
iRMX 86™
INSTALLATION GUIDE

Manual Number: 9803125-03

Copyright © 1980, 1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

REV. REVISION HISTORY PRINT
DATE

-01 Original Issue 4/80

-02 Update to reflect Release 2 of the iRMX 86 10/80
software and hardware requirements.

-03 Update to reflect changes to support 5/81
Release 3 of the iRMX 86 Operating System;
new chapter for the Start-Up System; the
Files Utility chapter is moved to Chapter 8;
new hardware information to support new
controller boards; various minor technical
and typographical errors are corrected.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A yen ue
Santa Clara, CA 95051

The information- in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

RXP
CREDIT
i
ICE
iCS
im
Insite
Intel

Intel
Intelevision
Intellec
iRMX
iSRC
iSRX
Library Manager
MCS

Megachassis
Micromap
Multibus
Multimodule
PROMPT
Promware
RMX/RO
System 2000
UPI
pScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, iMMX or RMX and a numerical
suffix.

11 I A380/681/SK DD 1

PREFACE

The iRMX 86 Operating System is a software package that provides a
real-time, multitasking environment for Intel iAPX 86-based single board
computers. This manual provides you with the information required to
install your first operating system.

NOTE

Although you can configure an iRMX 86
system for use with an iSBC 86/05 or
88/40 board, this manual assumes that
you will be installing your first
system using the iSBC 86/12A board, and
much of the installation instruction is
based upon that premise. Therefore,
not all of the material given in the
manual is applicable if you plan to
build a custom board from components.
In any event, use of the iSBC 86/12A
board is suggested for system
prototyping and debugging purposes.
Portions or all of the information in
the following chapters is relevant for
component users:

• Chapter 1. Introduction

• Chapter 2. iRMX 86 Development
Environment

• Chapter 5. Start-Up System

• Chapter 6. Patching Utility

• Chapter 7. iRMX 86 Development
Procedures

• Chapter 8. Files Utility System

The minimum hardware requirements for
custom boards that utilize the iAPX 86
microprocessor for an iRMX 86
application system are defined in
Appendix C.

iii

The manual offers the following information:

• Introduces you to the Operating System and shows how it 1S

packaged.

• Defines the hardware and software environment in which
application systems are developed.

• Describes how to perform the required hardware modifications to
support the iRMX 86 Operating System, and shows how to assemble
the various hardware pieces.

• Explains how to install and use the demonstration @ystem. This
is a tested and debugged iRMX 86 application system.

• Describes the Start-Up System an"d Files Utility and how to use
these subsystems to format iRMX 86 disks, create and delete
files, and transfer information between ISIS-II disks and iRMX 86
disks.

• Describes how to use the Patching Utility to replace obsolete or
flawed relocatable object modules by overlaying Intel-supplied or
user-created replacement modules over the old code.

• Outlines the process for developing your own iRMX 86-based
application system.

READER LEVEL

This manual assumes that you are already familiar with the following
Intel software and hardware elements:

• The INTELLEC Microcomputer Development System and the ISIS-II
Operating System

• The MCS-86 Macro Assembly Language and/or the PL/M-86 programming
language

• Either the ICE-86 In-Circuit Emulator or the iSBC 957A Interface
and Execution Package

• The individual hardware components that make up an iRMX 86 target
system

It is also assumed that you have read the INTRODUCTION TO THE iRMX 86
OPERATING SYSTEM manual.

iv

RELATED PUBLICATIONS

The following manuals provide additional background and reference
information:

Manual

Introduction to the iRMX 86~ Operating System

iRMX 86~ Configuration Guide

iRMX 86~ Nucleus Reference Manual

iRMX 86~ Terminal Handler Reference Manual

iRMX 86 TH Debugger Reference Manual

iRMX 86TH Basic I/O System Reference Manual

iRMX 86~ Extended I/O System Reference Manual

Guide to Writing Device Drivers for the iRMX 86~ I/O System

iRMX 86~ Loader Reference Manual

iRMX 86~ Human Interface Reference Manual

iRMX 86~ System Programmer's Reference Manual

iRMX 86~ Programming Techniques

ISIS-II User's Guide

ICE-86 In-Circuit Emulator Operating Instructions for
ISIS-II Users

iSBC 957A INTELLEC iSBC 86/l2A Interface and
Execution Package User's Guide

iSBC 86/l2A Single Board Computer Hardware Reference Manual

iSBC 86/05 Single Board Computer Hardware Reference Manual

iSBC 88/40 Measurement and Control Computer Hardware
Reference Manual

iCS 80 Industrial Chassis Hardware Reference Manual

iSBC 660 System Chassis Hardware Reference Manual

iSBC 204 Flexible Diskette Controller Hardware
Reference Manual

v

Number

9803124

9803126

9803122

143324

143323

9803123

143308

142926

143318

9803202

142721

142982

9800306

9800714

142849

9803074

143153

142978

9800799

9800505

9800568

RELATED PUBLICATIONS (continued)

Manual

iSBC 206 Disk Controller Hardware Reference Manual

iSBC 215 Winchester Disk Controller Hardware Reference Manual

iSBX 218 Flexible Disk Controller Hardware Reference Manual

iSBC 254 Bubble Memory Technical Manual

iSBC 032/048/064 Random Access Memory Boards Hardware
Reference Manual

vi

Number

9800567

121593

121583

112179

9800488

CONTENTS

PAGE
CHAPTER 1
INTRODUCTION TO THE iRMX 86 PACKAGE
Inventory. . . • • • • • • • • • • . . • . • • . 1-2
Recommendations .. 1-3

CHAPTER 2
iRMX 86 DEVELOPMENT ENVIRONMENT
General Requirements... 2-2

Development System... 2-2
Tar get S y stem. • . . • • • • . • . • . • • • • . • . . • . • . . . ',' • . 2 - 2

Applicat ion-Dependent Requirement s. • • • • • • • • • • • • • • . • • • . . . • . • • • • • • • . • 2-3

CHAPTER 3
HARDWARE CONSIDERATIONS
Board Modi ficat ions. . . . • • • . • • . 3-1

iSBC 86/12A Board Modifications.................................. 3-1
iSBC 204 Board Modifications................. 3-2
iSBC 206 Board Modificat ions. . • • • • • • • • • . . • • • • • • . • • • • • . • . • . • . • 3-3
iSBC 215 and 218 Board Modifications...... .. 3-4
iSBC 254 Board Modifications..................................... 3-4
Memory Board Jumper Connect ions. 3-4

Chassis Board Arrangement.. 3-5
Cab Ie Connec t ions. . . • • . . • . • . . • • . 3-6
Logical and Physical Device Names.................................. 3-6

CHAPTER 4
NUCLEUS DEMONSTRATION SYSTEM
Hardware Requirements............................... 4-1
Loading the Nucleus Demonstration System........................... 4-2
Using the Nuc leus Demonstration System............................. 4-3

Operating Modes.. 4-3
Changing Statement Lines... 4-4
Variables.. 4-4
Constants ~ . 4-5
Expressions. 4-5

Statements and Functions... 4-5
Basic Statement s. 4-7

FOR •.. NEXT... 4-7
GOSUB. • • • • • • . • . • • • • . . . • • • • • . • • • 4-8
GOTO. • . . • . • . . . • • • • . . • • . . • • • • • . • • • . . • . 4-8
IF . 4-8
INPUT. • . . . • • . . • • • • • . . . • • • • . 4-9
LET. • . • . • • • . • . . • . • . . • • . . . • • • . • . . • . . • • 4-9
LIST.. 4-10
NEW.. 4-10

vii

CHAPTER 4
DEMONSTRATION SYSTEM

CONTENTS (continued)

Basic Statements (continued)
PRINT .. .
REM ••
RETURN •••.• •••••••••••••••
RUN ••• ~ ••
STOP •••

Basic Functions ••
ABS ••
RND •• " • •••
SIZE •••

iRMX 86 Statements and Functions ••••••••••••••••••••••••••••••.••
CATALOG ••
CR'rM.BOX ••
CRTSEGM ••
CRrrSEMA ••
CRTTASK ••
DEIMBOX ••
DELSEGM ••
DELSE~1A ••
DELTASK ••
GETTKNS ••
LOOPKUPO •••
RCVUNIT ••
RECVMSG ••
RESTASK ••
SENDMSG ••
SLEEP ••
SNDUNIT ••
SUSTASK ••
UNCATLG ••

CHAPTER 5
START-UP SYSTEM
Functions Provided •.••••••••••••••••••••••••••••••••••••.••••••••••
Hardware Required ••
Using the Start-Up System ••••••••••••••••••••••••••••••••••••.••.••

Getting Started ••
Start-Up System Commands ••••••••••••••••••••••••••••••••••••.••.•

File Management Commands •••••••••••••••••••••••••••••••••••••••
Additional Services ••

Special Use Restrictions ••••••••••••••••••••••••••••••.••••••••••

viii

PAGE

4-10
4-11
4-11
4-11
4-11
4-11
4-11
4-12
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-16
4-16
4-17
4-17
4-17
4-18
4-19
4-19
4-20
4-21
4-21
4-22
4-22
4-23

5-1
5-2
5-2
5-2
5-3
5-3
5-4
5-5

CHAPTER 6
PATCHING UTILITY

CONTENTS (continued)

PAGE

Invoking the Patching Utility..................... •... 6-2
Patching Procedures.. 6-2

Jump Instruction Patch... 6-3
In-Place Patch... 6-4
Pa tch ing Library Modu les • . . • • • • • . • • . . • • • . . 6-4
Listing Module Header Records.................................... 6-5

Error Messages... 6-5

CHAPTER 7
i RMX 86 DEVELOPMENT PROCEDURE S. . • • . • • • • . • • . • . 7-1

CHAPTER 8
FILES UTILITY SYSTEM
Func t ions Provided... 8-1
Ha r d wa r e Re qui red • • • • . • . • . • . • • • • • • . • • • • • . . • . • • • . • . . • • • • • • 8 - 1
Starting the Files Utility.......................... 8-2
Using the Files Utility.. 8-3

Changing Diskettes................................ 8-3
Commands. 8-3

ATTACHDEV. 8-3
BREAK.. • • • •.• 8-4
CREATEDIR. 8-4
DELETE. • . . . • . . • . . • . • • • • . • . • • • • . • . • . . . • . • . . • • • 8-4
DETACH. 8-5
DIR. 8-5
DOWN COPY. . • • • . • . • . 8-5
FORMAT. . . • . • . . . • • . • • • • . • • • • • • • • • • • • • . • • • • • • • • • • • • . . . 8-6
HELP. • • • . . • . 8-7
UPCOpy. • . • . • . • . • • . • • • • • • • • • . . • • .. • • • • • . . . • . . • • . • • • • • • . • . • • . 8-7

Error Messages... 8-8

APPENDIX A
ORIGINAL BOARD JUMPER CONNECTIONS............ A-I

APPENDIX B
iRMX 86 CONDITION CODES SUMMARy........................ B-1

APPENDIX C
HARDWARE REQUIREMENTS FOR CUSTOM CONFIGURATIONS....... C-l

APPENDIX D
iRMX 86 SOFTWARE VERSION NUMBERS. D-l

ix

2-1.

2-1.
3-1.
4-1.
A-I.
A-2.
A-3.
A-4.
A-5.
A-6.
A-7.
B-1.
D-l.

FIGURES

iRMX 86 m Development Environment Example ••••••••••••.••••••

TABLES

Memory Requirement s .••••••..••.••••••••••••••••••••.••••.•.
iRMX 86 Phys ical Device Names •.....•.......................
Statement and Function Dictionary •••••••••.••••••••••.•••••
Original iSBC 86/12A Jumpers •••............................
Original iSBC 204 Jumpers •••••••..••••••.•••••.••.•••.••...
Original iSBC 206 Pin Connections (Channel Board)
Or i gina 1 i S B C ,215 A Jump e r s . • • • • . • • • • • • • • • • . • • . . • • • . . • • . . . • .
Original iSBC 215B Jumpers ..•..............................
Original iSBC 218 Jumpers .••••••.••••..•••.•••••••••.•.••..
Original iSBC 254 Pin Connections•...............
iRMX 86 Condition Codes •••••••••••••••••••••••••••••.•.•...
iRMX 86 Software Version Numbers •..........................

x

PAGE
2-1

2-4
3-7
4-6
A-I
A-2
A-2
A-2
A-2
A-3
A-3
B-1
D-l

CHAPTER 1. INTRODUCTION TO THE iRMX 86~ PACKAGE

The iRMX 86 Operating System is a real-time, multitasking operating
system for iAPX 86-based microcomputers. The system consists of a
Nucleus and various optional subsystems, as follows:

• Nucleus -- the central control element of the Operating System.
It coordinates system activities.

• Terminal Handler -- provides the interface between an executing
application program and the terminal.

• Basic I/O System -- provides generalized but powerful file and
device access capabilities, while making few or no assumptions
about an application's specific requirements.

• Extended I/O System -- features ease-of-use, buffering,
synchronization, and shorter parameter lists for system calls.

• Human Interface -- provides an interactive command set for
performing file management and various utility functions. Also
provides a set of system calls that expedite creation of new
non-resident application programs that can be loaded and executed
by keyboard commands.

• Application Loader -- loads absolute files, load-time locatable
files, and position-independent code files into memory from
secondary storage.

• Bootstrap Loader
system startup.

loads executable modules into memory at

• Debugger -- provides monitoring and debugging capabilities
during program development.

• Other available software includes the Start-Up System, a Files
Utility system, and a Patching Utility.

The software that you write runs under the supervision of the Nucleus and
in conjunction with any desired optional subsystems.

When you receive them from Intel, the iRMX 86 Nucleus and other Operating
System software modules reside on diskettes as relocatable libraries.
You use an INTELLEC Development System to combine this iRMX 86 code with
your application code to produce object code that executes on an iAPX
86-based microcomputer. The end result is an iRMX 86 application system
that is configured to your specific requirements.

1-1

I

I

I

INTRODUCTION TO THE iRMX 86~ PACKAGE

INVENTORY

Your shipment of iRMX 86 materials includes thirteen manuals (including
this one) and nine diskettes. The manuals are:

• iRMX 86 INSTALLATION GUIDE -- This manual which you are now
reading helps you to make specific iRMX 86-required hardware
modifications, install and run the demonstration system, and use
the iRMX 86 Start-Up System, Files Utility, and Patching Utility.

• INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM This manual
introduces you to the iRMX 86 product. Read this manual before
any other in the supplied set.

• iRMX 86 NUCLEUS REFERENCE MANUAL -- This manual is the primary
reference source for the Nucleus. Knowledge of the Nucleus
architecture and its interaction with other system modules is
essential.

• iRMX 86 TERMINAL HANDLER REFERENCE MANUAL -- This manual contains
both operator instructions and programming information for iRMX
86 systems that use a terminal.

• iRMX 86 DEBUGGER REFERENCE MANUAL -- This manual describes the
use and capabilities of the iRMX 86 Debugger.

• iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL -- This manual is the
primary reference source for the Basic I/O System. Both this
manual and the iRMX EXTENDED I/O SYSTEM REFERENCE MANUAL should
be studied before you come to a decision as to which I/O system
best meets your application requirements.

• iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL -- This manual is
the primary reference source for the Extended I/O System. Since
the Extended I/O System is a superset of the Basic I/O System,
you should also read the the BASIC I/O SYSTEM REFERENCE MANUAL
(the Basic I/O System calls may be ignored) before installing the
Extended I/O System on your configuration.

• iRMX 86 LOADER REFERENCE MANUAL -- This manual describes the
Bootstrap Loader, which can load and start iRMX 86 application
systems, and the Application Loader, which enables application
systems to perform loading under iRMX 86 control.

• iRMX 86 HUMAN INTERFACE REFERENCE MANUAL -- This manual is the
primary reference source both for using the Human Interface
commands to perform file management and utility functions, and
for using the Human Interface system calls to write new
applications that can be invoked by interactive keyboard commands.

• iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL - This manual
describes selected features of the Operating System, not covered
in the other manuals, which are for use by system programmers
only.

1-2

INTRODUCTION TO THE iRMX 86~ PACKAGE

• iRMX 86 PROGRAMMING TECHNIQUES - This manual provides system and
application programmers with techniques that reduce development
time.

• GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEM - This
manual describes how to write device drivers that interface with
the iRMX 86 I/O System.

• iRMX 86 CONFIGURATION GUIDE - This manual describes how to build
a software application system by combining the Operating System
and application software.

Eight of the nine diskettes in your iRMX 86 package will be in either •
double-density or single-density ISIS-II format, depending on which
version you specified when you ordered your system (each version has its
own Product Order Number). Both sets have the same contents. The I
remaining diskette, that containing the Start-Up System, is
single-density, with iRMX 86 format.

The eight ISIS-II diskettes included in either set are as follows:

• Nucleus diskette

• Terminal Handler, Debugger diskette

• Basic I/O System diskette

• Extended I/O System diskette

• Loader diskette (Application and Bootstrap Loaders)

• Human Interface diskette

• Nucleus Demonstration diskette

• Utilities diskette

RECOMMENDATIONS

To prevent the possibility of accidentally destroying system software,
you should make at least one backup copy of each ISIS-II diskette that
you are planning to use. Keep the Intel-supplied diskettes as masters.
Use the copies for system development.

1-3

I

I
I

CHAPTER 2. iRMX 86~ DEVELOPMENT ENVIRONMENT

The development of an iRMX 86-basedapplication system requires several
hardware and software components. Some of these components are always
required and others are a function of the particular application system.
Figure 2-1 shows a typical development hardware environment.

DISKETTE DRIVES

KEYBOARD

INTELLEC DEVELOPMENT
SYSTEM

iRMX 86
RELEASE

DISKETTES

OR

~

ICE-86

iSBC 957A

SECONDARY STORAGE
CONTROLLER

iSBC 204, 206, 215, 218
OR 254

f\---7-~:-
I \\ SLOT

I \
I \ ,
\b-r"TT7~M.

\ I
\

~--
TARGET
SYSTEM
CHASSIS

SECONDARY
STORAGE

DEVICE

PROCESSOR BOARD
(iSBC 86/12A)

MEMORY BOARD(S)
(iSBC 032/048/064) '\/

\

-1
I
I
I
I ____ J

TTY OR
CRT

Figure 2-1. iRMX 86~ Development Environment Example

2-1

I

I

I

iRMX 86m DEVELOPMENT ENVIRONMENT

Figure 2-1 illustrates the interface between the INTELLEC Development
System, where the software is developed, and the target system where the
application system actually runs. The figure shows devices that are
commonly attached to the target system. However, you can also attach
other available devices.

GENERAL REQUIREMENTS

The following items are required in the development of any iRMX 86-based
application system.

DEVELOPMENT SYSTEM

• An INTELLEC Development System with CRT, keyboard, at least four
disk drives, and 64K bytes of RAM.

• A diskette containing the ISIS-II Operating System.

• An MCS-86 Macro Assembler and/or PL/M-86 compiler, as well as the
MCS-86 Software Development Utilities, on diskette.

• Diskettes containing the Intel-supplied iRMX 86 software.

TARGET SYSTEM

• An iAPX 86-based microprocessor, which is the basic element of
the application system. You can use 8086, 8284A, 8259A, 8253,
and 8251A components for your target system. However, the
iSBC 86/12A board is suggested for prototyping and debugging.

• A chassis to supply power to the processor board and any other
system boards.

• Enough memory to contain the Nucleus, selected subsystems, and
your application jobs.

• If your application uses the Application Loader, the Human
Interface, or the Bootstrap Loader, you must have secondary
storage device(s) and appropriate controllers.

You configure all of your software with the Development System and then
transfer it to the target system for execution. You can use any of the
following products to transfer code to the target system RAM:

• The ICE-86 In-Circuit Emulator

• The iSBC 957A Interface and Execution Package

• The Bootstrap Loader

2-2

iRMX 86~ DEVELOPMENT ENVIRONMENT

The first two of these products transfer code from an ISIS-II diskette on
the INTELLEC Development System, while the Bootstrap loader transfers
code from an iRMX 86 diskette in a target system drive.

After you have tested the code, you can burn it into PROM and place the
PROM on the target system to eliminate using the ICE-86 emulator or the
iSBC 957A package to load the code.

If you do not wish to burn the code into PROM or ROM, use either the
Start-Up System or the Files Utility with the iSBC 9S7A package to place

I

your tested code on an iRMX 86 formatted diskette or in bubble memory, •
and then use the Bootstrap Loader to load the code directly into memory.

APPLICATION-DEPENDENT REQUIREMENTS

You may need additional hardware for your target system, depending on
your application requirements:

• If your application includes the Terminal Handler or the
Debugger, connect an RS232 interface terminal to the serial I/O
port of the iSBC 86/I2A board.

• If your application includes the I/O System and you intend to use
named or physical files, place at least one controller board in
the chassis with the iSBC 86/I2A board. You can use any of the
following controller boards:

iSBC 204
iSBC 206
iSBC 2ISA or iSBC 2I5B
iSBC 254

Connect the controllers to their associated secondary storage devices.
If only stream files are used, the I/O System can be used without a
controller board.

If your application system includes the I/O System and you are using
disks, you must also use the Start-Up System, the Files Utility, or the
Human Interface subsystem to format disks for use in your target system
disk drives. These systems are described later in this manual.

Target system memory requirements vary, depending on the type of software
included. Table 2-1 lists the maximum memory requirements for
Intel-supplied products. These requirements are divided into ROM and RAM
requirements; however, if you first test your system in RAM, RAM must be
large enough to satisfy all memory requirements.

2-3

iRMX 86m DEVELOPMENT ENVIRONMENT

Table 2-1. Memory Requirements

Code and Constants Static- Dynamic-
Minimum Maximum Data Data

Size Support Size I Support Memory Memory

Nucleus 12.3K N/A 23.9K N/A 1.5K N/A

Terminal Handler 2.7K 14.2K 2.7K 14.2K .2K 1.4K
I
I

Debugger 28.3K I 15.5K 28.3K 15.5K 1.2K 6.0K

Basic I/O System 24.5K 14.3K 49.0K 19.0K .1K 2.8K

Extended I/O System 7.3K 63.7K 11.6K 69.1K .1K 1.5K

Application Loader 3.9K 63.7K 9.0K 78.8K .1K .5K

Bootstrap Loader .4K N/A 1.9K N/A 6.4K** N/A

Human Interface 15.8K* 90.5K 16.5K* 90.5K .1K 8.0K

Explanation of Headings and Symbols:

Code and Constants:

Static-Data Memory:

Memory required to hold code and the constants
associated with code. This memory may be in
ROM, PROM, or RAM

Memory required to hold variables associated
with code. This memory is not dynamically
allocated by the operating system and must be
in RAM.

Dynamic-Data Memory: Memory required to execute the code. This
memory is dynamically allocated during
operating system initialization and must be in
RAM.

Support: The minimum number of bytes of other iRMX 86
components required to support the indicated
iRMX 86 component.

K: 1024 bytes.

* Does not include non-resident commands which range in size from 3K to
12K.

** Available to Nucleus for allocation as Dynamic-Data Memory.

2-4

iRMX 86~ DEVELOPMENT ENVIRONMENT

There will also be application-related memory in your system. This
memory is required for application code, constants, variables, and
dynamically allocated structures. The latter includes both memory
explicitly allocated by the application and memory implicitly allocated
as the result of calls to iRMX 86 functions. This memory is divided
between RAM and ROM.

2-5

CHAPTER 3. HARDWARE CONSIDERATIONS

This chapter describes the hardware modifications and installation
procedures that apply specifically to iRMX 86 systems that are to run on
iSBC 86/12A boards. Topics covered include the following processes:

• Modifying the iSBC 86/12A board and other associated boards by
connecting jumper posts and setting switches.

• Arranging the boards in the chassis.

• Installing the cables.

Although this chapter contains instructions on how to modify hardware
components, it is specific only in regard to the modifications needed to
enable the Start-Up System or the Files Utility to run. Furthermore, it
is assumed that the boards have not previously been modified; that is,
that the factory jumpers, and only the factory jumpers, are in place.
Appendix A contains a list of factory-installed jumpers for each of the
iSBC 86/12A, 204, 206, 215A, 215B, 218, and 254 boards.

You might have to make additional changes to support specific hardware,
such as a particular brand of disk drive. Information of this type is
not included here but can be found in the appropriate hardware reference
manuals.

When you begin development, your jumpering requirements will depend upon
your application. At that time, you will find it necessary to turn to
the hardware reference manuals for guidance.

BOARD MODIFICATIONS

Before you insert your iSBC 86/12A board, controller boards, and memory
boards into the chassis, you must modify certain jumper connections and
switch settings on these boards. The following sections describe the
modification process. Each section on a controller board assumes that I
you are using only that type of controller with the iSBC 86/12A board.

iSBC 86/12A BOARD MODIFICATIONS

Jumpering is the means whereby interrupt levels are assigned to their
various purposes. The Start-Up System's Terminal Handler uses master
level 6 for reading and master level 7 for writing; controllers use
master levels 3, 4, and 5; and the system clock uses level 2. To support
these interrupt assignments, make all of the following jumper connections:

3-1

HARDWARE CONSIDERATIONS

Level
2
3
4
5
6
7

Connection
79-83 (default)
70-78
69-77
68-76 (default)
75-82
74-90

Most of the jumpering necessary to support timing and the USART is done
at the factory. The only additional jumper that is needed is 51-52.

To place the dual port RAM in the correct 128K byte area of the
I-megabyte address space, remove jumper 125-126 and install jumper
127-128.

The switch settings on switch SI must be set as follows:

Switch
1
2
3
4
5
6
7
8

Setting
ON

OFF with iSBX 300 multimodule; otherwise, ON.
OFF
OFF
OFF
OFF
ON
OFF

In addition, the iSBC 957A package requires that the factory-installed
jumpers 94-96 and 97-98 be in place. If sockets A28, A29, A46, and A47
of your iSBC 86/12A board contain memory other than the iSBC 957A PROMs,
consult the iSBC 86/12A SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL
for information regarding the setting of switches 7 and 8 and the
jumpering of posts 94 through 99.

Jumper posts 7 through 34 are related to parallel port I/O configuration
and, in general, can be connected as you wish. However, if you are using
the iSBC 957A package, you must use it with the parallel port and make
the jumpering connections as described in the iSBC 957A INTELLEC -- iSBC
86/l2A INTERFACE AND EXECUTION PACKAGE USER'S GUIDE.

Jumper 12-21 must be installed if there is no iSBX 337 multimodule on the
iSBC 86/12A board. Otherwise, that jumper must not be in place.

All of the remaining factory-installed jumpers are appropriate for use
with the Start-Up System and the Files Utility. You may change these
jumpers to meet special conditions, such as an unusual bus priority
resolution scheme.

iSBC 204 BOARD MODIFICATIONS

The software expects interrupts from the iSBC 204 board to come in at
level 5. To prepare for this, remove jumper 63-67 (for level 2) and
install jumper 67-71.

3-2

HARDWARE CONSIDERATIONS

Select an iSBC 204 base address of OAOH by setting the S2 switches as
follows:

Switch
4
5
6
7

Setting
OFF
ON
OFF
ON

Because the Start-Up System and Files Utility support only 8-inch
diskette devices, you must leave jumpers 23-24 and 37-38 in place.

No other jumpering is required, but you might want to expand the port
address availability of the iSBC 204 board on the MULTIBUS interface by
setting it for 12-bit addressing. This is done by removing jumper B-C
from pad WI and replacing it with jumper A-B.

If your iSBC 204 board has two 8271 Floppy Disk Controller chips, remove
jumpers 75-76 and 77-78.

iSBC 206 BOARD MODIFICATIONS

Set the iSBC 206 channel board to interrupt the iSBC 86/12A board at
level 4. This is done by setting rotary switch S2 to position 4.

The required base address of 68H is set by making the following SI switch
settings on the channel board:

Switch Setting
1 OFF
2 OFF
3 ON
4 OFF
5 OFF
6 ON
7 ON
8 OFF

The settings of switches SWI and SW2 on the interface board are
device-dependent. The physical names of your devices depend upon the
size of the sectors on the devices. If you use 512-byte sectors, the
physical name of the device is DO, whereas if you use 128-byte sectors,
the physical name of the device is DSO. (Table 3-1 contains complete
information concerning physical device names.) The SW2 switch settings
are as follows:

Switch
1 to 4
5 to 8
5 to 8

Sector Size
128 or 512

512
128

3-3

Setting
OFF
ON
OFF

HARDWARE CONSIDERATIONS

iSBC 215 AND 218 BOARD MODIFICATIONS

Your iSBC 215 board should be set for level 4 interrupts. This is done
by removing jumper C-5 (for level 5) on pad W19 and installing jumper C-4.

The wake-up address of 0070H is set at switches SI and S2. The SI
switches 1 through 8 should be OFF, as should the S2 switches 3 and 7
through 10. S2 switches 4 through 6 should be ON.

To provide 16-bit bus compatibility, S2 switches I and 2 should be ON and
the following jumper connections should be made:

Pad Connection
W18 1-2
W20 1-3
W2I 1-3

The iSBX 218 multimodule must be plugged into socket J4 of the iSBC 215
board. Related to this, the default jumpering on pads W3, W4, Wl1, and
W12 is appropriate for the iRMX 86 environment, except that you must
install jumper 1-3 on pad Wll.

On the iSBX 218 board, you must install jumper A-C on pad WI to support
direct memory access. In addition, install jumper A-C on each of the
pads W3 through W7 to support 8-inch drives.

The jumpering of pads WI, W2, W5 through WIO, Wl3 through W17, and W22
depends upon the type of Winchester disk device being used with the
iSBC 215 board. Refer to the iSBC 215 WINCHESTER DISK CONTROLLER
HARDWARE REFERENCE MANUAL for instructions as to these jumpers.

iSBC 254 BOARD MODIFICATIONS

Set your iSBC 254 board for level 3 interrupts. Do this by removing
jumpers 67-68 and 75-76, and installing jumper 73-74. Later, when you
prepare your hardware for purposes other than running the Start-Up System
or Files Utility, use interrupt level 0, 1, 2, or 3 with this board.

The board must be set up for a base address of 800H, with I2-bit
addressing. To arrange this, remove jumper 45-46, install jumper 47-48,
and leave jumper 29-30 installed.

MEMORY BOARD JUMPER CONNECTIONS

Connect the jumpers on your iSBC 032/048/064 RAM boards to assign memory
to the correct memory locations. Refer to the iSBC 032/048/064 RANDOM
ACCESS MEMORY BOARDS HARDWARE REFERENCE MANUAL for the procedure.

3-4

HARDWARE CONSIDERATIONS

CHASSIS BOARD ARRANGEMENT

A typical hardware environment for iRMX 86 applications includes several
master boards, which contend for control of the MULTIBUS interface. In
order to prevent conflict, it is necessary (even if you have only one
master board) to assign a bus contention priority to each master board in
your system. The possible master boards in an iRMX 86 environment are
the iSBC 86/12A, 204, 206 channel, 215A, 215B, and 254 boards. Two
priority schemes are available: serial, which supports up to three bus
masters; and parallel, which supports an unlimited number of bus masters
but is more difficult to implement.

The following paragraphs assume the use of an iSBC 604
Cardcage/Backplane, optionally with an iSBC 614 Expansion
Cardcage/Backplane.

In the serial priority scheme, the top slot (J2) of the cardcage has the
highest priority, and the rest of the slots have progressively lower
priorities, with slot J5's priority being the lowest. To implement the
serial priority scheme, ground the BPRN/ signal of the highest priority
bus master by jumpering between posts Band N on an iSBC 604
Cardcage/Backplane or between posts Band L on an iSBC 614 Expansion
Cardcage/Backplane. If you need to leave a slot empty, jumper the
priority signal around the slot, as described in the iSBC 86/12A Single
Board Computer Hardware Reference Manual.

If you find it necessary to use the parallel priority scheme, the
procedure for implementing it can be found in the iSBC 86/12A SINGLE
BOARD COMPUTER HARDWARE REFERENCE MANUAL, and also in the reference
manuals for the iSBC 660 and iCS 80 chassis.

The order in which you arrange the boards in the cardcage depends upon
the type and number of bus masters in your system and upon their physical
placement requirements. Physical requirements include placing the
iSBC 206 channel and interface boards in adjacent slots and, if you are
using the ICE-86 In-Circuit Emulator, placing the iSBC 86/12A board in
the top slot. Moreover, if you are using an ICE-86 emulator with an
iCS 80 chassis, you will need an extender card in the top slot.

In general, the following guidelines can help you assign priorities to
bus masters:

• The iSBC 204 board lacks the ability to wait for access to the
MULTIBUS interface, so it should be highest in priority.

• The iSBC 254 board has only limited ability to wait for access,
so it should be high in priority.

• The iSBC 206 and 215 (including the 218) boards can wait for
access, so they need not be high in priority.

• The iSBC 86/12A board should be lowest in priority.

You should be prepared to experiment with various board arrangements in
the chassis, perhaps even to violate these guidelines.

3-5

I

I

HARDWARE CONSIDERATIONS

CABLE CONNECTIONS

After you have placed the boards in the chassis, install the cables that
join the boards to various parts of the system. If you are using the
Terminal Handler, Debugger, or Start-Up System, connect the terminal of
your iRMX 86 system to the serial I/O port of the iSBC 86/12A board. The
iSBC 86/12A SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL describes the
procedure.

If you are using the I/O System with secondary storage devices, connect
the drives to their associated I/O connectors on the controllers boards.

Connect the cables for the ICE-86 In-Circuit Emulator or the iSBC 957A
package, depending on which package you use to load your software. If
you use the ICE-86 Emulator to load your software, install the ICE-86
'boards in the Development System chassis and connect the ICE-86 cable to
the 8086 socket on the i,SBC 86/12A board. Refer to the ICE-86 IN-CIRCUIT
EMULATOR OPERATING INSTRUCTIONS FOR ISIS-II USERS for a description of
this process.

If you use the iSBC 957A package to load your software, install the PROM
set on the iSBC 86/12A board and use the cable to connect the UPP output
on the Development System to the parallel I/O port on the iSBC 86/12A
board. If you are not using the target system terminal, you can connect
to either the serial or the parallel I/O port on the iSBC 86/12A board.
Refer to the iSBC 957A INTELLEC -- iSBC 86/12A INTERFACE AND EXECUTION
PACKAGE USER'S GUIDE for a description of this process.

LOGICAL AND PHYSICAL DEVICE NAMES

When using the Start-Up System or the Files Utility, you reference files
by means of a device name/file name (or path name) combination. The
device name is a "logical" name of your choice that is assigned when the
device is being attached (ATTACHDEV in the Files Utility and ATTACHDEVICE
in the Start-Up System). Before these assignments are made, the iRMX 86
Operating System knows devices by their "physical" names, which are given
in Table 3-1 for each applicable device. These physical names are
associated with logical names by means of an attach device command.

Suppose, for example, that you want to copy the file JOBA from an ISIS-II
diskette on unit 1 of an INTELLEC Development System to a file of the
same name on an iRMX 86 diskette on unit 0 of a Shugart SA800 drive
interfaced with an iSBC 204 controller that is jumpered for 128-byte
sectors. Suppose further that the Shugart device (whose physical name is
FO) has been given the logical name :DRIVE3:. To initiate the copy
operation with the Files Utility, enter the following:

UPCOPY :F1:JOBA TO :DRIVE3:JOBA

3-6

HARDWARE CONSIDERATIONS

Table 3-1. iRMX 86 m Physical Device Names

Device Device Unit Bytes per
Names Type Number Density Sector

Flexible Disk Drives

FO 204 Shugart SA800 0 Single 128
FI 204 Shugart SA800 1 Single 128
FXO 204 Shugart SA800 0 Single 512
FXl 204 Shugart SA800 1 Single 512
WFO 218 Shugart SA800 0 Single 128
WFI 218 Shugart SA800 1 Single 128
WFDO 218 Shugart SA800 0 Double 256
WFDI 218 Shugart SA800 1 Double 256
WFXO 218 Shugart SA850 0 Single 512
WFXl 218 Shugart SA850 1 Single 512
WFDXO 218 Shugart SA850 0 Double 1024
WFDXl 218 Shugart SA850 1 Double 1024

Hard Disk Drives

DO 206 0 512
Dl 206 1 512
DSO 206 0 128
DSI 206 1 128

Winchester Disk Drives

IWO 215 Priam 3450 0 1024
MWO 215 Memorex 101 0 1024
PWO 215 Pertec D8000 0 1024
SWO 215 Shugart SAI002 0 1024

Bubble Memory Drive

BO 254, 4 bubbles 0 256

In addition, the byte bucket has the physical device name BB, and the
terminal has the name TO.

3-7

CHAPTER 4. NUCLEUS DEMONSTRATION SYSTEM

The Nucleus demonstration system is contained on one of the diskettes
shipped with the iRMX 86 package. It can be used to familiarize yourself
with system operation and to test system performance.

The Nucleus demonstration diskette contains a complete configuration
module for an application system. This application system consists of
the Nucleus, the Debugger, the root job, and an application job called
TBASIC, a BASIC interpreter which allows you to write programs that
manipulate iRMX 86 objects. This chapter describes what hardware and
software you need to run the Nucleus demonstration system, how to load
the system, and how to use it.

HARDWARE REQUIREMENTS

You need the following equipment to run the Nucleus demonstration system:

• An INTELLEC Microcomputer Development System with CRT, keyboard,
and at least two disk drives

• An iSBC 86/12A board and chassis

• 128K of contiguous RAM, starting at address 0, for use in the
target system

• A RS232 protocol terminal

• Either the ICE-86 In-Circuit Emulator or the iSBC 957A package

You need the terminal in order to communicate with the application
system, and either the ICE-86 emulator or the iSBC 957A package to load
the system from diskette to memory.

Since you are using the Debugger in this system, make sure that the
iSBC 86/12A board is jumpered to support the interrupt levels that the
terminal uses.

The Nucleus demonstration system assumes that your terminal operates at
9600 baud. If it operates at a different baud rate, you must reconfigure
the Debugger and specify the correct rate. Refer to the iRMX 86
CONFIGURATION GUIDE for the procedures.

4-1

NUCLEUS DEMONSTRATION SYSTEM

LOADING THE NUCLEUS DEMONSTRATION SYSTEM

You can use either the ICE-86 In-Circuit Emulator or the iSBC 957A
package to load the Nucleus demonstration system from diskette to
memory. Using either product, load the following files from diskette to
memory:

NUCLUS.DMO
DEBUGR.DMO
TBASIC.DMO
ROOTJB.DMO

Load file ROOTJB.DMO last because it contains instructions that
initialize iAPX 86 registers to their proper values.

To load and start the Nucleus demonstration system with the ICE-86
Emulator, place a system diskette containing ICE-86 software in drive FO
of the Development System and the Nucleus demonstration diskette in drive
Fl. Enter the following commands at the keyboard of the Development
System (the files are already located):

ICE86
LOAD :FI:NUCLUS.DMO
LOAD :FI:DEBUGR.DMO
LOAD :Fl:TBASIC.DMO
LOAD :FI:ROOTJB.DMO
GO

Refer to the ICE-86 IN-CIRCUIT EMULATOR OPERATION INSTRUCTIONS FOR
ISIS-II USERS for complete instructions on the use of the ICE-86 Emulator.

To load and start the Nucleus demonstration system with the iSBC 957A
package, place a system diskette containing the iSBC 957A software in
drive FO of the Development System and the Nucleus demonstration diskette
in drive Fl. Enter the following commands at the keyboard of the
Development System:

SBC861
L :FI:NUCLUS.DMO
L :Fl:DEBUGR.DMO
L :FI:TBASIC.DMO
L :Fl:ROOTJB.DMO
G

Refer to the iSBC 957A INTELLEC -- iSBC 86/12A INTERFACE AND EXECUTION
PACKAGE USER'S GUIDE for complete instructions on the use of the iSBC
957A package.

4-2

NUCLEUS DEMONSTRATION SYSTEM

A few seconds after you have entered the GO (or G) command at the
Development System keyboard to start execution of the system, the
following message appears on the terminal connected to the iSBC 86/12A
computer, indicating that the TBASIC interpreter is ready for use:

iRMX 86 TINY BASIC DEMO. V2.0
READY

USING THE NUCLEUS DEMONSTRATION SYSTEM

After you have initiated execution of the Nucleus demonstration system,
the TBASIC interpreter displays a "greater than" (» prompt at the
terminal to indicate that it is ready for use. The characteristics of
the TBASIC interpreter are similar to those of most BASIC interpreters.
It allows you to enter and run a subset of BASIC language statements. It
either interprets the statements as they are entered, or it stores the
statements in memory and processes them as a complete program. The
TBASIC interpreter also contains commands and functions that perform such
iRMX 86 functions as creating tasks and sending messages. The following
sections describe the operations of the TBASIC interpreter.

OPERATING MODES

The interpreter has two operating modes: interactive and deferred. In
interactive mode you enter an individual statement followed by a carriage
return. The interpreter processes the statement and then prompts you for
a new statement line. In deferred mode, you create entire programs by
entering a series of statements that are stored by the interpreter.
Interpretation and execution of the stored statements is deferred until
you enter a RUN statement.

You specify either the interactive or deferred mode by the absence or
presence of a preceding line number for each statement line you enter.

For the interactive mode, enter a statement line without a preceding line
number. (Some statements, such as RUN, LIST and NEW can only be entered
in interactive mode.) For example, the statements:

RUN carriage return
or

NEW carriage return

would be interpreted in interactive mode. As soon as the interpreter
executes either statement, it will prompt you for a new statement.

For deferred mode, enter a series of statement lines, each with a
preceding line number, space once, and enter a statement line. Line
numbers are normally entered in sequential increments of 10. For
example, the numbered statement lines:

4-3

NEW
10 REM

NUCLEUS DEMONSTRATION SYSTEM

THIS IS A DEFERRED MODE EXAMPLE
20 LET T = CRTSEGM (128,.S)

70 GOTO 40

RUN

would be stored as part of a program, and the interpretation and execution
of all numbered statement lines would be deferred until the RUN statement
was encountered. When you enter the RUN statement, the program statements
are interpreted in sequential order (which is not necessarily the order in
which you entered the statements).

CHANGING STATEMENT LINES

You can change a line of a program by entering a new line with the same
line number. The interpreter disregards all but the last occurrence of a
line with a given line number. You can delete a line by entering the line
number alone, followed by a carriage return. The interpreter treats a line
containing only a line number as a null operation.

VARIABLES

TBASIC supports two kinds of variables. A variable can be either a single
alphabetic character (A-Z) or an array element. The intepreter does not
distinguish between uppercase and lowercase characters. You can use one
array only: the special character "@" followed by an index. The
interpreter dynamically allocates space for this array. You can determine
the amount of space available in the array by calling the SIZE function
described later in this chapter.

Examples:

The following are acceptable variable names:

A
F
@(3)
@(expression) where expression is a BASIC expression as described

later in this chapter

4-4

NUCLEUS DEMONSTRATION SYSTEM

The following are not acceptable as variable names:

5
AB
2C
INTEG
F(2)

CONSTANTS

The interpreter supports integer constants in the range -32768 through
+32767. It always interprets constants as decimal numbers.

EXPRESSIONS

Valid expressions can be built from the following:

• Integers (from -32768 to +32767)

• Variables (A-Z)

• Array elements (@(expression))

• Arithmetic operators (+, - /, *)

• Relational operators (), (,)=, (=, # (not equal to))

STATEMENTS AND FUNCTIONS

The TBASIC interpreter contains a number of statements and functions. Some
of these are normally associated with any BASIC interpreter and others
perform iRMX 86 Nucleus operations. The following sections describe these
statements and functions. Table 4-1 provides a convenient dictionary that
lists all of the TBASIC statements and functions in alphabetical order.

The following conventions are used in the descriptions of all statements
and functions in this chapter.

[parameter]

I parameters I

The brackets are used to delimit optional parameters.

The vertical lines delimit a number of parameters
separated with commas. You have the choice of entering
anyone, but only one, of the delimited parameters.

NOTE
When entering TBASIC and iRMX 86
functions, do not put any spaces
between the delimiting parentheses.

4-5

I

Language
Element

ABS

CATALOG

CRTMBOX

CRTSEGM

CRTSEMA

CRTTASK

DELMBOX

DELSEGM

DELSEMA

DELTASK

NUCLEUS DEMONSTRATION SYSTEM

Table 4-1. Statement And Function Dictionary

Definition

Returns an absolute value.

Catalogs an object.

Creates a mailbox.

Creates a segment.

Creates a semaphore.

Creates a task.

Deletes a mailbox.

Deletes a segment.

Deletes a semaphore.

Deletes a task.

FOR Starts a loop.

GETTKNS Gets a token for an object.

GOSUB Transfers control to a subroutine.

GOTO Transfers control to a line.

IF Processes a statement conditionally.

INPUT Allows variable assignment from the console.

LET Assigns a value to a variable.

LIST Lists the current program.

LOOKUPO Looks up a name in an object directory.

NEW Clears memory of all source statements.

NEXT Provides looping control.

PRINT Prints a line at the console.

RCVUNIT Receives units from a semaphore.

RECVMSG Receives an object from a mailbox.

4-6

Page

4-11

4-13

4-13

4-14

4-14

4-15

4-16

4-16

4-17

4-17

4-7

4-17

4-8

4-8

4-8

4-9

4-9

4-10

4-18

4-10

4-7

4-10

4-19

4-19

NUCLEUS DEMONSTRATION SYSTEM

Table 4-1. Statement And Function Dictionary (continued)

Language
Element Definition

REM Indicates a comment line.

RESTASK Resumes a task.

RETURN Returns control from a subroutine.

RND Generates a random number.

RUN Runs the stored program.

SENDMSG Sends an object to a mailbox.

SIZE Returns the size of the available array storage space.

SLEEP Places the interpreter in the asleep state.

SNDUNIT Sends units to a semaphore.

STOP Stops program execution.

SUSTASK Suspends a task.

UNCATLG Deletes a name from an object directory.

BASIC STATEMENTS

This section describes the statements available with the TBASIC
interpreter that are normally a part of any BASIC interpreter.

I FOR NEXT J

Page

4-11

4-20

4-11

4-12

4-11

4-21

4-12

4-21

4-22

4-11

4-22

4-23

These statements provide looping control. The formats are as follows:

FOR var-name = start-val TO end-val [STEP inc-val]

NEXT var-name

where:

var-name Variable used as a loop counter.

4-7

start-val

end-val

incr-val

NUCLEUS DEMONSTRATION SYSTEM

Starting value of the loop counter.

Ending value of the loop counter.

Amount that the loop counter increments each time a
loop begins. If STEP inc-val is not specified, the
default value is 1.

The interpreter performs all statements delimited by the FOR and NEXT
statements until the value of var-name is greater than end-val. You can
use nested loops.

I GOSUB I
This statement transfers control to a subroutine. The format is as
follows:

GOSUB line-number

where:

line-number Line number containing the first statement of the
subroutine.

Subroutines may be recursive.

This statement transfers control to another statement. The format is as
follows:

GOTO line-number

where:

line-number Line number of the statement to which GOTO transfers
control.

This statement provides for conditional execution of a statement. The
format is as follows:

IF condition statement

4-8

where:

condition

statement

INPUT

NUCLEUS DEMONSTRATION SYSTEM

Expression containing a relational operator. If
condition is true, statement is executed; otherwise,
control passes to the next line.

A TBASIC statement that is executed only if condition
is true.

This statement halts a running program until you enter a numerical value
through the keyboard. The value you enter is assigned to the variable in
the statement, and the program resumes execution. The format is as
follows:

INPUT var-name

where:

var-name Variable name which is assigned a value from the
console.

When execution is halted, the interpreter displays the following prompt:

var-name :

and then waits for your input which it assigns to var-name.

This statement assigns a value to a variable. The format is as follows:

[LET] var-name = expression

where:

var-name Variable to which a value is assigned.

expression Expression whose value is assigned to var-name.

The word LET is optional.

4-9

NUCLEUS DEMONSTRATION SYSTEM

This statement lists part or all of the program currently in memory. You
can enter this statement in interactive mode only. The format is as
follows:

LIST [line-number]

where:

line-number Line number at which you want the listing to begin.
LIST lists the remainder of the program. If you omit
this parameter, the entire program is listed.

This statement clears memory of all stored statements. You can enter
this statement in interactive mode only. The format is as follows:

NEW

Failure to clear memory before entering a new program in deferred mode
causes unpredicable results when the new program is executed.

I PRINT I
This statement prints a line at the console. The format is as follows:

PRINT [field-width])expression , "quoted-string") [, •••]

where:

field-width Decimal value indicating the width of the field for
numeric output. Output is right-justified in this
field. If this value is not specified, a default
field width of 6 is assumed.

expression Any legitimate expression; the expression is evaluated
before printing.

"quoted-string" A string of characters enclosed in double quotes; the
string is printed exactly as entered.

Indicates that a number of expressions and quoted
strings, separated in the command by commas, can be
printed on the same line.

If you do not specify any parameters, the interpreter prints a blank line.

4-10

NUCLEUS DEMONSTRATION SYSTEM

This statement allows you to place non-executable remarks in your source
code. The format is as follows:

REM comment

where:

comment Any comment you wish to place in your program list.

I RETURN I
This statement returns control from a subroutine. The format is as
follows:

RETURN

This statement starts the execution of the program currently stored in
memory. You can enter this statement in interactive mode only. Its
format is as follows:

RUN

This statement stops the execution of the program. The format is as
follows:

STOP

BASIC FUNCTIONS

This section describes the functions available with the TBASIC
interpreter that are normally a part of any BASIC interpreter. The
functions can be used anywhere that TBASIC expressions can be used.

This function returns the absolute value of an expression. The format is
as follows:

ABS (expression)

4-11

where:

expression

NUCLEUS DEMONSTRATION SYSTEM

Any valid TBASIC expression for which the absolute
value is desired.

This function returns a random number between 1 and the value of an
expression. The format is as follows:

RND (expression)

where:

expression Any valid TBASIC expression. RND returns a random
number between 1 and expression.

This function returns the current size (in bytes) of the available array
storage space. This value is twice the number of elements available in
array @. Since the interpreter uses a fixed amount of memory to store
both programs and data, a large program is allowed fewer array elements
than a small program. The format is as follows:

SIZE

iRMX 86 STATEMENTS AND FUNCTIONS

This section describes the TBASIC stat-ements and functions that allow you
to make iRMX 86 system calls. The parameters for these statements and
functions are very similar to the parameters for the equivalent Nucleus
system calls. If you are unsure about the parameters for any of these
BASIC statements and functions, refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for complete descriptions.

Many of these statements and functions require you to supply a variable
in which the interpreter returns the status of the iRMX 86 system call.
Any variable you enter on the right-hand side of an equal sign (=) must
be preceded by a period (.) if TBASIC is to return a value. You need
not include the period when you later reference the variable.

The functions in this section are described as if they are part of
aSSignment statements •. However, they can be used anywhere that a TBASIC
expression can be used.

4-12

NUCLEUS DEMONSTRATION SYSTEM

I CATALOG I
This statement catalogs a named object in a given object directory. The
format is as follows:

CATALOG (job$token,object$token,"name",.stat$var)

where:

job$token

object$token

"name"

• stat$var

Example:

Token for the job in whose object directory the object
is to be cataloged. A zero value for this parameter
indicates that the calling task's object directory is
used.

Token for the object to be cataloged.

One- to twelve-ASCII-character name under which the
object is cataloged. This name must be enclosed in
double quotes •

Variable in which ·the interpreter returns the status
of the catalog operation.

The following statement catalogs an object as MYTASK in the object
directory of the calling task's job (the interpreter's job). Variable T
contains a token for the object to be cataloged. The status of the
catalog operation is returned in variable S:

CATALOG (0, T , "MY TASK " , • S)

I CRTMBOX I
This function creates a mailbox and returns a token for it. The format
is as follows:

mbox$token = CRTMBOX (mbox$flags,.stat$var)

where:

mbox$token

mbox$flags

Variable in which the interpreter returns a token for
the newly created mailbox.

Value indicating how tasks are to be queued at the new
mailbox. Possible values include:

o First-in, first-out

1 Priority

4-13

• stat$var

Example:

~CLEUS DEMONSTRATION SYSTEM

Variable in which the interpreter returns the status
of the create mailbox operation.

The following function creates a mailbox with priority-based queuing and
returns a token for it in variable M. It returns the status of the
create operation in variable S:

LET M = CRTMBOX (1,.S)

I CRTSEGM

This function creates a segment and returns a token for it. The format
is as follows.

seg$token = CRTSEGM (size,.stat$var)

where:

seg$token

size

• stat$var

Example:

Variable in which the interpreter returns a token for
the newly created segment.

Size in bytes of the segment. A zero indicates that a
64K-segment is requested •

Variable in which the interpreter returns the status
of the create segment operation.

The following function call creates a 128-byte segment and returns a
token for it in variable T. It returns the status of the create
operation in variable S:

LET T = CRTSEGM (128,.S)

I CRTSEMA

This function creates a semaphore. The format is as follows:

sema$token = CRTSEMA (init$value,max$value,sema$flags,.stat$var)

where:

sema$token

init$value

Variable in which the interpreter returns the token of
the newly-created semaphore.

Initial value of the semaphore.

4-14

max$value

sema$flags

.stat$var

Example:

NUCLEUS DEMONSTRATION SYSTEM

Maximum value of the semaphore.

Value indicating how tasks are to be queued at the new
semaphore. Possible values are:

° First-in, first-out

1 Priority

Variable in which the interpreter returns the status
of the create semaphore operation.

,The following function call creates a semaphore with priority-based
queuing, with initial and maximum values of 1, and r~turns a token for it
in variable T. It also returns the status of the create operation in
variable S:

LET T = CRTSEMA (1,1,1,.S)

I CRTTASK I
This function creates a task and returns a token for that task. The
format is as follows:

task$token = CRTTASK(pri,@start$addr,data$seg,@stack$ptr,
stack$size,O,.stat$var)

where:

task$token

pri

@start$addr

data$seg

@stack$ptr

stack$size

• stat$var

Variable in which the interpreter returns a token for
the created task.

Priority of the task.

Pointer indicating the task's starting address.

Base value of the task's data segment. A zero
indicates that the task dynamically initializes the
data segment register.

Pointer indicating the address of the stack segment.
A value of 0:0 indicates that the Nucleus assigns a
stack segment when the task is created.

Size of the stack, in bytes •

Variable in which the interpreter returns the status
of the create task operation.

4-15

NUCLEUS DEMONSTRATION SYSTEM

Example:

The following function call creates a task with a priority of 129, a
start address of 14AO:343 (obtained from the locate map for that task),
and a stack size of 600. The task creates the data segment and the stack
segment. The interpreter returns a token for the newly-created task in
variable T, and the status of the operation in variable S:

LET T = CRTTASK (129,@14AO:343,0,@0:0,600,0,.S)

I DELMBOX I
This statement deletes a mailbox. The format is as follows:

DELMBOX (mbox$token,.stat$var)

where:

mbox$token

• stat$var

Example:

Token of the mailbox to be deleted •

Variable in which the interpreter returns the status
of the delete mailbox operation.

The following statement deletes a mailbox and returns the status of the
delete operation in variable S. Variable T contains a token for the
mailbox:

DELMBOX (T,.S)

I DELSEGM

This statement deletes a segment. The format is as follows:

DELSEGM (seg$token,.stat$var)

where:

seg$token

• stat$var

Example:

Token for the segment being deleted •

Variable in which the interpreter returns the status
of the delete segment operation.

The following statement deletes a segment and returns the status in
variable S. Variable T contains a token for the segment:

DELSEGM (T,.S)

4-16

NUCLEUS DEMONSTRATION SYSTEM

I DELSEMA

This statement deletes a semaphore. The format is as follows:

DELSEMA (sema$tokent.stat$var) •
where:

sema$token

• stat$var

Example:

Token for the semaphore to be deleted •

Variable in which the interpreter returns the status
of the delete semaphore operation.

The following statement deletes a semaphore and returns the status in
variable S. Variable T contains a token for the semaphore:

DELSEMA (Tt.S)

I DELTASK

This statement deletes a task. The format is as follows:

DELTASK (task$tokent.stat$var)

where:

task$token

stat$var

Example:

Token of the task to be deleted.

Variable in which the interpreter returns the status
of the delete task operation.

The following statement deletes a task and returns the status of the
delete operation in variable S. Variable T contains a token for the task
to be deleted:

DELTASK (Tt.S)

I GETTKNS

This function returns a token for an object. The format is as follows:

obj$token = GETTKNS (select$valt.stat$var)

4-17

where:

obj$token

select$val
•

• stat$var

Example:

NUCLEUS DEMONSTRATION SYSTEM

The requested token.

Value indicating the object for which a token is
requested. Possible values are:

o Token for the interpreter task.

1 Token for the interpreter task's job.

2 Token for the interpreter job's parameter object.

3 Token for the root job •

Variable in which the interpreter returns the status
of the operation.

The following function call returns a token for the root job in variable
T and returns the status of the operation in variable S:

LET T = GETTKNS (3,.S)

I LOOKUPO I
This function looks up a name in an object directory and returns a token
for that object. The format is as follows:

obj$token = LOOKUPO (job$token, "name" ,time$limit, .stat$var)

where:

obj$token

job$token

"name"

time$limit

• stat$var

Variable in which the interpreter returns a token 'for
the object.

Token for the job in whose object directory the
function searches for the name. A zero indicates that
the interpreter's job is searched.

Name under which the object is cataloged. This name
must be enclosed in double quotes.

Number of system time units that the function is
willing to wait for the name to become available •

Variable in which the interpreter returns the status
of the lookup operation.

4-18

NUCLEUS DEMONSTRATION SYSTEM

Example:

The following function call looks up the name MYTASK in the interpreter's
object directory, does not wait if the name is not there, and, if the
desired entry is found, returns a token for the object in variable T. It
returns the status of the operation in variable S:

LET T = LOOKUPO (O,"MYSTASK",O,.S)

RCVUNIT

This function receives units from a semaphore and returns the new value
of the semaphore. The format is as follows:

value = RCVUNIT (sema$token,units,time$limit,.stat$var)

where:

value

sema$token

units

time$limi. t

• stat$var

Example:

Variable in which the interpreter returns the number
of units remaining in the custody of the semaphore
after the units have been received.

Token for the semaphore.

Number of units to be received from the semaphore.

Number of system time units the interpreter is to wait
for the units •

Variable in which the interpreter returns the status
of the receive units operation.

The following function call receives one unit from a semaphore and does
not wait for the unit to become available. It returns the new value of
the semaphore in variable V and the status of the receive operation in
variable S. Variable T contains a token for the semaphore:

LET V - RCVUNIT (T,I,O,.S)

I RECVMSG I
This function waits for an object at a mailbox and returns a token for
the object if one is available. The format is as follows:

mess$token - RECVMSG (mbox$token,time$limit,.resp$var,.stat$var)

4-19

where:

mess$token

mbox$token

time$limit

• resp$var

• stat$var

Example:

NUCLEUS DEMONSTRATION SYSTEM

Variable in which the interpreter returns a token for
the object.

Token for the mailbox.

Number of system time units the interpreter is to wait
for the object •

Variable in which the interpreter returns a token for
the response mailbox or semaphore, if a response is
requested •

Variable in which the interpreter returns the status
of the receive message operation.

The following function call receives an object from a mailbox without
waiting, returns a token for the object in variable T, returns a token
for the response mailbox in variable R, and returns the status of the
receive operation in variable S:

LET T - RECVMSG (M,O,.R,.S)

I RESTASK I
This statement resumes a suspended task. The format is as follows:

RESTASK (task$token,.stat$var)

where:

task$token

• stat$var

Example:

Token of the task to be resumed •

Variable in which the interpreter returns the status
of the resume operation.

The following statement resumes a suspended task and returns the status
of the resume operation in variable S. Variable T contains a token for
the suspended task:

RESTASK (T,.S)

4-20

NUCLEUS DEMONSTRATION SYSTEM

SENDMSG

This statement sends a message (in the form of an object) to a mailbox.
The format is as follows:

SENDMSG (mbox$token,obj$token,response$token,.stat$var)

where:

mbox$token

obj$token

Token of the mailbox to which the message is being
sent.

Token of the object being sent.

response$token Token of the desired response mailbox or semaphore. A
zero indicates that no response is desired •

• stat$var

Example:

Variable in which the interpreter returns the status
of the send message operation.

The following statement sends an object to a mailbox and specifies a
response mailbox at which the receiving task can acknowledge receiving
the object. Variable M contains a mailbox token, variable A contains an
object token, and variable R contains a response mailbox token. The
interpreter returns status in variable S:

SENDMSG (M,A,R,.S)

SLEEP

This statement places the calling task (the TBASIC interpreter) in the
asleep state. The format is as follows:

SLEEP (units,.stat$var)

where:

units

• stat$var

Example:

Number of system time units that the interpreter task
is willing to sleep. A zero value places the task on
the ready task queue •

Variable in which the interpreter returns the status
of the sleep operation.

The following statement places the interpreter in the asleep state for
one second and returns status of the sleep operation in variable S:

SLEEP (100,.S)

4-21

NUCLEUS DEMONSTRATION SYSTEM

I SNDUNIT

This statement sends units to a semaphore. The format is as follows:

SNDUNIT (sema$token,num$units,.stat$var)

where:

sema$token

num$units

• stat$var

Example:

Token of the semaphore to which units are being sent.

Number of units to be sent to the semaphore •

Variable in which the interpreter returns the status
of the send units operation.

The following statement sends one unit to a semaphore and returns the
status of the operation in variable S. Variable T contains a token for
the semaphore:

SNDUNIT (T,l,.S)

I SUSTASK I
This statement suspends a task. The format is as follows:

SUSTASK (task$token,.stat$var)

where:

task$token

• stat$var

Example:

Token of the task to be suspended •

Variable in which the interpreter returns the status
of the suspend operation.

The following statement suspends a task and returns the status of the
suspend operation in variable S. Variable T contains a token for the
task to be suspended:

SUSTASK (T,.S)

4-22

NUCLEUS DEMONSTRATION SYSTEM

I UNCATLG

This statement deletes an entry from an object directory. The format of
this statement is as follows:

UNCATLG (job$token,"name",.stat$var)

where:

job$token

"name

• stat$var

Example:

Token for the job from whose object directory the name
is to be deleted. A zero indicates the object
directory of the job containing the calling task.

Name to be deleted from the object directory. This
name must be enclosed in double quotes •

Variable in which the interpreter returns the status
of the uncatalog operation.

The following statement removes the entry with the name MYTASK from the
interpreter's object directory and returns the status of the operation in
variable S:

UNCATLG (O,"MYTASK",.S)

4-23

CHAPTER 5. START-UP SYSTEM

The Start-Up System is provided for two purposes. First, it allows you
to become familiar with some of the capabilities of the Human Interface,
a major' iRMX 86 subsystem. Second, it enables you to manipulate files on
iRMX 86 diskettes; such manipulation is not possible on an INTELLEC
Development System.

Included in your iRMX 86 package is another facility for manipulating
iRMX 86 files on secondary storage devices. It is the Files Utility,
which is described in Chapter 8 of this manual. The Start-Up System is
generally preferable for this purpose, because of the following reasons:

• For users who plan to use the Human Interface subsystem, it is
desirable to gain experience with some Human Interface
capabilities.

• The Start-Up System has a facility that allows users to add
commands to the system's command set.

• Because its commands are not resident in memory, the Start-Up
System's memory requirements are not proportional to the number
of commands it offers.

The principal reason for choosing the Files Utility over the Start-Up
System is that the latter is initially configured for use with only
8-inch, single-density diskettes. The Files Utility imposes no such
medium constraint.

FUNCTIONS PROVIDED

The Start-Up System is an iRMX 86 application system that allows you to
perform the following operations:

• Format iRMX 86 diskettes.

• Copy files from ISIS-II diskettes to iRMX 86 diskettes.

• Copy files from iRMX 86 diskettes to ISIS-II diskettes.

• Copy files between iRMX 86 diskettes.

• Delete files from iRMX 86 diskettes.

• Create directories on iRMX 86 diskettes.

• Display, on the application system terminal, the contents of
directories on iRMX 86 diskettes.

5-1

START-UP SYSTEM

HARDWARE REQUIRED

The Start-Up System requires the following hardware:

• An INTELLEC Development System with at least 64K bytes of memory
and at least one flexible disk drive and one other drive.

• An iSBC 86/12A Single Board Computer with at least 192K of
contiguous random access memory (RAM) starting at address O. For
certain operations, more than 192K of RAM is required; for
example, if you plan to execute nested SUBMIT files, you will
need more than 192K.

• An iSBC 957A INTELLEC --- iSBC 86/12A Interface and Execution
Package. The cable in the package should be installed for
parallel interfacing between the iSBC 86/12A board and the
INTELLEC Development System. The PROMs in the package should be
installed in the iSBC 86/12A board.

• An iSBC 204 or iSBC 215/218 controller set for 8-inch drives and
128 bytes per sector.

• At least one 8-inch diskette drive.

• A cable for connecting the controller to the diskette device.

• A diskette containing the Start-Up System.

• A terminal set for 9600 baud and no parity checking.

• A cable for connecting the terminal to the serial port of the
iSBC 86/12A board.

USING THE START-UP SYSTEM

The following sections describe how to initiate the Start-Up System, list
the available commands, and enumerate some special use restrictions that
do not normally apply to the Human Interface.

GETTING STARTED

After assembling your hardware as indicated in Chapter 3 and turning on
the power, perform the following steps:

(1) Look at the display of your application terminal. If asterisks
(*) are gradually filling the screen, your system is ready for
use. Otherwise, you have a hardware problem that must be fixed
before you can continue.

5-2

START-UP SYSTEM

(2) Insert an ISIS-II system diskette with the iSBC 957A software in
drive 0 of your INTELLEC Development System. Insert the
Utilities diskette in drive 1 of your development system. Insert
the iRMX 86 diskette containing the Start-Up System in drive 0 of
your application system hardware. If applicable, insert another
diskette in drive 1 of your application system hardware.

(3) At your development system terminal, enter

SBC861 <cr>

This causes the following display at the development system
terminal:

ISIS-II iSBC 86/12 Loader, vX.X

iSBC 86/12 Monitor, vX.X

followed by the monitor prompt, a period (.).

(4) At your development system terminal, enter the letter r, followed
by the name :F1:BS1 and <cr>. This bootstraps the Start-Up
System into the application system memory.

(5) When an asterisk (*) appears, enter <cr>. This initiates the
Start-Up System and produces the following display at the
application system terminal:

iRMX 86 HUMAN INTERFACE, Vx.x: user = WORLD

followed by the Human Interface prompt, a hyphen (-). You are
now ready to begin entering Human Interface commands.

An alternative to steps (3), (4), and (5) is to enter, at the development
system, the ISIS-II command

SUBMIT :F1:SUPLD(:F1:)

START-UP SYSTEM COMMANDS

The commands that are supplied as part of the Start-Up System are
described here in very general terms. For details concerning the effects
of these commands, and their syntax requirements, refer to the iRMX 86
HUMAN INTERFACE REFERENCE MANUAL.

File Management Commands

The following commands are available for managing files and related
activities.

5-3

ATTACHDEVICE

CREATEDIR

COpy

DELETE

DETACHDEVICE

DIR

DOWN COpy

FORMAT

RENAME

UPCOpy

Additional Services

START-UP SYSTEM

Attaches an application system drive, which then can
be addressed for purposes of file manipulation.
Drives FO, F1, WFO, and WF1 need not be attached,
because this is done automatically during
initialization of the Start-Up System. Refer to Table
3-1 of this manual when using this command.

Creates one or more new directories.

Creates new data files, or copies files to new
filenames.

Deletes data files or empty directories.

Detaches an application system drive. The drive must
be reattached before it can be used for file
manipulation.

Lists a directory's filenames (and, optionally, file
attributes).

Copies files and directories from an iRMX 86 diskette
to an ISIS-II secondary storage volume.

Formats an iRMX 86 diskette.

Renames files or directories.

Copies files and directories from an ISIS-II secondary
storage volume to an iRMX 86 diskette.

The following commands provide additional services:

DATE

DEBUG

SUBMIT

T~E

Sets or resets the system date, or displays the
current date.

Transfers control to the iSBC 957A package, usually
for the purpose of debugging an iRMX 86 application
program.

Loads and executes a sequence of commands from an
iRMX 86 file on a secondary storage device.

Sets or resets the system clock, or displays the
current system time.

5-4

START-UP SYSTEM

SPECIAL USE RESTRICTIONS

The following paragraphs describe some use restrictions that are not
generally true of application systems that include the Human Interface.

The logical names : SYSTEM: and :PROG:, which, in the Human Interface
subsystem, refer respectively to the system's collection of commands and
your collection of special-purpose commands, are not available in the
Start-Up System. However, you can achieve the effects of using : SYSTEM:
and :PROG:, as they are described in the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL, by using SYSTEM/ and PROG/ instead of : SYSTEM: and
:PROG:, respectively.

If your application hardware has iSBC 215/218 controllers, each file name
(including command names, because each command is a file) must be
preceded by the logical name:WFn:, where n is 0 or 1, depending upon
which drive contains the file. If other controllers are used instead,
use the logical name that was specified when the ATTACHDEVICE command was
entered.

5-5

CHAPTER 6. PATCHING UTILITY

The 8086 Patching Utility provides you with a convenient method of
replacing existing relocatable object modules with newer versions
containing software updates or repair code. The replacement versions
must first be generated with the MCS-86 Assembler.

You can replace a module with a newer version or with repair code in two
ways:

• As a patch that generates a jump instruction to the replacement
code and appends the replacement code to the end of the original
module.

• As an in-place patch that directly overlays the replacement code
on that of the original module.

An example of each technique is provided later in this chapter.

The replacement modules themselves may be supplied in anyone of three
forms:

• An Intel-supplied object file, on diskette. In this case, all of
the coding and assembly has been done; you need only invoke the
Patching Utility to effect the replacement.

• An Intel-supplied source code listing with instructions for
inserting the replacement code; in this case, much of the
preliminary work has been done and you need little or no
knowledge of MCS-86 Macro Assembly Language to generate the
replacement object module.

• A user-created replacement module; in this case, a working
knowledge of MCS-86 Macro Assembly Language is required.

A patched module retains neader record names for the original module,
plus the names for the replacement modules. By using the Patching
Utility, you can display the complete list of names to determine a
module's update status.

A typical module patching session takes approximately one hour, depending
upon repair module complexity, module size, and library size.

6-1

I

PATCHING UTILITY

INVOKI~G THE PATCHING UTILITY

You prepare to invoke the Patching Utility by placing a diskette
containing it in drive 0 of your INTELLEC Development System. Next, call
the Patching Utility by entering the PTCH86 command in the form:

PTCH86 filename [segmentname segmentattribute]

where:

filename

segmentname

Name of an ISIS-II file containing an iAPX 86
object module produced by PL/M-86, ASM86, or LINK86.

Name of the segment whose combine-type parameter is
to be modified. The name must be a valid segment
name.

segmentattribute Keyword switch that determines the combine-type
attribute given to the named segment. You must
specify the attribute as either COMMON or PUBLIC.
The COMMON attribute allows patch code to be
overlayed on the segment. The PUBLIC attribute
returns the segment to the combination mode
normally given by the PL/M-86 compiler.

See the MCS-86 MACRO ASSEMBLY LANGUAGE REFERENCE
MANUAL for a more detailed explanation of
combine-type segments.

The Patching Utility responds by displaying

8086 OBJECT PATCHING UTILITY, vX.X

followed by an indication of the outcome of the patch operation and then
the ISIS-II prompt ")". If the invocation line contained the optional
segmentname and segmentattribute, the message "ATTRIBUTE MODIFIED" is
displayed. If the invocation line contained only the filename, the
translator header records (described later in this chapter) for the file
are displayed. Otherwise, the patch operation failed and an error
message is displayed.

PATCHING PROCEDURES

Repair modules that you insert into existing modules must be generated
with the MCS-86 Assembler. To patch an independent object module
containing errors (patching library modules is described later in this
chapter), you invoke the Patching Utility to modify the combine-type
attribute in the desired module segment to COMMON. This step allows you
to use LINK86 to overlay the repair module on the segment to be patched.
After linking with the repair module, you then use the Patching Utility
-to restore the PUBLIC attribute to the segment. The following example
illustrates the steps for repairing independent object module files:

6-2

PATCHING UTILITY

1. Enter the PTCH86 command to set the CODE segment combine-type
attribute to COMMON, for example:

PTCH86 badmodule CODE COMMON

2. Enter the LINK86 command to overlay the repair object module on
the original version, for example:

LINK86 badmodule, repairmodule TO newmodule

3. Enter the PTCH86 command to restore the CODE segment to PUBLIC,
for example:

PTCH86 newmodule CODE PUBLIC

Typical examples of jump instruction overlays, in-place patch overlays,
library module patching, and listing module header records are given in
the following sections.

JUMP INSTRUCTION PATCH

In the following example, the module generates a patch that overlays a
jump instruction on offset OlOOH through Ol02H of the original module.
The jump transfers control to repair code at offset 0500H. The repair
code is appended to the end of the module and is thus appended to that
module.

EXAMPLE:

NAME REPAIR VOOOOI ; Identifying module name.

CODE
CGROUP

SEGMENT
GROUP
ASSUME

ORG

JMP

RETURN LABEL

ORG

REPAIRCODE:

WORD COMMON
CODE
CS : CGROUP

OlOOH

REPAIRCODE

NEAR

0500H

'CODE'

Offset of area in original module
to be patched.

Return here from repair area.

Offset of end of original module.

(Repair goes here)

JMP RETURN Return control to original module.
CODE ENDS
END

6-3

PATCHING UTILITY

IN-PLACE PATCH

The following example generates an in-place patch that directly overlays
repair code on a module's previous code.

EXAMPLE;

NAME REPAIR V00002 ; Module name identification.

CODE
CGROUP

SEGMENT
GROUP
ASSUME

ORG

ADD

CODE ENDS

END

WORD COMMON
CODE

'CODE'

CS : CGROUP

0200H

AX, 3

Offset of the original operand.

Replaces the original value with a "3"
(the new instruction must be the same
size as the original instruction).

PATCHING LIBRARY MODULES

To patch an object module that is located in a library, use the SUBMIT
command file (PATCH.CSD) supplied on your Utilities diskette. When
invoked, the SUBMIT file will perform the following steps:

1. Enters a LINK86 command to separate the module to be patched from
the library and put it in a temporary file.

2. Enters the PTCH86 command to set the CODE segment combine-type
attribute to COMMON.

3. Enters a LINK86 command to overlay the replacement object module
on the original version.

4. Enters the PTCH86 command to restore the CODE segment PUBLIC
attribute.

5. Enters a LIB86 command to replace the original module 1n the
library with the updated version.

6. Deletes the temporary files when the replacement is completed.

To invoke the SUBMIT file, enter the command in the following format.
Note that the parentheses enclosing the parameter string and the embedded
commas are required; embedded blanks are optional:

SUBMIT PATCH(library, oldmodule, segment, newmodule)

6-4

where:

library

oldmodule

segment

newmodule

PATCHING UTILITY

Name of library containing the old module to be
replaced.

Name of the module to be replaced.

Name of the segment whose combine-type attribute is to
be set to COMMON.

Name of the file containing the replacement module
code.

LISTING MODULE HEADER RECORDS

If you are performing an Intel-supplied patch and you want the Patching
Utility to list an object module's translator header records on the
console screen, enter the PTCH86 command without specifying the segment
name or segment attribute. The listed records allow you to identify the
patches that have been made to the module. A typical PTCH86 command
entry and resulting header record display is as follows:

PTCH86 FILE.OBJ
ORIGINALMODULE
ORIGINALMODULE REPAIR V030-0l
ORIG I NALMODULE-RE PAl R-VO 30-0 2

The "030" stands for version 3.0 of the software being patched, and "01"
and "02" are the patch numbers of the Intel-supplied patches that have
been made to the module.

ERROR MESSAGES

When the Patching Utility encounters an error condition during a module
repair session, it displays one of the following error messages:

ERROR nnn USER PC mmmm

An ISIS-II system call returned a non-zero error status, given as nnn.
See the ISIS-II USER'S GUIDE for an explanation of numbered error
messages.

6-5

I

I

I

I

PATCHING UTILITY

INVALID RECORD TYPE

The object file contains an invalid record type for the object module
format. Perhaps the wrong filename was entered, or the file contains
code other than object code.

INVALID SYNTAX

The command line contains an error that was caused by a missing filename
or a missing or misspelled keyword.

SEGMENT NOT FOUND

The desired record was not found before the end of the module.

~6

. .I

CHAPTER 7. iRMX 86m DEVELOPMENT PROCEDURES

In order to produce a final iRMX 86-based application system for your
users, you must go through two phases: a development phase and a
production phase. During the development phase you design, build, and
debug your system. In the production phase you produce the final systems
for your users. This chapter outlines the steps you need to follow as
you develop your iRMX 86-based application system. The steps illustrate
the main points of the development process.

1. Define your application.

2. Do the high-level design, as follows:

• Identify your hardware requirements.

• Determine which of the iRMX 86 subsystems you need. The
configurable nature of the iRMX 86 software allows you to
select the parts that your application requires. It is
recommended that you include the Debugger in your application
system until it is fully developed. When you have completed
the development process, you can remove the Debugger from
your system to reduce memory requirements.

• Divide your application into jobs and tasks. Assign task
priorities, identify exchanges used for intertask
communication, and determine the methods of interrupt
handling and exception processing. Refer to the INTRODUCTION
TO THE iRMX 86 OPERATING SYSTEM, iRMX 86 NUCLEUS REFERENCE
MANUAL, iRMX 86 TERMINAL HANDLER REFERENCE MANUAL, and iRMX
86 DEBUGGER REFERENCE MANUAL for more information about these
processes.

3. Write and debug the task code. As you finish writing each task,
you can use either the ICE-86 In-Circuit Emulator or the iSBC
957A package to debug the task independently. Later, you can use
the Debugger to debug the entire application.

4. Configure the application system. Do this by creating a system
configuration file and an individual configuration file for each
part of the Operating System. Assemble and compile all of the
code, link it in the correct manner, and locate it at the proper
addresses. See the iRMX 86 CONFIGURATION GUIDE for a detailed
description of this process.

5. Assemble your hardware for testing the system.

6. If you are using the I/O System in your application, load the
Start-Up System or the Files Utility System, format your iRMX 86 I
disks, and copy any necessary information to them.

7-1

iRMX 86 m DEVELOPMENT PROCEDURES

1. Load your code into memory using one of the following:

• The ICE-86 In-Circuit Emulator

• The iSBC 957A INTELLEC -- iSBC 86/12A Interface and Execution
Package

• The Bootstrap Loader

• The Application Loader

• The Human Interface (which calls the Application Loader)

8. Test and debug your system using the Debugger and either the
ICE-86 In-Circuit Emulator or the iSBC 957A Interface and
Execution package. Continue performing steps 3, 4, and 7 until
you are satisfied with your system.

9. Unless you want the Debugger to be a permanent part of your
system, perform step 4 again, but omit the Debugger.

10. Burn your debugged code into PROM and place it on your iAPX
86-based microcomputer system, or place your debugged code on an
iRMX formatted diskette and use the Bootstrap Loader to load the
code directly into memory.

Note that you can use the Bootstrap Loader to load your code at any stage
of the development procedures, including the debugging stage (see the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for information on using the
Bootstrap Loader).

7-2

CHAPTER 8. FILES UTILITY SYSTEM

The INTELLEC Microcomputer Development System does not recognize iRMX 86
diskette files. Consequently you cannot read, write, or format iRMX 86
diskettes directly from the ISIS-II operating system. However, you can
perform these operations indirectly from the Development System by using
the iRMX 86,Files Utility System.

FUNCTIONS PROVIDED

The iRMX 86 Files Utility System is an iRMX 86 application system that
allows you to perform the following operations:

• Format an iRMX 86 diskette.

• Copy a file from an ISIS-II diskette to an iRMX 86 diskette.

• Copy a file from an iRMX 86 diskette to an ISIS-II diskette.

• Delete a file from an iRMX 86 diskette.

• Create a directory on an iRMX 86 diskette.

• Display, on the Development System terminal, the contents of a
directory of an iRMX 86 diskette.

HARDWARE REQUIRED

The Files Utility System requires the following hardware:

• A Microcomputer Development System having at least 64k bytes of
memory and at least one disk drive (hard or flexible).

• An iSBC 86/12A Single Board Computer with at least 192k bytes of
memory and at least one disk drive (hard or flexible).

• The iSBC 957A INTELLEC -- iSBC 86/12A Interface and Execution
Package.

8-1

I

FILES UTILITY SYSTEM

STARTING THE FILES UTILITY

Before you can enter commands to the Files Utility, you must start it
up. This involves connecting certain hardware modules and then entering
appropriate commands on the INTELLEC Microcomputer Development System
terminal.

After you have assembled your hardware, perform the following steps:

1. Place an ISIS-II system diskette containing the iSBC 957A
software into drive 0 of your INTELLEC Microcomputer Development
System and the Utilities diskette into any other drive.

2. Load the ISIS-II system.

3. Enter the following ISIS-II command:

SUBMIT :fx:FILES (:fx:)

where:

fx Identifier of the diskette drive containing the
Files Utility diskette.

When you enter this command, the ISIS-II operating system reads and
processes the commands contained on the FILES.CSD file. These commands
instruct the iSBC 957A monitor to load the Files Utility System from a
diskette on the INTELLEC system into RAM on the iSBC 86/l2A board.

After the ISIS-II system finishes processing the commands in the submit
file, the system prompts for another command. Respond by entering

SBC861

This command instructs the ISIS-II system to connect you to the iSBC 957A
monitor. The monitor signals you that it is ready to accept your next
command by displaying a period (.) on the screen of your INTELLEC
system. When the period appears, enter

G

This causes the Disk Utility System to begin running. The screen of your
INTELLEC system should display the heading

iRMX 86 FILES UTILITY Vx.x

The Files Utility signals that it is ready to accept your next command by
displaying an asterisk (*) on the screen of the INTELLEC system.

8-2

FILES UTILITY SYSTEM

USING THE FILES UTILITY

The Files Utility provides 10 file management commands, as follows:

ATTACHDEV
PREAK
CREATEDIR
DELETE
DETACH

DIR
DOWN COpy
FORMAT
HELP
UPCOPY

The commands are described in alphabetical sequence later in this
chapter. However, before actually using the commands, you should
understand the diskette handling procedures and how the Files Utility
System handles errors.

CHANGING DISKETTES

When the Files Utility is running and you have already performed an
operation on a particular diskette, you cannot simply remove that
diskette from the drive and replace it with another. The Utility System
is not aware of diskette changes and treats the second diskette as if it
were the first, and thereby possibly writes over or destroys valuable
information. To change diskettes in a drive, you must enter a DETACH
command to logically detach the drive from the system, change diskettes,
and then (with one exception) enter an ATTACHDEV command to again
logically attach the device.

The one exception to this command entry sequence is the FORMAT command.
As described later in this chapter, this command writes iRMX 86
formatting information on blank diskettes. Since the FORMAT command
always expects a blank diskette and a detached drive, you can replace
diskettes in a drive any number of times if you use only the FORMAT
command before entering the ATTACHDEV command. The FORMAT command will
destroy the information, if any, previously contained on the diskette.

COMMANDS

This section provides descriptions of the Files Utility commands and
their parameters in alphabetical sequence. Each command has a
two-character abbreviation. You can use either the full name or its
abbreviation when entering a command.

I ATTACHDEV (AD)

This command attaches a physical device to the system and associates a
logical name with the device. The command can also be used to display
the current attachment of a logical name. The format is as follows:

8-3

I

I

FILES UTILITY SYSTEM

AD :logicalname:[= physicalname]

where:

:logicalname:

=

physicalname

I BREAK (BR) I

A I-to 12-character ASCII name, surrounded by colons.

If used, there must be no spaces surrounding the
equal sign.

Physical device name as configured in the I/O System
(see Table 5-1). If physical name is omitted, the
current attachment is displayed by default; for
example:

AD :FO: (command entry)
:FO: = FXO (displayed output)

This command causes an exit from the Files Utility System to the iSBC
957A monitor. The format is as follows:

BR

I CREATEDIR (CD) I
This command creates an iRMX 86 directory file. The format is as follows:

CD rmx-pathname

where:

rmx-pathname Path name of the iRMX 86 directory file to be created.

I DELETE (DE)

This command removes the specified iRMX 86 file from the directory where
it is listed. The format command is as follows:

DE rmx-pathname

where:

rmx-pathname Path name of the iRMX 86 file to be deleted.

8-4

FILES UTILITY SYSTEM

DETACH (DT)

This command detaches a logical name from the system. The command is
used for changing diskettes, prior to entering a FORMAT command, or to
reconfigure a device to a different sector size. The format is as
follows:

DT :logical-devicename:

where:

:logical-devicename: The logical name you assigned to a physical
device via an ATTACHDEV command.

I DIR (DI) I
This command lists an iRMX 86 directory file at the Development System
console. The format is as follows:

DI rmx-pathname [S]

where:

rmx-pathname

S

Path name of the iRMX 86 directory file to be listed.

Switch that causes a "long" or expanded display of
directory file that includes: file type (a "DR"
heading for a directory file or a blank heading for a
data file), number of blocks, and number of bytes in
file. If S is not specified, a "fast" format will be
displayed, consisting of file names only

The directory file listing includes a line that lists the size of the
directory. This line appears as:

n FILES

In this line, n specifies the number of entries currently present in the
directory.

I DOWNCOPY (DC) I
This command creates an ISIS-II file and copies the specified iRMX 86
file to it. If the ISIS-II file already exists, it is written over. The
format is as follows:

DC rmx-pathname TO isis filename

8-5

I

I

FILES UTILITY SYSTEM

where:

rmx-pathname Path name of the iRMX 86 file to be copied.

isis-filename Name of the ISIS-II file to be created.

I FORMAT (FO) I
This command writes iRMX 86 formatting information on a diskette. All
information previously contained on the diskette will be destroyed by the
formatting operation. Each diskette must be formatted before it can be
used by the iRMX 86 Operating System.

The FORMAT command expects an unattached drive. The drive device can
either be unattached at system start up, or you can detach it by entering
a DETACH command prior to entering the FORMAT command. Since the device
remains unattached after FORMAT completes execution, you must attach the
device by entering an ATTACHDEV command before entering any other Utility
command except another FORMAT command. (See also the "Changing
Diskettes" section in this chapter, and the ATTACHDEV and DETACH command
descriptions.)

The FORMAT command contains parameters that are specified in the form
"keyword=value". There must not be any spaces surrounding the equal
sign. Also, you can abbreviate each of these keywords as shown. The
abbreviations and the format of this command are as follows (brackets []
indicate optional parameters):

FO physicalname volumename [GRANULARITY=gran]
[INTERLEAVE=ileave] [NUMBERFNODES=nodes] [switch]

or

FO physicalname volumenname [GR=gran] [IL=ileave]
[NF=nodes] [switch]

where:

physicalname

volumename

Physical device name for the drive, as configured in
the I/O System, that denotes the iRMX 86 drive on
which the diskette resides. Possible values are
itemized in Table 3-1.

A 1- to lO-character volume name that identifies the
diskette. Decimal digits, uppercase and lowercase
letters, and the following special characters can be
used in the volume names:

&

%

,
(
)

*
+

,
/
= ?

8-6

gran

ileave

nodes

switch

I HELP (HE) I

G

FILES UTILITY SYSTEM

The granularity, in bytes, for this volume. The
granularity is the number of bytes obtained during
each diskette access. If you omit this parameter, the
default volume granularity is the device granularity
(the number of bytes in a physical sector).
Specifying any value less than the device granularity
causes the default to be used. Any non-multiple of
device granularity (such as 128 or 512) is rounded
upward to the next higher multiple of device
granularity.

The interleave factor for the volume, or the number of
physical sectors between logical sectors. You can
specify any integer from 1 to 13 for this value. If
you omit this parameter, a default value of 1 is
assumed.

The number of files that can be created on this
volume. If you omit this parameter, a default value
of 100 is assumed.

A switch that indicates the support option for this
volume. One value can be entered for the switch:

NAMED The volume is created for
the named file driver. The ROOT
directory is initialized.

If you omit this switch, the volume is created for the
physical file driver. In this case, FORMAT records the
interleave information on the diskette but does not
initialize any of the iRMX 86 file structures.

This command displays a list of the available Files Utility commands and
their syntax on the console screen. The format is as follows:

HE

I UPCOPY (UC)

This command creates an iRMX 86 file and copies the specified ISIS-II
file to it. If the iRMX 86 file already exists, it is written over. The
format is as follows:

UC isis filename TO rmx pathname

8-7

FILES UTILITY SYSTEM

where:

isis filename Name of the ISIS-II file to be copied.

rmx pathname Path name of the iRMX 86 file to be created.

ERROR MESSAGES

The Files Utility displays all error messages on the screen of the
• INTELLEC System. These messages can be in any of three forms. If the

message is

I

I

I UNRECOGNIZED COMMAND

the Files Utility does not recognize the spelling of your command and
prompts for another command.

The Files Utility actually uses the ISIS-II operating system to read and
write diskettes attached to the INTELLEC system. If the ISIS-II system
detects any errors, it returns an error code to the Files Utility.
Whenever the Files Utility receives an ISIS-II error, it displays the
following message:

ISIS ERROR # nn

where nn is in decimal. To interpret this error message, refer to the
ISIS-II USER'S GUIDE. Fatal errors require you to restart the Files
Utility System by using the FILES.CSD file, as described earlier in this
chapter.

When reading or writing on drives attached to the iSBC 86/12A board, the
Files Utility System uses the iRMX 86 Nucleus and the iRMX 86 I/O
System. If either of these modules returns an exceptional condition code
to the Files Utility, the following message is displayed:

RMX EXCEPTION I mm

where mm is in hexadecimal. For a brief explanation of such an error
message, refer to Appendix B. For more detailed information, refer to
the iRMX 86 NUCLEUS REFERENCE MANUAL, the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL, or the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.
After this message is displayed, the Files Utility prompts for the next
command.

8-8

1

APPENDIX A. ORIGINAL BOARD JUMPER CONNECTIONS

This appendix contains lists of the jumper connections that are made on
the iSBC 86/12A, 204, 206, 215, 218, and 254 boards at the factory. The
iRMX 86 Operating System is designed to run with factory-jumpered boards
that have been modified as described in this manual. To ensure that your
boards are jumpered correctly, first restore them to the condition
indicated in this appendix. Then modify them as recommended in Chapter 3
of this manual.

Table A-I. Original iSBC 86/12A Jumpers

Pin Connections

5-6 7-8 7-10 13-14
15-16 17-18 19-20 21-25
24-35 26-27 28-29 30-31
32-33 39-40 42-43 54-55
56-57 59-60 68-76 79-83
87-89 92-93 94-96 97-98

103-104 105-106 125-126 129-130
143-144 151-152

Jumper Pad Connection

WI A-B
W2 A-B
W3 A-B
W4 A-B
W5 A-B
W6 A-B
W7 A-C
W8 A-D
W9 A-C

A-I

•

I

1-8
37-38
75-76

ORIGINAL BOARD JUMPER CONNECTIONS

Table A-2. Original iSBC 204 Jumpers

Pin Connections

19-20
45-47
77-78

Jumper Pad

WI

23-24
55-56

Connection

B-C

26-27
63-67

Table A-3. Original iSBC 206 Jumpers (Channel Board)

4-5 9-11 13-17 15-16

Table A-4. Original iSBC 215A Jumpers

Jumper Pad Connection Jumper Pad Connection

WI 1-3 W9 1-2
W3 1-2 Wl0 1-2
W4 1-2 W13 1-2
W5 1-3 W14 1-2
W6 1-3 W16 1-2
W7 1-3 W17 1-2
W8 1-3 W22 1-2

Table A-5. Original iSBC 215B Jumpers

Jumper Pad Connection Jumper Pad Connection

WI 1-2 Wl0 1-2
W3 1-2 W13 1-2
W4 1-2 W14 1-3
W5 1-2 W15 1-2
W6 1-2 W16 1-2
W7 1-2 W17 1-2
W8 1-2 W22 1-3

A-2

2-3
27-28
67-68

ORIGINAL BOARD JUMPER CONNECTIONS

Table A-6. Original iSBC 218 Jumpers

Jumper Pad

W2
W8

Connection

A-C
A-B

Table A-7. Original iSBC 254 Jumpers

5-6
29-30
75-76

A-3

8-9
45-46

11-12
63-64

APPENDIX B. iRMX 86~ CONDITION CODES SUMMARY

Table B-1 provides a list of the iRMX 86 condition codes that may be
encount·ered during system installation processes. It is not a complete
list of all possible iRMX 86 condition codes. See the appropriate iRMX
86 manual for a more detailed description of the meanings.

Numeric Code
Hex. Dec.

OH o

1H 1

2H 2

3H 3

4H 4

5H 5

6H 6

7H 7

8H 8

20H 32

Table B-1. iRMX 86~ Condition Codes

Mnemonic ,Meaning

E$OK No exceptional conditions (normal)

Environmental Conditions

E$TIME

E$MEM

E$BUSY

E$LIMIT

E$CONTEXT

E$EXIST

E$STATE

ENOTCON­
FIGURED

E$FEXIST

A time limit (possibly a limit of zero
time) expired without a task's request
being satisfied.

Insufficient available memory to satisfy
a task's request.

Another task currently has access to data
protected by a region

A task attempted an operation which, if
it had been successful, would have
violated a Nucleus-enforced limit.

A system call was issued out of proper
context.

A token parameter has a value which is
not the token of an existing object.

A task attempted an operation which would
have caused an impossible transition of a
task's state.

This system call is not part of the
present configuration.

File already exists.

B-1

I

I

iRMX/86~ CONDITION CODES SUMMARY

Table B-1. iRMX 86~ Condition Codes (cpntinued)

Numeric Code
Hex. Dec.

21H 33

22H 34

23H 35

24H 36

25H 37

26H 38

27H 39

28H 40

29H 41

2AH 42

2BH 43

2CH 44

2DH 45

40H 64

41H 65

42H 66

44H 68

Mnemonic Meaning

Environmental Conditions (continued)

E$FNEXIST

E$DEVFD

E$SUPPORT

E$EMPTY$­
ENTRY

EDIREND

E$FACCESS

E$FTYPE

E$SHARE

E$SPACE

E$IDDR

E$IO

E$FLUSHING

E$ILLVOL

E$PREFIX$­
SYNTAX

E$CANNOT$­
CLOSE

E$IOMEM

E$MEDIA

File does not exist.

Device and file driver are incompatible.

Combination of parameters not supported.

The specified slot in a directory file is
empty.

The specified slot is beyond the end of a
directory file.

File access not granted.

Incompatible file type.

Improper file sharing requested.

No space left.

Invalid device driver request.

An I/O error occured.

Connection specified in call was deleted
before the operation was completed.

Invalidly named volume.

The specified path starts with a colon (:)
but does not contain a second, matching
colon.

The Extended I/O System was not able to
transfer remaining data in buffers to
output device.

The Basic I/O System has insufficient
memory to process a request.

The device containing a specified file is
not online.

B-2

iRMX/86~ CONDITION CODES SUMMARY

Table B-1. iRMX 86~ Condition Codes (continued)

Numeric Code
Hex. Dec.

45H 69

8000H 32768

8001H 32769

8002H 32770

8003H 32771

8004H 32772

8005H 32773

8020H 32800

8021H 32801

8022H 32802

8040H 32832

8041H 32833

8042H 32834

Mnemonic Meaning

Environmental Conditions (continued)

ELOGNAME­
NEXIST

The Extended I/O System was unable to
find a specified logical name in the
object directories that it checks.

Programmer Errors

E$ZERO$­
DIVIDE

E$OVER-FLOW

E$TYPE

E$BOUNDS

E$PARAM

EBADCALL

E$IFDR

E$NOUSER

ENOPREFIX

ENOTPREFIX

ENOTDEVICE

ENOTCON­
NECTION

A task attempted to divide by zero.

An overflow interrupt occurred.

A token parameter referred to an existing
object that is not of the required type.

A task attempted to access beyond the end
of a segment.

A parameter which is neither a token nor
an offset has an invalid value.

The I/O System code has been damaged,
probably due to a bug in an application
task. Recovery is not possible.

Invalid file driver request.

No default user.

No default prefix.

Specified object not a device connection
or file connection.

A token parameter referred to an existing
object that is not, but should be, a
device connection.

A token parameter referred to an existing
object that is not, but should be, a file
connection.

B-3

I

APPENDIX C. HARDWARE REQUIREMENTS FOR CUSTOM CONFIGURATIONS •

The minimum hardware requirements for installing the iRMX 86TH Nucleus
on custom boards built from components are defined below:

• iAPX 86.

• 8253 Programmable Interval Timer (PIT).

• 8259A Programmable Interrupt Controller (PIC).

• 24K bytes ROM (for a fully-configured Nucleus).

• 2600 bytes RAM, of which 1024 bytes must be contiguous and must
start at address O.

To run the Terminal Handler or Debugger, an 8251A Programmable
Communications Interface (PCI) is required, as well.

C-1

APPENDIX D. iRMX 86m SOFTWARE VERSION NUMBERS

The version numbers for all required and optional software that comprise
Release·3.0 of the iRMX 86 Operating System are listed in Table D-l.

Table D-l. iRMX 86m Software Version Numbers

iRMX 86
Module

Nucleus
Terminal Handler
Debugger
Basic I/O System
Extended I/O System
Application Loader
Bootstrap Loader
Human Interface
Files Utility
Patching Utility
Start-Up System

D-l

Version
Number

3.0
3.0
3.0
3.0
1.0
2.0
2.0
1.0
3.0
1.0
1.0

INDEX

Primary references are underscored.

ABS function 4-11
altering TBASIC statement lines 4-4
Application Loader 1-1, 2-2, 2-4, 7-2
application-dependent requirements 2-3
application system 2-1, 5-1, 7-1
arrays 4-4
storage space 4-12

ATTACHDEV command 8-3

backplane 3-5
BASIC

functions 4-11
statements 4-7

baud rate 4-1, 5-1
Basic I/O System 1-1, 2-4
board
arrangement in the chassis 3-5
jumpering A-I
modifications 3-1

Bootstrap Loader 1-1, 2-2, 2-3, 2-4, 7-2
BPRN/ signal 3-5
BREAK command 8-4

cable connections 3-6
CATALOG statement 4-13
changing disks 8-3
chassis arrangement 3-5
COMMON attribute 6-2
components iii, 2-2, C-l
condition codes 8-8, B-1
constants 4-5
CREATEDIR command 8-4

CRTMBOX function 4-13
CRTSEGM function 4-14
CRTSEMA function 4-14
CRTTASK function 4-15
custom boards iii, C-l

Debugger 1-1, 2-3, 2-4, 7-2
deferred mode 4-3
DEBUGR.DMO 4-2
DELETE command 8-4
DELMBOX statement 4-16
DELSEGM statement 4-16
DELSEMA statement 4-17
DELTASK statement 4-17

Index-l

INDEX (continued)

demonstration system 4-1
DETACH command 8-5
development
environment 2-1
process 7-1

Development System 1-1, 2-2, 4-1, 5-2, 6-2, 7-1, 8-1
dictionary of statements and functions 4-5
DIR command 8-5

. direct mode 4-3
disk drives 2-2, 2-3, 3-1, 5-1
disk identifier 8-6
disks 1-3, 5-1, 8-1, 8-3, 8-6
DOWNCOPY command 8-5

error messages 6-5, 8-8
expressions 4-5
Extended I/O System 1-1, 2-4

factory-installed jumpers 3-1, A-I
file management commands 5-3
Files Utility System 2-3, 3-1, 3-3, 3-6, 7-1, 8-1
FILES.CSD file 8-2
FOR statement 4-7
FORMAT command 8-6
functions 4-5, 4-11, 5-1, 6-1

general requirements 2-2
GETTKNS function 4-17
GOSUB statement 4-8
GOTO statement 4-8
granularity 8-6

hardware
considerations 3-1
requirements 4-1, 5-2, 8-1, C-l

header records 6-1, 6-2, 6-5
HELP command 8-7 ---
Human Interface 1-1, 2-2, 2-3, 2-4, 5-1, 5-5, 7-1, 7-2

iAPX 86 1-1
ICE-86 In-Circuit Emulator 2-2, 2-3,3-5, 3-6, 4-1, 4-2, 7-1, 7-2
iCS 80 chassis 3-5
IF statement 4-8
INTELLEC Development System 1-1, 2-2, 4-1, 5-2, 6-2, 8-1
in-place patch 6-4
INPUT statement 4-9
interactive mode 4-3
interleave factor 8-6
interrupt levels 3-2
introduction to the RMX/86 package 1-1
inventory 1-2

Index-2

INDEX (continued)

iRMX 86
development environment
operating system 1-1
package 1-1
software version numbers
statements and functions

iSBC 204
board 2-3, 3-1, 3-5, 5-2
modifications 3-2

iSBC 206
board 2-3, 3-1, 3-5
modifications 3-3

iSBC 215
board 2-3, 3-1, 3-5, 5-2
modifications 3-4

iSBC 254
board 2-3, 3-1, 3-5
modifications 3-4

2-1

D-l
4-11

iSBC 604 cardcage/backplane 3-5
iSBC 614 expansion cardcage/backplane 3-5
iSBC 660 chassis 3-5
iSBC 86/12A

board 2-2, 3-1, 3-5, 3-6, 5-2, 8-1, A-I
modifications 3-1

iSBC 957A package 2-2, 2-3, 3-6, 4-1, 4-2, 5-1, 7-1, 7-2, 8-1, 8-2
iSBX 218

board 3-1, 5-2
modifications 3-4

iSBX 337 multimodule 3-2
ISIS-II errors 8-8
ISIS-II operating system 2-2, 8-1, 8-2

jump instruction patch 6-3
jumper connections 3-1, A-I

LET statement 4-9
library module patching 6-4
LIST statement 4-10
loading the demonstration system 4-2
LOOKUPO function 4-18

mailbox 4-13, 4-16, 4-19, 4-21
manuals 1-2
MCS-86 Macro Assembler 2-2, 6-1
MCS-86 Software Development Utilities 2-2
memory board jumper connections 3-4
memory requirements 2-2, 2-3, 2-4
messages 8-8
modes 4-J
MULTIBUS contention 3-4

named file driver 8-7
NEW statement 4-10
NEXT statement 4-7

Index-J

INDEX (continued)

Nucleus 1-1, 2-2, 2-4, C-1
Nucleus Demonstration System 4-1
NUCLUS.DMO 4-2

operating modes 4-3

Patching Utility 6-1
PATCH.CSD 6-4
physical device names 3-7
PL/M-86 compiler 2-2
priority 3-4
PRINT statement 4-10
program storage 4-3
protecting system software 1-3
PUBLIC attribute 6-2

RAM requirements 2-3, 2-4, C-1
RCVUNIT function 4-19
recommendations 1-3
RECVMSG function 4-19
REM statement 4-11
RESTASK statement 4-20
RETURN statement 4-11
RND function 4-12
ROM requirements 2-3, 2-4, C-1
ROOTJB.DMO 4-2
RUN statement 4-11

segment 4-14, 4-16
semaphore 4-14, 4-17, 4-19, 4-22
SENDMSG statement 4-21
serial priority scheme 3-4
SIZE function 4-12
SLEEP statement 4-21
SNDUNIT 4-22
starting the Files Utility 8-2
Start-Up System 2-3, 3-1, 3~3, 3-6, 5-1
statements and functions 4-5, 4-12
dictionary 4-6

STOP statement 4-11
storing programs 4-3
SUPLD 5-3
support option 8-7
SUSTASK statement 4-22
system software protection 1-3

target system 2-2
task 4-15, 4-17, 4-19, 4-22
TBASIC.DMO 4-2
TBASIC interpreter 4-1
Terminal Handler 1-1, 2-3, 2-4

UNCATLG statement 4-23
UPCOpy command 8-7

Index-4

INDEX (continued)

using the demonstration system 4-3
using the Files Utility 8-3

variables 4-4
volume
granularity 8-6
name 8-6

Index-5

REQUEST FOR READER'S COMMENTS

iRMX 86™
Installation Guide

9803125-03

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME --------------------________________________________ DATE ____________ _

TITLE

COMPANY NAME/DEPARTMENT __ __

ADDRESS __________ ~--
CITY ------------------_______________________ STATE _____ ZI P CODE ____ __

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS

This document is one of a series describing Intel products. Your comments on the back of this
form will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

111111
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

