ICON/UXB
Operating System
Reference
Manual

Volume 3

ICON
INTERNATIONAL

P.O. Box 340
Orem, Utah 84059
(801) 225-6888

NS

T
~
. N
/ n
\\ s

OPERATING SYSTEM REFERENCE MANUAL

ICON/UXB

Supplementary
Documents

Volume 3

© 1988 Icon International, Inc.
All rights reserved worldwide.

Copyright © 1987 Icon International, Inc. All rights reserved. No part of this
manual shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from Icon International, Inc. While every precaution has
been taken in the preparation of this manual, Icon International assumes no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

Copyright 1979, 1980 Regents of the University of California. Permission to
copy these documents or any portion thereof as necessary for licensed use of the
software is granted to licensees of this software, provided this copyright notice
and statement of permission are included.

The document “Writing Tools — The STYLE and DICTION Programs is
copyrighted 1979 by Bell Telephone Laboratories. Holders of a UNIX® /32V
software license are permitted to copy this document, or any portion of it, as
necessary for licensed use of the software, provided this copyright notice and
statement of permission are included.

The document “The Programming Language EFL” is copyrighted 1979 by Bell
Telephone Laboratories. EFL has been approved for general release, so that one
may copy it subject only to the restriction of giving proper acknowledgement to
Bell Telephone Laboratories.

This manual reflects system enhancements made at Berkeley and sponsored in
part by NSF Grants MCS-7807291, MCS-8005144, and MCS-74-07644-A04; DOE
Contract DE-AT03-76SF00034 and Project Agreement DE-AS03-79ER10358; and
by Defense Advanced Research Projects Agency (DoD) ARPA Order No. 4031,
Monitored by Naval Electronics Systems Command under Contract No.
N00039-80-K-0649.

This manual was prepared by the Documentation Group of Icon International,
Inc., P.O. Box 340, Orem, UT 84057-0340. A form for reader’s comments has
been provided at the back of this publication. Comments are welcomed and
may be sent to the above address. Users who respond will be entitled to free
updates of this manual for one year.

Revision B
Order Number 172-022-004 (Manual Assembly)
Order Number 171-070-004 (Pages Only)

Printed in the U.S.A.

IC@N is a registered trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.

7N

po—

s

Change Record Page

Manual Part No.

172-022-004

Date |Revision Description Pages Affected
Jan. 1987 A Initial production release All
Nov. 1987 B Incorporate additions of new Main cover, titlepage, Table of Contents,

supplementary documentation
included in Releases 2.16, 3.0,
and 3.1 of the ICON/UXB
Operating System

additions of the following documents:
"PROC286 Software Support and the Dosc
Command under ICON/UXB", "An Introduc-
tion to the Revision Control System",
"Technical Note on ICON/UXB Magnetic
Tape Support”

ICON/UXB Operating System Reference Manual
Volume 3 — Supplementary Documents
Icon International, Inc.

October, 1987

This volume contains documents which supplement the information in Volume 1 of
the ICON/UXB Operating System Reference Manual, for the ICON version of the UNIX®
operating system as distributed by U.C. Berkeley. The documents within this volume
are grouped into the areas of system administration, languages, and supporting tools.
This manual is a logical extension of Volume 2 of the ICON/UXB Operating System
Reference Manual,

System Administration
40. 4.2BSD System Manual. W.N. Joy, E. cooper, R.S. Fabry, S.J. Leffler, MK.
McKusick, and D. Mosher.
A concise, though terse, description of the system call interface provided in
4.2BSD. This will never be a best seller.
41. Fsck — The UNIX File System Check Program. M.K. McKusick and T.J. Kowal-
ski.
A reference document for use with the fsck program during times of file sys-
tem distress.

42. 4.2BSD Line Printer Spooler Manual. R. Campbell.
This document describes the structure and installation procedure for the line
printer spooling system.

43. A Fast File System for UNIX. M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S.
Fabry.

A description of the new file system organization design and implementation.

44. 4.2BSD Networking Implementation Notes. S.J. Lefler, W.N. Joy, and R.S. Fabry.
A concise description of the system interfaces used within the networking
subsystem.

45. Disc Quotas in a UNIX Environment. R. Elz.
A light introduction to the care and feeding of the facilities which can be
used in limiting disc resources.

46. Sendmail Installation and Operation Guide. E. Allman.
The last word in installing and operating the sendmail program.

47. Sendmail — An Internetwork Mail Router. E. Allman.
An overview document on the design and implementation of sendmazl.

ICON INTERNATIONAL iii

48.

49.

50.

51.

52.

53.

UNIX Implementation. K. Thompson.
How the system actually works inside.

The UNIX I/O System. D.M. Ritchie.
How the I/O system really works.

On the Security of UNIX. D.M. Ritchie.
Hints on how to break the UNIX® operating system and how to avoid doing
s0.

Password Security: A Case History. R.H. Morris and K. Thompson.
How the bad guys used to be able to break the password algorithm, and why
they can’t now, at least not so easily.

A Dial-Up Network of UNIX Systems. D.A. Nowitz and M.E. Lesk.
Describes UUCP, a program for communicating files between computer sys-
tems using the UNIX® operating system.

UUCP Implementation Description. D.A. Nowitz.
How UUCP works, and how to administer it.

Languages

54.

55.

56.

57.

58.

59.

61.

62.

iv

The “C” Programming Language — Reference Manual. D.M. Ritchie.
Official statement of the syntax and semantics of “C’. Should be supple-
mented by The C Programming Language, B.W. Kernighan and D.M.
Ritchie, Prentice—Hall, 1978, which contains a tutorial introduction and
many examples.

Lint, A “C” Program Checker. S.C. Johnson.
Checks “C” programs for syntax errors, type violations, portability problems,
and a variety of probable errors.

A Tour Through the UNIX “C” Compiler. D.M. Ritchie.
How the UNIX® operating system ‘“C”’ compiler works inside.

A Tour Through the Portable “C” Compiler. S.C. Johnson.
How the portable “C” compiler works inside.

A Portable Fortran 77 Compiler. S.I. Feldman and P.J. Weinberger.
The first Fortran 77 compiler, and still one of the best. This version reflects
the ongoing work at U.C. Berkeley.

Introduction to the {77 I/O Library. D.L. Wasley.
A description of the revised input/output library for Fortran 77. This docu-
ment reflects the work carried out at U.C. Berkeley.

Berkeley Pascal User’s Manual. W.N. Joy, S.L. Graham, C.B. Haley, MK.

McKusick, and P.B. Kessler.
An interpretive implementation of the reference language.

Berkeley Pascal PX Implementation Notes. W.N. Joy and M.K McKusick.
Describes the implementation of the pz interpreter which translates Pascal
binary code generated by the Pascal translator pi.

The Programming Language EFL. S.I. Feldman.

An introduction to a powerful FORTRAN preprocessor providing access to a
language with structures much like “C”.

ICON INTERNATIONAL

FEERN

N

63. Berkeley FP User’s Manual. S. Baden.

A description of the Berkeley implementation of Backus’ Functional Pro-
gramming Language, FP.

Supporting Tools

64.

65.

66.

67.

68.

69.

70.

71.

72

73.

74.

75.

YACC — Yet Another Compiler—Compiler. S.C. Johnson.
Converts a BNF specification of a language and semantic actions written in
“C” into a compiler of the language.

LEX — A Lexical Analyzer Generator. M.E. Lesk and E. Schmidt.
Creates a recognizer for a set of regular expressions, each regular expression

can be followed by arbitrary “C” code which will be executed when the regu-
lar expression is found.

RATFOR — A Preprocessor for a Rational Fortran. B.W. Kernighan.
Converts a Fortran with “C”—like control structures and cosmetics into real,
ugly Fortran.

The M4 Macro Processor. B.W. Kernighan and D.M. Ritchie.
M4 is a macro processor useful as a front end for “C”, Ratfor, Cobol, and in
it own right.

SED — A Non-Interactive Text Editor. L.E. McMahon.
A variant of the editor for processing large inputs.

AWK — A Pattern Scanning and Processing Language. A.V. Aho, BW. Ker-
nighan, and P.J. Weinberger.
Makes it easy to specify many data transformation and selection operations.

DC — An Interactive Desk Calculator. R.H. Morris and L.L. Cherry.
A super HP calculator, if you don’t need floating point.

BC — An Arbitrary Precision Desk Calculator Language. L.L. Cherry and R.H.
Morris.
A front end for DC that provides infix notation, control flow, and built-in
functions.

PROC286 Software Support and the Dosc Command under ICON/UXB. M.
Mubhlestein.
Describes the implementation of dosc and related software for the ICON
computer systems. Intended to assist developers and system administrators
in understanding the interface between ICON’s UNIX and MS-DOS operating
system environment.

JOVE Manual for UNIX Users. J. Payne. (4.2BSD Revision by D. Kingston and
M. Seiden.
JOVE is an advanced, self-documenting, customizable real time display edi-
tor. This manual, and the tutorial introduction, is based on the original
EMACS editor and user manuals written at M.I.T. by Richard Stallman.

An Introduction to the Revision Control System — Revised. W.F. Tichy.
Describes the benefits of using a source code control system to manage
software libraries. Includes a tutorial introduction to the use of RCS.

Technical Note on ICON/UXB Magnetic Tape Support. M. Muhlestein.

Describes certain special features of ICON/UXB (Icon’s version of UNIX
4.2BSD) support for magnetic tape.

ICON INTERNATIONAL v

4.2BSD System Manual

Revised July, 1983

William Joy, Eric Cooper, Robert Fabry,
Samuel Leffler, Kirk McKusick and David Mosher

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

(415) 642-7780

ABSTRACT

This document summarizes the facilities provided by the 4.2BSD version of
the UNIX operating system. It does not attempt to act as a tutorial for use of the
system nor does it attempt to explain or justify the design of the system facilities.
It gives neither motivation nor implementation details, in favor of brevity.

The first section describes the basic kernel functions provided to a UNIX
process: process naming and protection, memory management, software interrupts,
object references (descriptors), time and statistics functions, and resource controls.
These facilities, as well as facilities for bootstrap, shutdown and process account-
ing, are provided solely by the kernel.

The second section describes the standard system abstractions for files and
file systems, communication, terminal handling, and process control and debug-
ging. These facilities are implemented by the operating system or by network
Server processes.

* UNIX is a trademark of Bell Laboratories.

4.2BSD System Manual -i-

TABLE OF CONTENTS

Introduction.
0. Notation and types
1. Kernel primitives

1.1. Processes and protection
.1. Host and process identifiers
.2. Process creation and termination
.3. User and group ids
.4. Process groups

1.2. Memory management
.1. Text, data and stack
.2. Mapping pages
.3. Page protection control
4. Giving and getting advice

1.3. Signals

Overview

Signal types

Signal handlers

Sending signals
Protecting critical sections
Signal stacks

> ok oo b

1.4. Timing and statistics
.1. Real time
.2. Interval time

1.5. Descriptors

The reference table

Descriptor properties
Managing descriptor references
Multiplexing requests
Descriptor wrapping

v o b

1.8. Resource controls
.1. Process priorities
.2. Resource utilization
.3. Resource limits

1.7. System operation support
.1. Bootstrap operations
.2. Shutdown operations
.3. Accounting

CSRG TR/5 — September 1, 1982 --

Contents

Joy, et. al.

4.2BSD System Manual -ii-

2. System facilities

2.1. Generic operations
.1. Read and write
.2. Input/output control
.3. Non-blocking and asynchronous operations

2.2. File system
.1 Overview
.2. Naming
.3. Creation and removal

3.1
3.2,
3.3.
.34.
3.6.

N> -

Directory creation and removal
File creation

Creating references to devices
Portal creation

File, device, and portal removal

Reading and modifying file attributes
Links and renaming

Extension and truncation

Checking accessibility

Locking

Disc quotas

2.3. Inteprocess communication
.1. Interprocess communication primitives

1.1,
1.2,
1.3.
1.4,
1.5,
.1.6.
1.7,
.1.8.
1.9.
.1.10.

Communication domains

Socket types and protocols

Socket creation, naming and service establishment
Accepting connections

Making connections

Sending and receiving data

Scatter/gather and exchanging access rights
Using read and write with sockets

Shutting down halves of full-duplex connections
Socket and protocol options

.2. UNIX domain

2.1,
2.2
23.

Types of sockets
Naming
Access rights transmission

.3. INTERNET domain

3.1,
3.2,
.3.3.
3.4.

Socket types and protocols
Socket naming

Access rights transmission
Raw access

2.4. Terminals and devices
.1. Terminals

1.1,

111
1.1.2
1.1.3

1.2
.1.3.
14,

Terminal input
Input modes
Interrupt characters
Line editing
Terminal output
Terminal control operations
Terminal hardware support

.2. Structured devices

CSRG TR/5 — September 1, 1982 --

Contents

Joy, et. al.

4.2BSD System Manual - iii -

.3. Unstructured devices
2.5. Process control and debugging

L. Summary of facilities

CSRG TR/5 — September 1, 1982 --

Contents

Joy, et. al.

\\,/'/‘

C

4.2BSD System Manual -1- Contents

0. Notation and types

The notation used to describe system calls is a variant of a C language call, consisting of a
prototype call followed by declaration of parameters and results. An additional keyword result,
not part of the normal C language, is used to indicate which of the declared entities receive results.
As an example, consider the read call, as described in section 2.1:

cc = read(fd, buf, nbytes);
result int cc; int fd; result char *buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the second
line cc is an integer and read also returns information in the parameter buf.

Description of all error conditions arising from each system call is not provided here; they
appear in the programmer’s manual. In particular, when accessed from the C language, many calls
return a characteristic -1 value when an error occurs, returning the error code in the global vari-
able errno. Other languages may present errors in different ways.

A number of system standard types are defined in the include file <sys/types.h>> and used
in the specifications here and in many C programs. These include caddr_t giving a memory
address (typically as a character pointer), off_t giving a file offset (typically as a long integer), and
a set of unsigned types u_char, u_short, u_int and u_long, shorthand names for unsigned
char, unsigned short, etc.

CSRG TR/5 -- September 1, 1982 - Joy, et. al.

4.2BSD System Manual -2- Kernel primitives

1. Kernel primitives

The facilities available to a UNIX user process are logically divided into two parts: kernel
facilities directly implemented by UNIX code running in the operating system, and system facilities
implemented either by the system, or in cooperation with a server process. These kernel facilities
are described in this section 1.

The facilities implemented in the kernel are those which define the UNIX virtual machine
which each process runs in. Like many real machines, this virtual machine has memory manage-
ment hardware, an interrupt facility, timers and counters. The UNIX virtual machine also allows
access to files and other objects through a set of descriptors. Each descriptor resembles a device
controller, and supports a set of operations. Like devices on real machines, some of which are
internal to the machine and some of which are external, parts of the descriptor machinery are
built-in to the operating system, while other parts are often implemented in server processes on
other machines. The facilities provided through the descriptor machinery are described in section
2.

CSRG TR/5 -- September 1, 1982 - Joy, et. al.

C

4.2BSD System Manual -3- Processes and protection

1.1. Processes and protection

1.1.1. Host and process identifiers
Each UNIX host has associated with it a 32-bit host id, and a host name of up to 255 char-
acters. These are set (by a privileged user) and returned by the calls:

sethostid(hostid)
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len)
char *name; int len;

len = gethostname(buf, buflen)
result int len; result char *buf; int bufien;

On each host runs a set of processes. Each process is largely independent of other processes, hav-
ing its own protection domain, address space, timers, and an independent set of references to sys-
tem or user implemented objects.

Each process in a host is named by an integer called the process 1d. This number is in the
range 1-30000 and is returned by the getpid routine:

pid = getpid();
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the
(bostid, process id) pairs are guaranteed unique.

1.1.2. Process creation and termination
A new process is created by making a logical duplicate of an existing process:
pid = fork();
result int pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of the
child, and once in the child process where pid is 0. The parent-child relationship induces a
hierarchical structure on the set of processes in the system.

A process may terminate by executing an ezt call:

exit(status)
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives information
about any event which caused termination of the child process. A second call provides a non-
blocking interface and may also be used to retrieve information about resources consumed by the
process during its lifetime.

CSRG TR/5 - September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -4- Processes and protection

#include <sys/wait.h>

pid = wait(astatus);
result int pid; result union wait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus *astatus;
int options; result struct rusage *arusage;

A process can overlay itself with the memory image of another process, passing the newly
created process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system, either a binary
executable file or a file which causes the execution of a specified interpreter program to process its
contents.

1.1.3. User and group ids

Each process in the system has associated with it two user-id’s: a real user id and a effective
user td, both non-negative 16 bit integers. Each process has an real accounting group ¢d and an
effective accounting group id and a set of access group td’s. The group id’s are non-negative 16 bit
integers. Each process may be in several different access groups, with the maximum concurrent
number of access groups a system compilation parameter, the constant NGROUPS in the file
<sys/param.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:
ruid = getuid();
result int ruid;
euid = geteuid();
result int euid;
the real and effective accounting group ids by:
rgid = getgid();
result int rgid;
egid = getegid();
result int egid;
and the access group id set is returned by a getgroups call:
ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset|gidsetsize];

The user and group id’s are assigned at login time using the setreuid, setregid, and setgroups
calls:

CSRG TR/5 — September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -5- Processes and protection

setreuid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset)
int gidsetsize; int gidset|gidsetsize];

The setreutd call sets both the real and effective user-id’s, while the setregid call sets both the real
and effective accounting group id’s. Unless the caller is the super-user, rutd must be equal to either
the current real or effective user-id, and rg¢d equal to either the current real or effective accounting
group id. The setgroups call is restricted to the super-user.

1.1.4. Process groups

Each process in the system is also normally associated with a process group. The group of
processes in a process group is sometimes referred to as a job and manipulated by high-level system
software (such as the shell). The current process group of a process is returned by the getpgrp call:

pgrp = getpgrp(pid);
result int pgrp; int pid;

When a process is in a specific process group it may receive software interrupts affecting the group,
causing the group to suspend or resume execution or to be interrupted or terminated. In particu-
lar, a system terminal has a process group and only processes which are in the process group of the
terminal may read from the terminal, allowing arbitration of terminals among several different
jobs. :

The process group associated with a process may be changed by the sefpgrp call:

setpgrp(pid, pgrp);
int pid, pgrp;

Newly created processes are assigned process id’s distinct from all processes and process groups,
and the same process group as their parent. A normal (unprivileged) process may set its process
group equal to its process id. A privileged process may set the process group of any process to any
value.

CSRG TR/5 — September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -6- Memory managementt

1.2. Memory managementt

1.2.1. Text, data and stack

Each process begins execution with three logical areas of memory called text, data and stack.
The text area is read-only and shared, while the data and stack areas are private to the process.
Both the data and stack areas may be extended and contracted on program request. The call
addr = sbrk(incr);
result caddr_t addr; int incr;

changes the size of the data area by sner bytes and returns the new end of the data area, while

addr = sstk(incr);
result caddr_t addr; int incr;
changes the size of the stack area. The stack area is also automatically extended as needed. On

the VAX the text and data areas are adjacent in the PO region, while the stack section is in the P1
region, and grows downward.

1.2.2. Mapping pages

The system supports sharing of data between processes by allowing pages to be mapped into
memory. These mapped pages may be shared with other processes or private to the process. Pro-
tection and sharing options are defined in <mman.h> as:

/* protections are chosen from these bits, or-ed together */

#define PROT_READ Ox4 /* pages can be read */
#define PROT_WRITE 0x2 /* pages can be written */
#define PROT_EXEC 0x1 /* pages can be executed */
/* sharing types; choose either SHARED or PRIVATE */

##define MAP_SHARED 1 /* share changes */
#define MAP_PRIVATE 2 /* changes are private */

The cpu-dependent size of a page is returned by the getpagesize system call:

pagesize = getpagesize();
result int pagesize;

The call:

mmap(addr, len, prot, share, {d, pos);
caddr_t addr; int len, prot, share, {d; ofi_t pos;

causes the pages starting at addr and continuing for len bytes to be mapped from the object
represented by descriptor fd, at absolute position pos. The parameter share specifies whether
modifications made to this mapped copy of the page, are to be kept private, or are to be shared
with other references. The parameter prot specifies the accessibility of the mapped pages. The
addr, len, and pos parameters must all be multiples of the pagesize.

A process can move pages within its own memory by using the mremap call:

mremap(addr, len, prot, share, fromaddr);
caddr_t addr; int len, prot, share; caddr_t fromaddr;

This call maps the pages starting at fromaddr to the address specified by addr.

t This section represents the interface planned for later releases of the system. Of the calls described in this sec
tion, only sbrk and getpagesize are included in 4.2BSD.

CSRG TR/5 — September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -7- Memory managementt

A mapping can be removed by the call

munmap(addr, len);
caddr_t addr; int len;

This causes further references to these pages to refer to private pages initialized to zero.

1.2.3. Page protection control
A process can control the protection of pages using the call

mprotect(addr, len, prot);
caddr_t addr; int len, prot;

This call changes the specified pages to have protection prot.

1.2.4. Giving and getting advice
A process that has knowledge of its memory behavior may use the madvtse call:

madvise(addr, len, behav);
caddr_t addr; int len, behav;

Behav describes expected behavior, as given in <mman.h>:

#define MADV_NORMAL 0 /* no further special treatment */
#define MADV_RANDOM 1 /* expect random page references */
#define MADV_SEQUENTIAL 2 /* expect sequential references */
#define MADV_WILLNEED 3 /* will need these pages */

#define MADV_DONTNEED 4 /* don’t need these pages */

Finally, a process may obtain information about whether pages are core resident by using the call

mincore(addr, len, vec)
caddr_t addr; int len; result char *vec;

Here the current core residency of the pages is returned in the character array vee, with a value of
1 meaning that the page is in-core.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -8- Signals
1.8. Signals

1.3.1. Overview

The system defines a set of signals that may be delivered to a process. Signal delivery resem-
bles the occurrence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify the handler to
which a signal is delivered, or specify that the signal is to be blocked or ignored. A process may
also specify that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accom-
panied by creation of a core image file, containing the current memory image of the process for use
in post-mortem debugging. A process may choose to have signals delivered on a special stack, so
that sophisticated software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the order
in which they are delivered to a process is implementation specific. Signal routines execute with
the signal that caused their invocation blocked, but other signals may yet occur. Mechanisms are
provided whereby critical sections of code may protect themselves against the occurrence of
specified signals.

1.3.2. Signal types

The signals defined by the system fall into one of five classes: hardware conditions, software
conditions, input/output notification, process control, or resource control. The set of signals is
defined in the file <signalh>.

Hardware signals are derived from exceptional conditions which may occur during execution.
Such signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL
for illegal instruction execution, SIGSEGV for addresses outside the currently assigned area of
memory, and SIGBUS for accesses that violate memory protection constraints. Other, more cpu-
specific hardware signals exist, such as those for the various customer-reserved instructions on the

VAX (SIGIOT, SIGEMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt
signal; SIGQUIT for the more powerful qutt signal, that normally causes a core image to be gen-
erated; SIGHUP and SIGTERM that cause graceful process termination, either because a user has
“hung up”, or by user or program request; and SIGKILL, a more powerful termination signal
which a process cannot catch or ignore. Other software signals (SIGALRM, SIGVTALRM, SIG-
PROF) indicate the expiration of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on a
descriptor, or when a non-blocking operation completes. A process may request to receive a
SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group. The
SIGSTOP signal is a powerful stop signal, because it cannot be caught. Other stop signals
SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request, input request, or output
request respectively is the reason the process is being stopped. A SIGCONT signal is sent to a pro-
cess when it is continued from a stopped state. Processes may receive notification with a
SIGCHLD signal when a child process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a pro-
cess nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been
reached.

1.3.3. Signal handlers

A process has a handler associated with each signal that controls the way the signal is
delivered. The call

CSRG TR/5 — September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -9- Signals

#finclude <signal.h>

struct sigvec {

int (*sv_handler)();
int sv_mask;
int sv_onstack;

&

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

assigns interrupt handler address sv_handler to signal signo. Each handler address specifies either
an interrupt routine for the signal, that the signal is to be ignored, or that a default action (usu-
ally process termination) is to occur if the signal occurs. The constants SIG_IGN and SIG_DEF
used as values for sv_handler cause ignoring or defaulting of a condition. The su_mask and
sv_onstack values specify the signal mask to be used when the handler is invoked and whether the
handler should operate on the normal run-time stack or a special signal stack (see below). If osv is
non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending
for the process. If the signal is not currently blocked by the process then it will be delivered. The
process of signal delivery adds the signal to be delivered and those signals specified in the associ-
ated signal handler’s sv_mask to a set of those masked for the process, saves the current process
context, and places the process in the context of the signal handling routine. The call is arranged
so that if the signal handling routine exits normally the signal mask will be restored and the pro-
cess will resume execution in the original context. If the process wishes to resume in a different
context, then it must arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for signals. It prevents signals from
being delivered much as a raised hardware interrupt priority level prevents hardware interrupts.
Preventing an interrupt from occurring by changing the handler is analogous to disabling a device
from further interrupts.

The signal handling routine sv_handler is called by a C call of the form
(*sv_handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

The signo gives the number of the signal that occurred, and the code, a word of information sup-
plied by the hardware. The scp parameter is a pointer to a machine-dependent structure contain-
ing the information for restoring the context before the signal.

1.3.4. Sending signals
A process can send a signal to another process or group of processes with the calls:

kill(pid, signo)
int pid, signo;

killpgrp(pgrp, signo)
int pgrp, signo;

Unless the process sending the signal is privileged, it and the process receiving the signal must have
the same effective user id.

Signals are also sent implicitly from a terminal device to the process group associated with
the terminal when certain input characters are typed.

CSRG TR/5 - September 1, 1982 - Joy, et. al.

4.2BSD System Manual -10- Signals

1.8.5. Protecting critical sections
To block a section of code against one or more signals, a sigblock call may be used to add a
set of signals to the existing mask, returning the old mask:

oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with stgsetmask,

oldmask = sigsetmask(mask);
result long oldmask; long mask;
The sigblock call can be used to read the current mask by specifying an empty mask .
It is possible to check conditions with some signals blocked, and then to pause waiting for a
signal and restoring the mask, by using:

sigpause(mask);
long mask;

1.3.86. Signal stacks
Applications that maintain complex or fixed size stacks can use the call

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

|8

sigstack(ss, oss)
struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack based at ss_sp for delivery of signals. The value ss_onstack
indicates whether the process is currently on the signal stack, a notion maintained in software by
the system.

When a signal is to be delivered, the system checks whether the process is on a signal stack.
If not, then the process is switched to the signal stack for delivery, with the return from the signal
arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from the
signal stack that uses a different stack, a sigstack call should be used to reset the signal stack.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -11- Timers

1.4. Timers

1.4.1. Real time

The system’s notion of the current Greenwich time and the current time zone is set and
returned by the call by the calls:

#include <sys/time.h>
settimeofday(tvp, tzp);

struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/time.h> as:

struct timeval {

long tv_sec; /* seconds since Jan 1, 1970 */

long tv_usec; /* and microseconds */
b
struct timezone {

int tz_minuteswest; /* of Greenwich */

int tz_dsttime; /* type of dst correction to apply */
b

Earlier versions of UNIX contained only a 1-second resolution version of this call, which remains as
a library routine:

time(tvsec)
result long *tvsec;

returning only the tv_sec field from the gettimeofday call.

1.4.2. Interval time

The system provides each process with three interval timers, defined in <sys/time.h>:

#define ITIMER_REAL 0 /* real time intervals */
#define ITIMER_VIRTUAL 1 /* virtual time intervals */
#define ITIMER_PROF 2 /* user and system virtual time */

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to main-
tain a wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the
process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is
running on behalf of the process. It is designed to be used by processes to statistically profile their
execution. A SIGPROF signal is delivered when it expires.

A timer value is defined by the stémerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

b

CSRG TR/5 - September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -12- Timers

and a timer is set or read by the call:

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

The third argument to setittmer specifies an optional structure to receive the previous contents of
the interval timer. A timer can be disabled by specifying a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of its clock.
This clock resolution can be determined by loading a very small value into a timer and reading the
timer back to see what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine usihg the
ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain because it
is not always possible to guarantee the automatic restart of system calls after receipt of a signal.

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

CSRG TR/5 — September 1, 1982 — Joy, et. al.

4.2BSD System Manual -13- Descriptors
1.5. Descriptors

1.5.1. The reference table

Each process has access to resources through descriptors. Each descriptor is a handle allow-
ing the process to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level of
indirection, so that descriptors may be shared between processes. Each process has a descriptor
reference table, containing pointers to the actual descriptors. The descriptors themselves thus have
multiple references, and are reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned by the
getdtablesize call:

nds = getdtablesize();
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by
small integers; for example if there are 20 slots they are numbered O to 19.

1.5.2. Descriptor properties

Each descriptor has a logical set of properties maintained by the system and defined by its
type. Each type supports a set of operations; some operations, such as reading and writing, are
common to several abstractions, while others are unique. The generic operations applying to many
of these types are described in section 2.1. Naming contexts, files and directories are described in
section 2.2. Section 2.3 describes communications domains and sockets. Terminals and (structured
and unstructured) devices are described in section 2.4.

1.5.3. Managing descriptor references
A duplicate of a descriptor reference may be made by doing

new = dup(old);
result int new; int old;

returning a copy of descriptor reference old indistinguishable from the original. The new chosen by
the system will be the smallest unused descriptor reference slot. A copy of a descriptor reference
may be made in a specific slot by doing

dup2(old, new);
int old, new;

The dup?2 call causes the system to deallocate the descriptor reference current occupying slot new, if
any, replacing it with a reference to the same descriptor as old. This deallocation is also performed
by:

close(old);
int old;

1.5.4. Multiplexing requests

The system provides a standard way to do synchronous and asynchronous multiplexing of
operations.

Synchronous multiplexing is performed by using the select call:

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result *in, *out, *except;
struct timeval *tvp;

The select call examines the descriptors specified by the sets fn, out and except, replacing the

CSRG TR/5 — September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -14- Descriptors

specified bit masks by the subsets that select for input, output, and exceptional conditions respec-
tively (nd indicates the size, in bytes, of the bit masks). If any descriptors meet the following cri-
teria, then the number of such descriptors is returned in nds and the bit masks are updated.

° A descriptor selects for input if an input oriented operation such as read or recesve is possi-
ble, or if a connection request may be accepted (see section 2.3.1.4).

. A descriptor selects for output if an output oriented operation such as write or send is possi-
ble, or if an operation that was “in progress”, such as connection establishment, has com-
pleted (see section 2.1.3).

. A descriptor selects for an exceptional condition if a condition that would cause a SIGURG
signal to be generated exists (see section 1.3.2).

If none of the specified conditions is true, the operation blocks for at most the amount of time
specified by tvp, or waits for one of the conditions to arise if tvp is given as 0.

Options affecting i/o on a descriptor may be read and set by the call:

dopt = fentl(d, emd, arg)
result int dopt; int d, cmd, arg;

/* interesting values for cmd */

#define F_SETFL 3 /* set descriptor options */
#fdefine F_GETFL 4 /* get descriptor options */
#define F_SETOWN 5 /* set descriptor owner (pid/pgrp) */
#define F_GETOWN 6 /* get descriptor owner (pid/pgrp) */

The F_SETFL e¢md may be used to set a descriptor in non-blocking i/o mode and/or enable signal-
ling when i/o is possible. F_SETOWN may be used to specify a process or process group to be sig-
nalled when using the latter mode of operation.

Operations on non-blocking descriptors will either complete immediately, note an error
EWOULDBLOCK, partially complete an input or output operation returning a partial count, or
return an error EINPROGRESS noting that the requested operation is in progress. A descriptor
which has signalling enabled will cause the specified process and/or process group be signaled, with
a SIGIO for input, output, or in-progress operation complete, or a SIGURG for exceptional condi-
tions.

For example, when writing to a terminal using non-blocking output, the system will accept
only as much data as there is buffer space for and return; when making a connection on a socket,
the operation may return indicating that the connection establishment is “in progress”. The select
facility can be used to determine when further output is possible on the terminal, or when the con-
nection establishment attempt is complete.

1.6.5. Descriptor wrapping.}

A user process may build descriptors of a specified type by wrapping a communications chan-
nel with a system supplied protocol translator:

new = wrap(old, proto)
result int new; int old; struct dprop *proto;

Operations on the descriptor old are then translated by the system provided protocol translator
into requests on the underyling object old in a way defined by the protocol. The protocols sup-
ported by the kernel may vary from system to system and are described in the programmers
manual.

Protocols may be based on communications multiplexing or a rights-passing style of handling
multiple requests made on the same object. For instance, a protocol for implementing a file

t The facilities described in this section are not included in 4.2BSD.

CSRG TR/5 - September 1, 1982 -- Joy, et. al.

C

4.2BSD System Manual -15- Descriptors

abstraction may or may not include locally generated ‘‘read-ahead’ requests. A protocol that pro-
vides for read-ahead may provide higher performance but have a more difficult implementation.

Another example is the terminal driving facilities. Normally a terminal is associated with a
communications line and the terminal type and standard terminal access protocol is wrapped
around a synchronous communications line and given to the user. If a virtual terminal is required,
the terminal driver can be wrapped around a communications link, the other end of which is held
by a virtual terminal protocol interpreter.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -16- Resource controls

1.6. Resource controls

1.6.1. Process priorities

The system gives CPU scheduling priority to processes that have not used CPU time
recently. This tends to favor interactive processes and processes that execute only for short
periods. It is possible to determine the priority currently assigned to a process, process group, or
the processes of a specified user, or to alter this priority using the calls:

#define PRIO_PROCESS 0 /* process */
#tdefine PRIO_PGRP 1 /* process group */
#define PRIO_USER 2 /* user id */

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);

int which, who, prio;
The value prio is in the range —20 to 20. The default priority is O; lower priorities cause more
favorable execution. The getpriority call returns the highest priority (lowest numerical value)

enjoyed by any of the specified processes. The setpriority call sets the priorities of all of the
specified processes to the specified value. Only the super-user may lower priorities.

1.6.2. Resource utilization

The resources used by a process are returned by a getrusage call, returning information in a
structure defined in <sys/resource.h>:

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1

/* usage by this process */
/* usage by all children */

getrusage(who, rusage)
int who; result struct rusage *rusage;

struct rusage {

struct timeval ru_utime; /* user time used */

struct timeval ru_stime; /* system time used */

int ru_maxrss; /* maximum core resident set size: kbytes */
int ru_ixrss; /* integral shared memory size (kbytes*sec) */
int ru_idrss; /* unshared data " */

int ru_isrss; /* unshared stack " */

int ru_minflt; /* page-reclaims */

int ru_majflt; /* page faults */

int ru_nswap; /* swaps */

int ru_inblock; /* block input operations */

int ru_oublock; /* block output " */

int ru_msgsnd; /* messages sent */

int ru_msgrev; /* messages received */

int ru_nsignals; /* signals received */

int FU_NVCSW; /* voluntary context switches */

int ru_nivesw; /* involuntary " */

b

The who parameter specifies whose resource usage is to be returned. The resources used by the
current process, or by all the terminated children of the current process may be requested.

CSRG TR/5

-- September 1, 1982 -

Joy, et. al.

S
N

4.2BSD System Manual -17 - Resource controls

1.6.8. Resource limits

™ The resources of a process for which limits are controlled by the kernel are defined in
(<sys/resource.h>, and controlled by the getrlimit and setrlimit calls:

#define RLIMIT_CPU 0 /* cpu time in milliseconds */

#define RLIMIT_FSIZE 1 /* maximum file size */

#define RLIMIT_DATA 2 /* maximum data segment size */

#define RLIMIT_STACK 3 /* maximum stack segment size */
#define RLIMIT_CORE 4 /* maximum core file size */
#tdefine RLIMIT_RSS 5 /* maximum resident set size */

#tdefine RLIM_NLIMITS 6

#define RLIM_INFINITY Ox7{{fffff

struct rlimit {
int rlim_cur; /* current (soft) limit */
int rlim_max; /* hard limit */

b

getrlimit(resource, rlp)
int resource; result struct rlimit *rlp;

setrlimit(resource, rlp)
int resource; struct rlimit *rlp;

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur
within the range from 0 to rlim_maz or (irreversibly) lower rlim_maz.

(

C

CSRG TR/5 — September 1, 1982 — Joy, et. al.

4.2BSD System Manual -18- System operation support

1.7. System operation support
Unless noted otherwise, the calls in this section are permitted only to a privileged user.

1.7.1. Bootstrap operations
The call

mount(blkdev, dir, ronly);
char *blkdev, *dir; int ronly;

extends the UNIX name space. The mount call specifies a block device blkdev containing a UNIX
file system to be made available starting at dir. If ronly is set then the file system is read-only;
writes to the file system will not be permitted and access times will not be updated when files are
referenced. Dir is normally a name in the root directory.

The call

swapon(blkdev, size);
char *blkdev; int size;

specifies a device to be made available for paging and swapping.

1.7.2. Shutdown operations
The call

unmount(dir);
char *dir;

unmounts the file system mounted on dir. This call will succeed only if the file system is not
currently being used.

The call
sync();

schedules input/output to clean all system buffer caches. (This call does not require priveleged
status.)

The call
reboot(how)
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as
RB_AUTOBOOT, or that the machine be halted with RB_HALT. These constants are defined in
<sys/reboot.h>.

1.7.3. Accounting

The system optionally keeps an accounting record in a file for each process that exits on the
system. The format of this record is beyond the scope of this document. The accounting may be
enabled to a file name by doing

acct(path);
char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting file.

CSRG TR/5 - September 1, 1982 -- Joy, et. al.

- //;

C

4.2BSD System Manual -19- System facilities

2. System facilities

This section discusses the system facilities that are not considered part of the kernel.
The system abstractions described are:

Directory contexts
A directory context is a position in the UNIX file system name space. Operations on files and
other named objects in a file system are always specified relative to such a context.

Files
Files are used to store uninterpreted sequence of bytes on which random access reads and
writes may occur. Pages from files may also be mapped into process address space. A direc-
tory may be read as a filet.

Communications domains
A communications domain represents an interprocess communications environment, such as
the communications facilities of the UNIX system, communications in the INTERNET, or
the resource sharing protocols and access rights of a resource sharing system on a local net-
work.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a communications
domain. Sockets may be created in pairs, or given names and used to rendezvous with other
sockets in a communications domain, accepting connections from these sockets or exchanging
messages with them. These operations model a labeled or unlabeled communications graph,
and can be used in a wide variety of communications domains. Sockets can have different
types to provide different semantics of communication, increasing the flexibility of the model.

Terminals and other devices A
Devices include terminals, providing input editing and interrupt generation and output flow
control and editing, magnetic tapes, disks and other peripherals. They often support the
generic read and write operations as well as a number of foctls.

Processes
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in the 4.2 release.

CSRG TR/5 -- September 1, 1982 — Joy, et. al.

4.2BSD System Manual -20- Generic operations

2.1. Generic operations

Many system abstractions support the operations read, write and foctl. We describe the
basics of these common primitives here. Similarly, the mechanisms whereby normally synchronous
operations may occur in a non-blocking or asynchronous fashion are common to all system-defined
abstractions and are described here.

2.1.1. Read and write

The read and write system calls can be applied to communications channels, files, terminals
and devices. They have the form:

cc = read(fd, buf, nbytes);
result int cc; int fd; result caddr_t buf; int nbytes;

cc = write(fd, buf, nbytes);
result int cc; int {d; caddr_t buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at
address buf of size nbytes. The number of bytes transferred is returned in ce¢, which is -1 if a
return occurred before any data was transferred because of an error or use of non-blocking opera-
tions.

The write call transfers data from the buffer to the object defined by fd. Depending on the
type of fd, it is possible that the write call will accept some portion of the provided bytes; the user
should resubmit the other bytes in a later request in this case. Error returns because of interrupted
or otherwise incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array of
input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:
struct iovee {

caddr_t iov_msg; /* base of a component */
int iov_len; /* length of a component */

h
The calls using an array of descriptors are:

cc = readv(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

Here fovlen is the count of elements in the fov array.

2.1.2. Input/output control

Control operations on an object are performed by the foct! operation:

ioctl(fd, request, buffer);
int {d, request; caddr_t buffer;

This operation causes the specified request to be performed on the object fd. The request parame-
ter specifies whether the argument buffer is to be read, written, read and written, or is not needed,
and also the size of the buffer, as well as the request. Different descriptor types and subtypes
within descriptor types may use distinct foct! requests. For example, operations on terminals con-
trol flushing of input and output queues and setting of terminal parameters; operations on disks
cause formatting operations to occur; operations on tapes control tape positioning.

The names for basic control operations are defined in <sys/ioctl.h>.

CSRG TR/5 -~ September 1, 1982 -- Joy, et. al.

@

4.2BSD System Manual -21- Generic operations

2.1.3. Non-blocking and asynchronous operations

A process that wishes to do non-blocking operations on one of its descriptors sets the descrip-
tor in non-blocking mode as described in section 1.5.4. Thereafter the read call will return a
specific EWOULDBLOCK error indication if there is no data to be read. The process may dselect
the associated descriptor to determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept some
of the provided data, returning a shorter than normal length, or return an error indicating that the
operation would block. More output can be performed as soon as a select call indicates the object
is writeable.

Operations other than data input or output may be performed on a descriptor in a non-
blocking fashion. These operations will return with a characteristic error indicating that they are
in progress if they cannot return immediately. The descriptor may then be selected for write to
find out when the operation can be retried. When select indicates the descriptor is writeable, a
respecification of the original operation will return the result of the operation.

CSRG TR/5 -~ September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -22- File system

2.2. File system

2.2.1. Overview

The file system abstraction provides access to a hierarchical file system structure. The file
system contains directories (each of which may contain other sub-directories) as well as files and
references to other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related
information is present in a file. Files may be read and written in a random-access fashion. The
user may read the data in a directory as though it were an ordinary file to determine the names of
the contained files, but only the system may write into the directories. The file system stores only
a small amount of ownership, protection and usage information with a file.

2.2.2. Naming

The file system calls take path name arguments. These consist of a zero or more component
file names separated by ‘/” characters, where each file name is up to 255 ASCII characters exclud-
ing null and ¢/”.

Each process always has two naming contexts: one for the root directory of the file system
and one for the current working directory. These are used by the system in the filename transla-
tion process. If a path name begins with a ‘/”", it is called a full path name and interpreted rela-
tive to the root directory context. If the path name does not begin with a “/’’ it is called a rela-
tive path name and interpreted relative to the current directory context.

The system limits the total length of a path name to 1024 characters.

The file name ““..” in each directory refers to the parent directory of that directory. The
parent directory of a file system is always the systems root directory.

The calls
chdir(path);
char *path;
chroot(path)
char *path;
change the current working directory and root directory context of a process. Only the super-user

can change the root directory context of a process.

2.2.3. Creation and removal

The file system allows directories, files, special devices, and ‘‘portals” to be created and
removed from the file system.

2.2.3.1. Directory creation and removal
A directory is created with the mkdir system call:

mkdir(path, mode);
char *path; int mode;

and removed with the rmdir system call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -23- File system

2.2.3.2. File creation
Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

The path parameter specifies the name of the file to be created. The oflag parameter must include
O_CREAT from below to cause the file to be created. The protection for the new file is specified
in mode. Bits for oflag are defined in <sys/file.h>:

#define O_RDONLY 000 /* open for reading */

#define O_WRONLY 001 /* open for writing */

##define O_RDWR 002 /* open for read & write */
#tdefine O_NDELAY 004 /* non-blocking open */
#tdefine O_APPEND 010 /* append on each write */
#tdefine O_CREAT 01000 /* open with file create */
#tdefine O_TRUNC 02000 /* open with truncation */
#tdefine O_EXCL 04000 /* error on create if file exists */

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what types
of operations are desired to be performed on the open file. The operations will be checked against
the user’s access rights to the file before allowing the open to succeed. Specifying O_APPEND
causes writes to automatically append to the file. The flag O_CREAT causes the file to be created
if it does not exist, with the specified mode, owned by the current user and the group of the con-
taining directory.

If the open specifies to create the file with O_EXCL and the file already exists, then the open
will fail without affecting the file in any way. This provides a simple exclusive access facility.

2.2.3.3. Creating references to devices

The file system allows entries which reference peripheral devices. . Peripherals are dis-
tinguished as block or character devices according by their ability to support block-oriented opera-
tions. Devices are identified by their ‘“‘major” and ‘“‘minor’ device numbers. The major device
number determines the kind of peripheral it is, while the minor device number indicates one of pos-
sibly many peripherals of that kind. Structured devices have all operations performed internally in
“block” quantities while unstructured devices often have a number of special foct! operations, and
may have input and output performed in large units. The mknod call creates special entries:

mknod(path, mode, dev);
char *path; int mode, dev;

where mode is formed from the object type and access permissions. The parameter dev is a
configuration dependent parameter used to identify specific character or block i/o devices.

2.2.3.4. Portal creationt
The call

fd = portal(name, server, param, dtype, protocol, domain, socktype)
result int fd; char *name, *server, *param; int dtype, protocol;
int domain, socktype;

places a name in the file system name space that causes connection to a server process when the
name is used. The portal call returns an active portal in fd as though an access had occurred to
activate an inactive portal, as now described.

t The portal call is not implemented in 4.2BSD.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -24- File system

When an inactive portal is accesseed, the system sets up a socket of the specified socktype in
the specified communications domain (see section 2.3), and creates the server process, giving it the
specified param as argument to help it identify the portal, and also giving it the newly created
socket as descriptor number 0. The accessor of the portal will create a socket in the same domain
and connect to the server. The user will then wrap the socket in the specified protocol to create an
object of the required descriptor type dtype and proceed with the operation which was in progress
before the portal was encountered.

While the server process holds the socket (which it received as fd from the portal call on
descriptor 0 at activation) further references will result in connections being made to the same
socket.

2.2.3.5. File, device, and portal removal
A reference to a file, special device or portal may be removed with the unlink call,

unlink(path);
char *path;

The caller must have write access to the directory in which the file is located for this call to be suc-
cessful.

2.2.4. Reading and modifying file attributes
Detailed information about the attributes of a file may be obtained with the calls:

#include <sys/stat.h>

stat(path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

The stat structure includes the file type, protection, ownership, access times, size, and a count of
hard links. If the file is a symbolic link, then the status of the link itself (rather than the file the
link references) may be found using the Istat call:

Istat(path, stb);
char *path; result struct stat *stb;

Newly created files are assigned the user id of the process that created it and the group id of
the directory in which it was created. The ownership of a file may be changed by either of the
calls

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it.
These levels are owner relative, group relative, and global (all users and groups). Each level of
access has separate indicators for read permission, write permission, and execute permission. The
protection bits associated with a file may be set by either of the calls:

CSRG TR/5 -- September 1, 1982 - Joy, et. al.

4.2BSD System Manual -25- File system

chmod(path, mode);
char *path; int mode;

fchmod(fd, mode);
int fd, mode;

‘where mode is a value indicating the new protection of the file. The file mode is a three digit octal

number. Each digit encodes read access as 4, write access as 2 and execute access as 1, or’ed
together. The 0700 bits describe owner access, the 070 bits describe the access rights for processes
in the same group as the file, and the 07 bits describe the access rights for other processes.

Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp)
char *path; struct timeval *tvp|[2];

This is particularly useful when moving files between media, to preserve relationships between the
times the file was modified.

2.2.5. Links and renaming
Links allow multiple names for a file to exist. Links exist independently of the file linked to.

Two types of links exist, haerd links and symbolic links. A hard link is a reference counting
mechanism that allows a file to have multiple names within the same file system. Symbolic links
cause string substitution during the pathname interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target file
will always be accessible, even after its original directory entry is removed; no such guarantee
exists for a symbolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path?, to pathl:

link(pathl, path2);
char *pathl, *path2;

symlink(pathl, path2);
char *pathl, *path?2;

The unlink primitive may be used to remove either type of link.
If a file is a symbolic link, the ‘“value’ of the link may be read with the readlink call,

len = readlink(path, buf, bufsize);
result int len; result char *path, *buf; int bufsize;

This call returns, in buf, the null-terminated string substituted into pathnames passing through
path.

Atomic renaming of file system resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both oldname and newnaeme must be in the same file system. If newname exists and is a
directory, then it must be empty.

2.2.8. Extension and truncation

Files are created with zero length and may be extended simply by writing or appending to
them. While a file is open the system maintains a pointer into the file indicating the current loca-
tion in the file associated with the descriptor. This pointer may be moved about in the file in a
random access fashion. To set the current offset into a file, the Iseek call may be used,

CSRG TR/5 — September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -26- File system

oldoffset = lIseek(fd, offset, type);
result off_t oldoffset; int fd; off_t offset; int type;

where type is given in <sys/file.h> as one of,

#define L_SET 0 /* set absolute file offset */
#define L_INCR 1 /* set file offset relative to current position */
#tdefine L_XTND 2 /* set offset relative to end-of-file */

The call “Iseek(fd, 0, L_INCR)” returns the current offset into the file.

Files may have “holes” in them. Holes are void areas in the linear extent of the file where
data has never been written. These may be created by seeking to a location in a file past the
current end-of-file and writing. Holes are treated by the system as zero valued bytes.

A file may be truncated with either of the calls:
truncate(path, length);
char *path; int length;
ftruncate(fd, length);
int fd, length;
reducing the size of the specified file to length bytes.

2.2.7. Checking accessibility

A process running with different real and effective user ids may interrogate the accessibility of
a file to the real user by using the access call:

accessible = access(path, how);
result int accessible; char *path; int how; '

Here how is constructed by or’ing the following bits, defined in < sys/fileh>:

#define F_OK 0 /* file exists */
#define X_OK 1 /* file is executable */
#define W_OK 2 /* file is writable */
#define R_OK 4 /* file is readable */

The presence or absence of advisory locks does not affect the result of access.

2.2.8. Locking

The file system provides basic facilities that allow cooperating processes to synchronize their
access to shared files. A process may place an advisory read or write lock on a file, so that other
cooperating processes may avoid interfering with the process’ access. This simple mechanism pro-
vides locking with file granularity. More granular locking can be built using the IPC facilities to
provide a lock manager. The system does not force processes to obey the locks; they are of an
advisory nature only.

Locking is performed after an open call by applying the flock primitive,
flock(fd, how);

int fd, how;
where the how parameter is formed from bits defined in <sys/file.h>:
#define LOCK_SH 1 /* shared lock */
#define LOCK_EX 2 /* exclusive lock */
#define LOCK_NB 4 /* don’t block when locking */
#define LOCK_UN 8 /* unlock */

Successive lock calls may be used to increase or decrease the level of locking. If an object is

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

C

4.2BSD System Manual -27- ' File system

currently locked by another process when a flock call is made, the caller will be blocked until the
current lock owner releases the lock; this may be avoided by including LOCK_NB in the how
parameter. Specifying LOCK_UN removes all locks associated with the descriptor. Advisory locks
held by a process are automatically deleted when the process terminates.

2.2.9. Disk quotas

As an optional facility, each file system may be requested to impose limits on a user’s disk
usage. Two quantities are limited: the total amount of disk space which a user may allocate in a
file system and the total number of files a user may create in a file system. Quotas are expressed
as hard limits and soft limits. A hard limit is always imposed; if a user would exceed a hard limit,
the operation which caused the resource request will fail. A soft limit results in the user receiving a
warning message, but with allocation succeeding. Facilities are provided to turn soft limits into
hard limits if a user has exceeded a soft limit for an unreasonable period of time.

To enable disk quotas on a file system the setgquota call is used:
setquota(special, file)
char *special, *file;

where special refers to a structured device file where a mounted file system exists, and file refers to
a disk quota file (residing on the file system associated with special) from which user quotas should
be obtained. The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:
#include <sys/quota.h>
quota(cmd, uid, arg, addr)
int cmd, uid, arg; caddr_t addr;

The indicated e¢md is applied to the user ID uid. The parameters arg and addr are command
specific. The file <sys/quota.h> contains definitions pertinent to the use of this call.

CSRG TR/5 — September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -28- Interprocess communications

2.3. Interprocess communications

2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains

The system provides access to an extensible set of communication domasns. A communica-
tion domain is identified by a manifest constant defined in the file <sys/socket.h>. Important
standard domains supported by the system are the “unix’’ domain, AF_UNIX, for communication
within the system, and the “internet’”” domain for communication in the DARPA internet,
AF_INET. Other domains can be added to the system.

2.3.1.2. Socket types and protocols

Within a domain, communication takes place between communication endpoints known as
sockets. Each socket has the potential to exchange information with other sockets within the
domain.

Each socket has an associated abstract type, which describes the semantics of communication
using that socket. Properties such as reliability, ordering, and prevention of duplication of mes-
sages are determined by the type. The basic set of socket types is defined in <sys/socket.h>:

/* Standard socket types */

#define SOCK_DGRAM 1 /* datagram */

#define SOCK_STREAM 2 /* virtual circuit */

#define SOCK_RAW 3 /* raw socket */

#define SOCK_RDM 4 /* reliably-delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packets */

The SOCK_DGRAM type models the semantics of datagrams in network communication: messages
may be lost or duplicated and may arrive out-of-order. The SOCK_RDM type models the seman-
tics of reliable datagrams: messages arrive unduplicated and in-order, the sender is notified if mes-
sages are lost. The send and receive operations (described below) generate reliable/unreliable
datagrams. The SOCK_STREAM type models connection-based virtual circuits: two-way byte
streams with no record boundaries. The SOCK_SEQPACKET type models a connection-based,
full-duplex, reliable, sequenced packet exchange; the sender is notified if messages are lost, and
messages are never duplicated or presented out-of-order. Users of the last two abstractions may
use the facilities for out-of-band transmission to send out-of-band data.

SOCK_RAW is used for unprocessed access to internal network layers and interfaces; it has
no specific semantics.

Other socket types can be defined.}

Each socket may have a concrete protocol associated with it. This protocol is used within
the domain to provide the semantics required by the socket type. For example, within the “‘inter-
net”’ domain, the SOCK_DGRAM type may be implemented by the UDP user datagram protocol,
and the SOCK_STREAM type may be implemented by the TCP transmission control protocol,
while no standard protocols to provide SOCK_RDM or SOCK_SEQPACKET sockets exist.

2.3.1.3. Socket creation, naming and service establishment

Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by
the socket call:

= socket(domain, type, protocol);
result int s; int domain, type, protocol;

t 4.2BSD does not support the SOCK_RDM and SOCK_SEQPACKET types.

CSRG TR/5 - September 1, 1982 - Joy, et. al.

C\

4.2BSD System Manual -29- Interprocess communications

An unconnected socket descriptor may yield a connected socket descriptor in one of two
ways: either by actively connecting to another socket, or by becoming associated with a name in
the communications domain and accepting a connection from another socket.

To accept connections, a socket must first have a binding to a name within the communica-
tions domain. Such a binding is established by a bind call:

bind(s, name, namelen);
int s; char *name; int namelen;

A socket’s bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result caddr_t name; result int *namelen;

while the peer’s name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result caddr_t name; result int *namelen;

Domains may support sockets with several names.

2.3.1.4. Accepting connections
Once a binding is made, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued await-
ing acceptance.

An accept call:

t = accept(s, name, anamelen);
result int t; int s; result caddr_t name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s.

2.3.1.5. Making connections
An active connection to a named socket is made by the connect call:
connect(s, name, namelen);
int s; caddr_t name; int namelen;
It is also possible to create connected pairs of sockets without using the domain’s name space

to rendezvous; this is done with the socketpatr callt:

socketpair(d, type, protocol, sv);
int d, type, protocol; result int sv[2];
Here the returned sv descriptors correspond to those obtained with accept and connect.
The call
pipe(pv)
result int pv(2];

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv[0] only writeable and
pv{1] only readable.

+ 4.2BSD supports socketpair creation only in the ‘‘unix” communication domain.

CSRG TR/5 - September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -30- Interprocess communications

2.3.1.8. Sending and receiving data
Messages may be sent from a socket by:
cc = sendto(s, buf, len, flags, to, tolen);
result int cc; int s; caddr_t buf; int len, flags; caddr_t to; int tolen;
if the socket is not connected or:

cc = send(s, buf, len, flags);
result int cc; int s; caddr_t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr_t buf; int len, flags;
result caddr_t from; result int *fromlenaddr;

and

msglen = recv(s, buf, len, flags);
result int msglen; int s; result caddr_t buf; int len, flags;

In the unconnected case, the parameters to and tolen specify the destination or source of the
message, while the from parameter stores the source of the message, and *fromlenaddr initially
gives the size of the from buffer and is updated to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of length len
bytes, starting at address buf. The flags specify peeking at a message without reading it or sending
or receiving high-priority out-of-band messages, as follows:

#define MSG_PEEK Ox1 /* peek at incoming message */
#define MSG_OOB 0x2 /* process out-of-band data */

2.3.1.7. Scatter/gather and exchanging access rights

It is possible scatter and gather data and to exchange access rights with messages. When
either of these operations is involved, the number of parameters to the call becomes large. Thus
the system defines a message header structure, in <sys/socket.h>, which can be used to con-
veniently contain the parameters to the calls:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iov *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen; /* size of msg_accrights */

b
Here msg_name and msg_namelen specify the source or destination address if the socket is uncon-
nected; msg_name may be given as a null pointer if no names are desired or required. The msg_fov
and msg._tovlen describe the scatter/gather locations, as described in section 2.1.3. Access rights to
be sent along with the message are specified in msg_accrights, which has length msg_acerightslen.

In the “unix’’ domain these are an array of integer descriptors, taken from the sending process and
duplicated in the receiver.

This structure is used in the operations sendmsg and recvmsg:

CSRG TR/5 - September 1, 1982 -- Joy, et. al.

e

O

(

4.2BSD System Manual -31- Interprocess communications

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

2.3.1.8. Using read and write with sockets

The normal UNIX read and write calls may be applied to connected sockets and translated
into send and recesve calls from or to a single area of memory and discarding any rights received.
A process may operate on a virtual circuit socket, a terminal or a file with blocking or non-
blocking input/output operations without distinguishing the descriptor type.

2.3.1.9. Shutting down halves of full-duplex connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read
from or write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the connec-
tion down.

2.3.1.10. Socket and protocol options

Sockets, and their underlying communication protocols, may support options. These options
may be used to manipulate implementation specific or non-standard facilities. The getsockopt and
setsockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen)
int s, level, optname; result caddr_t optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname; caddr_t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is
specified with optval and optlen, it is interpreted by the software operating at the specified level.
The level SOL_SOCKET is reserved to indicate options maintained by the socket facilities. Other
level values indicate a particular protocol which is to act on the option request; these values are
normally interpreted as a “protocol number”.

2.3.2. UNIX domain

This section describes briefly the properties of the UNIX communications domain.

2.3.2.1. Types of sockets o
In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities, while

SOCK_DGRAM provides (usually) reliable message-style communications.

2.3.2.2. Naming

Socket names are strings and may appear in the UNIX file system name space through por-
talst.

t The 4.2BSD implementation of the UNIX domain embeds bound sockets in the UNIX file system name space;
this is a side effect of the implementation.

CSRG TR/5 — September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -32- Interprocess communications

2.3.2.3. Access rights transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of ser-
vice within the system and allows user processes to be used in building system facilities.

2.3.3. INTERNET domain

This section describes briefly how the INTERNET domain is mapped to the model described
in this section. More information will be found in the document describing the network implemen-
tation in 4.2BSD.

2.3.3.1. Socket types and protocols

SOCK_STREAM is supported by the INTERNET TCP protocol; SOCK_DGRAM by the
UDP protocol. The SOCK_SEQPACKET has no direct INTERNET family analogue; a protocol
based on one from the XEROX NS family and layered on top of IP could be implemented to fill
this gap.

2.3.3.2. Socket naming

Sockets in the INTERNET domain have names composed of the 32 bit internet address, and
a 16 bit port number. Options may be used to provide source routing for the address, security
options, or additional address for subnets of INTERNET for which the basic 32 bit addresses are
insufficient.

2.3.3.3. Access rights transmission
No access rights transmission facilities are provided in the INTERNET domain.

2.3.3.4. Raw access

The INTERNET domain allows the super-user access to the raw facilities of the various net-
work interfaces and the various internal layers of the protocol implementation. This allows

administrative and debugging functions to occur. These interfaces are modeled as SOCK_RAW
sockets.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual -33- Terminals and Devices

2.4. Terminals and Devices

2.4.1. Terminals

Terminals support read and write i/o operations, as well as a collection of terminal specific
soctl operations, to control input character editing, and output delays.

2.4.1.1. Terminal input

Terminals are handled according to the underlying communication characteristics such as
baud rate and required delays, and a set of software parameters.

2.4.1.1.1. Input modes

A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all input is
passed through to the reading process immediately and without interpretation. In cbreak mode,
the handler interprets input only by looking for characters that cause interrupts or output flow
control; all other characters are made available as in raw mode. In cooked mode, input is pro-
cessed to provide standard line-oriented local editing functions, and input is presented on a line-
by-line basis.

2.4.1.1.2. Interrupt characters

Interrupt characters are interpreted by the terminal handler only in cbreak and cooked
modes, and cause a software interrupt to be sent to all processes in the process group associated
with the terminal. Interrupt characters exist to send SIGINT and SIGQUIT signals, and to stop a
process group with the SIGTSTP signal either immediately, or when all input up to the stop char-
acter has been read.

2.4.1.1.3. Line editing

When the terminal is in cooked mode, editing of an input line is performed. Editing facilities
allow deletion of the previous character or word, or deletion of the current input line. In addition,
a special character may be used to reprint the current input line after some number of editing
operations have been applied.

Certain other characters are interpreted specially when a process is in cooked mode. The end
of line character determines the end of an input record. The end of file character simulates an end
of file occurrence on terminal input. Flow control is provided by stop output and start output con-
trol characters. Output may be flushed with the flush output character; and a literal character may
be used to force literal input of the immediately following character in the input line.

2.4.1.2. Terminal output

On output, the terminal handler provides some simple formatting services. These include
converting the carriage return character to the two character return-linefeed sequence, displaying
non-graphic ASCII characters as ‘““character”, inserting delays after certain standard control char-
acters, expanding tabs, and providing translations for upper-case only terminals.

2.4.1.3. Terminal control operations

When a terminal is first opened it is initialized to a standard state and configured with a set
of standard control, editing, and interrupt characters. A process may alter this configuration with
certain control operations, specifying parameters in a standard structure:

CSRG TR/5 - September 1, 1982 - Joy, et. al.

4.2BSD System Manual -34- Terminals and Devices

struct ttymode {

short tt_ispeed; /* input speed */
int tt_iflags; /* input flags */
short tt_ospeed; /* output speed */
int tt_oflags; /* output flags */

b
and “‘special characters” are specified with the ttychars structure,

struct ttychars {

char tc_erasec; /* erase char */

char te_killc; /* erase line */

char te_intre; /* interrupt */

char te_quitc; /* quit */

char te_startc; /* start output */

char te_stopc; /* stop output */

char tc_eofc; /* end-of-file */

char tc_brke; /* input delimiter (like nl) */
char te_suspe; /* stop process signal */
char tc_dsuspc; /* delayed stop process signal */
char te_rprntc; /* reprint line */

char tc_flushe; /* flush output (toggles) */
char tc_werasc; /* word erase */

char te_lnextc; /* literal next character */

&

2.4.1.4. Terminal hardware support

The terminal handler allows a user to access basic hardware related functions; e.g. line speed,
modem control, parity, and stop bits. A special signal, SIGHUP, is automatically sent to processes
in a terminal’s process group when a carrier transition is detected. This is normally associated
with a user hanging up on a modem controlled terminal line.

2.4.2. Structured devices

Structures devices are typified by disks and magnetic tapes, but may represent any random-
access device. The system performs read-modify-write type buffering actions on block devices to
allow them to be read and written in a totally random access fashion like ordinary files. File sys-
tems are normally created in block devices.

2.4.3. Unstructured devices

Unstructured devices are those devices which do not support block structure. Familiar
unstructured devices are raw communications lines (with no terminal handler), raster plotters,
magnetic tape and disks unfettered by buffering and permitting large block input/output and posi-
tioning and formatting commands.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

¢

4.2BSD System Manual -35- Process and kernel descriptors

2.5. Process and kernel descriptors
The status of the facilities in this section is still under discussion. The ptrace facility of

4.1BSD is provided in 4.2BSD. Planned enhancements would allow a descriptor based process con-
trol facility.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual

I. Summary of facilities

1. Kernel primitives
1.1. Process naming and protection

sethostid
gethostid
sethostname
gethostname
getpid

fork

exit

execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

1.2 Memory management

<mman.h>
sbrk

sstkt
getpagesize
mmapt
mremapt
munmapt
mprotectt
madviset
mincoret

1.3 Signals

<signal.h>
sigvec

kill

killpgrp
sigblock
sigsetmask
sigpause
sigstack

1.4 Timing and statistics

<sys/time.h >
gettimeofday
settimeofday
getitimer
setitimer

t Not supported in 4.2BSD.

CSRG TR/5

- September 1, 1982 —

- 36 - Summary of facilities

set UNIX host id

get UNIX host id

set UNIX host name

get UNIX host name

get process id

create new process

terminate a process

execute a different process

get user id

get effective user id

set real and effective user id’s
get accounting group id

get effective accounting group id
get access group set

set real and effective group id’s
set access group set

get process group

set process group

memory management definitions
change data section size

change stack section size

get memory page size

map pages of memory

remap pages in memory

unmap memory

change protection of pages

give memory management advice
determine core residency of pages

signal definitions

set handler for signal

send signal to process

send signal to process group

block set of signals

restore set of blocked signals
wait for signals

set software stack for signals

time-related definitions

get current time and timezone
set current time and timezone
read an interval timer

get and set an interval timer

Joy, et. al.

4.2BSD System Manual -37- Summary of facilities

profil profile process
("\ 1.5 Descriptors

S getdtablesize descriptor reference table size
dup duplicate descriptor
dup?2 duplicate to specified index
close close descriptor
select multiplex input/output
fentl control descriptor options
wrapt wrap descriptor with protocol

1.6 Resource controls

< sys/resource.h > resource-related definitions
getpriority get process priority
setpriority set process priority
getrusage get resource usage
getrlimit get resource limitations
setrlimit set resource limitations

1.7 System operation support

mount mount a device file system
swapon add a swap device
umount umount a file system
sync flush system caches
reboot reboot a machine
acct _ specify accounting file
2. System facilities

(2.1 Generic operations
read read data
write write data
<sys/uio.h> scatter-gather related definitions
readv scattered data input
writev gathered data output
<sys/ioctl.h> standard control operations
ioctl device control operation

2.2 File system

Operations marked with a * exist in two forms: as shown, operating on a file name, and
operating on a file descriptor, when the name is preceded with a “f”’.

<sys/file.h> file system definitions
chdir change directory

chroot change root directory
mkdir make a directory

rmdir remove a directory

open open a new or existing file
mknod make a special file

portalt make a portal entry
unlink remove a link

stat* return status for a file

+ Not supported in 4.2BSD.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual

Istat
chown*
chmod*
utimes
link
symlink
readlink
rename
Iseek
truncate*
access
flock

2.3 Communications

<sys/socket.h>
socket

bind
getsockname
listen

accept
connect
socketpair
sendto

send
recvirom
recv
sendmsg
recvmsg
shutdown
getsockopt
setsockopt

-38- Summary of facilities

returned status of link
change owner

change mode

change access/modify times
make a hard link

make a symbolic link

read contents of symbolic link
change name of file
reposition within file
truncate file

determine accessibility

lock a file

standard definitions

create socket

bind socket to name

get socket name

allow queueing of connections
accept a connection

connect to peer socket

create pair of connected sockets
send data to named socket

send data to connected socket
receive data on unconnected socket
receive data on connected socket
send gathered data and/or rights
receive scattered data and/or rights
partially close full-duplex connection
get socket option

set socket option

2.5 Terminals, block and character devices

2.4 Processes and kernel hooks

CSRG TR/5

-- September 1, 1982 -- Joy, et. al.

C

Fsck — The UNIX? File System Check Program

Revised December 6, 1985

Ronald Holt Jr.

Icon Systems and Software
Software Development Group
Orem, Utah

ABSTRACT

This document reflects the use of fsck with the Icon 4.2BSD file system
organization. This is a revision of the original paper written by T. J. Kowalski.

File System Check Program (fsck) is an interactive file system check and
repair program. Fsck uses the redundant structural information in the UNIX file
system to perform several consistency checks. If an inconsistency is detected, it is
reported to the operator, who may elect to fix or ignore each inconsistency. These
inconsistencies result from the permanent interruption of the file system updates,
which are performed every time a file is modified. Unless there has been a
hardware failure, fsck is able to repair corrupted file systems using procedures
based upon the order in which UNIX honors these file system update requests.

The purpose of this document is to describe the normal updating of the file
system, to discuss the possible causes of file system corruption, and to present the
corrective actions implemented by fsck. Both the program and the interaction
between the program and the operator are described.

fUNIX is a trademark of Bell Laboratories.

Fsck -i- Contents

TABLE OF CONTENTS

1. Introduction

2. Overview of the file system
Superblock

Inode of Inode File

Free Block List

Free Inode List

Updates to the file system

i bobo

8. Fixing corrupted file systems

Detecting and correcting corruption

Super block checking

Free block checking

Checking the inode state

Inode links

Inode data size

Checking the data associated with an inode
File system connectivity

PNo e Wi

Acknowledgements
References

4. Appendix A

. Conventions
Initialization
Phase 0 - Check Inode of Inode File
Phase 1 - Check Blocks and Sizes
Phase 1b - Rescan for more Dups
Phase 2 - Check Pathnames
Phase 3 - Check Connectivity
Phase 4 - Check Reference Counts
Phase 5 - Check Cyl groups
.10. Phase 6 - Salvage Free Block List
.11. Phase 7 - Check Free Inode List
.12. Phase 8 - Salvage Free Inode List
.13. Cleanup

©PND oA b~

December 1985 McKusick, Holt, et. al.

Fsck -1- Introduction

1. Introduction

This document reflects the use of fsck with the Icon 4.2BSD file system organization. This is
a revision of the original paper written by T. J. Kowalski.

When a UNIX operating system is brought up, a consistency check of the file systems should
always be performed. This precautionary measure helps to insure a reliable environment for file
storage on disk. If an inconsistency is discovered, corrective action must be taken. Fsck runs in
two modes. Normally it is run non-interactively by the system after a normal boot. When run-
ning in this mode, it will only make changes to the file system that are known to always be
correct. If an unexpected inconsistency is found fsck will exit with a non-zero exit status, leaving
the system running single-user. Typically the operator then runs fsck interactively. When run-
ning in this mode, each problem is listed followed by a suggested corrective action. The operator
must decide whether or not the suggested correction should be made. This second mode can be run
by one of two methods. Either while running under UNIX or standalone. The standalone method
allows recovering a filesystems when the filesystem is too corrupted to be used under UNIX.

The purpose of this memo is to dispel the mystique surrounding file system inconsistencies.
It first describes the updating of the file system (the calm before the storm) and then describes file
system corruption (the storm). Finally, the set of deterministic corrective actions used by fsck (the
Coast Guard to the rescue) is presented.

December 1985 McKusick, Holt, et. al.

Fsck -2- Overview of the File System

2. Overview of the file system
The file system is discussed in detail in [Mckusick83]; this section gives a brief overview.

2.1. Superblock

A file system is described by its super-block. The super-block is built when the file system is
created (newfs(8)) and never changes. The super-block contains the basic parameters of the file
system, such as the number of data blocks it contains and a count of the maximum number of
files. Because the super-block contains critical data, newfs replicates it to protect against catas-
trophic loss. The default super block always resides at a fixed offset from the beginning of the file
system’s disk partition. The redundant super blocks are not referenced unless a head crash or other
hard disk error causes the default super-block to be unusable. The redundant blocks are sprinkled
throughout the disk partition.

Within the file system are files. Certain files are distinguished as directories and contain col-
lections of pointers to files that may themselves be directories. Every file has a descriptor associ-
ated with it called an fnode. The inode contains information describing ownership of the file, time
stamps indicating modification and access times for the file, and an array of indices pointing to the
data blocks for the file. In this section, we assume that the first 12 blocks of the file are directly
referenced by values stored in the inode structure itselff. The inode structure may also contain
references to indirect blocks containing further data block indices. In a file system with a 4096
byte block size, a singly indirect block contains 1024 further block addresses, a doubly indirect
block contains 1024 addresses of further single indirect blocks, and a triply indirect block contains -
1024 addresses of further doubly indirect blocks.

In order to create files with up to 2132 bytes, using only two levels of indirection, the
minimum size of a file system block is 4096 bytes. The size of file system blocks can be any power
of two greater than or equal to 4096. The block size of the file system is maintained in the super-
block, so it is possible for file systems of different block sizes to be accessible simultaneously on the
same system. The block size must be decided when newfs creates the file system; the block size
cannot be subsequently changed without rebuilding the file system.

2.2. Summary information

Associated with the super block is non replicated summary information. The summary infor-
mation changes as the file system is modified. The summary information contains the number of
blocks, fragments, inodes and directories in the file system.

2.3. Cylinder groups

The file system partitions the disk into one or more areas called cylinder groups. A cylinder
group is comprised of one or more consecutive cylinders on a disk. Each cylinder group includes
inode slots for files, a block map describing available blocks in the cylinder group, and summary
information describing the usage of data blocks within the cylinder group. A fixed number of
inodes is allocated for each cylinder group when the file system is created. The current policy is to
allocate one inode for each 2048 bytes of disk space; this is expected to be far more inodes than
will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be on
the top platter. A single hardware failure that destroyed the top platter could cause the loss of all
copies of the redundant super-blocks. Thus the cylinder group bookkeeping information begins at
a floating offset from the beginning of the cylinder group. The offset for the i+1st cylinder group
is about one track further from the beginning of the cylinder group than it was for the tth cylinder
group. In this way, the redundant information spirals down into the pack; any single track,
cylinder, or platter can be lost without losing all copies of the super-blocks. Except for the first

{The actual number may vary from system to system, but is usually in the range 5-13.

December 1985 McKusick, Holt, et. al.

Fsck -3- Overview of the file system

cylinder group, the space between the beginning of the cylinder group and the beginning of the
cylinder group information stores data.

2.4. Fragments

To avoid waste in storing small files, the file system space allocator divides a single file sys-
tem block into one or more fragments. The fragmentation of the file system is specified when the
file system is created; each file system block can be optionally broken into 2, 4, or 8 addressable
fragments. The lower bound on the size of these fragments is constrained by the disk sector size;
typically 512 bytes is the lower bound on fragment size. The block map associated with each
cylinder group records the space availability at the fragment level. Aligned fragments are exam-
ined to determine block availability.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block. If a
file system block must be fragmented to obtain space for a small amount of data, the remainder of
the block is made available for allocation to other files. For example, consider an 11000 byte file
stored on a 4096/1024 byte file system. This file uses two full size blocks and a 3072 byte frag-
ment. If no fragments with at least 3072 bytes are available when the file is created, a full size
block is split yielding the necessary 3072 byte fragment and an unused 1024 byte fragment. This
remaining fragment can be allocated to another file, as needed.

2.5. Updates to the file system

Every working day hundreds of files are created, modified, and removed. Every time a file is
modified, the operating system performs a series of file system updates. These updates, when writ-
ten on disk, yield a consistent file system. The file system stages all modifications of critical infor-
mation; modification can either be completed or cleanly backed out after a crash. Knowing the
information that is first written to the file system, deterministic procedures can be developed to
repair a corrupted file system. To understand this process, the order that the update requests were
being honored must first be understood.

When a user program does an operation to change the file system, such as a write, the data
to be written is copied into an internal in-core buffer in the kernel. Normally, the disk update is
handled asynchronously; the user process is allowed to proceed even though the data has not yet
been written to the disk. The data, along with the inode information reflecting the change, is
eventually written out to disk. The real disk write may not happen until long after the write sys-
tem call has returned. Thus at any given time, the file system, as it resides on the disk, lags the
state of the file system represented by the in-core information.

The disk information is updated to reflect the in-core information when the buffer is required
for another use, when a sync(2) is done (at 30 second intervals) by /etc/update(8), or by manual
operator intervention with the sync(8) command. If the system is halted without writing out the
in-core information, the file system on the disk will be in an inconsistent state.

If all updates are done asynchronously, several serious inconsistencies can arise. One incon-
sistency is that a block may be claimed by two inodes. Such an inconsistency can occur when the
system is halted before the pointer to the block in the old inode has been cleared in the copy of the
old inode on the disk, and after the pointer to the block in the new inode has been written out to
the copy of the new inode on the disk. Here, there is no deterministic method for deciding which
inode should really claim the block. A similar problem can arise with a multiply claimed inode.

The problem with asynchronous inode updates can be avoided by doing all inode dealloca-
tions synchronously. Consequently, inodes and indirect blocks are written to the disk synchro-
nously (i.e. the process blocks until the information is really written to disk) when they are being
deallocated. Similarly inodes are kept consistent by synchronously deleting, adding, or changing
directory entries.

December 1985 McKusick, Holt, et. al.

Fsck -4- Fixing corrupted file systems

8. Fixing corrupted file systems

A file system can become corrupted in several ways. The most common of these ways are
improper shutdown procedures and hardware failures.

File systems may become corrupted during an unclean halt. This happens when proper shut-
down procedures are not observed, physically write-protecting a mounted file system, or a mounted
file system is taken off-line. The most common operator procedural failure is forgetting to sync
the system before halting the CPU.

File systems may become further corrupted if proper startup procedures are not observed,
e.g., not checking a file system for inconsistencies, and not repairing inconsistencies. Allowing a
corrupted file system to be used (and, thus, to be modified further) can be disastrous.

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a
disk pack, or as blatant as a non-functional disk-controller.

3.1. Detecting and correcting corruption

Normally fsck is run non-interactively. In this mode it will only fix corruptions that are
expected to occur from an unclean halt. These actions are a proper subset of the actions that fsck
will take when it is running interactively. Throughout this paper we assume that fsck is being run
interactively, and all possible errors can be encountered. When an inconsistency is discovered in
this mode, fsck reports the inconsistency for the operator to chose a corrective action.

A quiescent} file system may be checked for structural integrity by performing consistency
checks on the redundant data intrinsic to a file system. The redundant data is either read from
the file system, or computed from other known values. The file system must be in a quiescent
state when fsck is run, since fsck is a multi-pass program.

In the following sections, we discuss methods to discover inconsistencies and possible correc-
tive actions for the cylinder group blocks, the inodes, the indirect blocks, and the data blocks con-
taining directory entries.

3.2. Super-block checking

The most commonly corrupted item in a file system is the summary information associated
with the super-block. The summary information is prone to corruption because it is modified with
every change to the file system’s blocks or inodes, and is usually corrupted after an unclean halt.

The super-block is checked for inconsistencies involving file-system size, number of inodes,
free-block count, and the free-inode count. The file-system size must be larger than the number of
blocks used by the super-block and the number of blocks used by the list of inodes. The file-
system size and layout information are the most critical pieces of information for fsck. While
there is no way to actually check these sizes, since they are statically determined by newfs, fsck
can check that these sizes are within reasonable bounds. All other file system checks require that
these sizes-be correct. If fsck detects corruption in the static parameters of the default super-block,
fack requests the operator to specify the location of an alternate super-block.

3.3. Free block checking

Fsck checks that all the blocks marked as free in the cylinder group block maps are not
claimed by any files. When all the blocks have been initially accounted for, fsck checks that the
number of free blocks plus the number of blocks claimed by the inodes equals the total number of
blocks in the file system.

If anything is wrong with the block allocation maps, fsck will rebuild them, based on the list
it has computed of allocated blocks.

$ Le., unmounted and not being written on.

December 1985 McKusick, Holt, et. al.

Fsck -5- Fixing corrupted file systems

The summary information associated with the super-block counts the total number of free
blocks within the file system. Fsck compares this count to the number of free blocks it found
within the file system. If the two counts do not agree, then fsck replaces the incorrect count in the
summary information by the actual free-block count.

The summary information counts the total number of free inodes within the file system.
Fsck compares this count to the number of free inodes it found within the file system. If the two
counts do not agree, then fsck replaces the incorrect count in the summary information by the
actual free-inode count.

3.4. Checking the inode state

An individual inode is not as likely to be corrupted as the allocation information. However,
because of the great number of active inodes, a few of the inodes are usually corrupted.

The list of inodes in the file system is checked sequentially starting with inode 2 (inode 0
marks unused inodes; inode 1 is saved for future generations) and progressing through the last
inode in the file system. The state of each inode is checked for inconsistencies involving format
and type, link count, duplicate blocks, bad blocks, and inode size.

Each inode contains a mode word. This mode word describes the type and state of the
inode. Inodes must be one of six types: regular inode, directory inode, symbolic link inode, special
block inode, special character inode, or socket inode. Inodes may be found in one of three alloca-
tion states: unallocated, allocated, and neither unallocated nor allocated. This last state suggests
an incorrectly formated inode. An inode can get in this state if bad data is written into the inode
list. The only possible corrective action is for fsck is to clear the inode.

3.5. Inode links

Each inode counts the total number of directory entries linked to the inode. Fsck verifies the
link count of each inode by starting at the root of the file system, and descending through the
directory structure. The actual link count for each inode is calculated during the descent.

If the stored link count is non-zero and the actual link count is zero, then no directory entry
appears for the inode. If this happens, fsck will place the disconnected file in the lost-+found direc-
tory. If the stored and actual link counts are non-zero and unequal, a directory entry may have
been added or removed without the inode being updated. If this happens, fsck replaces the
incorrect stored link count by the actual link count.

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks claimed by
the inode. Since indirect blocks are owned by an inode, inconsistencies in indirect blocks directly
affect the inode that owns it.

Fsck compares each block number claimed by an inode against a list of already allocated
blocks. If another inode already claims a block number, then the block number is added to a list
of duplicate blocks. Otherwise, the list of allocated blocks is updated to include the block number.

If there are any duplicate blocks, fsck will perform a partial second pass over the inode list
to find the inode of the duplicated block. The second pass is needed, since without examining the
files associated with these inodes for correct content, not enough information is available to deter-
mine which inode is corrupted and should be cleared. If this condition does arise (only hardware
failure will cause it), then the inode with the earliest modify time is usually incorrect, and should
be cleared. If this happens, fsck prompts the operator to clear both inodes. The operator must
decide which one should be kept and which one should be cleared.

Fsck checks the range of each block number claimed by an inode. If the block number is
lower than the first data block in the file system, or greater than the last data block, then the
block number is a bad block number. Many bad blocks in an inode are usually caused by an
indirect block that was not written to the file system, a condition which can only occur if there has
been a hardware failure. If an inode contains bad block numbers, fsck prompts the operator to
clear it.

December 1985 McKusick, Holt, et. al.

Fsck -6- Fixing corrupted file systems

8.6. Inode data size

Each inode contains a count of the number of data blocks that it contains. The number of
actual data blocks is the sum of the allocated data blocks and the indirect blocks. Fsck computes
the actual number of data blocks and compares that block count against the actual number of
blocks the inode claims. If an inode contains an incorrect count fsck prompts the operator to fix
it.

Each inode contains a thirty-two bit size field. The size is the number of data bytes in the
file associated with the inode. The consistency of the byte size field is roughly checked by comput-
ing from the size field the maximum number of blocks that should be associated with the inode,
and comparing that expected block count against the actual number of blocks the inode claims.

3.7. Checking the data associated with an inode

An inode can directly or indirectly reference three kinds of data blocks. All referenced blocks
must be the same kind. The three types of data blocks are: plain data blocks, symbolic link data
blocks, and directory data blocks. Plain data blocks contain the information stored in a file; sym-
bolic link data blocks contain the path name stored in a link. Directory data blocks contain direc-
tory entries. Fsck can only check the validity of directory data blocks.

Each directory data block is checked for several types of inconsistencies. These inconsisten-
cies include directory inode numbers pointing to unallocated inodes, directory inode numbers that
are greater than the number of inodes in the file system, incorrect directory inode numbers for ¢.”
and ‘““..”, and directories that are not attached to the file system. If the inode number in a direc-
tory data block references an unallocated inode, then fsck will remove that directory entry. Again,
this condition can only arise when there has been a hardware failure.

If a directory entry inode number references outside the inode list, then fsck will remove that
directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for *.”” must be the first entry in the directory data block.
The inode number for *.” must reference itself; e.g., it must equal the inode number for the direc-
tory data block. The directory inode number entry for *“..”” must be the second entry in the direc-
tory data block. Its value must equal the inode number for the parent of the directory entry (or
the inode number of the directory data block if the directory is the root directory). If the directory

inode numbers are incorrect, fsck will replace them with the correct values.

3.8. File system connectivity

Fsck checks the general connectivity of the file system. If directories are not linked into the
file system, then fsck links the directory back into the file system in the lost+found directory.
This condition only occurs when there has been a hardware failure.

December 1985 McKusick, Holt, et. al.

.
\
‘\//‘

Fsck -7- Fixing corrupted file systems

Acknowledgements

I thank Bill Joy, Sam Leffler, Robert Elz and Dennis Ritchie for their suggestions and help in
implementing the new file system. Thanks also to Robert Henry for his editorial input to get this
document together. Finally we thank our sponsors, the National Science Foundation under grant
MCS80-05144, and the Defense Advance Research Projects Agency (DoD) under Arpa Order No.
4031 monitored by Naval Electronic System Command under Contract No. N00039-82-C-0235.
(Kirk McKusick, July 1983)

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck and Rick
B. Brandt for adapting fsck to UNIX/TS. (T. Kowalski, July 1979)

References

[Dolotta78] Dolotta, T. A., and Olsson, S. B. eds., UNIX User’s Manual, Edition 1.1
(January 1978).

[Joy83] Joy, W., Cooper, E., Fabry, R., Leffler, S., McKusick, M., and Mosher, D.

4.2BSD System Manual, University of California at Berkeley, Computer
Systems Research Group Technical Report #4, 1982.

McKusick83] McKusick, M., Joy, W., Lefller, S., and Fabry, R. A Fast File System for
UNIX, University of California at Berkeley, Computer Systems Research
Group Technical Report #7, 1982,

[Ritchie78] Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System, The
Bell System Technical Journal 87, 6 (July-August 1978, Part 2), pp. 1905-
29.

[Thompson78] Thompson, K., UNIX Implementation, The Bell System Technical Journal

57, 6 (July-August 1978, Part 2), pp. 1931-46.

December 1985 McKusick, Holt, et. al.

Fsck -8- Appendix A - Fsck Error Conditions

4. Appendix A — Fsck Error Conditions

4.1. Conventions

Fsck is a multi-pass file system check program. Each file system pass invokes a different
Phase of the fsck program. After the initial setup, fsck performs successive Phases over each file
system, checking blocks and sizes, path-names, connectivity, reference counts, and the map of free
blocks, (possibly rebuilding it), and performs some cleanup.

Normally fsck is run non-interactively to preen the file systems after an unclean halt. While
preen’ing a file system, it will only fix corruptions that are expected to occur from an unclean halt.
These actions are a proper subset of the actions that fsck will take when it is running interac-
tively. Throughout this appendix many errors have several options that the operator can take.
When an inconsistency is detected, fsck reports the error condition to the operator. If a response is
required, fsck prints a prompt message and waits for a response. When preen’ing most errors are
fatal. For those that are expected, the response taken is noted. This appendix explains the mean-
ing of each error condition, the possible responses, and the related error conditions.

The error conditions are organized by the Phase of the fsck program in which they can .occur.
The error conditions that may occur in more than one Phase will be discussed in initialization.

4.2. Initialization

Before a file system check can be performed, certain tables have to be set up and certain files
opened. This section concerns itself with the opening of files and the initialization of tables. This
section lists error conditions resulting from command line options, memory requests, opening of
files, status of files, file system size checks, and creation of the scratch file. All of the initialization
errors are fatal when the file system is being preen’ed.

C option?
Cis not a legal option to fsck; legal options are -b, -y, -n, and ~p. Fsck terminates on this error
condition. See the fsck(8) manual entry for further detail.

cannot alloc NNN bytes for blockmap

cannot alloc NNN bytes for freemap

cannot alloc NNN bytes for statemap

cannot alloc NNN bytes for Incntp

Fsck’s request for memory for its virtual memory tables failed. This should never happen. Fsck
terminates on this error condition. See a guru.

Can'’t open checklist file: F'
The file system checklist file F' (usually /etc/fstab) can not be opened for reading. Fsck terminates
on this error condition. Check access modes of F.

Can't stat root
Fsck’s request for statistics about the root directory */” failed. This should never happen. Fsck
terminates on this error condition. See a guru.

Can't stat F

Can’t make sense out of name F

Fsck’s request for statistics about the file system F failed. When running manually, it ignores this
file system and continues checking the next file system given. Check access modes of F.

Can’t open F
Fsck’s request attempt to open the file system F failed. When running manually, it ignores this
file system and continues checking the next file system given. Check access modes of F.

December 1985 McKusick, Holt, et. al.

Fsck -9- Appendix A — Fsck Error Conditions

F: (NO WRITE)

Either the -n flag was specified or fsck’s attempt to open the file system F for writing failed.
When running manually, all the diagnostics are printed out, but no modifications are attempted to
fix them.

file is not a block or character device; OK
You have given fsck a regular file name by mistake. Check the type of the file specified.

Possible responses to the OK prompt are:
YES Ignore this error condition.
NO ignore this file system and continues checking the next file system given.

One of the following messages will appear:
MAGIC NUMBER WRONG

NCG OUT OF RANGE

CPG OUT OF RANGE

NCYL DOES NOT JIVE WITH NCG*CPG
SIZE PREPOSTEROUSLY LARGE
TRASHED VALUES IN SUPER BLOCK

and will be followed by the message:

F: BAD SUPER BLOCK: B

USE -b OPTION TO FSCK TO SPECIFY LOCATION OF AN ALTERNATE
SUPER-BLOCK TO SUPPLY NEEDED INFORMATION; SEE fsck(8).

The super block has been corrupted. An alternative super block must be selected from among those
listed by newfs (8) when the file system was created. For file systems with a blocksize less than
32K, specifying -b 32 is a good first choice.

INTERNAL INCONSISTENCY: M
Fsck’s has had an internal panic, whose message is specified as M. This should never happen. See
a guru.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck’s request for moving to a specified block number B in the file system failed. This should

never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however the problem will persist.
This error condition will not allow a complete check of the file system. A second run of fsck
should be made to re-check this file system. If the block was part of the virtual memory
buffer cache, fsck will terminate with the message ‘Fatal I/O error”’.

NO terminate the program.

CAN NOT READ: BLK B (CONTINUE)

Fsck’s request for reading a specified block number B in the file system failed. This should never
happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will persist.
This error condition will not allow a complete check of the file system. A second run of fsck
should be made to re-check this file system. If the block was part of the virtual memory
buffer cache, fsck will terminate with the message “Fatal I/O error”.

December 1985 McKusick, Holt, et. al.

Fsck -10- Appendix A — Fsck Error Conditions

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)

Fsck’s request for writing a specified block number B in the file system failed. The disk is write-
protected. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will persist.
This error condition will not allow a complete check of the file system. A second run of fsck
should be made to re-check this file system. If the block was part of the virtual memory
buffer cache, fsck will terminate with the message “Fatal 1/O error”.

NO terminate the program.

4.3. Phase 1 — Check Blocks and Sizes

This phase concerns itself with the inode list. This section lists error conditions resulting
from checking inode types, setting up the zero-link-count table, examining inode block numbers for
bad or duplicate blocks, checking inode size, and checking inode format. All errors in this phase
except INCORRECT BLOCK COUNT are fatal if the file system is being preen’ed,

CG C: BAD MAGIC NUMBER The magic number of cylinder group C is wrong. This usually
indicates that the cylinder group maps have been destroyed. When running manually the cylinder
group is marked as needing to be reconstructed.

UNKNOWN FILE TYPE I=] (CLEAR) The mode word of the inode I indicates that the
inode is not a special block inode, special character inode, socket inode, regular inode, symbolic
link, or directory inode. ‘

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. This will always invoke the UNALLOCATED
error condition in Phase 2 for each directory entry pointing to this inode.

NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)
An internal table for fsck containing allocated inodes with a link count of zero has no more room.
Recompile fsck with a larger value of MAXLNCNT.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system. If another allo-
cated inode with a zero link count is found, this error condition is repeated.

NO terminate the program.

BBAD I=/

Inode I contains block number B with a number lower than the number of the first data block in
the file system or greater than the number of the last block in the file system. This error condition
may invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if inode I has too many
block numbers outside the file system range. This error condition will always invoke the
BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE BAD BLKS I=] (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number lower than the
number of the first data block in the file system or greater than the number of last block in the file
system associated with inode 1.

December 1985 McKusick, Holt, et. al.

Fsck -11- Appendix A - Fsck Error Conditions

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in the
file system. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to re-check this file system.

NO terminate the program.

BDUP I=1]

Inode I contains block number B which is already claimed by another inode. This error condition
may invoke the EXCESSIVE DUP BLKS error condition in Phase 1 if inode I has too many
block numbers claimed by other inodes. This error condition will always invoke Phase 1b and the
BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE DUP BLKS I=J (CONTINUE)
There is more than a tolerable number (usually 10) of blocks claimed by other inodes.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in the
file system. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)
An internal table in fsck containing duplicate block numbers has no more room. Recompile fsck
with a larger value of DUPTBLSIZE.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system. If another dupli-
cate block is found, this error condition will repeat.

NO terminate the program.

PARTIALLY ALLOCATED INODE I=J(CLEAR)
Inode I is neither allocated nor unallocated.

Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

INCORRECT BLOCK COUNT I=/ (X should be Y) (CORRECT)
The block count for inode I is X blocks, but should be Y blocks. When preen’ing the count is
corrected.

Possible responses to the CORRECT prompt are:
YES replace the block count of inode I with Y.
NO ignore this error condition.

4.4. Phase 1B: Rescan for More Dups

When a duplicate block is found in the file system, the file system is rescanned to find the
inode which previously claimed that block. This section lists the error condition when the dupli-
cate block is found.

December 1985 McKusick, Holt, et. al.

Fsck -12- Appendix A - Fsck Error Conditions

BDUP I=I]

Inode I contains block number B that is already claimed by another inode. This error condition
will always invoke the BAD/DUP error condition in Phase 2. You can determine which inodes
have overlapping blocks by examining this error condition and the DUP error condition in Phase 1.

4.5. Phase 2 — Check Pathnames

This phase concerns itself with removing directory entries pointing to error conditioned
inodes from Phase 1 and Phase 1b. This section lists error conditions resulting from root inode
mode and status, directory inode pointers in range, and directory entries pointing to bad inodes.
All errors in this phase are fatal if the file system is being preen’ed.

ROOT INODE UNALLOCATED. TERMINATING.
The root inode (usually inode number 2) has no allocate mode bits. This should never happen.
The program will terminate.

NAME TOO LONG F

An excessively long path name has been found. This is usually indicative of loops in the file sys-
tem name space. This can occur if the super user has made circular links to directories. The
offending links must be removed (by a guru).

ROOT INODE NOT DIRECTORY (FIX)
The root inode (usually inode number 2) is not directory inode type.

Possible responses to the FIX prompt are:

YES replace the root inode’s type to be a directory. If the root inode’s data blocks are not direc-
tory blocks, a VERY large number of error conditions will be produced.

NO terminate the program.

DUPS/BAD IN ROOT INODE (CONTINUE)
Phase 1 or Phase 1b have found duplicate blocks or bad blocks in the root inode (usually inode
number 2) for the file system.

Possible responses to the CONTINUE prompt are:

YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to run the
file system check. If the root inode is not correct, then this may result in a large number of
other error conditions.

NO terminate the program.

I0UT OF RANGE I=/ NAME=F (REMOVE)
A directory entry F has an inode number I which is greater than the end of the inode list.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.

UNALLOCATED I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F
(REMOVE)

A directory entry F has a directory inode I without allocate mode bits. The owner O, mode M,
size S, modify time T, and directory name F are printed.

Possible responses to the REMOVE prompt are:
YES the directory entry F'is removed.

December 1985 McKusick, Holt, et. al.

&

Fsck -13- Appendix A - Fsck Error Conditions

NO ignore this error condition.

UNALLOCATED I=]/ OWNER=0 MODE=M SIZE=S MTIME=T FILE=F
(REMOVE) '

A directory entry F has an inode I without allocate mode bits. The owner O, mode M, size S,
modify time 7, and file name F' are printed.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (REMOVE)
Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry F,
directory inode I. The owner O, mode M, size S, modify time T, and directory name F are
printed.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD I=] OWNER=0 MODE=M SIZE=S5 MTIME=T FILE=F (REMOVE)
Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry F,
inode I. The owner O, mode M, size S, modify time T, and file name F are printed.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.

ZERO LENGTH DIRECTORY I=]/ OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (REMOVE)

A directory entry F has a size S that is zero. The owner O, mode M, size S, modify time T, and
directory name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed; this will always invoke the BAD/DUP error condition in
Phase 4.

NO ignore this error condition.

DIRECTORY TOO SHORT I=] OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (FIX) ’

A directory F has been found whose size S is less than the minimum size directory. The owner O,
mode M, size S, modify time T, and directory name F are printed.

Possible responses to the FIX prompt are:
YES increase the size of the directory to the minimum directory size.
NO ignore this directory.

DIRECTORY CORRUPTED I=]/ OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (SALVAGE)
A directory with an inconsistent internal state has been found.

Possible responses to the FIX prompt are:

YES throw away all entries up to the next 512-byte boundary. This rather drastic action can
throw away up to 42 entries, and should be taken only after other recovery efforts have

December 1985 McKusick, Holt, et. al.

Fsck -14- Appendix A - Fsck Error Conditions

J

failed.
NO Skip up to the next 512-byte boundary and resume reading, but do not modify the directory.

BAD INODE NUMBER FOR ‘' I=] OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (FIX)
A directory I has been found whose inode number for ¢.” does does not equal 1.

Possible responses to the FIX prompt are:
YES change the inode number for .’ to be equal to I.
NO leave the inode number for ‘.’ unchanged.

MISSING ‘.’ I=] OWNER=0 MODE=M SIZE=S MTIME="T DIR=F (FIX)
A directory I has been found whose first entry is unallocated.

Possible responses to the FIX prompt are:
YES make an entry for ‘.’ with inode number equal to I.
NO leave the directory unchanged.

MISSING ‘.’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS F

A directory I has been found whose first entry is F. Fsck cannot resolve this problem. The file sys-
tem should be mounted and the offending entry F moved elsewhere. The file system should then
be unmounted and fsck should be run again.

MISSING ‘.’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, INSUFFICIENT SPACE TO ADD ‘.

A directory I has been found whose first entry is not ‘.. Fsck cannot resolve this problem as it
should never happen. See a guru.

EXTRA ‘.’ ENTRY I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for “.”.

Possible responses to the FIX prompt are:
YES remove the extra entry for ‘..
NO leave the directory unchanged.

BAD INODE NUMBER FOR ‘..’ I=] OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (FIX)
A directory I has been found whose inode number for ‘..’ does does not equal the parent of I.

Possible responses to the FIX prompt are:
YES change the inode number for ‘..” to be equal to the parent of I
NO leave the inode number for ‘..” unchanged.

MISSING ‘.. I=] OWNER=0 MODE=M SIZE=S5 MTIME=T DIR=F (FIX)
A directory I has been found whose second entry is unallocated.

Possible responses to the FIX prompt are:
YES make an entry for ‘..” with inode number equal to the parent of I
NO leave the directory unchanged.

December 1985 McKusick, Holt, et. al.

Fsck -15- Appendix A - Fsck Error Conditions

MISSING ‘.. I=] OWNER=0 MODE=M SIZE=S5 MTIME=T DIR=F

CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS F

A directory I has been found whose second entry is F. Fsck cannot resolve this problem. The file
system should be mounted and the offending entry F moved elsewhere. The file system should
then be unmounted and fsck should be run again.

MISSING “.. I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, INSUFFICIENT SPACE TO ADD ‘..’

A directory I has been found whose second entry is not ‘... Fsck cannot resolve this problem as it
should never happen. See a guru.

EXTRA ‘. ENTRY I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for ...

Possible responses to the FIX prompt are:
YES remove the extra entry for ‘..°.
NO leave the directory unchanged.

4.6. Phase 3 — Check Connectivity

This phase concerns itself with the directory connectivity seen in Phase 2. This section lists
error conditions resulting from unreferenced directories, and missing or full lost+found directories.

UNREF DIR I=] OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

The directory inode I was not connected to a directory entry when the file system was traversed.
The owner O, mode M, size S, and modify time T of directory inode I are printed. When
preen’ing, the directory is reconnected if its size is non-zero, otherwise it is cleared.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode I to the file system in the directory for lost files (usually
lost+found). This may invoke the lost+found error condition in Phase 3 if there are prob-
lems connecting directory inode I to lost+found. This may also invoke the CONNECTED
error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system Jfsck ignores the request to
link a directory in lost+found. This will always invoke the UNREF error condition in Phase 4.
Check access modes of lost+found. See fsck(8) manual entry for further detail. This error is fatal
if the file system is being preen’ed.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of the file
system; fsck ignores the request to link a directory in lost+found. This will always invoke the
UNREF error condition in Phase 4. Clean out unnecessary entries in lost+found or make
lost+found larger. See fsck(8) manual entry for further detail. This error is fatal if the file system
is being preen’ed.

DIR I=11 CONNECTED. PARENT WAS I=12

This is an advisory message indicating a directory inode I was successfully connected to the
lost+found directory. The parent inode I2 of the directory inode II is replaced by the inode
number of the lost+found directory.

December 1985 McKusick, Holt, et. al.

Fsck -16 - Appendix A - Fsck Error Conditions

4.7. Phase 4 — Check Reference Counts

This phase concerns itself with the link count information seen in Phase 2 and Phase 3. This
section lists error conditions resulting from unreferenced files, missing or full lost+found directory,
incorrect link counts for files, directories, symbolic links, or special files, unreferenced files, symbolic
links, and directories, bad and duplicate blocks in files, symbolic links, and directories, and
incorrect total free-inode counts. All errors in this phase are correctable if the file system is being
preen’ed except running out of space in the lost+found directory.

UNREF FILE I=] OWNER=0 MODE=M SIZE=S5 MTIME=T (RECONNECT)

Inode I was not connected to a directory entry when the file system was traversed. The owner O,
mode M, size S, and modify time T of inode [are printed. When preen’ing the file is cleared if
either its size or its link count is zero, otherwise it is reconnected.

Possible responses to the RECONNECT prompt are:

YES reconnect inode I to the file system in the directory for lost files (usually lost+found). This
may invoke the lost-+found error condition in Phase 4 if there are problems connecting inode
I to lost+found.

NO ignore this error condition. This will always invoke the CLEAR error condition in Phase 4.

(CLEAR)

The inode mentioned in the immediately previous error condition can not be reconnected. This
cannot occur if the file system is being preen’ed, since lack of space to reconnect files is a fatal
error.

Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immed