iRMX 86™ NUCLEUS
REFERENCE MANUAL

Manual Order No.: 9803122-03

Copyright © 1980, 1981 Intel Corporation ‘)
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

— |

REV. REVISION HISTORY PRINT

- DATE
-01 Original Issue 4/80
-02 Adds ENTERSINTERRUPT system call, 11/80
corrects various technical and typographical
errors, and documents Release 2 of the
iRMX 86 Operating System.
-03 Describes high performance mailbox queues, 5/81

8087 NDP, cascaded interrupts, and enhanced
interrupt processing; corrects various techni-
cal and typographical errors; and documents
Release 3 of the iRMX 86 Operating System.
Debugger and Terminal Handler informa-

tion has been moved to separate manuals.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel’s software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
-identify Intel products:

BXP Intel Megachassis
CREDIT Intelevision Micromap
i Intellec Multibus
ICE iRMX Multimodule
iCs iSBC PROMPT
im iSBX Promware
Insite Library Manager RMX/80
Intel MCS System 2000
UPI
Scope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

[[A354/581/6K DD |

PREFACE

iRMX 86 provides an operating system for Intel iAPX 86-based
microcomputers, including the iSBC 86/12A single board computer. It
consists of a Nucleus, a Terminal Handler, a Debugger, a basic
input/output system (BIOS), an extended input/output system (EIOS), an
Application Loader, and a Human Interface. This manual describes the
central portion of the Operating System, the Nucleus. '

READER LEVEL

This manual is intended for both application and system programmers. It
describes the basic features of the Nucleus and thoroughly documents the
portion of the Nucleus that both application and system programmers
require. It does not contain detailed information about the features and
system calls reserved for system programmers. The iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL contains this information.

This manual is intended primarily as a source of Nucleus reference
materials; it is only secondarily for instruction. If you are unfamiliar
with the iRMX 86 Operating System, you should read the INTRODUCTION TO
THE iRMX 86 OPERATING SYSTEM prior to reading this manual.

CONVENTIONS
Throughout this manual, the following convention is used:

Reserved bits which should be set to zero.
Whenever this term is used, it means that the designated bits are not
currently checked by the Nucleus. However, Intel reserves the right to
establish meanings for these bits in future releases of the iRMX 86

Operating System. To ensure that your current system runs unchanged
under future releases, you should set these bits to zero.

iii

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful
to readers of this manual.

Manual

Introduction to the iRMX 86 Operating System

iRMX
iRMX
iRMX
iRMX
iRMX
iRMX
iRMX

iRMX

86
86
86
86
86
86
86

86

Installation Guide

Terminal Handler Reference Manual
Debugger Reference Manual

Basic I/0 System Reference Manual
Extended I/0 System Reference Manual
Loader Reference Manual

Systém Programmer's Reference Manual

Configuration Guide:

Guide to Writing Device Drivers for the iRMX 86 I/0 System

iRMX 86 Programming Techniques

iRMX 86 Pocket Reference

iSBC 86/12A Hardware Reference Manual

ISIS-II User's Guide

PL/M-86 Programming Manual

PL/M-86 Compiler Operating Introduction for 8080/8085 Based

Development Systems

The 8086 Family User's Manual

iv

Number

9803124
9803125
143324
143323
9803123
143308
143381
142721
9803126
142926
142982
142861
9803074
9800306

9800466

9800478

9800722

CONTENTS

PAGE

PREFACE......0l...'...00.000..0.....0.'.0.'0..00..'..0.00....'..OOODOOiii

CHAPTER 1
OVERVIEW

ObjECtS......................................o..ooo.....o..}.........o

TaSkS.......-...-.........................-....-o.-............o..o.-

Jobso-.oo.nt'c..'.l'ooo.uooo.'o.ooo..ooooo00..0.0‘0.000000.0..0..000.

SegmentSOOOloo00oooooo.ooooocoooonooooo.oooooo.o"o.oooooooo-..ooooo.

MailboxeSO.¢00000000000000oobtooooo.olnooooooooooo'.o..-oooonoooooooo

Semaphores..o..o..o....-................................-............

Handlers....oooooooo.oooocntoo.oo..oooonoooo.oo.oo.ooooooouoooooo-oooo

EXCEPCiOn Handlers.............-...........-.....o-...........-.....-
Interrupt Handlers-;...........................--....................

P—-‘l—-‘i—‘l—-‘Tl—lD—'hﬂb—'
Ao Uit WN

CHAPTER 2

JOB MANAGEMENT

Job Tree and Resource Sharing..eesceescsecesssoscsssscnsssssonsssnsssesl=l
JOob CreationN.euieceeessscecesssssscssssssssasosssssssasssennsssssnssseesl3
JOb Deletioneeeeeecesesssesosssssssssassssosscassssscsassssssssscssesel3
System Calls for JODSiceseessoeoscesssscassoscsssssssossssscessasncsssessl=l

CHAPTER 3
TASK MANAGEMENT

PriOT ity eeeeeesoessooasenssnsssocssnssssssssssessesosssssescnassnnssnssi—l
Task StateSeeeeessessssccasssssascsocsoesscseassssssasssssssssossscsssesasd—l
The Asleep States.iesssssesssssssssscossssssssssssscessssccsessssssesel—l
The Suspended Stat@.ceescscssssoscessssoscssessssessssosssscssssassecesld—2
The Asleep-Suspended State..eveessscsscscsesssccsssccssccncascnsscnsasld—2
The Ready and Running StateS.ceecescsssesesscsscssscscsosssoasoossossld—2
Task State TranSitiONS..sesesssseessesssososesossssssssscoccsssonssnsssssl—2
Additional Task AttributeS.ieesesccsssssessecesssssssscsasscsssssssnessld=d
Task ReSOUICESeeeeeeocescasssosssssccsssssosssscsesssssossssnsossscsscsel~d
System Calls fOr TasKS.eeeeeseeseosvosssssssssccnsssosssosssssssssssssssld—d

CHAPTER 4
EXCHANGE MANAGEMENT
MailbOXeSeseeevssooeossssssosssssessssosssssnasssenssscssasassensssssslm
MailbOX QUEUES.esssseessscossasscssosssssossscscsssonsoncsnsnsssssessdim
Mailbox MechanicCSe.esessssesssasssssessssosssssssseossocssssonsonssessdim
High Performance Object QUEUEC...ovsserssosssnsssssonssasvsnnssnssosesh
System Calls for MailboXeSeeeseesssossocoscosssonsoscnssnsovssvonsaesd—
4
-
4
4=

Semaphcres.oolOoo'ooooooocoouooooo..t.nooooooo.oo'ooodco00000000'00060

5emaphore QUEUE. ittt eiretecasersosssesossssssessososnvesssssssssssses
Semaphore MechanicCsS.eeevesevesessvossssessesssssssasoscssssessanssvess
System Calls for SemaphOreS:.scesrsscsceesasevsssssosesscensassossnnise

U W W N

CONTENTS (COntinued)

PAGE
CHAPTER 5

MEMORY MANAGEMENT

S EME N Se sttt etaeesesoaoessoaasosssessscaseaanoarsssasoassaasassncsnas

5-
MemOTY POOLS.uuseeeeesesosaaecasassaeassessasasosssssssososassasocossead
Controlling POOl SiZe...iieeieeeeeoeaereeecsuetosoassassnssoascaaasassed
Movement of Memory Between JODS....ceeteeseoeveasoseonsassasasaannaesad
Memory AllOCAtion.cceeeeassesacceseaasassassesassnscsosasasssaoeaonaesssd
System Calls for SegmentS....cceieeeeeserseeraseesssaassossossanssasaed

PO WN—

CHAPTER 6

OBJECT MANAGEMENT

Inquiring About Object TYpPeS. cveieeeeirereeeiotesoesaesaaeassasanas 6-1
Using Object Directories..cceeceeeeeeeeecessroceoeeeaneesocasancesansab=l
System Calls for Any Objects............... e . 6-2

CHAPTER 7
EXCEPTIONAL CONDITION MANAGEMENT

Types of Exceptional Conditions.......cccceeeen. Ceeeeeee N & |
Exception HandlersS.....ceeeereaaeeosessossaccasassoasascassscannsaansasl=l
Assigning an Exception Handler........uiiiveeinnniinrinreccnsonnoenaanal=2
Invoking an Exception Handler.......cciviuiiieniueiinnnennennn N
Handling Exceptions IN=Line@.....eceeeececerioroctoasaoacssacasannnanns 7-3
System Calls for Exception Handlers.......eeeeeeeeeecconoasnaas cead?-3

CHAPTER 8 :
INTERRUPT MANAGEMENT
Interrupt MechanisSmS..veeeeeeoseecsoeeeroseaacsrosasrosssosasasaens
The Interrupt Vector Table....eeeseeeeesooeasonassssncanosssaacsannss
Interrupt Levels. ..icieeeeeeeeeeeseesaasserssacacssosscssasscasaannns
Disabling INterTUPES.ceeeeeeesseeeessacesssssaasoanasosassssoassssass
Interrupt Handlers and Interrupt TasKksS.....eceeieeeeeconsnocsocanonnne
Setting Up an Interrupt Handler.......c.ieeeeeeeescsoosocesnananannns
Using an Interrupt Handler.....ceeeeeeeeeeoeeoccoronronsesnanasanaans
Using an InterrupPt TasK.....eeeeeeasoceoroesesaenaasassasosonnas
Using Multiple Buffers to Service Interrupts.......... ceee
Single Buffer ExXample.....cceceseeececesarssarsseosascccososoonnaaananns
Multiple Buffer Example......cceeeeeceracenscoeraceosaasocaansnnnnaa
Specifying the Count Limit....eeeeeereeeeeeeroossesaesossaossaonnnns
Enabling Interrupt Levels From Within a Task......veeeivenrnneennns
Handling Spurious INterrupPtS.ccceeeeeecseeeessoeenasssaacasarcoancssns ..8-19
Calling GETSLEVEL. .o eunsenneonunnaneneenseeeeeaanseensannnens cee..8-20
Judicious Selection of Interrupt Levels..iveieereeecseaveeacaneeeees 820
Examining the In-Service Register........cevicivuveeeeroeercrsnanaaeas .8-20
Examples of Interrupt ServiCing...cceeeeeeveeaeseesesaoecsasasnsannsesad=21
System Calls for INterTUPES. .cceeecssereteceosooacoscsasssssssasncaces8=25

.
.
.
e
[

-

a e o

e e e 000 e

|
bt et e = 00N NOY NN e

P
0o Ut W

.
[

vi

CONTENTS (continued)

PAGE
CHAPTER 9

NUCLEUS SYSTEM CALLS

Command DiCtioNArY....eeeveueeeeeannnas Gt e et e tec et e ees9=2
Catalog$Object........... I
CreateSJob.cee e eeeeeeeceeneseanasnss et s ec s et et e ettt eteecaneananss 9-7
Create$Mailbox............. Ceeresecetcesarieseeacana cececese P i
Create$Segment. ...veeeveesesnnesnnnnaaans Ceheseieiaaa e teseaa e 9-15
Create$Semaphore............. ieesaaaa e eecasecessseeataatcnasnaanaas 9-17
Create$Task............ e iesaieeicaae st aeaaaaa ceescceaas eee..9-19

Delete$Job.....o... et e ae s et et es e s e esstneasacecnnnens seecscaanesd=22
DeleteSMailboX ..o eeeeeeneeeaanoannnnas ceeeae e ecasececacsccscnacecaesI=24
DeleteSSegment.vee: vt eeeeenessrsssesanasnnana Cteeccseseans ceessaeaasd=25
Delete$Semaphore. cve i eeerererenenereensnnen et ceseaaaaa ceseccacenessI-26
DeleteSTasK...veeeeeeenann. e eeea e Ceceeeccecrvsesaccacescesneesd=27
DiSAbDle.s e iireieeaneeesooaocoonoeeeseneneenaanenansasenan cececscesasassd—29
Enable.....oiveeuennanns .) |
Enter$Interrupt.......... G e e esiieseccacaa et anaeenanaaa I K
Exit$Interrupt..... e isecsananaas cecsene Cteectecccsscacssassessscasasd=3D
GetSException$SHandler......veeueeereeneennnnnnnnn ettt ceeees.9-37
GetSLevel..ivwieieesanioeasnonanaaa i ececea et aecateacerataastaensan s 9-39
Get$Pool$Attrib.......... et e ce e e N cesesaeeas9=4]
T€T-X) o o X 3 o Ty 2P
GetS8S51z€. e nennn et eee e e e et et et e e O R L)
GetSTaskSToKeNS .t vt e eereneeranoananas Ceeecenneenaean e ceacceanas 9-45
Get STy Pe e v eeeeaneanrnnesanennnnn e e ei4ietec e aae e es e
LoOKSUPSODb JeCt e i v e vauinoennssrasesossossoonnnnanns et ececcecanasacsss9=47
Offspring...ceeeeeeenacns P 3]
ReceivedMesSSage. cuveieirartccsasasssassasossossccsasaasssscssnaancssessd=Dl
RECEIVESUNIE S . it eeeeeeeroneaeeoeoaoseseseseesseasaneasosasascnsensssad=bl
ResetSInterTUPt et eeeetosareteaaossasssssssosasssoanssaasasnaaseeeasd=Db
Resumes$TasK. ceeeeeeneeennan et eeeeee e e et eseaacetaacanaanaan eeeeeas9-58
Send$Message.cccererrseecans et eeaecceteetaasceaerectesancsasanns «+.9-59
SendSUnits. coveeeeneneeeanns Ceeeceeenanen eeiecaeecearcrecnns R |
SetSExceptionSHandler.o eeesoeeeeeassansecrsssasscsasssacans ceeeeea9-62
SetSInterrupte. e eeiecececaanaaaeeas P L
SetSPoolSMin..ereaeaaanns D -
SignalSInterrupt..c.coeeeeeesoncanass e etieiies et ceereteanesss9-69
Sleepecececcns ceeencens e eesecinsreateananaesanaas D A |
Suspend$Task......... et eneerecaarecsacaneaane G iseecaateasacaceansasesd=T3
Uncatalog80bject . cvereereeeeetoneaeeeasaonosnsaaetosenessossnsansnsas ..9-74
Wit Interrupt. cuueiseieeesereeteateseossseaseossesensanaonsannns ce.e.9-76

APPENDIX A
IRMX 86 DATA TYPES.....iieveeeerreananasans D o |

APPENDIX B
iRMX 86 TYPE CODES........... oo

S |

vii

APPENDIX C
Nucleus Memory UsSa@ge...ceceeeevcsssessaceotsesstassnstsssosasascanseesC-l

FIGURES
PAGE

INItial JObD Treeeeeeeeeeeeeeeeacessseessssstoesoaseasansasansesesl=l

A JOD .ttt eieeeeeaeeaoesasssssssassestsscassssssosonetssscasnsasenealm2

Task State Transition Diagram.....cceeeeeecesccesssssssassnscsessd=b
Comparison of Job and Memory Hierarchies.......ccceeeevesoaanasesd=2
Memory Movement Diagram...cceeeeeeeersossotocssssssoacsssssancaasassd=b
8259 Cascaded Interrupt Levels.ieeeeeeresenceroanconaasaansaa8d=3
Flow Chart of Interrupt Handling.......oeeeeveeveensocceoocesasee8=1l
Single~Buffer Interrupt ServViCiNg....c..eeeeeeeeocascocnrscecnasss8=-12
Multiple-Buffer Interrupt ServiCing..ceeceseceesesssscaaseccarsesed=1l3
Type COA@SB. uuuutiersseeaseasossossassaonsososssosaanascassasasssssB=l

cdoooaooolou:knuwr—-
— e O N O e e

TABLES

7-1 Conditions and Their COdeS. ...uvieevrceeerereesrosenanncsnanssaaaal=
8-1 Interrupt Levels Disabled For Running TasK....eseeeeeeosaorossssad=
8-2 The Relationship Between External Levels and Intermal
Task PrioritiesS..ciieeeeceseiasosossacesssasssssssssassascosaseaad=10
3 Handler and Task Interaction Through Time......ciceeeeeceeeeces..8-16
-4 Servicing Interrupts with an Interrupt Handler...................8-21
5
6

4
5

Servicing Interrupts with an Interrupt Task....ceeeeeeeeasnossss 8=22
Servicing Interrupts with an Interrupt Handler, an
Interrupt Task, and Multiple Buffering......c.ceovveeeaceeess..8=24

viii

CHAPTER 1. OVERVIEW

The iRMX 86 Nucleus is the core of every iRMX 86 application system.
Among the activities of the Nucleus are. the following:

Supplying scheduling functions
Controlling access to system resources
Providing for communication between individual processes

Enabling the system to respond to external events

The Nucleus provides the building blocks from which the other subsystems
(Basic I/0 System, Extended I/0 System, Application Loader, and Human
Interface) and application systems are constructed. These building
blocks are called objects and are classified into the following
categories called object types:

Tasks

Jobs

Segments
Mailboxes
Semaphores
Regions

Extension objects

Composite objects

The following simplistic generalizations can be made regarding these

types:

Tasks are the active objects in a system. They do the work of
the system.

Jobs are the environments in which tasks do their work. An

environment consists of tasks, the objects that tasks use, a
directory where tasks can catalog objects so as to make them
available to other tasks, and a pool of memory.

1-1

NUCLEUS OVERVIEW

° Segments are pieces of memory, the medium that tasks use for
communicating and for storing data.

e Mailboxes are the objects to which tasks go to send or receive
other objects.

® Semaphores enable tasks to send signals to other tasks.

e Regions are objects that guard a specific collection of shared
data.

e Extension objects are objects which designate new types of
objects. :

e Composite objects are objects of the new types designated by
extension objects.

The last three object types (regions, extension objects, and composite
objects) are reserved for use by system programmers, and thus are not
described in this manual. Refer to the iRMX 86 SYSTEM PROGRAMMER's
REFERENCE MANUAL for detailed descriptions of regions, extension objects,
and composite objects.

The Nucleus does extensive record-keeping of objects. It keeps track of
each object by means of a 16-bit value called a token. The Nucleus
provides a number of operators, called system calls, that tasks use to
manipulate ob jects.

When using a system call, a task supplies parameter values, such as
tokens, names, or other values, depending on the requirements of the
system call. Some of the functions that tasks can perform with system
calls are the following: R

o Create objects

e Delete objects

] Send messages to other tasks

e Receive messages from other tasks

e Obtain information about objects

e Catalog objects with descriptive names

e Delete objects from catalogs

OBJECTS

Each of the five object types discussed in this manual has unique
characteristics. These characteristics are discussed in detail in the
following sectionms.

NUCLEUS OVERVIEW

TASKS
A task has two goals:
e Its primary goal is to do a specific piece of work.

e Its secondary goal is to obtain exclusive control of the
processor so that it can progress toward its primary goal.

One of the main activities of the Nucleus is to arbitrate the competition
that results when several tasks each want exclusive control over the
processor. The Nucleus does this by maintaining, for each task, an
execution state and a priority. The execution state for each task is, at
any given time, either running, ready, asleep, suspended, or
asleep-suspended. The running state is a special case of the ready
state. The priority for each task is an integer value between 0 and 255,
inclusive, with 0 being the highest priority.

The arbitration algorithm that the Nucleus uses is that the running task
is the ready task with the highest (numerically lowest) priority.

As viewed by the Nucleus, a task is merely a context consisting of
values, some of which are the following:

e The task's priority
e The task's execution state
e A token for the job that contains the task

When a task becomes the running task, the following events occur, in
order:

e The context of the previously running task is saved by the Nucleus
¢ The Nucleus sets the new running task's context
e The new task begins executing

The task continues to run until one of the following events occurs:

° The task removes itself from the ready state. For example, the
task can suspend or delete itself; the task can attempt to
receive an object that has not yet been sent, in which case it
might elect to wait (in the asleep state).

e The task (task A) is preempted when a higher priority task (task
B) becomes ready. An example of how this could happen is that
task B might previously have gone into the asleep state for a
specific period of time. When the time period has passed, task B
becomes ready again. Because it is then the highest priority
ready task, task B becomes the running task.

1-3

NUCLEUS OVERVIEW

JOBS
A job consists of tasks and the resources they need.

The jobs in a system form a family tree, with each job, except the root
job, obtaining its resources from its parent. The tasks in the user jobs
can create additional objects. If they create additional jobs, this
enlarges the job tree.

The job tree, right after the initializaton of a system, is shown in
Figure 1-1.

ROOT JOB
| | |
USER JOB USER JOB USER JOB
#1 #2 #N

Figure 1-1. Initial Job Tree

Associated with each job is an object directory. Objects are known to
the Nucleus by their respective tokens, but often, in the code that is
executed by tasks, the objects are known by symbolic names. The object
directory for a job is a place in memory where a task can catalog an
object under a name. Other tasks that know the name can then use the
directory to access the object.

Also associated with each job is a memory pool. This is an amount of
memory which is allocated to the job and its descendents. All memory
needed to create objects in the job comes from the memory pool.

1-4

NUCLEUS OVERVIEW

SEGMENTS

A fundamental resource that tasks need is memory. Memory is allocated to
tasks in the form of segments. A task needing memory requests a segment
of whatever size it requires. The Nucleus attempts to create a segment
from the memory pool given to the task's job when the job was created.

If there is not enough memory available, the Nucleus will try to borrow
the needed memory from ancestors of the job. In this respect, the
tree-structured hierarchy of jobs is instrumental in resource
distribution.

MAILBOXES

A mailbox is one of two types of objects that can be used for intertask
communication. When task A wants to send an object to task B, task A
must send the object to the mailbox, and task B must visit the mailbox,
where, if an object isn't there, it has the option of waiting for any
desired length of time. Sending an object in this manner can achieve
various purposes. The object might be a segment that contains data
needed by the waiting task. On the other hand, the segment might be
blank, and sending it might constitute a signal to the waiting task.

Anpother reason to send an object might be to point out the object to the
receiving task.

SEMAPHORES

A semaphore is a custodian of abstract "units". It dispenses units to
tasks that request them, and it accepts units from tasks.

An example of typical semaphore use is mutual exclusion. Suppose your
application system contains one I/0 device which is being used for output
by multiple tasks. To ensure that only one of these tasks can use the
device at a given time, you can establish a semaphore which has one unit
and require that tasks obtain the unit before using the device. A task
wanting to use the device would request the unit from the semaphore.

When it gets the unit, it can use the device and then return the unit to
the semaphore. Because the semaphore has no units while the task is
using the device, other tasks are effectively excluded from using the
device.

HANDLERS

Two kinds of events can be handled specially: exceptional conditions and
interrupts. The remainder of this chapter describes the handlers for
these events.

NUCLEUS OVERVIEW

EXCEPTION HANDLERS

Tasks occasionally make errors. If an error occurs during an iRMX 86
system call, it causes an exceptional condition. The occurrence of an
exceptional condition can, if desired, cause a transfer of control to the
exception handler associated with the current task. The exception

handler is a procedure that typically deals with the problem by one of
the following methods:

e Correcting the cause of the problem and trying again

e Merely logging the error
o Deleting or suspending the task that caused the error

In regard to exception handlers, the designer of an iRMX 86-~based system
has two kinds of decisions to make for each task. The first decision
concerns the choice of exception handlers. The task can have its own
custom exception handler, it can use the exception handler for the job to
which it belongs, or it can use the Intel-provided System Exception
Handler. Second, there are two categories of exceptional conditions:
programmer errors and environmental conditions. Each task can be set up
s0 that control goes to an exception handler in one of the following
cases:

. Only when programmer errors occur

e Only when environmental conditions occur
° In both cases

° Never

If control is not directed to an exception handler, the responsibility
for handling the exception.falls upon the task.

INTERRUPT HANDLERS

To function effectively as a real-time system, an iRMX 86 application
system must be responsive to external events. An interrupt handler,
which is required for each source of external events, is a procedure that
is invoked by hardware or software for the purpose of responding to an
asynchronous event. The handler takes control immediately and services
the interrupt. When the interrupt handler is finished servicing the
interrupt, it surrenders the processor, which returns to the interrupted
procedure. '

As part of its servicing, the interrupt handler can invoke a task to
further process the interrupt. An interrupt handler invokes an interrupt
task if the processing of an interrupt requires large amounts of time or
if the processing requires those Nucleus system calls that interrupt
handlers are prohibited from using.

1-6

CHAPTER 2. JOB MANAGEMENT

A job is an environment in which iRMX 86 objects such as tasks,
mailboxes, semaphores, segments, and (offspring) jobs reside. 1In
addition, a job has an object directory and a pool of memory. The job's
memory pool provides the raw material from which objects can be created
by the tasks in the job. Figure 2-1 illustrates the elements of a job.

Applications consist of one or more jobs. Jobs are independent but they
may share resources. Each job has its own tasks and may have its own
object directory. Objects may be shared between jobs, although each
object is contained in only one job.

The programmer must decide whether tasks belong in the same job. In
general, you should place tasks in the same job if:

o They have similar or related purposes
° They share many resources

'@ They have similar lifespans

JOB TREE AND RESOURCE SHARING

The jobs in a system are arranged in the form of a tree. The root is a
job that is provided by the Nucleus. The remaining jobs, including jobs
that are created dynamically while the system runs, are descendents of
the root job. A job containing tasks that create other jobs is a parent
job. A newly created job is a child of the job whose task created it.

Associated with each job is a set of limits. The limits of a job are as
follows:

e Maximum allowable size of its object directory
e Maximum and minimum allowable sizes of its memory pool

e Maximum allowable number of simultaneously existing objects that
it can contain

e Maximum allowable number of simultaneously existing tasks that it
can contain

e Highest allowable priority of any task contained in it

JOB MANAGEMENT

OBJECT DIRECTORY
NAME |OBJECT
TASKS:

MEMORY
POOL

OBJECTS CREATED BY THE TASKS IN THE JOB:

SEGMENTS:

MAILBOXES:

@& @
SEMAPHORES: w%

D D

Figure 2-1.

2-2

A Job

JOB MANAGEMENT

You must specify these limits whenever you create a job. These limits,
with the exception of object directory size, apply collectively to the
job and all of its descendent jobs.

For example, suppose job A creates job B. When this happens:
o Sufficient memory to meet job B's minimum memory pool
requirements is transferred from job A's memory pool to that of
job B,

e The memory for job B and job B's object directory is taken from
job A's memory pool.

e The numbers of tasks and total objects that job A can contain are
reduced by the corresponding values specified for job B.

® The specified maximum priority for tasks in job B cannot exceed
the maximum priority for tasks in job A.

If job B is later deleted, its resources are returucd to job A,

JOB CREATION

A job is created with one task. The functions of this task include doing
some initializing for the new job. Initializing activities can include
housekeeping and creating other objects in the new job.

When a task creates a job, it has the option of passing a token for a
parameter object to the newly created job. The parameter object can be
of any type and it can be used for any purpose. For example, the
parameter object might be a segment containing data, arranged in a
predefined format, needed by tasks in the new job. Tasks in the new job
can obtain a token for the job's parameter object by means of the
GETSTASKSTOKENS system call, described in Chapter 9.

JOB DELETION

Before a job can be deleted, all of its extension objects (see the

iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL) and descendent jobs must be
deleted. By using the OFFSPRING system call, the deleting task can probe
down the job tree and find all of the descendents. Then it can delete
them, beginning with descendents that have no children and working up the
tree. After all of the descendents have been deleted, the task can
delete the target job.

2-3

JOB MANAGEMENT .

SYSTEM CALLS FOR JOBS

The following system calls manipulate jobs:

CREATE$JOB --- creates a job with a task and returns a token for
the job; resources for the new job are drawn from the resources
of the job to which the invoking task belongs.

DELETE$JOB --- deletes a childless job that contains no extension
objects and returns the job's resources to its parent.

OFFSPRING --- provides a segment containing tokens of the child
jobs of the specified job.

CHAPTER 3. TASK MANAGEMENT

Tasks are the active objects in an iRMX 86 system. Each task is part of
a job and is restricted to the resources that its job provides. Tasks
should be written as PL/M-86 procedures, not as main modules.

The iRMX 86 Nucleus maintains a set of attributes for each task. Among
these attributes are the priority and execution state of the task.

PRIORITY

A task's priority is an integer value between 0 and 255, inclusive. The
lower the priority number, the higher the priority of the task. A high
priority task has favored status as it competes with other tasks for the
CPU.

Unless a task is involved in processing interrupts (see Chapter 8), its
priority should be between 129 and 255. When a task having a priority in
the range 0 to 128 is running, certain external interrupt levels are
disabled, depending on the priority.

Also, if a task's code includes instructions that execute on the 8087 NDP
(Numeric Data Processor), that task should not have a priority high
enough to mask the interrupt level of the NDP or a deadlock situation
will result. The interrupt level of the 8087 NDP is configurable; refer
to the iRMX 86 CONFIGURATION GUIDE for further information. Refer to
Chapter 8 of this manual for a correlation between priorities and
interrupt levels.

TASK STATES

A task is always in one of five execution states. The states are asleep,
suspended, asleep-suspended, ready, and running.

THE ASLEEP STATE

A task is in the asleep state when it is waiting for a request to be
granted. Also, a task can put itself to sleep for a specified amount of
time by using the SLEEP system call.

3-1

TASK MANAGEMENT

THE SUSPENDED STATE

A task enters the suspended state when it is placed there by another task
or when it suspends itself. Associated with each task is a suspension
depth, which reflects the number of "suspends" outstanding against it.
Each suspend operation must be countered with a resume operation before
the task can leave the suspended state.

THE ASLEEP-SUSPENDED STATE

When a sleeping task is suspended, it enters the asleep—suspended state.
In effect, it is then in both the asleep and suspended states. While
asleep-suspended, the task's sleeping time might expire, putting it in
the suspended state.

THE READY AND RUNNING STATES

A task is ready if it is not asleep, suspended, or asleep-suspended. For
a task to become the running (executing) task, it must be the highest
priority task in the ready state.

-TASK STATE TRANSITIONS

The Nucleus does not allocate the processor to tasks in a time-slicing
manner. Instead, as an iRMX 86 application system runs, events occur
which cause tasks to pass from state to state. The iRMX 86 Operating
System is, therefore, event-driven. Figure 3-1 shows the paths of
transition between states.

The following list describes, by number, the events that cause the

transitions in Figure 3-1. In the list, the migrating task is called
"the task":

(1) The task goes from non-existence to the ready state when it is
created.

(2) The task goes from the ready state to the running state when one
of the following occurs:

o The task has just become ready and has higher priority
than does any other ready task.

e The task is ready, no other ready task has higher
priority, no other task of equal priority has been ready
for a longer time, and the previously running task has
just left the running state by (4), (6), or (10).

3-2

(3)

(4)

(5)

(6)

(7

(8)

(9

(10)

TASK MANAGEMENT

The task goes from the running state to the ready state when the
task is preempted by a higher priority task that has just become
ready.

The task goes from the running state to the asleep state when one
of the following occurs:

° the task puts itself to sleep (by the SLEEP system call.)

e The task makes a request (by the RECEIVE$MESSAGE,
RECEIVESUNITS, or LOOKUP$OBJECT system call) that cannot
be granted immediately and expresses, in the request, its
willingness to wait.

The task goes from the asleep state to the ready state or from
the asleep-suspended state to the suspended state when one of the
following occurs:

e The task's designated waiting period expires without its
request being granted.

e The task's request is granted (because another task
called either the SEND$SMESSAGE, SEND$UNITS, . or
CATALOGSOBJECT system call; these calls correspond to
those mentioned in (4), above).

The task goes from the‘running state to the suspended state when
the task suspends itself (by the SUSPEND$TASK system call).

The task goes from the ready state to the suspended state or from
the asleep state to the asleep-suspended when the task is
suspended by another task (by the SUSPEND$TASK system call).

The task remains in the suspended state or the asleep-suspended
state when one of the following occurs:

e (same as (7)) or
° The task has a suspension depth greater than one and the
task is resumed by another task (by the RESUME$TASK

system call).

The task goes from the suspended state to the ready state or from
the asleep-suspended state to the asleep state when the task has

~a suspension depth of one and the task is resumed by another task

(by the RESUME$TASK system call).

The task goes from any state to non-existence when it is deleted
(by the DELETE$TASK, DELETE$JOB, or RESET$INTERRUPT system call).

3-3

TASK MANAGEMENT

(NON-EXISTENT)

(1)
READY
®) | ®)
(2) 3 @
ASLEEP | 4 RUNNING | _ (® > | suspenoen | =]
(8)
(7)
O »)
ASLEER-SUSPENDED

®L_4

l(w)

(NON-EXISTENT)

Figure 3-1. Task State Transition Diagram

ADDITIONAL TASK ATTRIBUTES

In addition to priority, execution state, and suspension depth, the
Nucleus maintains current values of the following attributes for each
existing task: containing job, its PL/M-86 register context, starting
address of its exception handler (see Chapter 7), its exception mode (see
Chapter 7), and whether or not it is an interrupt task (see Chapter 8).

TASK MANAGEMENT

TASK RESOURCES

When a task is created, the Nucleus takes any resources that it needs at
that time (such as memory for a stack) from the task's containing job.

If the task is subsequently deleted, those resources are returned to the
job. The task's code, however, is not a resource in this sense. It does
not come from nor does it return to the task's containing job.

SYSTEM CALLS FOR TASKS

The following system calls are provided for task manipulation:
® CREATESTASK -~- creates a task and returns a token for it.
e DELETE$TASK -—- deletes a task from the system.

e SUSPENDSTASK --- increases a task's suspension depth by one;
suspends the task if it is not already suspended.

® RESUME$TASK —--- decreases a task's sugpension depth by one; if
the depth becomes zero and the task was suspended, it then
becomes ready; if the depth becomes zero and the task was
asleep-suspended, then it goes into the asleep state.

e SLEEP --- places the calling task in the asleep state for a
specified amount of time.

° GET$TASKSTOKENS --- returns to the calling task a token for
either itself, its job, its job's parameter object, or the root

job, depending on which option is specified in the call.

® GETS$PRIORITY —-- returns the priority of the specified task.

CHAPTER 4. EXCHANGE MANAGEMENT

The iRMX 86 Nucleus provides exchanges to facilitate intertask
communication, synchronization, and mutual exclusion. When a task uses
an exchange, it is always acting either as a sender or as a receiver.
There are two kinds of exchanges: mailboxes and semaphores. If the
exchange is a mailbox, one task will send an object to the mailbox;
another task will go to the mailbox to receive the object. If the
exchange is a semaphore, either a task is receiving units from the
semaphore, or it is sending units to the semaphore.

MAILBOXES

The principal function of mailboxes is to support intertask
communication. A sending task uses a mailbox to pass an object to
‘another task. For example, the object might be that of a segment
containing data needed by the receiving task.

MAILBOX QUEUES

Each mailbox has two queues, one for tasks that are waiting to receive
objects, the other for objects that have been sent by tasks but have not
yet been received. The Nucleus sees that waiting tasks receive objects
as soon as they are available, so, at any given time, at least one of the
mailbox's queues is empty.

MAILBOX MECHANICS

When a task sends a token to a mailbox, using the SENDSMESSAGE system
call, one of two things happens. If no tasks are waiting at the mailbox,
the object is placed at the rear of the object queue (which might be
empty). Object queues are processed in a first-in/first-out manner, so
the object remains in the queue until it makes its way to the front and
is given to a task,

If, on the other hand, there are tasks waiting, the receiving task, which
has been asleep, goes either from the asleep state to the ready state or
from the asleep-suspended state to the suspended state.

NOTE

If the receiving task has a higher
priority than the sending task, then
the receiving task preempts the sender
and becomes the running task.

4-1

EXCHANGE MANAGEMENT

When a task attempts to receive an object from a mailbox via the
RECEIVE$MESSAGE system call, and the object queue at the mailbox is not
empty, the task receives the object immediately and remains ready.
However, if there are no objects at the mailbox there are two
possibilities:

e If the task, in its request, elects to wait, it is placed in the
mailbox's task queue and is put to sleep. If the designated
waiting period elapses before the task gets an object, the task

is made ready and receives an E$TIME exceptional condition (see
Chapter 7).

e If the task is not willing to wait, it remains ready and receives
an ESTIME exceptional condition.

A task has the option, when using the SENDSMESSAGE system call, of
specifying that it wants acknowledgment from the receiving task. Thus,
any task using the RECEIVESMESSAGE system call should check to see if an
acknowledgment has been requested. For details, see the description of
the RECEIVE$MESSAGE system call in Chapter 9.

As stated earlier, the object queue for a mailbox is processed in a
first-in/first-out manner. However, the task queue of a mailbox can be
either first-in/first-out or priority-based, with higher-priority tasks
toward the front of the queue. The queueing method to be used is
specified for each mailbox at the time of its creation.

HIGH PERFORMANCE OBJECT QUEUE

Directly associated with each mailbox is a high performance object

queue. A task, when creating a mailbox with CREATE$MAILBOX, can specify
the number of objects this queue can hold, from 4 to 60. By using this
high performance object queue, the task can greatly improve the
performance of SEND$MESSAGE and RECEIVE$MESSAGE when these calls actually
get or place objects on the queue (it has no effect when tasks are
already waiting at the task queue). When more objects than the high
performance queue can hold are queued at a mailbox, the objects overflow

into a slower queue whose size is limited only by the amount of memory in
the job containing the mailbox.

The high performance queue obtains its high speed because the Nucleus
allocates memory space for it as soon as the mailbox is created. This
memory space is permanently allocated to the mailbox, even if no objects
are .queued there. No space is allocated for the overflow portion of the

queue until the space is needed to contain objects. Thus the overflow
portion of the queue is slower.

The user must weigh performance against size when deciding how large to
make the high performance queue. Specifying a high performance queue
that is too large results in a waste of memory. Conversely, a smaller
queue that is constantly overflowing does not realize all possible
performance benefits. Appendix C lists the memory usage algorithm for
high performance queues. '

EXCHANGE MANAGEMENT

SYSTEM CALLS FOR MAILBOXES

The following system calls manipulate mailboxes:

° CREATESMAILBOX --- creates a mailbox and returns a token for it.

e DELETE$MAILBOX --- deletes a mailbox from the system.

. SEND$MESSAGE —--- sends an object to a mailbox.

e RECEIVESMESSAGE --- sends the calling task to a mailbox for an
object; the task has the option of waiting if no objects are
present.

SEMAPHORES

A semaphore is a custodian of abstract units. A task uses a semaphore
either by requesting a specific number of units from it via the
RECEIVESUNITS system call or by releasing a specific number of units to
it via the SENDSUNITS system call. Although these operations do not
support communication of data, they facilitate mutual exclusion,
synchronization, and resource allocation.

SEMAPHORE QUEUE

Semaphores have only one queue - a task queue. As is the case with
mailboxes, the task queue is either first-in/first-out or priority-
based. The queueing scheme to be used is specified for each semaphore at
the time of its creation.

SEMAPHORE MECHANICS

A semaphore might simultaneously have both tasks in its queue and units
in its custody. The allocation scheme used by semaphores is the reason
for this. That scheme is best understood by imagining that the semaphore
is trying, at all times, to satisfy the request of the task which is at
the front of the semaphore's task queue. Only when it can provide as
many units as the task requested does it award units, and then it does so
immediately.

When a task uses the CREATE$SEMAPHORE system call, it must supply two
values. One value specifies the initial number of units to be in the new
semaphore's custody. The other value sets an upper limit on the number
of units that the semaphore is allowed to keep at any given time. The
lower limit is automatically zero.

EXCHANGE MANAGEMENT

When a task requests units from a semaphore via the RECEIVE$UNITS system
call, the request must be within the specified maximum for that
semaphore; otherwise, the request is invalid and causes an ESLIMIT
exceptional condition. If a task's request for units is valid and both

e the size of the request is within the semaphore's current supply
of units and

e the task is - or would be if queued - at the front of the
semaphore's task queue,

then the request is granted immediately and the task remains ready.
Otherwise, one of the following applies:

° The task, in its request, elects to wait. It is placed in the
semaphore's task queue and is put to sleep. If the designated
waiting period elapses before the task gets its requested units,
the task is made ready and receives an ES$TIME exceptional
condition.

° The task is not willing to wait. It remains ready and receives
an E$TIME exceptional condition.

Suppose, for example, that two tasks, A and B, are waiting at a
semaphore, with A at the front of the queue. The semaphore has no units,
A wants 3 units, and B wants 1 unit. The following three separate cases
illustrate the mechanics of the semaphore:

e If the semaphore is sent 2 units, both A and B remain asleep in
the semaphore's queue. Note that B's modest request is not
satisfied because A is ahead of B in the queue.

° If, instead, the semaphore is sent 3 units, A receives the units
and awakens, while B remains asleep in the queue.

e If, instead, the semaphore is sent 4 units, A and B both receive
their requested units and are awakened. A is awakened first.

When a task sends units to a semaphore, the task remains ready. Sending
units to a semaphore causes an E$LIMIT exceptional condition if it pushes
the semaphore's supply above the designated maximum. The number of units
in the custody of the semaphore remains unchanged.

NOTE

It is possible that a task sending
units to a semaphore can be preempted
by a higher priority task becoming
ready as a result of getting its
requested units.

EXCHANGE MANAGEMENT

SYSTEM CALLS FOR SEMAPHORES

The following system calls manipulate semaphores:

) CREATE$SEMAPHORE --- creates a semaphore and returns a token for
it.

e DELETE$SEMAPHORE --- deletes a semaphore from the system.

e SENDSUNITS —--- adds a specific number of units to the supply of a
semaphore.

e RECEIVESUNITS --- asks for a specific number of units from a
semaphore.

4-5

CHAPTER 5. MEMORY MANAGEMENT

Occasionally a task needs additional memory, that is, memory not yet
allocated in its job. By using Nucleus system calls for allocating and
deallocating memory, tasks can usually satisfy their memory needs.

SEGMENTS

Allocated memory is treated as a collection of segments. A segment is a
contiguous sequence of l6-byte paragraphs, with its starting (base)
address evenly divisible by 16. The base address functions as the token
for the segment. The Nucleus maintains, as attributes, the base address
and the length in bytes of each segment.

When a task needs a segment, it can request one of the desired length via
the CREATE$SEGMENT system call. If enough memory is available, the
Nucleus returns a token for the segment.

NOTE

The token of a segment can be used as
the base portion of a pointer to the
segment. Thus, the token can be used
as a base address (as when writing a
message in the segment) or as an
object reference (as when sending the
segment-with-message to a mailbox).

MEMORY POOLS

A memory pool is the amount of memory available to a job and its
descendents. Each job has a memory pool. When a job is created, the
memory for its pool is allocated from the pool of its parent job. Thus,
there is effectively a tree-structured hierarchy of memory pools,
identical in structure to the hierarchy of jobs. Memory that a job
borrows from its parent remains in the pool of the parent as well as
being in the pool of the child. Such memory, however, is available for
use only by tasks in the child job, and not by tasks in the parent job.
Figure 5-1 illustrates the relationship between the job and memory
hierarchies. In the figure, the pool sizes shown are actually the
maximum sizes of those pools.

5-1

MEMORY MANAGEMENT

JOB A POOL A

POOL POOL
B c

POOL
D

O

JOB B JOB C

JOB D

Figure 5-1. Comparison of Job and Memory Hierarchies

CONTROLLING POOL SIZE

Two parameters, pool$min and poolSmax, of the CREATE$JOB system call,
dictate the range of sizes (in 16-byte paragraphs) of a new job's memory
pool. Initially, the pool size is equal to pool$min, the pool minimum.
Memory allocated to tasks in the job is still considered to be in the
job's pool. A task needing to know about its job's pool may use the
GET$POOLSATTRIB system call to obtain pool$min, pool$max, the initial
pool size, the number of paragraphs currently available, and the number
of paragraphs currently allocated.

A task may alter the pool minimum attribute for its job by means of the
SET$POOLSMIN system call; poolSmin must lie in the range from 0 to
pool$max, the pool maximum. If a subsequent call to SET$POOLSMIN
increases the pool's minimum size, and the current pool size is less than
the new minimum, no memory is borrowed immediately from the parent job.
Rather, memory is automatically borrowed as it is requested by tasks in
the job, until the new minimum is reached. At that time, the new value

of the pool minimum attribute becomes a lower bound for the job's pool
size.

MEMORY MANAGEMENT

MOVEMENT OF MEMORY BETWEEN JOBS

When a task tries to create a segment, and the unallocated part of its
job's pool is not sufficient to satisfy the request, the Nucleus tries to
borrow more memory from the job's parent (and then, if necessary, from
its parent's parent, and so on). Such borrowing increases the pool size
of the borrowing job and is thus restricted by the pool maximum attribute
of the borrowing job.

When a job is deleted, the memory in its pool becomes unallocated, and
access to it is given back to the parent job. The smallest contiguous
piece of memory that a job may borrow from its parent is a configuration
parameter. The subject of configuration is covered in the iRMX 86
CONFIGURATION GUIDE.

Observe that, if a job has equal pool minimum and pool maximum
attributes, then its pool is fixed at that common value. This means
that, once it has this amount, the job may not borrow memory from its
parent.

MEMORY ALLOCATION

The memory pool of a job consists of two classes of memory: allocated
and unallocated. Memory in a job is allocated if it has been requested
by tasks in the job or if it is on loan to a child job. Otherwise, it is
unallocated. :

The Nucleus borrows small amounts of memory from a job's pool each time a
task in that job creates an object. This memory is needed for bookkeeping
purposes. When the object is deleted, the borrowed memory is returned to
the pool. Appendix C lists these memory requirements.

When a task no longer needs a segment, it can return the segment to the

unallocated part of the job's pool by using the DELETE$SEGMENT system
call. Figure 5-2 shows how memory "moves."

5-3

MEMORY MANAGEMENT

PARENT JOB’S POOL

- A ADELETES$-A DELETESSEGMENT
sggeres § omeresaon e fomeed CUTREIRG
(BORROWING)
[CREATESSEGMENT 4
(NORMAL)
UNALLOCATED 4 ALLOCATED
MEMORY ‘DELETE$SEGMENT MEMORY
CHILD JOB’S POOL
Figure 5-2. Memory Movement Diagram
SYSTEM CALLS FOR SEGMENTS
The following system calls manipulate segments:
° CREATE$SEGMENT --- creates a segment and returns a token for it.
e DELETE$SEGMENT --- returns a segment to the pool from which it
was allocated.
® GETS$SIZE --- returns the size, in bytes, of a segment.
e SET$POOLSMIN -~- enables a task to change the pool minimum
attribute of its job's pool.
.

GETSPOOLSATTRIB —--- returns the following memory pool attributes
of the calling task's job: pool minimum, pool maximum, initial

size, number of allocated paragraphs, and number of available
paragraphs,

CHAPTER 6. OBJECT MANAGEMENT

A few iRMX 86 Nucleus system calls apply to all objects. These system
calls allow tasks to inquire about an object's type and to use object
directories.

INQUIRING ABOUT OBJECT TYPES

The GET$TYPE system call enables a task to present a token to the Nucleus
and get an object's type code in return. (Type codes for Nucleus objects
are listed in Appendix B.) This is useful, for example, when a task is
expecting to receive objects of several different types. With the
object's type code, the task can use the appropriate system calls for the
object.

USING OBJECT DIRECTORIES

Each job has its own object directory. An entry in an object directory
consists of a token for an object and the object name. The name contains
from one to twelve characters, where a character is a one-byte value
(from O to OFFH). Such a feature is often needed because some tasks
might only know some objects by their associated names.

By using the LOOKUP$SOBJECT system call, a task can present the name of an
object to the Nucleus. The Nucleus consults the object directory
corresponding to the specified job and, if the object has been cataloged
there, returns the token.

NOTE

In object directories, upper and lower
case alphabetic characters are treated
as being different. The Nucleus sees
the name as just a string of bytes. It
does not interpret these bytes as ASCII
characters.

If the object has not yet been cataloged, and the task is not willing to
wait, the task remains ready and receives an E$TIME exceptional
condition. However, if the task is willing to wait, it is put to sleep;
there are two possibilities:

e If the designated waiting period elapses before the task gets its
requested token, the task is made ready and receives an E$TIME
exceptional condition (see Chapter 7).

OBJECT MANAGEMENT

° If the task gets its requested token within the designated
waiting period, it is made ready with no exceptional condition.
This case is possible because another task can, while the
requesting task is waiting, catalog the appropriate entry in the
specified object directory.

When a task wants to share an object with the other tasks in a job (not
necessarily its own job), it can use the CATALOG$OBJECT system call to
put the object in that job's object directory. Typically, this is done
by the creator of the object. Likewise, entries can be removed from a
directory by the UNCATALOGSOBJECT system call.

What is required, when using an object directory, is the token of the job
whose directory is to be used. The root job's object directory, called
the root object directory, is special in that its token is easily
accessible. Any task can call the GET$TASKSTOKENS system call to obtain
the token of the root job.

SYSTEM CALLS FOR ANY OBJECTS

The following system calls manipulate objects:

® CATALOG$OBJECT --- places an object in an object directory.

e UNCATALOGSOBJECT —--- removes an object from an object directory.

e LOOKUPSOBJECT --- accepts a cataloged name of an object and
returns a token for it.

® GETSTYPE --- accepts a token for an object and returns its type
code.

6-2

CHAPTER 7. EXCEPTIONAL CONDITION MANAGEMENT

When a task invokes an iRMX 86 system call, the results are sometimes not
what the task is trying to achieve. For example, suppose a task requests
memory that is not available or uses an invalid token as a parameter. In
such cases, the system must inform the task that an error occurred.
Whenever a task makes a system call, the means of communicating the
success or failure of the call is the condition code.

TYPES OF EXCEPTIONAL CONDITIONS

Table 7-1 is a list of Nucleus conditions and their codes. The
conditions that represent failure are called exceptional and are
classified as programmer errors or envirommental conditions. An
exceptional condition that is preventable by the calling task is a
programmer error. ILn contrast, exceptional conditions due to
environmental circumstances of which the task could have no awareness are
considered environmental conditions.

Table 7-1 lists the possible conditions, with their associated numeric
codes and mnemonics. Values not used as numeric codes are reserved.

EXCEPTION HANDLERS

The iRMX 86 Nucleus supports exception handlers. Their purpose is to
deal with the errors that tasks encounter in making system calls. How an
exception handler deals with an exceptional condition is a matter of
programmer discretion. In general, a handler performs one of the
following actions:

e Logs the error.

. Deletes or suspends the task that erred.

. Ignores the error. If this option is taken, the system continues
as if no error had occurred. Continuing under such circumstances

is generally unwise, however.

An exception handler is written as a procedure with four parameters
passed in the following order:

o The condition code (WORD).

® A code (BYTE) indicating which parameter, if any, was faulty in
the call (1 for first, 2 for second, etc., 0 if none).

7-1

EXCEPTIONAL CONDITION MANAGEMENT

® A reserved (WORD) parameter.

e A second reserved (WORD) parameter.

ASSIGNING AN EXCEPTION HANDLER

A task may use the SET$SEXCEPTION$SHANDLER system call to declare its own
exception handler. Otherwise, the task inherits the exception handler of
its job. A job can receive its own exception handler at the time of its
creation. If it doesn't, the job inherits the system exception handler.

Thus, the Nucleus can always find an exception handler for the running
task.

A system exception handler is provided as part of the iRMX 86 Operating
System. Depending on a configuration option, it either deletes or
suspends any task on whose behalf it is invoked. The iRMX 86
CONFIGURATION GUIDE describes this configuration option.

Users wanting to write their own exception handlers should compile them
under the PL/M-86 LARGE control.

Any task can have the Debugger as its exception handler; see the
description in Chapter 9 of the SET$EXCEPTION$HANDLER system call for
instructions on how to dynamically make such an assignment.
Alternatively, the Debugger or any other routine can be made the system
exception handler statically; see the iRMX 86 CONFIGURATION GUIDE for
information on how to do this.

INVOKING AN EXCEPTION HANDLER

An exception handler normally receives control when an exceptional
condition occurs. However, when a task encounters an exceptional
condition, it need not always have control passed to its exception
handler. The factor that determines whether control passes to the
exception handler is the task's exception mode. This attribute has four
possible values, each of which specifies the circumstances under which

the exception handler is to get control in the event of an exceptional
condition. These circumstances are:

e Programmer errors onmly.

¢ Environmental conditions only.

e All exceptional conditionms.

e No exceptional conditions.
When the Nucleus detects that a task haé caused an exceptional condition
in making a system call, it compares the type of the condition with the

calling task's exception mode. If a transfer of control is indicated,
the Nucleus passes control to the exception handler on behalf of the

7-2

EXCEPTIONAL CONDITION MANAGEMENT

task. The exception handler then deals with the problem, after which
control returns to the task, unless the exception handler deleted the
task. While the exception handler is executing, the errant task is still
regarded by the Nucleus to be the running task.

When a task is created, its exception mode is set to its job's default

exception mode. The task can change its exception handler and exception
mode attributes by using the SETSEXCEPTIONSHANDLER system call.

HANDLING EXCEPTIONS IN-LINE

If a task's exception mode attribute does not direct the Nucleus to
transfer control to the task's exception handler, the responsibility for
dealing with an error falls upon the task.

Each system call has as its last parameter a POINTER to a WORD. After a
system call, the Nucleus returns the resulting condition code to this
WORD. By checking this WORD after each system call, a task can ascertain
whether the call was successful. (See Table 7-1 for condition codes.)

If the call was not successful, the task can learn which exceptional
condition it caused. This information can sometimes enable the task to
recover. In other cases more information is needed.

If a system call returns an exception code to indicate an unsuccessful
call, all other output parameters of that system call are undefined.

NOTE

If an exceptional condition is caused
by an invalid parameter, an exception
handler, which is passed the parameter
number of the first invalid parameter,
should handle the condition.

7-3

EXCEPTIONAL CONDITION MANAGEMENT

Table 7-1. Conditions and Their Codes

NUMERIC CODE

CATEGORY/
MNEMONIC MEANING HEX | DECIMAL
Normal
E$OK The most recent system call was
successful., OH 0
Exceptional
Environmental
Conditions
ESTIME A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied. 1H 1
ESMEM There is not sufficient memory avail-
able to satisfy a task's request. 2H 2
ESLIMIT A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit. 4H 4
E$CONTEXT A system call was issued out of context.
or the Nucleus was asked to perform an
impossible operation. 5H 5
ESEXIST A token parameter has a value which is
not the token of an existing object. 6H 6
E$STATE A task attempted an operation which
would have caused an impossible
transition of a task's state. 7H 7
ESNOT$CON- The system call being attempted is not
FIGURED not part of the present software
configuration. 8H 8
ESINTER- An interrupt task has accumulated the
RUPT$SAT- maximum allowable amount of SIGNAL$IN-
URATION TERRUPT requests. 9H 9
E$INTER- An interrupt task has accumulated more
RUPTS$OV- than the maximum allowable amount of
ERFLOW SIGNALSINTERRUPT requests. 0AH 10

EXCEPTIONAL CONDITION MANAGEMENT

Table 7-1. Conditions and Their Codes (continued)

NUMERIC CODE
CATEGORY/
MNEMONIC MEANING HEX DECIMAL
Programmer
Errors
" E$ZEROS$- A task attempted to divide by zero.

DIVIDE 8000H 32768
ESOVERFLOW An overflow interrupt occurred. 8001H 32769
ESTYPE A token parameter referred to an

existing object that is not of the
required type. 8002H 32770
ES$PARAM A parameter which is neither a token
nor an offset has an illegal value. 8004H 32772
E$BADS$CALL A task wrote over the interface
library or attempted a restricted
software interrupt. - 8005H 32773
SYSTEM CALLS FOR EXCEPTION HANDLERS
The following system calls manipulate exception handlers:
e SETSEXCEPTIONSHANDLER —-- sets the exception handler and

exception mode attributes of the calling task.

. GETSEXCEPTIONSHANDLER —--- returns to the calling task the current
values of its exception handler and exception mode attributes.

CHAPTER 8. INTERRUPT MANAGEMENT

Interrupts and interrupt processing are central to real-time computing.
External events occur asynchronously with respect to the internal
workings of an iRMX 86 application system. An interrupt, signalling the
occurrence of an external event, triggers an implicit "call" to a
location specified in a section of memory known as the interrupt vector
table. From there, control is redirected to an interrupt procedure
called an interrupt handler. At this point, one of two things happens.
If handling the interrupt takes little time and requires no system calls,
other than certain interrupt-related system calls, the interrupt handler
processes the interrupt. Otherwise, the interrupt handler invokes an
interrupt task which deals with the interrupt. After the interrupt has
been serviced, control returns to the ready application task with highest
priority. '

INTERRUPT MECHANISMS

There are three major concepts in interrupt processing: the interrupt
vector table, interrupt levels, and disabling interrupt levels.

THE INTERRUPT VECTOR TABLE

The interrupt vector table is composed of 256 vectors. The vectors are
numbered 0 to 255. A number of the interrupt vectors are reserved and
therefore are not available to be defined by user tasks. The vectors are
allocated as follows:

0 divide by zero
1 single step (used by the iSBC 957A package)
2 non-maskable interrupt (used by the iSBC 957A package)
3 one byte interrupt instruction (used by the iRMX 86
Debugger and the iSBC 957A package)
4 interrupt on overflow (used by the hardware)
5 runtime array bounds error (used by compilers and
assembler)
6-31 reserved
32 reserved for iRMX 86 Nucleus
33-55 reserved
56-63 reserved for external interrupts (8259A master levels)
64-127: reserved for external interrupts (8259A slave levels)
128-183 unused (available to users)
184-190 reserved for the Nucleus
191 reserved for the iRMX 86 Debugger
192-223 reserved
224-255 described in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL

8-1

INTERRUPT MANAGEMENT

INTERRUPT LEVELS

External interrupts are funneled through hardware interrupt controllers
(such as the 8259A PIC). An individual 8259A PIC can manage interrupts
from as many as eight external sources. However, the iRMX 86 operating
system also supports an expanded (or cascaded) enviromment in which up to
seven input lines of one 8259A PIC (the master) are connected to other
8259A PICs (the slaves). The eighth input line from the master 8259A PIC
must be connected directly to the system clock. Since each of the slaves
can manage eight interrupts, this allows the operating system to manage
‘interrupts from as many as 56 external sources plus the system clock.

The interrupt lines of the master 8259A PIC and the interrupt lines of
the slave 8259A PICs are associated with interrupt levels as shown in
Figure 8-1. The master interrupt levels, numbered MO through M7,
correspond to interrupt vectors 56 through 63, respectively. The slave
interrupt levels, numbered x0 to x7 (where x ranges from 0 to 7)
correspond to interrupt vectors 64 through 127, respectively.

There are two restrictions you must obey when assigning interrupt levels
to external sources. They are:

) You must assign the system clock to a master interrupt level.
The level number is a configuration option and is described in
the iRMX 86 CONFIGURATION GUIDE.

e You cannot connect a slave PIC to master level MO if an
interrupting device connects directly to any other master level,
Thus, if you assign the system clock to an interrupt level other
than MO, you can connect at most six slave PICs to your master
PIC. If you assign the system clock to level MO, you can connect
seven slave PICs.

Regardless of the master level chosen for the system clock, the slave
levels that correspond to that master level cannot be used. They do not
correspond to any 8259A PIC interrupt lines. (In general, when any
interrupt line of the master 8259A PIC connects directly to an
interrupting device instead of to a slave PIC, the master interrupt level
is used. The associated slave levels do not correspond to any interrupt
lines.)

DISABLING INTERRUPTS

Occasionally you want to prevent interrupt signals from causing an
immediate interrupt. For example, it is desirable to prevent low
priority interrupts from interfering with the servicing of a high
priority interrupt. In the iRMX 86 Operating System, each interrupt
level can be disabled. In some circumstances, described later, the
Nucleus disables levels. Tasks can also disable and enable levels by
means of the DISABLE and ENABLE system calls. The master level that you
reserve for the system clock should not be disabled or enabled.

INTERRUPT MANAGEMENT

SYSTEM
CLOCK IS
USUALLY
HERE

SLAVE 1
8259A PIC
levels T
1017 -T
MASTER
:8259A -PIC SLAVE 2
) 8259A PIC
Mo levels 1
Vi
M1 — 20-27 =
M2 -
M3 T
M4 ~— o
M5 —— -T-
M6 =1~ i B
M7 —frmm ¥]
*
[]
SLAVE 7
8259A PIC
levels
70-77

T O |

Figure 8-1. 8259A PIC Cascaded Interrupt Levels

8-3

INTERRUPT MANAGEMENT

If an interrupt signal arrives at a level that is enabled, the interrupt
is recognized by the processor and control goes immediately to the
interrupt handler for that level. Otherwise, the level is disabled and
the interrupt signal is blocked until the level is enabled, at which time
the signal is recognized by the CPU. However, if the signal is no longer
emanating from its source, it is not recognized and the interrupt is not
handled.

There are four ways in which an interrupt level can be disabled.

e A task can mask the level by using the DISABLE system call; later
the task can unmask the level by using the ENABLE system call.

e The Nucleus disables certain interrupt levels, depending on the
priority of the running task. The relationship between task
priorities and disabled levels is given in Table 8-1.

e When a task makes a SETSINTERRUPT system call and designates

- itself as an interrupt task for a particular level, it can
specify a queueing limit for unserviced interrupts. The
interrupt level is disabled when the limit is reached.

. When a task makes a RESET$INTERRUPT system call to cancel the
assignment of an interrupt handler to a specified level, the
interrupt level is disabled.

NOTE

A task should never use the PL/M-86
DISABLE statement to disable processor
interrupts. The Nucleus does not
guarantee that a level so disabled will
still be disabled after the task makes
a Nucleus system call.

8~4

INTERRUPT MANAGEMENT

Table 8-1. Interrupt Levels Disabled for Running Task

Task Priority Disabled Levels
Slave Levels Master Levels

0-2 00 - 77 MO - M7
3-4 01 - 77 M1 - M7
5-6 02 - 77 M1 - M7
7-8 03 - 77 Ml - M7
9-10 04 - 77 M1 - M7
11-12 05 - 77 M1 - M7
13-14 06 - 77 M1 - M7
15-16 07 - 77 Ml - M7
17-18 10 - 77 M1l - M7
19-20 11 - 77 M2 - M7
21-22 12 - 77 M2 - M7
23-24 13 - 77 M2 - M7
25-26 14 - 77 M2 - M7
27-28 15 - 77 M2 - M7
29-30 16 - 77 M2 - M7
31-32 17 - 77 M2 - M7
33-34 20 - 77 M3 - M7
35-36 21 - 77 M3 - M7
37-38 22 - 77 M3 - M7
39-40 23 - 77 M3 - M7
41-42 24 - 77 M3 - M7
43-44 25 - 77 M3 - M7
45-46 26 - 77 M3 - M7
47-48 27 - 77 M3 - M7
49-50 30 - 77 M4 - M7
51-52 31 - 77 M4 - M7
53-54 32 - 77 M4 - M7
55-56 33 - 77 M4 - M7
57-58 34 - 77 M4 - M7
59-60 35 - 77 M4 - M7
61-62 36 - 77 M4 - M7
63-64 37 - 77 M4 - M7
65-66 40 - 77 M5 - M7
67-68 41 - 77 M5 - M7
69-70 42 - 77 M5 - M7
71-72 43 - 77 M5 - M7
73-74 44 - 77 M5 - M7
75-76 45 - 77 M5 - M7
77-78 46 - 77 M5 - M7
79-80 47 - 77 M5 - M7
81-82 50 - 77 M6 - M7
83-84 51 - 77 M6 - M7
85-86 52 - 77 M6 - M7

INTERRUPT MANAGEMENT

Table 8-1. Interrupt Levels Disabled for Running Task (continued)

Task Priority ' . Disabled Levels
Slave Levels | Master Levels

87-88 53 = 77 I M6 - M7
89-90 54 - 77 M6 - M7
91-92 ; 55 - 77 : M6 - M7
93-94 , 56 - 77 ~ M6 - M7
95~-96 { 57 = 77 M6 - M7
97-98 : 60 - 77 M6 - M7
99-100 : 61 - 77 : M7
101-102 : 62 - 77 M7
103-104 : 63 - 77 M7
105-106 : 64 — 77 : M7
107-108 : 65 - 77 M7
109-110 Lo 66 - 77 ‘ M7
111-112 , 67 - 77 M7
113-114 70 - 77 | M7
115-116 71 = 77 None
117-118 ; 72 - 77 None
119-120 : 73 - 77 None
121-122 ‘ T4 = 77 None
123-124 75 - 77 None
125-126 ' 76 - 77 : None
127-128 77 , None
129-255 ‘ None None

INTERRUPT HANDLERS AND INTERRUPT TASKS

Whether an interrupt handler services an interrupt level by itself or
invokes an interrupt task to service the interrupt depends on two factors:

e the kinds of system calls needed
® the amount of time required

Regarding the first factor, interrupt handlers can make only the

B ENTER$INTERRUPT, EXITS$INTERRUPT, GET$LEVEL, DISABLE and SIGNALS$INTERRUPT
system calls. If the handler needs other system calls in order to
service the interrupt, it must invoke an interrupt task.

Regarding the second factor, an interrupt handler should always invoke an
interrupt task unless the handler can service interrupts quickly. This
is because an interrupt signal disables all interrupts, and they remain
disabled until the interrupt handler either services the interrupt or
invokes an interrupt task. Invoking an interrupt task allows higher

B priority interrupts (and in some cases, the same priority interrupts) to
be accepted. ‘

8-6

INTERRUPT MANAGEMENT

SETTING UP AN INTERRUPT HANDLER

Interrupt handlers are generally written as PL/M-86 interrupt procedures,
but can be written in assembly language. If an interrupt handler is

written in assembly language, it must save and restore all register
values, as noted later.

The SETSINTERRUPT system call binds an interrupt handler and, optionally,
an interrupt task to an interrupt level. It does this as follows:

. One of the SET$INTERRUPT parameters, the interruptS$handler
parameter, specifies the starting address of the interrupt
handler. SET$INTERRUPT binds the handler to a level by placing
this starting address into the interrupt vector table at the
position that corresponds to the level. When an interrupt of
that level occurs, control automatically transfers through the
vector table to the handler.

° Another parameter in SET$INTERRUPT, the interrupt$task$flag
parameter, determines whether an interrupt task is associated
with the level. If the interrupt$task$flay parameter is set to
zero, there is no interrupt task for the specified level.
Otherwise, the calling task becomes the interrupt task for the
level.

Any desired value can be specified as the data segment base address for
an interrupt handler by means of the interrupt$handler$ds parameter in
SET$INTERRUPT. The interrupt handler can later cause this value to be
loaded into the DS register by calling ENTERSINTERRUPT. This feature
allows an interrupt handler and an interrupt task to share data areas.

When an iRMX 86 application system starts up, all interrupt levels are
disabled. When SET$INTERRUPT binds an interrupt handler but not an
interrupt task to a level, the level is enabled. If, instead, there is
an interrupt task, the level is not enabled until that task makes a
WAITSINTERRUPT system call (described later.) An interrupt task should
not enable its own level before making its first call to WAITSINTERRUPT.

A RESETS$INTERRUPT system call cancels the bond between an interrupt level
and its interrupt handler. The call also disables the specified level.
If there is an interrupt task for the level, RESET$INTERRUPT deletes 1it.
DELETESTASK does not delete interrupt tasks.

USING AN INTERRUPT HANDLER

If an interrupt handler is to service interrupts for a given level
without invoking an interrupt task, the handler must assume one of two

forms, depending on whether it needs to have the Nucleus set up its data
segment base address. '

8-7

INTERRUPT MANAGEMENT

If the interrupt handler does not need to access the data segment or if
it contains its data segment base address in its.code, then it should
perform the following functions in the following order:

If in assembly language, save all register contents
Service the interrupt

Call EXITSINTERRUPT

If in assembly language, restore all register contents
Return

The call to EXIT$INTERRUPT sends an end-of-interrupt signal to the
hardware.

If the interrupt handler wants the Nucleus to load a data segment base
address (as specified in an earlier call to SET$INTERRUPT) into the DS
register, then it should perform the following functions in the following
order:

If in assembly language, save all register contents
Optionally, do some interrupt servicing

Call ENTERSINTERRUPT

Complete interrupt servicing.

Call EXITSINTERRUPT

If in assembly language, restore all register contents
Return

The call to ENTERSINTERRUPT tells the Nucleus to load the interrupt
handler's data segment base address into the DS register. Because
PL/M-86 makes use of the data segment, as specified by the contents of
the DS register, loading a new value into this register serves to protect
the data segment of the interrupted task.

USING AN INTERRUPT TASK

If there is both an interrupt handler and an interrupt task associated
with a level, the interrupt handler invokes the interrupt task by making
a SIGNAL$SINTERRUPT system call. If a level has only an interrupt
handler, however, the handler may not call SIGNAL$SINTERRUPT.

If an interrupt handler invokes an interrupt task, the handler must
perform the following functions in the following order:

If in assembly language, save the register contents.
Optionally, call ENTERINTERRUPT.

Optionally, begin servicing the interrupt without system
calls.

Call SIGNALSINTERRUPT. :

If in assembly language, restore the register contents.
Return

The call to SIGNALSINTERRUPT starts up the interrupt task and enables
higher (and possibly equal) priority interrupts.

INTERRUPT MANAGEMENT

If used, the call to ENTER$INTERRUPT sets up a new DS value for the
interrupt handler. If you want the interrupt handler to have the same DS
value as that used by the interrupt task, so the handler can pass data to
the task, follow the advice given in the description of the
interrupt$handler$ds parameter of SETSINTERRUPT in Chapter 9.

An interrupt handler executes in the environment of the interrupted
task. The interrupt task, however, like any other task, has its own
environment.

An interrupt task must perform the following functions in the following
order, although the first two functions may be interchanged:

Call SETSINTERRUPT.
Do initialization.
Do forever;
Call WAITSINTERRUPT.
Service the interrupt (system calls allowed).
End;

An interrupt task, once initialized, is always in one of two modes.
Either it is servicing an interrupt or it is waiting for notification of
an interrupt.

When a task becomes an interrupt task by calling SET$INTERRUPT, the
Nucleus assigns a priority to it, according to the level that the task is
to service. Table 8-2 shows the relationship between levels and
interrupt task priorities.

NOTES

The priority that the Nucleus assigns
to an interrupt task might exceed the
maximum priority attribute of the job
that contains that task. If this
occurs, you get an exceptional
condition. You should make sure this
problem doesn't occur by creating the
job with an appropriately high maximum
priority attribute.

Because the automatic filling of the
interrupt vector is overridden by the
Nucleus, the NOINTVECTOR control should
be used when compiling the interrupt
handler.

8-9

INTERRUPT MANAGEMENT

Table 8-2., The Relationship Between External Levels and
Internal Task Priorities
INTERRUPT INTERRUPT INTERRUPT
TASK TASK TASK
LEVEL PRIORITY LEVEL PRIORITY LEVEL PRIORITY

MO 18 20 36 50 84
M1 34 21 38 51 86
M2 50 22 40 52 88
M3 66 23 42 53 90
M4 82 24 44 54 92
M5 98 25 46 55 94
M6 114 26 48 56 96
M7 130 27 50 57 98
00 4 30 52 60 100
01 6 31 54 61 102
02 8 32 56 62 104
03 10 33 58 63 106
04 12 34 60 64 108
05 14 35 62 65 110
06 16 36 64 66 112
07 18 37 66 67 114
10 20 40 68 70 116
11 22 41 70 71 118
12 24 42 72 72 120
13 26 43 74 73 122
14 28 44 76 74 124
15 30 45 78 75 126
16 32 46 80 76 128
17 34 47 82 77 130

Figure 8-2 illustrates the two interrupt servicing patterns and their
relationships.

8-10

INTERRUPT MANAGEMENT

INTERRUPT OCCURS AND
INTERRUPT HANDLER
GETS CONTROL

YES

]

CALL
ENTERSINTERRUPT

]

INTERRUPT HANDLER
DOES SOME
INTERRUPT SERVICING

NEED

NO TO INVOKE YES

INTERRUPT

TASK
?

INTERRUPT
HANDLER CALLS
EXIT$SINTERRUPT

1

INTERRUPT
HANDLER CALLS
SIGNALS$INTERRUPT

|

INTERRUPT TASK
COMPLETES
INTERRUPT
SERVICING

INTERRUPT TASK
CALLS
WAITSINTERRUPT

| . CONTROL RETURNS TO AN\.L J
APPLICATION TASK J -

Figure 8-2. Flow Chart of Interrupt Handling

Note that an interrupt handler might call an interrupt task sometimes yet
not call it at other times. An example is an interrupt handler that puts
characters entered at a terminal into a buffer. Whenever a character is
received, the interrupt handler is invoked and puts the character in the
line buffer. If the characater is an end-of-line character, or if the
character count maintained by the interrupt handler indicates that the
buffer is full, the interrupt handler calls its interrupt task to process
the contents of the buffer. Otherwise, the interrupt handler calls
EXIT$SINTERRUPT and then returns control to application tasks. The next
section discusses this kind of interrupt servicing in more detail.

USING MULTIPLE BUFFERS TO SERVICE INTERRUPTS

In certain instances, as illustrated in Figure 8-2, both an interrupt
handler and an interrupt task are involved in servicing interrupts. The
handler performs the simple, less time-consuming functions and then
signals an interrupt task to perform more complicated functions. In

8-11

INTERRUPT MANAGEMENT

doing this, the handler and the task usually exchange information by
sharing data buffers. The handler places information into the buffers
and the task uses that information. The number of buffers used
determines when and how interrupts should be disabled.

Many users require only single buffering in their interrupt servicing
routines. These users do not have to read the remaining paragraphs in
this section. They should just ensure that their interrupt tasks specify
a value of 1 for the interrupt$task$flag parameter in the call to
SET$INTERRUPT. However, users who require multiple buffering for their
interrupt servicing routines should continue reading this section.

Single Buffer Example

An example of a single buffer interrupt service mechanism is an interrupt
handler that reads data from an external device character by character
and places the characters into a buffer. When the buffer gets full, the
handler calls SIGNAL$INTERRUPT to signal an interrupt task to further
process the data. Since there is only one buffer for the data, the
interrupt level associated with the interrupt task must be disabled while
the task is processing. This prevents the interrupt handler from
destroying the contents of the buffer by continuing to place data into an
already full buffer. Figure 8-3 illustrates this situation.

INTERRUPT
HANDLER

- -
(D) PLACES DATA ——————— |@WHEN BUFFER IS FULL,
INTO BUFFER - HANDLER CALLS
—_ SIGNALSINTERRUPT
TO START TASK

INTERRUPT
TASK

INTERRUPT

(3UPON COMPLETION,
- TASK CALLS
“WAITSINTERRUPT

Figure 8-3. Single-Buffer Interrupt Servicing

8-12

INTERRUPT MANAGEMENT

Multiple Buffer Example

Now suppose that the interrupt handler and the interrupt task provide the
same functions as in the first example, but use multiple buffers. 1In
this case, the interrupt level associated with the task does not always
have to be disabled while the task runs. Instead, the task can process a
full buffer while the handler continues to accept interrupts. When the
handler fills a buffer, it calls SIGNALSINTERRUPT to start the interrupt
task, as in the first example. However, because there are multiple
buffers, the interrupt level is not disabled. Instead, the handler

continues to accept interrupts, placing the data into the next empty
buffer.

While this is going on, the interrupt task processes the full buffer.
When the task completes the processing, it calls WAIT$INTERRUPT, to
indicate that it is ready to accept another SIGNALSINTERRUPT request
(another full buffer) and to indicate that the buffer it just finished
processing is available for reuse by the handler. Figure 8-4 illustrates
this multiple buffer situation.

BUFFERS

(® OBTAINS
: FULL BUFFER
.
I, - \\
/ \
o ' i
! INTERRUPT | le'{gl:‘FAlI{g
,,J\ TASK
Ve \ // AN
/ N - \

(2 WHEN FULL, CALLS
SIGNALSINTERRUPT ——
s ~

TO START TASK ON
FULL BUFFER '/ \

() STARTS FILLING
EMPTY BUFFER

\
[
INTERRUPT INTERRUPT CALLS INTERRUPT (B) PROCESSES
HANDLER TASK WAITSINTERRUPT ‘\ TASK) FULL BUFFER
TO WAIT FOR NEXT 7
FULL BUFFER PN ,

Fry

INTERRUPT

—

Figure 8-4. Multiple-Buffer Interrupt Servicing

8-13

INTERRUPT MANAGEMENT

Because the handler and the task are running somewhat independently, the
handler may fill a buffer and call SIGNALSINTERRUPT before the task has
finished processing the previous buffer. To prevent the SIGNAL$SINTERRUPT
request from becoming lost, the operating system maintains a count of
these requests. Each time the handler calls SIGNALSINTERRUPT, the count

is incremented by one. Each time the task calls WAITSINTERRUPT, the
count is decremented by one.

If the count is still greater than zero after the interrupt task calls
WAITSINTERRUPT, the task does not wait for the next SIGNALSINTERRUPT to
occur before resuming execution. Instead, it realizes that outstanding
requests exist and immediately starts processing the next request (the
next full buffer). Thus, with proper tuning, neither the interrupt task
nor the interrupt handler has to wait for the other. The interrupt
handler can continually respond to interrupts without having the task
disable the interrupt level. The interrupt task can continually process

full buffers of data without waiting for the handler to call
SIGNALSINTERRUPT.

Specifying the Count Limit

The interrupt task, when it initially calls SETSINTERRUPT, puts a limit
on the maximum number of outstanding SIGNALSINTERRUPT requests. The
interrupt$task$flag parameter specifies this limit. When the interrupt
handler calls SIGNALSINTERRUPT and increments the count to the limit, two
things happen. They are:

e The interrupt level is disabled, preventing the handler from

accepting further interrupts until the interrupt task makes its
next WAITSINTERRUPT call.

° The ESINTERRUPTSSATURATION condition code is returned by
SIGNALSINTERRUPT to the handler, to indicate that the limit has
been reached. This is an informative message only.

When the task calls WAITSINTERRUPT and decrements the count below the

limit, the interrupt level is enabled, allowing the handler to resume
accepting interrupts.

The task should always set the limit equal to the number of buffers that
the task and handler use. 1If the task sets the limit larger than the
number of buffers, the handler will accept interrupts when no buffers are
available and data will be lost. If the task sets the limit smaller than

the number of buffers, there will always be empty buffers and space will
be wasted.

For example, if one buffer is used, the task should set the limit to

one. In this case, the interrupt level is always disabled while the task
is processing the buffer. If two buffers are used, the task should set
the limit to two. Then, the handler can fill one buffer while the task
is processing the other. Additional buffers require correspondingly
higher limits. However, if the task sets the limit to zero, the
interrupt handler operates without an interrupt task.

8-14

INTERRUPT MANAGEMENT

NOTE

When an interrupt task sets the count
limit to one, SIGNALSINTERRUPT will
not return the ESINTERRUPT$SATURATION
condition code.

Table 8-3 illudtrates the situation described in this section. It shows
the actions of the handler and the task illustrated in Figure 8-3. The
table is broken up into three parts: actions of the interrupt handler,
actions of the interrupt task, and SIGNALSINTERRUPT count. The count
limit is set to two. The table shows the actions of both the handler and
the task through time, and the change in value of the count.

Table 8-3 documents two extreme conditions, labeled "A" and "B". At
position "A", the interrupt handler fills its last available buffer and
calls SIGNALSINTERRUPT to notify the task. However, at this point the
task is not finished processing the first buffer. The count is
incremented to the limit and interrupts are disabled until the task
finishes with the first buffer and calls WAIT$INTERRUPT.

At position "B", the opposite case exists. The task finishes processing
its buffer and calls WAITSINTERRUPT. However, the handler has not

processed enough interrupts to fill a buffer. The task must wait until
the handler calls SIGNALSINTERRUPT.

Table 8-3. Handler and Task Interraction through Time

SIGNALS
Interrupt Interrupt INTERRUPT
Handler Task Count
Time Call SETSINTERRUPT to estab- 0
lish handler and task for
level, setting count limit to 2.
Call WAITSINTERRUPT to wait 0

for first request from handler.
Intrpt '

S\ \U»| Process interrupt,
start filling first
buffer.

Intrpt
SN\ >| Process interrupt,
continue filling
first buffer.

INTERRUPT MANAGEMENT

Table 8-3. Handler and Task Interraction through Time (continued)
SIGNALS
Interrupt Interrupt INTERRUPT
Handler Task Count
Intrpt
J P Process interrupt.
Buffer is full. Call _
SIGNALSINTERRUPT. —Jpt- Start processing first full 1
buffer.
Intrpt
JXU\UP»| Process interrupt.
Start filling next
buffer.
Intrpt
Process interrupt.
Buffer is full. Call
@ SIGNALSINTERRUPT. — P 2
Count is at limit.
Interrupt level is
disabled.
Call WAITSINTERRUPT. Task 1
starts processing next
full buffer immediately
and returns empty buffer.
Interrupt level is enabled.
Intrpt
J\JSUP»| Process interrupt.
Start filling next
buffer.
Call WAITSINTERRUPT. No full 0
buffers are available. Task
waits for next request.
Intrpt
J\JS P Process interrupt.
Buffer is full. Call
SIGNALSINTERRUPT. —)= Start processing 1

next full buffer.

8-16

INTERRUPT MANAGEMENT

Enabling Interrupt Levels From Within a Task

In certain cases, an interrupt task may finish with a buffer of data
before it finishes its actual processing. An example of this is a task
that processes a buffer and then waits at a mailbox, possibly for a
message from a user terminal, before calling WAITSINTERRUPT. If there
are other buffers of data available to the handler (i.e. the count of
outstanding SIGNALSINTERRUPT requests has not reached the limit), this
does not present a problem. The handler can continue accepting
interrrupts and filling empty buffers. However, if the interrupt task is
processing the last available buffer (i.e. the count limit has been
‘reached), the interrupt handler cannot accept further interrupts, because
the interrupt level is disabled. This may be an undesirable situation if
the interrupt task takes a long time before calling WAIT$INTERRUPT.

To prevent this situation, the interrupt task can invoke the ENABLE
system call immediately after it finishes with the buffer, to enable its
associated interrupt level. This means that while the task engages in
its time-consuming activities the interrupt handler can accept further
interrupts and place the data into the buffer just released by the task.

However, if the interrupt handler fills the buffer and calls
SIGNALSINTERRUPT before the task calls WAITSINTERRUPT, the following
things occur:

e The count of outstanding SIGNALSINTERRUPT requests is
incremented, causing it to exceed the user-specified limit.

® An exception code, E$INTERRUPTSOVERFLOW, is returned to the
interrupt handler to indicate this overflow.

e The interrupt level is again disabled. It cannot be enabled
again until the count falls to or below the limit.

If the interrupt task calls ENABLE when the interrupt level is enabled or
when the count is equal to the limit, nothing happens and no exception
code is returned. However, if the interrupt task tries to enable the
interrupt level when the count is greater than the limit, the ENABLE
system call returns the E$CONTEXT exception code.

If a task other than an interrupt task tries to enable the level, one of
three things can happen:

. If the level is already enabled, the ENABLE system call returns
the E$CONTEXT condition code.

° If the non-interrupt task tries to enable the level (presumably
following a DISABLE) and the interrupt task is not running (that
is, the interrupt task has called WAIT$INTERRUPT and is waiting

for a service request), the level is enabled immediately.

e If the interrupt task is running, the enable does not take effect
until the interrupt task next invokes WAIT$INTERRUPT.

8-17

INTERRUPT MANAGEMENT

HANDLING SPURIOUS INTERRUPTS

When an 8259A PIC receives a signal from an interrupting device, it
informs the processor of the interrupt level. 1If the interrupting device
sends interrupt signals of short duratiom (that is, the input line is
active for very short periods), the interrupt signal might be gone when
the PIC tries to determine the interrupt level. If this happens, the PIC

cannot determine the interrupt level and thus treats the interrupt as a
spurious interrupt.

Each time the PIC detects a spurious interrupt, it responds as if a level
7 interrupt had occurred. So, if a master PIC detects a spurious
interrupt, it responds as if the interrupt occurred on level M7. If a

. slave PIC detects a spurious interrupt (for example, a slave connected to
master level M3), it responds as if the corresponding level 7 interrupt
occurred (in this case, level 37).

A spurious interrupt indicates a problem; the PIC detected an interrupt
signal but was unable to determine the level. Every application system
should provide some means of isolating spurious interrupts so as to
prevent further damage (such as falsely responding to a level 7
interrupt). This involves judiciously selecting interrupt levels and
adding code to all level 7 interrupt handlers (handlers that service
master level M7 or slave levels x7, where x ranges from 0 through 7).
Once the spurious interrupt has been isolated, the level 7 interrupt
handler can do one of two things:

° It can attempt to correct the problem.
e It can ignore the spurious interrupt and resume system processing.

In either case, before the handler returns control it should call
EXITSINTERRUPT to clear the hardware.

The following sections describe several options for isolating spurious
interrupts.

CALLING GET$LEVEL

One way that a level 7 interrupt handler can check for spurious
interrupts is by invoking the GET$LEVEL system call as soon as the
handler starts running. GETS$LEVEL returns the level of the highest
priority interrupt which a handler has started but not yet finished
processing. If the level returned is not the level associated with the
interrupt handler, the interrupt is spurious.

This method is simple to implement, but it is a viable solution only for
those handlers that can afford to spend the time required to execute

GET$LEVEL. Some handlers may have speed requirements that prohibit the
use of GETSLEVEL.

8-18

INTERRUPT MANAGEMENT

JUDICIOUS SELECTION OF INTERRUPT LEVELS

Another way to isolate spurious interrupts is to avoid connecting devices
to level 7 interrupts (master level M7 and slave levels x7, where x
ranges from 0 to 7). If you have no devices connected to these levels,
and thus no handlers servicing them, spurious interrupts will not affect
your system operation. Instead, each time a spurious interrupt occurs
the PIC reacts as if a level 7 interrupt had occurred, sending control to
interrupt vector table entry associated with the level 7 interrupt. But,
because no handler is associate with that level, the vector table entry
contains a pointer to the default handler, which returns control to the
highest priority ready task.

EXAMINING THE IN-SERVICE REGISTER

Another way that a level 7 interrupt handler can check for spurious
interrupts is by immediately reading the ISR (In-Service Register) of the
PIC corresponding to the level. If the BYTE value obtained from that
register does not have a 1 in the high-order bit, the interrupt is
spurious. In order to read the value, the handler must know the port
address of the ISR. In PL/M-86, the following lines perform this check
when placed at the beginning of the interrupt handler:

IF ((INPUT (port address of ISR)) AND 80H) = 0
THEN interrupt is spurious
This method of isolating spurious interrupts should be used only as a

last resort. It requires that the handler knows the address of the ISR
(which may vary from system to system).

EXAMPLES OF INTERRUPT SERVICING

To help you understand the major points already described, Tables 8-4,
8-5, and 8-6 are provided. Each table outlines the turning points in a
scenario where an interrupt handler is assigned to a level, an interrupt
arrives at that level and is serviced, and finally the assignment of an
interrupt handler is cancelled. Table 8~4 shows a case where the
interrupt handler deals with the interrupt. Table 8-5 treats the case
where the interrupt handler calls an interrupt task, either immediately
or after filling a single buffer of data. Table 8-6 treats the case
where an interrupt handler and an interrupt task use multiple buffers to
service interrupts. Tables 8-4 and 8~5 assign the handler to master
level 4. Table 8-6 assigns the handler to slave level 35.

In the right-hand column of each of tables 8-4, 8-5 and 8-6, the phrase
"interrupt levels necessarily disabled" alludes to the fact that the
events of the example cause certain levels to be enabled or disabled.
Other events, outside the scope of the example, might cause other levels
to be disabled as well.

8-19

INTERRUPT MANAGEMENT

Table 8-4. Servicing Interrupts with an Interrupt Handler

INTERRUPT
LEVELS
STEP EVENTS EXPLANATION NECESSARILY
DISABLED
1 - No interrupt handler
assigned to level M4. M4
2 RQ$SETS INTERRUPT A task assigns an
(LEVEL$4,0,...); interrupt handler to NONE
level M4.
3 Level 4 device An interrupt arrives
interrupts at level M4.. M0-M7, 00-77
4 . The interrupt is
. serviced by the
. interrupt handler. MO-M7, 00-77
5 RQSEXITSINTERRUPT Interrupt hardware
(LEVELS4,...); reset by the
interrupt handler. MO-M7, 00-77
6 Interrupt handler Interrupts are
returns re-enabled. NONE
7 RQSRESETSINTERRUPT A task cancels the
(LEVELS4,...); assignment of an
interrupt handler to
level M4. M4

8-20

Table 8-5.

INTERRUPT MANAGEMENT

Servicing Interrupts with an Interrupt Task

STEP

EVENTS

EXPLANATION

INTERRUPT
LEVELS
NECESSARILY
DISABLED

RQSETSINTERRUPT
(LEVELS4, 1, ...);

RQ$WAITS INTERRUPT
(LEVEL$4,...);

Level 4 device
interrupts

RQ$SIGNALS INTERRUPT
(LEVELS4,...);

.

RQSWAITSINTERRUPT
(LEVELS$4,...);

No interrupt handler
assigned to level M4.

A task assigns an interrupt
handler to level M4 and it
assigns itself to be the

interrupt task for that level.

It specifies that one
SIGNALSINTERRUPT request can
be outstanding.

The interrupt task begins
to wait for an interrupt.

An interrupt arrives at
level M4. The interrupt
handler gets control and
optionally, does some
servicing. The handler may

service several interrupts

by performing steps 4
through 6 of Figure 8-4.

The interrupt handler
invokes the interrupt task.

The interrupt is
serviced by the
interrupt task.

The interrupt task finishes
and begins to wait for
another level M4 interrupt.
Control passes back to the
interrupt handler and then
back to an application task.

M4

M4

NONE

MO-M7, 00-77

M4-M7, 50-77

M4-M7, 50-57

NONE

8-21

Table 8-6.

INTERRUPT MANAGEMENT

an Interrupt Task, and Multiple Buffering

Servicing Interrupts with an Interrupt Handler,

STEP

EVENTS

EXPLANATION

INTERRUPT
LEVELS
NECESSARILY
DISABLED

RQ$SETSINTERRUPT
(LEVEL$35, 2, ...);

RQSWAIT$SINTERRUPT
(LEVELS$35,...);

Level 35 device
interrupts

RQ$SIGNALSINTERRUPT
(LEVEL$35,...);

No interrupt handler
assigned to level 35.

A task assigns an
interrupt handler to
level 35 and assigns
itself to be the
interrupt task for
that level. It
specifies that two
SIGNALSINTERRUPT
requests can be
outstanding (double
buffering).

The interrupt task
begins to wait for
an interrupt.

An interrupt arrives
at level 35. The
interrupt handler gets
control and does some
servicing.

The handler services
all interrupts, as
described in steps

4 through 6 of Table
8-4, until the first
buffer is full.

The interrupt handler
invokes the interrupt
task.

35

35

NONE

| MO-M7, 00-77

M4-M7, 36-77

8-22

INTERRUPT MANAGEMENT

Table 8-6. Servicing Interrupts with an Interrupt Handler,
an Interrupt Task, and Multiple Buffering

(continued)

STEP

EVENTS

EXPLANATION

INTERRUPT
LEVELS
NECESSARILY
DISABLED

RQSWAITSINTERRUPT
(LEVEL$35,...);

The interrupt task
processes the full
buffer. Meanwhile,
the interrupt handler
services interrupts,
as described in steps
4 through 6 of Table
8-4, until the next
buffer is full.

The interrupt task
finishes and begins

to wait for another
signal from the
interrupt handler.
Control passes back to
the interrupt handler
and then back to an

M4-M7, 36-77

application task. NONE
SYSTEM CALLS FOR INTERRUPTS
The following system calls manipulate interrupts:
. SETSINTERRUPT ~--~ assigns an interrupt handler and, if desired,
an interrupt task to an interrupt level.
¢ RESETSINTERRUPT --- cancels the assignment made to a level by
SET$INTERRUPT and, if applicable, deletes the interrupt task for
that level.
e EXITSINTERRUPT --- used by interrupt handlers to send an
end-of-interrupt signal to hardware.
e SIGNALSINTERRUPT ---used by interrupt handlers to invoke
interrupt tasks. '
e WAITSINTERRUPT --- suspends the calling interrupt task until it

is called into service by an interrupt handler.

8-23

INTERRUPT MANAGEMENT

ENABLE --- enables an external interrupt level.

DISABLE --- disables an external interrupt level.

GET$LEVEL --- returns the interrupt level of highest priority for
which an interrupt handler has started but has not yet finished

processing.

ENTERSINTERRUPT —-- sets up a previously designated data segment
base address for the calling interrupt handler.

8-24

CHAPTER 9. NUCLEUS SYSTEM CALLS

This chapter contains the calling sequences and other information about
the system calls to the Nucleus. The system calls are listed in
alphabetical order. Names of the calls are written in white on a dark
background in the upper outside corner of each page. The calling
sequence for each call is that for the PL/M-86 interface. The
information for each system call is organized into the following

categories, in the following order:
® A brief sketch of the effects of the call.
e The format of the call.
e Definitions of the input parameters, if any.
e Definitions of the output parameters, if any.

® A complete description of the effects of the call.

e The condition codes that can result from using the call, with a
description of the possible causes of each condition.

Throughout the chapter, PL/M-86 and iRMX 86 data types, such as BYTE and
STRING are used. They are always capitalized and their definitions are
found in Appendix A.

Between this introduction and the details of the system calls is a
command dictionary, in which the calls are grouped according to type.
This dictionary, which includes short descriptions and page numbers of
the complete descriptions in this chapter, is provided as an alternate
way of indexing the system calls.

9-1

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY

CALLS FOR JOBS ' ' PAGE

CREATESJOB -- Creates a job with a task and returns
a token for the Job......oveeuiisnrenrinneesacensnonnssnsnsonosansadI=?

DELETE$JOB -- Deletes a childless job that contains
no extension objects (extension objects are described
in the iRMX 86 SYSTEM PROGRAMMERS REFERENCE MANUAL);...,i veeea9-22

OFFSPRING -- Provides a segment containing tokens of
the child jobs of the specified job........c.cocviiiiiinneinereee 949

CALLS FOR TASKS

CREATESTASK -- Creates a task and returns a token for it...;.}.‘9-19

SUSPEND$TASK -~ Increases a& task's suspension depth by one;
suspends the task if it is not already suspended..................9-73

RESUME$TASK -- Decreases a task's suspension depth by one;
resumes (unsuspends) the task if the suspension

depth DecOmMeS ZeTO....eitvevrussorressnsososenssssssasesssnassassad=D8

SLEEP -- Places the calling task in the asleep state for a
specified amount Of LiMeu.eeeeeeneanersesancarasnsansecnenaessad=71

GETSTASKSTOKENS -~ Returns to the caller a token for either
itself, its job, its job's parameter object, or the root job......9-45

GET$PRIORITY -- Returns the priority of 8 tasK......eeeesoeeneoesoess.9-43

CALLS FOR MAILBOXES

CREATESMAILBOX —-- Creates a mailbox and returﬁs a token for it........9-13
DELETESMAILBOX -~ Deletes a mailboX..eeeeeeveeens s e eceanceenene eses .9-24
SEND$SMESSAGE —-'Sends an object to @ MALlbOXK. . vuevrrerurirnroansans .++9-59
RECEIVESMESSAGE -- Sends the calling task to a mailbox for an

object; the task has the option of waiting if no objects
BYE PIreSEIL . v ceceoencsoesonossnnnosensossossssoossoscssscnsssanssedI=dl

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR SEMAPHORES PAGE

CREATE$SEMAPHORE -- Creates a semaphore and returns a
token for dt...iieeeiiniiniiiieinreneareeeenononseeeenanneens ceedl9-17
DELETESSEMAPHORE ~— Deletes a4 Semaphore......eveeeeereeecvenesaceneess.9-26

SEND$UNITS -~ Adds a specific number of units to the
supply of a semaphore.iiieieiieiieiseoessocesaaasscssssnsasssadI=b61

RECEIVESUNITS -- Asks for a specific number of units
from @ SEemAPhOTE. v o vvuroettaaassostocesscsansassesncecssansensssdI=Db

CALLS FOR SEGMENTS AND MEMORY POOLS

CREATE$SEGMENT -- Creates a segment and returns a token
< o 1 P S o

DELETE$SEGMENT -- Returns a segment to the memory pool
from which 1t was allocated....coeverornoreenncananacans e 9-25

GET$SIZE ~- returns the size, in bytes, of a segment.......cccvvuven...9-44

SET$POOLSMIN —- Changes the pool minimum attribute
of the memory pool of the caller's jobc.iovuiieviene....9-68

GET$POOLSATTRIBUTES ~- Returns the following memory pool
attributes of the caller's job: pool minimum, pool

maximum, initial size, number of allocated l6-byte ,
paragraphs, number of available 16-byte paragraphs................9-41

CALLS FOR ALL OBJECTS
CATALOGSOBJECT -- Places an object in an object directory............. 9-5
UNCATALOG$OBJECT -- Removes an object from an object........ieiveaee 9774

LOOKUPSOBJECT -- Accepts a cataloged name of an object
and returns a token fOr 1t......eseeeeeeetoassananasssncaasscnns ... 9-47

GET$TYPE -- Accepts a token for an object and returns
IS LYPE COQ@uuriruunnesaeasoascasssossoscssnscnssssnssssccasansssI=lb

9-3

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR EXCEPTION HANDLERS s PAGE

SETSEXCEPTIONSHANDLER ~- Sets the exception handler and
exception mode attribures of the caller........civeiveeenrieeenses9-62

GETS$EXCEPTIONSHANDLER -- Returns the current values of the -
caller's exception handler and exception mode attributes..........9-37

CALLS FOR INTERRUPT HANDLERS, TASKS, AND LEVELS
(* indicates the system calls that an interrupt handler can make)

SETS$INTERRUPT -~ Assigns an interrupt handler and, if
desired, an interrupt task to an interrupt level............cie.u. 9-64

RESET$INTERRUPT —-- Cancels the assignment of an interrupt
handler to a level and, if applicable, deletes the
interrupt task for that level....iiiiiiiiiiiinnreeiacaranenananasd=D6

*ENTER$INTERRUPT -~ Sets up a previously designated data
segment base address for the calling interrupt handler............9-33

*EXIT$INTERRUPT —-- Used by interrupt handlers to send an
end-of-interrupt signal to hardware.........ciiveeeenccsnscoaass «..9-35

*SIGNALSINTERRUPT -~ Used by interrupt handlers to invoke
interrupt tasks.......... ceeseceseciiansesesesncaceaanaa ceeeeen .e..9-69

WAITS$INTERRUPT ——- Puts the calling interrupt task to sleep
until it is called into service by an interrupt handler...........9-76

ENABLE -- Enables an external interrupt level...... et ettt 9-31
*DISABLE -- Disables an internal interrﬁpt level........ . a2
*GET$LEVEL —- Returns the iﬁterrupt level of highest priority

for which an interrupt handler has started but has not
yet finished processing......ceceeeeaaas ceeeaaaan P 9-39

NUCLEUS SYSTEM CALLS géjéég(}

THE SYSTEM CALLS

CATALOGS$OBJECT

CATALOG$OBJECT places an entry for an object in an object directory.

CALL RQ$CATALOGS$OBJECT (job, object, name, except$ptr);

INPUT PARAMETERS
- job A WORD which,

e if zero, indicates that the object is to be
cataloged in the object directory of the job to
which the calling task belongs.

e 1if not zero, contains the token for the job in
whose object directory the object is to be
cataloged.

object A WORD containing a token for the object to be
cataloged. A zero for this parameter indicates I
that a null token is being cataloged.

name A POINTER to a STRING containing the name under
which the object is to be cataloged. The name
itself must not exceed 12 characters in length.
Each character can be a byte consisting of any I
value from 0 to OFFH.

n
-
-
g
9]
=
W
=
[
>
92]

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The CATALOGS$OBJECT system call places an entry for an object in the
object directory of a specific job. The entry consists of both a name
and a token for the object. There may be several such entries for a
single object in a directory, because the object may have several names.
(However, in a given object directory, only one object may be cataloged
under a given name.) If another task is waiting, via the LOOKUP$OBJECT
system call, for the object to be cataloged, that task is awakened when .
the entry is cataloged.

9-5

NUCLEUS SYSTEM CALLS -

" CATALOGS$OBJECT (continued)

CONDITION CODES
E$OK No exceptional conditions.
E$CONTEXT At least one of the following is true:’

o The name being cataloged is already in the
designated object directory.

e The directory's maximum allowable size is 0.

ESEXIST Either the job parameter (which is not zero) or the
object parameter is not a token for an existing
object.

"ESLIMIT The designated object directory is full.

ESNOTCON- This system call is not part of the present

FIGURED configuration. :
ESPARAM The first BYTE of the STRING pointed to by the name
parameter contains a value greater than 12 or a
4 value of 0.
G ,, -
E E$TYPE The job parameter is a token for an object which is
o not a job.
> S
2
m
»

9-6

NUCLEUS SYSTEM CALLS

CREATE$JOB

CREATES$JOB creates a job with a single task.

job = RQ$CREATES$JOB (directory$size, param$obj, pool$min, poolSmax,
max$objects, maxS$tasks, max$priority, except$handler,
jobSflags, taskS$Spriority, start$address, data$seg, stack$ptr,
stack$size, task$flags, except$ptr);

INPUT PARAMETERS

directory$size

param$ob j

poolSmin

poolS$max

max$ob jects

max$tasks

A WORD specifying the maximum allowable number of
entries a job can have in its object directory.

The value zero is permitted, for the case where no
object directory is desired. The maximum value for
this parameter is OFFOH.

A WORD which,

e if zero, indicates that the new job has no
parameter object.

e 1if not zero, contains a valid token for the new
job's parameter object.

A WORD which contains the minimum allowable size of
the new job's pool, in 16 byte paragraphs. The
poolSmin parameter is also the initial size of the
new job's pool. 1If the stack$ptr parameter has a
base value of 0, poolSmin should be at least 32
plus the value of stack$size in 16 byte paragraphs.
Otherwise, pool$min should be at least 32.

A WORD which contains the maximum allowable size of
the new job's memory in 16 byte paragraphs. If
pool$max is smaller than pool$min, an E$PARAM error
occurs.

A WORD which,

e 1if not OFFFFH, contains the maximum number of
objects, created by tasks in the new job, that
can exist simultaneously.

e 1if OFFFFH, indicates that there is no limit to
the number of objects that tasks in the new job
can create.

A WORD which,

e 1if not OFFFFH, contains the maximum number of
tasks that can exist simultaneously in the new
job.

9-7

CREATE
JOB

n
-
-
<
]
=
Lt
[
»n
>
(2}

NUCLEUS SYSTEM CALLS

CREATE$JOB (continued)

INPUT PARAMETERS
max$tasks (continued)

max$priority

exceptShandler

W3LSAS

job$flags

if OFFFFH, indicates that there is no limit to
the number of tasks that tasks in the new job
can create.

A BYTE which,

e if not zero, contains the maximum allowable
priority of tasks in the new job. If
max$priority exceeds the maximum priority of the
parent job, an ESLIMIT error occurs.

e if zero, indicates that the new job is to
inherit the maximum priority attribute of its

parent job.

A POINTER to a structure of the following form:

STRUCTURE(
EXCEPTIONSHANDLERS$PTR POINTER,
EXCEPTIONSMODE BYTE) ;

If exception$handler$ptr is not zero, then it is a
POINTER to the first instruction of the new job's
own exception handler. If exception$handler$ptr is
zero, the new job's exception handler is the system
default exception handler. In both cases, the
exception handler for the new task is the default
exception handler for the job. The exception$mode
indicates when control is to be passed to the new
task's exception handler. It is encoded as follows:

When Control Passgs

Value To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

A WORD containing information that the Nucleus
needs to create and maintain the job. The bits
(where bit 15 is the high-order bit) have the
following meanings:

bit meaning

15-2 reserved.

9-8

NUCLEUS SYSTEM CALLS

CREATESJOB (continued)

INPUT PARAMETERS
job$flags (continued)

bit meaning

1 If 0, then whenever a task in the new job
or any of its descendent jobs makes a
Nucleus system call, the Nucleus will
check the parameters for validity.

If 1, the Nucleus will not check the
parameters of Nucleus system calls made
by tasks in the new job. However, if any
ancestor of the new job has been created
with this bit set to 0, there will be
parameter checking for the new job.

0 reserved.
taskSpriority A BYTE which,

e 1if not zero, contains the priority of the new
job's initial task. If the task$priority
parameter is greater (numerically smaller) than
the new job's maximum priority attribute, an
ESPARAM error occurs.

7]
-
-
<
O
=
w
[
[
>
[72]

e if zero, indicates that the new job's initial
task is to have a priority equal to the new
job's maximum priority attribute.

start$address A POINTER to the first instruction of the new job's
initial task (the task created with the job).

data$seg A WORD which,

e if not zero, contains the base address of the
data segment of the new job's initial task.

e if zero, indicates that the new job's initial
task assigns its own data segment. Refer to the
iRMX 86 CONFIGURATION GUIDE for more information

about data segment allocation. .

stack$ptr A POINTER which,

e if the base portion is not zero, points to the
base of the user-provided stack of the new job's
initial task.

9-9

NUCLEUS SYSTEM CALLS

CREATES$JOB (continued)

INPUT PARAMETERS
stack$ptr (continued)

e if the base portion is zero, indicates that the
Nucleus should allocate a stack for the new
job's initial task. The length of the allocated
segment is equal to the value of the stack$size
parameter.

stack$size A WORD containing the size, in bytes, of the stack
of the new job's initial task. This size must be
at least 16 bytes. The Nucleus increases specified
values that are not multiples of 16 up to the next
higher multiple of 16.

The stack size should be at least 300 bytes if the
new task is going to make Nucleus system calls.

Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual
for further information on estimating stack sizes.

task$flags A WORD containing information that the Nucleus
needs to create and maintain the job's initial
task. The bits (where bit 15 is the high order
bit) have the following meanings: '

bit meaning

15-1 Reserved bits which should be set to zero.

(4]
3
%]
-
m
2
O
>
-
-
(2]

0 If one, the initial task contains
floating-point instructions. These
instructions require the 8087 component
for execution.

If zero, the initial task does not
contain floating-point instructions.

OUTPUT PARAMETERS
job A WORD containing a token for the new job.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

9-10

NUCLEUS SYSTEM CALLS
CREATESJOB (continued)

DESCRIPTION

The CREATESJOB system call creates a job with an initial task and returns
a token for the job. The new job's parent is the calling task's job.

The new job counts as one against the parent job's object limit. The new
task counts as one against the new job's object and task limits. The new
job's resources come from the parent job, as described in the chapter on
job management. In particular, the max$task and max$objects values are
deducted from the creating job's maximum task and maximum objects
attributes, respectively.

CONDITION CODES
E$OK No exceptional conditions,

E$CONTEXT The job containing the calling task is in the
process of being deleted.

ESEXIST The param$obj parameter is not zero and is not a
token for an existing object.

ESLIMIT At least ome of the following is true:

e max$objects is larger than the unused portion of
the object allotment in the calling task's job.

e maxStasks is larger than the unused portion of
the task allotment in the calling task's job.

e maxSpriority is greater (numerically smaller)
than the maximum allowable task priority in the
calling task's job.

e directory$size is larger than OFFOH.

e The new task would exceed the object limit in
the new job (that is, the max$objects parameter
is set to zero).

e The new task would exceed the task limit in the
new job (that is, the max$tasks parameter is set
to zero).

ESMEM At least one of the following is true:
e The memory available to the new job is not
sufficient to create the job descriptor and the

object directory.

e The memory available to the new job is not
sufficient to satisfy the pool$min parameter.

9-11

| CREATE
Jog

(]
~d
-
<
o
=
w
-
[
>
7

REATE ‘ NUCLEUS SYSTEM CALLS

0B
CREATESJOB (continued)
CONDITION CODES
ESMEM (continued)
e The memory available to the new job is not
sufficient to create the task as specified.
ESPARAM At least one of the following is true:
e poolSmin is less than 16 + (number of paragraphs
needed for the initial task and any system
allocated stack) + 5 (if the task uses the 8087
component) .
e pool%min is greater than pool$max.
e taskS$priority is unequal to zero and greater
(numerically smaller) than max$priority.
e stack$size is less than 16.
e pool$max is specified as zero.
» e the exception handler mode is not valid.
>
-
m
=
0
P
r
r
»

9-12

NUCLEUS SYSTEM CALLS

CREATESMAILBOX

CREATESMAILBOX creates a mailbox.

mailbox = RQ$SCREATE$MAILBOX (mailbox$flags, except$ptr);

INPUT PARAMETERS

mailbox$flags A WORD containing information about the new
mailbox. The bits (where bit 15 is the high-order
bit) have the following meanings:

bit meaning

15-5 Reserved bits which should be set to
zero.

4-1 A value that, when multiplied by four,
specifies the number of objects that
can be queued on the high performance
object queue. Additional objects are
queued on the slower, overflow queue.
Four is the minimum size for the high
performance queue; that is, specifying
zero or one in these bits results in a
high performance queue that holds four
objects.

0 A bit that determines the queuing
scheme for the task queue of the new
mailbox, as follows:

value queueing scheme
0 First-in/first-out
1 Priority based
OUTPUT PARAMETERS
mailbox A WORD containing a token for the new mailbox.
except$ptr A POINTER to a WORD to which the condition code for

the call is returned.

9-13

CREATE

MAILBOX

n
-l
-l
q
&}
=
w
-
(7]
>=
(7]

NUCLEUS SYSTEM CALLS

CREATESMAILBOX (continued)

DESCRIPTION

The CREATESMAILBOX system call creates a mailbox and returns a token for
it. The new mailbox counts as one against the object limit of the
calling task's job.

CONDITION CODES

ESOK No exception conditons.
ESLIMIT The requested mailbox would exceed the job object
limit.
ESMEM The memory available to the calling task's job is
not sufficient to create a mailbox.
ENOTCON- This system call is not part of the present
FIGURED configuration.

STIVO WILSAS

9-14

NUCLEUS SYSTEM CALLS

CREATE$SEGMENT

CREATESSEGMENT creates a segment.

segment = RQ$SCREATE$SEGMENT (size, except$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS
segment

except$ptr

DESCRIPTION

A WORD which,

e 1if not zero, contains the size, in bytes, of the
requested segment. If the size parameter is not
a multiple of 16, it will be rounded up to the
nearest higher multiple of 16 before the request
is processed by the Nucleus.

e 1f zero, indicates that the size of the request
is 65536 (64K) bytes.

A WORD which contains a token for the new segment.

A POINTER to a WORD to which the condition code for
the call is returned.

The CREATES$SEGMENT system call creates a segment and returns the token
for it. The memory for the segment is taken from the free portion of the
memory pool of the calling task's job, unless borrowing from the parent
job is both necessary and possible. The new segment counts as one
against the object limit of the calling task's job.

CONDITION CODES
ESOK

ESLIMIT

E$MEM

No exceptional conditionms.

The requested segment would exceed the job object
limit.

The memory available to the calling task's job is
not sufficient to create the specified segment.

9-15

CREATE

SEGMENT

(7]
-
-l
g
8]
=
w
[
n
>
(7]

NUCLEUS SYSTEM CALLS

CREATESSEGMENT (continued)

CONDITION CODES (continued)

E$NOTSCON- This system call is not part of the present
FIGURED configuration. '

w»
-<
/2]
-
m
=
O
>
r
Lo
w

9-16

CREATE

NUCLEUS SYSTEM CALLS SEMAPHORE

CREATE$ SEMAPHORE

CREATESSEMAPHORE creates a semaphore.

semaphore = RQCREATE$SEMAPHORE (initial$value, max$value,
semaphore$flags, except$ptr);

INPUT PARAMETERS

initial$value A WORD containing the initial number of units to be
in the custody of the new semaphore.

max$value A WORD containing the maximum number of units over
which the new semaphore is to have custody at any
given time. If max$value is zero, an ESPARAM error
occurs,

semaphore$flags A WORD containing information about. the new
semaphore. The low-order bit determines the
queueing scheme for the new semaphore's task queue:

7
-4
-
Value Queueing Scheme S
=
0 First—-in/first-out e
g

1 Priority based

The remaining bits in semaphore$flags are reserved
for future use and should be set to zero.

OUTPUT PARAMETERS
semaphore A WORD containing a token for the new semaphore.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The CREATE$SEMAPHORE system call creates a semaphore and returns a token
for it. The semaphore thus created counts as one against the object
limit of the calling task's job.

9-17

NUCLEUS SYSTEM CALLS

CREATE$SEMAPHORE (continued)

CONDITION CODES

E$SOK No exceptional conditions.

ESLIMIT The requested semaphore would exceed the job object
limit.

ESMEM The memory available to the calling task's job is

not sufficient to create a semaphore.
ESPARAM At least one of the following is true:

e The initial$value parameter is larger than the
maximum$value parameter.

e The maximum$value parameter is 0.

ESNOT$CON- This system call is not part of the present
FIGURED configuration.

w
<
2}
-
m
=
0
>
-
r
(7]

9-18

NUCLEUS SYSTEM CALLS

CREATE$ TASK

CREATESTASK creates a task.

task = RQSCREATESTASK (priority, start$address, data$seg, stack$ptr,

stack$size, task$flags, except$ptr);

INPUT PARAMETERS

priority

start$address

data$seg

stack$ptr

stack$size

A

A

BYTE which,

if not zero, contains the priority of the new
task. The priority parameter must not exceed
the maximum allowable priority of the calling
task's job. If it does, an E$PARAM error occurs.

if zero, indicates that the new task's priority
is to equal the maximum allowable priority of
the calling task's job.

POINTER to the first instruction of the new task.
WORD which,

if not zero, contains the base address of the
new task's data segment.

if zero, indicates that the new task assigns its
own data segment. Refer to the iRMX 86
CONFIGURATION GUIDE for further information on
data segment allocatiom.

POINTER which,

if the base portion is not zero, points to the
base of the new task's stack.

if the base portion is zero, indicates that the
Nucleus should allocate a stack to the new
task. The length of the stack is equal to the
value of the stack$size parameter.

WORD containing the size, in bytes, of the new

task's stack segment. The stack size must be at
least 16 bytes. The Nucleus increases specified
values that are not multiples of 16 up to the next
higher multiple of 16.

9-19

CREATE

TASK

12}
-
wd
<
(8]
=
w
[
w
>
n

NUCLEUS SYSTEM CALLS

CREATESTASK (continued)

INPUT PARAMETERS
stack$size (continued)

The stack size should be at least 300 bytes if the
new task is going to make Nucleus system calls.
Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual
for further information on assigning stack sizes.

task$flags A WORD containing information that the Nucleus
needs to create and maintain the task. The bits

(where bit 15 is the high-order bit) have the
following meanings:

bit meaning
15~1 Reserved bits which should be set to
zero.
0 If one, the task contains

floating—-point instructions. These
instructions require the 8087
component. for execution.

If zero, the task does not contain
floating-point instructions.

OUTPUT PARAMETERS

task A WORD containing a token for the new task.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The CREATE$TASK system call creates a task and returns a token for it.
The new task counts as one against the object and task limits of the

calling task's job. Attributes of the new task are initialized upon
creation as follows: :

e priority: as specified in the call.
e execution state: ready.
e suspension depth: 0.

e = containing job: the job which contains the calling task.

9-20

GREATE

NUCLEUS SYSTEM CALLS ' TASK

CREATESTASK (continued)

DESCRIPTION (continued)

® exception handler: the exception handler of the containing
job.

e exception mode: the exception mode of the containing job.

CONDITION CODES
ESOK No exceptional conditions.
ESLIMIT At least one of the following is true:

e The new task would exceed the object limit or
the task limit of the calling task's job.

e The priority parameter is nonzero and greater
(numerically smaller) than the maximum allowable
priority for tasks in the calling task's job.

n

ES$SMEM The memory available to the calling task's job is 3

not sufficient to create a task as specified (task 3]

descriptor, stack, and possibly 8087 area). =

-

ESNOTS$CON- This system call is not part of the present %

FIGURED configuration.

ESPARAM The stack$size parameter is less than 16. [|

9-21

ELETE

w
<
[z}
-
1}
F
0
>
r
r
»

NUCLEUS SYSTEM CALLS

DELETES$JOB

DELETESJOB deletes a job.

CALL RQS$DELETE$JOB (job, except$ptr);

INPUT PARAMETER

job A WORD containing a token for the job to be
deleted. A value of zero specifies the calling
task's job.

OUTPUT PARAMETERS

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The DELETE$JOB system call deletes from the system the specified job, as
well as all objects created by tasks in it. Exceptions are that jobs and
extension objects (see the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL)
created by tasks in the target job must be deleted prior to the call to
DELETE$JOB. Information concerning the descendents of a job is obtained
via the OFFSPRING system call. During deletion, all resources that the
target job had borrowed from its parent are returned.

Deleting a job causes a credit of one toward the object total of the
parent job. Also, the maximum tasks and maximum objects attributes of
the deleted job are credited to the current tasks and current objects
attributes, respectively, of the parent job.

CONDITION CODES
E$OK No exceptional conditioms.
E$CONTEXT At least one of the following is true:
e There are undeleted jobs, or extension objects
(see the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE

MANUAL) which have been created by tasks in the
target job.

9-22

DELETE
JOB

NUCLEUS SYSTEM CALLS

DELETES$JOB (continued)

CONDITION CODES
E$CONTEXT (continued)

o The deleting task has access to a region
contained in the job to be deleted. (Refer to
the iRMX SYSTEM PROGRAMMER'S REFERENCE MANUAL
for information concerning regions.)

ESEXIST The job parameter is not a token for an existing
object.
ESMEM The job to be deleted contains undeleted composite

objects (see the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL), and there is not sufficient
memory for the Nucleus to send deletion messages to
the appropriate deletion mailboxes.

ESNOT$CON- This system call is not part ol ihe present
FIGURED configuration.
ESTYPE The job parameter is a token for an object that is

not a job.

72}
-
-1
<
&)
=
w
[
[72]
>
)

9-23

NUCLEUS SYSTEM CALLS

DELETE$SMAILBOX

DELETESMAILBOX deletes a mailbox.

CALL RQ$DELETE$MAILBOX (mailbox, except$ptr);

INPUT PARAMETER

mailbox A WORD containing a token for the mailbox to be
deleted.

OUTPUT PARAMETERS

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The DELETESMAILBOX system call deletes the specified mailbox from the
system. If any tasks are queued at the mailbox at the moment of
deletion, they are awakened with an ESEXIST exceptional condition. If
there is a queue of object tokens at the moment of deletion, the queue is
discarded. Deleting the mailbox counts as a credit of one toward the
object total of the containing job.

CONDITION CODES
ESOK No exceptional conditions.
ESEXIST Either the mailbox parameter is not a token for an

existing object or it represents a mailbox whose
job is in the process of being deleted.

ES$SNOTSCON- This system call is not part of the present
FIGURED configuration.
E$TYPE The mailbox parameter is a token for an object

which is not a mailbox.

9-24

NUCLEUS SYSTEM CALLS

DELETE$SEGMENT

DELETE$SEGMENT deletes a segment.

CALL RQ$DELETE$SEGMENT (segment, except$ptr);
INPUT PARAMETER

segment A WORD containing a token for the segment that is

to be deleted.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for

the call is to be returned.

DESCRIPTION

The DELETE$SEGMENT system call returns the specified segment to the
memory pool from which it was allocated. The deleted segment counts as a
credit of one toward the object total of the containing job.

7]
-
-
g
o
=
L
[
[
>
(7]

CONDITION CODES

E$OK No exceptional conditionmns.

ESEXIST Either the segment parameter 1s not a token for an
ex1st1ng object or it represents a segment whose
job is in the process of being deleted.

E$SNOT$CON- This system call is not part of the present

FIGURED configuration.
ESTYPE The segment parameter is a token for an object that

is not a segment.

9-25

()]
<
wn
b1
]
ES
0
>
-
-
]

NUCLEUS SYSTEM CALLS

DELETE$SEMAPHORE

DELETE$SEMAPHORE deletes a semaphore.

CALL RQ$DELETE$SEMAPHORE (semaphore, except$ptr);

INPUT PARAMETER

semaphore A WORD containing a token for the semaphore that is
to be deleted.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The DELETE$SEMAPHORE system call deletes the specified semaphore. If
there are tasks in the semaphore's queue at the moment of deletion, they
are awakened with an ESEXIST exceptional condition. The deleted
semaphore counts as a credit of one toward the object total of the
containing job. ’

CONDITION CODES
ESOK No exceptional conditions.
ESEXIST Either the semaphore parameter is not a token

for an existing object or it represents a semaphore
whose job is in the process of being deleted.

ENOTCON- This system call is not part of the present
FIGURED configuration.
ESTYPE - The semaphore parameter is a token for an object

that is not a semaphore.

9-26

DELETE
NUCLEUS SYSTEM CALLS TASK

DELETE$TASK

DELETES$TASK deletes a task.

CALL RQ$DELETE$TASK (task, except$ptr);

INPUT PARAMETER
task A WORD which,

e 1if not zero, contains a token for the task that
is to be deleted.

e 1if zero, indicates that the calling task is to
be deleted. '

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

YSTEM CALLS

DESCRIPTION

The DELETE$TASK system call deletes the specified task from the system
and from any queues in which the task was waiting. Deleting the task
counts as a credit of one toward the object total of the containing job.
It also counts as a credit of ome toward the containing job's task total.

Interrupt tasks cannot be deleted by DELETE$TASK; instead, interrupt
tasks are deleted by RESET$INTERRUPT.

CONDITION CODES

E$OK No exceptional conditions.
ESCONTEXT . The task parameter is a token for an interrupt task.
ESEXIST Either the task parameter is not a token for an
existing object or it represents a task whose job
is in the process of being deleted.

9-27

NUCLEUS SYSTEM CALLS

DELETE$TASK (continued)

CONDITION CODES (continued)

ES$SNOT$CON- This system call is not part of the present
FIGURED configuration.
ESTYPE

The task parameter is a token for an object which
is not a task.

9-28

| DISABLE
NUCLEUS SYSTEM CALLS

DISABLE
DISABLE disables an interrupt level.

CALL RQS$DISABLE (level, except$ptr);

INPUT PARAMETER

level ’ A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

15-7 0
6-4 first digit of the interrupt level (0-7)
3 if one, the level is a master level and

bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

w
-1
—
g
O
=
w
-
[
>
[77]

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for

' the call is to be returned. All exceptional
conditions must be processed in-line. Control does I
not pass to an exception handler.

DESCRIPTION

The DISABLE system call disables the specified interrupt level. It has
no effect on other levels. The level must have an interrupt handler
assigned to it. The level reserved for the system clock should not be
disabled. This level is determined during system configuration (refer to
the iRMX 86 CONFIGURATION GUIDE).

CONDITION CODES

ESOK No exceptional conditionms.

ESCONTEXT The level indicated by the level parameter is
already disabled.

9-29

NUCLEUS SYSTEM CALLS

DISABLE (continued)

CONDITION CODES (continued)

E$NOTSCON- This system call is not part of the present
FIGURED configuration.
E$PARAM The level parameter is invalid.

9-30

ENABLE
NUCLEUS SYSTEM CALLS

ENABLE

ENABLE enables an interrupt level.

CALL RQSENABLE (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the iaterrupt level (0-7)
3 if one, the level is a master level and

bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

v
-
-~
<
(8]
=
w
-
n
>
(22}

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The ENABLE system call enables the specified interrupt level. The level
must have an interrupt handler assigned to it. A task must not enable
the level associated with the system clock.

CONDITION CODES

ESOK No exceptional conditions.

9-31

NABLE |
NUCLEUS SYSTEM CALLS

ENABLE (continued)

CONDITION CODES (continued)
E$CONTEXT At least one of the following is true:

® A non-interrupt task tried to enable a level
that was already enabled.

e There is not an interrupt handler assigned to
the specified level.

I ® There has been an interrupt overflow om the
specified level.
E$NOTS$CON- This system call is not part of the present
FIGURED configuration.
ESPARAM The level parameter is invalid.

S11vD W3ILSAS

9-32

ENTER

NUCLEUS SYSTEM CALLS INTERRUPT

ENTERS INTERRUPT

ENTERSINTERRUPT is used by interrupt handlers to load a previously
specified segment base address into the DS register.

CALL RQ$ENTERSINTERRUPT(level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)
3 if one, the level is a master level and

bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

[42]
-l
-l
<
(&)
=
w
[
n
>
(7]

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned. All exceptional
conditions must be processed in-line. Control does
not pass to an exception handler.

DESCRIPTION

ENTER$ INTERRUPT, on behalf of the calling interrupt handler, loads a base
address value into the DS register. The value is what was specified when
the interrupt handler was set up by an earlier call to SETSINTERRUPT.

One purpose of loading a new value into the DS register is to protect the
contents of the interrupted task's data segment. Another purpose, if the
handler is going to call an interrupt task, is that ENTER$INTERRUPT
enables the handler to place data in the iAPX 86 data segment that will
be used by the interrupt task. This provides a mechanism for the
interrupt handler to pass data to the interrupt task.

9-33

NUCLEUS SYSTEM CALLS

ENTER$INTERRUPT (continued)

CONDITION CODES

ESOK No exceptional conditions.
E$CONTEXT No value had previously been specified in the call
to SETSINTERRUPT.
ESNOTS$SCON- This system call is not included in the
FIGURED present configuration.
ESPARAM The level parameter is invalid.

(%]
<
(7]
_‘
m
=
O
>
-
~
[72]

9-34

EXIT

NUCLEUS SYSTEM CALLS INTERRUP

EXIT$INTERRUPT

EXIT$INTERRUPT is used by interrupt handlers when they don't invoke
interrupt tasks; this call sends an end-of-interrupt signal to the
hardware.

CALL RQ$EXITSINTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high—order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)
3 if one, the level is a master level and

bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

)
-l
-d
pri
O
=
Wi
[t
(2
>

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned. All exceptional
conditions must be processed in-line. Control does |
not pass to an exception handler.

DESCRIPTION

The EXIT$INTERRUPT system call sends an end-of-interrupt signal to the
hardware. This sets the stage for re-enabling interrupts. The

re-enabling actually occurs when control passes from the interrupt
handler to an application task.

9-35

NUCLEUS SYSTEM CALLS

EXIT$INTERRUPT (continued)

CONDITION CODES

E$OK No exceptional conditionms.
l E$CONTEXT No SET$INTERRUPT system call has been made for the
. specified level.
ENOTCON- This system call is not part of the present
FIGURED configuration.
ESPARAM The level parameter is invalid.

9-36

NUCLEUS SYSTEM CALLS

GET$SEXCEPTIONSHANDLER

GETSEXCEPTIONSHANDLER returns information about the calling task's
exception handler.

CALL RQ$GETSEXCEPTIONSHANDLER (exception$info$ptr, except$ptr);

OUTPUT PARAMETERS

exception$info$ptr A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTION$SHANDLERSOFFSET WORD,
EXCEPTIONSHANDLER$BASE WORD,
EXCEPTIONSMODE BYTE) ;

where, after the call,

e exception$handler$offset contains the offset of
the first instruction of the exception handler.

e exception$handler$base contains a base for the
segment containing the first instruction of the
exception handler. If exception$handler$base
and exception$handler$offset are both zero, the
calling task's exception handler is the system
default exception handler.

e exception$mode contains an encoded indication
of the calling task's current exception mode.

The value is interpreted as follows:

When to Pass Control

Value to Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditons

except$ptr A POINTER to a WORD to which the condition code
for the call is to be returned.

DESCRIPTION

The GET$EXCEPTIONSHANDLER system call returns both the address of the
calling task's exception handler and the current value of the task's
exception mode.

9-37

GET

EXCEPTIO
HANOLER

(72}
-1
-l
<
O
=
w
[
(%
>
1]

NUCLEUS SYSTEM CALLS

GETSEXCEPTIONSHANDLER (continued)

CONDITION CODES

E$SOK No excepfional conditions.
E$NOTS$CON- v This system call is not part of the present
FIGURED configuration.

9-38

GET

NUCLEUS SYSTEM CALLS LEVEL

GETS$LEVEL

GETSLEVEL returns the number of the level of the interrupt being serviced.

level = RQ$GETSLEVEL (except$ptr);

INPUT PARAMETERS

none

OUTPUT PARAMETERS

level A WORD whose value is interpreted as follows (bit
15 is the high-order bit):

Bits Value

15-8 undefined

7 if zero, some level is being serviced
and bits 6-0 are significant

(%]
-
-1
Y
O
=
w
-
[
>
(7]

if one, no level is being serviced
and bits 6-0 are not significant

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

except$ptr A POINTER to a WORD to which the condition code for
the call is to be retured. All exceptional
conditions must be processed in-line. Control does I
not pass to an exceptional handler.

DESCRIPTION

The GETSLEVEL system call returns to the calling task the highest

(numerically lowest) level which an interrupt handler has started

servicing but has not yet finished. To strip away unwanted one bits, l
logically AND the returned value with OOFFH.

9-39

NUCLEUS SYSTEM CALLS

GETSLEVEL (continued)

CONDITION CODES

E$OK No exceptional conditions.
ENOTCON- This system call is not part of the present
FIGURED configuration.

TV

9-40

NUCLEUS SYSTEM CALLS

GET$POOLSATTRIB

GET$POOLSATTRIB returns information about the memory pool of the calling

task's job.

CALL RQSGETPOOLSATTRIB (attrib$ptr, except$ptr);

INPUT PARAMETER

attrib$ptr A POINTER to a data structure of the following form:
STRUCTURE(
POOLSMAX WORD,
POOLSMIN WORD,
INITIALSSIZE WORD,
ALLOCATED WORD,
AVAILABLE WORD) ;

where, after the call,

OUTPUT PARAMETER

POOLSMAX contains the maximum allowable size of
the memory pool of the calling task's job.

POOLSMIN contains the minimum allowable size of
the memory pool of the calling task's job.

INITIALS$SIZE contains the original value of the
pool$min attribute.

ALLOCATED contains the number of 16-byte
paragraphs currently allocated from the memory
pool of the calling task's job.

AVAILABLE contains the number of 16-byte
paragraphs currently available in the memory
pool of the calling task's job. It does not
include memory that could be borrowed from the
parent job. The memory indicated in AVAILABLE
may be fragmented and thus not allocatable as a
single segment.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

9-41

GET
POOL

ATTRIB

[72]
-
-
<
8]
=
W
-
w
>
w

(2]
<
(]
h1
m
=
0O
>
L
-
»

NUCLEUS SYSTEM CALLS

GETSPOOLSATTRIB (continued)

DESCRIPTION

The GET$POOLSATTRIB system call returns information regarding the memory
pool of the calling task's job. The data returned comprises the
allocated and available portions of the pool, as well as its initial,
minimum, and maximum sizes.

CONDITION CODES

E$OK No exceptional conditions.
E$NOTS$CON- This system call is not part of the present
FIGURED configuration.

9-42

GET
PRIORITY

NUCLEUS SYSTEM CALLS

GETSPRIORITY

GET$PRIORITY returns the priority of a task.

priority = RQGETPRIORITY (task, except$ptr);

INPUT PARAMETER
task A WORD which,

' if not zero, contains a token for the task
whose priority is being requested.

e 1if zero, indicates that the calling task is
asking for its own priority.

OUTPUT PARAMETERS

priority A BYTE containing the priority of the task
indicated by the task parameter.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

72}
-
-
<«
()
=
1Y}
-
[
>
n

DESCRIPTION

The GET$PRIORITY system call returns the priority of the specified task.

CONDITION CODES

ESOK No exceptional conditions.
E$EXIST The task parameter is not a token for an existing
object.
ENOTCON- This system call is not part of the present
FIGURED configuration.
E$TYPE The task parameter is a token for an object that is

not a task.

9-43

[72]
3
2}
_.{
m
=
O
>
—
r
[72]

NUCLEUS SYSTEM CALLS

GET$SIZE

GETSSIZE returns the size, in bytes, of a segment.

size = RQGETSIZE (segment, except$ptr);

INPUT PARAMETER

segment A WORD containing a token for a segment.

OUTPUT PARAMETERS
size A WORD which,

) if not zero, contains the size, in bytes, of
the segment indicated by the segment parameter.

e 1if zero, indicates that the size of the segment
is 65536 (64K) bytes.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The GET$SIZE system call returns the size, in bytes, of a segment.

CONDITION CODES
E$OK No exceptional conditons.

E$EXIST The segment parameter is not a token for an
existing object. ‘

ESNOT$CON- This system call is not part of the present
FIGURED configuration.
E$TYPE - The segment parameter is a token for an object that

is not a segment.

9-44

NUCLEUS SYSTEM CALLS

GET$TASK$ TOKENS

GET$TASK$TOKENS returns the token requested by the calling task.

token = RQSGETSTASK$TOKENS (selection, except$ptr);

INPUT PARAMETER

gselection

OUTPUT PARAMETERS
token

except$ptr

DESCRIPTION

A BYTE containing theé request, encoded as follows:

Value Object for which a Token is Requested

0 The calling task.

1 The calling task's job.

2 The parameter object of the calling task's
job.

3 The root job.

A WORD containing the requested token.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The GET$TASK$TOKENS system call returns a token for either the calling
task, the calling task's job, the parameter object of the calling task's
job, or the root job, depending on the encoded request.

CONDITION CODES
E$OK

ESPARAM

No exceptional conditioms.

The selection parameter is greater than 3.

9-45

GET

E TASK

i TOKENS

»
<
o
-
m
2
0
>
-
-
7

w
<
(7]
et
m
=
O
>
r
-
]

GETSTYPE

NUCLEUS SYSTEM CALLS

GETSTYPE returns the encoded type of an object.

type$code = RQ$GETSTYPE (object, except$ptr);

INPUT PARAMETER

object

OUTPUT PARAMETERS

typeScode

exceptSptr

DESCRIPTION

A WORD containing the token for an object.

A WORD which contains the encoded type of the
specified object. The types for Nucleus objects
are encoded as follows:

Value Type

job

task
mailbox
semaphore
region
segment
extension
composite

o~NoOUV S W -

Regions, extensions, and composites are described
in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

A POINTER to a WORD to which the condition code for
the call is returned.

The GET$TYPE system call returns the type code for an object.

CONDITION CODES
ESOK
ESEXIST

ESNOT$CON-
FIGURED

No exceptional conditionms.

The object parameter is not a token for an existing
object.

This system call is not part of the present
configuration.

9-46

LOOKUP

NUCLEUS SYSTEM CALLS OBJECT

LOOKUP$OBJECT

LOOKUP$OBJECT returns a token for a cataloged object.

object = RQSLOOKUP$SOBJECT (job, name, time$limit, except$ptr);

INPUT PARAMETERS
job A WORD which,

e if not zero, contains a token for the job whose
object directory is to be searched.

. if zero, indicates that the object directory to
be searched is that of the calling task's job.

name A POINTER to a STRING which contains the name under
which the object is cataloged. During the lookup
operation, upper and lower case letters are treated
as being different.

time$limit A WORD which,

e 1if zero, indicates that the calling task is not
willing to wait.

2}
-4
-
<
o
=
w
-
(Y
>
n

° if OFFFFH, indicates that the task will wait as
long as is necessary.

e if between 0 and OFFFFH, indicates the number
of clock intervals that the task is willing to
wait. The length of a clock interval is a

configuration option. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

OUTPUT PARAMETERS
object A WORD containing the requested token.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

9-47

gOKUP

BBJECT NUCLEUS SYSTEM CALLS

LOOKUPS$SOBJECT (continued)

DESCRIPTION

The LOOKUPSOBJECT system call returns the token for the specified object
after searching for its name in the specified object directory. Because
it is possible that the object is not cataloged at the time of the call,
the calling task has the option of waiting, either indefinitely or for a
specific period of time, for another task to catalog the object.

CONDITION CODES

ES$OK No exceptional conditions.
E$CONTEXT The specified job has an object directory of size 0,
ESEXIST One of the following is true:

o The specified job was deleted while the task
was waiting.

) e The job parameter (which is not zero) is not a
5 token for an existing object.
m
§ e The name was found, but the cataloged object
> has a null token (i.e. 0).
-
@ ESLIMIT The specified object directory is full.
ESNOT$CON- This system call is not part of the present
FIGURED configuration.

E$PARAM The first byte of the string pointed to by the name
parameter contains a value greater than 12 or equal
to zero.

ESTIME Either:

e The calling task indicated its willingness to
wait a certain amount of time, then waited
without satisfaction.

e The task was not willing to wait, and the entry
indicated by the name parameter is not in the

specified object directory.

ESTYPE The job parameter is a token for an object that is
not a job.

9-48

NUCLEUS SYSTEM CALLS

OFFSPRING
OFFSPRING returns a token for each child (job) of a job.
token$list = RQSOFFSPRING (job, except$ptr);
INPUT PARAMETER
job A WORD containing a token for the job whose

offspring are desired. A value of zero specifies
the calling task's job.

OUTPUT PARAMETER
token$list A WORD which,

® if not zero, contains a token for a segment.
The first word in the segment contains the
number of words in the remainder of the
segment. Subsequent words contain the tokens
for jobs which are the immediate children of
the specified job.

(%]
-
-
g
&)
=
w
[
1%
>
72}

e if zero, indicates that the specified job has
no children.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The OFFSPRING system call returns the token for a segment. The segment
contains a token for each child of the specified job. By repeated use of
this call, tokens can be obtained for all descendents of a job; this

information is needed by a task which is attempting to delete a job that
has child jobs.

CONDITION CODES

E$OK No exceptional conditions.
E$EXIST The job parameter is mot a token for an existing
object.

9-49

OFFSPRING

NUCLEUS SYSTEM CALLS

OFFSPRING (continued)

CONDITION CODES (continued)

ESLIMIT The required segment, if allocated, would exceed
the job object limit.

E$SMEM There is not sufficient memory available to create
the required segment.

ENOTCON- This system call is not part of the present
FIGURED configuration.
ESTYPE The job parameter is a token for an object that is

not a job.

(7]
<
(44]
—
m
=
O
>
(.
r
[

9-50

RECEIVE

NUCLEUS SYSTEM CALLS MESSAGE

RECEIVESME SSAGE

RECEIVE$MESSAGE delivers the calling task to a mailbox, where it can wait
for an object token to be returned.

object = RQSRECEIVE$MESSAGE (mailbox, time$limit, response$ptr,
except$ptr);

INPUT PARAMETERS

mailbox A WORD containing a token for the mailbox at which
the calling task expects to receive an object token.

time$limit A WORD which,

e if zero, indicates that the calling task is not
willing to wait.

e if OFFFFH, indicates that the task will wait as
long as is necessary.

° if between 0 and OFFFFH, indicates the number
of clock intervals that the task is willing to
wait. The length of a clock interval is
configurable. Refer to the iRMX 86
CONFIGURATION GUIDE FOR for further

[}
-
-1
<
(&)
=
w
-
(2]
>
n

information.
OUTPUT PARAMETERS
object A WORD containing the token for the object being
’ received.
response$ptr A POINTER to a WORD in which the system returns a

value. The returned word,
' if not zero, contains a token for the exchange
to which the receiving task is to send a

response.

e if zero, indicates that no response has been
requested by the sending task.

9-51

w
<
w
-
m
=
O
>
~
-~
(9]

NUCLEUS SYSTEM CALLS

RECEIVESMESSAGE (continued)
OUTPUT PARAMETERS (continued)
CAUTION

Response$ptr points to a location for
the sending task to use. If you
specify a constant value for
response$ptr, be careful to ensure
that the value does not conflict with
system requirements.

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The RECEIVE$SMESSAGE system call causes the calling task either to get the
token for an object or to wait for the token in the task queue of the
specified mailbox. If the object queue at the mailbox is not empty, then
the calling task immediately gets the token at the head of the queue and
remains ready. Otherwise, the calling task goes into the task queue of
the mailbox and goes to sleep, unless the task is not willing to wait.

In the latter case, or if the task's waiting period elapses without a
token arriving, the task is awakened with an E$TIME exceptional condition.

It is possible that the token returned by RECEIVESMESSAGE is a token for
an object that has already been deleted. To verify that the token is
valid, the receiving task can call GET$TYPE. However, tasks can avoid
this situation by adhering to proper programming practices. One such
practice is for the sending task to request a response from the receiving
task and not delete the object until it gets a response. If the sending
task requests a response, the response$ptr parameter of RECEIVE$MESSAGE
points to a token for a response exchange (either a mailbox or a
semaphore). When the receiving task finishes with the object, it sends a
response, the nature of which must be determined by the writers of the
two tasks, to the response mailbox. When the sending task gets this
response, it can then delete the original object, if it so desires.

CONDITION CODES
E$OK No exceptional conditions.
E$EXIST "~ Either:

o The mailbox parameter is not a token for an
existing object.

9-52

CONDITION CODES
E$EXIST (continued)

E$NOTS$CON-
FIGURED

ESTIME

ESTYPE

REGEIVE

NUCLEUS SYSTEM CALLS : MESSAGE

RECEIVESMESSAGE (continued)

o The mailbox was deleted while the task was I
waiting.

This system call is not part of the present
configuration.

Either:

o The calling task was not willing to wait and
there was not a token available.

e The task waited in the task queue and its
designated waiting period elapsed before the
task got the desired token.

The mailbox parameter is a token for an object that
is not a mailbox.

(%2}
-
-
<
&)
=
w
[
[22)
>
(72}

9-53

RECEIVESUNITS

NUCLEUS SYSTEM CALLS

RECEIVESUNITS delivers the calling task to a semaphore, where it waits

for units.

value = RQ$RECEIVESUNITS (semaphore, units, time$limit, exceptSptr);

INPUT PARAMETERS

semaphore
units

time$limit

OUTPUT PARAMETERS

value

exceptS$ptr

A WORD containing a token for the semaphore from
which the calling task hopes to receive units.

A WORD containing the number of units that the
calling task is requesting.

A WORD which,

e if zero, indicates that the calling task is not
willing to wait.

e 1if QOFFFFH, indicates that the task will wait as
long as is necessary.

e if between 0 and OFFFFH, indicates the number of
clock intervals that the task is willing to
wait. The length of a clock interval is
configurable. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

A WORD containing the number of units remaining in
the custody of the semaphore after the calling
task's request is satisfied.

A POINTER to a WORD to which the condition code for
the call is to be returned.

9-54

NUCLEUS SYSTEM CALLS

RECEIVESUNITS (continued)

DESCRIPTION

The RECEIVESUNITS system call causes the calling task either to get the
units that it is requesting or to wait for them in the semaphore's task
queue. If the units are available and the task is at the front of the
queue, then the task receives them and remains ready. Otherwise, the
task is placed in the semaphore's task queue and goes to sleep, unless
the task is not willing to wait. In the latter case, or if the task's
waiting period elapses before the requested units are available, the task
is awakened with an ES$TIME exceptional condition.

CONDITION CODES

ESOK No exceptional conditions.

ESEXIST Either:

o The semaphore parameter is not a token for an
existing object.

n
-

e The semaphore was deleted while the task was b

waiting. - 3)

&

ESLIMIT The units parameter is greater than the maximum B
>

»

value that had been specified for the semaphore
when it was created.

ENOTCON- This system call is not part of the present
FIGURED configuration.
ESTIME Either:

e The calling task was not willing to wait and the
requested units were not available.

o The task waited in the task queue and its
designated waiting period elapsed before the

requested units were available.

ESTYPE The semaphore parameter is a token for an object
that is not a semaphore.

9-55

NTERRUPT

NUCLEUS SYSTEM CALLS

RESET$ INTERRUPT

RESET$INTERRUPT cancels the assignment of an interrupt handler to a level.

CALL RQSRESET$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level which is
encoded as follows (bit 15 is the high—order bit):

Bits Value

15-7 0

6-4 first digit of the intetrﬁpt level (0-7)
3 if one, the level is a master level and

bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

%]
<
w
1
m
=
O
>
r
-
(7]

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The RESET$INTERRUPT system call cancels the assignment of the current ,
interrupt handler to the specified interrupt level. If an interrupt task
had also been assigned to the level, the interrupt task is deleted.
RESET$INTERRUPT also disables the level.

considered invalid. This level is a configuration option (refer to the

I The level reserved for the system clock should not be reset and is
iRMX 86 CONFIGURATION GUIDE for further informationm).

9-56

CONDITION CODES
ESOK
E$CONTEXT
ENOTCON-

FIGURED

E$SPARAM

NUCLEUS SYSTEM CALLS

RESET$ INTERRUPT (continued)

No exceptional conditions.

There is not an interrupt handler assigned to the
specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

9-57

RESET
INTERRUPT

wn
=l
-
g
(&)
=
W
-
wn
>
(72}

RESUME

TASK NUCLEUS SYSTEM CALLS

RESUMES$TASK

RESUMES$TASK decreases by one the suspension depth of a task.

CALL RQ$SRESUMESTASK (task, except$ptr);

INPUT PARAMETER

task A WORD containing a token for the task whose
suspension depth is to be decremented.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The RESUMESTASK system call decreases by one the suspension depth of the
specified non-interrupt task. The task should be in either the suspended
or asleep—suspended state, so its suspension depth should be at least
one., If the suspension depth is still positive after being decremented,
the state of the task is not changed. If the depth becomes zero, and the
task is in the suspended state, then it is placed in the ready state. If
the depth becomes zero, and the task is in the asleep-suspended state,
then it is placed in the asleep state.

STIVO W3LSAS

CONDITION CODES

E$OK No exceptional conditionms.

ESCONTEXT The task indicated by the task parameter is an
interrupt task.

E$EXIST The task parameter is not a token for an existing
object.

ES$STATE The task indicated by the task parameter was not

suspended when the call was made.

ESTYPE The task parameter is a token for an object that is
not a task.

9-58

SEND
NUCLEUS SYSTEM CALLS MESSAGE

SEND$SMESSAGE

SEND$SMESSAGE sends an object token to a mailbox.

CALL RQ$SENDSMESSAGE (mailbox, object, respomnse, exceptS$ptr);

INPUT PARAMETERS

mailbox A WORD containing a token for the mailbox to which
an object token is to be sent.

object A WORD containing an object token which is to be
sent.
response A WORD which,

o 1if not zero, contains a token for the desired
response mailbox or semaphore.

o 1if zero, indicates that no response is requested.

OUTPUT PARAMETER

0
-l
-1
<
&}
=
w
[
[
>
(7]

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The SEND$MESSAGE system call sends the specified object token to the
specified mailbox. If there are tasks in the task queue at that mailbox,
the task at the head of the queue is awakened and is given the token.
Otherwise, the object token is placed at the tail of the object queue of
the mailbox. The sending task has the option of specifying a mailbox or
semaphore at which it will wait for a response from the task that

receives the object. The nature of the response must be agreed upon by
the writers of the two tasks.

CONDITION CODES
ESOK No exceptional conditions.

E$EXIST One or more of the input parameters is not a token
for an existing object.

9-59

SEND

ESSAGE NUCLEUS SYSTEM CALLS
SEND$MESSAGE (continued)
CONDITION CODES (continued)

E$MEM The high performance queue is full and there is not
sufficient memory in the job containing the mailbox
for the Nucleus to do the housekeeping that
supports a send message operation.

ESNOT$CON- This system call is not part of the present

FIGURED configuration.
ES$TYPE Either:
e The mailbox parameter is a token for an object
that is not a mailbox.
o The response parametef is a token for an object
that is neither a mailbox nor a semaphore.
w
=<
n
-
m
2
0
>
~
-
[72]

9-60

NUCLEUS SYSTEM CALLS

SENDSUNITS
SENDSUNITS sends units to a semaphore.
CALL RQ$SENDSUNITS (semaphore, units, except$ptr);
INPUT PARAMETERS
semaphore A WORD containing a token for the semaphore to
which the units are to be sent.
units A WORD containing the number of units to be sent.
. OUTPUT PARAMETER
except$ptr A POINTER to a WORD to which the condition code for

the call is to be returned.

DESCRIPTION

[%2]
-
-
<
(&)
=
w
-
[%2]
>
(%]

The SEND$UNITS system call sends the specified number of units to the
specified semaphore. If the transmission would cause the semaphore's
supply of units to exceed its maximum allowawble supply, then an ESLIMIT
exceptional condition occurs. Otherwise, the transmission is successful
and the Nucleus attempts to satisfy the requests of the tasks in the
semaphore's task queue, beginning at the head of the queue.

CONDITION CODES

E$OK No exceptional conditons.

ESEXIST The semaphore parameter is not a token for an
' existing object.

E$LIMIT The number of units that the calling task is trying
to send would cause the semaphore's supply of units
to exceed its maximum allowable supply.

ENOTCON- This system call is not part of the present
FIGURED configuration.
ESTYPE The semaphore parameter is a token for an object

that is not a semaphore.

9-61

NUCLEUS SYSTEM CALLS

SETSEXCEPTIONSHANDLER

SETSEXCEPTION$SHANDLER assigns an exception handler to the calling task.

CALL RQ$SETSEXCEPTION$HANDLER (exception$info$ptr, except$ptr);

INPUT PARAMETER

exception$info$ptr A POINTER to a structure of the following form:

STRUCTURE(
EXCEPTIONSHANDLERSOFFSET WORD,
EXCEPTIONSHANDLERSBASE WORD,
EXCEPTIONS$MODE BYTE);
where:

° exception$haﬁd1er$offset contains the offset of
the first instruction of the exception handler.

iAPX 86 segment containing the first instruction

I e exception$handler$base contains the base of the
of the exception handler.

ST1IVO WILSAS

e exceptionS$mode contains an encoded indication of
the calling task's intended exception mode. The
value is interpreted as follows:

When to Pass Control

Value To Exception Handler
0 Never
1 On programmer errors omnly
2 On environmental conditions only
3 On all exceptional

conditions
If exception$handler$offset and
exception$handler$base both contain zeros, the

exception handler of the calling task's parent job
is assigned.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

9-62

SE?‘f
EXCEPTION

NUCLEUS SYSTEM CALLS HANDLER

SETSEXCEPTIONSHANDLER (continued)

DESCRIPTION

The SETSEXCEPTIONSHANDLER system call enables a task to set its exception
handler and exception mode attributes. If you want to designate the
Debugger as the exception handler to interactively examine system objects
and lists, the following code sets up the needed structure in PL/M-86:

DECLARE X STRUCTURE (OFFSET WORD,
BASE WORD,
MODE BYTE) ;

DECLARE Y POINTER AT (@X);

DECLARE EXCEPTION WORD;

Y = @RQDEBUGGEREX;

X.MODE = ZERO$ONES$TWO$ORSTHREE;
CALL RQ$SETSEXCEPTIONSHANDLER (@X, @EXCEPTION);

CONDITION CODES @
ESOK No exceptional conditions. 3
ESNOTS$CON- This system call is not part of the present §

FIGURED ' configuration. g
ESPARAM The exception$mode parameter is greater than 3.

9-63

SET
INTERRUPT NUCLEUS SYSTEM CALLS

SET$INTERRUPT

SET$INTERRUPT assigns an interrupt handler to an interrupt level and,
optionally, makes the calling task the interrupt task for the level.

CALL RQ$SETSINTERRUPT (level, interrupt$task$flag, interrupt$handler,
interrupt$handler$ds, except$ptr);

INPUT PARAMETERS

level ‘A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0
6-4 first digit of the interrupt level (0-7)

3 if one, the level 1s a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

%]
<
%]
-
m
=
O
>
-
=
7]

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

interrupt$task$flag A BYTE which,

e if zero, indicates that no interrupt task is to
be associated with the special level and that
the new interrupt handler will not call SIGNAL
INTERRUPT.

® if unequal to zero, indicates that the calling
task is to be the interrupt task that will be
invoked by the interrupt handler being set. The
priority of the calling task is adjusted by the
Nucleus according to the interrupt level being
serviced. Table 8-2 lists the levels and the
corresponding interrupt task priorities. Be
certain that priorities set in this manner do
not violate the max$priority attribute of the
containing job.

9-64

NUCLEUS SYSTEM CALLS
SETSINTERRUPT (continued)

INPUT PARAMETERS
interrupt$task$flag (continued)

The value of this parameter indicates the number of
outstanding SIGNAL$INTERRUPT requests that can
exist. When this limit is reached, the associated
interrupt level is disabled. The maximum value for
this parameter is 255 decimal. Chapter 8 describes
this feature in more detail.

interrupt$handler A POINTER to the first instruction of the interrupt
handler. To obtain the proper start address for
interrupt handlers written in PL/M-86, place the
following instruction before the call to
SET$INTERRUPT:

interrupt$handler
= interrupt$ptr (inter);

where interrupt$ptr is a PL/M-86 built-in
procedure and inter is the name-of your
interrupt handling procedure.

interrupt$handler$ds A WORD which,

e if not zero, contains the base address of the
interrupt handler's data segment. See the
description of ENTERSINTERRUPT in this chapter
for information concerning the significance of
this parameter.

It is often desirable for an interrupt handler
to pass information to the interrupt task that
it calls. The following PL/M-86 statements, when
included in the interrupt task's code (with the
first statement listed here being the first
statement in the task's code), will extract the
DS register value used by the interrupt task and
make it available to the interrupt handler,
which in turn can access it by calling

ENTERS$ INTERRUPT :

DECLARE BEGIN WORD; /* A DUMMY VARIABLE */
DECLARE DATAS$PTR POINTER;
DECLARE DATASADDRESS STRUCTURE (
OFFSET WORD,
BASE WORD) AT (@DATASPTR); /* THIS MAKES
ACCESSIBLE THE TWO HALVES OF THE
POINTER DATAS$PTR */

9-65

SET
INTERRUPT

n
-
-
<
()
=
w
-
w
>
(72}

w
=<
1]
-
]
=
O
>
r
-
(7]

NUCLEUS SYSTEM CALLS
SETSINTERRUPT (continued)

INPUT PARAMETERS
interrupt$hander$ds (continued)

DATASPTR = @BEGIN; /* PUTS THE WHOLE
ADDRESS OF THE DATA SEGMENT INTO
DATASPTR AND DATA$ADDRESS */

DS$BASE = DATA$ADDRESS.BASE;
CALL RQSETINTERRUPT (...,DS$BASE);

o if zero, indicates that the interrupt handler
will use the data segment of the interrupted
task and may not call ENTER$INTERRUPT.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The SETSINTERRUPT system call is used to inform the Nucleus that the
specified interrupt handler is to service interrupts which come in at the
specified level. In a call to SET$INTERRUPT, a task must indicate
whether the interrupt handler will invoke an interrupt task and whether
the interrupt handler has its own data segment. If the handler is to
invoke an interrupt task, the call to SETSINTERRUPT also specifies the
number of outstanding SIGNALS$INTERRUPT requests that the handler can make
before the associated interrupt level is disabled. This number generally
corresponds to the number of buffers used by the handler and interrupt
task. Refer to Chapter 8 for further informationm.

If there is to be an interrupt task, the calling task is that interrupt

task. If there is no interrupt task, SETSINTERRUPT also enables the
specified level, which must be disabled at the time of the call.

CONDITION CODES
E$OK No exceptional conditions.
ESCONTEXT One of the following is true:

e The task is already an interrupt task.

9-66

SET
NUCLEUS SYSTEM CALLS INTERRUPT,
SETSINTERRUPT (continued)

CONDITION CODES
ESCONTEXT (continued)

o The specified level already has an interrupt
handler assigned to it.

e The job containing the calling task or the |
calling task itself is in the process of being
deleted.

ENOTCON- This system call is not part of the present
FIGURED configuration. :
ESPARAM One of the following is true:

e The level parameter is invalid or would cause
the task to have a priority not allowed by its
job.

e The PIC corresponding to the specified level is 1
not configured.

(7]
-
-1
g
o
=
w
-
[
>
7]

9-67

NUCLEUS SYSTEM CALLS

SET$POOLSMIN

SET$POOLSMIN sets a job's pool$min attribute.

CALL RQ$SETS$POOLSMIN (new$min, except$ptr);

INPUT PARAMETER
new$min A WORD which,

e if OFFFFH, indicates that the pool$min attribute
of the calling task's job is to be set equal to
that job's pool$max attribute.

e if less than OFFFFH, contains the new value of
the pool$min attribute of the calling task's
job. This new value must not exceed that job's
pool$max attribute.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The SET$POOLSMIN system call sets the pool$min attribute of the calling
task's job. The new value must not exceed that job's pool$max

attribute. When the pool$min attribute is made larger than the current
pool size, the pool is not enlarged until the additional memory is needed.

CONDITION CODES

ESOK No exceptional conditions.

ESLIMIT The new$Smin parameter is not OFFFFH, yet is greater
than the pool$max attribute of the calling task's
job.

ESNOTSCON- This system call is not part of the present

FIGURED configuration.

9-68

NUCLEUS SYSTEM CALLS

SIGNAL$INTERRUPT

SIGNAL$INTERRUPT is used by an interrupt handler to activate an interrupt
task.

CALL RQ$SIGNAL$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level which is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of ﬁhe interrupt level (0-7)
3 if one, the level is a master level and

bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned. All exceptional
conditions must be processed in-line. Control does
not pass to an exceptional handler.

DESCRIPTION

An interrupt handler uses SIGNAL$INTERRUPT to start up its associated
interrupt task. The interrupt task runs in its own environment with
higher (and possibly the same) level interrupts enabled, whereas the
interrupt handler runs in the environment of the interrupted task with
all interrupts disabled. The interrupt task can also make use of
exception handlers, whereas the interrupt handler always receives
exceptions in-line.

9-69

SIGNAL
INTERRUP

(%2}
—d
-l
<
o
=
S8}
-
(2]
>
(%2}

TIVO W3LSA

NUCLEUS SYSTEM CALLS

SIGNALS INTERRUPT (continued)

CONDITION CODES
E$OK

ESCONTEXT

ESINTERRUPTS
SATURATION

»

ESINTERRUPTS
OVERFLOW

ESLIMIT

ENOTCON~-
FIGURED

ESPARAM

No exceptional conditions.

There is not an interrupt task assigned to the
specified level.

The interrupt task has accumulated the maximum
allowable number of SIGNAL$INTERRUPT requests.

This is an informative message only. It does not
indicate an error.

The interrupt task has accumulated more than the
maximum allowable number of SIGNALSINTERRUPT
requests. It had reached its saturation point and
then called ENABLE to allow the handler to receive
further interrupt signals. It subsequently
received an additional SIGNALSINTERRUPT request
before calling WAITSINTERRUPT.

An overflow has occurred because the interrupt task
has received more than 255 SIGNAL$INTERRUPT
requests.

This system call is not part of the present
configuration.

The level parameter is invalid.

9-70

NUCLEUS SYSTEM CALLS

SLEEP

SLEEP puts the calling task to sleep.

CALL RQ$SLEEP (time$limit, except$ptr);

INPUT PARAMETER

time$limit

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

if not zero and not OFFFFH, causes the calling
task to go to sleep for that many clock
intervals, after which it will be awakened. The
length of a clock interval is configurable.
Refer to the iRMX 86 CONFIGURATION GUIDE for
further information.

if zero, causes the calling task to be placed on
the list of ready tasks, immediately behind all
tasks of the same priority. If there are no
such tasks, there is no effect.

if OFFFFH, is invalid.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The SLEEP system call has two uses. One use places the calling task in
the asleep state for a specific amount of time. The other use allows the
calling task to defer to the other ready tasks with the same priority.
When a task defers in this way it is placed on the list of ready tasks,
immediately behind those other tasks of equal priority.

CONDITION CODES

E$OK

No exceptional conditions.

9-71

(%2}
-
-l
g
8]
=
w
[
(72
>
(7]

SLEEP
NUCLEUS SYSTEM CALLS

SLEEP (continued)

CONDITION CODES (continued)

ESNOTS$CON- This system call is not part of the present
FIGURED configuration.
E$PARAM The time$limit parameter contains the invalid value
OFFFFH.

S71vO WILSAS

9-72

SUSPEND

NUCLEUS SYSTEM CALLS TASK

SUSPEND$TASK

SUSPEND$TASK increases by one the suspension depth of a task.

CALL RQ$SUSPEND$TASK (task, except$ptr);

INPUT PARAMETER
task A WORD which,

e if not zero, contains a token for the task whose
suspension depth is to be incremented.

e if zero, indicates that the calling task is
suspending itself.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTIONS

%2}
-
-
<
[®]
=
w
-
[
>
(7]

The SUSPEND$TASK system call increases by one the suspension depth of the
specified task. If the task is already in either the suspended or
asleep-suspended state, its state is not changed. If the task is in the
ready or running state, it enters the suspended state. If the task is in
the asleep state, it enters the asleep-suspended state.

SUSPENDSTASK cannot be used to suspend interrupt tasks.

CONDITION CODES

E$OK No exceptional conditions.

E$ CONTEXT The task indicated by the task parameter is an
interrupt task.

E$EXIST The task parameter is not a token for an existing
object.

ESLIMIT The suspension depth for the specified task is

already at the maximum of 255.

ESTYPE The task parameter is a token for an object that is
not a task.

9-73

NCATALOG
NUCLEUS SYSTEM CALLS

UNCATALOGS$OBJECT

UNCATALOGSOBJECT removes an entry for an object from an object directory.

CALL RQ$UNCATALOGS$OBJECT (job, name, except$ptr);

INPUT PARAMETERS
job A WORD which,

e if not zero, is a token for the job from whose
object directory the specified entry is to be
deleted.

o if zero, indicates that the entry is to be
deleted from the object directory of the calling
task's job.

name A POINTER to a STRING containing the name of the
object whose entry is to be deleted.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD to which the condition code for
the call is to be returned.

DESCRIPTION

The UNCATALOGSOBJECT system call deletes an entry from the object
directory of the specified job.

CONDITION CODES
ESOK No exceptional conditions.

E$CONTEXT The specified object directory does not contain an
entry with the designated name.

E$EXIST The job parameter 1is neither zero nor a token for
an existing object.

9-74

NUCLEUS SYSTEM CALLS

UNCATALOGSOBJECT (continued)

CONDITION CODES (continued)

ENOTCON-
FIGURED

ESPARAM

ESTYPE

This system call is not part of the present
configuration.

The first byte of the STRING pointed to by the name
parameter contains a value greater than 12 or equal
to 0.

The job parameter is a token for an object that is
not a job.

9-75

(7]
-~
o~
<
(8]
=
w
-
w
>
(%2}

WAIT

INTERRUPT NUCLEUS SYSTEM CALLS

WAIT$INTERRUPT

WAITSINTERRUPT is used by an interrupt task to signal its readiness to
service an interrupt.

CALL RQ$WAITSINTERRUPT (level, except$ptr);

INPUT PARAMETER

level A WORD containing an interrupt level which is
encoded as follows (bit 15 is the high-order bit):

Bits Value
15-7 0

6-4 first digit of the interruptllevei’(047)

3 if one, the level is a master level and
'~ bits 6-4 specify the entlre 1eve1 number

if zero, the level is a slave 1eve1 and .
bits 2-0 spe01fy the second d1g1t '

STIVO WNILSAS

2-0 second digit of- the 1nterrupt level -
(0-7), 1f bit 3 is zero .

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD to which the cond1t10n code for
: ‘ the ca11 is to be returned.

* DESCRIPTION

The WAIT$INTERRUPT system call is used by 1nterrupt tasks 1mmed1ate1y
after initializing and immediately after servicing interrupts. Such a.
call suspends an interrupt task until the interrupt handler for the same
level resumes it by calling SIGNAL$INTERRUPT.

9-76

NUCLEUS SYSTEM CALLS
WAITSINTERRUPT (continued)

While the interrupt task is processing, all lower level interrupts are
disabled. The associated interrupt level is either disabled or enabled,
depending on the option originally specified with the SET$INTERRUPT
system call. If the associated interrupt level is enabled, all
SIGNALSINTERRUPT calls that the handler makes (up to the limit specified
with SET$INTERRUPT) are logged. If this count of SIGNAL$INTERRUPT calls
is greater than zero when the interrupt task calls WAITSINTERRUPT, the

task is not suspended. Instead it continues processing the next
SIGNALSINTERRUPT request.

If the associated interrupt level is disabled while the interrupt task is
running and the number of outstanding SIGNAL$INTERRUPT requests is less
than the user-specified limit, the call to WAIT$INTERRUPT enables that
level.

CONDITION CODES

E$OK No exceptional conditions.
E$CONTEXT | The calling task is not the interrupt task for the
' given level.
- ENOTCON% ' This system call is not part of the present
FIGURED configuration.
: E$PARAM The level parameter is invalid.

9-77

WAIT
INTERRUPT

2]
-
-
g
&)
=
[’Y]
[
n
>
2]

APPENDIX A. iRMX 86™ DATA TYPES

The following are the data types that are recognized by the iRMX 86
Operating System:

BYTE -

WORD -

INTEGER~

OFFSET -

TOKEN -

POINTER-

STRING -

An unsigned, 8-bit, binary number,

An unsigned, two byte, binary number.

A signed, two byte, binary number that is stored in two's
complement form.

A word whose value represents the distance from the base
of a segment.

A word whose value identifies an object.

Two words containing the base of a segment and an offset,
in the reverse order.

A sequence of consecutive bytes. The first byte contains
the number (not to exceed 12) of bytes that follow it in
the string.

APPENDIX B. iRMX 86™ TYPE CODES

Each iRMX 86 object type is known within iRMX 86 systems by means of
a numeric code. For each code, there is a mnemonic name that can be
substituted for the code. Table B-1 lists the types with their codes
and associated mmemonics.

Table B-1. Type Codes

OBJECT TYPE INTERNAL MNEMONIC NUMERIC CODE
Job T$JOB 1
Task T$TASK 2
Mailbox T$MAILBOX 3
Semaphore T$SEMAPHORE 4
Region T$REGION 5
Segment T$SEGMENT 6
Extension TSEXTENSION 7
Composite T$COMPOSITE varies from

8000H to OFFFFH
depending on
the value spec-
ified in
CREATESEXTEN-
SION

APPENDIX C., NUCLEUS MEMORY USAGE

This appendix lists the amount of memory the Nucleus requires for object
creation and memory borrowing. The Nucleus obtains this memory from the
calling job's memory pool when creating the specified object or
implementing the memory borrowing. The values listed in this appendix
reflect Release 3 of the iRMX 86 Operating System. These values are
subject to change in future releases.

The Nucleus uses the following amounts of memory when it creates objects:

number of 16-byte paragraphs

object required by the Nucleus
job 3
object directory 1 per entry in the directory
task 5
+ 6 (if the task uses the 8087 NDP)
+ stacksize/16 (if the Nucleus allocates the
stack)
mailbox 2
+ gsize of high performance queue/4
semaphore 2
region 2
segment 1
extension 2
composite 3
+

number of positions available for components/8

When a job borrows memory from its parent, the Nucleus uses three 16-byte
paragraphs in addition to the amount it uses for object creation. The
Nucleus obtains this memory from the parent job.

INDEX

The primary reference of each multiple-page topic is underscored.

8087 NDP 9-20
8259A PIC 8-2, 8-18

allocation of memory 1-5, 4-2, 5-1, 5-3
asleep state 1-3, 3-1 _
asleep-suspended state 1-3, 3-2

buffers 8-11
multiple 8-13
single 8-12

cascaded interrupts 8-2
CATALOG$OBJECT 3-3, 6-2, 9-5
child job 2-1, 5-3

command dictionary 9-2
communication between tasks 4-1
composite objects 1-1, 8-3
condition code 7-1, 7-4

count limit 8-14, 9-64
CREATES$JOB 2-4, 9-7

D —

CREATE$SMAILBOX 4-3, 9-13
CREATE$SEGMENT 5-1, 5-4, 9-15
CREATE$SEMAPHORE 4-3, 4-5, 9-17

CREATE$TASK 3-5, 9-19

data types A-1

Debugger 7-2

DELETE$SJOB 2-4, 9-22

DELETESMAILBOX 4-~3, 9-24

DELETE$SEGMENT 5-3, 5-4, 9-25

DELETESSEMAPHORE 4-5, 9-26

DELETE$TASK 3-3, 3-4, 8-7, 9-27

dictionary of commands 9-2

DISABLE 8-2, 8-4, 8-6, 8-24, 9-29

disabling interrupts 8-2, 8-4, 8-6, 8-24, 9-29

ENABLE 8-2, 8-4, 8-17, 8-24, 9-31

enabling interrupts 8-2, 8-4, 8-17, 8-24, 9-29
ENTER$ INTERRUPT 8-6, 8-7, 8-8, 8-9, 8-24, 9-33
environmental condition 7-1, 7-4

exception handler 1-6, 3-5, 7-1, 9-37, 9-62
exception mode 3-5, 7-2

Index-1

INDEX

exceptional conditions 1-6, 7-1, 7-4
programmer error 1-6, 7-1, 7-5
environmental condition 1-6, 7-1, 7-4

exchange 4-1 -_-

mailbox 4-1
semaphore 4-3

execution state 1-3, 3-1
asleep 1-3, 3-1
asleep-suspended 1-3, 3-2
ready 1-3, 3-2
running 1-3773:3
suspended 1-3, 3-2
transitions between states 3-2

EXIT$ INTERRUPT 8-6, 8-8, 8-11, 8-18, 8-23, 9-35

extension objects 1-1

GET$EXCEPTIONSHANDLER 7-5, 9-37
GET$LEVEL 8-6, 8-18, 9-39
GET$POOLSATTRIB 5-2, 5-4, 9-41
GET$PRIORITY 3-5, 9-43

GET$SIZE 5-4, 9-44

GET$TASKSTOKENS 2-3, 3-5, 6-2, 9-45
GET$TYPE 6-1, 6~-2, 9-46

handler
exception 1-6, 3-5,
interrupt 1-6, 8-6,
high performance objec

7-1, 9-37, 9-62

3 B
8~-11, 8-18, 8-19, 9-33, 9-35, 9-56, 9-64, 9-69, 9-76
t queue 4-2, 9-13

in-service register 8-19
interrupt 8-1
cascaded 8-2, 8-3

controller 8-2 '

handler 1-6, 8-6, 8-11, 8-18, 8-19, 9-33, 9-35, 9-56, 9-64, 9-69, 9-76
level 8-2, 8-8, 8-10, 8-12, 8-14, 8-17, 8-18, 8-19, 8-24, 9-29, 9-31, 9-39
task 1-6, 8-6, 8-8, 8-11, 8-19, 8-21, 8-23, 9-56, 9-64, 9-76

vector 8-1 ,

vector table 8-1

job 1-1, 1-4, 2-1, 9-7, 9-22, 9-49
child 2-1 ’"‘
memory pool 2-1, 2-3,
object directory 1-4,
object limit 2-1
parameter object 2-3, 3-5
parent 2-1
pool size 2-1, 5-1, 5-2, 9-7
task limit 2-1
tree 1-4, 2-1

5-1, 5-2, 5-3
2-1, 6-1

Index-2

INDEX

level 8-2, 8-7, 8-8, 8-17, 8-18, 8-19, 9-29, 9-31, 9-39
level 7 interrupts 8-18
LOOKUP$OBJECT 3-3, 6-1, 6-2, 9-47

mailbox 1-1, 1-5, 4-1, 9-13, 9-24, 9-51, 9-59

’
master levels 8-2
memory 1-5, 2-1, 2-3, 5-~1, 9-15, 9-25, 9-41, 9-44, 9-68
allocating 1-5, 4-2, 5-3, 9-15, 9-25

available 5-2

borrow1ng 2-3, 5-3, 9- 15
maximum pool size e 5-2
minimum pool size 5-2, 9-68
multiple buffers 8-11, 8-13
mutual exclusion 1-5, 4-3

Nucleus 1-1

object 1-1, 6-1,
job 1-1, 1-4, 2-
mailbox 1-1
segment 1-1
semaphore 1-1,
task 1-1, 1-3, "‘

object directory 1-4, 2-1, 2-3, 6- 6-1, 9-5, 9-47, 9-74

object queue 4-

object type 1-1, 6

OFFSPRING 2-3, 2-4, 9-49

parameter object 2-3, 3-5, 9-7, 9-45
parent job 2-1

PIC 8-2, 8-18

pool size 2-1, 5-1, -2

priority 1-3, 3-1, 3-2, 4-1, 4-3, 8-4, 8-5
programmable 1nterrupt controller 8-2, 8-1
programmer error 7-1, 7-5

, 8-8, 8-9, 8-10, 9-8, 9-19, 9-43
-18

?

queue 4-1, 4-2, 4-3
flrst-ln/flrst—out 4-1, 4-2, 4-3
priority 4-1, 4-2, -3

ready state 1-3, 3-2
RECEIVE$MESSAGE T
RECEIVESUNITS 3=-3,
regions 1-1

request count 8-=14, 9-64
RESET$INTERRUPT 8-4, 8-7, 8-23, 9-56
RESUME$TASK 3-3, 3-5, 9-58

root job 1-4, 2—1, 3-5, 6-2, 9-45
running state 2- 2, 4-2

4-2, 9-51
-3, 9-5

52,

crimiioin.

segment 1-1, 1-5, 5-1, 9-15, 9-25, 9-41, 9-44, 9-68
selecting interrupt 1eve1s 8 ~19

semaphore 1-1, 1-5, 4-3, 9-17, 9-26, 9-54, 9-61
semaphore 11m1t 4-3 9- 17 9-61

Index=3

INDEX

SENDSMESSAGE 3-3, 4-2, 9-59

SEND$SUNITS 3-3, 4-3, 9-61

SET$SEXCEPTIONSHANDLER 7-2, 7-5, 9-62

. SETSINTERRUPT 8-4, 8-7, 8-8, 8-9, 8-12, 8-14, 8-21, 8-22, 8-23, 9-64
SET$POOLSMIN 5-2, 5-4, 9-68

SIGNAL$ INTERRUPT 8-6, 8-8, 8-12, 8-13, 8-15, 8-16, 8-17, 8-21, 8-22, 8-23, 9-69

single buffer 8-12

slave levels 8-2

SLEEP 3-5, 9-71

spurious interrupts 8-18

stack 9-9, 9-19

SUSPEND$TASK 3-3, 3-5, 9-73

suspended state 1-3, 3-2

suspension depth 3-2

synchronization 4-1, 4-3

system call 1-1

system clock 8-2

system exception handler 7-2

task 1-1, 1-3, 3-1, 9-19, 9-27, 9-43, 9-45, 9-58, 9-71, 9-73
arbitration algorithm 1-3, 3-2

communication 4-1
exception handler 1-6
interrupt 1-6, 8-6, 8
limit 2-1
Nucleus' view 1
priority 1-3, 3 3
states 1-3, 3-1, 3-2
suspension depth 4-2
task queue 4-1, 4-2, 4-3
token l:l, 5-1

tree of jobs 1-4, 2-1
type 1-1, 6-1, A-1, B-1
type code 6-1, B-1

UNCATALOGSOBJECT 6-2, 9-74
vector table, interrupt 8-1

WAITS$ INTERRUPT 8-7, 8-9, 8-13, 8-14, 8-15, 8-16, 8-17, 8-21, 8-22, 8-23, 9-76 '

Index-4

s ® iRMX 86™ Nucleus
'n Reference Manual

9803122-03
REQUEST FOR READER’S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all intel product users. This form lets
you patrticipate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME _ DATE
TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE______ ZIP CODE

Please check here if you require a written reply. O

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsibie
person. All comments and suggestions become the property of Intel Corporation.

I " " I NO POSTAGE
NECESSARY
IF MAILED

IN THE
i UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hilisboro, Oregon 97123

0.M.S. Technical Publications

- I I®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

