of the
input files, destroying the contents of the output
files. For example:

—COPY sampl, samp2 OVER outl,out2

copies the data from file sampl over the present
contents of file outl, and copies the data of samp2
over the contents of file out2. If either outl or
out2 did not exist, the file would be created.
Neither input file changes.

AFTER Causes a command to append the contents of one or more
files to the end of new or existing files. For
example:

=COPY inl,in2 AFTER destl,dest2

causes the contents of file inl to be written to the

end of the contents of destl, and the contents of in2
to be added to the end of dest2. (Neither inl or in2
change in any way.)

TERMINAL CONTROLS

Certain keys at the terminal have special effects on the Operating
System. These are listed and described here.

NOTE

In this manual, CONTROL key functions
are designated as follows:

CTRL/character

where CTRL specifies the CONTROL key,
and character is an alphabetic
character key. Depress the CTRL key
while striking the letter key.

CTRL/c Tells the iRMX 86 Operating System to abort the currently
executing program.

CTRL/o Suppresses terminal output, or restores output to normal
mode if output is already suppressed. Typically this is
used to ignore ("throw away") data being sent to a
terminal.

2-6

USING THE SYSTEM

CTRL/s Suspends and resumes output to the terminal. Unlike

CTRL/q using CTRL/o, output is not ignored; the system stops
sending output to the terminal until you press CTRL/q.
When you press CTRL/q, you see the remaining output.

CTRL/r Repeats the current line so that you can modify it before
the command is executed. If the line is empty, the
system echoes the previous command so that you can
re—execute it.

CTRL/x This is used to delete a currently displayed command line
and allows you to start the command again. The Operating

System will echo a pound sign (#) at the point where you
strike CTRL/x, and then move the screen cursor to the

beginning of the next line.

CTRL/z This an End-of-File character for the Console Input

device; if you use it, it should be entered as the first
character in a new line.

RUBOUT Permits simple editing on the current line. Each time
the RUBOUT key is pressed, the last displayed character
is deleted with the cursor moving backward one space.
You continue pressing the RUBOUT key until you reach the
character to be corrected.

In Chapter 4, the description of DQ$SPECIAL includes a definition of
"transparent mode" input from the :CI: device, in which characters
described here do not have their normal effect.

UNEQUAL NUMBER OF FILES IN INPUT AND OUTPUT LISTS

Several iRMX 86 commands require that you specify a preposition parameter
in the command. That is, you must enter a TO, OVER, or AFTER preposition
as one of the command parameters. Usually you specify a one-for-one match
between the number of input files and number of output files. (This is a
requirement for the command RENAME.) But the following sections explain
what happens when the number of files specified in the inpath-list does not
equal the number of files in the outpath-list.

More Input Files Than Output Files

In a command (other than RENAME), if you specify more pathnames in the
inpath-list than in the outpath-list, the remaining input files are
automatically appended to the end of the last specified output file,
regardless of the preposition you specified. For instance, assume that in
a COPY command you specify the following file names in the input and output
parameters:

COPY a,b,c TO d,e

2-7

USING THE SYSTEM

When the Operating System executes the command, file "a" is copied to file
"d", file "b" is copied to "e", and file "c" is appended to the end of file

e" as follows:

a TO d
b TO e
¢ AFTER e

More Output Files than Input Files

If you specify more file names in the outpath-list than in the inpath-list,
the excess output file names are ignored, again regardless of the
preposition you specify. For example, assume that in a command you specify
the following file names in the input and output parameters:

COPY a,b TO d,e,f,g

When the command is executed, file "a" is be matched with file “"d", file

" _n

"b" copied to file "e", and files "f" and "g" are ignored, as follows:

a TO d
b TO e
Safeguards

A mismatch between the number of input files and output files is probably
accidental. The iRMX 86 Operating System attempts to execute commands
without destroying the integrity of your files. When the Operating System
encounters a command that is subject to ambiguous interpretation or could
result in the accidental destruction of an existing file, the command
displays a message and prompts you to confirm or cancel the operation.

EXAMPLE COMMANDS

This section shows some examples of iRMX 86 commands. These examples are
deliberately few and simple. The examples demonstrate some representative
commands so that you can see how to invoke a command and how to specify
command parameters. Once you are familiar with the process of invoking
commands with some typical pathnames and parameters, refer to the complete
descriptions of commands in Chapter 3 (many of which also include examples).

HOW TO SET THE SYSTEM DATE AND TIME

Two of the easiest commands to use are DATE and TIME. They are shown first
because it is good practice to set the system date and time immediately
after the system has been bootstrap loaded. Figure 2-2 shows how to use
both commands.

USING THE SYSTEM

In Figure 2-2, you see the message displayed after the Operating System has
been booted, followed by a hyphen prompt (-). This is exactly where we
left the system in the first section of this chapter, STARTING THE SYSTEM.
The DATE command typed in response to the first prompt displays an
arbitrary date that indicates it has not been set since the system was

booted.

NOTE

in examples of terminal dialogue,
commands that you type are shown in
THIS TYPEFACE.

Messages displayed by the system are
shown in THIS TYPEFACE.

The first examples show a full screen,
but later illustrations show only the
lower portion of the screen.
Illustrations are not proportional to
an actual video screen.

(’— | _ i uﬂﬁ;\\

iRMX 86 PC V1.0 : user = WORLD
-DATE

DATE: 1 JAN 78
-DATE 14 FEB 82
DATE: 14 FEB 82
-DATE

-DATE: 14 FEB 82
-TIME

TIME: 00:00:00
-TIME 9:12:05
TIME: 09:12:05
-TIME

TIME 09:12:11

Figure 2-2. DATE And TIME Commands

2-9

USING THE SYSTEM

The fourth line in the Figure 2-2 shows the date being set to Valentines
Day of 1982. The system then responds by verifying the new date. The
next line illustrates that any time DATE is typed without specifying a
date, the current date is displayed.

The next lines show the same sequence for the TIME command. The system
first responds by displaying the system time as

00:00:00

Next the time is set to 12 minutes and 5 seconds after 9 AM, and the

system verifies it on the next line. Finally, the TIME command re-typed
shows the updated time.

If you don't set the system time or date, the iRMX 86 Operating System
will not maintain the system clock. Two results of this are:

l. Whenever you interogate the system to determine the time-of-day
—— whether by commands as shown here, or with a programmed system
call as shown in Chapter 4 —— the time will remain fixed at
zero-hour:zero-minute:zero-second.

2. When you display the contents of a directory, the line showing

the date and time will not be shown. (Displaying directories is
the subject of the next few examples.)

HOW TO DISPLAY THE CONTENTS OF A DIRECTORY

Frequently you need to see what files —- and other directories -- are
catalogued in a particular directory. This is the function of the DIR
command, and a few examples are shown here.

Using the DIR Command with no Parameters

Figure 2-3 shows the effect of typing the DIR command with no pathname or
parameters. The system displays:

o The current date and time, followed on the next line by

o A message identifying the directory, followed on the next line by

o the name of each file and directory.

2-10

USING THE SYSTEM

-DIR

14 FEB 82 08:02:31

DIRECTORY OF $ ON VOLUME 144446
SYSTEM PROG WORK

),

Figure 2-3. DIR, Default Format

NOTE

These examples of the DIR command
assume that you are using an exact copy
of the iRMX 86 PC System Diskette, that
it is in Drive O, and that no files or
directories have been added or

deleted. (Figure 1-5 shows the
contents of this diskette.)

If you do not specify any other parameters in a DIR command, only the
names of the directory entries are displayed. In the example in Figure
2-3, you cannot tell the size of each entry, or whether it is a directory
or a file. By specifying an optional display format with a DIR command,
you can see these and other characteristics of the directory entries.

DIR offers you a variety of display options, one of which is shown in the

next example.

The VOLUME number 144446 is the name by which the system knows the
particular diskette on which the directory is located. This name or
number may vary; it is established when a disk is initialized (see the
FORMAT command in Chapter 3).

2-11

USING THE SYSTEM

If you do not specify a device, the system will assume that you are using
Disk Drive O (zero). This is known as the default system device. The
uppermost (root) directory on Drive O is the default directory ($); this
is true regardless of what diskette you have in that drive. If a file or
directory is on drive 0, you do not usually have to specify the drive (an
exception is shown later). If a file or directory is in the default
directory you don't have to specify a directory name.

Directory Displayed in an Alternate Format

Figure 2-3 again shows the contents of the default directory, but with
the parameters SHORT and ONE. With optional parameters, you can control
the physical format (ONE specifies that only one entry be on a line) and
the type of information displayed (SHORT displays more infomation than in
the previous example).

-DIR :AFDO: SHORT ONE
14 FEB 82 08:04:52
DIRECTORY OF :AFDO: ON VOLUME 144446

NAME AT ACC BLKS LENGTH

SYSTEM DR DLAC 2 304

PROG DR DLAC 0 0

WORK DR DLAC 0 0
3 FILES 2 BLKS 304 BYTES

Figure 2-4. SHORT, ONE-Column Directory Display

Figure 2-4 shows, in addition to the names of each entry:

e Whether the entry is a file or directory (AT column, where DR
means directory)

e The access rights (ACC column)
e The number of blocks and number of bytes (BLKS and LENGTH)

® A summary of everything in the directory

2-12

USING THE SYSTEM

One further comment about Figure 2-4; the drive (:AFDO:) is specified
even though it is the default system device. This is because if the
command had been typed without the drive number —— DIR SHORT ONE -— the
Operating System would have looked for a directory named SHORT. You may
wonder what happens when you type a command that the Operating System
cannot interpret correctly. In this case, the system would not have
found a directory with the name SHORT, and would have displayed the error
message:

SHORT, file does not exist

In this case, if there had been a directory named SHORT within the
default directory, the DIR command would have displayed its contents.

Directory Listing of SYSTEM Directory

Figure 2-5 shows the directory named SYSTEM, using the default listing
format (no parameters).

-DIR SYSTEM
14 FEB 82 08:05:01
DIRECTORY OF SYSTEM ON VOLUME 144446

CREATEDIR BACKUP cory RMX86 SUBMIT
DISKVERIFY DIR DELETE RENAME RESTORE
ATTACHDEVICE DOWNCOPY FORMAT TIME DATE
DETACHDEVICE upcoPY unI DEBUG

Figure 2-5. Display of System Directory

2-13

USING THE SYSTEM

Directory Listing of SYSTEM/UDI

In Figure 2-5, note the entry "UDI". This is the directory containing
the UDI library files. The next example, Figure 2-6, displays this
directory in the default style (no parameters specified) and then in a
SHORT, ONE—column style.

-DIR system/udi

14 FEB 82 08:09:12

DIRECTORY OF system/udi ON VOLUME 144446

UDI.EXT URXCOM.LIB URXSML.LIB URXLRG.LIB

-DIR system/udi SHORT ONE
14 FEB 82 08:09:32
DIRECTORY OF system/udi ON VOLUME 144446

NAME AT ACC BLKS LENGTH

UDI.EXT DRAU 14 3426

URXCOM.LIB DRAU 140 35682

URXSML.LIB DRAU 142 36118
URXLRG.LIB DRAU 141 35888 i
4 FILES 437 BLKS 111114 BYTES §

-

Figure 2-6. SYSTEM/UDI Directory

Note that each entry is a file, as indicated by the blank entry under AT.
Also, the name of the directory was typed in lower case; the effect was
the same as if it had been typed in upper case.

HOW TO COPY FILES
The next few examples show how the COPY command is used to duplicate

files. For these examples, assume that a file named FIRST exists on
diskette :AFDO: in the default directory.

2-14

USING THE SYSTEM

Creating a New Copy of a File

Figure 2-7 shows how to create a single copy of a file in the same
directory.

-COPY FIRST TO SECOND

FIRST copied TO SECOND J o

Figure 2-7. Copying a File Into the Same Directory

Copying Multiple Files With One Command

It is possible to copy more than one file with a single copy command.
Figure 2-8 shows how to create copies of the files FIRST and SECOND.

-COPY FIRST, SECOND TO THIRD, FOURTH
FIRST copied TO THIRD

| SECOND copied TO FOURTH

Figure 2-8. Copying Multiple Files With One Command

2-15

USING THE SYSTEM

Copying One File OVER Another

You can copy the contents of one file into another. The preposition OVER
tells the system to destroy the current contents of the file specified in
the outpath-list and copy the contents of the file specified in the
inpath-list into the file. This is shown in Figure 2-9.

~-COPY FIRST OVER SECOND
FIRST copied OVER SECOND

Figure 2-9. Copying One File OVER Another

Using the OVER preposition explicitly deletes the contents of a file.
Using the preposition TO can have the same effect, but with one
difference. If you use the TO preposition to copy a file into a file
that already exists, the system displays a message asking if you actually
want to destroy the contents of the existing file (as shown in Figure
2-10).

~-COPY FIRST TO SECOND
SECOND, already exists, DELETE? N

Figure 2-10. Copying a File TO an Existing File

2-16

USING THE SYSTEM

In the example in Figure 2-10, the reply to the query "DELETE?" is "N",
which tells the system not to destroy the file. The operation was
cancelled. If the reply to "DELETE?"” had been "Y", the contents of
SECOND would have been destroyed and the contents of FIRST copied into
the new file SECOND.

CREATING A DIRECTORY

The CREATEDIR creates new directories. For example, you can create a
directory within your default directory ($) and then copy files into that
directory. This is shown in Figure 2-11.

- CREATEDIR NEW
NEW, directory created
- COPY FIRST TO NEW/FIRST

'L\‘iiRST copied TO NEW/FIRST

Figure 2-11. Creating A New Directory

DISPLAYING THE CONTENTS OF A FILE AT THE TERMINAL

You can view the contents of a file at the console terminal (:CO:) using
the COPY command. The file should contain string data (like the output
of an editor) rather than binary data (like the object file from a
compiler). Displaying a binary file will produce a meaningless display,
although it will not affect the file.

The Operating System assumes "TO :CO:"™ if you do not specify either a

preposition or outpath-list with a COPY command. Figure 2-12 shows the
command to display the contents of the file SECOND.

2-17

USING THE SYSTEM

- COPY SECOND

This string is in an example file

that illustrates the use of

iRMX 86 Commands.

The file contains four lines including this one.

1 SECOND copied TO :CO:

Figure 2-12. Displaying Contents of a File on a Terminal

GIVING A FILE A NEW NAME

The Operating System provides the RENAME command to rename a file. You
can use the COPY and DELETE commands to accomplish the same thing.
However, the COPY command actually moves the contents of the file being
copied and leaves the original file intact. The RENAME command leaves
the file intact, but changes the pathname. Figure 2-13 shows the RENAME
command used to rename THIRD.

-RENAME THIRD TO FIFTH

| THIRD renamed TO FIFTH

Figure 2-13. Renaming a File

Both files and directories can be renamed. If a directory is renamed,
any files or directories cataloged under that directory will
automatically have new pathnames. You should note this if programs you
have written use files in the directory.

The OVER preposition is valid in a RENAME command, and its effect is
explained in Chapter 3.

2-18

USING THE SYSTEM

HOW TO MAKE COPIES OF YOUR SYSTEM DISKETTE

You should make a copy of the System Diskette that you received with the
iRMX 86 PC package. Listed below are the steps necessary to do so. We
assume that you have only two disk drives on you system, and that you
have read about the BACKUP, RESTORE, and FORMAT commands in Chapter 3.

To make a new Sytem Diskette:

1.

3.

Format two new diskettes, one as a PHYSICAL volume, and one as a
NAMED volume. (BACKUP writes to a PHYSICAL-formatted diskette,

and RESTORE copies from this diskette to a NAMED volume.) Both

diskettes can be formatted in Drive 1.

Using BACKUP, write the System Diskette contents onto the
diskette that you formatted as a PHYSICAL volume. One of the
parameters to BACKUP is pathname; you should specify only the
volume (:AFDO:).

Run RESTORE. When the RESTORE program prompts for the volume to
be mounted, remove the system diskette from Drive O, insert the
volume that you formatted as a NAMED volume into Drive 0, and
type Y. When invoking RESTORE, again specify :AFDO: as the
pathname.

When RESTORE completes, you should be able to re-boot from the
new diskette. Save both the diskette you received from Intel and
the diskette which BACKUP wrote.

NOTE

When formatting your diskette, specify
an interleave factor of seven (7)
rather than the FORMAT command default
value of five (5). The reason is that
an interleave factor of five will
result in a much slower boostrap
process: nearly two minutes rather than
about one-half minute.

2-19

CHAPTER 3. iRMX™ 86 COMMANDS

The commands described in this chapter are supplied by Intel. You can
use the commands to perform a number of highly convenient file management
functions. When you invoke a command,

l. You type the command name and parameters (e.g., "COPY FIRST TO
SECOND").

2. The the Operating System loads the the appropriate command file
(for example, SYSTEM/COPY) and executes the program.

3. The program executes the command the way that you specify in the
command line.

These commands are part of the iRMX 86 Human Interface (one layer in the
Operating System), so the Human Interface is mentioned occasionally in
descriptions of individual commands. The commands exist as program files
in the SYSTEM directory. When you type a command on the terminal, the
Operating System looks for the file having that name in the default
directory ($), then in the PROG directory, then in the SYSTEM directory.

These commands are presented in alphabetical sequence without regard for

functional organization. A functional grouping of the commands is given
in the Human Interface Command Dictionary in Table 3-1 for fast reference.

COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented by
means of a "railroad track"” schematic, with syntactic elements scattered
along the track. Your entrance to any given schematic is always from
left to right, beginning with some command name entry.

Elements shown in uppercase characters must be typed in a command line
exactly as shown in the command schematics except that you can type them
either in uppercase or lowercase characters. Elements shown in lowercase
characters are generic terms, which means that you supply the specific
item, such as thé pathname for a file. The example that follows shows
the possible paths through a railroad track schematic. Notice that the
main track goes through required elements in a given command.

"Railroad sidings”™ go through optional parameter elements. In some
cases, you have a choice of going through one of several possible sidings
before returning to the main track. If the main track itself divides
into two separate tracks, you select one parameter or the other but not
both.

3-1

iRMX™ 86 COMMANDS

f—.-j
(START) o

In this example:
e A is a required element.
e Either B or C is required but not both.
° D, E, or F are all optional but only one can be selected.

° G is required.

You can abbreviate command parameters instead of typing the entire
parameter. To abbreviate a parameter, type as many characters as are
required to make the parameter name unique. For example, the
ATTACHDEVICE command has two parameters, NAMED, and PHYSICAL; you can
abbreviate NAMED to N and PHYSICAL to P.

You cannot abbreviate either the command name or the prepositions (TO,
OVER, AFTER, AS).

3-2

iRMX™ 86 COMMANDS

Table 3-1. iRMX™ 86 Command Dictionary

Command Synopsis Page

File and Volume Management Commands
ATTACHDEVICE Attaches a new physical device to the system

and adds its logical name to the root job's

object directory. 3-5
BACKUP Copies named files to a backup volume. 3-8
COPY Creates new data files, or copies files to other

pathnames. 3-15
CREATEDIR Creates one or more new directories. 3-18
DELETE Deletes data files and empty directories from a

volume on secondary storage. 3-22
DETACHDEVICE Removes a physical device from system use and

deletes its logical name from the root job's

object directory. 3-24
DIR Lists a directory's filenames (and optionally,

file attributes). 3-25
DISKVERIFY Verifies the data structures of named and

physical volumes. 3-32
DOWNCOPY Copies files and directories from an iRMX 86

volume mounted on a secondary storage device to

an ISIS-II secondary storage device. 3-37
FORMAT Formats an iRMX 86 volume. 3-40
RENAME Renames files or directories. 3-45
RESTORE Copies files from a backup volume to a named

volume. 3-48
UPCOPY Copies files and directories from an ISIS-II

secondary storage device to an iRMX 86 volume

mounted on a secondary storage device. 3-59

3-3

iRMX™ 86 COMMANDS

Table 3-1. iRMX™ 86 Command Dictionary (continued)

Command Synopsis Page
General Utility Commands
DATE Sets or resets the system date, or displays the
current date. 3-20
DEBUG Transfers control to the iSBC 957A/B package to
debug an iRMX 86 application program. 3-21
SUBMIT Reads, loads, and executes a string of commands
from secondary storage instead of the keyboard. 3-55
TIME Sets or resets the system clock, or displays the
current system time. 3-58

ATTACHDEVICE

ATTACHDEVIC

iRMX™ 86 COMMANDS

This command makes a physical device known to the system by a logical
name. After the device is attached, it is accessed by commands and system
calls with the logical name you specify.

The format of the command is as follows:

@neroenc)

INPUT PARAMETERS

physical
name

AS

tlogical name:

NAMED

PHYSICAL

physical name @ :logical name:

Come™
ool

Physical name of the device to be attached to the
system. These physical names were defined for
your Operating System when the system was
configured.

Preposition; required for the command

This is the name that you assign to the device; it
must be delimited with colons (:), and can be a
maximum of 12 characters long including colons.
After the device is attached with the ATTACHDEVICE
command, any command or program code that accesses
the device must specify the logical name.

Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
named-file volumes are diskettes or hard disk
platters. If neither NAMED nor PHYSICAL are
specified, NAMED is the default. See the FORMAT
command in this chapter for a further description
of NAMED files.

Specifies that the volume mounted on the logical
device is already formatted as a single, large
file. An example is a line printer. See the
FORMAT command in this chapter for a further
description of PHYSICAL volumes.

ATTACHDEVICE

iRMX™ 86 COMMANDS

DESCRIPTION

A physical device must be attached to the system before it can be
accessed; the device will be know by the logical name you assign. When
you boot your iRMX 86 PC Operating System, the Operating System
automatically attaches certain devices. These devices and logical names
are listed in Chapter 1.

The most frequent use of the ATTACHDEVICE command is to attach a new
device, such as a new disk drive or a line printer. For example, if you
add a third disk drive to your system, you could attach it with the
command

ATTACHDEVICE AFD2 AS :AFD2:

The logical name :AFDl: could just as well be :DISK3:, or any other name
you wish to assign. The physical name AFD2 must be a name the Operating
System has defined. The physical names for iRMX 86 PC disk drives are
listed in a table in Chapter 5, PREPARING YOUR HARDWARE. The iRMX 86 PC
Operating System has already assigned when the system is booted are
listed in Chapter 1. (See the DETACHDEVICE command in this chapter for a
description of how to detach a device from the system.)

When the attachment is completed, the ATTACHDEVICE command displays the
following message:

physical name, attached as logical name

where "physical name"” and "logical name” will be as specified in the
ATTACHDEVICE command.

ERROR MESSAGES

logical name, device already attached
The specified physical device is already attached. ATTACHDEVICE does not
attach the device.

device name, device does not exist
The physical device you specified is not a name the Operating System
recognizes. ATTACHDEVICE does not attach the device.

logical name, invalid logical name
The logical name specification is not enclosed with colons, contains

unmatched colons, is longer than 12 characters, or contains invalid
characters. ATTACHDEVICE does not attach the device.

ATTACHDEVICE

iRMX™ 86 COMMANDS

logical name, logical name already exists
The specified logical name is already used to attach a device.
ATTACHDEVICE does not attach the device.

physical device, may not be attached as a (NAMED or PHYSICAL)
The NAMED or PHYSICAL specification in the command is not allowed for
that physical device; for example, defining a line printer as a NAMED
volume. ATTACHDEVICE does not attach the device.

008A : ESCONTROL, too many device names
You tried to attach more than one physical device with a single
ATTACHDEVICE command. ATTACHDEVICE does not attach a device.

logical name, volume is not a named volume
ATTACHDEVICE attempted to attach a device as a named device and
discovered a physical volume on the device. However, ATTACHDEVICE does
attach the device.

logical name, volume not formatted
ATTACHDEVICE attempted to attach a device as a named device and
encountered an 1/0 error while searching for the volume's root
directory. However, ATTACHDEVICE does attach the device.

logical name, volume not mounted
The specified device does not contain a volume; i.e., the diskette is not
in the drive. However, ATTACHDEVICE does attach the device.

logical name, exception code
ATTACHDEVICE was unable to attach the specified device. This message

lists the iRMX 86 exception code encountered. 3iRMX 86 exception codes
are listed in Appendix A.

BACKUP

BACKUP

This command saves files in a named volume by copying them to a physical
volume which serves as a backup volume. Later, you can use the RESTORE
command (described later in this chapter) to retrieve these files and
copy them to named volumes.

The format of this command is as follows:

BACKUP

INPUT PARAMETERS

pathname Pathname of a file on the source volume. BACKUP
saves files from the branch of the file tree that
begins with the specified file. If you specify
the logical name of the device only, BACKUP saves
files beginning with the root directory of the
volume.

'dd mmm yy' Date parameter that BACKUP uses, in conjunction
with the time parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
You must enclose the date parameter in single
quotes. The individual fields of this parameter
are:

dd Two-digit number that specifies the day of
the month.

mmm Three-character abbreviation for the
month, as follows:

JAN APR JUL OCT
FEB MAY AUG NOV
MAR JUN SEP DEC

yy Two-digit number that specifies the year.

If you omit this parameter but specify the time
parameter, the date defaults to the current
system date. If you omit both the date and time
parameters, the date defaults to 1 JAN 78.

INPUT PARAMETERS (continued)

hh:mm:ss

QUERY

OUTPUT PARAMETER

tbackup device:

Time parameter that BACKUP uses, in conjunction
with the date parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
The individual fields of this parameter are:

hh Hours specified as 0-24.

mmn Minutes specified as 0-59.

ss Seconds specified as 0-59.

If you omit this parameter, the time defaults to
00:00:00.

Causes the Human Interface to prompt for
permission to save each file. The Human Interface
prompts with one of the following queries:
pathname, BACKUP data file?
or

pathname, BACKUP directory?

Enter one of the following responses to the query:

Entry Action

Yory Save the file.

E or e Exit from the BACKUP command.
Rorr Continue saving files without

further query.

Any other If data file, do not save the

character file; if directory file, do not
save the directory or any file in
that portion of the directory
tree. Query for the next file, if
any.

Logical name of the device to which BACKUP copies
the files.

BACKUP

BACKUP

DESCRIPTION

BACKUP is a utility which saves named files on backup volumes, such as
diskettes. BACKUP saves the following information for each file:

e File name

® Access list

e Extension data

e User ID of the file owner
° File granularity

e Contents of the file

You can copy this information back to a named file by using the RESTORE
utility, described later in this chapter.

Before a volume can be used as a backup volume, the volume must be
formatted. Although BACKUP will accept both physical and named volumes,
it is recommended that you supply freshly-formatted physical volumes or
old backup volumes for this purpose. BACKUP issues a message before
continuing if the backup volume you supply is anything other than a
freshly-formatted physical volume. When BACKUP copies files to the
backup volume, it overwrites any information that currently exists on the
volume.

In order for BACKUP save files from a named volume, you must have read
access to the files and to the directories that contain them.

You can limit the files which BACKUP processes in the following ways:

. If you specify a complete directory name instead of just the
device's logical name in the invocation line, BACKUP limits its
processing to the specified directory and all subdirectories.

. If you specify the date and time parameters, BACKUP processes
only those files modified since the specified time.

° If you specify the QUERY parameter, BACKUP asks permission before
saving each file. If you deny permission for BACKUP to save a
data file, BACKUP skips the file and continues with the next
file. If you deny permission for BACKUP to save a directory
file, BACKUP skips the directory and all files contained in the
directory or its subdirectories.

When you enter the BACKUP command, BACKUP displays the following sign-on
message:

iRMX 86 DISK BACKUP UTILITY, Vx.x

where Vx.x is the version number of the utility. It then prompts you for
a backup volume.

3-10

BACKUP

DESCRIPTION (continued)

Whenever BACKUP requires a new backup volume, it displays the following
message:

backup device, mount backup volume #nn, enter Y to continue:

where backup device indicates the logical name of the backup device and
nn the number of the requested volume. (BACKUP in some cases displays
additional information to indicate problems with the current volume.) In

response to this message, place a volume in the backup device and enter
one of the following:

Entry Action

Y, y, Ror r Continue the backup process.

E or e Exit from the BACKUP command.

Any other Invalid entry; reprompt for entry.
character

BACKUP continues prompting for a backup volume until you supply one that
it can access.

If the backup volume you supply is not a freshly—-formatted physical
volume, but one that BACKUP can access (such as a named volume, a
previously-used backup volume, or a physical volume containing data),
BACKUP informs you of this with one of the following messages:

backup device, not a physical volume, enter Y to overwrite:
or

backup device, backup volume #nn, date, enter Y to overwrite:
where backup device is the logical name of the backup device, nn is the
volume number of the backup volume, and date is the date on which the
previous backup was performed. In response to these messages, enter one
of the following:

Entry Action

Y, y, R, or r Use the volume as a backup volume, overwriting the
information currently stored on the volume.

‘E or e Exit from the BACKUP command.
Any other Reprompt for another volume.
character

3-11

BACKUP

DESCRIPTION (continued)

As BACKUP saves each file in the source volume, it displays the following
message at the Human Interface console output device (:CO0:):

pathname, SAVED

If your backup volume becomes full and you supply additional backup
volumes, you should write the numbers of the backup volumes on the volume
labels. Later, when you later restore files to a named volume with the
RESTORE utility, you must supply the backup volumes in order.

ERROR MESSAGES
backup device, backup volume #nn, date, enter Y to overwrite:

The backup volume you supplied already contains backup information.

BACKUP lists the logical name of the backup device, the volume number, and
the date on which the original backup occurred. It overwrites this volume
if you enter Y, y, R, or r.

backup device, cannot attach volume
backup device, exception code

backup device, mount backup volume #nn, enter Y to continue:

BACKUP cannot access the backup volume. This could be because there is no
volume in the backup device, the volume is write protected, or because of
a hardware problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. BACKUP continues to
issue this message until you supply a volume that BACKUP can access.

pathname, exception code, cannot back up file

For some reason BACKUP could not copy a file from the named volume,
possibly because you do not have read access to the file or because there
is a faulty area on the named volume. The message lists the pathname of
the file and the exception code encountered. BACKUP copies as much of the
file as possible and continues with the next file.

backup device, error writing volume label
backup device, exception code

backup device, mount backup volume #nn, enter Y to continue:

When BACKUP attempted to write a label on the backup volume, it
encountered an error condition, possibly because of a faulty area on the
volume, or because the volume is not formatted. The second line of the
message indicates the iRMX 86 exception code encountered. BACKUP
reprompts for a different backup volume.

3-12

ERROR MESSAGES (continued)

pathname, file does not exist
The pathname you specified as input to BACKUP does not represent an
existing file or device.

backup device, invalid backup device
The logical name you specified for the backup device was not a logical
name for a device.

exception code, invalid DATE or TIME
For either the DATE or TIME parameter, you entered a value that is out of
range (such as 31 FEB 81 or 26:03:62). The message lists the exception
code encountered as a result of this entry.

backup device, invalid logical name
The logical name you specified for the backup device contains unmatched
colons, is longer than 12 characters, contains invalid characters, or
does not exist.

backup device, not a physical volume, enter Y to overwrite:
The backup volume you supplied was formatted as a named volume or
contained some other information. BACKUP will overwrite this volume if
you enter Y, y, R, or r.

output specification missing
You did not supply the logical name of the backup device when you entered
the BACKUP command.

keyword, too many values
You entered too many values with either the DATE or TIME parameters. The
keyword portion of the message indicates the parameter that is in error.

keyword, unrecognized control

You entered one of the optional parameters of the form “"keyword=value,”
but the keyword was not DATE, TIME, or QUERY.

3-13

BACKUY

BACKUP

ERROR MESSAGES (continued)
backup device, volume not formatted
backup device, mount backup volume #nn, enter Y to continue:

The backup volume you supplied was not formatted. BACKUP continues to
issue this message until you supply a formatted backup volume.

backup device, write error on backup volume
backup device, exception code

BACKUP encountered an error condition when writing information to the
backup volume. The second line of the message lists the exception code
encountered. This error is probably the result of a faulty area on the
volume.

pathname, exception code

The pathname you specified as input to BACKUP is in error. This error
could occur if you specify the same logical name that you specified for
the backup device. It could also occur if you specify an invalid or
nonexistent path component. This message displays the exception code
that results from this error.

3-14

COPY

This command reads data from the specified input source or sources and
writes the output to the specified destination file or files.

The format of the command is as follows:

@ inpath-list

INPUT PARAMETERS

inpath-list

QUERY

outpath-list

One or more pathnames for the files to be copied.
Multiple pathnames must be separated by commas.
Separating blanks are optional. To copy files on
a one-for-one basis, you must specify the same
number of files in the inpath-list as in the
outpath-list.

Causes the Human Interface to prompt for
permission to copy each file. Depending upon the
specified preposition (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

pathname, copy TO out-pathname?

pathname, copy OVER out-pathname?

pathname, copy AFTER out-pathname?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Y ory Copy the file.

E or e Exit from COPY command

Rorr Continue copying files without

further query.
Any other Do not copy this file; go to the
character next file in the input list.

3-15

@

COPY

COoPY

OUTPUT PARAMETERS

TO Writes the listed input files to named new
output files. The specified output file or
files should not already exist; if they do, COPY
will request permission to delete the existing
files before it executes the copy operation for
that file. If more input files than output
files are listed, the remaining input files will
be appended to the end of the last listed output
file.

OVER Writes the listed input files over (replaces)
the existing output files on a one-for-one
basis, regardless of file size. If an output
file does not already exist, its corresponding
input file is written to a new file with the
listed output file name. If more input files
than output files are listed, the remaining
input files will be appended to the end of the
last listed output file.

AFTER Appends the input file or files to the current
data in the existing output file or files. If
the output file does not already exist, all
listed input files will be concatenated into a
new file with the listed output file name.

outpath-list One or more pathnames for the output files.
Multiple pathnames must be separated by commas.
Separating blanks are optional. If the
preposition and output parameter defaults are
exercised in the command line, the output will
go to the user's console screen (TO :CO:).

DESCRIPTION
COPY is a powerful and versatile command with a wide range of file
handling applications (See Chapter 2 for examples). Implementation
depends upon your selection of a preposition and your input file and
output file specification in the command line. The following are some
of the COPY command's features:

@ Create new files (TO preposition).

o Copy over existing files or create new files (OVER preposition).

e Add data to the end of existing files (AFTER preposition).

o Copy a list of files to another list of files on a one-for-one
basis.

) Concatenate two or more files into a single output file.

3-16

COPY

DESCRIPTION (continued)

As each file is copied, the COPY command displays one of the following
messages, as appropriate:

pathname, copied TO out-pathname
pathname, copied OVER out-pathname
pathname, copied AFTER out-pathname

If you do not specify a preposition or output file, TO :CO: is the
default output. The Human Interface normally expects all listed output
files to be new files when the TO preposition is used; however, it is
prepared to deal with existing files. If an existing output file name
is encountered during a copy operation using TO, the Human Interface
displays the the following message:

pathname, already exists, DELETE?

Enter Y or y if you wish to delete the existing file. The COPY command
will delete the file.

Enter any other character if you do not wish to delete the existing
file. The COPY command will pass over the corresponding input file
without copying it, and will attempt to copy the next listed input file
to its corresponding output file.

If more input files than output files are specified, the remainder of
the input files will be appended to the end of the last listed ouput
file. As each file is appended, the following message is displayed on
the console screen:

pathname, copied AFTER out-file

If there are fewer input filenames than output filenames specified in
the COPY command (regardless of the preposition), the output files
remaining after the last valid copy operation will be ignored.

You cannot successfully use COPY to copy a directory to a data file or
to another directory. Although a directory can be copied, the
attributes of the directory are lost. That is, the directory can no
longer be used as a directory. However, a file listed under omne
directory can be copied to another directory. For example:

copy samp/test/a to :fl:/alpha/beta

would copy the A data file to a different volume, directory, and
filename, where the new file's pathname would be :fl:/alpha/beta.

3-17

CREATEDIR

CREATEDIR

This command creates one or more iRMX 86 user directories.

The format is as follows:

CREATEDIR)= @

INPUT PARAMETER
inpath-list One or more pathnames of the iRMX 86 directories
to be created. Multiple pathnames must be

separated by commas. Embedded blanks between
commas and pathnames are optional.

DESCRIPTION

A created iRMX 86 directory allows all access functions; that is, you can
read/write, delete, list, add, and change the contents of the directory
you created with CREATEDIR.

The following message is displayed if a directory is successfully created:

directory-name, directory created

You can create new directories that are subordinate to other directories.
For example:

createdir ab/dc/ef/GH

would cause the newly-created directory GH to be nested within existing
directory EF, which in turn, is nested within directory DC, and so on.

It is suggested that you use uppercase letters when you enter a new
directory name in a CREATEDIR command, and use lowercase letters when you
create a new data filename in a COPY command. You can then easily
distinguish between directory names and filenames in a directory listing.

You can check the contents of the directory at any time by using the DIR
command to list the directory (see the DIR command in this chapter).

ERROR MESSAGES

directory name, invalid file type

3-18

CREATEDIR

ERROR MESSAGES (continued)

You attempted to create a directory using a data file as part of the new

directory's pathname; only other directory names are allowed in the
pathname for a new directory.

directory-name, directory already exists

The specified pathname of the directory to be created already exists.

3-19

DATE

DATE

This command sets a new system date or displays the current date.

The format is as follows:

DATE

INPUT PARAMETERS
dd Two—-digit number that specifies the day of the month.

mmm Three-character abbreviation for the specified
month, as follows:

JAN APR JUL OCT
FEB MAY AUG NOV
MAR JUN SEP DEC

yy Two-digit number that specifies the year.

DESCRIPTION

The dd, mmm, and yy entries are separated by single blanks.

If no new date is specified in the DATE command, the current date is
displayed.

If one of the date entries in the parameter string is set, all three must
be; there are no default settings for individual entries within the

parameter string.

If you request the system date on a non-timing system, the following
message will be displayed:

00:00:00

See also the TIME command in this chapter if you wish to set the system
clock in conjunction with setting the date.

ERROR MESSAGES

Errors in a date entry, such as syntax errors or a number out of range
(i.e., 31 FEB 81), cause the following error message to be displayed:

illegal date
If this occurs, reenter the DATE command with the correct syntax.

3-20

DEBUG

This command allows you to debug your iRMX 86 application jobs if your
system is configured with the iSBC 957A/B package.

@ pathname

parameter
string

INPUT PARAMETERS

command pathname Pathname of the file containing the application
program to be debugged.

parameter string String of required, optional, and default
parameters that can be used in the command line to
load and execute the application program.

DESCRIPTION

DEBUG loads your specified application program into main memory and
transfers control to the iSBC 957A/B package. You can then use the iSBC
957A/B package to single-step, display registers, and set breakpoints
within the program. Refer to the appropriate iSBC 957A or iSBC 957B
user's guide for a complete description of the iSBC 957A/B functions.

When DEBUG executes, the 957A/B package runs with its interrupts
disabled. Therefore, the time-keeping function is also disabled, with
the following consequences:
® Impacts the ability of the Nucleus to execute time—out tasks that
have provided time limits to system calls, such as RECEIVESUNITS
and RECEIVESMESSAGE.

° Impacts the ability of the Basic I/0 System to keep track of the
time-of-day and write its data structures to secondary storage.

The 957A/B package cannot tolerate interrupts while the single-stepping
command is being used. Single-stepping will be affected if:

e Tasks are using non-zero time-out values in system calls such as
RECEIVESUNITS and RECEIVESMESSAGE.

° Time-of-day is configured in the Basic I/O System.

e Non-zero update timeout values are specified in the Basic I/0
System's Device Unit Information Blocks (DUIB).

The alternative to single-stepping is to use breakpoints.

3-21

i DEBUG

DELETE

DELETE

This command removes data files and empty directories from secondary
Storage.

The format is as follows:

@ inpath-list

INPUT PARAMETERS

inpath-list One or more pathnames for the files or empty
directories to be deleted. Multiple pathname
entries must be separated by commas. Separating
blanks are optional.

QUERY Causes the DELETE command to ask for your
permission to delete each file in the list. Prior
to deleting a file, the DELETE command displays
the following query:

pathname, DELETE?

Enter one of the following, followed by a carraige
return, in response to the query:

Entry Action

Yory Delete the file.

E or e Exit from DELETE command.

Rorr Continue deleting without further
query.

Any other Do not delete file;
character query for next file in sequence.

DESCRIPTION
The DELETE command allows you to release unused secondary storage space
for new uses by removing empty directories and unneeded data files. If a

file to be deleted is currently attached, it will be marked for deletion
and deleted when the file is detached.

The following message is displayed as each file is deleted or marked for
deletion:

pathname, deleted

3-22

DELETE

ERROR MESSAGES

pathname, DELETE access required
You do not have permission to delete a specified file.

pathname, does not exist
The specified file was not found (e.g., a syntax error in a pathname or
the file is located in some other directory). The DELETE command will
attempt to delete each succeeding file specified in the filename-list

after it has encountered an error in a file name.

pathname, directory not empty

Non-empty directories may not be deleted. You attempted to delete a
directory that still lists filenames or other directory names.

If you still wish to delete the directory, you must first delete all its
contents. For example, if you wished to delete a directory named ALPHA
that contained a data file with the pathname ALPHA/BETA/SAMP, you would
enter the following command:

delete alpha/beta/samp,alpha/beta,alpha

which would delete all files cataloged in ALPHA before the directory
itself was deleted.

3-23

DETACHDEVICE

DETACHDEVICE

This command detaches the specified logical device,

e Gl

INPUT PARAMETER

:logical name: Logical name of the physical device that is to be
deleted from the root job's object directory.

DESCRIPTION

The DETACHDEVICE command allows you to detach a device without having to
reconfigure the system. After a device is detached, no volume mounted on
that device is accessible for system use. For a description of formatted
volumes (NAMED or PHYSICAL), see the FORMAT command description in this
chapter.

When the device is detached and its logical name has been deleted from
the root job's object directory, the DETACHDEVICE command will display
the following message:

logical-name, detached

NOTE

Using the DETACHDEVICE command to
detach the device containing your Human
Interface commands causes loss of
access to Human Interface functions
until the system is restarted.

ERROR MESSAGE
illegal logical name

Either there is a syntax error in the logical name specification or the
logical name does not exist in the root job's object directory.

3-24

DIR

This command lists the names and attributes of files contained in a given
directory, including data filenames and directory names.

The format of the command is as follows:

)

(70)
>

oven >
o

outpath-list

INPUT PARAMETERS

inpath-list

EXTENDED

LONG

ol |

EXTENDED I i @J
A
A

<

One or more pathnames of the directories to be
listed. Multiple directory pathname entries must
be separated by commas. Separating blanks are
optional. If no pathname is specified, the user's
default directory is listed.

Lists all available information for each data file
or directory file in the directory. The first
line for each file will be the same as for the
LONG form. The second line will contain the last
access date, creation date, and the accessor

list. The listing will be in a double—column
format (see Figure 3-1 at the end of this command
description).

Lists file information in a one-line format (see
Figure 3-2 at the end of this command description).

3-25

INPUT PARAMETERS (continued)

FAST

SHORT

ONE

QUERY

OUTPUT PARAMETERS

TO

OVER

AFTER

out—-pathname

Lists only the filenames and directory names in
the directory. The output format will be five
columns of filenames unless you also specify the
ONE parameter (see Figure 3-3 at the end of this
command description). If no listing format is
specified, FAST is the default.

Lists the file information in a two-column format
(see Figure 3-4 at the end of this command
description).

Lists the output of a FAST or SHORT listing in
single-column format. ONE is the default number
of columns for EXTENDED or LONG listings.

Causes the DIR command to prompt you for
permission to list a directory by issuing the
following message:

pathname, DIR?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Yory List the directory.

E or e Exit from DIR command.

Rorr Continue listing directories without

further query.

Any other Do not list directory; query for the
character next directory, if any.

Copies the directory listing to the specified
destination data file. If no TO/OVER/AFTER
preposition is specified, TO :CO: is the default.

Copies the directory listing to the specified
output file and writes over (replaces) the
previous contents.

Appends the directory listing to the current
contents of the specified output file.

Pathname of the file to receive the directory
listing. If the parameter is omitted, the default
destination is the user's console screen (TO :C0:).

3-26

DIR

DESCRIPTION
The amount of information listed for each file depends upon what
listing format you specify (EXTENDED, FAST, LONG, or SHORT) in the
DIR command. An example of each type of listing format is provided
at the end of the DIR command description in Figures 3-1 through 3-4
respectively. An explanation of the illustrated headings is provided
in Table 3-2 following the figures.
If you want to list the default user directory but also wish to
specify a listing format other than FAST, use the default directory
name explicitely. For example:

dir $ extended

would display a listing of the user directory in the EXTENDED
format. Note that the default directory is a configuration option.

ERROR MESSAGES
pathname, is not a directory

A pathname exists but is not a directory.
pathname, directory does not exist

The pathname does not exist, either as a directory or as a data file.
pathname, directory LIST access required

You do not have list access to the directory.

DIR COMMAND EXAMPLES

The examples that follow show how a directory's files are listed when you
use your configured system's default prefix in a directory's pathname.

In the examples, directory names are enclosed in triangles; data file
names are enclosed in rectangles.

Assume you have the following directory structure for your files:

3-27

DIR

DIR COMMAND EXAMPLES

If your root directory was Q, then the following files would be

(continued)

bb

listed in response to the DIR pathname entry examples in the
following "Pathname” column:

Pathname

omitted
f

A

A/d
A/CB
A/CB/e

Files Listed

A, £

not allowed because f is a data file
bb, CB, d

not allowed because d is a data file
e, f

not allowed because e is a data file

3-28

DIR LISTING FORMATS

Figures 3-1, 3-2, 3-3, and 3-4 show output examples for EXTENDED, FAST,

LONG, and SHORT listing formats respectively.

displayed column headings.

Table 3-2 defines the

11 MAR 80
DIRECTORY OF sys

NAME
ed

idisk

submitplmab MA

CHAOTICGOOD

06:30:30
ON myvol

AT ACC
DR

DR DLAC

DRAU

LAWFULEVIL D

5 FILES

1839 BLOCKS

GRAN
BLKS LENGTH VOL FIL
200 30185 16 3
CREATION: 20 APR
LAST ACC: 25 NOV
5 39 1A 1
CREATION: 15 NOV
LAST ACC: 10 JAN
11 1057 24 2

CREATION: 20 APR
LAST ACC: 20 JAN

U 123456789 1234567890 12345 123

CREATION: 16 NOV
LAST ACC: 20 FEB

73 9081 24 15
CREATION: 15 NOV
LAST ACC: 05 MAR
1200453 BYTES

OWNER LAST MOD
Beck 20 NOV 79
78 ACCESSORS ACC
79 Engineers R

Techs U
WORLD 12 DEC 7¢
78 ACCESSORS ACC
80

BACKWORDPLMCOM 1A JUN 79
78 ACCESSORS ACC
80 PYE-WACKET AU
TOGAN R
longlongnamess D U
Chopin 01 DEC 79
79 ACCESSORS ACC
80 Clerics RA
MAGIC-USERS §)
Thieves D
FIGHTERS DRAU
saveyourhat 04 JAN 80
79 ACCESSORS ACC
80 WORLD RAU

Figure 3-1.

EXTENDED Directory Listing Example

11 MAR 80 04:25:40

DIRECTORY OF alpha ON mvol
fnamel fname2 fname3 fname4 fname5
fname6 fname7 fname8 fname9 fnamelO

fnamell . . .

Figure 3-2.

FAST Directory Listing Example

3-29

DIR

DIR

DIR LISTING FORMATS (continued)

11 JAN 80 06:30:30
DIRECTORY OF sys ON myvol
GRAN
NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD
ed DR 200 30185 16 3 BECK 20 NOV 79
idisk DR DLAC 5 39 16 1 WORLD 12 DEC 79
LEMONADEIT MA D 105 13074 64 2 malagi 16 MAR 77
credit DR 263 32967 128 6 WORLD 17 NOV 79
SUBMITAGAINPLM MA DRAU 11 1057 24 2 BACKWORDPLMCOM 16 JUN 79
type DR LA 4 3566 15 1 PASCAL 15 DEC 79
CHAOTICGOOD U 123456789 1234567890 12345 123 CHOPIN 01 DEC 79
LAWFULEVIL D 73 9081 24 15 saveyourpet 04 JAN 80
8 FILES 1839 BLOCKS 1200453 BYTES
Figure 3-3. LONG Directory Listing Example
11 MAR 80 04:25:50
DIRECTORY OF sys ON myvol
NAME AT ACC BLKS LENGTH NAME AT ACC BLKS LENGTH
append R 40 1425 attrib DRAU 38 4682
COPY MA DRAU 65 8042 CREDIT.HAZ R 263 33017
dcopy DRAU 62 7718 DELETE A 37 4506
REFERENCE DR L 5 10 DATA DR DLAC 1 4
DUMP D 22 2568 ED DR 200 30185
idisk DR DLAC 5 39
LEMONADEIT MA D 123456789 1234567890
CREDIT DR 263 32967 RENAME AU 21 2487
submit$plm MA DRAU 11 057 TYPE DR LA 4 366
CHAOTICGOOD U 13293 1151640 lawfulevil D 73 9081
18 FILES 1839 BLOCKS 1200453 BYTES

Figure 3-4.

3-30

SHORT Directory Listing Example

Table 3-2. Directory Listing Headings

Heading Meaning

NAME: l4-character file NAME

AT: File ATtribute, where:

DR = Directory (if the ATtribute field is blank, the
file is a data file)

ACC: File ACCess rights, where:

Delete
List
Directories: l Add
lr———- Change
DLAC
DRAU
IL———- Update
Other Files: Append
Read
Delete

BLKS: Nine-digit number (five digits on SHORT listing) giving the
volume-granularity units allocated to the file. On the
SHORT form, if the number of digits exceeds five, the file
is displayed in the nine-digit form (see the LEMONADEIT
file in Figure 3-4).

LENGTH: 10-digit number (7 digits on SHORT listing) giving the
length of the file in bytes. On the SHORT form, if the
number of digits exceeds 7, the file is displayed in the
10-digit form (see the LEMONADIT file in Figure 3-4).

VOL: Five-digit number giving the volume granularity in bytes.

FIL: Three-digit number giving the granularity of the file in
volume-granularity units.

OWNER: l4—haracter, alphanumeric owner name.

LAST MOD: Date of last file modification.

LAST ACC: Date of last file access.

CREATION: Date of file creation.

ACCESSORS: Heading for list of l4-—character accessor names.

ACC: Heading for access rights of file accessors. The format of

this field is identical to ACC above.

3-31

DIR

DISKVERIFY

DISKVERIFY

This command invokes the disk verification utility which verifies the
data structures of iRMX 86 physical and named volumes. This utility can
also be used to reconstruct portions of the volume and perform absolute

editing on the volume.
follows:

The format of the DISKVERIFY command is as

INPUT PARAMETERS

:logical-name:

VERIFY or V

s

= [=

et

Logical name of the secondary storage device
containing the volume.

Performs a verification of the volume. If you
specify this parameter and omit the options, the
utility performs the NAMED verification.

If you specify this parameter, the utility
performs the verification function and returns
control to you at the Human Interface level. You
can then enter any Human Interface command.

If you omit this parameter, the utility displays a
sign-on message and the utility prompt (*). You
can then enter individual disk verification

commands. These commands are described in the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL.

3-32

DISKVERIFY

INPUT PARAMETERS (continued)

NAMED1 or N1

NAMED2 or N2

NAMED or N

PHYSICAL

ALL

OUTPUT PARAMETERS

TO

OVER

AFTER

VERIFY option that applies to named volumes only.
This option checks the fnodes of the volume to
ensure that they match the directories in terms of
file type and file heirarchy. This option also
checks the information in each fnode to ensure
that it is consistent. As a result of this
option, DISKVERIFY displays a list of all files on
the volume that are in error, with information
about each file. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

VERIFY option that applies to named volumes only.
This option checks the allocation of fnodes on the
volume, checks the allocation of space on the
volume, and verifies that the fnodes point to the
correct locations on the volume. Refer to the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

VERIFY option that performs both the NAMED1l and
NAMED2 verification functions on a named volume.
If you omit the VERIFY option, NAMED is the
default option.

VERIFY option that applies to both named and
physical volumes. This option reads all blocks on
the volume and checks for I/0 errors.

VERIFY option that applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs the PHYSICAL verification function.

Copies the output from the disk verification
utility to the specified file. If no preposition
is specified, TO :CO: is the default.

Copies the output from the disk verification
utility over the specified file.

Appends the output from the disk verification
utility to the end of the specified file.

3-33

DISKVERIFY

OUTPUT PARAMETERS (continued)

outpath Pathname of the file to receive the output from
the disk verification utility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen
(TO :CO:). You cannot direct the output to a file
on the volume being verified. If you attempt
this, the utility returns an E$NOT_CONNECTED error
message.

DESCRIPTION

When you enter the DISKVERIFY command, the utility responds by displaying
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.x

where Vx.x is the version number of the utility. If you specify the
VERIFY or V parameter in the DISKVERIFY command, the utility performs a
verification of the volume and copies the verification information to the
console (or to the file specified by the outpath parameter). Refer to
the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for a description
of the verification output. After generating the verification output,
the utility returns control to the Human Interface, which prompts you for
more Human Interface commands. The following is an example of such a
DISKVERIFY command:

—=DISKVERIFY :Fl: VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY , Vx.x
DEVICE NAME = Fl ¢ DEVICE SIZE = 0003E900 : BLOCK SIZE = 0080

'NAMED2' VERIFICATION

BIT MAPS 0O.K.

However, if you omit the VERIFY (or V) parameter from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The following is an example of such a
DISKVERIFY command:

-DISKVERIFY :Fl:
*

Af ter you receive the asterisk prompt, you can enter any of the
DISKVERIFY commands listed in the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL.

3-34

ERROR MESSAGES

logical name, 0045 : E$LOG_NAME NEXIST
You specified a nonexistent logical name in either the :logical name:
parameter or the outpath parameter.

8042 : E$NOT CONNECTION

You attempted to direct output to a file on the volume being verified.

command line error

You made a syntax error when entering the command.

device size inconsistent
size in volume label = valuel : computed size = value2

When the disk verification utility computed the size of the volume, the
size it computed did not match the information recorded in the iRMX 86
volume label. It is likely that the volume label contains invalid or
corrupted information. This error is not a fatal error, but it is an
indication that further error conditions may result during the
verification session. You may have to reformat the volume or use the
disk verification utility to modify the volume label. Refer to the iRMX
86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more information about
the disk verification utility commands.

logical name, illegal logical name

The logical name you specified was not surrounded by colons (:).

not a named disk
You tried to perform a NAMED, NAMED1l, or NAMED2 verification on a
physical volume.
verify-function argument error
The VERIFY option you specified is not valid.
The NAMED1, NAMED2, and PHYSICAL verification options can also produce

error messages. Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for more information about these messages.

3-35

DISKVERIFY

DISKVERIFY

EXAMPLE

The following command performs both named and physical verification of a
named volume.

-DISKVERIFY :Fl: VERIFY ALL

DEVICE NAME = F1 : DEVICE SIZE = 0003E900 : BLK SIZE = 0080

'NAMED1' VERIFICATION

'NAMED2' VERIFICATION

BIT MAPS 0O.K.
'PHYSICAL' VERIFICATION

NO ERRORS

3-36

DOWNCOPY

DOWNCOPY

This command copies files from a volume on an iRMX 86 secondary storage
device to a volume on an ISIS-II secondary storage device via the
iSBC 957A/B Interface and Execution package. The format is as follows:

DOWNCOPY inpath-list

(70)
©

outpath-list

INPUT PARAMETERS

inpath-list One or more iRMX 86 pathnames for files, separated
by commas, that are to be copied to ISIS-II
secondary storage. Separating blanks between
pathnames are optional. The files may be copied
in the listed sequence either on a one-for-one
basis or concatenated into one or more files.

QUERY Causes the Human Interface to prompt for

permission to copy each iRMX 86 file to the listed
ISIS-II destination file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

pathname, copy down TO out—pathname?

pathname, copy down OVER out-pathname?

pathname, copy down AFTER out-pathname?

Enter one of the following in response to the

query:

Entry =~ Action

Yory Copy the file.

E or e Exit from the DOWNCOPY command.

Rorr Continue copying files without
further query.

Any other Do not copy this file; query

character for the next file in sequence.

3-37

DOWNCOPY

OUTPUT PARAMETERS

TO

OVER

AFTER

outfile-list

DESCRIPTION

Reads iRMX 86 files and copies them TO new ISIS-II
files in the listed sequence. The specified
output files should not already exist in the
ISIS-II directory when the TO parameter is used.
If a named output file does exist, DOWNCOPY will
display the following message:

filename, already exists, delete?

Enter a Y or y if you wish to delete the existing
file. Enter any other character if you do not
wish the existing file to be deleted.

If no preposition is specified, TO :CO: (ISIS-II
console screen) is the default. If more input
files than output files are specified, the
remaining input files will be appended to the end
of the last listed ISIS-II file.

Reads the listed iRMX 86 input files and copies
them OVER the existing ISIS-II destination files
in the listed sequence. If more input files than
output files are listed, the remaining input files
will be appended to the end of the last listed
ISIS-1I file.

Reads the listed iRMX 86 input files and copies
them AFTER the end of data on the existing ISIS-II
destination files in the listed sequence.

One or more ISIS-II filenames for the output
filess Multiple filenames must be separated by
commas. Separating blanks are optional. If the
preposition and output file defaults are used in
the command line, the output will go to the
ISIS-II console screen.

The DOWNCOPY command cannot be used to copy directories from an iRMX 86
system to an ISIS-II system; only files can be copied.

Before you enter a DOWNCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system with the
957A/B package, and the package must be running. The ISIS-II copies of
the files will have all ISIS-II file attributes turned off.

As each file in the input list is copied, one of the following messages
will be displayed on the Human Interface console output device (:C0:), as

appropriate:

3-38

DOWNCOPY

DESCRIPTION (continued)
pathname, copied down TO out-filename
pathname, copied down OVER out-filename

pathname, copied down AFTER out-filename

3-39

FORMAT

FORMAT

This command formats or reformats a volume on an iRMX 86 secondary
storage device, such as a diskette, hard disk, or bubble memory.

The format is as follows:

\ “logical-name:

volume-name,
@ GRANULARITY @
= num

(
R —

INPUT PARAMETERS

tlogical-name: Logical name of the physical device-unit to be
formatted. The logical name must be preceded and
followed by colons without embedded blanks between
the logical name and volume name.

volume—name Six~character, alphanumeric ASCII name, without
embedded blanks, to be assigned to the volume.
(See the definition for a "volume"” in Chapter 1l.)

FNODE S=num Defines the maximum decimal number of files that
may be created on a NAMED volume. (This parameter
is not meaningful when formatting a PHYSICAL
volume and will be ignored if specified for such
volumes.) The range is 7 through 32,767 fnodes,
although the maximum number of fnodes you can
define depends on the settings of the GRANULARITY
and EXTENSIONSIZE parameters (as explained in the
"Description” portion of this command write-up).
If not specified, the default is 50 fnodes.

GRANULARITY=num Volume granularity; the minimum number of bytes to
be allocated for each increment of file size on a
NAMED volume. (This parameter is not meaningful
for PHYSICAL volumes, and will be ignored if
specified for such volumes.) The specified
decimal number is placed in the header of the
volume and becomes the default file granularity
when a file is created on the volume.

3-40

INPUT PARAMETERS

FORMAT

GRANULARITY=num (continued)

EXTENSIONSIZE=num

INTERLEAVE=num

NAMED

PHYSICAL

The range is 1 through 65,535 (decimal) bytes,
although the maximum allowable volume granularity
depends on the settings of the FNODES and
EXTENSIONSIZE parameters (as explained in the
"Description” portion of this write-up). If not
specified, the default granularity is the device
granualarity. Once the volume granularity is
defined, it applies to every file created on that
volume.

Size, in bytes, of the extension data portion of
each file descriptor node (fnode). (This
parameter is not meaningful for PHYSICAL volumes,
and will be ignored if specified for such
volumes.) The range is O through 65,448
(decimal), although the maximum allowable
extension size depends on the settings of the
FNODES and GRANULARITY parameters (as explained in
the "Description” portion of this write-up). If
not specified, the default extension size is 3
bytes.

Interleave factor for a NAMED or PHYSICAL volume.
If not specified, the default value is 5, which is
the optimum interleave factor for an iSBC 204
bootstrap load. See the interleave discussion
under "Description” in this command write-up.

The volume can store only named files; that is,
the volume can hold many files (up to the number
of fnodes allocated), each of which can be
accessed by its pathname. A diskette or hard disk
surface are examples of devices that would be
formatted for named files. If neither NAMED nor
PHYSICAL is specified, the volume is formatted for
the type of files specified when you attached the
device (with the ATTACHDEVICE command).

The volume can be used only as a single, physical
file. The GRANULARITY and FNODES parameters are
not meaningful when PHYSICAL is specified for the
volume. If neither NAMED nor PHYSICAL is
specified, the volume is formatted for the type of
files specified when you attached the device (with
the ATTACHDEVICE command).

3-41

FORMAT

DESCRIPTION

Every physical device-unit used for secondary storage must be formatted
before it can be used for storing and then accessing its files. For
example, every time you mount a previously unused diskette into a drive,
you must enter a FORMAT command to format that diskette as a new volume
before you can create, store and access files on it.

Once a volume is formatted, its name becomes a volume identifier when you
list the root directory for the volume, and the name will appear in the
directory's heading. Although the Human Interface uses the volume name
in its own internal processing when you access the volume, you do not
need to specify the volume name in any subsequent command after the
volume is formatted; only the logical name of the secondary storage
device on which the volume is currently mounted needs to be specified.

The number of fnodes on a volume defines the number of files that can
exist on the volume. You can specify this number with with the FNODES
parameter. Each fnode is a data structure that contains information
about a file. Each time you create a file on the volume, the Operating
System records information about the file in an unused fnode. Later, it
uses the fnode in order to determine the location of the file on the
volume.

Each fnode contains a field that stores extension data for its associated
file. An operating system extension can access and modify this extension
data by invoking the ASGET$SEXTENSIONSDATA and ASSETSEXTENSIONSDATA system
calls (refer to the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for more
information). When you format a volume, you can use the EXTENSIONSIZE
parameter to set the size of the extension data field in each fnode.
Although you can specify any size from O to 65,448 bytes, the Human
Interface requires all fnodes to have at least 2 bytes of extension data.

The default volume granularity is always the granularity of the physical
device for the volume. For example, if the default granularity for a
device is 128 bytes of secondary storage, the I/0 System will
automatically allocate 128 bytes of permanent storage to each new file
you create on that volume, regardless of whether or not a file requires a
full 128 bytes. If the size of a file exceeds 128 bytes, the I/0 System
will allocate still another full block of 128 bytes, and so on, until the
volume is full.

Although the FNODES, GRANULARITY, and EXTENSIONSIZE parameters have
maximum values which are listed in the parameter descriptions, the
combination of these three parameters must also satisfy the following
formula:

(87 + EXTENSIONSIZE) x FNODES / GRANULARITY £ 65535

where all numbers are decimal. FORMAT displays an error message if the
combination of parameter values exceeds the limit.

3-42

DESCRIPTION (continued)

As stated previously, the interleave factor applies to volumes formatted
either for NAMED or PHYSICAL files. The interleave specification
maximizes access speed for the files on a given volume, depending on the
intent of volume and the device configuration. For example, an
interleave factor of 5 for a flexible disk drive means that, for each
file, the I/O System will read every fifth sector on the diskette,
starting with an index of 1 (other, hard disk systems may be different,
depending on your configuration). Therefore, the I/0 System does not
need to wait for the disk to make a complete revolution before it
accesses the next sector; the next sector by an increment of 5 is ready

to be accessed for read/ write by the time the previously accessed sector
has been processed.

The FORMAT command displays the following message when volume formatting
is completed:

volume (vol-name) will be formatted as a NAMED/PHYSICAL volume
granularity = number
interleave = number
numberfnodes = number
extensionsize = number

where:
vol-name The volume name specified in the FORMAT command.
NAMED/PHYSICAL Either NAMED or PHYSICAL will be displayed in the
message, depending on the command specification.
number Default or specifically defined in the command.

ERROR MESSAGES

If a device cannot be detached for formatting, the following message is
displayed on the user console:

logical-name, can't detach device
which means that the volume does not exist, the volume is busy, or the
device on which the volume is mounted is not currently attached to the

system.

If the device cannot be attached for formatting, or it cannot be
re-attached (e.g., restored to its original configuration prior to

formatting) after formatting takes place, the following message is
displayed on the user console:

device-name, can't attach device

3-43

FORMAT

FORMAT

ERROR MESSAGES (continued)

The following error message is displayed if you attempt to format
something that is not a physical device:

logical-name, is not a device connection
The following error message is displayed if you specify a volume name
containing more than six ASCII characters or if you specify a logical
device name:

vol-name, illegal name
The following error message is displayed if you specify an out—-of-range
number for any of the FNODES, GRANULARITY, EXTENSIONSIZE, or INTERLEAVE
parameters:

number, illegal number
The following message is displayed if the values you specify for fnode
size, granularity, and extension data size cause the formula listed in

the "Description” section to exceed its limit.

vol-name, fnode file size exceeds 65535 volume blocks

3-44

RENAME

This command allows you to change the pathname of one or more data files

or directories.

RENAME is effective across directory boundaries on the

same volume. The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

OUTPUT PARAMETERS

TO

One or more pathnames, separated by commas, of
files or directories that are to be renamed.
Blanks between pathnames are optional separators.

Causes the Human Interface to prompt for

permission to rename each pathname in the input
list by issuing the following message:

oldname, RENAME?

Enter one of the following (followed by a carraige
return) in response to the query:

Entry Action

Yory Rename the file.

E or e Exit from RENAME command.

Rorr Continue renaming without further
query.

Any other Do not rename file; query for the next
character file in sequence.

Moves the data to the new pathnames in the output
list. A new pathname in the output list should
not already exist. If, in fact, a new pathname
does already exist, RENAME displays the following

warning message when the pre—-existing pathname is
encountered:

pathname, already exists, DELETE?

3-45

RENAME

RENAME

OUTPUT PARAMETERS

TO (continued)

OVER

outpath-list

DESCRIPTION

n__e e

Enter a "Y" or "y" if you wish the pre-existing
pathname and its contents to be written over by the
new name specification. The pre-existing pathname
and its contents will be deleted.

Enter any other character if you do not wish the
pre—-existing file to be deleted. Renaming of the
specified file will not take place and the RENAME
command will attempt to rename the next pathname in
the list sequence.

Changes each old pathname in a list to the
corresponding new pathname, even if the new pathname
already exists. The old pathname is deleted from
secondary storage. OVER cannot be used to rename a
non~empty directory over another non-empty
directory.

List of new pathnames. Multiple pathnames must be
separated by commas. Separating blanks are optional.

The primary distinction between the RENAME command and the COPY command is
that, as a RENAME command is executed, it releases the pathnames in the
listed input files for new uses without having to perform any further
operation on the files.

Although RENAME can be used to rename an existing directory pathname TO a
new pathname, it cannot be used to rename an existing directory OVER
another existing directory. For example:

-rename ALPHA to DELTA allowed
-rename ALPHA over BETA not allowed (unless BETA is empty)
-rename ALPHA/sampl over BETA/testl allowed

CAUTION

Note that changing the name of a
directory also changes the path of all
files listed under that directory. All
subsequent accesses to those files must
specify the new pathnames for the files.

As each file in a pathname list is renamed, the RENAME command displays
one of the following messages, as appropriate:

old-pathname, renamed TO new—-pathname

or

old-pathname, renamed OVER new—-pathname

3-46

RENAME

ERROR MESSAGES

There must be a one-for-one correspondence between the oldname and
newname lists in the RENAME command. A missing element in either list
causes RENAME to display the following message:

unmatched path name lists

If your system is configured with user-designed access limitations, you
must have at least delete access to old pathnames and add-entry access to
the destination directory to use the RENAME command.

If you are not allowed delete access on your system, the following
message is displayed when you attempt to use the OVER preposition in a
RENAME command:

old-pathname, DELETE access required

If you are not allowed add-entry access on your system, the following
message is displayed when you attempt to use the TO preposition in a
RENAME command:

new—-pathname, directory ADD ENTRY access required

If the RENAME command encounters an error in the renaming of a file, it
will attempt to continue renaming each succeeding file in sequence.

Use of the AFTER preposition is not valid for the RENAME command, and an
attempt to use it causes the following message to be displayed:

AFTER preposition, TO or OVER preposition expected

Note that the RENAME command is the only Human Interface file handling
command that cannot be used across volume boundaries; that is, you cannot
use the RENAME command to rename a file or move data from a volume
located on one secondary storage device to a volume located on another
secondary storage device (e.g., from one diskette to another). An
attempt to do so causes the following error message:

0005: ESCONTEXT

Use the COPY command or a combination of COPY and DELETE commands if you
wish to rename files or move data across volume boundaries.

3-47

RESTORE

RESTORE

This command restores files to a named volume by copying them from a

backup volume.

The format of this command is as follows:

INPUT PARAMETERS

tbackup device:

QUERY

:backup device:

Logical name of the backup device from which
RESTORE restores files.

Causes the Human Interface to prompt for
permission to restore each file. The Human
Interface prompts with one of the following
queries:

pathname, RESTORE data file?
or

pathname, RESTORE directory?

Enter one of the following responses to the query:

Entry Action

Yory Restore the file.

E or e Exit from the RESTORE command.

Rorr Continue restoring files without
further query.

Any other If data file, do not restore the

character file; if directory file, do not

restore the directory or any
file in that portion of the

directory tree. Query for the
next file, if any.

3-48

OUTPUT PARAMETERS

TO

OVER

pathname

DESCRIPTION

Restores the files from the backup volume to new
files on the named volume, if the files do not
already exist on the named volume. However, if a
file being restored already exists on the named
volume, RESTORE prompts for permission to restore
the file'

Restores the files from the backup volume over
(replaces) the files on the named volume. If a
file does not exist on the named volume, RESTORE
creates a new file on the named volume.

Pathname of a file which receives the restored
files (you must specify a directory pathname when
restoring more than one file). If you specify a
logical name for a device, RESTORE places the
files under the root directory for that device.
However, the device must contain a volume
formatted as a named volume. If you wish to
restore files to the directory in which they
originated, you should specify the same pathname
parameter as you used with the BACKUP command.

RESTORE is a utility which copies files from backup volumes (where the
BACKUP command originally saved them) to named volumes. RESTORE copies
the files to any directory you specify, maintaining the hierarchical
relationships between the backed-up files.

When RESTORE copies files, it copies only those files for which you are
the owner. For these files, it restores the following information:

e File name

® Access list

e Extension data

e File granularity

® Contents of the file

RESTORE changes the creation, last modification, and last access dates of

the file to the current date.

Each backup volume which is used as input to the RESTORE command must
In addition, if the
backup operation required multiple backup volumes, you must restore these

contain files placed there by the BACKUP command.

volumes in the same order as they were backed up.

3-49

RESTORE

RESTORE

DESCRIPTION (continued)

The output volume which receives the restored files must be a named
volume. You must have sufficient access rights to the files in that
volume to allow RESTORE to perform all necessary operations. In order
for RESTORE to create new files on a named volume, you must have add
entry access to directories on that volume. In order for RESTORE to
restore files over existing files, you must have add entry and change
entry access to directories in that volume and delete, append, and update
access to data files.

When you enter the RESTORE command, RESTORE displays the following
sign-on message:

iRMX 86 DISK RESTORE UTILITY Vx.x

where Vx.x is the version number of the utility. Then it prompts you for
a backup volume.

Whenever RESTORE requires a new backup volume, it issues the following
message:

backup device, mount backup volume #nn, enter Y to continue:

where backup device indicates the logical name of the backup device and
nn the number of the requested volume. (RESTORE in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place the backup volume in the backup device
(make sure that the volume number is correct if the backup operation
involved multiple volumes). Enter one of the following:

Entry Action

Y, y, R, or r Continue the restore process.

E or e Exit from the RESTORE command.
Any other Invalid entry; reprompt for entry.
character

RESTORE continues prompting you until you supply the correct backup
volume.

As it restores each file, RESTORE displays the following message at the
Human Interface console output device (:CO:):

pathname, RESTORED
However, if a file with the same pathname already exists during a restore
operation using the TO preposition, RESTORE displays the following

message:

pathname, already exists, DELETE?

3-50

KED 1UKL

DESCRIPTION (continued)

Enter one of the following in response to the query:

Entry Action

Yory Delete the file and replace it with the one from
the backup volume.

E or e Exit from the RESTORE command.

Rorr Delete the file, replace it with the one from the

backup volume, and continue restoring files
without further queries.

Any other Do not restore the file; go on to the next file.
character

ERROR MESSAGES
pathname, ADD ENTRY or UPDATE access required

RESTORE could not restore a file, either because you did not have add

entry access to the file's parent directory or because you did not have
update access to the file. RESTORE continues with the next file.

backup device, backup volume #nn, date, mounted
backup device, backup volume #nn, date, required

backup device, mount backup volume #nn, enter Y to continue:

RESTORE cannot continue because the backup volume you supplied is not the
one that RESTORE expected. Either you supplied a volume out of order or
you supplied a volume from a different backup session. RESTORE reprompts
for the correct backup volume.

backup device, cannot attach volume
backup device, exception code

backup device, mount backup volume #nn, enter Y to continue:

RESTORE cannot access the backup volume. This could be because there is
no volume in the backup device, the volume is write protected, or because
of a hardware problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. RESTORE continues to
issue this message until you supply a volume that RESTORE can access.

3-51

RESTORE

ERROR MESSAGES (continued)
pathname, DELETE access required

RESTORE could not restore a file because you did not have delete access
to the file. RESTORE continues with the next file.

pathname, exception code, error during BACKUP, file not restored

When the BACKUP utility saved files, it encountered an error when
attempting to save the file indicated by this pathname. RESTORE is

unable to restore this file. The message lists the iRMX 86 exception
code encountered.

pathname, exception code, error during BACKUP, restore incomplete

When the BACKUP utility saved the files, it encountered an error when
attempting to save the file indicated by this pathname. RESTORE restores
as much of the file as possible to the named volume. The message lists
the iRMX 86 exception code encountered.

backup device, error reading backup volume
backup device, exception code

RESTORE tried to read the backup volume but encountered an error
condition, possibly because of a faulty area on the volume. The second
line of the message indicates the iRMX 86 exception code encountered.

pathname, exception code, error writing output file, restore incomplete

RESTORE encountered an error while writing a file to the named volume.
This message lists the iRMX 86 exception code encountered. RESTORE
writes as much of the file as possible to the named volume.

pathname, extension data not completely restored, nn bytes required

The amount of space available on the named volume for extension data is
not sufficient to contain all the extension data associated with the
specified file. The value nn indicates the number of bytes required to
contain all the extension data. This message indicates that the named
volume on which RESTORE is restoring files is formatted differently than
the named volume which originally contained the files. RESTORE restores
as much of the extension data as possible. To ensure that you restore
all the extension data from the backup volume, you should restore the
files to a volume formatted with an extension size set equal to the
largest value reported in any message of this kind. Refer to the
description of the FORMAT command for information about setting the
extension size.

3-52

ERROR MESSAGES (continued)
pathname, file does not exist

The pathname you specified as input to RESTORE does not represent an
existing file or device.

pathname, file not restored
For some reason, RESTORE was unable to restore a file from the backup
volume. RESTORE continues with the next file. Another message usually
precedes this message to indicate the reason for not restoring the file.

backup device, invalid logical name
The logical name you specified for the backup device contains unmatched
colons, is longer than 12 characters, contains invalid characters, or
does not exist.

backup device, not a backup volume

backup device, mount backup volume #nn, enter Y to continue:
The volume you supplied on the backup device was not a backup volume.
RESTORE continues to issue this message until you supply a backup volume.

backup device, not a valid backup device
The logical name you specified for the backup device was not a logical
name for a device.

output specification missing
You did not specify a pathname to indicate the destination of the
restored files.

pathname, READ access required
You do not have read access to a file on the backup volume; therefore
RESTORE cannot restore the file.

keyword, too many values

You specified too many values after the TO or OVER parameter.

3-53

RESTORE

RESTORE

ERROR MESSAGES (continued)
keyword, unrecognized control
You entered an invalid optional parameter. The keyword portion of the
message indicates the parameter that is in error.
pathname, exception code
The pathname you specified as input to RESTORE is in error. This error

could occur if you specify an invalid or nonexistent path component.
This message displays the exception code that results from this error.

3-54

SUBMIT

SUBMIT

This command reads and executes a set of commands from a file in
secondary storage instead of from the console keyboard. To use the
SUBMIT command you must first create a data file that defines the command
sequence and formal parameters (if any).

The format of the command is as follows:

INPUT PARAMETERS

pathname

parameter-list

OUTPUT PARAMETERS

TO

pathname

outpath-list

Name of the file from which the commands will be
read. This file may contain nested SUBMIT files.

Actual parameters that are to replace the formal
parameters in the SUBMIT file. You must surround
this parameter list with parentheses. You can
specify as many as 10 parameters, separated by
commas, in the SUBMIT command. If you omit a
parameter, you must reserve its position by
entering a comma. If a parameter contains a
comma, space, or parenthesis, you must enclose the
parameter in single quotes. The sum of all
characters in the parameter list must not exceed
512 characters.

Causes the output from each command in the SUBMIT
file to be written to the specified new file
instead of the console screen. If the listed
output file already exists, the SUBMIT command
will display the following message:

pathname, already exists DELETE?

Enter a Y or y if you wish the existing output
file to be deleted. Enter any other character if
you do not wish the existing file to be deleted.
A response other than Y or y causes the SUBMIT
command to be terminated and you will be prompted
for a new command entry.

3-55

SUBMIT

OUTPUT PARAMETERS (continued)

OVER Causes the output for each command in the SUBMIT
file to be written over the specified existing
file instead of the console screen.

AFTER Causes the output from each command in the SUBMIT
file to be written to the end of an existing file
instead of the console screen.

outpath-list Pathnames of one or more files to receive the
processed output from each command executed from
the SUBMIT file. If no preposition or output file
is specified, TO :CO: is the default.

DESCRIPTION

Any program that reads its commands from the console keyboard can be
executed from a SUBMIT file. If another SUBMIT command is itself used in
a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest
SUBMIT files to any level of nesting until memory is exhausted. When one
nested SUBMIT file completes execution, it returns control to the next
higher level of SUBMIT file.

When you create a SUBMIT file, you indicate formal parameters by
specifying the characters %n, where n ranges from O through 9. When
SUBMIT executes the file, it replaces the formal parameters with the
actual parameters listed in the SUBMIT command (the first parameter
replaces all instances of %0, the second parameter replaces all instances
of 71, and so forth). If the actual parameter is surrounded by quotes,
SUBMIT removes the quotes before performing the substitution. TIf there
is no actual parameter that corresponds to a formal parameter, SUBMIT
replaces the formal parameter with a null string.

When you specify a preposition and output file in a SUBMIT command, only
your SUBMIT command entry will be echoed on the console screen; the
individual command entries in the submit file are not displayed on the
screen as they are loaded and executed.

The SUBMIT command will display the following message when all commands
in the submit file have been executed:

END SUBMIT pathname

3-56

SUBMIT

EXAMPLE

This example shows a SUBMIT file that uses formal parameters and the
command that you can enter to invoke this SUBMIT file. The SUBMIT file,
which resides on file :F1:PROGRAM, contains the following lines:

ATTACHDEVICE Fl1 AS 70
CREATEDIR %0/%1
UPCOPY :F1:%Z2 TO %0%1/%2

The SUBMIT file contains three formal parameters, indicated by %0, %1,

and Z2. The %0 indicates the logical name of an iRMX 86 device; the %1
indicates the name of a directory on that device; the %2 indicates the

name of a file which will be copied from an ISIS-II disk to the iRMX 86
device.

The SUBMIT command used to invoke this file is as follows:

-SUBMIT :F1:PROGRAM (:Fl:, PROG, FILEl)

The command sequence created and executed by SUBMIT is shown as it would
be echoed on the console output device.

-ATTACHDEVICE F1 AS :Fl:

Fl, attached as :Fl:

-CREATEDIR :F1l:/PROG

:F1:PROG, directory created

-UPCOPY :F1:FILEl TO :Fl1:PROG/FILEl
¢F1:FILEl upcopied TO :F1:PROG/FILEl
END SUBMIT :Fl:PROGRAM

3-57

TIME

TIME
This command sets the system clock. If no new time is entered, the TIME
command causes the current system time to be displayed.

The format is as follows:

— 7

INPUT PARAMETERS

hh: Hours specified as 0 through 24.

mms Minutes specified as O through 59.

ss Seconds specified as O through 59.
DESCRIPTION

If one of the time entries in the parameter string is set, all three must
be; there are no default settings for individual items in the parameter
string.

If you request the time-of-day and the system clock has not been set, the
TIME command displays the following message:

00:00:00

See also the DATE command in this chapter if you wish to set the date in
conjunction with the system clock.

An invalid time or an out-of-range entry for the TIME command causes the
following error message to be displayed:

illegal time

3-58

UPCOPY

UPCOPY

This command copies files from a volume on ISIS-II secondary storage to a
volume on iRMX 86 secondary storage via the iSBC 957A/B Interface and
Execution package.

[\

T0

N

-

INPUT PARAMETERS

inpath-list List of one or more filenames of the ISIS-II files
that are to be copied to iRMX 86 secondary
storage, either on a one—-for—-one basis or
concatenated into one or more iRMX 86 output files.

QUERY Causes the Human Interface to prompt for
permission to copy each ISIS-II file to the listed
iRMX 86 output file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

filename, copy up TO out—pathname?
filename, copy up OVER out-pathname?
filename, copy up AFTER out-pathname?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Yory Copy the file.

E or e Exit from the UPCOPY command.
Rorr Continue copying files without

further query.

Any other Do not copy this file; go to
character the next file in sequence.

UPCOPY

OUTPUT PARAMETERS

TO Copies the ISIS-II file or files TO a new iRMX 86
file or files in the listed sequence. The output
file or files should not already exist when the TO
preposition is used. If no preposition is
specified, TO :CO: is the default. If more input
files than output files are specified in the
command line, the remaining inputfiles will be
appended to the end of the last listed output file.

OVER Copies the listed ISIS-II input file or files OVER
existing iRMX 86 destination files in the listed
sequence. If more input files than output files
are listed in the command line, the remaining
input files will be appended to the end of the
last listed output file.

AFTER Appends the listed ISIS-II input file or files
AFTER the end-of-data on an existing iRMX 86
output file or files in the listed sequence.

outpath-list One or more pathnames of the iRMX 86 destination
files. Multiple pathnames muxt be separated by
commas. Separating blanks are optional. If the
preposition and output parameter defaults are used
in the command line, the output will go to the
iRMX 86 console screen.

DESCRIPTION

Before you enter an UPCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system with the
957A/B package and the package must be running. The iRMX 86 copies of
the files will have WORLD access; that is, all iRMX 86 system users can
peform read, write, and delete operations on the files without
restriction.

As each ISIS-II file in the input list is copied, the Human Interface

will display one of the following messages on the iRMX 86 console screen,

as appropriate: ‘
filename, copied up TO out—-pathname

filename, copied up OVER out-pathname

filename, copied up AFTER out-pathname

3-60

CHAPTER 4. UDI SYSTEM CALLS

Your programs request iRMX 86 PC Operating System services through the
Universal Development Interface (UDI) system calls. This chapter
describes the set of system calls that are available to iRMX 86 PC
programs. Although the iRMX 86 Operating System can recognize many other
system calls, (these are listed in Appendix B) you can perform all normal
operations with UDI calls. This is a design characteristic of the UDI;
it forms a "membrane"” through which your programs send requests to the
Operating System, and through which the Operating System returns
information to programs.

This chapter contains these four sections:

e USING THE UDI. This section outlines general programming
considerations for using the Universal Development Interface.
For example, this section explains how to use UDI libraries and
how to deal with errors in programs.

e TYPES OF UDI SYSTEM CALLS. This section explains certain
concepts about UDI File Management and Memory Management system
calls. For example, the concept of a file connection is
explained here. -

¢ DESCRIPTIONS OF SYSTEM CALLS. Here is the heart of this
chapter. Each UDI system call is described in detail, with an
explanation of how the call is invoked. The calls are arranged
alphabetically for quick reference. At the beginning of this
section you will find a System Call Dictionary: a brief listing
of system calls arranged into these functional groupings:

- Memory Management

File Handling

- Program Control

Exception Handling

Utility and Command Parsing

e EXAMPLE PROGRAM: At the end of this chapter is the listing of a
PL/M-86 program that uses a representative sample of UDI system
calls.

UDI SYSTEM CALLS

USING THE UDI

This section contains information about:

e UDI Libraries and INCLUDE files
° Exceptional conditions such as hardware errors

° Special data types referred to in descriptions of UDI system calls

UDI LIBRARIES

To execute a program which uses UDI system calls, you must link the
program to one of three iRMX 86 UDI libraries. These libraries are
called URXLRG.LIB, URXSML.LIB, and URXCOM.LIB. If your program
corresponds to the LARGE or MEDIUM models of segmentation, link it to
URXLRG.LIB. If your program corresponds to the SMALL or COMPACT models
of segmentation, link it to URXSML.LIB or URXCOM.LIB, respectively.

These libraries are in the UDI directory under the directory SYSTEM. The
pathname for the COMPACT library, for example, is SYSTEM/UDI/URXCOM.LIB.

The iRMX 86 PROGRAMMING TECHNIQUES manual discusses selecting a model of
segmentation. While these models deal with the PL/M 86 language, they

apply to assembly language as well. In contrast, Pascal-86 and
FORTRAN-86 require the large library.

INCLUDE FILES

You must declare each UDI procedure used in your PL/M-86 programs as an
EXTERNAL procedure. These declarations are contained in a single file
named SYSTEM/UDI/UDI.EXT. You INCLUDE this file with a PL/M-86 program
that makes UDI system calls. You can edit this file to delete references
that you don't use in your programs.

EXCEPTIONAL CONDITIONS

Every UDI call except DQ$EXIT returns a condition code which specifies
the status of the call. Each condition code has a unique numeric value,
and an associated mnemonic by which it is known. For example, the code
indicating that there were no errors or unusual conditions has the
numeric value zero (0) and the name E$OK. Any code other than E$O0K
returned from a system call means there was an exceptional condition.
Exception codes are classified as:

) Environmental Exceptions. These are generally caused by

conditions outside the control of a program; for example, device
errors or insufficient memory.

UDI SYSTEM CALLS

° Programmer Errors. These are typically caused by coding errors
(for example, "bad parameter”), but "divide-by-zero"”, "overflow”
"range check”, and errors detected by the 8087 Numeric Processor
Extension are also classified as avoidable.

When an error is detected, the normal (default) system action is to
display on the console terminal an error message, and terminate the
program. However, you may establish your own routine to handle
exceptions by using the UDI system calls DQSTRAPSEXCEPTION and
DQSDECODESEXCEPTION.

Appendix A contains a list of exception codes that the iRMX 86 Operating

System can return, with the numeric value, mnemonic, and meaning of each
code.

DATA TYPES

The following data types are referred to in the descriptions of system
calls:

BYTE An 8-bit item.
WORD A two-byte item.
STRING A sequence of bytes, the first of which contains the

length (in bytes) of the remaining portion of the
string. A length of zero indicates a null string.

TOKEN A WORD passed between a program and the Operating System
to represent an object; for example, a CONNECTION is a
token used in File Management System calls to represent a
file. In PL/M-86:

DECLARE TOKEN LITERALLY 'WORD';

POINTER Equivalent to PL/M-86 type POINTER. It is two bytes
under the small model of segmentation; four bytes in
other cases.

CONNECTION A token used to manipulate iRMX 86 files. In PL/M-86:
DECLARE CONNECTION LITERALLY 'WORD';

SELECTOR Equivalent to the PL/M-86 type SELECTOR; a l6-bit

iAPX 86,88 paragraph number (the base portion of a
four-byte pointer).

UDI SYSTEM CALLS

DESCRIPTIONS OF SYSTEM CALLS

This section contains descriptions of each UDI system call. The calls
are arranged alphabetically. Before the first system call description, a
System Call Dictionary (Table 4-1) shows the calls arranged in functional
groups, with a short description of each call and the page number of the
description.

Every system call description contains the following information in the
order listed here:

e The name of the system call.
e A brief summary of the function of the call.

° The form of the call as it is invoked from a PL/M-86 program,
with symbolic names for each parameter. (Calling sequences show
formal parameters in lower case.)

o Definition of input and output parameters.

e A complete explanation of the system call, including any
information you will need to use the system call.

NOTE

The first system call described,
DQSALLOCATE, also includes an actual
(as opposed to formal) PL/M-86
invocation of the system call and an
ASM-86 calling sequence. These are
included only once because they are
typical of all system calls.

MEMORY MANAGEMENT SYSTEM CALLS

When the iRMX 86 Operating System loads and runs a program, the program
is allocated a specific amount of memory. The portion of memory not
occupied by loaded code and data —— the free space pool —-is available to
programs dynamically, i.e., while the program is running. The Operating
System manages memory as segments of the size a program requests.

Your programs can use the UDI system calls DQ$ALLOCATE, and DQS$FREE,
respectively, to get a memory segment from the pool, and to return the
segment to the pool. You can use the call DQSGETS$SIZE to receive
information about an allocated memory segment.

UDI SYSTEM CALLS

FILE-HANDLING SYSTEM CALLS

About one-half of UDI system calls are used to manipulate files. Figure
4-1 shows the chronological relationship between the most frequently used
file-handling system calls.

ATTACH
READ WRITE
OPEN > SEEK > CLOSE > DETACH > DELETE
[’ TRUNCATE]
CREATE j. [______>

Figure 4-1. Chronology Of System Calls

The iRMX 86 Operating System distinguishes between:
® Establishing the association between a program and a data file
e Operating on the data file

The association between a program and a data file is a connection, and is
represented in your programs by a token of type CONNECTION.

Your programs establish a connection by using the system calls DQ$ATTACH
or DQSCREATE and break the connection with DQ$DETACH. When your program
establishes a connection via DQSATTACH or DQSCREATE, it receives a
CONNECTION token from the operating system. You use this token in all
further commnications with the operating system to identify the file.

You use the procedure DQ$OPEN to prepare an established connection for
input/output operations. You perform the actual input or output
operations with DQSREAD and DQSWRITE. You can move the file pointer with
the DQSSEEK call. When input/output is finished, you close the file
connection with DQSCLOSE. Note that you open and close connections, not
files. Closing a file connection frees buffer space. Once a connection
is established, it may be opened and closed as often as necessary.

DQDETACH is the call that eliminates a connection, and DQS$DELETE deletes
a file. If a file has connections attached when a program issues
DQSDELETE, the Operating System will mark for deletion the file. That
is, the file is not actually deleted until all connections are detached.

4-5

UDI SYSTEM CALLS

EXCEPTION-HANDLING SYSTEM CALLS

When an exceptional condition occurs while the iRMX 86 Operating System
is running a user program, the default exception handler (part of the
Operating System) will terminate the program and display a message on the
terminal identifying the exception code. You can write a program to
handle exception codes, rather than using the default exception handler.
In this case, the Operating System will not terminate your program, but
will pass control to your exception handler. Three system calls are used
to define and use your own exception handler:

) DQSTRAPSEXCEPTION, which is used to identify an exception handler
that you provide.

° DQSGETSEXCEPTIONSHANDLER, which is an informative system call
returning the address of the current exception handler: either
the default system handler, or one you specify with
DQSTRAPSEXCEPTION

° DQSDECODESEXCEPTION, which converts an exception numeric code
into its equivalent mnemonic.

Before your exception handler gets control, the iRMX 86 Operating System
does the following:

1. Pushes the condition code onto the stack.

2. Pushes the number of the parameter that caused the exception onto
the stack (1 for the first parameter, 2 for the second, etc.).

3. Pushes a word onto the stack (reserved for future use).

4. Pushes a word for the 8087 Numeric Processor Extension onto the
stack.

5. Initiates a long call to the exception handler.

If the condition was not caused by an erroneous parameter, the
responsible parameter number is zero. If the exception code is E$NDP,
the fourth item pushed onto the stack is the 8087 status word, and 8087
exceptions have been cleared.

Programs compiled under the SMALL model of segmentation cannot have an
alternate exception handler, but must use the default system exception
handler. This is because the exception handler must have a LONG POINTER,
which is not available with SMALL segmentation.

UDI SYSTEM CALLS

Table 4-1. SYSTEM CALL DICTIONARY

SYSTEM CALL FUNCTION PERFORMED PAGE
MEMORY MANAGEMENT CALLS
DQSALLOCATE Creates a segment of a specified size for use
by the application. 4-9
DQSFREE Returns the specified segment to the system. 4-11
DQSGETSSIZE Returns the size of the specified segment. 4-25
FILE-HANDLING CALLS

DQSATTACH Creates a connection to a specified file. 4-11
DQSCHANGESEX -

TENSION Changes the extension of a file name. 4-12
DQSCLOSE Closes the specified file connection. 4-13
DQS$CREATE Creates a file for use by the application. 4-14
DQSDELETE Deletes a file. 4-16
DQ$DETACH Closes a file and deletes its connection. 4-17
DQSGETSCON-

NECTIONSSTATUS| Returns status of a file connection. 4~22
DQSOPEN Opens a file for a particular type of access. 4-28
DQSREAD Reads the next sequence of bytes from a file. 4-32
DQSRENAME Renames the specified file. 4-34
DQ$SEEK Moves the current position pointer of a file. 4-35
DQSSPECIAL Sets terminal line-edit/tranparent mode. 4-37
DQSTRUNCATE Truncates a file to the specified length. 4-41
DQSWRITE Writes a sequence of bytes to a file. 4-42

UDI SYSTEM CALLS

Table 4-1. SYSTEM CALL DICTIONARY (continued)

SYSTEM CALL FUNCTION PERFORMED PAGE
PROGRAM CONTROL
DQSEXIT Exits from the current application job. 4-18
DQSOVERLAY Causes the specified overlay to be loaded. 4-30
EXCEPTION-HANDLING CALLS
DQS$SDE- Returns a short description of a
CODESEXCEPTION specified error code. 4-15
DQSGETSEXCEPT- Returns a POINTER to the address of the
IONSHANDLER program currently being used to process
errors. 4-24
DQSTRAPSEXCEPTION] Identifies a custom exception processing
program for a particular type of error. 4-40
UTILITY AND COMMAND PARSING
DQ$GETSARGUMENT Returns the next argument from the
character string used to invoke the
application program. 4-20
DQSGETS$SYS~ Returns the name of the underlying
TEM$ID operating system supporting the UDI. 4-26
DQSGETSTIME Returns the current time of day as kept
by the underlying operating system. 4-27
DQSSWITCHSBUFFER | Selects a new buffer from which to process
commands. 4-39

DQSALLOCATE

DQSALLOCATE requests a memory segment from the free memory pool.

base$addr = DQSALLOCATE (size, except$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS

base$addr

except$ptr

DESCRIPTION

A WORD which,

e if not zero, contains the size, in bytes, of the
requested segment. If the size parameter is not a
multiple of 16, it will be rounded up to the nearest
multiple of 16.

e if zero, indicates that the size of the request is
65536 (64K) bytes.

A SELECTOR in which the Operating System places the
base address of the memory segment. If the request
fails because the memory requested is not available,
this argument will be OFFFFH, and the system will
return an E$MEM exception code.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

The DQSALLOCATE system call is used to request additional memory. You may
use this call for dynamically creating buffer space.

EXAMPLE CALL PROCEDURES

These examples are included only for DQSALLOCATE. Their form is typical
of all system calls.

DUIALLUCAILE

EXAMPLE CALL PROCEDURES (continued)

Both examples request 128 (decimal) bytes of memory, and point to a word
named "ERR" for receiving the condition code).

Example PL/M-86 Calling Sequence

DECLARE ARRAY BASE WORD,
ERR WORD;

ARRAYBASE = DQ$ALLOCATE (128, @ERR);

.
e
.
I
@
>
P
=
7.

Example ASM86 Calling Sequence

MOV AX,128

PUSH AX ;3 first parameter
LEA AX,ERR

PUSH DS ;s second parameter
PUSH AX H

CALL DQALLOCATE

MoV ARRAYBASE ,AX ; returned value

This example is applicable to programs assembled according to the COMPACT,

MEDIUM, and LARGE models of segmentation. For the SMALL model, you would
not push the segment register before each parameter.

4-10

The DQSATTACH system call creates a connection to an existing file.

DQSATTACH

connection = DQSATTACH (path$ptr, except$ptr);

INPUT PARAMETER

path$ptr A POINTER to a STRING containing the pathname for the
file to be attached.

OUTPUT PARAMETERS

connection A WORD in which the iRMX 86 Operating System will
place the CONNECTION to the file.

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

DESCRIPTION
This system call allows a program to obtain a connection to any file.
Attaching a file that is already attached is valid. A connection to the

existing file is made, and all prior connections remain established.

It is not a valid operation to attach :CO: or :LP:; if you do so the
Operating System will return the exception code E$SUPPORT.

4-11

DQSCHANGESEXTENSION

I\

DQ$CHANGESEXTENSION changes or adds the extension at the end of a file
name.

CALL DQ$CHANGESEXTENSION (path$ptr, extension$ptr, except$ptr);

INPUT PARAMETERS

path$ptr A POINTER to a STRING that specifies the path for the
file to be renamed.

extension$ptr A POINTER to a series of three bytes containing the
characters that are to be added to the pathname. This
is not a STRING. You must include three bytes, even
if some are blank.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

This system call is used to change a file name extension, or add an
extension. For example: :AFD1:FILE.SRC can be changed to :AFD1:FILE.OBJ

by a compiler when the compiler creates a file in which the object file
is written.

The three character extension may not contain delimiters recognized by
DQSGETSARGUMENT but may contain trailing blanks. If the first character
addressed by extension$ptr is a space, the system call will delete any
prior extension (including the preceding period).

4-12

DQSCLOSE

DQS$CLOSE waits for completion of I/O operations taking place on the file
(if any), empties output buffers, and frees any buffers associated with

the CONNECTION.

CALL DQ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>