iIRMX 86™
SYSTEM PROGRAMMER’S
REFERENCE MANUAL

Order Number: 142721-003

Copyright © 1981 Intel Corporation
Intel Corporatnon 3065 Bowers Avenue, Santa Clara, California 95051

REV. REVISION HISTORY PRINT

DATE
-001 Original Issue 4/81
-002 Corrects technical and typographical errors, 9/80
and documents Release 2 of the iRMX 86
Operating System
-003 Adds information about the Extended 1/0 5/81

System, corrects technical and typographical
errors, and documents Release 3 of the
iRMX 86 Operating System.

Debugger Information, formerly contained
in this manual, is now in the

iRMX 86 Debugger Reference Manual.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel’s software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP Intel Megachassis
CREDIT Intelevision Micromap
i Intellec Multibus
ICE iRMX Multimodule
iCS iSBC PROMPT
im iSBX Promware
Insite Library Manager RMX/80
Intel MCS System 2000
UPI
#Scope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

ii [[A366/581/4K DD |

PREFACE

The iRMX 86 Operating System is a software package that provides
real-time, multitasking capabilities for Intel iSBC 86 single board
computers and any other iAPX 86- or 1iAPX 88-based microcomputers. This
manual contains information that is separately described for system
programmers. In Chapter 1, the terms system and application programmers
are defined, and the reasons for making a distinction between them are
explained. The remaining chapters are devoted to various kinds of
information that can, if you so desire, be hidden from application
programmers.

The following manuals provide additional information that may be helpful
to readers of this manual.

Manual Number
Introduction to the iRMX 86™ Operating System 9803124
iRMX 86™ Nucleus Reference Manual 9803122
iRMX 86™ Debugger Reference Manual 143323
iRMX 86™ Terminal Handler Reference Manual 143324
iRMX 86™ Basic I/0 System Reference Manual 9803123
iRMX 86™ Extended I/0 System Reference Manual 143308
iRMX 86™ Loader Reference Manual 143318
iRMX 86™ Human Interface Reference Manual 9803202
iRMX 86™ Configuration Guide 9803126
Guide to Writing Device Drivers for the iRMX 86™ I/0 System 142926

8086/8087/8088 Macro Assembly Language Reference Manual
for 8080/8085-Based Development Systems 121623

8086/8087/8088 Macro Assembly Language Reference Manual
for 8086-Based Development Systems 121627

8086/8087/8088 Macro Assembler Operating Instructions
for 8080/8085-Based Development Systems 121624

8086/8087/8088 Macro Assembler Operating Instructions
for 8086-Based Development Systems 121628

iid

CONTENTS

CHAPTER 1
INTRODUCTION .
System and Application ProgrammersS....ceeececcscansccssscssnosonccns

About

the Rest Of this Manualo-..........--.....,................‘.

CHAPTER 2
REGIONS

Risks

Involved in Sharing Data......ccec.. et essecesecesesassesenas

Mutual Exclusion Using SemaphoresS...ecceceecocstscescsscscsssoonsnse
Mutual Exclusion Using RegionSeeeceseseescocosoccsossoscsssssccsnnsse
Usefulness of SemaphoreS..ceeeecssscascsessossessacssnsssssasssncnnss
Regions and DeadlocK..eeeesseesoeesceossssssassncsssssssscsscsnsases
Regions and Application ProgrammersS...ceececcsecccescosccccsosnsons
System Calls for RegionS..eccececesocecoccsosscsasoceosonconssnssns

CHAPTER 3
OPERATING SYSTEM EXTENSIONS
Three Ways of Adding Functionality.seeeeceeeeoessosseensscsoscsscnns
Creating an Operating System EXCensioON..coesececeseesosecsccoonasss
Procedures Used in Operating System Extensions....eececceeccecses
Interface Procedures......ccceveencecan ctecesecesesstesseneveens
Entry ProcedureS.cceeecssscsesscoscssosrssssssoscnossnssesssssnsss
Function Procedures...eeeeecescssecssscsocssoscsocsssscsassnscnsns
RQSERROR ProCedUTEsS. cocueecessoasssnssssscassrcsnscssssancnsass
Linking the Procedures..ceeeessscsseoscsesssssesccsscssononnons
Initializing the Interrupt VecCtOT.eeeeesoeooososssossossnossscascs
Protecting Resources from Being Deleted.ceesssssecscasssssencoconsns
System Calls Used in Extending the Operating System...ceeeeessccass

CHAPTER 4

TYPE MANAGERS

‘Creating New ObJeCESeetesseeesseoesnsoosossasssossscsssssoscanonnsses

Manipulating Composite Objects and Extension TypesS.e.eeceeeececcnas

Deleting Composite Objects and Extension TypeS..eceesesceccsscscsans
Type Manager Responsibilities During DELETESJOB.....ccuicevecenens
Type Manager Responsibilities during DELETESEXTENSION....ceeesess
Deletion of Nested COMPOSIiteScessessssssscscesssoscncssssasssaces

Writing a Type Manager.e.eeeeeeesooscossessoososossossssossnasonass

Example —- A Ring Buffer Manager......ceceececesocossscccscancesans

The
The
The
The
The
The
The

Initialization Part..eececeecevecscsosocssccscssscsossosnnoess
Interface Library..eeeeececeeceesesccccocesssaconssscssccases
Entry Procedure..ceeesseceesseccssoccssocsssecossscssssnssscscs
CREATESRINGSBUFFER Procedure.ccscecscccsoscasssacscsnsssccsscs
DELETESRINGSBUFFER ProCedUrC i ceeeecessesssesossssscssssescesnss
PUTSBYTE ProcCedure.ceessescosccscsscsscssncsssscsssosssssnsoscnss
GETSBYTE ProcCeduUre..ceesoceesceseccsossososennscnsossssscosenas

Epilogue...........................-.......-.....................

System Calls for Type ManagerS.eeeeeceesccccsssoscssssassacnncnccnas

iv

PAGE

— -
I
N

I
=0 00Nt LWN N -

—

N

PESESESR SR RE SR
o
>

4-15
4-16
4-16

CONTENTS (continued)

CHAPTER 5

THE 1/0 SYSTEM)

Configuration INterface.iuieesieeeecesestsesscresossoessccosanoonsnns
Interfacing Between Tasks and DevicCesS.eeesecseessnscscssssssncnnes
Differences Between the Basic and Extended I/0 SystemS...ceeees..
Device CONNECLiONS:ttessseseasseesassosssssoneassossssssncsassasas
Initialization ConsiderationSeeesssessseessssossssssnnsnnsncsossas

File Protection for Named FileS.eeeseosesssssnscssscssosascocsnsasns
USer ObJeCtSe e eeesssssonssassossasanssssssossssessssssssssssscsss
File AcCcCessS LiStSiissesseesassosesssssssssosssssssssssssessasssses
Access Masks for File ConnectionS.cevossesssesssssssronssocsanssse

Extending @ File DeSCriptOreseeesssessssssassosnsassssssssssssssanss

CHAPTER 6
DELETION CONSIDERATIONS . iuvusvvernsossoosoosconsosssoscsnasacsonnos

CHAPTER 7

SYSTEM CALLS

System Call DicCtionaTryeseeeetecesssssosossssscssessasosssssssssssas

Alphabetical List of System Callseeeeeesrsssscossssosocsascesonossss
ASGETSEXTENSTONSDATA . . v et veeeeroeecvaseceonseeensvssocsosssssnees
ASPHYSICALSATTACHSDEVICE s uueuveessoesosnnosasssassoasoassssssannss
ASPHYSTICALSDETACHSDEVICE . ¢ vevevossecsosossonssssonssssssssnnasans
ASSETSEXTENSIONSDATA, ittt teetenasssssessasssssssssassscsssnssnes
ACCEPTSCONTROL e t o0 veeeseecronossassasssssossssssssssasaasosssasss
ALTERSCOMPOSITE . s e tsseavsosasssssssonesssssnsssosscsssnsssanssssss
CREATESCOMPOSITE . e v e e eevsoesssesesonsssssassssscssssssssssasssnas
CREATESEXTENSION. e vsessvsssosssscssossosscnssasssesssssesosssos
CREATESREGTION: st veevecstsssssasosnessscsascsnsssssssssassscsssnss
CREATESUSER . e vevesovsocorsnsnssorssosessssssesssssscsssscssssssssas
DELETESCOMPOSITE . e et e vetstsessesoestssssstsaccsesoosssssnsnsssnos
DELETESEXTENSION. ¢ tovveessvesuvsseoosesscssnsosssosossssssssanssass
DELETESREGION. ¢ s uvesuenessencsnoncasassessssacssossosscasosasose
DELETESUSER. 4 e evtetesssssrsnscessscsssscsasssansssossasssssssssssss
DISABLESDELETION. s 0 uueuueussscensssesnsssssssssssssosssnsssosnons
ENABLESDELETION. ¢ oveesuesvensasssssscscsosscosssossssssscssonsses
FORCESDELETE .4 evuvteosseesacocoasessssscosocasasesscssosesossansnos
INSPECTSCOMPOSITE . s useeeosossosoossssososssssossosssssssssssssosceocs
INSPECTSUSER . tevveeseeooesoosoassccasosssnsanssassssscssssssssssss
LOGICALSATTACHSDEVICE e ussvesasoseessnsasasssasssssosasassssssscnns
LOGICALSDETACHSDEVICE e v e vecesocssasosassvescesosssssnssassesans
RECEIVESCONTROL e vt oevososaassnscssesnsssossassosssssssscssnnessssse
SENDSCONTROL . ¢ e veeoaceeoctossssosssossasosssssssassssssssssssossss
SETSOSSEXTENSION. . cosvsesvossssonssasossossacassssssosssssssssosocsss
SETS P RIORITY e et s eveccessossessesossssosssossssnsosccsasnsonnsessas

SET$TIME.OOOOQ.oooo.oc-'o!.'Occooo-o'ooototooottooon.ooooaooo.o'.

SIGNALSEXCEPTION. s o vensssossensosoncosossssssessssscnscosossonss

PAGE

[UL

Lottt n i n
|
O~ NP W

CONTENTS (continued)

PAGE
APPENDIX A
1RMX 86 DATA TYPES..veeerocsseoossoasasssssvssssssosscsoanacconsoss A-1

APPENDIX B
iRMX 86 TYPE CODES...........-oo--oo'too.ooootoou-coto.ooooo--oaooo B_l

FIGURES

0S Extensions Without Entry Procedures...eeeeceeesessesesss
0S Extension with Procedure Entry.ceeeeeeeeceecceecscosooens
Summary of Duties of Procedures in OS Extensions...eesseses
Handling Exceptions with an Exception Handler.......e.oeevse
Extension Handling Exceptions In-Line...seececcesscssscncess
Control Flow for 0S Extensions and Application Task.seeeos.
The Creation Sequence for Composite ObjecCtSeeeeverecccsesss
Type Manager Involvement in DELETESJOB....eveeoesnssosssnons
A Ring Buffer.cesesesesecesssessossssasosssssscasssasnssseans
Layers of Interfacing Between Tasks and a Device.seeeeeeess
Schematic of Software at Initialization Time..ecoececocsesss
A System with Device and File ConnectionS..eeeeeeeeereessss
Computing the Access Mask for a File ConnectiON....cieeeess

.
w N -

.

LuUuuunESEEPWWLWW WWW
1
PLOUNFFRWNFEFOWUE WN -
.
mmmmbbfuuwwww
N LWNEOEPEN =0 U

TABLE

3-1. Comparison of Techniques for Creating Common Functions..... 3-2

vi

CHAPTER 1. INTRODUCTION

This chapter serves two purposes: it explains the distinction between
system programmers and application programmers, and it provides a brief
introduction to the contents of the rest of the manual.

SYSTEM AND APPLICATION PROGRAMMERS

For the purposes of the iRMX 86 documentation package, programmers are
partitioned into two classes: application programmers and system
programmers. The following paragraphs define the differences between the
two classes. The distinction is somewhat artificial and may, if not
useful to you, be ignored.

An application programmer:

° Uses a limited set of iRMX 86 capabilities and object types to
achieve an applications-oriented goal.

. Is not aware of the remaining capabilities and object types.
e Does not modify the Operating System in any way.

A system programmer, by contrast:

e Can use all iRMX 86 capabilities and object types to achieve any
desired goal.

e Can modify the operating system by creating new object types and
system calls for use by system programmers and/or application
programmers.

Some manuals in the iRMX 86 documentation set contain information that
can safely be used by all application programmers. The others, however,
including this one, present features that, if abused, could disable an
application system. By documenting potentially dangerous features in
separate manuals, we provide you with the opportunity of enforcing a
distinction between application and system programmers.

In addition to this manual, the following manuals in the documentation
package are designed for use by system programmers exclusively:

e. 1RMX 86 CONFIGURATION GUIDE

° GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 I/0 SYSTEM

INTRODUCTION

ABOUT THE REST OF THIS MANUAL

The remaining chapters deal with a variety of topics.,

Chapter 2 introduces regions, which are another type of exchange object.
Chapter 3 explains extending (enlarging) the Operating System.

Chapter 4 discusses a particular kind of operating system extension
called a type manager. Chapter 4 also contains an example of a type
manager.

Chapter 5 contains I/0 System information that is deliberately not
documented in either the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL or the
iRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL.

Chapter 6 contains precautionary advice concerning the deletion of
objects.

Chapter 7 contains the system calls that are not documented in the other

reference manuals. These are the calls that could corrupt a system if
used without discretion.

1-2

CHAPTER 2. REGIONS

You are probably already familiar with the concept of intertask
coordination via exchanges. If you are not, you can find a general
discussion in the INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM. You can
also find a detailed discussion of semaphores and mailboxes in the iRMX
86 NUCLEUS REFERENCE MANUAL,

This chapter continues where the previous two discussions left off. It
introduces a third type of exchange. This new iRMX 86 object type is a
region, and it allows tasks to share data. i

RISKS INVOLVED IN SHARING DATA

Occasionally, several tasks in a system must share data. If the tasks
run concurrently and the data is subject to change, access to the data
must be restricted to one task at a time. The following example
illustrates the importance of controlling tasks' access to data.

Suppose Tasks A and B are both part of an air-traffic-control application
system. Task A runs at fixed time intervals and checks for any potential
collisions. Task B runs as a result of an interrupt caused whenever the
sweep of the radar detects an aircraft. Task B is of higher priority
than Task A and is responsible for updating the position of the detected
aircraft. Potentially, task B could corrupt the data used by Task A.

For instance, suppose that Task A is in the process of extrapolating the
position of a particular aircraft. It first fetches the craft's
last-reported position and uses the craft's velocity to estimate the
position at some time in the near future. Suppose that Task A fetches
the X-coordinate of the position and is preempted by Task B before
fetching the Y- and Z-coordinates. Task B now updates the craft's X-,
Y-, and Z-coordinates to reflect the fresh information gathered from the
radar. Task B surrenders the processor, and the system resumes running
Task A. Task A finishes fetching the craft's last-reported position but
ends up with corrupt information. Instead of using (old X, old Y, old Z)
or (new X, new Y, new Z), Task A believes the last reported position to
be (old X, new Y, new Z). In this application, this error could lead to
disaster.

Corruption of data can occur in this manner whenever the following three
conditions are met:

° The data is shared between two or more tasks.

e The tasks sharing the data run concurrently. (In other words,
one of the tasks could possibly preempt another.)

® At least one of the tasks changes the data.

2-1

REGIONS

Whenever all three of these conditions exist, you must take special
precautions to protect the validity of the shared data. You must ensure
that only one task has access to the shared data at any instant, and you
must ensure that the task having access cannot be preempted by other
tasks desiring access. This protocol for sharing data is called mutual
exclusion.

MUTUAL EXCLUSION USING SEMAPHORES

As is discussed in the INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM,
tasks can use semaphores to obtain mutual exclusion. However, using
semaphores for this purpose can lead to two kinds of problems:

e Priority Bottlenecks

Suppose that three tasks, Task A, B and C, have low, medium and
high priority, respectively. If these tasks employ a -
priority-queued semaphore to ensure that no more than one of them
uses shared data at any instant, the following situation could
arise:

1. Task A (low priority) obtains access to the data and
continues to run.

2. Task C (high priority) attempts to gain access, but is forced
to wait at the semaphore until Task A frees the data.

3. Task B (medium priority) awakens from a timed sleep and
preempts Task A (low priority).

In Step 2, Task C must wait for Task A (which has lower priority)
to finish using the shared data. This is reasonable as Task A
gained access to the data before Task C. This kind of delay is
inherent in mutual exclusion.

In Step 3, however, the delay is unreasonable. Task C is forced
to wait for Task B (which has lower priority than Task C) even if
Task B does not use the shared data.

e Tying Up the Shared Data

If several tasks use a semaphore to govern access to shared data,
and the task currently having access is suspended, the semaphore
prevents any other tasks from using the shared data. Only after
the suspended task is resumed can it free the shared data for use
by the other tasks.

If the task using the data is deleted, rather than merely being
suspended, the situation is even worse. The governing semaphore
prevents any other tasks from ever using the shared data.

You can eliminate both of these kinds of problems by using regions rather

than semaphores to govern the sharing of data.

- 2-2

REGIONS

MUTUAL EXCLUSION USING REGIONS

A region is an iRMX 86 object that tasks can use to guard a specific
collection of shared data. Each task desiring access to shared data
awaits its turn at the region associated with that data. When the task
current ly using the shared data no longer needs access, it notifies the
Operating System, which then allows the next task to access the shared

data.

Noteworthy are the following facts regarding regions:

The priority of the task that currently has access to the shared
data may temporarily be raised. This happens automatically (at
regions where the task queue is priority—based) whenever the task
at the head of the queue has a priority higher than that of the
task that has access. Under such circumstances, the priority of
the task having access is raised to match that of the task at the
head of the queue. When the task having access surrenders
access, its priority automatically reverts to its original

value. This priority adjustment prevents the priority bottleneck
that can occur when tasks use semaphores to obtain mutual
exclusion.,

Once a task gains access to shared data through a region, the
task can not be suspended or deleted by other tasks until it
surrenders access. This characteristic prevents tasks from tying
up shared data.

CAUTION

When a task gains access through a
region, it must not attempt to suspend
or delete itself. Any attempt to do so
will lock up the region, preventing
other tasks from accessing the data
guarded by the region. In additiomn, the
task will never run again and its memory
will not be returned to the memory

pool. Also, if the task in the region
attempts to delete itself, all other
tasks that later attempt to delete
themselves will encounter the same
memory pool problems.

When you create a region you must specify which of two rules is
to be used to determine which waiting task next gains access to
the shared data. One rule is first-in/first-out (FIF0), and the
other is priority.

Regions are much faster than semaphores. The system calls used

to manipulate a region require much less processor time than do
those that manipulate semaphores.

2-3

REGIONS

USEFULNESS OF SEMAPHORES

After reading the last section, you are probably wondering why anyone
would want to use semaphores at all. There are three reasons:

1. You can use semaphores to accomplish much more than mutual
exclusion. For example, with semaphores you can synchronize
multiple tasks or allocate resources. Regions, on the other
hand, provide only mutual exclusion.

2., Because of the possibility of deadlock, regions should not be
used outside of extensions to the Operating System.
Consequently, application programmers must use semaphores to
accomplish mutual exclusion,

3. Semaphores allow a task to set an upper limit on the amount of
time the task is willing to wait for access. In contrast,
regions provide no such option. Tasks using regions for mutual
exclusion have only two choices:

— They can request immediate access. If a task makes such a
request and access is not available immediately, the task
does not wait at the region. Rather, it receives an
exception code and continues to run,

= They can request access as it becomes available. This kind
of request causes the task to wait at the region until access
becomes available. If access never becomes available, the
task never runs again.

Tasks use the ACCEPTSCONTROL system call to request immediate

access. They use the RECEIVESCONTROL system call to request

access as it becomes available. Both of these system calls are
. described in detail in Chapter 7 of this manual.

REGIONS AND DEADLOCK

A major concern in any multitasking system is avoiding deadlock.

Deadlock occurs when one or more tasks permanently lock each other out of
required resources. The following hypothetical situation illustrates a
method for quickly causing deadlock by using nested regions. An
explanation of how to avoid the illustrated deadlock situation follows
the example.

NOTE

In the following example, the only
system call used to gain access is the,
RECEIVESCONTROL system call. Tasks
using the ACCEPT$CONTROL system call
cannot possibly deadlock at a region
unless they keep trying endlessly to
accept control.

REGIONS

Suppose that two tasks, A (high priority) and B (low priority), both need
access to two collections of shared data. Call the two collections of
data Set 1 and Set 2. Access to each set is governed by a region (Region
l and Region 2).

Now suppose that the following events take place in the order listed:
1. Task B requests access to Set 1 via Region 1. Access is granted.

2. Before Task B can request access to Set 2, an interrupt occurs
"~ and Task A preempts Task B. '

3. Task A requests access to Set 2 via Region 2. Access is granted.

4, Task A requests access to Set 1l via Region 1. Task A must wait
because Task B already has access.

5. Task B resumes running and requests access to Set 2 via Region
2. Task B must wait because Task A already has access.

At this point Task A is waiting for Task B and vice versa. Tasks A and B

are hopelessly deadlocked, and any other tasks that request access to
either set of data will also become deadlocked.

This team deadlock situation applies only to systems in which regions are
nested. If your system must use nested regions, you can prevent team
deadlock by adhereing to the following rule:

Apply a strict ordering to all the regions in your system, and code
tasks so that they gain access according to the order. For example,
suppose that your system uses 12 regions. Write the names of the
regions on a piece of paper in any order, and number them starting
with 1. As you program a task that nests any of the regions (say
Regions 3, 8, and 10), be sure that the task requests access in
numerical order. The essential element of this technique is that all
tasks must request access in a consistent order. The precise order
is unimportant as long as all tasks obey it.

If you follow this rule consistently, you can safely nest regions to any
depth.

REGIONS AND APPLICATION PROGRAMMERS

Knowledge of regions should not be distributed to application
programmers. A careless or unscrupulous application programmer can, by
abusing regions, corrupt the interaction between tasks in an application
system. For instance, by creating a region and gaining access to
nonexistent shared data, unscrupulous application programmers can make
their tasks immune to deletion. If they never surrender access, the
tasks can permanently avoid deletion.

REGIONS

Abusing some of the features described in this manual can affect the
integrity of the entire Operating System. Regions constitute such a

feature.

If you wish to preserve the integrity of your application

system, you should confine the use of regions to system programmers and,
even then, only within Operating System extensions.

SYSTEM CALLS FOR REGIONS

The following system calls manipulate regions:

ACCEPT$CONTROL

This system call allows a task to gain access to shared data only
when access is immediately available. If a different task
already has access, the requesting task remains ready but
receives an exception code.

CREATESREGION

This system call creates a region and returns a token for it,
One of the parameters passed during this call specifies the
queuing rule (FIFO or priority).

DELETESREGION

This system call deletes a region.

RECEIVE$CONTROL

This system call causes a task to wait at the region until the
task gains access to the shared data.

SENDS$ CONTROL

This system call, when issued by a task, frees the Operating
System to grant a different task with access to the shared data.

CHAPTER 3. OPERATING SYSTEM EXTENSIONS

A feature of the iRMX 86 Operating System is that it can be extended to
include your own customized objects and system calls. This feature
allows you to create an operating system that precisely meets the needs
of your application. This chapter explains how to extend the iRMX 86
Operating System to include your own system calls.

THREE WAYS OF ADDING FUNCTIONALITY

Whenever more than one job in your application system requires a function
not supplied by the iRMX 86 Operating System, you have at least the
following three ways of adding the needed function:

® Write the function as a procedure and place it in a library by
using LIB86. After compiling each job that requires the
function, use LINK86 to link the library to the object module for
the job.

® Write the function as a task and allow application tasks to
invoke the function through a mailbox-segment interface.

® Write the function as a procedure and add it to the iRMX 86
Operating System. Application programs then invoke the function
by means of a system call.

'The relative advantages and disadvantages of the three alternatives are
summarized in Table 3-1.

The third alternative involves extending the Operating System. The
procedures that you must add to the Operating System in order to support
the added function are called an Operating System extension, or 0S
extension. From the application programmer's standpoint, an OS extension
appears to be a collection of one or more customized system calls.

CREATING AN OPERATING SYSTEM EXTENSION

Creating an OS extension involves both writing several procedures and
initializing the interrupt vector of the iAPX 86 microprocessor.

3-1

OPERATING SYSTEM EXTENSIONS

TABLE 3-1. COMPARISION OF TECHNIQUES FOR CREATING COMMON FUNCTIONS
PROCEDURE
LIBRARY " TASK 0S EXTENSION
APPLICATION
PROGRAMMER'S SIMPLE COMPLEX SIMPLE
INTERFACE
RELATIVE GOOD POOR MODERATE
PERFORMANCE (for (for (for
all quick quick
functions) functions) functions)
MODERATE GOOD
(for (for
slower slower
functions) functions)
SYNCHRONOUS
or BOTH ASYNCHRONOUS BOTH
ASYNCHRONOUS ONLY
CALLS
SYSTEM NOT NOT
PROGRAMMER REQUIRED REQUIRED REQUIRED
DUPLICATE Difficult to Easy to avoid Automatically
CODE avoid avoided
POTENTIAL
FOR COSTLY YES NO NO
MAINTENANCE
SUPPORTS
NEW OBJECT NO NO YES
TYPES

PROCEDURES USED IN OPERATING SYSTEM EXTENSIONS

Every OS extension is composed of at least two kinds of procedures.
Figure 3-1 illustrates the simplest arrangement. The two required kinds
of procedure are the following:

3-2

OPERATING SYSTEM EXTENSIONS

(] Interface Procedure

An interface procedure connects the customized system call to the
Operating System. For example, to issue a NEW$FUNCTION system
call, an application task executes a statement like

CALL NEWSFUNCTION(......);

This statement is, in fact, a call to an interface procedure,
named NEWSFUNCTION, that transfers control to the Operating
System. One interface procedure is required for each customized
system call.

e Function Procedure

The function procedure does the important work of the system
call. That is, it performs the actions requested by the calling
task. One function procedure is required for each customized
system call.

Figure 3-1 depicts four OS extensions, each containing one system call,
Note that the interface procedures are part of the application software
and the function procedures are part of the system software. The tasks
are linked to the interface procedures, but the interface procedures are
not linked to the function procedures. Instead, the interface procedures
pass control to the function procedures by way of the interrupt vector.

The interrupt vector consists of 256 four—byte entries; the first entry
is at location 0 and the last is at location 1020 (decimal). The iRMX 86
Operating System uses these entries for many purposes, but the last 32
(entries 224 through 255) are reserved for user—-supplied OS extensions.

In Figure 3-1, the four interface procedures transfer control to the four
function procedures through four separate interrupt vector entries (each
of which must be numbered in the 224 to 255 range). Note that, if
confined to the pattern illustrated in Figure 3-1, a system is limited to
32 customized system calls.

If a system has need for more than 32 system calls, another kind of
procedure must be employed:

° Entry Procedure

The entry procedure serves as a multiplexor for OS extensions
supporting more than one system call. Figure 3-2 depicts a
single OS extension with four system calls. The primary purpose
of the entry procedure is to route the eall from the interface
procedure to the proper function procedure. Note that four
interface procedures are still required to support the four
system calls.

3-3

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

TASKS

W X Y z

~=—CALL/RETURN

INTERFACE
PROCEDURES

SYSTEM SOFTWARE

zl

SOFTWARE
INTERRUPT/
RETURN

FUNCTION
PROCEDURES

Figure 3-1. OS Extensions Without Entry Procedures

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

TASKS

-—— CALL/RETURN

INTERRUPT/

INTERFACE
SOFTWARE \ |\ 4 / PROCEDURES

RETURN Yo
A\ 14 ENTRY

PROCEDURE

CALL/RETURN 4 “
¥y N
FUNCTION
PROCEDURES
A B’ c’ D’

SYSTEM SOFTWARE

Figure 3-2. O0S Extension with Procedure Entry

OPERATING SYSTEM EXTENSIONS

The principal advantage of having an entry procedure is that one
interrupt vector entry can support multiple system calls. This
means that the 32 entries in the interrupt vector, along with
entry procedures, can support a virtually unlimited number of
customized system calls.

The following paragraphs describe the responsibilities of each of the
kinds of procedures composing OS extensions. Figure 3-3 contains, in
algorithmic form, summaries of these descriptions. Also, Chapter 4
contains an example of an OS extension that manages a customized object

type.

Interface Procedures

For each system call in your OS extension, you must write a reentrant
assembly language interface procedure. (For detailed information
concerning the 8086 Asssmbly Language, refer to the appropriate
8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL.) The primary
purpose of this procedure is to use a software interrupt to transfer
control from the task that invoked the system call to an entry procedure
(or, in the absence of an entry procedure, to a function procedure).

If there is an entry procedure, the interface procedure must communicate
to it a code which identifies the function procedure that the entry
procedure is to call. The interface procedure does this by loading the
code into a previously-designated register or onto the stack of the
calling task. The entry procedure, when invoked, extracts the code from
this register or the stack.

A second important function of an interface procedure is informing the
calling task (or its exception handler) of any exceptional conditions
that have occurred. The entry procedure (or the function procedure if no
entry procedure exists) communicates this information to the interface
procedure by placing the exception code in the CX register and the number
of the parameter that caused the error in the DL register. The interface
procedure then does the following:

° Checks the CX register for the condition code. If this register
contains a value other than zero (E$OK), an exceptional condition
exists.

° If an exceptional condition exists, calls a procedure named
RQSERROR.

The Nucleus interface library contains a default RQ$ERROR procedure.
This procedure gets the exception code and parameter number from the CX
and DL registers and then makes a SIGNALSEXCEPTION system call to inform
the calling task (or its exception handler) of the exception. When
SIGNALSEXCEPTION returns to the RQSERROR procedure, RQSERROR restores CX

and DL with the exception code and parameter number and places a value of
OFFFFH in the AX register. ‘

OPERATING SYSTEM EXTENSIONS

If you do not want to use this default procedure, you can write your own
RQSERROR procedure. Your RQSERROR procedure can perform any functions it
needs in order to inform the application task of the exceptional
condition. The only restriction placed on an RQ$SERROR procedure is that
it should always return a value of OFFFFH in the AX register (so that
OFFFFH is returned as a function value for your system calls that are
typed procedures). An example of an alternate RQSERROR procedure is one
that simply places OFFFFH in AX and then does a RETURN, returning control
directly to the application task to avoid the task's normal exception
handler.

To make sure that your own RQSERROR procedure is called instead of the
default version, you should link your procedure directly to the interface
procedure or include it in a library with the rest of your interface
procedures. When linking your modules together, this library should
always precede the Nucleus interface library in the link sequence.

Another important purpose of interface procedures is that they
compensate, on behalf of the entry or function procedures that they call,
for differences between parameter-passing protocols. Three different
models (COMPACT, MEDIUM, and LARGE) are available when compiling iRMX 86
tasks written in PL/M-86. Each has its own method of passing

parameters. (Refer to the appropriate 8086/8087/8088 MACRO ASSEMBLER
OPERATING INSTRUCTIONS manual for information regarding these methods.)
By providing a library of interface procedures for each PL/M-86 model,
you make the entry and function procedures independent of the PL/M-86
model in which application code is being compiled. If other languages
were available, the same strategy would make the entry and function
procedures independent of the language in which application code is
written. The benefit of this independence is that only one entry
procedure (or function procedure, if no entry procedure exists) is needed
for each interrupt vector entry in your system.

Entry Procedures

Each 0OS extension comprising more than one system call must include a
reentrant entry procedure, whose chief purpose is to route the call to
the appropriate function procedure. Other duties of entry procedures are
the following:

e Set up the exception handling mechanism for the OS extension.
This can be done in one of two ways, depending on whether the OS
extension has its own exception handler or whether it wants to
handle exceptions in-line.

If the 0OS extension has its own exception handler, the entry
procedure must change the exception handler from that of the
calling task to an exception handler for the OS extension, It
must do this to guarantee that an error by the 0OS extension
doesn't cause the calling task to be deleted (a common function
of exception handlers). To make this change, the entry procedure
calls GETSEXCEPTIONSHANDLER to obtain and save the task's
exception handler address and exception mode. It then calls
SETSEXCEPTIONSHANDLER to set new values for these entities. When

3-7

OPERATING SYSTEM EXTENSIONS

control returns to the entry procedure from the function
procedure, the entry procedure again calls SET$EXCEPTION$HANDLER
to restore the original values.

If you want the OS extension to handle its exceptions in-line,
you must create your own RQ$ERROR procedure and link it to the
entry procedure. This RQSERROR procedure must return control
directly to the entry procedure instead of calling
SIGNAL$EXCEPTION. If you supply an RQ$ERROR procedure of this
type, the entry procedure does not have to change exception
handlers. Instead, if the 0OS extension encounters exceptional
conditions while invoking other system calls, this RQ$ERROR
procedure 'is called to return control directly to the procedure
that incurred the error. That procedure can then handle the
error. It does not matter which exception handler is associated
with the application task, since the exception handler is not
called. The RQSERROR procedure is discussed in more detail later
in this chapter.

Perform any chore required by all system calls in this 0OS
extension. By performing common chores in the entry procedure,
you can factor code out of several function procedures,

If notified by the function procedure that an exception occurred
which must be transmitted back to the application task, do the
following:

Place the exception code in the CX register.

Place the number of the parameter that caused the exceptional
condition in the DL register.

Return control to the interface procedure.

The interface procedure should examine the CX register to check
for an exceptional condition and call the version of RQSERROR to
which it is linked.

When adding OS extensions, you might wish to add your own
customized exceptional conditions and associated codes. Values
available to users for exception codes are 4000H to 7FFFH (for
environmental conditions) and OCOOOH to OFFFFH (for programmer
errors).

Write the entry procedure in assembly language so that you can directly

access the stack and the registers. This provides you with the following
benefits:

It gives you access to the input parameters passed by the calling
task and the interface procedure,

It allows you to set the CX and DL registers in the event of an
exceptional condition.

OPERATING SYSTEM EXTENSIONS

CALLING
TASK

INTERFACE
PROCEDURE

.

DO SOME PROCESSING
CALL AN INTERFACE PROCEDURE +--+-««
DO SOME MORE PROCESSING

P

LOAD INTO A SPECIFIC PAIR OF REGlSTERS A POINTER TO THE
PARAMETERS ON THE TASK'S STAC

IF THERE IS AN ENTRY PROCEDURE THE
LOAD INTO A SPECIFIC REGISTER A CODE IDENTIFYING THE
FUNCTION BEING CALLED

DO A SOFTWARE INTERRUPT (INT n where 224<n<255) TO CALL THE
ENTRY PROCEDURE OR A FUNCTION PROCEDURE --++-+++<++

EXAMINE THE CX REGISTER

IF CX CONTAINS A NONZERO VALUE THEN

(OPTIONAL)
ENTRY <
PROCEDURE

FUNCTION
PROCEDURE

OR

IF USING DEFAULT RQ$SERROR PROCEDURE AND IF DESIRED, THEN
SAVE TASK'S EXCEPTION HANDLER (GET$EXCEPTIONSHANDLER)
AND SET UP A TEMPORARY REPLACEMENT
(SET$EXCEPTIONSHANDLER)

IF POSSIBLE THEN
DO PROCESSING COMMON TO ALL FUNCTION PROCEDURES IN
THIS OS EXTENSION

GET FUNCTION CODE STORED BY INTERFACE PROCEDURE

CALL THE DESIGNATED FUNCTION PROCEDUR

IF EXCEPTION HANDLERS WERE SWITCHED EARLIER THEN
RESTORE ORIGINAL (SETSEXCEPTIONSHANDLER)

IF NOTIFIED OF AN EXCEPTION BY A FUNCTION PROCEDURE THEN
PLACE EXCEPTION CODE IN CX REGISTER
PLACE PARAMETER NUMBER IN DL REGISTER

RETURN (IRET) -+

sesescaresesentsrsestsatrroronanate

.<..........................‘[..'

OBTAIN INPUT PARAMETERS

PERFORM ACTIONS EXPECTED BY CALLING TASK

RETURN EXCEPTION CODE AND ANY VALUES EXPECTED BY
CALLING TASK

RETURN seeeeee

Figure 3-3,

Summary of Duties of Procedures in OS Extensions

OPERATING SYSTEM EXTENSIONS

Function Procedures

The duties of the function procedure are principally to perform the
actions requested by the calling task. Additionally, if there is not an
entry procedure, the function procedure should inform the interface
procedure concerning the exception status of the call. It should do this
by setting CX and DL as described previously in the description of entry
procedures. Functidn procedures should be reentrant and can be written
in PL/M-86 or assembly language.

RQ$ERROR Procedures

The sections of this chapter that describe interface procedures and entry
procedures both make mention of a procedure named RQSERROR. This is a
procedure called by the interface procedures of the Nucleus and each
subsystem of the Operating System in the event of an exceptional
condition. For example, if your application task makes a SEND$MESSAGE
system call and an exceptional condition results, the Nucleus returns the
error (in the CX and DL registers as described previously) to the Nucleus
interface library that is linked to your application task. The procedure
in the library then calls RQ$ERROR to process the error.

This is not only true for application tasks that make system calls, but
also for Intel-supplied subsystems (such as the I/0 System) and OS
extensions that make system calls. For example, if the I/0 System calls
SENDSMESSAGE and an exceptional condition results, the Nucleus returns
the error to the Nucleus interface library that is linked to the I/O
System. The procedure in that library calls RQSERROR to process the
error,

Every subsystem of the Operating System that implements system calls also
provides this mechanism for returning exceptions. If an application task
makes an 1/0 system call (CREATE$FILE, for example) and incurs an
exceptional condition, the I/0 System returns control to the I/0 System
interface library that is linked to that task. The interface procedure
in that library calls RQSERROR to process the error.

The 0S extensions you write should also provide this mechanism for
returning exceptions to tasks (or other OS exceptions) that invoke your
customized system calls. The previous sections of this chapter describe
the method for doing this.

The Nucleus interface library, as released, contains a default RQ$ERROR
procedure. The function of this RQSERROR procedure is to call
SIGNALSEXCEPTION to inform the calling task (or its exception handler) of
the exception. This version of RQ$ERROR should be linked to application
tasks to engure that their exception handlers are called when exceptional
conditions occur. Figure 3-4 illustrates the flow: of control from an
application task to. an exception handler when the task incurs an
exceptional condition.

3-10

OPERATING SYSTEM EXTENSIONS

EXCEPTION
APPLICATION TASK HANDLER

.
CALL RQSSE&ID$MESSAGE

RETURN

i
1
|
|
1
l

!
1
NUCLEUS INTERFACE LIBRARY

SOFTWARE INTERRUPT
TO NUCLEUS

CALL RQSERROR

RETURN

SAVE CX AND DL
REGISTERS

SOFTWARE INTERRUPT TO
NUCLEUS RQSSIGNALS
EXCEPTION

TRANSFER TO
EXCEPTION HANDLER

RESTORE CX, DL AND PLACE
OFFFF IN AX

RETURN

Figure 3-4. Handling Exceptions With an Exception Handler

The iRMX 86 Operating System uses this mechanism for returning exceptions
to give subsystems and OS extensions flexibility in handling their own
exceptions. They obtain this flexibility because they know that whenever
they incur an exceptional condition, a routine in an interface library to
which they are linked will call RQSERROR to process the exception. If
they want their exceptional conditions to be processed in a special
manner, they can provide their own version of RQSERROR to handle this

special processing. Thus each subsystem and OS extension can process
exceptional conditions in its own way.

As the creator of an OS extension, you have the option of linking your OS
extension to the default RQSERROR procedure or providing one of your

own. If you have an exception handler associated with your OS extension,
you will probably want to use the default RQ$SERROR procedure. You will
also want to use SETSEXCEPTIONSHANDLER and GET$SEXCEPTIONSHANDLER, as
described previously, to ensure that your exception handler is actually
called in the event of an exceptional condition.

3-11

OPERATING SYSTEM EXTENSIONS

However, if your 0S extension does not have an exception handler, it
should handle exceptions in-line, so that it can then return the proper
exception code to the task (or OS extension) that invoked your customized
system calls. You can provide this feature by linking your OS extension
to a version of RQ$ERROR that does not call SIGNALSEXCEPTION. Instead,
this RQSERROR procedure should place OFFFFH in the AX register (so that
OFFFFH is returned for system calls that are invoked as functions) and
then do a RETURN, to return control directly to the interface library.
The interface library then returns control to your OS extension, allowing
the OS extension to process the exception in—-line. Figure 3-5
illustrates the flow of control for an OS extension that processes its
exceptions in-line. The RQSERROR procedure in Figure 3-5 simply sets AX
and does a RETURN.

NUCLEUS INTERFACE
LIBRARY

OS EXTENSION

NUCLEUS

CALL RQ$SEND$
MESSAGE

SOFTWARE INTERRUPT
TO NUCLEUS

EXCEPTIONAL
CONDITION

CALL RQ$ERROR

PLACE OFFFFH IN AX

RETURN

Figure 3-5. O0S Extension Handling Exceptions In-Line

Even though your 0S extension processes its own exceptions in-line, it
will still want to return exceptions to tasks (or other 0S extensions)
that invoke the customized system calls. This involves having the entry
(or function) procedure of your OS extension place the condition code and
parameter number in CX and DL and then having the interface procedure
call RQ$ERROR in the event of an exceptional condition. The "Interface
Procedures" and "Entry Procedures' section of this chapter describe this
procedure in detail. Because your OS extension returns the exception to
the inteface procedure linked to the application task (or another 0S
extension), the RQSERROR procedure that gets called is the one in the
interface library linked to the calling task, not the ome in the
interface library linked to the 0OS extension.

3-12

OPERATING SYSTEM EXTENSIONS

Figure 3-6 illustrates the flow of control for an 0S extension that
incurs an exceptional condition, processes the exception in-line, and
then returns an exception to the application task that called it. Notice
that both the OS extension and the application task, although not linked
together, are each linked to interface libraries and an RQSERROR
procedure. The RQSERROR procedure linked to the OS extension returns
control back to the OS extension. The RQ$SERROR procedure linked to the
application task is the default one; it calls SIGNALSEXCEPTION.

NUCLEUS INTERFACE
LIBRARY

0S EXTENSION
*
L]
L]

$SSENDSMESSA - SOFTWARE INTERRUPT
chLLRa b & TO NUCLEUS
: EXCEPTIONAL
IRET CALL RQ$ERROR CONDITION

RETURN

PLACE OFFFFH IN AX

RETURN

OS EXTENSION INTERFACE LIBRARY

TRANSFER TO
EXCEPTION HANDLER

SAVE CX AND DL REGISTERS

RQS$SIGNALSEXCEPTION

RESTORE CX, DL AND PLACE
OFFFFH IN AX

S—
I

|
APPLICATION TASK EXCEPTION HANDLER

RETURN

Figure 3-6. Control Flow for 0S Extension and Application Task

3-13

OPERATING SYSTEM EXTENSIONS

Linking the Procedures

For each 0S extension, you should produce several libraries of interface
procedures. In fact, you should produce one library for each PL/M-86
model in which the calling task can be written. Within each library, you
should have one interface procedure for each system call of the 0S
extension. Each job in your system should be linked to the appropriate
interface library for each OS extension that the job calls.

For each 0S extension, the entry procedure (if any) and the function
procedures should all be linked together, along with any Operating System
interface libraries that the procedures need. They should not be linked
to any application code, since they are connected to the application
tasks via the interrupt vector.

Any RQSERROR procedures that you create should be linked to the
appropriate routines. If you create a special RQ$ERROR procedure that
your interface procedures call whenever they inform the application task
of an exception, you should place that RQ$ERROR procedure in the
interface library you create. If you create an RQ$ERROR procedure to
process exceptions that your OS extension incurs, you should link this
RQSERROR procedure directly to the entry and function procedures. You
should also link the Nucleus interface library, and the interface
libraries for any of the other subsystems that you use, to both the
application task and the OS extension. If you provide your own RQ$SERROR
procedure, either for your interface procedures to call or to process
exceptions in your OS extension, this procedure must precede the Nucleus
interface library in the link sequence.

INITIALIZING THE INTERRUPT VECTOR

Before an interface procedure can successfully transfer control to an OS

extension, the interrupt vector must be initialized with the addresses of
the entry (or function) procedures. The SETOSSEXTENSION system call is

available for this purpose. :

Because the interrupt vector must be initialized before any OS extensions
are invoked, you must ensure that the initialization happens shortly

after the system begins running. This can be daccomplished during the
initialization process described in the iRMX 86 CONFIGURATION GUIDE.

PROTECTING RESOURCES FROM BEING DELETED

Normally, an object can be deleted by a call to the deletion system call
corresponding to the object's type. However, 0OS extensions can use the
DISABLESDELETION system call to make the object immune to this kind of
deletion. A subsequent call to ENABLESDELETION removes the immunity.

An object can have its deletion disabled more than once. Each call to
DISABLESDELETION must be countered by a call to ENABLE$DELETION before
the object can be deleted. An object's disabling depth at any given
moment is defined to be the number of times the object has had its

3-14

OPERATING SYSTEM EXTENSIONS

deletion disabled minus the number of times its deletion has been
enabled, Usually, an object cannot be deleted until its disabling depth
is zero. The lone exception is that a call to FORCESDELETE deletes
objects whose disabling depth is one. Also, calling ENABLESDELETION for

an object whose deletion depth is zero results in the E$SCONTEXT exception
code.

All of these system calls--DISABLESDELETION, ENABLESDELETION, and
FORCESDELETE--should be used only by 0S extensions.

NOTE

When a task attempts to delete an object
whose disabling depth is too high to
permit deletion, that task goes to
sleep. The task remains asleep until
the object's deletion depth becomes
small enough to permit deletion. At
that time, the object is deleted and the
task is awakened. Because these
circumstances can cause system deadlock,
your tasks should exercise caution when
deleting objects.

SYSTEM CALLS USED IN EXTENDING THE OPERATING SYSTEM

The following system calls are used extensively by OS extensions:
e DISABLE$DELETION

This system call increases the deletion disabling depth of an
object by one.

. ENABLESDELETION

This system call removes one level of deletion disabling from an
object, reversing the effect of one DISABLESDELETION call.

° FORCESDELETE

This system call deletes objects whose disabling depths are one
or zero.

) SETOSEXTENSION

This system call can be used either to place an address in a
specific entry of the interrupt vector or to remove such an entry.

] SIGNALSEXCEPTION

This system call advises a task than an exceptional condition has
occurred in an OS extension that the task has called.

3-15

CHAPTER 4. TYPE MANAGERS

The object types and system calls provided by the Nucleus and I/0O System
are sufficient for many applications. However, some applications have
special requirements that would best be met if the iRMX 86 Operating
System had additional object types and system calls for manipulating
objects of those types. A type manager is an operating system extension
that provides these services.

If your system requires additional object types, you must write a type
manager for each of those types. The responsibilities of each type
manager include:

° Implementing a new type by creating objects of the new type.

° Providing a mechanism for deleting objects of the new type.

° Optionally providing the system calls that application tasks can
invoke to create, manipulate, and delete objects of the new type.

This chapter describes creating and deleting objects of new type.

Chapter 3 describes extending the Operating System to include new system
calls. An example appears at the end of this chapter which combines both
of these operations.

CREATING NEW OBJECTS

Creating custom—made objects is a two-step process:

1. Create the type.
2. Create objects of that type.

The CREATESEXTENSION system call creates the type. CREATESEXTENSION
accepts a new type code as a parameter and returns a token for the new
type. The token represents a license to create objects of the new type.

The CREATE$COMPOSITE system call creates objects of the new type.
CREATE$COMPOSITE accepts as a parameter the token returned from
CREATESEXTENSION., CREATESCOMPOSITE also accepts as input a list of

tokens for the objects that are to compose the new object (the component
objects) and returns a token for the new object, called a composite

object.

Figure 4-1 illustrates the creation process for composite objects.

TYPE MANAGERS

Input System Call Output
L0put oystem Lali ~utput

Type Code ———————>CREATESEXTENSION—— > Token for type—w

l->Token for type
>‘CREATE$COMPOSITE————->Token for new object
ent

List of compon
object tokens

Figure 4-1, The Creation Sequence for Composite Objects

You should take note of two facts concerning the process of creating a
composite object.

. First, its components, called component objects, are all iRMX 86
objects, either Intel- or user-provided.

. Second, no structure is imposed upon composite objects of a given
extension type. Two objects of the same extension type can be,
if desired, completely different in structure or in the number of
components objects they comprise. This feature allows for
maximum flexibility in the creation of new objects.

Once a type manager creates a new object type by calling
CREATESEXTENSION, that type manager owns the type. It is the only type
manager that can create composite objects of that type. In addition,
when it creates composite objects, the type manager can request that the
composite object be sent back to the type manager when the object has to
be deleted. Later sections describe this in detail.

MANIPULATING COMPOSITE OBJECTS AND EXTENSION TYPES

Two system calls are available for manipulating existing composite
objects: INSPECT$SCOMPOSITE and ALTER$COMPOSITE. INSPECT$COMPOSITE
returns a list of component tokens for a composite object.
ALTER$SCOMPOSITE replaces a token in the component list of a composite
object, either with another token or with a null,

DELETING COMPOSITE OBJECTS AND EXTENSION TYPES

Two system calls are available exclusively for deleting composite
objects: DELETESCOMPOSITE and DELETESEXTENSION. DELETESCOMPOSITE deletes
a particular composite object (but not its components); DELETESEXTENSION
deletes a specified extension type and either deletes the composites of
that type or sends them to a deletion mailbox, in which case the type
manager must delete them.

TYPE MANAGERS

A third system call, DELETE$JOB, also deletes composite objects as a part
of its processing. Although DELETE$JOB cannot delete extension types (in
fact, DELETE$JOB returns an exception code if the job contains any
extension objects), it can delete composites or send them to deletion
mailboxes where the type managers for these objects must delete them.

The deletion$mailbox parameter in the CREATESEXTENSION system call
determines whether DELETESEXTENSION and DELETESJOB actually delete
composite objects or instead send them to deletion mailboxes. There are
two possibilities for this option.

If you specify a zero for the deletionSmailbox parameter of
CREATESEXTENSION, then DELETESEXTENSION and DELETES$JOB assume all
responsibility for deleting extension and composite objects. Your type
manager plays no part in the deletion process and you can skip the next
three sections of this chapter.

However, if you specify a token for a mailbox in the deletion$mailbox
parameter of CREATESEXTENSION, then DELETESEXTENSION and DELETE$JOB send
all composite objects of the indicated type to the mailbox instead of
actually deleting these objects. Your type manager for that extension
type is then responsible for deleting the composite objects.

There are two conditions that must occur before the type manager receives
composite objects via the previously mentioned deletion mailbox:

e Your type manager, when it called CREATESEXTENSION, must have
filled in the deletionSmailbox parameter with a token for a
mailbox.

™ A task must call DELETESEXTENSION or DELETESJOB.

If these two conditions are met, the type manager is responsible for
deleting the composite objects sent to the mailbox. The following
sections describe the type manager's responsibilities in more detail.

TYPE MANAGER RESPONSIBILITIES DURING DELETE$JOB

When a task calls DELETE$JOB, the Nucleus normally deletes every object
in the job. However, if the job contains a composite object whose
extension has a deletion mailbox, the Nucleus sends the composite object
to the deletion mailbox. The Nucleus then waits until the type manager
calls DELETE$COMPOSITE before continuing the deletion process.

The type manager has the following responsibilities for servicing the
deletion mailbox.

1. First, it must wait at the deletion mailbox to receive the
objects to be deleted.

2. Next, it must perform any special processing that is required in

order to delete the composite object. For example, it might want
to wait until all tasks have stopped using the composite.

4-3

TYPE MANAGERS

Then, it has the option of deleting those component objects that
are not contained in the job being deleted. It cannot, however,
delete objects contained in the job being deleted or it will
incur an exceptional condition. This is not a problem because
the objects that are a part of the job being deleted will
automatically be deleted as part of the DELETE$JOB call.

Finally, it should call DELETESCOMPOSITE. This serves two
purposes. It deletes the composite object (but not the component
objects), and it informs the Nucleus that the type manager has
finished the special processing neeeded to delete the composite
object. After the type manager calls DELETE$COMPOSITE, the
Nucleus resumes the DELETE$JOB processing.

The type manager must call DELETE$COMPOSITE each time the Nucleus sends a
composite object to the deletion mailbox because DELETE$COMPOSITE serves
to return control back to the Nucleus. If the type manager fails to call
DELETE$COMPOSITE, the DELETE$JOB system call will not finish processing.

Figure 4-2 illustrates the type manager's involvement in the DELETES$JOB
process.

DELETESJOB

NUCLEUS STARTS DELETING MAILBOX
OBJECTS IN THE JOB:

NUCLEUS SENDS COMPOSITE

TO DELETION MAILBOX - DELETION

TYPE MANAGER

1. WAITS FOR OBJECT AT
MAILBOX.

2. PERFORMS CLEANUP
OPERATIONS, IF ANY.

3. CALLS DELETE$SCOMPOSITE.

vk {]]

CONTROL RETURNS
TO DELETE$JOB

h

Figure 4-2. Type Manager Involvement in DELETES$JOB

4-4

TYPE MANAGERS

Note that the type manager is not required to delete all component
objects. In the course of DELETESJOB, the Nucleus deletes any Nucleus
objects in the job. The Nucleus sends any I1/0 System, Extended I/0
System, or Human Interface objects to their respective deletion
mailboxes, where the subsystems themselves delete the objects. The
Nucleus sends all other composite objects to their own deletion
mailboxes, where their type managers are responsible for deletion.
Therefore, all the component objects are eventually deleted, provided
they are in the job being deleted.

TYPE MANAGER RESPONSIBILITIES DURING DELETESEXTENSION

A task can call DELETE$EXTENSION to delete an extension type. This is
useful when the license to create composite objects of a given extension
type is no longer needed. When a task calls DELETESEXTENSION and the
extension has a deletion mailbox, the Nucleus sends all composite objects
of that extension type to the deletion mailbox. After sending an object
to the deletion mailbox, the Nucleus waits until the type manager calls
DELETESCOMPOSITE before sending the next composite.

The type manager has similar responsibilities during DELETE$EXTENSION
that it has during DELETE$JOB. First it must wait at the deletion
mailbox for objects. Then it must handle any special processing
necessary to delete the object. Finally it must call DELETE$SCOMPOSITE to
delete the composite. As with DELETE$JOB, the type manager must call
DELETESCOMPOSITE for each object it receives at the deletion mailbox. If
it does not do this, the DELETE$EXTENSION system call will not finish
processing.

However, unlike the situation during DELETE$SJOB, the type manager has the
choice during DELETESEXTENSION of whether or not to delete individual
component objects. If it wishes the component objects to be deleted, the
type manager must explicitly delete these objects. Unlike DELETE$JOB,
the DELETESEXTENSION system call does not automatically delete component
objects.

DELETION OF NESTED COMPOSITES

Since a composite object can contain objects of any kind, it is possible
for some of its component objects to be composite objects themselves.
This situation can cause problems for type managers when they delete the
composite objects if the type manager for any of the composite objects
depends on the existence of any of the other composite objects in order
to complete its processing.

4-5

TYPE MANAGERS

For example, suppose objects A and B are composites of different
extension types and B is a component of A, Each of the composites has a
type manager that performs special cleanup functions before it can delete
the corresponding composite. If neither of the type managers requires
information contained in the other composite in order to perform its
special processing, the deletion process can proceed without difficulty.

However, if for some reason the type manager for composite A requires
some information contained in composite B in order to complete its
processing, the deletion process becomes more complex. . In order for this
deletion scheme to work, you must guarantee that composite A will be
deleted before composite B. This requires that you know the order in
which the Nucleus deletes objects and sends composites to deletion
mailboxes, so that you can set up your composites correctly.

The Nucleus deletes composite objects before it deletes non—composite
objects. It deletes composite objects on a last-in/first—out basis; that
is, in the reverse order from which they were created. Therefore, a type
manager can depend on receiving composite objects that it creates before
the Nucleus deletes the component objects contained in them. The only
exception to this is when a composite (composite A) is created before
another composite (composite B) and composite B is inserted as a
component into composite A using the ALTERSCOMPOSITE system call. In
this case, composite B will be deleted first, and the type manager of

composite A cannot rely on the existence of composite B when it receives
composite A for deletion. '

WRITING A TYPE MANAGER

A type manager consists of two parts:

e The initialization part creates the type and optionally creates a
deletion mailbox to which the system can send objects of the type
when deleting either jobs or the type itself.

e The service part provides the system calls through which tasks
can create and manipulate objects of the type.

Because the initialization phase must be completed before any task
attempts to obtain objects, the initialization part should be written as
a task that executes early in the life of the system. To ensure early
execution, the task should be part of the initialization task of a
first-level user job in the job tree. Refer to the iRMX 86 CONFIGURATION
GUIDE for information concerning first-level jobs.

The service part of the type manager is written as an operating system
extension. Refer to Chapter 3 for information about operating system
extensions.

The best way to learn about type managers is to study an example. The
following example presents the main parts of a type manager for ring
buffers. »

4-6

TYPE MANAGERS

EXAMPLE -- A RING BUFFER MANAGER

This example shows the most educational portions of a ring buffer
manager. It also serves to illustrate the various parts of an operating
system extension. Be advised, however, that the example is incomplete
and therefore should be imitated only with discretion. In particular,
the example has the following shortcomings:

° The issue of exception handling is not addressed. Clearly the
code supporting a system call should examine each invocation for
validity, but, for brevity, the ring buffer example does not do
this.

. There are no safeguards against partial creation of an object.
When creating a composite object, a type manager must first
create the components of the object. Occasionally, after
creating some of the components, the manager might be unable to
create the others. A type manager should be able to recover from
this situation, usually by deleting the components already
created and returning an exception code to the caller. The
example, again for brevity, does not do this.

e The entry routine does not check the entry code for validity.

e The potential for problems with deletion is ignored. For this
reason, you should imagine that the environment of the example is
constrained in at least two ways. First, only one task will ever
try to delete a ring buffer and, when it does try, no other task
will be using that buffer. Second, when a job containing a task
that created a ring buffer is deleted, no tasks in other jobs are
using that ring buffer.

e The example has been desk-checked and the PL/M-86 portions of it
have been compiled, but the example has not actually been tested.

A ring buffer is a block of memory in which bytes of data are placed at
successively higher addresses., Interspersed with byte insertions are
byte removals, with the restriction that the byte being removed must
always be the byte that has been in the buffer for the longest time.
Thus, data enters and leaves a ring buffer in a first-in-first-out
manner. Ring buffers get their name from the fact that the lowest
address logically follows the highest address. That is, if the last byte
placed in (or retrieved from) the buffer is at its highest address, then
the next byte to be placed in it (or retrieved from it) is at the lowest
address, As data enters and leaves the buffer, the portion contaning
data "runs" around the ring, with the pointer to the last byte out
"chasing" the pointer to the last byte in. Figure 4-3 illustrates these
characteristics.

TYPE MANAGERS

LAST BYTE OUT
POINTER

LOW
ADDRESS

HIGH
ADDRESS

LAST BYTE IN
POINTER

RING BUFFER

Figure 4-3. A Ring Buffer

The main (service) part of the example consists of four procedures:
CREATESRING$BUFFER, DELETESRINGSBUFFER, PUT$BYTE, and GETSBYTE. The last
two procedures are for placing a character in a ring buffer, and for
retrieving a character, respectively.

THE INITIALTIZATION PART

The initialization part creates a region to protect data in ring buffers
from being manipulated by more than one task at a time. This part also
creates the required extension type, creates a deletion mailbox, sets the
operating system extension at entry 224 of the interrupt vector table,
and then waits at the deletion mailbox. Code for the initialization part
includes the following:

TYPE MANAGERS

DECLARE RINGSBUFFER$TYPE WORD PUBLIC;

DECLARE DELETIONSMBOX WORD PUBLIC;

DECLARE RINGSBUFFERSREGION WORD PUBLIC;
DECLARE RINGSBUFFER$MANAGER POINTER EXTERNAL;
DECLARE RESPONSESMBOX WORD PUBLIC;

RINGSBUFFERSINIT: PROCEDURE;
DECLARE DELETESOBJECT WORD;
DECLARE EXCEPTION WORD;
DECLARE FIFO LITERALLY '0';
DECLARE RB$SCODE LITERALLY '8000H';
DECLARE FOREVER LITERALLY 'WHILE 1';
DECLARE INDEFINITELY LITERALLY 'OFFFFH';

RINGSBUFFERSREGION = RQ$CREATESREGION(FIFO, @EXCEPTION);
DELETIONSMBOX = RQ$CREATESMAILBOX(FIFO, @EXCEPTION);
RESPONSESMBOX = RQ$CREATESMAILBOX(FIFO, @EXCEPTION);
RINGSBUFFERS$TYPE = RQ$CREATESEXTENSION(RBSCODE,
DELETIONSMBOX, @EXCEPTION);
CALL RQ$SETS$OSSEXTENSION(224, @RINGSBUFFERSMANAGER,
@EXCEPTION) ;
CALL RQ$ENDSINITS$TASK;
DO FOREVER;
DELETESOBJECT = RQ$RECEIVESMESSAGE(DELETIONSMBOX,
RESPONSESMBOX, INDEFINITELY, @EXCEPTION);
CALL RQ$DELETESCOMPOSITE(RING$SBUFFERSTYPE, DELETESOBJECT,
@EXCEPTION) ;

/* 1If desired, delete the components of the
composite object. They are not automatically
deleted when DELETESEXTENSION is called. See
the DELETESRING$BUFFER procedure, shown later,
for the code that does this. */

END RINGSBUFFERSINIT;

The variable RINGSBUFFER$MANAGER is a pointer to the entry procedure of
the operating system extension.

THE INTERFACE LIBRARY

The user interface library consists of four small procedures, one for
each of the system calls provided by the operating system extension. The
library supports application code written in the PL/M—-86 "large" model.
If a different model had been used for compiling the application code,
these interface procedures would be slightly different, reflecting the
fact that, when making procedure calls in other models, the stack is used
differently than in the large model. The interface procedures are as
follows: .

4-9

ASSUME
PROC
PUBLIC
PUSH
MOV
LEA

CREATERB

MOV
INT
POP
RET

CREATERB ENDP

ASSUME
PROC
PUBLIC
PUSH
MOV
LEA
MOV
INT
POP
RET
ENDP

DELETERB

DELETERB

ASSUME
PROC
PUBLIC
PUSH
MOV
LEA
MOV
INT
POP
RET
ENDP
ASSUME
PROC
PUBLIC
PUSH
MOV
LEA
MOV
INT
POP
RET
ENDP

GETRBBYTE

GETRBBYTE

PUTRBBYTE

PUTRBBYTE

These interface procedures correspond to a set of external procedure

TYPE MANAGERS

CS : CGROUP
FAR
RQCREATERB
BP

BP, SP
SI,SS: BP+6

BX,0
224
BP

2

CS:CGROUP
FAR
RQDELETERB
BP

BP,SP
SI,SS: BP+6
BX,1

224

BP

2

CS : CGROUP
FAR
RQGETBYTE
BP

BP, SP
SI,SS: BP+6
BX,2

224

BP

2

CS:CGROUP
FAR
RQPUTBYTE
BP

BP, SP
SI1,SS: BP+6
BX,3

224

BP

4

;Save the BP value

3$5:S1 contains location

; of first parameter

;Code for CREATESRINGSBUFFER
;Call the extension

;Restore the BP value
;Passing one argument

;Code for DELETESRING$BUFFER

;Passing one argument

;Code for GETSBYTE

;Passing one argument

;Code for PUTSBYTE

;Passing two arguments

declarations in the application PL/M-86 code:

4-10

TYPE MANAGERS

CREATERB: PROCEDURE(SIZE) WORD EXTERNAL;
DECLARE SIZE WORD;
END CREATERB;

DELETERB: PROCEDURE(RINGSBUFFERSTOKEN) EXTERNAL;
DECLARE RINGSBUFFERSTOKEN WORD;
END DELETERB;

GETRBBYTE: PROCEDURE(RING$BUFFERSTOKEN) BYTE EXTERNAL;
DECLARE RINGS$BUFFERSTOKEN WORD;
END GETRBBYTE;

PUTRBBYTE: PROCEDURE(CHAR, RING$SBUFFERSTOKEN) EXTERNAL;
DECLARE CHAR BYTE;
DECLARE RINGSBUFFERSTOKEN WORD;

END PUTRBBYTE;

THE ENTRY PROCEDURE

The entry procedure in the operating system extension is as follows:

EXTRN CREATERINGBUFFER:FAR
EXTRN DELETERINGBUFFER:FAR
EXTRN GETBYTE:FAR
EXTRN PUTBYTE:FAR

FLAGS EQU BP+8
RINGBUFFERMANAGER: PUSH DS ;sPush user values not
PUSH BP ; automatically saved
MOV BP, SP ;Value of BP equals
; stackpointer and 1is
; wused in any calls
; from this operating
; system extension to
; SIGNALSEXCEPTION
PUSH FLAGS sRestore
POPF ; saved flags
PUSH SS ;Base of pointer to
5 parameters
PUSH SI ;0ffset of pointer
; to parameters
SHL BX,1 ;Call the appropriate
SHL BX,1 ; extension
CALL CS:TABLE BX ; procedure
POP BP ;Restore saved BP
POP DS 3y and DS values
IRET
TABLE DD CREATERINGBUFFER; The addresses
DD DELETERINGBUFFER; of the utility
DD GETBYTE s procedures in
DD PUTBYTE 3 the OS extension

4-11

TYPE MANAGERS

Note that the entry routine is completely independent of the PL/M-86
model used when compiling the application code. The interface library
conceals the choice of model from the entry procedure.

THE CREATESRINGS$BUFFER PROCEDURE

The sole function of the CREATE$RING$BUFFER procedure is to create a ring
buffer for the calling task and to return to the task a token for the
composite ring buffer object.

Each ring buffer consists of three objects: a segment and two

semaphores. The supporting data structure, required by the iRMX 86
Operating System for calls to CREATE$COMPOSITE and INSPECT$COMPOSITE, has
the following five fields:

e The number of slots available for tokens in the following list of
component object tokens. Because ring buffers are composed of
three objects and there is no apparent reason to add components
at a later time, the number of slots is set to three.

e The number of component objects actually in the composite
object. In this case, the number of components is three.

® A token for a segment. The segment contains the ring buffer,
The first word in the segment contains the size of the actual
ring buffer. The second word of the segment is a "pointer'" to
the most recently entered byte in the buffer, while the third
word points to the oldest byte in the buffer. The remainder of
the segment is to be used as the buffer itself. Note that, in
the program, a structure reflecting the intended breakdown of the
segment is superimposed on the segment.

e A token for a semaphore. This semaphore is used to keep track of
the number of vacancies in the ring buffer. Thus, it is
initialized to the size of the buffer,

® A token for a semaphore. This semaphore is used to keep track of
the number of occupied bytes in the ring buffer. Thus, it is
initialized to zero.

The CREATESRINGSBUFFER routine creates the components of the composite
ring buffer object, initializes the appropriate fields, and then creates
the composite object, as follows:

4-12

TYPE MANAGERS

DECLARE RINGSBUFFERSTYPE WORD EXTERNAL;

CREATESRINGSBUFFER: PROCEDURE (PARAMSPTR) WORD PUBLIC

REENTRANT;
DECLARE PARAMS$PTR POINTER;
DECLARE SIZE BASED PARAMSPTR WORD;
DECLARE ASTR STRUCTURE(
NUM$ SLOTS WORD,
NUMS$COMPONENTS WORD,
SEG WORD,
EMPTY$CT WORD,
FULLSCT WORD) ;
DECLARE SEG$PTR POINTER;
DECLARE PTR$STRUC STRUCTURE(
OFFSET WORD, :
BASE WORD) AT (@SEGSPTR);
DECLARE SEGMENT BASED SEGSPTR STRUCTURE(
SIZE WORD,
HEAD WORD,
TAIL WORD,
BUFFER(1) BYTE);

DECLARE EXCEPTION WORD;
DECLARE RING$BUFFER WORD;
DECLARE PRIORITY LITERALLY 'l';

ASTR.NUM$SLOTS = 3;

ASTR .NUM$COMPONENTS = 3;

ASTR.SEG = RQ$CREATE$SEGMENT(SIZE+6, @EXCEPTION);
ASTR.EMPTY$CT = RQ$SCREATE$SEMAPHORE(SIZE, SIZE, PRIORITY,

@EXCEPTION) ;
ASTR.FULLS$CT = RQSCREATE$SEMAPHORE(O, SIZE, PRIORITY,
@EXCEPTION);
PTR$STRUC.BASE = ASTR.SEG;
PTR$STRUC.OFFSET = 0;
SEGMENT.SIZE = SIZE;
SEGMENT.HEAD = -1;
SEGMENT.TAIL = 0;
RINGSBUFFER = RQ$SCREATE$COMPOSITE(RINGSBUFFERSTYPE, @ASTR,
@EXCEPTION) ;

RETURN RINGSBUFFER;
END CREATE$RINGSBUFFER;

The SEGMENT.HEAD variable is set to —1 because the PUT$BYTE procedure

(shown later) advances this pointer before placing a character in the
buffer.

4-13

TYPE MANAGERS

THE DELETESRINGSBUFFER PROCEDURE

. DELETESRINGSBUFFER can be called by any task wanting to delete a ring
buffer:

DECLARE RING$BUFFER$TYPE‘WORD EXTERNAL;

DELETESRINGSBUFFER: PROCEDURE(PARAMSPTR) REENTRANT PUBLIC;
DECLARE PARAMSPTR POINTER;
DECLARE RINGSBUFFERSTOKEN BASED PARAMSPTR WORD;
DECLARE ASTR STRUCTURE(

NUM$ SLOTS WORD,
NUM$ COMPONENTS WORD,
SEG WORD,
EMPTYSCT WORD,
FULLSCT WORD) ;

DECLARE EXCEPTION WORD;

ASTR.NUMSSLOTS = 3;

CALL RQ$INSPECT$COMPOSITE(RINGSBUFFERSTYPE,
RINGSBUFFERSTOKEN, @ASTR, @EXCEPTION);

CALL RQS$DELETE$COMPOSITE(RINGSBUFFERSTYPE,

RINGSBUFFERSTOKEN, @EXCEPTION);

CALL RQ$DELETE$SEGMENT(ASTR.SEG, @EXCEPTION);

CALL RQ$DELETES$ SEMAPHORE(ASTR.EMPTYSCT, @EXCEPTION);

CALL RQ$DELETES$SEMAPHORE(ASTR.FULLS$SCT, QEXCEPTION);

END DELETESRINGSBUFFER;

THE PUT$BYTE PROCEDURE

The PUT$BYTE procedure places a character in the buffer by advancing the
"pointer" to the front of the buffer and then placing the character in
the byte being pointed to:

DECLARE RING$BUFFER$TYPE WORD EXTERNAL;
DECLARE RINGSBUFFERSREGION WORD EXTERNAL;

PUTSBYTE: PROCEDURE(PARAM$PTR) REENTRANT PUBLIC;
DECLARE PARAMSPTR POINTER;
DECLARE PARAMS BASED PARAMSPTR STRUCTURE(
RINGSBUFFER$STOKEN WORD,
CHAR BYTE) ;
DECLARE SIZE WORD;
DECLARE ASTR STRUCTURE(

NUM$ SLOTS WORD,
NUM$COMPONENTS WORD,
SEG WORD,
EMPTY$CT WORD,
FULLSCT WORD) ;

DECLARE SEGSPTR POINTER;

4-14

TYPE MANAGERS

DECLARE PTR$STRUC STRUCTURE(

OFFSET WORD,

BASE WORD) AT (@SEGS$PTR);
DECLARE SEGMENT BASED SEGSPTR STRUCTURE(

SIZE WORD,

HEAD WORD,

TAIL WORD,

BUFFER(1) BYTE);

DECLARE EXCEPTION WORD;
DECLARE INDEFINITELY LITERALLY 'OFFFFH';
DECLARE UNITSSLEFT WORD;

ASTR.NUMSSLOTS = 3;
CALL RQ$INSPECT$COMPOSITE(RINGSBUFFERSTYPE,

PARAMS .RINGSBUFFERSTOKEN, @ASTR, QEXCEPTION);
UNITSSLEFT = RQSRECEIVESUNITS(ASTR.EMPTYS$CT, 1,

‘ INDEFINITELY, @EXCEPTION);
CALL RQS$SRECEIVES$CONTROL(RINGSBUFFERSREGION,

@EXCEPTION) ;

PTR$STRUC.BASE = ASTR.SEG;
PTR$STRUC.OFFSET = 0;
SEGMENT.HEAD = ((SEGMENT.HEAD + 1) MOD SEGMENT.SIZE);
SEGMENT.BUFFER(SEGMENT.HEAD) = PARAMS.CHAR;
CALL RQ$SEND$CONTROL(@EXCEPTION) ;
CALL RQ$SENDSUNITS(ASTR.FULL$CT, 1, @EXCEPTION);
END PUTSBYTE;

Note that this procedure enters a region after obtaining the desired
unit. To reverse these steps would create a deadlock situation,
particularly if the same reversal occurs in the GET$BYTE routine (shown
later).

Note also that the order of the parameters RINGSBUFFER$TOKEN and CHAR is
the opposite of the order of those parameters in the earlier external
declaration of PUTRBBYTE. This is typical of procedures with multiple
arguments and results from the use of the stack when passing parameters.

THE GET$BYTE PROCEDURE

GET$BYTE removes the oldest byte in the buffer and then advances the
SEGMENT.TAIL "pointer":

DECLARE RING$BUFFERSTYPE WORD EXTERNAL;
DECLARE RINGSBUFFERSREGION WORD EXTERNAL;

GET$BYTE: PROCEDURE(PARAM$PTR) BYTE PUBLIC REENTRANT;
DECLARE PARAMS$PTR POINTER;
DECLARE’' RING$BUFFERSTOKEN BASED PARAMSPTR WORD;
DECLARE SIZE WORD;
DECLARE ASTR STRUCTURE(

NUM$ SLOTS WORD,
NUMS$ COMPONENTS WORD,
SEG WORD,

4-15

TYPE MANAGERS

EMPTYSCT WORD,

FULLSCT WORD) ;
DECLARE SEGSPTR POINTER;
DECLARE PTR$STRUC STRUCTURE(

OFFSET WORD,
BASE WORD) AT (@SEGS$PTR);
DECLARE SEGMENT BASED SEGSPTR STRUCTURE(
SIZE WORD,
HEAD WORD,
TAIL WORD,
BUFFER(1) BYTE) ;

DECLARE EXCEPTION WORD;

DECLARE CHAR BYTE;

DECLARE INDEFINITELY LITERALLY 'OFFFFH';
DECLARE UNITSSLEFT WORD;

ASTR.NUM$SLOTS = 3;

CALL RQ$INSPECT$COMPOSITE(RINGSBUFFERSTYPE,
RING$SBUFFERSTOKEN, @ASTR, @EXCEPTION);

UNITS$LEFT = RQSRECEIVESUNITS(ASTR.FULL$CT, 1, INDEFINITELY,

@EXCEPTION) ;

CALL RQ$RECEIVE$CONTROL(RING$BUFFER$REGION @EXCEPTION) ;

PTR$STRUC.BASE = ASTR.SEG;

PTR$STRUC.OFFSET = 0;

CHAR = SEGMENT.BUFFER(SEGMENT.TAIL);

SEGMENT.TAIL = ((SEGMENT.TAIL + 1) MOD SEGMENT.SIZE);

CALL RQ$SEND$CONTROL(@EXCEPTION);

CALL RQ$SENDSUNITS(ASTR.EMPTY$CT, 1, @EXCEPTION);

RETURN CHAR;

END GET$BYTE;

EPILOGUE

This completes the important parts of the example (recall that the
example is not complete). Any task in any job linked to these procedures
may call any one of the procedures. The procedure names to be used in
such calls are CREATESRB, DELETESRB, GETSRBSBYTE, and PUTSRBSBYTE. Note
that application programs cannot manipulate either ring buffers or their
component objects, except through these system calls. 1In fact, there is
no need for application programmers to be aware that ring buffers are
composed of several other objects. To them, ring buffers appear (except

for the absence of 'RQ' in the procedure names) to be standard iRMX 86
objects.

SYSTEM CALLS FOR TYPE MANAGERS

The following system calls enable type managers to manipulate extension
and composite objects:

4-16

TYPE MANAGERS

ALTER$COMPOSITE

This system call replaces a component in a composite object with
either a null or another object.

CREATE$COMPOSITE

This system call creates a composite object of a specified
extension type.

CREATESEXTENSION

This system call creates an extension object which may
subsequently be used as a license for creating composite
objects. Input includes a token for a mailbox where these
composite objects are sent for deletion.

DELETE$COMPOSITE

This system call deletes a composite object.

DELETESEXTENSION

This system call deletes an extension object and sends all
composite objects of that extension type to the associated
deletion mailbox.

INSPECTSCOMPOSITE

This system call returns a list of the component object tokens
contained in a composite object.

4-17

e

CHAPTER 5. THE 1/0 SYSTEM

This chapter contains information enabling system programmers to provide

application programmers with the facilities they need to make full use of
the Basic and Extended 1/0 Systems. The chapter comprises the following

topics:

o The configuration interface, which binds (and unbinds) file
drivers to individual device units.

. The creation and deletion of user objects.

e Adding to, or obtaining information from, file descriptors.

CONFIGURATION INTERFACE

Before a task can create a connection to a file on a device, a connection
must have been created to the device itself. The Basic I/0 System
configuration interface consists of two system calls that create and
delete connections to devices. They are:

ASPHYSICALSATTACHSDEVICE
ASPHYSICALSDETACHSDEVICE

ASPHYSICALSATTACHSDEVICE creates connections to devices for the Basic I/0
System. ASPHYSICALSDETACHSDEVICE deletes these connections.

The Extended I/0 System configuration interface also consists of two
system calls. They are:

LOGICALSATTACHSDEVICE
LOGICALSDETACHSDEVICE

LOGICALSATTACHSDEVICE assigns logical names to devices and causes the
device connections to be created the first time tasks try to access the
devices using the logical names. LOGICAL$DETACHSDEVICE deletes the
logical names and causes the device connections to be deleted when no
tasks have connections to files on the device.

INTERFACING BETWEEN TASKS AND DEVICES

Figure 5-1 shows the layers of software and hardware between a device and
the application tasks using files on the device.

THE I/0 SYSTEM

APPLICATION SOFTWARE

TASKS TASKS TASKS

FILE DRIVER SOFTWARE

DEVICE DRIVER

DEVICE CONTROLLER

DEVICE UNIT

Figure 5-1. Layers of Interfacing Between Tasks and a Device

The layers shown in Figure 5-1 must be bound together. The device
controller is physically bound to each of its device—units. The device
driver is bound to the device controller by information residing in a
Device Unit Information Block for the device. (For more on this, see the
iRMX 86 CONFIGURATION GUIDE or the GUIDE TO WRITING DEVICE DRIVERS FOR
THE iRMX 86 I/0 SYSTEM.) The application software is bound to the file
drivers during the linking process. When an application system starts
up, these three forms of binding are in place.

The configuration interface dynamically binds the appropriate file driver
(physical, named, or stream) to the device, its controller, and its
device driver. By creating this final bond dynamically, you can break it
later and replace it with a bond to a different file driver. Figure 5-2
shows schematically the situation that exists when the system starts up.

THE I/0 SYSTEM

APPLICATION SOFTWARE
TASKS TASKS TASKS
PHYSICAL FILE DRIVER NAMED FILE DRIVER ! STREAM FILE DRIVER
CONFIGURATION INTERFACE

DEVICE DRIVER DRIVE DRIVER | DEVICE DRIVER

DEVICE DEVICE ‘DEVICE DEVICE
CONTROLLER CONTROLLER CONTROLLER CONTROLLER

DEVICE DEVICE DEVICE D. D. D. | D. DEVICE
uNIY uNT DNIT UNIT UNIT UNIT UNIT UNIT

Figure 5-2. Schematic of Software at Initialization Time

DIFFERENCES BETWEEN THE BASIC AND EXTENDED I/0O SYSTEMS

There are two main differences between creating and deleting device
connections with the Basic I/0 System calls and creating and deleting
them with the Extended I/O System calls. These differences involve
synchronous versus asynchronous operation and logical names.

The Basic I/0 System calls, A$PHYSICAL$SATTACH$DEVICE and
ASPHYSICALSDETACHSDEVICE, are asynchronous calls which do not use logical
names. When calling A$PHYSICALSATTACHSDEVICE to create a device
connection, your task specifies the device name, the file driver, and a
mailbox token as parameters. Then, due to the asynchronous nature of the
call, the task must wait at the mailbox for the Basic I/0 System to send
it a token for the device connection. When it receives this token, the
task can use it as a prefix in other Basic I/0O System calls that create
or attach files on the device. Later, when the task wants to delete the
device connection, it can specify this token as a parameter in
ASPHYSICALSDETACHSDEVICE.

The Extended I/0 System calls, LOGICALSATTACH$DEVICE and
LOGICALSDETACHSDEVICE, are synchronous system calls that make use of
logical names. When calling LOGICAL$ATTACHSDEVICE to attach a device,
your task specifies the device name and the file driver as it does with
ASPHYSICALSATTACHSDEVICE, but it also specifies a logical name. The
Extended 1/0 System creates a Logical Device Object and catalogs it in
the root job's object directory under the logical name your task
specified in the call. Your task does not have to wait at a mailbox to
receive the result of the call; the call is performed synchronously.
After calling LOGICALSATTACHSDEVICE, your tasks can use the logical name
as the prefix portion of a path name in other Extended I/O System calls

5-3

THE I/0 SYSTEM

that create or attach files on the device. During the first such call,
the Extended I/0 System creates a device connection. Later, when your
task wants to delete the device connection, it can specify the logical
name as a parameter in LOGICAL$DETACHSDEVICE.

There is a restriction you should be aware of when deciding whether to
use ASPHYSICALSATTACHSDEVICE or LOGICALSATTACHSDEVICE to attach a
device. If you use the Extended I/0 System (LOGICAL$ATTACH$DEVICE) to
attach a device, you must also use Extended I/0O System calls to perform
any functions that require you to specify a path name. These calls
include:

SSATTACHSFILE
S$CHANGE$ACCESS
SSCREATE$DIRECTORY
SSCREATESFILE
SSDELETESFILE
SSGETS$FILE$STATUS
SSRENAMESFILE

You must not use the corresponding Basic I/0 System calls to perform
these functions. If you obey this restriction, you gain the ability to
replace diskettes in a drive attached with LOGICALSATTACHSDEVICE without
destroying the device connection. Otherwise, the device connection will
be lost when the device goes off-line.

DEVICE CONNECTIONS

This section is based in large part on the following analogy: A device
connection is like an electrical conduit (pipe) and the file connections
to that device unit are like wires in that conduit. Figure 5-3 depicts
the system of Figure 5-2 after several device connections have been
created.

This figure is quite detailed and shows most of the situations that can
occur. The following observations can be made:

e The device connections extend from the application software to
the individual device-units,

) There is only one device connection to each connected device.
Multiple tasks can share the same device connection.

e The configuration interface, which is depicted as a pile of
conduits, is off to the side.

e All but one of the device units are connected. The unconnected
device unit is still separated from the application software by
the configuration interface.

. Different device units with the same controller can be connected
via different file drivers.

THE I/0 SYSTEM

¢ Tasks can share access to the same device through the physical
file driver, and they can share access to files on the same
device through the named file driver.

e There is only one device connection through the stream file
driver, reflecting the fact that a single, logical device
contains all stream files.

INITIALIZATION CONSIDERATIONS

A device unit must be bound to a file driver before any application tasks
can successfully create file connections involving that device unit. One
way of ensuring this is to see that all initial device connections are
created by an initialization task or tasks. Then, so the returned tokens
will be available to application tasks, the connections should be
cataloged, probably in the root object directory.

FILE PROTECTION FOR NAMED FILES

The I/0 System controls the access of tasks trying to use named files.
For each named file, the I/0 System uses the file's access list and a
user object to produce an access mask it associates with a connection
object for the file. The mask enables the I/0 System to monitor the
access rights of tasks wanting to use the file via that connection
object. This file protection mechanism is not available for physical or
stream files.

USER OBJECTS

A user object is an iRMX 86 object type that includes identifying
information about a conceptual user (job or human) and the groups to
which the user belongs. Each user object contains an array of l6-bit
values called ID's. The first ID in the array is called the owner ID of
the user object. User objects are created and deleted by calls to
CREATESUSER and DELETE$USER, respectively. The ID's in a user object can
be read by means of a call to INSPECTSUSER.

In systems using the I/0 System, each job can have a default user

object. Tasks in the job can specify this default user object in certain
system calls simply by passing a zero value as a user object parameter.
In the case of jobs created by CREATEIOSJOB, the default user object can
be set when the job is created. SETS$DEFAULT$USER can be used either to
change an existing default user object or, in the case of jobs having no
default user object, to establish one.

5-5

THE 1/0 SYSTEM

TASK TASK TASK TASK
1y i—r
T [H
bt)
CONFIGURATION

INTERFACE i : ! PREREA | 1)
') 1| oriver "

1y \ !
1! ! It
-l 1 '— ! h
[| 1y [
11y [" 1
b |
iy : i1{ oevice || ;!
Y { 1| oRvErR I |1
b 1 ! 1!
[! [N
[T | 11
Pl i
1y i 1

]

pevice | if]| oevice || | !
CONT- || ¢t | || CONT- P
ROLLER |, ¢ | + | ROLLER | |
ER [N | |
RE 1 i
(R Sy ™ .
UN- | cOoNN. | CONNECTED |CONN.
CONN. 1 pEVICE DEVICE DE-
DEVICE | " yNiT UNIT VICE
UNIT UNIT

APPLICATION SOFTWARE

TASK

CONN.{ CONN.
DE-
VICE
UNIT] UNIT

TASK TASK

TASK

TASK

DRIVER

STREAM
FILE

TASK

]

1

! STREAM

! FILE
DRIVER

STREAM
FILE
—

DEVICE
DRIVER

DEVICE
CONT-
ROLLER

FILE FILE

CONNECTED

DEVICE
UNIT

CONDUITS REPRESENT DEVICE CONNECTIONS
WIRES IN CONDUITS REPRESENT FILE CONNECTIONS

SHADED AREA
REPRESENTS A
DIRECTORY

Figure 5-3.

5-6

A System with Device and File Connections

THE I/0 SYSTEM

FILE ACCESS LISTS

The access list for a file is a collection of up to three pairs of ID's
and access masks. The ID's represent users or groups of users, and the

access masks specify the kinds of access to the file that those users or
groups of users are allowed.

Tasks calling CREATESFILE pass an access mask and a token for a user
object. The I/O System pairs the owner ID from the user object with the
access mask and places the pair in the file's access list.

Tasks can alter the access list for a file by the CHANGESACCESS system
call. Through CHANGE$ACCESS, ID-access pairs can be added or deleted,
and the access masks for ID's already in the list can be changed.

ACCESS MASKS FOR FILE CONNECTIONS

When a task calls either CREATESFILE or ATTACHS$FILE, the I/0 System
constructs an access mask and binds it to the connection object returned
by the call. After that, each time a task uses the connection object to
try to access (open, close, read, write, etc.) the file, the I/0O System -
checks the access mask to see if the kind of access being attempted is

valid. Figure 5-4 illustrates the algorithm used to construct the access
mask.

USER OBJECT FOR
CALLING TASK’S JOB

OWNER ID
ACCESS LIST FOR
TARGET FILE

D / D ACCESS
ACCESS MASK FOR
(MATCHES) OR ————— FjLE CONNECTION

D \ D ACCESS

D 1= T ACCESS

Figure 5-4. Computing the Access Mask for a File Connection

5-17

THE 1/0 SYSTEM

The I/0 System compares the ID's in the specified user object with the
ID's in the file's access list. The access masks corresponding to
matching ID's are logically ORed, forming an aggregate mask.

EXTENDING A FILE DESCRIPTOR

For each named file on a disk, the I/0 System creates and maintains a
file descriptor on the same disk. The first portion of the descriptor
contains information for the I/0 System. The last three bytes are
available to your operating system extensions, unless you are using the
Human Interface, in which case only the last byte is available.

If you are writing an operating system extension and you want to record
special information in a file's descriptor, SET$EXTENSION$DATA will place
the data in the trailing portion of the descriptor. GET$EXTENSIONSDATA
can access this data when it is needed later.

NOTE

If you are using the Human Interface,
you must take care not to destroy the
data the Human Interface keeps in the
first two extra bytes of file
descriptors. To preserve this data,
first use GETSEXTENSIONSDATA to read
the data, next modify the third byte
without disturbing the first two bytes,
and finally use SET$EXTENSIONSDATA to
transfer the data to the descriptor.

CHAPTER 6, DELETION CONSIDERATIONS

In an iRMX 86-based system, tasks run asynchronously. Unless special
precautions are taken, one task cannot know what another is doing.

This asynchronous behavior can lead to problems relating to the deletion
of objects. Suppose that two tasks, A and B, both use a certain
mailbox. If the tasks do not coordinate with each other, a sequence of
events similar to the following might occur:

1) Task A sends a segment to the shared mailbox.

2) Task B, which was waiting at the mailbox, awakens and deletes the
mailbox.

3) Task A, which is unaware that the mailbox has been deleted, tries
to use the mailbox and incurs an exception.

Scenarios such as this can be avoided by good programming practices. If

two tasks share an object, it is your responsibility to ensure that no
task deletes an object until other tasks are finished using it.

6-1

CHAPTER 7. SYSTEM CALLS

This chapter contains the calling sequences and other information about
advanced system calls to the Nucleus and I/0 System. The system calls
are listed in alphabetical order. Names of the calls are written in
white on a dark background in the upper outside corner of each page. The
calling sequence for each call is that for the PL/M-86 interface. The
information for each system call is organized into the following
categories, in the following order:

e A brief sketch of the effects of the call.

e The format of the call.

@ Definitions of the input parameters, if any.

e Definitions of the output parameters, if any.

® A complete description of the effects of the call.

e The condition codes that can result from using the call, with a
description of the possible causes of each condition.

Throughout the chapter, PL/M-86 and iRMX 86 data types, such as BYTE and
STRING are used. They are always capitalized and their definitions are
found in Appendix A.

Between this introduction and the details of the system calls is a system
call dictionary in which the calls are grouped according to type. This
dictionary, which includes short descriptions and page numbers of the
complete descriptions in this chapter, is provided as an alternate way of
indexing the system calls.

7-1

SYSTEM CALLS

SYSTEM CALL DICTIONARY

System Call Synopsis Page
Composite Objects
ALTERSCOMPOSITE Alters the component list of a composite
object 7-17
CREATE$COMPOSITE Creates a composite object 7-19
DELETE$COMPOSITE Deletes a composite object 7-26
INSPECTSCOMPOSITE Returns a list of the component object
tokens contained in a composite object 7-36
Configuration Interface
ASPHYSICALSAT- Attaches a device to the Basic I/0 System 7-8
TACHSDEVICE
ASPHYSICALSDE~ Detaches a device from the Basic I/0 System 7-11
TACHSDEVICE
LOGICALSATTACHS- Attaches a device to the Extended I/0 System 7-40
DEVICE
LOGICALSDETACHS- Detaches a device from the Extended 1/0 Systém 7-43
DEVICE
Deletion Control :
DISABLESDELETION Increases the deletion disabling depth of an
object by one : 7-31
ENABLESDELETION Decreases the deletion disabiipg‘depth of an
object by one 7-33
FORCES$DELETE Forces the deletion of an objecteven if the
object has had its deletion disabled once 7-34
Extension Objects
CREATE$SEXTENSION Creates a new extension object type 7-21
DELETESEXTENSION Deletes an extension type 7-27

SYSTEM CALLS

SYSTEM CALL DICTIONARY (continued)

System Call Synopsis Page
File Drivers
‘ ASGETSEXTENSIONSDATA Returns from the I/0 System extension

data stored with a file 7-5
ASSETSEXTENSIONSDATA Sets the extension data for a file from

the I/0 System 7-13
Operating System Extensions
SETOSSEXTENSION . Allocates and deallocates extension

entries in the interrupt vector table 7-47
SIGNALSEXCEPTION Signals the occurrence of an exceptional

condition 7-52
Priority Control
SET$PRIORITY Changes the priority of a task dynamically 7-49
Regions
ACCEPT$CONTROL Requests access to data protected by a

region only if access is immediately

available 7-16
CREATESREGION Creates a region 7-23
DELETES$REGION Deletes a region 7-29
RECEIVE$CONTROL Requests eventual access to data protected

by a region 7-45
SENDSCONTROL Relinquishes access to data protected by a

region 1-46

SYSTEM CALLS

SYSTEM CALL DICTIONARY (continued)

System Call Synopsis Page
Time

SETSTIME Sets the time and the date 7-51
User Objects

CREATESUSER Creates a user object 7-24
DELETES$USER Deletes a specified user object 7-30
INSPECTSUSER Returns a list of the ID's in a user object 7-38

A GET

: EXTENSION
SYSTEM CALLS DATA

ASGETSEXTENSIONSDATA

The ASGETSEXTENSIONSDATA (Basic I/0) system call returns extension data
stored with a Basic I/0 System file.

CALL RQSASGETSEXTENSIONSDATA(connection, respSmbox, except$ptr);

INPUT PARAMETERS
connection WORD containing a token of an asynchronous
connection object for a file whose extension data

is desired.

resp$mbox WORD containing a token for the mailbox to which a
segment 1s to be returned.

OUTPUT PARAMETER

exceptSptr POINTER to a WORD where the condition code will be
returned,

DESCRIPTION

Associated with each file created through the Basic I/0 System is a file
descriptor containing information about the file. Some of that
information is used by the Basic I/0 System and can be accessed by tasks
through the ASGETSFILE$STATUS system call. Three additional bytes of the
file descriptor, known as extension data, are available for use by
Operating System extensions. OS extensions can write extension data by
using ASSET$EXTENSIONSDATA and they can read extension data by using
ASGETSEXTENSIONSDATA. ’

When a task calls ASGETSEXTENSIONSDATA, it specifies a response mailbox
to which the system returns a segment with the extension data. The
information returned has the following form and is situated in the
low—memory portion of the segment:

DECLARE
ext$data$seg STRUCTURE(
status WORD
count BYTE,
info(*) BYTE);

7-5

[7¢]
—<
/¢
=
m
=
()
=
—
~
w

SYSTEM CALLS
ASGETSEXTENSIONSDATA (continued)

DESCRIPTION (continued)
Status indicates the success or failure of the operation. If status does
not contain an ES$OK condition code, then neither count nor info is

valid. Count specifies the number (up to three) of bytes that are
returned. Info contains the extension data.

ASGETSEXTENSIONSDATA can only be applied to connections created via the
named file driver.

CONDITION CODES
E$OK No exceptional conditions.

ESCONTEXT The connection was created by the Extended I/0
System and includes data buffers.

ESEXIST Any of the following conditions exist:
e One or both of the connection or respSmbox
arguments does not refer to an existing

object.

e The connection is in the process of being

deleted.

ESIFDR The get extension data request is not valid for
files supported by the file driver implied in the
call.

ESIO An I1/0 error occurred during the operation.

ESLIMIT The I/0 System cannot create an I/0 result segment

because the calling task's job has already reached
its object limit,

ESMEM The I/0 System cannot create an I/0 result because
the memory pool of the calling task's job does not
have a sufficiently large block.

ESNOPREFIX No default prefix has been set.

ESNOTSCONFIGURED This system call is not part of the present
configuration.

ESNOUSER Either:

e No default user has been set.

¢ The default user cataloged is not a user
object '

7-6

SYSTEM CALLS

ASGETSEXTENSIONSDATA (continued)

CONDITION CODES (continued)

E$ SUPPORT The connection was created by a task whose job is
different than the calling task's job.
ESTYPE One or both of the connection or respS$mbox

arguments is not of the correct object type.

(7]
—
—l
<C
(]
=
w
—
D
>
(7]

7-7

PHYSICAL

SYSTEM CALLS

ASPHYSICALSATTACHSDEVICE
The ASPHYSICALSATTACHSDEVICE (Basic I/0) system call attaches a device to
the Basic 1/0 System.

NOTE

Any task invoking this call must have a
priority in the range 32 to 255.

CALL RQ$SASPHYSICALSATTACHSDEVICE(dev$name, fileSdriver, resp$mbox,
' except$ptr);

INPUT PARAMETERS

dev$name POINTER to a STRING containing the name (as
specified during configuration) of the device to be
attached.
% file$driver BYTE specifying which file driver is to supply the
« connection to the device. Possible values are as
= follows:
=
E Value File Driver
w
1 Physical
2 Stream
4 Named
respS$mbox WORD containing a token for the mailbox to which

the results of this call will be returned.

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

ASPHYSICALSATTACHSDEVICE creates a connection to a physical or logical
device. Such a device connection must be in place before any file
connections to files on the device can be created.

7-8

SYSTEM CALLS

ASPHYSICALSATTACHSDEVICE (continued)

DESCRIPTION (continued)

A connection object is returned to the response mailbox if the call is
successful ; otherwise an I/0 result segment is returned to the response
mailbox. The device connection object returned can be used as a prefix
in other system calls. It can be deleted only by calling the
A$PHYSICAL$DETACH$DEVICE system call.

In the case of connections to disk devices, the connection is actually to
a volume mounted on the disk hardware. Such volumes must be properly
formatted. If they are not, an E$ILLVOL exceptional condition is
returned. Refer to the iRMX 86 INSTALLATION GUIDE or the iRMX 86 HUMAN
INTERFACE REFERENCE MANUAL for information regarding the formatting of
disks.

CONDITION CODES

ESOK No exceptional conditions.

ESCONTEXT This code is returned in the result segment to
indicate that the specified device is already
attached.

ESDEVFD The specified device is not compatible with the

specified file driver.

E$EXIST : The resp$mbox argument does not refer to an
existing object.

ES$FNEXIST The device specified by the dev1ce$name parameter
) does not exist.
E$ILLVOL The specified device is a disk volume not properly
formatted for use with the named file driver.
ESIO An I/0 error occured during the operation.
ESLIMIT If this code is returned synchronously, the Basic

I/0 System attempted to create an object and the
calling task's job has already reached its object
limit. If returned in the result segment, this
code indicates that the Basic I/0 System job has
already reached its object limit.

E$MEM If this code is returned synchronously, The Basic
I/0 System cannot create an I/0 result segment
because the memory pool of the calling task's job
does not have a sufficiently large block. If
returned in the result segment, this code indicates
that the Basic I/0 System job does not have a
sufficiently large block of memory.

7-9

[V
-
-
=T
(=}
=
(W]
p—
w2
>
o

SYSTEM CALLS

ASPHYSICALSATTACHSDEVICE (continued)

CONDITION CODES (continued)

ESPARAM The number representing the file driver is not
valid.
ESTYPE The respSmbox argument contains a token for an

object that is not mailbox.

w
-
)
=
m
=
<)
>
—
L
(2]

7-10

A PHYSICAL

SYSTEM CALLS DETACH
DEVICE

ASPHYSICALSDETACHSDEVICE

The ASPHYSICAL$DETACHSDEVICE (Basic I/0) system call detaches a device
from the Basic I/0 System.

CALL RQ$ASPHYSICALSDETACHSDEVICE(connection, hard, respSmbox,
except$ptr);

INPUT PARAMETERS

connection WORD containing a token for the connection object
for the device that is to be detached.

hard BYTE containing a value which specifies whether
(OFFH) or not (0) a hard detach of the device is
desired.

respSmbox WORD containing a token for the mailbox to which

the result segment is sent when the operation has
finished. A value of zero indicates that rno
response is desired.

[Ze]
p—
—
<T
[]
=
[
-
oo
>
oo

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The A$PHYSICALS$DETACHSDEVICE breaks connections established by calls to
ASPHYSICALSATTACHSDEVICE. It also deletes the file conmection objects
associated with those device connections. Devices that re-detached in
this manner must be reattached before any files on the device can be
attached.

When detaching a device, you can choose to detach all attached files on
the device. A hard detach deletes the connection objects for all such
files on the device. To specify a hard detach, assign the value OFFH to
the hard parameter.

If you choose not to request a hard detach, there must not be any

attached files on the device. To specify that you do not want a hard
detach, assign the value 0 to the hard parameter.

7-11

SYSTEM CALLS

ASPHYSICALSDETACH$DEVICE (continued)

DESCRIPTION (continued)

Note that, whether or not you specify a hard detach, there will be no
attached files on the device after the device is detached.

CONDITION CODES
E$OK No exceptional conditions.

ESCONTEXT This code is returned synchronously to indicate
either of the following:

e The connection argument is for a connection
other than to a device,

e The connection was created by the Extended
I/0 System and includes data buffers.

ESEXIST Either:
2 e One or both of the connection or respSmbox
A arguments does not refer to an existing
= object,
2
= o The connection is in the process of being
R deleted.

ESIFDR This system call is not valid for the file driver

associated with the device.

E$IO An I/0 error occurred during the operation.

ESLIMIT The I/0 System cannot create an 1/0 result segment
but the calling task's job has already reached its
object limit.

ESMEM The I/0 System cannot create an 1/0 result segment
because the memory pool of the calling task's job:

does not have a sufficiently large block.

ESNOT$CONFIGURED This system call is not part of the present

configuration. {
E$NOUSER The default user cataloged is not a user object.
E$SUPPORT The task that created the connection is not in the

same job as the calling task.

ESTYPE One or both of the connection or resp$mbox
arguments is not of the correct object type.

7-12

SYSTEM CALLS

ASSETSEXTENSIONSDATA

The ASSETSEXTENSIONSDATA (Basic I/0) system call writes the extension
data for a Basic 1/0 System file.

CALL RQ$SASSETSEXTENSIONSDATA(connection, data$ptr, resp$mbox,

except$ptr);

INPUT PARAMETERS

connection

data$ptr

respSmbox

OUTPUT PARAMETER

except$ptr

DESCRIPTION

WORD containing a token for an asynchronous
connection to a file whose extension data is to be
Set .

POINTER to the structure of the following form:
DECLARE ext$data$seg STRUCTURE(
' count BYTE,
info(*) BYTE);

where:

count Number (up to three) of bytes of
extension data being written.

info(*) The extension data.

WORD containing a token for the mailbox to receive
the I/0 result segment when the operation is
finished. A value of zero indicates that no
response is desired,

POINTER to a WORD where the condition code will be
returned.

Associated with each file created through the Basic I/0 System is a file
descriptor containing information about the file. Some of that
information is used by the Basic I/0 SYstem and can be accessed by tasks
through the ASGET$FILES$STATUS system call. Three additional bytes of the
file descriptor, known as extension data, are available for use by

7-13

A SET
EXTENSION

DATA

(7]
—
—d
T
(-]
=
[SE]
—_
w
>
[Ze]

w
-
o
-
m
=
(xd
I
—
—
w

SYSTEM CALLS
ASSETSEXTENSIONSDATA (continued)

DESCRIPTION (continued)

Operating System extensions. OS extensions can write extension data by
using AS$SETSEXTENSION$SDATA and they can read extension data by using
ASGETSEXTENSION DATA.

NOTE

If your system includes the Human
Interface, then only the last byte of
the extension data is available for use
by your OS extenions, Take care, when
using ASSETSEXTENSION$DATA, to preserve
the contents of the first two bytes.

Do this by calling ASGETSEXTENSION$DATA
before writing into the third byte,

After the new extension data is set, an I/O result segment returns to the
response mailbox.

ASSETSEXTENSION$SDATA can only be applied to asynchronous connections
created via the named file driver.

CONDITION CODES
ESOK No exceptional conditions.

ESCONTEXT The connection was created by the Extended I/0
System and includes data buffers.

ESEXIST Either:
e One br both of the connection or respS$mbox
arguments does not refer to an existing

object.

o The connection is in the process of being

deleted.

ESIFDR The set extension data request is not valid for
files supported by the file driver implied in the
call.

E$IO An I/0 error occurred during the operation.

ESLIMIT The I/0 System cannot create an I/0 result segment

because the calling task's job has already reached
its object limit.

7-14

SYSTEM CALLS

ASSETSEXTENSIONSDATA (continued)

CONDITION CODES (continued)

E$SMEM
ESNOPREFIX
E$SNOT$ CONFIGURED

E$NOUSER

ES$PARAM
E$ SUPPORT

ESTYPE

The 1/0 System cannot create an I/0 result segment
because the memory pool of the calling task's job
does not have a sufficiently large block.

No default prefix has been set. I
This system call is not part of the present
configuration.

Either:

® No default user has been set.

® The default user cataloged is not a user
object.

The count field in the data structure contains a
value greater than three.

The task that created the connection was not in the
same job as the calling task.

One or both of the connection or resp$mbox
arguments is not of the correct object type.

(V]
-
-
<T
(-]
=
(S]
—_
[7e]
>
o

7-15

(2]
—<
72}
—
mMm
=
o
=
P
—
w?

SYSTEM CALLS

ACCEPT$CONTROL

The ACCEPT$CONTROL (Nucleus) system call requests immediate access to
data protected by a region.

CALL RQSACCEPTSCONTROL(region, except$ptr);

INPUT PARAMETER

region WORD containing a token for the target region.

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The ACCEPT$CONTROL system call provides access to data protected by a
region if access is immediately available. If access is not immediately
available, the E$BUSY condition code is returned and the calling task
remains ready.

CONDITION CODES

E$OK No exceptional conditions.
E$BUSY Another task currently has access to the data.
ESEXIST The region argument does not refer to a currently

existing object.

ENOTSCONFIGURED This system call is not part of the present
configuration.

ESTYPE The region argument does not contain a token for a
region.

7-16

ALTER
SYSTEM CALLS COMPOSITE

ALTER$COMPOSITE

The ALTER$COMPOSITE (Nucleus) system call replaces components of
composite objects.

CALL RQ$ALTER$COMPOSITE(extension, composite, component$index,
replacing$obj, except$ptr);

INPUT PARAMETERS

extension WORD containing a token for the extension type
object corresponding to the composite object being
altered.

composite WORD containing a token for the composite object

being altered.

component$index WORD whose value specifies the location (starting

at 1) in the component list of the component to be v
replaced. =
o
replacing$obj WORD containing either a token for the replacement E
component object or zero, which represents no G
object. »
OUTPUT PARAMETER
except$ptr POINTER to a WORD where the condition code will be

returned.

DESCRIPTION

The ALTER$COMPOSITE system call changes a component of a composite
object. Any component in a composite object can be replaced either with
a token for another object or with a place-holding zero that represents
no object.

The component$index indicates the position of the target token in the
list of components. A component$index value of three indicates the third
component object in the list.

7-17

v
-
w
e |
m
=
o
>
—
Loy
7

SYSTEM CALLS

ALTERSCOMPOSITE (continued)

CONDITION CODES
ESOK

ESCONTEXT

ESEXIST

E$NOTSCONFIGURED

ESPARAM

ESTYPE

No exceptional conditions.

The composite argument is not compatible with the
extension argument.

One or both of the extension or composite arguments

does not refer to a currently existing object.

This system call is not part of the present
configuration.

The component$index argument refers to a
nonexistent position in the component object list.

One or both of the extension or composite arguments
is not of the correct object type.

7-18

SYSTEM CALLS

CREATE$COMPOSITE

The CREATESCOMPOSITE (Nucleus) system call creates a composite object.

composite=RQ$CREATESCOMPOSITE(extension,token$list, except$ptr);

INPUT PARAMETERS

extension

tokenS$list

OUTPUT PARAMETERS

composite

except$ptr

DESCRIPTION

WORD containing a token for an extension type
representing license to create a composite object.

POINTER to a structure of the form:

Declare
tokenSlist STRUCTURE(
num$slots WORD,
num$used WORD,
tokens(*) WORD) ;
where:

num$slots Number of positions available for
tokens in token$list.

numSused Number of component tokens making up
the composite object.

token(*) Tokens that will actually constitute
the composite object.

WORD where a token for the new composite object
will be returned.

POINTER to a WORD where the condition code will be
returned.

The CREATE$COMPOSITE system call creates a composite object of the
specified extension type. It accepts a list of tokens that specify the
component objects and returns a token for the new composite object. A
zero value in the token list is a place holder and does not represent an

object.

7-19

CREATE
COMPOSITE

(Vo)
-
-~
<r
o
=
(S8
—
oo
>
oo

GREATE
COMPOSITE

SYSTEM CALLS
CREATESCOMPOSITE (continued)

DESCRIPTION (continued)

If num$used is greater than num$slot, the extra component slots at the
end of the composite object are filled with zeros.

If num$slots is greater than num$used, the entry list is truncated to fit
within the specified number of slots in the composite object.

CONDITION CODES
E$OK No exceptional conditions.
’E$EXIST The extension argument or one or more of the

non-zero token$list arguments does not refer to an
existing object.

ESLIMIT The calling task's job has already reached its
object limit.

ESMEM Insufficient memory is available to satisfy the
request.

E$SNOTSCONFIGURED This system call is not part of the present

configuration.
ESPARAM The specified number of components is zero.
ESTYPE The extension argument does not contain a token for

an extension object.

7-20

CREATE
SYSTEM CALLS EXTENSION

CREATESEXTENSION

The CREATESEXTENSION (Nucleus) system call creates a new object type.

extension=RQ$CREATESEXTENSION(type$code, deletion$mailbox,
except $ptr);

INPUT PARAMETERS

typeScode WORD containing the type code for the new type.
The type code for the new type can be any value
from 8000H to OFFFFH and must not be currently in
use. (The type codes 0O through 7FFFH are reserved
for Intel products.)

deletion$mailbox WORD containing a token for the mailbox where
objects of the new type are sent whenever the
extension type or their containing job is deleted.

A zero value indicates no deletion mailbox is »
desired. =
[}
=
[S.]
o
£
OUTPUT PARAMETERS %
extension WORD where a token for the new type will be
returned.
except$ptr POINTER to a WORD where the condition code will be

returned.

DESCRIPTION

The CREATESEXTENSION system call returns a token for the newly created
extension object type.

You can specify a deletion mailbox when the extension type is created.
1f you do, a task in your type manager for the new type must wait at the
deletion mailbox for objects of the new extension type that are to be
deleted. Objects are sent to the deletion mailbox for deletion either
when their extension type is deleted or when their containing job is
deleted; they are not sent there when being deleted by DELETE$COMPOSITE.
The task servicing the deletion mailbox may do anything with the
composite objects sent to it, but it must delete them.

7-21

oo
<
(v
—
m
=
o
p-
—
—
w

SYSTEM CALLS
CREATESEXTENSION (continued)

DESCRIPTION (continued)

If you do not want to specify a deletion mailbox, set the token value for
deletion$mailbox to zero. If the extension type has no deletion mailbox,
composite objects of that type are deleted automatically, and the type
manager is not informed. The advantage of having a deletion mailbox is
that the type manager has the opportunity to do more than merely delete
the composite objects.

A job containing a task that creates an extension object cannot be
deleted until the extension object is deleted.

CONDITION CODES

ESOK No exceptional conditions.
ESCONTEXT The calling task's job is partially deleted.
ESEXIST The deletionSmailbox token argument does not refer

to an existing object.

ESLIMIT The calling task's job has reached its object limit.

E$SMEM The memory pool of the calling task's job does not
contain a sufficiently large block to satisfy the
request.

ESNOT$CONFIGURED This system call is not part of the present

configuration.
ESPARAM The type$code parameter is invalid,
ESTYPE The deletion$mailbox token argument does not

contain a token for a mailbox.

7-22

| CREATE

SYSTEM CALLS REGION
CREATESREGION
The CREATESREGION (Nucleus) system call creates a region.
region=RQSCREATESREGION(region$flags, exceptSptr);
INPUT PARAMETER
region$flags WORD which if the low order bit equals zero, tasks

await access in FIFO order; if the low order bit
equals one, tasks await access in priority order,
The other bits in the WORD are reserved and should
be set to zero.

OUTPUT PARAMETERS

region WORD where a token for the newly created region
will be returned.

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The CREATESREGION system call creates a region and returns to the caller
a token for the region.

CONDITION CODES

ESOK No exceptional conditions.

ESLIMIT The calling task's job has reached its object limit.

E$MEM The memory pool of the calling task's job does not
contain a sufficiently large block to satisfy the
request.

ENOTCONFIGURED This system call is not part of the present
configuration.

7-23

SYSTEM CALLS

CREATESUSER

The CREATESUSER (Basic I/0) system call creates a user object.

user=RQSCREATESUSER(ids$ptr, except$ptr);

INPUT PARAMETER

ids$ptr a POINTER to a structure of the following form:
DECLARE ids STRUCTURE(
length WORD,
count WORD,
ID(*) WORD) ;
where:

length Number of elements in the ID array.

count Number of ID's in the ID array that are to
be included in the user object. This
number must be less than or equal to
length, but greater than or equal to one.

*¢]
—<
o
'
m
=
o
>
~—
~
o

1D Array of ID's, each of which is included
in the user object. The first ID is to be
used as the owner ID for any file created
with reference to this user object.

OUTPUT PARAMETERS

user WORD where a token for the new user object will be
returned.

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The CREATESUSER system call creates a user object. It accepts a list of
ID's and returns a token for the new object.

If the number of ID slots, as specified by the length field, is greater

than the number of ID's, as specified by the count field, the effect is
as if length had been reduced to equal count.

7-24

CONDITION CODES
ESOK

ESLIMIT

E$SMEM

ENOT CONFIGURED

ESPARAM

SYSTEM CALLS

CREATESUSER (continued)

No exceptional conditions.

The calling task's job has already reached its
object limit.

The memory pool of the calling task's job does not
contain a sufficiently large block to satisfy the

request.

This system call is not part of the present
configuration,

The count field in the ids structure is either zero
or greater than the length field.

7-25

w2
-
pu—
<T
(=}
=
(S8
—_
w
>
w2

[]
-<
(2]
-
m
=
(e}
>
| o
—
(7]

DELETE$COMPOSITE

SYSTEM CALLS

The DELETE$COMPOSITE (Nucleus) system call deletes a composite object.

CALL RQ$DELETE$COMPOSITE(extension, composite, except$ptr);

INPUT PARAMETERS

extension

composite

OUTPUT PARAMETER

except$ptr

DESCRIPTION

WORD containing a token for the extension type used
as a license to create the composite object to be
deleted.

WORD containing a token for the composite object to
be deleted.

POINTER to a WORD where the condition code will be
returned.

The DELETESCOMPOSITE system call deletes the specified composite object
but not its component objects.

CONDITION CODES
ESOK

E$CONTEXT

ESEXIST

E$SMEM

ESNOT$CONFIGURED

ESTYPE

No exceptional conditions.

The extension type does not match the composite
argument.

One or both of the extension or composite arguments
does not refer to a currently existing object.

The memory pool of the calling task's job does not
contain a sufficiently large block for Nucleus
housekeeping purposes.

This system call is not part of the present
configuration.

One or both of the extension or composite arguments
is not of the correct object type.

7-26

DELETE
SYSTEM CALLS EXTENSION

DELETESEXTENSION

The DELETESEXTENSION (Nucleus) system call deletes an extension object
and all composites of that type.

CALL RQSDELETESEXTENSION(extension, exceptS$ptr);

INPUT PARAMETER

extension WORD containing a token for the extension object to
be deleted.

OUTPUT PARAMETER

exceptSptr POINTER to a WORD where the condition code will be
returned.
[Ze]
——d
-
<T
[S]
DESCRIPTION E
%
The DELETES$EXTENSION system call deletes the specified extension object P

type and all composite objects of that type. This makes the
corresponding type code available for reuse,

If a deletion mailbox was specified when the extension type was created,
then all of the composite objects created by the extension type to be
deleted are sent to that deletion mailbox. In this case, this call will
not be completed until all of the composite objects have been deleted.

If the extension type has no deletion mailbox, the composite objects
created by the extension type to be deleted are deleted without informing

the type manager.

The job containing the task that created the extension object type cannot
be deleted until the extension object is deleted.

CONDITION CODES
ESOK No exceptional conditions.

ESEXIST The extension argument does not refer to an
existing object.

7-27

SYSTEM CALLS

DELETESEXTENSION (continued)

CONDITION CODES (continued)

E$SMEM The memory pool of the calling task's job does not
contain a sufficiently large block for Nucleus
housekeeping purposes.

ESNOTSCONFIGURED This system call is not part of the present
configuration,

ESTYPE The extension argument does not contain a token for
an extension object.

o
<
o«
—
m
=
(i
=
—
L
e

7-28

DELETE

SYSTEM CALLS REGION
DELETESREGION
The DELETESREGION (Nucleus) system call deletes a region.
CALL RQSDELETESREGION(region, exceptS$ptr);
INPUT PARAMETER
region WORD containing a token for the region to be
deleted.
OUTPUT PARAMETER
except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The DELETESREGION system call deletes a region. If a task that has
access to data protected by the region requests that that region be
deleted, the task receives an ESCONTEXT exceptional condition. If a task
requests deletion while another task has access, deletion is delayed
until access is surrendered. When the region is deleted, any waiting
tasks awaken with an ESEXIST exceptional condition.

w
-
—
T
()
=
w
—_
w
>
o

CONDITION CODES

E$OK No exceptional conditions.

ESCONTEXT The deletion is being requested by a task that
currently holds access to data protected by the
region.

ESEXIST The region does not refer to an existing object.

ESNOT$CONFIGURED This system call is not part of the present
configuration.,

ESTYPE The region argument does not contain a token for a
region.

7-29

SYSTEM CALLS

DELETESUSER

The DELETESUSER (Basic I/0) system call deletes a user object.

CALL RQ$DELETE$USER(user, except$ptr);

INPUT PARAMETER

user WORD containing a token for the user object to be
deleted.

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The DELETESUSER system call deletes a user object. Deleting a user
object has no effect on connections created with the user object.

w2
—<
(ve]
—
inal
=
o
=
—
-
o

CONDITION CODES

ES$OK No exceptional conditions.
ESEXIST The user argument does not refer to an existing
object.

ENOTSCONFIGURED This system call is not part of the present
configuration.

ESTYPE The user argument does not contain a token for a
user object.

7-30

DISABLE
SYSTEM CALLS OELETION

DISABLESDELETION

The DISABLE$DELETION (Nucleus) system call makes an object immune to
ordinary deletion.

CALL RQ$DISABLESDELETION(object, except$ptr);

INPUT PARAMETER

object WORD containing a token for the object whose
deletion is to be disabled.

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

w
—
-
<C
{5]
=
[V
o
(2]
>
(Y]

The DISABLE$DELETION system call increases by one the disabling depth of
an object, making it immune to ordinary deletion and possibly making it
immune to forced deletion. If a task attempts to delete the object while
it is immune, the task sleeps until the immunity is removed. At that
time, the object is deleted and the task is awakened.

NOTES
If an object within a job has had its
deletion disabled then the containing
job cannot be deleted until that object
has had its deletion reenabled.
An attempt to raise an object's

disabling depth above 255 causes an
ESLIMIT exceptional condition.

CONDITION CODES

E$OK No exceptional conditions.

7-31

BELETION : ~ SYSTEM CALLS

DISABLESDELETEION (continued)

CONDITION CODES (continued)

ESEXIST The object argument does not refer to an existing
object.
ESLIMIT The object's disabling depth is already 255.

ESNOTSCONFIGURED This system call is not part of the present
configuration.

)
<
)
—
m
=
=)
pJ
=
-
172

7-32

ENABLE
SYSTEM CALLS DELETION

ENABLESDELETION

The ENABLESDELETION (Nucleus) system call enables the deletion of objects
that have had deletion disabled.

CALL RQSENABLESDELETION(object, except$ptr);

INPUT PARAMETER

object WORD containing a token for the object whose
deletion is to be enabled.

OUTPUT PARAMETER

exceptS$ptr POINTER to a WORD where the condition code will be
returned.
w
—
)
<T
(]
DESCRIPTION E
o
>
[7e]

The ENABLESDELETION system call decreases by one the disabling depth of
an object. If there is a pending deletion request against the object,
and the ENABLESDELETION call makes the object eligible for deletion, the
object is deleted and the task which made the deletion request is
awakened.

CONDITION CODES

ESOK No exceptional conditions.

ESCONTEXT The object's deletion is not disabled.

ESEXIST The object argument does not refer to an existing
object.

ESNOTSCONFIGURED This system call is not part of the present
configuration.

7-33

SYSTEM CALLS

FORCES$DELETE

The FORCESDELETE (Nucleus) system call deletes objects whose disabling
depths are zero or one.

CALL RQ$FORCESDELETE(extension, object, except$ptr);

INPUT PARAMETERS

extension If the object to be deleted is a composite object,
this parameter is a WORD containing a token for the
extension type associated with the composite object
to be deleted. Otherwise, the extension argument
must be zero.

object WORD containing a token for the object that is to
be deleted.

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

2]
-<
o
—_
m
=
(]
P
~
~—
(]

DESCRIPTION
The FORCESDELETE system call deletes objects whose disabling depths are
zero or one, If an object has a deletion depth of two or more, the

calling task is put to sleep until the deletion depth is decreased to
one., At that time, the object is deleted and the task is awakened.

CONDITION CODES
E$OK No exceptional conditions.

ESEXIST One or both of the object or extension arguments
does not refer to an existing object.

ESMEM The memory pool of the calling task's job does not

contain a sufficiently large block for Nucleus
housekeeping purposes.

7-34

SYSTEM CALLS

FORCESDELETE (continued)

CONDITION CODES (continued)

ESNOTSCONFIGURED This system call is not part of the present
configuration,

ESTYPE The extension argument does not contain a token for
an extension type.

w
—
|
=T
()
=
(98]
—
(2]
>
[Ze]

7-35

SYSTEM CALLS

INSPECT$COMPOSITE

The INSPECTS$SCOMPOSITE (Nucleus) system call returns a list of the
component tokens contained in a composite object.

CALL RQ$INSPECT$COMPOSITE(extension, composite, token$list,
except$ptr);

INPUT PARAMETERS

extension WORD containing a token for the extension object
corresponding to the composite object being
inspected.

composite WORD containing a token for the composite object
being inspected.

(V2]

& OUTPUT PARAMETERS

m

z token$list POINTER to a structure of the form:

=

o Declare
tokenS$list STRUCTURE(
num$slots WORD,
numSused WORD,
tokens (*) WORD) ;

where:

num$slots Number of positions available for
tokens in token$list (an upper limit
on the number of tokens to be
returned).

num$used Number of component tokens making up
the composite object.

token(¥*) The tokens that actually constitute
the composite object.

except$ptr POINTER to a WORD where the condition code will be
returned.

7-36

| INSPECT

OMPOSITE

SYSTEM CALLS

INSPECTSCOMPOSITE (continued)

DESCRIPTION

The INSPECT$SCOMPOSITE system call accepts a token for a composite object
and returns a list of tokens for the components of the composite object.

The calling task must supply the num$slots value in the data structure
pointed to by the token$list parameter. The Nucleus fills in the
remaining fields in that structure. If num$slots is set to zero, the
Nucleus will fill in only the num$used field.

If the num$slots value is smaller than the actual number of component
tokens, only that number (num$slots) of tokens will be returned.

CONDITION CODES
E$OK No exceptional conditions.

ESCONTEXT The composite argument is not compatible with the
extension argument.

ESEXIST One or both of the extension or composite arguments 2
does not refer to a currently existing object. =
[}
ENOTCONFIGURED This system call is not part of the present E
configuration. &%
o

ESTYPE One or both of the extension or composite arguments

is not of the correct object type.

7-37

NSPECT
SER SYSTEM CALLS

INSPECT$USER

The INSPECT$USER (Basic I/0) System call returns a list of the ID's
contained in a user object.

CALL RQ$SINSPECT$SUSER(user, idsSptr, except$ptr);

INPUT PARAMETER

user WORD containing a token for the user object being
inspected.

OUTPUT PARAMETERS

ids$ptr POINTER to a structure of the following form:
v DECLARE ids STRUCTURE(
E:'a length WORD,
E count WORD,
P id(¥*) WORD) ;
I>
=
«»» where:
length Upper limit on the number of ID's that
are to be returned.
count Actual number of ID's that are being
returned.
id(¥*) The ID's being returned.
except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The INSPECTSUSER system accepts a token for a user object and returns a
list of the ID's in the user object.

The calling task must supply the length value in the data structure
pointed to by the ids$ptr parameter. The I/0 System fills in the
remaining fields in that structure.

If the length value is smaller than the actual number of ID's in the user
object, only the specified number of ID's will be returned.

7-38

CONDTION CODES
ESOK

ESEXIST

ESNOTSCONFIGURED

ESPARAM

ESTYPE

SYSTEM CALLS

INSPECTSUSER (continued)

No exceptional conditions.

The user argument does not refer to an existing
object.

This system call is not part of the present
configuration,

The length field contains a value of zero.

The user argument contains a value that is not a
token for a user object.

7]
—
)
T
(]
=
[oW]
—
w
>
[7o]

7-39

[¢]
=<
(]
—f
m
=
(]
>
L
—
(7¢]

SYSTEM CALLS

LOGICALSATTACHSDEVICE

The LOGICAL$SATTACHSDEVICE (Extended I/0) system call assigns a logical
name to a physical device. It does this by creating a Logical Device

Object and cataloging it under the specified logical name in the root

object directory.

CALL RQSLOGICALSATTACH$DEVICE(log$name, dev$name, fileS$driver,

except$ptr);
INPUT PARAMETERS
log$name POINTER to a STRING containing the logical name
under which the logical device object is to be
cataloged.
dev$name POINTER to a STRING containing the name (as

specified in the DUIB during Basic I/0 System
configuration) of the device to be assigned.

file$driver BYTE specifying which I/0 System file driver is to
use the device. Possible values are as follows:
value file driver
1 physical
2 stream
4 named
OUTPUT PARAMETER
exceptSptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

LOGICALSATTACHSDEVICE creates a Logical Device Object corresponding to a
physical device and then catalogs the object in the root object directory
under the logical name specified in the call. Such a logical device
object must be in place before any file connections to files on the
device can be created. The Extended I/O System attaches the physical
device (creates a device connection) during the first Extended I/0 System
call that uses this logical name as the prefix of a path name. The
logical name can be used as a prefix in other system calls and can be
deleted by LOGICAL$DETACHSDEVICE.

7-40

SYSTEM CALLS
LOGICALSATTACH$DEVICE (continued)

DESCRIPTION (continued)

Because of the nature of LOGICALSATTACHSDEVICE, some execption codes that
result because of errors in this system call will not be returned until
the Extended I/0 System actually tries to attach the device (during the
first system call that uses the logical name as the prefix of a path
name).

CONDITION CODES
ES$OK No exceptional conditions.

E$CONTEXT The root object directory already contains an entry
with the name pointed to by the log$name parameter.

ESLIMIT Either:
e The root object directory is full.

e The calling task's job is not an I/O job.
Refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for information concerning
I/0 jobs.

ESMEM The memory pool of the calling task's job does not
have a sufficiently large block of memory to allow
this system call to run to completion.

E$NOTSCONFIGURED At least one of the following system calls was left
out during the configuration process:

CATALOGSOBJECT (Nucleus)

CREATES$SCOMPOSITE (Nucleus)

CREATESMAILBOX (Nucleus)

CREATES$SEGMENT (Nucleus)

GETSTYPE (Nucleus)

LOGICALSATTACHSDEVICE (Extended I/0 System)
RECEIVE$CONTROL (Nucleus)

RECEIVE$MESSAGE (Nucleus)

SEND$MESSAGE (Nucleus)

ESPARAM This code indicates that the specified logical name
is syntactically incorrect. Any one of the

following problems can cause this error:

e The STRING pointed to by the log$name
parameter is of zero length.

7-41

(Vo]
—
-
<r
(]
=
(SH]
o
(7]
>
w

SYSTEM CALLS

LOGICALSATTACHSDEVICE (continued)

CONDITION CODES
ESPARAM (continued)

e The STRING pointed to by the log$name
parameter has a }ength of greater than 12.

e The logical name contains invalid characters.

(V2]
~<
w
-—4
m
=
o
b=y
—
—
(/]

7-42

LOGICAL

SYSTEM CALLS | DETACH
DEVICE

LOGICALSDETACHSDEVICE

The LOGICAL$DETACHSDEVICE (Extended 1/0) system call removes the
correspondence between a logical name and a physical device that was
established with the LOGICALSATTACHSDEVICE system call. It removes the
logical name from the root object directory.

CALL RQ$LOGICALSDETACHSDEVICE(log$name, exceptS$Sptr);

INPUT PARAMETER
log$name POINTER to a STRING containing the name under which

the logical device object is cataloged in the root
object directory.

OUTPUT PARAMETER

(7]

—

exceptSptr POINTER to a WORD where the condition code will be =
returned. ©

=

[¥W)

—

(7]

>

o

DESCRIPTION

LOGICALSDETACHSDEVICE severs the association created by a call to
LOGICAL$ATTACHSDEVICE and deletes the corresponding entry in the root
object directory. At this point the device is logically detached; users
cannot create new connections using the logical name as a prefix. When
the last file connection on the physical device is severed, the Extended
1/0 System detaches the device (deletes the device connection). A task
can then reassign the device.

CONDITION CODES
E$OK No exceptional conditions.

ESEXIST The device connection corresponding to this logical
name is in the process of being deleted.

7-43

w
<
o
——y
m
=
[
>
—
—
o

SYSTEM CALLS

LOGICALSDETACHSDEVICE (continued)

CONDITION CODES (continued)

ESLIMIT

This condition code can be caused by either of the
following conditions:

e Either the user object or the calling task's
job is currently involved with more than 255
(decimal) I/0 operations.

e The calling task's job is not an I/0 job.
Refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for information concerning
I/0 jobs.

ESLOGSNAMESNEXIST The logical name was not found in the root object

ESMEM

ESNOT$CONFIGURED

ESNOTS$DEVICE

ESPARAM

directory.

The memory pool of the calling task's job does not
have a sufficiently large block of memory to allow
this system call to run to completion.

At least one of the following system calls was left
out during the configuration process:

ASPHYSICALSDETACHSDEVICE (Basic I/0 System)
CREATESMAILBOX (Nucleus)

CREATES SEGMENT (Nucleus)

DELETES$COMPOSITE (Nucleus)

GETSTYPE (Nucleus)

LOGICAL$DETACH$DEVICE (Extended I/0 System)
LOOKUPSOBJECT (Nucleus)

RECEIVESCONTROL (Nucleus)

RECEIVESMESSAGE (Nucleus)

SENDSCONTROL (Nucleus)

UNCATALOGSOBJECT (Nucleus)

When the Extended I/0 System looked up the token
associated with the logical name, it was not a
valid device connection.

This code indicates that the specified logical name
is syntactically incorrect. Any one of the
following problems can cause this error:

e The STRING pointed to by the log$name
parameter is of zero length.

e The STRING pointed to by the log$name
parameter has a length of greater than 12.

® The logical name contains invalid characters.

1-44

SYSTEM CALLS

RECEIVES$CONTROL

The RECEIVESCONTROL (Nucleus) system call allows the calling task to gain
access to data protected by a region.

CALL RQSRECEIVESCONTROL(region, except$ptr);

INPUT PARAMETER

region WORD containing a token for the region protecting
the data to which the calling task wants access.

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The RECEIVESCONTROL system call requests access to data protected by a
region. If no task currently has access, entry is immediate. If another
task currently has access, the calling task is placed in the region's
task queue and goes to sleep. The task remains asleep until it gains
access to the data.

If the region has a priority-based task queue, the priority of the task

currently having access is temporarily boosted, if necessary, to match
that of the task at the head of the queue.

CONDITION CODES

ESOK No exceptional conditions.

E$SCONTEXT The region argument refers to a region already
accessed by the calling task.

ESEXIST The region argument does not refer to an existing
object.

ESNOT$SCONFIGURED This system call is not part of the present
configuration.

ESTYPE The region argument does not contain a token for a
region.

7-45

RECEIVE
CONTROL

(7]
.
—l
<t
(]
=
(%N
—
[Ze]
>
o

w
-
(V]
—
m
=
(]
>
m~
—
o

SYSTEM CALLS

SEND$CONTROL

The SEND$CONTROL (Nucleus) system call allows a task to surrender access
to data protected by a region.

CALL RQ$SEND$CONTROL(exceptS$ptr);

OUTPUT PARAMETER

exceptS$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

When a task finishes with data protected by a region, it invokes the
SENDSCONTROL system call to surrender access. If the task is using more
than one set of data, each of which is protected by a region, the
SENDSCONTROL system call surrenders the most recently obtained access.

When access is surrendered, the system allows the next task in line to
gain access.

If a task calling SEND$CONTROL has had its priority boosted while it had
access through a region, its priority is restored when it relinquishes
the access.

CONDITION CODES
E$OK No exceptional conditions.

E$CONTEXT A task invoked the SENDSCONTROL while it did not
have access to data protected by any region.

ENOTCONFIGURED This system call is not part of the present
configuration.

7-46

SET 0S
SYSTEM CALLS EXTENSION

SETSOSSEXTENSION

The SET$OSSEXTENSION (Nucleus) system call either enters the address of
an entry (or function) procedure in the interrupt vector table or it
deletes such an entry.

CALL RQ$SSETSOSSEXTENSION(osSextension, start$address, excep;$ptr);

INPUT PARAMETERS

os$extension BYTE designating the entry of the interrupt vector
table to be set or reset. This value must be
between 224 and 255 (decimal), inclusive (the
values in the range 192 to 223 are valid, but are
reserved for Intel use).

start$address POINTER to the first instruction of an entry (or
function) procedure. If start$address contains a
zero value, the specified interrupt vector table
entry is being reset (deallocated).

o
-
aed
=T
()
=
il
—
[Z¢]
>
w

OUTPUT PARAMETER

exceptSptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION
The SETOSEXTENSION system call sets or resets any one of the 32
operating system extension entries in the interrupt vector. An entry

must be reset before its contents can be changed. An attempt to set an
already set entry causes an ESCONTEXT exceptional condition.

CONDITION CODES
E$OK No exceptional conditions.

ESCONTEXT An attempt is being made to set an entry that
already is set.

7-47

SYSTEM CALLS

SET$OSSEXTENSION (continued)

CONDITION CODES (continued)

E$SNOT$CONFIGURED This system call is not part of the present
configuration.

ESPARAM The OS$extension byte value is less than 192.

(7]
—<
[}
—
m
=
(]
pod
—
—
(7]

7-48

SYSTEM CALLS

SET$PRIORITY

The SETSPRIORITY (Nucleus) system call changes the priority of a task.

CALL RQ$SETSPRIORITY(task, priority, except$ptr);

INPUT PARAMETERS

task WORD containing a token for the task whose priority
is to be changed. A zero value specifies the
invoking task.

priority BYTE containing the task's new priority. A zero
value specifies the maximum priority of the
specified task's containing job.

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

DESCRIPTION

The SETS$PRIORLTY system call allows the priority of a noninterrupt task
to be altered dynamically.

If the priority parameter is set to the zero, the task's new priority is
its containing job's maximum priority. Otherwise, the priority
parameter contains the new priority of the specified task. The new
priority, if explicitly specified, must not exceed its containing job's
maximum priority.

CONDITION CODES

E$OK No exceptional conditions.

ESCONTEXT An attempt is being made to change the priority of
an interrupt task.

ESEXIST The task argument does not refer to an existing
object.

7-49

| SET
PRIORITY

(7]
]
-
<z
(]
=
[SS]
—
(2]
>
o

SYSTEM CALLS

'SETSPRIORITY (continued)

CONDITION CODES (continued)

ESLIMIT The priority parameter contains a priority value
that is higher than the maximum priority of the
specified task's containing job.

ES$NOTSCONFIGURED This system call is not part of the present
configuration.

ESTYPE The task argument does not contain a token for a
task.

w2
-
w
—
m
=
[xs
=
—
[y
o

7-50

SYSTEM CALLS

SETSTIME

The SETS$TIME (Basic I/0) system call sets the date and time for the I/O
System.

CALL RQS$SETS$TIME(time$high, time$low, except$ptr);

INPUT PARAMETERS

timeS$high WORD specifying the first half (the most
significant 16 bits) of the value of the date and
time.

timeS$low WORD specifying the second half (the least
significant 16 bits) of the value of the date and
time.,

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

(7]
-
—d
=T
(&)
=
(S
—
[72]
>
(Vo]

DESCRIPTION

The SETSTIME system call sets the date/time value for the I/0 system.
The 1/0 System maintains the date/time value as two words containing the
number of seconds since a fixed point in time. Any time in the past can
be used as the "beginning of time'", but we recommend that you use 12:00
am (midnight), January 1, 1978.

CONDITION CODES
E$OK No exceptional conditionms.

ESNOT$CONFIGURED This system call is not part of the present
configuration.

7-51

SYSTEM CALLS

SIGNALSEXCEPTION

The SIGNALSEXCEPTION (Nucleus) system. call is invoked by OS extensions to
signal the occurrence of an exceptional condition.

CALL RQ$SIGNALSEXCEPTION(exception$code, param$num, stack$pointer,
reserved$word, reserved$word, except$ptr);

INPUT PARAMETERS

exception$code WORD containing the code (see list in Appendix B)
for the exceptional condition detected.

param$num BYTE containing the number of the parametér which
caused the exceptional condition. If no parameter
is at fault, param$num equals zero.

stack$pointer WORD which, if not zero, must contain the value of

% the stack pointer saved on entry to the operating
A system extension (see the entry procedure in
= Chapter 4 for an example). The top five words in
o the stack (where BP is at the top of the stack)
= must be as follows: :
w

FLAGS Saved by software interrupt

CS to 0S extension

IP

DS Saved by OS extension

BP on entry

Upon completion of SIGNALSEXCEPTION, control
returns to the instruction identified in CS and IP.

If stack$pointer contains a zero, control returns,
upon completion of SIGNAL$EXCEPTION, to the
instruction following the call to SIGNALSEXCEPTION.

reservedSword Two WORDs reserved for Intel use. Set these
parameters to zero.

OUTPUT PARAMETER

except$ptr POINTER to a WORD where the condition code will be
returned.

7-52

SYSTEM CALLS

SIGNALSEXCEPTION (continued)

DESCRIPTION

Operating system extensions use the SIGNALSEXCEPTION system call to
signal the occurrence of exceptional conditions. Depending on the
exceptional condition and the calling task's exception mode, control may
or may not pass directly to the task's exception handler.

If the exception handler does not get control, the exceptional condition
code is returned to the calling task. The task can then access the code
by checking the contents of the word pointed to by the exceptSptr
argument for its call (not for the call to SIGNALSEXCEPTION).

CONDITION CODES
ESOK No exceptional conditions.

ESNOTSCONFIGURED This system call is not part of the present
configuration.

7-53

o
—
|
=T
(=]
b=
w
—_
(7]
>
w

APPENDIX A. iRMX 86™ DATA TYPES

The following are the data types that are recognized by the iRMX 86
Operating System:

" BYTE - An unsigned, one byte, binary number.

WORD An unsigned, two byte, binary number.

INTEGER - A signed, two byte, binary number that is stored in
two's complement form.

OFFSET - A word whose value represents the distance from the
base of a segment.

TOKEN - A word whose value identifies an object.

POINTER - Two words containing the base of a segment and an
offset, in the reverse order.

STRING - A sequence of consecutive bytes. The first byte

contains the number (not to exceed 12) of bytes that
follow it in the string.

APPENDIX B.

iRMX 86™ TYPE CODES

Each iRMX 86 object type is known within the iRMX 86 system by means of a

numeric code.

substituted for the code.
and associated mnemonics.

For each code, there is a mnemonic name that can be
The following lists the types with their codes

OBJECT TYPE

INTERNAL MNEMONIC

NUMERIC CODE

(in

(in

(in

(in

Job
Task
Mailbox
Semaphore
Region
Segment
Extension

Composite

User
Basic I/0 System)

Connection
Basic I/0 System)

I/0 Job
Extended I/0 System)

Logical Device Object
Extended I/0 System)

T$JOB
T$TASK
T$MAILBOX
TS SEMAPHORE
T$SREGION
TSSEGMENT
TSEXTENSION

T$COMPOSITE

T$NUMSUSER

T$ASCONNECTION

T$I0S$JOB

T$LOGSDEV

6

7
varies from 8000H
to OFFFH, depend-
ing on the value

specified in
CREATESEXTENSION

100H

101H

300H

301H

INDEX

For most topics with multiple-page references, the primary reference is
underscored.

ACCEPT$CONTROL 2-4, 2-6, 7-16

access list 5-7

access mask 5-7

air-traffic-control application 2-1
ALTER$COMPOSITE 4-2, 4-6, 4-17, 7-17
application programmer 1-1, 2-5
ATTACH$FILE 5-7 T
attaching devices 5-1

AX register 3-6

changing task priority 7-49

component token list 7-19, 7-36
composite object 4-1, 7-17, 7-19, 7-26, 7-36
configuration interface 5-1
CREATE$COMPOSITE 4-1, 4-12, 4-17, 7-19
CREATESEXTENSION 4-1, 4-3, 4-17, 7-21
CREATESFILE 5-7

CREATESREGION 2-6, 7-23
CREATESRINGSBUFFER procedure 4-12
CREATESUSER 5-5, 7-24

custom object types 4-1

CX register 3-6, 3-8

deadlock 2-4

default user object 5-5
DELETESCOMPOSITE 4-2, 4-4, 4-17, 7-26
DELETESEXTENSION 4-2, 4-5, 4=17, 7-27

DELETESJOB 4-3

DELETESREGION 2-6, 7-29
DELETESRINGSBUFFER procedure 4-14
DELETESUSER 5-5, 7-30

deletion considerations 6-1

deletion mailbox 4-2, 7-21, 7-27
deletion prevention 2-3, 3-14
detaching devices 5-1

device connection 5-4, 7-8, 7-11, 7-40, 7-43,
device driver 5-2

device unit 5-2

dictionary of system calls 7-2
DISABLESDELETION 3-14, 7-31,

disabling depth 3-14, 7-31, 7-33, 7-34
DL register 3-6, 3-8

Index-1

INDEX (continued)

ENABLESDELETION 3-14, 7-33

entry procedure 3-3, 3-7, 7-47
exception handler 3-7, 3 11, 7-52
exceptional conditions 3-6, 3-8, 3-10
extension data 5-8, 7-5, 7-13

file access 5-5

file descriptor 5-8

file driver 5-2

file protection 5-7

FORCESDELETE 3-15, 7-32

function procedure 3-3, 3-10, 7-47

GETSBYTE procedure 4&-15
GETSEXCEPTIONSHANDLER 3-7
GETSEXTENSIONSDATA 5-8, 7-5

hard detach 7-11

I/0 System hardware 5-1

ID 5-5, 7-24, 7-38

in-line exception handling 3-8, 3-12
initialization part 4-6, 4-8
INSPECTSCOMPOSITE 4-2, 4 12 7-36
INSPECTSUSER 5-5, 7- 38

inspecting composite objects 4-2, 4-12, 7-36
interface library 3-7, 4-9
interface procedure 3-3, 3-6, 4-9
interrupt vector 3-3, 7-47
interupt vector table 7-47

intertask coordination 2-1

language interface 3-3
linking procedures 3-7
logical

names >5-1, 5-3, 7-40, 7-43

device object 5-3, 7-40, 7-43
LOGICALSATTACHSDEVICE 5-1, 5 -3, 7-40
LOGICALSDETACHSDEVICE 5-1, 5-3, 7-43

manipulating composite objects and extension types
mutual exclusion 2-2, 2-3

named file driver 5-3, 5-6, 7-8
nested composites 4-5
nesting regions 2-4

operating system extension 3-1, 4-1
0S extension 3-1, 4-1

physical file driver 5-2, 5-6, 7-8
PHYSICALSATTACH$DEVICE 5-1, 5-3, 7-8
PHYSICALSDETACHS$DEVICE 5-1, 5-3, 7— 1

priority adjustment 7-49
priority boosting 2-3

Index-2

INDEX (continued)

priority bottlenecks 2-2
procedure libraries 3-1
protection against deletion 3-14
PUT$BYTE procedure 4-14

RECEIVE$CONTROL 2-4, 2-6, 7-45
region 2-1

ring buffer 4-7

ring buffer example 4-7

ring buffer manager 4-7
RQSERROR procedure 3-6, 3-10

semaphores 2-2, 2-4

SENDSCONTROL 2-6, 7-46
SETSEXCEPTIONSHANDLER 3-7
SET$EXTENSION$SDATA 5-8, 7-13
SETSOSSEXTENSION 3-14, 3-15, 7-47
SET$PRIORITY 7-49

SETSTIME 7-51 :

shared data 2-1, 7-16, 7-45, 7-46
SIGNAL$SEXCEPTION 3-6, 3-10, 3-12, 7-52
signalling exceptions 3-6, 3-8, 3-10, 7-52
stream file driver 5-2, 5-6, 7-8
system call dictionary 7-2

system programmer 1-1

time 7-51
type code 4-1, 7-21

type manager 4-1

user object 5-5, 7-24, 7-30, 7-38
user—-supplied operating system extemnsions 3-1, 4-1

verify access to files 5-7

Index-3

i"té® iRMX 86™ System Programmer’s
Reference Manual
142721-003

REQUEST FOR READER'S COMMENTS

intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you ex'pected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ' - DATE
TITLE |
COMPANY NAME/DEPARTMENT

ADDRESS ,

CITY | STATE_______ ZIP CODE

Please check here if you require a written reply. O

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

| || " | NO POSTAGE
NECESSARY
IF MAILED

IN THE .
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

0.M.S. Technical Publications

intel
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

