|
g

=

= :Zf?:

COMPUTER SYSTEMS 1992

Edited by
Institute for New Generation
Computer Technology (ICOT)

Volume 1

Ohmsha,Ltd. 10S Press

FIFTH GENERATION COMPUTER SYSTEMS 1992

Copyright © 1992 by Institute for New Generation Computer Technology

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic, mechanical, recording or
otherwise, without the prior permission of the copyright owner.

ISBN 4-274-07724-1 (Ohmsha)
ISBN 90-5199-099-5 (IOS Press)

Library of Congress Catalog Card Number: 92-073166

Published and distributed in Japan by
Ohmsha, Ltd.
3-1 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101, Japan

Distributed in North America by
IOS Press, Inc.
Postal Drawer 10558, Burke, VA 22009-0558, U.S.A.

United Kingdom by
10S Press
73 Lime Walk, Headington, Oxford OX3 7AD, England

Europe and the rest of the world by
10S Press
Van Diemenstraat 94, 1013 CN Amsterdam, Netherlands

Far East jointly by
Ohmsha, Ltd., IOS Press

Printed in Japan

FOREWORD

On behalf of the Organizing Committee, it is my great pleasure
to welcome you to the International Conference on Fifth Generation
Computer Systems 1992.

The Fifth Generation Computer Systems (FGCS) project was
started in 1982 by the initiative of the late Professor Tohru Moto-
Oka with the purpose of making a revolutionary new type of com-
puters oriented to knowledge processing in the 1990s. After complet-
ing the initial and intermediate stages of research and development,
we are now at the final point of our ten-year project and are rapidly
approaching the completion of prototype Fifth Generation Com-
puter Systems.

The research goals of the FGCS project were challenging, but
we expect to meet most of them. We have developed a new paradigm
of knowledge processing including the parallel logic language, KL1,
and the parallel inference machine, PIM.

When we look back upon these ten years, we can find many
research areas in knowledge processing related to this project, such
as logic programming, parallel processing, natural language process-
ing, and machine learning. Furthermore, there emerged many new
applications of knowledge processing, such as legal reasoning and
genetic information processing.

I believe that this new world of information processing will
grow more and more in the future. When very large knowledge bases
including common sense knowledge come out in full scale and are
widely used, the knowledge processing paradigm will show its real
power and will give us great rewards. From now on, we can enjoy
fifth generation computer technology in many fields.

Following the same objective of creating such a new paradigm,
there has been intense international collaboration, such as joint
workshops with France, Italy, Sweden, the U.K., and the U.S.A., and
joint research with U.S.A. and Swedish institutes on parallel process-
ing applications.

Against this background,ICOT hosts the International Confer-
ence on Fifth Generation Computer Systems 1992 (FGCS’92). This
is the last in a series of FGCS conferences; previous conferences were
held in 1981, 1984 and 1988. The purpose of the conference is to
present the final results of the FGCS project, as well as to promote
the exchange of new ideas in the fields of knowledge processing,
logic programming, and parallel processing.

FGCS’92 will take place over five days. The first two days will
be devoted to the presentation of the latest results of the FGCS
project, and will include invited lectures by leading researchers. The

iii

v

remaining three days will be devoted to technical sessions for invited
and submitted papers, the presentation of the results of detailed
research done at ICOT, and panel discussions.

Professor D. Bjgrner from the United Nations University,
Professor J.A. Robinson from Syracuse University, and Professor
C.A.R. Hoare from Oxford University kindly accepted our offer to-
give invited lectures.

Professor R. Kowalski from Imperial College is the chairperson of
the plenary panel session on “A springboard for information proces-
sing in the 21st century.” Professor Hajime Karatsu from Tokai
University accepted our invitation to give a banquet speech.

During the conference, there will be demonstrations of the
research results from the ten-year FGCS project. The Parallel Infer-
ence Machines and many kinds of parallel application programs will
be highlighted to show the feasibility of the machines.

I hope that this conference will be a nice place to present all of
the research results in this field up to this time, confirm the mile-
stones, and propose a future direction for the research, development
and applications of the fifth generation computers through vigorous
discussions among attendees from all over the world. I hope all of
the attendees will return to their own countries with great expecta-
tions in minds and feel that a new era of computer science has
opened in terms of fifth generation computer systems.

Moreover, I wish that the friendship and frank cooperation
among researchers from around the world, brewed in the process of
fifth generation computer systems research, will grow and widen so
that this small but strong relationship can help promote interna-
tional collaboration for the brilliant future of mankind.

Hidehiko Tanaka
Conference Chairperson

FOREWORD

Esteemed guests, let me begin by welcoming you to the International Conference on
Fifth Generation Computer Systems, 1992. I am Hideaki Kumano. I am the Director
General of the Machinery and Information Industries Bureau of MITI.

We have been promoting the Fifth Generation Computer Systems Project, with the
mission of international contributions to technological development by promoting the
research and development of information technology in the basic research phase and
distributing the achievements of that research worldwide. This international conference
is thus of great importance in making our achievements available to all. It is, therefore,
a great honor for me to be given the opportunity to make the keynote speech today.

1 Achievements of the Project

Since [took up my current post, I have had several opportunities to visit the project site.
This made a great impression on me since it proved to me that Japanese technology can
produce spectacular results in an area of highly advanced technology, covering the fields
of parallel inference machine hardware and its basic software such as operating systems
and programming languages; fields in which no one had any previous experience.

Furthermore, I caught a glimpse of the future use of fifth generation computer tech-
nology when I saw the results of its application to genetics and law. I was especially
interested in the demonstration of the parallel legal inference system, since I have been
engaged in the enactment and operation of laws at MITI. I now believe that the machines
using the concepts of fifth generation computers will find practical applications in the
enactment and operation of laws in the near future.

The research and development phase of our project will be completed by the end
of this fiscal year. We will evaluate all the results. The committee for development of
basic computer technology, comprised of distinguished members selected from a broad
spectrum of fields, will make a formal evaluation of the project. This evaluation will take
into account the opinions of those attending the conference, as well as the results of a
questionnaire completed by overseas experts in each field. Even before this evaluation,
however, I am convinced that the project has produced results that will have a great
impact on future computer technology.

2 Features of the Fifth Generation Computer Systems Project

I will explain how we set our goals and developed a scheme that would achieve these
high-level technological advances.

The commencement of the project coincided with the time when Japan was coming
to be recognized as a major economic and technological power in the world community.
Given these circumstances, the objectives of the project included not only the develop-
ment of original and creative technology, but also the making of valuable international

vi

contributions. In this regard, we selected a theme of “knowledge information process-
ing”, which would have a major impact on a wide area from technology through to the
economy. The project took as its research goal the development of a parallel inference
system, representing the paradigm of computer technology as applied to the theme.

The goal was particularly challenging at that time. I recalled the words of a partic-
ipant at the first conference held in 1981. He commented that it was doubtful whether
Japanese researchers could succeed in such a project since we, at that time, had very
little experience in these fields.

However, despite the difficulties of the task ahead of us, we promoted the project
from the viewpoint of contributing to the international community through research. In
this regard, our endeavors in this area were targeted as pre-competitive technologies,
namely basic research. This meant that we would have to start from scratch, assembling
and training a group of researchers.

To achieve our goal of creating a paradigm of new computer technology, taking an
integrated approach starting from basic research, we settled on a research scheme after
exhaustive preliminary deliberations.

As part of its efforts to promote the dissemination of basic research results as inter-
national public assets, the government of Japan, reflecting its firm commitment to this
area, decided to finance all research costs.

The Institute for New Generation Computer Technology (ICOT), the sponsor of this
conference, was established to act as a central research laboratory where brainpower
could be concentrated. Such an organization was considered essential to the development
of an integrated technology that could be applied to both hardware and software. The
Institute’s research laboratory, that actually conducted the project’s research and devel-
opment, was founded precisely ten years ago, today, on June 1 of 1982. A number of
highly qualified personnel, all of whom were excited by the ideal that the project pursued,
were recruited from the government and industry. Furthermore, various ad hoc groups
were formed to promote discussions among researchers in various fields, making ICOT
the key center for research communication in this field.

The duration of the project was divided into three phases. Reviews were conducted
at the end of each phase, from the viewpoint of human resources and technological ad-
vances, which made it possible to entrust various areas of the research. I believe that
this approach increased efficiency, and also allowed flexibility by eliminating redundant
areas of research.

We have also been heavily involved in international exchanges, with the aim of pro-
moting international contributions. Currently, we are involved in five different interna-
tional research collaboration projects. These include work in the theorem proving field
with the Australian National University (ANU), and research into constraint logic pro-
gramming with the Swedish Institute of Computer Science (SICS). The results of these
two collaborations, on display in the demonstration hall, are excellent examples of what
research collaboration can achieve. We have also promoted international exchange by
holding international conferences and by hosting researchers from abroad at ICOT. And,
we have gone to great lengths to make public our project’s achievements, including in-

termediate results.

3 Succession of the Project’s Ideal

This project is regarded as being the prototype for all subsequent projects to be sponsored
by MITT.

It is largely due to the herculean efforts of the researchers, under the leadership of Dr.
Fuchi and other excellent research leaders, that have led to the revolutionary advances
being demonstrated at this conference.

In the light of these achievements, and with an eye to the future, I can now state
that there is no question of the need to make international contributions the basis of the
policies governing future technological development at MITI. This ideal will be passed
on to all subsequent research and development projects.

A case in point is the Real World Computing (RWC) project scheduled to start this
year. This project rests on a foundation of international cooperation. Indeed, the basic
plan, approved by a committee a few days ago, specifically reflects the international
exchange of opinions. The RWC project is a particularly challenging project that aims
to investigate the fundamental principles of human-like flexible information processing
and to implement it as a new information processing technology, taking full advantage
of advancing hardware technologies. We will not fail to make every effort to achieve the
project’s objectives for use as common assets for all mankind.

4 International Response

As T mentioned earlier, I believe that the Fifth Generation Computer System Project
has made valuable international contributions from its earliest stages. The project has
stimulated international interest and responses from its outset. The great number of
foreign participants present today illustrates this point.

Around the world, a number of projects received their initial impetus from our
project: these include the Strategic Computing Initiative in the U.S.A., the EC’s Es-
prit project, and the Alvey Project in the United Kingdom.

These projects were initially launched to compete with the Fifth Generation Com-
puter Systems Project. Now, however, I strongly believe that since our ideal of inter-
national contributions has come to be understood around the globe, together with the
realization that technology can not and should not be divided by borders, each project
is providing the stimulus for the others, and all are making major contributions to the
advancement of information processing technologies.

5 Free Access to the Project’s Software

One of the great virtues of science, given an open environment, is the collaboration
between researchers using a common base of technology.

vii

viil

Considering this, it would be impractical for one person or even one nation to attempt
to cover the whole range of technological research and development. Therefore, the
necessity of international cooperation is self-evident from the standpoint of advancing
the human race as a whole.

In this vein, MITI has decided to promote technology globalism in the fields of science
and technology, based on a concept of “international cooperative effort for creative ac-
tivity and international exchange to maximize the total benefit of science and technology
to mankind.” We call this concept “techno-globalism”.

It is also important to establish an environment based on “techno-globalism”, that
supports international collaboration in basic and original research as a resource to solve
problems common to all mankind as well as the dissemination of the resulting achieve-
ments. This could be done through international cooperation.

To achieve this “techno-globalism” all countries should, as far as possible, allow free
and easy access to their domestic technologies. This kind of openness requires the volun-
tary establishment of environments where anyone can access technological achievements
freely, rather than merely asking other countries for information. It is this kind of inter-
national cooperation, with the efforts of both sides complementing each other, that can
best accelerate the advancement of technology.

We at MITI have examined our policies from the viewpoint of promoting international
technological advancement by using the technologies developed as part of this project,
the superbness of which has encouraged us to set a new policy.

Our project’s resources focused mainly on a variety of software, including parallel
operating systems and parallel logic programming languages. To date, the results of such
a national project, sponsored by the government, were available only for a fee and could
be used only under various conditions once they became the property of the government.
Therefore, generally speaking, although the results have been available to the public, in
principle, they have not been available to be used freely and widely.

As T mentioned earlier, in the push toward reaching the goal of promoting inter-
national cooperation for technological advancement, Japan should take the initiative in
creating an environment where all technologies developed in this project can be accessed
easily. Now, I can formally announce that, concerning software copyrights in the research
and development phase which are not the property of the government, the Institute for
New Generation Computer Technology(ICOT), the owner of these copyrights of software
products is now preparing to enable their free and and open use without charge.

The adoption of this policy not only allows anyone free access to the software tech-
nologies developed as part of the project, but also make it possible for interested parties
to inherit the results of our research, to further advance the technology. I sincerely hope
that our adopting this policy will maximize the utilization of researchers’ abilities, and
promote the advancement of the technologies of knowledge information processing and
parallel processing, toward which all efforts have been concentrated during the project.

This means that our adopting this policy will not merely result in a one-way flow
of technologies from Japan, but enhance the benefit to all mankind of the technological
advancements brought on by a two-way flow of technology and the mutual benefits thus

obtained.

I should say that, from the outset of the Fifth Generation Computer Systems Project,
we decided make international contributions an important objective of the project. We
fashioned the project as the model for managing the MITI-sponsored research and devel-
opment projects that were to follow. Now, as we near the completion of the project, we
have decided to adopt a policy of free access to the software to inspire further international
contributions to technological development.

I ask all of you to understand the message in this decision. I very much hope that the
world’s researchers will make effective use of the technologies resulting from the project
and will devote themselves to further developing the technologies.

Finally, I’d like to close by expressing my heartfelt desire for this international con-
ference to succeed in providing a productive forum for information exchange between
participants and to act as a springboard for further advancements.

Thank you very much for bearing with me.

Hideaki Kumano

Director General

Machinery and Information Industries Bureau
Ministry of International Trade and Industry (MITI)

PREFACE

Ten years have passed since the FGCS project was launched
with the support of the Japanese government. As soon as the FGCS
project was announced it had a profound effect not only on com-
puter scientists but also on the computer industry. Many countries
recognized the importance of the FGCS project and some of them
began their own similar national projects.

The FGCS project was initially planned as a ten-year project
and this final fourth FGCS conference, therefore, has a historical
meaning. For this reason the conference includes an ICOT session.
The first volume contains a plenary session and the ICOT session.
The plenary session is composed of many reports on the FGCS
project with three invited lectures and a panel discussion.

In the ICOT session, the logic-based approach and parallel
processing will be emphasized through concrete discussions. In
addition to these, many demonstration programs have been prepared
by ICOT at the conference site, the participants are invited to visit
and discuss these exhibitions. Through the ICOT session and the
exhibitions, the participants will understand clearly the aim and
results of the FGCS project and receive a solid image of FGCS.

The second volume is devoted to the technical session which
consists of three invited papers and technical papers submitted to this
conference. Due to the time and space limitation of the conference,
only 82 papers out of 256 submissions were selected by the program
committee after careful and long discussion of many of the high
quality papers submitted.

It is our hope that the conference program will prove to be both
worthwhile and enjoyable. As a program chairperson, it is my great
pleasure to acknowledge the support of a number of people. First of
all, I would like to give my sincere thanks to the program committee
members who put a lot of effort into making the program attractive.
I owe much to the three program vice-chairpersons, Professor
Makoto Amamiya, Dr. Shigeki Goto and Professor Fumio Mizogu-
chi. Many ICOT members, including Dr. Kazunori Ueda, Ken
Satoh, Keiji Hirata, and Hideki Yasukawa have worked as key
persons to organize the program. Dr. Koichi Furukawa, in particu-
lar, has played an indispensable role in overcoming many problems.
I would also like to thank the many referees from many countries
who replied quickly to the referees sheets.

Finally, I would like to thank the secretariat at ICOT, they
made fantastic efforts to carry out the administrative tasks efficiently.

Hozumi Tanaka
Program Chairperson

Xiii

CONFERENCE COMMITTEES

Steering Committee

Chairperson:
Members:

Kazuhiro Fuchi
Hideo Aiso
Setsuo Arikawa
Ken Hirose
Takayasu Ito
Hiroshi Kashiwagi
Hajime Karatsu
Makoto Nagao
Hiroki Nobukuni
lwao Toda

Eiiti Wada

Conference Committee

Chairperson:
Vice-Chairperson:
Members:

Hidehiko Tanaka
Koichi Furukawa
Makoto Amamiya
Yuichiro Anzai
Shigeki Goto
Mitsuru Ishizuka
Kiyonori Konishi
Takashi Kurozumi
Fumio Mizoguchi
Kunio Murakami
Sukeyoshi Sakai
Masakazu Soga
Hozumi Tanaka
Shunichi Uchida
Kinko Yamamoto
Toshio Yokoi
Akinori Yonezawa
Toshitsugu Yuba

Program Committee

Chairperson:

Hozumi Tanaka

Vice-Chairpersons:Makoto Amamiya

Members:

Shigeki Goto
Fumio Mizoguchi
Koichi Furukawa
Kazunori Ueda
Ken Satoh

Keiji Hirata
Hideki Yasukawa
Hitoshi Aida
Yuichiro Anzai
Arvind

Ronald J. Brachman
John Conery
Doug DeGroot
Koichi Fukunaga
Jean-Luc Gaudiot
Atsuhiro Goto
Satoshi Goto

Seif Haridi
Ken'ichi Hagihara

ICOT

Keio Univ.
Kyushu Univ.
Waseda Univ.
Tohoku Univ.
ETL

Tokai Univ.
Kyoto Univ.
NTT Data
NTT

Univ. of Tokyo

Univ. of Tokyo

ICOT

Kyushu Univ.

Keio Univ.

NTT

Univ. of Tokyo

NTT Data

ICOT

Science Univ. of Tokyo

Kanagawa Univ.

ICOT(Chairperson, Management Committee)
ICOT(Chairperson, Technology Committee)
Tokyo Institute of Technology

ICOT

JIPDEC

EDR

Univ. of Tokyo

ETL

Tokyo Institute of Technology
Kyushu Univ.

NTT

Science Univ. of Tokyo
ICOT

ICOT

ICOT

ICOT

ICOT

Univ. of Tokyo

Keio Univ.

MIT

AT&T

Univ. of Oregon

Texas Instruments
IBM Japan, Ltd.

Univ. of Southern California
NTT

NEC Corp.

SiCcs

Osaka Univ.

Xiv

Makoto Haraguchi
Ryuzo Hasegawa
Hiromu Hayashi
Nobuyuki Ichiyoshi
Mitsuru Ishizuka
Tadashi Kanamori
Yukio Kaneda
Hirofumi Katsuno
Masaru Kitsuregawa
Shigenobu Kobayashi
Philip D. Laird
Catherine Lassez
Giorgio Levi

John W. Lloyd

Yuji Matsumoto
Dale Miller

Kuniaki Mukai
Hiroshi Motoda
Katsuto Nakajima
Ryohei Nakano
Keniji Nishida
Shojiro Nishio
"Stanley Peters
Anténio Porto
Teodor C. Przymusinski
Vijay Saraswat
Taisuke Sato
Masahiko Sato
Heinz Schweppe
Ehud Shapiro
Etsuya Shibayama
Kiyoshi Shibayama
Yoav Shoham
Leon Sterling

Mark E. Stickel
Mamoru Sugie
Akikazu Takeuchi
Kazuo Taki

Jiro Tanaka

Yuzuru Tanaka
Philip Treleaven
Syun Tutiya
Shalom Tsur
D.H.D. Warren
Takahira Yamaguchi
Kazumasa Yokota
Minoru Yokota

Publicity Committee

Chairperson: Kinko Yamamoto

Vice-Chairperson: Kunio Murakami

Members: Akira Aiba
Yuichi Tanaka

Demonstration Committee
Chairperson: Takashi Kurozumi
Vice-Chairperson: Shunichi Uchida

Tokyo Institute of Technology
ICOT

Fujitsu Laboratories

ICOT

Univ. of Tokyo

Mitsubishi Electric Corp.
Kobe Univ.

NTT

Univ. of Tokyo

Tokyo Institute of Technology
NASA

IBM T.J. Watson

Univ. di Pisa

Univ. of Bristol

Kyoto Univ.

Univ. of Pennsylvania

Keio Univ.

Hitachi Ltd.

Mitsubishi Electric Corp.
NTT

ETL

Osaka Univ.

CSLl, Stanford Univ.

Univ. Nova de Lisboa

Univ. of California at Riverside
Xerox PARC

ETL

Tohoku Univ.

Institut fir Informatik

The Weizmann Institute of Science
Ryukoku Univ.

Kyoto Univ.

Stanford Univ.

Case Western Reserve Univ.
SR International

Hitachi Ltd.

Sony CSL

ICOT

Fujitsu Laboratories
Hokkaido Univ.

University College, London
Chiba Univ.

MCC

Univ. of Bristol

Shizuoka Univ.

ICOT

NEC Corp.

JIPDEC
Kanagawa Univ.
IcOoT

IcOT

ICOT
ICOT

Abadi, Martin
Abramson, Harvey
Agha, Gul A.

Aiba, Akira

Aida, Hitoshi
Akama, Kiyoshi
Ali, Khayri A. M.
Alkalaj, Leon
Amamiya, Makoto
Amano, Hideharu
Amano, Shinya
America, Pierre
Anzai, Yuichiro
Aoyagi, Tatsuya
Apt, Krzysztof R.
Arikawa, Masatoshi
Arikawa, Setsuo
Arima, Jun

Arvind

Baba, Takanobu
Babaguchi, Noboru
Babb, Robert G., II
Bancilhon, Frangois
Bansal, Arvind K.
Barklund, Jonas
Beaumont, Tony
Beeri, Catriel
Beldiceanu, Nicolas

Benhamou, Frederic R.

Bibel, Wolfgang

Bic, Lubomir
Biswas, Prasenjit
Blair, Howard A.
Boku, Taisuke
Bonnier, Staffan
Boose, John
Borning, Alan H.
Boutilier, Craig E.
Bowen, David
Brachman, Ronald J.
Bradfield, J. C.
Bratko, Ivan
Brazdil, Pavel

Briot, Jean-Pierre
Brogi, Antonio
Bruynooghe, Maurice

LIST OF REFEREES

Bry, Francois

Bubst, S. A.

Buntine, Wray L.
Carlsson, Mats
Chikayama, Takashi
Chong, Chin Nyak
Chu, Lon-Chan
Ciepielewski, Andrzej
Clancey, William J.
Clark, Keith L.
Codish, Michael
Codognet, Christian
Conery, John
Consens, Mariano P.
Crawford, James M., Jr.
Culler, David E.
Dahl, Veronica
Davison, Andrew

de Bakker, Jaco W.
de Maindreville, Christophe
Debray, Saumya K.
Deen, S. M.

DeGroot, Doug

del Cerro, Luis Farinas
Demolombe, Robert
Denecker, Marc
Deransart, Pierre
Dincbas, Mehmet
Drabent, Wlodzimierz
Duncan, Timothy Jon
Dutra, Ines

Fahlman, Scott E.
Falaschi, Moreno
Faudemay, Pascal
Feigenbaum, Edward
Fitting, Melvin C.
Forbus, Kenneth D.
Fribourg, Laurent
Fujisaki, Tetsu

Fujita, Hiroshi

Fujita, Masayuki
Fukunaga, Koichi
Furukawa, Koichi
Gabbrielli, Maurizio
Gaines, Brian R.
Gardenfors, Peter

Gaudiot, Jean-Luc
Gazdar, Gerald
Gelfond, Michael
Gero, John S.
Giacobazzi, Roberto
Goebel, Randy G.
Goodwin, Scott D.
Goto, Atsuhiro
Goto, Satoshi
Goto, Shigeki
Grama, Ananth
Gregory, Steve
Gunji, Takao
Gupta, Anoop
Hagihara, Kenichi
Hagiya, Masami
Han, Jiawei
Hanks, -Steve
Hara, Hirotaka
Harada, Taku
Haraguchi, Makoto
Haridi, Seif
Harland, James
Hasegawa, Ryuzo
Hasida, Koiti
Hawley, David J.
Hayamizu, Satoru
Hayashi, Hiromu
Henry, Dana S.

XV

Henschen, Lawrence J.

Herath, Jayantha
Hewitt, Carl E.
Hidaka, Yasuo
Higashida, Masanobu
Hiraga, Yuzuru
Hirata, Keiji

Hobbs, Jerry R.

Hogger, Christopher J.

Hong, Se June
Honiden, Shinichi
Hori, Koichi
Horita, Eiichi
Horiuchi, Kenji
Hsiang, Jieh
Tannucci, Robert A.
Ichikawa, Itaru

XVl

Ichiyoshi, Nobuyuki
Ida, Tetsuo
Ikeuchi, Katsushi
Inoue, Katsumi
Ishida, Toru
Ishizuka, Mitsuru
Iwasaki, Yumi
Iwayama, Makoto
Jaffar, Joxan
Jayaraman, Bharat
Kahn, Gilles
Kahn, Kenneth M.
Kakas, Antonios C.
Kameyama, Yukiyoshi
Kanade, Takeo
Kanamori, Tadashi
Kaneda, Yukio
Kaneko, Hiroshi
Kanellakis, Paris
Kaplan, Ronald M.
Kasahara, Hironori
Katagiri, Yasuhiro
Katsuno, Hirofumi
Kautz, Henry A.
Kawada, Tsutomu
Kawamura, Tadashi
Kawano, Hiroshi
Keller, Robert
Kemp, David
Kifer, Michael
Kim, Chinhyun
Kim, Hiecheol
Kim, WooYoung
Kimura, Yasunori

Kinoshita, Yoshiki

- Kitsuregawa, Masaru

Kiyoki, Yasushi
Kluge, Werner E.
Kobayashi, Shigenobu
Kodratoff, Yves
Kohda, Youji
Koike, Hanpei
Komorowski, Jan
Konagaya, Akihiko
Kono, Shinji
Konolige, Kurt
Korsloot, Mark
Koseki, Yoshiyuki
Kraus, Sarit
Kumar, Vipin

Kunen, Kenneth
Kunifuji, Susumu
Kurita, Shohei
Kurokawa, Toshiaki
Kusalik, Anthony J.
Laird, Philip D.
Lassez, Catherine
Leblanc, Tom
Lescanne, Pierre
Leung, Ho-Fung
Levesque, Hector J.
Levi, Giorgio

Levy, Jean-Jacques
Lieberman, Henry A.
Lindstrom, Gary
Lloyd, John W.
Lusk, Ewing L.
Lytinen, Steven L.
Maher, Michael J.
Makinouchi, Akifumi
Manthey, Rainer
Marek, Victor
Marriott, Kim
Martelli, Maurizio
Maruoka, Akira
Maruyama, Fumihiro
Maruyama, Tsutomu
Masunaga, Yoshifumi
Matsubara, Hitoshi
Matsuda, Hideo
Matsumoto, Yuji
Matsuoka, Satoshi
McCune, William, W.

Memmi, Daniel

Mendelzon, Alberto O.

Menju, Satoshi
Meseguer, Jose
Michalski, Richard S.
Michie, Donald
Miller, Dale A.
Millroth, Hakan
Minami, Toshiro
Minker, Jack
Miyake, Nobuhisa
Miyano, Satoru
Miyazaki, Nobuyoshi
Miyazaki, Toshihiko
Mizoguchi, Fumio
Mizoguchi, Riichiro
Mori, Tatsunori

Morishita, Shinichi
Morita, Yukihiro
Motoda, Hiroshi
Mowtesi, Dawilo
Mukai, Kuniaki
Mukouchi, Yasuhito
Murakami, Kazuaki
Murakami, Masaki
Muraki, Kazunori
Muraoka, Yoichi
Nadathur, Gopalan
Naganuma, Jiro
Nagashima, Shigeo
Nakagawa, Hiroshi
Nakagawa, Takayuki
Nakajima, Katsuto
Nakamura, Junichi
Nakano, Miyuki
Nakano, Ryohei
Nakashima, Hideyuki
Nakashima, Hiroshi
Nakata, Toshiyuki
Nakayama, Masaya
Naqvi, Shamim A.
Natarajan, Venkat
Nikhil, Rishiyur, S.
Nilsson, Jgrgen Fischer
Nilsson, Martin
Nishida, Kenji
Nishida, Toyoaki
Nishikawa, Hiroaki
Nishio, Shojiro
Nitta, Izumi
Nitta, Katsumi
Noyé, Jacques
Numao, Masayuki
Numaoka, Chisato
O’Rorke, Paul V.
Ogura, Takeshi
Ohki, Masaru
Ohmori, Kenji
Ohori, Atsushi
Ohsuga, Akihiko
Ohsuga, Setsuo
Ohwada, Hayato
Oka, Natsuki
Okumura, Manabu
Ono, Hiroakira
Ono, Satoshi
Overbeek, Ross A.

Oyanagi, Shigeru
Palamidessi, Catuscia
Panangaden, Prakash
Pearl, Judea

Pereira, Fernando C.
Pereira, Luis Moniz
Petrie, Charles J.
Plaisted, David A.
Plimer, Lutz

Poole, David
Popowich, Fred P.
Porto, Antdnio
Przymusinski, Teodor C.
Raina, Sanjay

Ramamohanarao, Kotagin

Rao, Anand S.
Reddy, Uday S.
Ringwood, Graem A.
Robinson, John Alan
Rojas, Raul
Rokusawa, Kazuaki
Rossi, Francesca
Rossi, Gianfranco
Russell, Stuart J.
Sadri, Fariba
Saint-Dizier, Patrick
Sakai, Hiroshi
Sakai, Ko

Sakai, Shuichi
Sakakibara, Yasubumi
Sakama, Chiaki
Sakurai, Akito
Sakurai, Takafumi
Sangiorgi, Davide
Santos Costa, Vitor
Saraswat, Vijay A.
Sargeant, John
Sato, Masahiko
Sato, Taisuke

Sato, Yosuke

Satoh, Ken
Schweppe, Heinz
Seki, Hirohisa
Seligman, Jerry M.
Sergot, Marek J.
Sestito, Sabrina
Shanahan, Murray
Shapiro, Ehud
Shibayama, Etsuya
Shibayama, Kiyoshi

Shibayama, Shigeki
Shimada, Kentaro
Shin, Dongwook
Shinohara, Takeshi
Shintani, Toramatsu
Shoham, Yoav
Simonis, Helmut
Sirai, Hidetosi
Smith, Jan Magnus
Smolka, Gert
Sterling, Leon S.
Stickel, Mark E.
Stolfo, Salvatore. J.
Subrahmanian, V. S.
Sugano, Hiroyasu
Sugie, Mamoru
Sugiyama, Masahide
Sundararajan, Renga
Suwa, Masaki
Suzuki, Hiroyuki
Suzuki, Norihisa
Takagi, Toshihisa
Takahashi, Mitsuo
Takahashi, Naohisa
Takahashi, Yoshizo
Takayama, Yukihide
Takeda, Masayuki
Takeuchi, Akikazu
Takeuchi, Tkuo
Taki, Kazuo

Tamai, Tetsuo
Tamura, Naoyuki
Tanaka, Hozumi
Tanaka, Jiro
Tanaka, Katsumi
Tanaka, Yuzuru
Taniguchi, Rin-ichiro
Tatemura, Jun’ichi
Tatsuta, Makoto
Terano, Takao

Tick, Evan M.
Toda, Mitsuhiko
Togashi, Atsushi
Tojo, Satoshi
Tokunaga, Takenobu
Tomabechi, Hideto
Tomita, Shinji
Tomiyama, Tetsuo
Touretzky, David S.
Toyama, Yoshihito

XVil

Tsuda, Hiroshi

Tsur, Shalom

Tutiya, Syun
Uchihira, Naoshi
Ueda, Kazunori
Uehara, Kuniaki
Ueno, Haruki

van de Riet, Reinder P.
van Emden, Maarten H.
Van Hentenryck, Pascal
Van Roy, Peter L.
Vanneschi, Marco
Wada, Koichi

‘Wah, Benjamin W.
Walinsky, Clifford
Walker, David

Waltz, David L.
Warren, David H. D.
Warren, David Scott
Watanabe, Takao
Watanabe, Takuo
Watanabe, Toshinori
Watson, Ian

Watson, Paul
Weyhrauch, Richard W.
Wilk, Paul F.
Wolper, Pierre
Yamaguchi, Takahira
Yamamoto, Akihiro
Yamanaka, Kenjiroh
Yang, Rong

Yap, Roland

Yardeni, Eyal
Yasukawa, Hideki
Yokoo, Makoto
Yokota, Haruo
Yokota, Kazumasa
Yokota, Minoru
Yokoyama., Shoichi
Yonezaki, Naoki
Yonezawa, Akinori
Yoo, Namhoon

Yoon, Dae-Kyun
Yoshida, Hiroyuki
Yoshida, Kaoru
Yoshida, Kenichi
Yoshida, Norihiko
Yoshikawa, Masatoshi
Zerubia, Josiane B.

CONTENTS OF VOLUME 1

PLENARY SESSIONS

Keynote Speech
Launching the New Era

Kazuhiro Fuchi o

General Report on ICOT Research and Development
Overview of the Ten Years of the FGCS Project

Takashi KUrozumi o v i i e e e e e e e e e e e e e
Summary of Basic Research Activities of the FGCS Project

Koichi Furukawa e e
Summary of the Parallel Inference Machine and its Basic Software

Shunichi Uchida

Report on ICOT Research Results
Parallel Inference Machine PIM

Kazuo Taki e
Operating System PIMOS and Kernel Language KL1

Takashi Chikayama i i e e e
Towards an Integrated Knowledge-Base Management System: Overview of R&D on
Databases and Knowledge-Bases in the FGCS Project

Kazumasa Yokota and Hideki Yasukawa
Constraint Logic Programming System: CAL, GDCC and Their Constraint Solvers

Akira Aiba and Ryuzo Hasegawa ittt
Parallel Theorem Provers and Their Applications

Ryuzo Hasegawa and Masayuki Fujita
Natural Language Processing Software

Yuichi Tanaka e
Experimental Parallel Inference Software '

Katsumi Nitta, Kazuo Taki and Nobuyuki Ichiyoshi

Invited Lectures
Formalism vs. Conceptualism: Interfaces between Classical Software Development Techniques
and Knowledge Engineering
Dines BBrier o i e e e e e e e
The Role of Logic in Computer Science and Artificial Intelligence
J.A. Robinson: e e e e
Programs are Predicates '

C. A R.HOATE . . o o o i e e e e e e e e e e e e

Panel Discussion: A Springboard for Information Processing in the 21st Century
PANEL: A Springboard for Information Processing in the 21st Century

Robert A. Kowalski (Chairman) i
Finding the Best Route for Logic Programming

Hervé Gallaire e e
The Role of Logic Programming in the 21st Century

Ross Overbeek L
Object-Based Versus Logic Programming

Peter Wegner e
Concurrent Logic Programming as a Basis for Large-Scale Knowledge Information Processing

Koichi Furukawa e e

XX

Knowledge Information Processing in the 21st Century
Shunichi Uchida o i e

ICOT SESSIONS

‘Parallel VLSI-CAD and KBM Systems
LSI-CAD Programs on Parallel Inference Machine
Hiroshi Date, Yukinori Matsumoto, Kouichi Kimura, Kazuo Taki, Hiroo Kato and
Masahiro Hoshi o e e
Parallel Database Management System: Kappa-P
Moto Kawamura, Hiroyuki Sato, Kazutomo Naganuma and Kazumasa Yokota
Objects, Properties, and Modules in QuzxoTe
Hideki Yasukawa, Hiroshi Tsuda and Kazumasa Yokota

Parallel Operating System, PIMOS
Resource Management Mechanism of PIMOS

Hiroshi Yashiro, Tetsuro Fujise, Takashi Chikayama, Masahiro Matsuo, Atsushi Hori

and Kumiko Wada e
The Design of the PIMOS File System

Fumihide Itoh, Takashi Chikayama, Takeshi Mori, Masaki Sato, Tatsuo Kato and

Tadashi Sato o e e
ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

Setichi Aikawa, Mayumi Kamiko, Hideyuki Kubo, Fumiko Matsuzawa and

Takashi Chikayama e

Genetic Information Processing
Protein Sequence Analysis by Parallel Inference Machine
Masato Ishikawa, Masaki Hoshida, Makoto Hirosawa, Tomoyuki Toya, Kentaro Onizuka
and Katsumi Nitta0 e
Folding Simulation using Temperature Parallel Simulated Annealing
Makoto Hirosawa, Richard J. Feldmann, David Rawn, Masato Ishikawa, Masaki Hoshida
and George Michaels P
Toward a Human Genome Encyclopedia
Kaoru Yoshida, Cassandra Smith, Toni Kazic, George Michaels, Ron Taylor,
David Zawada, Ray Hagstrom and Ross Overbeek
Integrated System for Protein Information Processing

Hidetoshi Tanaka e e e e

Constraint Logic Programming and Paralle] Theorem Proving
Parallel Constraint Logic Programming Language GDCC and its Parallel Constraint Solvers
Satoshi Terasaki, David J. Hawley, Hiroyuki Sawada, Ken Satoh, Satoshi Menju,
Taro Kawagishi, Noboru Iwayama and Akira Aiba
cu-Prolog for Constraint-Based Grammar :
Hiroshi Tsuda e
Model Generation Theorem Provers on a Parallel Inference Machine
Masayuki Fujita, Ryuzo Hasegawa, Miyuki Koshimura and Hiroshi Fujita

Natural Language Processing
On a Grammar Formalism, Knowledge Bases and Tools for Natural Language Processing in
Logic Programming

Hiroshi Sano and Fumiyo Fukumoto

XXi

Argument Text Generation System (Dulcinea)

Teruo Ikeda, Akira Kotani, Kaoru Hagiwara and Yukihiro Kubo 385
Situated Inference of Temporal Information

Satoshi Tojo and Hideki Yasukawa 395
A Parallel Cooperation Model for Natural Language Processing

Shigeichiro Yamasaki, Michiko Turuta, Ikuko Nagasawa and Kenji Sugiyama 405

Parallel Inference Machine (PIM)
Architecture and Implementation of PIM/p

Kouichi Kumon, Akira Asato, Susumu Arai, Tsuyoshi Shinogi, Akira Hattori,

Hiroyoshi Hatazawa and Kiyoshi Hirano 414
Architecture and Implementation of PIM/m

Hiroshi Nakashima, Katsuto Nakajima, Seiichi Kondo, Yasutaka Takeda, Yi Inamura,

Satoshi Onishi and Kanae Masuda 425
Parallel and Distributed Implementation of Concurrent Logic Programming Language KL1

Keiji Hirata, Reki Yamamoto, Akira Imai, Hideo Kawai, Kiyoshi Hirano, .

Tsuneyoshi Takagi, Kazuo Taki, Akihiko Nakase and Kazuaki Rokusawa 436

Author Index 1

CONTENTS OF VOLUME 2

FOUNDATIONS

Reasoning about Programs
Logic Program Synthesis from First Order Logic Specifications

Tadashi Kawamura o v v ittt et e e e 463
Sound and Complete Partial Deduction with Unfolding Based on Well-Founded Measures
Bern Martens, Danny De Schreye and Maurice Bruynooghe 473

A Framework for Analyzing the Termination of Definite Logic Programs with respect to Call
Patterns

Danny De Schreye, Kristof Verschaetse and Maurice Bruynooghe 481
Automatic Verification of GHC-Programs: Termination

Lutz PIImer e e 489
Analogy
Analogical Generalization

Takenao Ohkawa, Toshiaki Mori, Noboru Babaguchi and Yoshikazu Tezuka 497
Logical Structure of Analogy: Preliminary Report

Jun ATITNao e e e 505

Abduction (1) ‘
Consistency-Based and Abductive Diagnoses as Generalised Stable Models :
Chris Preist and Kave Eshghi i 514

A Forward-Chaining Hypothetical Reasoner Based on Upside-Down Meta-Interpretation

Yoshihiko Ohta and Katsumi Inoue e e e 522
Logic Programming, Abduction and Probability

David Poole e 530

Abduction (2)
Abduction in Logic Programming with Equality

P. T. Cox, E. Knill and T. Pietrzykowski 539
Hypothetico-Deductive Reasoning

Chris Evans and Antonios C. Kakas it ie e 546
Acyclic Disjunctive Logic Programs with Abductive Procedures as Proof Procedure

Phan Minh Dung e 555

Semantics of Logic Programs
Adding Closed World Assumptions to Well Founded Semantics

Luis Moniz Pereira, José J. Alferes and Joaquim N. Aparicio 562
Contributions to the Semantics of Open Logic Programs

A. Bossi, M. Gabbrielli, G. Leviand M. C. Meo 570
A Generalized Semantics for Constraint Logic Programs

Roberto Giacobazzi, Saumya K. Debray and Giorgio Levi 581
Extended Well-Founded Semantics for Paraconsistent Logic Programs

Chiaki Sakama 592

Invited Paper
Formalizing Database Evolution in the Situation Calculus

Raymond Refter o o e e 600

XX1vV

Machine Learning
Learning Missing Clauses by Inverse Resolution

Peter Idestam-Almquist 610
A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns

Setsuo Arikawa, Satoru Kuhara, Satoru Miyano, Yasuhito Mukouchi, Ayumi Shinohara

and Takeshi Shinohara 618
Efficient Induction of Version Spaces through Constrained Language Shift
Claudio Carpineto o o vt it e e e e e e 626

Theorem Proving
Theorem Proving Engine and Strategy Description Language

Massimo Bruschi e e 634
A New Algorithm for Subsumption Test

Byeong Man Kim, Sang Ho Lee, Seung Ryoul Maeng and Jung Wan Cho 643
On the Duality of Abduction and Model Generation

Marc Denecker and Danny De Schreye i e e 650

Functional Programming and Constructive Logic
Defining Concurrent Processes Constructively

Yukihide Takayama 658
Realizability Interpretation of Coinductive Definitions and Program Synthesis with Streams

Makoto Tatsuta oo it e 666
MLOG: A Strongly Typed Confluent Functional Language with Logical Variables

Vincent Polrriez o e e e 674
A New Perspective on Integrating Functmnal and Logic Languages

John Darlington, Yi-ke Guo and Helen Pull e 682

Temporal Reasoning
A Mechanism for Reasoning about Time and Belief

Hideki Isozaki and Yoav Shoham 694
Dealing with Time Granularity in the Event Calculus
Angelo Montanari, Enrico Maim, Emanuele Ciapessoni and Elena Ratto 702

ARCHITECTURES & SOFTWARE

Hardware Architecture and Evaluation
UNIRED II: The High Performance Inference Processor for the Parallel Inference Machine
PIE64
Kentaro Shimada, Hanpei Koike and Hidehiko Tanaka 715
Hardware Implementation of Dynamic Load Balancing in the Parallel Inference Machine
PIM/c

T. Nakagawa, N. Ido, T. Tarui, M. Asaie and M. Sugie 723
Evaluation of the EM-4 Highly Parallel Computer using a Game Tree Searching Problem

Yuetsu Kodama, Shuichi Sakai and Yoshinori Yamaguchi 731
OR-Parallel Speedups in a Knowledge Based System: on Muse and Aurora

Khayri A. M. Ali and Roland Karlsson 739

Invited Paper
A Universal Parallel Computer Architecture
William J. Dally

XXV

AND-Parallelism and OR-~Parallelism
An Automatic Translation Scheme from Prolog to the Andorra Kernel Language

Francisco Bueno and Manuel Hermenegildo 759
Recomputation based Implementations of And-Or Parallel Prolog

Gopal Gupta and Manuel V. Hermenegildo 770
Estimating the Inherent Parallelism in Prolog Programs

David C. Sehr and Laxmikant V. Kalé 783

Implementation Techniques
Implementing Streams on Parallel Machines with Distributed Memory
Koichi Konishi, Tsutomu Maruyama, Akihiko Konagaya, Kaoru Yoshida and

Takashi Chikayama e e e 791
Message-Oriented Parallel Implementation of Moded Flat GHC

Kazunori Ueda and Masao Morita it 799
Towards an Efficient Compile-Time Granularity Analysis Algorithm

X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A. V. S. Sastry and R. Sundararajan 809
Providing Iteration and Concurrency in Logic Programs through Bounded Quantifications

Jonas Barklund and Hakan Millroth e 817

Extension of Logic Programming
An Implementation for a Higher Level Logic Programming Language

Anthony S. K. Cheng and Ross A. Paterson 825
Implementing Prolog Extensions: a Parallel Inference Machine

Jean-Marc Alliot, Andreas Herzig and Mamede Lima-Marques 833
Parallel Constraint Solving in Andorra-I

Steve Gregory and Rong Yang 843
A Parallel Execution of Functional Logic Language with Lazy Evaluation

Jong H. Nang, D. W. Shin, S. R. Maeng and Jung W. Cho 851

Task Scheduling and Load Analysis
Self-Organizing Task Scheduling for Parallel Execution of Logic Programs

Zheng Lin e 859
Asymptotic Load Balance of Distributed Hash Tables

Nobuyuki Ichiyoshi and Kouichi Kimura e 869
Concurrency
Constructing and Collapsing a Reflective Tower in Reflective Guarded Horn Clauses

Jiro Tanaka and Fumio Matono ittt 877
CHARM: Concurrency and Hiding in an Abstract Rewriting Machine

Andrea Corradini, Ugo Montanari and Francesca Rossi 887
Less Abstract Semantics for Abstract Interpretation of FGHC Programs

Kenji Horiuchi 0 o e e e 897

Databases and Distributed Systems
Parallel Optimization and Execution of Large Join Queries

Eileen Tien Lin, Edward Omiecinski and Sudhakar Yalamanchili 907
Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases
Alexandre Lefebvre i 915

A Distributed Programming Environment based on Logic Tuple Spaces
Paolo Ciancarini and David Gelernter i e 926

XXVi

Programming Environment
Visualizing Parallel Logic Programs with VISTA

E. Tick . . 934
Concurrent Constraint Programs to Parse and Animate Pictures of Concurrent Constraint
Programs

Kenneth M. Kahn e . 943
Logic Programs with Inheritance

Yaron Goldberg, William Silverman and Ehud Shapiro 951
Implementing a Process Oriented Debugger with Reflection and Program Transformation

Munenori Maeda e e 961

Production Systems
A New Parallelization Method for Production Systems
E. Bahr, F. Barachini and H. Mistelberger 969
Performance Evaluation of the Multiple Root Node Approach to the Rete Pattern Matcher
for Production Systems

Andrew Sohn and Jean-Luc Gaudiot e 977

APPLICATIONS & SOCIAL IMPACTS

Constraint Logic Programming
Output in CLP(R)

. Joxan Jaffar, Michael J. Maher, Peter J. Stuckey and Roland H. C. Yap 987
Adapting CLP(R) to Floating-Point Arithmetic

J . H M. Leeand M. H.van Emden i 996
Domain Independent Propagation

Thierry Le Provost and Mark Wallace SO 1004
A Feature-Based Constraint System for Logic Programming with Entailment

Hassan Ait-Kaci, Andreas Podelski and Gert Smolka 1012

Qualitative Reasoning
Range Determination of Design Parameters by Qualitative Reasoning and its Application to
Electronic Circuits :

Masaru Ohki, Eiji Oohira, Hiroshi Shinjo and Masahiro Abe 1022

Logical Implementation of Dynamical Models :
Yoshiteru Ishida e e e 1030

Knowledge Representation‘ '
The CLASSIC Knowledge Representation System or, KL-ONE: The Next Generation
Ronald J. Brachman, Alexander Borgida, Deborah L. McGuinness, Peter F. Patel-

~ Schneider and Lori Alperin Resnick 1036
Morphe: A Constraint-Based Object-Oriented Language Supporting Situated Knowledge
Shigeru Watari, Yasuaki Honda and Mario Tokoro 1044
On the Evolution of Objects in a Logic Programming Framework
F. Nihan Kesim and Marek Sergot i 1052

Panel Discussion: Future Direction of Next Generation Applications
The Panel on a Future Direction of New Generation Applications

Fumio Mizoguchi e e 1061
Knowledge Representation Theory Meets Reality: Some Brief Lessons from the CLASSIC
Experience

Romnald J. Brachman e 1063

XXVil

Reasoning with Constraints

Catherine Lassez« o i v i i e e e 1066
Developments in Inductive Logic Programming

Stephen Muggleton 1071
Towards the General-Purpose Parallel Processing System

Kazuo Taki e 1074

Knowledge-Based Systems
A Hybrid Reasoning System for Explaining Mistakes in Chinese Writing

Jacqueline Castaing 1076
Automatic Generation of a Domain Specific Inference Program for Building a Knowledge
Processing System

Takayasu Kasahara, Naoyuki Yamada, Yasuhiro Kobayashi, Katsuyuki Yoshino and

Kikuo Yoshimura 1084
Knowledge-Based Functional Testing for Large Software Systems
Uwe Nonnenmann and John K. Eddy 1091

A Diagnostic and Control Expert System Based on a Plant Model
Junzo Suzuki, Chiho Konuma, Mikito Iwamasa, Naomichi Sueda, Shigeru Mochiji and
Akimoto Kamiya o i e e 1099

Legal Reasoning
A Semiformal Metatheory for Fragmentary and Multilayered Knowledge as an Interactive
Metalogic Program
Andreas Hamfelt and Ake Hanssono 1107
HELIC-II: A Legal Reasoning System on the Parallel Inference Machine
Katsumi Nitta, Yoshihisa Ohtake, Shigeru Maeda, Masayuki Ono, Hiroshi Ohsaki and
Kiyokazu Sakane e 1115

Natural Language Processing
Chart Parsers as Proof Procedures for Fixed-Mode Logic Programs

David A. Rosenblueth e 1125
A Discourse Structure Analyzer for Japanese Text

K. Sumita, K. Ono, T. Chino, T. Ukita and S. Amano 1133
Dynamics of Symbol Systems: An Integrated Architecture of Cognition

Kéiti Hasida o o e e e e e e e 1141

Knowledge Support Systems
Mental Ergonomics as Basis for New-Generation Computer Systems

M H.ovan Emden e 1149
An Integrated Knowledge Support System

B. R. Gaines, M. Linsterand M. L. G. Shaw 1157
Modeling the Generational Infrastructure of Information Technology

B.R. Gaines 1165

Parallel Applications
Co-HLEX: Co-operative Recursive LSI Layout Problem Solver on Japan’s Fifth Generation
Parallel Inference Machine
Toshinori Watanabe and Keiko Komatsu 1173
A Cooperative Logic Design Expert System on a Multiprocessor
Yoriko Minoda, Shuho Sawada, Yuka Takizawa, Fumihiro Maruyama and ,
Nobuaki Kawatoo o e e e e e e e 1181
A Parallel Inductive Learning Algorithm for Adaptive Diagnosis
Yoichiro Nakakuki, Yoshiyuki Koseki and Midori Tanaka 1190

XXviii
Parallel Logic Simulator based on Time Warp and its Evaluation

Yukinori Matsumoto and Kazuo Taki 1198

Invited Paper
Applications of Machine Learning: Towards Knowledge Synthesis
Ivan Bratko e 1207

Author Index i

PLENARY SESSIONS

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

Launching the New Era

Kazuhiro Fuchi

Director, Research Center
Institute for New Generation Computer Technology (ICOT)
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

Thank you for coming to FGCS’92. As you know, we
have been conducting a ten-year research project on fifth
generation computer systems. Today is the tenth an-
niversary of the founding of our research center, making
it exactly ten years since our project actually started.

The first objective of this international conference is to
show what we have accomplished in our research during
these ten years.

Another objective of this conference is to offer an op-
portunity for researchers to present the results of ad-
vanced research related to Fifth Generation Computer
Systems and to exchange ideas. A variety of innovative
studies, in addition to our own, are in progress in many
parts of the world, addressing the future of computers
and information processing technologies.

I constantly use the phrase “Parallel Inference” as the
keywords to simply and precisely describe the technolog-
ical goal of this project. Our hypothesis is that parallel
inference technology will provide the core for those new
technologies in the future—technologies that will be able
to go beyond the framework of conventional computer
technologies.

During these ten years I have tried to explain this idea
whenever I have had the chance. One obvious reason why
I have repeated the same thing so many times is that
I wish its importance to be recognized by the public.
However, I have another, less obvious, reason.

When this project started, an exaggerated image of
the project was engendered, which seems to persist even
now. For example, some people believed that we were
trying, in this project, to solve in a mere ten years some
of the most difficult problems in the field of artificial in-
telligence (AI), or to create a machine translation system
equipped with the same capabilities as humans.

In those days, we had to face criticism, based upon
that false image, that it was a reckless project trying
to tackle impossible goals. Now we see criticism, from
inside and outside the country, that the project has failed
because it has been unable to realize those grand goals.

The reason why such an image was born appears to
have something to do with FGCS’81—a conference we
held one year before the project began. At that confer-

ence we discussed many different dreams and concepts.
The substance of those discussions was reported as sen-
sational news all over the world.

A vision with such ambitious goals, however, can never
be materialized as a real project in its original form.
Even if a project is started in accordance with the origi-
nal form, it cannot be managed and operated within the
framework of an effective research scheme. Actually, our
plans had become much more modest by the time the
project was launched.

For example, the development of application systems,
such as a machine translation system, was removed from
the list of goals. It is impossible to complete a highly
intelligent system in ten years. A preliminary stage is
required to enhance basic studies and to reform com-
puter technology itself. We decided that we should focus
our efforts on these foundational tasks. Another rea-
son is that, at that time in Japan, some private compa-
nies had already begun to develop pragmatic, low-level
machine-translation systems independently and in com-
petition with each other.

Most of the research topics related to pattern recog-
nition were also eliminated, because a national project
called “Pattern Information Processing” had already
been conducted by the Ministry of International Trade
and Industry for ten years. We also found that the stage
of the research did not match our own.

We thus deliberately eliminated most research top-
ics covered by Pattern Information Processing from the
scope of our FGCS project. However, those topics them-
selves are very important and thus remain major topics
for research. They may become a main theme of another
national project of Japan in the future.

Does all this mean that FGCS’81 was deceptive? 1
do not think so. First, in those days, a pessimistic out-
look predominated concerning the future development of
technological research. For example, there was a general
trend that research into artificial intelligence would be of
no practical use. In that sort of situation, there was con-
siderable value in maintaining a positive attitude toward
the future of technological research—whether this meant
ten years or fifty. I believe that this was the very reason

why we received remarkable reactions, both positive and
negative, from the public.

The second reason is that the key concept of Parallel
Inference was presented in a clear-cut form at FGCS’81.
Let me show you a diagram (Figure 1). This diagram is
the one I used for my speech at FGCS’81, and is now a
sort of “ancient document.” Its draft was completed in
1980, but I had come up with the basic idea four years
earlier. After discussing the concept with my colleagues
for four years, I finally completed this diagram.

Here, you can clearly see our concept that our goal
should be a “Parallel Inference Machine.” We wanted
to create an inference machine, starting with study on
a variety of parallel architectures. For this purpose, re-
search into a new language was necessary. We wanted to
develop a 5G-kernel language—what we now call KL1.
The diagram includes these hopes of ours.

The upper part of the diagram shows the research in-
frastructure. A personal inference machine or worksta-
tion for research purposes should be created, as well as a
chip for the machine. We expected that the chip would
be useful for our goal. The computer network should be
consolidated to support the infrastructure. The software
aspects are shown in the bottom part of the diagram.
Starting with the study on software engineering and Al,
we wanted to build a framework for high-level symbol
processing, which should be used to achieve our goal.
This is the concept I presented at the FGCS’81 confer-
ence.

I would appreciate it if you would compare this di-
agram with our plan and the results of the final stage
of this project, when Deputy Director Kurozumi shows
you them later. I would like you to compare the original
structure conceived 12 years ago and the present results
of the project so that you can appreciate what has been
accomplished and criticize what is lacking or what was
immature in the original idea.

Some people tend to make more of the conclusions
drawn by a committee than the concepts and beliefs of
an individual. It may sound a little bit beside point, but
I have heard that there is a proverb in the West that
goes, “The horse designed by a committee will turn out
to be a camel.”

The preparatory committee for this project had a se-
ries of enthusiastic discussions for three years before the
project’s launching. I thought that they were doing an
exceptional job as a committee. Although the commit-
tee’s work was great, however, I must say that the plan
became a camel. It seems that their enthusiasm cre-
ated some extra humps as well. Let me say in passing
that some people seem to adhere to those humps. I am
surprised that there is still such a so-called bureaucratic
view even among academic people and journalists.

This is not the first time I have expressed this opinion
of mine about the goal of the project. I have, at least
in Japanese, been declaring it in public for the past ten

years. I think I could have been discharged at any time
had my opinion been inappropriate.

As the person in charge of this project, I have pushed
forward with the lines of Parallel Inference based upon
my own beliefs. Although I have been criticized as still
being too ambitious, [have always been prepared to take
responsibility for that.

Since the project is a national project, it goes without
saying that it should not be controlled by one person. I
have had many discussions with a variety of people for
more than ten years. Fortunately, the idea of the project
has not remained just a personal belief but has become
a common belief shared by the many researchers and
research leaders involved in the project.

Assuming that this project has proved to be successful,
as I believe it has, this fact is probably the biggest reason
for its success. For a research project to be successful, it
needs to be favored by good external conditions. But the
most important thing is that the research group involved
has a common belief and a common will to reach its
goals. [have been very fortunate to be able to realize
and experience this over the past ten years.

So much for introductory remarks. I wish to outline, in
terms of Parallel Inference, the results of our work con-
ducted over these ten years. Ibelieve that the remarkable
feature of this project is that it focused upon one lan-
guage and, based upon that language, experimented with
the development of hardware and software on a large
scale.

From the beginning, we envisaged that we would take

- logic programming and give it a role as a link that con-

nects highly parallel machine architecture and the prob-
lems concerning applications and software. Qur mission
was to find a programming language for Parallel Infer-
ence.

A research group led by Deputy Director Furukawa
was responsible for this work. As a result of their ef-
forts, Ueda came up with a language model, GHC, at
the beginning of the intermediate stage of the project.
The two main precursors of it were Parlog and Concur-
rent Prolog. He enhanced and simplified them to make
this model. Based upon GHC, Chikayama designed a
programming language called KLI.

KL1, a language derived from the logic programming
concept, provided a basis for the latter half of our
project. Thus, all of our research plans in the final stage
were integrated under a single language, KL 1.

For example, we developed a hardware system, the
Multi-PSI, at the end of the intermediate stage, and
demonstrated it at FGCS’88. After the conference we
made copies and have used them as the infrastructure
for software research.

In the final stage, we made a few PIM prototypes, a
Parallel Inference Machine that has been one of our final
research goals on the hardware side. These prototypes
are being demonstrated at this conference.

(Year) 1 5

©@ WNetwork ae.as (optics) ----

@] (?ersonal inference machinej}——————(}Reducing to chips{>47

PROLOG machine + a

%
.
.

Intelligent programming environments

Various machines (chip, module)

®@ © © ©

Super machine + rendered intelligent

Parallel

----—<pata flow machine

Associative

Database machine

Other ideas

© Software

Knowledge engineering
(Accumulation) -----==----—-ooo——o o -

Software engineering (Basic theories)

Research for artificial intelligence

Fig. 1

comparable to large-scale
machine currently used

' LISP
v APL
SMALLTALK
(New software) PS, etc
N functional .
(logic) programming

Designing and prototype — building environments

Problem solving

Knowledge base

Conceptional development diagram

N\

)

New language

(Inference machine})

Higher-level symbol manipulation
Planning

Programming

Theorem proving

Games

QA - language understanding

Consultations

T. Moto-oka (ed.): Fifth Generation Computer Systems (Proc. FGCS’81),

JIPDEC: North-Holland, 1982, p. 113

Each prototype has a different architecture in its in-
terconnection network and so forth, and the architecture
itself is a subject of research. Viewed from the outside,
however, all of them are KL1 machines.

Division Chief Uchida and Laboratory Chief Taki will
show you details on PIM later. What I want to em-
phasize here is that all of these prototypes are designed,
down to the level of internal chips, with the assumption
that KL1, a language that could be categorized as a very
high-level language, is a “machine language.”

On the software side as well, our research topics were
integrated under the KL1 language. All the application
software, as well as the basic software such as operating
systems, were to be written in KL1.

We demonstrated an operating system called PIMOS
at FGCS’88, which was the first operating system soft-
ware written in KL1. It was immature at that time, but
has been improved since then. The full-fledged version
of PIMOS now securely backs the demonstrations being
shown at this conference.

Details will later be given by Laboratory Chief
Chikayama, but I wish to emphasize that not only have
we succeeded in writing software as complicated and
huge a$ an operating system entirely in KL1, but we
have also proved through our own experience that KL1
is much more appropriate than conventional languages
for writing system software such as operating systems.

One of the major challenges in the final stage was to

demonstrate that KL1 is effective not only for basic soft-
ware, such as operating systems and language implemen-
tations, but also for a variety of applications. As Labo-
ratory Chief Nitta will report later, we have been able to
demonstrate the effectiveness of KL1 for various appli-
cations including LSI-CAD, genetic analysis, and legal
reasoning. These application systems address issues in
the real world and have a virtually practical scale. But,
again, what I wish to emphasize here is that the objec-
tive of those developments has been to demonstrate the
effectiveness of Parallel Inference.

In fact, it was in the initial stage of our project that we
first tried the approach of developing a project around
one particular language. The technology was at the level
of sequential processing, and we adopted ESP, an ex-
panded version of Prolog, as a basis.

Assuming that ESP could play a role of KLO0, our ker-
nel language for sequential processing, a Personal Se-
quential Inference machine, called PSI, was designed as
hardware. We decided to use the PSI machine as a work-
station for our research. Some 500 PSIs, including mod-
ified versions, have so far been produced and used in the
project.

SIMPOS, the operating system designed for PSI, is
written solely in ESP. In those days, this was one of
the largest programs written in a logic programming lan-
guage.

Up to the intermediate stage of the project, we used
PSI and SIMPOS as the infrastructure to conduct re-
search on expert systems and natural language process-
ing.

This kind of approach is indeed the dream of re-
searchers, but some of you may be skeptical about our
approach. Our project, though conducted on a large
scale, is still considered basic research. Accordingly, it is
supposed to be conducted in a free, unrestrained atmo-
sphere so as to bring about innovative results. Some of
you may wonder whether the policy of centering around
one particular language restrains the freedom and diver-
sity of research.

But this policy is also based upon my, or our, philos-
ophy. I believe that research is a process of “assuming
and verifying hypotheses.” If this is true, the hypotheses
must be as pure and clear as possible. If not, you cannot
be sure of what you are trying to verify.

A practical system itself could include compromise or,
to put it differently, flexibility to accommodate various
needs. However, in a research project, the hypotheses
must be clear and verifiable. Compromises and the like
could be considered after basic research results have been
obtained. This has been my policy from the very begin-
ning, and that is the reason why I took a rather contro-
versial or provocative approach.

We had a strong belief that our hypothesis of focusing
on Parallel Inference and KIL1 had sufficient scope for a
world of rich and free research. Even if the hypothesis

acted as a constraint, we believed that it would act as a
creative constraint.

I would be a liar if I was to say that there was no
resistance among our researchers when we decided upon
the above policy. KL1 and parallel processing were a
completely new world to everyone. It required a lot of
courage to plunge headlong into this new world. But
once the psychological barrier was overcome, the re-
searchers set out to create new parallel programming
techniques one after another.

People may not feel like using new programming lan-
guages such as KL1. Using established languages and
systems only, or a kind of conservatism, seems to be the
major trend today. In order to make a breakthrough into
the future, however, we need a challenging and adven-
turing spirit. I think we have carried out our experiment
with such a spirit throughout the ten-year project.

Among the many other results we obtained in the fi-
nal stage was a fast theorem-proving system, or a prover.
Details will be given in Laboratory Chief Hasegawa's re-
port, but I think that this research will lead to the res-
urrection of theorem-proving research.

Conventionally, research into theorem proving by com-
puters has been criticized by many mathematicians who
insisted that only toy examples could be dealt with.
However, very recently, we were able to solve a problem
labelled by mathematicians as an ‘open problem’ using
our prover, as a result of collaborative research with Aus-
tralian National University.

The applications of our prover is not limited to math-
ematical theorem proving; it is also being used as the
inference engine of our legal reasoning system. Thus,
our prover is being used in the mathematics world on
one hand, and the legal world on the other.

The research on programming languages has not ended
with KL1. For example, a constraint logic programming
language called GDCC has been developed as a higher-
level language than KL1. We also have a language called
Quixote.

From the beginning of this project, I have advocated
the idea of integrating three types of languages—logic,
functional, and object-oriented-——and of integrating the
worlds of programming and of databases. This idea has
been materialized in the Quixote language; it can be
called a deductive object-oriented database language.

Another language, CIL, was developed by Mukai in the
study of natural language processing. CIL is a semantics
representation language designed to be able to deal with
situation theory. Quixote incorporates CIL in a natural
form and therefore has the characteristics of a semantics
representation language. As a whole, it shows one possi-
ble future form of knowledge representation languages.

More details on Quixote, along with the development
of a distributed parallel database management system,
Kappa-P, will be given by Laboratory Chief Yokota.

Thus far I have outlined, albeit briefly, the final results

of our ten-year project. Recalling what I envisaged ten
years ago and what I have dreamed and hoped would
materialize for 15 years, I believe that we have achieved
as much as or more than what I expected, and I am quite
satisfied.

Naturally, a national project is not performed for mere
self-satisfaction. The original goal of this project was to
create the core of next-generation computer technolo-
gies. Various elemental technologies are needed for fu-
ture computers and information processing. Although it
is impossible for this project alone to provide all of those
technologies, we are proud to be able to say that we have
created the core part, or at least provided an instance of
it.

The results of this project, however, cannot be com-
mercialized as soon as the project is finished, which is
exactly why it was conducted as a national project. I
estimate that it takes us another five years, which could
be called a period for the “maturation of the technolo-
gies”, for our results to actually take root in society. I
had this prospect in mind when this project started ten
years ago, and have kept declaring it in public right up
until today. Now the project is nearing its end, but my
idea is still the same.

There is often a gap of ten or twenty years between the
basic research stage of a technology and the day it ap-
pears in the business world. Good examples are UNIX,
C, and RISC, which has become popular in the current
trend toward downsizing. They appear to be up-to-date
in the business world, but research on them has been
conducted for many years. The frank opinions of the re-
searchers involved will be that industry has finally caught
up with their research.

There is thus a substantial time lag between basic re-
search and commercialization. Our project, from its very
outset, set an eye on technologies for the far distant fu-
ture. Today, the movement toward parallel computers
is gaining momentum worldwide as a technology leading
into the future. However, skepticism was dominant ten
years ago. The situation was not very different even five
vears ago. When we tried to shift our focus on parallel
processing after the initial stage of the project, there was
a strong opinion that a parallel computer was not possi-
ble and that we should give it up and be happy with the
successful results obtained in the initial stage.

In spite of the skepticism about parallel computers
that still remains, the trend seems to be changing dras-
tically. Thanks to constant progress in semiconductor
technology, it is now becoming easier to connect five hun-
dred, a thousand, or even more processor chips, as far as
hardware technology is concerned.

Currently, the parallel computers that most people are
interested in are supercomputers for scientific computa-
tion. The ideas there tend to still be vague regarding the
software aspects. Nevertheless, a new age is dawning.

The software problem might not be too serious as long

as scientific computation deals only with simple, scaled-
up matrix calculations, but it will certainly become se-
rious in the future. Now suppose this problem has been
solved and we can nicely deal with all the aspects of
large-scale problems with complicated overall structures.
Then, we would have something like a general-purpose
capability that is not limited to scientific computation.
We might then be able to replace the mainframe com-
puters we are using now.

The scenario mentioned above is one possibility lead-
ing to a new type of mainframe computer in the future.
One could start by connecting a number of processor
chips and face enormous difficulties with parallel soft-
ware.

However, he or she could alternatively start by con-
sidering what technologies will be required in the future,
and I suspect that the answer should be the Parallel In-
ference technology which we have been pursuing.

I am not going to press the above view upon you. How-
ever, | anticipate that if anybody starts research without
knowing our ideas, or under a philosophy that he or she
believes is quite different from ours, after many twists
and turns that person will reach more or less the same
concept as ours—possibly with small differences such as
different terminology. In other words, my opinion is that
there are not so many different essential technologies.

It may be valuable for researchers to struggle through
a process of research independently from what has al-
ready been done, finally to find that they have followed
the same course as somebody else. But a more efficient
approach would be to build upon what has been done in
this FGCS project and devote energy to moving forward
from that point. I believe the results of this project will
provide important insights for researchers who want to
pursue general-purpose parallel computers.

This project will be finished at the end of this year.
As for “maturation of the Parallel Inference technol-
ogy”, I think we will need a new form of research activ-
ities. There is a concept called “distributed cooperative
computing” in the field of computation models. I ex-
pect that, in a similar spirit, the seeds generated in this
project will spread both inside and outside the country
and sprout in many different parts of the world.

For this to be realized, the results of this project must
be freely accessible and available worldwide. In the soft-
ware area, for example, this means that it is essential
to disclose all our accomplishments including the source
codes and to make them “international common public
assets.”

MITI Minister Watanabe and the Director General of
the Bureau announced the policy that the results of our
project could be utilized throughout the world. Enor-
mous effort must have been made to formulate such a
policy. I find it very impressive.

We have tried to encourage international collabora-
tion for ten years in this project. As a result, we have

enjoyed opportunities to exchange ideas with many re-
searchers involved in advanced studies in various parts of
the world. They have given us much support and coop-
eration, without which this project could not have been
completed.

In that regard, and also considering that this is a
Japanese national project that aims at making a contri-
bution, though it may only be small, toward the future of
mankind, we believe that we are responsible for leaving
our research accomplishments as a legacy to future gen-
erations and to the international community in a most
suitable form. This is now realized, and I believe it is an
important springboard for the future.

Although this project is about to end, the end is just
another starting point. The advancement of computers
and information processing technologies is closely related
to the future of human society. Social thought, ideolo-
gies, and social systems that fail to recognize its signifi-
cance will perish as we have seen in recent world history.
We must advance into a new age now. To launch a new
age, I fervently hope that the circle of those who share
our passion for a bright future will continue to expand.
Thank you.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

Overview of the Ten Years of the FGCS Project

Takashi Kurozumi

Institute for New Generation Computer Technology
4-28, Mita 1l-chome, Minato-ku, Tokyo 108, Japan

Kurozumi @ icot.or.jp

Abstract

This paper introduces how the FGCS Project
started, its overall activities and the results of the
FGCS project. The FGCS Project was launched in
1982 after a three year preliminary study stage.
The basic framework of the fifth generation
computer is parallel processing and inference
processing based on logic programming. Fifth
generation computers were viewed as suitable for
the knowledge information processing needs of the
near future. ICOT was established to promote the
FGCS Project. This paper shows not only, ICOT’s
efforts in promoting the FGCS project, but
relationship between ICOT and related
organizations as well. I, also, conjecture on the
parallel inference machines of the near future.

1 Preliminary Study Stage for
the FGCS Project

The circumstances prevailing during the
preliminary stage of the FGCS Project, from 1979 to
1981, can be summarized as follows.

-Japanese computer technologies had reached the
level of the most up-to-date overseas computer
technologies.

-A change of the role of the Japanese national
project for computer technologies was being
discussed whereby there would be a move away
from improvement of industrial competitiveness by
catching up with the latest European computer
technologies and toward world-wide scientific
contribution through the risky development of
leading computer technologies.

In this situation, the Japanese Ministry of
International Trade and Industry (MITI) started
study on a new project - the Fifth Generation
Computer Project. This term expressed MITI's will
to develop leading technologies that would progress
beyond the fourth generation computers due to

appear in the near future and which would
anticipate upcoming trends.

The Fifth Generation Computer Research
Committee and its subcommittee (Figure 1-1) were
established in 1979. It took until the end of 1981 to
decide on target technologies and a framework for
the project.

Main committee for
the fifth generation computer

— Task group for
the fifth generation computer

i
Sub-committee

1
Sub-committee Sub-committee
for for for computer
systemalization basic theory architecture
technology N
I
working working
groups groups

Figure 1-1 Organization of the Fifth Generation
Computer Committee

Well over one hundred meetings were held with a
similar number of committee members
participating. The following important near-future
computer technologies were discussed.

- Inference computer technologies for knowledge
processing

- Computer technologies to process large-scale
data bases and knowledge bases

- High performance workstation technologies
- Distributed functional computer technologies

- Super-computer technologies for scientific
calculation

These computer technologies were investigated and
discussed from the standpoints of international
contribution by developing original Japanese
technologies, the important technologies in future,
social needs and conformance with Japanese
governmental policy for the national project.
Through these studies and discussions, the
committee decided on the objectives of the project by

10

the end of 1980, and continued future studies of
technical matters, social impact, and project
schemes.

The committee’s proposals for the FGCS Project
are summarized as follows.

® The concept of the Fifth Generation Computer:
To have parallel (non-Von Neumann)
processing and inference processing using
knowledge bases as basic mechanisms. In order
to have these mechanisms, the hardware and
software interface is to be a logic program
language (Figure 1-2) .

@ The objectives of the FGCS project: To develop
these innovative computers, capable of
knowledge information processing and to
overcome the technical restrictions of
conventional computers.

OComputer for

Knowledge Information
Processing System (KIPS)

......................

OBasic Functions— { Applications A
ll 4
! nowledge'}:
v ase Functionsy!

Software

il
s

) {[Knowledge Programming |
xInference using Knowledge base 7 \
nference
§ Functions

%Ease of Use i

(Intelligent Assistantfor " ogic A
Human Activities) i Programming I

: -
. 1
OBasic Mechanisn of HW & S/W— !
*Logical Inference Processing
(based on Logic Programming)
*Highly Parallel Processing

Figure 1-2 Concept of the Fifth Generation
Computer

Highly Parallel
Architecture i

\
v
N

-2~ Hardware
L VLSI

® The goals of the FGCS project: To research and
develop a set of hardware and software
technologies for FGCS, and to develop an FGCS
prototype system consisting of a thousand
element processors with inference execution
speeds of between 100M LIPS and 1G LIPS
{Logical Inferences Per Second).

@ R&D period for the project: Estimated to be 10
years, divided into three stages.

- 3-year initial stage for R&D of basic
technologies

- 4-year intermediate stage for R&D of sub-
systems

- 3-year final stage for R&D of total prototype
system

MITI decided to launch the Fifth Generation
Computer System (FGCS) project as a national
project for new information processing, and made
efforts to acquire a budget for the project.

At the same time, the international conference on
FGCS ’81 was prepared and held in October 1981 to .
announce these results and to hold discussions on

the topic with foreign researchers.

2 Overview of R&D Activities
and Results of the FGCS
Project

2.1 Stages and Budgeting in the FGCS

Project

The FGCS project was designed to investigate a
large number of unknown technologies that were
yet to be developed. Since this involved a number of
risky goals, the project was scheduled over a
relatively long period of ten years. This ten-year
period was divided into three stages.

- In the initial stage (fiscal 1982-1984), the
purpose of R&D was to develop the basic
computer technologies needed to achieve the
goal.

- In the intermediate stage (fiscal 1985-1988), the
purpose of R&D was to develop small to medium
subsystems.

- In the final stage (fiscal 1989-1992), the purpose
of R&D was to develop a total prototype system.
The final stage was initially planned to be three
years. After reexamination halfway through the
final stage, this stage was extended to four years
to allow evaluation and improvement of the total
system in fiscal year 1992. Consequently, the
total length of this project has been extended to

11 years.
o ye - -
h Y nitial Stage Intermediate Final Stage
| Stdy 13 years:a2~ 84 Stage 4 years: 89~ 92
| Stage (TOTAL:y8.3B) 4 years: 85~ 88 (3years total:y20.78)

(TOTAL : ¥21.6B)

i ~
wo7e~1981)

* @R&D of Basic ® R&D of Total o Total
C

i
!
h
i
il
1
i @ R&D of Experimental
1

5th G. Comp Small-to Scale (Prototype}) Evaluation
Technology ; Sub-system System
Budget | 1982 1983 4 11985 1986 1987 1988 1989 1990 1991 1992

¥6.5B y7.0B y7.2B (y3.6B)
$40.6M $43.7M $51.4M%3
£26.0M £28.0M £30.0M°3

v400M y2.7B_y5.1B 'y4.7B y5.55B y5.6B y5.78B
$1.86M*1 $12.6M 523.7M: $21.9M $34.5M+2 $35.0M $35.6M
£1.30M+1 £8.80M £16.6M : £15.3M £22.0M-2 £22.4M £22.8M
10- year initial plan
» R&D are carried out under the auspices of MITI.
(All budget (Total budgets:y54.6B) are covered by MITL}
*1 $1= %215, £1 = ¥ 307 (1982~1985)

*2 $1= %160, £1 = ¥ 250 (1986~1990)
*3 $1= ¥ 140, £ = ¥240 (1991~)

Figure 2-1 Budgets for the FGCS project

(for each
fiscal
year)

Each year the budget for the following years R&D
activities was decided. MITI made great efforts in
negotiating each year’s budget with the Ministry of
Finance. The budgets for each year, which are all
covered by MITI, are shown in Figure 2-1. The total
budget for the 3-year initial stage was about 8
billion yen. For the 4-year intermediate stage, it
was about 22 billion yen. The total budget for 1989
to 1991 was around 21 billion yen. The budget for
1992 is estimated to be 3.6 billion yen.

Consequently, the total budget for the 11l-year
period of the project will be about 54 billion yen.

2.2 R&D subjects of each stage

At the beginning, it was considered that a detailed
R&D plan could not be decided in detail for a period
as long as ten years. The R&D goals and the means
to reach these goals were not decided in detail.
During the project, goals were sought and methods
decided by referring back to the initial plan at the
beginning of each stage.

The R&D subjects for each stage, shown in Figure
2-2, were decided by considering the framework and
conditions mentioned below.

We defined 3 groups of 9 R&D subjects at the
beginning of the initial stage by analyzing and
rearranging the 5 groups of 10 R&D subjects
proposed by the Fifth Generation Computer
Committee.

At the end of the initial stage, the basic research
themes of machine translation and speech, figure
and image processing were excluded from this
project. These were excluded because computer
vender efforts on these technologies were rccognized
as having become very active.

In the middle of the intermediate stage, the task
of developing a large scale electronic dictionary was
transferred to EDR (Electronic Dictionary Research
Center), and development of CESP (Common ESP
system on UNIX) was started by AIR (Al language
Research Center).

The basic R&D framework for promoting this
project is to have common utilization of developed
software by unifying the software development
environment (especially by unifying programming
languages). By utilizing software development
systems and tools, the results of R&D can be
evaluated and improved. Of course, considering the
nature of this project, there is another reason
making it difficult or impossible to use commercial
products as a software development environment.

In each stage, the languages and the software
development environment are unified as follows .

- Initial stage: Prolog on DEC machine
- Intermediate stage: ESP on PSI and SIMPOS
- Final stage: KL1 on Multi-PSI (or PIM) and
PIMOS (PSI machines are also used as pseudo
multi-PSI systems.) (Figure 2-6)
2.3 Overview of R&D Results of
Hardware System
Hardware system R&D was carried out by the
subjects listed listed below in each stage.
@ Initial stage

< initial Stage_ ><_Intermediate Stage__><____Final Stage >

Yot [1982] 831 ‘B4

985] ‘86 '87] '88

1989 ‘a0['91f '92]

|9@Basic S/W System

«5G Kernel Languages
sProblem Solving &
Inference SIWM
KB Management SIWM
eintelligent interface
SIWM(Software module)
eintelligent
Programming SIWM

©Opilot Model for
Software Development

®Basic S/W System
e5G Kernel Lang

@Experimental Parallel
Application System

g
eProblem Solving &
Inference SIWM

eKB Management SIWM
eIntelligent Interface

eintelligent Programming
eExperimental Application

®Knowledge
Programming S/w System
sKnowledge construction
& Utilization
sNatural Language
Interface
eProblem Solving &
Prog i LP.Prover)

system for Basic SIW
®Development
Support System

® Advanced Inference Method

® Basic Software System

*SIM Hardware ilot Model for Paratiel
«SIM Software sPilot Mo o Davelopment einference Control
eNetwork System for Module (PIMOS)
l®Hardware System Development Support «KB Management Modul

oPIM Functior;‘al ®Hardware System (KBMS:Kappa & Quixote)
Mechanism

*KBM Functional « Inference subsystem #Prototype Hardswatre
Mechani; KB Subsy ystem

Figure 2-2 Transition of R&D subjects in each
stage

@ Functional mechanism modules and
simulators for PIM (Parallel Inference
Machine) of the hardware system

® Functional mechanism modules and
simulators for KBM (Knowledge Base
Machine) of the hardware system

© SIM (Sequential Inference Machine)
hardware of pilot model for software
development

@ Intermediate Stage
® Inference subsystem of the hardware system .

® Knowledge base subsystem of the hardware
system

© Pilot model for parallel software development
of the development support system.

@ Final Stage
@ Prototype hardware system

Initial Stage Intermediate Stage Final Stage
38 7 g 7

"84 [1985]_'86]_'87] 88

- Ps- T »| FEP ——| FEP
S tial
mioence | LCHET 1| psiin) (o5 | L
Machines CHI-II H

Development irmware

] 1
1]
[P] | ’
Support Multi-Ps| . : PIM 1
k| PSI Plexperimental ! !
N) A'AC12:51 1 S Sor O o R i|Hardware | |
(Geno Gy — i i| Systems | |
- i H
H 1]
H 1 1
1 1
1 1
t]
L

KL1-b

Parallel | e
FGCS Prototype

inference Hardware
System

PIM Mechanism
(Simulator)
'Eauﬂqw Mechanism

System

¥ i leddccmcan a
r r H - H -
iKnowledge; , KB(QA Mtlachar)usm 7 . }(BM g
H ; imulator] K imulator and ;
i Base / eExperimentalkDs .~ Experimental |
i system Model(Delta) ¢ odel !

Figure 2-3 Transition of R&D results of Hardware
System

The major R&D results on SIM were the PSI
(Personal Sequential Inference Machine) and CHI
(high performance back-end inference unit). In the
initial stage, PSI- 1 (D ©) was developed as KLO
(Kernel Language Version 0) machine. PSI- I had

12

around 35 KLIPS (Logical Inference Per Second)
execution speed. Around 100 PSI- I machines were
used as main WSs (workstations) for the sequential
logic programming language, ESP, in the first half
of the intermediate stage. CHI-I (©® (©) showed
around 200 KLIPS execution speed by using WAM
instruction set and high-speed devices. In the
intermediate stage, PSI was redesigned as multi-
PSI FEP (Front End Processor) and PSI-1I, and has
performance of around 330-400 KLIPS. CHI was
also redesigned as CHI-I (@ (©), with more than
400 KLIPS performance. PSI- I machines were the
main WSs for ESP after the middle of the
intermediate stage, and were able to be used for
KL1 by the last year of the intermediate stage. PSI-
Il was developed as a commercial product by a
computer company by using PIM/m CPU
technologies, with the permission of MITI, and by
using UNIX.

R&D on PIM continued throughout the project, as
follows.

- In the initial stage, experimental PIM hardware
simulators and software simulators with 8 to 16
processors were trial-fabricated based on data
flow and reduction mechanisms (®®).

- In the intermediate stage, we developed multi-
PSI V1, which was to construct 6 PSI-Is, as the
first version of the KL1 machine. The
performance of this machine was only several
KLIPS because of the KL1 emulator (2 ©). It
did, however, provide evaluation and experience
by developing a very small parallel OS in KLI.
This meant that we could develop multi-PSI V2
with 64 PSI-II CPUs connected by a mesh
network (2 ®). The performance of each CPU
for KL1 was around 150 KLIPS, and the average
performance of the full multi-PSI V2 was 5
MLIPS. This speed was enough to significantly
improved to encourage efforts to develop various
parallel KL1 software programs including an
practical OS.

- After development of multi-PSI V2, we promote
the design (® @) and trial-fabrication of PIM
experimental models (®®).

- At present, we are completing development of
prototype hardware consisting of 3 large scale
PIM modules and 2 small scale experimental
PIM modules (® @). These PIM modules are
designed to be equally suited to the KL1
machine for inference and knowledge base
management, and to be able to be installed all
programs written by KL1. This is in spite of
their using different architecture.

The VPIM system is a KL1-b language processing
system which gives a common base for PIM
firmware for KL1-b developed on conventional
computers.

R&D on KBM continued until the end of the
intermediate stage. An experimental relational
data base machine (Delta) with 4 relational
algebraic engines was trial-fabricated in the initial
stage (O @®). During the intermediate stage, a
deductive data base simulator was developed to use
PSIs with an accelerator for comparison and
searching. An experimental system was also
developed with multiple-multiple name spaces, by
using CHI. Lastly, a knowledge base hardware
simulator with unification engines and multi-port
page memory was developed in this stage (&0 ®).
We developed DB/KB management software, called
Kappa, on concurrent basic software themes. At the
beginning of the final stage, we thought that
adaptability of PIM with Kappa for the various
description forms for the knowledge base was more
important than effectivity of KBM with special
mechanism for the specific KB forms. In other
words, we thought that deductive object-oriented
DB technologies was not yet matured to design
KBM as a part of the prototype system.

24 Overview of R&D Results of
Software Systems

The R&D of software systems was carried out by a
number of subjects listed below in each stage.
@ Initial stage
- Basic software
® 5G Kernel Languages

® Problem solving and inference software
module

© Knowledge base management software
module

@ Intelligent interface software module
(® Intelligent programming software module

@ SIM software of pilot model for development
support

@ Basic software system in the intermediate stage
®-® (as in the initial stage)

(® Experimental application system for basic
software module

® Final stage
- Basic software system
@ Inference Control module
(® KB managementmodule
- Knowledge programming software
© Problem solving and programming module
@ Natural language interface module

® Knowledge construction and utilization
module

(® Advanced problem solving inference method

Experimental parallel application system

To make the R&D results easy to understand, I will
separate the results for languages, basic software,
knowledge programming and application software.
2.4.1 R&D results of Fifth Generation
Computer languages

As the first step in 5G language development, we
designed sequential logic programming languages
KLO and ESP (Extended Self-contained Prolog) and
developed these language processors (D ®). KLO,
designed for the PSI hardware system, is based on
Prolog. ESP has extended modular programming
functions to KLO and is designed to describe large
scale software such as SIMPOS and application
systems.

As a result of research on parallel logic
programming language, Guarded Horn Clauses, or
GHC, was proposed as the basic specification for
KL1 (Kernel Language Version 1) (D®). KL1 was,
then, designed by adding various functions to KL1
such as a macro description (2®). KL1 consists of a
machine level language (KL1-b (base)), a core
language (KL1-¢) for writing parallel software and
pragma (KL1-p) to describe the division of parallel
processes. Parallel inference machines, multi-PSI
and PIM, are based on KL1-b. Various parallel
software, including PIMOS, is written in KL1-c and
KL1-p.

A’um is an object oriented language. The results
of developing the A’um experimental language
processor reflect improvements in KL1 (Q®, ®®@).

To research higher level languages, several
languages were developed to aid description of
specific research fields. CIL (Complex
Indeterminate Language) is the extended language
of Prolog that describes meanings and situations for
natural language processing (O @, @ @). CRL
{Complex Record Language) was developed as a
knowledge representation language to be used
internally for deductive databases on nested
relational DB software (2 (©). CAL (Contrainte
Avec Logique) is a sequential constraint logic
language for constraint programming (Q®).

Mandala was proposed as a knowledge
representation language for parallel processing, but
was not adopted because it lacks a parallel
processing environment and we had enough
experience with it in the initial stage (D©).

Quixote is designed as a knowledge
representation language and knowledge-base
language for parallel processing based on the
results of evaluation by CIL and CRL. Quixote is
also a deductive object-oriented database language
and play the key role in KBMS. A language
processor is currently being developed for Quixote.
GDCC(Guarded Definite Clause with Constraints)

KLO (Refu\ed

ac ine Ievel \ (by AIR)
Languages * m Rffi\l: d) -
(sequential] [FT—o—o—) '°'°'°g
equentia
Migh level | CIL Refmed
igh leve
Lar?guages m
CAL
A'um
> KL1
Machine level GHC KL1-b (Refined)
Languages KL1-c KL1-p.
Parallel |
High level

Languages 1

Figure 2-4 Transition of R&D of 5G Languages

is a parallel constraint logic language that processes
CAL results.

2.4.2 R&D Results of Basic Software (OS)

In the initial stage, we developed a preliminary
programming and operating system for PSI, called
SIMPOS, using ESP (O ® @). We continued to
improve SIMPOS by adding functions
corresponding to evaluation results. We also took
into account the opinions of inside users who had
developed software for the PSI machine using

SIMPOS (2®D).

Since no precedent parallel OS which is suited for
our aims had been developed anywhere in the world,
we started to study parallel OS using our
experiences of SIMPOS development in the initial
stage. A small experimental PIMOS was developed
on the multi-PSI V1 system in the first half of the
intermediate stage (2 ®). Then, the first version of
PIMOS was developed on the multi-PSI V2 system,
and was used by KL1 users (® ®). PIMOS
continued to be improved by the addition of
functions such as remote access, file access and
debugging support (®®).

The Program Development Support System was
also developed by the end of the intermediate stage
(@O®).

Initial Stage

[Kaiser] |Kappa- I |Kappa-II

Flnal Stage

Intermediate Stage

Kappa- II (V3) F
SIMPOS l s AN SIMPOS NSIMPOS
(V‘l)"] 7 (V‘S) 1 (v8) |.
< PSRRI FER., . PSLIUF
Paragraph|
Program Kappa-p 1
PIMOS PIMOS %‘PIMOS I~
(v0) % v1) I (v3)
(Multl PST, 3 LZres .
. V_l' 'D

Figure 2-5 Transition of basic software R&D

14

Paragraph was developed as a parallel
programming support system for improving
concurrency and load distribution by the indication
results of parallel processing (O ®@).

In regard to DB/KB management software,
Kaiser was developed as a experimental relational
DB management software in the initial stage
(® ©). Then, Kappa-1 and Kappa-1I were
developed to provide the construction functions
required to build a large scale DB/KB that could be
used for natural language processing, theorem
proving and various expert systems (@ ©). Kappa-
I and Kappa-II ,based on nested relational model,
are aimed at the database engine of deductive
object-oriented DBMS .

Recently, a parallel version of Kappa , Kappa-P,
is being developed. Kappa-P can manage
distributed data bases stored on distributed disks in
PIM. (® ®) Kappa-P and Quixote constitute the
KBMS.

2.4.3 R&D Results of Problem Solving and
Programming Technologies

Throughout this project, from the viewpoint of
similarity mathematical theorem proving and
program specification, we have been investigating
proving technologies. The CAP (Computer Aided
Proof) system was experimentally developed in the
initial stage (® ®). TRS (Term Rewriting System)
and Metis were also developed to support specific
mathematical reasoning, that is, the inference
associated equals sign (D ®).

An experimental program for program verification
and composition, Argus, was developed by the end of
the intermediate stage (O ® and @ ®). These
research themes concentrated on R&D into the
MGTP theorem prover in the final stage(®©).

Meta-programming technologies, partial
evaluation technologies and the learning
mechanism were investigated as basic research on
advanced problem solving and the inference method

00, @0, ®D).

2.4.4 R&D Results on Natural Language
Processing Technologies

Natural language processing tools such as BUP
(Bottom-Up Parser) and a miniature electronic
dictionary were experimentally developed in the
initial stage (O @). These tools were extended,
improved and arranged into LTB (Language Tool
Box). LTB is a library of Japanese processing
software modules such as LAX (Lexical Analyzer),
SAX (Syntactic Analyzer), a text generator and
language data bases (D@, @@).
An experimental discourse understanding
‘system, DUALS, was implemented to investigate

context processing and semantic analysis using
these language processing tools (D @,@ ©@). An
experimental argument system, called Dulcinia, is
being implemented in the final stage (®@).

2.4.5 R&D Results on Knowledge Utilization
Technologies and Experimental
Application Systems

In the intermediate stage we implemented
experimental knowledge utilization tools such as
APRICOT, based on hypothetical reasoning
technology, and Qupras, based on qualitative
reasoning technology (@ ©). At present, we are
investigating such inference mechanisms for expert
systems as assumption based reasoning and case
based reasoning, and implementing these as
knowledge utilization tools to be applied to the
experimental application system (®®).

As an application system, we developed, in
Prolog, an experimental CAD system for logic
circuit design support and wiring support in the
initial stage. We also developed several
experimental expert systems such as a CAD system
for layout and logic circuit design, a troubleshooting
system, a plant control system and a go-playing
system written in ESP (@®), etc.).

Small to medium parallel programs written in
KL1 were also developed to test and evaluate
parallel systems by the end of the intermediate
stage. These were improved for application to PIM
in the final stage. These programs are PAX (a
parallel semantics analyzer), Pentomino solver,
shortest path solver and Tsume-go.

We developed several experimental parallel
systems, implemented using KL1 in the final stage,
such as LSI-CAD system (for logical simulation,
wire routing, block layout, logical circuit design),
genetic information processing system, legal
inference system based on case based reasoning,
expert systems for troubleshooting, plant control
and go-playing (3g).

Some of these experimental systems were
developed from other earlier sequential systems in
the intermediate stage while others are new
application fields that started in the final stage.

2.5 Infrastructure of the FGCS
Project

As explained in 2.2, the main language used for
software implementation in the initial stage was
Prolog. In the intermediate stage, ESP was mainly
used, and in the final stage KL1 was the principle
language.

Therefore, we used a Prolog processing system on
a conventional computer and terminals in the
initial stage. SIMPOS on PSI (I and 1) was used
as the workbench for sequential programming in

_Final Stage

lnitlal Stage Intme Stage

Machines

T
for j ——="Thulti- psn(saPEsxwmu) l
Software

................... T
Development, ___.-" SIMPOS PIM
e SIMPOS, etc.
Simulse‘mon !.,~ o
Communication) PSi- 1 (100Units S1-11 (300Units) 'S1-111 (100Units)

a
(an Pubhc networ;)__

ic network

Networks (\Ila Leased lines)

(Vla Public network} ,/

'’

LAN

Star, .
work”

Figure 2-6 Infrastructure for R&D

the intermediate stage. We are using PSI (Il and
Il as a workbench and remote terminals to parallel
machines (multi-PSIs and PIMs) for parallel
programming in the final stage. We have also used
conventional machines for simulation to design PIM
and a communication (E-mail, etc.) system.

In regard to the computer network system, LAN
has been used as the in-house system, and LAN has
been connected to domestic and international
networks via gateway systems.

3 Promoting Organization of
the FGCS Project

ICOT was established in 1982 as a non-profit core
organization for promoting this project and it began
R&D work on fifth generation computers in June
1982, under the auspices of MITI.

Establishment of ICOT was decided by considering
the following necessity and effectiveness of a
centralized core research center for promoting
originative R&D,

-R&D themes should be directed and selected by
powerful leadership, in consideration of hardware
and software integration, based on a unified
framework of fifth generation computers,
throughout the ten-year project period.

-It was necessary to develop and nurture
researchers working together because of the lack of
researchers in this research field.

- A core center was needed to exchange information
and to collaborate with other organizations and
outside researchers.

ICOT consists of a general affairs office and a
research center (Figure 3-1) .

The organization of the ICOT research center was
changed flexibly depending on the progress being
made. In the initial stage, the research center
consisted of a research planning department and
three research laboratories. The number of

15

‘President Executnve General Affairs Office
General Administration
Manager Department
Interlnational
T Relations
[gpard (:'f Auditors Department
Research Center
I Director Research
of Planning
i Research Department
"‘ Center S eearch
anagement esearc
Department
Technolo Directors nd Research
Laboratories
on 20

[Project Promotion Committee | Working Groups |

Figure 3-1 ICOT Organization

laboratories was increased to five at the beginning
of the intermediate stage. These laboratories
became one research department and seven
laboratories in 1990.

< “lnitial Stage ><Intermediate Stage _><___ Final Stage

Fcal [1982] '831 '84[1985] '86] '87] '88|19_8ﬂ_9_0_|_'9LL_Ll

|Director
@puty Director l Deputy Directors !
-}1st R.Lab. JUResearch Dep.
H2nd R.Lab. 1 ;:‘ RF.{La:.-
H2nd R.Lab. |H3rd R.Lab.] 3rd Riab. —
{4th R.Lab. 1 [;L::
Brd Rieb lgrsen,] R RaE:
*R.Lab.:Research Laboratory 7th R.Lab.

Number of 1REs€arch Planning Department / Section

Researchers (40 | 421 mmm‘x) [95 110071001100 |
Number of Researchers’ Parent Orga
-nm T 6] 19917 7]
Number of Committee and Worl mg roups
[z17 18 13I 5] 9 131315717]]
Figure 3-2 Transition of ICOT research center
organization

X

The number of researchers at the ICOT research
center has increased yearly, from 40 in 1982 to 100
at the end of the intermediate stage.

All researchers at the ICOT research center have
been transferred from national research centers,
public organizations, and computer vendors, and the
like. To encourage young creative researchers and
promote originative R&D, the age of dispatched
researchers is limited to 35 years old. Because all
researchers are normally dispatched to the ICOT
research center for three to four years, ICOT had to
receive and nurture newly transferred researchers.
We must make considerable effort to continue to
consistently lead R&D in the fifth generation
computer field despite researcher rotation. This
rotation has meant that we were able to maintain a
staff of researchers in their 30’s, and also could
easily change the structure of organization in the
ICOT research center.

In total, 184 researchers have been transferred to

16

the ICOT research center with an average transfer
period of 3 years and eight months (including
around half of the dispatched researchers who are
presently at ICOT).

The number of organizations which dispatched
researchers to ICOT also increased, from 11 to 19.
This increase in participating organizations was
caused by an expanding scheme of the supporting
companies, around 30 companies, to dispatch
researchers to ICOT midway through the
intermediate stage.

The themes each laboratory was responsible for
changed occasionally depending on the progress
being made.

Figure 3-3 shows the present assignment of
research themes to each research laboratory.

Director Research Planning |3 Research planning
of Department & Section | & management
Center Research Department
t Research |3 -Prototype hardware system
Deputy
Directors| |] Ed Research |9 .Basic software (PIMOS)
aboratory
aboratory
h Eesearch o) -Constraint logic programming software
a
th Research | .Prover & itsapplication
aboratory o e
aboratory
7{1’1 esearch |2 -Parallel application system.
a

Research |
aboratory
1 id Research 3 -Basic software (Kappa & Quixote)
oratory
h Research |2 . Natural language interface software
oratory -Knowledge utilization software

=

(as of 1991)
Figure 3-3 ICOT research center organization

Every year we invited several visiting
researchers from abroad for several weeks at ICOT's
expense to discuss and to exchange opinion on
specific research themes with ICOT researchers. Up
to the present, we have invited 74 researchers from
12 countries in this program.

We also received six long-term (about one year
each) visiting researchers from foreign
governmental organizations based on
memorandums with the National Science
Foundation (NSF) in the United States, the
Institute National de Recherche en Informatique et
Automatiqeu (INRIA) in France, and the
Department of Trade and Industry (DTI) in the
United Kingdom (Figures 3-2 and 3-4).

Figure 3-4 shows the overall structure for
promoting this project. The entire cost for the R&D
activities of this project is supported by MITI based
on the entrust contract between MITI and ICOT.
Yearly and at the beginning of each stage we
negotiate our R&D plan with MITI. MITI receives
advice of this R&D plan and evaluations of R&D
results and ICOT research activities from the FGCS
project advisory committee.

ICOT executes the core part of R&D and has
contracts with eight computer companies for

[Advisory Committee |
| Advice

Transfering
R
- coT ese?rrglgn Staff
MITI | Expenses /|| General Affairs o Public
V Office Organizations
Research Center\p—|ETLMELNTTJIPDEC)

h 4

N . eComputer
Negotiation| (Core R&D work) :
neg of Researchers: Companies (14)
R&D Plan (U|41(1982) Visiting Researchers
00(1989~) . };vxteélc l??is%archeri
" e
RESEARCH } Discussion
Collaboration - -
eDomestic Project Promotion ||programming &
ETL,MEL,EDR etc. |[COMmMitee & Development work
o0Overseas &lorl:m%Groups e l° Computer
avour]
ANGTRLSICS: Research Institutes) ||__COmpanies (8)
Figure 3-4 Structure for promoting FGCS project

experimental production of hardware and
developmental software. Consequently, ICOT can
handle all R&D activities, including the
developmental work of computer companies towards
the goals of this project.
ICOT has set up committee and working groups to
discuss and to exchange opinions on overall plans
results and specific research themes with
researchers and research leaders from universities
and other research institutes. Of course,
construction and the themes of working groups are
changed depending on research progress. The
number of people in a working group is around 10 to
20 members, so the total number in the committee
and working groups is about 150 to 250 each year.
Another program for information exchange and
collaborative research activities and diffusion of
research results will be described in the following
chapter.

4 Distribution of R&D Results
‘and International Exchange
Activities

Because this project is a national project in which
world-wide scientific contribution is very important,
we have made every effort to include our R&D ideas,
processes and project results when presenting ICOT
activities. We, also, collaborate with outside
researchers and other research organizations.

We believe these efforts have contributed to
progress in parallel and knowledge processing
computer technologies. I feel that the R&D efforts
in these fields have increased because of the
stimulative effect of this project. We hope that R&D
efforts will continue to increase through
distribution of this projects R&D results. I believe
that many outside researchers have also made
significant contributions to this project through

their discussions and information exchanges with
ICOT researchers.

Discussion | Project Promotion

1CO B Commitee &
MITI T Working Groups

IP.R. of al Affai —
AIST] Jap GeneQrfﬁceffalrs (L_Visitors(iso-300ear) |
esearch Center Invited Researchers
L (R&D work) (total :74 Researchers)

j [| Accepting Dispatched

Permission Research
to use L.P.R. collaboration Researchers(total :8)

(From NSF,INRIA,DTI)
eDomestic
Lending of ETLEDR etc. Hosting
SIW Tools ®Overseas || [Conferences
(more than 20) :»71‘;{‘::'5'“ & Workshops

®international Conference
on FGCS ('81,’84,'88,'92)
Publications |Co-sponser with U.S.(NSF),
of TRITMs |France(INRIA),Sweden & italy
(more than 1800) [U.K.(IED of DT1)
35 Locations | |®Domestic Conferences

& onrequest

Publications
of Journal
(quarterly)

600 Locations

(35 forein countries)

Figure 4-1 R&D result distribution and research
collaboration

We could, for example, produce GHC, a core
language of the parallel system, by discussion with
researchers working on Parlog and Concurrent
Prolog. We could, also, improve the performance of
the PSI system by introducing the WAM instruction
set proposed by Professor Warren.

We have several programs for distributing the
R&D results of this project, to exchange information
and to collaborate with researchers and
organizations.

D One important way to present R&D activities
and results is publication and distribution of
ICOT journals and technical papers. We have
published and distributed quarterly journals,
which contain introductions of ICOT activities,
and technical papers to more than 600 locations
in 35 countries.

‘We have periodically published and sent more
than 1800 technical papers to around 30
overseas locations. We have sent TRs
(Technical Reports) and TMs (Technical
Memos) on request to foreign addresses. These
technical papers consist of more than 700 TRs
and 1100 TMs published since the beginning of
this project up to January 1992, A third of
these technical papers are written in English.

® In the second program ICOT researchers
discuss research matters and exchange
information with outside researchers.

- ICOT researchers have made more than 450
presentations at international conferences
and workshops, and at around 1800 domestic
conferences and workshops. They have
visited many foreign research organizations
to discuss specific research themes and to
explain ICOT activities.

17

- Every year, we have welcomed around 150 to
300 foreign researchers and specialists in
other fields to exchange information with
them and explain ICOT activities to them.

- As already described in the previous chapter,
we have so far invited 74 active researchers
from specific technical fields related to FGCS
technologies. We have also received six long-
term visiting researchers dispatched from
foreign governmental organization based on
agreement. These visiting researchers
conducted research at ICOT and published the
results of that research.

® We sponsored the following symposiums and

workshops to disseminate and exchange
information on the R&D results and on ICOT
activities.

- We hosted the International Conference on
FGCS’84 in November 1984. Around 1,100
persons participated and the R&D results of
the initial stage were presented. This
followed the International Conference on
FGCS’81, in which the FGCS project plan was
presented. We also hosted the International
Conference on FGCS’88 in November 1988.
1,600 persons participated in this
symposium, and we presented the R&D
results of the intermediate stage.

- We have held
7 Japan-Sweden (or Japan-Sweden-Italy)
workshops since 1983 (co-sponsored with
institute or universities in Sweden and Italy),
4 Japan-France Al symposiums since 1986,
(co-sponsored with INRIA of France),
4 Japan-U.S. AI symposiums since 1987 (co-
sponsored with NSF of U.S.A.), and
2 Japan-U.K. workshops since 1989 (co-
sponsored with DT of U.K.),

Participating researchers have become to

known each other well through presentations

and discussions during these symposiums and

workshops.

- We have also hosted domestic symposiums on
this project and logic programming
conferences every year.

@ Because the entire R&D cost of this project has

been provided by the government, such
intellectual property rights (IPR) as patents,
which are produced in this project, belong to the
Japanese government. These IPR are managed
by AIST (Agency of Industrial Science and
Technology). Any company wishing to produce
commercial products that use any of these IPR
must get permission to use them from AIST.
For example, PSI and SIMPOS have already
been commercialized by companies licensed by
AIST. The framework for managing IPR must

18

impartially utilize IPR acquired through this
project. That is, impartial permission to
domestic and foreign companies, and among
participating companies or others is possible
because of AIST.

® Software tools developed in this project that are
not yet managed as IPR by AIST can be used by
other organizations for non-commercial aims.
These software tools are distributed by ICOT
according to the research tools permission
procedure. We, now, have more than 20
software tools, such as PIMOS, PDSS, Kappa-II,
the A’um system, LTB, the CAP system, the cu-
prolog system and the TRS generator.
In other cases, we make the source codes of
some programs public by printing them in
technical papers.

® On specific research themes in the logic
programming field, we have collaborated with
organizations such as Argonne National
Laboratory (ANL), National Institute of Health
(NIH), Lawrence Berkeley Laboratory (LBL),
Swedish Institute of Computer Science (SICS)
and Australia National University (ANU).

5 Forecast of Some Aspects of
5G Machines

LSI technologies have advance in accordance with
past trends. Roughly speaking, the memory
capacity and the number of gates of a single chip
quadruple every three years. The number of boards
for the CPU of an inference machine was more than
ten for PSI- I, but only three for PSI-II and single
board for PIM.

The number of boards for 80M bytes memory was
16 for PSI- I, but only four for PSI-I and a single
for PIM (m).

Figure 5-1 shows the anticipated trend in board
numbers for one PE (processor element: CPU and
memory) and cost for one PE based on the actual
value of inference machines developed by this
project.

The trend shows that, by the year 2000, around
ten PEs will fit on one board, around 100 PEs will fit
in one desk side cabinet, and 500 to a 1,000 PEs will
fitin a large cabinet. This trend also shows that the
cost of one PE will halve every three years.

Figure 5-2 shows the performance trends of 5G
machines based on the actual performance of
inference machines developed by this project.

The sequential inference processing performance
for one PE quadrupled every three years. The
improvement in parallel inference processing
performance for one PE was not as large as it was
for sequential processing, because PIM performance
is estimated at around two and one half times that

[rocmarc - 1 ol i
MLIPS/PE
ielaive ot - i e
Hcompaired with PIM) | INumber Of{ tood)
------------ 1soxuesee |BOArd/1PE

(Parallel) PE:CPU + Memory/

10 e 300-400.
KLIPS/PE
(Sequential)

Kluster Chip
1Boards
]

(Sequential) Sosies

Boards
(1PE)_ ¥

0.1 t
PSI-1 -,

Fiscal
Year

T T T
1982 .19%; 1989 1993
>] 2000
GCS Project
VSt eas6Kbits *1Mbits *4Mbits *16Mbits *64Mbits *256Mbits
y DR o

Figure 5-1 Size and cost trends of 5G machines

of multi-PSI. Furthermore, Figure 5-2 shows the
performance of one board for both sequential and
parallel processing, and the performance of a
conventional micro-processor with CISC and RISC
technology. In this figure, future improvements in
the performance of one PE are estimated to be
rather lower than a linear extension of past values
would indicate because of the uncertainty of
whether future technology will be able to elicit such
performance improvements. Performance for one
board is estimated at about 20 MLIPS, which is 100
times faster than PIM. Thus, a parallel machine
with a large cabinet size could have 1 GLIPS. These
parallel systems will have the processing speeds
needed for various knowledge processing
applications in the near future.

Performance

1
GIPS | LIPS]

Performance/1CPU

[iy Sty v

tPerformance/1CPU
1004 1M H{Micro processor)
Mips| Lipy] fREERRRIsR00. o

,:;\

10 100 CH-T . Parallel(LIPS)
MIPS|LIPS

.-~ @Pedormanceﬁ Board l

1 . -,
mips|LIPS| 2asc! Pt
1

Fiscal
Year

PsI-1

Multi-
p= s 1Sequential(LiPs)

1982 .19'3; i 1993 2000
FGCS Project

Figure 5-2 Performance trends of 5G machines

Several parallel applications in this project, such as
CAD, theorem provers, genetic information
processing, natural language processing, and legal
reasoning are described in Chapter 2. These
applications are distributed in various fields and
aim at cultivating new parallel processing
application fields. '

We believe that parallel machine applications
will be extended to various areas in industry and
society, because parallel technology will become

common for computers in the near future. Parallel
application fields will expand gradually according
to function expansion by the use of advanced
parallel processing and knowledge processing
technologies.

6 Final Remarks

I believe that we have shown the basic framework
of the fifth generation computer based on logic
programming to be more than mere hypothesis. By
the end of the initial stage, we had shown the fifth
generation computer to be viable and efficient
through the development of PSI, SIMPOS and
various experimental software systems written in
ESP and Prolog.

I believe that by the end of the intermediate
stage, we had shown the possibility of realizing the
fifth generation computer through the development
of a parallel logic programming software
environment which consisted of multi-PSI and
PIMOS.

And I hope you can see the possibility of an era of
parallel processing arriving in the near future by
looking at the prototype system and the R&D
results of the FGCS Project.

Acknowledgment

This project has been carried out through the efforts

of the researchers at ICOT, and with the support of
MITI and many others outside of ICOT. We wish to
extend our appreciation to them all for the direct
and indirect assistance and co-operation they have
provided.

References

[Motooka, et al 1981] Proceedings of the Interna-
tional Conference on Fifth Generation Computer
Systems, 1981, JIPDEC

[Kawanobe, et al 1984] K.Kawanobe, et al. ICOT
Research and Development, Proceeding of the

International Conference on Fifth Generation
Computer Systems 1984, 1984, ICOT

[Kurozumi, et al 1987] T.Kurozumi, et al. Fifth
Generation Computer Systems Project, 1987,
ICOT TM303

[Kurozumi, et al 1988] T.Kurozumi, et al. ICOT Re-
search and development, Proceedings of the
International Conference on Fifth Generation
Computer Systems 1988, 1988, ICOT

[Kurozumi, 1990] T.Kurozumi. Fifth Generation
Computer Systems Project-Outline of Plan and
Results, 1990, ICOT TM-996

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

20

Summary of Basic Research Activities of the FGCS Project

Koichi Furukawa

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
furukawa@icot.or.jp

Abstract

The Fifth Generation Computer Project was launched
in 1982, with the aim of developing parallel comput-
ers dedicated to knowledge information processing. It
is commonly believed to be very difficult to parallelize
knowledge processing based on symbolic computation.
We conjectured that logic programming technology would
solve this difficulty.

We conducted our project while stressing two seem-
ingly different aspects of logic programming: one was
establishment of a new information technology, and the
other was pursuit of basic Al and software engineering
research.

In the former, we developed a concurrent logic pro-
gramming language, GHC, and its extension for practical
parallel programming, KL1. The invention of GHC/KL1
enabled us to conduct parallel research on the develop-
ment of software technology and parallel hardware ded-
icated to the new language.

We also developed several constraint logic program-
ming languages which are very promising as high level
languages for Al applications. Though most of them are
based on sequential Prolog technology, we are now in-
tegrating constraint logic programming and concurrent
logic programming and developing an integrated lan-
guage, GDCC.

In the latter, we investigated many fundamental Al
and software engineering problems including hypotheti-
cal reasoning, analogical inference, knowledge represen-
tation, theorem proving, partial evaluation and program
transformation.

As a result, we succeeded in showing that logic pro-
gramming provides a very firm foundation for many as-
pects of information processing: from advanced software
technology for Al and software engineering, through sys-
tem programming and parallel programming, to parallel
architecture.

The research activities are continuing and latest as
well as earlier results strongly indicate the truth of our
conjecture and also the fact that our approach is appro-
priate.

1 Introduction

In the Fifth Generation Computer Project, two main
research targets were pursued: knowledge information
processing and parallel processing. Logic programming
was adopted as a key technology for achieving both tar-
gets simultaneously. At the beginning of the project, we
adopted Prolog as our vehicle to promote the entire re-
search of the project. Since there were no systematic
research attempts based on Prolog before our project,
there were many things to do, including the development
of a suitable workstation for the research, experimental
studies for developing a knowledge-based system in Pro-
log and investigation into possible parallel architecture
for the language. We rapidly succeeded in promoting
research in many directions.

From this research, three achievements are worth not-

- ing. The first is the development of our own worksta-

tion dedicated to ESP, Extended Self-contained Prolog.
We developed an operating system for the workstation
completely in ESP [Chikayama 88]. The second is the
application of partial evaluation to meta programming.
This enabled us to develop a compiler for a new program-
ming language by simply describing an interpreter of the
language and then partially evaluating it. We applied
this technique to derive a bottom-up parser for context
free grammar given a bottom up interpreter for them. In
other words, partial evaluation made meta programming
useful in real applications. The third achievement was
the development of constraint logic programming lan-
guages. We developed two constraint logic programming
languages: CIL and CAL. CIL is for natural language
processing and is based on the incomplete data struc-
ture for representing “Complex Indeterminates” in sit-
uation theory. It has the capability to represent struc-
tured data like Minsky’s frame and any relationship be-
tween slots’ values can be expressed using constraints.
CIL was used to develop a natural language understand-
ing system called DUALS. Another constraint logic pro-
gramming language, CAL, is for non-linear equations.
Its inference is done using the Buchberger algorithm for
computing the Grobner Basis which is a variant of the
Knuth-Bendix completion algorithm for a term rewriting

system.

We encountered one serious problem inherent to Pro-
log: that was the lack of concurrency in the fundamental
framework of Prolog. We recognized the importance of
concurrency in developing parallel processing technolo-
gies, and we began searching for alternative logic pro-
gramming languages with the notion of concurrency.

We noticed the work by Keith Clark and Steve Gregory
on Relational Language {ClarkGregory 81] and Ehud
Shapiro on Concurrent Prolog [Shapiro 83]. These lan-
guages have a common feature of committed choice
nondeterminism to introduce concurrency. We devoted
our efforts to investigating these languages carefully
and Ueda finally designed a new committed choice
logic programming language called GHC [Ueda 86a]
[UedaChikayama 90], which has simpler syntax than the
above two languages and still have similar expressiveness.
We recognized the importance of GHC and adopted it as
the core of our kernel language, KL1, in this project. The
introduction of KL1 made it possible to divide the entire
research project into two parts: the development of par-
allel hardware dedicated to KL1 and the development of
software technology for the language. In this respect, the
invention of GHC is the most important achievement for
the success of the Fifth Generation Computer Systems
project.

Besides these language oriented researches, we per-
formed many fundamental researches in the field of arti-
ficial intelligence and software engineering based on logic
and logic programming. They include researches on non-
monotonic reasoning, hypothetical reasoning, abduction,
induction, knowledge representation, theorem proving,
partial evaluation and program transformation. We ex-
pected that these researches would become important
application fields for our parallel machines by the affinity
of these problems to logic programming and logic based
parallel processing. This is now happening.

In this article, we first describe our research efforts
in concurrent logic programming and in constraint logic
programming. Then, we discuss our recent research ac-
tivities in the field of software engineering and artificial
intelligence. Finally, we conclude the paper by stating
the dirction of future research.

2 Concurrent Logic Program-

ming

In this section, we pick up two important topics in
concurrent logic programming research in the project.
One is the design principles of our concurrent logic
programming language Flat GHC (FGHC) [Ueda 86a)
[UedaChikayama 90], on which the aspects of KL1 as
a concurrent language is based. The other is search
paradigms in FGHC. As discussed later, one drawback
of FGHC, viewing as a logic programming language, is

21

the lack of search capability inherent in Prolog. Since
the capability is related to the notion of completeness in
logic programming, recovery of the ability is essential.

2.1 Design Principles of FGHC

The most important feature of FGHC is that there is
only one syntactic extension to Prolog, called the com-
mitment operator and represented by a vertical bar “|”.
A commitment operator divides an entire clause into two
parts called the guard part (the left-hand side of the bar)
and the body part (the right-hand side). The guard of a
clause has two important roles: one is to specify a condi-
tion for the clause to be selected for the succeeding com-
putation, and the other is to specify the synchronization
condition. The general rule of synchronization in FGHC
is expressed as dataflow synchronization. This means
that computation is suspended until sufficient data for
the computation arrives. In the case of FGHC, guard
computation is suspended until the caller is sufficiently
instantiated to judge the guard condition. For exam-
ple, consider how a ticket vending machine works. After
receiving money, it has to wait until the user pushes a
button for the destination. This waiting is described as a
clause such that “if the user pushed the 160-yen button,
then issue a 160-yen ticket”.

The important thing is that dataflow synchronization
can be realized by a simple rule governing head unifica-
tion which occurs when a goal is executed and a corre-
sponding FGHC clause is called: the information flow of
head unification must be one way, from the caller to the
callee. For example, consider a predicate representing
service at a front desk. Two clauses define the predi-
cate: one is for during the day, when more customers are
expected, and another is for after-hours, when no more
customers are expected. The clauses have such defini-
tions as:

serve([First | Rest]) :- <extra-condition> |
do_service(First), serve(Rest).
serve([]) :- true | true.

Besides the serve process, there should be another pro-
cess queue which makes a waiting queue for service. The
top level goal looks like:

?- queue(Xs) , serve(Xs).

where “?-” is a prompt to the user at the terminal. Note
that the execution of this goal generates two processes,
queue and serve, which share a variable Xs. This shared
variable acts as a channel for data transfer from one pro-
cess to the other. In the above example, we assume that
the queue process instantiates Xs and the serve pro-
cess reads the value. In other words, queue acts as a
generator of the value of Xs and serve acts as the con-
sumer. The process queue instantiates Xs either to a

22

list of servees represented by [<first-servee>, <second-
servee>,...] or to an empty list []. Before the instanti-
ation, the value of Xs remains undefined.

Suppose Xs is undefined. Then, the head unification
invoked by the goal serve(Xs) suspends because the
equations Xs = [First | Rest] and Xs = [J cannot be
solved without instantiating Xs. But such instantiation
violates the rule of one-way unification. Note that the
term [First | Rest] in the head of serve means that
the clause expects a non-empty list to be given as the
value of the argument. Similarly, the term [] expects
an empty list to be given. Now, it is clear that the uni-
directionality of information flow realizes dataflow syn-
chronization.

This principle is very important in two aspects: one is
that the language provides a natural tool for expressing
concurrency, and the other is that the synchronization
mechanism is simple enough to realize very efficient par-
allel implementation.

2.2 Search Paradigms in FGHC

There is one serious drawback to FGHC because of the
very nature of committed choice; that is, it no longer
has an automatic search capability, which is one of the
most important features of Prolog. Prolog achieves its
search capability by means of automatic backtracking.
However, since committed choice uniquely determines a
clause for succeeding computation of a goal, there is no
way of searching for alternative branches other than the
branch selected. The search capability is related to the
notion of completeness of the logic programming compu-
tation procedure and the lack of the capability is very
serious in that respect.

One could imagine a seemingly trivial way of real-
izing search capability by means of or-parallel search:
that is, to copy the current computational environment
which provides the binding information of all variables
that have appeared so far and to continue computations
for each alternative case in parallel. But this does not
work because copying non-ground terms is impossible in
FGHC. The reason why it is impossible is that FGHC
cannot guarantee when actual binding will occur and
there may be a moment when a variable observed at
some processor remains unchanged even after some goal
has instantiated it at a different processor.

One might ask why we did not adopt a Prolog-like
language as our kernel language for parallel computa-
tion. There are two main reasons. One is that, as stated
above, Prolog does not have enough expressiveness for
concurrency, which we see as a key feature not only for
expressing concurrent algorithms but also for providing
a framework for the control of physical parallelism. The
other is that the execution mechanism of Prolog-like lan-
guages with a search capability seemed too complicated
to develop efficient parallel implementations.

We tried to recover the search capability by devising
programnﬁng techniques while keeping the programming
language as simple as possible. We succeeded in invent-
ing several programming methods for computing all so-
lutions of a problem which effectively achieve the com-
pleteness of logic programming. Three of them are listed
as follows:

(1) Continuation-based method [Ueda 86b]

(2) Layered stream method [OkumuraMatsumoto 87]

(3) Query compilation method [Furukawa 92]

In this paper, we pick up (1) and (3), which are
complementary to each other. The continuation-based
method is suitable for the efficient processing of rather
algorithmic problems. An example is to compute all ways
of partitioning a given list into two sublists by using
append. This method mimics the computation of OR-
parallel Prolog using AND-parallelism of FGHC. AND-
serial computation in Prolog is translated to continu-
ation processing which remembers continuation points
in a stack. The intermediate results of computation are
passed from the preceding goals to the next goals through
the continuation stack kept as one of the arguments of
the FGHC goals. This method requires input/output
mode analysis before translating a Prolog program into
FGHC. This requirement makes the method impracti-
cal for database applications because there are too many
possible input-output modes for each predicate.

The query compilation method solves this problem.
This method was first introduced by Fuchi [Fuchi 90]
when he developed a bottom-up theorem prover in KL1.
In his coding technique, the multiple binding problem is
avoided by reversing the role of the caller and the callee in
straightforward implementation of database query eval-
uation. Instead of trying to find a record (represented
by a clause) which matches a given query pattern repre-
sented by a goal, his method represents each query com-
ponent with a compiled clause, represents a databasae

‘with a data structure passed around by goals, and tries

to find a query component clause which matches a goal
representing a record and recurses the process for all po-
tentially applicable records in the database!. Since ev-
ery record is a ground term, there is no variable in the
caller. Variable instantiation occurs when query com-
ponent clauses are searched and an appropriate clause
representing a query component is found to match a
currently processed record. Note that, as a result of re-
versing the representation of queries and databases from
straightforward representation, the information flow is
now from the caller (database) to the callee (a query
component). This inversion of information flow avoids
deadlock in query processing. Another important trick
is that each time a query clause is called, a fresh vari-
able is created for each variable in the query component.
This mechanism is used for making a new environment

'We need an auziliary query clause which matches every record
after failing to match the record to all the real query clauses.

for each OR-parallel computation branch. These tricks
make it possible to use KL1 variables to represent object
level variables in database queries and, therefore, we can
avoid different compilation of the entire database and
queries for each input/output mode of queries.

The new coding method stated above is very gen-
eral and there are many applications which can be pro-
grammed in this way. The only limitation of this ap-
proach is that the database must be more instantiated
than queries. In bottom-up theorem proving, this re-
quirement is referred to as the range-restrictedness of
each axiom. Range-restrictedness means that, after suc-
cessfully finding ground model elements satisfying the
antecedent of an axiom, the new model element appear-
ing as the consequent of the axiom must be ground.

This restriction seems very strong. Indeed, there are
problems in the theorem proving area which do not
satisfy the condition. We need a top-down theorem
prover for such problems. However, many real life prob-
lemns satisfy the range-restrictedness because they al-
most always have finite concrete models. Such prob-
lems include VLSI-CAD, circuit diagnosis, planning, and
scheduling. We are developing a parallel bottom-up
theorem prover called MGTP (Model Generation The-
orem Prover) [FujitaHasegawa 91] based on SATCHMO
developed by Manthey and Bry [MantheyBry 88]. We
are investigating new applications to utilize the theorem
prover. We will give an example of computing abduction
using MGTP in Section 5.

3 Constraint Logic Program-

ming

We began our constraint logic programming research
almost at the beginning of our project, in relation to
the research on natural language processing. Mukai
[MukaiYasukawa 85] developed a language called CIL
(Complex Indeterminates Language) for the purpose of
developing a computational model of situation seman-
tics. A complez indeterminate is a data structure allow-
ing partially specified terms with indefinite arity. During
the design phase of the language, he encountered the idea
of freeze in Prolog II by Colmerauer [Colmerauer 86]. He
adopted freeze as a proper control structure for our CIL
language.

From the viewpoint of constraint satisfaction, CIL only
has a passive way of solving constraint, which means
that there is no active computation for solving con-
straints such as constraint propagation or solving si-
multaneous equations. Later, we began our research on
constraint logic programming involving active constraint
solving. The language we developed is called CAL. It
deals with non-linear equations as expressions to spec-
ify constraints. Three events triggered the research: one
was our preceding efforts on developing a term rewrit-

23

ing system called METIS for a theorem prover of linear
algebra [OhsugaSakai 91]. Another event was our en-
counter with Buchberger’s algorithm for computing the
Grobner Basis for solving non-linear equations. Since the
algorithm is a variant of the Knuth-Bendix completion
algorithm for a term rewriting system, we were able to
develop the system easily from our experience of devel-
oping METIS. The third event was the development of
the CLP(X) theory by Jaffar and Lassez which provides
a framework for constraint logic programming languages
[JaffarLassez 86).

There is further remarkable research on constraint
logic programming in the field of general symbol pro-
cessing [Tsuda 92]. Tsuda developed a language called
cu-Prolog. In cu-Prolog, constraints are solved by means
of program transformation techniques called unfold/fold
transformation (these will be discussed in more detail
later in this paper, as an optimization technique in re-
lation to software engineering). The unfold/fold pro-
gram transformation is used here as a basic operation
for solving combinatorial constraints among terms. Each
time the transformation is performed, the program is
modified to a syntactically less constrained program.
Note that this basic operation is similar to term rewrit-
ing, a basic operation in CAL. Both of these operations
try to rewrite programs to get certain canonical forms.
The idea of cu-Prolog was introduced by Hasida during
his work on dependency propagation and dynamical pro-
gramming [Hasida 92]. They succeeded in showing that
context-free parsing, which is as efficient as chart parsing,
emerges as a result of dependency propagation during the
execution of a program given as a set of grammar rules
in cu-Prolog. Actually, there is no need to construct a
parser. cu-Prolog itself works as an efficient parser.

Hasida [Hasida 92] has been working on a fundamental
issue of artificial intelligence and cognitive science from
the aspect of a computational model. In his computa-
tion model of dynamical programming, computation is
controlled by various kinds of potential energies associ-
ated with each atomic constraint, clause, and unification.
Potential energy reflects the degree of constraint viola-
tion and, therefore, the reduction of energy contributes
constraint resolution.

Constraint logic programming greatly enriched the
expressiveness of Prolog and is now providing a very
promising programming environment for applications by
extending the domain of Prolog to cover most Al prob-
lems.

One big issue in our project is how to integrate con-
straint logic programming with concurrent logic pro-
gramming to obtain both expressiveness and efficiency.

This integration, however, is not easy to achieve be-
cause (1) constraint logic programming focuses on a con-
trol scheme for efficient execution specific to each con-
straint solving scheme, and (2) constraint logic program-
ming essentially includes a search paradigm which re-

24

quires some suitable support mechanism such as auto-
matic backtracking.

It turns out that the first problem can be processed ef-
ficiently, to some extent, in the concurrent logic program-
ming scheme utilizing the data flow control method. We
developed an experimental concurrent constraint logic
programming language called GDCC (Guarded Defi-
nite Clauses with Constraints), implemented in KL1
[HawleyAiba 91]. GDCC is based on an ask-tell mech-
anism proposed by Maher [Maher 87], and extended by
Saraswat [Saraswat 89]. It extends the guard computa-
tion mechanism from a simple one-way unification solv-
ing problem to a more general provability check of con-
ditions in the guard part under a given set of constraints
using the ask operation. For the body computation, con-
straint literals appearing in the body part are added to
the constraint set using the tell operation. If the guard
conditions are not known to be provable because of a
lack of information in the constraints set, then compu-
tation is suspended. If the conditions are disproved un-
der the constraints set, then the guard computation fails.
Note that the provability check controls the order of con-
straint solving execution. New constraints appearing in
the body of a clause are not included in the constraint
set until the guard conditions are known to be provable.

The second problem of realizing a search paradigm in a
concurrent constraint logic programming framework has
not been solved so far. One obvious way is to develop an
OR-parallel search mechanism which uses a full unifica-
tion engine implemented using ground term representa-
tion of logical variables [Koshimura et al. 91]. However,
the performance of the unifier is 10 to 100 times slower
than the built in unifier and, as such, it is not very practi-
cal. Another possible solution is to adopt the new coding
technique introduced in the previous section. We expect
to be able to efficiently introduce the search paradigm by
applying the coding method. The paradigm is crucial if
parallel inference machines are to be made useful for the
numerous applications which require high levels of both
expressive and computational power.

4 Advanced Software Engineer-
ing

Software engineering aims at supporting software devel-
opment in various dimensions; increase of software pro-
ductivity, development of high quality software, pursuit
of easily maintainable software and so on. Logic pro-
gramming has great potential for many dimensions in
software engineering. One obvious advantage of logic
programming is the affinity for correctness proof when
given specifications. Automatic debugging is a related
issue. Also, there is a high possibility of achieving auto-
matic program synthesis from specifications by applying
proof techniques as well as from examples by applying

induction. Program optimization is another promising
direction where logic programming works very well.

In this section, two topics are picked up: (1) meta
programming and its optimization by partial evaluation,
and (2) unfold/fold program transformation.

4.1 Meta Programming and Partial
Evaluation

We investigated meta programming technology as a ve-
hicle for developing knowledge-based systems in a logic
programming framework inspired by Bowen and Kowal-
ski’s work [BowenKowalski 83]. It was a rather direct
way to realize a knowledge assimilation system using the
meta programming technique by regarding integrity con-
straints as meta rules which must be satisfied by a knowl-
edge base. One big problem of the approach was its inef-
ficiency due to the meta interpretation overhead of each
object level program. We challenged the problem and
Takeuchi and Furukawa [TakeuchiFurukawa 86] made a
breakthrough in the problem by applying the optimiza-
tion technique of partial evaluation to meta programs.
We first derived an efficient compiled program for an ex-
pert system with uncertainty computation given a meta
interpreter of rules with certainty factor. In this pro-
gram, we succeeded in getting three times speedup over
the original program. Then, we tried a more non-trivial
problem of developing a meta interpreter of a bottom-up
parser and deriving an efficient compiled program given
the interpreter and a set of grammar' rules. We suc-
ceeded in obtaining an object program known as BUP,

* developed by Matsumoto [Matsumoto ef al. 83]. The

importance of the BUP meta-interpreter is that it is not
a vanilla meta-interpreter, an obvious extension of the
Prolog interpreter in Prolog, because the control struc-
ture is totally different from Prolog’s top-down control
structure.

After our first success of applying partial evaluation
techniques in meta programming, we began the devel-
opment of a self-applicable partial evaluator. Fujita and
Furukawa [FujitaFurukawa 88] succeeded in developing a
simple self-applicable partial evaluator. We showed that
the partial evaluator itself was a meta interpreter very
similar to the following Prolog interpreter in Prolog:

solve(true).
solve((A,B)) :- solve(A), solve(B).
solve(A) :- clause(A,B), solve(B).

where it is assumed that for each program clause,
H :- B, a unit clause, clause(H,B), is asserted?. A
goal, solve(G), simulates an immediate execution of the
subject goal, G, and obtains the same result.

This simple definition of a Prolog self-interpreter,
solve, suggests the following partial solver, psolve.

2clause(.,.) is available as a built-in procedure in the
DECsystem-10 Prolog system.

psolve(true,true).
psolve((A,B),(RA,RB)) :-
psolve(A,RA), psolve(B,RB).
psolve(A,R) :-
clause(A,B), psolve(B,R).
psolve(A,A) :- ’$suspend’(4).

The partial solver, psolve(G,R), partially solves a
given goal, G, returning the result, R. The result, R,
is called the residual goal(s) for the given goal, G. The
residual goal may be true when the given goal is totally
solved, otherwise it will be a conjunction of subgoals,
each of which is a goal, R;, suspended to be solved at
'$suspend’ (R;), for some reason. An auziliary predi-
cate, *$suspend’ (P), is defined for each goal pattern,
P, by the user.
Note that psolve is related to solve as:

solve(G) :- psolve(G,R), solve(R).

That is, a goal, G, succeeds if it is partially solved with
the residual goal, R, and R in turn succeeds (is totally
solved). The total solution for G is thus split into two
tasks: partial solution for G and total solution for the
residual goal, R.

We developed a self-applicable partial evaluator by
modifying the above psolve program. The main modi-
fication is the treatment of built-in predicates in Prolog
and those predicates used to define the partial evaluator
itself to make it self-applicable. We succeeded in apply-
ing the partial evaluator to itself and generated a com-
piler by partially evaluating the psolve program with
respect to a given interpreter, using the identical psolve.
We further succeeded in obtaining a compiler generator,
which generates different compilers given different inter-
preters, by partially evaluating the psolve program with
respect to itself, using itself.

Theoretically, it was known that self-application of
a partial evaluator generates compilers and a compiler
generator {Futamura 71]. There were many attempts
to realize self-applicable partial evaluators in the frame-
work of functional languages for a long time, but no suc-
cesses were reported until very recently [Jones et al. 85,
[Jones et al. 88], [GomardJones 89]. On the other hand,
we succeeded in developing a self-applicable partial eval-
uator in a Prolog framework in a very short time and
also in a very elegant way. This proves some merits of
logic programming languages over functional program-
ming languages, especially in its binding scheme based
on unification.

4.2 Unfold/Fold Program Transforma-
tion

Program transformation provides a powerful method-
ology for the development of software, especially the
derivation of efficient programs either from their formal

25

specification or from decralative but possibly inefficient
programs. Programs written in declarative form are of-
ten inefficient under Prolog’s standard left to right con-
trol rule. Typical examples are found in programs based
on a generate and test paradigm. Seki and Furukawa
[SekiFurukawa 87] developed a program transformation
method based on unfolding and folding for such pro-
grams. We will explain the idea in some detail. Let
gen_test (L) be a predicate defined as follows:

gen_test(L) :- gen(L), test(L).

where L is a variable representing a list, gen(L) is a gen-
erator of the list L, and test (L) is a tester for L. Assume
both gen and test are incremental and are defined as
follows:

gen([]1).
gen([XIL]) :- gen_element(X), gen(L).
test([]).

test([XIL]) :- test_element(X), test(L).

Then, it is possible to fuse two processes gen and test
by applying unfold/fold transformation as follows:

gen_test ([XIL]) :- gen([XIL]), test(IXIL1).

unfold at gen and test

gen_test ([XIL]) :- gen_element(X), gen(L),
test_element(X), test(L).

fold by gen_test

gen_test ([X|L]) :- gen_element(X),
test_element(X), gen_test(L).

If the tester is not incremental, the above unfold/fold
transformation does not work. One example is to test
that all elements in the list are different from each other.
In this case, the test predicate is defined as follows:

test([1).
test ([XIL]) :- non_member(X,L), test(L).
non_member(_,[]).
non_member(X, [YIL]) :-

dif(X,Y), non_member(X,L).

where dif (X,Y) is a predicate judging that X is not equal
to Y. Note that this test predicate is not incremental be-
cause a test for the first element X of the list requires the
information of the entire list. The solution we gave to
this problem was to replace the test predicate with an
equivalent predicate with incrementality. Such an equiv-
alent program test’ is obtained by adding an accumu-
lator as an extra argument of the test predicate defined
as follows:

26

test?’ ([1,).
test’ ([XIL] ,Acc) :-
non_member (X,Acc), test’(L,[X[Accl).

The relationship between test and test’ is given by
the following theorem:

Theorem
test(L) = test’ (L, [])

Now, the original gen_test program becomes

gen_test(L) :- gen(L), test’(L,[]1).

We need to introduce the following new predicate to per-
form the unfold/fold transformation:

gen_test’(L,Acc) :- gen(L), test’(L,Acc).

By applying a similar transformation process as be-
fore, we get the following fused recursive program of
gen_test’:

gen_test’ ([J,.).
gen_test’ ([X|L],Acc) :- gen_element(X),
non_member(X,Acc), gen_test’(L,[XlAccl).

By symbolically computing the two goals

7- test([X1,...,Xn]).

?- test’ ([X1,...,Xn]).

and comparing the results, one can find that the reorder-
ing of pair-wise comparisons by the introduction of the
accumulator is analogous to the exchange of double sum-
mation £, YT, Nz;; = £,5, 2. Therefore, we refer
to this property as structural commutativity.

One of the key problems of unfold/fold transformation
is the introduction of a new predicate such as gen_test’
in the last example. Kawamura [Kawamura 91] devel-
oped a syntactic rule for finding suitable new predicates.
There were several attempts to find appropriate new
predicates using domain dependent heuristic knowledge,
such as append optimization by the introduction of dif-
ference list representation. Kawamura’s work provides
some general criteria for selecting candidates for new
predicates. His method first analyzes a given program
to be transformed and makes a list of patterns which
may possibly appear in the definition of new predicates.
This can be done by unfolding a given program and prop-
erly generalizing all resulting patterns to represent them

with a finite number of distinct patterns while avoid-

ing over-generalization. One obvious strategy to avoid
over-generalization is to perform least general general-
ization by Plotkin [Plotkin 70]. Kawamura also intro-
duced another strategy for suppressing unnecessary gen-
eralization: a subset of clauses of which the head can be

unifiable to each pattern is associated with the pattern
and only those patterns having the same associated sub-
set of clauses are generalized. Note that a goal pattern
is unfolded only by clauses belonging to the associated
subset. Therefore the suppression of over-generalization
also suppresses unnecessary expansion of clauses by un-
necessary unfolding.

5 Logic-based AI Research

For a long time, deduction has played a central role in
research on logic and logic programming. Recently, two
other inferences, abduction and induction, received much
attention and much research has been done in these new
directions. These directions are related to fundamental
Al problems that are open-ended by their nature. They
include the frame problem, machine learning, distributed
problem solving, natural language understanding, com-
mon sense reasoning, hypothetical reasoning and ana-
logical reasoning. These problems require non-deductive
inference capabilities in order to solve them.

Historically, most Al research on these problems
adopted ad hoc heuristic methods reflecting problem
structures. There was a tendency to avoid a logic based
formal approach because of a common belief in the lim-
itation of the formalism. However, the limitation of log-
ical formalism comes only from the deductive aspect of
logic. Recently it has been widely recognized that ab-
duction and induction based on logic provide a suitable
framework for such problems requiring open-endedness
in their formalism. There is much evidence to support
this observation.

e In natural language understanding, unification
grammar is playing an important role in integrat-
ing syntax, semantics, and discourse understanding.

e In non-monotonic reasoning, logical formalism such
as circumscription and default reasoning and its
compilation to logic based programs are studied ex-
tensively.

e In machine learning, there are many results based
on logical frameworks such as the Model Inference
System, inverse resolution, and least general gener-
alization.

¢ In analogical reasoning, analogy is naturally de-
scribed in terms of a formal inference rule similar to
logical inference. The associated inference is deeply
related to abductive inference.

In the following, three topics related to these issues
are picked up: they are hypothetical reasoning, analogy,
and knowledge representation.

5.1 Hypothetical Reasoning

A logical framework of hypothetical reasoning was stud-
ied by Poole et al. [Poole et al. 87]. They discussed the
relationship among hypothetical reasoning, default rea-
soning and circumscription, and argued that hypotheti-
cal reasoning is all that is needed because it is simply and
efficiently implemented and is powerful enough to imple-
ment other forms of reasoning. Recently, the relation-
ship of these formalisms was studied in more detail and
many attempts were made to translate non-monotonic
reasoning problems into equivalent logic programs with
negation as failure.

Another direction of research was the formulation of
abduction and its relationship- to negation as failure.
There was also a study of the model theory of a class
of logic programs, called general logic programs, allow-
ing negation by failure in the definition of bodies in the
clausal form. By replacing negation-by-failure predicates
by corresponding abducible predicates which usually give
negative information, we can formalize negation by fail-
ure in terms of abduction [EshghiKowalski 89]

A proper semantics of general logic programs is given
by stable model semantics [GelfondLifschitz 88]. It is a
natural extension of least fixpoint semantics. The differ-
ence is that there is no Tp operator to compute the sta-
ble model directly, because we need a complete model for
checking the truth value of the literal of negation by fail-
ure in bottom-up fixpoint computation. Therefore, we
need to refer to the model in the definition of the model.
This introduces great difficulty in computing stable mod-
els. The trivial way is to assume all possible models and
see whether the initial models are the least ones satisfy-
ing the programs or not. This algorithm needs to search
for all possible subsets of atoms to be generated by the
programs and is not realistic at all.

Inoue [Inoue et al. 92] developed a much more efficient
algorithm for computing all stable models of general logic
programs. Their algorithm is based on bottom-up model
generation method. Negation-by-failure literals are used
to introduce hypothetical models: ones which assume
the truth of the literals and the others which assume
that they are false. To express assumed literals, they in-
troduce a modal operator. More precisely, they translate
each rule of the form:

A[(—Al+1/\ AN Am,TLOtAm.H_/\ AN TI.OtAn

to the following disjunctive clause which does not contain
any negation-by-failure literals:

A1+1/\.../\Am—) .

(NKAmga Ao ANKAR A A) V KAmpr V... V KA,

The reason why we express the clause with the an-
tecedent on the left hand side is that we intend to use
this clause in a bottom-up way; that is, from left to right.
In this expression, NKA means that we assume that A is

27

false, whereas, KA means that we assume that A is true.
Although K and NK are modal operators, we can treat
KA and NKA as new predicates independent from A by
adding the following constraints:

NKA, A —
NKA, KA —

By this translation, we obtain a set of clauses in first
order logic and therefore it is possible to compute all
possible models for the set using a first order bottom-up
theorem prover, MGTP, described in Section 2. After
computing all possible models for the set of clauses, we
need to select only those models M which satisfy the
following condition:

For every ground atom A, if KA€ M, then Ae M.
3)

Note that this translation scheme defines a coding
method of original general logic programs which may
contain negation by failure in terms of pure first order
logic. Note also that the same technique can be applied
in computing abduction, which means to find possible
sets of hypotheses explaining the observation and not
contradicting given integrity constraints.

Satoh and Iwayama [SatohIwayama 92] independently
developed a top-down procedure for answering queries to
a general logic program with integrity constraints. They
modified an algorithm proposed by Eshghi and Kowalski
[EshghiKowalski 89] to correctly handle situations where
some proposition must hold in a model, like the require-
ment of (3).

Iwayama and Satoh [IwayamaSatoh 91] developed a
mixed strategy combining bottom-up and top-down
strategies for computing the stable models of general
logic programs with constraints. The procedure is ba-
sically bottom-up. The top-down computation is related
to the requirement of (3) and as soon as a hypothesis of
KA is asserted in some model, it tries to prove A by a
top-down expectation procedure.

The formalization of abductive reasoning has a wide
range of applications including computer aided design
and fault diagnosis. Our approach provides a uniform
scheme for representing such problems and solving them.
It also provides a way of utilizing our parallel inference
machine, PIM, for solving these complex Al problems.

for every atom A. 1)
for every atom A. (2)

5.2 Formal Approach to Analogy

Analogy is an important reasoning method in human
problem solving. Analogy is very helpful for solving
problems which are very difficult to solve by themselves.
Analogy guides the problem solving activities using the
knowledge of how to solve a similar problem. Another
aspect of analogy is to extract good guesses even when
there is not enough information to explain the answer.

There are three major problems to be solved in order
to mechanize analogical reasoning [Arima 92}:

28

e searching for an appropriate base of analogy with
respect to a given target,

o selecting important properties shared by a base and
a target, and

e selecting properties to be projected through an anal-
ogy from a base to a target.

Though there was much work on mechanizing analogy,
most of this only partly addressed the issues listed above.
Arima [Arima 92] proposed an attempt to answer all the
issues at once. Before explaining his idea, we need some
preparations for defining terminology.

Analogical reasoning is expressed as the following in-
ference rule:

S(B) A P(B)
5(T)
P(T)

where T represents the target object, B the base object,
S the similarity property between T' and B, and P the
projected property.

This inference rule expresses that if we assume an ob-
ject T is similar to another object B in the sense that
they share a common property S then, if B has another
property P, we can analogically reason that T" also has
the same property P. Note that the syntactic similarity
of this rule to modus ponens. If we generalize the ob-
ject B to a universally quantified variable X and replace
the and connective to the implication connective, then
the first expression of the rule becomes S(X) D P(X),
thereby the entire rule becomes modus ponens.

Arima [Arima 92] tried to link the analogical reason-

ing to deductive reasoning by modifying the expression
S(B) A P(B) to ‘

Vz.(J(z) A S(z) D P(z)), (4)

where J(z) is a hypothesis added to S(z) in order to
logically conclude P(z). If there exists such a J(z), then
the analogical reasoning becomes pure deductive reason-
ing. For example, let us assume that there is a student
(Studentg) who belongs to an orchestra club and also
neglects study. If one happens to know that another
student (Studentr) belongs to the orchestra club, then
we tend to conclude that he also neglects study. The
reason why we derive such a conclusion is that we guess
that the orchestra club is very active and student mem-
bers of this busy club tend to neglect study. This reason
is an example of the hypothesis mentioned above.
Arima analyzed the syntactic structure of the above
J(z) by carefully observing the analogical situation.
First, we need to find a proper parameter for the pred-
icate J. Since it is dependent on not only an object
but also the similarity property and the projected prop-
erty, we assume that J has the form of J(z, s, p), where s

and p represent the similarity property and the projected
property.

From the nature of analogy, we do not expect that
there is any direct relationship between the object =z and
the projected property p. Therefore, the entire J(z,s,p)
can be divided into two parts:

J(x’s:p) = att(s,p) A JObj(z’s)7 (5)
The first component, Juu:(s,p), corresponds to informa-
tion extracted from a base. The reason why it does not
depend on = comes from the observation that informa-
tion in the base of the analogy is independent from the
choice of an object z.

The second component, Jo;(z, s), corresponds to in-
formation extracted from the similarity and therefore it
does not contain p as its parameter.

Example: Negligent Student

First, let us formally describe the hypothesis described
earlier to explain why an orchestra member is negligent
of study. It is expressed as follows:

Vz,s,p.(Enthusiastic(z,s) A BusyClub(s)
AObstructiveto(p, s) A Member_of (z, s)
D Negligent_of(z,p)) (6)

where z,s, and p are variables representing a person, a
club and some human activity, respectively. The mean-
ing of each predicate is easy to understand and the
explanations are omitted. Since we know that both
Studentg and Studentr are members of an orchestra,
Members.of(X,s) corresponds to the similarity prop-
erty S(z) in (4). On the other hand, since we want to rea-
son the negligeﬁce of a student, the projected property
P(z) is Negligentof(z,p). Therefore, the rest of the
expression in (6): Enthusiastic(z,s) A BusyClub(s) A
Obstructive_to(p, s) corresponds to J(z,s,p). From the
syntactic feature of this expression, we can conclude that

Jovi(z, 8) = Enthusiastic(z, s),
Jatt(s,p) = BusyClub(s) A Obstructive_to(p, s).

The reason why we need J,; is that we are not al-
ways aware of an important similarity like Enthusiastic.
Therefore, we need to infer an important hidden similar-
ity from the given similarity such as Member_of. This
inference requires an extra effort in order to apply the
above framework of analogy.

The restriction on the syntactic structure of J(z,s,p)
is very important since it can be used to prune a search
space to access the right base case given the target. This
function is particularly important when we apply our
analogical inference framework to case based reasoning
systems.

5.3 Knowledge Representation

Knowledge representation is one of the central issues in
artificial intelligence research. Difficulty arises from the
fact that there has been no single knowledge representa-
tion scheme for representing various kinds of knowledge
while still keeping the simplicity as well as the efficiency
of their utilization. Logic was one of the most promising
candidates but it was weak in representing structured
knowledge and the changing world. Our aim in devel-
oping a knowledge representation framework based on
logic and logic programming is to solve both of these
problems. From the structural viewpoint, we developed
an extended relational database which can handle non-
normal forms and its corresponding programming lan-
guage, CRL [Yokota 88a]. This representation allows
users to describe their databases in a structured way in
the logical framework [Yokota et al. 88b].

Recently, we proposed a new logic-based knowledge
representation language, Quixote [YasukawaYokota 90].
Quixote follows the ideas developed in CRL and CIL:
it inherits object-orientedness from the extended version
of CRL and partially specified terms from CIL. One of
the main characteristics of the object-oriented features
is the notion of object identity. In Quixote, not only
simple data atoms but also complex structures are can-
didates for object identifiers [Morita 90]. Even circular
structures can be represented in Quixote. The non-well
founded set theory by Aczel [Aczel 88] was adopted to
characterize themn as a mathematical foundation for such
objects, and unification on infinite trees [Colmerauer 82
was adopted as an implementation method.

6 Conclusion

In this article, we summarized the basic research activi-
ties of the FGCS project. We emphasized two different
directions of logic programming research. One followed
logic programming languages where constraint logic pro-
gramming and concurrent logic programming were fo-
cussed. The other followed basic research in artificial
intelligence and software engineering based on logic and
logic programming.

This project has been like solving a jigsaw puzzle. It
is like trying to discover the hidden picture in the puzzle
using logic and logic programming as clues. The research
problems to be solved were derived naturally from this
image. There were several difficult problems. For some
problems, we did not even have the right evaluation stan-
dard for judging the results. The design of GHC is such
an example. Our entire picture of the project helped in
guiding our research in the right direction.

The picture is not completed yet. We need further
efforts to fill in the remaining spaces. One of the most
important parts to be added to this picture is the inte-
gration of constraint logic programming and concurrent

29

logic programming. We mentioned our preliminary lan-
guage/system, GDCC, but this is not yet matured. We
need a really useful language which can be efficientlly ex-
ecuted on parallel hardware. Another research subject
to be pursued is the realization of a database in KLI.
We are actively constructing a parallel database but it
is still in the preliminary stages. We believe that there
is much affinity between databases and parallelism and
we expect a great deal of parallelism from database ap-
plications. The third research subject to be pursued is
the parallel implementation of abduction and induction.
Recently, there has been much work on abduction and
induction based on logic and logic programming frame-
works. They are expected to provide a foundation for
many research themes related to knowledge acquisition
and machine learning. Also, both abduction and induc-
tion require extensive symbolic computation and, there-
fore, fit very well with PIM architecture.

Although further research is needed to make our re-
sults really useful in a wide range of large-scale applica-
tions, we feel that our approach is in the right direction.

Acknowledgements

This paper reflects all the basic research activities in the
Fifth Generation Computer Systems project. The author
would like to express his thanks to all the researchers
in JCOT, as well as those in associated companies who
have been working on this project. He especially would
like to thank Akira Aiba, Jun Arima, Hiroshi Fujita,
Kéiti Hasida, Katsumi Inoue, Noboru Iwayama, Tadashi
Kawamura, Ken Satoh, Hiroshi Tsuda, Kazunori Ueda,
Hideki Yasukawa and Kazumasa Yokota for their help in
greatly improving this work. Finally, he would like to
express his deepest thanks to Dr. Fuchi, the director of
ICOT, for providing the opportunity to write this paper.

References

[Arima 92] J. Arima, Logical Structure of Anal-
ogy. In Proc. of the International Conf.
on Fifth Generation Computer Systems

1992, Tokyo, 1992.

[Aczel 88] P. Aczel, Non-Well Founded Set The-

ory. CLSI Lecture Notes No. 14, 1988.

[Aiba et al. 88] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley,
and R. Hasegawa, Constraint Logic Pro-
gramming Language CAL. In Proc. of
the International Conf. on Fifth Gener-
ation Computing Systems 1988, Tokyo,
1988.

[BowenKowalski 83] K. Bowen and R. Kowalski, Amal-
gamating Language and Metalanguage

30

in Logic Programming. In Logic Pro-
gramming, K. Clark and S. Tarnlund
(eds.), Academic Press, 1983.

(ClarkGregory 81] K. L. Clark and S. Gregory, A Re-
lational Language for Parallel Program-
ming. In Proc. ACM Conf. on Func-
tional Programming Languages and
Computer Architecture, ACM, 1981.

[ClarkGregory 86] K. L. Clark and S. Gregory, PAR-
LOG: Parallel Programming in Logic.
Research Report DOC 84/4, Dept. of
Computing, Imperial College of Science
and Technology, London. Also in ACM.
Trans. Prog. Lang. Syst., Vol. 8, No. 1,
1986.

[Chikayama 88] T. Chikayama, Programming in ESP -
Experiences with SIMPOS -, In Pro-
gramming of Future Generation Com-
puters, Fuchi and Nivat (eds.), North-
Holland, 1988.

[Colmerauer 82] A. Colmerauer, Prolog and Infinite
Trees. In Logic Programming, K. L.
‘Clark and S. A. Térnlund (eds.), Aca-
demic Press, 1982.

[Colmerauer 86] A. Colmerauer, Theoretical Model of
Prolog II. In Logic Programming and
Its Applications, M. Van Caneghem and
D. H. D. Warren (eds.), Albex Publish-
ing Corp, 1986.

[FuchiFurukawa 87) K. Fuchi and K. Furukawa, The
Role of Logic Programming in the Fifth
Generation Computer Project. New
Generation Computing, Vol. 5, No. 1,
Ohmsha-springer, 1987.

[EshghiKowalski 89] K. Eshghi and R.A. Kowalski, Ab-
duction compared with negation by fail-
ure, in: Proceedings of the Sizth Inter-
national Conference on Logic Program-
ming, Lisbon, Portugal, 1989.

[Fuchi 90] K. Fuchi, An Impression of KLI Pro-
gramming - from my ezperience with
writing parallel provers -. In Proc.
of KL1 Programming Workshop ’90,

ICOT, 1990 (in Japanese).

[FujitaFurukawa 88] H. Fujita and K. Furukawa, A Self-
Applicable Partial Evaluator and Its
Use in Incremental Compilation. New
Generation Computing, Vol. 6, Nos.2,3,
Ohmsha/Springer-Verlag, 1988.

[FujitaHasegawa 91] H. Fujita and R. Hasegawa, A
Model Generation Theorem Prover in
KL1 Using a Ramified-Stack Algo-
rithm. In Proc. of the Eighth Interna-
tional Conference on Logic Program-
ming, Paris, 1991.

[Furukawa 92] K. Furukawa, Logic Programming as
the Integrator of the Fifth Generation
Computer Systems Project, Communi-

cation of the ACM, Vol. 35, No. 3, 1992.

{Futamura 71] Y. Futamura, Partial Evaluation of
Computation Process: An Approach to
a Compiler-Compiler. Systems, Com-

puters, Controls 2, 1971.

[GelfondLifschitz 88] M. Gelfond and V. Lifschitz, The
stable model semantics for logic pro-
gramming, In Proceedings of the Fifth
International Conference and Sympo-

stum on Logic Programming, Seattle,
WA, 1988.

[GomardJones 89] C. K. Gomard and N. D. Jones, Com-
piler Generation by Partial Evaluation:
A Case Study. In Proc. of Information
Processing 89, G. X. Ritter (ed.), North-
Holland, 1989.

[Hasida 92] K. Hasida, Dynamics of Symbol Sys-
tems - An Integrated Architecture of
Cognition. In Proc. of the International
Conf. on Fifth Generation Computer

Systems 1992, Tokyo, 1992.
[HawleyAiba 91] D. Hawley and A. Aiba, Guarded Defi-

nite Clauses with Constraints — Prelim-
inary Report. Technical Report TR-713,
ICOT, 1991.

(Inoue et al. 92] K. Inoue, M. Koshimura and R.
Hasegawa, Embedding Negation as Fail-
ure into a Model Generation The-
orem Prover. To appear in CADE-
11: The Eleventh International Confer-
ence on Automated Deduction, Saratoga
Springs, NY, June 1992.

[IwayamaSatoh 91] N. Iwayama and K. Satoh, A
Bottom-up Procedure with Top-down
Ezpectation for General Logic Programs
with Integrity Constraints. ICOT Tech-
nical Report TR-625, 1991.

[JaffarLassez 86) J. Jaffar and J-L. Lassez, Con-
straint Logic Programming. Technical
Report, Department of Computer Sci-
ence, Monash University, 1986.

[Jones et al. 85] N.D. Jones, P. Sestoft, and H.
Sgndergaard, An Experiment in Partial
Evaluation: The Generation of a Com-
piler Generator. In J-.P. Jouannaud
(ed.), Rewriting Techniques and Ap-
plications, LNCS-202, Springer-Verlag,
pp.124-140, 1985.

[Jones et al. 88] N. D. Jones, P. Setstoft and H. Son-
dergaard, MIX: a self-applicable partial
evaluator for experiments in compiler
generator,Journal of LISP and Symbolic
Computation, 1988.

[Kawamura 91] T. Kawamura, Derivation of Efficient
Logic Programs by Synthesizing New
Predicates. Proc. of 1991 International
Logic Programming Symposium, pp.611
- 625, San Diego, 1991.

[Koshimura et al. 91] M. Koshimura, H. Fujita and R.
Hasegawa,
Utilities for Meta-Programming in KL1.
In Proc. of KL1 Programming Work-
shop’91, ICOT, 1991 (in Japanese).

[Maher 87) M. J. Maher, Logic semantics for a class
of committed-choice programs. In Proc.
of the 4th Int. Conf. on Logic Program-

ming, MIT Press, 1987.

[MantheyBry 88] R. Manthey and F. Bry, SATCHMO:
A Theorem Prover Implemented in Pro-
log. In Proc. of CADE-88, Argonne, Ili-
nois, 1988.

[Matsumoto et al. 83] Yuji Matsumoto, H. Tanaka, H.
Hirakawa, H. Miyoshi and H. Yasukawa,
BUP: A Bottom-up Parser Embedded
in Prolog, New Generation Computing,
Vol. 1, 1983.

[Morita et al. 90] Y. Morita, H. Haniuda and K. Yokota,
Object Identity in Quizote. Technical
Report TR-601, ICOT, 1990.

[MukaiYasukawa 85] K. Mukai, and H. Yasukawa, Com-
plex Indeterminates in Prolog and its
Application to Discourse Models. New
Generation Computing, Vol. 3, No. 4,
1985.

[OhsugaSakai 91] A. Ohsuga and K. Sakai, Metis: A
Term Rewriting System Generator. In
Software Science and Engineering, 1.
Nakata and M. Hagiya (eds.), World
Scientific, 1991.

[OkumuraMatsumoto 87] Akira Okumura and Yuji
Matsumoto, Parallel Programming with

31

Layered Streams, In Proc. 1987 In-
ternational Symposium on Logic Pro-
gramming, pp. 224-232, San Francisco,
September 1987.

[Plotkin 70] G. D. Plotkin, A note on inductive gen-
eralization. In B. Meltzer and D. Michie

(eds.), Machine Intelligence 5, 1970.

[Poole et al. 87] D. Poole, R. Goebel and R. Aleliunas,
Theorist: A logical Reasoning System
for Defaults and Diagnosis, N. Cercone
and G. McCalla (eds.), The Knowledge
Frontier: Essays in the Representation
of Knowledge, Springer-Verlag, pp.331—
352 (1987).

[SakaiAiba 89] K. Sakaiand A. Aiba, CAL: A Theoreti-
cal Background of Constraint Logic Pro-
gramming and its Applications. J. Sym-
bolic Computation, Vol.8, No.6, pp.589-
603, 1989.

[Saraswat 89] V. Saraswat, Concurrent Constraint
Programming Languages. PhD thesis,
Carnegie-Mellon University, Computer

Science Department, 1989.

[SatohIwayama 92] K. Satoh and N. Iwayama, A Cor-
rect Top-down Proof Procedure for a
General Logic Program with Integrity
Constraints. In Proc. of the 3rd Interna-
tional Workshop on Eztensions of Logic
Programming, E. Lamma and P. Mello
(eds.), Facalta di Ingegneria, Universita
di Bologna, Italy, 1992.

[SekiFurukawa 87] H. Seki and K. Furukawa, Notes on
Transformation techniques for Gener-
ate and Test Logic Programs. In Proc.
1987 Symposium on Logic Program-
ming, IEEE Computer Society Press,
1987.

[Shapiro 83] E. Y. Shapiro, A Subset of Concurrent
Prolog and Its Interpreter. Tech. Report
TR-003, Institute for New Generation .

Computer Technology, Tokyo, 1983.

[Sugimura: et al. 88] R. Sugimura, K. Hasida, K.
Akasaka, K. Hatano, Y. Kubo, T. Oku-
nishi, and T. Takizuka, A Software En-

.vironment for Research into Discourse
Understanding Systems. In Proc. of the
International Conf. on Fifth Generation
Computing Systems 1988, Tokyo, 1988.

[TakeuchiFurukawa 86] A. Takeuchi and K. Furukawa,
Partial Evaluation of Prolog Programs

32

[Taki 88]

[Taki 89]

and Its Application to Meta Program-
ming. In Proc. IFIP’86, North-Holland,
1986.

K. Taki, The Parallel Software Research
and Development Tool: Multi-PSI sys-
tem. In Programming of Future Genera-
tion Computers, K. Fuchi and M. Nivat
(eds.), North-Holland, 1988.

K. Taki, The FGCS Computing Ar-
chitecture. In Proc. IFIP’89, North-
Holland, 1989.

[TanakaYoshioka 88] Y. Tanal(a; and T. Yoshioka,

[Tsuda 92]

[Ueda 86a)

[Ueda 86b)

Overview of the Dictionary and Lexi-
cal Knowledge Base Research. In Proc.
FGCS’88, Tokyo, 1988.

H. Tsuda, cu-Prolog for Constraint-
based Grammar. In Proc. of the In-
ternational Conf. on Fifth Generation
Computer Systems 1992, Tokyo, 1992.

K. Ueda, Guarded Horn Clauses. In
Logic Programming ’85, E. Wada (ed.),
Lecture Notes in Computer Science,
221, Springer-Verlag, 1986.

K. Ueda, Making FEzhaustive Search
Programs Deterministic. In Proc. of the
Third Int. Conf. on Logic Programming,
Springer-Verlag, 1986.

[UedaChikayama 90] K. Ueda and T. Chikayama, De-

[Warren 83]

sign of the Kernel Language for the Par-
allel Inference Machine. The Computer
Journal, Vol. 33, No. 6, pp. 494-500,
1990.

D. H. D. Warren, An Abstract Prolog In-
struction Set. Technical Note 304, Arti-
ficial Intelligence Center, SRI, 1983.

[YasukawaYokota 90] H. Yasukawa and K. Yokota, La-

[Yokota 88a]

beled Graphs as Semantics of Objects.
Technical Report TR-600, ICOT, 1990.

K. Yokota, Deductive Approach for
Nested Relations. In Programming of
Future Generation Computers II, K.
Fuchi and L. Kott (eds.), North-
Holland, 1988.

[Yokota et al. 88b] K. Yokota, M. Kawamura and A.

Kanaegami, Overview of the Knowledge
Base Management System(KAPPA). In
Proc. of the International Conf. on Fifth
Gsneration Computing Systems 1988,
Tokyo, 1988.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

33

Summary of the Parallel Inference Machine and
its Basic Software

Shunichi Uchida

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
uchida®icot.or.jp

Abstract

This paper aims at a concise introduction to the PIM
and its basic software, including the overall framework
of the project. Now an FGCS prototype system is under
development. Its core is called a parallel inference sys-
tem which includes a parallel inference machine, PIM,
and its operating system, PIMOS. The PIM includes
five hardware modules containing about 1,000 element
processors in total. On the parallel inference system,
there is a knowledge base management system (KBMS).
The PIMOS and KBMS make a software layer called a
basic software of the prototype system. These systems
are already being run on the PIM. On these systems, a
higher-level software layer is being developed. It is called
a knowledge programming software. This is to be used
as a tool for more powerful inference and knowledge pro-
cessing. It contains language processors for constraint
logic programming languages, parallel theorem provers
and natural language processing systems. Several experi-
mental application programs are also being developed for
both general evaluation of the PIM and the exploration
of new application fiells for knowledge processing. These
achievements with the PIM and its basic software easily
surpass the research targets set up at the beginning of
the project.

1 Introduction

Since the fifth generation computer systems project
(FGCS) was started in June, 1982, 10 years have passed,
and the project is approaching its goal. This project
assumed that “logic” was the theoretical backbone of
future knowledge information processing, and adapted
logic programming as the kernel programming language
of fifth generation computer systems. In addition to the
adaptation of logic programming, highly parallel process-
ing for symbolic computation was considered indispens-
able for implementing practical knowledge information
processing systems. Thus, the project aimed to create a
new computer technology combining knowledge process-

Knowledge and Symbol)
Processing Applications
and

Parallel Evaluation and
Benchmark Programs)
\

Knowledge Processing

Kernel of FGCS

Logical inference
using the

Knowledgebase

Parallel Processing

Technical Framework

- Knowledge Programming
System

J/

-~
n | Parallel OS and KBMS

Quixota
PIMOS Keppa-P

Logic Programming
Language KL1

Parallel Inference Machine

PIM 1,000 PEs in total
(Multi-PS| System, 64 PEs)
.

Prototype System of FGCS

Figure 1: Framework of FGCS Project

ing with parallel processing using logic programming,.

Now an FGCS prototype system is under develop-
ment. This system integrates the major research achieve-
ments of these 10 years so that they can be evaluated
and demonstrated. Its core is called a parallel infer-
ence system which includes a parallel inference ma-
chine, PIM, and its operating system, PIMOS. The PIM
includes five hardware modules containing about 1,000
element processors in total. It also includes a language
processor for a parallel logic language, KL1.

On the parallel inference system, there is a
knowledge base management system (KBMS). '
The KBMS includes a database management system
(DBMS), Kappa-P, as its lower layer. The KBMS
provides a knowledge representation language, Quixote,

34

based on the deductive (and) object-oriented database.
The PIMOS and KBMS make a software layer called a
basic software of the prototype system. These systems
are already being run on the PIM. The PIM and basic
software are now being used as a new research platform
for building experimental paralle] application programs.
They are the most complete of their kind in the world.
On this platform, a higher-level software layer is being
developed. This is to be used as a tool for more power-

ful inference and knowledge processing. It contains lan-

guage processors for constraint logic programming lan-
guages, parallel theorem provers, natural language pro-
cessing systems, and so on. These software systems all
include the most advanced knowledge processing tech-
niques, and are at the leading edge of advanced software
science.

Several experimental application programs are also be-
ing developed for both general evaluation of the PIM
and the exploration of new application fields for knowl-
edge processing. These programs include a legal reason-
ing system, genetic information processing systems, and
VLSI CAD systems. They are now operating on the
parallel inference system, and indicate that parallel pro-
cessing of knowledge processing applications is very ef-
fective in shortening processing time and in widening the
scope of applications. However, they also indicate that
more research should be made into parallel algorithms
and load balancing methods for symbol and knowledge
processing. These achievements with the PIM and its
basic software easily surpass the research targets set up
at the beginning of the project.

This paper aims at a concise introduction to the PIM
and its basic software, including the overall framework
of the project. This project is the first Japanese na-
tional project that aimed at making a contribution to
world computer science and the promotion of interna-
tional collaboration. We have published our research
achievements wherever possible, and distributed various
programs from time to time. Through these activities,
we have also been given much advice and help which
was very valuable in helping us to attain our research
targets. Thus, our achievements in the project are also
the results of our collaboration with world researchers on

logic programming, parallel processing and many related
fields.

2 Research Targets and Plan

2.1 ScopeofR & D

The general target of the project is the development of
a new computer technology for knowledge information
processing.

. Having “mathematical logic” as its theoretical back-
bone, various research and development themes were es-
tablished on software and hardware technologies focusing

on knowledge and symbol processing. These themes are
grouped into the following three categories:

2.1.1 Parallel inference system

The core portion of the project was the research and de-
velopment of the parallel inference system which contains
the PIM, a KL1 language processor, and the PIMOS. To
make the goal of the project clear, a FGCS prototype
system was considered a major target. This was to be
build by integrating many experimental hardware and
software components developed areund logic program-
ming.

The prototype system was defined as a parallel infer-
ence system which is intended to have about 1,000 ele-
ment processors and attain more than 100M LIPS (Log-
ical Inference Per Second) as its execution speed. It was
also intended to have a parallel operating system, PI-
MOS, as part of the basic software which provides us
with an efficient parallel programming environment in
which we can easily develop various parallel application
programs for symbol and knowledge processing, and run
them efficiently.- Thus, this is regarded as the develop-
ment of a super computer for symbol and knowledge pro-
cessing.

It was intended that overall research and development
activities would be concentrated so that the major re-
search results could be integrated into a final prototype
system, step by step, over the timespan allotted to the
project.
2.1.2

KBMS and knowledge programming soft-
ware

Themes in this category aimed to develop a basic soft-
ware technology and theory for knowledge processing.

¢ Knowledge representation and knowledge base man-
agement

¢ High-level problem solving and inference software

o Natural language processing software

These research themes were intended to create new
theories and software technologies based on mathemat-
ical logic to describe various knowledge fragments
which are parts of “natural” knowledge bases pro-
duced in our social systems. We also intended to store
them in a computer system as components of “artifi-
cial” knowledge bases so that they can be used to
build various intelligent systems.

To describe the knowledge fragments, a knowledge rep-
resentation language has to be provided. It can be re-
garded as a very high-level programming language exe-
cuted by a sophisticated inference mechanism which is
much cleverer than the parallel inference system. Nat-
ural language processing research is intended to cover

35

Experimental Application Systems

Parallel VLSI-CAD Systems

Legal Reasoning System

Genetic Information Processing Systems
Other parallel expert systems

Knowledge Processing
Natural Language ﬁ@ﬁ‘”@?@

Processing Systems

arallel Theorem Provers
Basle Setwars

onstraint Logic
Programming Systems

Paralle! OS, PIMOS
KL1 Programming Env.

Parallel KBMS/DBMS
Kappa-P + Quixote

1000PEs in total

Parallel Inferenee Ml@@ﬁ-‘aﬂm@ (5 Medulss)

N\

CN&\?Erk Dgp_l;_g‘Hypercube j

Cluster.

‘J_'lJi

_J PIM/m

Figure 2: Organization of Prototype System

research on knowledge representation methods and such
inference mechanisms, in addition to research on easy-
to-use man-machine interface functions. Experimental
software building for some of these research themes was
done on the sequential inference machines because the
level of research was so basic that computational power
was not the major problem.

2.1.3 Benchmarking and evaluation systems

o Benchmarking software for the parallel inference
system

o Experimental parallel application software

To carry out research on an element technology in com-
puter science, it is essential that an experimental soft-
ware system is built. Typical example problems can then
be used to evaluate theories or methods invented in the
progress of the research.

To establish general methods and technologies for
knowledge processing, experimental systems should be
developed for typical problems which need to process
knowledge fragments as sets of rules and facts.

These problems can be taken from engineering sys-
tems, including machine design and the diagnosis of ma-
chine malfunction, or from social systems such as medical
care, government services, and company management.

Generally, the exploitation of computer technology for
knowledge processing is far behind that for scientific cal-
culation. Recent expert systems and machine translation
systems are examples of the most advanced knowledge
processing systems. However, the numbers of rules and
facts in their knowledge bases are several hundreds on
average.

This scale of knowledge base may not be large enough
to evaluate the maximum power of parallel inference sys-
tem having about 1,000 element processors. Thus, re-
search and development on large-scale application sys-
tems is necessary not only for knowledge processing re-
search but also for the evaluation of the parallel infer-
ence system. Such application systems should be widely
looked for in many new fields.

The scope of research and development in this project
is very wide, however, the parallel inference system is
central to the whole project. It is a very clear research
target. Software research and development should also
cover diverse areas in recent software technology. How-
ever, it has “logic” as the common backbone.

It was also intended that major research achievements
should be integrated into one prototype system. This has
made it possible for us to organize all of our research and
development in a coherent way. At the beginning of the
project, only the parallel inference machine was defined
as a target which was described very clearly. The other
research targets described above were not planned at the

36

beginning of the project. They have been added in the
middle of the intermediate stage or at the final stage.

2.2 Overall R & D plan

After three years of study and discussions on determining
our major research fields and targets, the final research
and development plan was determined at the end of fiscal
1981 with the budget for the first fiscal year.

At that time, practical logic programming languages
had begun to be used in Europe mainly for natural lan-
guage processing. The feasibility and potential of logic
languages had not been recognized by many computer
scientists. Thus, there was some concern that the level
of language was too high to describe an operating sys-
tem, and that the overhead of executing logic programs
might be too large to use it for practical applications.
This implies that research on logic programming was in
its infancy.

Research on parallel architectures linked with high-
level languages was also in its infancy. Research on
dataflow architectures was the most advanced at that
time. Some dataflow architecture was thought to have
the potential for knowledge and symbol processing. How-
ever, its feasibility for practical applications had not yet
been evaluated.

Most of the element technologies necessary to build the
core of the parallel inference system were still in their in-
fancy. We then tried to define a detailed research plan
step by step for the 10-year project period. We divided
the 10-year period into three stages, and defined the re-
search to be done in each stage as follows:

e Initial stage (3 years) :
-Research on potential element technologies
-Development of research tools

o Intermediate stage (4 years) :
-First selection of major element technologies for fi-
nal targets
-Experimental building of medium-scale systems -

e Final stage (3 years) :
-Second selection of major element technologies for
final targets
-Experimental building of a final full-scale system

At the beginning of the project, we made a detailed
research and development plan only for the initial stage.
We decided to make detailed plans for the intermediate
and final stages at the end of the stage before, so that
the plans would reflect the achievements of the previous
stage. The research budget and manpower were to be
decided depending on the achievements. It was likely
that the project would effectively be terminated at the
end of the initial stage or the intermediate stage.

3 Inference System in the Initial
Stage

3.1 Personal Sequential Inference Ma-
chine (PSI-I)

To actually build the parallel inference system, especially
a productive parallel programming environment which is
now provided by PIMOS, we needed to develop various
element technologies step by step to obtain hardware and
software components. On the way toward this develop-
ment, the most promising methods and technologies had
to be selected from among many alternatives, followed by
appropriate evaluation processes. To make this selection
reliable and successful, we tried to build experimental
systems which were as practical as possible.

In the initial stage, to evaluate the descriptive power
and execution speed of logic languages, a personal se-
quential machine, PSI, was developed. This was a logic
programming workstation. This development was also
aimed at obtaining a common research tool for software
development. The PSI was intended to attain an execu-
tion speed similar to DEC10 Prolog running on a DEC20
system, which was the fastest logic programming system
in the world.

To begin with, a PSI machine language, KLO, was de-
signed based on Prolog. Then a hardware system was de-
signed for the KL0. We employed tag architecture for the
hardware system. Then we designed a system descrip-
tion language, ESP, which is a logic language having a
class and inheritance mechanisms to make program mod-
ules efficiently.[Chikayama 1984] ESP was used not only
to write the operating system for PSI, which is named
SIMPOS, but also to write many experimental software
systems for knowledge processing research.

The development of the PSI machine and SIMPOS was
successful. We were impressed by the very high software
productivity of the logic language. The execution speed
of the PSI was about 35K LIPS and exceeded its target.
However, we realized that we could improve its architec-
ture by using the optimization capability of a compiler
more effectively. We produced about 100 PSI machines
to distribute as a common research tool. This version of
the PSI is called PSI-I.

In conjunction with the development of PSI-I and
SIMPOS, research on parallel logic languages was ac-
tively pursued. In those days, pioneering efforts were
being made on parallel logic languages such as PAR-
LOG and Concurrent Prolog. [Clark and Gregory 1984],
[Shapiro 1983] We learned much from this pioneering re-
search, and aimed to obtain a simpler language more
suited for a machine language for a parallel inference ma-
chine. Near the end of the initial stage, a new parallel
logic language, GHC was designed. [Ueda 1986]

37

Table 1: Development of Inference Systems

Sequential Inference Tech. Parallel Inference Tech.

'82-'84 Sequential Logic Programming

Initial Languages, KLO and ESP
Stage

equential Inierence Machine, Parallel Logic Programming
A PSiiand SIMPOS, (Languages @HC and KL1
SBKLIPS fer E(L@

'85-'88 New model of PSI, PSI-Ii, . Experimental Model of PiM, N
Inter- SHKLIPS for KLD MUIt-PS! System,

mediate, SMLIPS /64PEs for KLT)
Stage r ~N

9 Parallel 0OS, PIMO@S and Small

Gkl Application Programs)
'89-'92

Finar || New model of PSI, PSHIl Prototype of FGCS, PIM,

Stage || omiic tor KLO 1000 PEs total ,

o 1.4ULIPS for 200MLIPS / 512PEs for KL1

1

3.2 Effect of PSI development on the
research plan

The experience gained in the development of PSI-I and
SIMPOS heavily affected the planning of the intermedi-
ate stage.

3.2.1 Efficiency in program production

One of the important questions related to logic language
was the feasibility of writing an operating system which
needs to describe fine detailed control mechanisms. An-
other was its applicability to writing large-scale pro-
grams. SIMPOS development gave us answers to these
questions. The SIMPOS has a multi-window-based user
interface, and consists of more than 100,000 ESP pro-
gram lines. It was completed by a team of about 20
software researchers and engineers over about two years.
Most of the software engineers were not familiar with
logic languages at that time.

We found that logic languages have much higher
productivity and maintainability than conventional von
Neumann languages. This was obvious enough to con-
vince us to describe a parallel operating system also in a
logic language.

3.2.2 Execution performance

The PSI-I hardware and firmware attained about 35K
LIPS. This execution speed was sufficient for most knowl-
edge processing applications. The PSI had an 80 MB
main memory. It was a.very big memory compared to
mainframe computers at that time. We found that this
large memory and fast execution speed made a logic lan-
guage a practical and highly productive tool for software

prototyping.

The implementation of the PSI-I hardware required
11 printed circuit boards. As the amount of hardware
became clear, we established that we could obtain an
element processor for a parallel machine if we used VLSI
chips for implementation.

For the KLO language processor which was imple-
mented in the firmware, we estimated that better op-
timization of object code made by the compiler would
greatly improve execution speed. (Later, this op-
timization was made by introducing of the “WAM”
code.[Warren 1983])

The PSI-I and SIMPOS proved that logic languages
are a very practical and productive vehicle for complex
knowledge processing applications.

4 Inference Systems in the In-
termediate Stage

4.1 A parallel inference system

4.1.1 Conceptual design of KL1 and PIMOS

The most important target in the intermediate stage was
a parallel implementation of a KL1 language processor,
and the development of a parallel operating system, PI-
MOS.

The full version of GHC, was still too complex for the
machine implementation. A simpler version, FGHC,
was designed.[Chikayama and Kimura 1985] Finally, a
practical parallel logic language, KL1, was designed
based on FGHC.

The KL1 is a parallel language classified as an

38

AND-parallel logic programming language. Its lan-
guage processor includes an automatic memory manage-
ment mechanism and a dataflow process synchronization
mechanism. These mechanisms were considered essential
for writing and compiling large parallel programs. The
first problem was whether they could be implemented ef-
ficiently. The second problem was what kind of firmware
and hardware support would be possible and effective.

In addition to problems in implementing the KL1 lan-
guage processor, the design of PIMOS created several im-
portant problems. The role of PIMOS is different from
that of conventional operating systems. PIMOS does
not need to do primary process scheduling and mem-
ory management because these tasks are performed by
the language processor. It still has to perform resource
management for main memory and element processors,
and control the execution of user programs. However, a
much more difficult role was added. It must allow a user
to divide a job into parallel processable processes and
distribute them to many element processors. Processor
loads must be well balanced to attain better execution
performance. In knowledge and symbol processing ap-
plications, the dynamic structure of a program is not
regular. It is difficult to estimate the dynamic program
structure. It was desirable that PIMOS could offer some
support for efficient job division and load balancing prob-
lems.

These problems in the language processor and the op-
erating system were very new, and had not been studied
as practical software problems. To solve these problems,
we realized that we must have appropriate parallel hard-
ware as a platform to carry out practical software exper-
iments using a trial and error.

4.1.2 PSI-IT and Multi-PSI system

In conjunction with the development of KL1 and PI-
MOS, we needed to extend our research and develop new
theories and software technologies for knowledge process-
ing using logic programming. This research and develop-
ment demanded improvement of PSI-I machines in such
aspects as performance, memory size, cabinet size, disk
capacity, and network connection.

We decided to develop a smaller and higher-
performance model of PSI, to be called PSI-II. This
was Intended to provide a better workstation for use as
a common tool and also to obtain an element processor
for the parallel hardware to be used as a platform for
parallel software development. This hardware was called
a multi-PSI system. It was regarded as a small-scale
experimental version of the PIM. As many PSI-II ma-
chines were produced, we anticipated having very stable
element processors for the multi-PSI system.

The PSI-II used VLSI gate array chips for its CPU.
The size of the cabinet was about one sixth that of PSI-
I. Its execution speed was 330K LIPS, about 10 times
faster than that of PSI-I. This improvement was attained

mainly through employment of the better compiler opti-
mization technique and improvement of its machine ar-
chitecture. The main memory size was also expanded to
320 MB so that prototyping of large applications could
be done quickly.

In the intermediate stage, many experimental systems
were built on PSI-I and PSI-II systems for knowledge
processing research. -These included small-to-medium
scale expert systems, a natural language discourse un-
derstanding system, constraint logic programming sys-
tems, a database management system, and so on. These
systerns were all implemented in the ESP language using
about 300 PSI-II machines distributed to the researchers
as their personal tools.

The development of the multi-PSI system was com-
pleted in the spring of 1988. It consists of 64 element pro-
cessors which are connected by an 8 by 8 mesh network.
One element processor is contained in three printed cir-
cuit boards. Eight element processors are contained in
one cabinet. Each element processor has an 80 MB main
memory. Thus, a multi-PSI was to have about 5GB
memories in total. This hardware was very stable, as
we had expected. We produced 6 multi-PSI systems and
distributed them to main research sites.

4.1.3 KL1 language processor and PIMOS

This was the first trial implementation of a distributed
language processor of a parallel logic language, and a
parallel operating system on real parallel hardware, used
as a practical tool for parallel knowledge processing ap-
plications.

The KL1 distributed language processor was an inte-
gration of various complex functional modules such as a
distributed garbage collector for loosely-coupled memo-
ries. The automatic process synchronization mechanism
based on the dataflow model was also difficult to imple-
ment over the distributed element processors. Parts of
these mechanisms had to be implemented combined with
some PIMOS functions such as a dynamic on-demand
loader for object program codes. Other important func-

“tions related to the implementation of the language pro-

cessor were support functions like system debugging, sys-
tem diagnostic, and system maintenance functions.

In addition to these functions for the KL1 language
processor, many PIMOS functions for resource manage-
ment and execution control had to be designed and im-
plemented step by step, with repeated partial module
building and evaluation.

This partial module building and evaluation was done
for core parts of the KL1 language processor and PIMOS,
using not only KL1 but also ESP and C languages. An
appropriate balance between the functions of the lan-
guage processor and the functions of PIMOS was con-
sidered. The language processor was implemented in a
PSI-II firmware for the first time. It worked as a pseudo
parallel simulator of KL1, and was used as a PIMOS

Figure 3: Multi-PSI System

development tool. It was eventually extended and trans-
ported to the multi-PSI system.

In the development of PIMOS, the first partial mod-
ule building was done using the C language in a Unix
environment. This system is a tiny subset of the KL1
language processor and PIMOS, and is called the PI-
MOS Development Support System (PDSS). It is now
distributed and used for educational purposes. The
first version of PIMOS was released on the PSI-II with
the KL1 firmware language processor. This is called a
pseudo multi-PST system. It is currently used as a
personal programming environment for KL1 programs.

With the KL1 language processor fully implemented
in firmware, one element processor or a PSI-II attained
about 150 KLIPS for a KL1 program. It is interesting
to compare this speed with that for a sequential ESP
program. As a PSI-II attains about 300 KLIPS for a
sequential ESP program, the overhead for KL1 caused
by automatic process synchronization halves the execu-
tion speed. This overhead is compensated for by effi-
cient parallel processing. A full-scale multi-PSI system
of 64 element processors could attain 5 - 10 MLIPS. This
speed was considered sufficient for the building of exper-
imental software for symbol and knowledge processing
applications. On this system, simple benchmarking pro-
grams and applications such as puzzle programs, a natu-
ral language parser and a Go-game program were quickly
developed. These programs and the multi-PSI sys-
tem was demonstrated in FGCS’88.[Uchida et al. 1988]
These proved that KL1 and PIMOS could be used as a

39

130KLIPS/PE@ :

(Pararell
LPL:KLY)

400KLIPS
(Sequential

o Machine language: KL1-b
o Max. 64PEs and two FEPs (PSI-II) connected to LAN
o Architecture of PE:
~ Microprogram control (64 bits/word)
— Machine cycle: 200ns, Reg.file: 64W
~ Cache: 4 KW, set associative/write-back
— Data width: 40 bits/word
— Memory capacity: 16MW (80MB)
o Network:

— 2-dimensional mesh
—5MB/s x 2 directions/ch with 2 FIFO buffers/ch
— Packet routing control function

: Main features and Appearance

new platform for parallel software research.

4.2 Overall design of the parallel in-
ference system

4.2.1 Background of the design

The first question related to the design of the parallel
inference system was what kind of functions must be
provided for modeling and programming complex prob-
lems, and for making them run on large-scale parallel
hardware.

When we started this project, research on parallel pro-
cessing still tended to focus on hardware problems. The
major research and development interest was in SIMD
or MIMD type machines applied for picture processing
or large-scale scientific calculations. Those applications
were programmed in Fortran or C. Control of parallel
execution of those programs, such as job division and
load balancing, was performed by built-in programs or
prepared subroutine libraries, and could not be done by
ordinary users.

Those machines excluded most of the applications
which include irregular computations and require gen-
eral parallel programming languages and environments.
This tendency still continues. Among these parallel ma-
chines, some dataflow machines were exceptional and had
the potential to have functional languages and their gen-
eral parallel programming environment.

We were confident that a general parallel programming

40

language and environment is indispensable for writing
parallel programs for large-scale symbol and knowledge
processing applications, and that they must provide such
functions as follows:

1. An automatic memory management mechanism for
distributed memories (parallel garbage collector)

2. An automatic process synchronization mechanism
based on a dataflow scheme

3. Various support mechanisms for attaining the best
job division and load balancing.

The first two are to be embedded in the language pro-
cessor. The last is to be provided in a parallel operating
system. All of these answer the question of how to write
parallel programs and map them on parallel machines.

This mapping could be made fully automatic if we
limited our applications to very regular calculations and
processing. However, for the applications we intend, the
mapping process, which includes job division and load-
balancing, should be done by programmers using the
functions of the language processor and operating sys-
tem.

4.2.2 A general parallel programming environ-

ment

Above mechanisms for mapping should be implemented
in the following three layers:

1. A parallel hardware system consisting of element
processors and inter-connection network (PIM hard-
ware)

2. A parallel language processor consisting of run-time
routines, built-in functions, compilers and so on
(KL1 language processor)

3. A parallel operating system including a program-
ming environment (PIMOS)

At the beginning of the intermediate stage, we tried to
determine the roles of the hardware, the language pro-
cessor and the operating system. This was really the
start of development.

One idea was to aim at hardware with many functions
and using high density VLSI technology, as described in
early papers on dataflow machine research. It was a very
challenging approach. However, we thought it too risky
because changes to the logic circuits in VLSI chips would
have a long turn-around time even if the rapid advance of
VLSI technology was taken into account. Furthermore,
we thought it would be difficult to run hundreds of so-
phisticated element processors for a few days to a few
weeks without any hardware faults.

Implementation of the language processor and the op-
erating system was thought to be very difficult too. As

there were no prior examples, we could not make any re-
liable quantitative estimation of the overhead caused by
these software systems. This implementation was there-
fore considered risky too.

Finally, we decided not to make an element proces-
sor too complex , so that our hardware engineers could
provide the software researchers with a large-scale hard-
ware platform stable enough to make the largest-scale
software experiments in the world.

However, we tried to add cost-effective hardware sup-
port for KL1 to the element processor, in order to at-
tain a higher execution speed. We employed tag archi-
tecture to support the automatic memory management
mechanism as well as faster execution of KL1 programs.
The automatic synchronization mechanism was to be im-
plemented in firmware. The supports for job division
and load balancing were implemented partially by the
firmware as primitives of the KL1 language, but they
were chiefly implemented by the operating system. In a
programming environment of the operating system, we
hoped to provide a semi-automatic load balancing mech-
anism as an ultimate research goal.

PIMOS and KL1 hide from users most of the archi-
tectural details of the element processors and network
system of PIM hardware. A parallel program is modeled
and programmed depending on a parallel model of an
application problem and algorithms designed by a pro-
grammer. The programmer has great freedom in divid-
ing programs because a KL1 program is basically con-
structed from very fine-grain processes.

As a second step, the programmer can decide the
grouping of fine-grain processes in order to obtain an ap-
propriate granularity as divided jobs, and then specify
how to dispatch them to element processors using a spe-
cial notation called “pragma”. This two step approach
in parallel programming makes it easy and productive.

We decided to implement the memory management
mechanism and the synchronization mechanism mainly
in the firmware. The job division and load balancing
mechanism was to be implemented in the software. We
decided not to implement uncertain mechanisms in the
hardware.

The role of the hardware system was to provide a sta-
ble platform with enough element processors, execution
speed, memory capacity, number of disks and so on. The
demands made on the capacity of a cache and a main
memory were much larger than those of a general pur-
pose microprocessor of that time. The employment of
tag architecture contributed to the simple implementa-
tion of the memory management mechanism and also
increased the speed of KL1 program execution.

5 R & D in the final stage

5.1 Planning of the final stage

At the end of the intermediate stage, an experimen-
tal medium-scale parallel inference system consisting of
the multi-PSI system, the KL1 language processor, and
PIMOS was successfully completed. On this system,
several small application programs were developed and
run efficiently in parallel. This proved that symbol and
knowledge processing problems had sufficient parallelism
and could be written in KL1 efficiently. This success en-
abled us to enter the final stage.

Based on research achievements and newly developed
tools produced in the intermediate stage, we made a de-
tailed plan for the final stage. One general target was to
make a big jump from the hardware and software tech-
nologies for the multi-PSI system to the ones for the
PIM, with hundreds of element processors. Another gen-
eral target was to make a challenge for parallel processing
of large and complex knowledge processing applications
which had never been tackled anywhere in the world,
using KL1 and the PIM.

Through the research and development directed to
these targets, we expected that a better parallel pro-
gramming methodology would be established for logic
programming. Furthermore, the development of large
and complex application programs would not only en-
courage us to create new methods of building more in-
telligent systems systematically but could also be used
as practical benchmarking programs for the parallel in-
ference system. We intended to develop new techniques
and methodologies.

1. Efficient parallel software technology

(a) Parallel modeling and programming techniques
—Parallel programming paradigms
—Parallel algorithms

(b) Efficient mapping techniques of parallel pro-
cesses to parallel processors
-Dynamic load balancing techniques
—Performance debugging support

2. New methodologies to build intelligent systems us-
ing the power of the parallel inference system

(a) Development of a higher-level reasoning or in-
ference engine and higher-level programming
languages

(b) Methodologies for knowledge representation
and knowledge base management (methodol-
ogy for knowledge programming)

The research and development themes in the final stage
were set up as follows:

41

. PIM hardware development

We intended to build several models with differ-
ent architectures so that we could compare map-
ping problems between the architectures and pro-
gram models. The number of element processors for
all the modules was planned about 1,000.

. The KL1 language processor for the PIM modules

We planned to develop new KL1 language processors
which took the architectural differences on the PIM
modules into account.

. Improvement and extension of PIMOS

We intended to develop an object-oriented language,
AYA, over KL1, a parallel file system, and extended
performance debugging tools for its programming
environment.

. Parallel DBMS and KBMS

We planned to develop a parallel and distributed
database management system, using several disk
drives connected to PIM element processors, was in-
tended to attain high throughput and consequently
a high information retrieval speed. As we had al-
ready developed a data base management system,
Kappa-II, which employed a nested relational model
on the PSI machine, we decided to implement a par-
allel version of Kappa-I1. However, we redesiged its
implementation, employing the distributed database
model and using KL.1. This parallel version is called
Kappa-P. We plan to develop a knowledge base man-
agement system on the Kappa-P. This would be
based on the deductive object-oriented DB, having
a knowledge representation language, Quixote.

. Research on knowledge programming software

We intended to continue various basic research ac-
tivities to develop new theories, methodologies and
tools for building knowledge processing application
systems. These activities were grouped together as
research on knowledge programming software.

This included research themes such as a parallel
constraint logic programming language, mathemat-
ical systems including theorem provers, natural lan-
guage processing systems such as a grammar design
system, and an intelligent sentence generation sys-
tem for man-machine interfacing.

. Benchmarking and experimental parallel applica-

tion systems

To evaluate the parallel inference system and the
various tools and methodologies developed in the
above themes, we decided to make more effort to

4

explore new applications of parallel knowledge pro-
cessing. We began research into a legal expert sys-
tem, a genetic information processing systems and
s0 o1.

5.2 R & D results in the final stage

The actual research activities into the themes described
above differed according to characteristics. In the de-
velopment of the parallel inference system, we focused
on the integration of PIM hardware and some software
components. In our research on knowledge programming
software, we continued basic research and experimental
software building to create new theories and develop par-
allel software technologies for the future.

5.2.1 PIM hardware and KL1 language proces-

sor

A role of the PIM hardware was to provide software re-
searchers with an advanced platform which would allow

. large-scale software development for knowledge process-
ing.

Another role was to obtain various evaluation data
in the architecture and hardware structure of the ele-
ment processors and network systems. In particular, we
wanted to analyze the performance of large-scale parallel
programs on various architectures (machine instruction
sets) and hardware structures, so that hardware engi-
neers could design more powerful and cost-effective par-
allel hardware in the future. ‘

In the conceptual design of the PIM hardware, we real-
ized that there were many alternative designs for the ar-
chitecture of an element processor and the structure of a
network system. For the architecture of an element pro-
cessor, we could choose between a CISC type instruction
set implemented in firmware and a RISC type instruction
set. On the interconnection network, there were several
opinions, including a two dimensional mesh network like
the multi-PSI, a cross-bar switch, and a common bus and
coherent cache.

To design the best hardware, we needed to find out the
mapping relationships between program behavior and
the hardware architectures and structures. We had to
establish criteria for the design of the parallel hardware,
reflecting the algorithms and execution structures of ap-
plication programs.

To gather the basic data we needed to obtain this de-
sign criteria, we tried to categorize our design choices
into five groups and build five PIM modules. The main
features of these five modules are listed in Table 2. The
number of element processor required for each module
was determined depending on the main purpose of the
module. Large modules have 256 to 512 element proces-
sors, and were intended to be used for software experi-
ments. Small modules have 16 or 20 element processors

and were built for architectural experiments and evalua-
tion.

All of these modules were designed to support KL1
and PIMOS, so that software researchérs could run one
program on the different modules and compare and an-
alyze the behaviors of parallel program execution.

A PIM/m module employed architecture similar to
the multi-PSI system. Thus, its KL1 language proces-
sor could be developed by simply modifying and extend-
ing that of the multi-PSI system. For other modules,
namely PIM/p, PIM/c, PIM/k, and PIM/i, the KL1
language processor had to be newly developed because
all of these modules have a cluster structure. In a clus-
ter, four to eight element processors were tightly coupled
by a shared memory and a common bus with coherent
caches. While communication between element proces-
sors is done through the common bus and shared mem-
ory, communication between clusters is done via a packet
switching network. These four PIM modules have differ-
ent machine instruction sets.

We intended to avoid the duplication of development
work for the KL1 language processor. We used the KL1-
C language to write PIMOS and the usual application
programs. A KL1-C program is compiled into the KL1-
B language, which is similar to the “WAM” as shown
in Figure 5. We defined an additional layer between
the KL1-B language and the real machine instruction.
This layer is called the virtual hardware layer. It has a
virtual machine instruction set called “PSL”. The spec-
ification of the KL1-B interpreter is described in PSL.
This specification is semi-automatically converted to a
real interpreter or runtime routines dedicated to each
PIM modules. The specification in PSL is called a vir-
tual PIM processor (the VPIM processor for short) and
is common to four PIM modules.

PIM/p, PIM/m and PIM/c are intended to be used
for large software experiments; the other modules were
intended for architectural evaluations. We plan to pro-
duce a PIM/p with 512 element processors, and a PIM/m
with 384 element processors. Now, at the beginning of
March 1992, a PIM/m of 256 .processors has just started -
to run a couple of benchmarking programs.

We aimed at a processing speed of more than 100
MLIPS for the PIM modules. The PIM/m with 256 pro-
cessors will attain more than 100 MLIPS as its peak per-
formance. However, for a practical application program,
this speed may be much reduced, depending on the char-
acteristics of the application program and the program-
ming technique. To obtain better performance, we must
attempt to augment the effect of compiler optimization
and to implement a better load balancing scheme. We
plan to run various benchmarking programs and exper-
imental application programs to evaluate the gain and
loss of implemented hardware and software functions.

43

EXPERIMENTAL PARALLEL
APPLICATIONS PROGRAMS
* Parallel VLSI-CAD system

* Legal inference system

* Parallel Go playing system

* Natural language analysis

(. Parallel expert system
- Logic design
- Equipment diagnosis

tool * Parallel software develop-
* Genetic information ment support
analysis tool

- Parallel algorithm
- Intelligent programming
environment

Software group
for functional demonstration and
parallel application
experiment

4 N\

N\

Knowledge program-)

ming environment

~N

(+ Constraint programming

+ Discourse processing system - i
- Comosumianass “Vanmachine) (KB ooner) || IS constant
 Gonerahpurpose Japanoss interface ruction p DCC g sy
language processing system {_module module

* Automatic parallel

Problem solving &] theorem-proving system J

experimental system knowledge programming

S

* Parallel natural language analysis \ L
—

) module Jj _ - MGTP prover
* Parallel programming
support - -~ (. Deduction/object-orientegi DB)
- \F/;sualization tool N Basic software - mg:v;e:g%mgzenlaﬂon
(__(ParaGragh) J system |_— + Gene DE/KB application
* Inference + KB manage- _Experiment
g%‘é[ﬁ‘e ?ent mg ule
appa-
hios e |

.

Y Prototype Hardware Systems /. /
/// Parallel Inference Machine (PIM) Sub-modules // ,
1

Figure 4: Research Themes in the Final Stage

Table 2: Features of PIM modules

Item PiM/p PiM/c PIM/m PIM/ PIM/XK
ine instructions RISC- + Horizontal Horizontal RISC-type RISC-type
Machine instructi macro%e:trucﬁons microinstructions microinstructions
Target cycle time 60 nsec 65 nsec 50 nsec 100 nsec 100 nsec
LSl devices Standard cell Gate array Cell base Standard cell Custom
Process Technology - 0.96 um 0.8 wm 0.8 ym 1.2um 1.2 um
(line width)
Aulti Multicluster Two-dimensional | Shared memory | Two-level
Machina configuration ?:Aot::?\celgt?o‘?\fs (8 PEs | connections (8 PEs mesh network connections paralle! cache
linked to a shared | + CClinked to a connections through a connections
memory)ina shared memory) parallel cache
hypercube network | in a crossbar network
Number of PEs connecled | 612 PEs 256 PEs 256 PEs 16 PEs 16 PEs

44

,I KLY Parallel Implementation |

I)
KLt Program o .)
Compilation into an intermediate languge,
KL1-B (similar to WAM of Prolog).
There are many transformation methods
KL1-B Code corresponding to hardware architectures.
Ryntime Librarles, Specification
MIQFOPrOgramS, or (I T AENNEENS of KL1-B
Object Codes Transformation Abstract Machine
Real Hardwa'r.;"m Ulrtual Ht'n."c;ware
(PIM/p, PIM/m, PIM/c, PIM/i, (Shared-memory Multiprocessors
PIM/k, Multi-PSI) + Loosely-coupled Network))

Figure 5: KL1 Language Processor and VPIM

Multiple Hypercube Network

L

1L

r i

i '

I '

FEP .. PE4 1 1
I/O | tarh* . E 2
. i :
Bus ! !

¢ '

Shared Memory H :

i '

“Casterg "I 1 Clusterys

* Machine language: KL1-b

o Architecture of PE and cluster
= RISC + HLIC(Microprogrammed)
— Machine cycle: 60ns, Reg.file: 40bits x 32W
— 4 stage pipeline for RISC inst.

— Internal Inst. Mem: 50 bits x 8 KW
— Cache: 64 KB, 256 column, 4 sets, 32B/block

— Protocol: Write-back, Invalidation

— Data width: 40 bits/word

— Shared Memory capacity: 256 MB
e Max. 512 PEs, 8 PE/cluster and 4 clusters/cabinet
o Network:

— Double hyper-cube (Max 6 dimensions)

~ Max. 20MB/sec in each link

Figure 6: PIM model P: Main Features and Appearance of a Cabinet

45

o Machine language: KL1-b

o Architecture of PE:
— Microprogram control (64 bits/word x 32 KW)
— Data width: 40 bits/word
~ Machine cycle: 60ns, Regfile: 40 bits x 64W
— 5 stage pipeline
— Cache: 1 KW for Inst., 4 KW for Data
— Memory capacity: 16MW x 40 bits (80 MB)

o Max. 256 PEs, 32 PE/cabinet

o Network:

— 2-dimensional mesh
— 4.2MB/s x 2 directions/ch

Figure 7: PIM model M: Main Features and Appearance of four Cabinets

5.2.2 Development of PIMOS

PIMOS was intended to be a standard parallel operating
system for large-scale parallel machines used in symbol
and knowledge processing. It was designed as an in-
dependent, self-contained operating system with a pro-
gramming environment suitable for KL1. Its functions
for resource management and execution control of user
programs were designed as independent from the archi-
tectural details of the PIM hardware. They were imple-
mented based on an almost completely non-centralized
management scheme so that the design could be ap-
plied to a parallel machine with one million element
processors.[Chikayama 1992]

PIMOS is completely written in KL1. Its manage-
ment and control mechanisms are implemented using a
“meta-call” primitive of KL1. The KL1 language pro-
cessor has embedded an automatic memory management
mechanism and a dataflow synchronization mechanism.
The management and control mechanisms are then im-
plemented over these two mechanisms.

The resource management function is used to manage
the memory resources and processor resources allocated
to user processes and input and output devices. The pro-
gram execution control function is used to start and stop
user processes, control the order of execution following
priorities given to them, and protect system programs
from user program bugs like the usual sequential operat-

ing systems.

PIMOS supports multiple users, accesses via network
and so on. It also has an efficient KL1 programming en-
vironment. This environment has some new tools for de-
bugging parallel programs such as visualization programs
which show a programmer the status of load balancing in
graphical forms, and other monitoring and measurement
programs.

5.2.3 Knowledge base management system

The knowledge base management system consists of two
layers. The lower layer is a parallel database manage-
ment system, Kappa-P. Kappa-P is a database manage-
ment system based on a nested relational model. It is
more flexible than the usual relational database man-
agement system in processing data of irregular sizes and
structures, such as natural language dictionaries and bi-
ological databases.

The upper layer is a knowledge base manage-
ment system based on a deductive object-oriented
database. [Yokota and Nishio 1989] This provides us
with a knowledge representation language, Quixote.
[Yokota and Yasukawa 1992} These upper and lower lay-
ers are written in KL1 and are now operational on PI-
MOS.

The development of the database layer, Kappa, was
started at the beginning of the intermediate stage.

46

Kappa aimed to manage the “natural databases” accu-
mulated in society, such as natural language dictionaries.
It employed a nested relational model so that it could
easily handle data sets with irregular record sizes and
nested structures. Kappa is suitable not only for nat-
ural language dictionaries but also for DNA databases,
rule databases such as legal data, contract conditions,
and other “natural databases” produced in our social
systems.

The first and second versions of Kappa were developed
on a PSI machine using the ESP language. The second
version was completed at the end of the intermediate
stage, and was called Kappa-II.[Yokota et al. 1988]

In the final stage, a parallel and distributed imple-
mentation of Kappa was begun. It is written in KL1
and is called Kappa-P. Kappa-P is intended to use large
PIM main memories for implementing the main memory
database scheme, and to obtain very high throughput
rate for disk input and output by using many disks con-
nected in parallel to element processors.

In conjunction with the development of Kappa-II and
Kappa-P, research on a knowledge representation lan-
guage and a knowledge base management system was
conducted. After repeated experiments in design and im-
plementation, a deductive object-oriented database was
employed in this research. ,

At this point the design of the knowledge represen-
tation language, Quixote, was completed. Its language
processor, which is the knowledge base management sys-
tem, is under development. This language processor is
being built over Kappa-P. Using Quixote, construction
of a knowledge base can then be made continuously from
a simple database. This will start with the accumulation
of passive fact data, then gradually add active rule data,
and will finally become a complete knowledge base.

The Quixote and Kappa-P system is a new knowl-
edge base management system which has a high-level
knowledge representation language and the parallel and
distributed database management system as the base of
the language processor. The first versions of Kappa-P
and Quixote are now almost complete. It is interesting
to see how this big system operates and how much its
overhead will be.

5.2.4 Knowledge programming software

This software consists of various experimental programs
and tools built in theoretical research and development
into some element technologies for knowledge process-
ing. Most of these programs and tools are written in
KL1. These could therefore be regarded as application
programs for the parallel inference system.

1. Constraint logic programming system

In the final stage, a parallel constraint logic pro-
gramming language, GDCC, is being developed.

This language is a high-level logic language which
has a constraint solver as a part of its language
processor. The language processor is implemented
in KL1 and is intended to use parallel processing
to make its execution time faster. The GDCC
is evaluated by experimental application programs
such as a program for designing a simple handling
robot.[Aiba and Hasegawa 1992]

2. Theorem proving and program transformation

A model generation theorem prover, MGTP, is be-
ing implemented in KL1. For this application, the
optimization of load balancing has been made suc-
cessfully. The power of parallel processing is almost
proportional to the number of element processors
being used. This prover is being used as a rule-
based reasoner for a legal reasoning system. It en-
ables this system to use knowledge representation
based on first order logic, and to contribute to easy
knowledge programming.

3. Natural language processing

Software tools and linguistic data bases are being
developed for use in implementing natural language
interfaces. The tools integrated into a library called
a Language Tool Box (LTB). The LTB includes nat-
ural language parsers, a sentence generators, and the
linguistic databases and dictionaries including syn-
tactic rules and so on.

5.2.5 Benchmarking and experimental parallel

application software

This software includes benchmarking programs for the
parallel inference system, and experimental parallel ap-
plication programs which were built for developing paral-
lel programming methodology, knowledge representation
techniques, higher-level inference mechanisms and so on.

In the final stage, we extended the application area
to include larger-scale symbol and knowledge processing
applications such as genetic information processing and
legal expert systems. This was in addition to engineering
applications such as VLSI-CAD systems and diagnostic
systems for electronic equipment. [Nitta 1992

1. VLSI CAD programs

Several VLSI CAD programs are being developed
for use in logic simulation, routing, and placement.
This system is aimed at developing various parallel
algorithms and load balancing methods. As there
are sequential programs which have similar func-
tions to these programs, we can compare the per-
formance of the PIM against that of conventional
machines.

2. Genetic information processing programs

Sequence alignment programs for proteins and a
protein folding simulation program are being devel-
oped. Research on an integrated database for bio-
logical data is also being made using Kappa.

3. A legal reasoning system

This system infers possible judgments on a crime
using legal rules and past cases histories. It uses
the parallel theorem prover, MGTP, as a core of the
rule-based reasoner. This system is making full use
of important research results of this project, namely,
the PIM, PIMOS, MGTP and high-level inference
and knowledge representation techniques.

4. A Go game playing system

The search space of a Go game is too large to apply
any exhaustive search method. For a human player,
there are many text books to show typical position
sequences of putting stones which is called “Joseki”
patterns. This system has some of the Joseki pat-
terns and some heuristic rules as its knowledge base
to win the game against a human player. It aims to
attain 5 to 10 “kyuu” level.

The applications we have described all employ symbol
and knowledge processing. The parallel programs have
been programmed in KL1 in a short time. Particularly
for the CAD and sequence alignment programs, the pro-
cessing speed has improved almost proportionally to the
number of element processors.

However, as we can see in the Go playing system,
which is a very sophisticated program, the power of the
parallel inference system can not always increase its in-
telligence effectively. This implies that we cannot effec-
tively transcribe “natural” knowledge bases written in
text books on Go into data or rules in “artificial” knowl-
edge base of the system which would make the system
“ clever”. We need to make more effort to find out a
better program structure and better algorithms to make
full use of the merit of parallel processing.

6 Evaluation of the parallel in-
ference system

6.1 General purpose parallel program-
ming environment

The practical problems in symbol and knowledge pro-
cessing applications have been written efficiently in KL1,
and solved quickly using a PIM which has several hun-
dred element processors. Productivity of parallel soft-
ware using in KL1 has been proved to be much higher

47

than in any conventional language. This high productiv-
ity is apparently a result of using the automatic mem-
ory management mechanism and the automatic dataflow
synchronization mechanism.

Our method of specifying job division and load balanc-
ing has been evaluated and proved successful. KL1 pro-
gramming takes a two-step approach. In the first step, a
programmer writes a program concentrating only on the
program algorithms and a model. When the program is
completed, the programmer adds the specifications for
job division and load balancing using a notation called
“pragma” as the second step. This separation makes the
programming work simple and productive.

The specification of the KL1 language has been evalu-
ated as practical and adequate for researchers. However,
we realize that application programmers need a simpler
and higher-level KL1 language specification which is a
subset of KL1. In the future, several application-oriented
KL1 language specifications should be provided, just as
the von Neumann language set has a variety of different
languages such as Fotran, Pascal and Cobol.

6.2 Evaluation of KLL1 and PIMOS

The functions of PIMOS, some of which are implemented
as KL1 functions, have been proved to be effective for
running and debugging user programs on parallel hard-
ware. The resource management and execution mech-
anisms in particular work as we had expected. For in-
stance, priority control of user processes permits pro-
grammers to use about 4,000 priority levels and enables
them to write various search algorithms and speculative
computations very easily. We are convinced that the
KL1 and PIMOS will be the best practical example for
general purpose parallel operating systems in the future.

6.3 Evaluation of hardware support
for language functions

In designing of the PIM hardware and the KL1 language
processor, we thought it more important to provide a us-
able and stable platform which has a sufficient number of
element processor for parallel software experiments than
to build many dedicated functions into the element pro-
cessor. Only the dedicated hardware support built in
the element processor was tag architecture. Instead, we
added more support for the interconnection between el-
ement processors such as message routing hardware and
a coherent cache chip. .

We did not embed complex hardware support, such as
a matching store of a dataflow machine, or a content-
addressable memory. We thought it risky because an
implementation of the complex hardware would take a
long turn around time even by a very advanced VLSI
technology. We also considered that we should create a
new optimization technique for a compiler dedicated to

48

the embedded complex hardware support, and that this
would not easy too.

The completion of PIM hardware is now one year be-
hind the original schedule, mainly because we had many
unexpected problems in the design of the random logic
circuits, and in submicron chip fabrication. If we had
employed a more complex design for the element pro-
cessor, the PIM hardware would have been further from
completion.

6.3.1 Comparison of PIM hardware with com-

mercially available technology

Rapid advances have been made in RISC processors re-
cently. Furthermore, a few MIMD parallel machines
which use a RISC processor as their element processor
have started to appear in the market. When we began
to design the PIM element processor, the performances
of both RISC and CISC processors were as low as a few
MIPS. At that time, a dedicated processor with tag ar-
chitecture could attain a better performance. However,
now some RISC processors have attained more than 50
MIPS. It is interesting to evaluate these RISC processors
for KL1 program execution speed.

We usually compare the execution speed of a PIM ele-
ment processor to that of a general-purpose microproces-
sor, regarding 1 LIPS as approximately equivalent to 100
IPS. This means that a 500 KLIPS PIM element proces-
sor should be comparable to a 50 MIPS microprocessor.
However, the characteristics of KL1 program execution
are very different from those of the usual benchmark pro-
grams for general-purpose microprocessors.

The locality of memory access patterns for practical
KL1 programs is lower than for standard programs. As
the length of the object codes for a RISC instruction
set has to be longer than a CISC or dedicated instruc-
tion set processors, the cache miss ratio will be greater.
Then, simple comparison with the PIM element proces-
sor and some recent RISC chips using announced peak
performance is not meaningful. Thus, the practical im-
plementation of the KL1 language processor on a typical
RISC processor is necessary.

Most of the MIMD machines currently on the market
lack a general parallel programming environment. The
porting of the KL1 language processor may allow them
to employ new scientific applications as well as symbol
and knowledge processing applications.

In the future processor design, we believe that a gen-
eral purpose microprocessor should have tag architecture
support as a part of its standard functions.

6.3.2 Evaluation of high-level programming

overhead

Parallel programming in KL1 is very productive, espe-
cially for large-scale and complex problems. The control

of job division and load balancing works well for hun-
dreds of element processors. No conventional language
is so productive. However, if we compare the process-
ing speed of a KL1 program with that of a conventional
language program with similar functions within a single
element processor, we find that the KL1 overhead is not
so small. This is a common trade-off problem between
high-level programming and low-level programming.
One straightforward method of compensating is to
provide a simple subroutine call mechanism to link C
language programs to KL1 programs. Another method
is to improve the optimization techniques of compilers.
This method is more elegant than the first. Further re-
search on optimization technique should be undertaken.

7 Conclusion

It is obvious that a general-purpose parallel program-
ming language and environment is indispensable for solv-
ing practical problems of knowledge and symbol process-
ing. The straightforward extension of conventional von
Neumann languages will not allow the use of hundreds
of element processors except for regular scientific calcu-
lations.

We anticipated the difficulties in efficient implemen-
tation of the automatic memory management and syn-
chronization mechanisms. However, this has been now
achieved. The productivity and maintainability of KL1 is
much higher than we expected. This more than compen-
sates for the overhead in high-level language program-
ming.

Several experimental parallel application programs on
the parallel inference system have proved that most
large-scale knowledge processing applications contain po-
tential parallelism. However, to make full use of this par-
allelism, we need to have more parallel algorithms and
paradigms to actually program the applications.

The research and development targets of this FGCS
project have been achieved, especially as regards the par-
allel inference system. We plan to distribute the KL1
language processor and PIMOS as free software or pub-
lic domain software, expecting that they will be ported
to many MIMD machines, and will provide a research
platform for future knowledge processing technology.

A cknowledgment

The development of the FGCS prototype system was
conducted jointly by many people at ICOT, cooperating
manufacturers, and many researchers in many countries.
The author would like to express my gratitude to all the
people who have given us much advise and help for more
than 10 years.

References

[Uchida 1987] S. Uchida. “Inference Machines in FGCS
Project”, TR 278, ICOT, 1987.

[Uchida et al. 1988] S. Uchida, K. Taki, K. Nakajima, A.
Goto and T. Chikayama, “Research and Development
of The Parallel Inference System in The Intermedi-
ate Stage of The project”, Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Nov.28-Dec.2,
1988.

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, K.
Taki, and A. Matsumoto. » Overview of the Paral-
lel Inference Machine Architecture (PIM)”, In Proc.
of the International Conference on Fifth Generation
Computing Systems 1988, Tokyo, Japan, November
1988.

[Taki 1992] K. Taki, “Parallel Inference Machine, PIM”,
Proc. Int. Conf. on Fifth Generation Computer Sys-
tems, Tokyo, Jul.1-5, 1992.

[Chikayama 1984] T. Chikayama, “Unique Features of
ESP”, In Proc. Int. Conf. on Fifth Generation Com-
puter Systems 1984, ICOT, 1984, pp. 292-298.

[Wa.'rren 1983] D.H.D. Warren, “An Abstract Prolog In-
struction Set”, Technical Note 309, Artificial Intelli-
gence Center, SRI, 1983.

[Clark adn Gregory 1983] Keith L. Clark and Steve Gre-
gory, “Parlog: A parallel logic programming lan-
guage”, Research Report TR-83-5, Imperial College,
March 1983.

[Clark and Gregory 1984] K. L. Clark and S. Gregory,
“Notes on Systems Programming in PARLOG”, In
Proc. Int. Conf. on Fifth Generation Computer Sys-
tems 1984, ICOT, 1984, pp. 299-306.

[Shapiro 1983] E. Y. Sha,pi.ro, “A: subset of Concurrent
Prolog and Its Interpreter”, TR 003, ICOT, 1987.

[Ueda 1986] K. Ueda. Guarded Horn Clauses, “In Logic
Programming”, 85, E. Wada (ed.), Lecture Notes in
Computer Science 221, Springer-Verlag, 1986, pp.168-
179.

[Ueda 1986] K. Ueda, “Introduction to Guarded Horn
Clauses”, TR 209, ICOT, 1986.

[Chikayama and Kimura 1985] T. Chikayama and Y.
Kimura, “Multiple Reference Management in Flat
GHC”, In Proc. Fourth Int. Conf. on Logic Program-
ming, MIT Press, 1987, pp. 276-293.

[Chikayama el al. 1988] T. Chikayama, H. Sato and T.
Miyazaki, “Overview of the Parallel Inference Ma-
chine Operating System (PIMOS)”, In Proc. Int. Conf.

49

on Fifth Generation Computer Systems 1988, ICOT,
1988, pp. 230-251.

[Chikayama 1992] T. Chikayama, “Operating System
PIMOS and Kernel Language KL1”, Proc. Int. Coni.
on Fifth Generation Computer Systems, Tokyo, Jul.1-
5, 1992.

[Uchida et al. 1988} S. Uchida,“The Research and De-
velopment of Natural Language Processing Systems in
the Intermediate Stage of the FGCS Project”, Proc.
Int. Conf. on Fifth Generation Computer Systems,
Tokyo, Nov.28-Dec.2, 1988.

[Yokota et al. 1988] K. Yokota, M. Kawamura, and A.
Kanaegami, “Overview of the Knowledge Base Man-
agement System (KAPPA)”, Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Nov.28-Dec.2,
1988.

[Yokota and Nishio 1989] K. Yokota and S. Nishio, “To-
wards Integration of Deductive Databases and Object-
Oriented Databases—A Limited Survey”, Proc. Ad-

vanced Database System Symposium, Kyoto, Dec.,
1989.

[Yokota and Yasukawa 1992] K.Yokota
and H. Yasukawa, “Towards an Integrated Knowledge-
Base Management System”, Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Jul.1-5, 1992,

[Aiba and Hasegawa 1992] A. Aiba and R. Hasegawa,
“Constraint Logic Programming System”, Proc. Int.

Conf. on Fifth Generation Computer Systems, Tokyo,
Jul.1-5, 1992.

[Nitta 1992] K. Nitta, K. Taki, and N. Ichiyoshi, “Devel-
opment of Parallel Application Programs of the Paral-
lel Inference Machine”, Proc. Int. Conf. on Fifth Gen-
eration Computer Systems, Tokyo, Jul.1-5, 1992.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

50

Parallel Inference Machine PIM

Kazuo Taki

First Research Laboratory
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku; Tokyo 108, JAPAN
taki@icot.or.jp

Abstract

The parallel inference machine, PIM, is the prototype
hardware system in the Fifth Generation Computer Sys-
tems (FGCS) project. The PIM system aims at estab-
lishing the basic technologies for large-scale parallel ma-
chine architecture, efficient kernel language implementa-
tion and many aspects of parallel software, that must
be required for high performance knowledge information
processing in the 21st century. The PIM system also
supports an R & D environment for parallel software,
which must extract the full power of the PIM hardware.

The parallel inference machine PIM is a large-scale
parallel machine with a distributed memory structure.
The PIM is designed to execute a concurrent logic pro-
gramming language very efficiently. The features of the
concurrent logic language, its implementation, and the
machine architecture are suitable not only for knowl-
edge processing, but also for more general large prob-
lems that arise dynamic and non-uniform computation.
Those problems have not been covered by commercial
parallel machines and their software systems targeting
scientific computation. The PIM system focuses on this
new domain of parallel processing.

There are two purposes to this paper. One is to report
an overview of the research and development of the PIM
hardware and its language system. The other is to clarify
and itemize the features and advantages of the language,
its implementation and the hardware structure with the
view that the features are strong and indispensable for
efficient parallel processing of large problems with dy-
namic and non-uniform computation.

1 Introduction

The Fifth Generation Computer Systems (FGCS)
project aims at establishing basic software and hardware
technologies that will be needed for high-performance
knowledge information processing in the 21st century.
The parallel inference machine PIM is the prototype
hardware system and offers gigantic computation power

Programs PIMOS
g Protocol
l PIMOS
— KL1 Language = <G K| 1
KL1 Parallel '
Implementation Machine
~f—— Language
or
PIM Hardware Microprogram

Figure 1: Overview of the PIM Systerh

to the knowledge information processing. The PIM sys-
tem includes an efficient language implementation of
KL1, which is the kernel language and a unique inter-
face between hardware and software.

Logic programming was chosen as the common basis of
research and development for the project. The primary
working hypothesis was as follows. “Many problems of
future computing, such as execution efficiency (of paral-
lel processing), descriptive power of languages, software
productivity, etc., will be solved drammatically with the
total reconstruction of those technologies based on logic
programming.

Following the working hypothesis, R & D on the PIM
system started from scratch with the construction of
hardware, a system software, a language system, appli-
cation software and programming paradigms, all based
on logic programming. Figure 1 gives an overview of the
system structure.

The kernel language KL1 was firstly designed for ef-
ficient- concurrent programming and parallel execution
of knowledge processing problems. Then, R & D on the
PIM hardware with distributed-memory MIMD architec-
ture and the KL1 language implementation on it were
carried out, both aiming at efficient KL1 execution in

parallel. A machine roughly with 1000 processors was
primarily targeted. Each of these processors was to be a
high-speed processor with hardware support for symbolic
processing. The PIM system also focused on realizing a
useful R & D environment for parallel software which
could extract the real computing power of the PIM. The
preparation of a good R & D environment was an im-
portant project policy.

KL1 is a concurrent logic programming language pri-
marily targeting knowledge processing. Since the lan-
guage had to be a common basis for various types of
knowledge processing, it became a general-purpose con-
current language suitable for symbolic processing, with-
out shifting to a specific reasoning mechanism or a cer-
tain knowledge representation paradigm.

Our R & D led to the language features of K11 being
very suitable for covering the dynamic and non-uniform
large problems that are not covered by commercial par-
allel computers and their software systems for scientific
computation. Most knowledge processing problems are
included in the problem domain of dynamic and non-
uniform computation. The PIM hardware and the KL1
language implementation support the efficiency of the
language features. Thus, the PIM system covers this
new domain of parallel processing.

This paper focuses on two subjects. Oneis the R & D
report of the PIM hardware and the KL1 language imple-
mentation on it. The other is to clarify and itemize the
features and advantages of the language, its implementa-
tion and the hardware structure with the view that the
features are strong and indispensable for efficient paral-
lel processing of large problems with dynamic and non-
uniform computation. Any parallel processing system
targeting this problem domain must consider those fea-
tures.

Section 2 scans the R & D history of parallel process-
ing systems in the FGCS project, with explanation of
some of the keywords. Section 3 characterizes the PIM
system. Many advantageous features of the language, its
parallel implementation and hardware structure are de-
scribed with the view that the features are strong and
indispensable for efficient programming and execution of
the dynamic and non-uniform large problems. Section
4 presents the machine architecture of PIM. Five differ-
ent models have been developed for both research use
and actual software development. Some hardware spec-
ifications are also reported. Section 5 briefly describes
the language implementation methods and techniques,
to give a concrete image of several key features of the
KL1 implementation. Section 6 reports some measure-
ments and evaluation mainly focusing on a low-cost im-
plementation of small-grain concurrent processes and re-
mote synchronization, which support the advantageous
features of KL1. Overall efficiency, as demonstrated by
a few benchmark programs, is shown, including the most
recent measurements on PIM/m. Then, section 7 con-

51

cludes this paper.

Several important research issues of parallel software
are reported in other papers: the parallel operating sys-
tem PIMOS is reported in [Chikayama 1992] and the
load balancing techniques controlled by software are re-
ported in [Nitta et al. 1992].

2 R & D History

This section shows the R & D history of parallel pro-
cessing systems in the FGCS project. Important re-
search items and products of the R & D are described
briefly, with explanations of several keywords. There
are related reports for further information [Uchida 1992
[Uchida et al. 1988].

2.1 Start of the Mainstream of R & D

Mainstream of R & D of the parallel processing systems
started at the beginning of the intermediate stage of the
FGCS project, in 1985. Just before that time, a concur-
rent logic language GHC [Ueda 1986] had been designed,
which was chosen as the kernel language of the R & D.
Language features will be described in section 3.4.

Development of small hardware and software systems
was started based on the kernel language GHC as a hard-
ware and software interface. The hardware system was
used as a testbed of parallel software research. Experi-
ences and evaluation results was fed back to the next R
& D of larger hardware and software system, which was
the bootstrapping of R & D.

It was started from development of the Multi-PSI
[Taki 1988]. Purpose of the hardware development was
not only the architectural research of a knowledge pro-
cessing hardware, but also a preparation of a testbed for
efficient language implementation of the kernel language.
The Multi-PSI also focused to be a useful tool and envi-
ronment of parallel software research and development.
That is, the hardware was not just an experimental ma-
chine, but a reliable system being developed in short
period, with measurements and debugging facilities for
software development. After construction of the Multi-
PSI/V1 and /V2 with language implementations, various
parallel programs and technology and knowhow of par-
allel software have been accumulated [Nitta et al. 1992]
[Chikayama 1992]. The systems have been used for the
advanced software development environment for the par-
allel inference machines.

2.2 Multi-PSI/V1-

The first hardware was the Multi-PSI/V1 [Taki 1988]
[Masuda et al. 1988], started in operation in spring
1986. The personal sequential inference machine PSI
[Taki et al. 1984] was used for processing elements. It
was a development result of the initial stage of the

52

project. Six PSI machines were connected by a mesh net-
work, which supported so called wormhole routing. The
first distributed implementation of GHC was built on
it [Ichiyoshi et al. 1987]. (Distributed implementation
means a parallel implementation on a distributed mem-
ory hardware). Execution speed was slow (1K LIPS =
logical inference per second) because an interpreter sys-
tem was written in ESP (the system description language
of the PSI). However, basic algorithms and techniques of
distributed implementation of GHC was investigated in
it. Several small parallel programs were written and exe-
cuted on it for evaluation, and primary experimentations
of load balancing were also carried out.

2.3 From GHC To KL1

Since GHC had only basic functions that the kernel
concurrent logic language had to support, language ex-
tensions were needed for the next more practical sys-
tem. Kernel language KL1 was designed with considera-
tions of execution efficiency, operating system supports,
and some built-in functions [Ueda and Chikayama 1990]
[Chikayama 1992]. An intermediate language KL1-B,
which was the target language of KL1 compiler, was also
designed [Kimura and Chikayama 1987]. In the Multi-
PSI/V2 and a PIM model, binary code of KL1-B is di-
rectly interpreted by microprogram; that is, KL1-B is
machine language itself. In the other PIM models, KL1-
B code is converted to lower-level machine instruction
sequences and executed by hardware.

2.4 Multi-PSI/V2

The second hardware system was the Multi-PSI/V2
[Takeda et al. 1988] [Nakajima 1992], which was im-
proved in performance and functions enough to be called
as the first experimental parallel inference machine. It
started in operation in 1988 and was demonstrated in
the FGCS’88 international conference.

The Multi-PSI/V2 included 64 processors, each
of which were equivalent to the CPU of PSI-
IT [Nakashima and Nakajima 1987], smaller and faster
model of the PSI. Processors were connected with two
dimensional mesh network with improved speed (10M
Bytes/s, full duplex in each channel). KL1-B was the
machine language of the system, executed by micropro-
gram. Almost all the runtime functions of KL1 was
implemented in microprogram. The KL1 implemen-
tation was improved much in execution efficiency, re-
ducing inter-processor communication messages, efficient
garbage collections, etc. compared with Multi-PSI/V1.
It attained 130K LIPS (in KL1 append) in single pro-
cessor speed. Table 1 to 4 include specifications of the
Multi-PSI/V2. Since 1988, more than 15 systems, large
system with 64 processors and small with 32 or 16 pro-
cessors, have been in operation for parallel software R &

D in ICOT and in cooperating companies.

A strong simulator of the Multi-PSI/V2 was also de-
veloped for software development environment. It was
called the pseudo Multi-PSI, available on the Prolog
workstation, PSI-II. A very special feature was caused
by similarity of the PSI-II CPU and processing element
of the Multi-PSI/V2. Usually, PSI-II executed ESP lan-
guage with dedicated microprogram. However, it loaded
KL1 microprogram dynamically at the activation of the
simulator system. The simulator executed KL1 programs
as similar speed as that of the Multi-PSI/V2 single pro-
cessor. Since the PIMOS could be also executed on the
simulator, programmers could use the simulator as sim:
ilar environment as the real Multi-PSI/V2, except for
speedup with multiple processors and process schedul-
ing. The pseudo Multi-PSI was the valuable system for
initial debugging of KL1 programs.

2.5 Software Development on the

Multi-PSI/ V2

Parallel operating system PIMOS (the first version) and
four small application programs (benchmark programs)
[Ichiyoshi 1989] had been developed until FGCS’88.
Much efforts was paid in PIMOS development to real-
ize a good environment of programming, debugging, ex-
ecution and measurements of parallel programs. In the
development of small application programs, several im-
portant research topics of parallel software were inves-
tigated, such as concurrent algorithms with large con-
currency without increase of complexity, programming
paradigms and techniques of efficient KL1 programs, and
dynamic and static load balancing schemes for dynamic
and non-uniform computation.

The PIMOS has been improved in several versions,
and ported to the PIM until 1992. The small appli-
cation programs, pentomino [Furuichi et al. 1990], best-
path [Wada and Ichiyoshi 1990], PAX (natural language
parser) and tsume-go (a board game) were improved,
measured and analyzed until 1989. They are still used
as test and benchmark programs on the PIM.

These development gave observations that the KL1
system on the Multi-PSI/V2 with PIMOS has reached
sufficient performance level for practical usage, and has
realized sufficient functions for describing complex con-
current programs and for experimentations of software-
controlled load balancing.

Several large-scale parallel application programs have
been developed from late 1989 [Nitta et al. 1992] and
still continuing. Some of them have been ported to the
PIM.

2.6 Parallel Inference Machine PIM

2.6.1 Five PIM Models

Design of the parallel inference machine PIM was started
in concurrent with manufacturing of the Multi-PSI/V2.
Some research items in hardware architecture were omit-
ted in the development of the Multi-PSI/V2, because of
short development time needed for starting the parallel
software development. So, PIM took a greedy R & D
plan, focusing both the architectural research and real-
ization of software development environment.

The first trial to the novel architecture was the multi-
ple clusters. A small number of tightly-coupled proces-
sors with shared-memory formed a cluster. Many clus-
ters were connected with high speed network to construct
the PIM system with several hundred processors. Bene-
fits of the architecture will be discussed in section 3.7.

Many component technologies had to be developed
or improved to realize the new system, such as parallel
cache memory suitable for frequent inter-processor com-
munications, high speed processors for symbolic process-
ing, improvement of the network, etc. For R & D of
better component technologies and their combinations,
the development plan of five PIM models was made, so
that different component architecture and their combi-
nations could be investigated with assigning independent
research topics or roll on each model.

Two models, PIM/p [Kumon et al. 1992] and PIM/c
[Nakagawa et al. 1992], took the multi-cluster structure.
They include several hundreds processors, maximum 512
in PIM/p and 256 in PIM/c. They were developed both
for the architectural research and software R & D. Each
investigated different network architecture and processor
structure.

The other two models, PIM/k [Sakai et al. 1991] and
PIM/i [Sato et al. 1992], were developed for the exper-
imental use of intra-cluster architecture. Two-layered
coherent cache memory which enabled larger number of
processors in a cluster, broadcast-typed. coherent cache
memory, and a processor with LIW-type instruction set
were tested.

The other model, PIM/m [Nakashima et al. 1992], did
not take the multi-cluster structure, but focused the rigid
compatibility with the Multi-PSI/V2, having improved
processor speed and larger number of processors. The
maximum number of processors will be 256. The perfor-
mance of a processor will be four to five times larger at
peek speed, and 1.5 to 2.5 times larger in average than
the Multi-PSI/V2. The processor was similar to the CPU
of PSI-UX, the most recent version of the PSI machine.
A simulator, pseudo-PIM/m, was also prepared like the
pseudo Multi-PSI. The PIM/m targeted the parallel soft-
ware development machine mostly among the models.

Architecture and specifications of each model will be
reported in section 4.

Experimental implementations of some LSIs of these

53

models have started in 1989. The final design was al-
most fixed in 1990, and manufacturing of whole system
was proceeded with in 1991. From 1991 to spring 1992,
assembly and test of the five models have carried on.

2.6.2 Software Compatibility

KL1 language is common among all the five PIM mod-
els. Except for execution efficiency, any KL1 programs
including PIMOS can run on the all models. Hardware
architecture is different between two groups, Multi-PSI
and PIM/m as the one, and the other PIM models as
the other. However, from programmers’ view, abstract
architecture are designed similar as follows.

The load allocation to processors are fully controlled
by programs on the Multi-PSI and the PIM/m. [t is
sometimes written by programmers directly, and some-
times specified by load allocation libraries. Programmers
are often researchers of load balancing techniques. On
the other hand, load balancing in a cluster is completely
controlled by the KL1 runtime system (not by KL1 pro-
grams) among the PIM models with the multi-cluster
structure. That is, programmers does not have to think
of multiple processors in a cluster, but specify load allo-
cation to each cluster in their programs. It means that
a processor of the Multi-PSI or PIM/m corresponds to a
cluster of the PIM models with the multi-cluster struc-
ture, which simplifies portation of KL1 programs.

2.7 KL1 Implementation for PIM

KL1 system must be the first regular system in the world
which can execute large-scale parallel symbolic process-
ing programs very efficiently. Execution mechanisms or
algorithms of KL1 language had been developed for dis-
tributed memory architectures sufficiently on the Multi-
PSI/V2. Some mechanisms and algorithms should be
expanded for the multi-cluster architecture of PIM. Ease
of porting the KL1 system to four different PIM mod-
els was also considered in the language implementation
method. Only the PIM/m inherited the KL1 implemen-
tation method directly from the Multi-PSI/V2.

To expand the execution mechanisms or algorithms
suitable for the multi-cluster architecture, several tech-
nical topics were focused, such as avoiding data up-
date contentions among processors in a cluster, auto-
matic load balancing in a cluster, expansion of an inter-
cluster message protocol applicable for the message out-
stripping, parallel garbage collection in a cluster, etc.
[Hirata et al. 1992].

For easiness of porting the KL1 system to four differ-
ent PIM models, a common specification of KL1 system
“VPIM (virtual PIM)” was written in “C”-like descrip-
tion language “PSL”, targeting a common virtual hard-
ware. VPIM was the executable specification of KL1 ex-
ecution algorithms, which was translated to C language
and executed to examine the algorithms. VPIM has been

54

translated to lower-level machine languages or micropro-
grams automatically or by hands according to each PIM
structure.

Preparation of the description language started in
1988. Study of efficient execution mechanisms and al-
gorithms continued until 1991, then, VPIM was com-
pleted. Porting the VPIM to four PIM models partially
started in autumn 1990, and continued to spring 1992.
Now, the KL1 system with PIMOS is available on each
PIM model. On the other hand, KLI system on the
PIM/m, which was implemented in microprogram; was
made from conversion of Multi-PSI/V2 microprogram by
hands or partially in automatic translation. Prior to the
other PIM models, PIM/m started in operation with the
KLI system and PIMOS in summer 1991.

2.8 Performance and System Evalua-
tion

Measurements, analysis, and evaluation should be done
on various levels of the system shown below.

1. Hardware architecture and implementations

2. Execution mechanisms or algorithms of KL1 imple-
mentation

3. Concurrent algorithms of applications (algorithms
for problem solving, independent from mapping)
and their implementations ‘

4. Mapping (load allocation) algorithms

5. Total system performance of a certain application
program on a certain system

Various works have been
done on the Multi-PSI/V2. 1 and 2 were reported in
[Masuda et al. 1988] and [Nakajima 1992]. 3 to 5 were
reported in [Nitta et al. 1992], [Furuichi et al. 1990],
[Ichiyoshi 1989] and [Wada and Ichiyoshi 1990].)

Primary measurements have just started on each PIM
models. Some intermediate results are included in
[Nakashima et al. 1992] and [Kumon et al. 1992].

Total evaluation of the PIM system will be done in the
near future, however, some observations and discussions
are included in section. 6.

3 Characterizing the PIM and
KL1 system '

PIM and KL1 system have many advantageous features
for very efficient parallel execution of large-scale knowl-
edge processing which often shows very dynamic runtime
characteristics and non-uniform computation, much dif-
ferent from numerical applications on vector processors

and SIMD machines.

This section clarifies the characteristics of the targeted
problem domain shortly, and describes the various ad-
vantageous features of PIM and KL1 system, that are
dedicated for the efficient programming and processing
in the problem domain. They will give the total system
image and help to clarify the difference and similarity
of the system with other large-scale multiprocessors, re-
cently available in the market.

3.1 Summary of Features

The total image of PIM and KL1 system are briefly
scanned as follows. Detailed features and their bene~
fits, and reasons why they were chosen are presented in
the following sections.

Distributed memory MIMD machine:

Global structure of the PIM is the distributed mem-
ory MIMD machine in which hundreds computation
nodes are connected by highspeed network. Scala-
bility and ease of implementations are focused. Each
computation node includes single processor or sev-
eral tightly-coupled processors, and large memory.

" Processors are dedicated for efficient symbolic pro-
cessing.

Logic programming language: The kernel language
KL1 is a concurrent logic programming language,
which is single language for system and application
descriptions. Language implementation and hard-
ware design are based on the language specification.

KL1 is not a high-level knowledge representation
language nor a language for certain type of rea-
soning, but a general-purpose language for concur-
rent and parallel programming, especially suitable
for symbolic computations.

KL1 has many beneficial features to write parallel
programs in those application domains, described
below.

Application domain: Primary applications are large-
scale knowledge processing and symbolic computa-
tion. However, large numerical computation with
dynamic features, or with non-uniform data and
non-uniform computation (non-data-parallel com-
putation) are also targeted.

Language implementation: One KL1 system is im-
plemented on a distributed memory hardware,
which is not a collection of many KLI1 systems
implemented on each processing node. A global
name space is supported for code, logical variables,
etc. Communication messages between computa-
tion nodes are handled implicitly in KL1 system,
not by KL1 programs. An efficient implementation
for small-grain concurrent processes is taken.

These implementations focus to realize the benefi-
cial features of KL1 language for the application do-
mains described before.

Policy of load balancing: Load balancing between
computation nodes should be controlled by KL1 pro-
grams, not by hardware nor by the language sys-
tem automatically. Language system has to support
enough functions and efficiency for the experiments
of various loadbalancing schemes with software.

3.2 Basic Choices

(1) Logic programming: The first choice was to
adopt logic programming as the basis of the ker-
nel language. The decision is mainly due to the
insights of ICOT founders, who expected that logic
programming was suitable for both knowledge pro-
cessing and parallel processing. A history, from
vague expectations on logic programming to the
concrete design of the KL1 language, is explained
in [{Chikayama 1992].

(2) Middle-out approach: A middle-out approach of
R & D was taken, placing the KL1 language as the
central layer. Based on the language specification,
design of the hardware and the language implemen-
tation started downward, and writing the PIMOS
operating system and parallel software started up-
ward.

(3) MIMD machine: The other choices concerned
with basic hardware architecture.

Dataflow architecture before mid 1980 was con-
sidered not providing enough performance against
hardware costs, according to observations for re-
search results in initial stage of the project.

SIMD architecture seemed inefficient on applica-
tions with dynamic characteristics or low data-
parallelism that are often seen in knowledge pro-
cessing.

MIMD architecture remained without major demer-
its and was most attractive from the viewpoint of
ease of implementation with standard components.

(4) Distributed memory structure: Distributed
memory structure is suitable to construct very large
system, and easy to implement.

Recent large-scale shared memory machines with
directory-based cache coherency mechanisms claims
good scalability. However, when the block size
(the coherency management unit) is large, the inter-
processor communication with frequent small data
transfer seems inefficient. KL1 programs require the
frequent small data transfer. When the block size

55

becomes small, large directory memory is needed,
which increases the hardware cost.

Single assignment languages need special memory
management such as dynamic memory allocation
and garbage collection. These management should
be done as locally as possible for the sake of effi-
ciency. Local garbage collection requires separation
of local and global address spaces with some indirect
referencing mechanism or address translation, even
in a scalable shared memory architecture. Merits of
the low-cost communication in the shared memory
architecture decrease significantly for such the case.

These are the reasons to choose the distributed
memory structure.

3.3 Characterizing the Applications

(1) Characterization: Characteristics of knowledge

processing and symbolic computation are often
much different from those of numerical computation
on vector processors and SIMD machines. Prob-
lem formalizations for those machines usually based
on data-parallelism, parallelism for regular compu-
tation on uniform data.

However, the characteristics of knowledge and sym-
bolic computations on parallel machines tend to
be very dynamic and non-uniform. Contents and
amount of computation vary dynamically depend-
ing on time and space. For example, when a heuris-
tic search problem is mapped on a parallel machine,
workload of each computation node changes dras-
tically depending on expansion and pruning of the
search tree. Also, when a knowledge processing sys-
tem is constructed from many heterogeneous ob-
jects, each object arises non-uniform computation.
Computation loads of these problems are hardly es-
timated before execution.

Some classes of large numerical computation with-
out data-parallelism also show the dynamic and
non-uniform characteristics.

Those problems which has dynamism and non-
uniformity of computation are called the dynamic
and non-uniform problems in this paper, implying
not only the knowledge processing and symbolic
computation but also the large numerical compu-
tation without data-parallelism.

The dynamic and non-uniform problems tends to
include the programs with more complex program
structure than the data-parallel problems.

(2) Requirements for the system: Most of the soft-

ware systems on recent commercial MIMD ma-
chines with hundreds of processors target the data-
parallel computation, but they almost don’t care
other paradigms.

56

The dynamic and non-uniform problems arise new
requirements mainly on software systems and a few
on hardware systems, which are listed below.

1. Descriptive power for complex concurrent pro-
grams

2. Easy to remove bugs
3. Ease of dynamic load balancing

4. Flexibility for changing the load allocation and
scheduling schemes to cope with difficulty on
estimating actual computation loads before ex-
ecution

3.4 Characterizing the Language

This subsection itemizes several advantageous features of
KL1 that satisfy the requirements listed in the previous
section. Features and characteristics of the concurrent
logic programming language KL 1 are described in detail
in [Chikayama 1992].

The first three features have been in GHC, the basic
specifications of KL1. These features make descriptive
power of the language large enough to write complex con-
current programs. They are the features of concurrent
programming to describe logical concurrency, indepen-
dent from mapping to actual processors.

(1) Dataflow synchronization: Communication and
synchronization between KL1 processes are per-
formed implicitly at all within a framework of usual
unification. It is based on the dataflow model. Im-
plicitness is available even in a remote synchroniza-
tion. The feature drastically reduces bugs of syn-
chronization and communication compared with the
case of explicit description using separate primitives.
The single-assignment property of logic variables
supports the feature.

(2) Small-grain concurrent processes: The unit of
concurrent execution in KL1 is each body goal of
clauses, which can be regarded as a process invoca-
tion. KL1 programs can thus involve a large amount
of concurrency implicitly.

(3) Indeterminacy: A goal (or process) can test and
wait for the instantiation of multiple variables con-
currently. The first instantiation resumes the goal
execution, and when a clause is committed (selected
from clauses that succeed to execute guard goals),
the other wait conditions are thrown away. This
function is valuable to describe “non-rigid” process-
ing within a framework of side-effect free language.
Speculative computation can be dealt with, and dy-
namic load distribution can be also written.

The next features have been included in KL1 as exten-
sions to GHC. (4) was introduced to describe mapping

(load allocation) and scheduling. They are the features
for parallel programming to control actual parallelism
among processing nodes. (5) is prepared for operating
system supports. (6) is for the efficiency of practical
programs.

(4) Pragma: Pragma is a notation to specify goal allo-
cation to processing nodes or specify execution pri-
ority of goals. Pragma doesn’t affect the semantics
of a program, but controls parallelism and efficiency
of actual parallel execution. Pragmas are usually at-
tached to goals after making sure that the program
is correct anyway. It can be changed very easily.
because it is syntactically separated from the cor-
rectness aspect of a program.

Pragma for load allocation: Goal allocation is
specified with a pragma, @node(X). X can be calcu-
lated in programs. Coupled with (1) and (2), the
load allocation pragma can realize very flexible load
allocation. Also coupled with (3) and the pragma,
KL1 can describe a dynamic load balancing program
within a framework of the pure logic programming
language without side-effect. Dynamic load balanc-
ing programs are hard to be written in pure func-
tional languages without indeterminacy.

Pragma for execution priority: Execution pri-
ority is specified with a pragma, @priority(Y). More
than thousands priority levels are supported to con-
trol goal scheduling in detail, without rigid ordering.

Combination of (3) and the priority pragma realizes
the efficient control of speculative computations.
Large number of priority levels can be utilized in
e.g. parallel heuristic search to expand good branch
of the search tree at first.

(5) Shoen function (meta-control for goal group) :
The shoen function is designed to handle a set of
goals as a task, a unit of execution and resource
management. It is mainly used in PIMOS. Start,
stop and abortion of tasks can be controlled. Limit
of resource consumption can be specified. When er-
rors or exception conditions occur, the status are
frozen and reported outside the shoen.

(6) Functions for efficiency: KL1 has several built-
in functions or data types whose semantics is un-
derstood within the framework of GHC but which
has been provided for the sake of efficiency. Those
functions hide demerits of side-effect free languages,
and also avoid an increase of computational com-
plexity compared with sequential programs.

3.5 Characterizing the Language Im-
plementation
Language features, just described in the previous section,

satisfy the requirements for a system by the dynamic and
non-uniform problems discussed in section 3.3. Most of

special features of the language implementation focused -

to enlarge those advantageous features of KL1 language.

(1) Implicit communication:
Communication and synchronization among concur-
rent processes are implicitly done by unifications on
shared logical variables. They are supported both
in a computation node and between nodes. It is es-
pecially beneficial that a remote synchronization is
done implicitly as well as local.

A process (goal) can migrate between computation
nodes only being attached a pragma, @node(X).
When the process has reference pointers, remote ref-
erences are generated implicitly between the compu-
tation nodes. The remote references are used for the
remote synchronizations or communications.

These functions hide the distributed memory hard-
ware from the “concurrent programming”. That is,
programmers can design concurrent processes and
their communications, independent from their al-
locations to a same computation node or different
nodes. Only the “parallel programming” with prag-
mas, a design of load allocation and scheduling, has
to concern with hardware structure and network
topology.

Implementation features of those functions are sum-
marized below, including the features for efficiency.

o Global name space on a distributed memory
hardware — in which implicit pointer manage-
ment among computation nodes are supported
for logical variables, structured data and pro-
gram code

¢ Implicit data transfer caused by unifications
and goal (process) migration

o Implicit message sending and receiving invoked
with data transfer and goal sending, including
message composition and decomposition

e Message protocols able to reduce the number
of messages, and also protocols applicable to
message outstripping

(2) Small-grain concurrent processes: Efficient im-
plementation of small-grain concurrent processes are
realized, coupled with low-cost communications and
synchronizations among them.

Process scheduling with low-cost suspension and re-
sumption, and priority management are supported.

57

Efficient implementation allows actual use of a lot
of small-grain processes to realize large concurrency.
A large number of processes also gives flexibility for
the mapping and load balancing.

Automatic load balancing in a cluster is also sup-
ported. It is a process (goal) scheduling function in
a cluster implemented with priority management.
The feature hides multiprocessors in a cluster from
programmers. They do not have to think about
load allocation in a cluster, but only have to pre-
pare enough concurrency.

(3) Memory management: These garbage collection

mechanisms are supported.

¢ Combination of incremental garbage collection
with subset of reference counting and stop-and-
collect copying garbage collection

¢ Incremental releasing of remote reference
pointers between computation nodes with
weighted reference counting scheme

Dynamic memory management including garbage
collections looks essential both for symbolic process-
ing and for parallel processing of the dynamic and
non-uniform problems. Because the single assign-
ment feature, strongly needed for the problems, re-
quires dynamic memory allocation and reclamation.

Efficiency of garbage collectors is one of key features
for practical language system of parallel symbolic
processing.

(4) Implementation of shoen function: Shoen rep-

resents a group of goals (processes) as presented in
the previous subsection. Shoen mechanism is im-
plemented not only in a computation node but also
among nodes. Namely, processes in a task can be
distributed among computation nodes, and still con-
trolled all together with shoen functions.

(5) Built-in functions for efficiency: Several built-

in functions and data types are implemented to keep
up with the efficiency of sequential languages.

(6) Including OS kernel functions: Figure 2 shows

the relation of KL1 implementation and operating
system functions. KLI1 implementation includes so
called OS kernel functions such as memory manage-
ment, process management and scheduling, commu-
nication and synchronization, virtual single name
space, message composition and decomposition, etc.
While, PIMOS includes upper OS functions like pro-
gramming environment and user interface.

The reason why the OS kernel functions are included
in the KL1 implementation is that the implementa-
tion needs to use those functions with as light cost
as possible. Cost of those functions affect the actual

58

Application
Programs

PIMOS
— KL1 Language :1

KL1 Parallel
Implementation

OS Kernel
Functions

PIM Hardware

[

|

Load distribution libraries, etc.

Utility programs (eg. shell)

Programming environment (eg. complier, tracer,
performance analizer)

Program code management

User task management

Resource management (eg. |O resources)

Memory management

Process management

Communication, synchronization, and scheduling
Single name space on a distributed memory
system

Network message composition and
decomposition

-

Figure 2: KL1 Implementation and OS Functions

execution efficiency of the advantageous features of
KL1 language, such as large number of small-grain
concurrent processes, implicit synchronization and
communication among them (even between remote
processes), indeterminacy, scheduling control with
large number of priority levels, process migration
specified with pragmas, etc. Those features are
indispensable for concurrent and parallel program-
ming and efficient parallel execution of large-scale
symbolic computation with dynamic characteristics,
or large-scale non-data-parallel numerical computa-
tions.

Considering a construction of similar purpose par-
allel processing system on a standard operating sys-
tem, interface level to the OS kernel may be too high
(or may arise too much overhead). Some reconstruc-
tion of OS implementation layers might be needed
for the standard parallel operating systems for those
large-scale computation with dynamic characteris-
tics.

3.6 Policy of Load Balancing

Such a basic policy has been taken that load balancing
between computation nodes should be completely con-
trolled by KL1 programs, not by hardware nor by lan-
guage system automatically. There are two reasons.

One is that KL1 can describe load balancing programs
within usual logic programming features. Since many
research topics on load distribution have been remained
unsolved especially on dynamic problems, experiments
on software controlled load balancing is advantageous
in an aspect of flexibility. It does not include significant
overhead because the KL1 language system realize a very
low-cost implementation.

The other is that distributed memory architecture

needs strong locality of computation, for which some pro-
grammers’ help is important for better load balancing.
Language system has to support enough functions and
efficiency for the experiments of various load balancing
schemes by software.
Some load balancing schemes are prepared as utility
programs, available for application programmers.

3.7 Characterizing the Hardware Ar-
chitecture

Features of PIM hardware architecture are listed below.
Some of them are specialized for symbolic processing and
large-scale parallel computation of dynamic problems,
and some of them are standard.

(1) Distributed memory MIMD machine:

Target hardware is the large-scale MIMD machine
with distributed memory structure. Hundreds pro-
cessing nodes are connected by highspeed network.
It was a basic choice of the R & D. The structure
was considered to have large scalability, to be mostly
easy for implementation, and to be suitable to sep-
arate local garbage collections and global.

(2) Cluster structure: Eight processors, that are
tightly coupled with shared bus and shared mem-
ory, form a cluster. Many clusters are connected
with highspeed network to form the total system.
Programmers deal with a cluster as a computation
node with large computation power and large mem-
ory, since automatic load balancing is supported by
language system within a cluster.

Cluster is a substructure of the PIM, realizing a
low latency and high bandwidth connection between
processors. There are two major advantages of

the cluster structure. The first is its applicability
to those problems which have less locality, while
distributed memory architecture hardly processes
those problems efficiently. The second is higher ef-
ficiency of memory usage compared with full dis-
tributed memory systems with the same memory
size. A substructure with higher bandwidth inter-
processor connection is effective to reduce needs of
memory size per processor, keeping the same effi-
ciency of parallel processing. It affects the total sys-
tem cost significantly.

A disadvantage is heterogeneous inter-processor
connections that increase the complexity of hard-
ware implementations, however, the cluster with
tightly coupled processors will be a standard com-
ponent in the near future.

(8) Large memory against processing power:
Non-uniform computation or dynamic computation
with wide variation of grain size require larger mem-
ory to keep the processing efficiency, compared with
data-parallel computation. Because extra work is
needed to fill the idling time caused by irregular syn-
chronization, which requires more working space in
a memory.

(4) Highspeed network: Highspeed network connec-
tion between processing nodes has already become
standard. However, the ratio of network load and
processor load, caused by network communications,
is different from the case of numerical processing.
Management of virtual single name space usually
arises extra processor loads for each communica-
tions, compared with the case of simple data trans-
fer in numerical processing. It causes less needs to
network bandwidth against processing power.

On the other hand, parallel symbolic computation
with dynamic features often arises remote synchro-
nizations with small data transfer. Response of
the network communication is more important than
bandwidth for such cases.

(5) Coherent cache memory: Each processor in a
cluster has coherent cache memory with write back
strategy. Basic technology is similar to the stan-
dard coherent cache memory used in commercial
tightly coupled multiprocessors. However, the oc-
currence of cache to cache data transfer, caused by
inter-processor communications, is larger than the
usual time sharing use of commercial multiproces-
sors. Optimizations of cache commands and bus
protocols for such usage is important to reduce bus

traffic.

(6) Dedicated processors: Processors include special
features of tag handling, data type checking and
branching, and dereferencing pointers for efficient

59

KL1 execution. These features are useful not
only for symbolic processing, but also for an ef-
ficient implementation of a single-assignment lan-
guage needed for the parallel processing of the dy-
namic and non-uniform problems.

The processors have dedicated instruction sets de-
rived from the abstract instruction set KL1-B.

Pipelining and RISC-like instruction sets are also
used, that are standard techniques.

4 Machine Architecture and

Hardware

Overall structure and features of the PIM system were
presented in the previous section. This section shows
the machine architecture, hardware implementations and
some technical data of each PIM models in detail.

4.1 Overview of Five PIM Models

Five PIM models have been developed, that have differ-
ent architectures or different combinations of component
technologies, and have different rolls of R & D.

PIM/p : PIM/p is the largest PIM model which con-
tains maximum 512 processors. PIM/p focuses both
architectural research and actual use in software R

& D.

PIM/p took the multi-cluster architecture shown in
Figure 3. Maximum 64 clusters can be connected.
Connection network took hypercube topology. Two
independent networks are connected to each clus-
ters.

Each cluster contains eight processors connected
with a shared bus and shared memory. A proces-
sor has coherent cache memory, a network interface
unit “NIU”, and an I/O device interface (SCSI bus)
[Kumon et al. 1992].

Processors in all PIM models have SCSI buses, which
are used to connect FEPs (Front End Processors) and
hard disks. The PSI-UX [Nakashima et al. 1992] is used
for the FEP, as an intelligent I/O device for human-
machine interface.

PIM/m : PIM/m targets the software development
machine and rigid compatibility with the Multi-
PSI/V2. 256 processors are connected with two
dimensional mesh network. The structure is
shown in Figure 4. 32 hard disks, which are
20GB in total, and many FEPs are connected
[Nakashima et al. 1992).

60

Double Hypercube Network

Router| [Router

¥ R ER R
i | PEo| .|| PEs| |PE4| -~ |PE7|{: ! '
: ICache [cache]l [[cache] [cache] ! iCluster !
- [[T 11
| _Bus Cluster P |
1 u v :
; Shared Memory 0! ;
FEP
Figure 3: Overview of PIM/p Architecture
16
4 A ™
5 O 0OF
PE|[PE|JPEL PE W
240 241 [] 242 255
I 1 i I
PE i : H :
: I I I I {16
Processor frf NU 1= PE PE PE PE
16 [17 [18 [— = 31
Memory |UScs; I | I IL
Y [PEL[PEL[PE|L PE
0 1M 2 =15
FEP S—
(/0) éj - L
=== Network = SCSI bus

Figure 4: Overview of PIM/m Architecture

PIM/c : PIM/c also takes the multi-cluster archi- PIM/i : PIM/iis also a research use system. LIW-type
tecture including 256 processors in total: A instruction set and cache protocol with broadcasting
cluster contains eight processors. 32 clusters type has been investigated [Sato et al. 1992].
are connected with a crossbar switch network
[Nakagawa et al. 1992].

PIM/k : PIM/k focuses on architectural research
within a cluster. Hierarchical cache system has been

investigated to connect larger number of proces- The global configuration of five PIMs are summarized

sors in a cluster [Sakai et al. 1991]. Four processors in table 1.
share a local bus and second cache. They form a Specifications of components, that are processors, net-
mini-cluster. Four mini-clusters are connected to a works, and cache systems, will be reported in the follow-

shared memory-bus and shared memory (Figure 5). ing subsections.

61

EP L] 1] L}] n L
(170)
- -

e Mini-Cluster 0 --- r---------- P opeeoemees : !

| | PEo|| PE+|| PE2|| PEs|} | i . ;

DEsTs s] s) | Minie i Mini- || Minie |

i |C2che]] |[Cache)| |[Cache| |[Cachd] | | Cluster | | Cluster | | Cluster |

' I 1 [L 1 2 0 3

2nd Cashe : : : ' H

o S I

Shared Memory
Figure 5: Overview of PIM/k Architecture
Table 1: Global Configuration
Topology Number of Clusters | Total Number of PEs || Memory Size/Cluster

PIM/p hypercube x 2 64 512 256 MB
PIM/m mesh 256 256 80 MB
PIM/c crossbar 32 256 160 MB
PIM/k — 1t 16 1 GB
PIM/i — 2 16 320 MB
Multi-PSI/V2 mesh 64 64 80 MB

(1 : four mini-clusters included)

4.2 Processing Element

Since KL1 implementation requires frequent runtime
type checking, all CPUs of PIM models are designed as
the tagged-architecture similar to the Multi-PSI.

PIM/p, PIM/i and PIM/k have RISC-like instruction
set whereas PIM/m and PIM/c have CISC-like micro
programmable instruction set (Table 2). The former pro-
cessors execute machine instructions which are at a level
still lower than KL1-B. The latter processors interpret
KL1-B code by horizontal micro program.

The CPU of PIM/p [Kumon' et al. 1992] has a unique
feature called macro-call [Shinogi et al. 1988] instruc-
tions for light-weight subroutine calls. The instructions
enable the size of compiled user program codes to be kept
small and to reduce the overheads of subroutine calls. It
also has some more instructions dedicated to KL1 im-
plementation, such as dereference instructions and MRB
[Chikayama and Kimura 1987] incremental garbage col-
lection instructions. The CPU takes four-stage pipeline

structure.

The CPU of PIM/m [Nakashima et al. 1992] is a mi-
croprogram controlled processor with five-stage pipelin-
ing. The instruction set is KL1-B itself, which is binary
compatible with Multi-PSI/V2. Sophisticated data type
checking and the automatic dereference mechanism are
special features.

The CPU of PIM/i tries the LIW(long instruction
word)-type instruction set.

4.3 Network

Networks are summarized in table 3.

In PIM/p, each processor has a NI and four Nls are
connected to a router. The router works as a node in the
network. There are two hypercube networks to attain
large band width.

PIM/m has a two dimensional mesh network, similar
to the Multi-PSI. The networks of PIM/p and PIM/m
realize so-called the worm-hole routing.

62

Table 2: Specification of Processing Element

Instruction set Cycle time | LSI fabrication | Line interval
PIM/p i RISC + macro instruction 60 nsec t | standard-cell 0.96 um
PIM/m CISC (micro programmable) | 65 nsec standard-cell 0.8 pm
PIM/c CISC (micro programmable) | 50 nsec } gate-arrays 0.8 pm
PIM/k : RISC 100 nsec custom 1.2 pm
PIM/i RISC 100 nsec t | standard-cell 1.2 ym
[Multi-PST/V2 || CISC (micro programmable) | 200 nsec gate-arrays 2.0 pm

(1 are design specifications. They are under testing with longer cycle time.)

Table 3: Network

PEs in a cluster | # NIs in a cluster | Transfer Rate
PIM/p 8 8 33 MB/sec i x2
PIM/m 1 1 8 MB/sec
PIM/c 8 1 40 MB/sec {
PIM/k 16 — —
PIM/i 8 —
| Multi-PSI/V2 1 1 10 MB/sec

(PE = processing element, NI = network interface)
(t: per channel, full duplex }: design specifications)

PIM/c has one special processor named cluster con-
troller in each cluster. The cluster controller is connected
to a shared bus and works as a network interface to a
crossbar network. The cluster controller has overall re-
sponsibility for network communications.

4.4 Cache System

Since KL1 programs arise asynchronous communica-
tions among processors very frequently, shared bus traf-
fic tends to become very heavy. To solve this prob-
lem, an optimized coherent cache protocols were de-
signed [Goto et al. 1989][Matsumoto et al. 1987], which
can keep the locality high and reduce the shared bus traf-
fic [Nishida et al. 1990]. All PIMs have write-back type
coherent cache protocols (Table 4). Low cost locking
mechanisms are also supported with utilizing the cache
block status. :

5 KL1 Language Implementa-
tion '
KL1 language has many beneficial features to write ef-

ficient concurrent and parallel programs of the dynamic
and non-uniform problems, which was explained in sec-

tion 3.4. The KLI implementation is focused to realize
the execution efficiency of those language features. This
section looks at the language implementation methods
and techniques briefly, that correspond to the implemen-
tation features presented in section 3.5. The purpose of
this section is to give a concrete image of several key fea-
tures of the KLl implementation. Detailed information
are presented in [Hirata et al. 1992] [Nakajima 1992].

| 5.1 Execution Model of KL1

For the help of getting the image, the execution model
of KL1 is shown briefly. KL1 program is made up of a
collection of clauses, whose form is:

H: —Gh"'me I Bl)'“)B‘n'

 guard part body part

where H is the head, G; the guard goal, that are collec-

tively called the guard part. The B; are the body goals

and the vertical bar (|) is the commitment operator.
The guard part can be considered as a pattern match

and condition tests. If there are alternative clauses, their

guard parts are tested sequentially. When a clause suc-
ceeds the pattern match and the condition tests, the
clause commits. The caller goal is reduced to the body

63

Table 4: Specification of Cache System

Coherence Control Mapping Cache Size
Protocol # States t Instruction | Data
PIM/p invalidation 4 4 way 64 KB
PIM/m — — direct-map 5 KB] 20 KB
PIM/c invalidation 5 2 way 80 KB
PIM/k hierarchical 4 (1st) direct-map 128 KB | 256 KB
invalidation (2nd) 4 way 1MB| 4MB
PIM/i broadcasting 6 direct-map 160 KB | 160 KB
[Multi-PSI/V2 [— I — | direct-map 20 KB]

(1 does not include locking state.)

Processing Element
Current Goal

©

Creation by
goal rewriting

Suspension by
guard unification

© — ([©
© © © ©

Suspended Goals Ready Goals

_—
Resumption by
body unification

Figure 6: Execution Model of KL1

goals of the committed clause. These body goals are ex-
ecuted concurrently (AND-parallel). A KL1 clause can
be considered as a rewrite rule, which rewrites the caller
goal to the body goals.

An execution model of KL1 is shown in Figure 6.
There is a goal pool which holds the ready goals to be
rewritten. One of ready goals is taken from the goal pool
for the execution, which is the current goal. When there
is a clause, which matches the current goal and succeeds
the condition tests, the current goal is rewritten. The
rewritten goals are placed back to the goal pool.

Goals may have common variables, that are used for
the communication and synchronization. Let us assumne
that there are two goals sharing a logical variable. A
body unification, produced in a goal rewriting, can in-
stantiate the variable. Guard unifications, that appear in
a execution of the other goal, test the instantiated value
of the variable. This is the communication between the
goals. When the variable is not instantiated before the

guard unification, and no other clause can commit, the
current goal is suspended. Instantiation of the variable
resumes the suspended goal. This is the synchronization
[Ueda and Chikayama 1990].

5.2 Supports for the Implicit Commu-
nication

There are several important mechanisms that realize the
implicit communication between computation nodes.

Let us assume that there are two goals sharing a vari-
able in a computation node. Each goal has a reference
to the variable. When a goal is sent to the other compu-
tation node, a remote reference has to be generated im-
plicitly. The implicit communication between the goals
in the different nodes will be performed along with this
remote reference.

The important mechanisms are shown briefly.

5.2.1 Global Name Space

The implicit reference management across the computa-
tion nodes are supported for logical variables, structured
data and program code. It is a support of the virtual
global name space on a distributed memory hardware.

The export/import tables realize the feature. The
export/import tables are the indirect reference tables
that separate the local address space in a computation
node and the global space for the remote references (Fig-
ure 7). The remote reference (external reference) is iden-
tified by the pair (A.e), where A is the node number
in which the referenced data resides, and e is the entry
number of the export table. Registration to the tables
are performed dynamically when a new remote reference
is made [Ichiyoshi et al. 1987).

The entry number e does not change even when a lo-
cal garbage collection occurs which moves the location
of the exported cell. When a duplicated exporta-
tion/importation occurs, the same table entry num-
ber is used (reducing a new registration to the table)

64

which eliminates useless data transfer between nodes
[Ichiyoshi et al. 1988].

Export Table | Import Table
. REF
[A.c>
exported 1 REF
cell, X
Node A Node B
Figure 7: Export and Import Tables
5.2.2 Implicit Data Transfer

Data Transfer by Unifications: The implicit data
transfer between computation nodes is initiated by uni-
fications.

A guard unification tries to test an instantiation of
a logical variable. When it is an external reference
(EX in Figure 7), a read request message, %read(X,
ReturnAddress), is sent to the node A. Where X is the
external reference (A,e), and ReturnAddress is a newly
created export table entry in the node B.

The goal execution, which initiated the guard unifica-
tion, is suspended when no other clause can commit.

When the referenced cell has a concrete value
V, it is returned by the message, %answer_value(
ReturnAddress, V). The message resumes the sus-
pended goal, which waits for the value V. If the refer-
enced cell is not bound to a fixed value, the read request
is suspended until the variable is instantiated.

When a body unification tries to unify a remote cell
X with a term Y, a message %unify(X, Y) is sent to
the referenced cluster. When Y is an atomic data or a
structure, a simple data transfer occurs.

The unifications between two uninstantiated variables
in different clusters may make reference loops between
clusters. This problem can be solved by controlling the
direction of reference pointers [Ichiyoshi et al. 1988].

Lazy Transfer: When a structured data is transferred
between nodes, one-level transfer is performed. The com-
ponents of a structure may be atomic data or nested
structures. The atomic data are copied and transferred
directly, while the nested structures are remained as
pointers and transferred as external references. This is
called the one-level transfer. The policy is that the data
transfer should be delayed as lazily as possible, until the
data is really needed for some operation.

Code Transfer: Program codes are handled as large
structured data. They are loaded on one cluster by a

loader program at first. Any KLI1 goal hold the refer-
ence to the corresponding code object. When a goal is
sent to a cluster and the cluster does not contain the cor-
responding code object, the goal execution is suspended
and the code is dynamically transferred from the cluster
which is pointed by the external reference held in the
goal.

5.3 Small-Grain Concurrent Processes

5.3.1 Process Group Management

KL1 goals can be considered as lightweight processes.
For the efficient parallel processing, a user task have
to include a lot of lightweight processes. It is needed
for the parallel operating system that a group of goals
(lightweight processes) can be handled all together as a
task. The shoen supports the meta control facilities of
execution control, resource management and status mon-
itoring for the goal group.

Shoen and Foster Parent: Any goals have to belong
to a certain shoen. The foster-parent fp is a proxy shoen,
which is created in every computation nodes where the
goals of the shoen are executed. Each goal points their
foster-parent in the node, and test the request for meta-
controls in a certain interval (e.g. in every goal reduc-
tions). Figure 8 shows the relationship among shoens,
foster-parents and goals.

A shoen and a foster-parent keep their environments,
such as status, resources, and the number of goals.
Foster-parents reduce the communication between each
goal and their shoen, to avoid an access bottleneck at the
shoen.

Termination Detection: The termination detection
of a goal group is one of the difficult subjects in parallel
computation systems, especially when messages may be
in transit on the network. Even if all the foster parents
report their terminations, the shoen should not terminate
when there are goals in transit.

One of the solutions is the Weighted Throw Count-
ing (WTC) scheme [Rokusawa et al. 1988], which is an
application of the Weighted Reference Counting (WRC)
scheme [Watson and Watson 1987].

5.3.2 Goal Scheduling

The goal scheduling, discussed here, is a different concept
with the goal group management by shoen. The goal
scheduling is the state transition management of each
goals, among ready, ezecution, and suspension states.
Execution priority is also managed.

Basic Goal Scheduling Scheme: The ready goals in
a computation node are linked into a list forming a ready-
goal-stack. In principle, a current goal is popped from the

shoen

L‘
(]
«

LR
.
3
.
.
.
w
L)
-
a
u
-
.
.
[
™

v
.....

shoen

@5

@O

| A

/o\

@G

cluster 2

S

cluster O cluster 1

shoen : shoen record
fp : foster-parent record

G : goal

Figure 8: Relationship of shoen and foster-parents

ready-goal-stack, then the goal rewriting is performed.
The rewritten goals are pushed to the ready-goal-stack,
which is the depth-first scheduling in a computation
node.

When any unification suspends, the goal is linked as
a suspended goal to the variable which caused the sus-
pension. Here, the non-busy waiting method has been
adopted. That is, the suspended goal is not scheduled
until the variable will be instantiated. When a suspended
goal is resumed, it is linked to the ready-goal-stack again.

Execution priority of goals can be specified by
pragmas. The ready-goal-stack is managed with the pri-
ority of goals.

Goal Distribution within a Cluster: An automatic
load balancing scheme is tried within a cluster. An indi-
vidual ready-goal-stack is provided for the highest prior-
ity goals in each processing element, to avoid conflicts of
access to the common goal-stack [Sato et al. 1987]. The
highest-priority goals are distributed to keep the proces-
sor loads in good balance [Hirata et al. 1992).

Inter-cluster Goal Distribution: A body goal,
goal@node(CL), is thrown with a message %throw to a
node CL when the clause commits. The node (more pre-
cisely, a certain processing element in the cluster CL),
that received the %throw message, links the goal to its
ready-goal-stack as well as to the foster-parent. If there
is no foster-parent, one will be created on the spot.

65

5.4 Memory Management

Memory management like dynamic memory allocation,
reclamation, and garbage collection are indispensable for
concurrent symbolic processing languages.

5.4.1 Incremental Garbage Collection by MRB

The MRB method is a subset of the reference counting
scheme which maintains one-bit information in pointers
indicating whether the pointed data object has multi-
ple references to it or not [Chikayama and Kimura 1987]
[Inamura et al. 1988]. Garbage cells that have only a
single reference can be reclaimed incrementally.

The MRB is also useful to optimize the updating of
structured data. Structured data must be copied in prin-
ciple when it is updated partially, because of the single-
assignment feature. However, it can be rewritten de-
structively when the structure has only a single reference,
keeping a semantics of the single-assignment language.

5.4.2 Garbage Collection within a Cluster

Another garbage collection is implemented, which is per-
formed locally within a cluster accompanied with the in-
cremental garbage collection by MRB. Because the MRB
scheme leaves some garbages.

So-called stop and copy scheme is adopted basically.
The parallel mechanism has been investigated to collect
garbages by all processing elements in parallel in a cluster
[Imai and Tick 1991].

5.4.3 Inter-Cluster Garbage Collection by WEC

An incremental inter-cluster garbage collection scheme,
the weighted export counting (WEC) scheme is em-
ployed ([Ichiyoshi et al. 1988]. It is an application
of the weighted reference counting (WRC) scheme
[Watson and Watson 1987]. The scheme has several ad-
vantages. One is the incremental garbage collection ca-
pability with fewer message exchanges compared with
the full reference counting. The other is also a capabil-
ity of reducing the messages for the case when a imported
data has to be exported again to the different clusters.

5.5 Abstract Instruction Set KL1-B

KL1-B is the abstract instruction set which is common
in PIM models. The role of KL1-B is similar to that of
WAM [Warren 1983]. An explanation of each KL1-B in-
struction can be found in [Kimura and Chikayama 1987).

Most of the KL1 implementation schemes, presented
in previous sections, are realized as runtime routines that
are invoked by certain KL1-B instructions implicitly.

The KL1 compiler for PIM has two phases. The first
phase compiles a KL1 program into an KL1-B code. The
second phase translates the KL1-B code into a native
code, making a linkage with runtime routines.

66

6 Measurements and Evalua-
tion

This section describes some measurements results and
evaluations for the parallel inference machines and the
language system. The measurements focused on a low-
cost implementation of small-grain concurrent processes
and remote synchronization and communication. Mea-
surements on a few benchmark programs are also re-
ported, including the most recent measurements on

PIM/m.

6.1 Measurements and Evaluation on
the Multi-PSI/V2

The KL1 language implementation includes so-called
OS kernel functions, as shown in section 3.5. Most of
the implementation features, that were presented in sec-
tion 5, concern with the OS kernel functions. Efficient
implementations of these functions enable the actual use
of the beneficial features of KL1 language (presented in
section 3.4) to write efficient parallel programs of the dy-
namic and non-uniform problems for large-scale parallel
machines.

The actual execution cost of some of these functions
have been measured on the Multi-PSI/V2. Goal schedul-
ing cost within a computation node, communication
cost between nodes, and communication overhead in
benchmark programs are reported. Measurements re-
sults shows the quite low-cost implementations.

Note that the Multi-PSI/V2 has a mesh structure with
64 processing elements (PEs). There are 64 computation
nodes each of which is one PE.

6.1.1 Goal Scheduling Cost in a Node

Goal scheduling and
a processing element
[Onishi et al. 1990].

The enqueue and dequeue cost of a simplest goal
is 5.4 ps (27 micro-instruction steps). When a goal is
rewritten to several goals in a goal reduction, they are
pushed on the ready-goal-stack once (except for one goal
which can be executed directly). The enqueue and de-
queue cost is the summation of the pushing and popping
cost of a goal to the ready-goal-stack. The enqueue and
dequeue cost can be considered as a part of the process
fork cost.

The single-suspension cost of a simple goal is 14
ps (70 steps). When a goal is suspended waiting for a
variable instantiation, the goal is hooked to the variable
cell. When the variable is instantiated, the goal becomes
executable and is pushed on the ready-goal-stack. The
single-suspension cost is a summation of the hook, en-
queue, and dequeue cost. The single-suspension cost can

synchronization cost within
(PE) have been - measured

be considered as the synchronization cost between pro-
cesses In a processor.

The two-way multiple-suspension cost of a simple
goal is 28 us (140 steps). A goal can wait for the vari-
able instantiation of several different variables. The first
instantiation resumes the goal execution. If the instan-
tiation causes a comitment of a clause, the other wait-
ing conditions are thrown away. The two-way multiple-
suspension is a case of two variables. The feature is a
combination of the indeterminacy and the synchroniza-
tion. Cost increase from the single-suspension corre-
sponds to the implementation cost of the indeterminacy.

These low-cost implementations encourage the actual
use of a lot of small-grain processes. These costs of the
goal scheduling also give a guideline for the lower bound
of process grain size for efficient execution within a com-
putation node.

6.1.2 Communication Cost Between Nodes

Cost of the communication primitives have been mea-
sured on the Multi-PSI/V2
system [Nakajima and Ichiyoshi 1990]. A goal sending
to another PE (a remote call of a lightweight process) is
realized by %throw_goal message. Inter-PE reading of
values (used for remote synchronization and communi-
cation) is realized by %read & %answer_value protocols.

Figure 9 shows the cost of handling those three mes-
sages at both sending and receiving PE.

The
cost is broken down into three parts. Encode/decode
KL1 term, etc. is for encoding and decoding message
packets to/from internal representations of KL1 term. It
also includes the maintenance of the export/import ta-
bles and the foster parent records (c.f. section 5). It is
the essential part of the message handling.

Basic message handling routine in Figure 9 cor-
responds to the simple data conversion between 40-bit
tagged words and byte-serial messages. The routine in-
cludes data transfer to/from the hardware buffer. The
cost can be potentially reduced by hardware supports.
Copy-RPKB stands for copying a message packet from the
hardware buffer to the software buffer. It is only exe-
cuted when the hardware buffer tends to be full.

The network transfer speed is 0.2 us/byte. It takes
below 1 us to hop one network node. It means that the
message handling cost, just explained before, is dominant
in the communication cost.

Send_throw (a) shows the cost of sending a 65 byte
%throw_goal message containing a goal with three ar-
guments. It takes 419 micro-instruction steps or 85 us
(cycle time = 200 ns). Receive_throw (b) shows the cost
of receiving the same %throw_goal message and storing
it in a goal stack.

The bar graphs (c), (d), (¢) and (f) describe the
cost of sending and receiving a %read message and

Send_throw (goal (atom,EXREF,EXREF)) [65 bytes]

(a) [\ N \Qi] 85 usec (419 steps)
Receive_throw
130 psec
(®) m \ \1 J (6%7 steps)

Send_read (EXREF) [14 bytes]

(c) \\\\‘- 25 psec {117 steps)

Receive_read
@ IR | 35 psec (175 steps)

Send_answer_value ([atom | EXREF]) [24 bytes]

© RXJ | 42 usec (208 steps)

Receive_answer_value

4} ->\ \L J 80 usec (397 steps)

[l ! /i]) 1 |
T 1 i 1 1

0 20 40 60 80 100 120 140 (psec)

EXREF External pointer

Il Copy_to_RPKB
Basic message handling routine
1 Encodeldecode KL1 term, etc.

Figure 9: Message Handling Cost

Table 5: Message Frequency and Reductions

Pentomino (39.3 KRPS on 1 PE)
] Num of PEs | 4 PEs | 16 PEs | 64 PEs |
execution time (sec) 54.63 14.62 4.35
total reductions (x1000) | 8,317. 8,332. 8,340.
reductions/sec (KRPS) 152.2 570.1 | 1,919.4
reductions/msg 221. 108. 88.
msg bytes/sec (x1000) 14.5 108.1 440.5

Bestpath (23.4 KRPS on 1 PE)
I Num of PEs | 4 PEs | 16 PEs | 64 PEs |
execution time (sec) 10.655 4.062 1.691
total reductions (x1000) f 987.7 1213.6 1,505.2
reductions/sec (KRPS) 92.7 298.8 890.1
reductions/msg 21.9 11.7 6.2
msg bytes/sec (x1000) | 114.0 692.5 3,854.3

(KRPS: Kilo Reductions Per Second)

Table 6: Single Processor Performance of PIM/m

Lbenchmark ’ condition " PIM/m } Multi-PSI/v2 @%}—Z%{ﬁ’z
append 1,000 elements || 1.63 msec 7.80 msec 4.8
best-path | 90,000 nodes 142 sec 213 sec 1.5
pentomino | 8 x 5 box 107 sec 240 sec 2.2
15-puzzle | 5,885 K nodes || 9,283 sec 21,660 sec 2.3

67

68

(%) (%)
100 — o 100 -
80 - 80 4
2 2
©
g 60 - ;:" 60 <
o (=]
= 40 = 40
20 - 20 4
0 04
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Num of PEs O idle Num of PEs
Cache miss
Msg handling
M Computing
60 60 4
40 - 40 4
3]
D 204 N 204
0 T T T 0 T T
20 40 60 0 20 40 60
Num of PEs Num of PEs
© Speed-up
- ldeal
Pentomino Bestpath

Figure 10: Decomposition of Processor Time and Speed-up

Table 7: System Performance on Pentomino (8 x 5 box)

No. of PEs PIM/m Multi-PSI/v2 O
Time | Speedup Time | Speedup

256 PE[1,124ms| 95.41
128 PE | 1,200 ms | 83.13

64 PE || 2,162ms| 4960 | 4,679 ms| 51.20 2.16

32 PE 3,694 ms 29.03 8,278 ms 28.94 2.24

I6PE|| 6910ms| 1552 | 15,686 ms| 1527 2.27

1 PE || 107,238 ms 1.00 | 239,545 ms 1.00 2.23

%answer_value message.

Sending and receiving cost of the %throw_goal mes-
sage, 215 pus (1056 steps) in total, can be considered as
the cost of a process fork to a different PE, or a remote
procedure call. Cost of the %read and %answer_value
messages, 182 us (897 steps) in total, correspond to the

cost of the remote synchronization.

Comparing these value with the cost of local opera-
tions in the previous section, the remote synchronization
takes around 10 times higher cost than local. The remote
procedure call costs more but below 40 times of the local
process fork. These remote/local ratio seems low enough

69

Table 8: System Performance on Pentomino (10 x 6 box)

No. of PEs PIM/m Multi-PSI/v2 T
TimeLSpeedup Time | Speedup

256 PE 103,655 ms 234.29
128 PE | 183,452 ms | 128.87

64 PE 359.268 ms 67.60 886,325 ms 2.47

32 PE 694,553 ms 34.96 | 1,729,430 ms 2.49
16 PE 1,367,240 ms 17.76
1 PE || 24,285,015 ms 1.00

to encourage the small-grain concurrent processing be-
tween PEs. Measurements of the communication cost
give a guideline for the process grain size (communication
rate) to keep the communication overhead low. When a
process garin size decreases, becoming close to the com-
munication cost, communication overhead increases sig-
nificantly (close to 50% of CPU time).

6.1.3 Measurements on Benchmark Programs

Benchmark Programs: The followings are the two
benchmark programs used here.

¢ Pentomino: A program to find out all solutions of a
packing piece puzzle (Pentomino) by exploring the
whole OR tree. Two-level dynamic load balancing
is employed [Furuichi et al. 1990].

e Bestpath: A 160 x 160 grid graph is given together
with non-negative edge costs. The program deter-
mines the lowest cost path from a given vertex to
all vertices of the graph by performing a distributed
shortest path algorithm [Wada and Ichiyoshi 1990].
The vertices are represented by KL1 processes, and
they exchange shortest path information along the
edges. 25,600 small processes work cooperatively.

Message & Reduction Profile: Table 5 shows
the execution time, the reduction and message rates,
etc. {Nakajima and Ichiyoshi 1990]. Average time of one
reduction in a PE is an inverse of the KRPS value. 25
ps (127 steps) in Pentomino, and 43 us (214 steps) in
Bestpath. They are almost the grain size of concurrent
processes in a PE. The message sending rates on 64 PEs
are: one message per 88 reductions in Pentomino, and
one per 6 reductions in Bestpath.

The average network traffic was re-
poted in [Nakajima and Ichiyoshi 1990], calculated from
these figures. Relative to the 10 Mbyte/s network chan-
nel bandwidth, the average traffic on a channel is very

small: 0.08% (Pentomino) and 0.3% (Bestpath) of the
bandwidth.

Communication Overhead: Profiling data of pro-
cessor execution has been measured on the two bench-
mark programs [Nakajima 1992]. The execution time is
broken down into the four categories in Figure 10: com-
puting time (reduction operations), message handling
time, cache-miss penalty, and idling time. The average
of all PEs are shown in the bar graph. The rtesultant
speed-up is also shown with the ideal one.

Two-level dynamic load distribution is used in Pen-
tomino. Several thousands small processes are dis-
tributed to 64 PEs in 4.35 seconds adaptively. The graph
shows low communication overhead and good speedup.
The degradation of processor workrate in 64-PE execu-
tion is mainly caused by the latency of load feeding to
PEs.

In Bestpath, 25,600 small processes are distributed
statically on 64 PEs. They exchange messages to per-
form an distributed algorithm. The inter-PE commu-
nication and the cache-miss penalty degrade the per-
formance because of the high communication rate and
the large working set. As the number of PEs grows,
the grid graph is divided into smaller blocks to keep the
workrate high, and it makes the inter-PE communication
rate higher. Best path includs speculative computation,
which increases with the large number of PEs. It causes
lower speedup than a calculated value from the processor
workrate.

Measurements results in table 5 and Figure 10 show
the actual communication rate and communication over-
head. Programmers can use relatively large commu-
nication rate, one message per 6 reductions (measured
in Bestpath), with non-large CPU overhead of approxi-
mately 15%. Considering a network load of 0.3% at that
time, it is observed that CPU load (15% at that time)
will limit the communication band width when commu-
nication rate increases. The language implementation,
which supports the global name space on a distributed
memory hardware, tends to increase the CPU load con-
cerned with network communication.

70

6.2 Preliminary Measurements on the
PIM

6.2.1 Single Processor Performance

Table 6.1 shows the single processor performance of
PIM/m for four benchmarks. The table also includes the
performance of Multi-PSI/V2 and the ratioc of PIM/m
and Multi-PSI/V2 (M/P-speedup).

M/P-speedup is 1.5 to 2.3 in average. Programs with
large working set tends to show low M/P-speedup.

6.2.2 System Performance

Table 7,8 show the preliminary measurements of system
performance on PIM/m. The benchmark program is
Pentomino.

Speedup saturation in Table 7 is caused by small prob-
lem size. Better speedup (234 folds speedup with 256
processors) was attained with larger problem in Table 8.
It is also surprising that the small problem (executed
in 1.1 second) show 95 folds speedup, which uses the
multi-level dynamic load distribution distributing sev-
eral thousands of small processes. The facts shows an
efficient language implementation suitable to handle a
lot of small-grain processes with less overhead.

7 Conclusion

This paper described two subjects. One is an overview
of the research and development on the parallel inference
machine PIM and the language implementation of the
kernel language KL1, a concurrent logic programming
language.

The other is the clarification of the features and advan-
tages of KL1 language, its parallel implementation, and
the hardware architecture from the viewpoint that the
features are suitable and may be indispensable for effi-
cient parallel processing of the dynamic end non-uniform
problems with large computation. Knowledge processing
is included in the problem domain. These problems have
not been covered by commercial parallel machines and
their software systems that target the scientific compu-
tation. The PIM system focuses on this new domain of
parallel processing.

PIM is a distributed memory MIMD machine with a
global view, connecting a maximum of 512 processors.
It includes shared-memory substructures. Many compo-
nent technologies have been developed that support effi-
cient parallel processing on the target problem domain,
especially on symbolic processing.

KL1 language also has very strong features for efficient
programming and execution of the dynamic and non-
uniform large problems. Major features are (1) small-
grain concurrent processes, (2) implicit synchronization
and communication, (3) separation of concurrency de-
sign and mapping (load allocation and scheduling), etc.

They support highly concurrent programming with com-
plex structures and support large flexibility for load bal-
ancing. The efficient language implementation made ac-
tual use of the language features possible. The PIM and
KL1 system have realized a strong research and develop-
ment environment for parallel software in that problem
domain.

Measurements and evaluations showed a very low-
cost language implementation for handling small-grain
concurrent processes and their remote communications.
Good speedup by parallel processing on benchmark pro-
grams was also reported. A lot of small-grain processes
were handled during this processing. These results prove
the efficiency and usefulness of the system to the dynamic
and non-uniform problems.

Further measurement and evaluation is continuing,
and the results of this will be reported soon. On the
other hand, many problems of parallel software remain
unsolved. Continuous research must be carried out to
construct the real technology of large-scale parallel pro-
cessing for the dynamic and non-uniform problems in-
cluding the knowledge information processing in the 21st
century. The parallel inference machine PIM and the
KL1 language system will be utilized as the best research
environment.

Acknowledgment

The R & D of PIM system have been carried out by re-
searchers in the first research laboratory and cooperat-
ing companies, supported with valuable suggestions and
helps by members of the second, seventh and the other
ICOT laboratories and the PIM working group. The
author would like to thank all of these people for their
continuous efforts and cooperation.

References

[Chikayama and Kimura 1987] T. Chikayama and Y.
Kimura. Multiple Reference Management in Flat
GHC. In Proc. of the Fourth Int. Conf. on Logic Pro-
grammang, 1987, pp.276-293.

[Chikayama 1992] T. Chikayama. Operating System PI-
MOS and Kernel Language KL1. In Proc. of the Int.
Conf. on Fifth Generation Computer Systems, 1992.

[Furuichi et al. 1990) M. Furuichi, K. Taki and N.
Ichiyoshi. A multi-level load balancing scheme for or-
parallel exhaustive search programs on the Multi-PSI.
In Proc. of PPoPP’90, pp. 50-59, 1990.

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, K.
Taki and A. Matsumoto. Overview of the Parallel In-
ference Machine Architecture (PIM). In Proc. of the

Int. Conf. on Fifth Generation Computer Systems,
ICOT, Tokyo, 1988, pp.208-229.

[Goto et al. 1989] A. Goto, A. Matsumoto and E. Tick.
Design and Performance of a Coherent Cache for Par-
allel Logic Programming Architectures. In Proceedings
of 16th Annual International Symposium on Computer
Architecture, pages 25 — 33, Jerusalem, Israel, 1989.

[Hirata et al. 1992] K. Hirata, R. Yamamoto, A. Imai,
H. Kawai, K. Hirano, T. Takagi, K. Taki, A. Nakase
and K. Rokusawa. Parallel and Distributed Implemen-
tation of Concurrent Logic Programming Language
KL1. In Proc. of the Int. Conf. on Fifth Generation
Computer Systems, 1992.

[Ichiyoshi et al. 1987] N. Ichiyoshi, T. Miyazaki and
K. Taki. A Distributed Implementation of Flat GHC
on the Multi-PSI. In Proceedings of Fourth Interna-
tional Conference on Logic Programming, pages 257—
275, University of Melbourne, MIT Press, 1987.

[Ichiyoshi et al. 1988] N. Ichiyoshi, K. Rokusawa, K.
Nakajima and Y. Inamura. A New External Ref-
erence Management and Distributed Unification for
KL1. New Generation Computing, Ohmsha Ltd. 1990,
pp.159-177.

{Ichiyoshi 1989] N. Ichiyoshi. Parallel logic program-
ming on the Multi-PSI. ICOT Technical Report TR-
487, ICOT, 1989. (Presented at the Italian-Swedish-
Japanese Workshop '90).

(Imai et at. 1991] A. Imai, K. Hirata and K. Taki. PIM
Architecture and Implementations. In Proc. of Fourth
Franco Japansese Symposium, ICOT, Rennes, France,
1991.

[Imai and Tick 1991} A. Imai and E. Tick. Evaluation
of Parallel Copying Garbage Collection on a Shared-
Memory Multiprocessor. ICOT Technical Report, TR-
650, 1991. (To appear in IEEE Transactions on Paral-
lel and Distributed Systems)

(Inamura et al. 1988] Y. Inamura, N. Ichiyoshi, K.
Rokusawa and K. Nakajima. Optimization Te-
chiniques Using the MRB and Their Evaluation on the
Multi-PSI/V2. In Proc. of the North American Conf.
on Logic Programming, 1989, pp. 907-921 (also ICOT
Technical Report, TR-466, 1989).

[Kimura and Chikayama 1987] Y. Kimura
and T. Chika-yama. An Abstract KL1 Machine and
its Instruction Set. In Proc. of Symposium on Logic
Programming, 1987, pp.468-477.

[Kumon et al. 1992] K. Kumon, A. Asato, S. Arai, T.
Shinogi, A. Hattori, H. Hatazawa and K. Hirano. Ar-
chitecture and Implementation of PIM/p. In Proc. of

71

the Int. Conf. on Fifth Generation Computer Systems,
1992.

[Masuda et al. 1988] Y. Masuda, Y. Ishizuka, Y.
Iwayama, K. taki and E. Sugino. Preliminary Eval-
uation of the Connection Network for the Multi-PSI
System. In Proc. Furopian Conference on Artificial In-
telligence 1988 (ECAI-88), August 1988.

[Matsumoto et al. 1987] A. Matsumoto, T. Nakagawa,
M. Sato, K. Nishida and A. Goto. Locally Parallel
Cache Design Based on KL1 Memory Access Charac-
teristics. ICOT Technical Report 327, 1987.

[Nakagawa et al. 1989] T. Nakagawa, A. Goto and T.
Chikayama. Slit-Check Feature to Speed Up Interpro-
cessor Software Interruption Handling. In IPSJ SIG
Reports, 89-ARC-77-3, 1989 (In Japanese).

[Nakagawa et al. 1992] T. Nakagawa, N. Ido, T. Tarui,
M. Asaie and M. Sugie. Hardware Implementation of
Dynamic Load Balancing in the Parallel Inference Ma-
chine PIM/c. In Proc. of the Int. Conf. on Fifth Gen-
eration Computer Systems, 1992.

[Nakajima et al. 1989] K. Nakajima, Y. Inamura, N.
Ichiyoshi, K. Rokusawa and T. Chikayama. Dis-
tributed Implementation of KL1 on the Multi-PSI/V2.
In Proc. of the Sizth Int. Conf. on Logic Programming,
1989, pages 436-451.

[Nakajima and Ichiyoshi 1990] K. Nakajima and N.
Ichiyoshi. Evaluation of Inter-processor Communica-
tion in the KL1 Implementation on the Multi-PSI. In
ICOT TR-581, 1990.

[Nakajima 1992] K. Nakajima. Distributed Implementa-
tion of KL1 on the Multi-PSI. In Implementation of
Distributed Prolog, edited by P. Kacsuk and M. Wise,
John Wiley & Soms, Ltd., 1992.

[Nakashima and Nakajima 1987] H. Nakashima and K.
Nakajima. Hardware Architecture of the Sequential
Inference Machine : PSI-II. In Proceedings of 1987
Sympostum on Logic Programming, Sept. 1987, pp
104-113.

[Nakashima et al. 1992} H. Nakashima, K. Nakajima, S.
Kondo, Y. Takeda, Y. Inamura, S. Onishi and K. Ma-
suda. Architecture and Implementation of PIM/m. In
Proc. of the Int. Conf. on Fifth Generation Computer
Systems, 1992.

[Nishida et al. 1990] K. Nishida, Y. Kimura, A. Mat-
sumoto and A. Goto. Evaluation of MRB Garbage
Collection on Parallel Logic Programming Architec-
tures. In Proc. of the Seventh Int. Conf. on Logic Pro-
gramming, 1990, pages 83-95.

72

[Nitta et al. 1992] K. Nitta, K. Taki and N. Ichiyoshi.
Experimental Parallel Inference Software. In Proc. of
the Int. Conf. on Fifth Generation Computer Systems,
1992.

[Onishi et al. 1990] S. Onishi, Y. Matsumoto, K. Naka-
jima and K.Taki. Evaluation of the KL1 Language Sys-
tem on the Multi-PSI. In Proc. of Workshop on Par-
allel Implementation of Languages for Symbolic Com-
putation, July 30-31, 1990, Oregon, USA. Also ICOT
TR-585.

[Rokusawa et al. 1988] K. Rokusawa, N. Ichiyoshi, T.
Chikayama and H. Nakashima. An Efficient Termi-
nation Detection and Abortion Algorithm for Dis-
tributed Processing Systems. In Proc. of the 1988
Int. Conf. on Parallel Processing, Vol. 1 Architecture,
1988,pp.18-22.

[Rokusawa and Ichiyoshi 1992] K. Rokusawa and N.
Ichiyoshi. A Scheme for State Change in a Distributed
Environment Using Weighted Throw Counting. In
Proc. of Sizth Int. Parallel Processing Symposium,
IEEE, 1992. ‘

[Sato et al. 1987] M. Sato, A. Goto, et al. KL1 Execu-
tion Model for PIM Cluster with Shared Memory. In
Proceedings of the Fourth International Conference on
Logic Programming, pages 338-355, 1987.

[Sato and Goto 1988] M. Sato and A. Goto. Evaluation
of the KL1 Parallel System on a Shared Memory Mul-
tiprocessor. In Proc. of IFIP Working Conf. on Par-
allel Processing, 1988, pp. 305-318.

[Sato et al. 1992] M. Sato, K. Takeda and T. Ohara. De-
sign of the Parallel Inference Machine PIM/i Proces-
sor. In Trans. of IPSJ, Vol.33, No.3, 1992, pp. 278-287
(In Japanese).

[Shinogi et al. 1988] T. Shinogi, K. Kumon, A. Hattori,
A. Goto, Y. Kimura and T. Chikayama. Macro-call
Instruction for the Efficient KL1 Implementation on
PIM. In Proceedings of the International Conference
on Fifth Generation Computing Systems 1988, Tokyo,
Japan, pages 953-961, 1988.

[Takagi and Nakase 1991] T. Takagi and A. Nakase,
Evaluation of VPIM: A Distributed KL1 Implementa-
tion ~ Focusing on Inter-cluster Operations —, In IPSJ
SIG Reports, 91-ARC-89-27, 1991 (In Japanese).

[Takeda et al. 1988] Y. Takeda, H. Nakashima, K. Ma-
suda, T. Chikayama and K. Taki. A Load Balanc-
ing Mechanism for Large Scale Multiprocessor Sys-
tems and its Implementation. In Proceedings of the
International Conference on Fifth Generation Com-
puter Systerns, ICOT, Tokyo, 1988.

[Taki et al. 1984] K. Taki, M. Yokota, A. Yamamoto,
H. Nishikawa, S. Uchida, H. Nakashima and A. Mit-
suishi. Hardware Design and Implementation of the
Personal Sequential Inference Machine (PSI). In Proc.
of the Int. Conf. on Fifth Generation Computer Sys-
tems 1984, pp-398-409, Tokyo, Nov. 1984.

[Taki 1988] K. Taki. The Parallel Software Research and
Development Tool: Multi-PSI System. In Program-
ming of Future Generation Computers, K.Fuchi and
M.Nivat (Editors), pages 411-426, Elsevier Science
Publishers B.V., North Holland, 1988.

[Uchida et al. 1988] S. Uchida, K. Taki, K. Nakajima,
A. Goto and T. Chikayama. Research and Develop-
ment of the Parallel Inference System in the Interme-
diate Stage of The FGCS Project. In Proc. of the Int.
Conf. on Fifth Generation Computer Systems 1988,
pp.16-36, Tokyo, Nov. 1988.

[Uchida 1992] S. Uchida. Summary of the Parallel In-
ference Machine and its Basic Software. In Proc. of
the Int. Conf. on Fifth Generation Computer Systems,
1992.

[Ueda 1986] K. Ueda. Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concept of a
Guard. ICOT Technical Report 208, 1986.

[Ueda and Chikayama 1990] K. Ueda and T. Chika-
yama. Design of the Kernal Language for the Paral-
lel Inference Machine. The Computer Journal, (33)6,
1990, pp.494-500.

[Wada and Ichiyoshi 1990] K. Wada and N. Ichiyoshi.
A study of mapping locally message exchanging al-
gorithms on a loosely-coupled multiprocessor. ICOT
Technical Report TR-587, 1990.

[Warren 1983] D. H. D. Warren. An Abstract Prolog In-
struction Set. Technical Note 309, Artificial Intelli-
gence Center, SRI, 1983.

[Watson and Watson 1987] P. Watson and I. Watson.
An Efficient Garbage Collection Scheme for Parallel
Computer Architectures. In Proc. of Parallel Architec-
tures and Languages Europe, LNCS 259, Vol.II, 1987,
pp.432-443.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

73

Operating System PIMOS and Kernel Language KL1

Takashi Chikayama
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan
chikayama®icot.or. jp

Abstract

The Fifth Generation Computer Systems (FGCS)
project is a national project of Japan, aiming at es-
tablishing the basic technology required for high perfor-
mance knowledge information processing systems. The
parallel inference system subproject is aiming at estab-
lishing parallel processing hardware technology for mas-
sive processing power and software technology for effec-
tive utilization of such hardware in the knowledge infor-
mation processing field. The basic software system is re-
sponsible for providing a programming language suited
for describing knowledge information processing appli-
cations software and providing a comfortable environ-
ment for program execution and software development
on highly parallel computer systems.

A concurrent logic language with extensions to control
program execution on parallel hardware was designed as
the kernel language of the system. An operating sys-
tem that provides a comfortable environment for parallel
application software development was designed and im-
plemented in the kernel language. This paper gives an

overview of the research and development in this area in
the FGCS project.

1 Introduction

The fifth generation computer systems project is a na-
tional project of Japan, aiming at establishing the basic
technology required for high-performance knowledge in-
formation processing systems. The most important tech-
nologies to be provided to attain the final objective of the
project are the following two.

¢ Problem solving methods for knowledge information
processing

¢ Processing power for implementation of the above
methods

The parallel inference system subproject is aiming at es-
tablishing both hardware and software technologies for
the latter.

With the recent evolution of the hardware technology,
multiprocessor systems are expected to be advantageous

not only in absolute processing power but also in cost
effectiveness early in the next century. There seems to
be no other technology than multiprocessing to provide
the computational power required for high-performance
knowledge information processing systems.

The software technology for parallel processing, on the
other hand, is still quite premature. In particular, the
technology for building parallel software to solve com-
plicated problems in the area of knowledge processing
is far from satisfactory yet. This, we think, is at least
partly due to the problems in the approach to the par-
allel software technology conventionally taken, that is,
trying to augment already available sequential process-
ing technologies. A new system of software technology
totally redesigned for parallel processing, including algo-
rithms, programming languages and operating systems,
has to be established.

As the basis of this new technology, a concurrent logic
language with extensions to control program execution
on parallel hardware was designed as the kernel lan-
guage of the system. An operating system that provides
a comfortable environment for parallel application soft-
ware development was also designed and implemented
in the kernel language. This paper gives an overview of
the research and development in this area of the FGCS
project.

In the following sections, the design principles are de-
scribed in section 2, the design of the kernel language
in section 3, that of the operating system in section4.
Experiences with the language and the operating system
are described in section 5. Direction of future work is
suggested in section 6, followed by concluding remarks.

2 Principles

2.1 Middle-Out Approach

When designing a computer system, two extreme ap-
proaches can be considered. One is a top-down ap-
proach, starting from problems to solve, gradually de-
signing downwards to the level of computer architecture
or even to the level of electronic devices, seeking in each
level for a design most appropriate to implement higher
levels. The other is a bottom-up approach, starting from

74

available device technologies, seeking for the best use of
the lower level technology, finally finding an appropriate
application area.

Neither of the approaches, however, cannot be success-
ful by itself. In the top-down approach, design in each
level requires insight into appropriate implementation of
all the lower level technologies. In the bottom-up ap-
proach, design in each level requires insight into upper
levels, up to application areas appropriate for the chosen
design.

It is too difficult for anybody to have such insight for
the broad and rather vague target of a long-term project,
knowledge information processing. We thus decided to
take a middle-out approach of designing a certain inter-
mediate level first and conduct research and development
towards two directions, upwards and downwards, simul-
taneously. It is not easy, of course, to find an appropriate
intermediate level and to actually design that level. This,
however, seemed to be the only feasible approach for a
project like this one.

2.2 Kernel Language

The intermediate level we chose was the level of program-
ming languages. Choosing this level has the following
merits.

o The programming language level is not too far away
from the both extreme ends of application software
and hardware implementation.

o Relatively rigorous specification in the programming
language level can be given more easily than in other
levels.

The programming language designed to be the starting
point of this middle-out approach is called the kernel
language [Ueda and Chikayama 1990].

At the time the project started in 1982, language de-
sign and implementation technology was still premature
to fix the design of the kernel language. Thus, the re-
search started by investigating sequential systems first.
In the first stage (fiscal years of 1982-84) of the project, a
sequential kernel language based on Prolog, named ESP
[Chikayama 1984], was designed, which formed the basis
of the research and development in most of the research
efforts in the first stage and early in the intermediate
stage.

Design of the next version of the kernel language KL1
was started in the first stage simultaneously. Its pre-
liminary design and implementation were done early in
the intermediate stage and a fuller implementation on
a experimental parallel computer system was completed
within the intermediate stage (1985-88). The language
has been used through the final stage (1989-) for var-
ious application research. In what follows, the kernel
language means this second generation kernel language,

KLI.

2.3 Logic Programming Principle

The logic programming idea gave the basis of the whole
project. The image of logic programming in the original
project plan seems to have been strongly influenced by
a particular language Prolog. As the research proceeded
from sequential systems to parallel systems, we had cho-
sen a concurrent logic programming approach. The prin-
ciple of placing “logic” as the central design principle,
however, has been kept unchanged.

The principle of logic programming played a impor-
tant role in selecting a particular design among many
candidates. In designing the kernel language, its sound-
ness in the sense of mathematical logic has been acted as
a “canon”, although we gave up pursuing completeness.!
Many proposals to extend the kernel language with at-
tractive features were investigated but rejected because
of their unsoundness. On the other hand, features which
do not change the meaning of the programs when inter-
preted as logical formulas were more freely added to the
language. They have only to do with execution efficiency
and nothing to do with the correctness of programs, and
were clearly discriminated from the core part of the lan-
guage.

These principles based on logical interpretation of pro-
grams have been quite helpful in keeping the language
design coherent and, in its consequence, its implementa-
tion and its programming style coherent, as is described
further in detail below.

. 2.4 Target Architecture

A processor with performance comparable to a full-size
computer with reasonable amount of memory is now
available on a single circuit board. Recent evolution
of the hardware technology shows four-times increase in
density of circuitry every three years. Extrapolating this,
one hundred processors with reasonable amount of mem-
ory are expected to reside in one chip early in the next
century. On the other hand, although the performance
of single processor is steadily being improved, it might
be very difficult to attain improvement by two orders of
magnitude within the same time period.

With larger circuitry made practical with higher den-
sity, the design cost is beginning to dominate the total
cost of processors. The design repeatability in multi-
processor systems will have great cost advantage over a
complicated processor occupying one whole chip or more,
even if the both systems had the same performance.
Early in the next century, multiprocessor systems will
thus be advantageous, not only in absolute processing
power, but also in cost effectiveness even in small sys-
tems such as palm-top or wrist watch type computers.

!Soundness of a system means that any results obtained are
logical consequences of the given axiom set. Completeness, on the
other hand, means that all logical consequences can be obtained.

For application areas such as knowledge information
processing that need non-uniform computation, an ar-
chitecture that allows flexible resource allocation is re-
quired. For highly parallel systems, scalability of the
system architecture is critical. Having these in mind, we
chose a homogeneous MIMD architecture with loosely-
coupled processors (or loosely-coupled clusters each with
several tightly coupled processors) as the target architec-
ture of the software system.

2.5 Level of the Kernel Language

An ideal programming language should allow very high
level description with an implementation optimizing it to
the target architecture without any human help. How-
ever, with the current technology, such a language is
nothing more than a dream. It is especially so when the
programs have to be optimized for execution on a large-
scale loosely-coupled parallel computer systems where
communication delay is not negligible. The most dif-
ficult part in the optimization will be where (on which
processor) to execute certain parts of computation and
when (in which order). Such a problem is known as the
mapping problem.

As long as problem solving techniques used are rel-
atively simple, required computation can be easily told
beforehand making static mapping by compilers feasible.
For knowledge information processing requiring sophis-
ticated problem solving methods, what to compute next
often depends on the result of the former steps of the
computation, making static optimization of computation
mapping impossible. Many research results have shown
that general-purpose automatic mapping algorithm is
hard to design and the selection of good mapping algo-
rithms depends heavily on the problem solving method
used.

As knowledge information processing is an area where
no single universal and efficient problem solving method
is known, providing one single mapping algorithm is not
appropriate. Providing many mapping algorithms that
cover all the known methods may still be insufficient; as
research in the area is still in an early stage, many novel
problem solving methods are expected to be proposed in
the near future. Thus, we set the level of the kernel lan-
guage so that mapping of computation can be specified
in programs. v

This decision of putting the responsibility of computa-
tion mapping on programmers has the drawback of mak-
ing programming a more complicated task. We, however,
regard this additional effort as unavoidable and essen-
tial in establishing the technology for high performance
knowledge information systems. When a widely applica-
ble mapping algorithm is established, it can be provided
to the application users as a program library. With the
kernel language capable of controlling program execu-
tion, writing such a library should not be difficult.

75

2.6 Designing a New Language

It might have been possible to take an already existing
logic programming language as the basis of the kernel
language and extend it with several additional features
for concurrent execution. The logic programming lan-
guage used most widely was (and still is) Prolog, which
was the primary candidate for such extensions.

There could be two ways to tailor Prolog to a language
for parallel systems. One method was to provide implicit
and automatic computation mapping, which was not
taken by the above-described reason. Another possible
way was to make concurrent execution explicitly spec-
ified with additional language constructs. However, as
the base language Prolog was designed for sequential pro-
cessing, concurrency specification would add some more
complexity to the language and making programs harder
to understand. More importantly, if sequential execu-
tion should have made the default principle, it would
have been more difficult to reorganize programs for bet-
ter mapping, as different mappings require different parts
of programs to run concurrently.

Another problem with such a language was pains in
specifying synchronization. In programming languages
in which synchronization is specified independent from
conditioning, problems arise when decisions on condi-
tional execution are made on incomplete data. On phys-
ically parallel hardware, finding such problems would be-
come very painful because the same phenomenon is often
hard to reproduce. To solve this problem, synchroniza-
tion and conditioning should not be made separate.

We decided that the kernel language should be de-
signed from scratch so that concurrent execution could
be expressed in a natural way. The language should have
intrinsic concurrency: language constructs imply concur-
rent execution in principle and sequencing is explicitly
described. Synchronization should be integrated with
conditioning in the language construct.

2.7 Designing a New OperatingSystem

Even though the prototype parallel inference system is
an experimental system, an operating system that pro-
vides a comfortable software development environment
was mandatory. One way to provide the required func-
tionality might have been to port an already existing
operating system to the parallel inference machine.

All the operating systems available then (and probably
most of them even now) were designed originally for se-
quential systems and augmented afterwards with certain
primitives for execution on parallel systems.

There were two major problems with such systems.
One was that the interface of the operating system with
the user programs was still based on sequencing. For
example, the user program is notified of completion of
requested service by the completion of execution of a pro-

76

cedure, supervisor call, in the user’s thread of execution.
This is acceptable in systems where application software
is written in basically sequential languages. - This, how-
ever, would not go well with software written in the ker-
nel language with intrinsic concurrency.

Another problem was that the management policies
of such operating systems were highly optimized for se-
quential processing. In sequential systems or small-scale
parallel systems, centralization of all the management
information is usually the most robust and efficient pol-
icy. This, however, is far from optimal for highly parallel
systems. If the management were centralized on one pro-
cessor in a highly parallel system, that processor would
be responsible for too much management work and would
be the bottleneck of the whole system. Moreover, every
activity within the system would require communication
to and from that processor, resulting in communication
bottleneck.

We concluded that designing an operating system op-
timized for highly parallel systems was also an unavoid-
able and essential part of the technology for high per-
formance knowledge information systems and decided
to design and implement a new operating system from
scratch. The user interface should be consistent with the
design of the kernel language; sequencing should not be a
part of the design of the interface. Distribution of man-
agement was essential to avoid bottlenecks, which might
also affect the specification of the services provided by
the operating system.

3 Kernel Language: KL1?

The kernel language KL1 has two layers. The basic layer
is defined by Guarded Horn Clauses (GHC), which is a
concurrent logic language for describing what computa-
tion to perform for desired result, that is, for describing
correct programs. The description lays only those con-
straints on mapping of computation which are required
to obtain the desired result. Based upon this layer is the
full KL1 language for describing how such computation
should actually be carried out with desired mapping of
computation, that is, for describing efficient programs.
This separation of correctness and efficiency issues or, in
other words, concurrency and parallelism, seems to play
an important role in bridging the gap between parallel
inference systems and knowledge information processing
in a coherent manner.

3.1 Concurrent Logic Language GHC

This section describes the design of a concurrent logic
language Guarded Horn Clauses, which forms the basis

2This section is a rewrite of an article co-authored with
Kazunori Ueda [Ueda and Chikayama 1990], except for the sub-
section 3.3.

(—i Efficient Program in KL1jf—————

Mapping of Computation

ooo|[ooo]fooo][ooo[ooo
=0 ||=0)= =1 =1

(_l Correct Program in GHC j._.n_\

Tl

Communicating Concurrent Processes

\§ J
(W J

Figure 1: Two Layers of the Kernel Language

of the kernel language KL1.

3.1.1 Concurrent Logic Languages

The design effort of the kernel language was started in
1982 with the start of the project by seeking for an ap-
propriate framework of the language. As the concur-
rent logic programming framework seemed to provide the
characteristics in our need, we investigated many lan-
guages in the family as the basis of the kernel language,
including Relational Language [Clark and Gregory 1981},
Concurrent Prolog [Shapiro 1983] and PARLOG [Clark
and Gregory 1983]. This study led us to a design of a
new concurrent logic language, Guarded Horn Clauses
(GHC) at the end of 1984 [Ueda 1986].

GHC shares its basic framework with other concur-
rent logic languages. Firstly, a GHC program is a set of
guarded clauses. Secondly, GHC features no don’t-know
nondeterminism (built-in search capability) but features
don’t-care nondeterminism, which allows description of
reactive systems. Reactive systems in concurrent logic
languages are based on the process interpretation of logic
[van Emden and de Lucena Filtho 1982], in which a goal
(or a multiset of subgoals derived from it) is regarded
as a process and processes communicate by generating
and observing bindings (between shared logical variables
and their values). Like most concurrent logic languages,
all bindings are determinate in GHC, that is, they are
never revoked once published to other processes. The
determinacy of bindings is essential in reactive systems,
such as an operating system, because the bindings may
be used for interacting with the real outside world. The

lack of built-in search capability also allows programs to

specify the way of their execution in more detail, which

so matches our principle of making programs specify
napping of computation.

3.1.2 Guarded Horn Clauses

What then is the relative merit of GHC over other con-
current logic languages? In our study of various concur-
rent logic languages, we focused on Concurrent Prolog,
which was the most expressive of them, and built its
prototype implementation [Miyazaki et al. 1985]. The
experience led us to clarify the definition of atomic op-
erations of the language, which in turn led us to a new
language with simpler atomic operations.

As explained above, one important aspect of concur-
rent logic languages is the determinacy of bindings. In
general, the execution of a concurrent logic program pro-
ceeds using parallel input resolution [Ueda 1988a) that
allows parallel execution of different goals, but under the
following rules to guarantee the determinacy of bindings:

(1) The guards (including the heads) of different clauses
called by a goal g can be executed concurrently, but
they cannot instantiate g.

(2) The goal g commits to one of the clauses whose
guards have succeeded.

(3) The body of a clause to which g has committed can
instantiate g. The bodies of clauses to which g has
not committed cannot instantiate g or the guards of
the clauses.

(4) A goal is said to succeed if it commits to some clause
and all its body goals succeed.

That is, before commitment, a goal can pursue two
or more clauses but without generating bindings. Af-
ter commitment, it can generate bindings but only one
clause is left.

Another important aspect of concurrent logic lan-
guages is how synchronization is achieved. In general,
synchronization is achieved by restricting information
flow caused by unification. Concurrent Prolog uses read-
only annotations, and PARLOG uses mode declarations
which are used for compiling the unification of input ar-
guments into a sequence of one-way unification and test
unification primitives. However, in these languages, ad-
ditional mechanisms are necessary to guarantee restric-
tion (1) above.

The key idea of GHC is quite simple. It uses the re-
striction (1) itself as a synchronization construct. That
is, any piece of unification which is invoked directly or
indirectly from the guard of a clause C and which would
instantiate the caller of C is suspended until it can be ex-
ecuted without instantiating the caller. In other words,
GHC has integrated two notions: the determinacy of
bindings and synchronization.

77

A kernel language must provide a common framework
for people working on various aspects of the project in-
cluding applications, implementation, and theory. Be-
fore accepting GHC as the basis of our kernel language,
we had to convince ourselves that it satisfies the follow-
ing conditions:

o It is expressive enough.

o It can eventually be implemented efficiently, possi-
bly by appropriate subsetting.

e It is simple enough to be understood and used by
programmers. Also, it is simple enough for theoret-
ical treatment.

We soon made sure that GHC was expressive enough
to write most concurrent algorithms that had been writ-
ten in other concurrent logic languages, but that was
not enough. How to program search problems was also
important, because search problems are a specialty of or-
dinary logic languages. So we have developed a couple of
methods for programming search problems [Ueda 1987],
[Tamaki 1987), [Okumura and Matsumoto 1987].

For implementability, we quickly ascertained by rapid
prototyping that GHC can be implemented fairly ef-
ficiently at least on sequential computers [Ueda and
Chikayama 1985].

3.1.3 Flat GHC

For simplicity, we continued to study the properties of
GHC and looked for a simpler explanation of the lan-
guage better suited to process interpretation. Now, our
interpretation is that a GHC process is an abstract entity
which observes and generates information (represented
in the form of bindings) and which is implemented by a
multiset of body goals. The behavior of each body goal
is defined by guarded clauses that can be regarded as
rewrite rules.

A problem with the original definition of GHC is that
guard goals do not fit well into this process interpreta-
tion. We also felt, from a practical point of view, that
the expressive power of guard goals did not justify the
implementation effort even if it could be implemented
efficiently..

These considerations led us to reduce GHC to a sub-
set, Flat GHC. Guard goals of Flat GHC are auxiliary
conditions to be satisfied for applying the clause. The
sufficient conditions to be satisfied by a guard goal as
an auxiliary condition are that it is deterministic (that
is, whether it succeeds or not depends only on its argu-
ments) and that it does not produce any bindings. This
restriction simplified the theoretical treatment consider-
ably in the operational semantics [Ueda 1990] and pro-
gram transformation rules [Ueda and Furukawa 1988].

To summarize, a Flat GHC program is a set of guarded
clauses that can be regarded as rewrite rules of goals.

78

The guard of a clause specifies what information should
be observed before applying the rewrite rule, and the
body specifies the multiset of goals replacing the original.
A body goal is either a unification goal of the form ¢; = ¢,
whose behavior is language-defined, or a non-unification
goal, whose behavior is user-defined. A unification body
goal generates information by unifying ¢; and ¢,, and a
non-unification body goal represents the rest of the work
and will be reduced further.

3.1.4 Characteristics of GHC

The semantics of Flat GHC can be understood both alge-
braically and logically. The algebraic one is the process
interpretation mentioned above. A logical characteriza-
tion of communication and synchronization was given
by Maher [Maher 1987], showing that information com-
municated by processes can be viewed as equality con-
straints over terms.

Unlike Concurrent Prolog but like PARLOG, the pub-
lication of bindings is not done atomically upon com-
mitment of a non-unification goal but eventually after
commitment using a unification body goal that can run
in parallel with other goals. This means that commit-
ment in GHC is a smaller and simpler operation than in
Concurrent Prolog. Moreover, in GHC, the information
generated by a unification body goal is not an atomic
entity but can be transmitted in smaller pieces, possi-
bly with communication delay. We have found that this
liberal computational model of (Flat) GHC is expressive
enough to program cooperating concurrent processes and
leaves more freedom to implementation.

Another point to note is that GHC has included con-
trol for the correct behavior of processes but excluded
any control for efficient execution. GHC has left the
latter to KL1 described below, in order to clearly dis-
tinguish between the two notions. This contrasts with
PARLOG, which features sequential AND that can be
used for suppressing parallel execution of body goals. We
believe that it is important to learn that synchronization
based on information flow is sufficient for writing correct
concurrent prograrms.

Important topics on theoretical aspects of Flat GHC
include the relationship with other theoretical models of
concurrency such as CCS [Milner 1989] and theoretical
CSP [Hoare 1985]. Although concurrent logic languages
differ from CCS and CSP in their asynchronous commu-
nication and dynamically reconfigurable processes, sim-
ilar mathematical techniques can be used to formalize
them. We have not yet obtained a completely satisfac-
tory formal semantics, but we are fairly confident that
Flat GHC is theoretically simple enough, while it can be
used for practical programming without any modifica-
tion.

3.2 Practical Parallel Language KL1

As described above, we have designed a concurrent logic
language Flat GHC as the basis of the kernel language.
The descriptive power of the language, however, is not
sufficient when efficient program execution is our con-
cern, which was the original motivation of parallel com-
puters.

As Flat GHC programs do not say anything about
where (i.e., on which processor) the atomic operations
making up a computation should be performed, there
are many ways to distribute the operations over avail-
able processors. As Flat GHC programs only specify the
partial ordering of atomic operations, there are many
possible total orderings conforming to it. To make sure
that the distribution and the ordering employed are not
far from optimal, we must be able to specify physical
details of execution to some extent.

We thus designed a parallel programming language
based on the concurrent programming language Flat
GHC, in which we can specify in certain detail how a
program should be executed. This section describes the
outline of this language, named KL1.

3.2.1 Mapping of Computation

Flat GHC programs implicitly express any potential par-
allelism in the sense that no ordering between atomic op-
erations exists except for those essential for correctness.
On real-world computer systems with a limited number
of processors and non-negligible cost of interprocessor
communication, faithful exploitation of this parallelism
will almost never show optimal efficiency. To achieve rea-
sonable efficiency, control is required on when and where
each atomic operation should be performed. This control
is called mapping.

Mapping is often implicit in sequential systems. With
two possible methods to solve a problem, a good strategy
on a sequential system would be trying more efficient but
less reliable one first and trying less efficient but reliable
one second only when the first one fails. This may not
be the best for parallel systems, when the first method
will not require all the computational resource (such as
processors) for its execution. In such a case, the second
method should be tried in parallel with the first. This
computation may or may not be required depending on
the result of the first method. Such computation is called
speculative [Burton 1985]. For efficiency, computation by
the second method should not interfere the execution of
the first by snatching required resources. This is effected
by giving priority to the first method over the second.
From this viewpoint, the original sequential algorithm
uses sequencing of two methods not for correctness but
for efficiency to implicitly specify priority.

Sometimes more sophisticated mapping is desirable.
Suppose that there are two methods to solve a problem
and that, although at least one is known to find a so-

Shoen

Figure 2: Shoen Construct

lution efficiently, we cannot tell which beforehand. In
such a case, the best scheduling strategy may be to give
both methods approximately the same amount of com-
putational resource. Resource management is thus an
important part of an algorithm in parallel computation.

In sequential computer systems and in parallel com-
puter systems as extensions of conventional sequential
systems, operating systems are primarily responsible for
mapping. This is acceptable as far as application pro-
grams are mostly sequential and the mapping strategy is
often specified by sequencing implicitly. In parallel sys-
tems where explicit mapping operations are much more
frequently required, requesting each mapping operation
to the operating system would incur intolerable over-
head.

3.2.2 Mapping Features of KL1

To solve this problem, we have introduced into KL1 the
following features, which are intended to be efficiently
implemented:

Shoen: Shoen® represents a group of goals. This group
is used as the umit of execution control, namely the
initiation, the interruption, the resumption and the
abortion of execution. Exception handling and re-
source consumption control mechanism are also pro-
vided through this shoen construct. It has two com-

munication streams as its interface: one directs from:

outside of the shoen, called control stream, for sending
messages to control execution in the shoen; the other,
called report stream, has the reverse direction for re-
porting events internal to shoen. The shoen construct
is an extension of the metacall construct proposed by
Clark and Gregory [Clark and Gregory 1984].

Priority: A (body) goal of a KL1 program is the unit of
priority control. Each goal has an integer priority as-

sociated with it. Each shoen keeps the maximum and -

the minimum priorities allowed for goals belonging to

3Shoen is a Japanese word corresponding to ‘manor’ in English.

79

it, and the priority of each goal is specified relative to
these. The language provides a large number of log-
ical priority levels, which are translated to physically
available priority levels provided by each implementa-
tion.

Processor specification: Each (body) goal may have
a processor specification, which designates the proces-
sor (or a group of processors) on which to execute the
goal.

This straightforward mechanism provides the basis
of research in more sophisticated computation map-
ping strategies. Actually, several automatic mapping
strategies have been developed for diverse problems,
and relatively universal ones are provided as libraries
[Furuichi et al. 1990].

One of the most notable characteristics of the KL1 lan-
guage is that these priority and processor specifications
are separated from concurrency control. We call these
specifications pragmas. Pragmas are merely guidelines
for language implementations and may not be precisely
obeyed. The same is true of the controlling mechanism
of shoen; abortion of computation, for example, may not
happen immediately. This relaxation makes distributed
implementation much easier.

In many parallel programming languages, the specifi-
cation of parallel execution is often mixed up with other
language constructs, especially with constructs for con-
currency control. A major revision is often required for
revising only the mapping of computation to improve
efficiency, which is liable to introduce new bugs.

Although pragmas are specified within the program
in KL1, they are clearly distinguished syntactically from
other language constructs. Pragmas will never change
the correctness of the programs,® though the perfor-
mance may change drastically. As it is not uncommon
that more than half of the effort to develop a program is
devoted to the design of appropriate mapping, it is most
advantageous that mapping specifications can be altered
without affecting correctness of the program.

3.2.3 Keeping up with Sequential Languages

What criterion is appropriate for comparing parallel al-
gorithms? Assume that a parallel algorithm has sequen-
tial execution time ¢(n) (n being the size of the prob-
lem) and average potential parallelism p(n). Then the
total execution time by this algorithm on an ideal par-
allel computer is given by ¢(n)/p(n). This means that
an algorithm with more sequential execution time but
with still more parallelism is considered to be a better
algorithm on an ideal parallel computer.

To be precise, the priority specification may be used for guar-
anteeing certain properties of diverging (i.e., autonomously non-
terminating) programs.

80

This, however, does not hold when the potential par-
allelism, which may vary over time, can exceed the phys-
ically available parallelism. As physical parallelism is al-
ways limited in the real world, a parallel algorithm with
sequential time complexity worse than a sequential al-
gorithm will be beaten by that sequential algorithm for
sufficiently large n, no matter what p(n) is. To sum-
marize, parallel languages must be able to express any
algorithms with the same sequential time complexity as
in sequential languages to be really useful.

Pure languages such as pure Lisp and pure Prolog can-

not express certain kinds of efficient algorithm due to’

the lack of the notion of destructive assignment. GHC
also is a pure language with the same inherent problem.
To write efficient algorithms in these pure languages, we
must be able to somehow mimic the efficiency of array
operations in conventional languages.

For this reason, KL1 introduced a primitive for updat-
ing an array element in constant time without disturbing
the single-assignment property of logical variables. The
primitive can be used as follows:

set_vector_element (Vect, Index,
Elem, NewElem, NewVect)

When an array Vect, an index value Index and a new el-
ement value NewElem are given, the predicate binds Elem
to the value of the Index’th element of Vect, and New-
Vect to a new array which is the same as Vect except
that the Index’th element is replaced by NewElem.

Because some other goals may still have references to
the old array Vect, a naive implementation might allo-
cate a completely new array for NewVect and copy all but
one elements. However, when it is known that no goals
other than the above set_vector_element goal have ref-
erences to Vect, there will be no problem in destructively
updating it. In the actual implementation of KL1, a sim-
plified, efficient version of the reference counting scheme
[Chikayama and Kimura 1987] detects such a situation,
in which event the new array NewVect is obtained in con-
stant time.

This means that any imperative sequential algorithm
can be rewritten in KL1 retaining the same computa-
tional complexity, as random access memory can always
be emulated using a single-reference array. Of course, al-
lowing only one reference to a data structure can decrease
the possibility of parallel execution considerably. How-
ever, this requirement of the computational complexity
becomes essential only after physically available paral-
lelism is used up.

3.3 Higher-Level Languages

Although the kernel language KL1 allows relatively
higher level description of programs than imperative lan-
guages, its description level is in the same level as Lisp,
which is still too low for certain application programs

in the area of knowledge information processing. This
section describes research on providing higher-level lan-
guage constructs upon KL1.

3.3.1 Macro Expansion

A powerful macro expansion mechanism similar to the
one available in ESP [Kondoh and Chikayama 1988] is
designed and implemented. This macro allows not only
in-place expansions of macro invocations but also inser-
tion of terms into the program in the levels of arguments,
goals or clauses. The following are possible using these
features. :

e Simple in-place expansion
e Conditional compilation

e Functional notations including but not restricted to
arithmetical expressions

e Implicit arguments

A goal of Flat GHC programs has very short lifetime,
as it consists of only one reduction to its subgoals. To
realize a process with longer lifetime, a programming
style is used in which a goal recursively calls the same
predicate with almost the same arguments. This pro-
gramming style is used almost everywhere in the oper-
ating system and application programs. In such a pro-
gramming style, the state of the process or any paths
to communicate with other processes (shared variables)
have to be passed as the arguments of the recursive goal.
This ensures higher modularity, but always describing
such arguments is too verbose, making it harder to un-
derstand or to revise programs. The implicit argument
passing mechanism can be conveniently used to describe
processes in a more concise manner.

The macro expansion mechanism of KL1 is so pow-
erful that functions beyond mere syntactic sugaring can
be provided using its features. However, programmers
can freely choose any programming style allowed in KL1.
Although this is advantageous in certain cases, restric-
tion on the usage of the language features 1s profitable
in making programs easier to understand and maintain.
We thus started designs of higher-level languages to be
compiled into KL1, which will be described in the fol-
lowing sections.

3.32 A'UM

The programming style of KL1 most frequently used is to
describe a set of processes communicating through mes-
sage streams [Shapiro and Takeuchi 1983]. Streams are
realized by gradually instantiating a list structure con-
sisting of binary cells. Processes are realized using tail
recursion. A’UM is a programming language designed
to describe such programs more directly than explicitly

writing such realization of message streams and processes
[Yoshida and Chikayama 1990).

A prototype implementation of the language was a
translator to KL1. As a thoroughly object-oriented lan-
guage, every entity of the language A’UM, an integer
value for example, appears as a process. We could find
no other way than to actually implement them as pro-
cesses in KL1. The choice then was whether to aban-

don thorough object-orientationor to implement it dif--

ferently, not as a part of the parallel inference system.
A’UM took the latter choice and research on its more
direct implementation is ongoing [Konishi et al. 1992].
A prototype implementation is already operational on a
system of network-connected workstations. The former
approach was taken by another language with similar
objectives, called AYA, which is described in the next
section.

3.3.3 AYA

The design of the language AYA was initiated after we
decided to let A’UM seek for pure object-orientation
rather than pursue practical efficiency on the parallel
inference system [Susaki and Chikayama 1991].

The design objective of AYA is the same as the initial
motivation to design A’UM, namely, providing a more
concise way to describe programs in object-oriented pro-
gramming style of KL1. In design of AYA, a higher prior-
ity is given to practical efficiency and freedom of descrip-
tion than uniformity as an object-oriented languages.
Not all entities are “objects”: integers will not respond
to “add” messages. Its design was mostly bottom-up;
most of the language features were chosen based on our
programming experiences in KL1.

Processes of AYA can have multiple streams to receive
messages, making it impossible to interpret one single
message stream to be representing an object. Commu-
nication patterns besides streams such as asynchronous
interrupts are also allwoed.

A characteristic feature of AYA is the notion of scenes,
corresponding to the macroscopic context of a process.
A process can have many scenes to act in and its reaction
to messages from outside will depend on in which scene
it is currently acting.

Implementation effort of AYA is ongoing and a proto-
type translator to KL1 is already operational.

4 Operating System: PIMOS

As described above, an operating system tuned to con-
trol highly parallel programs effectively is vital for fully
exploiting the power of highly parallel computer sys-
tems. The system should also be user-friendly and robust
enough for practical and extensive use in parallel soft-
ware research. The Parallel Inference Machine Operat-
ing System (PIMOS) was designed to fulfill the require-

81

ments and implemented in the kernel language. This
section describes the overall design of PIMOS.

4.1 Prior Works

The possibility and advantages of writing a complete op-
erating system in a concurrent logic language were sug-
gested by Shapiro [Shapiro 1986]. Based on this principle
but with much improvements in various aspects, several
experimental systems such as the Logix system [Hircsh
et al. 1987] and the Parlog Programming System (PPS)
[Foster 1987] were implemented.

PIMOS resembles PPS in many aspects. This resem-
blance is partly due to the resemblance of the implemen-
tation languages (KL1 and PARLOG) and partly due to
frequent exchange of ideas among the two groups.

A notable difference between PIMOS and the other
above-mentioned systems lies in the underlying language
implementations and the way the system is used. PI-
MOS is designed to be efficiently executed on a parallel
hardware to be practically used in the research and de-
velopment of application software, while other systems
are built as experimental systems upon commercially
available systems. In other words, PIMOS shares with
other systems the objective of seeking for a novel method
of constructing an operating system in concurrent logic
language, but has an additional objective of providing
a comfortable and efficient environment for application
software development. This considerably affected vari-
ous design trade-offs.

4.2 Objectives

In designing PIMOS, the following items were set as the
design objectives.

Robustness: As PIMOS is to be used on a stand-alone
parallel computer system, the robustness of the system
is more important than in systems build upon another
established system.

Internal Parallelism: The ultimate objective of PI-
MOS is, as stated above, to provide features for fully
exploiting the power of parallel inference hardware.
Various computation required in such an operating
system should also be executed in parallel. Other-
wise, the operating system will be the bottleneck of
the whole system.

High Locality: The target architecture has loosely-
coupled processors where inter-processor communica-
tion is much more costly compared with communica-
tion within one processor. Thus, the amount of com-
munication between processors should be kept as low
as possible.

Flexibility: As the hardware parameters are expected
to change, the system should have enough flexibility

82

to be tuned to the given parameters. When tuning by
changing parameters of the operating system becomes
insufficient, non-trivial re-design of the system may be
required. Thus, a system on whose improvement is
easy is desirable.

4.3 Resource Management

Management of resources is the most fundamental and
important role of an operating system. This section de-

scribes the design of the resource management mecha-
nism of PIMOS.®

4.3.1 What Resources to Manage

In conventional systems, memory management and pro-
cess management are the most important tasks of oper-
ating systems. As in other high-level language for sym-
bolic manipulation, KL1 provides an automatic memory
management feature including garbage collection. Thus,
basic memory management is by the language implemen-
tation rather than PIMOS. As KL1 provides implicit con-
currency and data-flow synchronization, context switch-
ing and scheduling are already supported by the lan-
guage. Thus, PIMOS does not have to manage low-level
fine-grained processes, but controls larger-grained groups
of processes using the shoen feature of the kernel lan-
guage.

On the other hand, PIMOS has full responsibility on
the management of resources such as input and output
devices. In the lowest level, I/O devices are provided
as primitives of the kernel language to control physi-
cal device interface. Thanks to the descriptive power
of the kernel language for reactive systems, such devices
have a disguise of an ordinary process in the kernel lan-
guage level. Their functionality, however, is at a level too
low for application programs. Like any other operating
systems, PIMOS virtualizes such devices, allowing ap-
plication programs to control virtual devices with much
higher-level functionality.

These virtual devices are actually a process that con-
verts higher-level requests from user tasks into lower-
level requests that physical devices can understand. The
user tasks send their request messages to a stream con-
nected to such a process. Thus, management of devices
is management of the communication streams connected
to them. Protection mechanisms are realized by insert-
ing a filtering process to such streams, which examines
messages going through the stream and rejects any illegal
requests to the devices.

As mentioned above, process management by PIMOS
is through the shoen construct. PIMOS virtualizes shoen
also as a task with higher-level functionality for resource
management. Tasks are a virtual device with the func-
tion of program execution with resource management

®More detailed description can be found in [Yashiro et al. 1992].

=4
Y7y '
v I~
Random Hierarchical
Distribution Management

Figure 3: Distribution of Management Jobs

facility. They can be controlled from user programs
only through streams connected to it. The same protec-
tion mechanism of inserting message filtering processes
is used here.

4.3.2 Hierarchical Resource Management

In most conventional operating systems, all the vital
management information is centralized to the kernel,
which is usually implemented as a single process. This
centralization policy makes it easy to keep the manage-
ment information consistent.

In a highly parallel system, however, such centraliza-
tion of management information would become problem-
atic. Even if the overhead of the kernel is only one
percent, the processing speed of the kernel will be the
bottleneck of the system in a system with only one hun-
dred processors. Moreover, all the management requests
will be targeted to the processor where the kernel pro-
cess runs, resulting in a hot spot in the communication
mechanism. In an operating system for highly parallel
computer systems, management jobs also have to be dis-
tributed.

Random distribution of management jobs, using hash-
ing technique for example, would relieve the bottleneck
problem, but introduces a new problem of frequent com-
munication, as the requests for operating system services
arise everywhere without regard to where the service is
provided.

To avoid the bottleneck and frequent communication
at the same time, it is essential to distribute manage-
ment jobs keeping the locality of information. PIMOS,
thus, adopted hierarchical resource management policy.
User tasks and resources allocated by the operating sys-
tem form a hierarchical structure. As the design prin-
ciple leaves computation mapping to application pro-
grams, processes of PIMOS responsible for management
jobs will be allocated where requests for services arise,
and those management processes also form a hierarchi-
cal structure corresponding to the structure of user tasks,
called resource tree. This resource tree is the kernel of
PIMOS.

No centralization of resource management information
is made and no total ordering of resource allocation is

PIMOS Management Hierarchy

User Task Hierarchy

Physical Processors

Figure 4: Task and Management Hierarchies

tried. A management process, which is a node in the
resource tree, knows only of its parent and children. Al-
location of a new resource is handled locally at one level
in the hierarchy without reporting it to upper levels nor
lower levels. When necessary, statistical summaries of
management information is exchanged in the resource
tree, but there is no single process that knows the state
of the whole system precisely. The state of the whole sys-
tem can be investigated by traversing the tree structure,
but that would be costly and, because of the concurrent
activities in the system, obtained information might al-
ready be obsolete when the the traversal completes. We
found this loose management policy works fine without
any problems.

4.3.3 Servers

All the services of PIMOS are provided by servers, which
correspond to virtualized devices. Servers are realized as
usual tasks to make the kernel compact and to enable
easy addition of services.

An application program (client) requiring a service (to
open a display window, for example) can ask for the ser-
vice by requesting to the kernel with the name of the
service. The kernel will look for the named service in a
table it maintains and establishes a stream connection
between the server task and the client task, inserting a
filtering process for protection in the client task at the
same time. Once the connection is established, the kernel
will not look into messages passed through the stream;
the server is protected by the inserted filter rather than
a kernel process. When the service become no longer
needed, the client process normally closes the communi-
cation stream. The remaining responsibility of the ker-
nel is to notify the server of abnormal termination of the
client.

83

4.4 File System

Earlier versions of PIMOS operating on an experimental
model Multi-PSI [Takeda et al. 1990] left all the exter-
nal input and output to its I/O front-end processor, PSI
[Nakashima 1987]. This was profitable in rapidly con-
structing a software development environment for appli-
cations research. For massive external storage, such as
disks, the imbalance of the low throughput communica-
tion with the I/O front-end and high performance pro-
cessing power of the parallel hardware, however, became
more apparent with PIM [Taki 1992].

We thus decided to connect disks more directly to pro-
cessors of PIM for higher throughput and shorter delay.
To minimize hardware development effort, we adopted
SCSI (small computer standard interface) to interface
disks available in the market. Although single SCSI can
provide rather low throughput, PIM can have many of
them, providing required total throughput.

As the interface provides only low-level block I/0 to
disks, we designed a file system to provide higher-level
interface to application programs. In designing the file
system, we took the following principles.

Distributed Cache: To lower interprocessor commu-
nication frequency, each processor should have its own
cache of data in file. The cache mechanism should
provide “Unix semantics”: When one process writes
into a file, the data should become available to other
processes immediately. This is a constraint severer
than in many distributed file systems where some de-
lay is allowed [Levy and Silverschatz 1989], but it is
mandatory in a system like PIMOS, where processes
are usually cooperatively solving one problem. Thus,
a distributed and coherent caching mechanism was de-
signed, which is similar to cache coherence mechanisms
provided by snoopy cache [Archibald and Bare 1986]
but allows delay of communication.

Robustness: As all the system components, including
the hardware, the operating system and the file sys-
tem itself, are experimental and subject to damage
caused by bugs, sufficient backing up mechanism is re-
quired to provide a comfortable software development
environment. Logging of information vital to the file
system and quick recovery mechanism using the logged
information were designed.

More detailed description of the file system can be found
in [Itoh et al. 1992].

4.5 Software Development Tools

Development of parallel software has many aspects dif-
ferent from development of sequential software. PIMOS
provides various tools to support development of parallel
soft ware, described in this section.

84

4.5.1 Program Code Management

Executable programs are provided as data objects of type

module by the kernel language and can be manipulated .

through language primitives by authorized software. Al-
though the representation of executable programs differ
in each hardware models, a common interface to manip-
ulate programs is provided by PIMOS to encapsulate the
differences.

Executable programs are stored in a database, which
is a virtual device realized by a server task. To maintain
the logical soundness of the specification, it is not de-
sirable to introduce the notion of modification, not only
for usual data but also for programs which are also data.
Updating a program module does not mean modification
of an already existing program, which might be running
in parallel somewhere in the system; it merely means
updating of the correspondence of module names and
executable programs kept in the program database. The
existing processes that are executing the program will
not be affected by this update, except that, when the up-
dated module is referenced by its name and the database
is searched for, a new version of it will be found. Mul-
tiple versions of the same program can thus coexist in a
system. This not only keeps the semantics clean but also
allows efficient distributed implementation.

4.5.2 Debugging Tracer

The most frequently used tools in debugging programs
are tracers that allow programmers to look into the de-
tails of program execution. PIMOS also provides a pro-
gram tracer for this debugging purpose.

Execution of programs in a high level language form
“a hierarchical structure such as nested subroutine calls.
In case of subroutines in sequential languages, substruc-
tures corresponding to subroutine invocations directly
correspond to a time interval, such as “during execution
of a subroutine.” Tracing or not tracing that particular
substructure can be effected by switching tracing on and
off during that time interval. In concurrent languages,
such direct correspondence does not exist as many such
substructures are executed concurrently. If the number
of processes is limited, providing multiple windows, one
for each process, and switching tracing on each of them
might be a good idea. In case of KL1 programs, the
number of processes typically goes up to millions, much
more than tractable this way. The tracer of PIMOS also
provides a feature to direct the trace information to mul-
tiple windows, but their role is only auxiliary.

The shoen construct of the kernel language is used to
control tracing, to obtain trace information and to con-
trol execution of traced programs. Each goal executed in

a shoen can be marked as a traced goal. When the lan- -

guage implementation finds reduction of such a goal to
its subgoals, the newly created subgoals will be reported
from the report stream of the shoen as a message. The

tracer observing the stream presents the information to
the user and queries what to do with the goals, that is,
whether to simply execute them or execute them with
trace marks again. The goals can also be suspended for
a while to control their execution order.

The tracer also has interface with the deadlock de-
tection mechanism provided by the KL1 implementation
[Inamura and Onishi 1990].

4.5.3 Performance Tuning

As stated above, a strong point of the kernel language
KL1 is that mapping of computation, both over proces-
sors and over time, can be altered without affecting the
correctness of programs. Finding a mapping which real-
izes efficient computation is one of the most important
research topics in application software research on the
parallel inference system.

However, conjecturing mapping only by statically an-
alyzing programs is a very difficult task. In many cases,
actually running the programs and gathering statisti-
cal information reveals many aspects of programs that
are easily overlooked. To help such experimentation, PI-
MOS provides a tool for evaluating load distribution al-
gorithms.

Profiling information of parallel programs has three
axes: what, when, and where. In sequential execution,
“where” is a constant and the “when” is not important,
since the execution order is strictly designated. Simple
profiling tools that can tell “what” (which part of the
program) took how much time will thus suffice. How-

" ever, all three axes are important when parallel execu-

tion is our concern. The kernel language implementation
has the feature to provide three-dimensional statistics on
what (which part of the program, or, in a lower level,
whether usual computation, interprocessor communica-
tion or garbage collection) is executed where (on which
processor) and when.

As it is not easy for a human to understand massive
raw data from hundreds of processors, a profiling tool
named ParaGraph is provided to analyze the data and
present it to the user graphically (Figure 5). The sys-
tem provides displays from several different viewpoints,
making the analysis easier. The ParaGraph system is
described in more detail in [Aikawa 1992 et al.].

4.5.4 Virtual Machine

As all the communication between user programs and PI-
MOS is initiated through the control and report streams
of shoens, a user program can emulate PIMOS by run-
ning programs within a shoen and observing its interface
streams.

The same technique also can be used to debug PIMOS
itself by writing an emulator of the whole parallel com-
puter system, a virtual machine. This facility provides
a way to debug PIMOS under the software environment

Erecetve

W send

moompute

Figure 5: Sample Output of ParaGraph

provided by PIMOS itself. As the virtual machine is no
more than a usual task in PIMOS, the protection mech-
anism of PIMOS prevents bugs of the debugged version
from propagating to the real PIMOS. Also, the profiling
system ParaGraph can be used for performance tuning
of PIMOS. This facility has been conveniently used in
debugging and tuning of the kernel of PIMOS.

5 Experiences

The first version of PIMOS was implemented on Multi-
PSI [Takeda et al. 1990] in 1988 [Chikayama et al. 1988].
It has been revised with various enhancements and im-
provements since, through experiences with research and
development of experimental software on many applica-
tion areas. As the experiences with application software
are reported elsewhere (see [Nitta et al. 1991] for exam-
ple), this section mainly reports the experiences of the
development of PIMOS itself in the kernel language KL1.

5.1 Automatic Synchronization

The automatic data-flow synchronization mechanism of
KL1 assured portability of PIMOS to hardware systems
with different architectures.

The first version of PIMOS was developed in parallel

with the development of the experimental parallel infer-

ence machine Multi-PSI. During its early development
phase when no physically parallel system running the
kernel language was available yet, a sequential imple-
mentation was used in the development. The schedul-
ing of goals was fixed on the implementation. We could
not completely deny the possibility of any crucial syn-
chronization problems in the system hidden by the fixed
scheduling of the emulator; that was our first experience
of actually writing a large-scale software in KL1.

85

PIMOS was ported to Multi-PSI when its KL1 im-
plementation got ready. We found almost no synchro-
nization problems there (except for a small number of
higher-level design problems) although the scheduling on
the real parallel machine is quite different from the em-
ulator. We were certain that this should be the case,
but actually experiencing this made us more confident
of the great merit of writing a system in a language with
automatic data-flow synchronization.

In 1991, the first model of the parallel inference ma-
chines, PIM/m and its KL1 implementation was made
available for software installation. After revising the
low-level I/O mechanism to fit the system to this new
platform, PIMOS began working almost immediately on
this system without revealing any problems. This was
not surprizing as the kernel language implementation on
the system used the identical scheduling policy as the
Multi-PSI system.

Later in the same year, the system was ported to an
emulator of PIM running on a commercially available
parallel processor. The emulator was primarily for de-
bugging the design of kernel language implementation
for models consisting of loosely-coupled clusters, each
of which has several processors sharing a memory bus.
The scheduling policy of this emulator was completely
different from Multi-PSI or PIM/m, as the language im-
plementation distributes goals automatically among pro-
cessors in a cluster. As we expected, and also to our
surprise, PIMOS ran without any problems in itself but
revealing some problems with the language implementa-
tion in stead.

Currently (February 1992), the kernel language imple-
mentation and PIMOS are being ported to other models
of PIM. We are now certain that there won’t be any fun-
damental problems in porting PIMOS to those models.

5.2 Fine-Grain Concurrency

It is true that most human algorithm designers are li-
able to regard computation as a sequential process and
some extra effort is needed to think of many cooperat-
ing processes for a single job. This fact is sometimes re-
garded as against parallel processing, that designing par-
allel computation is unnatural for human. The implicit
concurrency of the kernel language, however, resulted in
interesting phenomena.

Most algorithms in fact are designed having sequen-
tial processing in mind or limited aspects of the par-
allelism. Once a program for the algorithm is written
down in the kernel language, the program often shows
much more concurrency than the designer had in mind,
as the language reveals implicit fine-grain concurrency.
The designer can look into the program more objectively
and find different aspects of concurrency implied there.
Sometimes, the concurrency so found is a good candidate
for obtaining larger physical parallelism for increased ef-

86

ficlency. Mapping pragmas exploiting the concurrency
can then be added to the program to make it run with
higher parallelism and more efficiently. This should not
have been possible if the language had only larger-grain
concurrency.

5.3 Descriptive Power

Through the development of PIMOS, the descriptive
power of KL1 for both concurrency and parallelism was
proved to be sufficient.

The ability of describing reactive systems allowed the
language to provide primitives to control external I/O
devices in a coherent manner; external devices could
be modeled as an ordinary process without introduc-
ing any extralogical features to the language. This al-
lowed straightforward implementation of a virtual ma-
chine, which helped the development considerably.

The shoen construct and the priority control mecha-
nism of the kernel language provided sufficient function-
ality required to control execution of various activities
in the system. For example, in case a user program ran
into an infinite loop, the following steps will enable in-
terruption of such a program.

o As the device handlers are given higher priority than
user processes, an interrupt from the keyboard can
be sensed.

¢ Asthe command shell, which is a user task, lets jobs
under its control run in a priority lower than itself,
the shell can sense the interrupt.

e Using the shoen construct, the shell can stop the
task in an infinite loop.

5.4 Ease of Programming

Many programmers seem to have felt uneasiness with the
kernel language when the system first began utilized in
application software development. The largest source of
the problem seems to be in too much freedom of pro-
gramming styles.

The bare kernel language allows multiple input/output
modes of logical variables; the same process can read or
write the same shared variable, depending on situations.
Although this is allowed in the language, it often in-
troduces race conditions which become problematic only
with specific scheduling. Such a bug is hard to fix as trac-
ing the execution or modifying the program to report in-
formation for debugging may change the scheduling, hid-
ing the problem away. Gradually, a programming style
has been established where I/O modes of logical vari-
ables are statically fixed. This indicated the direction of
subsetting of the language (see section 6).

Another problem was how to organize numerous con-
current processes. Many styles have been tried and

the object-oriented programming style [Shapiro and
Takeuchi 1983] has been accepted as the de facto stan-
dard. Many programming idioms have been estab-
lished upon this object-oriented style through experi-
ences [Chikayama 1991], which suggested the direction
of the design of higher level languages (see section 3.3).

Automatic data-flow synchronization wiped away low-
level synchronization problems, allowing programmers to
concentrate on higher-level issues. With the program-
ming style established and the software development en-
vironment enhanced based on the experiences, describ-
ing parallel software in the kernel language has now be-
come not much more difficult than programming sequen-
tial programs in other languages for symbolic processing,
such as Lisp.

The largest difficulty remaining is that of designing al-
gorithms of computation mapping for efficient execution.
Separation of correctness and efficiency issues in the lan-
guage design and the visual performance analysis tool
facilitated experimentations of mapping algorithms con-
siderably, but still the task is not easy. Further research
in this direction seems mandatory.

6 Future Work

A problem with the current parallel inference system,
consisting of parallel inference machines, KL1 implemen-
tations and PIMOS, is that the system runs only on
specially devised hardware. Although the system can
execute KL1 programs very efficiently, requiring special
hardware is a serious obstacle in sharing the environment
with researchers world-wide. A portable implementation
of the kernel language working on Unix systems is avail-
able and was utilized in early stages of software develop-
ment, but, as it is implemented as an abstract machine
interpreter, its limited performance makes it inappropri-
ate for serious experimental studies.

To solve the problem, research in subsetting the lan-
guage to allow more concise and efficient implementa-
tions has been conducted with promising preliminary re-
sults [Ueda and Morita 1990]. A separate effort of im-
plementing KL1 by translating to C also indicated that
reasonable performance can be obtained with very high
portability [Chikayama 1992]. These results indicate the
possibility of implementing the language on stock hard-
ware efficiently for use in parallel software research. In
addition to such an implementation, PIMOS, especially
its software development environment, should also be
ported to stock hardware to provide common basis of
research and development of highly parallel knowledge
information processing systems.

7 Conclusion

An overview of the research and development of the basic
software for the parallel inference system of the FGCS
project is given.

The system aims at establishing the basis of software
technology for highly parallel computer systems. The re-
search and development adopted a middle-out approach
of designing a programming language first and then con-
tinuing the design both upwards to the application soft-
ware and downwards to the hardware architecture simul-
taneously. The kernel language KL1 and the operating
system PIMOS were designed and implemented.

The systems working on experimental parallel infer-
ence hardware Multi-PSI and a model of parallel infer-
ence machine PIM have been used in the research and
development of application software since 1988. Our ex-
periences have proved that the kernel language is expres-
sive enough for describing an operating system for paral-
lel processing systems and various application software.
The features of the language that separated correctness
and efficiency issues, along with the programming envi-
ronment provided by the operating system, made em-
pirical research of parallel software much easier than in
conventional environments.

Further research in computation mapping is needed in
future. Development of an efficient and comfortable en-
vironment on stock hardware is another important work
to be done.

Acknowledgements

The design and implementation of KL1 and PIMOS for
the parallel are collaborative work of many researchers
too numerous to list here. The author would like to
thank Kazunori Ueda for his helpful comments on an
earlier version of this paper.

References

[Aikawa 1992 et al] S. Aikawa, K. Mayumi, H. Kubo, F. Mat-
suzawa and T. Chikayama. ParaGraph: A Graphical Tuning
Tool for Multiprocessor Systems. In Proc. Int. Conf. on Fifth
Generation Compuler Systems 1992, ICOT, 1992.

[Archibald and Bare 1986] J. Archibald and J. L. Bare. Coher-
ence Protocols: Evaluation Using a Multiprocessor Simulation
Model. In ACM Trans. on Computer System, Vol. 4, No. 4
(1986), pp. 273-298.

{Burton 1985) F. W. Burton. Speculative Computation, Paral-
lelism and Functional Programming. In IEEE Trans. Comput-
ers, Vol. C-34, No. 12 (1985), pp. 1190-1193.

[Chikayama 1984] T. Chikayama. Unique Features of ESP. In
Proc. Int. Conf. on Fifth Generation Computer Systems 198/,
ICOT, 1984, pp. 292-298.

[Chikayama 1991] T. Chikayama. For KL1 Programming without
Tears. In Proc. KL1 Programming Workshop 91, ICOT, 1991,
pp- 8-14. in Japanese.

87

[Chikayama 1992] T. Chikayama. A Portable and Reasonably Ef-
ficient Implementation of KL.1. To appear as an ICOT Tech.
Report, ICOT, 1992.

[Chikayama and Kimura 1987] T. Chikayama and Y. Kimura.
Multiple Reference Management in Flat GHC. In Proc. Fourth
Int. Conf. on Logic Programming, MIT Press, 1987, pp. 276—
293.

[Chikayama et al. 1988] T. Chikayama, H. Sato and T. Miyazaki.
Overview of the Parallel Inference Machine Operating System
(PIMOS). In Proc. Int. Conf. on Fifth Generation Computer
Systems 1988, ICOT, 1988, pp. 230-251.

[Clark and Gregory 1981] K. L. Clark and S. Gregory. A Rela-
tional Language for Parallel Programming. In Proc. ACM Conf.

on Functional Programming Languages and Computer Architec-
ture, ACM, 1981, pp. 171-178.

[Clark and Gregory 1983] K. L. Clark and S. Gregory. PAR-
LOG: A Parallel Logic Programming Language. Research Re-
port DOC 83/5, Dept. of Computing, Imperial College of Sci-
ence and Technology, 1983.

[Clark and Gregory 1984] K. L. Clark and S. Gregory. Notes on
Systems Programming in PARLOG. In Proc. Int. Conf. on Fifth
Generation Computer Systems 1984, ICOT, 1984, pp. 299-306.

[van Emden and de Lucena Filho 1982] M. H. van Emden and
G. J. de Lucena Filho. Predicate Logic as a Language for Par-
allel Programming. In Logic Programming, K. L. Clark and
S.-A. Tarnlund (eds.), Academic Press, 1982, pp. 189-198.

[Foster 1987] 1. Foster. Logic Operating Systems: Design Issues.
In Proc. Fourth Int. Conf. on Logic Programming, J.-L. Lassez
(ed.), MIT Press, Vol. 2, 1987, pp. 910-926.

[Furuichi et al. 1990] M. Furuichi, K. Taki, N. Ichiyoshi. A
Multi-Level Load Balancing Scheme for OR-Parallel Exhaus-
tive Search Programs on the Multi-PSI. In Proc. Second ACM
SIGPLAN Symp. on Principles and Practice of Parallel Pro-
grammang, 1990, pp. 50-59.

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, K. Taki, and
A. Matsumoto. Overview of the Parallel Inference Machine Ar-
chitecture (PIM). In Proc. Int. Conf. on Fifth Generation Com-
puter Systems 1988, ICOT, 1988, pp. 208-229.

[Hircsh et al. 1987] M. Hircsh, W. Silverman and Ehud Shapiro.
Computation Control and Protection in the Logic System. In
Concurrent Prolog: Collected Papers, Ehud Shapiro (ed.), MIT
Press, Vol. 2, 1984, pp. 28-45.

[Hoare 1985] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1985.

[Inamura and Onishi 1990] Y. Inamura and S. Onishi. A Detec-
tion Algorithm of Perpetual Suspension in KL1. In Proc. Sev-
enth Int. Conf. on Logic Programming, MIT Press, 1990, pp. 18-
30.

[Itoh ef al. 1992] F. Itoh, T. Chikayama, T. Mori, M. Sato,
T. Kato and T. Sato. The Design of the PIMOS File System. In
Proc. Int. Conf. on Fifth Generation Computer Systems 1992,
ICOT, 1992.

[Kondoh and Chikayama 1988] S. Kondoh and T. Chikayama.
Macro Processing in Prolog. In Proc. Fifth Int. Conf. and Symp.
of Logic Programming, 1988, pp. 466-480.

[Konishi et al. 1992] K. Konishi, T. Maruyama, A. Konagaya,
K. Yoshida, T. Chikayama. Implementing Streams on Paral-
lel Machines with Distributed Memory. In Proc. Int. Conf. on
Fifth Generation Computer Systems 1992, ICOT, 1992.

[Levy and Silverschatz 1989] E. Levy and Z. Silberschatz. Dis-
tributed File Systems: Concepts and Examples. Tech. Report

88

TR-89-04, Dept. of Computer Science, The University of Texas
at Austin, 1989.

[Maher 1987] M. J. Maher. Logic Semantics for a Class of

Committed-Choice Programs. In Proc. Fourth Int. Conf. on -

Logic Programming, MIT Press, 1987, pp. 858-876.

[Milner 1989] R. Milner.
Prentice-Hall, 1989.

[Miyazaki et al. 1985] T. Miyazaki, A. Takeuchi and
T. Chikayama. A Sequential Implementation of Concurrent Pro-
log Based on the Shallow Binding Scheme. In Proc. 1985 Symp.
on Logic Programming, IEEE, 1985, pp. 110-118.

[Nakashima 1987] H. Nakashima and K. Nakajima. Hardware Ar-
chitecture of the Sequential Inference Machine PSI-II. In Proc.
1987 Symp. on Logic Programming, IEEE, 1987.

[Nitta et al. 1991] K. Nitta, K. Taki and N. Ichiyoshi. Experi-
mental Parallel Inference Software. In Proc. Int. Conf. on Fifth
Generation Computer Systems 1992, ICOT, 1992.

[Okumura and Matsumoto 1987] A. Okumura and Y. Mat-
sumoto. Parallel Programming with Layered Streams. In Proc.
1987 Symp. on Logic Programming, IEEE, 1987, pp. 224-231.

[Shapiro 1983] E. Y. Shapiro. A Subset of Concurrent Prolog and
Its Interpreter. Tech. Report TR-003, ICOT, 1983.

[Shapiro 1986] E. Y. Shapiro. Systems Programming in Concur-
rent Prolog, In Logic Programming and its Applications, M. van
Canegham and D. H. D. Warren (eds.), 1986, Ablex Publishing
Co., 1986, pp. 50-74.

[Shapiro and Takeuchi 1983] E. Shapiro and A. Takeuchi. Object-
oriented Programming in Concurrent Prolog. In New Genera-
tion Computing, Vol. 1, No. 1 (1983).

[Susaki and Chikayama 1991] K. Susaki and T. Chikayama. A
Process-Oriented Language AYA upon KL1. In Proc. KLI
Programming Workshop 91, ICOT, 1991, pp. 117-125. in
Japanese.

[Takeda et al. 1990] Y. Takeda, H. Nakashima, K. Masuda,
T. Chikayama and K. Taki. A Load Balancing Mechanism for
Large Scale Multiprocessor Systems and its Implementation. In
New Generation Computing, Vol. 7, No. 2 (1990), pp. 179-195.

[Taki 1992] K. Taki. Parallel Inference Machine PIM. In Proc.

Int. Conf. on Fifth Generation Computer Systems 1992, ICOT,
1992.

[Taki 1992] K. Taki. Parallel Inference Machine PIM. In Proc.
Int. Conf. on Fifth Generation Computer Systems 1992, ICOT,
1992.

[Tamaki 1987] H. Tamaki. Stream-Based Compilation of Ground
I/O Prolog into Committed-choice Languages. In Proc. Fourth
Int. Conf. on Logic Programming, MIT Press, 1987, pp. 376~
393.

[Ueda 1986] K. Ueda. Guarded Horn Clauses. In Logic Program-
ming '85, E. Wada (ed.), Lecture Notes in Computer Science
221, Springer-Verlag, 1986, pp. 168-179.

[Ueda 1987} K. Ueda. Making Exhaustive Search Prégrams Deter-
ministic. In New Generation Computing, Vol. 5, No. 1 (1987),
pp. 29-44.

[Ueda 1988a] K. Ueda. Guarded Horn Clauses: A Parallel Logic
Programming Language with the Concept of a Guard. In
Programming of Fulure Generation Computers, M. Nivat. and
K. Fuchi (eds.), North-Holland, 1988, pp. 441-456.

[Ueda 1988b] K. Ueda. Theory and Practice of Concurrent Sys-
tems. In Proc. Int. Conf. on Fifth Generation Computer Sys-
tems 1988, ICOT, 1988, pp. 165-166.

Commaunication and Concurrency.

[Ueda 1990} K. Ueda. Designing a Concurrent Programming Lan-
guage. In Proc. InfoJapan’90, Information Processing Society
of Japan, 1990, pp. 87-94.

[Ueda and Chikayama 1985] K. Ueda and T. Chikayama. Concur-
rent Prolog Compiler on Top of Prolog. In Proc. 1985 Symp.
on Logic Programming, IEEE, 1985, pp. 119-126.

[Ueda and Chikayama 1990] K. Ueda and T. Chikayama. Design
of the Kernel Language for the Parallel Inference Machine. In
The Computer Journal, Vol. 33, No. 6 (1990) pp. 494-500.

[Ueda and Furukawa 1988] K. Ueda and K. Furukawa. Transfor-
mation Rules for GHC Programs. In Proc. Int. Conf. on Fifth
Generation Computer Systems 1988, ICOT, 1988, pp. 582-591.

[Ueda and Morita 1990] K. Ueda and M. Morita. A New Imple-
mentation Technique for Flat GHC. In Proc. Seventh Int. Conf.
on Logic Programming, MIT Press, 1990, pp. 3-17. A revised,
extended version to appear in New Generation Computing.

[Yashiro et al. 1992]) H. Yashiro, T. Fujise, T. Chikayama,
M. Matsuo, A. Hori and K. Wada. Resource Management Mech-
anism of PIMOS. In Proc. Int. Conf. on Fifth Generation Com-
puter Systems 1992, ICOT, 1992.

[Yoshida and Chikayama 1990] K. Yoshida and T. Chikayama.
A’UM: A Stream-Based Object-Oriented Language. In New
Generation Computing, Vol. 7, No. 2 (1990), pp. 127-157.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

89

Towards an Integrated Knowledge-Base Management System
Overview of R&D on Databases and Knowledge-Bases in the FGCS Project

Kazumasa Yokota

Hideki Yasukawa

Third Research Laboratory
Institute for New Generation Computer Technology (ICOT)
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
Tel: +81-3-3456-3069 Fax: +81-3-3456-1618
{kyokota,yasukawa}@icot.or.jp

Abstract

Knowledge representation languages and knowledge-
bases play a key role in knowledge information pro-
cessing systems. In order to support such systems, we
have developed a knowledge representation language,
QurxoTe, a database management system, Kappa, as
the database engine, some applications on Qurrore
and Kappa, and two experimental systems for more
flexible control mechanisms.

The whole system can be considered as under
the framework of deductive object-oriented databases
(DOODs) from a database point of view. On the other
hand, from the viewpoint of the many similarities be-
tween database and natural language processing, it can
also be considered to support situated inference in the
sense of situation theory. Our applications have both
of these features: molecular biological databases and a
legal reasoning system, TRIAL, for DOOD and a tem-
poral inference system for situated inference.

For efficient and flexible control mechanisms, we
have developed two systems: cu-Prolog based on un-
fold/fold transformation of constraints and dynamical
programming based on the dynamics of constraint net-
works.

In this paper, we give an overview of R&D ac-
tivities for databases and knowledge-bases in the
FGCS project, which are aimed towards an integrated
knowledge-base management system.

1 Introduction

Since the Fifth Generation Computer System (FGCS)
project started in 1982, many knowledge information
processing systems have been designed and developed
as part of the R&D activities in the framework of logic
and parallelism. Such systems have various data and
knowledge, that is, expected to be processed efficiently
in the form of databases and knowledge-bases such as

electronic dictionaries, mathematical databases, molec-
ular biological databases, and legal precedent databases
1. Representing and managing such large amounts of
data and knowledge for these systems has been a major
problem. Our activities on databases and knowledge-
bases are also devoted to such data and knowledge
under logic paradigm.

Since the late seventies, many data models have been
proposed for extension of the relational model in or-.
der to overcome various disadvantages such as ineffi-
cient representation and inadequate query capability.
Among their extensions, deductive databases attracted
many researchers not only in logic communities but
also in artificial intelligence communities, because of its
logic platform and strong inference capability. Many
efforts on deductive databases have defined the theoret-
ical aspects of databases and have showed the powerful
capability of query processing. However, from an ap-
plication point of view, the data modeling capability
is rather poor. This is mainly due to representation
based on first-order predicates, which inherits the dis-
advantages of the relational model. On the other hand,
object-oriented databases have become popular among
extensions of the relational model for coping with ‘new’
applications such as CAX databases and multi-media
databases. The flexibility and adaptability of object-
orientation concepts should be examined also in the
context of deductive databases, even if object-oriented
databases have disadvantages such as poor formalism
and semantic ambiguity.

!The boundary between databases and knowledge-bases is
unclear and their usage depends on context. Most database
communities prefer to use the term database even if databases
store a set of rules and have an inference capability such
as deduction and abduction: e.g., deductive databases, expert
databases, and self-organizable databases. In this paper, we
also use the term database according to this convention. The
term knowledge-base in our title shows our view that an ap-
proach based on extensions of databases is a better way to
real knowledge-bases than based on conventional knowledge-
bases used by expert systems.

90

As it is appropriate for advanced applications
to integrate their advantages, we proposed de-
ductive (and) object-oriented databases (DOODs)
[Yokota and Nishio 1989] 2 , where extensions of the
relational model (or deductive databases and object-
oriented databases) are considered from three direc-
tions: logic, data model, and computational model. The
DOOD can be said to be a framework for such exten-
sions. On the other hand, considering the many simi-
larities between DOODs and natural language process-
ing, the framework is also appropriate for situated in-
ference in natural language processing. Such an obser-
vation leads us firmly towards an integrated knowledge-
base management system over databases and knowl-
edge representation languages.

In the FGCS project, we focus on DOODs as the
target of knowledge-base management systems, based
on the above observation, and have developed a
knowledge-base (or knowledge representation) language
QuzxoTe, its database engine Kappa, and their appli-
cations. Quzxore is a DOOD language. Also, a DOOD
system based on QuzxoTe has been implemented. We
outline their features in Section 2. In order to process
a large amount of data efficiently in the DOOD system,
there should be a database engine at the lower layer.
The engine is called Kappa, the data model of which is
a nested relational model as a subclass of DOODs. For
more efficient processing, a parallel database manage-
ment system, Kappa-P, has been implemented on par-
allel inference machines. The data model and system
are described in Section 3. We are also developing some
applications on the DOOD system: a legal reasoning
system (TRIAL), a molecular biological database, and a
temporal inference system in natural language process-
ing. An overview is given in Section 4. Together with
the above works, we are engaged in R&D on more flexi-
ble control of logic programs: constraint transformation
and dynamical programming, which are expected to be
embedded in Qurxote. We explain these in Section
5. Their relationship is shown in Figure 1. Finally we
describe related works and future plans for further ex-
tensions of our knowledge-base management system.

2 Knowledge Representation
Language (QuzxoTe)

Our approach to knowledge-bases follows the previ-
ously mentioned deductive object-oriented databases
(DOOD). The language, called Quzxore, designed for
the objective has various features % : a constraint logic
programming language, a situated programming lan-

%International conferences were held in Kyoto and Mu-
nich [Kim et al. 1990, Delobel et al. 1991] to work towards such
integration.

3See the details in [Yasukawa et al. 1992].

guage, object-oriented database programming language,
and a DOOD language, besides the features appearing
in Figure 1.

2.1 Basic Concepts

Consider the example[Yoshida 1991] in Figure 2 for the
genetic information processing system. In the figure,

object(ref(’Patterson et al (1981)’),
1991/4/24,
[kind(paper),
authors{['D. Patterson’,
’S. Graw’,
’C. Jones’

title’Demonstration by somatic cell genetics of
coordinate regulation of genes for two
enzymes of puring synthesis assigned to
human chromosome 21°),

journal(’Proc. Natl. Acad. Sci. USA?),

volume(78),

pages(405-409),

year(1981)

)2

Figure 2: A Record (Term) in Prolog

the third argument of the term is peculiar: a tuple
(in the form of a list) consisting of pairs of a label
and its value. The author label has a set value, also,

.in the form of a list and some values might have a

more complex value (another tuple). User programs
must be responsible for such structure and unification
among these terms. The reason why such a structure
is necessary is that a record type (a scheme) cannot be
decided in advance. That is, we can get only partial
information for an object, because the object itself is
not stable, generally. Such characteristics do not nec-
essarily allow application of conventional normalization
in the relational model to the design. By introducing
an identity concept, such a record can be represented
in the form of a set of binary relations, each of which
has an identifier, however this is too inefficient in repre-
sentation.

In QuzxoTte, we introduce the concepts of an object
identifier (0id) and a property, both of which are based
on complez object constructors. The example in Figure
2 can be represented as in Figure 3 in Qurxoze. In
the figure, the left hand side of “/” is an oid (called an
object term (o-term) in QuzxoTe) and the right hand
side is the related properties. An object consists of an
oid and its properties, and can be written as a set of
attribute terms (a-terms) in QurxoTe with the same
oid as follows:

o/[h=a,la=b <= oflh=a], of/[la=})

91

Applications

Constraint
Transformation
cu-Prolog

Genome Databases for Genetic Information Processing
Legal Precedent Databases for Legal Reasoning
Dictionaries for Natural Language Processing
Semantic Representation in Natural Language

\

Dynamical

Programming

DP

Knowledge-Base Language
Knowledge Representation Language

Quixore

!

Database

Kappa-II
Kappa-P j

~

Figure 1: The Framework of a Knowledge-Base (DOOD) Management System of the FGCS Project

object(ref="Patterson et al (1981)’}/
[date=1991/4/24,
kind=paper,
authors={"D. Patterson’,

'S. Graw’,

’C. Jones’

title="Demonstration by somatic cell genetics of
coordinate regulation of genes for two
enzymes of puring synthesis assigned to
human chromosome 21°,

journal="Proc. Natl. Acad. Sci. USA’,

volume="78,

pages=405-409,

year=1981

Figure 3: An Object in QuzxoTe

Such description is effective for processing partial in-
formation. Attributes in an o-term are intrinsic for the
object:

oll=d/lli=a,l=b] &= o[ll=C]/[l=c,li=a, =1

where the right hand side, “[--:]?, of “/” is called
the attribution of o[l = c]. An attribute in an o-term
is called an intrinsic (or immutable) attribute and an
attribute appearing only in the attribution is called an
extrinsic (or mutable) attribute 4.

4We sometimes abuse the terms atfribute and property. Al-
though both an atiribuie and a property are, usually, a pair of a
label and a (possibly complex) value, an atiribute is frequently
used in the context of record structure, while a property is fre-

Another problem is the expressive power of oids and
properties. First, along the style of logic programming,
an oid can be defined intensionally by a set of rules as
follows:

path{from=X to=Y] < arc[from=X,to=Y].
path[from=X,to=Y] < arc[from=X,to=Z],
path[from=2Z,to=Y].

In this program, path[from = X,to=Y] is transitively
defined from a set of facts such as arc[from=a,to=1]
and so on, and the oid is generated by instantiating X
and Y as the result of execution of the program. This
guarantees that an object can have a unique oid even if
the object is generated in different environments. Fur-
thermore, in order to define a circular path, we must
introduce a tag and represent a, so-called, complex ob-
ject with a set and a tuple constructor.

XQo[l=X] <= X|{X=o[l=X]}
olil={a, --,b}] < oll=a]A---Ao[l=}

The first example shows that a variable X is an oid
with a constraint, X = ol = X]. The second shows that
a set in an o-term can be decomposed into conjunction
of o-terms without a set constructor.

quently used in the context of object structure. In QUIXOTE, a
pair of a label and a value (or a triple of a label, an operator,
and a value) is called an atiribute, however, in the context of
inheritance, we use properly inheritance as a convention. As
only extrinsic attributes are inherited in QUIXOTE, as men-
tioned later, extrinsic attributes are simply called properties.
Furthermore, there is a case where an atiribute means only a
label, as in an attribute-value pair, the meaning, however, is
usually clear in the context.

92

On the other hand, properties might be indefinite,
that is, only in the form of constraints. We introduce
the following operators between a label and a (set of)
value, and transform them into a set of constraints by
introducing dot notation:

o/[l=aq] of|{o.l = a}
of[l— d] of/[{o.l C a}
o/ [l —a] o/|{o.l J a}

of/|{o.l =y {a,---,b}}
0/[1_’{‘1»)6}] O/I{O'IEH {a"":b}}
of[l—{a,---,b}] o/[{o.l Ju {a,---,b}}

The right hand side of “/|” is a set of constraints
about properties, where Cy and Jy are a partial or-
der generated by Hoare ordering defined by C and 3,
respectively, and =g is the equivalence relation. If an
attribute of a label [is not specified for an object o,
o is considered to have a property of ! without any
constraint. »

The semantics of oids is defined on a set of labeled
graphs as a subclass of hypersets{Aczel 1988]: an oid is
mapped to a labeled graph and an attribute is related
to a function on a set of labeled graphs. In this sense,
attributes can be considered methods to an object as in
F-logic[Kifer and Lausen 1989].

‘The reason for adopting a hyperset theory as the
semantic domain is to handle an infinite data structure.
The details can be found in [Yasukawa et al. 1992].

0/[l={a1"'»b}]

rereee

2.2 Subsumption Relation and Prop-
erty Inheritance

Given a partial order relation in a set of basic (non-
structural) objects, we can constitute a lattice in a set
of ground object terms, the order of which is called
the subsumption relation T. This is already used as
a relation for properties as constraints. According to
the relation, properties are inherited downward and/or
upward among objects. A general property inheritance
rule is as follows: '

01Cop, D 0 lC 0gl

where intrinsic attributes are out of inheritance. Ac-
cording to the rule, we can get the following:

01 C 03, 03f|{0;.l Ca} = oy/|{0;.1 Ca}
01 C oy, o1f[{o1.0 Ja} = o2f|{02.0 Ja}"
01 E 0, C o3, 0o/|[{02.0 Za} = o1/|{a1.lCa},
03/|{0s.l 3 a}
where it can be noted that oy/[{0,.0 £ a} is 0p/[{ — a:
that is, property inheritance is constraint inheritance.

In complex o-terms, intrinsic attributes cause the ex-
ception of property inheritance:

oll=a]Co, of[l—b => o|l=d]/[l=4q]

Multiple inheritance is defined upward and downward
as the merging of constraints:

01 £ 02, 01 L o3, 02/[1__”1]7 03/[1”')17]

= o/[l = meet(a,b)]
o1 J 02, 01 = 03, 02/[1(__0]’ 03/[1(-—17]

=> of[l«join(a,b)]

where a set of constraints are reduced by the constraint
solver.

2.3 Program and Database

A module concept is introduced in order to classify
knowledge and handle (local) inconsistencies. Let m be
a module identifier (mid) (syntactically the same as an
o-term) and a be an a-term, then m:a is a proposition,
which means that m supports a. Given a mid m, an
a-term a, and propositions py,---,pn, a rule is defined
as follows:
M:a<=prye, P

which means that a module with a mid m has a rule
such that if p;,---,p, hold, a holds in a module with
a mid m. If a mid is omitted in p;, m is taken as
the default and if m is omitted, the rule is held in all
modules. a is called a head and p;,---,p, is called a
body. As an a-term can be separated into an o-term
and a set of constraints, the rule can be rewritten as
follows:
m:of|Cyg < my:oy, - ,mp:0,]|Cp.

where a & 0of|Cy, pi & m;:0i|C;, and Cp = Cy U
-+ UC,. Cqg is a head constraint and Cp is a body
constraint. Their domain is a set of labeled graphs.
Note that constraints by a-terms in a body can be
included in Cg. Compared with conventional constraint

logic programming, a head constraint is new.

A module is defined as a set of rules with the same
mid. We define the acyclic relation among modules, a
submodule relation. This. works for rule inheritance as
follows:

™y ds my

mg g my U (ms \ ms)

where m, inherits a set of rules in m,, and m3 in-
herits a set of rules defined by set operations such as
m4 U (ms \ me). Set operations such as intersection and
difference are syntactically evaluated. Even if a module
is parametric, that is, the mid is an o-term with vari-
ables, the submodule relation can be defined. In order
to treat the exception of rule inheritance, each rule has
properties such as local and overriding: a local rule is
not inherited to other modules and an overriding rule
obstructs the inheritance of rules with the same head
from other modules.

A program or a database is defined as a set of rules
with definitions of subsumption and submodule rela-
tions. Clearly, a program can be also considered as
a set of modules, where an object may have different
properties if it exists in different modules. Therefore,
we can classify a knowledge-base into different mod-
ules and define a submodule relation among them. If
a submodule relation is not defined among two mod-
ules, even transitively, an object with the same oid may
have different (or even inconsistent) properties in its
modules. The semantics of a program is defined on the
domain of pairs of labeled graphs corresponding to a
mid and an o-term. In this framework, we can clas-
sify a large-scaled knowledge-base, which might have
inconsistencies, and store it in a Quzxore database.

2.4 TUpdating and Persistence

QurxoTe has a concept of nested transaction and al-
lows two kinds of database update:

1) incremental insert of a database when issuing a
query, and

2) dynamic insert and delete of o-terms and a-terms
during query processing.

We can issue a query with a new database to be added
to the existing database. 1) corresponds to the case.
For example, consider the following sequence of queries
to a database DB:

query sequence to DB
?- begin_transaction.
?- Q1 with DB,.

?- begin_transaction.
?7- @, with DB,.

?- abort_-transaction.
?- Q3 with DBj.

- Q4.

?- end_transaction.

equivalent query

7 Q1 to DBUDB;
?- Q2 to DBUDByUDB,

?- @1 to DBUDB,UDB3;
?7- Q1 to DBUDB;UDB;

1t 1

After successful execution of the above sequence, DB is
changed to DB U DB, U DB3. Each DB; may have def-
initions of a subsumption relation or a submodule rela-
tion, which are merged into definitions of the existing
database, If necessary, the subsumption or submodule
hierarchy is reconstructed. By rolling back the transac-
tion, such a mechanism can also be used as hypothesis
reasoning.

2) makes it possible to update an o-term or its (mu-
table) properties during query processing, where trans-
actions are located as subtransactions of a transaction
in 1). In order to guarantee the semantics of update,
so-called AND- and OR-parallel executions are inhib-
ited. For example, the following is a simple rule for
updating an employees’ salary:

93
paylyear =1992, dept = X|/[raise=Y]

<begin_transaction;
employee[num=Z|/|dept = X, salary=W];
—employee[num=Z]/[salary=W];
+employee[num= Z]/[salary = New];
end_transaction

[{New=W %Y}

«,»

where “;” specifies sequential execution in order to sup-
press AND-parallel execution, “4” means insert, and
“—" means delete.

Except for the objects to be deleted or rolled back
during query processing, all (extensional or intensional)
objects in a QurxoTe program are guaranteed to be
persistent. Such persistent objects are stored in the
underlying database management system (explained in
the next section) or a file system.

2.5 Query Processing and the System

QurxoTe is basically a constraint logic programming
language with object-orientation features such as ob-
ject identity, complex object, encapsulation, type hier-
archy, and methods. However, this query processing is
different from conventional query processing because of
the existence of oids and head constraints. For exam-
ple, consider the following program:

lot[num=X]/[prize; —a] <« X C 2n.
lotfnum =X]/[prize, = b] <« X C 3n.
lot[num=X]/[prize; —c] < X C 5n.

where 2n is a type with a multiple of two. Given
a query ?-lot[nurn = 30]/[prize; = X, prize; = Y], the
answer is X C meet(a,c) and Y — b, that is,

lot[num =30]/[prize; — meet(a,c), prize; — b).

First, because of the existence of oids, all rules which
possibly have the same oid must be evaluated and
merged if necessary. Therefore, in QuzxoTe, a query
is always processed in order to obtain all solutions.
Secondly, as a rule in QuzxoTe has two kinds of con-
straints, a head constraint and a body constraint, each
of which consists of equations and inequations of dot-
ted terms besides the variable environment, the deriva-
tion. process is different from conventional constraint
logic programming:

(Go,0) = -+ = (Gi, Ci) = -+ = (8,Cy)

where ‘G; is a set of subgoals and C; is a set of con-
straints of the related variables. On the other hand,
in QuzxoTte, each node in the derivation sequence is
(G,A,C), where G is a set of subgoals, A is a set of
assumptions consisting of a body constraint of dot-
ted terms, and C is a set of conclusions as a set
of constraints consisting of a head constraint and a
variable environment. Precisely speaking, the deriva-
tion is not a sequence but a directed acyclic graph in

94

Quixote, because some subsumption relation among
assumptions and constraints might force the two se-
quences to merge: for example, (G, A,C) and (G, A,C")
are merged into (G, A, CUC'). Therefore, the derivation
is shown in Figure 4, where the environment to make

(9, A,,Ch)

Figure 4: Derivation in QuzxoTe

it possible to merge two sequences is restricted: only
results by the, so-called, OR-parallel that includes rules
inherited by subsumption relation among rule heads
can be merged innermostly. The current implementa-
tion of query processing in QuzxoTe is based on a
tabular method such as OLDT in order to obtain all
solutions. Sideways information passing is also imple-
mented by considering not only binding information
but also property inheritance.
We list some features of the QurxoTe system:

¢ A QurxoTe program is stored in persistent stor-
age in the form of both the ‘source’ code and
the ‘object’ code, each of which consists of four
parts: control information, subsumption relation,
submodule relation, and a set of rules. Persistence
is controlled by the persistence manager, which
switches where programs should be stored. A set
of rules in the ‘object’ code is optimized to sep-
arate extensional and intensional databases as in
conventional deductive databases.

o When a user builds a huge database in Quzxore,
it can be written as a set of small databases in-
dependently of a module concept. These can be
gathered into one database, that is, a database can
be reused in another database.

e When a user utilizes data and knowledge in
Qurxore, multiple databases can be accessed si-
multaneously through the Quzxore server, al-
though the concurrency control of the current ver-
sion of QurxoTe is simply implemented.

¢ Users can use databases through their applica-
tion programs in ESP [Chikayama 1984] or KL1
[Ueda and Chikayama 1990], and through the spe-
cific window interface called Qmacs.

The environment is shown in Figure 5.

The first version of QuzxoTe was released in Decem-
ber, 1991. A second version was released in April, 1992.
Both versions are written in KL1 and work on paral-
lel inference machines (PIMs) [Goto et al. 1988} and its
operating system (PIMOS) [Chikayama et al. 1988].

3 Advanced Database Manage-
ment System (Kappa)

In order to process a large database in QuixoTe effi-
ciently, a database engine called Kappa has been devel-
oped . In this section, we explain its features.

3.1 Nested Rélation and Quixore

The problem is which part of QurxoTe should be sup-
ported by a database engine because enriched represen-
tation is a trade-off in efficient processing. We intend
for the database engine to be able to, also, play the
role of a practical database management system. Con-
sidering the various data and knowledge in our knowl-
edge information processing environment, we adopt an
extended nested relational model, which corresponds to
the class of an o-term without infinite structure in
Qurxote. The term “eztended” means that it supports
a new data type such as Prolog term and provided
extensibility as the system architecture for various ap-
plications. The reason why we adopt a nested relational
model is, not surprisingly, to achieve efficient represen-
tation and efficient processing.

Intuitively, a nested relation is defined as a subset of
a Cartesian product of domains or other nested rela-
tions:

NR € Ex---xE,

Eg = DIQNR

where D is a set of atomic values. That is, the relation
may have a hierarchical structure and a set of other re-
lations as a value. This corresponds to the introduction
of tuple and set comstructors. From the viewpoint of
syntactical and semantical restrictions, there are vari-
ous subclasses. Extended relational algebra are defined
to each of these.

In Kappa’s nested relation, a set constructor is used
only as an abbreviation of a set of normal relations as
follows:

{rlh=a,ly="{by, -, b,}]}
= {rlh=a,bL=b], - ,rlh=a,l,=b,]}

5See the details in [Kawamura ef al. 1992].

KL1 Program
ESP Program

95

Quixore Database)

Quzx0T¢ Database’)

Applications
on PIM or FEP (PSI)

Persistence
Manager

QuzxoTe Database)

currently active

Figure 5: Environment of Quzxote

The operation of “=” corresponds to an unnest oper-
ation, while the opposite operation (“<") corresponds
to a nest or group-by operation, although “<” is not
necessarily congruent for application of nest or group-
by operation sequences, That is, in Kappa, the seman-
tics of a nested relation is the same as the corespond-
ing relation without set constructors. The reason for
taking such semantics is to retain first order seman-
tics for efficient processing and to remain compatible to
widely used relational databases. Given a nested tuple
nt, let the corresponding set of tuples without a set
constructor be nt. Let a nested relation be

NR = {nt},---,nt,}
where nt;= {ti, -+, ty} fori=1,---,n,

then the semantics of NR is

Tﬁ: {tlla'")tlk)"')tnh""tnk}‘

s

i=1

Extended relational algebra to this nested relational
database is defined in Kappa and produces results ac-
cording to the above semantics, which guarantees to
produce the same result to the corresponding relational
database, except for treatment of the label hierarchy.

A query can be formulated as a first order language,
we, generally, consider this in the form of a rule con-
structed by nested tuples. As the relation among facts
in a database is conjunctive from a proof-theoretic
point of view, the semantics of a rule is clear according
to the above semantics. For example, the following rule

rlh=X,lh={a,b,c}]
& B,r'[b=Y,ls={d,e},ls=2], B

can be transformed into the following set of rules with-
out set constructors:

rlh=X,l=d]

& B,r'll,=Y,ls=d,ls=2),r'[l,=Y,ls=¢, ls=Z], B'.
rlh=X,1,=b)

<~ B,T'[lz:Y, l3=d, 13=Z],T‘/[lg =Y,l3=6, l3=Z],BI.
T[11=X,12=C]

~ B,'I‘I[IQ'—'—‘}/,13=d,13=Z},T"[lg=}/,'l3=6,13=Z],B/.

That is, each rule can also be unnested. The point
of efficiently processing Kappa relations is to reduce
the number of unnest and nest operations: that is, to
process sets as directly as possible.

Under the semantics, query processing to nested rela-
tions is different from conventional procedures in logic
programming. For example, consider a simple database
consisting of only one tuple:

rlly = {a,b},1z = {b,c}].

For a query ?-r[l; = X,l; = X], we can get X = {b},
that is, an intersection of {e¢,b} and {b,c}. That is,
a concept of unification should be extended. In order
to generalize such a procedure, we must introduce two
concepts into the procedural semantics[Yokota 1988]:

1) Residue Goals
Consider the following program and a query:

r[l=51 <« B.
r[1=9].

If SN S’ is not an empty set during unification
between r{l = 5] and r[l = S'], new subgoals are
to. be r[l =S\ 5'],B. That is, a residue subgoal
r[l=5\ 95" is generated if S; \ S, is not an empty
set, otherwise the unification fails. Note that there
might be residue subgoals if there are multiple set
values.

SV
~

Binding as Constraint
Consider the following database and a query:

7‘1[11 :Sl]

96

1”2[12 = Sz]
?_rl[h ..—__X], Tz[lz =X]

Although we can get X = S; by unification be-
tween r1[l; = X] and r1[l; = S1] and a new subgoal
ro[l; = S1], the subsequent unification results in
ro[ly= 51N S;) and a residue subgoal ro{l;= S\ S,).
Such a procedure is wrong, because we should
have an answer X = S; N S;. In order to avoid
this situation, the binding information is tempo-
rary and plays the role of constraints to be re-
tained:

T][ll =X],T2[l2=X]
== 7‘2[12 = X]”{X C 51}
= [{X C 8y nS,}.

There remains one problem where the unique represen-
tation of a nested relation is not necessarily decided in
the Kappa model, as already mentioned. In order to
decide a unique representation, each nested relation has
a sequence of labels to be nested in Kappa.

As the procedural semantics of extended relational
algebra in Kappa is defined by the above concepts, a
Kappa database does not necessarily have to be nor-
malized also in the sense of nested relational models,
in principle. That is, it is unnecessary for users to be
conscious of the row nest structure.

Furthermore, nested relational model is well known
to reduce the number of relations in the case of multi-
value dependency. Therefore, the Kappa model guar-
antees more efficient processing by reducing the num-
ber of tuples and relations, and more efficient repre-
sentation by complex construction than the relational
model. '

3.2 Features of Kappa System

The nested relational model in Kappa has been im-
plemented. This consists of a sequential database
management system Kappa-II [Yokota et al. 1988] and
a parallel database management system Kappa-P
(Kawamura et al. 1992]. Kappa-II, written in ESP,
works on sequential inference machines (PSIs) and its
operating system (SIMPOS). Kappa-P, written in KL1,
works on parallel inference machines (PIMs) and its op-
erating system (PIMOS). Although their architectures
are not necessarily the same because of environmental
differences, we explain their common features in this
subsection,

o Data Type
As Kappa aims at a database management system
(DBMS) in a knowledge information processing en-
vironment, a new data type, term, is added. This

is because various data and knowledge are fre-
quently represented in the form of terms. Unifica-
tion and matching are added for their operations.
Although unification-based relational algebra can
emulate the derivation in logic programming, the
features are not supported in Kappa because the
algebra is not so efficient. Furthermore, Kappa dis-
criminates one-byte character (ASCII) data from
two-byte character (JIS) data as data types. It
contributes to the compression of huge amounts of
data such as genetic sequence data.

Command Interfaces

Kappa provides two kinds of command interface:
basic commands as the low level interface and ex-
tended relational algebra as the high level inter-
face. In many applications, the level of extended
relational algebra, which is expensive, is not al-
ways necessary. In such applications, users can re-
duce the processing cost by using basic commands.

In order to reduce the communication cost be-
tween a DBMS and a user program, Kappa pro-
vides user-definable commands, which can be exe-
cuted in the same process of the Kappa kernel (in
Kappa-II) or the same node of each local DBMS
(in Kappa-P, to be described in the next subsec-
tion).

The user-definable command facility helps users
design any command interface appropriate for
their application and makes their programs run
efficiently. Kappa’s extended relational algebra is
implemented as parts of such commands although
it is a built-in interface.

Practical Use

As already mentioned, Kappa aims, not only at
a database engine of Quzxore, but also at a
practical DBMS, which works independently of
Qurxotre. To achieve this objective, there are
several extensions and facilities. First, new data
types, besides the data types mentioned above, are
introduced in order to store the environment un-
der which applications work. There are list, bag,
and pool. They are not, however, supported fully
in extended relational algebra because of semantic
difficulties.

Kappa supports the same interface to such data
types as in SIMPOS or PIMOS.

In order to use Kappa databases from windows,
Kappa provides a user-friendly interface, like a
spreadsheet, which provides an ad hoc query fa-
cility including update, a browsing facility with
various output formats and a customizing facility.

Main Memory Database
Frequently accessed data can be loaded and re-

tained in the main memory as a main memory
database. As such a main memory database was
designed only for efficient processing of temporary
relations without additional burdens in Kappa, the
current implementation does not support conven-
tional mechanisms such as deferred update and
synchronization. In Kappa-P, data in a main
memory database are processed at least three
times more efficiently than in a secondary storage
database.

From an implementational point of view, there are
several points for efficient processing in Kappa. We
explain two of them:

e ID Structure and Set Operation
Each nested tuple has a unique tuple identifier
(ntid) in a relation, which is treated as an ‘ob-
ject’ to be operated explicitly. Abstractly speak-
ing, there are four kinds of ‘object’s, such as a
nested tuple, an ntid, a set whose element is a
ntid, and a relation whose element is a nested
tuple. Their commands for transformation are ba-
sically supported, as in Figure 6, although the set

nested tuple) nested relation

Figure 6: ‘Object’s in Kappa and Basic Operations

is treated as a stream in Kappa-P. Most operations
are processed in the form of an ntid or a set.

In order to process a selection result, each subtu-
ple in a nested tuple also has a sub-ntid virtually.
Set operations (including unnest and nest opera-
tion) are processed mainly in the form of a (sub-
)ntid or a set without reading the corresponding
tuples.

e Storage Structure
A nested tuple, which consists of unnested tuples
in the semantics, is also considered as a set of
unnested tuples to be accessed together. So, a
nested tuple is compressed without decomposition
and stored on the same page, in principle, in the
secondary storage. For a huge tuple, such as a
genetic sequence, contiguous pages are used. In
order to access a tuple efficiently, there are two
considerations: how to locate the necessary tuple
efficiently, and how to extract the necessary at-
tributes efficiently from the tuple. As in Figure 7,

97

Kappa is equipped with an efficient address trans-
lation table between an ntid and a logical page
(Ip), and between a logical page and a physical
page (pp). This table is used by the underlying
file system. For extraction purposes, each node of

nested relatin

nested tuple

lp] pp
ntid i value —{E—_—’_p&)—' ntid i value

value

value

Figure 7: Access Network for Secondary DBMS

a nested tuple has a local pointer and counters in
the compressed tuple, although there is a trade-off
in update operations’ efficiency.

Each entry in an index reflects the nested struc-
ture: that is, it contains any necessary sub-ntids.
The value in the entry can be the result of string
operations such as substring and concatenation
of the original values, or a result extracted by a
user’s program.

3.3 Parallel Database
System (Kappa-P)

Management

Kappa-P has various unique features as a parallel
DBMS. In this subsection, we give a brief overview
of them.

The overall configuration of Kappa-P is shown in
Figure 8. There are three components: an interface
(I/F) process, a server DBMS, and a local DBMS. An
I/F process, dynamically created by a user program,
mediates between a user program and (server or lo-
cal) DBMSs by streams. A server DBMS has a global
map of the location of local DBMSs and makes a user’s
stream connect directly to an appropriate local DBMS
(or multiple local DBMSs). In order to avoid a bottle-
neck in communication, there might be many server
DBMSs with replicates global maps. A local DBMS can
be considered as a single nested relational DBMS, cor-
responding to Kappa-II, where users’ data is stored.

98

I/F
rocess;

I/F
rocess;

I/F
rocessy ;

Local

Local
C DBMS;,) (BMS,)

Figure 8: Configuration of Kappa-P

Users’ data may be distributed (even horizontally par-
titioned) or replicated into multiple local DBMSs. If
each local DBMS is put in a shared memory parallel
processor, called a cluster in PIM, each local DBMS
-works in parallel. Multiple local DBMSs are located in
each node of distributed memory parallel machine, and,
together, behave like a distributed DBMS.

User’s procedures using extended relational algebra
are transformed into procedures written in an interme-
diate language, the syntax of which is similar to KL1,
by an interface process. During the transformation, the
interface process decides which local DBMS should be

the coordinator for the processing, if necessary. Each

procedure is sent to the corresponding local DBMS, and
processed there. Results are gathered in the coordina-
tor and then processed.

Kappa-P is different from most parallel DBMS, in
that most users’ applications also work in the same
parallel inference machine. If Kappa-P coordinates a
result from results obtained from local DBMSs, as in
conventional distributed DBMSs, even when such co-
ordination is unnecessary, the advantages of parallel
processing are reduced. In order to avoid such a situ-
ation, the related processes in a user’s application can
be dispatched to the same node as the related local
DBMS as in Figure 9. This function contributes not
only to efficient processing but also to customization
of the command interface besides the user-defined com-
mand facility.

4 Applications
We are developing three applications on Quzxore and

Kappa, and give an overview of each research topic in
this section.

User local
Process; DBMS,

User local
Process, DBMS,,

Figure 9: User’s Process in Kappa Node

4.1 Molecular Biological Database

Genetic information processing systems are very impor-
tant not only from scientific and engineering points of
view but also from a social point of view, as shown in
the Human Genome Project. Also, at ICOT, we are en-
gaged in such systems from thr viewpoint of knowledge
information processing. In this subsection, we explain
such activities, mainly focusing on molecular biological
databases in Quzxore and Kappa ©.

4.1.1 Requirements for Molecular Biological
Databases

Although the main objective of genetic information
processing is to design proteins as the target and to
produce them, there remain too many technical diffi-
culties presently. Considering the whole of proteins, we
are only just able to gather data and knowledge with
much noise.

In such data and knowledge there are varieties such
as sequences, structures, and functions of genes and
proteins, which are mutually related. A gene in the

6See the details in [Tanaka 1992].

genetic sequence (DNA) in the form of a double heliz
is copied to a mRNA and translated into an amino
acid sequence, which becomes a part (or a whole) of a
protein. Such processes are called the Central Dogma
in biology. There might be different amino acids even
with the same functions of a protein. The size of a
unit of genetic sequence data ranges from a few charac-
ters to around 200 thousand, and will become longer as
genome data is gradually analyzed fyrther. The size of
a human genome sequence equals about 3 billion char-
acters. As there are too many unknown proteins, the
sequence data is fundamental for homology searching
by a pattern called a motif and for multiple alignment
among sequences for prediction of the functions of un-
known proteins from known ones.

There are some problems to be considered for molec-
ular biological databases:

e how to store large values, such as sequences, and
process them efficiently,

e how to represent structure data and what opera-
tions to apply them,

e how to represent functions of protein such as
chemical reactions, and

e how to represent their relations and link them.

From a database point of view, we should consider
some points in regard to the above data and knowl-
edge:

e representation of complex data as in Figure 2,

e treatment of partial or noisy information in unsta-
ble data,

o inference rules representing functions, as in the
above third item, and inference mechanisms, and

¢ representation of hierarchies such as biological con-
cepts and molecular evolution.

After considering the above problems, we choose to
build such databases on a DOOD (QuzxoTe, conceptu-
ally), while a large amount of simple data is stored in
Kappa-P and directly operated through an optimized
window interface, for efficient processing. As coop-
eration with biologists is indispensable in this area,
we also implemented an environment to support them.
The overall configuration of the current implementation
is shown in Figure 10.

4.1.2 Molecular Biological Information in
QuzxoTE¢ and Kappa

Here, we consider two kinds of data as examples: se-
quence data and protein function data.

First, consider a DNA sequence. Such data does not
need inference rules, but needs a strong capability for
homology searching. In our system, such data is stored

99

(Interface for Biologists >

. .

Molecular Biological
Applications
I I

Integratl:ad Knowledge-Ba.‘ses

C QuUIxoTe)

T

(Kappa-P >

Figure 10: Integrated System on Qurxote and Kappa

directly in Kappa, which supports the storage of much
data as is and creates indexes from the substrings ex-
tracted from the original by a user program. Sequence-
oriented commands for information retrieval, which use
such indexes, can be embedded into Kappa as user-
defined commands. Furthermore, since the complex
record shown in Figure 3 is treated like a nested re-
lation, the representation is also efficient. Kappa shows
its effectiveness as a practical DBMS.

Secondly, consider a chemical reaction of enzymes
and co-enzymes, whose scheme is as follows:

Enzymes
=

Sources 4+ Co-enzymes Products

Environments

As an example of metabolic reaction, consider the
Krebs cycle in Figure 11. Chemical reactions in the
Krebs cycle are written as a set of facts in Quzxore as
in Figure 12. In the figure, 0, C o03/[- -] means o, /[-]
and o; C 0,. In order to obtain a reaction chain (path)
from the above facts, we can write the following rules
in QuzxoTe:

reaction|[from=X,to=Y]
<W C reaction/[sourcest « X,
productst « 7],
reaction[from=X,to=Y
[{{X,Y,Z} C reaction}.
reaction[from=X,to=X]
<||{X C reaction}.

Although there are a lot of difficulties in representing
such functions, QuzxoTe makes it possible to write
them down easily.

Another problem is how to integrate a Kappa
database with a Qurxote database. Although one of
the easiest ways is to embed the Kappa interface into
QurxoTe, it costs more and might destroy a uniform
representation in Quzxore. A better way would be to
manage common oids both in Kappa and in Quzrxore,
and guarantee the common object, however we have

100

pyruvate————acetyl-CoA

N

® O @

oxyaloacetate citrate

malate cis-aconitate

Tm Krebs Cycle (2)

w> (3;)/

inat a-ketoglutarate
succinate (5) (42/ g

succinyl-CoA

fumarate isocitrate

ENZYMES
(1) citrate synthase
(2) aconitate

)

) isocitrate dehydrogenase

) a-ketoglutarate dehydrogenase complex
) succinyl-CoA synthetase

) succinate dehydrogenase

) fumarase

)

3
4
5
6
7
8) malate dehydrogenas

NN N N N S

Figure 11: Krebs Cycle in Metabolic Reaction

not implemented such a facility in Kappa. The current
implementation puts the burden of the uniformity on
the user, as in Figure 10.

4.2 Legal Reasoning System (TRIAL)

Recently, legal reasoning has attracted much attention
from researchers in artificial intelligence, with high ex-
pectations for its big application. Some prototype sys-
tems have been developed. We also developed such a
system as one of the applications of our DOOD system
7

4.2.1 Requirements for Legal Reasoning Sys-
tems and TRIAL

First, we explain the features of legal reasoning. The
analytical legal reasoning process is considered as con-
sisting of three steps: fact findings, statutory interpreta-
tion, and statutory application.

Although fact findings is very important as the start-
ing point, it is too difficult for current technologies. So,
we assume that new cases are already represented in
the appropriate form for our system. Statutory inter-
pretation is one of the most interesting themes from an
artificial intelligence point of view. Our legal reasoning
system, TRIAL, focuses on statutory interpretation as
well as statutory application.

"See the details in [Yamamoto 1990], although the new ver-
sion is revised as in this section.

krebs_cycle 2 {{

krebsl Creaction/
[sourcest — {acetylcoa, oxaloacetate},
productst « {citrate,coa},
enzymes « citrate_synthase,
energy = —1.7]

krebs2 C reaction/
[sources™ « citrate,
productst « {isocitrate, h20},
enzymes «— aconitase].

krebs8 C reaction/
[sourcest «— malate,
productst «— ozaloacetate,
enzymes «— malate_dehydrogenase,
energy = T.1].
1}

Figure 12: Facts of Krebs Cycle in QuzxoTe

Although there are many approaches to statutory
interpretation, we take the following steps:

e analogy detection
Given a new case, similar precedents to the case
are retrieved from an existing precedent database.

o rule transformation
Precedents (interpretation rules) extracted by
analogy detection are abstracted until the new
case can be applied to them.

e deductive reasoning
Apply the new case in a deductive manner to
abstract interpretation rules transformed by rule
transformation. This step may include statutory
application because it is used in the same manner.

Among the steps, the strategy for analogy detection
is essential in legal reasoning for more efficient detec-
tion of better precedents, which decides the quality of
the results of legal reasoning. As the primary objec-
tive of TRIAL at the current stage is to investigate the
possibilities of QuzxoTe in the area and develop a pro-
totype system, we focus only on a small target. That
is, to what extent should interpretation rules be ab-
stracted for a new case, in order to get an answer with
a plausible explanation, but not for general abstraction
mechanism.

4.2.2 TRIAL on Legal Precedent Databases

All data and knowledge in TRIAL is described in
Quzxote. The system, written in KL1, is constructed
on Qurxote. The overall architecture is shown in Fig-
ure 13. In the figure, QuzxoTe supports the functions
of rule transformation (Rule Transformer) and deduc-
tive reasoning (Deductive Reasoner) as the native func-
tions besides the database component, while TRIAL

/TRIAL \
/f'terfa.ce Component

Query Registration Answer
Interface Interface Interface

Analogy Ru Deductlve
Detector Tra.nsforrnel Reasoner

QLIIXOTE Databqse Component

\s\
(Dictionary)

Statute Theory Precedent Case
Database atabase atabase atabase

Figure 13: Architecture of TRIAL

supports the function of analogy detection (Analogy
Detector) besides the interface component.

Consider a simplified example related to “kardshi”
(death from overwork) in order to discuss the analogy

detector. A new case, new-case, is as follows:

Mary, a driver, employed by a company, “S”,
died from a heart-attack while taking a catnap
between jobs. Can this case be applied to the
worker’s compensation law?

This is represented as a module new-case in QuzxoTe
as follows:

new-case :: {{new-case/[who=mary,
while= catnap,
result=heart-attack];;
rel[state = employee, emp=mary|
/laffil=orglname=“S"],

job— driver]}}

where “;” is a delimiter between rules. The module

is stored in the new case database. Assume that there
are two abstract precedents ® of job-causality and job-
erecution:

8In this paper, we omit the rule transformation step and
assume that abstract interpretation rules are given.

101

: judge[case= X]/[judge — job-causality]
<rel[state=Y,emp=Z]/[cause= X]|
[[{X C parm.case,
Y Cparnm.status,
Z Cparm.emp};;
: judge[case= X]/[judge — job-execution]
< X/[while = Y, result = Z],
YCjob
|{X C parm.case,
Y Cparm.while,
ZCparmresult}.

case; :

casesy :

Note that variables X, Y, and Z in both rules are
restricted by the properties of an object parm. That is,
they are already abstracted by parm and their abstract
level is controlled by parm’s properties. Such precedents
are retrieved from the precedent database by analogy
detection and abstracted by rule transformation. We
must consider the labor-law (in the statute database)
and a theory (in the theory database) as follows:

labor-law :: org[name=X]|
/lresp— compensation|[obj =Y,
money = salary])
<judge[case— case]
[[who=Y,
result — disease,
judge —insurance],
rel[state=Z,emp=7Y]
/laffil=org[name=X]].

theory :: judgelcase= X]/[judge —insurance]
<judgelcase= X]/[judge — job-causality],
judgelcase= X]/[judge — job-ezecution)
I{X C case}.

Furthermore, we must define the parm object as fol-
lows:

parm :: parm/[case= case,
state = rel,
while = job,
result = disease,
emp = person].

In order to use parm for case; and case,, we define the
following submodule relation:

parm Js case; U case,.

This information is dynamically defined during rule
transformation. Furthermore, we must define the sub-
sumption relation:

case I new-case
rel 3 employee
disease 3 heart-attack
job 3 catnap
person J mary
job-causality 1 insurance
job-evecution 2 insurance

102

Such definitions are stored in the dictionary in ad-
vance.

Then, we can ask some questions with a hypothesis
to the above database:

1) If new-case inherits parm and theory, then what
kind of judgment can we get?

7-new-case : judge[case =new-case]/[judge=X]
if new-case Jg parm U theory.

we can get three answers:

o X =job-ezecution

o if new-case : judge[case = new-case] has a
property judge T job-causality, then X C
insurance

o if new-case : rel[state = employee,emp =
mary] has a property cause =new-case, then
X Cinsurance

Two of these are answers with assumptions.

2) If new-case inherits labor-law and parm, then
what kind of responsibility should the organization
which Mary is affiliated to have?

?-new-case : orglname= “S”]/[resp=X]|
if new-case Jg parm U labor-law.

we can get two answers:

o if new-case : judge[case = new-case] has a
property judge T job-causality, then X C
compensationfobj =mary, money = salary]

o if new-case:rel[state=employee, emp=mary|
has a property cause = new-case, then X C
compensation|obj = mary, money = salary)

For analogy detection, the parm object plays an es-
sential role in determining how to abstract rules as in
case; and case;, what properties to be abstracted in
parm, and what values to be set in properties of parm.
In TRIAL, we have experimented with such abstrac-
tion, that is, analogy detection, in QuzxoTe.

For the user interface of TRIAL, QurxoTe returns
explanations (derivation graphs) with corresponding
answers, if necessary. The TRIAL interface shows this
graphically according to the user’s request. By judging
an answer from the validity of the assumptions and
the corresponding explanation, the user can update the
database or change the abstraction strategy.

4.3 Temporal Inference

Temporal information plays an important role in nat-
ural language processing. A time axis in natural lan-
guage is, however, not homogeneous as in natural sci-
ence but is relative to the events in mind: shrunken
in parts and stretched in others. Furthermore, the rel-
ativity is different depending on the observer’s per-
spective. This work aims to show the paradigm of an
inference system that merges temporal information ex-
tracted from each lexical item and resolves any tempo-
ral ambiguity that a word may have °.

4.3.1 Temporal Information in Natural Lan-
guage

We can, frequently, make different expressions for the
same real situation. For example,

Don Quixote attacks a windmill.
Don Quixote attacked a windmill.
Don Quixote is attacking a windmill.

Such different expressions are related to tense and as-
pects. How should we describe the relation between
them?

According to situation theory, we write a support re-
lation between a situation s and an infon o as follows:

sEo.

For example, if one of the above examples is supported
in a situation s, it is written as follows:

s E< attack, Don Quixote, windmzll >,

where attack is a relation, and “Don Quixote” and
windmill are parameters. However, strictly speaking,
as such a relation is cut out from a prespective P, we
should write it as follows:

skEo < P> E).

Although we might nest perspectives on such a rela-
tion, we assume some reflective property:

P(s'E=od') = PEP(E)P().

In order to consider how to represent P(s’) and
P(¢’) from a temporal point of view, we introduce a
partial order relation among sets of time points. As-
sume that a set of time points are partially ordered by
=, then we can define <; and C among sets 77 and T,
as follows:

T, =T, ¥

T,CT, ¥

Vi, € 11, Vs € To. &y 2 i,
Vt] S Tl. tl S TQ.

We omit the subscript ¢ if there is no confusion.
In order to make tense and aspects clearer, we intro-
duce the following concepts:

9See the details in [Tojo and Yasukawa 1992].

1) discrimination of an utterance situation u and a
described situation s, and

2) duration (a set of linear time points, decided by a
start point and an end point) of situations and an
infon. The duration of T is written as || T'|f..

We can see the relation among three durations of an
utterance situation, a described situation, and an infon
in Figure 14. If there is no confusion, we use a simple

the utterance
situation

the described
situation

—
—

|

a mental time axis

: mental time of o
D : mental location of s
® : mental location of u

Figure 14: Relation of Three Durations

notation: s; < s, instead of || sy |[;=X]| s2||: and s1 C s2

instead of || sq ||:Cl| s2 e

. By the above definitions, we can define tense and
aspects when s |= o as follows (P(|=) is written as [=):

s[s=Xu] E <K past,c>.
slsou] E < present,o>.
slsCu] E < progressive,c > .
sle =u] E < perfect,o > .

where s is a described situation, u is an utterance
situation, and o is an infon. C in s[C] is a constraint,
which is intended to be a perspective. The above rules
are built-in rules (or axioms) for temporal inference in
QuixoTe.

4.3.2 Temporal Inference in QUIX0TE

We define a rule for situated inference as follows:

sEoc<ss Eo, .8 F oa

where s,s1,--,5, are situations with perspectives.
This rule means that s | o if s, & oy, --+, and
Sn |E 0. Such rules can be easily translated into a
subclass of QurxoTe by relating a situation with per-
spectives to a module, an infon to an o-term, and
partial order among duration to subsumption relation.
However, there is one restriction: a constraint in a rule
head may not include subsumption relations between
o-terms, because such a relation might destroy a sub-
sumption lattice.

A verbalized infon is represented as an o-term as
follows 1°:

0An oterm T[l} = 01, +-,l, = 03] can be abbreviated as
h=o01,- .l = 09).

103
inflvrel=[rel=R,

cls=CLS,
per=P],
args=Args],

where v_rel takes a verb relation and args takes the ar-
guments. R is a verb, CLS is the classification, and P
is a temporal situation. For example, “John is running”
is written as follows:

inflvrel = [rel = run,
cls = acty,
pers = [fov = ip,
pov = pres]],
args = [agt = john]].

That is, the agent is john, and the verb is run, which
is classified in act; (in-progress state or resultant
state), and the perspective is in-progress state as the
field of view (an oval in Figure 14) and present as the
point of view (e in Figure 14).

The discourse situation which supports such a ver-
balized infon is represented as follows:

dsit[fov = ip, pov = pres, src = U],

where the first two arguments are the same as the
above infon’s pers and the third argument is the utter-
ance situation.

According to the translation, we show a small exam-
ple, which makes it possible to reduce temporal ambi-
guity in expression.

1) Given an expression ezp = E, each morpheme is
processed in order to check the temporal informa-
tion:

mifu=U, exp=|],e=D,infon=1Infon)].
mifu=U, exp=[Ezp|R],e=D,infon=1Infon]
<d_contlezp=Ezp,sit=D,infon=Infon,
milu=U,exp=R,e=D,infon=Infon].

Temporal information for each morpheme is in-
tersected in D: that is, ambiguity is gradually
reduced.

2) Temporal information in a pair of a discourse sit-
uation and a verbalized infon is defined by the
following rules:

104

d-cont[ezp= Ezxp,
stt=dsit[fov=Fov, pov=Pov, src="U]
infon=inflvrel=V rel,args= Args]]
&dict : v[cls=CLS,rel=R, form=Ezp]
|{V-rel=[rel=R,cls=CLS,pers=P}}

d_cont[ezp= Ezp,
sit=dsit[fov= Fov,pov=Pov,src=U]
imfon=inflvrel=V _rel,args= Args]]
<=dict : auzv|asp=ASP, form= Ezp]|,
map(cls=CLS,asp=ASP, fov=Fov|
[{Vrel=[rel= _,cls=CLS,pers=P],
P=[fov=Fov,pov = _};;

d_cont[ezp= Ezp,
sit=dsit[fov=Fov, pov=Pov,src=U]
infon=inflvrel=V rel,args= Args]]
<&dict : affiz[pov= Pov, form=ru]
[{V rel=[rel= _,cls= _,pers=P],
P ={fov=_, pov=Pov]}

3) There is a module dict, where lexical information
is defined as follows:

dict:: {{
v[els = acty, rel = put_on, form =ki];;
vlcls = acty, rel = run, form =hashil;;
vicls = acts, rel = understand, form =wakal;;
auzv|asp = state, form =teil;;
affiz[pov = pres, form =ru);;
affizpov = past, form =ru]}}

where form has a value of Japanese expression.
Further, mapping of field of view is also defined as
a set of (global) facts as follows:

map(cls = actl, asp = state, fov = {ip,tar,res}].
maplcls = act2, asp = state, fov = {ip, res}].
maplcls = act3,asp = state, fov = {tar,res}].

If some Japanese expression is given in a query, the
corresponding temporal information is returned by the
above program.

5 Towards More Flexible Sys-
tems

In order to extend a DOOD system, we take other
approaches for more flexible execution control, mainly

focusing on natural language applications as its exam-
ples.

5.1 Constraint Transformation

There are many natural language grammar theories:
transformational and constraint-base grammar such as
GB, unification-based and rule-based grammar such as
GPSG and LFG, and unification-based and constraint-
based grammar such as HPSG and JPSG. Considering a

more general framework of grammar in logic program-
ming, HPSG and JPSG are considered to be better,
because morphology, syntax, semantics, and pragmatics
are uniformly treated as constraints. From such a point
of view, we developed a new constraint logic program-
ming (CLP) language, cu-Prolog, and implemented a
JPSG (Japanese Phrase Structure Grammar) parser in
it 1.

Constraints in Unification-Based Gram-
mar

5.1.1

First, consider various types of constraints in
constraint-based grammar:

o A disjunctive feature structure is used as a basic
information structure, defined like nested tuples or
complex objects as follows:

1) A feature structure is a tuple consisting of
pairs of a label and a value:
[11='1)1,' ",ln:vn]'

2) A wvalue is an atom, a feature structure, or a

set {f1,- -, fa} of feature structures.

e In JPSG, grammar rules are described in the form
of a binary tree as in Figure 15, each node of
which is a feature structure: in which a specific

(mother M)

@ependent_daughter D)

(head_daughter H)

Figure 15: Phrase Structure in JPSG

feature (attribute) decides whether D works as a
complement or as a modifier. Note that each gram-
mar, called a structural principle, is expressed as
the constraints among three features, M, D, and
H, in the local phrase structure tree..

As shown in the above definition, feature structures
are very similar to the data structure in DOOD 2. We
will see some requirements of natural language process-
ing for our DOOD system and develop applications on
the DOOD system.

See the details in [Tsuda 1992].
12This is one of the reason why we decided to design
QUIXOTE. See the appendix.

5.1.2 cu-Prolog

In order to process feature structures efficiently, we
have developed a new CLP called cu-Prolog. A rule is
defined as follows 3

H¢Bl)"'7Bn”Ch"'7Cm-

where H, B, -, B, are atomic formulas, whose argu-
ments can be in the form of feature structures and
Ci,+,Cn are constraints in the form of an equation
among feature structures, variables, and atoms, or an
atomic formula defined by another set of rules. There
is a restriction for an atomic formula in constraints in
order to guarantee the congruence of constraint solving.
This can be statically checked. The semantic domain
is a set of relations of partially tagged trees, as in
CIL[Mukai 1988] and the constraint domain is also the
same.

The derivation in cu-Prolog is a sequence of a pair
(G, C) of a set of subgoals and a set of constraints, just
as in conventional CLP. Their differences are as follows:

o All arguments in predicates can be feature struc-
tures, that is, unification between feature struc-
tures is necessary.

e A computation rule does not select a rule which
does not contribute to constraint solving: in the
case of ({A}UG,C), A « Bj}|C’', and A8 = A9,
the rule is not selected if a new constraint C6UC’8
cannot be reduced.

o The constraint solver is based on unfold/fold
transformation, which produces new predicates dy-
namically in a constraint part.

‘Disjunction’ in feature structures of cu-Prolog is
treated basically as ‘conjunction’, just as in an o-term
in QurxoTre and a nested term in Kappa (CRL). How-
ever, due to the existence of a predicate, disjunction is
resolved (or unnested) by introducing new constraints
and facts:

H«=p(ll={a,b}]) &= H <« IE([)Z=X])||{n6w-P(X)}-
new.p(a).
new_p(b).

That is, in cu-Prolog, disjunctive feature structures are
processed in OR-parallel, in order to avoid set unifica-
tion as in CRL. Only by focusing on the point does
the efficiency seem to depend on whether we want to
obtain all solutions or not.

One of the distinguished features in cu-Prolog is dy-
namic unfold/fold transformation during query process-
ing, which contributes much to improving the efficiency
of query processing. Some examples of a JPSG parser

13As we are following with the syntax of QUIXOTE, the
following notation is different from cu-Prolog.

105

in cu-Prolog appear in [Tsuda 1992]. As predicate-
based notation is not essential, language features in
cu-Prolog can be encoded into the specification of
QuzxoTe and the constraint solver can also be em-
bedded into the implementation of QuzixoTe without
changing semantics.

5.2 Dynamical Programming

This work aims to extend a framework of constraint
throughout computer and cognitive sciences **. In some
sense, the idea originates in the treatment of con-
straints in cu-Prolog. Here, we describe an outline
of dynamical programming as a general framework of
treating constraints and an example in natural lan-
guage processing.

5.2.1 Dynamics of Symbol Systems

As already mentioned in Section 2, partial informa-
tion plays an essential role in knowledge information
processing systems. So, knowing how to deal with the
partiality will be essential for future symbol systems.
We employ a constraint system, which is independent
of information flow. In order to make the system com-
putationally more tractable than conventional logic, it
postulates a dynamics of constraints, where the state of
the system is captured in terms of potential energy.

Consider the following program in the form of
clauses:

p(X) < r(X,Y),p(Y).
r(X,Y) <« ¢(X).

Given a query 7-p(A), ¢(B), the rule-goal graph as used
in deductive databases emulates top-down evaluation
as in Figure 16. However, the graph presupposes a cer-

7-p(f;), q(B)

p(X) < r(X,Y),p(Y)

r(X,Y) = ¢(X)

Figure 16: Rule-Goal Graph

tain information flow such as top-down or bottom-up
evaluation. More generally, we consider it in the form
in Figure 17. where the lines represent (partial) equa-
tions among variables, and differences between vari-
ables are not written for simplicity. We call such a
graph a constraint network.

In this framework, computation proceeds by propa-
gating constraints in a node (a variable or an atomic

14Gee the details in [Hasida 1992].

106

Figure 17: Constraint network

constraint) to others on the constraint network. In or-
der to make such computation possible, we note the
dynamics of constraints, as outlined below:

1) An activation value is assigned to each atomic con-
straint (an atomic formula or an equation). The
value is a real number between 0 and 1 and is
considered as the truth value of the constraint.

%)
~

Based on activation values, normalization energy
is defined for each atomic constraint, deduction
energy and abduction energy are defined for each
clause, and assimilation energy and completion en-
ergy are defined for possible unifications. The po-
tential energy U is the sum of the above energies.

3) If the current state of a constraint is represented
in terms of a point z of Euclidean space, U de-
fines a field of force F of the point z. F causes
spreading activation when F' # 0. A change of z is
propagated to neighboring parts of the constraint
network, in order to reduce U. In the long run, the
assignment of the activation values settles upon a
stable equilibrium satisfying F' = 0.

Symbolic computation is also controlled on the basis of
the same dynamics. This computational framework is
not restricted in the form of Horn clauses.

5.2.2 Integrated Architecture of Natural Lan-
guage Processing

In traditional natural language processing, the system
is typically a sequence of syntactic analysis, semantic
analysis, pragmatic analysis, extralinguistic inference,
generation planning, surface generation, and so on.
However, syntactic analysis does not necessarily pre-
cede semantic and pragmatic comprehension, and gen-
eration planning is entwined with surface generation.
Integrated architecture is expected to remedy such a
fixed information flow. Our dynamics of constraint is
appropriate for such an architecture.
Consider the following example:

Tom took a telescope. He saw a girl with it.

We assume that he and it are anaphoric with Tom
and the telescope, respectively. However, with it has
attachment ambiguity:

Tom has a telescope when he sees the girl, or
the girl has the telescope when Tom sees her.

Consider a set of facts:

(1) take(tom, telescope).
(2) have(tom, telescope).
(3) have(girl, telescope).

and an inference rule:
(4) have(X,Y) < take(X,Y).

By constructing the constraint networks of (1),(2),(4)
and (1),(3),(4) as in Figure 18, we can see that there

Constraint Network of (2)

Constraint Network of (3)

Figure 18: Constraint Networks of Alternatives

are two cycles (involving tom and telescope) in the left
network ((1), (2), and (4)), while there is only one cy-
cle (girl) in the right network ((1), (3), and (4)). From
the viewpoint of potential energy, the former tends to
excite more strongly than the latter, in other words,
(2) is more plausible than (3).

Although, in natural language processing, resolution
of ambiguity is a key point, the traditional architecture
has not been promising, while our integrated architec-
ture based on a dynamics of constraint network seems
to give more possibilities not only for such applications
but also for knowledge-base management systems.

6 Related Works

Our database and knowledge-base management system
in the framework of DOOD has many distinguished
features in concept, size, and varieties, in comparison
with other systems. The system aims not only to pro-
pose a new paradigm but also to provide database and
knowledge-base facilities in practice for many knowl-
edge information processing systems.

There are many works, related to DOOD con-
cepts, for embedding object-oriented concepts into logic
programming. Although F-logic[Kifer and Lausen 1989]
has the richest concepts, the id-term for object identity
is based on predicate-based notation and properties are
insufficient from a constraint point of view. Further-
more, it lacks update functions and a module concept.

QurxoTe has many more functions than F-logic. Al
though, in some sense, QurxoTe might be an over-
specification language, users can select any subclass of
QurxoTe. For example, if they use only a subclass of
object terms, they can only be conscious of the sub-
language as a simple extension of Prolog.

As for nested relational models, there are
many works since the proposal in 1977, and
several models have been implemented: Verso

[Verso 1986], DASDBS [Schek and Weikum 1986], and
AIM-P [Dadam et al. 1986]. However, the semantics
of our model is different from theirs. As the (ex-
tended) NF? model of DASDBS and AIM-P has set-
based (higher order) semantics, it is very difficult to
extend the query capability efficiently, although the
semantics is intuitively familiar to the user. On the
other hand, as Verso is based on the universal relation
schema assumption, it guarantees efficient procedural
semantics. However, the semantics is intuitively unfa-
miliar to the user: even if ¢t ¢ 01T and ¢t & 02T for
a relation T, it might happen that ¢t € ;T U 0,7T.
Compared with them, Kappa takes simple semantics,
as mentioned in Section 3. This semantics is retained in
o-terms in Quzxote and disjunctive feature structures
in cu-Prolog for efficient computation.

As for genetic information processing, researchers in
logic programming and deductive databases have be-
gun to focus on this area as a promising application.
However, most of these works are devoted to query
capabilities such as transitive closure and prototyping
capabilities, while there are few works which focus on
data and knowledge representation. On the other hand,
QuzxoTe aims at both the above targets. As for legal
reasoning, there are many works based on logic pro-
gramming and its extensions. Our work has not taken
their functions into consideration, but has reconsidered
them from a database point of view, especially by in-
troducing a module concept.

7 Future Plans and Concluding
Remarks

We have left off some functions due to a shortage in
man power and implementation period. We are consid-
ering further extensions through the experiences of our
activities, as mentioned in this paper.

First, as for Qurxore, we are considering the follow-
ing improvements and extensions:

¢ Query transformation techniques such as sideways
information passing and partial evaluation are not
fully applied in the current implementation. Such
optimization techniques should be embedded.in
Qurxote, although constraint logic programming
needs different devices from conventional deductive

107

databases. Furthermore, for more efficient query
processing, flexible control mechanisms, such as in
cu-Prolog and dynamical programming, would be
embedded.

e For more convenience for description in
QurxoTe, we consider meta-functions as HiLog
[Chen et al. 1989}

tc(R)(X,Y) = R(X,Y)
te(R)(X,Y) - te(R)(X, Z), tc(R)(Z,Y)

In order to provide such a function, we must intro-
duce new variables ranging over basic objects.

This idea is further extended to a platform lan-
guage of Qurxore. For example, although we must
decide the order relation (such as Hoare, Smyth,
or Egli-Milner) among sets in order to introduce a
set concept, the decision seems to depend on the
applications. For more applications, such a relation
would best be defined by a platform language. The
current Quzxore would be a member of a family
defined in such a platform language.

e Communication among Quixore databases plays
an important role not only for distributed
knowledge-bases but also to support persistent
view, persistent hypothesis, and local or private
databases. Furthermore, cooperative query pro-
cessing among agents defined QuzxoTe is also con-
sidered, although it closely depends on the ontol-
ogy of object identity.

e In the current implementation, QurxoTe objects
can also be defined in KL1. As it is difficult to
describe every phenomena in a single language,
as you know, all languages should support inter-
faces to other languages. Thus, in QuzxoTe too, a
multi-language system would be expected.

o Although, in the framework of DOOD, we have
focused mainly on data modeling extensions, the
direction is not necessarily orthogonal from logical
extensions and computational modeling extensions:
set grouping can emulate negation as failure and
the procedural semantics of QuzxoTe can be de-
fined under the framework of object-orientation.

However, from the viewpoint of artificial intelli-
gence, non-monotonic reasoning and ‘fuzzy’ logic
should be further embedded, and, from the view-
point of design engineering, other semantics such
as object-orientation, should also be given.

As for Kappa, we are considering the following im-
provements and extensions:

e In comparison with other DBMSs by Wisconsin
Benchmark, the performance of Kappa can be fur-
ther improved, especially in extended relational

108

algebra, by reducing inter-kernel communication
costs. This should be pursued separately from the
objective.

o It is planned for Kappa to be accessed not only
from sequential and parallel inference machines
but also from general purpose machines or work-
stations. Furthermore, we should consider the
portability of the system and the adaptability for
an open system environment. One of the candi-
dates is heterogeneous distributed DBMSs based
on a client-server model, although Kappa-P is al-
ready a kind of distributed DBMS. '

¢ In order to provide Kappa with more applications,
customizing facilities and service utilities should
be strengthened as well as increasing compatibility
with other DBMSs.

In order to make Kappa and Quzixore into an in-
tegrated knowledge-base management system, further
extensions are necessary:

o QurxoTe takes nested transaction logic, while
Kappa takes flat transaction logic. As a result,
QuzxoTe guarantees persistence only at the top
level transaction. In order to couple them more
tightly, Kappa should support nested transaction
logic.

¢ From the viewpoint of efficient processing, users
cannot use Kappa directly through Quzxore.
This, however, causes difficulty with object iden-
tity, because Kappa does not have a concept of
object identity. A mechanism to allow Kappa and
QuzxoTe to share the same object space should be
considered.

e Although Kappa-P is a naturally parallel DBMS,
current QurxoTe is not necessarily familiar with
parallel processing, even though it is implemented
in KL1 and works in parallel. For more efficient
processing, we must investigate parallel processing
in Kappa and Qurxore.

We must develop bigger applications than those we
mentioned in this paper. Furthermore, we must in-
crease the compatibility with the conventional systems:
for example, from Prolog to QuzxoTe and from the
relational model to our nested relational model.

We proposed a framework for DOOD, and are en-
gaged in various R&D activities for databases and
knowledge-bases in the framework, as mentioned in this
paper. Though each theme does not necessarily origi-
nate from the framework, our experiences indicate that
this direction is promising for many applications.

Acknowledgments

The authors have had much cooperation from all mem-
bers of the third research laboratory of ICOT for each
topic. We especially wish to thank the following people
for their help in the specified topics: Hiroshi Tsuda for
QuzxoTe and cu-Prolog, Moto Kawamura and Kazu-
tomo Naganuma for Kappa, Hidetoshi Tanaka and
Yuikihiro Abiru for Biological Databases, Nobuichiro
Yamamoto for TRIAL, Satoshi Tojo for Temporal In-
ference, and Kéiti Hasida for DP.

We are grateful to members of the DOOD (DBPL,
ETR, DDB&AI, NDB, IDB), STASS, and JPSG working
groups for stimulating discussions and useful comments
on our activities, and, not to mention, all members of
the related projects (see the appendix) for their imple-
mentation efforts.

We would also like to acknowledge Kazuhiro Fuchi
and Shunichi Uchida without whose encouragement
Qurxote and Kappa would not have been imple-
mented. ’

References

[Aczel 1988] P. Aczel, Non-Well Founded Set Theory,
CSLI Lecture notes No. 14, 1988.

(Chen et al. 1989] W. Chen, M. Kifer and D.S. Warren,
“HiLog as a Platform for Database Language”,
Proc. the Second Int. Workshop on Database Pro-
gramming Language, pp.121-135, Gleneden Beach,
Oregon, June, 1989.

[Chikayama 1984] T. Chikayama, “Unique Features of
ESP”, Proc. Int. Conf. on Fifth Generation Com-
puter Systems, ICOT, Tokyo, Nov.6-9, 1984.

[Chikayama et al. 1988] T. Chikayama, H. Sato, and
T. Miyazaki,“Overview of the Parallel Inference
Machine Operating Sistem (PIMOS)”, Proc. Int.
Conf. on Fifth Generation Computer Systems,
ICOT, Tokyo, Nov.28-Dec.2, 1988.

[Dadam et al. 1986] P. Dadam, et al, “A DBMS Pro-
totype to Support Extended NF? Relations: An
Integrated View on Flat Tables and Hierarchies”,
ACM SIGMOD Int. Conf. on Management of Data,
1986.

[Delobel et al. 1991] C. Delobel, M. Kifer, and Y. Ma-
sunaga (eds.), Deductive and Object-Oriented
Databases, (Proc. 2nd Int. Conf. on Deductive and
Object-Oriented Databases (DOOD’91)), LNCS 5686,
Springer, 1991.

[Goto et al. 1988] A. Goto et al.,“Overview of the Par-
allel Inference Machine Architecture (PIM)”, Proc.

Int. Conf. on Fifth Generation Computer Systems,
ICOT, Tokyo, Nov.28-Dec.2, 1988.

[Haniuda et al. 1991] H. Haniuda, Y. Abiru, and
N. Miyazaki, “PHI: A Deductive Database Sys-
tem”, Proc. IEEE Pacific Rim Conf. on Commu-
nication, Computers, and Signal Processing, May,
1991.

(Hasida 1992) K. Hasida, “Dynamics of Symbol Sys-
tems — An Integrated Architecture of Cognition”,
Proc. Int. Conf. on Fifth Generation Computer
Systems, ICOT, Tokyo, June 1-5, 1992.

[Kawamura et al. 1992] M. Kawamura, H. Naganuma,
H. Sato, and K. Yokota, “Parallel Database Man-
agement System Kappa-P”, Proc. Int. Conf. on
Fifth Generation Computer Systems, ICOT, Tokyo,
June 1-5, 1992.

[Kifer and Lausen 1989] M. Kifer and G. Lausen, “F-
Logic — A Higher Order Language for Reasoning
about Objects, Inheritance, and Schema”, Proc.
ACM SIGMOD Int. Conf. on Management of Data,
pp-134-146, Portland, June, 1989.

[Kim et al. 1990] W. Kim, J.-M. Nicolas, and S. Nishio
(eds.), Deductive and Object-Oriented Databases,
(Proc. Ist Int. Conf. on Deductive and Object-
Oriented Databases (DOODS8Y)), North-Holland,
1990.

[Miyazaki et al. 1989] N. Miyazaki, H. Haniuda,
K. Yokota, and H. Itoh, “A Framework for Query
Transformation”, Journal of Information Process-
ing, vol.12, No.4, 1989.

[Mukai 1988] K. Mukai, “Partially Specified Term in
Logic Programming for Linguistic Analysis”, Proc.
Int. Conf. on Fifth Generation Computer Systems,
ICOT, Tokyo, Nov.28-Dec.2, 1988.

(Schek and Weikum 1986] H.-J. Schek and G. Weikum,
“DASDBS: Concepts and Architecture of a
Database System for Advanced Applications”,
Tech. Univ. of Darmstadt, Technical Report,
DVSI-1986-T1, 1986.

[Tanaka 1992] H. Tanaka, “Integrated System for Pro-
tein Information Processing”, Proc. Int. Conf. on
Fifth Generation Computer Systems, ICOT, Tokyo,
June 1-5, 1992.

[Tojo and Yasukawa 1992] S. Tojo and H. Yasukawa,
“Situated Inference of Temporal Information”,
Proc. Int. Conf. on Fifth Generation Computer
Systems, ICOT, Tokyo, June 1-5, 1992.

109

[Tsuda 1992] H. Tsuda, “cu-Prolog for Constraint-
Based Grammar”, Proc. Int. Conf. on Fifth Gen-
eration Computer Systems, ICOT, Tokyo, June 1-
5, 1992.

[Ueda and Chikayama 1990]
K. Ueda and T. Chikayama, “Design of the Kernel
Language for thr Parallel Ingerence Machine”, The
Computer Journal, vol.33, no.6, 1990.

[Verso 1986] J. Verso, “VERSO: A Data Base Machine
Based on Non INF Relations”, INRIA Technical
Report, 523, 1986.

[Yamamoto 1990] N. Yamamoto, “TRIAL: a Legal
Reasoning System (Extended Abstract)”, Joint
French-Japanese Workshop on Logic Programming,
Renne, France, July, 1991.

[Yasukawa et al. 1992] H. Yasukawa, H. Tsuda, and
K. Yokota, “Object, Properties, and Modules in
Quixote”, Proc. Int. Conf. on Fifth Generation
Computer Systems, ICOT, Tokyo, June 1-5, 1992.

[Yokota 1988] K. Yokota, “Deductive Approach for
Nested Relations”, Programming of Future Gener-
ation Computers II, eds. by K. Fuchi and L. Kott,
North-Holland, 1988.

[Yokota et al. 1988] K. Yokota, M. Kawamura, and
A. Kanaegami, “Overview of the Knowledge Base
Management System (KAPPA)”, Proc. Int. Conf.
on Fifth Generation Computer Systems, ICOT,
Tokyo, Nov.28-Dec.2, 1988.

[Yokota and Nishio 1989] K. Yokota and S. Nishio,
“Towards Integration of Deductive Databases and
Object-Oriented Databases — A Limited Survey”,
Proc. Advanced Database System Symposium, Ky-
oto, Dec., 1989.

[Yoshida 1991] K. Yoshida, “The Design Principle of
the Human Chromosome 21 Mapping Knowledge-
base (Version CSH91)”, Inetrnal Technical Report
of Lawrence Berkley Laboratory, May, 1991.

110

Appendix

Notes on Projects for Database and
Knowledge-Base Management Systems

In this appendix, we describe an outline of projects on
database and knowledge-base management systems in
the FGCS project. A brief history is shown in Figure 19
15 Among these projects, Mitsubishi Electric Corp. has
cooperated in Kappa-I, Kappa-II, Kappa-P, DO-{, CIL,
and QuzxoTte projects, Oki Electric Industry Co., Ltd.
has cooperated in PHI (DO-¢) and QuzxoTe projects,
and Hitachi, Ltd. has cooperated in ETA (DO-7) and
QuzxoTe projects.

a. Kappa Projects

In order to provide database facilities for knowledge
information processing systems, a Kappa ' project be-
gun in September, 1985 (near the beginning of the
intermediate stage of the FGCS project). The first tar-
get was to build a database with electronic dictionar-
ies including concept taxonomy for natural language
processing systems and a database for mathematical
knowledge for a proof checking system called CAP-LA.
The former database was particularly important: each
dictionary has a few hundred thousands entries, each
of which has a complex data structure. We consid-
ered that the normal relational model could not cope
with such data and decided to adopt a nested rela-
tional model. Furthermore, we decided to add a new
type term for handling mathematical knowledge. The
DBMS had to be written in ESP and work on PSI ma-
chines and under the SIMPOS operating system. As
we were afraid of whether the system in ESP would
work efficiently or not, we decided on the semantics of
a nested relation and started to develop a prototype
system called Kappa-I. The system, consisting of 60
thousands lines in ESP, was completed in the spring
of 1987 and was shown to work efficiently for a large
amount of dictionary data. The project was completed
m August, 1987 after necessary measurement of the
processing performance.

After we obtained the prospect of efficient DBMS
on PSI machines, we started the next project, Kappa-
II[Yokota et al. 1988] in April, 1987, which aims at a
practical DBMS based on the nested relational model.
Besidées the objective of more efficient performance
than Kappa-I, several improvements were planned: a
main memory database facility, extended relational

I5At the initial stage of the FGCS project, there were other
projects for databases and knowledge-based: Della and Kaiser,
however these were used for targets other than databases and
knowledge-bases.

A term Kappa stands for knowledge application oriented
advanced database management system.

algebra, user-definable command facility, and user-
friendly window interface. The system, consisting of
180 thousand lines in ESP, works 10 times more effi-
ciently in PSI-II machines than Kappa-I does in PSI-I.
The project was over in March, 1989 and the system
was widely released, not only for domestic organiza-
tions but also for foreign ones, and mainly for genetic
information processing.

To handle larger amounts of data, a parallel
DBMS project called Kappa-P[Kawamura et al. 1992]
was started in February, 1989. The system is written
in KL1 and works under an environment of PIM ma-
chines and the PIMOS operating system. As each local
DBMS of Kappa-P works on a single processor with
almost the same efliciency as Kappa-II, the system is
expected to work on PIM more efficiently than Kappa-
II, although their environments are different. -

b. Deductive Database Projects

There were three projects for deductive databases.

First, in parallel with the development of Kappa,
we started a deductive database project called CRL
(complex record language) [Yokota 1988], which is a
logic programming language newly designed for treat-
ing nested relations.

CRL is based on a subclass of complex objects con-
structed by set and tuple constructors and with a mod-
ule concept. The project started in the summer of 1988
and the system, called DO-/, was completed in Novem-
ber, 1989. The system works on Kappa-II. The query
processing strategy is based on methods of generalized
magic sets and semi-naive evaluation. In it, rule inheri-
tance among modules based on submodule relations are
dynamically evaluated.

Secondly, we started a project called PHI
[Haniuda et al. 1991] in the beginning of the interme-
diate stage (April, 1985). This aimed at more efficient
query processing in traditional deductive databases
than other systems. The strategy is based on three
kinds of query transformation called Horn clause trans-
formation (HCT)[Miyazaki et al. 1989]: HCT/P exe-
cutes partial evaluation or unfolding, HCT/S propa-
gates binding information without rule transformation,
and HCT/R transforms a set of rules in order to re-
strict the search space and adds related new rules. The
HCT/R. corresponds to the generalized magic set strat-
egy. By combining these strategies, PHI aims at more
efficient query processing. The consequent project is
called DO-¢, in which we aim at a deductive mecha-
nism for complex objects.

Thirdly, we started a project called ETA in April,
1988, which aimed at knowledge-base systems based on
knowledge representation such as semantic networks.
One year later, the project turned towards extensions
of deductive databases and was called DO-.

} 1985 1986 , 1987 , 1988

111

1989 , 1990 , 1991 , 1992

(Kappa-P) A

™~ |DooOD
—+(DO-¢)—» 1

PHI
ETA(DO-n))-
CIL

> "o/l
J QUIXOTE

@
(Parallel) KIPS

(Natural Language, Mathematical Knowledge,
Biological Information, Legal Precedents, ---)

Figure 19: Brief History of Projects on Database and Knowledge-Base Management Systems

“DO” in the above projects stands for deductive and
object-oriented databases and is shown to adopt a con-
cept of DOODs [Yokota and Nishio 1989] as its com-
mon framework.

c. CIL Project

A language called CIL (complex indeterminates lan-
guage) was proposed in April, 1985 [Mukai 1988]. The
language aimed at semantic representation in natural
language processing and was used not ounly in the dis-
course understanding system called DUALS, but also
for representing various linguistic information. The im-
plementation of CIL was improved several times and
CIL was released to many researchers in natural lan-
guage processing. The language is a kind of constraint
logic programming and closely relates to situation the-
ory and semantics. The language is based on partially
specified terms, each of which is built by a tuple con-
structor. A set constructor was introduced into par-
tially specified terms in another language cu-Prolog, as
mentioned in Section 5.1.

d. Quzxore Project

We tried to extend CRL not only for nested rela-
tions but also for DOODs, and to extend CIL for
more efficient representation, such as the disjunctive
feature structure. After these efforts, we proposed
two new languages: Juan, as an extension of CRL,
and QUINT, as an extension of CIL. While designing
their specifications, we found many similarities between
Juan and QUINT, and between concepts in databases
and natural language processing, and decided to in-
tegrate these languages. The integrated language is
QurxoTe[Yasukawa et al. 1992] (with Spanish pronun-

ciation) 7. As the result of integration, Qurxore
has various features, as mentioned in this paper. The
QurxoTe project was started in August, 1990. The first
version of QuzxoTe was released to restricted users in
December, 1991, and the second version was released
for more applications at the end of March, 1992. Both
versions are written in KL1 and work on parallel infer-
ence machines.

e. Working Groups on DOOD and
STASS

At the end of 1987, we started to consider integra-
tion of logic and object-orientation concepts in the
database area. After discussions with many researchers,
we formed a working group for DOOD and started to
prepare a new international conference on deductive
and object-oriented databases 8. The working group
had four sub-working-groups in 1990: for database pro-
gramming languages (DBPL), deductive databases and
artificial intelligence (DDB&AI), extended term repre-
sentation (ETR), and biological databases (BioDB). In
1991, the working group was divided into intelligent
databases (IDB) and next generation databases (NDB).
In their periodic meetings '°, we discussed not only
problems of DOOD but also directions and problems

"Qur naming convention follows the DON series, such as
Don Juan and Don Quixote, where DON stands for “Deductive
Object-Oriented Nucleus”.

18Most of the preparation up until the first international
conference (DOOD89) was continued by Professor S. Nishio of
Osaka University.

19Their chairpersons are Yuzuru Tanaka of Hokkaido U. for
DOOD, Katsumi Tanaka of Kobe U. for DBPL, Chiaki Sakama
of ASTEM for DDB&AI and IDB, Shojiro Nishio of Osaka U.
for ETR, Akihiko Konagaya of NEC for BioDB, and Masatoshi
Yoshikawa of Kyoto Sangyo U. for NDB.

112

of next generation databases. These discussions con-
tributed greatly to our DOOD system.

From another point of view, we formed a working
group (STS) % for situation theory and situation se-
mantics in 1990. This also contributed to strengthening
other aspects of QuzxoTe and its applications.

20The chairperson is Hozumi Tanaka of Tokyo Institute of
Technology. .

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

113

CoNSTRAINT Logic PROGRAMMING SYSTEM
~ CAL, GDCC anp THEIR CONSTRAINT SOLVERS —

Akira Aiba and Ryuzo Hasegawa
Fourth Research Laboratory
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
{aiba, hasegawa}@icot.or.jp

Abstract

This paper describes constraint logic programming lan-
guages, CAL (Contrainte Avec Logique) and GDCC
(Guarded Definite Clauses with Constraints), developed
at ICOT.

CAL is a sequential constraint logic programming lan-
guage with algebraic, Boolean, set, and linear constraint
solvers. GDCC is a parallel constraint logic programm-
ing language with algebraic, Boolean, linear, and integer
parallel constraint solvers.

Since the algebraic constraint solver utilizes the Buch-
berger algorithm, the solver may return answer con-
straints including univariate nonlinear equations. The
algebraic solvers of both CAL and GDCC have the func-
tions to approximate the real roots of univariate equa-
tions to obtain all possible values of each variable. That
is, this function gives us the situation in which a cer-
tain variable has more than one value. To deal with this
situation, CAL has a multiple environment handler, and
GDCC has a block structure.

We wrote several application programs in GDCC to
show the feasibility of the constraint logic programming
language.

1 Introduction

The Fifth Generation Computer System (FGCS) project
is a Japanese national project that started in 1982. The
aim of the project is to research and develop new com-
puter technologies for knowledge and symbol processing
paralle] computers.

The FGCS prototype system has three layers: the pro-
totype hardware system, the basic software system, and
the knowledge programming environment. Parallel appli-
cation software has been developed for these. The con-
straint logic programming system is one of the systems
that form, together with the knowledge base construction
and the programming environment, the knowledge pro-
gramming environment. In this paper, we describe the
overall research results of constraint logic programming

systems in ICOT.

The programming paradigm of constraint logic pro-
gramming (CLP) was proposed by A. Colmerauer
[Colmerauer 1987) and J. Jaffar and J-L. Lassez [Jaffar
and Lassez 1987] as an extension of logic programming
by extending its computation domain. Jaffar and Lassez
showed that CLP possesses logical, functional, and opera-
tional semantics which coincide with each other, in a way
similar to logic programming [van Emden and Kowalski
1976].

In 1986, we began to research and develop high-level
programming languages suitable for problem solving to
achieve our final goal, that is, developing efficient and
powerful parallel CLP languages on our parallel machine.

The descriptive power of a CLP language is strongly
depend on its constraint solver, because a constraint
solver determines the domain of problems which can
be handled by the CLP language. Almost all existing
CLP languages such as Prolog III {Colmerauer 1987] and
CLP(R) [Jaffar and Lassez 1987] has a constraint solver
for linear equations and linear inequalities.

Unlike the other CLP languages, we focused on nonlin-
ear algebraic equation constraints to deal with problems
which are described in terms of nonlinear equations such
as handling robot problem. For the purpose, we selected
the Buchberger algorithm for a constraint solver of our
languages. ‘

Besides of nonlinear algebraic equations, we were also
interested in writing Boolean constraints, set constraints,
linear constraints, and hierarchical constraints in our
framework. For Boolean constraints, we modify the
Buchberger algorithm to be able to handle Boolean
constraints, and later, we developed the algorithm for
Boolean constraints based on the Boolean unification.
For set constraints, we expand the algorithm for Boolean
constraints based on the Buchberger algorithm. We also
implemented the simplex method to deal with linear
equations and linear inequalities same as the other CLP
languages. Furthermore, we tried to handle hierarchical
constraints in our framework.

We developed two CLP language processors, first we
implemented a language processor for sequential CLP

114

language named CAL (Contrainte Avec Logique) on se-
quential inference machine PSI, and later, we imple-
.mented a language processor for parallel CLP language
named GDCC (Guarded Definite Clauses with Con-
straints), based on our experiments on extending CAL
processor by introducing various functions.

In Section 2, we briefly review CLP, and in Section 3,
we describe CAL. In Section 4, we describe GDCC, and in
Section 5, we describe various constraint solvers and their
parallelization. In Section 6, we introduce application
programs written In our languages.

2 CLP and the role of the con-
straint solver

CAL and GDCC belong to the family of CLP languages.
The concept of CLP stems from the common desire for
easy programming. In fact, as claimed in the literature
[Jaffar and Lassez 1987, Sakai and Aiba 1989], the CLP
is a scheme of programming languages with the following
outstanding features:

o Natural declarative semantics.

¢ Clear operational semantics that coincide with the
declarative semantics.

Therefore, it gives the user a paradigm of declarative
(and thus, hopefully easy) programming and gives the
machine an effective mechanism for execution that coin-
cide with the user’s declaration.

For example, in Prolog (the most typical instance of
CLP), we can read and write programs in declarative
stylelike “...if ... and ...”. The system execute these by.
a series of operations with unification as its basic mech-
anism.

Almost every CLP language has a similar programm-
ing style and a mechanism which plays the similar role to
the unification mechanism in Prolog, and the execution
of programs depends on the mechanism heavily. We call
such a mechanism the constraint solver of the language.

Usually, a CLP language aims at a particular field of
problems and its solver has special knowledge to solve
the problems. In the case of Prolog, the problems are
syntactic equalities between terms, that is, the unifica-
tion. On the other hand, CAL and GDCC are tuned to
deal with the following:

e algebraic equations
¢ Boolean equations
o set inclusion and membership

e linear inequalities

These relations are called constraints.
In the CLP paradigm, a problem is expressed as con-
straints on the objects in the problem. Therefore, an

often cited benefit of CLP is that “One does not need to
write an implementation but a specification.” In other
words, all that a programmer should write in CLP is
constraints between the objects, but not how to find ob-
jects satisfying the relation. To be more precise, such
constraints are described in the form of a logical combi-
nation of formulas each of which expresses a basic unit
of the relation.

Though there are many others, the above benefit surely
expresses an important feature of CLP. Building an equa-
tion is usually easier than solving it. Similarly, one may
be able to write down the relation between the objects
without knowing the method to find the appropriate val-
ues of objects which satisfy the relation.

An ideal CLP system should allow a programmer to
write any combination of any well-formed formulas. The
logic programming paradigm gives us a rich framework
for handling logical combinations of constraints. How-
ever, we still need a powerful and flexible constraint
solver to handle each constraint. To discuss the func-
tion of the constraint solver from a theoretical point of
view, the declarative semantics of CLP [Sakai and Aiba
1989] gives us several criteria. Assume that constraints
are given in the form of their conjunction. Then, the
following are the criteria.

(1) Can the solver decide whether a given constraint is
satisfiable?

(2) Given satisfiable constraints, is there any way for the
solver to express all the solutions in simplified form?

Prolog’s constraint solver, the unification algorithm,
answers these criteria affirmatively and so do the solvers
in CAL and GDCC. In fact, they satisfy the following
stronger requirements almost perfectly:

(3) Given a set of constraints, can the solver compute
the simplest form {called the canonical form of the
constraints) in a certain sense?

However, these criteria may not be sufficient from an
applicational point of view. For example, we may some-
times be asked the following:

(4) Given satisfiable constraints, can the solver find at
least one concrete solution?

Finding a concrete solution is a question usually in-
dependent of the above and may be proved theoretically
impossible to answer. Therefore, we may need an ap-
proximate solution to answer this partly. As discussed
later, we incorporated many of the constraint solvers and
functions into CAL and GDCC.

Another important feature of constraint solvers is their
incrementality. An incremental solver can be given a con-
straint successively. It reduces each constraint as simple

as possible by the current set of constraints. Thus, an in-
cremental solver finds the unsatisfiability of a set of con-
straints as early as possible and makes Prolog-type back-
tracking mechanism efficient. Fortunately, the solvers of
CAL and GDCC are fully incremental like unification.

3 CAL - Sequential CLP Lan-
guage

This section summarizes the syntax of CAL. For a de-
tailed description of CAL syntax, refer to the CAL User’s
Manual [CAL Manual].

3.1 CAL language

The syntax of CAL is similar to that of Prolog, except
for its constraints. A CAL program features two types of
variables: logical variables denoted by a sequence of al-
phanumeric characters starting with an uppercase letter
(as with Prolog variables), and constraint variables de-
noted by a sequence of alphanumeric characters starting
with a lowercase letter. Constraint variables are global
variables, while logical variables are local variables within
the clauses in which they occur. This distinction is in-
troduced to simplify incremental querying.

The following is an example CAL program that fea-
tures algebraic constraints. This program derives a new
property for a triangle, the relation which holds among
the lengths of the three edges and the surface area, from
the three known properties.

:- public triangle/4.

surface_area(H,L,S) :- alg:L*H=2x%S.
right (A,B,C) :- alg:A"2+B"2=C"2.
triangle(A,B,C,S) :-

alg:C=CA+CB,

right (CA,H,A),

right (CB,H,B),

surface_area(H,C,S).

The first clause, “surface_area”, expresses the for-
mula for computing the surface area S from the height
H and the baseline length L. The second expresses the
Pythagorean theorem for a right-angled triangle. The
third asserts that every triangle can be divided into two
right-angled triangles. (See Figure 1.).

In the following query, heron, shows the name of the
file in which the CAL source program is defined.

?- alg:pre(s,10), heron:triangle(a,b,c,s).

This query asks for the general relationship between
the lengths of the three edges and the surface area.

115

CA CB
C

A
Y

Figure 1: The third clause

The invocation of alg:pre(s,10) defines the prece-
dence of the variable s to be 10. Since the algebraic con-
straint solver utilizes the Buchberger algorithm, order-
ing among monomials is essential for computation. This
command changes the precedence of variables. Initially,
the precedences of all variables are assigned to 0. There-
fore, in this case, the precedence of variable s is raised.

To this query, the system responds with the following
equation *:

72 = -1/16%b"4+1/8%a"2*b"2-1/16%a"4
+1/8%c"2%b"2+1/8%c"2%a"2-1/16%c"4.

This equation is, actually, a developed form of Heron’s
formula.
When we call the query

7- heron:triangle(3,4,5,s).
the CAL system returns the following answer:
s"2 = 36

If a variable has finitely many values in all its solutions,
there is a way of obtaining a univariate equation with the
variable in the Grobner base. Therefore, if we can add
a function that enables us to compute the approximate
values of the solutions of univariate equations, we can
approximate all possible value of the variable.

For this purpose, we implemented a method of approx-
imating the real roots of univariate polynomials. In CAL,
all real roots of univariate polynomials are isolated by ob-
taining a set of intervals, each of which contains one real
root. Then, each isolated real root is approximated by
the given precision.

For application programs, we wanted to use approxi-
mate values to simplify other constraints. The general
method to do this is to input equations of variables and
their approximate values as constraints. For this pur-
pose, we had to modify the original algorithm to compute
Grobner bases to accept approximate values.

When we call the query

'This equation represents the expression
1 1 1 1 1 1
2 4 2;2 4 2,2 2 2 4
= —=b*+=a"bh* — — b + = - =
T T S ST

116

User | Translator
Program,
gggg?gand Translated Code
y

Inference Engine

Constraints Cannonical Form

Y

Constraint Solvers

Figure 2: Overall construction of CAL language proces-
sor

?7- alg:set_out_mode(float),
alg:set_error1(1/1000000),
alg:set_error2(1/100000000),
heron:triangle(3,4,5,s),
alg:get_result(eq,1,nonlin,R),
alg:find(R,S),
alg:constr(S).

we can obtain the answers s = -6.000000099 and s =
6.000000099, successively by backtrack.

The first line of the above, alg: set_out_mode, sets the
output mode to float. Without this, approximate values
are output as fractions.

The second line of the above, alg:set_errori, spec-
ifies the precision used to compare coefficients in the
computation of the Grobner base. The third line,
set_error2, specifies the precision used to approximate
real roots by the bisection method.

The essence of the above query is invocations of
alg:get.result/4, and alg:find/2. The fifth line,
alg:get_result, selects appropriate equations from the
Grobner base. In this case, univariate (specified by 1)
non-linear (specified by nonlin) equations (specified by
eq) are selected and unified to a variable R.

R is then passed to alg:find to approximate the real
roots of equations in R. Such real roots are obtained in
the variable S.

Then, S is again input as the constraint to reduce other
constraints in the Grébner base.

3.2 Configuration of CAL system

In this section, we will introduce the overall structure of
the CAL system.

The CAL language processor consists of a translator,
a inference engine, and constraint solvers. These subsys-
tems are combined as shown in Figure 2.

The translator receives input from a user, and trans-
lates it into ESP code. Thus, a CAL source program

—
7- alg:pre(s,10), heron:triangle(3, 4, 5, 5 .

)
alg:get_result(eq, 1, nonlin, R),alg:find(R.Sol), alg:constz(Sol).
R=[s"2=36].
Sol=(s=real(-, [935, 2054, 5183, 8764, 345), (3488, 342, 7523, 6460, 571)]
= [s = -6.000000099).
s = +6.000000099

%

R=[s"2=36].

Sol=[s=real(+, [935, 2054, 5183, 8764, 345}, {3488, 342, 7523, 6460, 57]))
=[5 =6.000000099].

s = 6000000099

[nos]
[root F—{"not +—{ no2 7 no3 |

noS
> & £ 4
72 =36

Figure 3: CAL system windows

is translated into the corresponding ESP program by the
translator, which is executed by the inference engine. An
appropriate constraint solver is invoked everytime the in-
ference engine finds a constraint during execution.

The constraint solver adds the newly obtained con-
straint to the set of current constraints, and computes
the canonical form of the new set.

At present, CAL offers the five constraint solvers dis-
cussed in Section 1.

3.3 Context

-To deal with a situation in which a variable has more

than one value, as in the above example, we introduced
context and context tree.

A context is a set of constraints. A new context is
created whenever the set is changed. In CAL, contexts
are represented as nodes of a context tree. The root of
a context tree is called the root context. The user is
supposed to be in a certain context called the current
context.

A context tree is changed in the following cases:

1. Goal execution:
A new context is created as a child-node of the cur-
rent context in the context tree.

2. Creation of a new set of constraints by requiring
other answers for a goal:
A new context is created as a sibling node of the
current context in the context tree.

3. Changing the precedence:
A new context is created as a child-node of the cur-
rent context in the context tree.

In all cases, the newly created node represents the new
set of constraints and becomes the current context.

Several commands are provided to manipulate the con-
text tree: These include a command to display the con-
tents of a context, a command to set a context as the

current context, and a command to delete the sub-tree
of contexts from the context tree.

Figure 3 shows an example of the CAL processor win-
dow.

4 GDCC - Parallel CLP Pro-
gramming Language

There are two major levels to parallelizing CLP systems.
One is the execution of the Inference Engines and the

Constraint Solvers in parallel. The other is the execu-

tion of a Constraint Solvers in parallel. There are sev-
eral works on the parallelization of CLP systems: a pro-
posal of ALPS [Maher 1987] introducing constraints into
committed-choice language, a report of some preliminary
experiments on integrating constraints into the PEPSys
parallel logic system [Van Hentenryck 1989], and a frame-
work of concurrent constraint (cc) language for integrat-
ing constraint programming with concurrent logic pro-
gramming languages [Saraswat 1989].

The cc programming language paradigm models com-
putation as the interaction among multiple cooperating
agents through the exchange of query and assertion mes-
sages into a central store as shown in Figure 4.

In Figure 4, query information to the central store is
represented as Ask and assertion information is repre-
sented as Tell.

This paradigm is embedded in a guarded (conditional)
reduction system, where the guards contain the queries
and assertions. Control is achieved by requiring that the
queries in a guard are true (entailed), and that the as-
sertions are consistent (satisfiable), with respect to the
current state of the store. Thus, this paradigm has high
affinity with KL1 [Ueda and Chikayama 1990}, our basic

parallel language.
Add constrain
—————P

Answer <)

constraint

Figure 4: The cc language schema

GDCC (Guarded Definite Clauses with Constraints),
which satisfies two level parallelism, is a parallel CLP

117

language introducing the framework of cc. It is imple-
mented in KL1 and is currently running on the Multi-
PSI machine. GDCC includes most of KL1, since KL1
built-in predicates and unification can be regarded as a
distinguished domain called HERBRAND [Saraswat 1989].

GDCC contains Store, a central database to save the
canonical forms of constraints. Whenever the system
meets an Ask or Tell constraint, the system sends it to
the proper solver. Ask constraints are only allowed pas-
sive constraints which can be solved without changing
the content of the Store. While in the Tell part, con-
straints which may change the Store can be written. In
the GDCC program, only Ask constraints can be written
in guards. This is similar to the KL1 guard in which
active unification is inhibited.

GDCC supports multiple plug-in constraint solvers so
that the user can easily specify a proper solver for a do-
main.

In this section, we briefly explain the language syntax
of GDCC and its computation model. Then, the outline
of the system is described. For further information about
the implementation and the language specification, refer
to [Terasaki et al. 1992].

4.1 GDCC language
A clause in GDCC has the following syntax:

Head :- Ask | Tell, Goal.

where, Head is a head part of a clause, “1” is a commit

operator, Goalis a sequence of predicate invocations, Ask
denotes Ask-constraints and invocations of KL1 built-in
guard predicates, and Tell means Tell-constraints.

A clause is entailed if and only if Ask is reduced to
true. Any clause with guards which cannot be reduced to
either true or false is suspended. The body part, the right
hand side of the commit operator, is evaluated if and
only if Askis entailed. Clauses whose guards are reduced
true are called candidate clauses. A GDCC program fails
when either all candidate clauses are rejected or there is
a failure in evaluating Tell or Goals.

The next program is pony_and_man written in GDCC:

pony_and_man(Heads,Legs,Ponies,Men) :- true |
alg# Heads= Ponies + Men,

alg# Legs= 4+*Ponies + 2*Men.

where, true is an Ask constraint which is always reduced
as true. In the body, equations which begin with alg# are
Tell constraints. alg# indicates that the constraints are
solved by the algebraic solver. In a body part, not only
Tell constraints but normal XL1 predicates can be writ-
ten as well. Bi-directionality in evaluation of constraints,
an important characteristic of CLP, is not spoiled by this
limitation. For example, the query
?- pony_and_man(5,14,Ponies,Men).
will return Ponies=2, and Men=3, and the query

118

?7- pony_and_man(Heads,Legs,2,3).
will return Heads=5, and Legs=14, same as in CAL.

4.2 GDCC system

The GDCC system consists of the compiler, the shell, the

interface and the constraint solvers. The compiler trans-
lates a GDCC source program into KL1 code. The shell
translates queries and provides rudimentary debugging
facilities. The debugging facilities comprise the standard
KL1 trace and spy functions, together with solver-level
event logging. The shell also provides limited support
for incremental querying. The interface interacts with a
GDCC program (object code), sends body constraints to
a solver and checks guard constraints using results from
a solver.

Query
GDCC | peipesine Constraint
Profiling
Shell Body constraints solver
<t ‘Answer constraints
Body constraints ’ :
Object y 0 | Interface fem—-o3 Constraint
Code Guard constraints NS solver
A Cache rules
y Solve guard constraints
Compiler Constraint
ompiie solver

GDCC source
Figure 5: Systemn Configuration of GDCC

The GDCC system is shown in Figure 5. The com-
ponents are concurrent processes. Specifically, a GDCC
program and the constraint solvers may execute in paral-
lel, synchronizing only when, and to the extent, necessary
at the program’s guard constraints. That is, program
execution proceeds by selecting a clause, and attempt-
ing to solve the guards of all its clauses in parallel. If
one guard succeeds, the evaluation of the other guards
is abandoned, and execution of the body can begin. In
parallel with execution of the body goals by the inference
engine, any constraints occurring in the body are passed
to the constraint solver as they are being produced by the
inference engine. This style of cooperation is very loosely
synchronized and more declarative than sequential CLP.

4.3 Block

In order to apply GDCC to problems such as handling
robot design problem [Sato and Aiba 1991], there were
two major issues: handling multiple environments and
synchronizing the inference engine with the constraint
solvers. For instance, when the solution X? = 2 is de-
rived from the algebraic solver, it must be solved in more
detail using a function to compute the approximate real

roots in univariate equations. There are two constraint
sets in this example, one includes X = /2 and the other
includes X = —+/2. In the CAL system, the system
selects one constraint set from these two and solves it,
then, the other is computed by backtracking (i. e. , a
system forces a failure). In committed-choice language
GDCC, however, we cannot use backtracking to handle
multiple environments. A similar problem occurs when a
meta operation to constraint sets is required such as when
computing a maximum value with respect to a given ob-
jective function. Before executing a meta operation, all
target constraints must be sent to the solver. In a se-
quential CLP, this can be controlled when this descrip-
tion is written in a program. While in GDCC, we need
another kind of mechanism to specify a synchronization
point, since the sequence of clauses in a program does
not relate to the execution sequence.

Introducing local constraint sets, however, which are
independent to the global ones, can eliminate these prob-
lems. Multiple environments are realized by considering
each multiple local constraint as one context. An infer-
ence engine and constraint solvers can be synchronized
after evaluating a local constraint set.

Therefore, we introduced a mechanism called block to
describe the scope of a constraint set. We can solve a
certain goal sequence with respect to a local constraint
set in a block. To encapsulate failure in a block, the
shoen mechanism of PIMOS [Chikayama et al. 1988] is
used.

‘5 Constraint Solvers and Paral-

lelization

In this section, constraint solvers for both CAL and
GDCC are briefly described. First, we describe the alge-
braic constraint solver for both CAL and GDCC. Then,
we describe two Boolean constraint solvers — one is a
solver utilizing the modified Buchberger algorithm and
the other is a solver utilizing the incremental Boolean
elimination algorithm. The former is for both CAL and
GDCC, while the later is for CAL alone. Third, an inte-
ger constraint solver for GDCC is described, and fourth,
a hierarchical constraint solver for CAL and GDCC is
described. In the next subsection,a set constraint solver
for CAL is described. And in the last subsection, a pre-
liminary consideration on efficiency improvement of the
algebraic constraint solver by applying dependency anal-
ysis of constraints.

All constraint solvers for CAL are written in ESP, and
those for GDCC are written in KL1.

5.1 Algebraic Constraint Solver

The constraint domain of the algebraic solver is multi-
variate (non-linear) algebraic equations. The Buchberger

algorithm [Buchberger 1985] is a method to solve non-
linear algebraic equations which have been widely used
in computer algebra over the past years.

Recently, several attempts have been made to paral-
lelize the Buchberger algorithm, with generally disap-
pointing results in absolute performance {Ponder 1990,
Senechaud 1990, Siegl 1990}, except in shared-memory
machines [Vidal 1990, Clarke et al. 1990]. We parallelize
the Buchberger algorithm while laying emphasis on abso-
lute performance and incrementality rather than on de-
ceptive parallel speedup. We have implemented several
versions and continue to improve the algorithm.

In this section, we outline both the sequential version
and the parallel version of the Buchberger algorithm.

5.1.1 Grobner base and Buchberger algorithm

Without loss of generality, we can assume that all poly-
nomial equations are in the form of p = 0. Let £ =
{p=0,...,pn=0} be a system of polynomial equations.
Buchberger introduced the notion of a Grébner base and
devised an algorithm to compute the basis of a given set
of polynomials. A rough sketch of the algorithm is as
follows (see [Buchberger 1985] for a precise definition).

Let a certain ordering among monomials and a system
of polynomials be given. An equation can be considered a
rewrite rule which rewrites the greatest monomial in the
equation to the polynomial consisting of the remaining
monomials. For example, if the ordering is Z > X >
B > A, a polynomial equation, Z— X+ B = A, can be
considered to be the rewrite rule, Z— X—B+A. A pair
of rewrite rules L; — Ry and L;-— R,, of which L; and
L are not mutually prime, is called a critical pair, since
the least common multiple of their left-hand sides can
be rewritten in two different ways. The S-polynomial of
such a pair is defined as:

Zcm(Ll,Lg) R lcm(Ll, Lg)
- {2

S-poly(Li, Lo) = Ry I, I

where lem (L, L2) represents the least common multi-
plier of L; and L,.

If further rewriting does not succeed in rewriting the
S-polynomial of a critical pair to zero, the pair is said to
be divergent and the S-polynomial is added to the sys-
tem of equations. By repeating this procedure, we can
eventually obtain a confluent rewriting system. The con-
fluent rewriting system thus obtained is called a Grébner
base of the original system of equations.

If a Grobner base does not have two rules, one of which
rewrites the other, the Grobner base is called reduced.
The reduced Grobner base can be considered a canonical
form of the given constraint set since it is unique with
respect to the given ordering of monomials. If all the
solutions of a equation f = 0 are included in the solution
set of E, then f is rewritten to zero by the Grdobner
base of £. On the contrary, if a set of polynomials F

119

has no solution, then the Grobner base of F includes
“1”. Therefore, this algorithm has good properties for
deciding the satisfiability of a given constraint set.

5.1.2 Parallel Algorithm

The coarse-grained parallelism in the Buchberger algo-
rithm, suitable for the distributed memory machine, is
the parallel rewriting of a set of polynomials. However,
since the convergence rate of the Buchberger algorithm
is very sensitive to the order in which polynomials are
converted into rules, implementation must carefully se-
lect small polynomials at an early stage. We have imple-
mented solvers in three different architectures; namely,
a pipeline, a distributed architecture, and a master-slave
architecture. We briefly mention here the master-slave
architecture since this solver has comparatively good per-
formance.
Figure 6 shows the architecture.

New rule
(global minimum)

Load balance info. Rule candidate

(local minimurm)

Slave

Subset of E
G(E)

Slave

Subset of E
G(E)

Figure 6: Architecture of master-slave type solver

The set of polynomials E is physically partitioned with
each slave taking a different part. The initial rule set of
G(E) is duplicated so that all slaves use the same rule
set. New polynomials are distributed to the slaves by the
master. The outline of the reduction cycle is as follows.

Each slave rewrites its own polynomials by the G(E),
selects the local minimum polynomial from them, and
sends its leading power product to the master. The mas-
ter processor waits for reports from all the slaves, and se-
lects the global minimum power products. The minimum
polynomial can be decided only after all slaves finish re-
porting to the master. A polynomial, however, which is
not the minimum can be decided quickly. Thus, the not-
minitnum message is sent to slaves as soon as possible,
and the processors that receive the not-minimum mes-
sage reduce polynomials by the old rule set while waiting
for a new rule. While the slave is receiving the minimum
message, the slave converts the polynomial into a new
rule and sends it to the master. The master sends the
new rule to all slaves except the owner. If more than one
candidate have equal power products, then all of these

120

candidates are converted to rules by slaves and they go
to final selection at the master.

Table 1 shows the results of the benchmark problems.
The problems are adopted from [Boege et al. 1986, Back-
elin and Froberg 1991]). Refer to [Terasaki et al. 1992]
for further details.

Table 1: Timing and speedup of the master-slave
arch.(unit:sec)
Processors
Problems 1 2 4 8 16

Katsura-4 890 . 7.00 5.83 6.53 9.26
1 1.27 1.53 1.36 0.96
Katsura-5 86.74 57.81 39.88 31.89 36.00
1 1.50 2.18 2.72 2.41
Cyc.5-roots 2758 21.08 19.27 19.16 25.20

1 1.31 1.43 1.44 1.10
1430.18 863.62 433.73 333.25 323.38

1 1.66 3.30 4.29 4.42

Cyc.6-roots

5.2 Boolean Constraint Solver

There are several algorithms that solve Boolean con-
straints, but we do not know so many that we can get
the canonical form of constraints, one that can calcu-
late solutions incrementally and that uses no parameter
variables. These criteria are important for using the al-
gorithm as a constraint solver, as we described in Section
2. First, we implemented the Boolean Buchberger algo-
rithm [Sato and Sakai 1988] for the CAL system, then
we tried to parallelize it for the GDCC system. This
algorithm satisfies all of these criteria. Moreover, we de-
veloped another sequential algorithm named Incremental
Boolean elimination, that also satisfies all these criteria,
and we implemented it for the CAL system.

5.2.1 Constraint Solver by Buchberger Algo-

rithm

We first developed a Boolean constraint solver based on
the modified Buchberger algorithm called the Boolean
Buchberger algorithm [Sato and Sakai 1988, Aiba. et al.
1988]. Unlike the Buchberger algorithm, it works on the
Boolean ring instead of on the field of complex numbers.
It calculates the canonical form of Boolean constraints
called the Boolean Grobner base. The constraint solver
first transforms formulas including some Boolean opera-
tors such as inclusive-or (V) and/or not (=) to expres-
sions on the Boolean ring before applying the algorithm.

We parallelized the Boolean Buchberger algorithm in
KL1. First we analyzed the execution of the Boolean
Buchberger algorithm on CAL for some examples, then
we found the large parts that may be worth parallelizing,
rewriting formulas by applying rules. We also tried to
find parts in the algorithm which can be parallelized by
analyzing the algorithm itself. Then, we decided to adopt
a master-slave parallel execution model.

In a master-slave model, one master processor plays
the role of the controller and the other slave processors
become the reducers. The controller manages Boolean
equations, updates the temporary Grobner bases (GB)
stored in all slaves, makes S-polynomials and self-critical
pair polynomials, and distributes equations to the reduc-
ers. Each reducer has a copy of GB and reduces equa-
tions which come from the controller by GB, and returns
non-zero reduced equations to the controller. When the
controller becomes idle after distributing equations, the
controller plays the role of a reducer during the process
of reduction.

For the 6-queens problem, the speedup ratio of 16 pro-
cessors to a single processor is 2.96. Because the parallel
execution part of the problem is 77.7% of whole execu-
tion, the maximum speedup ratio is 4.48 in our model.
The difference is due to the task distribution overhead,
the update of GB in each reducer, and the imbalance of
distributed tasks.

Then, we improved our implementation so as not to
make redundant critical pairs. This improvement causes
the ratio of parallel executable parts to decrease, so the
improved version becomes faster than the original ver-
sion, but the speedup ratio of 16 processors to a single
processor drop to 2.28.

For more details on the parallel algorithm and results,
refer to [Terasaki et al. 1992].

5.2.2 Constraint Solver by Incremental Boolean
Elimination Algorithm

Boolean unification and SL-resolution are well known
as Boolean constraint solving algorithms other than the
Boolean Buchberger algorithm. Boolean unification is
used in CHIP [Dincbas et al. 1988] and SL-resolution
is used in Prolog III [Colmerauer 1987]. Boolean uni-
fication itself is an efficient method. It becomes even
more efficient using the binary decision diagrams (BDD)
as data structures to represent Boolean formulas. Be-
cause the solutions by Boolean unification include extra
variables introduced during execution, it cannot calcu-
late any canonical form of the given constraints if we
execute it incrementally. For this reason, we developed
a new algorithm, Incremental Boolean elimination. As
with the Boolean unification, this algorithm is based on
Boole’s elimination, but it introduces no extra variables,
and it can calculate a canonical form of the given Boolean
constraints.

We denote Boolean variables by z,y,z,..., and
Boolean polynomials by A, B,C,.... We represent all
Boolean formulas only by logical connectives and (x) and
exclusive-or (4). For example, we can represent Boolean
formulas FAG, FVG and ~Fby FX G, FxG+F+G
and F 4+ 1. We use the expression F,_¢g to represent the
formula obtained by substituting all occurrences of vari-
able z in formula F with formula G. We omit x symbols

as usual when there is no confusion. We assume that
there is a total order over variables.

We define the normal Boolean polynomials recursively
as follows.

1. The two constants 0, and 1 are normal.

2. If two normal Boolean polynomials A and B consist
of only variables smaller than z, then Az + B is
normeal, and we denote it by Az @ B. We call A the
coefficient of .

If variable « is at a maximum in formula F, then we can
transform F to the normal formula (Fy_o+ Fr1)T® Fr=o.
Hence we assume that all polynomials are normal.

Boole’s elimination says that if a Boolean formula F
is 0, then Fy—g X Fy=; (= G) is also 0. Because G does
not include z, if F includes z, then G includes fewer
variables than F. Similarly we can get polynomials with
fewer variables gradually by Boole’s eliminations.

Boolean unification unifies with (Fo—o+ Fpoy +1)u+
F,_q after eliminating variable z from formula F, where
u is a free extra variable. This unification means the
substitution z with (Fyr=q+ Fyz=1+1)u+ Fy—o, when a new
Boolean constraint with variable z is given, the result
of the substitution contains u instead of z. Therefore,
Boolean unification unifies u with a formula with another
extra variable.

Incremental Boolean elimination applies the following
reduction to every formula instead of transforming F = 0
to z = (Fpeo + Froq + 1)u + Fi—o and unifying z with
(Fr=0 4+ Fi=1+ 1)u + Fz=o. That is why the Incremental

Boolean elimination needs no extra variables.

Reduction A formula Cz (C # 1) is reduced by the
formula Az @ B = 0 shown below. This reduction tries
to reduce the coefficient of z to 1 if possible, otherwise it
tries to reduce it to the smallest formula possible.

Cz—z+BC+ B
Cz — (A+1)Cz+ BC

(AC+A+C=1)
(otherwise)

When a new Boolean constraint is given, the following
operation is executed, since Incremental Boolean elimi-
nation does not execute unification.

Merge Operation Let Cz ® D = 0 be a new con-
straint, and suppose that we have a constraint Az® B =
0. Then we make the merged constraint (AC+A+C)z &
(BD 4+ B + D) = 0 the new solution. If the normal form
of ACD 4+ BC 4+ CD + D is not 0, we successively apply
the merge operation to it.

This operation is an expansion of Boole’s elimination.
That is, if we have no constraint yet, we can consider A
and B as 0. In this case, the merge operation is the same
as Boole’s elimination.

121

Example Consider the following constraints. Exactly
one of five variables a, b, ¢, d, e (a < b<c<d<e)is 1.

aANb=0, aAc=0, aAd=0, ahe=0, bAc=0,
bAd=0, bAe=0, cAd=0, cAhe=0, dAe=0,
aVbVeVdve=1 '

By Incremental Boolean elimination, we can obtain the
following canonical solution.

e = d+c+b+a+1
(c+d+a)yxd = 0
(b+a)xec = 0
axbdb =0

The solution can be interpreted as follows. Because the
solution does not have an equation of the form Axa = B,
variable a is free. Because a x b = 0, if a = 1 then
the variable b is 0. Otherwise b is free. The discussion
continues and, finally, because e = d+c+b+a+1,if a,
b, ¢, d are all 0, then variable e is 1. Otherwise e is 0.

By assignment of 0 or 1 to all variables in increasing
order of < under a solution by Boolean Incremental elim-
ination, we can easily obtain any assignments that satisfy
the given constraints. Thus, by introducing an adequate
order to variables, we can obtain a favorite enumeration
of assignments satisfy the given constraints.

5.3 Integer Linear Constraint Solver

The constraint solver for the integer linear domain checks
the consistency of the given equalities and inequalities of
the rational coefficients, and, furthermore, gives the max-
imum or minimum values of the objective linear func-
tion under these constraint conditions. The purpose of
this constraint solver is to provide an efficient constraint
solver for the integer optimization domain by achieving
a computation speedup incorporating parallel execution
into the search process.

The integer linear solver utilizes the rational linear
solver (parallel linear constraint solver) for the optimiza-
tion procedure to obtain an evaluation of relaxed linear
problems created in the course of its solution. A rational
linear solver is realized by the simplex algorithm. We im-
plemented the integer linear constraint solver for GDCC.

5.3.1 Integer Linear Programming and Branch
and Bound Method

In the following, we discuss a parallel search method
employed in this integer linear constraint solver. The
problem we are addressing is a mixed integer programm-
ing problem, namely, to find the maximum or minimum
value of a given linear function under the integer linear
constraints.

The problem can be defined as follows: The problem is
to minimize the following objective function on variables

122

z; which run on real numbers, and variables y; which run
on integers:

n m
z=zpi2i+296yi
i=1

i=1

under the linear constraint conditions:

—~

n m
Za;jz;+2b;jy526;, forj=1,...,

i=1 =1

n m
Zcijxg-FZd.‘jy;:fj, fOl‘j= 1,...,k,

i=1 i=1

where
z; € R, andz; > 0, fori=1,...,n
yi € Z, where I; <y; <u;,
Liuje Z, fori=1,...,m
and

aj, bij, cij, dij, ei, fi are real constants.

The method we use is the Branch-and-Bound algo-
rithm. Our algorithm checks in the first place the solu-
tion of the original problem without requiring variables
y; in the above to take integer value. We call this prob-
lem a continuously relaxed problem. If the continuously
relaxed problem does not have an integer solution, then
we proceed by dividing the original problem into two sub-
problems successively, producing a tree structured search
space.

Continuously relaxed problems can be solved by the
simplex algorithm, and if the original integer variables
have exact integer values, then it yields the solution to
the integer problem. Otherwise, we select an integer vari-
able y, which takes a non-integer value g, for the solution
of continuously relaxed problems, and imposes two differ-
ent interval constraints derived from neighboring integers
of the value 7,, I, <y, <[7;] and (7] + 1 <ys <u, to the
already existing constraints, and obtains two child prob-
lems (See Figure 7). Continuing this procedure, which
is called branching, we go on dividing the search space
to produce more constrained sub-problems. Eventually
this process leads to a sub-problem with the continuous
solution which is also the integer solution of the problem.
We can select the best integer solution from among those
found in the process.

While the above branching process only enumerates in-
teger solutions, if we have a measure to guarantee that a
sub-problem cannot have a better solution compared to
the already obtained integer solution in terms of the op-
timum value of the objective function, then we can skip
that sub-problem and only need to search the rest of the
nodes. Continuously relaxed problems give a measure for
this, since these relaxed problems always have better op-
timum values for the objective function than the original
integer problems. Sub-problems whose continuously re-
laxed problems have no better optimum than the integer

Q &
/ \l’;Syssuf
7O QO #

<y, <[7*]
75 = [g%]

[75]+1 <y, <u*
7¥' = [g¥]+1

TFigure 7: Branching of Nodes

solution obtained already cannot give a better optimum
value, which means it is unnecessary to search further
(bounding procedure).

We call these sub-problems obtained through the
branching process search nodes.

The following two important factors decide the order in
which the sequential search process goes through nodes
in the search space:

1. The priorities of sub-problems(nodes) in deciding
the next node on which the branching process works.

2. Selection of a variable out of the integer variables
with which the search space is divided.

It is preferable that the above selections are done in

" such a way that the actual nodes searched in the process

of finding the optimal form as small a part of the total
search space as possible. We adopted one of the best
heuristics of this type from operations research as a basis
of our parallel algorithm([Benichou et al. 1971]).

5.3.2 Parallelization of Branch-and-Bound
Method

As a parallelization of the Branch-and-Bound algorithm,
we distribute search nodes created through the branching
process to different processors, and let these processors
work on their own sub-problems following a sequential
search algorithm. Each sequential search process com-
municates with other processes to transmit information
on the most recently found solutions and on pruning sub-
nodes, thus making the search proceed over a network of
processors. We adopted one of the best search heuristics
used in sequential algorithms. Heuristics are used for
controlling the schedule of the order of sub-nodes to be
searched, in order to reduce the number of nodes needed
to get to the final result. Therefore, it is important in de-
signing parallel versions of search algorithms to balance
the distributed load among processors, and to communi-
cate information for pruning as fast as possible between
these processors.

We considered a parallel algorithm design derived from
the above sequential algorithm to be implemented on the
distributed memory parallel machine Multi-PSI.

Our parallel algorithm exploits the independence of
many sub-processes created through the branching pro-
cedure in the sequential algorithm and distributes these
processes to different processors (see Figure 8). Schedul-
ing of sub-problems is done by the use of the priority
control facility provided from the KL1 language (See[Oki
et al. 1989]). The incumbent solutions are transferred
between processors as global data to be shared so that
each processor can update the current incumbent solu-
tion as soon as possible.

C
7

PE-n

Figure 8: Generation of Parallel Processes

5.3.3 Experimental Results

We implemented the above parallel algorithm in the KL1
language and experimented with the job-shop scheduling
problem as an example of mixed-integer problems. Be-
low are the results of computation speedups for a “4 job
3 machine” problem and the total number of searched
nodes to get to the solution.

Table 2: Speedup of the Integer Linear Constraint Solver

processors 1 2 4 8
speedup 10 15 19 23
number of nodes | 242 248 395 490

The above table shows the increase of the number of
searched nodes as the number of processors grows. This
is for one reason because of the speculative computa-
tion inherent in this type of parallel algorithm. Another
reason is that the communication latency produces un-
necessary computation which could have been avoided if
incumbent solutions are communicated instantaneously
from the other processor and the unnecessary nodes are
pruned.

123

It is in this way that we get the problem in parallel
programming of how to reduce the growth in size of the
total search space when multi-processors are used com-
pared with that traversed on one processor using sequen-
tial algorithms.

5.4 Hierarchical Constraint Solver

Soft Constraints and Constraint Hierar-
chies

5.4.1

We have proposed a logical foundation of soft constraints
in [Satoh 1990] by using a meta-language which expresses
interpretation ordering. The idea of formalizing soft con-
straints is as follows. Let hard constraints be represented
in first-order formulas. Then an interpretation which sat-
isfies all of these first-order formulas can be regarded as
a possible solution and soft constraints can be regarded
as an order over those interpretations because soft con-
straints represent criteria applying to possible solutions
for choosing the most preferred solutions. We use a meta-
language which represents a preference order directly.
This meta-language can be translated into a second-order
formula to provide a syntactical definition of the most
preferred solutions.

Although this framework is rigorous and declarative,
it is not computable in general because it is defined by a
second-order formula. Therefore, we have to restrict the
class of constraints so that these constraints are com-
putable.

Therefore, we introduce the following restriction to
make the framework computable.

1. We fix the considered domain so that interpretations
of domain-dependent relations are fixed.

2. Soft and hard constraints consist of domain-
dependent relations only.

If we accept this restriction, the soft constraints can
be expressed in a first-order formula. Moreover, there
is a relationship between the above restricted class of
soft constraints and hierarchical CLP languages (HCLP
languages) [Borning et al. 1989, Satoh and Aiba 1990b],
as shown in {Satoh and Aiba 1990a).

HCLP language is a language augmenting CLP lan-
guage with labeled constraints. An HCLP program con-
sists of rules of the form:

h - byynby
where h is a predicate, and by,...,b, are predicate in-
vocations or constraints or labeled constraints. Labeled
constraints are of the form:
label C

where C is a constraint in which only domain-dependent
functional symbols can be functional symbols and label
is a label which expresses the strength of the constraint
C.

As shown in [Satoh and Aiba 1990a], we can calculate
the most preferable solutions by constraint hierarchies

124

in the HCLP language. Based on this correspondence,
we have implemented an algorithm for solving constraint
hierarchy on the PSI machine with the following features.

1. There are no redundant calls of the constraint solver
for the same combination of constraints since it cal-
culates reduced constraints in a bottom-up manner.

2. If an inconsistent combination of constraints is found
by calling the constraint solver, it is registered as a
nogood and is used for detecting further contradic-
tion. Any extension of the combination will not be
processed so as to avoid unnecessary combinations.

3. Inconsistency is detected without a call of the con-
straint solver if a processed combination subsumes a

" registered nogood.

In [Borning et al. 1989], Borning et al. give an algo-
rithm for the solving constraint hierarchy. However, it
uses backtracking to get an alternative solution and so
may r