
iRMX 86™
SYSTEM PROGRAMMER'S

REFERENCE MANUAL

Order Number: 142721-003

Copyright @ 1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 l

REV. REVISION HISTORY PRINT
DATE

-()()1 Original Issue 4/81

-002 Corrects technical and typographical errors, 9/80
and documents Release 2 of the iRMX 86
Operating System

-003 Adds information about the Extended I/O 5/81
System, corrects technical and typographical
errors, and documents Release 3 of the
iRMX 86 Operating System.
Debugger Information, formerly contained
in this manual, is now in the
iRMX 86 Debugger Reference Manual.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regar4 to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP
CREDIT
i
ICE
iCS
im
Insite
Intel

Intel
Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS

Megacha88is
Micromap
Multibus
Multimodule
PROMPT
Promware
RMX/SO
System 2000
UPI
I&ope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

ii I A366/581/4K DO I

PREFACE

The iRMX 86 Operating System is a software package that provides
real-time, multitasking capabilities for Intel iSBC 86 single board
computers and any other iAPX 86- or iAPX 88-based microcomputers. This
manual contains information that is separately described for system
programmers. In Chapter 1, the terms system and application programmers
are defined, and the reasons for making a distinction between them are
explained. The remaining chapters are devoted to various kinds of
information that can, if you so desire, be hidden from application
programmers.

The following manuals provide additional information that may be helpful
to readers of this manual.

Manual

Introduction to the iRMX 86~ Operating System

iRMX 86~ Nucleus Reference Manual

iRMX 86 T
" Debugger Reference Manual

iRMX 86T
" Terminal Handler Reference Manual

iRMX 86 T
" Basic I/O System Reference Manual

iRMX 86T
" Extended I/O System Reference Manual

iRNX 86 T
" Loader Reference Manual

iRMX 86m Human Interface Reference Manual

iRMX 86 m Configuration Guide

Guide to Writing Device Drivers for the iRMX 86 m I/O System

8086/8087/8088 Macro Assembly Language Reference Manual
for 8080/808S-BasedDevelopment Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8086-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8080/808S-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8086-Based Development Systems

iii

Number

9803124

9803122

143323

143324

9803123

143308

143318

9803202

9803126

142926

121623

121627

121624

121628

I

I

CHAPTER 1
INTRODUCTION

CONTENTS

System and Application Programmers ••••••
About the Rest of this Manual •••••••••••

CHAPTER 2
REGIONS
Risks Involved in Sharing Data .•••.•••
Mutual Exclusion Using Semaphores •••••
Mutual Exclusion Using Regions •••.••••

• •••. 8 ••••••••••••

Usefulness of Semaphores •••
Regions and Deadlock •••••••••••••.••••
Regions and Application Programmers •••••••••
Syst~m Calls for Regions •••••••••••••••••••

CHAPTER 3
OPERATING SYSTEM EXTENSIONS
Three Ways of Adding Functionality............. •••••• • ••••••••
Creating an Operating System Extension......... •••••• • ••••••••

Procedures Used in Operating System Extensions •••••••••••••••••••
Interface Procedures •••.•.•••••••••••••••••••••••••••••••••••••
Entry Procedures..... •••••••••••••••••• • ••••••••
Function Procedures.. •••••••••••••••••• • ••••••••
RQ$ERROR Procedure s •.••
Linking the Procedures •••••••••••••••••••••••••••••

Initializing the Interrupt Vector •••.••••••••••••••••
Protecting Resources from Being Deleted ••.•••••••••••••
System Calls Used in Extending the Operating System ••••

CHAPTER 4
TYPE MANAGERS
Creating New Objects ••.••••••.•••••••••.•••••••••••••.•••••••••••••
Manipulating Composite Objects and Extension Types ••.••••••••••••••
Deleting Composite Objects and Extension Types ••••.•••••••••••••••.

Type Manager Responsibilities During DELETE$JOB ••••••••••••••••••
Type Manager Responsibilities during DELETE$EXTENSION •••••••••
Deletion of Nested Composites •••••••••••••••••••••••••••••••••

Writing a Type Manager •••
Example -- A Ring Buffer Manager •••••••••••••••••••••••••••••••••••

The Initialization Part •••••••••••••••••••••••••••••••
The
The
The
The
The
The

Interface Library •••••••••••••••••••••••••••••••••
Entry Procedure ••
CREATE$RING$BUFFER Procedure •••••••••••••••••••••••••••••••••
DELETE$RING$BUFFER Procedure •••••••••••••••••••••••••••••••••
PUT$BYTE Procedure •••
GET$BYTE Procedure •••

Epi 10 gue ..•..•...........•.•.•.•.....•.•••.•••.•.•..••.•.••••..•.
System Calls for Type Managers ••••••

1V

PAGE

1-1
1-2

2-1
2-2
2-3
2-4
2-4
2-5
2-6

3-1
3-1
3-2
3-6
3-7
3-10
3-10
3-14
3-14
3-14
3-15

4-1
4-2
4-2
4-3
4-5
4-5
4-6
4-7
4-8
4-9
4-11
4-12
4-14
4-14
4-15
4-16
4-16

CONTENTS (continued)

CHAPTER 5
THE I/O SYSTEM
Configuration Interface................. • •..••••••••••••

Interfacing Between Tasks and Devices ••••••••••••••••••
Differences Between the Basic and Extended I/O Systems •••••
Device Connections •••••••••••••••••••
Initialization Considerations •••••••••

File Protection for Named Files ••••
User Objects ••••••••••••••••••••••••••••
File Access Lists •••••••••.•••••••••••••
Access Masks for File Connections •••• o •••••••••••••••••••••••••••

Extending a File Descriptor ••

CHAPTER 6
DELETION CONSIDERATIONS.

CHAPTER 7
SYSTEM CALLS
System Call Dictionary •.•••..•••••••••.•••
Alphabetical List of System Calls ••

AGETEXTENSION$DATA •••••.•••••••
A$PHYSICAL$ATTACH$DEVICE •.
A$PHYSICAL$DETACH$DEVICE.
ASETEXTENSION$DATA ••••••
ACCEPT$CONTROL ••••••
ALTER$COMPOSITE •••
CREATE$COMPOSITE ••
CREATE$EXTENSION ••••
CREATE$REGION ••
CREATE$USER ••••••••••••••.•••••••••••
DELETE$COMPOSITE •••••
DELETE$EXTENSION •••••••••.•••••••••••••••••••••••••••••••••••••••
DELETE$REGION ••••••••••••.
DELETE$USER •••••••••••••••
DISABLE$DELETION •••••••••••••••••••••.••••••••••••.••••
ENABLE$DELETION ••••••••••
FORCE$DELETE ••••••••
INSPECT$COMPOSITE ••••••••
INSPECT$ USER •••••••••••••
LOGICAL$ATTACH$DEVICE ••••
LOGICAL$DETACH$DEVICE •••••
RECEIVE$CONTROL ••••••••••••••••••••
S END$ CONTROL •••••.•••••••.•••••••••
SETOSEXTENSION •••••••••••••••••••••••••
SET$PRIORITY ••••••••••••
SET$TIME ••••••••••••••••
SIGNAL $ EXCEPTION •••

v

PAGE
I

5-1
5-1
5-3 I
5-4
5-5
5-5
5-5
5-7
5-7
5-8

I
6-1

7-2
7-5
7-5
7-8
7-11
7-13
7-16
7-17
7-19
7-21
7-23
7-24
7-26
7-27
7-29
7-30
7-31
7-33
7-34
7-36
7-38
7-40 I 7-43
7-45
7-46
7-47
7-49
7-51
7-52

I
I

I

CONTENTS (continued)

PAGE
APPENDIX A
iRMX. 86 DATA TyPES... A-I

APPENDIX B
iRMX. 86 TYPE CODES... B-1

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2.
4-3.
5-1.
5-2.
5-3.
5-4.

3-1.

FIGURES

OS Extensions Without Entry Procedures ••.••••••••.•.•..•.••
OS Extension with Procedure Entry ••••••••••••••••••••••••••
Summary of Duties of Procedures in OS Extensions ••.•••.....
Handling Exceptions with an Exception Handler •••••••••••..•
Extension Handling Exceptions In-Line ••••••••••.•••••••••••
Control Flow for OS Extensions and Application Task ••••••••
The Creation Sequence for Composite Objects •••••••••••••••.
Type Manager Involvement in DELETE$JOB ••••••••••••••••.••••
A Ring Buffer•....•............ • ,
Layers of Interfacing Between Tasks and a Device •••••••••••
Schematic of Software at Initialization Time •••••••••••••••
A System with Device and File Connections ••••••••••••••••••
Computing the Access Mask for a File Connection ••••.•••••••

TABLE

Comparison of Techniques for Creating Common Functions •••••

vi

3-4
3-5
3-9
3-11
3-12
3-13
4-2
4-4
4-8
5-2
5-3
5-6
5-7

3-2

CHAPTER 1. INTRODUCTION

This chapter serves two purposes: it explains the distinction between
system programmers and application programmers, and it provides a brief
introduction to the contents of the rest of the manual.

SYSTEM AND APPLICATION PROGRAMMERS

For the purposes of the iRMX 86 documentation package, programmers are
partitioned into two classes: application programmers and system
programmers. The following paragraphs define the differences between the
two classes. The distinction is somewhat artificial and may, if not
useful to you, be ignored.

An application programmer:

• Uses a limited set of iRMX 86 capabilities and object types to
achieve an applications-oriented goal.

• Is not aware of the remaining capabilities and object types.

• Does not modify the Operating System 1n any way.

A system programmer, by contrast:

• Can use all iRMX 86 capabilities and object types to achieve any
desired goal.

• Can modify the operating system by creating new object types and
system calls for use by system programmers and/or application
programmers.

Some manuals in the iRMX 86 documentation set contain information that
can safely be used by all application programmers. The others, however,
including this one, present features that, if abused, could disable an
application system. By documenting potentially dangerous features in
separate manuals, we provide you with the opportunity of enforcing a
distinction between application and system programmers.

In addition to this manual, the following manuals in the documentation
package are designed for use by system programmers exclusively:

., iRMX 86 CONFIGURATION GUIDE

• GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEM

1-1

INTRODUCTION

ABOUT THE REST OF THIS MANUAL

The remaining chapters deal with a variety of topics.

Chapter 2 introduces regions, which are another type of exchange object.

Chapter 3 explains extending (enlarging) the Operating System.

Chapter 4 discusses a particular kind of operating system extension
called a type manager. Chapt'er 4 also contains an example of a type
manager.

Chapter 5 contains I/O System information that is deliberately not
documented in either the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL or the
iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

Chapter 6 contains precautionary advice concerning the deletion of
objects.

Chapter 7 contains the system calls that are not documented in the other
reference manuals. These are the calls that could corrupt a system if
used without discretion.

1-2

CHAPTER 2. REGIONS

You are probably already familiar with the concept of intertask
coordination via exchanges. If you are not, you can find a general
discussion in the INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM. You can
also find a detailed discussion of semaphores and mailboxes in the iRMX
86 NUCLEUS REFERENCE MANUAL.

This chapter continues where the previous two discussions left off. It
introduces a third type of exchange. This new iRMX 86 object type is a
region, and it allows tasks to share data.

RISKS INVOLVED IN SHARING DATA

Occasionally, several tasks in a system must share data. If the tasks
run concurrently and the data is subject to change, access to the data
must be restricted to one task at a time. The following example
illustrates the importance of controlling tasks' access to data.

Suppose Tasks A and B are both part of an air-traffic-control application
system. Task A runs at fixed time intervals and checks for any potential
collisions. Task B runs as a result of an interrupt caused whenever the
sweep of the radar detects an aircraft. Task B is of higher priority
than Task A and is responsible for updating the position of the detected
aircraft. Potentially, task B could corrupt the data used by Task A.

For instance, suppose that Task A is in the process of extrapolating the
position of a particular aircraft. It first fetches the craft's
last-reported position and uses the craft's velocity to estimate the
position at some time in the near future. Suppose that Task A fetches
the X-coordinate of the position and is preempted by Task B before
fetching the Y- and Z-coordinates. Task B now updates the craft's X-,
Y-, and Z-coordinates to reflect the fresh information gathered from the
radar. Task B surrenders the processor, and the system resumes running
Task A. Task A finishes fetching the craft's last-reported position but
ends up with corrupt information. Instead of using (old X, old Y, old Z)
or (new X, new Y, new Z), Task A believes the last reported position to
be (old X, new Y, new Z)~ In this application, this error could lead to
disaster.

Corruption of data can occur in this manner whenever the following three
conditions are met:

• The data is shared between two or more tasks.

• The tasks sharing the data run concurrently. (In other words,
one of the tasks could possibly preempt another.)

• At least one of the tasks changes the data.

2-1

REGIONS

Whenever all three of these conditions exist, you must take special
precautions to protect the validity of the shared data. You must ensure
that only one task has access to the shared data at any instant, and you
must ensure that the task having access cannot be preempted by other
tasks desiring access. This protocol for sharing data is called mutual
exclusion.

MUTUAL EXCLUSION USING SEMAPHORES

As is discussed in the INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM,
tasks can use semaphores to obtain mutual exclusion. However, using
semaphores for this purpose can lead to two kinds of problems:

• Priority Bottlenecks

Suppose that three tasks, Task A, Band C, have low, medium and
high priority, respectively. If these tasks employ a
priority-queued semaphore to ensure that no more than one of them
uses shared data at any instant, the following situation could
arise:

1. Task A (low priority) obtains access to the data and
continues to run.

2. Task C (high priority) attempts to gain access, but is forced
to wait at the semaphore until Task A frees the data.

3. Task B (medium priority) awakens from a timed sleep and
preempts Task A (low priority).

In Step 2, Task C must wait for Task A (which has lower priority)
to finish using the shared data. This is reasonable as Task A
gained access to the data before Task C. This kind of delay is
inherent in mutual exclusion.

In Step 3, however, the delay is unreasonable. Task C 1S forced
to wait for Task B (which has lower priority than Task C) even if
Task B does not use the shared data.

• Tying Up the Shared Data

If several tasks use a semaphore to govern access to shared data,
and the task currently having access is suspended, the semaphore
prevents any other tasks from using the shared data. Only after
the suspended task is resumed can it free the shared data for use
by the other tasks.

If the task using the data is deleted, rather than merely being
suspended, the situation is even worse. The governing semaphore
prevents any other tasks from ever using the shared data.

You can eliminate both of these kinds of problems by using regions rather
than semaphores to govern the sharing of data.

2-2

REGIONS

MUTUAL EXCLUSION USING REGIONS

A region is an iRMX 86 object that tasks can use to guard a specific
collection of shared data. Each task desiring access to shared data
awaits its turn at the region associated with that data. When the task
currently using the shared data no longer needs access, it notifies the
Operating System, which then allows the next task to access the shared
data.

Noteworthy are the following facts regarding regions:

• The priority of the task that currently has access to the shared
data may temporarily be raised. This happens automatically (at
regions where the task queue is priority-based) whenever the task
at the head of the queue has a priority higher than that of the
task that has access. Under such circumstances, the priority of
the task having access is raised to match that of the task at the
head of the queue. When the task having access surrenders
access, its priority automatically reverts to its original
value. This priority adjustment prevents the priority bottleneck
that can occur when tasks use semaphores to obtain mutual
exclusion.

• Once a task gains access to shared data through a region, the
task can not be suspended or deleted by other tasks until it
surrenders access. This characteristic prevents tasks from tying
up shared data.

CAUTION

When a task gains access through a
region, it must not attempt to suspend
or delete itself. Any attempt to do so
will lock up the region, preventing
other tasks from accessing the data
guarded by the region. In addition, the
task will never run again and its memory
will not be returned to the memory
pool. Also, if the task in the region
attempts to delete itself, all other
tasks that later attempt to delete
themselves will encounter the same
memory pool problems.

• When you create a region you must specify which of two rules is
to be used to determine which waiting task next gains access to
the shared data. One rule is first-in/first-out (FIFO), and the
other is priority.

• Regions are much faster than semaphores. The system calls used
to manipulate a region require much less processor time than do
those that manipulate semaphores.

2-3

REGIONS

USEFULNESS OF SEHAPHORES

After reading the last section, you are probably wondering why anyone
would want to use semaphores at all. There are three reasons:

1. You can use semaphores to accomplish much more than mutual
exclusion. For example, with semaphores you can synchronize
multiple tasks or allocate resources. Regions, on the other
hand, provide only mutual exclusion.

2. Because of the possibility of deadlock, regions should not be
used outside of extensions to the Operating System.
Consequently, application programmers must use semaphores to
accomplish mutual exclusion.

3. Semaphores allow a task to set art upper limit on the amount of
time the task is willing to wait for access. In contrast,
regions provide no such option. Tasks using regions for mutual
exclusion have only two choices:

They can request immediate access. If a task makes such a
request and access is not available immediately, the task
does not wait at the region. Rather, it receives an
exception code and continues to run.

They can request access as it becomes available. This kind
of request causes the task to wait at the region until access
becomes available. If access never becomes available, the
task never runs again.

Tasks use the ACCEPT$CONTROL system call to request imm~diate
access. They use the RECEIVE$CONTROL system call to request
access as it becomes available. Both of these system calls are
described in detail in Chapter 7 of this manual.

REGIONS AND DEADLOCK

A major concern in any multitasking system is avoiding deadlock.
Deadlock occurs when one or more tasks permanently lock each other out of
required resources. The following hypothetical situation illustrates a
method for quickly causing deadlock by using nested regions. An
explanation of how to avoid the illustrated deadlock situation follows
the example.

NOTE

In the following example, the only
system call used to gain access is the.
RECEIVE$CONTROL system call. Tasks
using the ACCEPT$CONTROL system call
cannot possibly deadlock at a region
unless they keep trying endlessly to
accept control.

2-4

REGIONS

Suppose that two tasks, A (high priority) and B (low priority), both need
access to two collections of shared data. Call the two collections of
data Set I and Set 2. Access to each set is governed by a region (Region
1 an d Re g i on 2).

Now suppose that the following events take place in the order listed:

1. Task B requests access to Set 1 via Region 1 • Access is granted.

2. Before Task B can request access to Set 2, an interrupt occurs
and Task A preempts Task B.

3. Task A requests access to Set 2 V1a Region 2. Access 1S granted.

4. Task A requests access to Set 1 via Region 1. Task A must wait
because Task B already has access.

5. Task B resumes running and requests access to Set 2 via Region
2. Task B must wait because Task A already has access.

At this point Task A is waiting for Task B and vice versa. Tasks A and B
are hopelessly deadlocked, and any other tasks that request access to
either set of data will also become deadlocked.

This team deadlock situation applies only to systems in which regions are
nested. If your system must use nested regions, you can prevent team
deadlock by adhereing to the following rule:

Apply a strict ordering to all the regions in your system, and code
tasks so that they gain access according to the order. For example,
suppose that your system uses 12 regions. Write the names of the
regions on a piece of paper in any order, and number them starting
with 1. As you program a task that nests any of the regions (say
Regions 3, 8, and 10), be sure that the task requests access in
numerical order. The essential element of this technique is that all
tasks must request access in a consistent order. The precise order
is unimportant as long as all tasks obey it.

If you follow this rule consistently, you can safely nest regions to any
depth.

REGIONS AND APPLICATION PROGRAMMERS

Knowledge of regions should not be distributed to application
programmers. A careless or unscrupulous application programmer can, by
abusing regions, corrupt the interaction between tasks in an application
system. For instance, by creating a region and gaining access to
nonexistent shared data, unscrupulous application programmers can make
their tasks immune to deletion. If they never surrender access, the
tasks can permanently avoid deletion.

2-5

REGIONS

Abusing some of the features described in this manual can affect the
integrity of the entire Operating System. Regions constitute such a
feature. If you wish to preserve the integrity of your application
system, you should confine the use of regions to system programmers and,
even then, only within Operating System extensions.

SYSTEM CALLS FOR REGIONS

The following system calls manipulate regions:

• ACCEPT$CONTROL

This system call allows a task to gain access to shared data only
when access is immediately available. If a different task
already has access, the requesting task remains ready but
receives an exception code.

• CREATE$REGION

This system call creates a region and returns a token for it.
One of the parameters passed during this call specifies the
queuing rule (FIFO or priority).

• DELETE$REGION

This system call deletes a region.

• RECEIVE$CONTROL

This system call causes a task to wait at the region until the
task gains access to the shared data.

• SEND$CONTROL

This system call, when issued by a task, frees the Operating
System to grant a different task with access to the shared data.

2-6

CHAPTER 3. OPERATING SYSTEM EXTENSIONS

A feature of the iRMX 86 Operating System is that it can be extended to
include your own customized object's and system calls. This feature
allows you to create an operating system that precisely meets the needs
of your application. This chapter explains how to extend the iRMX 86
Operating System to include your own system calls.

THREE WAYS OF ADDING FUNCTIONALITY

Whenever more than one job in your application system requires a function
not supplied by the iRMX 86 Operating System, you have at least the
following three ways of adding the needed function:

• Write the function as a procedure and place it in a library by
using LIB86. After compiling each job that requires the
function, use LINK86 to link the library to the object module for
the job.

• Write the function as a task and allow application tasks to
invoke the function through a mailbox-segment interface.

• Write the function as a procedure and add it to the iRMX 86
Operating System. Application programs then invoke the function
by means of a system call.

The relative advantages and disadvantages of the three alternatives are
summarized in Table 3-1.

The third alternative involves extending the Operating System. The
procedures that you must add to the Operating System in order to support
the added function are called an Operating System extension, or OS
extension. From the application programmer's standpoint, an OS extension
appears to be a collection of one or more customized system calls.

CREATING AN OPERATING SYSTEM EXTENSION

Creating art OS extension involves both writing several procedures and
initializing the interrupt vector of the iAPX 86 microprocessor.

3-1

OPERATING SYSTEM EXTENSIONS

TABLE 3-1. COMPARISION OF TECHNIQUES FOR CREATING COMMON FUNCTIONS

PROCEDURE
LIBRARY , TASK OS EXTENSION

APPLICATION
PROGRAMMER'S SIMPLE COMPLEX SIMPLE
INTERFACE

RELATIVE GOOD POOR MODERATE
PERFORMANCE (for (for (for

all quick quick
functions) functions) functions)

MODERATE GOOD
(for (for
slower slower

functions) functions)

SYNCHRONOUS
or BOTH ASYNCHRONOUS BOTH

ASYNCHRONOUS ONLY
CALLS

SYSTEM NOT NOT
PROGRAMMER REQUIRED REQUIRED REQUIRED

DUPLICATE Difficult to Easy to avoid Automatically
CODE avoid avoided

POTENTIAL
FOR COSTLY YES NO NO
MAINTENANCE

SUPPORTS
NEW OBJECT NO NO ,YES
TYPES

PROCEDURES USED IN OPERATING SYSTEM EXTENSIONS

Every OS extension is composed of at least two kinds of procedures.
Figure 3-1 illustrates the simplest arrangement. The two required kinds
of procedure are the following:

3-2

OPERATING SYSTEM EXTENSIONS

• Interface Procedure

An interface procedure connects the customized system call to the
Operating System. For example, to issue a NEW$FUNCTION system
call, an application task executes a statement like

CALL NEW$FUNCTION(••••••);

This statement is, in fact, a call to an interface procedure,
named NEW$FUNCTION, that transfers control to the Operating
System. One interface procedure is required for each customized
system call.

• Function Procedure

The function procedure does the important work of the system
call. That is, it performs the actions requested by the calling
task. One function procedure is required for each customized
system call.

Figure 3-1 depicts four OS extensions, each containing one system call.
Note that the interface procedures are part of the application software
and the function procedures are part of the system software. The tasks
are linked to the interface procedures, but the interface procedures are
not linked to the function procedures. Instead, the interface procedures
pass control to the function procedures by way of the interrupt vector.

The interrupt vector consists of 256 four-byte entries; the first entry
is at location 0 and the last is at location 1020 (decimal). The iRMX 86
Operating System uses these entries for many purposes, but the last 32
(entries 224 through 255) are reserved for user-supplied OS extensions.

In Figure 3-1, the four interface procedures transfer control to the four
function procedures through four separate interrupt vector entries (each
of which must be numbered in the 224 to 255 range). Note that, if
confined to the pattern illustrated in Figure 3-1, a system is limited to
32 customized system calls.

If a system has need for more than 32 system calls, another kind of
procedure must be employed:

• Entry Procedure

The" entry procedure serves as a. multiplexor for OS extensions
supporting more than one system call. Figure 3-2 depicts a
single OS extension with four system calls. The primary purpoSe
of the entry procedure is to route the ~all from the interface
procedure to the proper function procedure. Note that four
interface procedures are still required to support the four
system calls.

3~3

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

DDD
W X Y

999
· · ·

. .

· . . · . . · . . · . . · . .
• • I
• I • · · ·

• !
• I
• I
• I I I

I , · , · , · ,
• I
• I · .

• I
• I
• I
• I
• I

DOD
W' X' Y'

SYSTEM SOFTWARE

D TASKS

~CALL/RETURN

INTERFACE
PROCEDURES

{ SOFTWARE
,----~ INTERRUPTI

{ RETURN

z'

FUNCTION
PROCEDURES

Figure 3-1. OS Extensions Without Entry Procedures

3-4

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

DDD

A' B' C'

SYSTEM· SOFTWARE

D TASKS

~ CALL/RETURN

0'

INTERFACE
PROCEDURES

ENTRY
PROCEDURE

FUNCTION
PROCEDURES

Figure 3-2. OS Extension with Procedure Entry

3-5

OPERATING SYSTEM EXTENSIONS

The principal advantage of having an entry procedure is that one
interrupt vector entry can support multiple system calls. This
means that the 32 entries in the interrupt vector, along with
entry procedures, can support a virtually unlimited number of
customized system calls.

The following paragraphs describe the responsibilities of each of the
kinds of procedures composing OS extensions. Figure 3-3 contains, in
algorithmic form, summaries of these descriptions. Also, Chapter 4
contains an example of an as extension that manages a customized object
type.

Interface Procedures

For each system call 1n your as extension, you must write a reentrant
assembly language interface procedure. (For detailed information
concerning the 8086 Asssmbly Language, refer to the appropriate
8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL.) The primary
purpose of this procedure is to use a software interrupt to transfer
control from the task that invoked the system call to an entry procedure
(or, in the absence of an entry procedure, to a function procedure).

If there is an entry procedure, the interface procedure must communicate
to it a code which identifies the function procedure that the entry
procedure is to call. The interface procedure does this by loading the
code into a previously-designated register or onto the stack of the
calling task. The entry procedure, when invoked, extracts the code from
this register or the stack.

A second important function of an interface procedure is informing the
calling task (or its exception handler) of any exceptional conditions
that have occurred. The entry procedure (or the function procedure if no
entry procedure exists) communicates this information to the interface
procedure by placing the exception code in the ex register and the number
of the parameter that caused the error in the DL register. The interface
procedure then does the following:

• Checks the ex register for the condition code. If this register
contains a value other than zero (E$OK), an exceptional condition
exists.

• If an exceptional condition exists, calls a procedure named
RQ$ERROR.

The Nucleus interface library contains a default RQ$ERROR procedure.
This procedure gets the exception code and parameter number from the CX
and DL regi s'ters and then makes a SIGNAL$EXCEPTION system call to inform
the calling task (or its exception handler) of the exception. When
SIGNAL$EXCEPTION returns to the RQ$ERROR procedure, RQ$ERROR restores CX
and DL with the exception code and parameter number and places a value of
OFFFFH in the AX register.

3-6

OPERATING SYSTEM EXTENSIONS

If you do not want to use this default procedure, you can write your own
RQ$ERRORprocedure. Your RQ$ERROR procedure can perform any functions it
needs in order to inform the application task of the exceptional
condition. The only restriction placed on an RQ$ERROR procedure is that
it should always return a value of OFFFFH in the AX register (so that
OFFFFH is returned as a function value for your system calls that are
typed procedures). An example of an alternate RQ$ERROR procedure is one
that simply places OFFFFH in AX and then does a RETURN, returning control
directly to the application task to avoid the task's normal exception
handler.

To make sure that your own RQ$ERROR procedure is called instead of the
default version, you should link your procedure directly to the interface
procedure or include it in a library with the rest of your interface
procedures. When linking your modules together, this library should
always precede the Nucleus interface library in the link sequence.

Another important purpose of interface procedures is that they
compensate, on behalf of the entry or function procedures that they call,
for differences between parameter-passing protocols. Three different
models (COMPACT, MEDIUM, and LARGE) are available when compiling iRMX 86
tasks written in PL/M-86. Each has its own method of passing
parameters. (Refer to the appropriate 8086/8087/8088 MACRO ASSEMBLER
OPERATING INSTRUCTIONS manual for information regarding these methods.)
By providing a library of interface procedures for each PL/M-86 model,
you make the entry and function procedures independent of the PL/M-86
model in which application code is being compiled. If other languages
were available, the same strategy would make the entry and function
procedures independent of the language in which application code is
written. The benefit of this independence is that only one entry
procedure (or function procedure, if no entry procedure exists) is needed
for each interrupt vector entry in your system.

Entry Procedures

Each OS extension comprising more than one system call must include a
reentrant entry procedure, whose chief purpose is to route the call to
the appropriate function procedure. Other duties of entry procedures are
the following:

• Set up the exception handling mechanism for the OS extension.
This can be done in one of two ways, depending on whether the OS
extension has its own exception handler or whether it wants to
handle exceptions in-line.

If the OS extension has its own exception handler, the entry
procedure must change the exception handler from that of the
calling task to an exception handler for the OS extension. It
must do this to guarantee that an error by the OS extension
doesn't cause the calling task to be deleted (a common function
of exception handlers). To make this change, the entry procedure
calls GET$EXCEPTION$HANDLER to obtain and save the task's
exception handler address and exception mode. It then calls
SET$EXCEPTION$HANDLER to set new values for these entities. When

3-7

OPERATING SYSTEM EXTENSIONS

control returns to the entry procedure from the function
procedure, the entry procedure again calls SET$EXCEPTION$HANDLER
to restore the original values.

If you want the OS extension to handle its exceptions in-line,
you must create your own RQ$ERROR procedure and link it to the
entry procedure. This RQ$ERROR procedure must return control
directly to the entry procedure instead of calling
SIGNAL$EXCEPTION. If you supply an RQ$ERROR procedure of this
type, the entry procedure does not have to change exception
handlers. Instead, if the OS extension encounters exceptional
conditions while invoking other system calls, this RQ$ERROR
procedure'is called to return control directly to the procedure
that incurred the error. That procedure can then handle the
error. It does not matter which exception handler is associated
with the application task, since the exception handler is not
called. The RQ$ERROR procedure is discussed in more detail later
in this chapter.

• Perform any chore required by all system calls in this OS
extension. By performing common chores in the entry procedure,
you can factor code out of several function procedures.

• If notified by the function procedure that an exception occurred
which must be transmitted back to the application task, do the
following:

Place the exception code in the CX register.

Place the number of the parameter that caused the exceptional
condition in the DL register.

Return control to the interface procedure.

The interface procedure should examine the CX register to check
for an exceptional condition and call the version of RQ$ERROR to
which it is linked.

When adding OS extensions, you might wish to add your own
customized exceptional conditions and associated codes. Values
available to users for exception codes are 4000H to 7FFFH (for
environmental conditions) and OCOOOH to OFFFFH (for programmer
errors).

Write the entry procedure in assembly language so that you can directly
access the stack and the registers. This provides you with the following
benefits:

• It gives you access to the input parameters passed by the calling
task and the interface procedure.

• It allows you to set the ex and DL registers in the event of an
exceptional condition.

3-8

CALLING
TASK

INTERFACE
PROCEDURE

(OPTIONAL)
ENTRY

PROCEDURE

FUNCTION f
.ROCEOURE (

OPERATING SYSTEM EXTENSIONS

..........................
DO SOME PROCESSING
CALL AN INTERFACE PROCEDURE ••••••••
DO SOME MORE PROCESSING ;

r·· j

: • ., LOAD INTO A SPECIFIC PAIR OF REGISTERS A POINTER TO THE
PARAMETERS ON THE TASK'S STACK

: ~

IF THERE IS AN ENTRY PROCEDURE THEN
LOAD INTO A SPECIFIC REGISTER A CODE IDENTIFYING THE
FUNCTION BEING CALLED

DO A SOFTWARE INTERRUPT (INT n where 224::;n::;255) TO CALL THE
ENTRY PROCEDURE OR A FUNCTION PROCEDURE •••••••••••••• : ~

EXAMINE THE CX REGISTER : OR :
IF CX CONTAINS A NONZERO VALUE THEN ::

CALL RQ$ERROR TO INFORM THE TASK OF THE EXCEPTION; :
RETURN (RET) ••••••• : ~

: :

:·········:::1::.····································· :
~ ... :f
:.~ IF USING DEFAULT RQ$ERiiOR PROCEDURE AND IF DESIRED, THEN

SAVE TASK'S EXCEPTION HANDLER (GET$EXCEPTION$HANDLER)
AND SET UP A TEMPORARY REPLACEMENT
(SET$EXCEPTION$HANDLER)

IF POSSIBLE THEN
DO PROCESSING COMMON TO ALL FUNCTION PROCEDURES IN
THIS OS EXTENSION

GET FUNCTION CODE STORED BY INTERFACE PROCEDURE •
CALL THE DESIGNATED FUNCTION PROCEDURE······························ •••• ~

:::.:::::...... IF EXCEPTION HANDLERS WERE SWITCHED EARLIER THEN : RESTORE ORIGINAL (SET$EXCEPTION$HANDLER) :
IF NOTIFIED OF AN EXCEPTION BY A FUNCTION PROCEDURE THEN :

PLACE EXCEPTION CODE IN CX REGISTER :
PLACE PARAMETER NUMBER IN DL REGISTER :

f,(... i·· ~:.~.~:.~::~~.::::::: I
; ... :f
:.- OBTAIN INPUT PARAMETERS

PERFORM ACTIONS EXPECTED BY CALLING TASK
RETURN- EXCEPTION CODE AND ANY VALUES EXPECTED BY

CALLING TASK
RETURN·······:

~.~~j j

Figure 3-3. Summary of Duties of Procedures in OS Extensions

3-9

OPERATING SYSTEM EXTENSIONS

Function Procedures

The duties of the function procedure are principally to perform the
actions requested by the calling task. Additionally, if there is riot an
entry procedure, the function procedure should inform the interface
procedure concerning the exception status of the call. It should do this
by setting ex and DL as described previously in the description of entry
procedures. Functibn procedures should be reentrant and can be written
in PL/M-86 or assembly language.

RQ$ERROR Procedures

The sections of this chapter that describe interface procedures and entry
procedures both make mention of a procedure named RQ$ERROR. This is a
procedure called by the interface procedures of the Nucleus and each
subsystem of the Operating System in the event of an exceptional
condition. For example, if your application task makes a SEND$MESSAGE
system call and an exceptional condition results, the Nucleus returns the
error (in the ex and DL registers as described previously) to the Nucleus
interface library that is linked to your application task. The procedure
in the library then calls RQ$ERROR to process the error.

This is not only true for application tasks that make system calls, but
also for Intel-supplied subsystems (such as the I/O System) and OS
extensions that make system call s. For example, if the I/O System calls
SEND$MESSAGE and an exceptional condition results, the Nucleus returns
the error to the Nucleus interface library that is linked to the I/O
System. The procedure in that library calls RQ$ERROR to process the
error.

Every subsystem of the Operating System that implements system calls also
provides this mechanism for returning exceptions. If an application task
makes an I/O sys.tem call (GREATE$FILE, for example) and incurs an
exceptional condition, the I/a System returns control to the I/O System
interface library that is linked to that task. The interface procedure
in that library call s RQ$ERROR to proces s t,he error.

The OS extensions you write should also proviqe this mechanism for
returning exceptions to tasks (or other OS exceptions) that invoke your
customized system calls. The previous sections of this chapter describe
the method for doing this.

The Nucleus interface library, as released, contains a default RQ$ERROR
procedure. The function of this RQ$ERROR procedure is to call
SIGNAL$EXCEPT10N to in.form the calling task (or its exception handler) of
the exception. T:his version of RQ$ERROR sh.ould be linked to application
tasks to en~ure that their ex;ception handlers are called when exceptional
condi,t ions occur. Figure 3-4. illustrates the flow. of control from an
appl;ication task to. an exception handler when the task incurs an
exceptioI1al conciition..

3.,-10

APPLICATION TASK

• • CALL RQ$SEND$MESSAGE
•

SOFTWARE INTERRUPT TO
NUCLEUS RQ$SIGNAL$

EXCEPTION

OPERATING SYSTEM EXTENSIONS

EXCEPTION
HANDLER

• • •
RETURN _...a_-------__

NUCLEUS

Figure 3-4. Handling Exceptions With an Exception Handler

The iRMX 86 Operating System uses this mechanism for returning exceptions
to give subsystems and OS extensions flexibility in handling their own
exceptions. They obtain this flexibility because they know that whenever
they incur an exceptional condition, a routine in an interface library to
which they are linked will call RQ$ERROR to process the exception. If
they want their exceptional conditions to be processed in a special
manner, they can provide their own version o~ RQ$ERROR to handle this
special processing. Thus each subsystem and OS extension can process
exceptional conditions in its own way.

As the creator of an OS extension, you have the option of linking your OS
extension to the default RQ$ERROR procedure or providing one of your
own. If you have an exception handler associated with your OS extension,
you will probably want to use the default RQ$ERROR procedure. You will
also want to use SET$EXCEPTION$HANDLER and GET$EXCEPTION$HANDLER, as
described previously, to ensure that your exception handler is actually
called in the event of an exceptional condition.

3-11

OPERATING SYSTEM EXTENSIONS

However, if your OS extension does not have an exception handler, it
should handle exceptions in-line, so that it can then return the proper
exception code to the task (or OS extension) that invoked your customized
system calls. You can provide this feature by linking your OS extension
to a version of RQ$ERROR that does not call S IGNAL$ EXCEPTION. Instead,
this RQ$ERROR procedure should place OFFFFH in the AX register (so that
OFFFFH is returned for system calls that are invoked as functions) and
then do a RETURN, to return control directly to the interface library.
The interface library then returns control to your OS extension, allowing
the OS ext·ension to process the exception in-line. Figure 3-5
illustrates the flow of control for an OS extension that processes its
exceptions in-line. The RQ$ERROR procedure in Figure 3-5 simply sets AX
and does a RETURN.

OS EXTENSION

• •
CALL RQ$SEND$

MESSAGE

• • •

NUCLEUS INTERFACE
LIBRARY NUCLEUS

Figure 3-5. as Extension Handling Exceptions In-Line

Even though your OS extension processes its own exceptions in-line, it
will still want to return exceptions to tasks (or other OS extensions)
that invoke the customized system calls. This involves having the entry
(or function) procedure of your OS extension place the condition code and
parameter number in ex and DL and then having the interface procedure
call RQ$ERROR in the event of an exceptional condition. The "Interface
Procedures" and "Entry Procedures" section of this chapter describe this
procedure in detail. Because your OS extension returns the exception to
the inteface procedure linked to the application task (or another OS
extension), the RQ$ERROR procedure that gets called is the one in the
interface library linked to the calling task, not the one in the
interface library linked to the OS extension.

3-12

OPERATING SYSTEM EXTENSIONS

Figure 3-6 illustrates the flow of control for an OS extension that
incurs an exceptional condition, processes the exception in-line, and
then returns an exception to the application task that called it. Notice
that both the OS extension and the application task, although not linked
together, are each linked to interface libraries and an RQ$ERROR
procedure. The RQ$ERROR procedure linked to the OS extension returns
control back to the OS extension. The RQ$ERROR procedure linked to the
application task is the default one; it calls SIGNAL$EXCEPTION.

OS EXTENSION

• • •
CALL RQ$SENDSMESSAGE -----="-­

•
.~---­•

I
I
I
I

APPLICATION TASK

NUCLEUS INTERFACE
LIBRARY NUCLEUS

Figure 3-6. Control Flow for OS Extension and Application Task

3-13

OPERATING SYSTEM EXTENSIONS

Linking the Procedures

For each OS extension, you should produce several libraries of interface
procedures. In fact, you should produce one library for each PL/M-86
model in which the calling task can be written. Within each library, you
should have one interface procedure for each system call of the OS
extension. Each job in your system should be linked to the appropriate
interface library for each OS extension that the job calls.

For each OS extension, the entry procedure (if any) and the function
procedures should all be linked together, along with any Operating System
interface libraries that the procedures need. They should not be linked
to any application code, since they are connected to the application
tasks via the interrupt vector.

Any RQ$ERROR procedures that you create should be linked to the
appropriate routines. If you create a special RQ$ERROR procedure that
your interface procedures call whenever they inform the application task
of an exception, you should place that RQ$ERROR procedure in the
interface library you create. If you create an RQ$ERROR procedure to
process exceptions that your OS extension incurs, you should link this
RQ$ERROR procedure directly to the entry and function procedures. You
should also link the Nucleus interface library, and the interface
libraries for any of the other subsystems that you use, to both the
application task and the OS extension. If you provide your own RQ$ERROR
procedure, either for your interface procedures to call or to process
exceptions in your OS extension, this procedure must precede the Nucleus
interface library in the link sequence.

INITIALIZING THE INTERRUPT VECTOR

Before an interface procedure can successfully transfer control to an OS
extension, the interrupt vector must be initialized with the addresses of
the entry (or function) procedures. The SETOSEXTENSION system call is
available for this purpose.

Because the interrupt vector must be initialized before any OS extensions
are invoked, you must ensure that the initialization happens shortly
after the system begins running. This can be accomplished during the
initialization process described in the iRMX 86 CONFIGURATION GUIDE.

PROTECTING RESOURCES FROM BEING DELETED

Normally, an object can be deleted by a call to the deletion system call
correspon~ing to the object's type. However, OS extensions can use the
DISABLE$DELETION system call to make the object immune to this kind of
deletion. A subsequent call to ENABLE$DELETION removes the immunity.

An object can have its deletion disabled more than once. Each call to
DISABLE$DELETION must be countered by a call to ENABLE$DELETION before
the object can be deleted. An object's disabling depth at any given
moment is defined to be the number of times the object has had its

3-14

OPERATING SYSTEM EXTENSIONS

deletion disabled minus the number of times its deletion has been
enabled. Usually, an object cannot be deleted until its disabling depth
is zero. The lone exception is that a call to FORCE$DELETE deletes
objects whose disabling depth is one. Also, calling ENABLE$DELETION for I
an object whose deletion depth is zero results in the E$CONTEXT exception
code.

All of these system calls--DISABLE$DELETION, ENABLE$DELETION, and
FORCE$DELETE--should be used only by OS extensions.

NOTE

When a task attempts to delete an object
whose disabling depth is too high to
permit deletion, that task goes to
sleep. The task remains asleep until
the object's deletion depth becomes
small enough to permit deletion. At
that time, the object is deleted and the
task is awakened. Because these
circumstances can cause system deadlock,
your tasks should exercise caution when
deleting objects.

SYSTEM CALLS USED IN EXTENDING THE OPERATING SYSTEM

The following system calls are used extensively by OS extensions:

• DISABLE$DELETION

This system call increases the deletion disabling depth of an
object by one.

• ENABLE$DELETION

This system call removes one level of deletion disabling from an
object, reversing the effect of one DISABLE$DELETION call.

• FORCE$DELETE

This system call deletes objects whose disabling depths are one
or zero.

• SETOSEXTENSION

This system call can be used either to place an address in a
specific entry of the interrupt vector or to remove such an entry.

• SIGNAL$EXCEPTION

This system call advises a task than an exceptional condition has
occurred in an OS extension that the task has called.

3-15

I

CHAPTER 4. TYPE MANAGERS

The object types and system calls provided by the Nucleus and I/O System
are sufficient for many applications. However, some applications have
special requirements that would best be met if the iRMX 86 Operating
System had additional object types and system calls for manipulating
objects of those types. A type manager is an operating system extension
that provides these services.

If your system requires additional object types, you must write a type
manager for each of those types. The responsibilities of each type
manager include:

• Implementing a new type by creating objects of the new type.

• Providing a mechanism for deleting objects of the new type.

• Optionally providing the system calls that application tasks can
invoke to create, manipulate, and delete objects of the new type.

This chapter describes creating and deleting objects of new type.
Chapter 3 describes extending the Operating System to include new system
calls. An example appears at the end of this chapter which combines both
of these operations.

CREATING NEW OBJECTS

Creating custom-made objects is a two-step process:

1. Create the type.
2. Create objects of that type.

The CREATE$EXTENSION system call creates the type. CREATE$EXTENSION
accepts a new type code as a parameter and returns a token for the new
type. The token represents a license to create objects of the new type.

The CREATE$COMPOSITE system call creates objects of the new type.
CREATE$COMPOSITE accepts as a parameter the token returned from
CREATE$EXTENSION. CREATE$COMPOSITE also accepts as input a list of
tokens for the objects that are to compose the new object <the component
objects} and returns a token for the new object, called a composite
object.

Figure 4-1 illustrates the creation process for composite objects.

4-1

I

TYPE MANAGERS

Input System Call Output

Type code--------~.~CREATE$EXTENSION------~.~Token for type~

~Token for type~
~~~~CREATE$COMPOSITE-------;.~Token for new object 

List of component 
object tokens 

Figure 4-1. The Creation Sequence for Composite Objects 

You should take note of two facts concerning the process of creating a 
composite object. 

• First, its components, called component objects, are all iRMX 86 
objects, either Intel- or user-provided. 

• Second, no structure is imposed upon composite objects of a given 
extension type. Two object s· 0 f the same extension type can be, 
if desired, completely different in structure or in the number of 
components objects they comprise. This feature allows for 
maximum flexibility in the creation of new objects. 

Once a type manager creates a new object type by calling 
CREATE$EXTENSION, that type manager owns the type. It is the only type 
manager that can create composite objects of that type. In addition, 
when it creates composite objects, the type manager can request that the 
composite object be sent back to the type manager when the object has to 
be deleted. Later sections describe this in detail. 

MANIPULATING COMPOSITE OBJECTS AND EXTENSION TYPES 

Two system calls are available for manipulating existing composite 
objects: INSPECT$COMPOSITE and ALTER$COMPOSITE. INSPECT$COMPOSITE 
returns a list of component tokens for a composite object. 
ALTER$COMPOSITE replaces a token in the component list of a composite 
object, either with another token or with a null. 

DELETING COMPOSITE OBJECTS AND EXTENSION TYPES 

Two system calls are available exclusively for deleting composite 
objects: DELETE$COMPOSITE and DELETE$EXTENSION. DELETE$COMPOSITE deletes 
a particular composite object (but not its components); DELETE$EXTENSION 
deletes a specified extension type and either deletes the composites of 
that type or sends them to a deletion mailbox, in which case the type 
manager must delete them. 

4-2 



TYPE MANAGERS 

A third system call, DELETE$JOB, also deletes composite objects as a part 
of its processing. Afthough DELETE$JOB cannot delete extension types (in 
fact, DELETE$JOB returns an exception code if the job contains any 
extension objects), it can delete composites or send them to deletion 
mailboxes where the type managers for these objects must delete them. 

The deletion$mailbox parameter in the CREATE$EXTENSION system call 
determines whether DELETE$EXTENSION and DELETE$JOB actually delete 
composite objects or instead send them to deletion mailboxes. There are 
two possibilities for this option. 

If you specify a zero for the deletion$mailbox parameter of 
CREATE$EXTENSION, then DELETE$EXTENSION and DELETE$JOB assume all 
responsibility for deleting extension and composite objects. Your type 
manager plays no part in the deletion process and you can skip the next 
three sections of this chapter. 

However, if you specify a token for a mailbox in the deletion$mailbox 
parameter of CREATE$EXTENSION, then DELETE$EXTENSION and DELETE$JOB send 
all composite objects of the indicated type to the mailbox instead of 
actually deleting these objects. Your type manager for that extension 
type is then responsible for deleting the composite objects. 

There are two conditions that must occur before the type manager receives 
composite objects via the previously mentioned deletion mailbox: 

• Your type manager, when it called CREATE$EXTENSION, must have 
filled in the deletion$mailbox parameter with a token for a 
mai Ibox. 

• A task must call DELETE$EXTENSION or DELETE$JOB. 

If these two conditions are met, the type manager is responsible for 
deleting the composite objects sent to the mailbox. The following 
sections describe the type manager's responsibilities in more detail. 

TYPE MANAGER RESPONSIBILITIES DURING DELETE$JOB 

When a task calls DELETE$JOB, the Nucleus normally deletes every object 
in the job. However, if the job contains a composite object whose 
extension has a deletion mailbox, the Nucleus sends the composite object 
to the deletion mailbox. The Nucleus then waits until the type manager 
calls DELETE$COMPOSITE before continuing the deletion process. 

The type manager has the following responsibilities for servicing the 
deletion mailbox. 

1. First, it must wait at the deletion mailbox to receive the 
objects to be deleted. 

2. Next, it must perform any special processing that is required in 
order to delete the composite object. For example, it might want 
to wait until all tasks have stopped using the composite.' 

4-3 



TYPE MANAGERS 

3. Then, it has the option of deleting those component objects that 
are not contained in the job being deleted. It cannot, however, 
delete objects contained in the job being deleted or it will 
incur an exceptional condition. This is not a problem because 
the objects that are a part of the job being deleted will 
automatically be deleted as part of the DELETE$JOB call. 

4. Finally, it should call DELETE$COMPOSITE. This serves two 
purposes. It deletes the composite object (but not the component 
objects), and it informs the Nucleus that the type manager has 
finished the special processing neeeded to delete the composite 
object. After the type manager calls DELETE$COMPOSITE, the 
Nucleus resumes the DELETE$JOB processing. 

The type manager must call DELETE$COMPOSITE each time the Nucleus sends a 
composite object to the deletion mailbox because DELETE$COMPOSITE serves 
to return control back to the Nucleus. If the type manager fails to call 
DELETE$COMPOSITE, the DELETE$JOB system call will not finish processing. 
Figure 4-2 illustrates the type manager's involvement in the DELETE$JOB 
process. 

DELETE$JOB 

NUCLEUS STARTS DELETING 
OBJECTS IN THE JOB: 

composite 

composite 

• • • 
composite 

segment .. 
task 

• • • 

NUCLEUS SENDS COMPOSITE 
TO DELETION MAILBOX 

CONTROL RETURNS 
TO DELETE$JOB 

DELETION 
MAILBOX 

~ 

TYPE MANAGER 

1. WAITS FOR OBJECT AT 
MAILBOX • 

2. PERFORMS CLEANUP 
OPERATIONS, IF ANY. 

3. CALLS DELETE$COMPOSITE. 

Figure 4-2. Type Manager Involvement in DELETE$JOB 

4-4 



TYPE MANAGERS 

Note that the type manager is not required to delete all component 
objects. In the course of DELETE$JOB, the Nucleus deletes any Nucleus 
objects in the job. The Nucleus sends any I/O System, Extended I/O 
System, or Human Interface objects to their respective deletion 
mailboxes, where the subsystems themselves delete the objects. The 
Nucleus sends all other composite objects to their own deletion 
mailboxes, where their type managers are responsible for deletion. 
Therefore, all the component objects are eventually deleted, provided 
they are in the job being deleted. 

TYPE MANAGER RESPONSIBILITIES DURING DELETE$EXTENSION 

A task can call DELETE$EXTENSION to delete an extension type. This is 
useful when the license to create composite objects of a given extension 
type is no longer needed. When a task calls DELETE$EXTENSION and the 
extension has a deletion mailbox, the Nucleus sends all composite objects 
of that extension type to the deletion mailbox. After sending an object 
to the deletion mailbox, the Nucleus waits until the type manager calls 
DELETE$COMPOSITE before sending the next composite. 

The type manager has similar responsibilities during DELETE$EXTENSION 
that it has during DELETE$JOB. First it must wait at the deletion 
mailbox for objects. Then it must handle any special processing 
necessary to delete the object. Finally it must call DELETE$COMPOSITE to 
delete the composite. As with DELETE$JOB, the type manager must call 
DELETE$COMPOSITE for each object it receives at the deletion mailbox. If 
it does not do this, the DELETE$EXTENSION system call will not finish 
processing. 

However, unlike the situation during DELETE$JOB, the type manager has the 
choice during DELETE$EXTENSION of whether or not to delete individual 
component objects. If it wishes the component objects to be deleted, the 
type manager must explicitly delete these objects. Unlike DELETE$JOB, 
the DELETE$EXTENSION system call does not automatically delete component 
objects. 

DELETION OF NESTED COMPOSITES 

Since a composite object can contain objects of any kind, it is possible 
for some of its component objects to be composite objects themselves. 
This situation can cause problems for type managers when they delete the 
composite objects if the type manager for any of the composite objects 
depends on the existence of any of the other composite objects in order 
to complete its processing. 

4-5 



TYPE MANAGERS 

For example, suppose objects A and B are composites of different 
extension types and B is a component of A. Each of the composites has a 
type manager that performs special cleanup functions before it can delete 
the corresponding composite. If neither of the type managers requires 
information contained in the other composite in order to perform its 
special processing, the deletion process can proceed without difficulty. 

However, if for some reason the type manager for composite A requires 
some information contained in composite B in order to complete its 
processing, the deletion process becomes more complex •. In order for this 
deletion scheme to work, you must guarantee that composite A will be 
deleted before composite B. This requires that you know the order 1n 
which the Nucleus deletes objects and sends composites to deletion 
mailboxes, so that you can set up your composites correctly. 

The Nucleus deletes composite objects before it deletes non-composite 
objects. It deletes composite objects on a last-in/first-out basis; that 
is, in the reverse order from which they were created. Therefore, a type 
manager can depend on receiving composite objects that it creates before 
the Nucleus deletes the component objects contained in them. The only 
exception to this is when a composite (composite A) is created before 
another composite (composite B) and composite B is inserted as a 
component into composite A using the ALTER$COMPOSITE system call. In 
this case, composite B will be deleted first, and the type manager of 
composite A cannot rely on the existence of composite B when it receives 
composite A for deletion. 

WRITING A TYPE MANAGER 

A type manager consists of two parts: 

• The initialization part creates the type and optionally creates a 
deletion mailbox to which the system can send objects of the type 
when deleting either jobs or the type itself. 

• The service part provides the system calls through which tasks 
can create and manipulate objects of the type. 

Because the initialization phase must be completed before any task 
attempts to obtain objects, the initialization part should be written as 
a task that executes early in the life of the system. To ensure early 
execution, the task should be part of the initialization task of a 
first-level user job i~ the job tree. Refer to the iRMX 86 CONFIGURATION 
GUIDE for information concerning first-level jobs. 

The service part of the type manager is written as an operating system 
extension. Refer to Chapter 3 for information about operating system 
extensions. 

The best way to learn about type managers is to study an example. The 
following example presents the main parts of a type manager for ring 
bu ffers. 

4-6 



TYPE MANAGERS 

EXAMPLE -- A RING BUFFER MANAGER' 

This example shows the most educational portions of a ring buffer 
manager. It also serves to illustrate the various parts of an operating 
system extension. Be advised, however, that the example is incomplete 
and therefore should be imitated only with discretion. In particular, 
the example has the following shortcomings: 

• The issue of exception handling is not addressed. Clearly the 
code supporting a system call should examine each invocation for 
validity, but, for brevity, the ring buffer example does not do 
this. 

• There are no safeguards against partial creation of an object. 
When creating a composite object, a type manager must first 
create the components of the object. Occasionally, after 
creating some of the components, the manager might be unable to 
create the others. A type manager should be able to recover from 
this situation, usually by deleting the components already 
created and returning an exception code to the caller. The 
example, again for brevity, does not do this. 

• The entry routine does not check the entry code for validity. 

• The potential for problems with deletion is ignored. For this 
reason, you should imagine that the environment of the example is 
constrained in at least two ways. First, only one task will ever 
try to delete a ring buffer and, when it does try, no other task 
will be using that buffer. Second, when a job containing a task 
that created a ring buffer is deleted, no tasks in other jobs are 
using that ring buffer. 

• The example has been desk-checked and the PL/M-86 portions of it 
have been compiled, but the example has not actually been tested. 

A ring buffer is a block of memory in which bytes of data are placed at 
successively higher addresses. Interspersed with byte insertions are 
byte removals, with the restriction that the byte being removed must 
always be the byte that has been in the buffer for the longest time. 
Thus, data enters and leaves a ring buffer in a first-in-first-out 
manner. Ring buffers get their name from the fact that the lowest 
address logically follows the highest address. That is, if the last byte 
placed in (or retrieved from) the buffer is at its highest address, then 
the next byte to be placed in it (or retrieved from it) is at the lowest 
address. As data enters and leaves the buffer, the portion contaning 
data "runs" around the ring, with the pointer to the last byte out 
"chasing" the pointer to the last byte in. Figure 4-3 illustrates these 
characteristics. 

4-7 



TYPE MANAGERS 

'--------- LA~I)I~~~~ IN 

RING BUFFER 

Figure 4-3. A Ring Buffer 

The main (service) part of the example consists of four procedures: 
CREATE$RING$BUFFER, DELETE$RING$BUFFER, PUT$BYTE, and GET$BYTE. The last 
two procedures are for placing a character in a ring buffer, and for 
retrieving a character, respectively. 

THE INITIALIZATION PART 

The initialization part creates a region to protect data in ring buffers 
from being manipulated by more than one task at a time. This part also 
creates the required extension type, creates a deletion mailbox, sets the 
operating system extension at entry 224 of the interrupt vector table, 
and then waits at the deletion mailbox. Code for the initialization part 
includes the following: 

4-8 



TYPE MANAGERS 

DECLARE RING$BUFFER$TYPE WORD PUBLIC; 
DECLARE DELETION$MBOX WORD PUBLIC; 
DECLARE RING$BUFFER$REGION WORD PUBLIC; 
DECLARE RING$BUFFER$MANAGER POINTER EXTERNAL; 
DECLARE RESPONSE$MBOX WORD PUBLIC; 

RING$BUFFER$INIT: PROCEDURE; 
DECLARE DELETE$OBJECT WORD; 
DECLARE EXCEPTION WORD; 
DECLARE FIFO LITERALLY '0'; 
DECLARE RB$CODE LITERALLY '8000H'; 
DECLARE FOREVER LITERALLY 'WHILE 1'; 
DECLARE INDEFINITELY LITERALLY 'OFFFFH'; 

RING$BUFFER$REGION = RQ$CREATE$REGION(FIFO, @EXCEPTION); 
DELETION$MBOX = RQ$CREATE$MAILBOX(FIFO, @EXCEPTION); 
RESPONSE$MBOX = RQ$CREATE$MAILBOX(FIFO, @EXCEPTION); 
RING$BUFFER$TYPE = RQ$CREATE$EXTENSION(RB$CODE, 

DELETION$MBOX, @EXCEPTION); 
CALL RQ$SET$OS$EXTENSION(224, @RING$BUFFER$MANAGER, 

@EXCEPTION) ; 
CALL RQ$END$INIT$TASK; 
DO FOREVER; 

DELETE$OBJECT = RQ$RECEIVE$MESSAGE(DELETION$MBOX, 
RESPONSE$MBOX, INDEFINITELY, @EXCEPTION); 

CALL RQ$DELETE$COMPOSITE(RING$BUFFER$TYPE, DELETE$OBJECT, 
@EXCEPTION) ; 

/* If desired, delete the components of the 
composite object. They are not automatically 
deleted when DELETE$EXTENSION is called. See 
the DELETE$RING$BUFFER procedure, shown later, 
for the code that does this. */ 

END RING$BUFFER$INIT; 

The variable RING$BUFFER$MANAGER is a pointer to the entry procedure of 
the operating system extension. 

THE INTERFACE LIBRARY 

The user interface library consists of four small procedures, one for 
each of the system calls provided by the operating system extension. The 
library supports application code written in the PL/M-86 "large" model. 
If a different model had been used for compiling the application code, 
these interface procedures would be slightly different, reflecting the 
fact that, when making procedure calls in other models, the stack is used 
differently than in the large model. The interface procedures are as 
follows: 

4-9 



CREATERB 

TYPE MANAGERS 

ASSUME CS:CGROUP 
PROC 
PUBLIC 
PUSH 

FAR 
RQCREATERB 
BP 

MOV BP,SP 
;Save the BP value 

LEA SI,SS: BP+6 ;SS:SI contains location 
; of first parameter 

MOV BX,O ;Code for CREATE$RING$BUFFER 
INT 224 ;Call the extension 
POP BP ;Restore the BP value 
RET 2 ;Passing one argument 

CREATERB ENDP 

ASSUME CS:CGROUP 
DELETERB PROC FAR 

PUBLIC RQDELETERB 
PUSH BP 
MOV BP,SP 
LEA SI,SS: BP+6 
MOV BX,l ;Code for DELETE$RING$BUFFER 
INT 224 
POP BP 
RET 2 ;Passing one argument 

DELETERB ENDP 

GETRBBYTE 

GETRBBYTE 

PUTRBBYTE 

PUTRBBYTE 

CS:CGROUP 
FAR 
RQGETBYTE 
BP 
BP ,SP 
SI,SS: BP+6 

ASSUME 
PROC 
PUBLIC 
PUSH 
MOV 
LEA 
MOV 
INT 
POP 
RET 
ENDP 
ASSUME 
PROC 
PUBLIC 
PUSH 

BX,2 ;Code for GET$BYTE 
224 
BP 
2 ;Passing one argument 

CS :CGROUP 
FAR 
RQPUTBYTE 
BP 

MOV BP,SP 
LEA 8I,SS: BP+6 
MOV BX,3 ;Code for PUT$BYTE 
INT 224 
POP 
RET 
ENDP 

BP 
4 ;Passing two arguments 

These interface procedures correspond to a set of external procedure 
declarations in the application PL/M-86 code: 

4-10 



TYPE MANAGERS 

CREATERB: PROCEDURE(SIZE) WORD EXTERNAL; 
DECLARE SIZE WORD; 

END CREATERB; 

DELETERB: PROCEDURE(RING$BUFFER$TOKEN) EXTERNAL; 
DECLARE RING$BUFFER$TOKEN WORD; 

END DELETERB; 

GETRBBYTE: PROCEDURE(RING$BUFFER$TOKEN) BYTE EXTERNAL; 
DECLARE RING$BUFFER$TOKEN WORD; 

END GETRBBYTE; 

PUTRBBYTE: PROCEDURE (CHAR , RING$BUFFER$TOKEN) EXTERNAL; 
DECLARE CHAR BYTE; 
DECLARE RING$BUFFER$TOKEN WORD; 

END PUTRBBYTE; 

THE ENTRY PROCEDURE 

The entry procedure in the operating system extension 1S as follows: 

FLAGS 
RINGBUFFERMANAGER: 

TABLE 

EXTRN CREATERINGBUFFER:FAR 
EXTRN 
EXTRN 
EXTRN 
EQU 
PUSH 
PUSH 
MOV 

PUSH 
POPF 
PUSH 

PUSH 

SHL 
SHL 
CALL 
POP 
POP 
IRET 
DD 
DD 
DD 
DD 

DELETERINGBUFFER:FAR 
GETBYTE:FAR 
PUTBYTE:FAR 

BP+8 
DS 
BP 
BP,SP 

FLAGS 

SS 

SI 

BX,l 
BX,1 
CS:TABLE BX 
BP 
DS 

;Push user values not 
automatically saved 

;Va1ue of BP equals 
stackpointer and is 
used in any calls 
from this operating 
system extension to 
SIGNAL$EXCEPTION 

;Restore 
; saved flags 
;Base of pointer to 

parameters 
;Offset of pointer 
; to parameters 
;Ca11 the appropriate 

extension 
procedure 

;Restore saved BP 
and DS values 

CREATERINGBUFFER; 
DELETERINGBUFFER; 
GETBYTE 

The addresses 
of the utility 
procedures in 
the OS extension PUTBYTE 

4-11 



TYPE MANAGERS 

Note that the entry routine is completely independent of the PL/M-86 
model used when compiling the application code. The interface library 
conceals the choice of model from the entry procedure. 

THE CREATE$RING$BUFFER PROCEDURE 

The sole function of the CREATE$RING$BUFFER procedure is to create a ring 
buffer for the calling task and to return to the task a token for the 
composite ring buffer object. 

Each ring buffer consists of three objects: a segment and two 
semaphores. The supporting data structure, required by the iRMX 86 
Operating System for calls to CREATE$COMPOSITE and INSPECT$COMPOSITE, has 
the following five fields: 

• The number of slots available for tokens in the following list of 
component object tokens. Because ring buffers are composed of 
three objects and there is no apparent reason to add components 
at a later time, the number of slots is set to three. 

• The number of component objects actually in the composite 
object. In this case, the number of components is three. 

• A token for a segment. The segment contains the ring buffer. 
The first word in the segment contains the size of the actual 
ring buffer. The second word of the segment is a "pointer" to 
the most recently entered byte in the buffer, while the third 
word points to the oldest byte in the buffer. The remainder of 
the segment is to be used as the buffer itself. Note that, in 
the program, a structure reflecting the intended breakdown of the 
segment is superimposed on the segment. 

• A token for a semaphore. This semaphore is used to keep track of 
the number of vacancies 1n the ring buffer. Thus, it is 
initialized to the size of the buffer. 

• A token for a semaphore. This semaphore is used to keep track of 
the number of occupied bytes in the ring buffer. Thus, it is 
initialized to zero. 

The CREATE$RING$BUFFER routine creates the components of the composite 
ring buffer object, initializes the appropriate fields, and then creates 
the composite object, as follows: 

4-12 



TYPE MANAGERS 

DECLARE RING$BUFFER$TYPE WORD EXTERNAL; 

CREATE$RING$BUFFER: PROCEDURE (PARAM$PTR) WORD PUBLIC 
REENTRANT; 

DECLARE PARAM$PTR POINTER; 
DECLARE SIZE BASED PARAM$PTR WORD; 
DECLARE ASTR STRUCTURE( 

NUM$SLOTS WORD, 
NUM$COMPONENTS WORD, 
SEG 
EMPTY$CT 
FULL$CT 

WORD, 
WORD, 
WORD) ; 

DECLARE SEG$PTR POINTER; 
DECLARE PTR$STRUC STRUCTURE( 

OFFSET WORD, 
BASE WORD) AT (@SEG$PTR); 

DECLARE SEGMENT BASED SEG$PTR STRUCTURE( 
SIZE 
HEAD 
TAIL 
BUFFER( 1) 

DECLARE EXCEPTION WORD; 
DECLARE RING$BUFFER WORD; 
DECLARE PRIORITY LITERALLY 

ASTR.NUM$SLOTS = 3; 
ASTR.NUM$COMPONENTS = 3; 

WORD, 
WORD, 
WORD, 
BYTE); 

, 1 ' ; 

ASTR.SEG = RQ$CREATE$SEGMENT(SIZE+6, @EXCEPTION); 
ASTR.EMPTY$CT = RQ$CREATE$SEMAPHORE(SIZE, SIZE, PRIORITY, 

@EXCEPTION) ; 
ASTR.FULL$CT = RQ$CREATE$SEMAPHORE(O, SIZE, PRIORITY, 

@EXCEPTION) ; 
PTR$STRUC.BASE = ASTR.SEG; 
PTR$STRUC.OFFSET = 0; 
SEGMENT. SIZE = SIZE; 
SEGMENT.HEAD = -1; 
SEGMENT.TAIL = 0; 
RING$BUFFER = RQ$CREATE$COMPOSITE(RING$BUFFER$TYPE, @ASTR, 

@EXCEPTION); 
RETURN RING$BUFFER; 
END CREATE$RING$BUFFER; 

The SEGMENT.HEAD variable is set to -1 because the PUT$BYTE procedure 
(shown later) advances this pointer before placing a character in the 
buffer. 

4-13 



TYPE MANAGERS 

THE DELETE$RING$BUFFER PROCEDURE 

. DELETE$RING$BUFFER can be called by any task wanting to delete a ring 
buffer: 

DECLARE RING$BUFFER$TYPE WORD EXTERNAL; 
/~, 

DELETE$RING$BUFFER: PROCEDURE(PARAM$PTR) REENTRANT PUBLIC; 
DECLARE PARAM$PTR POINTER; 
DECLARE RING$BUFFER$TOKEN BASED PARAM$PTR WORD; 
DECLARE ASTR STRUCTURE( 

NUM$SLOTS WORD, 
NUM$COMPONENTS WORD, 
SEG WORD, 
EMPTY$CT WORD, 
FULL$CT WORD); 

DECLARE EXCEPTION WORD; 

ASTR.NUM$SLOTS = 3; 
CALL RQ$INSPECT$COMPOSITE(RING$BUFFER$TYPE, 

RING$BUFFER$TOKEN, @ASTR, @EXCEPTION); 
CALL RQ$DELETE$COMPOSITE(RING$BUFFER$TYPE, 

RING$BUFFER$TOKEN, @EXCEPTION); 
CALL RQ$DELETE$SEGMENT(ASTR.SEG, @EXCEPTION); 
CALL RQ$DELETE$SEMAPHORE(ASTR.EMPTY$CT, @EXCEPTION); 
CALL RQ$DELETE$SEMAPHORE(ASTR.FULL$CT, @EXCEPTION); 
END DELETE$RING$BUFFER; 

THE PUT$BYTE PROCEDURE 

The PUT$BYTE procedure places a character in the buffer by advancing the 
"pointer" to the front of the buffer and then placing the character in 
the byte being pointed to: 

DECLARE RING$BUFFER$TYPE WORD EXTERNAL; 
DECLARE RING$BUFFER$REGION WORD EXTERNAL; 

PUT$BYTE: PROCEDURE(PARAM$PTR) REENTRANT PUBLIC; 
DECLARE PARAM$PTR POINTER; 
DECLARE PARAMS BASED PARAM$PTR STRUCTURE( 

RING$BUFFER$TOKEN WORD, 
CHAR BYTE); 

DECLARE SIZE WORD; 
DECLARE ASTR STRUCTURE( 

NUM$SLOTS 
NUM$COMPONENTS 
SEG 
EMPTY$CT 
FULL$CT 

DECLARE SEG$PTR POINTER; 

WORD, 
WORD, 
WORD, 
WORD, 
WORD) ; 

4-14 



TYPE MANAGERS 

DECLARE PTR$STRUC STRUCTURE( 
OFFSET WORD, 
BASE WORD) AT (@SEG$PTR); 

DECLARE SEGMENT BASED SEG$PTR STRUCTURE( 
SIZE WORD, 
HEAD WORD, 
TAIL WORD, 
BUFFER(I) BYTE); 

DECLARE EXCEPTION WORD; 
DECLARE INDEFINITELY LITERALLY 'OFFFFH'; 
DECLARE UNITS$LEFT WORD; 

ASTR.NUM$SLOTS = 3; 
CALL RQ$INSPECT$COMPOSITE(RING$BUFFER$TYPE, 

PARAMS.RING$BUFFER$TOKEN, @ASTR, @EXCEPTION); 
UNITS$LEFT = RQ$RECEIVE$UNITS(ASTR.EMPTY$CT, 1, 

INDEFINITELY, @EXCEPTION); 
CALL RQ$RECEIVE$CONTROL(RING$BUFFER$REGION, 

PTR$STRUC.BASE = ASTR.SEG; 
PTR$STRUC.OFFSET = 0; 

@EXCEPTION) ; 

SEGMENT.HEAD = «SEGMENT.HEAD + 1) MOD SEGMENT.SIZE); 
SEGMENT.BUFFER(SEGMENT.HEAD) = PARAMS.CHAR; 
CALL RQ$SEND$CONTROL(@EXCEPTION); 
CALL RQ$SEND$UNITS(ASTR.FULL$CT, 1, @EXCEPTION); 
END PUT$BYTE; 

Note that this procedure enters a region after obtaining the desired 
unit. To reverse these steps would create a deadlock situation, 
particularly if the same reversal occurs in the GET$BYTE routine (shown 
later). 

Note also that the order of the parameters RING$BUFFER$TOKEN and CHAR is 
the opposite of the order of those parameters in the earlier external 
declaration of PUTRBBYTE. This is typical of procedures with multiple 
arguments and results from the use of the stack when passing parameters. 

THE GET$BYTE PROCEDURE 

GET$BYTE removes the oldest byte 1n the buffer and then advances the 
SEGMENT.TAIL "pointer": 

DECLARE RING$BUFFER$TYPE WORD EXTERNAL; 
DECLARE RING$BUFFER$REGION WORD EXTERNAL; 

GET$BYTE: PROCEDURE(PARAM$PTR) BYTE PUBLIC REENTRANT; 
DECLARE PARAM$PTR POINTER; 
DECLARE/RING$BUFFER$TOKEN BASED PARAM$PTR WORD; 
DECLARE SIZE WORD; 
DECLARE ASTR STRUCTURE( 

NUM$SLOTS WORD, 
NUM$COMPONENTS WORD, 
SEG WORD, 

4-15 



TYPE MANAGERS 

EMPTY$CT 
FULL$CT 

WORD, 
WORD) ; 

DECLARE SEG$PTR POINTER; 
DECLARE PTR$STRUC STRUCTURE( 

OFFSET WORD, 
BASE WORD) AT (@SEG$PTR); 

DECLARE SEGMENT BASED SEG$PTR STRUCTURE( 
SIZE WORD, 
HEAD WORD, 
TAIL WORD, 
BUFFER(l) BYTE); 

DECLARE EXCEPTION WORD; 
DECLARE CHAR BYTE; 
DECLARE INDEFINITELY LITERALLY 'OFFFFH'; 
DECLARE UNITS$LEFT WORD; 

ASTR.NUM$SLOTS = 3; 
CALL RQ$INSPECT$COMPOSITE(RING$BUFFER$TYPE, 

RING$BUFFER$TOKEN, @ASTR, @EXCEPTION); 
UNITS$LEFT = RQ$RECEIVE$UNITS(ASTR.FULL$CT, 1, INDEFINITELY, 

@EXCEPTION); 
CALL RQ$RECEIVE$CONTROL(RING$BUFFER$REGION, @EXCEPTION); 
PTR$STRUC.BASE = ASTR.SEG; 
PTR$STRUC.OFFSET = 0; 
CHAR = SEGMENT.BUFFER(SEGMENT.TAIL); 
SEGMENT.TAIL = «SEGMENT.TAIL + 1) MOD SEGMENT.SIZE); 
CALL RQ$SEND$CONTROL(@EXCEPTION); 
CALL RQ$SEND$UNITS(ASTR.EMPTY$CT, 1, @EXCEPTION); 
RETURN CHAR; 
END GET$BYTE; 

EPILOGUE 

This completes the important parts of the example (recall that the 
example is not complete). Any task in any job linked to these procedures 
may call anyone of the procedures. The procedure names to be used in 
such calls are CREATE$RB, DELETE$RB, GET$RB$BYTE, and PUT$RB$BYTE. Note 
that application programs cannot manipulate either ring buffers or their 
component objects, except through these system calls. In fact, there is 
no need for application programmers to be aware that ring buffers are 
composed of several other objects. To them, ring buffers appear (except 
for the absence of IRQ' in the procedure names) to be standard iRMX 86 
objects. 

SYSTEM CALLS FOR TYPE MANAGERS 

The following system calls enable type managers to manipulate extension 
and composite objects: 

4-16 



TYPE MANAGERS 

• ALTER$COMPOSITE 

This system call replaces a component 1n a composite object with 
either a null or another object. 

• CREATE$COMPOSITE 

This system call creates a composite object of a specified 
extension type. 

• CREATE$EXTENSION 

This system call creates an extension object which may 
subsequently be used as a license for creating composite 
objects. Input includes a token for a mailbox where these 
composite objects are sent for deletion. 

• DELETE$COMPOSITE 

This system call deletes a composite object. 

• DELETE$EXTENSION 

This system call deletes an extension object and sends all 
composite objects of that extension type to the associated 
deletion mailbox. 

• INSPECT$COMPOSITE 

This system call returns a list of the component object tokens 
contained in a composite object • 

• 

4-17 





CHAPTER 5. THE I/O SYSTEM 

This chapter contains information enabling system programmers to provide 
application programmers with the facilities they need to make full use of 
the Basic and Extended I/O Systems. The chapter comprises the following 
topics: 

• The configuration interface, which binds (and unbinds) file 
drivers to individual device units. 

• The creation and deletion of user objects. 

• Adding to, or obtaining information from, file descriptors. 

CONFIGURATION INTERFACE 

Before a task can create a connection to a file on a device, a connection 
must have been created to the device itself. The Basic I/O System 
configuration interface consists of two system calls that create and 
delete connections to devices. They are: 

A$PHYSICAL$ATTACH$DEVICE 
A$PHYSICAL$DETACH$DEVICE 

A$PHYSICAL$ATTACH$DEVICE creates connections to devices for the Basic I/O 
System. A$PHYSICAL$DETACH$DEVICE deletes these connections. 

The Extended I/O System configuration interface also consists of two 
system calls. They are: 

LOGICAL$ATTACH$DEVICE 
LOGICAL$DETACH$DEVICE 

LOGICAL$ATTACH$DEVICE assigns logical names to devices and causes the 
device connections to be created the first time tasks try to access the 
devices using the logical names. LOGICAL$DETACH$DEVICE deletes the 
logical names and causes the device connections to be deleted when no 
tasks have connections to files on the device. 

INTERFACING BETWEEN TASKS AND DEVICES 

Figure 5-1 shows the layers of software and hardware between a device and 
the application tasks using files on the device. 

5-1 



THE I/O SYSTEM 

APPLICATION SOFTWARE 

TASKS TASKS TASKS 

FILE DRIVER SOFTWARE 

DEVICE DRIVER 

DEVICE CONTROLLER 

HARDWARE 

DEVICE UNIT 

Figure 5-1. Layers of Interfacing Between Tasks and a Device 

The layers shown in Figure 5-1 must be bound together. The device 
controller is physically bound to each of its device-units. The device 
driver is bound to the device controller by information residing in a 
Device Unit Information Block for the device. (For more on this, see the 
iRMX 86 CONFIGURATION GUIDE or the GUIDE TO WRITING DEVICE DRIVERS FOR 
THE iRMX 86 I/O SYSTEM.) The application software is bound to the file 
drivers during the linking process. When an application system starts 
up, these three forms of binding are in place. 

The configuration interface dynamically binds the appropriate file driver 
(physical, named, or stream) to the device, its controller, and its 
device driver. By creating this final bond dynamically, you can break it 
later and replace it with a bond to a different file driver. Figure 5-2 
shows schematically the situation that exists when the system starts up. 

5-2 



TASKS 

'PHYSICAl. FILE DRIVER 

DEVICE 
CONTROU.EII 

DEVICE DRIVER 

DEVICE 
UNIT 

THE I/O SYSTEM 

APPLICATION SOFTWARE 

TASKS 

NAMED FILE DRIVER 

CONFIGURATION I_FACE 

DEVICE 
CONTROLLER 

DRIVE DRIVER 

DEVICE 
CONTROLLER 

D. D. D. D. 

TASKS 

STREAM FILE ·DRIVER 

DEVICE DRIVER 

DEVICE 
CONTROLLER 

DEVICE 
UNIT UNIT UNIT UNIT UNIT 

DEVICE 
UNIT 

Figure 5-2. Schematic of Software at Initialization Time 

DIFFERENCES BETWEEN THE BASIC AND EXTENDED I/O SYST~MS 

There are two main differences between creating and deleting device 
connections with the Basic I/O System calls and creating and deleting 
them with the Extended I/O System calls. These differences involve 
synchronous versus asynchronous operation and logical names. 

The Basic I/O System calls, A$PHYSICAL$ATTACH$DEVICE and 
A$PHYSICAL$DETACH$DEVICE, are asynchronous calls which do not use logical 
names. When calling A$PHYSICAL$ATTACH$DEVICE to create a device 
connection, your task specifies the device name, the file driver, and a 
mailbox token as parameters. Then, due to the asynchronous nature of the 
call, the task must wait at the mailbox for the Basic I/O System to send 
it a token for the device connection. When it receives this token, the 
task can use it as a prefix in other Basic I/O System calls that create 
or attach files on the device. Later, when the task wants to delete the 
device connection, it can specify this token as a parameter in 
A$PHYSICAL$DETACH$DEVICE. 

The Extended I/O System calls, LOGICAL$ATTACH$DEVICE and 
LOGlCAL$DETACH$DEVICE, are synchronous system calls that make use of 
logical names. When calling LOGICAL$ATTACH$DEVICE to attach a device, 
your task specifies the device name and the file driver as it does with 
A$PHYSICAL$ATTACH$DEVICE, but it also specifies a logical name. The 
Extended I/O System creates a Logical Device Object and catalogs it in 
the root job's object directory under the logical name your task 
specified in the call. Your task does not have to wait at a mailbox to 
receive the result of the call; the call is performed synchronously. 
After calling LOGICAL$ATTACH$DEVICE, your tasks can use the logical name 
as the prefix portion of a path name in other Extended I/O System calls 

5-3 



THE I/O SYSTEM 

that create or attach files On the device. During the first such call, 
the Extended I/O System creates a device connection. Later, when your 
task wants to delete the device connection, it can specify the logical 
name as a parameter in LOGICAL$DETACH$DEVICE. 

There is a restriction you s~ould be aware of when deciding whether to 
use A$PHYSICAL$ATTACH$DEVICEor LOGICAL$ATTACH$DEVICE to attach a 
device. If you use the Exte~ded I/O System (LOGICAL$ATTACH$DEVICE) to 
attach a device, you must also use Extended I/O System calls to perform 
any functions that require you to specify a path name. These calls 
include: 

S$ATTACH$FILE 
S$CHANGE$ACCESS 
S$CREATE$DIRECTORY 
S$CREATE$FILE 
S$DELETE$FILE 
S$GET$FILE$STATUS 
S$RENAME$FILE 

You must not use the corresponding Basic I/O System calls to perform 
these functions. If you obey this restriction, you gain the ability to 
replace diskettes in a drive attached with LOGICAL$ATTACH$DEVICE without 
destroying the device connection. Otherwise, the device connection will 
be lost when the device goes off-line. 

DEVICE CONNECTIONS 

This section is based in large part on the following analogy: A device 
connection is like an electrical conduit (pipe) and the file connections 
to that device unit are like wires in that conduit. Figure 5-3 depicts 
the system of Figure 5-2 after several device connections have been 
created. 

This figure is quite detailed and shows most of the situations that can 
occur. The following observations can be made: 

• The device connections extend from the application software to 
the individual device-units. 

• There is only one device connection to each connected device. 
Multiple tasks can share the same device connection. 

• The configuration interface, which is depicted as a pile of 
conduits, is off to the side. 

• All but one of the device units are connected. The unconnected 
device unit is still separated from the application software by 
the configuration interface~ 

• Different device units with the same controller can be connected 
via different file drivers. 

5-4 



THE I/O SYSTEM 

• Tasks can share access to the same device through the physical 
file driver, and they can share access to files on the same 
device through the named file driver. 

• There is only one device connection through the stream file 
driver, reflecting the fact that a single, logical device 
contains all stream files. 

INITIALIZATION CONSIDERATIONS 

A device unit must be bound to a file driver before any application tasks 
can successfully create file connections involving that device unit. One 
way of ensuring this is to see that all initial device connections are 
created by an initialization task or tasks. Then, so the returned tokens 
will be available to application tasks, the connections should be 
cataloged, probably in the root object directory. 

FILE PROTECTION FOR NAMEO FILES 

The I/O System controls the access of tasks trying to use named files. 
For each named file, the I/O System uses the file's access list and a 
user object to produce an access mask it associates with a connection 
object for the file. The mask enables the I/O System to monitor the 
access rights of tasks wanting to use the file via that connection 
object. This file protection mechanism is not available for physical or 
stream files. 

USER OBJECTS 

A user object is an iRMX 86 object type that includes identifying 
information about a conceptual user (job or human) and the groups to 
which the user belongs. Each user object contains an array of l6-bit 
values called IO's. The first 10 in the array is called the owner 10 of 
the user object. User objects are created and deleted by calls to 
CREATE$USER and OELETE$USER, respectively. The IO's in a user object can 
be read by means of a call to INSPECT$USER. 

In systems using the I/O System, each job can have a default user 
object. Tasks in the job can specify this default user object in certain 
system calls simply by passing a zero vslue as a user object parameter. 
In the case of jobs created by CREATE$IO$JOB, the default user object can 
be set when the job is created. SET$OEFAULT$USER can be used either to 
change an existing default user object or, in the case of jobs having no 
default user object, to establish one. 

5 .... 5 



TASK TASK TASK TASK 

CONFIGURATION 
INTERFACE 

DEVICE 
CONT­

ROLLER 

C~:N. CONN. 
DEVICE DEVICE 

UNIT UNIT 

PHYSICAL 
FILE 

DRIVER 

DEVICE 
DRIVER 

DEVICE 
CONT­

ROLLER 

CONNECTED 
DEVICE 

UNIT 

THE I/O SYSTEM 

APPLICATION SOFTWARE 

TASK TASK TASK 

FILE 

CONN. CONN. CONN. CONN. 
DE- DE- DE- DE-
VICE VICE VICE VICE 
UNIT UNIT UNIT UNIT 

TASK 

NAMED 
FILE 

DRIVER 

DEVICE 
DRIVER 

DEVICE 
CONT­

ROLLER 

CONNECTED 
DEVICE 

UNIT 

CONDUITS REPRESENT DEVICE CONNECTIONS 
WIRES IN CONDUITS REPRESENT FILE CONNECTIONS 

TASK TASK TASK 

Figure 5-3. A System with Device and File Connections 

5-6 

TASK 

STREAM 
FILE 

DRIVER 

SHADED AREA 
REPRESENTS A 
DIRECTORY 



THE I/O SYSTEM 

FILE ACCESS LISTS 

The access list for a file is a collection of up to three pairs of ID's 
and access masks. The ID's represent users or groups of users, and the 
access masks specify the kinds of access to the file that those users or 
groups of users are allowed. 

Tasks calling CREATE$FILE pass an access mask and a token for a user 
object. The I/O System pairs the owner ID from the user object with the 
access mask and places the pair in the file's access list. 

Tasks can alter the access list for a file by the CHANGE$ACCESS system 
call. Through CHANGE$ACCESS, ID-access pairs can be added or deleted, 
and the access masks for ID's already in the list can be changed. 

ACCESS MASKS FOR FILE CONNECTIONS 

When a task calls either CREATE$FILE or ATTACH$FILE, the I/O System 
constructs an access mask and binds it to the connection object returned 
by the call. After that, each time a task uses the connection object to 
try to access (open, close, read, write, etc.) the file, the I/O System 
checks the access mask to see if the kind of access being attempted is 
valid. Figure 5-4 illustrates the algorithm used to construct the access 
mask. 

USER OBJECT FOR 
CALLING TASK'S JOB 

OWNER 10 

10 

10 

10 

10 

Ir---
(MATCHES) 

Y 
ACCESS LIST FOR 

TARGET FILE 

10 ACCESS , 
10 ACCESS 

~ 

10 ACCESS 

Figure 5-4. Computing the Access Mask for a File Connection 

5-7 



THE I/O SYSTEM 

The I/O System compares the ID's in the specified user object with the 
ID's in the file's access list. The access masks corresponding to 
matching ID's are logically ORed, forming an aggregate mask. 

EXTENDING A FILE DESCRIPTOR 

For each named file on a disk, the I/O System creates and maintains a 
file descriptor on the same disk. The first portion of the descriptor 
contains information for the I/O System. The last three bytes are 
available to your operating system extensions, unless you are using the 
Human Interface, in which case only the last byte is available. 

If you are writing an operating system extension and you want to record 
special information in a file's descriptor, SET$EXTENSION$DATA will place 
the data in the trailing portion of the descriptor. GET$EXTENSION$DATA 
can access this data when it is needed later. 

NOTE 

If you are using the Human Interface, 
you must take care not to destroy the 
data the Human Interface keeps in the 
first two extra bytes of file 
descriptors. To preserve this data, 
first use GET$EXTENSION$DATA to read 
the data, next modify the third byte 
without disturbing the first two bytes, 
and finally use SET$EXTENSION$DATA to 
transfer the data to the descriptor. 

5-8 



CHAPTER 6. DELETION CONSIDERATIONS 

In an iRMX 86-based system, tasks run asynchronously. Unless special 
precautions are taken, one task cannot know what another is doing. 

This asynchronous behavior can lead to problems relating to the deletion 
of objects. Suppose that two tasks, A and B, both use a certain 
mailbox. If the tasks do not coordinate with each other, a sequence of 
events similar to the following might occur: 

1) Task A sends a segment to the shared mailbox. 

2) Task B, which was waiting at the mailbox, awakens and deletes the 
mailbox. 

3) Task A, which is unaware that the mailbox has been deleted) tries 
to use the mailbox and incurs an exception. 

Scenarios such as this can be avoided by good programming practices. If 
two tasks share an object, it is your responsibility to ensure that no 
task deletes an object until other tasks are finished using it. 

6-1 





CHAPTER 7. SYSTEM CALLS 

This chapter contains the calling sequences and other information about 
advanced system calls to the Nucleus and I/O System. The system calls 
are listed in alphabetical order. Names of the calls are written in 
white on a dark background in the upper outside corner of each page. The 
calling sequence for each call is that for the PL/M-86 interface. The 
information for each system call is organized into the following 
categories, in the following order: 

• A brief sketch of the effects of the call. 

• The format of the call. 

• Definitions of the input parameters, if any. 

• Definitions of the output parameters, if any. 

• A complete description of the effects of the call. 

• The condition codes that can result from using the call, with a 
description of the possible causes of each condition. 

Throughout the chapter, PL/M-86 and iRMX 86 data types, such as BYTE and 
STRING are used. They are always capitalized and their definitions are 
found in Appendix A. 

Between this introduction and the details of the system calls is a system 
call dictionary in which the calls are grouped according to type. This 
dictionary, which includes short descriptions and page numbers of the 
complete descriptions in this chapter, is provided as an alternate way of 
indexing the system calls. 

7-1 



SYSTEM CALLS 

SYSTEM CALL DICTIONARY 

System Call Synopsis Page 

Composite Objects 

ALTER$COMPOSITE Alters the component list of a composite 
object 7-17 

CREATE$COMPOSITE Creates a composite object 7-19 

DELETE$COMPOSITE Deletes a composite object 7-26 

INSPECT$COMPOSITE Returns a list of the component object 
tokens contained in a composite object 7-36 

Configuration Interface 

A$PHYSICAL$AT­
TACH$DEVICE 

A$PHYSICAL$DE­
TACH$DEVICE 

LOGICAL$ATTACH$­
DEVICE 

LOGICAL$DETACH$­
DEVICE 

Deletion Control 

DISABLE$DELETION 

ENABLE$DELETION 

FORCE$DELETE 

Extension Objects 

CREATE$EXTENSION 

DELETE$EXTENSION 

Attaches a device to the Basic I/O System 7-8 

Detaches a device from the Basic I/O System 7-11 

Attaches a device to the Extended I/O System 7-40 

Detaches a device from the Extended I/O System 7-43 

Increases the deletion disabling depth of an 
object by one 7-31 

Decreases the deletion disabli..ng'depth of an 
object by one 7-33 

Forces the deletion of an objectev~n if the 
object has had its deletion dis~bled once 7-34 

Creates a new extension object type 7-21 

Deletes an extension type 7-27 

7-2 



SYSTEM CALLS 

SYSTEM CALL DICTIONARY (continued) 

System Call Synopsis 

File Drivers 

A$GET$EXTENSION$DATA Returns from the I/O System extension 
data stored with a file 

A$SET$EXTENSION$DATA Sets the extension data for a file from 
the I/O System 

Operating System Extensions 

SET$OS$EXTENSION 

SIGNAL$EXCEPTION 

Priority Control 

SET$PRIORITY 

Regions 

ACCEPT$CONTROL 

CREATE$REGION 

DELETE$REGION 

RECEIVE$CONTROL 

SEND$CONTROL 

Allocates and deallocates extension 
entries in the interrupt v~ctor table 

Signals the occurrence of an exceptional 
condition 

Changes the priority of a task dynamically 

Requests access to data protected by a 
region only if access is immediately 
available 

Creates a region 

Deletes a region 

Requests eventual access to data protected 
by a region 

Relinquishes access to data protected by a 
region 

7-3 

Page 

7-5 

7-13 

7-47 

7-52 

7-49 

7-16 

7-23 

7-29 

7-45 

7-46 



System Call 

Time 

SET$TIME 

User Objects 

CREATE$USER 

DELETE$USER 

INSPECT$USER 

SYSTEM CALLS 

SYSTEM CALL DICTIONARY (continued) 

Synopsis 

Sets the time and the date 

Creates a user object 

Deletes a specified user object 

Returns a list of the ID's in a user object 

7-4 

Page 

7-51 

7-24 

7-30 

7-38 



SYSTEM CALLS 

A$GET$EXTENSION$DATA 

The A$GET$EXTENSION$DATA (Basic I/O) system call returns extension data 
stored with a Basic I/O System file. 

CALL RQ$A$GET$EXTENSION$DATA(connection, resp$mbox, except$ptr); 

INPUT PARAMETERS 

connection 

resp$mbox 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token of an asynchronous 
connection object for a file whose extension data 
is desired. 

WORD containing a token for the mailbox to which a 
segment is to be returned. 

POINTER to a WORD where the condition code will be 
returned. 

Associated with each file created through the Basic I/O System is a file 
descriptor containing information about the file. Some of that 
information is used by the Basic I/O System and can be accessed by tasks 
through the A$GET$FILE$STATUS system call. Three additional bytes of the 
file descriptor, known as extension data, are available for use by 
Operating System extensions. OS extensions can write extension data by 
using A$SET$EXTENSION$DATA and they can read extension data by using 
A$GET$EXTENSION$DATA. 

When a task calls A$GET$EXTENSION$DATA, it specifies a response mailbox 
to which the system returns a segment with the extension data. The 
information returned has the following form and is situated in the 
low-memory portion of the segment: 

DECLARE 
ext$data$seg STRUCTURE( 

status WORD 
count BYTE, 
info(*) BYTE); 

7-5 



I 

SYSTEM CALLS 

A$GET$EXTENSION$DATA (continued) 

DESCRIPTION (continued) 

Status indicates the success or failure of the operation. If status does 
not contain an E$OK condition code, then neither count nor info is 
valid. Count specifies the number (up to three) of bytes that are 
returned. Info contains the extension data. 

A$GET$EXTENSION$DATA can only be applied to connections created via the 
named file driver. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$IFDR 

E$IO 

E$LIMIT 

E$MEM 

E$NOPREF1X 

No exceptional conditions. 

The connection was created by the Extended I/O 
System and includes data buffers. 

Any of the following conditions exist: 

• One or both of the connection or resp$mbox 
arguments does not refer to an existing 
object. 

• The connection 1S in the process of being 
deleted. 

The get extension data request is not valid for 
files supported by the file driver implied in the 
call. 

An I/O error occurred during the operation. 

The I/O System cannot create an I/O result segment 
because the calling task's job has already reached 
its object limit. 

The I/O System cannot create an 1/0 result because 
the memory pool of the calling task's job does not 
have a sufficiently large block. 

No default prefix has been set. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$NOUSER Either: 

• No default user has been set. 

• The default user cataloged is not a user 
object 

7-6 



SYSTEM CALLS 

A$GET$EXTENSION$DATA (continued) 

CONDITION CODES (continued) 

E$SUPPORT 

E$TYPE 

The connection was created by a task whose job is 
different than the calling task's job. 

One or both of the connection or resp$mbox 
arguments is not of the correct object type. 

7-7 

I 



SYSTEM CALLS 

A$PHYSICAL$ATTACH$DEVICE 

The A$PHYSICAL$ATTACH$DEVICE (Basic I/O) system call attaches a device to 
the Basic I/O System. 

NOTE 

Any task invoking this call must have a 
priority in the range 32 to 255. 

CALL RQ$A$PHYSICAL$ATTACH$DEVICE(dev$name, file$driver, resp$mbox, 
except$ptr}; 

INPUT PARAMETERS 

dev$name 

file$driver 

resp$mbox 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

POINTER to a &TRING conta1n1ng the name (as 
specified during configuration) of the device to be 
attached. 

BYTE specifying which file driver is to supply the 
connection to the device. Possible values are as 
follows: 

Value 

I 
2 
4 

File Driver 

Physical 
Stream 
Named 

WORD containing a token for the mailbox to which 
the results of this call will be returned. 

POINTER to a WORD where the condition code will be 
returned. 

A$PHYSICAL$ATTACH$DEVICE creates a connection to a physical or logical 
device. Such a device connection must be in place before any file 
connections to files on the device can be created. 

7-8 



SYSTEM CALLS 

A$PHYSICAL$ATTACH$DEVICE (continued) 

DESCRIPTION (continued) 

A connection object is returned to the response mailbox if the call is 
successful; otherwise an I/O result segment is returned to the response 
mailbox. The device connection object returned can be used as a prefix 
in other system calls. It can be deleted only by calling the 
A$PHYSICAL$DETACH$DEVICE system call. 

In the case of connections to disk devices, the connection is actually to 
a volume mounted on the disk hardware. Such volumes must be properly 
formatted. If they are not, an E$ILLVOL exceptional condition is 
returned. Refer to the iRMX 86 INSTALLATION GUIDE or the iRMX 86 HUMAN 
INTERFACE REFERENCE MANUAL for information regarding the formatting of 
disks. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$DEVFD 

E$EXIST 

E$FNEXIST 

E$ILLVOL 

E$IO 

E$LIMIT 

E$MEM 

No exceptional conditions. 

This code is returned in the result segment to 
indicate that the specified device is already 
attached. 

The specified device is not compatible with the 
specified file driver. 

The resp$mbox argument does not refer to an 
existing object. 

The device specified by the device$name parameter 
does not exist. 

The specified device is a disk volume not properly 
formatted for use with the named file driver. 

An I/O error occured during the operation. 

If this code is returned synchronously, the Basic 
I/O System attempted to create an object and the 
calling task's job has already reached its object 
limit. If returned in the result segment, this 
code indicates that the Basic I/O System job has 
already reached its object limit. 

If this code is returned synchronously, The Basic 
I/O System cannot create an I/O result segment 
because the memory pool of the calling task's job 
does not have a sufficiently large block. If 
returned in the result segment, this code indicates 
that the Basic I/O System job does not have a 
sufficiently large, block of memory. 

7-9 



SYSTEM CALLS 

A$PHYSICAL$ATTACH$DEVICE (continued) 

CONDITION CODES (continued) 

E$PARAM 

E$TYPE 

The number representing the file driver 1S not 
valid. 

The resp$mbox argument contains a token for an 
object that is not mailbox. 

7-10 



SYSTEM CALLS 

A$PHYSICAL$DETACH$DEVICE 

The A$PHYSICAL$DETACH$DEVICE (Basic I/O) system call detaches a device 
from the Basic I/O System. 

CALL RQ$A$PHYSICAL$DETACH$DEVICE(connection, hard, resp$mbox, 
except$ptr); 

INPUT PARAMETERS 

connection 

hard 

resp$mbox 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the connection object 
for the device that is to be detached. 

BYTE containing a value which specifies whether 
(OFFH) or not (0) a hard detach of the device is 
desired. 

WORD containing a token for the mailbox to which 
the result segment is sent when the operation has 
finished. A value of zero indicates that no 
response is desired. 

POINTER to a WORD where the condition code will be 
returned. 

The A$PHYSICAL$DETACH$DEVICE breaks connections established by calls to 
A$PHYSICAL$ATTACH$DEVICE. It also deletes the file connection objects 
as~ociated with those device connections. Devic~s that re-detached in 
this manner must be reattached before any files on the device can be 
attached. 

When detaching a device, you can choose to detach all attached files on 
the device. A hard d~tach deletes the conrtection objects for all such 
files on the device. To specify a hard detach, assign the value OFFH to 
the hard parameter. 

If you choose not to request a hard detach, there must not be any 
attached files on the device. To specify that you do not want a hard 
detach, assign the value 0 to the hard parameter. 

7--11 

A PHYSICAL 
DETACH 
DEVICE 



SYSTEM CALLS 

A$PHYSICAL$DETACH$DEVICE (continued) 

DESCRIPTION (continued) 

Note that, whether or not you specify a hard detach, there will be no 
attached files on the device after the device is detached. 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

This code is returned synchronously to indicate 
either of the following: 

• The connection argument is for a connection 
other than to a device. 

• The connection was created by the Extended 
I/O System and includes data buffers. 

E$EXIST Either: 

• One or both of the connection or resp$mbox 
arguments does not refer to an existing 
object. 

• The connection is ~n the process of being 
deleted. 

E$IFDR This system call is not valid for the file driver 
associated with the device. 

E$IO An I/O error occurred during the operation. 

E$LIMIT The I/O System cannot create an I/O result segment 
but the calling task's job has already reached its 
object limit. 

E$MEM The I/O System cannot create an I/O result segment 
because the memory pool of the calling task's job 
does not have a sufficiently large block. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$NOUSER The default user cataloged is not a user object. 

E$SUPPORT The task that created the connection is not in the 
same job as the calling task. 

E$TYPE One or both of the connection or resp$mbox 
arguments is not of the correct object type. 

7-12 



SYSTEM CALLS 

A$SET$EXTENSION$DATA 

The A$SET$EXTENSION$DATA (Basic I/O) system call writes the extension 
data for a Basic I/O System file. 

CALL RQ$A$SET$EXTENSION$DATA(connection, data$ptr, resp$mbox, 
except$ptr); 

INPUT PARAMETERS 

connection 

data$ptr 

resp$mbox 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for an asynchronous 
connection to a file whose extension data is to be 
set. 

POINTER to the structure of the following form: 

DECLARE ext$data$seg 
count 
info(*) 

where: 

STRUCTURE ( 
BYTE, 

BYTE); 

count Number (up to three) of bytes of 
extension data being written. 

info(*) The extension data. 

WORD containing a token for the mailbox to rece1ve 
the I/O result segment when the operation is 
finished. A value of zero indicates that no 
response is desired. 

POINTER to a WORD where the condition code will be 
returned. 

Associated with each file created through the Basic I/O System is a file 
descriptor containing information about the file. Some of that 
information is used by the Basic I/O SYstem and can be accessed by tasks 
through the A$GET$FILE$STATUS system call. Three additional bytes of the 
file descriptor, known as extension data, are available for use by 

7-13 



SYSTEM CALLS 

A$SET$EXTENSION$DATA (continued) 

DESCRIPTION (continued) 

Operating System extensions. OS extensions can write extension data by 
using A$SET$EXTENSION$DATA and they can read extension data by using 
A$GET$EXTENSION DATA. 

NOTE 

If your system includes the Human 
Interface, then only the last byte of 
the extension data is available for uSe 
by your OS extenions. Take care, when 
using A$SET$EXTENSION$DATA, to preserve 
the contents of the first two bytes. 
Do this by calling A$GET$EXTENSION$DATA 
before writing into the third byte. 

After the new extension data is set, an I/O result segment returns to the 
response mailbox. 

A$SET$EXTENSION$DATA can only be applied to asynchronous connections 
created via the named file driver. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$IFDR 

E$IO 

E$LIMIT 

No exceptional conditions. 

The connection was created by the Extended I/O 
System and includes data buffers. 

Either: 

• One or both of the connection or resp$mbox 
arguments does not refer to an existing 
object. 

• The connection is in the process of being 
deleted. 

The set extension data request is not valid for 
files supported by the file driver implied in the 
call. 

An I/O error occurred during the operation. 

The I/O System cannot create an I/O result segment 
because the calling task's job has already reached 
its object limit. 

7-14 



SYSTEM CALLS 

A$SET$EXTENSION$DATA (continued) 

CONDITION CODES (continued) 

E$MEM 

E$NOPREFIX 

The I/O System cannot create an I/O result segment 
because the memory pool of the calling task's job 
does not have a sufficiently large block. 

No default prefix has been set. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$NOUSER Either: 

E$PARAM 

E$SUPPORT 

E$TYPE 

• No default user has been set. 

• The default user cataloged is not a user 
object. 

The count field in the data structure contains a 
value greater than three. 

The task that created the connection was not in the 
same job as the calling task. 

One or both of the connection or resp$mbox 
arguments is not of the correct object type. 

7-15 

I 

I 



SYSTEM CALLS 

ACCEPT$CONTROL 

The ACCEPT$CONTROL (Nucleus) system call requests immediate access to 
data protected by a region. 

CALL RQ$ACCEPT$CONTROL(region, except$ptr); 

INPUT PARAMETER 

region 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the target region. 

POINTER to a WORD where the condition code will be 
returned. 

The ACCEPT$CONTROL system call provides access to data protected by a 
region if access is immediately available. If access is not immediately 
available, the E$BUSY condition code is returned and the calling task 
remains ready. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$BUSY Another task currently has access to the data. 

E$EXIST The region argument does not refer to a currently 
existing object. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$TYPE The region argument does not contain a token for a 
region. 

7-16 



SYSTEM CALLS 

ALTER$COMPOSITE 

The ALTER$COMPOSITE {Nucleus} system call replaces components of 
composite objects. 

CALL RQ$ALTER$COMPOSITE{extension, composite, component$index, 
replacing$obj, except$ptr); 

INPUT PARAMETERS 

extension 

composite 

component$index 

replacing$obj 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the extension type 
object corresponding to the composite object being 
altered. 

WORD containing a token for the composite object 
being altered. 

WORD whose value specifies the location {starting 
at I} in the component list df the component to be 
replaced. 

WORD containing either a token for the replacement 
component object or zero, which represents no 
ob ject • 

POINTER to a WORD where the condition code will be 
returned. 

The ALTER$COMPOSITE system call changes a component of a composite 
object. Any component in a composite object can be replaced either with 
a token for another object or with a place-holding zero that represents 
no object. 

The component$index indicates the position of the target token in the 
list of components. A component$index value of three indicates the third 
component object in the list. 

7-17 

I 

ALTER 
COMPOSITE 



I..TER ' 
DMPOSIT1E SYSTEM CALLS 

ALTER$COMPOSITE (continued) 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

The composite argument is not compatible with the 
extension argument. 

E$EXIST One or both of the extension or composite arguments 
does not refer to a currently existing object. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$PARAM The component$index argument refers to a 
nonexistent position in the component object list. 

E$TYPE One or both of the extension or composite arguments 
is not of the correct object type. 

7-18 



SYSTEM CALLS 

CREATE$COMPOSITE 

The CREATE$COMPOSITE (Nucleus) system call creates a composite object. 

composite=RQ$CREATE$COMPOSITE(extens'ion, token$list, except $ptr) ; 

INPUT PARAMETERS 

extension 

token$list 

OUTPUT PARAMETERS 

composite 

except$ptr 

DESCRIPTION 

WORD containing a token for an extension type 
representing license to create a composite objec~. 

POINTER to a structure of the form: 

Declare 
token$list 
num$slots 
num$used 
tokens(*) 

STRUCTURE ( 
WORD, 
WORD, 
WORD) ; 

where: 

num$slots 

num$used 

token(*) 

Number of pos1t1ons available for 
tokens in token$list. 

Number of component tokens making up 
the composite object. 

Tokens that will actually constitute 
the composite object. 

WORD where a token for the new composite object 
will be returned. 

POINTER to a WORD where the condition code will be 
returned. 

The CREATE$COMPOSITE system call creates a composite object of the 
specified extension type. It accepts a list of tokens that specify the 
component objects and returns a token for the new composite object. A 
zero value in the token list is a place holder and does not represent an 
object. 

7-19 

CREATE 
COMPOSITE 



SYSTEM CALLS 

CREATE$COMPOSITE {continued} 

DESCRIPTION {continued} 

If num$used is greater than num$slot, the extra component slots at the 
end of the composite object are filled with zeros. 

If num$slots is greater than num$used, the entry list is truncated to fit 
within the specified number of slots in the composite object. 

CONDITION CODES 

E$OK 

E$EXIST 

E$LIMIT 

E$MEM 

No exceptional conditions. 

The extension argument or one or more of the 
non-zero token$list .. arguments does not refer to an 
existing object. ' 

The calling task's job has already reached its 
object limit. 

Insufficient memory is available to satisfy the 
request. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$PARAM The specified number of components is zero. 

E$TYPE The extension argument does not contain a token for 
an extension object. 

7-20 



SYSTEM CALLS 

CREATE$EXTENSION 

The CREATE$EXTENSION (Nucleus) system call creates a new object type. 

extension=RQ$CREATE$EXTENSION(type$code, deletion$mailbox, 
except$ptr); 

INPUT PARAMETERS 

type$code WORD containing the type code for the new type. 
The type code for the new type can be any value 
from 8000R to OFFFFR and must not be currently in 
use. (The type codes 0 through 7FFFH are reserved 
for Intel products.) 

deletion$mailbox WORD containing a token for the mailbox where 
objects of the new type are sent whenever the 
extension type or their conta1n1ng job is deleted. 
A zero value indicates no deletion mailbox is 
desired. 

OUTPUT PARAMETERS 

extension 

except$ptr 

DESCRIPTION 

WORD where a token for the new type will be 
returned. 

POINTER to a WORD where the condition code will be 
returned. 

The CREATE$EXTENSION system call returns a token for the newly created 
extension object type. 

You can specify a deletion mailbox when the extension type is created. 
If you do, a task in your type manager for the new type must wait at the 
deletion mailbox for objects of the new extension type that are to be 
deleted. Objects are sent to the deletion mailbox for deletion either 
when their extension type is deleted or when their containing job is 
deleted; they are not sent there when being deleted by DELETE$COMPOSITE. 
The task servicing the deletion mailbox may do anything with the 
composite objects sent to it, but it must delete them. 

7-21 

CREATE 
EXTENSION 



SYSTEM CALLS 

CREATE$EXTENSION (continued) 

DESCRIPTION (continued) 

If you do not want to specify a deletion mailbox, set the token value for 
deletion$mailbox to zero. If the extension type has no deletion mailbox, 
composite objects of that type are deleted automatically, and the type 
manager is not informed. The advantage of having a deletion mailbox is 
that the type manager has the opportunity to do more than merely delete 
the composite objects. 

A job containing a task that creates an extension object cannot be 
deleted until the extension object is deleted. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The calling task's job is partially deleted. 

E$EXIST The deletion$mailbox token argument does not refer 
to an existing object. 

E$LIMIT The calling task's job has reached its object limit. 

E$MEM The memory pool of the calling task's job does not 
contain a sufficiently large block to satisfy the 
request. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$PARAM The type$code parameter 1S invalid. 

E$TYPE The deletion$mailbox token argument does not 
contain a token for a mailbox. 

7-22 



SYSTEM CALLS 

CREATE$REGION 

The CREATE$REGION (Nucleus) system call creates a region. 

region=RQ$CREATE$REGION(region$flags, except$ptr); 

INPUT PARAMETER 

region$flags 

OUTPUT PARAMETERS 

region 

except$ptr 

DESCRIPTION 

WORD which if the low order bit equals zero, tasks 
await access in FIFO order; if the low order bit 
equals one, tasks await access in priority order. 
The other bits in the·WORD are reserved and should 
be set to zero. 

WORD where a token for the newly created region 
will be returned. 

POINTER to a WORD where the condition code will be 
returned. 

The CREATE$REGION system call creates a region and returns to the caller 
a token for the region. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$LIMIT The calling task's job has reached its object limit. 

E$~M The memory pool of the calling task's job does not 
contain a sufficiently large block to satisfy the 
request. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

7-23 



SYSTEM CALLS 

CREATE$USER 

The CREATE$USER (Basic I/O) system call creates a user object. 

user=RQ$CREATE$USER(ids$ptr, except$ptr); 

INPUT PARAMETER 

ids$ptr 

OUTPUT PARAMETERS 

user 

except$ptr 

DESCRIPTION 

a POINTER to a structure of the following form: 
DECLARE ids STRUCTURE( 

where: 

length 

count 

ID 

length WORD, 
co~nt WORD, 
ID(*) WORD); 

Number of elements in the ID array. 

Number of ID's in the ID array that are to 
be included in the user object. This 
number must be less than or equal to 
length, but greater than or equal to one. 

Array of ID's, each of which is included 
in the user object. The first ID is to be 
used as the owner ID for any file created 
with reference to this user object. 

WORD where a token for the new user object will be 
returned. 

POINTER to a WORD where the condition code will be 
returned. 

The CREATE$USER system call creates a user object. It accepts a list of 
ID's and returns a token for the new object. 

If the number of ID slots, as specified by the length field, is greater 
than the number of ID's, as specified by the count field, the effect is 
as if length had been reduced to equal count. 

7-24 



SYSTEM CALLS 

CREATE$USER (continued) 

CONDITION CODES 

E$OK No exceptional conditions. 

E$LIMIT The calling task's job has already reached its 
object limit. 

E$MEM The memory pool of the calling task's job does not 
contain a sufficiently large block to satisfy the 
request. 

E$NOT$CONFIGURED This system call 1S not part of the present 
configuration. 

E$PARAM The count field in the ids structure 1S either zero 
or greater than the length field. 

7-25 



ELETE 
OMPOSITE SYSTEM CALLS 

DELETE$COMPOSITE 

The DELETE$COMPOSITE (Nucleus) system call deletes a composite object. 

CALL RQ$DELETE$COMPOSITE(extension, composite, except$ptr); 

INPUT PARAMETERS 

extension 

composite 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the extension type used 
as a license to create the composite object to be 
deleted. 

WORD containing a token for the composite object to 
be deleted. 

POINTER to a WORD where the condition code will be 
returned. 

The DELETE$COMPOSITE system call deletes the specified composite object 
but not its component objects. 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

The extension type does not match the composite 
argument. 

E$EXIST One or both of the extension or composite arguments 
does not refer to a currently existing object. 

E$MEM The memory pool of the calling task's job does not 
contain a sufficiently large block for Nucleus 
housekeeping purposes. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$TYPE One or both of the extension or composite arguments 
is not of the correct object type. 

7-26 



SYSTEM CALLS 

DELETE$EXTENSION 

The DELETE$EXTENSION (Nucleus) system call deletes an extension object 
and all composites of that type. 

CALL RQ$DELETE$EXTENSION(extension, except$ptr); 

INPUT PARAMETER 

extension 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the extension object to 
be deleted. 

POINTER to a WORD where the condition code will be 
returned. 

The DELETE$EXTENSION system call deletes the specified extension object 
type and all composite objects of that type. This makes the 
corresponding type code available for reuse. 

If a deletion mailbox was specified when the extension type was created, 
then all of the composite objects created by the extension type to be 
deleted are sent to that deletion mailbox. In this case, this call will 
not be completed until all of the composite objects have been deleted. 

If the extension type has no deletion mailbox, the composite objects 
created by the extension type to be deleted are deleted without informing 
the type manager. 

The job containing the task that created the extension object type cannot 
be deleted until the extension object is deleted. 

CONDITION CODES 

E$OK 

E$EXIST 

No exceptional conditions. 

The extension argument does not refer to an 
existing object. 

7-27 



ElETE 
XTENSION SYSTEM CALLS 

DELETE$EXTENSION (continued) 

CONDITION CODES (continued) 

E$MEM The memory pool of the calling task's job does not 
contain a sufficiently large block for Nucleus 
housekeeping purposes. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$TYPE The extension argument does not contain a token for 
an extension object. 

7-28 



SYSTEM CALLS 

DELETE$REGION 

The DELETE$REGION (Nucleus) system call deletes a region. 

CALL RQ$DELETE$REGION{region, except$ptr); 

INPUT PARAMETER 

region 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the region to be 
deleted. 

POINTER to a WORD where the condition code will be 
returned. 

The DELETE$REGION system call deletes a region. If a task that has 
access to data protected by the region requests that that region be 
deleted, the task receives an E$CONTEXT exceptional condition. If a task 
requests deletion while another task has access, deletion is delayed 
until access is surrendered. When the region is deleted, any waiting 
tasks awaken with an E$EXIST exceptional condition. 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

The deletion is being requested by a task that 
currently holds access to data protected by the 
region. 

E$EXIST The region does not refer to an existing object. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$TYPE The region argument does not contain a token for a 
region. 

7-29 



SYSTEM CALLS 

DELETE$USER 

The DELETE$USER (Basic I/O) system call deletes a user object. 

CALL RQ$DELETE$USER(user, except$ptr); 

INPUT PARAMETER 

user 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the user object to be 
deleted. 

POINTER to a WORD where the condition code will be 
returned. 

The DELETE$USER system call deletes a user object. Deleting a user 
object has no effect on connections created with the user object~ 

CONDITION CODES 

E$OK No exceptional conditions. 

E$EXIST' The user argument does not refer to an existing 
object. 

E$NOT$CONFIGURED This system call is not part of the present 
configurat ion. 

E$TYPE The user argument does not contain a token for a 
user object. 

7-30 



SYSTEM CALLS 

DISABLE$DELETION 

The DISABLE$DELETION (Nucleus) system call makes an object immune to 
ordinary deletion. 

CALL RQ$DISABLE$DELETION(object, except$ptr); 

INPUT PARAMETER 

object 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the object whose 
deletion is to be disabled. 

POINTER to a WORD where the condition code will be 
returned. 

The DISABLE$DELETION system call increases by one the disabling depth of 
an object, making it immune to ordinary deletion and possibly making it 
immune to forced deletion. If a task attempts to delete the object while 
it is immune, the task sleeps until the immunity is removed. At that 
time, the object is deleted and the task is awakened. 

CONDITION CODES 

E$OK 

NOTES 

If an object within a job has had its 
deletion disabled then the containing 
job cannot be deleted until that object 
has had its deletion reenabled. 

An attempt to raise an object's 
disabling depth above 255 causes an 
E$LIMIT exceptional condition. 

No exceptional conditions. 

7-31 



'SABLE 
ElETtON SYSTEM CALLS 

DISABLE$DELETEION (continued) 

CONDITION CODES (continued) 

E$EXIST The object argument does not refer to an existing 
object. 

E$LIMIT The object's disabling depth is already 255. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

7-32 



SYSTEM CALLS 

ENABLE$DELETION 

The ENABLE$DELETION (Nucleus) system call enables the deletion of objects 
that have had deletion disabled. 

CALL RQ$ENABLE$DELETION(object, except$ptr); 

INPUT PARAMETER 

object 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the object whose 
deletion is to be enabled. 

POINTER to a WORD where the condition code will be 
returned. 

The ENABLE$DELETION system call decreases by one the disabling depth of 
an object. If there is a pending deletion request against the object, 
and the ENABLE$DELETION call makes the object eligible for deletion, the 
object is deleted and the task which made the deletion request is 
awakened. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The object's deletion is not disabled. 

E$EXIST The object argument does not refer to an existing 
object. 

E$NOT$CONFIGURED This system call 1S not part of the present 
configuration. 

7-33 

I 

ENABLE 
DELETION 



SYSTEM CALLS 

FORCE$DELETE 

The FORCE$DELETE (Nucleus) system call deletes objects whose disabling 
depths are zero or one. 

CALL RQ$FORCE$DELETE(extension, object, except$ptr); 

INPUT PARAMETERS 

extension 

object 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

If the object to be deleted is a composite object, 
this parameter is a WORD containing a token for the 
extension type associated with the composite object 
to be deleted. Otherwise, the extension argument 
must be zero. 

WORD containing a token for the object that is to 
be deleted. 

POINTER to a WORD where the condition code will be 
returned. 

The FORCE$DELETE system call deletes objects whose disabling depths are 
zero or one. If an object has a deletion depth of two or more, the 
calling task is put to sleep until the deletion depth is decreased to 
one. At that time, the object is deleted and the task is awakened. 

CONDITION CODES 

E$OK 

E$EXIST 

E$MEM 

No exceptional conditions. 

One or both of the object or extension arguments 
does not refer to an existing object. 

The memory pool of the calling task's job does not 
contain a sufficiently large block for Nucleus 
housekeeping purposes. 

7-34 



SYSTEM CALLS 

FORCE$DELETE (continued) 

CONDITION CODES (continued) 

E$NOT$CONFIGURED This system call 1S not part of the present 
configuration. 

E$TYPE The extension argument does not contain a token for 
an extension type. 

7-35 



SYSTEM CALLS 

INSPECT$COMPOSITE 

The INSPECT$COMPOSITE (Nucleus) system call returns a list of the 
component tokens contained in a composite object. 

CALL RQ$INSPECT$COMPOSITE{extension, composite, token$list, 
except$ptr); 

INPUT PARAMETERS 

extension 

composite 

OUTPUT PARAMETERS 

token$list 

except$ptr 

WORD contalnlng a token for the extension object 
corresponding to the composite object being 
inspected. 

WORD containing a token for the composite object 
being inspected. 

POINTER to a structure of the form: 

Declare 
token$list 
num$slots 
num$used 
tokens{*) 

where: 

STRUCTURE{ 
WORD, 
WORD, 
WORD) ; 

num$slots Number of positions available for 
tokens in token$list (an upper limit 
on the number of tokens to be 
returned) • 

num$used Number of component tokens making up 
the composite object. 

token{*) The tokens that actually constitute 
the composite object. 

POINTER to a WORD where the condition code will be 
returned. 

7-36 



SYSTEM CALLS 

INSPECT$COMPOSITE (continued) 

DESCRIPTION 

The INSPECT$COMPOSITE system call accepts a token for a composite object 
and returns a list of tokens for the components of the composite object. 

The calling task must supply the num$slots value in the data structure 
pointed to by the token$list parameter. The Nucleus fills in the 
remaining fields in that structure. If num$slots is set to zero, the 
Nucleus will fill in only the num$used field. 

If the num$slots value is smaller than the actual number of component 
tokens, only that number (num$slots) of tokens will be returned. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The composite argument is not compatible with the 
extension argument. 

E$EXIST One or both of the extension or composite arguments 
does not refer to a currently existing object. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$TYPE One or both of the extension or composite arguments 
is not of the correct object type. 

7-37 



SYSTEM CALLS 

INSPECT$USER 

The INSPECT$USER (Basic I/O) System call returns a list of the ID's 
contained in a user object. 

CALL RQ$INSPECT$USER(user, ids$ptr, except$ptr); 

INPUT PARAMETER 

user 

OUTPUT PARAMETERS 

ids$ptr 

except$ptr 

DESCRIPTION 

WORD containing a token for the user object being 
inspected. 

POINTER to a structure of the following form: 

DECLARE ids 
length 
count 

STRUCTURE ( 
WORD, 
WORD, 
WORD) ; 

where: 

length 

count 

id(*) 

Upper limit on the number of ID's that 
are to be returned. 

Actual number of ID's that are being 
returned. 

The ID's being returned. 

POINTER to a WORD where the condition code will be 
returned. 

The INSPECT$USER system accepts a token for a user object and returns a 
list of the ID's in the user object. 

The calling task must supply the length value in the data structure 
pointed to by the ids$ptr parameter. The I/O System fills in the 
remaining fields in that structure. 

If the length value is smaller than the actual number of ID's in the user 
object, only the specified number of ID's will be returned. 

7-38 



SYSTEM CALLS 

INSPECT$USER (continued) 

CONDTION CODES 

E$OK No exceptional conditions. 

E$EXIST The user argument does not refer to an existing 
object. 

E$NOT$CONFIGURED This system call IS not part of the present 
configuration. 

E$PARAM The length field contains a value of zero. 

E$TYPE The user argument contains a value that is not a 
token for a user object. 

7-39 



SYSTEM CALLS 

LOGICAL$ATTACH$DEVICE 

The LOGICAL$ATTACH$DEVICE (Extended I/O) system call assigns a logical 
name to a physical device. It does this by creating a Logical Device 
Object and cataloging it under the specified logical name in the root 
object directory. 

CALL RQ$LOGICAL$ATTACH$DEVICE(log$name, dev$name, file$driver, 
except$ptr); 

INPUT PARAMETERS 

log$name 

dev$name 

file$driver 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

POINTER to' a STRING conta1n1ng the logical name 
under which the logical device object is to be 
cataloged. 

POINTER to a STRING containing the name (as 
specified in the DUIB during Basic I/O System 
configuration) of the device to be assigned. 

BYTE specifying which I/O System file driver is to 
use the device. Possible values are as follows: 

value 

1 
2 
4 

file driver 

physical 
stream 
named 

POINTER to a WORD where the condition code will be 
returned. 

LOGICAL$ATTACH$DEVICE creates a Logical Device Object corresponding to a 
physical device and then catalogs the object in the root object directory 
under the logical name specified in the call. Such a logical device 
object must be in place before any file connections to files on the 
device can be created. The Extended I/O System attaches the physical 
device (creates a device connection) during the first Extended I/O System 
call that uses this logical name as the prefix of a path name. The 
logical name can be used as a prefix in other system calls and can be 
deleted by LOGICAL$DETACH$DEVICE. 

7-40 



SYSTEM CALLS 

LOGICAL$ATTACH$DEVICE (continued) 

DESCRIPTION (continued) 

Because of the nature of LOGICAL$ATTACH$DEVICE, some execption codes that 
result because of errors in this system call will not be returned until 
the Extended I/O System actually tries to attach the device (during the 
first system call that uses the logical name as the prefix of a path 
name). 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$LIMIT 

No exceptional conditions. 

The root object directory already contains an entry 
with the name pointed to by the log$name parameter. 

Either: 

• The root object directory 1S full. 

• The calling task's job is not an I/O job. 
Refer to the iRMX 86 EXTENDED I/O SYSTEM 
REFERENCE MANUAL for information concerning 
I/O jobs. 

E$MEM The memory pool of the calling task's job does not 
have a sufficiently large block of memory to allow 
this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was left 
out during the configuration process: 

E$PARAM 

CATALOG$OBJECT (Nucleus) 
CREATE$COMPOSITE (Nucleus) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
GET$TYPE (Nucleus) 
LOGICAL$ATTACH$DEVICE (Extended I/O System) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
SEND$MESSAGE (Nucleus) 

This code indicates that the specified logical name 
is syntactically incorrect. Anyone of the 
following problems can cause this error: 

• The STRING pointed to by the log$name 
parameter is of zero length. 

7-41 



SYSTEM CALLS 

LOGICAL$ATTACH$DEVICE (continued) 

CONDITION GODES 
E$PARAM (continued) 

• The STRING pointed to by the log$name 
parameter has a length of greater than 12. 

/ 

• The logical name contains invalid characters. 

7-42 



SYSTEM CALLS 

LOGICAL$DETACH$DEVICE 

The LOGICAL$DETACH$DEVICE (Extended I/O) system call removes the 
correspondence between a logical name and a physical device that was 
established with the LOGICAL$ATTACH$DEVICE system call. It removes the 
logical name from the root object directory. 

CALL RQ$LOGICAL$DETACH$DEVICE(log$name, except$ptr); 

INPUT PARAMETER 

log$name 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

POINTER to a STRING containing the name under which 
the logical device object is cataloged in the root 
object directory. 

POINTER to a WORD where the condition code will be 
returned. 

LOGICAL$DETACH$DEVICE severs the association created by a call to 
LOGICAL$ATTACH$DEVICE and deletes the corresponding entry in the root 
object directory. At this point the device is logically detached; users 
cannot create new connections using the logical name as a prefix. When 
the last file connection on the physical device is severed, the Extended 
I/O System detaches the device (deletes the device connection). A task 
can then reassign the device. 

CONDITION CODES 

E$OK 

E$EXIST 

No exceptional conditions. 

The device connection corresponding to this logical 
name is in the process of being deleted. 

7-43 

LOGICAL 
DETACH 
DEVICE 



SYSTEM CALLS 

LOGICAL$DETACH$DEVICE (continued) 

CONDITION CODES (continued) 

E$LIMIT This condition code can be caused by either of the 
following conditions: 

• Either the user object or the calling task's 
job is currently involved with more than 255 
(decimal) I/O operations. 

• The calling task's job is not an I/O job. 
Refer to the iRMX 86 EXTENDED I/O SYSTEM 
REFERENCE MANUAL for information concerning 
I/O jobs. 

E$LOG$NAME$NEXIST The logical name was not found 1n the root object 
directory. 

E$MEM The memory pool of the calling task's job does not 
have a sufficiently large block of memory to allow 
this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was left 
out during the configuration process: 

E$NOT$DEVICE 

E$PARAM 

A$PHYSICAL$DETACH$DEVICE (Basic I/O System) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DELETE$COMPOSITE (Nucleus) 
GET$TYPE (Nucleus) 
LOGICAL$DETACH$DEVICE (Extended I/O System) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE {Nucleus} 
SEND$CONTROL {Nucleus} 
UNCATALOG$OBJECT (Nucleus) 

When the Extended I/O System looked up the token 
associated with the logical name, it was not a 
valid device connection. 

This code indicates that the specified logical name 
is syntactically incorrect. Anyone of the 
following problems can cause this error: 

• The STRING pointed to by the log$name 
parameter is of zero length. 

• The STRING pointed to by the log$name 
parameter has a length of greater than 12. 

• The logical name contains invalid characters. 

7-44 



SYSTEM CALLS 

RECEIVE$CONTROL 

The RECEIVE$CONTROL (Nucleus) system call allows the calling task to gain 
access to data protected by a region. 

CALL RQ$RECEIVE$CONTROL(region, except$ptr); 

INPUT PARAMETER 

region 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the region protecting 
the data to which the calling task wants access. 

POINTER to a WORD where the condition code will be 
returned. 

The RECEIVE$CONTROL system call requests access to data protected by a 
region. If no task currently has access, entry is immediate. If another 
task currently has access, the calling task is placed in the region's 
task queue and goes to sleep. The task remains asleep until it gains 
access to the data. 

If the region has a priority-based task queue, the priority of the task 
currently having access is temporarily boosted, if necessary, to match 
that of the task at the head of the queue. 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

The region argument refers to a region already 
accessed by the calling task. 

E$EXIST The region argument does not refer to an existing 
object. 

E$NOT$CONFIGURED This system call 1S not part of the present 
configuration. 

E$TYPE The region argument does not contain a token for a 
region. 

7-45 

I 



SYSTEM CALLS 

SEND$CONTROL 

The SEND$CONTROL (Nucleus) system call allows a task to surrender access 
to data protected by a region. 

CALL RQ$SEND$CONTROL(except$ptr); 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

POINTER to a WORD where the condition code will be 
returned. 

When a task finishes with data protected by a region, it invokes the 
SEND$CONTROL system call to surrender access. If the task is using more 
than one set of data, each of which is protected by a region, the 
SEND$CONTROL system call surrenders the most re~ently obtained access. 
When access is surrendered, the system allows the next task in line to 
gain access. 

If a task calling SEND$CONTROL has had its priority boosted while it had 
access through a region, its priority is restored when it relinquishes 
the access. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT A task invoked the SEND$CONTROL while it did not 
have access to data protected by any region. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

7-46 



SYSTEM CALLS 

SET$OS$EXTENSION 

The SET$OS$EXTENSION (Nucleus) system call either enters the address of 
an entry (or function) procedure in the interrupt vector table or it 
deletes such an entry. 

CALL RQ$SET$OS$EXTENSION(os$extension, start$address, except$ptr); 

INPUT PARAMETERS 

os$extension 

start$address 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

BYTE designating the entry of the interrupt vector 
table to be set or reset. This value must be 
between 224 and 255 (decimal), inclusive (the 
values in the range 192 to 223 are valid, but are 
reserved for Intel use). 

POINTER to the first instruction of an entry (or 
function) procedure. If start$address contains a 
zero value, the specified interrupt vector table 
entry is being reset (deallocated). 

POINTER to a WORD where the condition code will be 
returned. 

The SET$OS$EXTENSION system call sets or resets anyone of the 32 
operating system extension entries in the interrupt vector. An entry 
must be reset before its contents can be changed. An attempt to set an 
already set entry causes an E$CONTEXT exceptional condition. 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

An attempt is being made to set an entry that 
already is set. 

7-47 



SYSTEM CALLS 

SET$OS$EXTENSION (continued) 

CONDITION CODES (continued) 

E$NOT$CONFIGURED This system call 1S not part of the present 
configuration. 

E$PARAM The OS$extension byte value 1S less than 192. 

7-48 



SYSTEM CALLS 

SET$PRIORITY 

The SET$PRIORITY (Nucleus) system call changes the priority of a task. 

CALL RQ$SET$PRIORITY(task, priority, except$ptr); 

INPUT PARAMETERS 

task 

priority 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD containing a token for the task whose priority 
is to be changed. A zero value specifies the 
invoking task. 

BYTE containing the task's new priority. A zero 
value specifies the maximum priority of the 
specified task's containing job. 

POINTER to a WORD where the condition code will be 
returned. 

The SET$PRIORITY system call allows the priority of a noninterrupt task 
to be altered dynamically. 

If the priority parameter is set to the zero, the task's new priority 1S 

its containing job's maximum priority. Otherwise, the priority 
parameter contains the new priority of the specified task. The new 
priority, if explicitly specified, must not exceed its containing job's 
maximum priority. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

No exceptional conditions. 

An attempt is being made to change the priority of 
an interrupt task. 

The task argument does not refer to an existing 
object. 

7-49 



SYSTEM CALLS 

SET$PRIORITY (continued) 

CONDITION CODES (continued) 

E$LIMIT The priority parameter contains a priority value 
that is higher than the maximum priority of the 
specified task's containing job. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$TYPE The task argument does not contain a token for a 
task. 

7-50 



SYSTEM CALLS 

SET$TIME 

The SET$TIME (Basic I/O) system call sets the date and time for the I/O 
System. 

CALL RQ$SET$TIME(time$high, time$low, except$ptr}; 

INPUT PARAMETERS 

time$high 

time$low 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

WORD specifying the first half (the most 
significant 16 bits) of the value of the date and 
time. 

WORD specifying the second half (the least 
significant 16 bits) of the value of the date and 
time. 

POINTER to a WORD where the condition code will be 
returned. 

The SET$TIME system call sets the date/time value for the I/O system. 
The I/O System maintains the date/time value as two words containing the 
number of seconds since a fixed point in time. Any time in the past can 
be used as the "beginning of time", but we recommend that you use 12:00 
am (midnight), January 1,1978. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

7-51 

SET 
TIME 



IGNAL 
XCEPTION SYSTEM CALLS 

SIGNAL$EXCEPTION 

The SIGNAL$EXCEPTION (Nucleus) system call is invoked by OS extensions to 
signal the occurrence of an exceptional condition. 

CALL RQ$SIGNAL$EXCEPTION(exception$code, param$num, stack$pointer, 
reserved$word, reserved$word, except$ptr); 

INPUT PARAMETERS 

exception$code 

param$num 

stack$pointer 

reserved$word 

OUTPUT PARAMETER 

except$ptr 

WORD containing the code (see list in Appendix B) 
for the exceptional condition detected. 

BYTE containing the number of the parameter which 
caused the exceptional condition. If no parameter 
is at fault, param$num equals zero. 

WORD which, if not zero, must contain the value of 
the stack pointer saved on entry to the operating 
system extension (see the entry procedure in 
Chapter 4 for an example). The top five words in 
the stack (where BP is at the top of the stack) 
must be as follows: 

FLAGS Saved by software interrupt 
CS to OS extension 
IP 
DS Saved by OS extension 
BP on entry 

Upon completion of SIGNAL$EXCEPTION, control 
returns to the instruction identified in CS and IP. 

If stack$pointer contains a zero, control returns, 
upon completion of SIGNAL$EXCEPTION, to the 
instruction following the call to SIGNAL$EXCEPTION. 

Two WORDs reserved for Intel use. Set these 
parameters to zero. 

POINTER to a WORD where the condition code will be 
returned. 

7-52 



SYSTEM CALLS 

SIGNAL$EXCEPTION (continued) 

DESCRIPTION 

Operating system extensions use the SIGNAL$EXCEPTION system call to 
signal the occurrence of exceptional conditions. Depending on the 
exceptional condition and the calling task's exception mode, control may 
or may not pass directly to the task's exception handler. 

If the exception handler does not get control, the exceptional condition 
code is returned to the calling task. The task can then access the code 
by checking the contents of the word pointed to by the except$ptr 
argument for its call (not for the call to SIGNAL$EXCEPTION). 

CONDITION CODES 

E$OK No exceptional conditions. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

7-53 





APPENDIX A. iRMX 86m DATA TYPES 

The following are the data types that are recognized by the iRMX 86 
Operating System: 

BYTE 

WORD 

INTEGER 

OFFSET 

TOKEN 

POINTER 

STRING 

An unsigned, one byte, binary number. 

An unsigned, two byte, binary number. 

A signed, two byte, binary number that is stored in 
two's complement form. 

A word whose value represents the distance from the 
base of a segment. 

A word whose value identifies an object. 

Two words containing the base of a segment and an 
offset, in the reverse order. 

A sequence of consecutive bytes. The first byte 
contains the number (not to exceed 12) of bytes that 
follow it in the string. 

A-I 





APPENDIX B. iRMX 86m TYPE CODES 

Each iRMX 86 object type is known within the iRMX 86 system by means of a 
numeric code. For each code, there is a mnemonic name that can be 
substituted for the code. The following lists the types with their codes 
and associated mnemonics. 

OBJECT TYPE INTERNAL MNEMONIC NUMERIC CODE 

Job T$JOB 1 

Task T$TASK 2 

Mailbox T$HAILBOX 3 

Semaphore T$SEMAPHORE 4 

Region T$REGION 5 

Segment T$SEGMENT 6 

Extension T$EXTENSION 7 

Composite T$COMPOSITE varies from 8000H 
to OFFFH, depend-
ing on the value 
specified in 
CREATE$EXTENSION 

User 
(in Basic I/O System) T$NUM$USER lOOH 

Connection 
(in Basic I/O System) T$A$CONNECTION lOlH 

I/O Job T$IO$JOB 300H 
(in Extended I/O System) 

Logical Device Object T$LOG$DEV 301H 
(in Extended I/O System) 

B-1 





INDEX 

For most topics with multiple-page references, the primary reference is 
underscored. 

ACCEPT$CONTROL 2-4, 2-6, 7-16 
access list 5-7 
access mask 5-7 
air-traffic-control application 2-1 
ALTER$COMPOSITE 4-2, 4-6, 4-17, 7-17 
application programmer 1-1, 2-5 
ATTACH$FILE 5-7 ---
attaching devices 5-1 
AX register 3-6 

changing task priority 7-49 
component token list 7-19, 7-36 
composite object 4-1,-y=f7, 7-19, 7-26, 7-36 
configuration interface 5-1 
CREATE$COMPOSITE 4-1,4-12,4-17, 7-19 
CREATE$EXTENSION 4-1,4-3, 4-17, 7-21 
CREATE$FILE 5-7 
CREATE$REGION 2-6, 7-23 
CREATE$RING$BUFFER procedure 4-12 
CREATE$USER 5-5, 7-24 
custom object types 4-1 
CX register 3-6, 3-8 

deadlock 2-4 
default user object 5-5 
DELETE$COMPOSITE 4-2,4-4,4-17, 7-26 
DELETE$EXTENSION 4-2, 4-5, 4-17, 7-27 
DELETE$JOB 4-3 
DELETE$REGION 2-6, 7-29 
DELETE$RING$BUFFER procedure 4-14 
DELETE$USER 5-5, 7-30 
deletion considerations 6-1 
deletion mailbox 4-2, 7-21, 7-27 
deletion preventio;--2-3, 3-14 
detaching devices 5-1 
device connection 5-4, 7-8, 7-11, 7-40, 7-43, 
device driver 5-2 
device unit 5-2 
dictionary of system calls 7-2 
DISABLE$DELETION 3-14, 7-31, 
disabling depth 3-14, 7-31, 7-33, 7-34 
DL register 3-6, 3-8 

Index-1 



INDEX (continued) 

ENABLE$DELETION 3-14, 7-33 
entry procedure 3-3, 3-7, 7-47 
exception handler 3-7~-11, 7-52 
exceptional conditions 3-6, 3-8, 3-10 
extension data 5-8, 7-5, 7-13 

file access 5-5 
file descriptor 5-8 
file driver 5-2 
file protection 5-7 
FORCE$DELETE 3-15, 7-32 
function procedure 3-3, 3-10, 7-47 

GET$BYTE procedure 4-15 
GET$EXCEPTION$HANDLER 3-7 
GET$EXTENSION$DATA 5-8, 7-5 

hard detach 7-11 

I/O System hardware 5-1 
ID 5-5, 7-24, 7-38 
in-line exception handling 3-8, 3-12 
initialization part 4-6, 4-8 
INSPECT$COMPOSITE 4-2, 4-12, 7-36 
INSPECT$USER 5-5, 7-38 
inspecting composite objects 4-2, 4-12, 7-36 
interface library 3-7, 4-9 
interface procedure 3-3, 3-6, 4-9 
interrupt vector 3-3, 7-4-7--
interupt vector table 7-47 
intertask coordination 2-1 

language interface 3-3 
linking procedures 3-7 
logical 

names 5-1, 5-3, 7-40, 7-43 
device object 5-3, 7-40, 7-43 

LOGICAL$ATTACH$DEVICE 5-1, 5-3, 7-40 
LOGICAL$DETACH$DEVICE 5-1, 5-3, 7-43 

manipulating composite objects and extension types 4-2 
mutual exclusion 2-2, 2-3 

named file driver 5-3, 5-6, 7-8 
nested composites 4-5 
nesting regions 2-4 

operating system extension 3-1, 4-1 
OS extension 3-1, 4-1 

physical file driver 5-2, 5-6, 7-8 
PHYSICAL$ATTACH$DEVICE 5-1, 5-3, 7-8 
PHYSICAL$DETACH$DEVICE 5-1, 5-3, 7-11 
priority adjustment 7-49 
priority boosting 2-3 

Index-2 



INDEX (continued) 

priority bottlenecks 2-2 
procedure libraries 3-1 
protection against deletion 3-14 
PUT$BYTE procedure 4-14 

RECEIVE$CONTROL 2-4, 2-6, 7-45 
region 2-1 
ring buffer 4-7 
ring buffer example 4-7 
ring buffer manager 4-7 
RQ$ERROR procedure 3-6, 3-10 

semaphores 2-2, 2-4 
SEND$CONTROL~-6, 7-46 
SET$EXCEPTION$HANDL~3-7 
SET$EXTENSION$DATA 5-8, 7-13 
SET$OS$EXTENSION 3-14, 3-15, 7-47 
SET$PRIORITY 7-49 
SET$TIME 7-51 
shared data 2-1, 7-16, 7-45, 7-46 
SIGNAL$EXCEPTION 3-6, 3-10, 3-12, 7-52 
signalling exceptions 3-6, 3-8, 3-10, 7-52 
stream file driver 5-2, 5-6, 7-8 
system call dictionary 7=Z-
system programmer 1-1 

time 7-51 
type code 4-1, 7-21 
type manager 4-1 

user object 5-5, 7-24, 7-30, 7-38 
user-supplied operating system extensions 3-1, 4-1 

verify access to files 5-7 

Index-3 





REQUEST FOR READER'S COMMENTS 

iRMX 86TII System Programmer's 
Reference Manual 

142721-003 

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets 
you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _ 

NAME ______________________________________ ~ ____________ DATE ____________ _ 

TITLE 

COMPANY NAME/DEPARTMENT ______________________________________________ _ 

ADDRESS __________________ ~----------------------------------

CITY ----------______________________ STATE _____ ZIP CODE _____ __ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing I ntel products. Your comments on the back of this form 
will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

I ntel Corporation 
5200 N.E. Elam Young Pkwy. 
Hillsboro, Oregon 97123 

O.M.S. Technical Publications 

""" 
NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 





inter 
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


