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ICON/UXB Operating System Reference Manual 

Volume 3 - Supplementary Documents 

leon International, Inc. 

October, 1987 

This volume contains documents which supplement the information in Volume 1 of 
the ICON/UXB Operating System Reference Manual, for the ICON version of the UNIXQP 
operating system as distributed by U.C. Berkeley. The documents within this volume 
are grouped into the areas of system administration, languages, and supporting tools. 
This manual is a logical extension of Volume 2 of the ICON/UXB Operating System 
Reference Manual, 

System Administration 

40. 4.2BSD System Manual. W.N. Joy, E. cooper, R.s. Fabry, S.J. Leffler, M.K. 
McKusick, and D. Mosher. 

A concise, though terse, description of the system call interface provided in 
4.2BSD. This will never be a best seller. 

41. Fsck - The UNIX File System Check Program. M.K. McKusick and T.J. Kowal­
ski. 

A reference document for use with the /sck program during times of file sys­
tem distress. 

42. 4.2BSD Line Printer Spooler Manual. R. Campbell. 
This document describes the structure and installation procedure for the line 
printer spooling system. 

43. A Fast File System for UNIX. M.K. McKusick, W.N. Joy, S.J. Leffler, and R.s. 
Fabry. 

A description of the new file system organization design and implementation. 

44. 4.2BSD Networking Implementation Notes. S.J. Leffler, W.N. Joy, and R.s. Fabry. 
A concise description of the system interfaces used within the networking 
subsystem. 

45. Disc Quotas in a UNIX Environment. R. Elz. 
A light introduction to the care and feeding of the facilities which can be 
used in limiting disc resources. 

46. Sendmail Installation and Operation Guide. E. Allman. 
The last word in installing and operating the sendmail program. 

47. Sendmail - An Internetwork Mail Router. E. Allman. 
An overview document on the design and implementation of sendmail. 
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48. UNIX Implementation. K. Thompson. 
How the system actually works inside. 

49. The UNIX I/O System. D.M. Ritchie. 
How the I/O system really works. 

50. On the Security of UNIX. D.M. Ritchie. 
Hints on how to break the ~ operating system and how to avoid doing 
so. 

51. Password Security: A Case History. R.H. Morris and K. Thompson. 
How the bad guys used to be able to break the password algorithm, and why 
they can 't now, at least not so easily. 

52. A Dial-Up Network of UNIX Systems. D.A. Nowitz and M.E. Lesk. 
Describes UUCP, a program for communicating files between computer sys­
tems using the UNJXS operating system. 

53. UUCP Implementation Description. D.A. Nowitz. 
How UUCP works, and how to administer it. 

Languages 

54. The "C" Programming Language - Reference Manual. D.M. Ritchie. 
Official statement of the syntax and semantics of "C". Should be supple­
mented by The C Programming Language, B.W. Kernighan and D.M. 
Ritchie, Prentice-Hall, 1978, which contains a tutorial introduction and 
many examples. 

55. Lint, A "C" Program Checker. S.C. Johnson. 
Checks "C" programs for syntax errors, type violations, portability problems, 
and a variety of probable errors. 

56. A Tour Through the UNIX "C" Compiler. D.M. Ritchie. 
How the UNIX- operating system "c" compiler works inside. 

57. A Tour Through the Portable "C" Compiler. S.C. Johnson. 
How the portable "C" compiler works inside. 

58. A Portable Fortran 77 Compiler. S.l. Feldman and P.J. Weinberger. 
The first Fortran 77 compiler, and still one of the best. This version reflects 
the ongoing work at U.C. Berkeley. 

59. Introduction to the f77 I/O Library. D.L. Wasley. 
A description of the revised input/output library for Fortran 77. This docu­
ment reflects the work carried out at U.C. Berkeley. 

60. Berkeley Pascal User's Manual. W.N. Joy, S.L. Graham, C.B. Haley, M.K. 
McKusick, and P.B. Kessler. 

An interpretive implementation of the reference language. 

61. Berkeley Pascal PX Implementation Notes. W.N. Joy and M.K McKusick. 
Describes the implementation of the pz interpreter which translates Pascal 
binary code generated by the Pascal translator pi. 

62. The Programming Language EFL. S.I. Feldman. 

iv 

An introduction to a powerful FORTRAN preprocessor providing access to a 
language with structures much like "C". 
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63. Berkeley FP User's Manual. S. Baden. 
A description of the Berkeley implementation of Backus' Functional Pro­
gramming Language, FP. 

Supporting Tools 

64. YACC - Yet Another Compiler-Compiler. S.C. Johnson. 
Converts a BNF specification of a language and semantic actions written in 
"C" into a compiler of the language. 

65. LEX - A Lexical Analyzer Generator. M.E. Lesk and E. Schmidt. 
Creates a recognizer for a set of regular expressions, each regular expression 
can be followed by arbitrary "C" code which will be executed when the regu­
lar expression is found. 

66. RATFOR - A Preprocessor for a Rational Fortran. B.W. Kernighan. 
Converts a Fortran with "C"-like control structures and cosmetics into real, 
ugly Fortran. 

67. The M4 Macro Processor. B.W. Kernighan and D.M. Ritchie. 
M4 is a macro processor useful as a front end for "C", Ratfor, Cobol, and in 
it own right. 

68. SED - A Non-Interactive Text Editor. L.E. McMahon. 
A variant of the editor for processing large inputs. 

69. A WK - A Pattern Scanning and Processing Language. A.V. Aho, B.W. Ker­
nighan, and P.J. Weinberger. 

Makes it easy to specify many data transformation and selection operations. 

70. DC - An Interactive Desk Calculator. R.H. Morris and L.L. Cherry. 
A super HP calculator, if you don't need floating point. 

71. BC - An Arbitrary Precision Desk Calculator Language. L.L. Cherry and R.H. 
Morris. 

A front end for DC that provides infix notation, control flow, and built-in 
functions. 

72. PROC286 Software Support and the Dosc Command under ICONjUXB. M. 
Muhlestein. 

Describes the implementation of dose and related software for the ICON 
computer systems. Intended to assist developers and system administrators 
in understanding the interface between ICON's UNIX and MS-DOS operating 
system environment. 

73. JOVE Manual for UNIX Users. J. Payne. (4.2BSD Revision by D. Kingston and 
M. Seiden. 

JOVE is an advanced, self-documenting, customizable real-time display edi­
tor. This manual, and the tutorial introduction, is based on the original 
EMACS editor and user manuals written at M.I.T. by Richard Stallman. 

74. An Introduction to the Revision Control System - Revised. W.F. Tichy. 
Describes the benefits of using a source code control system to manage 
software libraries. Includes a tutorial introduction to the use of RCS. 

75. Technical Note on ICON/UXB Magnetic Tape Support. M. Muhlestein. 
Describes certain special features of ICON/UXB (Icon's version of UNIX 
4.2BSD) support for magnetic tape. 
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4.2BSD System Manual 

Revised July, 1983 

William J01/, Eric Oooper, Robert Fabf71, 
Samuel LeJ11er, Kirk McKuaick and David Moaher 

Computer Systems Research Group 
Computer Science Division 

Department or Electrical Engineering and Computer Science 
University or Calirornia, Berkeley 

Berkeley, CA 94720 

(415) 642-7780 

ABSTRAOT 

This document summarizes the racilities provided by the 4.2BSD version or 
the UN1X operating system. It does not attempt to act as a tutorial ror use or the 
system nor does it attempt to explain or justiry the design or the system racilities. 
It gives neither motivation nor implementation details, in ravor or brevity. 

The first section describes the basic kernel runctions provided to a UNIX 
process: process naming and protection, memory management, sortware interrupts, 
object rererences (descriptors), time and statistics runctions, and resource controls. 
These racilities, as well as racilities ror bootstrap, shutdown and process account­
ing, are provided solely by the kernel. 

The second section describes the standard system abstractions ror files and 
file systems, communication, terminal handling, and process control and debug­
ging. These racilities are implemented by the operating system or by network 
server processes. 

• UNIX is a. tra.demark or BeU La.bora.tories. 
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o. Notation and types 

The notation used to describe system calls is a variant of a C language call, consisting of a 
prototype call followed by declaration of parameters and results. An additional keyword result, 
not part of the normal C language, is used to indicate which of the declared entities receive results . 
.As an example, consider the read call, as described in section 2.1: 

cc = read(fd, bur, nbytes); 
result int cc; int fd; result char *bufj int nbytes; 

The first line shows how the read routine is called, with three parameters. .As shown on the second 
line cc is an integer and read also returns information in the parameter buf. 

Description of all error conditions arising from each system call is not provided here; they 
appear in the programmer's manual. In particular, when accessed from the C language, many calls 
return a characteristic -1 value when an error occurs, returning the error code in the global va.ri­
able en"no. Other languages may present errors in different ways. 

A number of system standard types are defined in the include file <sys/types.h> and used 
in the specifications here and in many C programs. These include eaddr_t giving a memory 
address (typically as a character pointer), ofLt giving a file offset (typically as a long integer), and 
a set of unsigned types u.....ehar, u.....short, u.....int and u.....long, shorthand names for unsigned 
char, unsigned short, etc. 

CSRG TR/5 - September 1, 1982 - Joy, et. al. 



4.2BSD System Manual -2- Kernel primitives 

1. Kernel primitives 

The facilities available to a UNIX user process are logically divided into two parts: kernel 
facilities directly implemented by UNIX code running in the operating system, and system facilities 
implemented either by the system, or in cooperation with a 6ertJer prOCU6. These kernel facilities 
are described in this section 1. 

The Cacilities implemented in the kernel are those which define the UNIX virtual machine 
which each process runs in. Like many real machines, this virtual machine has memory manage­
ment hardware, an interrupt facility, timers and counters. The UNIX virtual machine also allows 
access to files and other objects through a set of de6criptor8. Each descriptor resembles a device 
controller, and supports a set of operations. Like devices on real machines, some of which are 
internal to the machine and some of which are external, parts of the descriptor machinery are 
built-in to the operating system, while other parts are often implemented in server processes on 
other machines. The facilities provided through the descriptor machinery are described in section 
2. 

CSRG TR/5 - September 1, 1982 - Joy, et. a1. 

\ ' '--/ 



c· 

C: 

4.2BSD System Manual - 3- Processes and protection 

1.1. Processes and protection 

1.1.1. Host and process Identifiers 

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 255 char­
acters. These are set (by a privileged user) and returned by the calls: 

sethostid(hostid) 
long hostid; 

hostid = gethostidO; 
result long hostid; 

sethostname(name, len) 
char *name; int len; 

len = gethostname(buf, buflen) 
result int len; result char *buf; int buflen; 

On each host runs a set of processes. Each process is largely independent of other processes, hav­
ing its own protection domain, address space, timers, and an independent set of references to sys­
tem or user implemented objects. 

Each process in a host is named by an integer called the process id. This number is in the 
range 1-30000 and is returned by the getpid routine: 

pid = getpidO; 
result int pid; 

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the 
(hostid, process id) pairs are guaranteed unique. 

1.1.2. Process creation and termination 

A new process is created by making a logical duplicate of an existing process: 

pid = forkO; 
result int pid; 

The fork call returns twice, once in the parent process, where pid is the process identifier of the 
child, and once in the child process where pid is O. The parent-child relationship induces a 
hierarchical structure on the set of processes in the system. 

A process may terminate by executing an exit call: 

exit(status) 
int status; 

returning 8 bits of exit status to its parent. 

When a child process exits or terminates abnormally, the parent process receives information 
about any event which caused termination of the child process. A second call provides a non­
blocking interface and may also be used to retrieve information about resources consumed by the 
process during its lifetime. 

CSRG TR/5 - September 1, 1982 - Joy, et. al. 
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*inelude <sys/wait.h> 

pid == wait(astatus}j 
result int pidj result union wait ·utatus; 

pid == wait3(astatus, options, arusage); 
result int pid; result union waitstatus ·astatus; 
int options; result struet rusage ·arusagej 

Proeesses and proteetion 

A process ean overlay itself with the memory image of another process, passing the newly 
created proeess a set of parameters, using the eall: 

exeeve(name, argv, envp) 
ehar ·name, •• argv, uenvp; 

The specified name must be a file whieh is in a format reeognized by the system, either a binary 
executable file or a file which causes the execution of a specified interpreter program to process its 
contents. 

1.1.S. User and group ids 

Each process in the system has associated with it two user-id's: a real U8er id and a effective 
user id, both non-negative 16 bit integers. Each process has an real accounting group id and an 
effective accounting group id and a set of aCCC88 group id'8. The group id's are non-negative 16 bit 
integers. Each proeess may be in several different access groups, with the maximum concurrent 
number of access groups a system compilation parameter, the constant NGROUPS in the file 
<sys/param.h>, guaranteed to be at least 8. 

The real and effective user ids associated with a process are returned by: 

ruid = getuidO; 
result int ruid; 

euid = geteuidO; 
result int euid; 

the real and effective accounting group ids by: 

rgid = getgidO; 
result int rgid; 

egid = getegidO; 
result int egid; 

and the access group id set is returned by a getgroup8 call: 

ngroups == getgroups(gidsetsize, gidset); 
result int ngroups; int gidsetsize; result int gidset[gidsetsize}; 

The user and group id's are assigned at login time using the 8etreuid, 8etregid, and 8etgroup8 
ealls: 

CSRG TR/5 - September 1, 1982 - Joy, et. al. 
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setreuid(ruid, euid); 
int ruid, euid; 

setregid(rgid, egid); 
int rgid, egid; 

setgroups{gidsetsize, gidset) 
int gidsetsize; int gidset[gidsetsize]; 

The aetreuid call sets both the real and effective user-id's, while the aetregid call sets both the real 
and effective accounting group id's. Unless the caller is the super-user, nid must be equal to either 
the current real or effective user-id, and rgid equal to either the current real or effective accounting 
group id. The aetgroupa call is restricted to the super-user. 

1.1.4. Process groups 

Each process in the system is also normally associated with a proce88 group. The group of 
processes in a process group is sometimes referred to as a job and manipulated by high-level system 
software (such as the shell). The current process group of a process is returned by the getpgrp call: 

pgrp = getpgrp(pid); 
result int pgrp; int pid; 

When a process is in a specific process group it may receive software interrupts affecting the group, 
causing the group to suspend or resume execution or to be interrupted or terminated. In particu­
lar, a system terminal has a process group and only processes which are in the process group of the 
terminal may read from the terminal, allowing arbitration of terminals among several different 
jobs. 

The process group associated with a process may be changed by the 8etpgrp call: 

setpgrp(pid, pgrp); 
int pid, pgrp; 

Newly created processes are assigned process id's distinct from all processes and process groups, 
and the same process group as their parent. A normal (unprivileged) process may set its process 
group equal to its process id. A privileged process may set the process group of any process to any 
value. 

CSRG TR/5 - September 1, 1982 - Joy, et. a1. 



-t.2BSD System Manual -6- Memory managementt 

1.2. Memory managementt 

1.2.1. Text, data and stack 

Each process begins execution with three logical areas of memory called text, data and stack. 
The text area is read-only and shared, while the data and stack areas are private to the process. 
Both the data and stack areas may be extended and contracted on program request. The call 

addr = sbrk{incr); 
result caddr_t addr; int incr; 

changes the size of the data area by incr bytes and returns the new end of the data area, while 

addr = sstk{incr); 
result caddr_t addr; int incr; 

changes the size or the stack area. The stack area is also automatically extended as needed. On 
the VAX the text and data areas are adjacent in the PO region, while the stack section is in the PI 
region, and grows downward. 

1.2.2. Mapping pages 

The system supports sharing of data between processes by allowing pages to be mapped into 
memory. These mapped pages may be shared with other processes or private to the process. Pro­
tection and sharing options are defined in <mman.h> as: 

/* protections are chosen from these bits, or-ed together * / 
#define PROT-READ Ox4 /* pages can be read * / 
#define PROT_WRITE Ox2 /* pages can be written * / 
#define PROT-EXEC OxI /* pages can be executed * / 

/* sharing types; choose either SHARED or PRIVATE * / 
#define MAP_SHARED I /* share changes * / 
#define MAP YRIV ATE 2 /* changes are private * / 

The cpu-dependent size of a page is returned by the getpage8ize system call: 

pagesize = getpagesize(); 
result int pagesize; 

The call: 

mmap{addr, len, prot, share, fd, pos); 
caddr_t addr; int len, prot, share, Cd; ofLt pos; 

causes the pages starting at addr and continuing for len bytes to be mapped from the object 
represented by descriptor Id, at absolute position pOS. The parameter Bhare specifies whether 
modifications made to this mapped copy of the page, are to be kept private, or are to be shared 
with other rererences. The parameter prot specifies the accessibility or the mapped pages. The 
addr, len, and POB parameters must all be multiples of the pagesize. 

A process can move pages within its own memory by using the mremap call: 

mremap(addr, len, prot, share, rromaddr); 
caddr_t addr; int len, prot, share; caddr_t fromaddr; 

This call maps the pages starting at Iromaddr to the address specified by addr. 

t This section represents the interra.ce pla.nned ror later releases or the system. or the calls described in this sec­
tion, only Ibri and gdp.gen;e are included in ".28SD. 
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A mapping can be removed by the call 

munmap(addr, len); 
caddr_t addr; int len; 

This causes further references to these pages to refer to private pages initialized to zero. 

1.2.3. Page protection control 

A process can control the protection of pages using the call 

mprotect(addr, len, prot); 
caddr_t addr; int len, prot; 

This call changes the specified pages to have protection prot. 

1.2.4. Giving and getting advice 

A process that has knowledge of its memory behavior may use the madvise call: 

madvise(addr, len, behav); 
caddr_t addr; int len, behav; 

Behav describes expected behavior, as given in <mman.h>: 

#define MADV..NORMAL 0 /* no further special treatment * / 
#define MADV ~"DOM 1 /* expect random page references * / 
#define MADV _SEQUENTIAL 2 /* expect sequential references * / 
#define MADV _ WILLNEED 3 /* will need these pages * / 
#define MADV J)ONTNEED 4 /* don't need these pages * / 

Finally, a process may obtain information about whether pages are core resident by using the call 

mincore(addr, len, vec) 
caddr_t addr; int len; result char *vec; 

Here the current core residency of the pages is returned in the character array vee, with a value of 
1 meaning that the page is in-core. 

CSRG TR/5 - September I, 1982 - Joy, et. a!. 
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1.8. Signals 

1.8.1. Overview 

The system defines a set of eignals that may be delivered to a process. Signal delivery resem­
bles the occurrence of a hardware interrupt: the signal is blocked from further occurrence, the 
current process context is saved, and a new one is built. A process may specify the handler to 
which a signal is delivered, or specify that the signal is to be blocked or ignored. A process may 
also specify that a de/ault action is to be taken when signals occur. 

Some signals will cause a process to exit when they are not caught. This may be accom­
panied by creation of a core image file, containing the current memory image of the process for use 
in post-mortem debugging. A process may choose to have signals delivered on a special stack, so 
that sophisticated software stack manipulations are possible. 

All signals have the same prioritll. If multiple signals are pending simultaneously, the order 
in which they are delivered to a process is implementation specific. Signal routines execute with 
the signal that caused their invocation blocked, but other signals may yet occur. Mechanisms are 
provided whereby critical sections of code may protect themselves against the occurrence of 
specified signals. 

1.3.2. Signal types 

The signals defined by the system fall into one of five classes: hardware conditions, software 
conditions, input/output notification, process control, or resource control. The set of signals is 
defined in the file <signal.h>. 

Hardware signals are derived from exceptional conditions which may occur during execution. 
Such signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL 
for illegal instruction execution, SIGSEGV for addresses outside the currently assigned area of 
memory, and SIGBUS for accesses that violate memory protection constraints. Other, more cpu­
specific hardware signals exist, such as those for the various customer-reserved instructions on the 
VAX (SIGlOT, SIGEMT, and SIGTRAP). 

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt 
signal; SIGQUIT for the more powerful quit signal, that normally causes a core image to be gen­
erated; SIGHUP and SIGTERM that cause graceful process termination, either because a user has 
"hung up", or by user or program request; and SIGKD...L, a more powerful termination signal 
which a process cannot catch or ignore. Other software signals (SIGALRM, SIGVTALRM, SIG­
PROF) indicate the expiration of interval timers. 

A process can request notification via a SIGIO signal when input or output is possible on a 
descriptor, or when a non-blocking operation completes. A process may request to receive a 
SIGURG signal when an urgent condition arises. 

A process may be 'topped by a signal sent to it of the members of its process group. The 
SIGSTOP signal is a powerful stop signal, because it cannot be caught. Other stop signals 
SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request, input request, or output 
request respectively is the reason the process is being stopped. A SIGCONT signal is sent to a pro­
cess when it is continued from a stopped state. Processes may receive notification with a 
SIGCHLD signal when a child process changes state, either by stopping or by terminating. 

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a pro­
cess nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been 
reached. 

1.8.8. Signal handlel"8 

A process has a handler associated with each signal that controls the way the signal IS 

delivered. The call 
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#include <signal.h> 

struct sigvec { 
int 
int 
int 

}j 

sigvec(signo, sv, osv) 

(*sv _handler)O; 
sv_mask; 
sv_onstackj 

-9-

int signoj struct sigvec *SVj result struct sigvec *OSVj 

Signals 

assigns interrupt handler address Btl_handler to signal aigno. Each handler address specifies either 
an interrupt routine for the signal, that the signal is to be ignored, or that a default action (usu­
ally process termination) is to occur if the signal occurs. The constants SIGJGN and SIGJ)EF 
used as values for av_handler cause ignoring or defaulting of a condition. The av_mask and 
3tI_onatack values specify the signal mask to be used when the handler is invoked and whether the 
handler should operate on the normal run-time stack or a special signal stack (see below). If 08V is 
non-zero, the previous signal vector is returned. 

When a signal condition arises for a process, the signal is added to a set of signals pending 
for the process. If the signal is not currently blocked by the process then it will be delivered. The 
process of signal delivery adds the signal to be delivered and those signals specified in the associ­
ated signal handler's av_mask to a set of those maaked for the process, saves the current process 
context, and places the process in the context of the signal handling routine. The call is arranged 
so that if the signal handling routine exits normally the signal mask will be restored and the pro­
cess will resume execution in the original context. If the process wishes to resume in a different 
context, then it must arrange to restore the signal mask itself. 

The mask of blocked signals is independent of handlers for signals. It prevents signals from 
being delivered much as a raised hardware interrupt priority level prevents hardware interrupts. 
Preventing an interrupt from occurring by changing the handler is analogous to disabling a device 
from further interrupts. 

The signal handling routine av_handler is called by a C call of the form 

(*sv_handler)(signo, code, scp); 
int signoj long code; struct sigcontext *SCpj 

The aigno gives the number of the signal that occurred, and the code, a word of information sup­
plied by the hardware. The acp parameter is a pointer to a machine-dependent structure contain­
ing the information for restoring the context before the signal. 

1.3.4. Sending signals 

A process can send a signal to another process or group of processes with the calls: 

kill(pid, signo) 
int pid, signoj 

killpgrp(pgrp, signo) 
int pgrp, signoj 

Unless the process sending the signal is privileged, it and the process receiving the signal must have 
the same effective user id. 

Signals are also sent implicitly from a terminal device to the process group associated with 
the terminal when certain input characters are typed. 
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1.3.5. Protecting crlticaleectioDS 

To block a section of code against one or more signals, a "gblock call may be used to add a 
set of signals to the existing mask, returning the old mask: 

oldmask = sigblock(mask); 
result long oldmask; long mask; 

The old mask can then be restored later with "g,etmIJ4k, 

oldmask = sigsetmask(mask); 
result long oldmaskj long maskj 

The ,.gblock call can be used to read the current mask by specifying an empty mIJ4k. 

It is possible to check conditions with some signals blocked, and then to pause waiting for a 
signal and restoring the mask, by using: 

sigpause(mask)j 
long mask; 

1.3.6. Signal stacks 

Applications that maintain complex or fixed size stacks can use the call 

struct sigstack { 
caddr_t 
int 

}j 

sigstack(ss, oss) 

SS_Spj 
ss_onstack; 

struct sigstack *ss; result struct sigstack *OSSj 

to provide the system with a stack based at 44_4p for delivery of signals. The value 44_onstack 
indicates whether the process is currently on the signal stack, a notion maintained in software by 
the system. 

When a signal is to be delivered, the system checks whether the process is on a signal stack. 
If not, then the process is switched to the signal stack for delivery, with the return from the signal 
arranged to restore the previous stack. 

If the process wishes to take a non-local exit from the signal routine, or run code from the 
signal stack that uses a different stack, a 'igstack call should be used to reset the signal stack. 
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1.4. Timers 

1.4.1. Real time 

The system's notion or the current Greenwich time and the current time zone is set and 
returned by the call by the calls: 

#include <sys/time.h> 

settimeorday(tvp, tzp); 
struct timeval *tp; 
struct timezone *tzPj 

gettimeorday(tp, tzp)j 
result struct timeval *tpj 
result struct timezone *tzpj 

where the structures are defined in <sys/time.h> as: 

struct timeval { 
long 
long 

}j 

struct timezone { 
int 
int 

}; 

tv..secj 
tv_usecj 

tz_minuteswestj 
tz_dsttime; 

/* seconds since Jan 1, 1970 * / 
/* and microseconds * / 

1* or Greenwich * / 
/* type of dst correction to apply * / 

Earlier versions or UNIX contained only a I-second resolution version of this call, which remains as 
a library routine: 

time(tvsec) 
result long *tvsec; 

returning only the tv..sec field rrom the gettimeofday call. 

1.4.2. Interval time 

The system provides each process with three interval timers, defined in <sys/time.h>: 

#define ITIMER..R£AL 0 /* real time intervals * / 
#define ITIMER-VffiTUAL 1 /* virtual time intervals * / 
#define ITIMElLPROF 2 /* user and system virtual time'" / 

The ITIMER..REAL timer decrements in real time. It could be used by a library routine to main­
tain a wakeup service queue. A SIGALRM signal is delivered when this timer expires. 

The ITIMER-VIRTUAL timer decrements in process virtual time. It runs only when the 
process is executing. A SIGVTALRM signal is delivered when it expires. 

The ITIMElLPROF timer decrements both in process virtual time and when the system is 
running on behalr or the process. It is designed to be used by processes to statistically profile their 
execution. A SIGPROF signal is delivered when it expires. 

A timer value is defined by the itimenJal structure: 

struct itimerval { 
struct 
struct 

}; 
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and a timer is set or read by the call: 

getitimer(which, value); 

- 12-

int which; result struct itimerval *value; 

setitimer(which, value, ovalue); 
int which; struct itimerval *value; result struct itimerval *ovalue; 

Timers 

The third argument to aetitimer specifies an optional structure to receive the previous contents of 
the interval timer. A timer can be disabled by specifying a timer value of O. 

The system rounds argument timer intervals to be not less than the resolution of its clock. 
This clock resolution can be determined by loading a very small value into a timer and reading the 
timer back to see what value resulted. 

The alarm system call of earlier versions of UNIX is provided as a library routine using the 
lTIMERJtEAL timer. The process profiling facilities of earlier versions of UNIX remain because it 
is not always possible to guarantee the automatic restart of system calls after receipt of a signal. 

profil(buf, bufsize, offset, scale); 
result char *buf; int bufsize, offset, scale; 
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1.5. Descriptors 

1.5.1. The reference table 

Each process has access to resources through deacriptora. Each descriptor is a handle allow­
ing the process to reference objects such as files, devices and communications links. 

Rather than allowing processes direct access to descriptors, the system introduces a level of 
indirection, so that descriptors may be shared between processes. Each process has a deacriptor 
reference table, containing pointers to the actual descriptors. The descriptors themselves thus have 
multiple references, and are reference counted by the system. 

Each process has a fixed size descriptor reference table, where the size is returned by the 
,etdtableaize call: 

nds = getdtablesizeO; 
result int nds; 

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by 
small integers; for example if there are 20 slots they are numbered 0 to 19. 

1.5.2. Descriptor properties 

Each descriptor has a logical set of properties maintained by the system and defined by its 
t,lpe. Each type supports a set of operations; some operations, such as reading and writing, are 
common to several abstractions, while others are unique. The generic operations applying to many 
of these types are described in section 2.1. Naming contexts, files and directories are described in 
section 2.2. Section 2.3 describes communications domains and sockets. Terminals and (structured 
and unstructured) devices are described in section 2.4. 

1.S.S. Managing descriptor references 

A duplicate of a descriptor reference may be made by doing 

new = dup(old); 
result int new; int old; 

returning a copy of descriptor reference old indistinguishable from the original. The new chosen by 
the system will be the smallest unused descriptor reference slot. A copy of a descriptor reference 
may be made in a specific slot by doing 

dup2{old, new); 
int old, new; 

The dupe call causes the system to deallocate the descriptor reference current occupying slot new, if 
any, replacing it with a reference to the same descriptor as old. This deallocation is also performed 
by: 

close( old); 
int old; 

1.5.4. Multiplexing requests 

The system provides a standard way to do synchronous and asynchronous multiplexing of 
operations. 

Synchronous multiplexing is performed by using the aelect call: 

nds = select(nd, in, out, except, tvp); 
result int nds; int nd; result *in, *out, *except; 
struct timeval *tvp; 

The aelect call examines the descriptors specified by the sets in, out and ezcept, replacing the 
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specified bit masks by the subsets that select for input, output, and exceptional conditions respec­
tively (nd indicates the size, in bytes, of the bit masks). If any descriptors meet the following cri­
teria, then the number of such descriptors is returned in nda and the bit masks are updated. 

• A descriptor selects for input if an input oriented operation such as read or receive is possi­
ble, or if a connection request may be accepted (see section 2.3.1.4). 

• A descriptor selects for output if an output oriented operation such as write or aend is possi­
ble, or if an operation that was "in progressu , such as connection establishment, has com­
pleted (see section 2.1.3). 

• A descriptor selects for an exceptional condition if a condition that would cause a SIGURG 
signal to be generated exists (see section 1.3.2). 

If none of the specified conditions is true, the operation blocks for at most the amount of time 
specified by tvp, or waits for one of the conditions to arise if tvp is given as O. 

Options affecting i/o on a descriptor may be read and set by the call: 

dopt = fcntl(d, cmd, arg) 
result int dopt; int d, cmd, arg; 

1* interesting values for cmd *1 
#define F _SETFL 3 
#define F_GETFL 4 
#define F _SETOWN 5 
#define F _GETOWN 6 

1* set descriptor options * I 
1* get descriptor options *1 
1* set descriptor owner (pid/pgrp) * / 
/* get descriptor owner (pid/pgrp) *1 

The F ~ETFL cmd may be used to set a descriptor in non-blocking i/o mode and/or enable signal­
ling when i/o is possible. F~ETOWN may be used to specify a process or process group to be sig­
nalled when using the latter mode of operation. 

Operations on non-blocking descriptors will either complete immediately, note an error 
EWOULDBLOCK, partially complete an input or output operation returning a partial count, or 
return an error EINPROGRESS noting that the requested operation is in progress. A descriptor 
which has signalling enabled will cause the specified process and/or process group be signaled, with 
a S1GI0 for input, output, or in-progress operation complete, or a SIGURG for exceptional condi­
tions. 

For example, when writing to a terminal using non-blocking output, the system will accept 
only as much data as there is buffer space for and return; when making a connection on a aocket, 
the operation may return indicating that the connection establishment is "in progress". The select 
facility can be used to determine when further output is possible on the terminal, or when the con­
nection establishment attempt is complete. 

1.5.0. Descriptor wrapping.t 

A user process may build descriptors of a specified type by wrapping a communications chan­
nel with a system supplied protocol translator: 

new = wrap(old, proto) 
result int new; int old; struct dprop ·proto; 

Operations on the descriptor old are then translated by the system provided protocol translator 
into requests on the underyling object old in a way defined by the protocol. The protocols sup­
ported by the kernel may vary from system to system and are described in the programmers 
manual. 

Protocols may be based on communications multiplexing or a rights-passing style of handling 
multiple requests made on the same object. For instance, a protocol for implementing a file 

t The racilities described in this aection are not included in 4.2B5D. 
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abstraction mayor may not include locally generated "read-ahead" requests. A protocol that pro­
vides Cor read-ahead may provide higher performance but have a more difficult implementation. 

Another example is the terminal driving Cacilities. Normally a terminal is associated with a 
communications line and the terminal type and standard terminal access protocol is wrapped 
around a synchronous communications line and given to the user. If a virtual terminal is required, 
the terminal driver can be wrapped around a communications link, the other end of which is held 
by a virtual terminal protocol interpreter. 
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1.8. Resource controls 

1.8.1. Proceu priorities 
The system gives CPU scheduling priority to processes that have not used CPU time 

recently. This tends to ravor interactive processes and processes that execute only for short 
periods. It is p06Sible to determine the priority currently assigned to a process, process group, or 
the processes of a specified user, or to alter this priority using the calls: 

#define PRIO..PROCESS 
#define PRIO..PGRP 
#define PRIO_USER 

prio = getpriority(which, who); 
result int prio; int which, who; 

setpriority(which, who, prio); 
int which, who, prio; 

o 
1 
2 

/* process */ 
/* process group * / 
/* user id */ 

The value prio is in the range -20 to 20. The default priority is 0; lower priorities cause more 
favorable execution. The getpriorit1l call returns the highest priority (lowest numerical value) 
enjoyed by any of the specified processes. The ,etpriorit1l call sets the priorities of all of the 
specified processes to the specified value. Only the super-user may lower priorities. 

1.8.2. Resource utilization 

The resources used by a process are returned by a getrtJ.,age call, returning information in a 
structure defined in <sys/resource.h>: 

#define RUSAGE_SELF o 
#define RUSAGE_CHILDREN -1 

getrusage(who, rusage) 
int who; result struct rusage *rusage; 

struct rusage { 
struct timeval fll-utime; 
struct timeval l'lLStime; 
int fll-maxrss; 
int fll-ixrss; 
int fll-idrss; 
int fll-isrss; 
int fll-minftt; 
int fll-majftt; 
int fll-llSWap; 
int fll-inblock; 
int fll-oublock; 
int fll-msgsnd; 
int fll-msgrcv; 
int 111-nsignals; 
int fll-nVCSWi 
int fll-nivcsw; 

}; 

/* usage by this process * / 
1* usage by all children .. / 

/* user time used * / 
/* system time used * / 
/* maximum core resident set size: kbytes * / 
/* integral shared memory size (kbytes*sec) * / 
/* unshared data " * / 
/* unsbared stack" * / 
/* page-reclaims * / 
/* page faults * / 
/* swaps */ 
/* block input operations * / 
/* block output" * / 
/* messages sent * / 
/* messages received * / 
/* signals received * / 
/* voluntary context switches * / 
/* involuntary " * / 

The who parameter specifies whose resource usage is to be returned. The resources used by the 
current process, or by all the terminated children of the current process may be requested. 
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1.8.3. Resource limits 

The resources oC a process Cor which limits are controlled by the kernel are defined lD 

<sys/resource.h>, and controlled by the ,dr/imit and ,dr/imit calls: 

#define RLIMIT_CPU 0 /* cpu time in milliseconds * / 
#define RLIMITJ'SIZE 1 /* maximum file size * / 
#define RLIMITJ)ATA 2 /* maximum data segment size * / 
#define RLIMIT_STACK 3 /* maximum stack segment size * / 
#define RLIMIT_CORE 4 /* maximum core file size * / 
#define RLIMIT-RSS 5 /* maximum resident set size * / 

#define RLIM...NLIMITS 

#define RLIMJNFINITY 

struct rlimit { 
int 
int 

}j 

rlim-curj 
rlim-maxj 

getrlimit(resource, rIp) 

6 

Ox7crrrrrr 

/* current (soft) limit * / 
/* hard limit * / 

int resourcej result struct rlimit *rlpj 

setrlimit(resource, rIp) 
int resourcej struct rlimit *rlpj 

Only the super-user can raise the maximum limits. Other users may only alt.er rlim-cur 
within the range Crom 0 to rlim_max or (irreversibly) lower rlim-maz. 
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1.7. System operation support 

Unless noted otherwise, the calls in this section are permitted only to a privileged user. 

1.7.1. Bootstrap operations 

The call 

mount(blkdev, dir, 1Only); 
char *blkdev, *dir; int 1Only; 

extends the UNIX name spa.ce. The mount call specifies a block device blkdev containing a UNIX 
file system to be made available starting at dir. If ronly is set then the file system is read-only; 
writes to the file system will not be permitted and access times will not be updated when files are 
referenced. Dir is normally a name in the root directory. 

The call 

swapon{blkdev, size}; 
char *blkdev; int size; 

specifies a device to be made available for paging and swapping. 

1.7.2. Shutdown operations 

The call 

unmount{dir); 
char *dir; 

unmounts the file system mounted on dir. This call will succeed only if the file system is not 
currently being used. 

The call 

syncO; 

schedules input/output to clean all system buffer caches. (This call does not require priveleged 
status.) 

The call 

reboot{how) 
int how; 

causes a machine halt or reboot. The call may request a reboot by specifying how as 
RB-AUTOBOOT, or that the machine be halted with RBJIALT. These constants are defined in 
<sys/reboot.h>. 

1.7.3. Accounting 

The system optionally keeps an accounting record in a file for each process that exits on the 
system. The format of this record is beyond the scope of this document. The accounting may be 
enabled to a file name by doing 

acct{path ); 
char *path; 

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting file. 
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2. System facilities 

This section discusses the system facilities that are not considered part of the kernel. 

The system abstractions described are: 

Directory contexts 

Files 

A directory context is a position in the UNIX file system name space. Operations on files and 
other named objects in a file system are always specified relative to such a context. 

Files are used to store uninterpreted sequence of bytes on which random access reads and 
write8 may occur. Pages from files may also be mapped into process address space. A direc­
tory may be read as a filet. 

Communications domains 
A communications domain represents an interprocess communications environment, such as 
the communications facilities of the UNIX system, communications in the INTERNET, or 
the resource sharing protocols and access rights of a resource sharing system on a local net­
work. 

Sockets 
A socket is an endpoint of communication and the focal point for IPC in a communications 
domain. Sockets may be created in pairs, or given names and used to rendezvous with other 
sockets in a communications domain, accepting connections from these sockets or exchanging 
messages with them. These operations model a labeled or unlabeled communications graph, 
and can be used in a wide variety of communications domains. Sockets can have different 
types to provide different semantics of communication, increasing the flexibility of the model. 

Terminals and other devices 
Devices include terminals, providing input editing and interrupt generation and output flow 
control and editing, magnetic tapes, disks and other peripherals. They often support the 
generic read and write operations as well as a number of ioctls. 

Processes 
Process descriptors provide facilities for control and debugging of other processes. 

t Support for mapping liles is not included in the 4.2. release. 
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2.1. Generic operations 

Many system abstractions support the operations read, write and ioetl. We describe the 
basics of these common primitives here. Similarly, the mechanisms whereby normally synchronous 
operations may occur in a non-blocking or asynchronous fashion are common to all system-defined 
abstractions and are described here. 

2.1.1. Read and write 

The read and write system calls can be applied to communications channels, files, terminals 
and devices. They have the form: 

cc = read(fd, buf, nbytes)j 
result int CCj int fd; result caddr_t buf; int nbytes; 

CC = write(fd, buf, nbytes); 
result int CCj int fd; caddr_t buf; int nbytesj 

The read call transfers as much data as possible from the object defined by Id to the buffer at 
address bul of size nb,lte8. The number of bytes transferred is returned in ee, which is -1 if a 
return occurred before any data was transferred because of an error or use of non-blocking opera­
tions. 

The write call transfers data from the buffer to the object defined by Id. Depending on the 
type of Id, it is possible that the write call will accept some portion of the provided bytes; the user 
should resubmit the other bytes in a later request in this case. Error returns because of interrupted 
or otherwise incomplete operations are possible. 

Scattering of data on input or gathering of data for output is also possible using an array of 
input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as: 

struct iovec { 
caddr_t 
int 

}j 

iov_msg; 
iov_lenj 

The calls using an array of descriptors are: 

cc = readv(fd, iov, iovlen); 

/. base of a component • / 
/. length of a component • / 

result int CCj int fdj struct iovec *iov; int iovlen; 

cc = writev(fd, iov, iovlen); 
result int cc; int fdj struct iovec *iovj int iovlen; 

Here iovien is the count of elements in the iot} array. 

2.1.2. Input/output control 

Control operations on an object are performed by the ioetloperation: 

ioctl(fd, request, buffer)j 
int fd, request; caddr_t buffer; 

This operation causes the specified requut to be performed on the object Id. The request parame­
ter specifies whether the argument buffer is to be read, written, read and written, or is not needed, 
and also the size of the buffer, as well as the request. Different descriptor types and subtypes 
within descriptor types may use distinct ioct/ requests. For example, operations on terminals con­
trol flushing of input and output queues and setting of terminal parameters; operations on disks 
cause formatting operations to occur; operations on tapes control tape positioning. 

The names for basic control operations are defined in <sys/ioctl.h>. 
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2.1.3. Non-blocking and asynchronous operations 

A process that wishes to do non-blocking operations on one of its descriptors sets the descrip­
tor in non-blocking mode as described in section 1.5.4. Thereafter the read call will return a 
specific EWOULDBLOCK error indication if there is no data to be read. The process may d8e/ect 
the associated descriptor to determine when a read is possible. 

Output attempted when a descriptor can accept less than is requested will eitht'r accept some 
of the provided data, returning a shorter than normal length, or return an error indicating that the 
operation would block. More output can be performed as soon as a 8e/ect call indicates the object 
is writeable. 

Operations other than data input or output may be perrormed on a descriptor in a non­
blocking fashion. These operations will return with a characteristic error indicating that they are 
in progress if they cannot return immediately. The descriptor may then be .electt'd for write to 
find out when the operation can be retried. When ,elect indicates the descriptor is writeable, a 
respecification of the original operation will return the result of the operation. 
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2.2. File system 

2.2.1. Overview 

The file system abstraction provides access to a hierarchical file system structure. The file 
system contains directories (each of which may contain other sub-directories) as we)) as files and 
references to other objects such as devices and inter-process communications sockets. 

Each file is organized as a linear array of bytes. No record boundaries or system related 
information is present in a file. Files may be read and written in a random-access fashion. The 
user may read the data in a directory as though it were an ordinary file to determine the names of 
the contained files, but only the system may write into the directories. The file system stores only 
a small amount of ownership, protection and usage information with a file. 

2.2.2. Naming 

The file system calls take path name arguments. These consist of a zero or more component 
file name8 separated by"/" characters, where each file name is up to 255 ASCn characters exclud­
ing null and "/". 

Each process always has two naming contexts: one for the root directory of t,he file system 
and one for the current working directory. These are used by the system in the filename transla­
tion process. If a path name begins with a "/", it is called a full path name and interpreted rela­
tive to the root directory context. If the path name does not begin with a "/" it is called a rela­
tive path name and interpreted relative to the current directory context. 

The system limits the total length of a path name to 1024 characters. 

The file name " .. " in each directory refers to the parent directory 
parent directory of a file system is always the systems root directory. 

The calls 

chdir(path); 
char *pathj 

chroot(path) 
char *path; 

of that directory. The 

change the current working directory and root directory context of a process. Only the super-user 
can change the root directory context of a process. 

2.2.3. Creation and removal 

The file system allows directories, files, special devices, and "portals" to be created and 
removed from the file system. 

2.2.3.1. Directory creation and removal 

A directory is created with the mkdir system call: 

mkdir(path, mode)j 
char *pathj int mode; 

and removed with the rmdir system call: 

rmdir(path)j 
char *path; 

A directory must be empty if it is to be deleted. 
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2.2.3.2. File creation 

Files are created with the open system call, 

rd = open(path, oflag, mode)j 
result int fd; char *path; int ofiag, modej 

The path parameter specifies the name of the file to be created. The oflag parameter must include 
O_CREAT from below to cause the file to be created. The protection for the new file is specified 
in mode. Bits for oflag are defined in < sys/file.h > : 

#define O...RDONL Y 000 /* open for reading * / 
#define 0_ WRONL Y 001 /* open for writing * / 
#define O...RDWR 002 /* open for read & write * / 
#define O-.NDELA Y 004 /* non-blocking open * / 
#define O..APPEND 010 /* append on each write * / 
#define O_CREAT 01000 /* open with file create * / 
#define O_TRUNC 02000 /* open with truncation * / 
#define O...EXCL 04000 /* error on create if file exists * / 

One of O...RDONLY, O_WRONLY and O-RDWR should be specified, indicating what types 
of operations are desired to be performed on the open file. The operations will be checked against 
the user's access rights to the file before allowing the open to succeed. Specifying O..APPEND 
causes writes to automatically append to the file. The flag O_CREAT causes the file to be created 
if it does not exist, with the specified mode, owned by the current user and the group of the con­
taining directory. 

If the open specifies to create the file with O...EXCL and the file already exists, then the open 
will fail without affecting the file in any way. This provides a simple exclusive access facility. 

2.2.3.3. Creating references to devices 

The file system allows entries which reference peripheral devices., Peripherals are dis­
tinguished as block or character devices according by their ability to support block-oriented opera­
tions. Devices are identified by their "major" and "minor" device numbers. The major device 
number determines the kind of peripheral it is, while the minor device number indicates one of pos­
sibly many peripherals of that kind. Structured devices have all operations performed internally in 
"block" quantities while unstructured devices often have a number of special ioctl operations, and 
may have input and output performed in large units. The mknod call creates special entries: 

mknod(path, mode, dev)j 
char *pathj int mode, devj 

where mode is formed from the object type and access permiSSiOns. The parameter dev is a 
configuration dependent parameter used to identify specific character or block i/o devices. 

2.2.3.4. Portal creationt 

The call 

fd = portal(name, server, param, dtype, protocol, domain, socktype) 
result int fdj char *name, *server, *paramj int dtype, protocolj 
int domain, socktypej 

places a name in the file system name space that causes connection to a server process when the 
name is used. The portal call returns an active portal in Id as though an access had occurred to 
activate an inactive portal, as now described. 

t The portal call is not implemented in 4.2BSD. 
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When an inactive portal is aceesseed, the system sets up a soeket of the specified ,oektypc in 
the specified communieations domain (see section 2.3), and creates the 'CMJcr proeess, giving it the 
specified param as argument to help it identify the portal, and also giving it the newly ereated 
soeket as deseriptor number o. The aceessor of the portal will ereate a socket in the same domain 
and conncct to the server. The user will then wrap the socket in the specified protocol to create an 
object of the required descriptor type dt,pc and proceed with the operation which was in progress 
before the portal was encountered. 

While the server process holds the socket (which it received as /d from the portal calIon 
descriptor 0 at activation) further referenees will result in eonnections being made to the same 
socket. • 

2.2.3.5. File, device, and portal removal 

A reference to a file, special device or portal may be removed with the unlink call, 

unlink(path) ; 
ehar *path; 

The caller must have write access to the directory in which the file is located for this call to be suc­
cessful. 

2.2.4. Reading and modifYing file attributes 

Detailed information about the attributes of a file may be obtained with the calls: 

#include <sys/stat.h> 

stat(path, stb); 
char *path; result struct stat *stbj 

fstat(fd, stb); 
int fd; result struct stat *stb; 

The ,tat structure includes the file type, protection, ownership, access times, size, and a count of 
hard links. If the file is a symbolic link, then the status of the link itself (rather than the file the 
link references) may be found using the I,tat call: 

lstat(path, stb); 
ehar *path; result struct stat *stb; 

Newly created files are assigned the user id of the process that created it and the group id of 
the directory in which it was created. The ownership of a file may be changed by either of the 
calls 

chown(path, owner, group); 
char *path; int owner, group; 

fchown(fd, owner, group); 
int fd, owner, group; 

In addition to ownership, each file has three levels of access protection associated with it. 
These levels are owner relative, group relative, and global (all users and groups). Each level of 
access has separate indicators for read permission, write permission, and execute permission. The 
protection bits associated with a file may be set by either of the calls: 
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chmod(path, mode); 
char ·path; int mode; 

fchmod(fd, mode); 
int fd, mode; 

- 25- File system 

where mode is a value indicating the new protection of the file. The file mode is a three digit octal 
number. Each digit encodes read access as 4, write access as 2 and execute access as I, or'ed 
together. The 0700 bits describe owner access, the 070 bits describe the access rights for processes 
in the same group as the file, and the 07 bits describe the access rights for other processes. 

Finally, the access and modify times on a file may be set by the call: 

utimes(path, tvp) 
char ·path; struct timeval ·tvp[2]; 

This is particularly useful when moving files between media, to preserve relationships between the 
times the file was modified. 

2.2.5. Links and renaming 

Links allow multiple names for a file to exist. Links exist independently of the file linked to. 

Two types of links exist, hard links and ,ymho/ic links. A hard link is a reference counting 
mechanism that allows a file to have multiple names within the same file system. Symbolic links 
cause string substitution during the pathname interpretation process. 

Hard links and symbolic links have different properties. A hard link insures t.he target file 
will always be accessible, even after its original directory entry is removed; no such guarantee 
exists for a symbolic link. Symbolic links can span file systems boundaries. 

The following calls create a new link, named pathf, to patM: 

link(pathl, path2); 
char *pathl, ·path2; 

symlink(pathl, path2)i 
char *pathl, *path2; 

The unlink primitive may be used to remove either type of link. 

If a file is a symbolic link, the "value" of the link may be read with the readlin!' call, 

len = readlink(path, buf, bufsize); 
result int len; result char *path, *buf; int bufsize; 

This call returns, in bu!, the null-terminated string substituted into pathnames passing through 
path. 

Atomic renaming of file system resident objects is possible with the rename call: 

rename(oldname, newname); 
char *oldname, *newname; 

where both oldname and newname must be in the same file system. If newname exists and is a 
directory, then it must be empty. 

2.2.8. Extension and truncation 

Files are created with zero length and may be extended simply by writing or appending to 
them. While a file is open the system maintains a pointer into the file indicating the current loca­
tion in the file associated with the descriptor. This pointer may be moved about in the file in a 
random access fashion. To set the current offset into a file, the Iseek call may be used, 
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oldoffset == lseek(fd, offset, type); 
result ofLt oldoffseti int fd; ofLt offset; int type; 

where type is given in <sys/file.h> as one of, 

/* set absolute file offset * / #define L~T 
#define LJNCR 
#define L..xTND 

o 
1 
2 

/* set file offset relative to current position * / 
/* set offset relative to end-of-file * / 

The call "lseek(fd, 0, LJNCR)" returns the current offset into the file. 

Files may have "holes" in them. Holes are void areas in the linear extent of the file where 
data has never been written. These may be created by seeking to a location in a file past the 
current end-of-file and writing. Holes are treated by the system as zero valued bytes. 

A file may be truncated with either of the calls: 

truncate(path, length}; 
char *path; int length; 

ftruncate(fd, length); 
int fd, length; 

reducing the size of the specified file to length bytes. 

2.2.7. Checking accessibllity 

A process running with different real and effective user ids may interrogate the accessibility of 
a file to the real user by using the acce88 call: 

accessible = access(path, how); 
result int accessible; char *path; int how; 

Here how is constructed by or'ing the following bits, defined in <sys/file.h>: 

#define F _OK 0 /* file exists * / 
#define x...OK 1 /* file is executable * / 
#define W _OK 2 /* file is writable * / 
#define ILOK 4 /* file is readable * / 

The presence or absence of advisory locks does not affect the result of acce88. 

2.2.8. Locking 

The file system provides basic facilities that allow cooperating processes to synchronize their 
access to shared files. A process may place an advisory read or write lock on a file, so that other 
cooperating processes may avoid interfering with the process' access. This simple mechanism pro­
vides locking with file granularity. More granular locking can be built using the IPC facilities to 
provide a lock manager. The system does not force processes to obey the locks; they are of an 
advisory nature only. 

Locking is performed after an open call by applying the flock primitive, 

flock(fd, how); 
int fd, how; 

where the how parameter is formed from bits defined in <sys/file.h>: 

#define LOCILSH 1 /* shared lock * / 
#define LOCILEX 2 /* exclusive lock * / 
#define LOCICNB 4 /* don't block when locking * / 
#define LOCILUN 8 /* unlock * / 

Successive lock calls may be used to increase or decrease the level of locking. If an object is 
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currently locked by another process when a flock call is made, the caller will be blocked until the 
current lock owner releases the lock; this may be avoided by including LOCK.NB in the how 
parameter. Specifying LOCILUN removes all locks associated with the descriptor. Advisory locks 
held by a process are automatically deleted when the process terminates. 

2.2.9. Disk quotas 

As an optional facility, each file system may be requested to impose limits on a user's disk 
usage. Two quantities are limited: the total amount of disk space which a user may allocate in a 
file system and the total number of files a user may create in a file system. Quotas are expressed 
as hard limits and aoft limits. A hard limit is always imposed; if a user would exceed a hard limit, 
the operation which caused the resource request will fail. A soft limit results in the user receiving a 
warning message, but with allocation succeeding. Facilities are provided to turn soft limits into 
hard limits if a user has exceeded a soft limit for an unreasonable period of time. 

To enable disk quotas on a file system the aetquota call is used: 

setquota(special, file) 
char *special, *file; 

where apecial refers to a structured device file where a mounted file system exists, and file refers to 
a disk quota file (residing on the file system associated with apeciaQ from which user quotas should 
be obtained. The format of the disk quota file is implementation dependent. 

To manipulate disk quotas the quota call is provided: 

#include <sys/quota.h> 

quota(cmd, uid, arg, addr) 
int cmd, uid, arg; caddr_t addr; 

The indicated cmd is applied to the user ID uid. The parameters arg and addT are command 
specific. The file <sys/quota.h> contains definitions pertinent to the use of this call. 
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2.3. Interprocess communications 

2.3.1. Interproceas communication primitives 

2.3.1.1. Oommunication domains 

The system provides access to an extensible set of communication domains. A communica­
tion domain is identified by a manifest constant defined in the file <sys/socket.h>. Important 
standard domains supported by the system are the "unix" domain, AF_UNIX, for communication 
within the system, and the "internet" domain for communica.tion in the DARPA internet, 
AFJNET. Other domains can be added to the system. 

2.3.1.2. Socket types and protocols 
Within a domain, communication takes place between communication endpoint.s known as 

.ocket.. Each socket has the potential to exchange information with other sockets within the 
domain. 

Each socket has an associated abstract type, which describes the semantics of communication 
using that socket. Properties such as reliability, ordering, and prevention of duplication of mes­
sages are determined by the type. The basic set of socket types is defined in <sys/socket.h>: 

/* Standard socket types * / 
#define SOCKJ)GRAM 
#define SOCICSTREAM 
#define SOCILRAW 

1 
2 
3 

#define SOCK..RDM 4 
#define SOClCSEQPACKET 5 

/* datagram * / 
/* virtual circuit * / 
/* raw socket * / 
/* reliably-delivered message */ 
/* sequenced packets */ 

The SOCKJ)GRAM type models the semantics of datagrams in network communication: messages 
may be lost or duplicated and may arrive out-of-order. The SOCK..RDM type models the seman­
tics of reliable datagrams: messages arrive unduplicated and in-order, the sender is notified if mes­
sages are lost. The .cnd and receive operations (described below) generate reliable/unreliable 
datagrams. The SOCICSTREAM type models connection-based virtual circuits: two-way byte 
streams with no record boundaries. The SOCICSEQPACKET type models a connection-based, 
full-duplex, reliable, sequenced packet exchange; the sender is notified if messages are lost, and 
messages are never duplicated or presented out-of-order. Users of the last two abstractions may 
use the facilities for out-of-band transmission to send out-of-band data. 

SOC1LRA W is used for unprocessed access to internal network layers and interfaces; it has 
no specific semantics. 

Other socket types can be defined.t 

Each socket may have a concrete protocol associated with it. This protocol is used within 
the domain to provide the semantics required by the socket type. For example, within the "inter­
net" domain, the SOCKJ)GRAM type may be implemented by the UDP user datagram protocol, 
and the SOCICSTREAM type may be implemented by the TCP transmission control protocol, 
while no standard protocols to provide SOCK..RDM or SOClCSEQP ACKET sockets exist. 

2.3.1.3. Socket creation, naming and service establishment 

Sockets may be connected or 'Unconnected. An unconnected socket descriptor is obtained by 
the .oeket call: 

s == socket(domain, type, protocol); 
result int s; int domain, type, protocol; 

t 4.2BSD does not support the SOCKJU)M a.nd SOCK .. .sEQP ACKET types. 
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An unconnected socket descriptor may yield a connected socket descriptor in one ot two 
ways: either by actively connecting to another socket, or by becoming associated with a name in 
the communications domain and accepting a connection trom another socket. 

To accept connections, a socket must first have a binding to a name within the communica­
tions domain. Such a binding is established by a bind call: 

bind(s, name, namelen)j 
int Sj char *namej int namelenj 

A socket's bound name may be retrieved with a get,oc/mame call: 

getsoekname(s, name, namelen)j 
int Sj result caddr_t namej result int *namelenj 

while the peer's name can be retrieved with gelpeername: 

getpeemame(s, name, namelen)j 
int s; result eaddr_t namej result int *namelen; 

Domains may support sockets with several names. 

2.3.1.4. Accepting connections 

Once a binding is made, it is possible to Ii,ten tor connections: 

listen(s, backlog)j 
int s, backlogj 

The backlog specifies the maximum count ot connections that can be simultaneously queued await­
ing acceptance. 

An accept call: 

t = accept(s, name, anamelen}j 
result int tj int Sj result caddr_t namej result int *anamelenj 

returns a descriptor tor a new, connected, socket trom the queue ot pending connections on 8. 

2.3.1.5. Making connections 

An active connection to a named socket is made by the connect call: 

connect(s, name, namelen)j 
int s; caddr_t name; int namelen; 

It is also possible to create connected pairs ot sockets without using the domain's name space 
to rendezvous; this is done with the 80cketpair callt: 

socketpair( d, type, protocol, sv); 
int d, type, protocolj result int sv[2Jj 

Here the returned Btl descriptors correspond to those obtained with accept and connect. 

The call 

pipe(pv) 
result int pv[2Jj 

creates a pair ot SOCILSTREAM sockets in the UNIX domain, with pv[O] only writeable and 
pv[l] only readable. 

t 4.2BSD supports ,ocketpoi, creation only in the "unix" communication domain. 
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2.8.1.8. Sending and receiving data 

Messages may be sent from a socket by: 

cc = sendto(s, buf, len, flags, to, toJen)i 
result int cc; int s; caddr_t buf; int len, flags; caddr_t to; int tolen; 

if the socket is not connected or: 

cc === send(s, buf, len, flags); 
result int cc; int S; caddr_t buf; int len, flags; 

if the socket is connected. The corresponding receive primitives are: 

msglen = reevfrom(s, buf, len, flags, from, fromlenaddr); 
result int msgJenj int Sj result caddr_t buf; int Jen, flags; 
result caddr_t fromj result int *fromlenaddr; 

and 

msgJen = reeves, buf, len, flags); 
result int msglen; int s; result caddr_t buf; int len, 8ags; 

In the unconnected case, the parameters to and tolcn specify the destination or source of the 
message, while the from parameter stores the source of the message, and *fromlenaddr initially 
gives the size of the from buffer and is updated to reflect the true length of the from address. 

All calls cause the message to be received in or sent from the message buffer of length len 
bytes, starting at address 6uf. The flags specify peeking at a message without reading it or sending 
or receiving high-priority out-of-band messages, as follows: 

#define MSG_PEEK 
#define MSG_OOB 

Oxl 
Ox2 

/* peek at incoming message * / 
/* process out-of-band data * / 

2.8.1.7. Seatter/gather and exchanging access rights 

It is possible scatter and gather data and to exchange access rights with messages. When 
either of these operations is involved, the number of parameters to the call becomes large. Thus 
the system defines a message header structure, in <5Ys/socket.h> , which can be used to con­
veniently contain the parameters to the calls: 

struct msghdr { 
caddr_t 

}; 

int 
struct 
int 
caddr_t 
int 

msS-Dame; 
msS-Damelen; 
iov *mss-iov; 
msgjovlen; 
msg_accrights; 
mss-accrightslen; 

/* optional address * / 
/* size of address * / 
/* scatter/gather array * / 
/* # elements in mss-iov * / 
/* access rights sent/received * / 
/* size of msg_accrights * / 

Here msg_name and msg_namelen specify the source or destination address if the socket is uncon­
nected; msg_name may be given as a null pointer if no names are desired or required. The msg_iov 
and msg_iovlen describe the scatter/gather locations, as described in section 2.1.3. Access rights to 
be sent along with the message are specified in msg_tJccrights, which has length m.sg_accrightslen. 
In the "unix" domain these are an array of integer descriptors, taken from the sending process and 
duplicated in the receiver. 

This structure is used in the operations scndmsg and recvmsg: 

CSRG TR/5 - September 1, 1982 - Joy, et. al. 



o 

c 

4.2BSD System Manual - 31- Interprocess communications 

sendmsg(s, msg, flags); 
int Sj struct msghdr *msgj int flags; 

msglen = recvmsg(s, msg, flags); 
result int msglen; int S; result struct msghdr *msg; int flags; 

2.3.1.8. Using read and write with sockets 

The normal UNIX read and write calls may be applied to connected sockets and translated 
into ,end and receive calls from or to a single area of memory and discarding any rights received. 
A process may operate on a virtual circuit socket, a terminal or a file with blocking or non­
blocking input/output operations without distinguishing the descriptor type. 

2.3.1.9. Shuttins do'WD halves of full-duplex connections 

A process that has a Cull-duplex socket such as a virtual circuit and no longer wishes to read 
Crom or write to this socket can give the call: 

shutdown(s, direction); 
int 5, direction; 

where direction is 0 to not read Curther, 1 to not write Curther, or 2 to completely shut the connec­
tion down. 

2.3.1.10. Socket and protocol options 

Sockets, and their underlying communication protocols, may support option8. These options 
may be used to manipulate implementation specific or non-standard Cacilities. The get8ockopt and 
,et,ockopt calls are used to control options: 

getsockopt(s, level, optname, optv al, optlen) 
int 5, level, optname; result caddr_t optval; result int *optlen; 

setsockopt(s, level, optname, optval, optlen) 
int s, level, optname; caddr_t optval; int optlen; 

The option optname is interpreted at the indicated protocol level for socket 8. If a value is 
specified with optval and opt/en, it is interpreted by the soCtware operating at the specified level. 
The level SOL_SOCKET is reserved to indicate options maintained by the socket facilities. Other 
level values indicate a particular protocol which is to act on the option request; these values are 
norm8Jly interpreted as a "protocol number". 

2.3.2. UNIX domain 

This section describes briefly the properties of the UNIX communications domain. 

2.3.2.1. Types of sockets 

In the UNIX domain, the SOCILSTREAM abstraction provides pipe-like Cacilities, while 
SOCILDGRAM provides (usually) reliable message-style communications. 

2.3.2.2. Namlng 

Socket names are strings and may appear in the UNIX file system name space through por­
talst· 

t The 4.2BSD implementation or the UNIX domain embeds bound sockets in the UNIX file system name spa.ce; 
this is a. side effect or the implementation. 
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2.8.2.8. Acce88 riCbts transmission 

The ability to pass UNIX descriptors with messages in this domain allows migration of ser­
vice within the system and allows user processes to be used in building system facilities. 

2.8.8. INTERNET domain 

This section describes briefly how the INTERNET domain is mapped to the model described 
in this section. More information will be found in the document describing the network implemen­
tation in 4.2BSD. 

2.8.8.1. Socket types and protocols 

SOCK...STREAM is supported by the INTERNET TOP protocol; SOCK.J)GRAM by the 
UDP protocol. The SOCK.SEQP ACKET has no direct INTERNET family analogue; a protocol 
based on one Crom the XEROX NS family and layered on top of IP could be implemented to fill 
this gap. 

2.8.8~2. Socket naminc 

Sockets in the INTERNET domain have names composed of the 32 bit int.ernet address, and 
a 16 bit port number. Options may be used to provide source routing for the address, security 
options, or additional address for subnets of INTERNET for which the basic 32 bit. addresses are 
insufficient. 

2.3.8.3. Access richts transmission 

No access rights transmission facilities are provided in the INTERNET domain. 

2.3.3.4. Raw access 

The INTERNET domain allows the super-user access to the raw facilities of the various net­
work interfaces and the various internal layers of the protocol implementation. This allows 
administrative and debugging functions to occur. These interraces are modeled as SOCK.RA W 
sockets. 
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1.4. Terminals and Devices 

1.4.1. Terminals 

Terminals support read and write i/o operations, as well as a collection of terminal specific 
ioctl operations, to control input character editing, and output delays. 

1.4.1.1. Terminal input 

Terminals are handled according to the underlying communication characteristics such as 
baud rate and required delays, and a set of software parameters. 

1.4.1.1.1. Input modes 

A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all input is 
passed through to the reading process immediately and without interpretation. In cbreak mode, 
the handler interprets input only by looking for characters that cause interrupts or output flow 
control; all other characters are made available as in raw mode. In cooked mode, input is pro­
cessed to provide standard line-oriented local editing functions, and input is presented on a line­
by-line basis. 

2.4.1.1.2. Interrupt characters 

Interrupt characters are interpreted by the terminal handler only in cbreak and cooked 
modes, and cause a software interrupt to be sent to all processes in the process group associated 
with the terminal. Interrupt characters exist to send SIGINT and SIGQUIT signals, and to stop a 
process group with the SIGTSTP signal either immediately, or when all input up to the stop char­
acter has been read. 

2.4.1.1.3. Line editing 

When the terminal is in cooked mode, editing of an input line is performed. Editing facilities 
allow deletion of the previous character or word, or deletion of the current input line. In addition, 
a special character may be used to reprint the current input line after some number of editing 
operations have been applied. 

Certain other characters are interpreted specially when a process is in cooked mode. The end 
of line character determines the end of an input record. The end of file character simulates an end 
of file occurrence on terminal input. Flow control is provided by 3top output and 3tarf output con­
trol characters. Output may be flushed with the /lush output character; and a literal r"aracter may 
be used to force literal input of the immediately following character in the input line. 

2.4.1.2. Terminal output 

On output, the terminal handler provides some simple formatting services. These include 
converting the carriage return character to the two character return-linefeed sequence, displaying 
non-graphic ASCn characters as "·character", inserting delays after certain standard control char­
acters, expanding tabs, and providing translations for upper-case only terminals. 

1.4.1.3. Terminal control operations 

When a terminal is first opened it is initialized to a standard state and configured with a set 
of standard control, editing, and interrupt characters. A process may alter this configuration with 
certain control operations, specifying parameters in a standard structure: 
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struct ttymode { 
short 
int 
short 
int 

}j 

tt.Jspeedj 
tLiftags; 
tLospeedi 
tt_oflagSj 

/* input speed * / 
/* input flags * / 
/* output speed * / 
/* output flags */ 

and "special characters" are specified with the ttyehar6 structure, 

struct ttychars { 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 

}; 

tc_eraseci 
tc.Jcillc; 
tc~ntrci 
tc_quitc; 
tcJtartcj 
tcJtopc; 
tc_eoCc; 
tc_brkcj 
tcJUSpCj 
tc_dsuspcj 
tcJprntc; 
tc-flushc; 
tc_werasci 
tc-lnextci 

2.4.1.4. Terminal hardware support 

/* erase char * / 
/* erase line */ 
/* interrupt * / 
/* quit */ 
/* start output * / 
/* stop output * / 
/* end·oC-file * / 
/* input delimiter (like nl) * / 
/* stop process signal * / 
/* delayed stop process signal * / 
r reprint line * / 
/* flush output (toggles) * / 
/* word erase * / 
/* literal next character * / 

The terminal handler allows a user to access basic hardware related Cunctions; e.g. line speed, 
modem control, parity, and stop bits. A special signal, SIGHUP, is automatically sent to processes 
in a terminal's process group when a carrier transition is detected. This is normally associated 
with a user hanging up on a modem controlled terminal line. 

2.4.2. Structured devices 

Structures devices are typified by disks and magnetic tapes, but may represent any random­
access device. The system performs read-modiCy-write type buffering actions on block devices to 
allow them to be read and written in a totally random access Cashion like ordinary files. File sys­
tems are normally created in block devices. 

2.4.3. Unstructured devices 

Unstructured devices are those devices which do not support block structure. Familiar 
unstructured devices are raw communications lines (with no terminal handler), raster plotters, 
magnetic tape and disks unCettered by buffering and permitting large block input/output and posi­
tioning and Cormatting commands. 
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2.S. Process and kernel descriptors 

The status of the facilities in this section is still under discussion. The ptrace facility of 
4.1BSD is provided in 4.2BSD. Planned enhancements would allow a descriptor based process con­
trol facility. 
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I. Summary of facilities 

1. Kernel primitives 

1.1. Proce88 aamina and protection \ J 
sethostid set UNIX host id 
gethostid get UNIX host id 
sethostname set UNIX host name 
gethostname get UNIX host name 
getpid get process id 
fork create new process 
exit terminate a process 
execve execute a ditl'erent process 
getuid get user id 
geteuid get etl'ective user id 
setreuid set real and etl'ective user id's 
getgid get accounting group id 
getegid get etl'ective accounting group id 
getgroups get access group set 
setregid set real and effective group id's 
setgroups set access group set 
getpgrp get process group 
setpgrp set process group 

1.2 Memory management 

<mman.h> memory management definitions 
sbrk change data section size 
sstkt change stack section size 
getpagesize get memory page size -', 
mmapt map pages of memory 
mremapt remap pages in memory 
munmapt unmap memory 
mprotectt change protection of pages 
madviset give memory management advice 
mincoret determine core residency of pages 

1.3 Signals 

<signal.h> signal definitions 
sigvec set handler for signal 
kill send signal to process 
killpgrp send signal to process group 
sigblock block set of signals 
sigsetmask restore set of blocked signals 
sigpause wait for signals 
sigstack set software stack for signals 

1.4 Tuning and statistics 

<sys/time.h> time-related definitions 
gettimeorday get current time and timezone 
settimeofday set current time and timezone 
getitimer read an interval timer 
setitimer get and set an interval timer 

t Not supported in 4.2BSD. 

''\ 
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pro6.l 

1.6 Descriptors 

getd tablesize 
dup 
dup2 
close 
select 
fcntl 
wrapt 

1.8 Resource controls 

<sys/resource.h> 
getpriority 
setpriority 
getrusage 
getrlimit 
setrlimit 

1.7 System operation support 

mount 
swapon 
umount 
sync 
reboot 
acct 

2. System facilities 

2.1 Generic operations 

read 
write 
<sys/uio.h> 
readv 
writev 
< sys /ioct1.h > 
ioctl 

2.2 File system 

- 37-

profile process 

descriptor reference table size 
duplicate descriptor 
duplicate to specified index 
close descriptor 
multiplex input/output 
control descriptor options 
wrap descriptor with protocol 

resource-related definitions 
get process priority 
set process priority 
get resource usage 
get resource limitations 
set resource limitations 

mount a device file system 
add a swap device 
umount a file system 
Bush system caches 
reboot a machine 
specify accounting file 

read data 
write data 
scatter-gather related definitions 
scattered data input 
gathered data output 
standard control operations 
device control operation 

Summary of facilities 

Operations marked with a * exist in two forms: as shown, operating on a file name, and 
operating on a file descriptor, when the name is preceded with a "f". 

<sys/6.le.h> 
chdir 
chroot 
mkdir 
rmdir 
open 
mknod 
portalt 
unlink 
stat* 

t Not supported in ~.2BSD. 
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file system definitions 
change directory 
change root directory 
make a directory 
remove a directory 
open a new or existing file 
make a special file 
make a portal entry 
remove a link 
return status for a file 
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!stat 
chown* 
chmod* 
utimes 
link 
symlink 
readlink 
rename 
!seek 
truncate* 
access 
flock 

2.3 Communications 

<sys/socket.h> 
socket 
bind 
getsockname 
listen 
accept 
connect 
socketpair 
sendto 
send 
recvfrom 
recv 
sendmsg 
recvmsg 
shutdown 
getsockopt 
setsockopt 

- 38-

returned status of link 
change owner 
change mode 
change access/modify times 
make a hard link 
make a symbolic link 
read contents of symbolic link 
change name of file 
reposition within file 
truncate file 
determine accessibility 
lock a file 

standard definitions 
create socket 
bind socket to name 
get socket name 
allow queueing of connections 
accept a connection 
connect to peer socket 
create pair of connected sockets 
send data to named socket 

Summary of facilities 

send data to connected socket 
receive data on unconnected socket 
receive data on connected socket 
send gathered data and/or rights 
receive scattered data and/or rights 
partially close full-duplex connection 
get socket option 
set socket option 

2.5 Terminals, block and character devices 

2.4 Processes and kernel hooks 
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ABSTRACT 

This document reflects the use of /4ck with the Icon 4.2BSD file system 
organization. This is a revision of the original paper written by T. J. Kowalski. 

File System Check Program (/4ck) is an interactive file system check and 
repair program. Fuk uses the redundant structural information in the UNIX file 
system to perform several consistency checks. If an inconsistency is detected, it is 
reported to the operator, who may elect to fix or ignore each inconsistency. These 
inconsistencies result from the permanent interruption of the file system updates, 
which are performed every time a file is modified. Unless there has been a 
hardware failure, /4ck is able to repair corrupted file systems using procedures 
based upon the order in which UNIX honors these file system update requests. 

The purpose of this document is to describe the normal updating of the file 
system, to discuss the possible causes of file system corruption, and to present the 
corrective actions implemented by /4ck. Both the program and the interaction 
between the program and the operator are described. 

tuNIX is & trademark of Bell Laboratories. 
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1. Introduction 

This document reflects the use or I.d: with the Icon 4.2BSD file system organization. This is 
a revision or the original paper written by T. J. Kowalski. 

When a UNIX operating system is brought up, a consistency check or the file systems should 
always be performed. This precautionary measure helps to insure a reliable environment ror file 
storage on disk. IC an inconsistency is discovered, corrective action must be taken. Fack runs in 
two modes. Normally it is run non-interactively by the system after a normal boot. When run­
ning in this mode, it will only make changes to the file system that are known to always be 
correct. IC an unexpected inconsistency is round I.ek will exit with a non-zero exit status, leaving 
the system running singlt~user. Typically the operator then runs lack interactively. When run­
ning in this mode, each problem is listed rollowed by a suggested corrective action. The operator 
must decide whether or not the suggested correction should be made. This second mode can be run 
by one or two methods. Either while running under UNIX or standalone. The standalone method 
allows recovering a filesystems when the filesystem is too corrupted to be used under UNIX. 

The purpose or this memo is to dispel the mystique surrounding file system inconsistencies. 
It first describes the updating or the file system (the calm berore the storm) and then describes file 
system corruption (the storm). Finally, the set or deterministic corrective actions used by lack (the 
Coast Guard to the rescue) is presented. 
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2. Overview of the ale system 

The file system is discussed in detail in IMckusick83]; this section gives a brief overview. 

2.1. Superblock 

A file system is described by its ,uper-block. The super-block is built when the file system is 
created (new/, (8)) and never changes. The super-block contains the basic parameters of the file 
system, such as the number of data blocks it contains and a count of the maximum number of 
files. Because the super-block contains critical data, new/, replicates it to protect against catas­
trophic loss. The tle/ault 'tlper block always resides at a fixed offset Crom the beginning of the file 
system's disk partition. The redundant ,.per block, are not referenced unless a head crash or other 
hard disk error causes the default super-block to be unusable. The redundant blocks are sprinkled 
throughout the disk partition. 

Within the file system are files. Certain files are distinguished as directories and contain col­
lections of pointers to files that may themselves be directories. Every file has a descriptor associ­
'ated with it called an inode. The inode contains inCormation describing ownership of the file, time 
stamps indicating modification and access times Cor the file, and an array of indices pointing to the 
data blocks for the file. In this section, we assume that the first 12 blocks of the file are directly 
referenced by values stored in the inode structure itselCt. The inode structure may also contain 
references to indirect blocks containing further data block indices. In a file system with a 4096 
byte block size, a singly indirect block contains 1024 further block addresses, a doubly indirect 
block contains 1024 addresses of further single indirect blocks, and a triply indirect block contains 
1024 addresses of further doubly indirect blocks. 

In order to create files with up to 2t32 bytes, using only two levels of indirection, the 
minimum size of a file system block is 4096 bytes. The size of file system blocks can be any power 
of two greater than or equal to 4096. The block size of the file system is maintained in the super­
block, so it is possible for file systems of different block sizes to be accessible simultaneously on the 
same system. The block size must be decided when new/s creates the file system; the block size 
cannot be subsequently changed without rebuilding the file system. 

2.2. Summary information 

Associated with the super block is non replicated 'tim mary in/ormation. The summary infor­
mation changes as the file system is modified. The summary information contains the number of 
blocks, fragments, inodes and directories in the file system. 

2.S. Cylinder groups 

The file system partitions the disk into one or more areas called cylinder groups. A cylinder 
group is comprised of one or more consecutive cylinders on a disk. Each cylinder group includes 
inode slots for files, a block map describing available blocks in the cylinder group, and summary 
information describing the usage of data blocks within the cylinder group. A fixed number of 
inodes is allocated for each cylinder group when the file system is created. The current policy is to 
allocate one inode for each 2048 bytes of disk space; this is expected to be far more inodes than 
will ever be needed. 

All the cylinder group bookkeeping information could be placed at the beginning of each 
cylinder group. However if this approach were used, all the redundant information would be on 
the top platter. A single hardware failure that destroyed the top platter could cause the loss of all 
copies of the redundant super-blocks. Thus the cylinder group bookkeeping information begins at 
a floating offset from the beginning of the cylinder group. The offset for the i+l st cylinder group 
is about one track further from the beginning of the cylinder group than it was for the ith cylinder 
group. In this way, the redundant information spirals down into the pack; any single track, 
cylinder, or platter can be lost without losing all copies of the super-blocks. Except for the first 

tThe actual Dumber may vary (rom system to system, but is usually in the range 5-13. 
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cylinder group, the space between the beginning of the cylinder group and the beginning of the 
cylinder group information stores data. 

2.4. Fragments 

To avoid waste in storing small files, the file system space allocator divides a single file sys­
tem block into one or more /ragment&. The fragmentation of the file system is specified when the 
file system is created; each file system block can be optionally broken into 2, 4, or 8 addressable 
fragments. The lower bound on the size of these fragments is constrained by the disk sector size; 
typically 512 bytes is the lower bound on fragment size. The block map associated with each 
cylinder group records the space availability at the fragment level. Aligned fragments are exam­
ined to determine block availability. 

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is 
represented by zero or more 4096 byte blocks oC data, and possibly a single Cragmented block. If a 
file system block must be fragmented to obtain space for a small amount of data, the remainder oC 
the block is made available for allocation to other files. For example, consider an 11000 byte file 
stored on a 4096/1024 byte file system. This file uses two full size blocks and a 3072 byte frag­
ment. If no fragments with at least 3072 bytes are available when the file is created, a Cull size 
block is split yielding the necessary 3072 byte fragment and an unused 1024 byte Cragment. This 
remaining fragment can be allocated to another file, as needed. 

2.5. Updates to the file system 

Every working day hundreds of files are created, modified, and removed. Every time a file is 
modified, the operating system performs a series of file system updates. These updates, when writ­
ten on disk, yield a consistent file system. The file system stages all modifications of critical infor­
mation; modification can either be completed or cleanly backed out after a crash. Knowing the 
inCormation that is first written to the file system, deterministic procedures can be developed to 
repair a corrupted file system. To understand this process, the order that the update requests were 
being honored must first be understood. 

When a user program does an operation to change the file system, such as a wn'te, the data 
to be written is copied into an internal in-core buffer in the kernel. Normally, the disk update is 
handled asynchronously; the user process is allowed to proceed even though the data has not yet 
been written to the disk. The data, along with the inode information reflecting the change, is 
eventually written out to disk. The real disk write may not happen until long after the write sys­
tem call has returned. Thus at any given time, the file system, as it resides on the disk, lags the 
stateo! the file system represented by the in-core information. 

The disk information is updated to reflect the in-core information when the buffer is required 
Cor another use, when a &ync(2) is done (at 30 second intervals) by /etc/update(8), or by manual 
operator intervention with the &ync (8) command. If the system is halted without writing out the 
in-core inCormation, the file system on the disk will be in an inconsistent state. 

If all updates are done asynchronously, several serious inconsistencies can arise. One incon­
sistency is that a block may be claimed by two inodes. Such an inconsistency can occur when the 
system is halted beCore the pointer to the block in the old inode has been cleared in the copy of the 
old inode on the disk, and after the pointer to the block in the new inode has been written out to 
the copy of the new inode on the disk. Here, there is no deterministic method for deciding which 
inode should really claim the block. A similar problem can arise with a multiply claimed inode. 

The problem with asynchronous inode updates can be avoided by doing all inode dealloca­
tions synchronously. Consequently, inodes and indirect blocks are written to the disk synchro­
nously (i. e. the process blocks until the information is really written to disk) when they are being 
deallocated. Similarly inodes are kept consistent by synchronously deleting, adding, or changing 
directory entries. 
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8. Fixing corrupted flIe 8)'8tems 
A file system can become corrupted in several ways. The most common of these ways are 

improper shutdown procedures and hardware failures. 

File systems may become corrupted during an ,,,,clean halt. This happens when proper shut­
down procedures are not observed, physically write-protecting a mounted file system, or a mounted 
file system is taken off-line. The most common operator procedural failure is forgetting to sync 
the system before halting the CPU. 

File systems may become Curther corrupted if proper startup procedures are not observed, 
e.g., not checking a file system for inconsistencies, and not repairing inconsistencies. Allowing a 
corrupted file system to be used (and, thus, to be modified further) can be disastrous. 

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a 
disk pack, or as blatant as a non-functional disk-controller. 

8.1. Detecting and correcting corruption 

Normally /sd is run non-interactively. In this mode it will only fix corruptions that are 
expected to occur Crom an unclean halt. These actions are a proper subset or the actions that /sck 
will take when it is running interactively. Throughout this paper we assume that /sck is being run 
interactively, and all possible errors can be encountered. When an inconsistency is discovered in 
this mode, /8ck reDorts the inconsistency for the operator to chose a corrective action. 

A quiescent* file system may be checked for structural integrity by performing consistency 
checks on the redundant data intrinsic to a file system. The redundant data is either read from 
the file system, or computed from other known values. The file system must be in a quiescent 
state when /8ek is run, since /sck is a multi-pass program. 

In the following sections, we discuss methods to discover inconsistencies and possible correc­
tive actions for the cylinder group blocks, the inodes, the indirect blocks, and the data blocks con­
taining directory entries. 

3.2. Super-block checking 

The most commonly corrupted item in a file system is the summary information associated 
with the super-block. The summary information is prone to corruption because it is modified with 
every change to the file system's blocks or inodes, and is usually corrupted after an unclean halt. 

The super-block is checked for inconsistencies involving file-system size, number of inodes, 
free-block count, and the free-inode count. The file-system size must be larger than the number of 
blocks used by the super-block and the number of blocks used by the list of inodes. The file­
system size and layout information are the most critical pieces of information for /8ck. While 
there is no way to actually check these sizes, since they are statically determined by new/s, /8ck 
can check that these sizes are within reasonable bounds. All other file system checks require that 
these sizes- be correct. H /sck detects corruption in the static parameters of the default super-block, 
/sck requests the operator to specify the location of an alternate super-block. 

8.3. Free block checking 

Fsck checks that all the blocks marked as free in the cylinder group block maps are not 
claimed by any files. When all the blocks have been initially accounted for, /8ek checks that the 
number of free blocks plus the number of blocks claimed by the inodes equals the total number of 
blocks in the file system. 

H anything is wrong with the block allocation maps, /.ek will rebuild them, based on the list 
it has computed of allocated blocks. 

* I.e., unmounted and not being writ.ten on. 
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The summary inCormation associated with the super-block counts the total number of free 
blocks within the file system. F,ck compares this count to the number of Cree blocks it Cound 
within the file system. If the two counts do not agree, then I,ck replaces the incorrect count in the 
summary information by the actual Cree-block count. 

The summary information counts the total number oC Cree inodes within the file system. 
F,ck compares this count to the number oC Cree inodes it Cound within the file system. If the two 
counts do not agree, then I,ck replaces the incorrect count in the summary information by the 
actual free-inode count. 

3.4. Checking the inode state 
An individual inode is not as likely to be corrupted as the allocation information. However, 

because of the great number oC active inodes, a few of the inodes are usually corrupted. 

The list oC inodes in the file system is checked sequentially starting with inode 2 (inode 0 
marks unused inodes; inode 1 is saved Cor Cuture generations) and progressing through the last 
inode in the file system. The state of each inode is checked for inconsistencies involving format 
and type, link count, duplicate blocks, bad blocks, and inode size. 

Each inode contains a mode word. This mode word describes the type and state oC the 
inode. Inodes must be one or six types: regular inode, directory inode, symbolic link inode, special 
block in ode, special character inode, or socket inode. Inodes may be found in one oC three alloca­
tion states: unallocated, allocated, and neither unallocated nor allocated. This last state suggests 
an incorrectly formated inode. An inode can get in this state iC bad data is written into the inode 
list. The only possible corrective action is Cor lack is to clear the inode. 

3.5. Inode links 

Each inode counts the total number oC directory entries linked to the inode. F,ck verifies the 
link count oC each inode by starting at the root oC the file system, and descending through the 
directory structure. The actual link count ror each inode is calculated during the descent. 

If the stored link count is non-zero and the actual link count is zero, then no directory entry 
appears for the inode. If this happens, I,ck will place the disconnected file in the lo,t+lound direc­
tory. If the stored and actual link counts are non-zero and unequal, a directory entry may have 
been added or removed without the inode being updated. If this ha.ppens, I,ck repla.ces the 
incorrect stored link count by the actual link count. 

Each inode contains a list, or pointers to lists (indirect blocks), or all the blocks claimed by 
the inode. Since indirect blocks are owned by an inode, inconsistencies in indirect blocks directly 
affect the inode that owns it. 

F,ck compares each block number claimed by an inode against a list or already allocated 
blocks. If another inode already claims a block number, then the block number is added to a list 
oC duplicate blocka. Otherwise, the list of a.llocated blocks is updated to include the block number. 

If there are any duplicate blocks, I,ck will perform a partial second pass over the inode list 
to find the inode or the duplicated block. The second pass is needed, since without examining the 
files associated with these inodes for correct content, not enough inCormation is available to deter­
mine which inode is corrupted and should be cleared. If this condition does arise (only hardware 
Cailure will cause it), then the inode with the earliest modify time is usually incorrect, and should 
be cleared. If this happens, I,ck prompts the operator to clear both inodes. The operator must 
decide which one should be kept and which one should be cleared. 

F,ck checks the range of each block number claimed by an inode. If the block number is 
lower than the first data block in the file system, or greater than the last data block, then the 
block number is a bad block number. Many bad blocks in an inode are usually caused by an 
indirect block that was not written to the file system, a condition which can only occur iC there has 
been a hardware Cailure. If an inode contains bad block numbers, Isck prompts the operator to 
clear it. 
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8.8. mode data size 

Each inode contains a count of the number of data blocks that it contains. The number of 
actual data blocks is the sum of the allocated data blocks and the indirect blocks. Fack computes 
the actual number of data blocks and compares that block count against the actual number of 
blocks the inode claims. It an inode contains an incorrect count lack prompts the operator to fix 
it. 

Each inode contains a thirty-two bit size field. The size is the number of data bytes in the 
file associated with the inode. The consistency of the byte size field is roughly checked by comput­
ing from the size field the maximum number of blocks that should be associated with the inode, 
and comparing that expected block count against the actual number of blocks the inode claims. 

8.7. Checking the data associated with an mode 

An inode can directly or indirectly reference three kinds of data blocks. All referenced blocks 
must be the same kind. The three types of data blocks are: plain data blocks, symbolic link data 
blocks, and directory data blocks. Plain data blocks contain the information stored in a file; sym­
bolic link data blocks contain the path name stored in a link. Directory data blocks contain direc­
tory entries. Facie can only check the validity of directory data blocks. 

Each directory data block is checked for several types of inconsistencies. These inconsisten­
cies include directory inode numbers pointing to unallocated inodes, directory inode numbers that 
are greater than the number of inodes in the file system, incorrect directory inode numbers for "." 
and " •• ", and directories that are not attached to the file system. It the inode number in a direc­
tory data block references an unallocated inode, then lack will remove that directory entry. Again, 
this condition can only arise when there has been a hardware failure. 

It a directory entry inode number references outside the inode list, then lack will remove that 
directory entry. This condition occurs if bad data is written into a directory data block. 

The directory inode number entry for "." must be the first entry in the directory data block. 
The inode number for "." must reference itself; e.g., it must equal the inode number for the direc­
tory data block. The directory inode number entry for" •• " must be the second entry in the direc­
tory data block. Its value must equal the inode number for the parent of the directory entry (or 
the inode number of the directory data block if the directory is the root directory). It the directory 
inode numbers are incorrect, lack will replace them with the correct values. 

8.S. File system connectivity 

Fack checks the general connectivity of the file system. It directories are not linked into the 
file system, then lack links the directory back into the file system in the loaf+lound directory. 
This condition only occurs when there has been a hardware failure. 
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4. Appendix A - Feck Error ConditioDS 

4.1. Conventions 

F,ck is a multi-pass file system check program. Each file system pass invokes a different 
Phase of the I,ck program. After the initial setup, I,ck performs successive Phases over each file 
system, checking blocks and sizes, path-names, connectivity, reference counts, and the map of free 
blocks, (possibly rebuilding it), and performs some cleanup. 

Normally I,ck is run non-interactively to preen the file systems after an unclean halt. While 
preen'ing a file system, it will only fix corruptions that are expected to occur from an unclean halt. 
These actions are a proper subset of the actions that Isek will take when it is running interac­
tively. Throughout this appendix many errors have several options that the operator can take. 
When an inconsistency is detected, Isck reports the error condition to the operator. If a response is 
required,l,ck prints a prompt message and waits for a response. When preen'ing most errors are 
fatal. For those that are expected, the response taken is noted. This appendix explains the mean­
ing of each error condition, the possible responses, and the related error conditions. 

The error conditions are organized by the Phase of the I,ek program in which they can .occur. 
The error conditions that may occur in more than one Phase will be discussed in initialization. 

4.2. Initialisation 

Before a file system check can be performed, certain tables have to be set up and certain files 
opened. This section concerns itself with the opening of files and the initialization of tables. This 
section lists error conditions resulting from command line options, memory requests, opening of 
files, status of files, file system size checks, and creation of the scratch file. All of the initialization 
errors are fatal when the file system is being preen'ed. 

o option! 
C is not a legal option to IBck; legal options are -b, -y, -n, and -po F8ek terminates on this error 
condition. See the IBck(8) manual entry for further detail. 

cannot alloc NNN bytes tor blockmap 
cannot alloc NNN bytes tor freemap 
cannot alloc NNN bytes tor statemap 
cannot alloc NNN bytes tor lncntp 
F,ek's request for memory for its virtual memory tables failed. This should never happen. F8Ck 
terminates on this error condition. See a guru. 

Can't open checklist file: F 
The file system checklist file F (usually /ete/18Iab) can not be opened for reading. F,ck terminates 
on this error condition. Check access modes of F. 

Can't stat root 
F8ck's request for statistics about the root directory "/" failed. This should never happen. F.ck 
terminates on this error condition. See a guru. 

Oan't stat F 
Oan't make sense out or Dame F 
F,ek's request for statistics about the file system F failed. When running manually, it ignores this 
file system and continues checking the next file system given. Check access modes of F. 

Oan't open F 
F.ck's request attempt to open the file system F failed. When running manually, it ignores this 
file system and continues checking the next file system given. Check access modes of F. 

December 1985 McKusick, Holt, et. al. 

/ 

/ 



o 

Fsck -9- Appendix A - Fsck Error Conditions 

F: (NO WRITE) 
Either the -n flag was specified or lack's attempt to open the file system F for writing failed. 
When running manually, all the diagnostics are printed out, but no modifications are attempted to 
fix them. 

file is not a block or character device; OK 
You have given lack a regular file name by mistake. Check the type of the file specified. 

Possible responses to the OK prompt are: 

YES Ignore this error condition. 

NO ignore this file system and continues checking the next file system given. 

One of the following messages will appear: 
MAGIC NUMBER WRONG 
NCG OUT OF RANGE 
CPG OUT OF RANGE 
NCYL DOES NOT JIVE WITH NCG*CPG 
SIZE PREPOSTEROUSLY LARGE 
TRASHED VALUES IN SUPER BLOCK 

and will be followed by the message: 
F: BAD SUPER BLOCK: B 
USE -b OPTION TO FSCK TO SPECIFY LOCATION OF AN ALTERNATE 
SUPER-BLOCK TO SUPPLY NEEDED INFORMATION; SEE rack(8). 
The super block has been corrupted. An alternative super block must be selected from among those 
listed by newls (8) when the file system was created. For file systems with a blocksize less than 
32K, specifying -b 32 is a good first choice. 

INTERNAL INCONSISTENCY: M 
Fack '5 has had an internal panic, whose message is specified as M. This should never happen. See 
a guru. 

CAN NOT SEEK: BLK B (CONTINUE) 
Fack '5 request for moving to a specified block number B in the file system failed. This should 
never happen. See a guru. 

Possible responses to the CONTINUE prompt are: 

YES attempt to continue to run the file system check. Often, however the problem will persist. 
This error condition will not allow a complete check of the file system. A second run of 18ek 
should be made to re-check this file system. If the block was part of the virtual memory 
buffer cache, lack will terminate with the message "Fatal I/O error". 

NO terminate the program. 

CAN NOT READ: BLK B (CONTINUE) 
Fsck's request for reading a specified block number B in the file system failed. This should never 
happen. See a guru. 

Possible responses to the CONTINUE prompt are: 

YES attempt to continue to run the file system check. Often, however, the problem will persist. 
This error condition will not allow a complete check of the file system. A second run of Isck 
should be made to re-check this file system. If the block was part of the virtual memory 
buffer cache, Isck will terminate with the message "Fatal I/O error". 
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NO terminate the program. 

CAN NOT WRITE: BLK B (CONTINUE) 
F,ck's request (or writing a specified block number B in the file system (ailed. The disk is write­
protected. See a guru. 

Possible responses to the CONTINUE prompt are: 

YES attempt to continue to run the file system check. Often, however, the problem will persist. 
This error condition will not allow a complete check of the file system. A second run of I,ck 
should be made to re-check this file system. If the block was part of the virtual memory 
buffer cache, I,ck will terminate with the message ''Fatal I/O error". 

NO terminate the program. 

4.3. Phase 1- Cheek Blocks and Sbles 

This phase concerns itself with the inode list. This section lists error conditions resulting 
from checking inode types, setting up the zero-link-count table, examining inode block numbers for 
bad or duplicate blocks, checking inode size, and checking inode format. All errors in this phase 
except INCORRECT BLOCK COUNT are fatal if the file system is being preen 'ed, 

CG 0: BAD MAGIC NUMBER The magic number of cylinder group 0 is wrong. This usually 
indicates that the cylinder group maps have been destroyed. When running manually the cylinder 
group is marked as needing to be reconstructed. 

UNKNOWN FILE TYPE 1==1 (CLEAR) The mode word of the inode I indicates that the 
inode is not a special block inode, special character inode, socket inode, regular inode, symbolic 
link, or directory inode. 

Possible responses to the CLEAR prompt are: 
YES de-allocate inode I by zeroing its contents. This will always invoke the UNALLOCATED 

error condition in Phase 2 for each directory entry pointing to this inode. 

NO ignore this error condition. 

LINK COUNT TABLE OVERFLOW (CONTINUE) 
An internal table for I,ck containing allocated inodes with a link count of zero has no more room. 
Recompile I,ck with a larger value of MAXLNCNT. 

Possible responses to the CONTINUE prompt are: 

YES continue with the program. This error condition will not allow a complete check of the file 
system. A second run of I,ck should be made to re-check this file system. If another allo­
cated inode with a zero link count is found, this error condition is repeated. 

NO terminate the program. 

BBADI=I 
!node I contains block number B with a number lower than the number of the first data block in 
the file system or greater than the number of the last block in the file system. This error condition 
may invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if inode 1 has too many 
block numbers outside the file system range. This error condition will always invoke the 
BAD /DUP error condition in Phase 2 and Phase 4. 

EXCESSIVE BAD BLKS 1=1 (CONTINUE) 
There is more than a tolerable number (usually 10) of blocks with a number lower than the 
number of the first data block in the file system or greater than the number of last block in the file 
system associated with inode 1. 
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Possible responses to the CONTINUE prompt are: 

YES ignore the rest of the blocks in this inode and continue checking with the next inode in the 
file System. This error condition will not allow a complete check of the file system. A second 
run of /8ck should be made to re-check this file system. 

NO terminate the program. 

BDUPI=1 
Inode I contains block number B which is already claimed by another inode. This error condition 
may invoke the EXCESSIVE DUP BLKS error condition in Phase 1 if inode 1 has too many 
block numbers claimed by other inodes. This error condition will always invoke Phase Ib and the 
BAD/DUP error condition in Phase 2 and Phase 4. 

EXCESSIVE DUP BLKS 1=1 (CONTINUE) 
There is more than a tolerable number (usually 10) of blocks claimed by other inodes. 

Possible responses to the CONTINUE prompt are: 

YES ignore the rest of the blocks in this inode and continue checking with the next inode in the 
file system. This error condition will not allow a complete check of the file system. A second 
run of /8ck should be made to re-check this file system. 

NO terminate the program. 

DUP TABLE OVERFLOW (CONTINUE) 
An internal table in /8ck containing duplicate block numbers has no more room. Recompile /8ck 
with a larger value of DUPTBLSIZE. 

Possible responses to the CONTINUE prompt are: 

YES continue with the program. This error condition will not allow a complete check of the file 
system. A second run of /8ck should be made to re-check this file system. If another dupli­
cate block is found, this error condition will repeat. 

NO terminate the program. 

PARTIALLY ALLOCATED INODE 1=1 (CLEAR) 
Inode I is neither allocated nor unallocated. 

Possible responses to the CLEAR prompt are: 

YES de-allocate inode 1 by zeroing its contents. 

NO ignore this error condition. 

INCORRECT BLOCK COUNT 1=1 (X should be Y) (CORRECT) 
The block count for inode I is X blocks, but should be Y blocks. When preen'ing the count is 
corrected. 

Possible responses to the CORRECT prompt are: 

YES replace the block count of inode I with Y. 
NO ignore this error condition. 

•••. Phase IB: Reacan tor More Dupll 

When a duplicate block is found in the file system, the file system is rescanned to find the 
inode which previously claimed that block. This section lists the error condition when the dupli­
cate block is found. 
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BDUPI=I 
Inode 1 contains block number B that is already claimed by another inode. This error condition 
will always invoke the BAD/DUP error condition in Phase 2. You can determine which inodes 
have overlapping blocks by examining this error condition and the DUP error condition in Phase 1. 

4.6. Phase 2 - Check Pathnames 
This phase concerns itself with removing directory entries pointing to error conditioned 

inodes from Phase 1 and Phase lb. This section lists error conditions resulting from root inode 
mode and status, directory inode pointers in range, and directory entries pointing to bad inodes. 
All errors in this phase are fatal if the file system is being preen'ed. 

ROOT INODE UNALLOCATED. TERMINATING. 
The root inode (usually inode number 2) has no allocate mode bits. This should never happen. 
The program will terminate. 

NAME TOO LONG F 
An excessively long path name has been found. This is usually indicative of loops in the file sys­
tem name space. This can occur if the super user has made circular links to directories. The 
ottending links must be removed (by a guru). 

ROOT INODE NOT DIRECTORY (FIX) 
The root inode (usually inode number 2) is not directory inode type. 

Possible responses to the FIX prompt are: 

YES replace the root inode's type to be a directory. If the root inode's data blocks are not direc­
tory blocks, a VERY large number of error conditions will be produced. 

NO terminate the program. 

DUPS/BAD IN ROOT !NODE (CONTINUE) 
Phase 1 or Phase Ib have found duplicate blocks or bad blocks in the root inode (usually inode 
number 2) for the file system. 

Possible responses to the CONTINUE prompt are: 

YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to run the 
file system check. If the root inode is not correct, then this may. result in a large number of 
other error conditions. 

NO terminate the program. 

lOUT OF RANGE I=INAME=F (REMOVE) 
A directory entry F has an inode number 1 which is greater than the end of the inode list. 

Possible responses to the REMOVE prompt are: 

YES the directory entry F is removed. 

NO ignore this error condition. 

UNALLOCATED 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F 
(REMOVE) 
A directory entry F has a directory inode 1 without allocate mode bits. The owner 0, mode M, 
size S, modify time T, and directory name F are printed. 

Possible responses to the REMOVE prompt are: 

YES the directory entry F is removed. 
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NO ignore this error condition. 

UNALLOCATED 1=1 OWNER=O MODE=M SIZE=5 MTIME=T FlLE=F 
(REMOVE) 
A directory entry F has an inode I without allocate mode bits. The owner 0, mode M, size 5, 
modify time T, and file name F are printed. 

Possible responses to the REMOVE prompt are: 

YES the directory entry F is removed. 

NO ignore this error condition. 

DUP IBAD 1=1 OWNER=O MODE=M SIZE=5 MTIME=T Dm,=F (REMOVE) 
Phase 1 or Phase Ib have found duplicate blocks or bad blocks associated with directory entry F, 
directory inode I. The owner 0, mode M, size 5, modify time T, and directory name Fare 
printed. 

Possible responses to the REMOVE prompt are: 

YES the directory entry F is removed. 

NO ignore this error condition. 

DUP I BAD 1=1 OWNER=O MODE=M SIZE=5 MTIME=T FlLE=F (REMOVE) 
Phase 1 or Phase Ib have found duplicate blocks or bad blocks associated with directory entry F, 
inode 1. The owner 0, mode M, size 5, modify time T, and file name F are printed. 

Possible responses to the REMOVE prompt are: 

YES the directory entry F is removed. 

NO ignore this error condition. 

ZERO LENGTH Dm,ECTORY 1=1 OWNER=O MODE=M SIZE=5 MTIME=T 
Dm,=F (REMOVE) 
A directory entry F has a size 5 that is zero. The owner 0, mode M, size 5, modify time T, and 
directory name F are printed. 

Possible responses to the REMOVE prompt are: 

YES the directory entry F is removed; this will always invoke the BAD jDlIP error condition in 
Phase 4. 

NO ignore this error condition. 

DIRECTORY TOO SHORT 1=1 OWNER=O MODE=M SIZE=5 MTIME= T 
Dm,=F(FIX) 
A directory F has been found whose size 5 is less than the minimum size directory. The owner 0, 
mode M, size 5, modiry time T, and directory name F are printed. 

Possible responses to the FIX prompt are: 

YES increase the size or the directory to the minimum directory size. 

NO ignore this directory. 

DIRECTORY CORRUPTED 1=1 OWNER=O MODE=M SIZE=5 MTIME= T 
Dm,=F (SALVAGE) 
A directory with an inconsistent internal state has been found. 

Possible responses to the FIX prompt are: 

YES throwaway all entries up to the Dext 512-byte boundary. This rather drastic action can 
throwaway up to 42 entries, and should be taken only after other recovery efforts have 
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failed. 

NO Skip up to the next 512-byte boundary and resume reading, but do not modify the directory. 

BAD INODE NUMBER FOR '.' 1=1 OWNER=O MODE=M SIZE=S MTIME=T 
DIR=F(FIX) 
A directory I has been found whose inode number for'.' does does not equal 1. 

Possible responses to the FIX prompt are: 

YES change the inode number for'.' to be equal to I. 
NO leave the inode number for'.' unchanged. 

MISSING '.' 1=1 OWNER=O MODE=M SIZE=S MTIME= T DIR=F (FIX) 
A directory I has been found whose first entry is unallocated. 

Possible responses to the FIX prompt are: 

YES make an entry for'.' with inode number equal to I. 

NO leave the directory unchanged. 

MISSING'.' 1=1 OWNER=O MODE=M SIZE=S MTIME= T DIR=F 
CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS F 
A directory I has been found whose first entry is F. F8CIt: cannot resolve this problem. The file sys­
tem should be mounted and the offending entry F moved elsewhere. The file system should then 
be unmounted and 18cIt: should be run again. 

MISSING '.' 1=1 OWNER=O MODE=M SIZE=S MTIME=TDIR=F 
CANNOT FIX, INSUFFICIENT SPACE TO ADD '.' 
A directory 1 has been found whose first entry is not '.'. F8CIt: cannot resolve this problem as it 
should never happen. See a guru. 

EXTRA'.' ENTRY 1=1 OWNER=O MODE=M SIZE=S MTIME= T DIR=F (FIX) 
A directory I has been found that has more than one entry for '.'. 

Possible responses to the FIX prompt are: 

YES remove the extra entry for'.'. 

NO leave the directory unchanged. 

BAD INODE NUMBER FOR ' •• ' 1=1 OWNER=O MODE=M SIZE=S MTIME=T 
DIR=F(FIX) 
A directory 1 has been found whose inode number for ' .. ' does does not equal the parent of 1. 

Possible responses to the FIX prompt are: 

YES change the inode number for ' .. ' to be equal to the parent of 1. 

NO leave the inode number for' . .' unchanged. 

MISSING' •. ' 1=1 OWNER==O MODE=M SIZE=S MTIME= T DIR==F (FIX) 
A directory I has been found whose second entry is unallocated. 

Possible responses to the FIX prompt are: 

YES make an entry for' .. ' with inode number equal to the parent of 1. 

NO leave the directory unchanged. 
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MISSING ' •• ' 1=1 OWNER=O MODE=MSIZE=S MTIME=TDm=F 
OANNOT FIX, SEOOND ENTRY IN DIREOTORY CONTAINS F 
A directory 1 has been found whose second entry is F. F,ck cannot resolve this problem. The file 
system should be mounted and the offending entry F moved elsewhere. The file system should 
then be unmounted and f,ck should be run again. 

MISSING ' •• ' I=IOWNER=OMODE=MSIZE=SMTIME=TDm=F 
OANNOT FIX, INSUFFICIENT SPACE TO ADD ' • .' 
A directory 1 has been found whose second entry is not ' .. '. F,ck cannot resolve this problem as it 
should never happen. See a guru. 

EXTRA ' •• ' ENTRY 1=1 OWNER=O MODE=M SIZE=S MTIME=T Dm=F (FIX) 
A directory 1 has been found that has more than one entry for' .. '. 

Possible responses to the FIX prompt are: 

YES remove the extra entry for ' .. '. 

NO leave the directory unchanged. 

4.8. Phase 3 - Cheek Connectivity 

This phase concerns itself with the directory connectivity seen in Phase 2. This section lists 
error conditions resulting from unreferenced directories, and missing or fullloat+found directories. 

UNREF Dm 1=1 OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT) 
The directory inode I was not connected to a directory entry when the file system was traversed. 
The owner 0, mode M, size S, and modify time T of directory inode I are printed. When 
preen'ing, the directory is reconnected if its size is non-zero, otherwise it is cleared. 

Possible responses to the RECONI\TECT prompt are: 

YES reconnect directory inode I to the file system in the directory for lost files (usually 
losl+found). This may invoke the loat+found error condition in Phase 3 if there are prob­
lems connecting directory inode I to loat+found. This may also invoke the CONNECTED 
error condition in Phase 3 iC the link was successful. 

NO ignore this error condition. This will always invoke the UNREF error condition in Phase 4. 

SORRY. NO lost+round DmECTORY 
There is no lost+fo'llnd directory in the root directory of the file system; fscle ignores the request to 
link a directory in lost+fo'llnd. This will always invoke the UNREF error condition in Phase 4. 
Check access modes of lost+found. See f8ck(8) manual entry for further detail. This error is Catal 
if the file system is being preen'ed. 

SORRY. NO SPACE IN lost+round DIRECTORY 
There is no space to add another entry to the lo,t+fo'llnd directory in the root directory of the file 
system; fsck ignores the request to link a directory in lo,t+fo'llnd. This will always invoke the 
UNREF error condition in Phase 4. Clean out unnecessary entries in lost+found or make 
lo,t+fo'llnd larger. See fsck(8) manual entry for further detail. This error is fatal if the file system 
is being preen'ed. 

Dml=I1 OONNEOTED. PARENT WAS I=lt 
This is an advisory message indicating 'a directory inode 11 was successfully connected to the 
lost+found directory. The parent inode Ie of the directory inode 11 is replaced by the inode 
number of the lost+found directory. 
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4.7. Phase 4 - Cheek Reference Counts 

This phase concerns itself with the link count information seen in Phase 2 and Phase 3. This 
section lists error conditions resulting from unreferenced files, missing or full I03t+/ound directory, 
incorrect link counts for files, directories, symbolic links, or special files, unreferenced files, symbolic 
links, and directories, bad and duplicate blocks in files, symbolic links, and directories, and 
incorrect total free-inode counts. All errors in this phase are correctable if the file system is being 
preen'ed except running out of space in the lost+found directory. 

UNREF Fn.E 1==1 OWNER==O MODE==M SIZE==SMTIME==T (RECONNECT) 
Inode 1 was not connected to a directory entry when the file system was traversed. The owner 0, 
mode M, size S, and modify time T of inode 1 are printed. When preen'ing the file is cleared if 
either its size or its link count is zero, otherwise it is reconnected. 

Possible responses to the RECONNECT prompt are: 

YES reconnect inode 1 to the file system in the directory for lost files (usually I03t+/Otlni). This 
may invoke the I03t+/otlnd error condition in Phase 4 if there are problems connecting inode 
1 to lost+/otlnd. 

NO ignore this error condition. This will always invoke the CLEAR error condition in Phase 4. 

(CLEAR) 
The inode mentioned in the immediately previous error condition can not be reconnected. This 
cannot occur if the file system is being preen 'ed, since lack oC space to reconnect files is a Catal 
error. 

Possible responses to the CLEAR prompt are: 

YES d~allocate the inode mentioned in the immediately previous error condition by zeroing its 
contents. 

NO ignore this error condition. 

SORRY. NO lost+found DIRECTORY 
There is no lost+/otlnd directory in the root directory of the file system; /3ck ignores the request to 
link a file in I03t+/ound. This will always invoke the CLEAR error condition in Phase 4. Check 
access modes of lost+/ound. This error is Catal if the file system is being preen'ed. 

SORRY. NO SPACE IN lost+found DIRECTORY 
There is no space to add another entry to the I031+/ound directory in the root directory of the file 
system; /3ck ignores the request to link a file in I03t+/ound. This will always invoke the CLEAR 
error condition in Phase 4. Check size and contents of I03t+/ound. This error is fatal if the file 
system is being preen 'ed. 

LINK COUNT Fn.E 1==1 OWNER=O MODE==M SIZE==S MTlME== T COUNT=X 
SHOULD BE Y (ADJUST) 
The link count for inode 1 which is a file, is Xbut should be Y. The owner 0, mode M, size S, and 
modify time T are printed. When preen'ing the link count is adjusted. 

Possible responses to the ADJUST prompt are: 

YES replace the link count of file inode 1 with Y. 
NO ignore this error condition. 

LINK COUNT DIR 1==1 OWNER==O MODE==M SIZE==S MTlME== T COUNT=X 
SHOULD BE Y (ADJUST) 
The link count for inode 1 which is a directory, is X but should be Y. The owner 0, mode M, size 
S, and modify time T of directory inode 1 are printed. When preen'ing the link count is adjusted. 
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Possible responses to the ADJUST prompt are: 

YES replace the link count of directory inode 1 with Y. 

NO ignore this error condition. 

Appendix A - Fsck Error Conditions 

LINK COUNT F 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X 
SHOULD BE Y (ADJUST) 
The link count for F inode 1 is X but should be Y. The name F, owner 0, mode M, size S, and 
modify time T are printed. When preen'ing the link count is adjusted. 

Possible responses to the ADJUST prompt are: 

YES replace the link count of inode 1 with Y. 

NO ignore this error condition. 

UNREF FILE 1=1 OWNER=O MODE=M SIZE=SMTIME=T (CLEAR) 
!node 1 which is a file, was not connected to a directory entry when the file system was traversed. 
The owner 0, mode M, size S, and modify time Tof inode 1 are printed. When preen'ing, this is a 
file that was not connected because its size or link count was zero, hence it is cleared. 

Possible responses to the CLEAR prompt are: 

YES de-allocate inode I by zeroing its contents. 

NO ignore this error condition. 

UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR) 
Inode 1 which is a directory, was not connected to a directory entry when the file system was 
traversed. The owner 0, mode M, size S, and modify time T of inode 1 are printed. When 
preen'ing, this is a directory that was not connected because its size or link count was zero, hence 
it is cleared. 

Possible responses to the CLEAR prompt are: 

YES de-allocate inode 1 by zeroing its contents. 

NO ignore this error condition. 

BAD/DUP FILE 1=1 OWNER=O MODE=M SIZE==S MTIME==T (CLEAR) 
Phase 1 or Phase Ib have found duplicate blocks or bad blocks associated with file inode I. The 
owner 0, mode M, size S, and modify time T of inode 1 are printed. This error cannot arise when 
the file system is being preen'ed, as it would have caused a fatal error earlier. 

Possible responses to the CLEAR prompt are: 

YES de-allocate inode 1 by zeroing its contents. 

NO ignore this error condition. 

BAD/DUP DIR 1=1 OWNER=O MODE==M SIZE==S MTIME= T (CLEAR) 
Phase 1 or Phase Ib have found duplicate blocks or bad blocks associated with directory inode 1. 
The owner 0, mode M, size S, and modify time T of inode I are printed. This error cannot arise 
when the file system is being preen'ed, as it would have caused a fatal error earlier. 

Possible responses to the CLEAR prompt are: 

YES de-allocate inode 1 by zeroing its contents. 

NO ignore this error condition. 

FREE INODE COUNT WRONG IN SUPERBLK (FIX) 
The actual count of the free inodes does not match the count in the super-block of the file system. 
When preen'ing, the count is fixed. 
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Possible responses to the FIX prompt are: 

YES replace the count in the super-block by the actual count. 

NO ignore this error condition. 

4.8. Phase 5 - Check 0,,1 groups 

This phase concerns itself with the free-block maps. This section lists error conditions result­
ing from allocated blocks in the free-block maps, free blocks missing from free-block maps, and the 
total free-block count incorrect. 

CG 0: BAD MAGIC NUMBER 
The magic number of cylinder group C is wrong. This usually indicates that the cylinder group 
maps have been destroyed. When running manually the cylinder group is marked as needing to be 
reconstructed. This error is fatal if the file system is being preen'ed. 

EXCESSIVE BAD BLKS IN BIT MAPS (CONTINUE) 
An inode contains more than a tolerable number (usually 10) of blocks claimed by other inodes or 
that are out of the legal range for the file system. This error is fatal if the file system is being 
preen'ed. 

Possible responses to the CONTINUE prompt are: 

YES ignore the rest of the free-block maps and continue the execution of /8ck. 

NO terminate the program. 

SUMMARY INFORMATION T BAD 
where T is one or more of: 
(INODE FREE) 
(BLOCK OFFSETS) 
(FRAG SUMMARIES) 
(SUPER BLOCK SUMMARIES) 
The indicated summary information was found to be incorrect. This error condition will always 
invoke the BAD CYLINDER GROUPS condition in Phase 6. When preen'ing, the summary 
information is recomputed. 

XBLK(S) MISSING 
X blocks unused by the file system were not found in the free-block maps. This error condition 
will always invoke the BAD CYLINDER GROUPS condition in Phase 6. When preen'ing, the 
block maps are rebuilt. 

BAD CYLINDER GROUPS (SALVAGE) 
Phase 5 has found bad blocks in the free-block maps, duplicate blocks in the free-block maps, or 
blocks missing from the file system. When preen'ing, the cylinder groups aI:ereconstructed. 

Possible responses to the SALVAGE prompt are: 

YES replace the actual free-block maps with a new free-block maps. 

NO ignore this error condition. 

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX) 
The actual count of free blocks does not match the count in the super-block of the file system. 
When preen'ing, the counts are fixed. 

Possible responses to the FIX prompt are: 

December 1985 McKusick, Holt, et. al. 
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YES replace the count in the super-block by the actual count. 

NO ignore this error condition. 

4.9. Phase 8 - Salvage Cylinder Groups 

Appendix A - Fsck Error Conditions 

This phase concerns itselC with the Cree-block maps reconstruction. No error messages are 
produced. 

4.10. Cleanup 

Once a file system has been checked, a few cleanup functions are performed. This section 
lists advisory messages about the file system and modify status of the file system. 

V61es, Wused, Xfree (Ytrals, Zblocks) 
This is an advisory message indicatin~ that the file system checked contained V files using W frag­
ment sized blocks leaving X fragment sized blocks free in the file system. The numbers in 
parenthesis breaks the Cree count down into Y free fragments and Z free full sized blocks . 

••••• REBOOT UNIX ••••• 
This is an advisory message indicating that the root file system has been modified by Jack. If 
UNIX is not rebooted immediately, the work done by lack may be undone by the in-core copies of 
tables UNIX keeps. When preen'ing, lack will exit with a code of 4. The auto-reboot script inter­
prets an exit code of 4 by issuing a reboot system call. 

••••• Fn.E SYSTEM WAS MODIFIED ••••• 
This is an advisory message indicating that the current file system was modified by lack. If this file 
system is mounted or is the current root file system, lack should be halted and UNIX rebooted. If 
UNIX is not rebooted immediately, the work done by lack may be undone by the in-core copies of 
tables UNIX keeps. 

December 1985 McKusick, Holt, et. a1. 
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ABSTRAOT 

This document describes the structure and installation procedure for the line 
printer spooling system developed for the 4.2BSD version of the UNIX* operating 
system. 

1. Overview 

The line printer system supports: 

• multiple printers, 

• multiple spooling queues, 

• both local and remote printers, and 

• printers attached via serial lines which require line initialization such as the baud rate. 

Raster output devices such as a Varian or Versatec, and laser printers such as an Imagen, are also 
supported by the line printer system. 

The line printer system consists mainly of the following files and commands: 

jetcjprintcap 
jusr /lib jlpd 
/usr /ucb/lpr 
jusrjucbjlpq 
jusr jucb/lprm 
jetc/lpc 
jdeyjprinter 

printer configuration and capability data base 
line printer daemon, does all the real work 
program to enter a job in a printer queue 
spooling queue examination program 
program to delete jobs from a queue 
program to administer printers and spooling queues 
socket on which lpd listens 

The file jetc/printcap is a master data base describing line printers directly attached to a machine 
and, also, printers accessible across a network. The manual page entry pn·ntcap(5) provides the 
ultimate definition of the format of this data base, as well as indicating default values for impor­
tant items such as the directory in which spooling is performed. This document highlights the 
important information which may be placed printcap. 

• UNIX is a trademlll"k or Bell Laboratories. 
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2. Commands 

2.1. Ipd - line printer dam eon 

The program 11'4(8), usually invoked at boot time from the /etc/rt file, acts as a master 
server for coordinating and controlling the spooling queues configured in the printcap file. When 
Ipd is started it makes a single pass through the p"ntcap database restarting any printers which 
have jobs. In normal operation Ipd listens for service requests on multiple sockets, one in the 
UNIX domain (named "/dev/printer") for local requests, and one in the Internet domain (under 
the "printer" service specification) for requests for printer access from off machine; see ,ocket(2) 
and aemeu (5) for more information on sockets and service specifications, respectively. Lpd. 
spawns a copy of itself to process the request; the master daemon continues to listen for new 
requests. 

Clients communicate with Ipd using a simple transaction oriented protocol. Authentication 
of remote clients is done based on the "privilege port" scheme employed by rehd(8C) and 
rcmd(3X}. The following table shows the requests understood by Ipd. In each request the first 
byte indicates the "meaning" of the request, followed by the name of the printer to which it 
should be applied. Additional qualifiers may follow, depending on the request. 

Request 
" Aprinter\n 
"Bprinter\n 
"Cprinter [users ... J [jobs ... J\n 
"Dprinter [users ... J [jobs ... J\n 
"Eprinter person [users ... J [jobs ... ]\n 

Interpretation 
check the queue for jobs and print any found 
receive and queue a job from another machine 
return short list of current queue state 
return long list of current queue state 
remove jobs from a queue 

The Ipr(l) command is used by users to enter a print job in a local queue and to notify the 
local Ipd that there are new jobs in the spooling area. Lpd either schedules the job to be printed 
locally, or in the case of remote printing, attempts to forward the job to the appropriate machine. 
If the printer cannot be opened or the destination machine is unreachable, the job will remain 
queued until it is possible to complete the work. 

2.2. Ipq - show line printer queue 

The Ipg(l) program works recursively backwards displaying the queue of the machine with 
the printer and then the queue(s) of the machine(s) that lead to it. Lpg has two forms of output: 
in the default, short, format it gives a single line of output per queued job; in the long format it 
shows the list of files, and their sizes, which comprise a job. 

2.3. Iprm - remove jobs from a queue 

The Ipnn(l) command deletes jobs from a spooling queue. If necessary, Ipnn will first kill off 
a running daemon which is servicing the queue, restarting it after the required files are removed. 
When removing jobs destined for a remote printer, Iprm acts similarly to Ipq except it first checks 
locally for jobs to remove and then tries to remove files in queues off-machine. 

2.4. Ipe - line printer control program 

The Ipe(8) program is used by the system administrator to control the operation of the line 
printer system. For each line printer configured in /etc/printcap, Ipc may be used to: 

• disable or enable a printer, 
• disable or enable a printer's spooling queue, 

• rearrange the order of jobs in a spooling queue, 

• find the status of printers, and their associated spooling queues and printer dameons. 
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8. Acceu control 

The printer system maintains protected spooling ueas so that users cannot circumvent 
printer accounting or remove files other than their own. The strategy used to maintain protected 
spooling areas is as follows: 

• The· spooling area is writable only by a daemon user and ,pooling group. 

• The Ipr program runs setuid root and setgid .pooling. The root aooess is used to read any file 
required, verifying accessibility with an Cleeeu (2) call. The group ID is used in setting up 
proper ownership of files in the spooling uea for Iprm. 

• Control files in a spooling area are made with dClemoft ownership and group ownership 6pooling. 
Their mode is 0660. This insures control files 8l'e not modiW by a user and that no user can 
remove files except through Iprm. 

• The spooling programs, Ipd, lpg, and Iprm run setuid root and setgid ,pooling to access spool 
files and printers. 

• The printer server, Ipd, uses the same verification procedures as r,hd (8C) in authenticating 
remote clients. The host on which a client resides must be present in the file /etc/hosts.equiv, 
used to create clusters of machines under a single administration. 

In practice, none of Ipd, lpg, or Iprm would have to run as user '"DOt if remote spooling were 
not supported. In previous incarnations of the printer system /pd ran setuid daemon, setgid 6pool­
ing, and Ipg and /prm ran setgid 6pooling. 

4. Setting up 

The 4.2BSD release comes with the necessary programs installed and with the default line 
printer queue created. H the system must be modified, the makefile in the directory 
/usr/src/usr.lib/lpr should be used in recompiling and reinstalling the necessary programs. 

The real work in setting up is to create the printeCl, file and any printer filters for printers 
not supported in the distribution system. 

4.1. Creating a printcap file 

The printcap database contains one or more entries per printer. A printer should have a 
separate spooling directory; otherwise, jobs will be printed on different printers depending on which 
printer daemon starts first. This section describes how to create entries for printers which do not 
conform to the default printer description (an LP-ll style interface to a standard, band printer). 

4.1.1. Printers on serial 6nes 

·When a printer is connected via a serial communication liM it must have the proper baud 
rate and terminal modes set. The following example is for a DecWriter m printer connected 
locally via a 1200 baud serial line. 

IpJ.A-180 DecWriter m:\ 
:lp=/dev/lp:br#1200:fs#06320:\ 
:tr=\f:of=/usr/lib/lpf:lf=/usr/adm/lpd-errs: 

The lp entry specifies the file name to open for output. In this ease it could be left out since 
"/dev/lp" is the default. The br entry sets the baud rate for the tty line and the fs entry sets 
CRMOD, no p~ty, and XTABS (see ttr(4). The tr entry indicates a form-feed should be pr.inted 
when the queue empties so the paper can be tom off without turning the printer off-line and press­
ing form feed. The of entry specifies the filter program Ipf should be used for printing the files; 
more will be said about filters later. The last entry causes errors to be written to the file 
"/usr/adm/lpd-errs" instead of the console. 
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4.1.2. Remote printers 

Printers which reside on remote hosts should have an empty lp entry. For example, the fol­
lowing printcap entry would send output to the printer named "lp" on the machine "ucbvax". 

lp ~efault line printer:\ 
:lp==:rm==ucbvax:rp==lp:sd== /usr /spool/vaxlpd: 

The rm entry is the name of the remote machine to connect to; this name must appear in the 
/etc/hosts database, see ho",(5). The rp capability indicates the name of the printer on the 
remote machine is "lp"; in this case it could be left out since this is the default value. The sd 
entry specifies "/usr/spool/vaxlpd" as the spooling directory instead of the default value of 
"/usr/spool/lpd". 

4.2. Output filters 

Filters are used to handle device dependencies and to perform accounting functions. The out­
put filter ot is used to filter text data to the printer device when accounting is not used or when all 
text data must be passed through a filter. It is not intended to perform accounting since it is 
started only once, all text files are filtered through it, and no provision is made for passing owners' 
login name, identifying the begining and ending of jobs, etc. The other filters (if specified) are 
started for each file printed and perform accounting if there is an at entry. IT entries for both of 
and one of the other filters are specified, the output filter is used only to print the banner pagej it 
is then stopped to allow other filters access to the printer. An example of a printer which requires 
output filters is the Benson-Varian. 

va lvarianJ3enson-Varian:\ 
:lp=/dev/vaO:sd=/usr/spool/vad:of=/usr/lib/vpf:\ 
:tf= /usr /lib /rvcat:mx*2000:pl*58:tr=\f: 

The tt entry specifies "/usr/lib/rvcat" as the filter to be used in printing troff(l) output. This 
filter is needed to set the device into print mode for text, and plot mode for printing troff files and 
raster images (see va (4V». Note that the page length is set to 58 lines by the pI entry for 8.5" by 
U" fan-fold paper. To enable accounting, the varian entry would be augmented with an at filter 
as shown below. 

valvarianJ3enson-Varian:\ 
:lp=/dev/vaO:sd=/usr/spool/vad:of=/usr/lib/vpf:\ 
:if /usr jlib/vpf:tf /usr /lib /rvcat:af= /usr / adm/vaacct:\ 
:mx*2000:pl*58:tr-\f: 

5. Output filter specifications 

The filters supplied with 4.2BSD handle printing and accounting for most common line 
printers, the Benson-Varian, the wide (36") and narrow (U") Versatec printer/plotters. For other 
devices or accounting methods, it may be necessary to create a new filter. 

Filters are spawned by Jpd with their standard input the data to be printed, and standard 
output the printer. The standard error is attached to the It file for logging errors. A filter must 
return a 0 exit code if there were no errors, 1 if the job should be reprinted, and 2 if the job should 
be thrown away. When Iprm sends a kill signal to the Ipd process controlling printing, it sends a 
SIGINT signal to all filters and descendents of filters. This signal can be trapped by filters which 
need to perform cleanup operations such as deleting temporary files. 

Arguments passed to a filter depend on its type. The ot filter is called with the following 
arguments. 

ofiler -wwidth -llength 

The width and length values come from the pw and pI entries in the printcap database. The if 
filter is passed the following parameters. 
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filter [ -c 1 -wwidth -llength -iindent -n login -h host accountingjile 

The -c flag is optional, and only supplied when control characters are to be passed uninterpreted 
to the printer (when the -I option of Ipr is used to print the file). The -wand -I parameters are 
the same as for the or filter. The -n and -h parameters specify the login name and host name of 
the job owner. The last argument is the name of the accounting file from printcap. 

All other filters are called with the following arguments: 

filter -xwidth -)"length -n login -h host accountingjile 

The -x and -)" options specify the horizontal and vertical page size in pixels (from the px and py 
entries in the printcap file). The rest of the arguments are the same as for the if filter. 

8. Line printer Administration 

The Ipc program provides local control over line printer activity. The major commands and 
their intended use will be described. The command format and remaining commands are described 
in lpc(S). 

abort and start 

Abort terminates an active spooling daemon on the local host immediately and then disables 
printing (preventing new daemons from being started by Ipr). This is normally used to for­
ciblly restart a hung line printer daemon (i.e., lpq reports that there is a daemon present but 
nothing is happening). It does not remove any jobs from the queue (use the lprm command 
instead). Start enables printing and requests lpd to start printing jobs. 

enable and disable 

Enable and duable allow spooling in the local queue to be turned on/off.. This will 
allow /prevent Ipr from putting new jobs in the spool queue. It is frequently convenient to 
turn spooling off. while testing new line printer filters since the root user can still use Ipr to 
put jobs in the queue but no one else can. The other main use is to prevent users from put­
ting jobs in the queue when the printer is e).-pected to be unavailable for a long time. 

restart 

stop 

topq 

Restart allows ordinary users to restart printer daemons when lpq reports that there is no 
daemon present. 

Stop is used to halt a spooling daemon after the current job completes; this also disables 
printing. This is a clean way to shutdown a printer in order to perform maintenence, etc. 
Note that users can still enter jobs in a spool queue while a printer is stopped. 

Topq places jobs at the top of a printer queue. This can be used to reorder high priority 
jobs since Ipr only only provides first-com~first-serve ordering of jobs. 

7. Troubleshooting 

There are a number of messages which may be generated by the the line printer system. 
This section categorizes the most common and explains the cause for their generation. Where the 
message indicates a failure, directions are given to remedy the problem. 

In the examples below, the name printer is the name of the printer. This would be one of the 
names from the printcap database. 
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'1.1. LPR 

lpr: printer: unknown printer 

The printer was not found in the printcap database. Usually this is a typing mistake; how­
ever, it may indicate a missing or incorrect ent.ry in t.he /etc/printcap file. 

Ipr: printer: jobs queued, but cannot start daemon. 

The connection to Ipd on the local machine failed. This usually means the printer server 
started at boot time has died or is hung. Check the local socket / dev /printer to be sure it 
still exists (if it dot'S not exist, there is no Ipd process running). Use 

% ps ax I fgrep Ipd 

to get a list of process identifiers of running lpd's. The Ipd to kill is the one which is not 
listed in any of the "lock" files (the lock file is contained in the spool directory of each 
printer). Kill t.he master daemon using the following command. 

% kill pid 

Then remove /dev /printcr and rest.art the da.emon (and printer) with the following com­
mands. 

% rm /dey/printer 
% /usr/lib/lpd 

Another possibilit.y is that t.he Ipr program is not setuid root, setgid 8p o olin g. This can be 
checked with 

% Is -lg /usr/ucb/lpr 

Ipr: pn'nter: printer queue is disabled 

This means the queue was t,umed oIf wit.h 

% Ipc disable printer 

to prevent /pr from putting files in the queue. This is normally done by the system manager 
when a printer is going to be down for a long time. The printer can be turned back on by a 
super-user with Ipc. 

'1.2. LPQ 

waiting for pn'nter to become ready (offline ?) 

The print.er device could not. be opelled by the daemon. This can happen for a number of rea­
sons, the most common being that the printer is turned ofT-line. This messagE' can also be 
generated if the printer is out of paper, the paper is jammed. etc. The actual reason is 
dependent on the meaning of error codes returned by system device drivE'r. Not aU printers 
supply sufficient information t.o distinguish when a printer is off-line or having trouble (e.g. a 
printer connected through a serial line). Another possible cause of this message is some other 
process, such as an output filter, has an exclusive open on the device. Your only recourse 
here is to kill off the offending program(s) and restart the printer with Ipc. 

printer is ready and printing 

The Ipq program checks to see if a daemon process exists for printer and prints the file 
8tatu8. If the daemon is hung, a super user can use Ipr t.o abort the current daemon and 
start a new one. 

/ 



- 7 -

waiting for host to come up 

This indicates there is a daemon trying to connect to the remote machine named h08t in 
order to send the files in the local queue, If the remote machine is up, Ipd on the remote 
machine is probably dead or hung and should be restarted as mentioned for Ipr. 

!lending to hOBt 

The files should be in the process of being transferred to the remote hOBt, If not, the local 
daemon should be aborted and started with Ipc. 

Warning: printer is down 

The printer has been marked as being unavailable with Ipc, 

Warning: no daemon present 

The /pd process overseeing the spooling queue, as indicated in the "lock" file in that direc­
tory, does not e.xist, This normally occurs only when the daemon has unexpectedly died. 
The error log file for the printer should be checked for a diagnostic from the deceased process. 
To restart an /pd, use 

% Ipc restart pn'n.ler 

7.3. LPRM 

Iprm: pn'nter: cannot restart printer daemon 

This case is the same as when /pr prints that the daemon cannot be started, 

7.4. LPD 

The /pd program can write many different messages to the error log file (the file specified in 
the If entry in pn'ntcap), Most of these messages are about files which can 1Iot be opened and usu­
ally indicate the pn'ntcap file or the protection modes of the files are not correct, Files may also 
be inaccessible if people manually manipulate the line printer system (i.e, they bypass the lpr pro­
gram), 

In addition to messages generated by Jpd, any of the filters that Ipd spawns may also log 
messages to this file, 

7.5. LPC 

could't start printer 

This case is the same as whell /pr reports that the daemon cannot be started, 

cannot examine spool directory 

Error messages beginning with "cannot ... " are usually due to incorrect. ownership and/or 
protection mode of the lock file, spooling directory or the Ipc program. 
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NAME 
printcap - printer capability data base 

SYNOPSIS 
letc/printcap 

DESCRIPTION 
Pn·ntcap is a simplified version of the tenncap(5) data base used to describe line printers. The 
spooling system accesses the printcap file every time it is used, allowing dynamic addition and dele­
tion of printers. Each entry in the data base is used to describe one printer. This data base may 
not be substituted for, as is possible for tenneap, because it may allow accounting to be bypassed. 

The default printer is normally II', though the environment variable PRINTER may be used to 
override this. Each spooling utility supports an option, -Pprinter, to allow explicit naming of a 
destination printer. 

Refer to the ,4.tBSD Line Printer Spooler Manual for a complete discussion on how setup the data­
base for a given printer. 

CAP ABILITIES 
Refer to termcap for a description of the file layout. 

Name Type Default Description 
af str NULL name of accounting file 
br num none if lp is a tty, set the baud rate (ioctl call) 
cf str NU'LL cifplot data filter 
df str NULL tex data filter (DVI format) 
fc num 0 if lp is a tty, clear flag bits (sgtty.h) 
ff str "\f" string to send for a form feed 
fo bool false print a form feed when device is opened 
fs num 0 like 'fc' but set bits 
gf str NULL graph data filter (plot (3X) format) 
ic bool false driver supports (non standard) ioctl to indent printout 
if str NULL name of text filter which does accounting 
If str "I dev I console" error logging file name 
10 str "lock" name of lock file 
lp str "/dev/lp" device name to open for output 
mx num 1000 maximum file size (in BUFSIZ blocks), zero = unlimited. 
nd str NULL next directory for list of queues (unimplemented) 
nf str NULL ditroff data filter (device independent troff) 
of str NULL name of output filtering program 
pI num 66 page length (in lines) 
pw num 132 page width (in characters) 
px num 0 page width in pixels (horizontal) 
py num 0 page length in pixels (vertical) 
rf str NULL filter for printing FORTRAN style text files 
rm str NULL machine name for remote printer 
rp str "lp" remote printer name argument 
rs bool false restrict remote users to those with local accounts 
rw bool false open the printer device for reading and writing 
sb bool false short banner (one line only) 
sc bool false suppress multiple copies 
sd str "/usr Ispool/lpd" spool directory 

Icon Release 1.0 1 
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sf bool false suppress Corm feeds 
sh bool false suppress printing of burst page header 
st str "status" status file name 
tf str NULL troff data filter (cat phototypesetter) 
tr str NULL trailer string to print when queue empties 
vf str NULL raster image filter 
xc num 0 if lp is a tty, clear local mode bits (tty (4)) 
xs num 0 like 'xc' but set bits 

Error messages sent to the console have a carnage return and a line feed appended to them, rather 
than just a line feed. 

If the local line printer driver supports indentation, the daemon must understand how to invoke it. 

SEE ALSO 

2 

termcap(5), Ipc(8), Ipd(8), pac(8), lpr(l), Ipq(l), lprm(l) 
,.$,fBSD Line Printer Spooler Manual 
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ABSTRACT 

A reimplementation of the UNIX file system is described. The reimplemen­
tation provides substantially higher throughput rates by using more flexible allo­
cation policies, that allow better locality of reference and that can be adapted to a 
wide range of peripheral and processor characteristics. The new file system clus­
ters data that is sequentially accessed and provides two block sizes to allow fast 
access for large files while not wasting large amounts or space for small files. File 
access rates of up to ten times faster than the traditional UNIX file system are 
experienced. Long needed enhancements to the user interface are discussed. These 
include a mechanism to lock files, extensions of the name space across file systems, 
the ability to use arbitrary length file names, and provisions for efficient adminis­
trative control of resource usage. 
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File System - 1 - Introduction 

1. Introduction 

This paper describes the changes from the original 512 byte UNIX file system to the new one 
released with the 4.2 Berkeley Software Distribution. It presents the motivations for the changes, 
the methods used to affect these changes, the rationale behind the design decisions, and a descrip­
tion of the new implementation. This discussion is followed by a summary of the results that have 
been obtained, directions for future work, and the additions and changes that have been made to 
the user visible facilities. The paper concludes with a history of the software engineering of the 
project. 

The original UNIX system that runs on the PDP-llt has simple and elegant file system facil­
ities. File system input/output is buffered by the kernel; there are no alignment constraints on 
data transfers and all operations are made to appear synchronous. All transfers to the disk are in 
512 byte blocks, which can be placed arbitrarily within the data area of the file system. No con­
straints other than available disk space are placed on file growth [Ritchie74j, [Thompson79j. 

When used on the V AX-ll together with other UNIX enhancements, the original 512 byte 
UNIX file system is incapable of providing the data throughput rates that many applications 
require. For example, applications that need to do a small amount of processing on a large quanti­
ties of data such as VLSI design and image processing, need to have a high throughput from the 
file system. High throughput rates are also needed by programs with large address spaces that are 
constructed by mapping files from the file system into virtual memory. Paging data in and out of 
the file system is likely to occur frequently. This requires a file system providing higher bandwidth 
than the original 512 byte UNIX one which provides only about two percent of the maximum disk 
bandwidth or about 20 kilobytes per second per arm [White80j, [Smith81bj. 

Modifications have been made to the UNIX file system to improve its performance. Since the 
UNIX file system interface is well understood and not inherently slow, this development retained 
the abstraction and simply changed the underlying implementation to increase its throughput. 
Consequently users of the system have not been faced with massive software conversion. 

Problems with file system performance have beep dealt with extensively in the literature; see 
[Smith81aj for a survey. The UNIX operating system drew many of its ideas from Multics, a 
large, high performance operating system [Feiertag71j. Other work includes Hydra [Almes78j, 
Spice [Thompson80j, and a file system for a lisp environment [Symbolics81aj. 

A major goal of thi~ project has been to build a file system that is extensible into a 
networked environment [Holler73j. Other work on network file systems describe centralized file 
servers [Accetta80j, distributed file servers [Dion80j, [Luniewski77], [Porcar82j, and protocols to 
reduce the amount of information that must be transferred an,)SS a network [Symbolics81bj, 
[Sturgis80j. 

tDEC, PDP, VAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation. 
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2. Old File System 

In the old file system developed at Bell Laboratories each disk drive contains one or more file 
systems. t A file system is described by its super-block, which contains the basic parameters of the 
file system. These include the number of data blocks in the file system, a count of the maximum 
number of files, and a pointer to a list of free blocks. All the free blocks in the system are chained 
together in a linked list. Within the file system are files. Certain files are distinguished as direc­
tories and contain pointers to files that may themselves be directories. Every file has a descriptor 
associated with it called an tnode. The inode contains information describing ownership of the 
file, time stamps marking last modification and access times for the file, and an array of indices 
that point to the data blocks for the file. For the purposes of this section, we assume that the first 
8 blocks of the file are directly referenced by values stored in the inode structure itself*. The inode 
structure may also contain references to indirect blocks containing further data block indices. In a 
file system with a 512 byte block size, a singly indirect block contains 128 further block addresses, 
a doubly indirect block contains 128 addresses of further single indirect blocks, and a triply 
indirect block contains 128 addresses of further doubly indirect blocks. 

A traditional 150 megabyte UNIX file system consists of 4 megabytes of inodes followed by 
146 megabytes of data. This organization segregates the inode information from the data; thus 
accessing a file normally incurs a long seek from its inode to its data. Files in a single directory 
are not typically allocated slots in consecutive locations in the 4 megabytes of inodes, causing 
many non-consecutive blocks to be accessed when executing operations on all the files in a direc­
tory. 

The allocation of data blocks to files is also suboptimum. The traditional file system never 
transfers more than 512 bytes per disk transaction and often finds that the next sequential data 
block is not on the same cylinder, forcing seeks between 512 byte transfers. The combination of 
the small block size, limited read-ahead in the system, and many seeks severely limits file system 
throughput. 

The first work at Berkeley on the UNlX file system attempted to improve both reliability 
and throughput. The reliability was improved by changing the file system so that all 
modifications of critical information were staged so that they could either be completed or repaired 
cleanly by a program after a crash [Kowalski78]. The file system performance was improved by a 
factor of more than two by changing the basic block size from 512 to 1024 bytes. The increase 
was because of two factors; each disk transfer accessed twice as much data, and most files could be 
described without need to access through any indirect blocks since the direct blocks contained twice 
as much data. The file system with these changes will henceforth be referred to as the old file sys­
tem. 

'This performance improvement gave a strong indication that increasing the block size was a 
good method for improving throughput. Although the throughput had doubled, the old file system 
was still using only about four percent of the disk bandwidth. The main problem was that 
although the free list was initially ordered for optimal access, it quickly became scrambled as files 
were created and removed. Eventually the free list became entirely random causing files to have 
their blocks allocated randomly over the disk. This forced the disk to seek before every block 
access. Although old file systems provided transfer rates of up to 175 kilobytes per second when 
they were first created, this rate deteriorated to 30 kilobytes per second after a few weeks of 
moderate use because of randomization of their free block list. There was no way of restoring the 
performance an old file system except to dump, rebuild, and restore the file system. Another possi­
bility would be to have a process that periodically reorganized the data on the disk to restore local­
ity as suggested by [Maruyama76]. 

, t A Iile system always resides on a single drive. 
• The actual number may vaxy from system to system, but is usually in the range 5-13. 
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8. New file system. organization 

As in the old file system organization each disk drive contains one or more file systems. A 
file system is described by its super-block, that is located at the beginning of its disk partition. 
Because the super-block contains critical data it is replicated to protect against catastrophic loss. 
This is done at the time that the file system is created; since the super-block data does not change, 
the copies need not be referenced unless a head crash or other hard disk error causes the default 
super-block to be unusable. 

To insure that it is possible to create files as large as 2t32 bytes with only two levels of 
indirection, the minimum size of a file system block is 4096 bytes. The size of file system blocks 
can be any power of two greater than or equal to 4096. The block size of the file system is main­
tained in the super-block so it is possible for file systems with different block sizes to be accessible 
simultaneously on the same system. The block size must be decided at the time that the file sys­
tem is created; it cannot be subsequently changed without rebuilding the file system. 

The new file system organization partitions the disk into one or more areas called cylinder 
groups. A cylinder group is comprised of one or more consecutive cylinders on a disk. Associated 
with each cylinder group is some bookkeeping information that includes a redundant copy of the 
super-block, space for inodes, a bit map describing available blocks in the cylinder group, and sum­
mary information describing the usage of data blocks within the cylinder group. For each cylinder 
group a static number of inodes is allocated at file system creation time. The current policy is to 
allocate one inode for each 2048 bytes of disk space, expecting this to be far more than will ever be 
needed. 

All the cylinder group bookkeeping information could be placed at the beginning of each 
cylinder group. However if this approach were used, all the redundant information would be on 
the top platter. Thus a single hardware failure that destroyed the top platter could cause the loss 
of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping information 
begins at a floating offset from the beginning of the cylinder group. The offset for each successive 
cylinder group is calculated to be about one track further from the beginning of the cylinder group. 
In this way the redundant information spirals down into the pack so that any single track, 
cylinder, or platter can be lost without losing all copies of the super-blocks. Except for the first 
cylinder group, the space between the beginning of the cylinder group and the beginning of the 
cylinder group information is used for data blocks.t 

8.1. Optimizing storage utilization 

Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly 
increasing file system throughput. As an example, consider a file in the new file system composed 
of 4096 byte data blocks. In the old file system this file would be composed of 1024 byte blocks. 
By increasing the block size, disk accesses in the new file system may transfer up to four times as 
much information per disk transaction. In large files, several 4096 byte blocks may be allocat.ed 
from the same cylinder so that even larger data transfers are possible before initiating a seek. 

The main problem with bigger blocks is that most UNIX file systems are composed of many 
small files. A uniformly large block size wastes space. Table 1 shows the effect of file system block 
size on the amount of wasted space in the file system. The machine measured to obtain these 
figures is one of our time sharing systems that has roughly 1.2 Gigabyte of on-line storage. The 
measurements are based on the active user file systems containing about 920 megabytes of for­
mated space. The space wasted is measured as the percentage of space on the disk not containing 
user data. As the block size on the disk increases, the waste rises quickly, to an intolerable 45.6% 
waste with 4096 byte file system blocks. 

t While it appears that the first cylinder group could be laid out with its super-block at the "known" location, 
this would not work for file systems with blocks sizes of 16K or greater, because or the requirement that the 
cylinder group information must begin at a block boundary. 
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Space used % waste ~anization 

775.2Mb 0.0 Data only, no separation between files 
807.8Mb 4.2 Data only, each file starts on 512 byte boundary 
828.7 Mb 6.9 512 byte block UNIX file system 
866.5 Mb 11.8 1024 byte block UNIX file system 
948.5 Mb 22.4 2048 byte block UNIX file system 
1128.S Mb 45.6 4096 byte block UNIX file sYstem 

Table 1 - Amount of wasted space as a function of block size. 

To be able to use large blocks without undue waste, small files must be stored in a more 
efficient way. The new file system accomplishes this goal by allowing the division of a single file 
system block into one or more /ragment8. The file system fragment size is specified at the time 
that the file system is created; each file system block can be optionally broken into 2, 4, or 8 frag­
ments, each of which is addressable. The lower bound on the size of these fragments is constrained 
by the disk sector size, typically 512 bytes. The block map associated with each cylinder group 
records the space availability at the fragment level; to determine block availability, aligned frag­
ments are examined. Figure 1 shows a piece of a map from a 4096/1024 file system. 

Bits in map 
Fragment numbers 
Block numbers 

xxxx XXOO 
0-3 4-7 
o 1 

OOXX 
8-11 

2 

0000 
12-15 

3 

Figure 1 - Example layout of blocks and fragments in a 4096/1024 file system. 

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in use, 
while a "0" shows that the fragment is available for allocation. In this example, fragments 0-5, 
10, and 11 are in use, while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks can­
not be used as a block, even if they are large enough. In this example, fragments 6-9 cannot be 
coalesced into a block; only fragments 12-15 are available for allocation as a block. 

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is 
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block. If a 
file system block must be fragmented to obtain space for a small amount of data, the remainder of 
the block is made available for allocation to other files. Ai; an example consider an 11000 byte file 
stored on a 4096/1024 byte file system. This file would uses two full size blocks and a 3072 byte 
fragment. If no S072 byte fragments are available at the time the file is created, a full size block is 
split yielding the necessary 3072 byte fragment and an unused 1024 byte fragment. This remain­
ing fragment can be allocated to another file as needed. 

The granularity of allocation is the write system call. Each time data is written to a file, the 
system checks to see if the size of the file has increased * . If the file needs to hold the new data, one 
of three conditions exists: 

1) There is enough space left in an already allocated block to hold the new data. The new data 
is written into the available space in the block. 

2) Nothing has been allocated. If the new data contains more than 4096 bytes, a 4096 byte 
block is allocated and the first 4096 bytes of new data is written there. This process is 
repeated until less than 4096 bytes of new data remain. If the remaining new data to be 
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located, other­
wise a 4096 byte block is located. The new data is written into the located piece. 

S) A fragment has been allocated. If the number of bytes in the new data plus the number of 
bytes already in the fragment exceeds 4096 bytes, a 4096 byte block is allocated. The 

• A progra.m may be overwriting data in the middle or an existing file in which ease space will already be all~ 
cated. 
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contents of the fragment is copied to the beginning of the block and the remainder of the 
block is filled with the new data. The process then continues as in (2) above. If the number 
of bytes in the new data plus the number of bytes already in the fragment will fit in three or 
fewer 1024 byte pieces, an unallocated fragment is located, otherwise a 4096 byte block is 
located. The contents of the previous fragment appended with the new data is written into 
the allocated piece. 

The problem with allowing only a single fragment on a 4096/1024 byte file system is that 
data may be potentially copied up to three times as its requirements grow from a 1024 byte frag­
ment to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block. The 
fragment reallocation can be avoided if the user program writes a full block at a time, except for a 
partial block at the end of the file. Because file systems with different block sizes may coexist on 
the same system, the file system interface been extended to provide the ability to determine the 
optimal size for a read or write. For files the optimal size is the block size of the file system on 
which the file is being accessed. For other objects, such as pipes and sockets, the optimal size is 
the underlying buffer size. This feature is used by the Standard Input/Output Library, a package 
used by most user programs. This feature is also used by certain system utilities such as archivers 
and loaders that do their own input and output management and need the highest possible file sys­
tem bandwidth. 

The space overhead in the 4096/1024 byte new file system organization is empirically 
observed to be about the same as in the 1024 byte old file system organization. A file system with 
4096 byte blocks and 512 byte fragments has about the same amount of space overhead as the 512 
byte block UNIX file system. The new file system is more space efficient than the 512 byte or 1024 
byte file systems in that it uses the same amount of space for small files while requiring less index­
ing information for large files. This savings is offset by the need to use more space for keeping 
track of available free blocks. The net result is about the same disk utilization when the new file 
systems fragment size equals the old file systems block size. 

In order for the layout policies to be effective, the disk cannot be kept completely full. Each 
file system maintains a parameter that gives the minimum acceptable percentage of file system 
blocks that can be free. If the the number of free blocks drops below this level only the system 
administrator can continue to allocate blocks. The value of this parameter can be changed at any 
time, even when the file system is mounted and active. The transfer rates to be given in section 4 
were measured on file systems kept less than 90% full. If the reserve of free blocks is set to zero, 
the file system throughput rate tends to be cut in half, because of the inability of the file system to 
localize the blocks in a file. If the performance is impaired because of overfilling, it may be 
restored by removing enough files to obtain 10% free space. Access speed for files created during 
periods of little free space can be restored by recreating them once enough space is available. The 
amount of free space maintained must be added to the percentage of waste when comparing the 
organizations given in Table 1. Thus, a site running the old 1024 byte UNIX file system wastes 
11.8% of the space and one could expect to fit the same amount of data into a 4096/512 byte new 
file system with 5% free space, since a 512 byte old file system wasted 6.9% of the space. 

3.2. File system parameterization 

Except for the initial creation of the free list, the old file system ignores the parameters of the 
underlying hardware. It has no information about either the physical characteristics of the mass 
storage device, or the hardware that interacts with it. A goal of the new file system is to 
parameterize the processor capabilities and mass storage characteristics so that blocks can be allo­
cated in an optimum configuration dependent way. Parameters used include the speed of the pro­
cessor, the hardware support for mass storage transfers, and the characteristics of the mass storage 
devices. Disk technology is constantly improving and a given installation can have several 
different disk technologies running on a single processor. Each tile system is parameterized so that 
it can adapt to the characteristics of the disk on which it is placed. 

For mass storage devices such as disks, the new tile system tries to allocate new blocks on the 
same cylinder as the previous block in the same file. Optimally, these new blocks will also be well 
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positioned rotationally. The distance between ''rotationally optimal" blocks varies greatly; it can 
be a consecutive block or a rotationally delayed block depending on system characteristics. On a 
processor with a channel that does not require any processor intervention between mass storage 
transfer requests, two consecutive disk blocks often can be accessed without suffering lost time 
because of an intervening disk revolution. For processors without such channels, the main proces­
sor must field an interrupt and prepare for a new disk transfer. The expected time to service this 
interrupt and schedule a new disk transfer depends on the speed of the main processor. 

The physical characteristics or each disk include the number of blocks per track and the rate 
at which the disk spins. The allocation policy routines use this inrormation to calculate the 
number of milliseconds required to skip over a block. The characteristics or the processor include 
the expected time to schedule an interrupt. Given the previous block allocated to a file, the alloca· 
tion routines calculate the number or blocks to skip over so that the next block in a file will be 
coming into position under the disk head in the expected amount or time that it takes to start a 
new disk transfer operation. For programs that sequentially access large amounts of data, this 
strategy minimizes the amount of time spent waiting for the disk to position itself. 

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary 
information includes a count of the availability or blocks at different rotational positions. Eight 
rotational positions are distinguished, so the resolution or the summary information is 2 mil­
liseconds for a typical 3600 revolution per minute drive. 

The parameter that defines the minimum number of milliseconds between the completion of 
a data transfer and the initiation of another data transfer on the same cylinder can be changed at 
any time, even when the file system is mounted and active. If a file system is parameterized to lay 
out blocks with rotational separation of 2 milliseconds, and the disk pack is then moved to a sys­
tem that has a processor requiring 4 milliseconds to schedule a disk operation, the throughput will 
drop precipitously because of lost disk revolutions on nearly every block. If the eventual target 
machine is known, the file system can be parameterized for it even though it is initially created on 
a different processor. Even if the move is not known in advance, the rotational layout delay can 
be reconfigured after the disk is moved so that all further allocation is done based on the charac­
teristics of the new host. 

3.3. Layout policies 

The file system policies are divided into two distinct parts. At the top level are global poli­
cies that use file system wide summary information to make decisions regarding the placement of 
new inodes and data blocks. These routines are responsible for deciding the placement of new 
directories and files. They also calculate rotationa.lly optimal block layouts, and decide when to 
force a long seek to a new cylinder group because there are insufficient blocks left in the current 
cylinder group to do reasonable layouts. Below the global policy routines are the local allocation 
routines that use a locally optimal scheme to layout data blocks. 

Two methods for improving file system performance are to increase the locality of reference 
to minimize seek latency as described by [Trivedi80], and to improve the layout of data to make 
larger transfers possible as described by [Nevalainen77]. The global layout policies try to improve 
performance by clustering related information. They cannot attempt to localize all data references, 
but must also try to spread unrelated data among different cylinder groups. If too much localiza­
tion is attempted, the local cylinder group may run out of space rorcing the data to be scattered to 
non·local cylinder groups. Taken to an extreme, total localization can result in a single huge clus­
ter or data resembling the old file system. The global policies try to balance the two conflicting 
goals or localizing data that is concurrently accessed while spreading out unrelated data. 

One allocatable resource is inodes. !nodes are used to describe both files and directories. 
Files in a directory are frequently accessed together. For example the "list directory" command 
often accesses the inode ror each file in a directory. The layout policy tries to place all the files in 
a directory in the same cylinder group. To ensure that files are allocated throughout the disk, a 
different policy is used for directory allocation. A new directory is placed in the cylinder group 
that has a greater than average number of rree inodes, and the fewest number or directories in it 
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already. The intent of this policy is to allow the file clustering policy to succeed most of the time. 
The allocation of inodes within a cylinder group is done using a next free strategy. Although this 
allocates the inodes randomly within a cylinder group, all the inodes for each cylinder group can be 
read with 4 to 8 disk transfers. This puts a small and constant upper bound on the number of 
disk transfers required to access all the inodes for all the files in a directory as compared to the old 
file system where typically, one disk transft'r is needed to get the inode for each file in a directory. 

The other major resource is the data blocks. Since data blocks for a file are typically 
accessed together, the policy routines try to place all the data blocks for a file in the same cylinder 
group, preferably rotationally optimally on the same cylinder. The problem with allocating all the 
data blocks in the same cylinder group is that large files will quickly use up available space in the 
cylinder group, forcing a spill over to other areas. Using up all the space in a cylinder group has 
the added drawback that future allocations for any file in the cylinder group will also spill to other 
areas. Ideally none of the cylinder groups should ever become completely full. The solution dev­
ised is to redirect block allocation to a newly chosen cylinder group when a file exceeds 32 kilo­
bytes, and at every megabyte thereafter. The newly chosen cylinder group is selected from those 
cylinder groups that have a greater than average number of free blocks left. Although big files 
tend to be spread out over the disk, a megabyte of data is typically accessible before a long seek 
must be performed, and the cost of one long seek per megabyte is small. 

The global policy routines call local allocation routines with requests for specific blocks. The 
local allocation routines will always allocate the requested block if it is free. If the requested block 
is not available, the allocator allocates a free block of the requested size that is rotationally closest 
to the requested block. If the global layout policies had complete information, they could always 
request unused blocks and the allocation routines would be reduced to simple bookkeeping. How­
ever, maintaining complete information is costly; thus the implementation of the global layout pol­
icy uses heuristic guesses based on partial information. 

1) 
2) 

If a requested block is not ayailable the local allocator uses a four level allocation strategy: 

Use the available block rotationally closest to the requested block on the same cylinder. 

If there are no blocks available on the same cylinder, use a block within the same cylinder 
group. 

3) If the cylinder group is entirely full, quadratically rehash among the cylinder groups looking 
for a free block. 

4) Finally if the rehash fails, apply an exhaustive search. 

The use of quadratic rehash is prompted by studies of symbol table strategies used in pro­
gramming languages. File systems that are parameterized to maintain at least 10% free space 
almost never use this strategy; file systems that are run without maintaining any free space typi­
cally have so few free blocks that almost any allocation is random. Consequently the most impor­
tant characteristic of the strategy used when the file system is low on space is that it be fast. 
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4. Performance 
Ultimately, the proof of the effectiveness of the algorithms described in the previous section is 

the long term performance of the new file system. 

Our empiric studies have shown that the inode layout policy has been effective. When run­
ning the "list directory" command on a large directory that itself contains many directories, the 
number of disk accesses for inodes is cut by a (actor of two. The improvements are even more 
dramatic for large directories containing only files, disk accesses for inodes being cut by a (actor of 
eight. This is most encouraging for programs such as spooling daemons that access many small 
files, since these programs tend to flood the disk request queue on the old file system. 

Table 2 summarizes the measured throughput of the new file system. Several comments need 
to be made about the conditions under which these tests were run. The test programs measure the 
rate that user programs can transfer data to or from a file without performing any processing on 
it. These programs must write enough data to insure that buffering in the operating system does 
not affect the results. They should also be run at least three times in succession; the first to get 
the system into a known state and the second two to insure that the experiment has stabilized and 
is repeatable. The methodology and test results are discussed in detail in [Kridle831t. The systems 
were running multi-user but were otherwise quiescent. There was no contention for either the cpu 
or the disk arm. The only difference between the UNIBUS and MASSBUS tests was the controller. 
All tests used an Ampex Capricorn 330 Megabyte Winchester disk. As Table 2 shows, all file sys­
tem test runs were on a VAX 11/750. All file systems had been in production use for at least a 
month before being measured. 

Type of Processor and Read 
File System Bus Measured Speed Bandwidth % CPU 

old 1024 750/UNIBUS 29 Kbytes/sec 29/1100 3% 11% 
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221/1100 20% 43% 
new 8192/1024 750jUNIBUS 233 Kbytes / sec 233/1100 21% 29% 
new 4096/1024 750jMASSBUS 466 Kbytes / sec 466/1200 39% 73% 
new 8192/1024 750/MASSBUS 466 Kbytes/ sec 466/1200 39% 54% 

Table 2a - Reading rates of the old and new UNIX file systems. 

Type of Processor and Write 
File System Bus Measured Speed Bandwidth % CPU 

old 1024 750/UNIBUS 48 Kbytes/sec 48/1100 4% 29% 
new 4096/1024 750/UNIBUS 142 Kbytes/sec 142/1100 13% 43% 
new 8192/1024 750jUNIBUS 215 Kbytes/sec 215/1100 19% 46% 
new 4096/1024 750 jMASSBUS 323 Kbytes/sec 323/1200 27% 94% 
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 95% 

Table 2b - Writing rates of the old and new UNIX file systems. 

Unlike the old file system, the transfer rates for the new file system do not appear to change 
over time. The throughput rate is tied much more strongly to the amount of free space that is 
maintained. The measurements in Table 2 were based on a file system run with 10% free space. 
Synthetic work loads suggest the performance deteriorates to about haIr the throughput rates given 
in Table 2 when no free space is maintained. 

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of the 
disk by the file system. An upper bound on the transfer rate from the disk is measured by doing 
65536* byte reads from contiguous tracks on the disk. The bandwidth is calculated by comparing 

t A UNIX command that is similar to the reading test that we used is, "cp file /dev /nulln , where "file" is eight 
Megabytes long. 
* This number, 65536, is the maximal I/O size supported by the VAX hardware; it is a remnant of the system's 
PDP-ll ancestry. 
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the data rates the file system is able to achieve as a percentage of this rate. Using this metric, the 
old file system is only able to use about 3-4% of the disk bandwidth, while the new file system uses 
up to 39% of the bandwidth. 

In the new file system, the reading rate is always at least as fast as the writing rate. This is 
to be expected since the kernel must do more work when allocating blocks than when simply read­
ing them. Note that the write rates are about the same as the read rates in the 8192 byte block 
file system; the write rates are slower than the read rates in the 4096 byte block file system. The 
slower write rates occur because the kernel has to do twice as many disk allocations per second, 
and the processor is unable to keep up with the disk transfer rate. 

In contrast the old file system is about 50% faster at writing files than reading them. This is 
because the write system call is asynchronous and the kernel can generate disk transfer requests 
much faster than they can be serviced, hence disk transfers build up in the disk buffer cache. 
Because the disk buffer cache is sorted by minimum seek order, the average seek between the 
scheduled disk writes is much less than they would be if the data blocks are written out in the 
order in which they are generated. However when the file is read, the read system call is processed 
synchronously so the disk blocks must be retrieved from the disk in the order in which they are 
allocated. This forces the disk scheduler to do long seeks resulting in a lower throughput rate. 

The performance of the new file system is currently limited by a memory to memory copy 
operation because it transfers data from the disk into buffers in the kernel address space and then 
spends 40% of the processor cycles copying these buffers to user address space. If t.he buffers in 
both address spaces are properly aligned, this transfer can be affected without copying by using the 
VAX virtual memory management hardware. This is especially desirable when large amounts of 
data are to be transferred. We did not implement this because it would change the semantics of 
the file system in two major ways; user programs would be required to allocate buffers on page 
boundaries, and data would disappear from buffers after being written. 

Greater disk throughput could be achieved by rewriting the disk drivers to chain together 
kernel buffers. This would allow files to be allocated to contiguous disk blocks that could be read 
in a single disk transaction. Most disks contain either 32 or 48 512 byte sectors per track. The 
inability to use contiguous disk blocks effectively limits the performance on these disks to less than 
fifty percent of the available bandwidth. Since each track has a multiple of sixteen sectors it holds 
exactly two or three 8192 byte file system blocks, or four or six 4096 byte file system blocks. If the 
the next block for a file cannot be laid out contiguously, then the minimum spacing to the next 
allocatable block on any platter is between a sixth and a half a revolution. The implication of this 
is that the best possible layout without contiguous blocks uses only half of the bandwidth of any 
given track. If each track contains an odd number of sectors, then it is possible to resolve the 
rotational delay to any number of sectors by finding a block that begins at the desired rotational 
position on another track. The reason that block chaining has not been implemented is because it 
would require rewriting all the disk drivers in the system, and the current throughput rates are 
already limited by the speed of the available processors. 

Currently only one block is allocated to a file at a time. A technique used by the DEMOS 
file system when it finds that a file is growing rapidly, is to preallocate several blocks at once, 
releasing them when the file is closed if they remain unused. By batching up the allocation the 
system can reduce the overhead of allocating at each write, and it can cut down on the number of 
disk writes needed to keep the block pointers on the disk synchronized with the block allocation 
[poweIl79] . 
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6. File system functional enhancements 

The speed enhancements to the UNIX file system did not require any changes to the seman­
tics or data structures viewed by the users. However several changes have been generally desired 
for some time but have not been introduced because they would require users to dump and restore 
all their file systems. Since the new file system already requires that all existing file systems be 
dumped and restored, these functional enhancements have been introduced at this time. 

6.1. Long file names 

File names can now be of nearly arbitrary length. The only user programs affected by this 
change are those that access directories. To maintain portability among UNIX systems that are 
not running the new file system, a. set of directory access routines have been introduced that pro­
vide a uniform interface to directories on both old and new systems. 

Directories are allocated in units of 512 bytes. This size is chosen so that each allocation can 
be transferred to disk in a single atomic operation. Each allocation unit contains variable-length 
directory entries. Each entry is wholly contained in a single allocation unit. The first three fields 
of a directory entry are fixed and contain an inode number, the length of the entry, and the length 
of the name contained in the entry. Following this fixed size information is the null terminated 
name, padded to a 4 byte boundary. The maximum length of a name in a directory is currently 
255 characters. 

Free space in a directory is held by entries that have a record length that exceeds the space 
required by the directory entry itself. All the bytes in a directory unit are claimed by the directory 
entries. This normally results in the last entry in a directory being large. When entries are deleted 
from a directory, the space is returned to the previous entry in the same directory unit by increas­
ing its length. If the first entry of a directory unit is free, then its inode number is set to zero to 
show that it is unallocated. 

6.2. File locking 

The old file system had no provision for locking files. Processes that needed to synchronize 
the updates of a file had to create a separate "lock" file to synchronize their updates. A process 
would try to create a "lock" file. If the creation succeeded, then it could proceed with its update; if 
the creation failed, then it would wait, and try again. This mechanism had three drawbacks. 
Processes consumed CPU time, by looping over attempts to create locks. Locks were left lying 
around following system crashes and had to be cleaned up by hand. Finally, processes running as 
system administrator are always permitted to create files, so they had to use a different mechan­
ism. While it is possible to get around all these problems, the solutions are not straight-forward, 
so a mechanism for locking files has been added. 

The most general schemes allow processes to concurrently update a file. Several of these 
techniques are discussed in [Peterson83J. A simpler technique is to simply serialize access with 
locks. To attain reasonable efficiency, certain applications require the ability to lock pieces of a 
file. Locking down to the byte level has been implemented in the Onyx file system by [Bass81J. 
However, for the applications that currently run on the system, a mechanism that locks at the 
granularity of a file is sufficient. 

Locking schemes fall into two classes, those using hard locks and those using advisory locks. 
The primary difference between advisory locks and hard locks is the decision of when to override 
them. A hard lock is always enforced whenever a program tries to access a file; an advisory lock is 
only applied when it is requested by a program. Thus advisory locks are only effective when all 
programs accessing a file use the locking scheme. With h·ard locks there must be some override 
policy implemented in the kernel, with advisory locks the policy is implemented by the user pro­
grams. In the UNIX system, programs with system administrator privilege can override any pro­
tection scheme. Because many of the programs that need to use locks run as syst.em administra­
tors, we chose to implement advisory locks rather than create a protection scheme that was con­
trary to the UNIX philosophy or could not be used by system administration programs. 
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The file locking facilities allow cooperating programs to apply advisory Bhared or e:re/uBive 
locks on files. Only one process has an exclusive lock on a file while multiple shared locks may be 
present. Both shared and exclusive locks cannot be present on a file at the same time. If any lock 
is requested when another process holds an exclusive lock, or an exclusive lock is requested when 
another process holds any lock, the open will block until the lock can be gained. Because shared 
and exclusive locks are advisory only, even if a process has obtained a lock on a file, another pro­
cess can override the lock by opening the same file without a lock. 

Locks can be applied or removed on open files, so that locks can be manipulated without 
needing to close and reopen the file. This is useful, for example, when a process wishes to open a 
file with a shared lock to read some information, to determine whether an update is required. It 
can then get an exclusive lock so that it can do a read, modify, and write to update the file in a 
consistent manner. 

A request for a lock will cause the process to block if the lock can not be immediately 
obtained. In certain instances this is unsatisfactory. For example, a process that wants only to 
check if a lock is present would require a separate mechanism to find out this information. Conse­
quently, a process may specify that its locking request should return with an error if a lock can not 
be immediately obtained. Being able to poll for a lock is useful to "daemon" processes that wish 
to service a spooling area. If the first instance of the daemon locks the directory where spooling 
takes place, later daemon processes can easily check to see if an active daemon exists. Since the 
lock is removed when the process exits or the system crashes, there is no problem with uninten­
tional locks files that must be cleared by hand. 

Almost no deadlock detection is attempted. The only deadlock detection made by the sys­
tem is that the file descriptor to which a lock is applied does not currently have a lock of the same 
type (i.e. the second of two successive calls to apply a lock of the same type will fail). Thus a 
process can deadlock itself by requesting locks on two separate file descriptors for the same object. 

5.3. Symbolic links 

The 512 byte UNIX file system allows multiple directory entries in the same file system to 
reference a single file. The link concept is fundamental; files do not live in direct.ories, but exist 
separately and are referenced by links. When all the links are removed, the file is deallocated. 
This style of links does not allow references across physical file systems, nor does it support inter­
machine linkage. To avoid these limitations BlImbolic links have been added similar to the scheme 
used by Multics [Feiertag71]. 

A symbolic link is implemented as a file that contains a pathname. When the system 
encounters a symbolic link while interpreting a component of a pathname, the contents of the sym­
bolic link is prepended to the rest of the pathname, and this name is interpreted to yield the 
resulting pathname. If the symbolic link contains an absolute pathname, the absolute pathname is 
used, otherwise the contents of the symbolic link is evaluated relative to the location of the link in 
the file hierarchy. 

Normally programs do not want to be aware that there is a symbolic link in a pathname 
that they are using. However certain system utilities must be able to detect and manipulate sym­
bolic links. Three new system calls provide the ability to detect, read, and write symbolic links, 
and seven system utilities were modified to use these calls. 

In future Berkeley software distributions it will be possible to mount file systems from other 
machines within a local file system. When this occurs, it will be possible to create symbolic links 
that span machines. 

5.4. Rename 

Programs that create new versions of data files typically create the new version as a tem­
porary file and then rename the temporary file with the original name of the data file. In the old 
UNIX file systems the renaming required three calls to the system. If the program were interrupted 
or the system crashed between these calls, the data file could be left with only its temporary name. 
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To eliminate this possibility a single sy.tem call has been added that performs the rename in an 
atomic fashion to guarantee the existence of the original name. 

In a.ddition, the rename facility a.llows directories to be moved around in the directory tree 
hierarchy. The rename system call performs special validation checks to insure that the directory 
tree structure is not corrupted by the creation of loops or inaccessible directories. Such corruption 
would occur if a parent directory were moved into one of its descendants. The validation check 
requires tracing the ancestry of the target directory to insure that it does not include the directory 
being moved. 

6.6. Quotas 

The UNIX system has traditionally attempted to share all available resources to the greatest 
extent possible. Thus any single user can allocate all the available space in the file system. In cer­
tain environments this is unacceptable. Consequently, a quota mechanism has been added for res­
tricting the amount of file system resources that a user can obtain. The quota mechanism sets lim­
its on both the number of files and the number of disk blocks that a user may allocate. A separate 
quota can be set for each user on each file system. Each resource is given both a hard and a soft 
limit. When a program exceeds a soft limit, a warning is printed on the users terminal; the 
offending program is not terminated unless"it exceeds its hard limit. The idea is that users should 
stay below their soft limit between login sessions, but they may use more space while they are 
actively working. To encourage this behavior, users are warned when logging in if they are over 
any of their soft limits. If they fail to correct the problem for too many login sessions, they are 
eventually reprimanded by having their soft limit enforced as their hard limit. 
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8. Software engineering 

The preliminary design was done by Bill Joy in late 1980; he presented the design at The 
USENIX Conference held in San Francisco in January 1981. The implementation of his design was 
done by Kirk McKusick in the summer of 1981. Most of the new system calls were implemented 
by Sam LeIDer. The code for enforcing quotas was implemented by Robert Elz at the University of 
Melbourne. 

To understand how the project was done it is necessary to understand the interfaces that the 
UNIX system provides to the hardware mass storage systems. At the lowest level is a raw di8k. 
This interface provides access to the disk as a linear array of sectors. Normally this interface is 
only used by programs that need to do disk to disk copies or that wish to dump file systems. 
However, user programs with proper access rights can also access this interface. A disk is usually 
formated with a file system that is interpreted by the UNIX system to provide a directory hierar­
chy and files. The UNIX system interprets and mUltiplexes requests from user programs to create, 
read, write, and delete files by allocating and freeing inodes and data blocks. The interpretation of 
the data on the disk could be done by the user programs themselves. The reason that it is done by 
the UNIX system is to synchronize the user requests, so that two processes do not attempt to allo­
cate or modify the same resource simultaneously. It also allows access to be restricted at the file 
level rather than at the disk level and allows the common file system routines to be shared between 
processes. 

The implementation of the new file system amounted to using a different scheme for format­
ing and interpreting the disk. Since the synchronization and disk access routines themselves were 
not being changed, the changes to the file system could be developed by moving the file system 
interpretation routines out of the kernel and into a user program. Thus, the first step was to 
extract the file system code for the old file system from the UNIX kernel and change its requests to 
the disk driver to accesses to a raw disk. This produced a library of routines that mapped what 
would normally be system calls into read or write operations on the raw disk. This library was 
then debugged by linking it into the system utilities that copy, remove, archive, and restore files. 

A new cross file system utility was written that copied files from the simulated file system to 
the one implemented by the kernel. This was accomplished by calling the simulation library to do 
a read, and then writing the resultant data by using the conventional write system call. A similar 
utility copied data from the kernel to the simulated file system by doing a conventional read sys­
tem call and then writing the resultant data using the simulated file system library. 

The second step was to rewrite the file system simulation library to interpret the new file sys­
tem. By linking the new simulation library into the cross file system copying utility, it was possi­
ble to easily copy files from the old file system into the new one and from the new one to the old 
one. Having the file system interpretation implemented in user code had several major benefits. 
These included being able to use the standard system tools such as the debuggers to set break­
points and single step through the code. When bugs were discovered, the offending problem could 
be fixed and tested without the need to reboot the machine. There was never a period where it 
was necessary to maintain two concurrent file systems in the kernel. Finally it was not necessary 
to dedicate a machine entirely to file system development, except for a brief period while the new 
file system was boot strapped. 

The final step was to merge the new file system back into the UNIX kernel. This was done 
in less than two weeks, since the only bugs remaining were those that involved interfacing to the 
synchronization routines that could not be tested in the simulated system. Again the simulation 
system proved useful since it enabled files to be easily copied between old and new file systems 
regardless of which file system was running in the kernel. This greatly reduced the number of 
times that the system had to be rebooted. 

The total design and debug time took about one man year. Most of the work was done on 
the file system utilities, and changing all the user programs to use the new facilit.ies. The code 
changes in the kernel were minor, involving the addition of only about 800 lines of code (including 
comments). 
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ABSTRACT 

This report describes the internal structure of the networking facilities 
developed for the 4.2BSD version of the UNIX* operating system for the VAXt. 
These facilities are based on several central abstractions which strueture t.he exter­
nal (user) view oC network communication as well as the internal (system) imple­
mentation. 

The report documents the internal structure of the networking system. The 
"4.2BSD System Manual" provides a description of the user interCace to the net­
working facilities. 

* UNIX is a trademark of Bell La.boratories. 
t DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation. 
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Networking Implementation - 1 - Introduction 

1. Introduction 
This report describes the internal structure of facilities added to the 4.2BSD version of the 

UNIX operating system for the VAX. The system facilities provide a uniform user interface to net­
working within UNIX. In addition, the implementation introduces a structure for network com­
munications which may be used by system implementors in adding new networking facilities. The 
internal structure is not visible to the user, rather it is intended to aid implementors of communi­
cation protocols and network services by providing a framework which promotes code sharing and 
minimizes implementation effort. 

The reader is expected to be familiar with the C programming language and system interface, 
as described in the 4.tBSD S'II3tem Mantlal [Joy82a]. Basic understanding of network communica­
tion concepts is assumed; where required any additional ideas are introduced. 

The remainder of this document provides a description of the system internals, avoiding, 
when possible, those portions which are utilized only by the interprocess communication facilit,ies. 
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2. Overview 
If we consider the International Standards Organization's (ISO) Open System Interconnection 

(OSI) model of network communication ~S081] [Zimmermann80J, the networking Cacilities 
described here correspond to a portion oC the session layer (layer 3) and all oC the transport and 
network layers (layers 2 and 1, respectively). 

The network layer provides possibly imperCect data transport services with minimal address­
ing structure. Addressing at this level is normally host to host, with implicit or explicit routing 
optionally supported by the communicating agents. 

At the transport layer the notions of reliable transfer, data sequencing, flow control, and ser­
vice addressing are normally included. Reliability is usually managed by explicit acknowledgement 
oC data delivered. Failure to acknowledge a transCer results in retransmission oC the data. 
Sequencing may be handled by tagging each message handed to the network layer by a sequence 
number and maintaining state at the endpoints oC communication to utilize received sequence 
numbers in reordering data which arrives out oC order. 

The session layer Cacilities may provide forms oC addressing which are mapped into Cormats 
required by the transport layer, service authentication and client authentication, etc. Various sys­
tems also provide services such as data encryption and address and protocol translation. 

The Collowing sections begin by describing some of the common data structures and utility 
routines, then examine the internal layering. The contents of each layer and its interCace are con­
sidered. Certain oC the interCaces are protocol implementation specific. For these cases examples 
have been drawn from the Internet [Cer1'78] protocol Camily. Later sections cover routing issues, 
the design oC the raw socket interCace and other miscellaneous topics. 
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8. Goals 
The networking system was designed with the goal of supporting multiple protocol families 

and addressing styles. This required information to be "hidden" in common data structures which 
could be manipulated by all the pieces of the system, but which required interpretation only by the 
protocols which "controlled" it. The system described here attempts to minimize the use of shared 
data structures to those kept by a suite of protocols (a protocol family), and those used for rendez­
vous between "synchronousu and "asynchronous" portions of the system (e.g. queues of data pack­
ets are filled at interrupt time and emptied based on user requests). 

A major goal of the system was to provide a framework within which new protocols and 
hardware could be easily be supported. To this end, a great deal of effort has been extended to 
create utility routines which hide many of the more complex and/or hardware dependent chores of 
networking. Later sections describe the utility routines and the underlying data structures they 
manipulate. 
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.(. Internal address representation 
Common to all portions of the system are two data structures. These structures are used to 

represent addresses and various data objects. Addresses, internally are described by the 80ckaddr 
structure, 

struct sockaddr { 
short 
char 

}i 

saJamily; 
sa..data[14]i 

/* data format identifier * / 
/* address * / 

All addresses belong to one or more addru8 /ami/ie. which define their format and interpretation. 
The 8a.../amil1J field indicates which address family the address belongs to, the 84.-data field con­
tains the actual data value. The size of the data field, 14 bytes, was selected based on a study of 
current address formats*. 

• Later versions or the system support variable length addresses. 
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5. Memory management 
A single mechanism is used for data storage: memory buft'ers, or m6ufs. An mbuf is a struc­

ture of the form: 

struct mbuf { 
struct 
u..long 
short 
short 

}; 

u..char 
struct 

mbuf *DLnext; 
DLoft'; 
mJen; 
m..type; 
m..dat[MLEN] ; 
mbuf *DLact; 

/* next buft'er in chain * / 
/* oft'set of data * / 
1* amount of data in this mbuf * / 
/* mbuf type (accounting) * / 
/* data storage * / 
/* link in higher-level mbuf list * / 

The m..nezt field is used to chain mbufs together on linked lists, while the m..act field allows lists 
of mbufs to be accumulated. By convention, the mbufs common to a single object (for example, a 
packet) are chained together with the m_nezt field, while groups of objects are linked via the 
m..tJet field (possibly when in a queue). 

Each mbuf has a small data area for storing information, m_dat. The m../en field indicates 
the amount of data, while the m..off field is an offset to the beginning of the data from the base of 
the mbuf. Thus, for example, the macro mtod, which converts a pointer to an mbuf to a pointer 
to the data stored in the mbuf, has the form 

#define mtod(x,t) ((t)((int)(x) + (X)->DLoft')) 

(note the t parameter, a C type cast, is used to cast the resultant pointer for proper assignment). 

In addition to storing data directly in the mbuf's data area, data of page size may be also be 
stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for this 
purpose and manipulate a private page map for such pages. The virtual addresses of these data 
pages precede those of mbufs, so when pages of data are separat.ed from an mbuf, the mbuf data 
oft'set is a negative value. An array of reference counts on pages is also maintained so that copies 
of pages may be made without core to core copying (copies are created simply by duplicating the 
relevant page table entries in the data page map and incrementing the associated reference counts 
for the pages). Separate data pages are currently used only when copying data from a user process 
into the kernel, and when bringing data in at the hardware level. Routines which manipulate 
mbufs are not normally aware if data is stored directly in the mbuf data array, or if it is kept in 
separate pages. 

The following utility routines are available for manipulating mbuf chains: 

m = DLcopy(mO, oft', len); 
The m_coplI routine create a copy of all, or part., of a list of the mbufs in mO. Len bytes of 
data, starting off bytes from the front of the chain, are copied. W'here pos!'ible, reference 
counts on pages are used instead oC core to core copies. The original mbuf chain must have 
at least off + len bytes of data. If len is specified as }'LCOPYALL, all the data present., 
ofl'set as before, is copied. 

m..cat(m, n); 
The mbuf chain, n, is appended to the end of nl. Where possible, compaction is performed. 

m..adj(m, dift'); 
The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, diff bytes are 
shaved oft' the front of the mbuf chain. If diff is negative, the alteration is performed from 
back to front. No space is reclaimed in this operation, alterations are accomplished by 
changing the m../en and m_offfields of mbufs. 

m = m..pullup(mO, size); 
After a successful call to m..pullup, the mbuf at the head of the ret.urned list, m, is 
guaranteed to have at least lize bytes of data in contiguous memory (allowing access via a 
pointer, obtained using the mtod macro). If the original data was less than llf·ze bytes long, 
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len was greater than the size of an mbuf data area (112 bytes), or required resources were 
unavailable, m is 0 and the original mbuf chain is deallocated. 

This routine is particularly useful when verifying packet header lengths on reception. For 
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid 
packet header are present at the head of the list of mbufs representing the packet, the 
remaining 8 bytes may be "pulled up" with a single m..pullup call. If the call fails the 
invalid packet will have been discarded. , 
By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the 

mbuf associated with a data area by masking off the low bits of the virtual address. This allows 
modules to store data structures in mbufs and pass them around without concern for locating the 
original mbuf when it comes time to free the structure. The dtom macro is used to convert a 
pointer into an mbuf's data area to a pointer to the mbuf, 

#define dtom(x) «struct mbuf *)«int)x &. -(MSlZE-l))) 

Mbufs are used for dynamically allocated data structures such as sockets, as well as memory 
allocated ror packets. Statistics are maintained on mbuf usage and can be viewed by users using 
the netstat(l) program. 
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8. Internal layering 
The internal structure of the network system is divided into three laye1'5. These laye1'5 

correspond to the services provided by the socket abstraction, those provided by the communica­
tion protocols, and those provided by the hardware interfaces. The communication protocols are 
normally layered into two or more individual cooperating laye1'5, though they are collectively 
viewed in the system as one layer providing services supportive of the appropriate socket abstrac­
tion. 

The following sections describe the properties of each layer in the system and the interfaces 
each must conform to. 

8.1. Socket layer 

The socket layer deals with the interprocess communications facilities provided by the sys­
tem. A socket is a bidirectional endpoint of communication which is "typed" by the semantics of 
communication it supports. The system calls described in the 4.tBSD System Manval are used to 
manipulate sockets. 

A socket consists of the following data structure: 

struct socket { 
short so_type; 1* generic type *1 
short so_options; 1* from socket call * / 
short so_linger; j* time to linger while closing * / 
short so_state; 1* internal state Bags *1 
caddr_t so_pcb; /* protocol control block * / 
struct protosw *so_proto; /* protocol handle * / 
struct socket *so_head; /* back pointer to accept socket * / 
struct socket *so_qO; /* queue of partial connections * / 
short so_qOlen; 1* partials on so_qO * / 
struct socket *so_q; /* queue of incoming connections * / 
short so_qlen; /* number of connections on so_q * / 
short so_qIimit; /* max number queued connections * / 
struct sockbuf soJnd; /* send queue * / 
struct sockbuC so_rcv; /* receive queue * / 
short so_timeo; /* connection timeout * / 
u-short so_error; /* error affecting connection *1 
short so_oobmark; /* cha1'5 to oob mark * / 
short so_pgrp; /* pgrp for signals * / 

}; 

Each socket contains two data queues, 3D_rev and 30_3nd, and a pointer to routines which 
provide supporting services. The type of the socket, 3D_type is defined at socket creation time and 
used in selecting those services which are appropriate to support it. The supporting protocol is 
selected at socket creation time and recorded in the socket data structure for later use. Protocols 
are defined by a table of procedures, the proto3w structure, which will be described in detail later. 
A pointer to a protocol specific data structure, the "protocol control block" is also present in the 
socket structure. Protocols control this data structure and it normally includes a back pointer to 
the parent socket structure(s) to allow easy lookup when returning information to a user (for exam­
ple, placing an error number in the 3D_error field). The other entries in the socket structure are 
used in queueing connection requests, validating user requests, storing socket characteristics (e.g. 
options supplied at the time a socket is created), and maintaining a socket's state. 

Processes "rendezvous at a socket" in many instances. For instance, when a process wishes 
to extract data from a socket's receive queue and it is empty, or lacks sufficient data to satisfy the 
request, the process blocks, supplying the address of the receive queue as an "wait channel' to be 
used in notification. When data arrives for the process and is placed in the socket's queue, the 
blocked process is identified by the fact it is waiting "on the queue". 

CSRG TR/6 LeIDer, et. al. 



- ------~----

Networking Implementation -8- Intemallayering 

1.1.1. Socket state 

A socket's state is defined from the following: 

#define SS-NOFDREF Ox001 /* no file table ref any more * / 
#define SSJSCONNECTED 0x002 /* socket connected to a peer * / 
#define SSJSCONNECTING OxOO4 /* in process of connecting to peer * / 
#define SSJSDISCONNECTING 0x008 /* in process of disconnecting * / 
#define SS_CANTSENDMORE 0x01O /* can't send more data to peer * / 
#define SS_CANTRCVMORE 0x020 /* can't receive more data from peer * / 
#define SS_CONNAWAITING 0x040 /* connections awaiting acceptance * / 
#define SS-RCVATMARK OxOSO /* at mark on input * / 

#define SS..PRIV Ox 100 /* privileged * / 
#define SS--M310 Ox200 /* non-blocking ops * / 
#define SS-ASYNC Ox400 /* async i/o notify * / 

The state of a socket is manipulated both by the protocols and the user (through system 
calls). When a socket is created the state is defined based on the type of input/output the user 
wishes to perform. "Non-blocking" I/O implies a process should never be blocked to await 
resources. Instead, any call which would block returns prematurely with the error EWOULD­
BLOCK (the service request may be partially fulfilled, e.g. a request for more data than is present). 

If a process requested "asynchronous" notification of events related to the socket the SIGIO 
signal is posted to the process. An event is a change in the socket's state, examples of such occu­
rances are: space becoming available in the send queue, new data available in the receive queue, 
connection establishment or disestablishment, etc. 

A socket may be marked "priviledged" if it was created by the super-user. Only priviledged 
sockets may send broadcast packets, or bind addresses in priviledged portions of an address space. 

1.1.2. Socket data queues 

A socket's data queue contains a pointer to the data stored in the queue and other entries 
related to the management of the data. The following structure defines a data queue: 

struct sockbuf { 
short 
short 
short 
short 
short 
short 
struct 
struct 
short 

}; 

sb_cc; 
sb_hiwat; 
sb_mbcnt; 
sb_mbmax; 
sb_Iowatj 
sb_timeoj 
mbuf *sb_mbj 
proc *sbJel; 
sb_flagsj 

/* actual chars in buffer * / 
/* max actual char count * / 
/* chars of mbufs used * / 
/* max chars of mbufs to use */ 
/* low water mark * / 
/* timeout * / 
/* the mbuf chain * / 
/* proceSs selecting read/write * / 
/* flags, see below * / 

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as high 
and low water marks are used by the protocols in controlling the flow of data. The socket routines 
cooperate in implementing the flow control policy by blocking a process when it requests to send 
data and the high water mark has been reached, or when it requests to receive data and less than 
the low water mark is present (assuming non-blocking I/O has not been specified). 

When a socket is created, the supporting protocol "reserves" space for the send and receive 
queues of the socket. The actual storage associated with a socket queue may fluctuate during a 
socket's lifetime, but is assumed this reservation will always allow a protocol to acquire enough 
memory to satisfy the high water marks. 

CSRG TR/6 Leffier, et. a1. 

/"'-

:",J 

I 

"-..j 



() 

(/ 

Networking Implementation - 9 - Internal layering 

The timeout and select values are manipulated by the socket routines in implementing vari­
ous portions of the interprocess communications facilities and will not be described here. 

A socket queue has a number of flags used in synchronizing access to the data and in acquir­
ing resourcesi 

#define SB..LOCK 
#define SB_ W ANT 
#define SB_ WAIT 
#define SB_SEL 
#define SB_COLL 

OXO! 
OX02 
0x04 
OXOS 
OxlO 

/* lock on data queue (so_rev only) * / 
/* someone is waiting to lock * / 
/* someone is waiting for data/space * / 
/* buffer is selected * / 
/* collision selecting * / 

The last two flags are manipulated by the system in implementing the select mechanism. 

8.1.3. Socket connection queueing 

In dealing With connection oriented sockets (e.g. SOCILSTREAM) the two sides are con­
sidered distinct. One side is termed active, and generates connection requests. The other side is 
called passive and accepts connection requests. 

From the passive side, a socket is created with the option SO-ACCEPTCONN specified, 
creating two queues of sockets: so_qO for connections in progress and 8o_q for connections already 
made and awaiting user acceptance. As a protocol is preparing incoming connections, it creates a 
socket structure queued on 80_qO by calling the routine 8onewconnO. When the connection is esta­
blished, the socket structure is then transfered to 80_q, making it available for an accept. 

If an SO-ACCEPTCONN socket is closed with sockets on either 80_qO or 80_q, these sockets 
are dropped. 

8.2. Protocollayer(s) 

Protocols are described by a set of entry points and certain socket visible characteristics, 
some of which are used in deciding which socket type(s) they may support. 

An entry in the "protocol switch" table exists for each protocol module configured into the 
system. It has the following form: 

struct protosw { 
short pr_typei 
short pr3amilYi 
short pr_protocoli 
short pr_flagsj 

/* protocol-protocol hooks * / 
int (*prjnput)Oi 
int (*pr_output)O; 
int (*pr_ctlinput)O; 
int (*pr_ctloutPut)()i 

/* user-protocol hook * / 
int {*pr_usrreq)Oi 

/* utility hooks * / 
int 

}i 

int 
int 
int 

{*prjnit)O; 
(*prJasttimo)()i 
(*prJlowtimo )Oi 
(*pr_drain)Oi 

/* socket. type used for * / 
/* protocol family * / 
/* protocol number * / 
/* socket visible attributes * / 

/* input to protocol (from below) * / 
/* output to protocol (from above) * / 
/* control input (from below) * / 
/* control output (from above) * / 

/* user request * / 

/* initialization routine * / 
/* fast timeout (200ms) * / 
/* slow timeout (500ms) * / 
/* flush any excess space possible * / 

A protocol is called through the pr_init entry before any other. Thereafter it is called every 
200 milliseconds through the pr-la8ttimo entry and every 500 milliseconds through the pr_8lowtimo 
Cor timer based actions. The system will call the pr_drain entry iC it is low on space and this 
should throwaway any non-critical data. 
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Protocols pass data between themselves as chains oC mbufs using the pr_input and pr_otliput 
routines. Pr_input passes data up (towards the user) and pr_otdput passes it down (towards the 
network); control information passes up and down on pr_ctlinput and pr_ctloutput. The protocol is 
responsible for the space occupied by any the arguments to these entries and must dispose oC it. 

The pr_tl.,erreq routine interCaces protocols to the socket code and is described below. 

The pr-/lag, field is constructed from the Collowing values: 

*define PR..ATOMIC OxOl /* exchange atomic messages only * / 
*define PILADDR Ox02 /* addresses given with messages * / 
*define PR-CONNREQUlRED Ox04 /* connection required by protocol * / 
*define PR-W ANTRCVD OxOS /* want PRU..RCVD calls * / 
*define PR..RIGHTS OxlO /* passes capabilities * / 

Protocols which are connection-based speciCy the PR-CONNREQUIRED flag so that the socket 
routines will never attempt to send data before a connection has been established. It the 
PR-W ANTRCVD flag is set, the socket routines will notfiy the protocol when the user has 
removed data Crom the socket's receive queue. This allows the protocol to implement acknowledge­
ment on user receipt, and also update windowing inCormation based on the amount of space avail­
able in the receive queue. The PILADDR field indicates any data placed in the socket's receive 
queue will be preceded by the address of the sender. The PR..ATOMIC flag specifies each user 
request to send data must be performed in a single protocol send request; it is the protocol's 
responsibility to maintain record boundaries on data to be sent. The PR..RIGHTS flag indicates 
the protocol supports the passing of capabilities; this is currently used only the protocols in the 
UNIX protocol Camily. 

When a socket is created, the socket routines scan the protocol table looking for an appropri­
ate protocol to support the type oC socket being created. The 1'r_t1lpe field contains one of the pos­
sible socket types (e.g. SOCK_STREAM), while the 1'r-/amil,l field indicates which protocol family 
the protocol belongs to. The 1'r_protoeol field contains the protocol number of the protocol, nor­
mally a well known value. 

8.3. Network-interface layer 

Each network-interCace configured into a system defines a path through which packets may 
be sent and received. Normally a hardware device is associated with this interface, though there is 
no requirement Cor this (for example, all systems have a software "loopback" interCace used Cor 
debugging and perCormance analysis). In addition to manipulating the hardware device, an inter­
Cace module is responsible for encapsulation and deencapsulation of any low level header informa­
tion required to deliver a message to it's destination. The selection of which interface to use in 
delivering packets is a routing decision carried out at a higher level than the network-interface 
layer. Each interCace normally identifies itself at boot time to the routing module so that it may 
be selected Cor packet delivery. 

An interCace is defined by the following structure, 
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struct unet { 
char *iLname; /* name, e.g. "en" or "10" * / 
short u_unit; /* sub-unit ror lower level driver * / 
short u-mtUj /* maximum transmission unit * / 
int u-Bet; /* network number or interlace * / 
short u.Jlags; /* up/down, broadcast, etc. */ 
short u_timer; /* time 'til iLwatchdog called * / 
int u..host[2]; /* local net host number * / 
struct eockaddr iLaddr; /* address or interrace * / 
union { 

struct sockaddr ifu-broadaddr; 
struct eockaddr iru_dstaddr; 

} if_uu; 
struct uqueue ir-Bndj /* output queue * / 
int (*iLinit)O; /* init routine * / 
int (*iLoutput )0; /* output routine * / 
int (*iLioctl)O; /* ioctl routine * / 
int (*irJeset )0; /* bus reset routine * / 
int (*iLwatchdog)O; /* timer routine * / 
int ifJpackets; /* packets received on interrace * / 
int u_ierrorsj /* input errors on interlace * / 
int iLopackets; /* packets sent on interlace * / 
int iLoerrors; /* output errors on interrace * / 
int if_collisions; /* collisions on esma interraces * / 
struct irnet *if_next; 

}; 

Each interrace has a send queue and routines used ror initialization, iI_in it, and output, 
if_output. IT the interrace resides on a system bus, the routine iI_reset will be called after a bus 
reset has been performed. An interface may also specify a timer routine, if_watchdog, which should 
be called every iI_timer seconds (if non-zero). 

The state of an interface and certain characteristics are stored in the il-!lags field. The fol­
lowing values are possible: 

#define IFF_UP Oxl /* interface is up * / 
#define IFF -BROADCAST Ox2 /* broadcast address valid * / 
#define IFF....DEBUG Ox4 /* turn on debugging * / 
#define IFF-ROUTE Ox8 /* routing entry installed * / 
#define IFF YOINTOPOINT Oxl0 /* interface is point-to-point link * / 
#define IFF -.NOTRAILERS Ox20 /* avoid use or trailers * / 
#define IFF -RUNNING Ox40 /* resources allocated * / 
#define IFF-.NOARP Ox80 /* no address resolution protocol * / 

If the interrace is connected to a network which supports transmission of broadcast packets, the 
IFF -BROADCAST flag will be set and the il_broadaddr field will contain the address to be used in 
sending or accepting a broadcast packet. If the interrace is associated with a point to point 
hardware link (for example, a DEC D~m.-l1), the IFF YOINTOPOINT flag will be set and 
il_d8taddr will contain the address of the host on the other side of the connection. These addresses 
and the local address or the interrace, il_addr, are used in filtering incoming packets. The interrace 
sets IFF -RUNNING after it has allocated system resources and posted an initial read on the device 
it manages. This state bit is used to avoid multiple allocation requests when an interlace's address 
is changed. The IFF -.NOTRAILERS flag indicates the interrace should rerrain rrom using a trailer 
encapsulation on outgoing packets; trailer protocols are described in section 14. The IFF _NOARP 
flag indicates the interlace should not use an "address resolution protocol" in mapping internet­
work addresses to local network addresses. 
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The information stored in an ilnet structure Cor point to point communication devices is not 
currently used by the system internally. Rather, it is used by the user level routing process in 
determining host network connections and in initially devising routes (refer to chapter 10 for more 
inCormation ). 

Various statistics are also stored in the interface structure. These may be viewed by users 
using the neutat(l} program. 

The interCace address and flags may be set with the SIOCSIF' ADDR and SIOCSIF'FLAGS 
ioctls. SIOCSIF' ADDR is used to initially define each interface's addressj SIOGSIF'FLAGS can be 
used to mark an interface down and perform site-specific configuration. 

0.3.1. UNIBUS interfaces 

All hardware related interCaces currently reside on the UNIBUS. Consequently a common set 
oC utility routines Cor dealing with the UNIBUS has been developed. Each UNIDUS interface util­
izes a structure oC the Collowing form: 

struct iCuba { 
short iCu-uban; /* uba number * / 
short iCu-hlen; /* local net header length * / 
struct uba..regs *ifu-uba; /* uba regs, in vm * / 
struct iCrw { 

caddr_t iCrw_addr; /* virt addr of header * / 
int iCrw_bdpj /* unibus bdp * / 
int ifrw_infoj 1* value from ubaalloc * / 
int iCrw_protoj !* map register prototype * / 
struct pte *ifrw_mrj/* base of map registers * / 

} iCu-r, iCu-wj 
struct pte iCu_wmap[IF-MAXNUBMffiJ;/* base pages for output */ 
short iClLXswapd; /* mask of clusters swapped * / 
short iCU-flagsi /* used during uballoc's * / 
struct mbuf *iCu_xtofreei /* pages being dma'd out * / 

}i 

The il_uba structure describes UNIBUS resources held by an interface. IF _NUBAMR map 
registers are held Cor datagram data, starting at i/r_mr. UNIBUS map register ilr_mr[-I] maps the 
local network header ending on a page boundary. UNIBUS data paths are reserved for read and 
Cor write, given by ilr_bdp. The prototype of the map registers for read and for write is saved in 
ilr_proto. 

When write transfers are not Cull pages on page boundaries the data is just copied into the 
pages mapped on the UNIBUS and the transfer is started. If a write transfer is of a (1024 byte) 
page size and on a page boundary, UNIBUS page table entries are swapped to reference the pages, 
and then the initial pages are remapped from i/u_Wfnap when the transfer completes. 

When read transCers give whole pages of data to be input, page frames are allocated from a 
network page list and traded with the pages already containing the data, mapping the allocated 
pages to replace the input pages Cor the next UNIBUS data input. 

The following utility routines are available for use in writing network interface drivers, all 
use the iluba structure described above. 

iLubainit(iCu, uban, hlen, nmr}j 
i/_.bainit allocates resources on UNIBUS adaptor ahan and stores the resultant information 
in the i/uba structure pointed to by i/v.. It is called only at boot time or after a UNIBUS 
reset. Two data paths (buffered or unbuffered, depending on the ifu-flags field) are allocated, 
one for reading and one Cor writing. The nmr parameter indicates the number of UNIBUS 
mapping registers required to map a maximal sized packet onto the UNIDUS, while Men 
specifies the size of a local network header, iC any, which should be mapped separately from 
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the data (see the description of trailer protocols in chapter 14). Sufficient UNIBUS mapping 
registers and pages of memory are allocated to initialize the input data path for an initial 
read. For the output data path, mapping registers and pages of memory are also allocated 
and mapped onto the UNIBUS. The pages associated with the output data path are held in 
reserve in the event a write requires copying non-page-aligned data (see i/_wubaput below). If 
i/_ubainitis called with resources already allocated, they will be used instead of allocating 
new ones (this normally occurs after a UNIBUS reset). A 1 is returned when allocation and 
initialization is successful, 0 otherwise. 

m = iLrubaget(ifu, totlen, 080}; 
i/_rubaget pulls read data off an interface. totlen specifies the length of data to be obtained, 
not counting the local network header. If off 0 is non-zero, it indicates a byte offset to a trail­
ing local network header which should be copied into a separate mbuf and prepended to the 
front of the resultant mbuf chain. When page sized units of data are present and are page­
aligned, the previously mapped data pages are remapped into the mbufs and swapped with 
fresh pages; thus avoiding any copying. A 0 return value indicates a failure to allocate 
resources. 

iLwubaput(ifu, m); 
i/_wubaput maps a chain of mbufs onto a network interface in preparation for output. The 
chain includes any local network header, which is copied so that it resides in the mapped and 
aligned I/O space. Any other mbufs which contained non page sized data portions are also 
copied to the I/O space. Pages mapped from a previous output operation (no longer needed) 
are unmapped and returned to the network page pool. 
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7. Socket/protocol interface 
The interface between the socket routines and the communication protocols is through the 

pr_t&4rreq routine defined in the protocol switch table. The following requests to a protocol module 
are possible: 

#define PRU-ATTACH 0 
#define PRU...DETACH 1 
#define PRU..BIND 2 
#define PRU..LISTEN 3 
#define PRU_CONNECT 4 
#define PRU-ACCEPT 5 
#define PRU...DISCONNECT 6 
#define PRU_SHUTDOWN 7 
#define PRU-R,OVD 8 
#define PRU_SEND 9 
#define PRU-ABORT 10 
#define PRU_CONTROL 11 
#define PRU_SENSE 12 
#define PRU-R,CVOOB 13 
#define PRU_SEl\.UOOB 14 
#define PRU_SOCKADDR 15 
#define PRU..PEERADDR 16 
#define PRU_CONNECT2 17 
/* begin for protocols internal use * / 
#define PRUY ASTTIMO 18 
#define PRU~LOWTIMO 19 
#define PRU..PROTORCV 20 
#define PRU..PROTOSEND 21 

A calIon the user request routine is of the form, 

/* attach protocol * / 
/* detach protocol * / 
/* bind socket to address * / 
/* listen for connection * / 
/* establish connection to peer * / 
/* accept connection from peer * / 
/* disconnect from peer * / 
/* won't send any more data * / 
/* have taken data; more room now * / 
/* send this data * / 
/* abort (fast DISCONNECT, DETATCH) */ 
/* control operations on protocol * / 
/* return status into m * / 
/* retrieve out of band data * / 
/* send out of band data * / 
/* fetch socket's address * / 
/* fetch peer's address * / 
/* connect two sockets * / 

/* 200ms timeout * / 
/* 500ms timeout * / 
/* receive from below * / 
/* send to below * / 

error = (*protosw[].pr_usrreq}(up, req, m, addr, rights); 
int error; struct socket *up; int req; struct mbuf *m, *rights; caddr_t addr; 

The mbuf chain, m, and the address are optional parameters. The right4 parameter is an optional 
pointer to an mbuf chain containing user specified capabilities (see the 4enim4g and rectJm4g system 
calls). The protocol is responsible for disposal of both mbuf chains. A non-zero return value gives 
a UN1X error number which should be passed to higher level software. The following paragraphs 
describe each of the requests possible. 

PRU-ATTACH 
When a protocol is bound to a socket (with the 40cket system call) the protocol module is 
called with this request. It is the responsibility of the protocol module to allocate any 
resources necessary. The "attach" request will always precede any of the other requests, and 
should not occur more than once. 

PRU...DETACH 
This is the antithesis of the attach request, and is used at the time a socket is deleted. The 
protocol module may deallocate any resources assigned to the socket. 

PRU..BIND 
When a socket is initially created it has no address bound to it. This request indicates an 
address should be bound to an existing socket. The protocol module must verify the 
requested address is valid and available for use. 

PRU..LISTEN 
The "listen" request indicates the user wishes to listen for incoming connection requests on 
the associated socket. The protocol module should perform any state changes needed to 
carry out this request (if possible). A "listen" request always precedes a request to accept a 

CSRG TR/6 LeIDer, et. aI. 

(~. 
r 



() 

( 

o 

Networking Implementation - 15- Socket/protocol interCace 

connection. 

PRU_CONNECT 
The "connect" request indicates the user wants to a establish an association. The addr 
parameter supplied describes the peer to be connected to. The effect oC a connect request 
may vary depending on the protocol. Virtual circuit protocols, such as TOP [PosteI80b], use 
this request to initiate establishment oC a TCP connection. Datagram protocols, such as 
UDP [PosteI79], simply record the peer's address in a private data structure and use it to tag 
all outgoing packets. There are no restrictions on how many times a connect request may be 
used alter an attach. If a protocol supports the notion of muiti-ea3ting, it is possible to use 
multiple connects to establish a multi-cast group. Alternatively, an association may be bro­
ken by a PRU..DISCONNECT request, and a new association created with a subsequent con­
nect request; all without destroying and creating a new socket. 

PRU-ACCEPT 
Following a successful PRU..LISTEN request and the arrival oC one or more connections, this 
request is made to indicate the user has accepted the first connection on the queue of pending 
connections. The protocol module should fill in the supplied address buffer with the address 
oC the connected party. 

PRUJ)ISCONNECT 
Eliminate an association created with a PRU_CONNECT request. 

PRU_SHUTDOWN 
This call is used to indicate no more data will be sent and/or received (the addr parameter 
indicates the direction or the shutdown, as encoded in the soshutdown system call). The pro­
tocol may, at its discretion, deallocate any data structures related to the shutdown. 

PRU.-RCVD 
This request is made only iC the protocol entry in the protocol switch table includes the 
PR_ W ANTRCVD flag. When a user removes data from the receive queue this request will 
be sent to the protocol module. It may be used to trigger acknowledgements, refresh win­
dowing inCormation, initiate data transCer, etc. 

PRU_SEI\TI) 
Each user request to send data is translated into one or more PRU_SEND requests (a proto­
col may indicate a single user send request must be translated into a single PRU_SEND 
request by specirying the PR-ATOMIC flag in its protocol description). The data. to be sent 
is presented to the protocol as a list of mbuCs and an address is, optionally, supplied in the 
addr parameter. The protocol is responsible for preserving the data in the socket's send 
queue ir it is not able to send it immediately, or if it may need it at some later time (e.g. Cor 
retransmission) . 

PRU-ABORT 
This request indicates an abnormal termination or service. The protocol should delete any 
existing association(s). 

PRU_CONTROL 
The "control" request is generated when a user perrorms a UNIX ioct! system call on a socket 
(and the ioctl is not intercepted by the socket routines). It allows protocol-specific operations 
to be provided outside the scope oC the common socket interface. The addr parameter con­
tains a pointer to a static kernel data area where relevant information may be obtained or 
returned. The m parameter contains the actual ioetl request code (note the non-standard cal­
ling convention). 

PRU_SENSE 
The "sense" request is generated when the user makes an !stat system call on a socket; it 
requests status of the associated socket. There currently is no common format for the status 
returned. InCormation which might be returned includes per-connection statistics, protocol 
state, resources currently in use by the connection, the optimal transrer size Cor the connec­
tion (based on windowing information and maximum packet size). The addr parameter 
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contains a pointer to a static kernel data area where the status buffer should be placed. 

PRU-RCVOOB 
Any "out-of-band" data presently available is to be returned. An mbuf is passed in to the 
protocol module and the protocol should either place data in the mbuf or attach new mbufs 
to the one supplied if there is insufficient space in the single mbuf. 

PRU_SENDOOB 
Like PRU_SEND, but for out-of-band data. 

PRU_SOCKADDR 
The local address of the socket is returned, if any is currently bound to the it. The address 
format (protocol specific) is returned in the addr parameter. 

PRU..PEERADDR 
The address of the peer to which the socket is connected is returned. The socket must be in 
a SSJSCONNECTED state for this request to be made to the protocol. The address format 
(protocol specific) is returned in the addr parameter. 

PRU_CONNECT2 
The protocol module is supplied two sockets and requested to establish a connection between 
the two without binding any addresses, if p06Sible. This call is used in implementing the sys­
tem call. 

The following requests are used internally by the protocol modules and are never generated 
by the socket routines. In certain instances, they are handed to the pr_usrreq routine solely for 
convenience in tracing a protocol's operation (e.g. PRU_SLOWTIMO). 

PRUJi' ASTTIMO 
A "fast timeout" has occured. This request is made when a timeout occurs in the protocol's 
pr-/astimo routine. The addr parameter indicates which timer expired. 

PRU-BLOWTIMO 
A "slow timeout" has occured. This request is made when a timeout occurs in the protocol's 
pr_slowtimo routine. The addr parameter indicates which timer expired. 

PRUYROTORCV 
This request is used in the protocol-protocol interface, not by the routines. It requests recep­
tion of data destined for the protocol and not the user. No protocols currently use this facil­
ity. 

PRUYROTOSEND 
.This request allows a protocol to send data destined for another protocol module, not a user. 
The details of how data is marked "addressed to protocol" instead of "addressed to user" are 
left to the protocol modules. No protocols currently use this facility. 
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8. Protocol/protocol interface 
The interlace between protocol modules is through the pr_ftlrreq, pr_input, pr_output, 

pr_ctlinput, and pr_ctloutput routines. The calling conventions for all but the pr_uarreq routine are 
expected to be specific to the protocol modules and are not guaranteed to be consistent across pro­
tocol families. We will examine the conventions used for some of the Internet protocols in this sec­
tion as an example. 

8.1. pr_output 

The Internet protocol UDP uses the convention, 

error = udp_output(inp, m); 
int error; struct inpcb ·inp; struct mbuf ·m; 

where the inp, "internet protocol control block", passed between modules conveys per connection 
state information, and the mbuf chain contains the data to be sent. UDP performs consistency 
checks, appends its header, calculates a checksum, etc. before passing the pa.cket on to the IP 
module: 

error = ip_output(m, opt, ro, allowbroadcast); 
int error; struct mbuf ·m, ·opt; struct route ·ro; int allow broadcast; 

The call to IP's output routine is more complicated than that for UDP, as befits the addi­
tional work the IP module must do. The m parameter is the data to be sent, and the opt parame­
ter is an optional list of IP options which should be placed in the IP packet header. The ro 
parameter is is used in making routing decisions (and passing them back to the caller). The final 
parameter, allowbroadcaat is a flag indicating if the user is allowed to transmit a broadcast packet. 
This may be inconsequential if the underlying hardware does not support the notion of broadcast­
ing. 

All output routines return 0 on success and a UNIX error number if a Cailure occured which 
could be immediately detected (no buffer space available, no route to destination, etc.). 

8.2. pr_input 

Both UDP and TCP use the following calling convention, 

(void) (·protosw[].pr_input)(m); 
struct mbuC ·m; 

Each mbuf list passed is a single packet to be processed by the protocol module. 

The IP input routine is a VAX software interrupt level routine, and so is not called with any 
parameters. It instead communicates with network interlaces through a queue, ipintrq, which is 
identical in structure to the queues used by the network interfaces for storing packets awaiting 
transmission. 

8.3. pr_ctlinput 

This routine is used to convey "control" inCormation to a protocol module (i.e. information 
which might be passed to the user, but is not data). This routine, and the pr_ctloutput routine, 
have not been extensively developed, and thus suffer from a "clumsiness" that can only be 
improved as more demands are placed on it. 

The common calling convention for this routine is, 

(void) (·protosw[].pr_ctlinput)(req, inCo); 
int req; caddr_t info; 

The req parameter is one of the Collowing, 
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:/Idefi.ne PRCJFDOWN 0 
:/Idefine PRC...ROUTEDEAD 1 
:/Idefine PRC_QUENCH 4 
:/Idefine PRCJlOSTDEAD 6 
:/Idefi.ne PRCJlOSTUNREACH 7 
:/Idefine PRC_UNREACILNET 8 
#define PRC_UNREACHJIOST 9 
:/Idefine PRC_UNREAClLPROTOCOL 10 
:/Idefine PRC_UNREAClLPORT 11 
#define PRC..MSGSlZE 12 
:/Idefine PRC...REDmECT~T 13 
:/Idefine PRC...REDmECTJIOST 14 
:/Idefine PRC_TIMXCEEDJNTRANS 17 
#define PRC_TIMXCEED-REASS 18 
:/Idefi.ne PRCY ARAMPROB 19 

Protocol/protOcol interCace 

/* interface transition * / 
/* select new route if possible * / '* some said to slow down * / 
/* normally Crom IMP * / 
/* ditto */ 
/* no route to network * / 
/* no route to host * / 
/* dst says bad protocol * / 
/* bad port :/I * / 
/* message size Corced drop * / 
/* net routing redirect * / 
/* host routing redirect * / 
/* packet lifetime expired in transit * / 
/* lifetime expired on reass q • / 
/. header incorrect * / 

while the info parameter is a "catchall" value which is request dependent. Many oC the requests 
have obviously been derived Crom ICMP (the Internet Control Message Protocol), and Crom error 
messages defined in the 1822 host/IMP convention [BBN78]. Mapping tables exist to convert con­
trol requests to UN1X error codes which are delivered to a user. 

8.4. pr_ctloutput 

This routine is not currently used by any protocol modules. 
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8. Protocol/network. interrace interrace 
The lowest layer in the set of protocols which comprise a protocol family must interface itself 

to one or more network interlaces in order to transmit and receive packets. It is assumed that any 
routing decisions have been made before handing a packet to a network interlace, in fact this is 
absolutely necessary in order to locate any interlace at all (unless, of course, one uses a single 
"hardwired" interface). There are two cases to be concerned with, transmission of a packet, and 
receipt of a Packeti each will be considered separately. 

8.1. Packet transmiasion 

Assuming a protocol has a handle on an interface, ilp, a (struct ifnet *), it transmits a fully 
formatted packet with the following call, 

error = (*ifp->iLoutput)(ifp, m, dst) 
int errori struct ifnet *ifpi struct mbuf *mi struct sockaddr *dsti 

The output routine for the network interlace transmits the packet m to the d8t address, or returns 
an error indication (a UNIX error number). In reality transmission may not be immediate, or suc­
cessful; normally the output routine simply queues the packet on its send queue and primes an 
interrupt driven routine to actually transmit the packet. For unreliable mediums, such as the Eth­
ernet, "successful" transmission simply means the packet has been placed on the cable without a 
collision. On the other hand, an 1822 interface guarantees proper delivery or an error indication 
for each message transmitted. The model employed in the networking system attaches no promises 
of delivery to the packets handed to a network interface, and thus corresponds more closely to the 
Ethernet. Errors returned by the output routine are normally trivial in nature (no buffer space, 
address format not handled, e~c.). 

8.2. Paeket reeeption 

Each protocol family must have one or more "lowest level" protocols. These protocols deal 
with internetwork addressing and are responsible for the delivery of incoming packets to the proper 
protocol processing modules. In the PUP model [Boggs78] these protocols are t.ermed Level 1 pro­
tocols, in the ISO model, network layer protocols. In our system each such protocol module has an 
input packet queue assigned to it. Incoming packets received by a network interface are queued up 
for the protocol module and a VAX software interrupt is posted to initiate processing. 

Three macros are available for queueing and dequeueing packets, 

IF-ENQUEUE(ifq, m) 
This places the packet m at the tail of the queue ilq. 

IF J)EQUEUE(ifq, m) 
This places a pointer to the packet at the bead of queue ilq in m. A zero value will be 
returned in m if the queue is empty. 

IFYREPEl\l)(ifq, m) 
This places the packet m at the head of the queue i/q. 
Each queue has a maximum length associated with it as a simple form of congestion control. 

The macro IF _QFULL(ifq) returns 1 if the queue is filled, in which case the macro IF J)ROP(ifq) 
should be used to bump a count of the number of packets dropped and the offending packet 
dropped. For example, the following code fragment is commonly found in a network interface's 
input routine, 

if (IF _QFULL(inq)) { 
IF J)ROP(inq); 
mJreem(m); 

} else 
IF-ENQUEUE(inq, m); 
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10. Gateways and routing issues 
The system has been designed with the expectation that it will be used in an internetwork 

environment. The "canonical" environment was envisioned to be a collection of local area net­
works connected at one or more points through hosts with multiple network interfaces (one on each 
local area network), and possibly a connection to a long haul network (for example, the 
ARPANET). In such an environment, issues of gatewaying and packet routing become very 
important. Certain of these issues, such as congestion control, have been handled in a simplistic 
manner or specifically not addressed. Instead, where possible, the network system attempts to pro­
vide simple mechanisms upon which more involved policies may be implemented. As some of these 
problems become better understood, the solutions developed will be incorporated into the system. 

This section will describe the facilities provided for packet routing. The simplistic mechan­
isms provided for congestion control are described in chapter 12. 

10.1. Routinl tables 
The network system maintains a set of routing tables for selecting a network interface to use 

in delivering a packet to its destination. These tables are of the form: 

struct rtentry { 
lLlong 
struct 
struct 
short 
short 
lLlong 
struct 

}; 

rt_hash; /* hash key for lookups * / 
sockaddr rt_dst; /* destination net or host * / 
sockaddr rLgateway;/* forwarding agent * / 
rLflags; /* see below * / 
rLrefcnt; /* no. of references to structure * / 
rt_use; /* packets sent using route * / 
nnet *rtjfp; /* interface to give packet to * / 

The routing information is organized in two separate tables, one for routes to a host and one 
for routes to a network. The distinction between hosts and networks is necessary so that a single 
mechanism may be used for both broadcast and multi-drop type networks, and also for networks 
built from point-to-point links (e.g DECnet [DEC80]). 

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated 
by routines defined for each address family; one based on the destination being a host, and one 
assuming the target is the network portion of the address. Each hash value is used to locate a 
hash chain to search (by taking the value modulo the hash table size) and the entire 32-bit value is 
then used as a key in scanning the list of routes. Lookups are applied first to the routing table for 
hosts, then to the routing table for networks. II both lookups fail, a final lookup is made for a 
"wildcard" route (by convention, network 0). By doing this, routes to a specific host on a network 
may be present as well as routes to the network. This also allows a "fall back" network route to 
be defined to an "smart" gateway which may then perform more intelligent routing. 

Each routing table entry contains a destination (who's at the other end of the route), a gate­
way to send the packet to, and various flags which indicate the route's status and type (host or 
network). A count of the number of packets sent using the route is kept for use in deciding 
between mUltiple routes to the same destination (see below), and a count of "held references" to 
the dynamically allocated structure is maintained to insure memory reclamation occurs only when 
the route is not in use. Finally a pointer to the a network interface is kept; packets sent using the 
route should be handed to this interface. 

Routes are typed in two ways: either as host or network, and as "direct" or "indirect". The 
host/network distinction determines how to compare the rUl,t field during lookup. If the route is 
to a network, only a packet's destination network is compared to the rLd,t entry stored in the 
table. If the route is to a host, the addresses must match bit for bit. 

The distinction between "direct" and "indirect" routes indicates whether the destination is 
directly connected to the source. This is needed when performing local network encapsulation. If 
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a packet is destined for a peer at a host or network which is not directly connected to the source, 
the internetwork packet header will indicate the address of the eventual destination, while the local 
network header will indicate the address of the intervening gateway. Should the destination be 
directly connected, these addresses are likely to be identical, or a mapping between the two exists. 
The RTF_GATEWAY flag indicates the route is to an "indirect" gateway agent and the local net­
work header should be filled in from the "-,alewa, field instead of rLd8t, or from the internet­
work destination address. 

It is assumed multiple routes to the same destination will not be present unless they are 
deemed equal in cost (the current routing policy process never installs multiple routes to the same 
destination). However, should multiple routes to the same destination exist, a request for a route 
will return the "least used" route based on the total number of packets sent along this route. This 
can result in a "ping-pong" effect (alternate packets taking alternate routes), unless protocols 
"hold onto" routes until they no longer find them useful; either because the destination has 
changed, or because the route is lossy. 

Routing redirect control messages are used to dynamically modify existing routing table 
entries as well as dynamically create new routing table entries. On hosts where exhaustive routing 
information is too expensive to maintain (e.g. work stations), the combination of wildcard routing 
entries and routing redirect messages can be used to provide a simple routing management scheme 
without the use of a higher level policy process. Statistics are kept by the routing table routines on 
the use of routing redirect messages and their affect on the routing tables. These statistics may be 
viewed using 

Status information other than routing redirect control messages may be used in the future, 
but at present they are ignored. Likewise, more intelligent "metrics" may be used to describe 
routes in the future, possibly based on bandwidth and monetary costs. 

10.2. Routing table interrace 

A protocol accesses the routing tables through three routines, one to allocate a route, one to 
free a route, and one to process a routing redirect control message. The routine rtalloe performs 
route allocation; it is called with a pointer to the following structure, 

struct route { 

}; 

struct 
struct 

rtentry *ro_rt; 
sockaddr ro_dst; 

The route returned is assumed "held" by the caller until disposed of with an rtfree call. Protocols 
which implement virtual circuits, such as TCP, hold onto routes for the duration of the circuit's 
lifetime, while connection-less protocols, such as UDP, currently allocate and free routes on each 
transmission. 

The routine rtredireet is called to process a routing redirect control message. It is called with 
a destination address and the new gateway to that destination. If a non-wildcard route exists to 
the destination, the gateway entry in the route is modified to point at the new gateway supplied. 
Otherwise, a new routing table entry is inserted reflecting the information supplied. Routes to 
interfaces and routes to gateways which are not directly accesible from the host are ignored. 

10.3. User level routing policies 

Routing policies implemented in user processes manipulate the kernel routing tables through 
two ioetl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries, 
respectively; the tables are read through the Idev Ikmem device. The decision to place policy deci­
sions in a user process implies routing table updates may lag a bit behind the identification of new 
routes, or the failure of existing routes, but this period of instability is normally very small with 
proper implementation of the routing process. Advisory information, such as ICMP error messages 
and IMP diagnostic messages, may be read from raw sockets (described in the next section). 
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One routing policy process has already been implemented. The system standard "routing 
daemont> uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up 
to date routing tables in our local environment. Interaction with other existing routing protocols, 
such as the Internet GGP (Gateway-Gateway Protocol), may be accomplished using a similar pro­
cess. 
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11. Raw sockets 
A raw socket is a mechanism which allows users direct access to a lower level protocol. Raw 

sockets are intended for knowledgeable processes which wish to take advantage of some protocol 
feature not directly accessible through the normal interlace, or for the development of new proto­
cols built atop existing lower level protocols. For example, a new version of TOP might be 
developed at the user level by utilizing a raw IP socket for delivery of packets. The raw IP socket 
interlace attempts to provide an identical interface to the one a protocol would have if it were 
resident in the kernel. 

The raw socket support is built around a generic raw socket interlace, and (possibly) aug­
mented by protocol-specific processing routines. This section will describe the core of the raw 
socket interface. 

11.1. Control blocks 

Every raw socket has a protocol control block of the following form, 

struct rawcb { 
struct 

}; 

struct 
struct 
struct 
struct 
caddr_t 
short 

rawcb *rcb_next; 
rawcb *rcb_prev; 
socket *rcbJocket; 
sockaddr rcb3addr; 
sockaddr rcb_Iaddr; 
reb_pcb; 
rebJlags; 

1* doubly linked list *1 

1* back pointer to socket *1 
1* destination address *1 
1* socket's address *1 
1* protocol specific stuff * I 

All the control blocks are kept on a doubly linked list for performing lookups during packet 
dispatch. Associations may be recorded in the control block and used by the output routine in 
preparing packets for transmission. The addresses are also used to filter packets on input; this will 
be described in more detail shortly. If any protocol specific information is required, it may be 
attached to the control block using the rcLpcb field. 

A raw socket interface is datagram oriented. That is, each send or receive on the socket 
requires a destination address. This address may be supplied by the user or stored in the control 
block and automatically installed in the outgoing packet by the output routine. Since it is not 
possible to determine whether an address is present or not in the control block, two flags, 
RAW J.ADDR and RAW J' ADDR, indicate if a local and foreign address are present. Another 
flag, RAW -DONTROUTE, indicates if routing should be performed on outgoing packets. If it is, 
a route is expected to be allocated for each "new" destination address. That is, the first time a 
packet is transmitted a route is determined, and thereafter each time the destination address stored 
in rcLroutc differs from rcb-faddr, or rcLroutc.ro_rt is zero, the old route is discarded and a new 
one allocated. 

11.2. Input processing 

Input packets are "assigned" to raw sockets based on a simple pattern matching scheme. 
Each network interface or protocol gives packets to the raw input routine with the call: 

rawJnput(m, proto, src, dst) 
struct mbuf *m; struct sockproto *proto, struct sockaddr *src, *dst; 

The data packet then has a generic header prepended to it of the form 

struct raw.-header { 
struct sockproto raw_proto; 
struct sockaddr raw_dst; 
struct sockaddr rawJrc; 

}; 
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and it is placed in a packet queue for the "raw input protocol" module. Packets taken rrom this 
queue are copied into any raw sockets that match the header according to the rollowing rules, 

1) The protocol family of the socket and header agree. 

2) 

3) 

If the protocol number in the socket is non-zero, then it agrees with that round in the packet 
header. 

If a local address is defined for the socket, the address format of the local address is the same 
as the destination address's and the two addresses agree bit for bit. 

4) The rules of 3) are applied to the socket's foreign address and the packet's source address. 

A basic assumption is that addresses present in the control block and packet header (as constructed 
by the network interface and any raw input protocol module) are in a canonical form which may 
be "block compared". 

11.3. Output processing 

On output the raw l"_tllrreq routine passes the packet and raw control block to the raw pro­
tocol output routine for any processing required before it is delivered to the appropriate network 
interface. The output routine is normally the only code required to implement a raw socket inter­
face. 
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12. Buffering and congestion control 
One of the major factors in the performance of a protocol is the buffering policy used. Lack 

of a proper buffering policy can force packets to be dropped, cause falsified windowing information 
to be emitted by protocols, fragment host memory, degrade the overall host performance, etc. Due 
to problems such as these, most systems allocate a fixed pool of memory to the networking system 
and impose a policy optimized for "normal" network operation. 

The networking system developed for UNIX is little different in this respect. At boot time a 
fixed amount of memory is allocated by the networking system. At later times more system 
memory may be requested as the need arises, but at no time is memory ever returned to the sys­
tem. It is possible to garbage collect memory from the network, but difficult. In order to perform 
this garbage collection properly, some portion of the network will have to be "turned off" as data 
structures are updated. The interval over which this occurs must kept small compared to the aver­
age inter-packet arrival time, or too much traffic may be lost, impacting other hosts on the net­
work, as well as increasing load on the interconnecting mediums. In our environment we have not 
experienced a need for such compaction, and thus have left the problem unresolved. 

The mbuC structure was introduced in chapter 5. In this section a brief description will be 
given of the allocation mechanisms, and policies used by the protocols in performing connection 
level buffering. 

12.1. Memory management 

The basic memory allocation routines place no restrictions on the amount of space which 
may be allocated. Any request made is filled until the system memory allocator starts refusing to 
allocate additional memory. When the current quota of memory is insufficient to satisfy an mbuf 
allocation request, the allocator requests enough new pages from the system to satisfy the current 
request only. All memory owned by the network is described by a private page table used in 
remapping pages to be logically contiguous as the need arises. In addition, an array of reference 
counts parallels the page table and is used when multiple copies of a page are present. 

Mbufs are 128 byte structures, 8 fitting in a lKbyte page of memory. When data is placed 
in mbufs, if possible, it is copied or remapped into logically contiguous pages of memory from the 
network page pool. Data smaller than the size of a page is copied into one or more 112 byte mbuf 
data areas. 

12.2. Protocol bufi'ering policies 

Protocols reserve fixed amounts of buffering for send and receive queues at socket creation 
time. These amounts define the high and low water marks used by the socket routines in deciding 
when to block and unblock a process. The reservation of space does not currently result in any 
action by the memory management routines, though it is clear if one imposed an upper bound on 
the total amount of physical memory allocated to the network, reserving memory would become 
important. 

Protocols which provide connection level flow control do this based on the amount of space 
in the associated socket queues. That is, send windows are calculated based on the amount of free 
space in the socket's receive queue, while receive windows are adjusted based on the amount of 
data awaiting transmission in the send queue. Care has been taken to avoid the "silly window 
syndrome" described in [Clark82] at both the sending and receiving ends. 

12.3. Queue limiting 

Incoming packets from the network are always received unless memory allocation fails. How­
ever, each Levell protocol input queue has an upper bound on the queue's length, and any packets 
exceeding that bound are discarded. It is possible Cor a host to be overwhelmed by excessive net­
work traffic (for instance a host acting as a gateway Crom a high bandwidth network to a low 
bandwidth network). As a "defensive" mechanism the queue limits may be adjusted to throttle 
network traffic load on a host. Consider a host willing to devote some percentage of its machine to 

CSRG TR/6 LeIDer, et. al. 



--------------

Networking Implementation - 26- Buft'ering and congestion control 

handling network traffic. Ir the cost of handling an incoming packet can be ealculated so that an 
acceptable "packet handling rate" can be determined, then input queue lengths may be dynami­
cally adjusted based on a host's network load and the number of packets awaiting processing. 
Obviously, discarding packets is not a satisfactory solution to a problem such as this (simply drop­
ping packets is likely to increase the load on a network); the queue lengths were incorporated 
mainly as a safeguard mechanism. 

12.4. Packet torwwing 
When packets can not be forwarded because of memory limitations, the system generates a 

"source quench" message. In addition, any other problems encountered during packet forwarding 
are also reftected back to the sender in the form of ICMP packets. This helps hosts avoid 
unneeded retransmissions. 

Broadcast packets are never forwarded due to possible dire consequences. In an early stage of 
network development, broadcast packets were forwarded and a "routing loop" resulted in network 
saturation and every host on the network crashing. 
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13. Out Or band data 
Out of band data is a facility peculiar to the stream socket abstraction defined. Little agree­

ment appears to exist as to what its semantics should be. TOP defines the notion of "urgent 
data" as in-line, while the NBS protocols [Burruss81] and numerous others provide a fully indepen­
dent logical transmission channel along which out of band data is to be sent. In addition, the 
amount of the data which may be sent as an out of band message varies from protocol to protocol; 
everything from 1 bit to 16 bytes or more. 

A stream socket's notion of out of band data has been defined as the lowest reasonable com­
mon denominator (at least reasonable in our minds); clearly this is subject to debate. Out of band 
data is expected to be transmitted out of the normal sequencing and How control constraints of the 
data stream. A minimum of 1 byte of out of band data and one outstanding out of band message 
are expected to be supported by the protocol supporting a stream socket. It is a protocols peroga­
tive to support larger sized messages, or more than one outstanding out of band message at a time. 

Out of band data is maintained by the protocol and usually not stored in the socket's send 
queue. The PRU_SENDOOB and PRU..ROVOOB requests to the pr_u6rreq routine are used in 
sending and receiving data. 
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14. TraUer protocols 
Core to core copies can be expensive. Consequently, a great deal of effort was spent in 

minimizing such operations. The VAX architecture provides virtual memory hardware organized 
in page units. To cut down on copy operations, data is kept in page sized units on page-aligned 
boundaries whenever possible. This allows data to be moved in memory simply by remapping the 
page instead of copying. Thembuf and network interface routines perform page table manipula­
tions where needed, hiding the complexities of the VAX virtual memory hardware from higher level 
code. 

Data enters the system in two ways: from the user, or Crom the network (hardware interface). 
When data is copied from the user's address space into the system it is deposited in pages (if 
sufficient data is present to fill an entire page). This encourages the user to transmit information 
in messages which are a multiple of the system page size. 

Unfortunately, performing a similar operation when taking data from the network is very 
difficult. Consider the format of an incoming packet. A packet usually contains a local network 
header followed by one or more headers used by the high level protocols. Finally, the data, if any, 
follows these headers. Since the header information may be variable length, DMA'ing the eventual 
data Cor the user into a page aligned area of memory is impossible without a priori knowledge of 
the format (e.g. supporting only a single protocol header Cormat). 

To allow variable length header information to be present and still ensure page alignment of 
data, a special local network encapsulation may be used. This encapsulation, termed a trailer pro­
tocol, places the variable length header information after the data. A fixed size local network 
header is then prepended to the resultant packet. The local network header contains the size of the 
data portion, and a new trailer protocol header, inserted before the variable length information, 
contains the size of the variable length header information. The following trailer protocol header is 
used to store information regarding the variable length protocol header: 

struct { 

}; 

short 
short 

protocol; 
length; 

1* original protocol no. "'1 
1* length of trailer ... I 

The processing of the trailer protocol is very simple. On output, the local network header 
indicates a trailer encapsulation is being used. The protocol identifier also includes an indication 
of the number of data pages present (before the trailer protocol header). The trailer protocol 
header is initialized to contain the actual protocol and variable length header size, and appended to 
the data along with the variable length header inCormation. 

On input, the interface routines identify the trailer encapsulation by the protocol type stored 
in the local network header, then calculate the number of pages of data to find the beginning of 
the trailer. The trailing information is copied into a separate mbuC and linked to the front of the 
resultant packet. 

Clearly, trailer protocols require cooperation between source and destination. In addition, 
they are normally cost effective only when sizable packets are used. The current scheme works 
because the local network encapsulation header is a fixed size, allowing DMA operations to be per­
formed at a known offset from the first data page being received. Should the local network header 
be variable length this scheme fails. 

Statistics collected indicate as much as 200Kb/s can be gained by using a trailer protocol 
with lKbyte packets. The average size of the variable length header was 40 bytes (the size of a 
minimal TCP lIP packet header). If hardware supports larger sized packets, even greater gains 
may be realized. 
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ABSTRACT 

In most computing environments, disc space is not infinite. The disc quota 
system provides a mechanism to control usage or disc space, on an individual 
basis. 

Quotas may be set ror each individual user, on any, or all filesystems. 

The quota system will warn users when they exceed their allotted limit, but 
allow some extra space ror current work. Repeatedly remaining over quota at 
logout, will cause a ratal over quota condition eventually. 

The quota system is an optional part or VMUNIX that may be included when 
the system is configured. 

5th July, 1983 
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Disc Quotas in a ~ Environment. 

1. Use1'8' view of dise quotas 

Robert Elz 

Department of Computer Science 
University of Melbourne, 

Parkville, 
Victoria, 
Australia. 

To most users, disc quotas will either be of no concern, or a fact of life that cannot be 
avoided. The quota (1) command will provide information on any disc quotas that may have been 
imposed upon a user. 

There are two individual possible quotas that may be imposed, usually if one is, both will be. 
A limit can be set on the amount of space a user can occupy, and there may be a limit on the 
number of files (inodes) he can own. 

Quota provides information on the quotas that have been set by the system administ.rators, 
in each of these areas, and current usage. 

There are four numbers for each limit, the current usage, soft limit (quota), hard limit, and 
number of remaining login warnings. The soft limit is the number of lK blocks (or files) that the 
user is expected to remain below. Each time the user's usage goes past this limit, he will be 
warned. The hard limit cannot be exceeded. If a user's usage reaches this number, further requests 
for space (or attempts to create a file) will fail with an EDQUOT error, and the first time this 
occurs, a message will be written to the user's terminal. Only one message will be output, until 
space occupied is reduced below the limit, and reaches it again, in order to avoid continual noise 
from those programs that ignore write errors. 

Whenever a user logs in with a usage greater than his soft limit, he will be warned, and his 
login warning count decremented. 'When he logs in under quota, the counter is reset to its max­
imum value (which is a system configuration parameter, that is typically 3). If the warning count 
should ever reach zero (caused by three successive logins over quota), the particular limit that has 
been e.xceeded will be treated as if the hard limit has been reached, and no more resources will be 
allocated to the user. The only way to reset this condition is to reduce usage below quota, then 
log in again. 

1.1. Surviving when quota limit is reached 

In most cases, the only way to recover from over quota conditions, is to abort whatever 
activity was in progress on the filesystem that has reached its limit, remove sufficient files to bring 
the limit back below quota, and retry the failed program. 

However, if you are in the editor and a write fails because of an over quota situation, that is 
not a suitable course of action, as it is most likely that init.ially attempting to "'rite the file will 
have truncated its previous contents, so should the editor be aborted without correctly writing the 
file not only will the recent changes be lost, but possibly much, or even all, of the data that previ­
ously existed. 

There are several possible safe exits for a user caught in this situation. He may use the edi­
tor ! shell escape command to examine his file space, and remove surplus files. Alternatively, using 

• UNlX is a t.rademark or Bell Laboratories. 
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uh, he may suspend the editor, remove some files, then resume it. A third possibility, is to write 
the file to some other filesystem (perhaps to a file on /tmp) where the user's quota has not been 
exceeded. Then after rectifying the quota situation, the file can be moved back to the filesystem it 
belongs on. 

2. Administering the quota 8)"stem 

To set up and establish the disc quota system, there are several steps necessary to be per­
formed by the system administrator. 

First, the system must be configured to include the disc quota sub-system. This is done by 
including the line: 

options QUOTA 

in the system configuration file, then running confi,(8) followed by a system configuration-. 

Second, a decision as to what filesystems need to have quotas applied needs to be made. 
Usually, only filesystems that house users' home directories, or other user files, will need to be sub­
jected to the quota system, though it may also prove useful to also include /USI'. 1C possible, 
/tmp should usually be free of quotas. 

Having decided on which filesystems quotas need to be set upon, the administrator should 
then allocate the available space amongst the competing needs. How this should be done is (way) 
beyond the scope of this document. 

Then, the edquota (8) command can be used to actually set the limits desired upon each user. 
V\1Jlere a number of users are to be given the same quotas (a common occurrence) the -p switch to 
edquota will allow this to be easily accomplished. 

Once the quotas are set, ready to operate, the system must be informed to enforce quotas on 
the desired filesystems. This is accomplished with the quotaon(S) command. Quotaon will either 
enable quotas for a particular filesystem, or with the -a switch, will enable quotas for each filesys­
tem indicated in /ete/Istab as using quotas. See IBlab (5) for details. Most sites using the quota 
system, will include the line 

/etc/quotaon -a 

in /ete/I'e.loeal. 

Should quotas need to be disabled, the quot4011(8) command will do that, however, should 
the filesystem be about to be dismounted, the umount (8) command ,will disable quotas immedi­
ately. before the filesystem is unmounted. This is actually an effect of the umount(2) system call, 
and it guarantees that the quota system will not be disabled if the umount would fail because the 
filesystem is not idle. 

Periodically (certainly after each reboot, and when quotas are first enabled for a filesyst.em), 
the records retained in the quota file should be checked for consistency with the act.ual number of 
blocks and files allocated to the user. The quot4chk(8) command can be used to accomplish this. 
It is not necessary to dismount the filesystem, or disable the quota system to run this command, 
though on active filesystems inaccurate results may occur. This does no real harm in most cases, 
another run of quotaehk when the filesystem is idle will certainly correct any inaccuracy. 

The super-user may use the quota(l) command to examine the usage and quotas of any user, 
and the repquota (8) command may be used to check the usages and limits for all users on a filesys­
tem. 

• See also the document "Building 4.2BSD UNIX Systems with Confis". 
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8. Some implementation detail. 

Disc quota usage and inrormation is stored in a file on the filesystem that the quotas are to 
be applied to. Conventionally, this file is quotas in the root or the filesystem. While this name is 
not known to the system in any way, several or the user level utilities "know" it, and choosing any 
other name would not be wise. 

The data in the file comprises an array or structures, indexed by uid, one structure ror each 
user on the system (whether the user has a quota on this filesystem or not). If the uid space is 
sparse, then the file may have holes in it, which would be lost by copying, so it is best to avoid 
this. 

The system is inrormed or the existence or the quota file by the ,etqtlola (2) system call. It 
then reads the quota entries ror each user currently active, then ror any files open owned by users 
who are not currently active. Each subsequent open or a file on the filesystem, will be accom­
panied by a pairing with its quota inrormation. In most cases this inrormation will be retained in 
core, either because the user who owns the file is running some process, because other files are open 
owned by the same user, or because some file (perhaps this one) was recently accessed. In memory, 
the quota inrormation is kept hashed by user-id and filesystem, and retained in an LRU chain so 
recently released data can be easily reclaimed. Inrormation about those users whose last process 
has recently terminated is also retained in this way. 

Each time a block is accessed or released, and each time an inode is allocated or rreed, the 
quota system gets told about it, and in the case or allocations, gets the opportunity to object. 

Measurements have shown that the quota code uses a very small percentage or the system 
cpu time consumed in writing a new block to disc. 

4. Acknowledgments 

The current disc quota system is loosely based upon a very early scheme implemented at the 
University or New South Wales, and Sydney University in the mid 70's. That system implemented 
a single combined limit ror both files and blocks on all filesystems. 

A later system was implemented at the University or Melbourne by the author, but was not 
kept highly accurately, eg: chown's (etc) did not affect quotas, nor did i/o to a file other than one 
owned by the instigator. 

The current system has been running (with only minor modifications) since January 82 at 
Melbourne. It is actually just a small part or a much broader resource control scheme, which is 
capable or controlling almost anything that is usually uncontrolled in unix. The rest or this is, as 
yet, still in a state where it is far too subject to change to be considered for distribution. 

For the 4.2BSD release, much work has been done to clean up and sanely incorporate the 
quota code by Sam LeIDer and Kirk McKusick at The University of California at Berkeley. 
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Sendmail implements a general purpose internetwork mail routing facility under the UNIX* 
operating system. It is not tied to anyone transport protocol - its function may be likened to a 
crossbar switch, relaying messages from one domain into another. In the process, it can do a lim­
ited amount of message header editing to put the message into a format that is appropriate for the 
receiving domain. All of this is done under the control of a configuration file. 

Due to the requirements of ftexibility for sendmal7, the configuration file can seem somewhat 
unapproachable. However, there are only a few basic configurations for most sit.es, for which stan­
dard configuration files have been supplied. Most other configurations can be built by adjusting an 
e.xisting configuration files incrementally. 

Although sendmail is intended to run without the need for monitoring, it has a number of 
features that may be used to monitor or adjust the operation under unusual circumstances. These 
featilres are described. 

Section one describes how to do a basic sendmal7 installation. Section two explains the day­
to-day information you should know to maintain your mail system. If you have a relatively nor­
mal site, these two sections should contain sufficient information for you to install sendlnail and 
keep it happy. Section three describes some parameters that may be safely tweaked. Section four 
has information regarding the command line arguments. Section five contains the nitty-gritty 
information about the configuration file. This section is for masochists and people who must write 
their own configuration file. The appendixes give a brief but detailed explanation of a number of 
features not described in the rest of the paper. 

The references in this paper are actually found in the companion paper Sendmail - An Inter­
network Mail Router. This other paper should be read before this manual to gain a basic under­
standing of how the pieces fit together. 

1. BASIC INSTALLATION 
There are two basic steps to installing sendmail. The hard part is to build the 

configuration table. This is a file that send mail reads when it starts up that describes the 
mailers it knows about, how to parse addresses, how to rewrite the message header, and the set­
tings of various options. Although the configuration table is quite complex, a configuration can 
usually be built by adjusting an existing off-the-shelf configuration. The second part is actually 
doing the installation, i.e., creating the necessary files, etc. 

The remainder of this section will describe the installation of sendmail assuming you can 
use one of the existing configurations and that the standard installation parameters are accept­
able. All pathnames and examples are given from the root of the sendmail subtree. 

·UNIX is a tradema.rk or Bell La.boratories. 
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1.1. Off-The-SheJf' ConBsurations 

The configmation h 'aTe "8ll in the subdirectory cl of the sendmail directory. The 
ones used at Berkeley are in m.4(1) format; 'files with names ending ".m4" are m.4 include 
files, while files with names 1!Dding ".mc" ar~ the master files. Files with names ending 
".cr" are the m.4 processed versions of the corresponding ".mc" file. 

Two off the shelf configuration fili!S are supplied to handle the basic cases: 
ell ar'paproto. el for Arpanet (TOP) sites and ell flUepproto. el for UUOP sites. These are not 
in m.4 format. The .Jile yDU .aeed should be .copied to a file with the same name as your sys-­
tern, e.g., 

cp uucpproto.cf ucsfcgl.cl' 

This file is now ready for installation as I u8rl libl 8endmai/. e/. 

1.2. Installation Using the Makeflle 

A makefile exists in the root of the 8endmail directory that will do all of these steps 
for a 4.2BSD system. It may have to be slightly tailored for use on other systems. 

Before using this makefiJe, you should already have created your configuration file and 
left it in the file "cfI8y6tem.cfll where 8ystem is the name of your system (Le., what is 
returned by hostname (1». If you do not have h08tname you can use the declaration 
"HOST=sY8tem" on the make(I) command line. You should also examine the file 
mdl config· m.f and change the m.f macros there to reflect any libraries and compilation flags 
you may need. 

The basic installation procedure is to type: 

make 
make install 

in the root directory of the~dmtlil distribution. This will make all binaries and install 
them in the standard places. The second make command must be executed as the superuser 
(root). 

1.3. Installation by Hand 

Along with building a configuration file, you will have to install the senamai/ startup 
into your UNIX system. If you are doing this installation in conjunction with a regular 
Berkeley UNIX install, these steps will already be complete. Many of these steps will have 
to be executed as the superuser (root). 

1.3.1. Iib/Hbsys.a 

The library in lib/libsys.a contains some routines that should in some sense be 
part of the system library. . These ~ the system logging routines and the new directory 
access routines (if requiTed). If you are not running the new 4.2BSD directory code and 
do not have the compatibility routines installed in your system library, you should e:<:e­
cute the commands: 

cd lib 
make ndir 

This will compile and install the 4.2 compatibility routines in the library. You should 
then type: 

cd lib :# if required 
make 

This will recompile and fill the library. 

Version 4.2 Last Mod 7/28/83 
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1.3.2. /usr/lib/sendmail 

The binary for sendmail is located in /usr /lib. There is a version available in the 
source directory that is probably inadequate for your system. You should plan on 
recompiling and installing the entire system: 

cd src 
rm -f *.0 
make 
cp sendmail /usr/lib 

1.3.3. /usr/lib/sendmail.ef 

The configuration file that you created earlier should be installed in 
/usr/lib/sendmail.cf: 

cp cf/a7lstem.cf /usr/lib/sendmail.cf 

1.3.4. /usr /ueb /newaliases 

If you are running delivermail, it is critical that the newaliases command be 
replaced. This can just be a link to sendmail: 

rm -f /usr/ucb/newaliases 
In /usr/lib/sendmail /usr/ucb/newaliases 

1.3.5. /usr /lib / sendmail.ef 

The configuration file must be installed in /usr/lib. This is described above. 

1.3.6. /usr/spool/mqueue 

The directory /1lBr/ spool/mqueue should be created to hold the mail queue. This 
directory should be mode 777 unless sendmail is run setuid, when mqueue should be 
owned by the sendmail owner and mode 755. 

1.3.7. /usr/lib/aliases* 

The system aliases are held in three files. The file "/usr/lib/aliases" is the master 
copy. A sample is given in "lib/aliases" which includes some aliases which must be 
defined: 

cp lib/aliases /usr/lib/aliases 

You should extend this file with any aliases that are apropos to your system. 

Normally sendmai/looks at a version of these files maintained by the dbm (3) rou­
tines. These are stored in "/usr/libJaliases.dir" and "/usr/lib/aliases.pag." These can 
initially be created as empty files, but they will have to be initialized promptly. These 
should be mode 666 if you are running a reasonably relaxed system: 

cp /dev /null /usr/lib/aliases.dir 
cp /dev/null /usr/libJaliases.pag 
chmod 666 Jusr/lib/aliases.* 
newaliases 

1.3.8. /usr/lib/sendmaiUe 

If you intend to install the frozen version of the configuration file (for quick 
startup) you should create the file JusrJlib/sendmaiUc and initialize it. This step may 
be safely skipped. 
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cp /dev/null /usr/lib/sendmaiUc 
/usr/lib/sendmail-bz 

1.3.9. /etc/re 

4 

It will be necessary to start up the sendmail daemon when your system reboots. 
This daemon performs two functions: it listens on the SMTP socket for connections (to 
receive mail from a remote system) and it processes the queue periodically to insure that 
mail gets delivered when hosts come up. 

Add the following lines to "/ete/rc" (or "/ete/rc.1oeal" as appropriate) in the area 
where it is starting up the daemons: 

if I-f /usr/lib/sendmail ]; then 

fi 

(cd /usr/spool/mqueue; rm -f IlnxJf*) 
/usr/lib/sendmail-bd -q30m &. 
echo -n ' sendmail' > / dev / console 

The "cd" and "rm" commands insure that all lock files have been removed; extraneous 
lock files may be left around if the system goes down in the middle of processing a mes­
sage. The line that actually invokes 8endmail has two Ba.gs: "-bd" causes it to list.en on 
the SMTP port, and "-q30m" causes it to run the queue every half hour. 

If you are not running a version of UNIX that supports Berkeley TCP /IP, do not 
include the -bd flag. 

1.3.10. /usr/lib/sendmail.hf 

This is the help file used by the SMTP HELP command. It should be copied 
from "lib/sendmail.hf": 

cp lib/sendmail.hf /usr/lib 

1.3.11. /usr/lib/sendmail.st 

If you wish to collect statistics about your mail traffic, you should create the file 
"/usr /lib /sendmail.st": 

cp /dev /null /usr/lib/sendmail.st 
chmod 666 /usr /lib / sendmail.st 

This file does not grow. It is printed with the program "aux/mailstats." 

1.3.12. /ete/syslog 

You may want to run the 81/810g program (to collect log informat.ion about send­
mail). This program normally resides in /etC/8YBlog, with support files /etc/s1/slog.conf 
and / etc/ B1/s1og.pid. The program is located in the /JU% subdirectory of the Bt!ndmail dis­
tribution. The file / etc/ s1/slog. conI describes the file(s) that sendmail will log in. For a 
complete description of syslog, see the manual page for 81/810g(8) (located in 
sendmail/ doc on the distribution). 

1.3.13. /usr /ucb /newaliases 
If Bendmail is invoked as "newaliases," it will simulate the -bi flag (i.e., will 

rebuild the alias database; see below). This should be a link to /usr/lib/sendmail. 

1.3.14. /usr/ueb/mailq 
If Bt!ndmail is invoked as "mailq," it will simulate the -bp flag (i.e., sen cfma il will 

print the contents of the mail queue; see below). This should be a link to 
/usr/lib/sendmail. 
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2. NORMAL OPERATIONS 

2.1. Quick Configuration Startup 

A fast version of the configuration file may be set up by using the -bz flag: 

/usrjlib/sendmail -bz 

This creates the file I vsrl libl 8endmail.Jc ("frozen configuration "). This file is an image of 
8endmaifs data space after reading in the configuration file. If this file exists, it is used 
instead of /v8rllibI8endmail.cf 8endmail.fc must be rebuilt manually every time 8endmai/.cf 
is changed. 

The frozen configuration file will be ignored if a -C flag is specified or if sendmail 
detects that it is out of date. However, the heuristics are not strong so this should not be 
trusted. 

2.2. The System Log 

The system log is supported by the 8l16/0g(8) program. 

2.2.1. Format 

Each line in the system log consists of a timestamp, the name of the machine that 
generated it (for logging from several machines over the ethernet), the word "sendmail:", 
and a message. 

2.2.2. Levels 

If you have 8l16/og(8) or an equivalent installed, you will be able to do logging. 
There is a large amount of information that can be logged. The log is arranged as a 
succession of levels. At the lowest level only extremely strange situations are logged. At 
the highest level, even the most mundane and uninteresting events are recorded for pos­
terity. As a convention, log levels under ten are considered "useful;" log levels above 
ten are usually for debugging purposes. 

A complete description of the log levels is given in section 4.3. 

2.3. TheMaii Queue 

The mail queue should be processed transparently. However, you may find that 
manual intervention is sometimes necessary. For example, if a major host is down for a 
period of time the queue may become clogged. Although sendmail ought to recover grace­
fully when the host comes up, you may find performance unacceptably bad in the mean­
time. 

2.3.1. Printing the queue 

The contents of the queue can be printed using the mailq command (or by specify­
ing the -bp flag to sendmail): 

mailq 

This will produce a listing of the queue id's, the size of the message, the date the mes­
sage entered the queue, and the sender and recipients. 

2.3.2. Format of queue files 

All queue files have the form dAA99999 where AA99999 is the id for this file and 
the % is a type. The types are: 

d The data file. The message body (excluding the header) is kept in this file. 

Version 4.2 

The lock file. If this file exists, the job is currently being processed, and a queue 
run will not process the file. For that reason, an extraneous If file can cause a job 
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n 

q 

to apparently disappear (it will not even time out!). 

This file is created when an id is being created. It is a separate file to insure that 
no mail can ever be destroyed due to a race condition. It should exist for no more 
than a few milliseconds at any given time. 

The queue control file. This file contains the information necessary to process the 
job. 

t A temporary file. These are an image of the qt file when it is being rebuilt. It 
should be renamed to a qt file very quickly. 

x A transcript file, existing during the life of a session showing everything that hap­
pens during that session. 

The qt file is structured as a series of lines each beginning with a code letter. The 
lines are as follows: 

D The name of the data file. There may only be one of these lines. 

H A header definition. There may be any number of these lines. The order is impor­
tant: they represent the order in the final message. These use the same syntax as 
header definitions in the configuration file. 

R A recipient address. This will normally be completely aliased, but is actually 
realiased when the job is processed. There will be one line for each recipient. 

S The sender address. There may only be one of these lines. 

T The job creation time. This is used to compute when to time out the job. 

P The current message priority. This is used to order the queue. Higher numbers 
mean lower priorities. The priority increases as the message sits in the queue. The 
initial priority depends on the message class and the size of the message. 

M A message. This line is printed by the mailq command, and is generally used to 
store status information. It can contain any text. 

As an example, the following is a queue file sent to "mckusick@calder" and 
"wnj": 

DdCA13557 
Seric 
T404261372 
P132 
Rmckusick@calder 
Rwnj 
H?D7date: 23-0ct-82 15:49:32-PDT (Sat) 
H7F7from: eric (Eric Allman) 
H7x?cull-name: Eric Allman 
Hsubject: this is an example message 
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA> 
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82]) 

id A13557j 23-0ct-82 15:49:32-PDT (Sat) 
Hphone: (415) 548-3211 
HTo: mckusick@calder, ",nj 

This shows the name of the data file, the person who sent the message, the submission 
time (in seconds since January 1, 1970), the message priority, the message class, the reci­
pients, and the headers Cor the message. 

2.3.3. Forcing the queue 

Sendmail should run the queue automatically at intervals. The algorithm is to 
read and sort the queue, and then to attempt to process all jobs in order. When it 
attempts to run the job, sendmail first checks to see if the job is locked. If so, it ignores 
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the job. 

There is no attempt to insure that only one queue processor exists at any t.ime, 
since there is no guarantee that a job cannot take forever to process. Due to the locking 
algorithm, it is impossible for one job to freeze the queue. However, an uncooperative 
recipient host or a program recipient that never returns can accumulate many processes 
in your system. Unfortunately, there is no way to resolve this without violating the pro­
tocol. 

In some cases, you may find that a major host going down for a couple of days 
may create a prohibitively large queue. This will result in aendmail spending an inordi­
nate amount of time sorting the queue. This situation can be fixed by moving the queue 
to a temporary place and creating a new queue. The old queue can be run later when 
the otTending host returns to service. 

To do this, it is acceptable to move the entire queue directory: 

cd /usr/spool 
mv mqueue omqueuej mkdir mqueuej chmod 777 mqueue 

You should then kill the existing daemon (since it will still be processing in the old 
queue directory) and create a new daemon. 

To run the old mail queue, run the following command: 

/usr/lib/sendmail-oQ/usr/spool/omqueue -q 

The -oQ flag specifies an alternate queue directory and the -q flag says to just run 
every job in the queue. If you have a. tendency toward voyeurism, you can use the -v 
flag to watch what is going on. 

When the queue is finally emptied, you can remove the directory: 

rmdir /usr/spool/omqueue 

2.4. The Alias Database 

The alias database exists in two forms. One is a text form, maintained in the file 
/usT/lib/ aliases. The aliases are of the form 

name: namel, name2, ... 

Only local names may be aliased; e.g., 

eric@mit-xx: eric@berkeley 

will not have the desired etTect. Aliases may be continued by starting any continuation lines 
with a space or a tab. Blank lines and lines beginning with a sharp sign ("#") are com­
ments. 

The second form is processed by the dbm (3) library. This form is in the files 
/usT/lib/aliases.dir and /usr/lib/aliases.pag. This is the form that sendmail actually uses to 
resolve aliases. This technique is used to improve performance. 

2.4.1. Rebuilding the alias database 

The DBM version of the database may be rebuilt explicitly by executing the com­
mand 

newaliases 

This is equivalent to giving sendmail the -bi flag: 

/usr/lib/sendmail-bi 

If the "0" option is specified in the configuration, sendmaz1 will rebuild the alias 
database automatically if possible when it is out of date. The,conditions under which it 
will do this are: 
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(1) The DBM version of the database is mode 666. -or­

(2) Sendmail is running setuid to root. 

8 

Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if it 
might take more than five minutes to rebuild the database, there is a chan'ce that several 
processes will start the rebuild process simultaneously. 

2.4.2. Potential problems 

There are a number of problems that can occur with the alias database. They all 
result from a ,entlmail process accessing the DBM version while it is only partially built. 
This can happen under two circumstances: One process accesses the database while 
another process is rebuilding it, or the process rebuilding the database dies (due to being 
killed or a system crash) before completing the rebuild. 

Send mail has two techniques to try to relieve these problems. First, it ignores 
interrupts while rebuilding the database; this avoids the problem of someone aborting 
the process leaving a partially rebuilt database. Second, at the end of the rebuild it 
adds an alias of the form 

@:@ 

(which is not normally legal). Before sendmail will access the database, it checks to 
insure that this entry exists l . It will wait up to five minutes for this entry to appear, at 
which point it will force a rebuild itseIf2. 

2.4.3. List owners 

If an error occurs on sending to a certain address, say "x", Bendmail will look for 
an alias of the form "owner-x" to receive the errors. This is typically useful for a mail­
ing list where the submitter of the list has no control over the maintanence of the list 
itself; in this case the list maintainer would be the owner of the list. For example: 

unix-wizards: eric@ucbarpa, wnj@monet, nosuchuser, 
sam@matisse 

owner-unix-wizards: eric@ucbarpa 

would cause "eric@ucbarpa" to get the error that will occur when someone sends to 
unix-wizards due to the inclusion of "nosuchuser" on the list. 

2.5. Per-User Forwarding (.forward Files) 

As an alternative to the alias database, any user may put a file with the name ".for­
ward" in his or her home directory. If this file exists, ,endmaii redirects mail for that user 
to the list of addresses listed in the .forward file. For example, if the home directory for 
user "mckusick" has a .forward file with contents: 

mckusick@ernie 
kirk@calder 

then any mail arriving for "mckusick" will be redirected to the specified accounts. 

2.6. Special Header Lines 

Several header lines have special interpretations defined by the configuration file. Oth­
ers have interpretations built into ,endmail that cannot be changed without changing the 
code. These builtins are described here. 

IThe "a" option is required in the configuration ror this action to occur. This should normally be specified unless 
you are running tlelivermoil in parallel with .entlm4il. 

2Note: the "0" option must be specified in the configuration file ror this operation to' occur. 
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2.8.1. Return-Receipt-To: 

If this header is sent, a. messa.ge will be sent to any specified a.ddresses when the 
final delivery is complete. if the mailer ha.s the 1 fla.g (local delivery) set in the mailer 
descriptor. 

2.6.2. Errors-To: 

If errors occur anywhere during processing, this hea.der will ca.use error messages to 
go to the listed addresses rather than to the sender. This is intended for mailing lists. 

2.6.3. Apparently-To: 

II' a message comes in with no recipients listed in the messa.ge (in a To:, Cc:, or 
Bee: line) then acndmail will a.dd an "Appa.rently-To:" hea.der line for a.ny recipients it is 
a.wa.re of. This is not put in a.s a standa.rd recipient line to warn a.ny recipients that the 
list is not complete. 

At lea.st one recipient line is required under RFC 822. 

3. ARGUMENTS 

The complete list of a.rguments to acndmail is described in detail in Appendix A. Some 
important arguments a.re described here. 

3.1. Queue Interval 

The amount of time between forking a process to run through the queue is defined by 
the -q flag. If you run in mode f or a this can be relatively large, since it will only be 
relevant when a host that wa.s down comes back up. If you run in q mode it should be rela­
tively short, since it defines the maxiII,lum amount of time that a message may sit in the 
queue. 

3.2. Daemon Mode 

If you allow incoming mail over an !PC connection, you should have a daemon run­
ning. This should be set by your / ctc/ rc file using the -bd flag. The -bd flag and t.he -q 
flag may be combined in one call: 

/usr/lib/sendmail -bd -q30m 

3.3. Forcing the Queue 

In some ca.ses you may find that the queue ha.s gotten clogged Cor some rea.son. You 
can force a queue run using the -q flag (with no value). It is entertaining to use the -v flag 
(verbose) when this is done to watch what happens: 

/usr/lib/sendmail -q -v 

3.4. Debugging 

There a.re a fairly la.rge number of debug flags built into acndmail. Each debug flag 
ha.s a number and a level, where higher levels means to print out more information. The 
convention is that levels greater than nine are "absurd," i.e., they print out so much infor­
mation that you wouldn't normally want to see them except for debugging that particular 
piece of code. Debug flags are set using the -d option; the syntax is: 
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debug-flag: -d debug-list 
debug-list: debug-option [ , debug-option ) 
debug-option: debug-range I . debug-level ) 
debug-range: integer I integer - integer 
debug-level: integer 

where spaces are for reading ease only. For example, 

-d12 Set flag 12 to level 1 
-d12.3 Set flag 12 to level 3 
-d3-17 Set flags 3 through 17 to level 1 
-d3-17.4 Set flags 3 through 17 to level 4 

10 

For a complete list of the available debug flags you will have to look at the code (they are 
too dynamic to keep this documentation up to date). 

3.5. Trying a Different Configuration File 

An alternative configuration file can be specified using the -C flag; for example, 

/usr/lib/sendmail -Ctest.cf 

uses the configuration file test.e/instead of the default /usr/lib/sendmail.cf IT the -C flag 
has no value it defaults to 8endmail.c/in the current directory. 

3.6. Changing the Values of Options 

Options can be overridden using the -0 flag. For example, 

/usr/lib/sendmail -oT2m 

sets the T (timeout) option to two minutes for this run only. 

4. TUNING 

There are a number of configuration parameters you may want to change, depending on 
the requirements of your site. Most of these are set using an option in the configuration file. 
For example, the line "OT3d" sets option "T" to the value "3d" (three days). 

4.1. Timeouts 

All time intervals are set using a scaled syntax. For example, "10m" represents ten 
minutes, whereas "2h30m" represents two and a half hours. The full set of scales is: 

s seconds 
m minutes 
h hours 
d days 
w weeks 

4.1.1. Queue interval 

The argument to the -q flag specifies how often a subdaemon will run the queue. 
This is typically set to between five minutes and one haIr hour. 

4.1.2. Read timeouts 

It is pOssible to time out when reading the standard input or when reading from a 
remote SMTP server. Technically, this is not acceptable within the published protocols. 
However, it might be appropriate to set it to something large in certain environments 
(such as an hour). This will reduce the chance of large numbers of idle daemons piling 
up on your system. This timeout is set using the r option in the configuration file. 
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4.1.3. Message timeouts 

Alter sitting in the queue for a few days, a message will time out. This is to 
insure that at least the sender is aware of the inability to send a message. The timeout 
is typically set to three days. This timeout is set using the T option in the 
configuration file. 

The time of submission is set in the queue, rather than the amount of time left 
until timeout. As a result, you can flush messages that have been hanging for a short 
period by running the queue with a short message timeout. For example, 

/usr/lib/sendmail ~Tld -q 

will run the queue and flush anything that is one day old. 

4.2. Delivery Mode 

There are a number of delivery modes that 8endmail can operate in, set by the "d" 
configuration option. These modes specify how quickly mail will be delivered. Legal modes 
are: 

i deliver interactively (synchronously) 
b deliver in background (asynchronously) 
q queue only (don't deliver) 

There are tradeoffs. Mode "i" passes the maximum amount of information to the sender, 
but is hardly ever necessary. Mode "q" puts the minimum load on your machine, but 
means that delivery may be delayed for up to the queue interval. Mode "b" is probably a 
good compromise. However, this mode can cause large numbers of processes if you have a 
mailer that takes a long time to deliver a message. 

4.3. Log Level 

The level of logging can be set for sendmail. The default using a standard 
configuration table is level 9. The levels are as follows: 

o No logging. 

1 Major problems only. 

2 Message collections and failed deliveries. 

3 Successful deliveries. 

4 Messages being defered (due to a host being down, etc.). 

5 Normal message queueups. 

6 Unusual but benign incidents, e.g., trying to process a locked queue file. 

9 Log internal queue id to external message id mappings. This can be useful for tracing 
a message as it travels between several hosts. -

12 Several messages that are basically only of interest when debugging. 

16 Verbose information regarding the queue. 

4.4. File Modes 

There are a number of files that ma.y have a number of modes. The modes depend on 
what functionality you want and the level of security you require. 

4.4.1. To suid or not to suid? 

Sendmail can safely be made setuid to root. At the point where it is about to 
exec (2) a mailer, it checks to see if the userid is zero; if so, it resets the userid and 
groupid to a default (set by the u and g options). (This ca~ be overridden by setting 
the S flag to the mailer for· mailers that are trusted and must be called as root.) 
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However, this will cause mail processing to be accounted (using 8a (8)) to root rather 
than to the user sending the mail. 

4.4.2. Temporary file modes 

The mode of all temporary files that 8endmail creates is determined by the "F" 
option. Reasonable values for this option are 0600 and 0644. If the more permissive 
mode is selected, it will not be necessary to run 8endmail as root at all (even when run­
ning the queue). 

4.4.S. Should my alias database be writable? 

At Berkeley we have the alias database (jusr/lib/aliases*) mode 666. There are 
some dangers inherent in this approach: any user can add him-/her-self to any list, or 
can "steal" any other user's mail. However, we have found users to be basically 
trustworthy I and the cost of having a read-only database greater than the expense of 
finding and eradicating the rare nasty person. 

The database that 8endmail actually used is represented by the two files aliases.dir 
and aliases.pag (both in /usr/lib). The mode on these files should mat.ch the mode on 
/usr/lib/aliases. If atiase, is writable and the DBM files (atiases.dir and aliases.pag) are 
not, users will be unable to reflect their desired changes through to the actual database. 
However, if a/ia8e, is read-only and the DBM files are writable, a slightly sophisticated 
user can arrange to steal mail anyway. 

If your DBM files are not writable by the world or you do not have aut.o-rebuild 
enabled (with the "D" option), then you must be careful to reconstruct the alias data­
base each time you change the text version: 

newaliases 

If this step is ignored or forgotten any intended changes will also be ignored or forgot­
ten. 

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE 
This section describes the configuration file in detail, including hints on how to writ.e one 

of your own if you have to. 

There is one point that should be made clear immediately: the syntax of the configuration 
file is designed to be reasonably easy to parse, since this is done every time sendmail starts up, 
rather than easy for a human to read or write. On the "future project" list is a configurat.ion­
file' compiler. 

An overview of the configuration file is given first, followed by details of the semant.ics. 

5.1. The Syntax 

The configuration file is organized as a series of lines, each of which begins with a sin­
gle character defining the semantics for the rest of the line. Lines beginning with a space or 
a tab are continuation lines (although the semantics are not well defined in many places). 
Blank lines and lines beginning with a sharp symbol ('#') are comments. 

5.1.1. R and S - rewriting rules 
The core of address parsing are the rewriting rules. These are an ordered produc­

tion system. Sendmail scans through the set of rewriting rules looking for a mat.ch on 
the left hand side (LHS) of the rule. When a rule matches, the address is replaced by 
the right hand side (RHS) of the rule. 

There are several sets of rewriting rules. Some of the rewriting sets are used inter­
nally and must have specific semantics. Other rewriting sets do not have specifically 
assigned semantics, and may be referenced by the mailer definitions or by other 
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rewriting sets. 

The syntax of these two commands are: 

Sn 

Sets the current ruleset being collected to n. IT you begin a ruleset more than once it 
deletes the old definition. 

Rlh, rh, comment, 

The fields must be separated by at least one tab character; there may be embedded 
spaces in the fields. The lh, is a pattern that is applied to the input. IT it matches, the 
input is rewritten to the rh,. The comment, are ignored. 

5.1.2. D - define macro 

Macros are named with a single character. These may be selected from the entire 
ASCII set, but user-defined macros should be selected from the set of upper case letters 
only. Lower case letters and special symbols are used internally. 

The syntax for macro definitions is: 

D%val 

where % is the name of the macro and val is the value it should have. Macros can be 
interpolated in most places using the escape sequence $%. 

5.1.3. C and F - define classes 

Classes of words may be defined to match on the left hand side of rewrit.ing rules. 
For example a class of all local names for this site might be created so that attempts to 
send to oneself can be eliminat.ed. These can either be defined directly in the 
configuration file or read in from another file. Classes may be given names lrom the set 
of upper case letters. Lower case letters and special characters are reserved for system 
use. 

The syntax is: 

Cc wordl wordE ... 
Fcfilc [format I 

The first form defines the class c to match any of the named words. It is permissible to 
split them among multiple lines; lor example, the two forms: 

CHmonet ucbmonet 

and 

CHmonet 
CHucbmonet 

are equivalent. The second form reads the elements of the class c from the named file; 
the format is a ,canf(3) pattern that should produce a single string. 

5.1.4. M - define mailer 

Programs and interlaces to mailers are defined in this line. The lormat is: 

Mname, {field-va/ue}* 

where name is the name of the mailer (used internally only) and the "field=name" pairs 
define attributes of the mailer. Fields are: 
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Path The pathname of the mailer 
Flags Special flags for this mailer 
Sender A rewriting set for sender addresses 
Recipient A rewriting set for recipient addresses 
Argv An argument vector to pass to this mailer 
Eol The end-of-line string for this mailer 
Maxsize The maximum message length to this mailer 

Only the first character of the field name is checked. 

5.1.5. H - define header 

The format of the header lines that sendmail inserts into the message are defined 
by the H line. The syntax of this line is: 

H[?mftag8?]hname: ktemp/ate 

Continuation lines in this spec are reflected directly into the outgoing message. The 
ktemplate is macro expanded before insertion into the message. If the mftag8 (sur­
rounded by question marks) are specified, at least one of the specified flags must be 
stated in the mailer definition for this header to be automatically output. If one of these 
headers is in the input it is reflected to the output regardless of these flags. 

Some headers have special semantics that will be described below. 

5.1.6. 0 - set option 

There are a number of "random" options that can be set from a configuration file. 
Options are represented by single characters. The syntax of this line is: 

00 value 

This sets option 0 to be value. Depending on the option, value may be a string, an 
integer a boolean (with legal values "t" "T" "f" or "F"· the default is TRUE) or a J J ", , 

time interval. 

5.1.7. T - define trusted users 

Trusted users are those users who are permitted to override the sender address 
using the -f flag. These typically are "root," "uucp," and "network," but on some 
users it may be convenient to extend this list to include other users, perhaps to support 
a separate UUOP login for each host. The syntax of this line is: 

TU8er 1 u8er2 ... 

There may be more than one of these lines. 

5.1.8. P - precedence definitions 

Values for the "Precedence:" field may be defined using the P control line. The 
syntax of this field is: 

Pname=num 

V{hen the 'name is found in a "Precedence:" field, the message class is set to n,um. 
Higher numbers mean higher precedence. Numbers less than zero have the special pro­
perty that error messages will not be returned. The default precedence is zero. For 
example, our list of precedences is: 

Version 4.2 

Pfirst-class=O 
Pspecial-delivery==IOO 
Pjunk==-IOO 
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5.2. The Semantics 

This section describes the semantics of the configuration file. 

5.2.1. Special macros, conditionals 

Macros are interpolated using the construct $x, where % is the name of the macro 
to be interpolated. In particular, lower case letters are reserved to have special seman­
tics, used to pass information in or out of sendmail, and some special characters are 
reserved to provide conditionals, etc. 

The Collowing macros must be defined to transmit information into sendmail: 

e The SMTP entry message 
j The "official" domain name for this site 
I The format of the UNIX from line 
n The name of the daemon (for error messages) 
o The set of "operators" in addresses 
q default format of sender address 

The $e macro is printed out when SMTP starts up. The first word must be the $j 
macro. The $j macro should be in RFC821 format. The Sl and Sn macros can be con­
sidered constants except under terribly unusual circumstances. The So macro consists of 
a list of characters which will be considered tokens and which will separate tokens when 
doing parsing. For example, if "r" were in the $0 macro, then the input "address" 
would be scanned as three tokens: "add," "r," and "ess." Finally, the $q macro spl'cifies 
how an address should appear in a message when it is defaulted. For example, on our 
system these definitions are: 

De$j Sendmail $v ready at $b 
DnMAILER-DAEMON 
DlFrom $g Sd 
Do.:%@!"=/ 
Dq$gS?x ($x)$. 
Dj$H.$D 

An acceptable alternative for the $q macro is "$?xSx $.<$g>". These correspond to 
the following two formats: 

eric@Berkeley (Eric Allman) 
Eric Allman < eric@Berkeley > 

Some macros are defined by sendmail for interpolation into argv's for mailers or 
for other contexts. These macros are: 
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a The origination date in Arpanet format 
b The current date in Arpanet format 
c The hop count 
d The date in UNIX (ctime) format 
f The sender (from) address 
g The sender address relative to the recipient 
h The recipient host 

The queue id 
p Sendmail's pid 
r Protocol used 
s Sender's host name 
t A numeric representation of the current time 
u The recipient user 
v The version number of sendmail 
w The hostname of this site 
x The full name of the sender 
y The id of the sender's tty 
z The home directory of the recipient 

16 

There are three types of dates that can be used. The Sa and Sb macros are in 
Arpanet format; Sa is the time as extracted from the "Date:" line of the message (if 
there was one), and Sb is the current date and time (used for postmarks). If no "Dat.e:" 
line is found in the incoming message, Sa is set to the current time also. The Sd macro 
is equivalent to the Sa macro in UNIX (ctime) format. 

The Sf macro is the id of the sender as originally determined; when mailing toO a 
specific host the Sg macro is set to the address of the sender relative to the recipient. 
For example, if I send to "bollard@matisse" from the machine "ucbarpa" the Sf macro 
will be "eric" and the Sg macro will be "eric@ucbarpa." 

The Sx macro is set to the full name of the sender. This can be determined in 
several ways. It can be passed as flag to sendmail. The second choice is the value of the 
"Full-name:" line in the header if it exists, and the third choice is the comment field of a 
"From:" line. If all of these fail, and if the message is being originated locally, t.he full 
name is looked up in the I etcl passwd file. 

\Vhen sending, the Sh, Su, and $z macros get set to the host, user, and home direc­
tory (if local) of the recipient. The first two are set from the $@ and S: part of the 
rewriting rules, respectively. 

The Sp and $t macros are used to create unique strings (e.g., for the "Message-Id:" 
field). The Si macro is set to the queue id on this host; if put into the timestamp line it 
can be extremely useful for tracking messages. The Sy macro is set to the id of t,he ter­
minal of the sender (if known); some systems like to put this in the Unix "From" line. 
The Sv macro is set to be the version number of sendmail; this is normally put in times­
tamps and has been proven extremely useful for debugging. The Sw macro is set to the 
name of this host if it can be determined. The Sc field is set to the "hop count," i.e., 
the number of times this message has been processed. This can be determined by t.he -h 
fiag on the command line or by counting the timestamps in the message. 

The Sr and $s fields are set to the protocol used to communicate with sendmail 
and the sending hostname; these are not supported in the current version. 

Conditionals can be specified using the syntax: 

S?x textl sl text2 S. 

This interpolates texti if the macro Sx is set, and te:et2 otherwise. The "else" ($ D clause 
may be omitted. 
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5.2.2. Special classes 

The class $==w is set to be the set of all names this host is known by. This can 
be used to delete local hostnames. 

5.2.3. The lett hand side 

The left hand side of rewriting rules contains a pattern. Normal words are simply 
matched directly. Metasyntax is introduced using a dollar sign. The metasymbols are: 

$* Match zero or more tokens 
$+ Match one or more tokens 
$- Match exactly one token 
$==z Match any token in class z 
$- z Match any token not in class z 

If any of these match, they are assigned to the symbol Sn for replacement on the right 
hand side, where n is the index in the LHS. For example, if the LHS: 

$-:S+ 
is applied to the input: 

UCBARP A: eric 

the rule will match, and the values passed to the RHS will be: 

$1 UCBARPA 
$2 eric 

5.2.4. The right hand side 

When the right hand side of a rewriting rule matches, the input is deleted and 
replaced by the right hand side. Tokens are copied directly from the RHS unless they 
are begin with a dollar sign. Metasymbols are: 

$n Substitute indefinite token n from LHS 
$ > n ceCal I " ruleset n 
$#maiier Resolve to mailer 
$@host Specify host 
$:user Specify user 

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=, or S­
match on the LHS. It may be used anywhere. 

The $ > n syntax causes the remainder of the line to be substituted as usual and 
then passed as the argument to ruleset n. The final value of ruleset n then becomes the 
substitution for this rule. 

The $# syntax should only be used in ruleset zero. It causes evaluation of the 
ruleset to terminate immediately, and signals to sendmail that the address has com­
pletely resolved. The complete syntax is: 

$#mailer$@hostS:user 

This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the mailer 
is local the host part may be omitted. The mailer and host must be a single word, but 
the user may be multi-part. 

A RHS may also be preceeded by a $@ or a $: to control evaluation. A $@ prefix 
causes the ruleset to return with the remainder of the RHS as the value. A $: prefix 
causes the rule to terminate immediately, but the ruleset to continue; this can be used to 
avoid continued application of a rule. The prefix is stripped before continuing. 

The $@ and $: prefixes may preceed a $> spec; for example: 
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R$+ $:$>7$1 

matches anything, passes that to ruleset seven, and continues; the $: is necessary to 
avoid an infinite loop. 

5.2.5. Semantics of rewriting rule sets 
There are five rewriting sets that have specific semantics. These are related as dep­

icted by figure 2. 

Ruleset three should turn the address into "canonical form." This form should 
have the basic syntax: 

local-part@bost-domain-spec 

If no "@" sign is specified, then the host-domain-spec may be appended from the sender 
address (if the C flag is set in the mailer definition corresponding to the aending mailer). 
Ruleset three is applied by sendmail before doing anything with any address. 

Ruleset zero is applied after ruleset three to addresses that are going to actually 
specify recipients. It must resolve to a {mailer, hoat, uaer} triple. The mailer must be 
defined in the mailer definitions from the configuration file. The host is defined into the 
$h macro for use in the argv expansion of the specified mailer. 

Rulesets one and two are applied to all sender and recipient addresses respectively. 
They are applied before any specification in the mailer definition. They must never 
resolve. 

Ruleset four is applied to all addresses in the message. It is typically used to 
translate internal to external form. 

5.2.6. Mailer flags etc. 

There are a number of flags that may be associated with each mailer, each 
identified by a letter of the alphabet. Many or them are assigned semantics internally. 
These are detailed in Appendix C. Any other flags may be used freely t.o conditionally 
assign headers to messages destined for particular mailers. 

5.2.7. The "error" mailer 

addr 

The mailer with the special name "error" can be used to generate a user error. 
The (optional) host field is a numeric exit status to be returned, and the user field is a 
message to be printed. For examp1e, the entry: 

resolved address 
o 

1 

3 o 4 msg 

2 

Figure 2 - Rewriting Set Semantics 

D - Sender domain addition S - mailer-specific sender rewriting 
R - mailer-specific recipient rewriting 
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S#errorS:Host unknown in this domain 

on the RH.S of a rule will cause the specified error to be generated iC the LHS matches. 
This mailer is only Cunctional in ruleset zero. 

5.3. Building a Configuration File From Scratch 

Building a configuration table from scratch is an e):tremely difficult job. Fortunately, 
it is almost never necessary to do SO; nearly every situation that may come up mllY be 
resolved by changing an existing table. In any case, it is critical that you understand what 
it is that you are trying to do and come up with a philosophy Cor the configuration t.able. 
This section is intended to explain what the real purpose oC a configuration table is and to 
give you some ideas for what your philosophy might be. 

5.3.1. What you are trying to do 

The configuration table has three major purposes. The first and simplest is t.o set 
up the environment Cor 8endmail. This involves setting the options, defining a Cew criti­
cal macros, etc. Since these are described in other places, we will not go int.o more detail 
here. 

The second purpose is to rewrite addresses in the message. This should typically 
be done in two phases. The first phase maps addresses in any Cormat into a canonical 
form. This should be done in ruleset three. The second phase maps this canonical Corm 
into the syntax appropriate for the receiving mailer. Sendmail does this in three sub­
phases. Rulesets one and two are applied to all sender and recipient addresses respec­
tively. After this, you may specify per-mailer rulesets for both sender and recipient 
addresses; this allows mailer-specific customization. Finally, ruleset four is applied to do 
any default conversion to external form. 

The third purpose is to map addresses into the actual set of instructions necessary 
to get the message delivered. Ruleset zero must resolve to the internal form, which is in 
turn used as a pointer to a mailer descriptor. The mailer descriptor describes the inter­
face requirements of the mailer. 

5.3.2. Philosophy 

The particular philosophy you choose will depend heavily on the size and structure 
of your organization. I will present a few possible philosophies here. 

One general point applies to all of these philosophies: it is almost always a mistake 
to try to do full name resolution. For example, if you are trying to get names of the 
Corm "user@host" to the Arpanet, it does not pay to route them to 
">.:yzvax!decva.x!ucbvax!c70:user@host" since you then depend on several links not under 
your control. The best approach to this problem is to simply forward to 
"xyzvax!user@host" and let xyzvax worry about it Crom there. In summary, ju!':t get 
the message closer to the destination, rather than determining the Cull path. 

5.3.2.1. Large site, many hosts - minimum information 

Version 4.2 

Berkeley is an example of a large site, i.e., more than two or three hosts. \Ve 
have decided that the only reasonable philosophy in our environment is to designate 
one host as the guru for our site. It must be able to resolve any piece of mail it 
receives. The other sites should have the minimum a~ount oC information they can 
get away with. In addition, any inCormation they do have should be hints rather 
than solid inCormation. 

For example, a typical site on our local ether network is "monet." Monet has a 
list or known ethernet hosts; iC it receives mail Cor any oC them, it can do direct 
delivery. If it receives mail Cor any unknown host, it just passes it directly to 
"ucbvax," our master host. Ucbvax may determine that the host name is illegal and 
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reject the message, or may be able to do delivery. However, it is important to note 
that when a new ethernet host is added, the only host that must have its tables 
updated is ucbvax; the others ma, be updated as convenient, but this is not critical. 

This picture is slightly muddied due to network connections that are not actu­
ally located on ucbvax. For example, our TOP connection is currently on 
"ucbarpa." However, monet do" not know about this; the inCormation is hidden 
totally between ucbvax and ucbarpa. Mail going from monet to a TOP host is 
transfered via the ethernet from monet to ucbvax, then via the ethernet Crom ucbvax 
to ucbarpa, and then is submitted to the Arpanet. Although this involves some 
extra hops, we feel this is an acceptable tradeoff. 

An interesting point is that it would be possible to update monet to send TCP 
mail directly to ucbarpa if the load got too high; iC monet failed to note a host as a 
TOP host it would go via ucbvax as before, and if monet incorrectly sent a message 
to ucbarpa it would still be sent by ucbarpa to ucbvax as before. The only problem 
that can occur is loops, as iC ucbarpa thought that ucbvax had the TCP connect.ion 
and vice versa. For this reason, updates should a/ways happen to the master host 
first. 

This philosophy results as much Crom the need to have a single source Cor the 
configuration files (typically built using m4 (1) or some similar tool) as any logical 
need. Maintaining more than three separate tables by hand is essentially an impossi­
ble job. 

5.3.2.2. Small site - complete information 

A small site (two or three hosts) may find it more reasonable to have complete 
inCormation at each host. This would require that each host know exactly where 
each network connection is, possibly including the names of each host on that net­
work. As long as the site remains small and the the configuration remains relat.ively 
static, the update problem will probably not be too great. 

5.3.2.3. Single host 

This is in some sense the trivial case. The only major issue is trying to insure 
that you don't have to know too much about your environment. For example, if 
you have a UUOP connection you might find it useful to know about the names of 
hosts connected directly to you, but this is really not necessary since this may be 
determined Crom the syntax. 

5.3.3. Relevant issues 

The canonical Corm you use should almost certainly be as specified in the Arpanet 
protocols RFC819 and RFC822. Copies oC these RFC's are included on the sentlmail 
tape as doc/r/c819.lpr and doc/r/c8ff.lpr. 

RFC822 describes the Corm at or the mail message itself. Sendmail rollows this 
RFC closely, to the extent that many of the standards described in this document can 
not be changed without changing the code. In particular, the Collowing characters have 
special interpretations: 

< > () "\ 
Any attempt to use these characters Cor other than their RFC822 purpose in addresses is 
probably doomed to disaster. 

RFC819 describes the specifics of the domain-based addressing. This is touched on 
in RFC822 as well. Essentially each host is given a name which is a right-t.o-Ieft dot 
qualified pseudo-path Crom a distinguished root. The elements of the path need not be 
physical hosts; the domain is logical rather than physical. For example, at Berkeley one 
legal host is "a.cc.berkeley.arpa"; reading from right to left, "arpa" is a top level 
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domain (related to, but not limited to, the physical Arpanet), "berkeley" is both an 
Arpanet host and a logical domain which is actually interpreted by a host called ucbvax 
(which is actually just the "major" host for this domain), "cc" represents the Computer 
Center, (in this case a strictly logical entity), and "a" is a host in the Computer Center; 
this particular host happens to be connected via berknet, but other hosts might be con­
nected. via one of two ethemets or some other network. 

Beware when reading RFC819 that there are a number of errors in it. 

5.3.4. How to proceed 

Once you have decided on a philosophy, it is worth examInIng the available 
configuration tables to decide if any of them are close enough to steal major part.s of. 
Even under the worst of conditions, there is a fair amount of boiler plate that can be 
collected safely. 

The next step is to build ruleset three. This will be the hardest part of the job. 
Beware of doing too much to the address in this ruleset, since anything you do will 
reflect through to the message. In particular, stripping oC local domains is best deferred, 
since this can leave you with addresses with no domain spec at all. Since 3endmai/likes 
to append the sending domain to addresses with no domain, this can change the seman­
tics of addresses. Also try to avoid Cully qualifying domains in this ruleset. Although 
technically legal, this can lead to unpleasantly and unnecessarily long addresses reflected 
into messages. The Berkeley configuration files define ruleset nine to qualify domain 
names and strip local domains. This is called from ruleset zero to get all addresses into 
a cleaner form. 

Once you have ruleset three finished, the other rulesets should be relatively trivial. 
If you need hints, examine the supplied configuration tables. 

5.3.5. Testing the rewriting rules - the -bt flag 

When you build a configuration table, you can do a certain amount of testing 
using the "test mode" of sendmail. For example, you could invoke sendmail as: 

sendmail -bt -Ctest.cf 

which would read the configuration file "test.cf" and enter test mode. In this mode, you 
enter lines of the form: 

rwset address 

where rtlJset is the rewriting set you want to use and addreu is an address to apply the 
set to. Test mode shows you the steps it takes as it proceeds, finally showing you the 
address it ends up with. You may use a comma separated list of rwsets for sequential 
application of rules to an input; ruleset three is always applied first. For example: 

1,21,4 monet:bollard 

first applies ruleset three to the input "monet:bollard." Ruleset one is then applied to 
the output of ruleset three, followed similarly by rulesets twenty-one and four. 

If you need more detail, you can also use the "-d21" Bag to turn on more debug­
ging. For example, 

sendmail -bt -d21.99 

turns on an incredible amount of information; a single word address is probably going to 
print out several pages worth of informat.ion. 

5.3.6. Building mailer descriptions 

To add an outgoing mailer to your mail syst.em, you will have to define the 
characteristics of the mailer. 
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Each mailer must have an internal name. This can be arbitrary, except that the 
names "local" and "prog" must be defined. 

The pathname of the mailer must be given in the P field. If this mailer should be 
accessed via an IPO connection, use the string "[IPOl" instead. 

The F field defines the mailer flags. You should specify an "r" or "r" flag to pass 
the name of the sender as a -t or -r flag respectively. These flags are only passed if 
they were passed to ,endmail, 50 that mailers that give errors under some circumstances 
can be placated. If the mailer is not picky you can just specify u_f Sg" in the argv tem­
plate. If the mailer must be called as root the "5" flag should be given; this will not 
reset the userid before calling the mailer3• If this mailer is local (i.e., will perform final 
delivery rather than another network hop) the "1" flag should be given. Quote charac­
ters (backslashes and " marks) can be stripped from addresses if the "5" flag is specified; 
if this is not given they are passed through. If the mailer is capable of sending to more 
than one user on the same host in a single transaction the "m" flag should be st.ated. If 
this flag is on, then the argv template containing Su will be repeated for each unique 
user on a given host. The "e" flag will mark the mailer as being "expensive," which 
will cause ,endmail to defer connection until a queue run4 • 

An. unusual case is the "0" flag. This flag applies to the mailer that the message 
is received from, rather than the mailer being sent to; if set, the domain spec of the 
sender (i.e., the U@host.domain" part) is saved and is appended to any addresses in the 
message that do not already contain a domain spec. For example, a message of the 
form: 

From: eric@ucbarpa 
To: wnj@monet, mckusick 

will be modified to: 

From: eric@ucbarpa 
To: wnj@monet, mckusick@ucbarpa 

if and only if the "0" flag is defined in the mailer corresponding to "eric@ucbarpa." 

Other flags are described in Appendix O. 
The Sand R fields in the mailer description are per-mailer rewriting sets to be 

applied to sender and recipient addresses respectively. These are applied after the send­
ing domain is appended and the general rewriting sets (numbers one and two) are 
applied, but beCore the output rewrite (ruleset four) is applied. A typical use is to 
append the current domain to addresses that do not already have a domain. For exam­
ple, a header of the Corm: 

From: eric 

might be changed to be: 

From: eric@ucbarpa 

or 

From: ucbvax!eric 

depending on the domain it is being shipped into. These sets can also be used to do spe­
cial purpose output rewriting in cooperation with ruleset Cour. 

The E field defines the string to use as an end-of-line indication. A string contain­
ing only newline is the default. The usual backslash escapes (\r, \n, \t, \b) may be 
used. 

sSendmGil must be running setuid to root for this to work. 

+rbe "c" configuration option must be given for this to be effective. 
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Finally, an argv template is given as the E field. It may have embedded spaces. If 
there is no argv with a Su macro in it, .endmail will speak SMTP to the mailer. If the 
pathname for this mailer is "[IPC]," the argv should be 

IPC Sh [ port] 

where port is the optional port number to connect to. 

For example, the specifications: 

Mlocal, P=/bin/mail, F=rlsm S=10, R=20, A=mail-d Su 
Mether,P=[IPCj, F=meC, S=l1, R=21, A==IPC Ih, M=I00000 

specifies a mailer to do local delivery and a mailer for ethernet delivery. The first is 
called "local," is located in the file "/bini mail," takes a picky -r flag, does local 
delivery, quotes should be stripped from addresses, and multiple users can be delivered 
at once; ruleset ten should be applied to sender addresses in the message and ruleset 
twenty should be applied to recipient addresses; the argv to send to a message will be 
the word "mail," the word "-d," and words containing the name of the receiving user. 
If a -r flag is inserted it will be between the words "mail" and "-d." The second mailer 
is called "ether," it should be connected to via an IPC connection, it can handle multi­
ple users at once, connections should be deferred, and any domain from the sender 
address should be appended to any receiver name without a domain; sender addresses 
should be processed by ruleset eleven and recipient addresses by ruleset twenty-one. 
There is a 100,000 byte limit on messages passed through this mailer. 
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COM:MAND LINE FLAGS 

Arguments must be presented with flags before addresses. The Bags are: 

-f addr The sender's machine address is addr. This flag is ignored unless the real user is 
listed as a "trusted user" or if addr contains an exclamation point (because of cer­
tain restrictions in UUCP). 

-r addr 

-h cnt 

-Fflame 

-n 
-t 

-bx 

-qtime 

-Cfile 

-dlevel 

-ox value 

A:n obsolete form of -f. 

Sets the "hop count" to cnt. This represents the number of times this message 
has been processed by lJendmaii (to the extent that it is supported by the underly­
ing networks). Ont is incremented during processing, and if it reaches MAXHOP 
(currently 30) 6endmail throws away the message with an error. 

Sets the full name of this user to name. 

Don't do aliasing or forwarding. 

Read the header for "To:", "Cc:", and "Bcc:') lines, and send to everyone listed in 
those lists. The "Bcc:" line will be deleted before sending. A:ny addresses in the 
argument vector will be deleted from the send list. 

Set operation mode to z. Operation modes are: 

m Deliver mail (default) 
a Run in arpanet mode (see below) 
s Speak SMTP on input side 
d Run as a daemon 
t Run in test mode 
v Just verify addresses, don't collect or deliver 
i Initialize the alias database 
p Print the mail queue 
z Freeze the configuration file 

The special processing for the ARPM1ET includes reading the "From:" line from 
the header to find the sender, printing ARPANET style messages (preceded by 
three digit reply codes for compatibility with the FTP protocol [Neigus73, Pos­
te174, Postel77]), and ending lines of error messages with <CRLF>. 

Try to process the queued up mail. II the time is given, a sendmail will run 
through the queue at the specified interval to deliver queued mail; otherwise, it 
only runs once. 

Use a different configuration file. 

Set debugging level. 

Set option z to the specified value. These options are described in Appendix B. 

There are a number of options that may be specified as primitive Bags (provided for compati­
bility with delivermaiQ. These are the e, i, m, and v options. Also, the f option may be specified 
as the -8 Bag. 
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CONFIGURATION OPTIONS 

The following options may be set using the -0 flag on the command line or the 0 line in the 
configuration file: 

Afile Use the named file as the alias file. If no file is specified, use aliases in the current 
directory. 

a 

c 

dx 

D 

ez 

Fn 
f 

gn 

Hfile 

Ln 

:Mxvalue 

m 

o 

Qdir 

rlime 

Sfile 

If set, wait for an "@:@" entry to exist in the alias database before starting up. 
If it does not appear in five minutes, rebuild the database. 

If an outgoing mailer is marked as being expensive, don't connect immediately. 
This requires that queueing be compiled in, since it will depend on a queue run 
process to actually send the mail. 

Deliver in mode z. Legal modes are: 

1 Deliver interactively (synchronously) 
b Deliver in background (asynchronously) 
q Just queue the message (deliver during queue run) 

If set, rebuild the alias database if necessary and possible. If this option is not set, 
sendmail will never rebuild the alias database unless explicitly requested using -hi. 

Dispose of errors using mode x. The values for % are: 

p Print error messages (default) 
q No messages, just give exit status 
m Mail back errors 
w Write back errors (mail if user not logged in) 
eMail back errors and give zero exit stat always 

The temporary file mode, in octal. 644 and 600 are good choices. 

Save Unix-style ClFrom" lines at the front of headers. Normally they are assumed 
redundant and discarded. 

Set the default group id for mailers to run in to n. 

Specify the help file for SMTP. 

Ignore dots in incoming messages. 

Set the default log level to R. 

Set the macro z to value. This is intended only for use from the command line. 

Send to me too, even if I am in an alias expansion. 

Assume that the headers may be in old format, i.e., spaces delimit names. This 
actually turns on an adaptive algorithm: if any recipient address contains a 
comma, parenthesis, or angle bracket, it will be assumed that commas already 
exist. If this flag is not on, only commas delimit names. Hea~ers are always out­
put with commas between the names. 

Use the named dir as the queue directory. 

Timeout reads after time interval. 

Log statistics in the named file. 
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s 

Ttime 

tS,D 

un 

v 

Version 4.2 

Be super-sate when running things, i.e., always instantiate the queue file, even if 
you are going to attempt immediate delivery. Sendmail always instantiates the 
queue file before returning control the the client under any circumstances. 
Set the queue timeout to time. Arter this interval, messages that have not been 
successfully sent will be returned to the sender. 

Set the local timezone name to S (or standard time and D for daylight time; this 
is only used under version six. 

Set the default userid for mailers to n. Mailers without the S flag in the mailer 
definition will run as this user. 

Run in verbose mode. 
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APPENDIX C 

MAILER FLAGS 

The following flags may be set in the mailer description. 

f The mailer wants a -f from fiag, but only if this is a network forward operation (i.e., the 
mailer will give an error if the executing user does not have special permissions). 

r Same as f, but sends a -r flag. 

S Don't reset the userid before calling the mailer. This would be used in a secure environment 
where sendmail ran as root. This could be used to avoid forged addresses. This fI~g is 
suppressed if given from an "unsafe" environment (e.g, a user's mail.cf file). 

n 

s 

m 

F 

D 

~f 

x 

P 
u 

h 

A 

U 

e 

X 

L 

P 

I 

C 

Do not insert a UNIX-style "From" line on the front of the message. 

This mailer is local (i.e., final delivery will be performed). 

Strip quote characters off of the address before calling the mailer. 

This mailer can send to multiple users on the same host in one transaction. \Vhen a $u macro 
occurs in the argv part of the mailer definition, that field will be repeated as necessary for all 
qualifying users. 

This mailer wants a "From:" header line. 

This mailer wants a "Date:" header line. 

This mailer wants a "Message-Id:" header line. 

This mailer wants a "Full-Name:" header line. 

This mailer wants a "Return-Path:" line. 

Upper case should be preserved in user names for this mailer. 

Upper case should be preserved in host names for this mailer. 

This is an Arpanet-compatible mailer, and all appropriate modes should be set. 

This mailer wants Unix-style "From" lines with the ugly UUCP-style "remote from <host>" 
on the end. 

This mailer is expensive to connect to, so try to avoid connecting normally; any necessary con­
nection will occur during a queue run. 

This mailer want to use the hidden dot algorithm as specified in RFC821; basically, any line 
beginning with a dot will have an extra dot prepended (to be stripped at the other end). This 
insures that lines in the message containing a dot will not terminate the message prematurely. 

Limit the line lengths as specified in RFC821. 

Use the return-path in the SMTP "MAIL FROM:" command rather than just the return 
address; although this is required in RFC821, many hosts do not process return paths prop­
erly. 

This mailer will be speaking SMTP to another sendmail - as such it can use special protocol 
features. This option is not required (i.e., if this option is omitted the transmission will still 
operate successfully, although perhaps not as efficiently as possible). 

If mail is received from a mailer with this flag set, any addresses in the header that do not 
have an at sign ("@") after being rewritten by ruleset three will have the "@domain" clause 
from the sender tacked on. This allows mail with headers of the form: 
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From: usera@hosta 
To: userb@hostb, userc 

to be rewritten as: 

Frotn: usera@hosta 
To: userb@hostb, userc@hosta 

automatically. 

Version 4.2 
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APPENDlX D 

OTHER CONFIGURATION 

There are some configuration changes that can be made by recompiling scndmail. These are 
located in three places: 

md/config.m4 These contain operating-system dependent descriptions. They are interpolated 
into the Makefiles in the 3re and au% directories. This includes information about 
what version of UNIX you are running, what libraries you have to include, et.c. 

src/conf.h Configuration parameters that may be tweaked by the installer are included in 
conf.h. 

src/conf.c Some special routines and a few variables may be defined in conf.c. For the most 
part these are selected from the settings in coru.h. 

Parameters in md/config.m4 

The following compilation flags may be defined in the m.I CONFIG macro in md/ config. 1114 to 
define the environment in which you are operating. 

V6 If set, this will compile a version 6 system, with 8-bit user id's, single character 
tty id's, etc. 

VMUNlX If set, you will be assumed to have a Berkeley 4BSD or 4.lBSD, including the 
vfork(2) system call, special types defined in <sys/types.h> (e.g, u_char), etc. 

If none of these flags are set, a version 7 system is assumed. 

You will also have to specify what libraries to link with sentlmail in the m.lLIBS macro. 
:Most notably, you will have to include if you are running a 4.lBSD system. 

Parameters in src/conf.h 

Parameters and compilation options are defined in conf.h. Most of these need not normally 
be tweaked; common parameters are all in sendmail.cf. However, the sizes of certain primitive vec­
tors, etc., are included in this file. The numbers following the parameters are their default value. 

l\1A...'(l.,ll\JE; [256] The maximum line length of any input line. If message lines exceed this length 
they will still be processed correctly; however, header lines, configuration file 
lines, alias lines, etc., must fit within this limit. 

l\1AXNAME [128J 
MA..XFIELD [2500J 
MA..,"\l'V [40] 

MA..'ffiOP [30J 

The maximum length of any name, such as a host or a user name. 

The maximum total length of any header field, including continuation lines. 

The maximum number of parameters to any mailer. This limits the number of 
recipients that may be passed in one transaction. 

When a message has been processed more than this number of times, sendmail 
rejects the message on the assumption that there has been an aliasing loop. 
This can be determined from the -h flag or by counting the number of trace 
fields (Le, "Received:" lines) in the message header. 

MAXATOM [lOOJ The maximum number of atoms (tokens) in a single address. For example, the 
address ueric@Berkeley" is three atoms. 

M . ..uo.1A.ll.ERS [25] 
The maximum number of mailers that may be defined in the configuration file. 
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MAXRWSETS [301 The maximum number of rewriting sets that may be defined. 

MAXPRIORITIES [251 
The maximum number of values for the "Precedence:" field that may be 
defined (using the P line in sendmail.cf). 

MAA"TRUST [30} The maximum number of trusted users that may be defined (using the T line 
in sendmail.cf). 

A number of other compilation options exist. These specify whether or not specific code should be 
compiled in. 

DBM 

DEBUG 

LOG 

QUEUE 

SMTP 

DAEMON 

If set, the "DBM" package in UNIX is used (see DBM(3X) in [UNIX80J). If not 
set, a much less efficient algorithm for processing aliases is used. 

If set, debugging information is compiled in. To actually get the debugging out­
put, the -d ftag must be used. 

If set, the '1/,log routine in use at some sites is used. This makes an informat,ional 
log record for each message processed, and makes a higher priority log record for 
internal system errors. 

This flag should be set to compile in the queueing code. If this is not set, mailers 
must accept the mail immediately or it will be returned to the sender. 

If set, the code to handle user and server SMTP will be compiled in. This is only 
necessary if your machine has some mailer that speaks SMTP. 

If set, code to run a daemon is compiled in. This code is for 4.2BSD if the 
NVl\Wl\T)X ftag is specified; otherwise, 4.1a BSD code is used. Beware however 
that there are bugs in the 4.1a code that make it impossible for sendmail to work 
correctly under heavy load. 

UGL YUUCP If you have a UUCP host adjacent to you which is not running a reasonable ver­
sion of rmai/, you will have to set this flag to include the "remote from sysname" 
info on the from line. Otherwise, UUCP gets confused about where the mail came 
from. 

NOTUl\1JX If you are using a non-UNIX mail format, you can set this flag to turn off special 
processing of UNIX-style "From " lines. 

Configuration in src/ conf.c 

Not all header semantics are defined in the configuration file. Header lines that should only 
be included by certain mailers (as well as other more obscure semantics) must be specified in the 
Hdrlnfo table in con/.c. This table contains the header name (which should be in all lower case) 
and a set of header control flags (described below), The flags are: 

lLACHECK Normally when the check is made to see if a header line is compatible with a 
mailer, ,endmail will not delete an e>.isting line. If this flag is set, sencfmail will 
delete even existing header lines. That is, if this bit is set and the mailer does not 
have flag bits set that intersect with the required mailer flags in the header 
definition in sendmail.cf, the header line is always deleted. 

lLEOH If this header field is set, treat it like a blank line, i.e., it will signal the end of the 
header and the beginning of the message text. 

lLFORCE 

lLTRACE 

Version 4.2 

Add this header entry even if one e>.isted in the message before. If a header entry 
does not have this bit set, ,endmail will not add another header line if a header 
line of this name already existed. This would normally be used to stamp the mes­
sage by everyone who handled it. 

If set, this is a timestamp (trace) field. If the number of trace fields in a message 
exceeds a preset amount the message is returned on the assumption that it has an 
aliasing loop. 
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ILRCPT If set, this field contains recipient addresses. This is used by the -t flag to deter­
mine who to send to when it is collecting recipients from the message. 

lLFROM This flag indicates that this field specifies a sender. The order of these fields in the 
HdrInlo table specifies aendmail'a preference for which field to return error mes­
sages to. 

Let's look at a sample HdrInlo specification: 

struct hdrinfo HdrlnfoO = 
{ 

/* originator fields, most to least significant * / 
"resent-sender", HJ'ROM, 
"resent-from", HJ'ROM, 
"sender", HJ'ROM, 
"from", HJ'ROM, 
"full-name", lLACHECK, 

/* destination fields * / 
"to", H...RCPT, 
"resent-to", H...RCPT, 
"cc", H...RCPT, 

/* message identification and control * / 
"message", H...EOH, 
"text", H...EOH, 

/* trace fields * / 
"received", ILTRACEIH-FORCE, 

NULL, 0, 
}; 

This structure indicates that the "To:", "Resent-To:", and "Cc:" fields all specify recipient 
addresses. AIly "Full-Name:" field will be deleted unless the required mailer flag (indicated in the 
configuration file) is specified. The "Message:" and "Text:" fields will terminate the header; these 
are specified in new protocols [NBS 80] or used by random dissenters around the network world. 
The "Received:" field will always be added, and can be used to trace messages. 

There are a number of important points here. First, header fields are not added automati­
cally just because they are in the HdrInlo structure; they must be specified in the configuration file 
in order to be added to the message. AIly header fields mentioned in the configuration file but not 
mentioned in the HdrInlo structure have default processing performed; that is, they are added 
unless they were in the message already. Second, the HdTInlo structure only specifies cliched pro­
cessing; certain headers are processed specially by ad hoc code regardless of the status specified in 
HdrInlo. For example, the "Sender:" and "From:" fields are always scanned on ARPANET mail 
to determine the sender; this is used to perform the "return to sender" function. The "From:" and 
"Full-Name:" fields are used to determine the full name of the sender if possible; this is stored in 
the macro $x and used in a number of ways. 

The file conl.c also contains the specification of ARPANET reply codes. There are four 
classifications these fall into: 

char .A.rpaJnfo!l = "050"; 
char .A.rp3..-Tsyserrll = "455"; 
char .A.rpa...PSyserr J = "554"; 
char .A.rp3..-UsrerrD = "554"; 

/* arbitrary info * / 
/* some (transient) system error */ 
/* some (transient) system error */ 
/* some (fatal) user error * / 

The class Arpa_Info is for any information that is not required by the protocol, such as forwarding 
information. Arpa_TS,l8err and ArpLPS,I8err is printed by the 811aerr routine. TSyserr is printed 
out for transieat errors, whereas PSyserr is printed for permanent errors; the distinction is made 
bMed on the value of ermo. Finally, Arpa_Uarerr is the result of a user error and is generat.ed by 
the fl8rerr routine; these are generated when the user has specified something wrong, and hence the 
error is permanent, i.e., it will not work simply by resubmitting the request. 
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If it is necessary to restrict mail through a relay, the checkcDmpat routine can be modified. 
This routine is called for every recipient address. It can return TRUE to indicate that the address 
is acceptable and mail processing will continue, or it can return FALSE to reject the recipient. If 
it returns false, it is up to claeckcom,at to print an error message (using tl8rerr) saying why the 
message is rejected. For example, checkcom,at could read: 

boo1 
checkcompat(to) 

{ 

} 

register ADDRESS *to; 

if (MsgSize > 50000&& to->q...mailer !== LocaIMailer) 
{ 

} 

usrerr("Message too large for non-local delivery"); 
NoRetum == TRUE; 
return (FALSE); 

return (TRUE); 

This would reject messages greater than 50000 bytes unless they were local. The NoReturn ftag 
can be sent to supress the return of the actual body of the message in the error return. The actual 
use of this routine is highly dependent on the implementation, and use should be limited. 
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APPENDIX E 

SUMMARY OF SUPPORT FILES 

This is a summary of the support files that 8endmail creates or generates. 

/usr/lib/sendmail 
The binary of 8endmail. 

/usr /bin/newaliases 
A link to /usr/lib/sendmail; causes the alias database to be rebuilt. Running this 
program is completely equivalent to giving 8endmail the -bi flag. 

/usr/bin/mailq Prints a listing of the mail queue. This program is equivalent to using the -bp 
flag to 8endmail. 

/usr/lib/sendmail.cf 
The configuration file, in textual form. 

/usr /Iib /sendmail.fc 
The configuration file represented as a memory image. 

/usr /lib /sendmail.hf 
The SMTP help file. 

/ usr /Ii b / sen dmail.st 
A statistics file; need not be present. 

/usr/lib/aliases The textual version of the alias file. 

/usr/lib/aliases.{pag,dir} 
The alias file in dbm (3) format. 

/etc/syslog The program to do logging. 

/etc/syslog.conf The configuration file for syslog. 

/etc/syslog.pid Contains the process id of the currently running syslog. 

/usr /spool/mqueue 
The directory in which the mail queue and temporary files reside. 

/usr /spool/mqueue/ qf* 
Control (queue) files for messages. 

/usr/spool/mqueue/df* 
Data files. 

/usr /spooljmqueue/lf* 
Lock files 

/usr /spoolj mqueue/tf* 
Temporary versions of the qf files, used during queue file rebuild. 

/usr/spool/mqueue/nf* 
A file used when creating a unique id. 

/usr /spool/mqueue/xf* 
A transcript of the current session. 
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SEl\1)11AIL - An Internetwork Mail Router 

Eric Allmant 

Britton-Lee, Inc. 
1919 Addison Street, Suite 105. 

Berke/ey, California 94704. 

ABSTR.O\CT 

Routing mail through a heterogenous internet presents many new problems. Among the 
worst of these is that of address mapping. Historically, this has been handled on an ad 
hoc basis. However, this approach has become unmanageable as internets grow. 

Sendmail acts a unified "post office" to which all mail can be submitted. Address in­
terpretation is controlled by a production system, which can parse both domain-based ad­
dressing and old-style ad hoc addresses. The production system is powerful enough to 
rewrite addresses in the message header to conform to the standards of a number of com­
mon target networks, including old (NCP /RFCi33) Arpanet, new (TCP /RFC822) Ar­
panet, 'tJUCP, and Phonenet. Sendmail also implements an SMTP server, message queue­
ing, and aliasing. 

Sendmail implements a general internetwork mail routing facility, featuring aliasing and for­
'warding, automatic routing to network gateways, and flexible configuration. 

In a simple network, each node has an address, and resources can be identified with a host­
resource pair; in particular, the mail system can refer to users using a host-username pair. Host 
names and numbers have to be administered by a central authority, but usernames can be assigned 
locally to each host. 

In an internet, multiple networks with different characterstics and managements must com­
municate. In particular, the synta.x and semantics of resource identification change. Certain spe­
cial cases can be handled trivially by ad hoc techniques, such as providing network names that 
appear local to hosts on other networks, as with the Ethernet at Xerox PARCo However, the gen­
eral case is extremely complex. For example, some networks require point-to-point routing, which 
simplifies the database update problem since only adjacent hosts must be entered into the system 
tables, while others use end-to-end addressing. Some networks use a left-associative syntax and 
others use a right-associative synta.....:, causing ambiguity in mixed addresses. 

Internet standards seek to eliminate these problems. Initially, these proposed expanding the 
address pairs to address triples, consisting of {network, host, resource} triples. Network numbers 
must be universally agreed upon, and hosts can be assigned locally on each network. The user­
level presentation was quickly expanded to address domains, comprised of a local resource 
identification and a hierarchical domain specification with a common static root. The domain 
technique separates the issue of physical Yersus logical addressing. For example, an address of the 
form "eric@a.cc.berkeley.arpa" describes only the logical organization of the address space. 

Sendmail is intended to help bridge the gap between the totally ad hoc world or networks 
tha.t know nothing or each other and the clean, tightly-coupled world or unique network numbers. 
It can accept old arbitrary address synta.xes, resolving ambiguities using heuristics specified by the 

tA considu:l.ole part of this work was done while under the employ of the INGRES Project at the University of Cali-
fornia at Berkeley. . 
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system administrator, as well as domain-based addressing. It helps guide the conversion of mes-
sage formats between disparate networks. In short, ,endmail is designed to assist a graceful transi- 0··',",," 
tion to consistent internetwork addressing schemes. 

Section 1 discusses the design goals for ,endmail. Section 2 gives an overview of the basic 
functions oC the system. In section 3, details of usage are discussed. Section 4 compares ,endmail 
to other internet mail routers, and an evaluation of ,endmail is given in section 5, including future 
plans. 

1. DESIGN GOALS 

Design goals for ,endmail include: 

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell version 
7 mail [~1X83J, Berkeley Mail [Shoensi9] , BerkNet mail [Schmidt79], and hopeCully 
UUCP mail [Nowitz78a, Nowitz78b]. ARPA.:"'ET mail [Crocker77a, Postelii] was also 
required. 

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at 
least brought to the attention oC a human for correct disposal; no message should ever be 
completely lost. This goal was considered essential because oC the emphasis on mail in 
our environment. It has turned out to be one oC the hardest goals to satisfy, especially in 
the Cace of the many anomalous message formats produced by various ARP A.'\'ET sites. 
For example, certain sites generate improperly Cormated addresses, occasionally causing 
error-message loops. Some hosts use blanks in names, causing problems with L'NIX mail 
programs that assume that an address is one word. The semantics of some fields are 
interpreted slightly differently by different sites. In summary, the obscure Ceatures of the 
ARPA;'\"ET mail protocol really are used and are difficult to support, but must be sup­
ported. 

(3) Existing software to do actual delivery should be used whenever possible. This goal 
derives as much from political and practical considerations as technical. 

(4) Easy expansion to fairly complex environments, including multiple connections to a single 
nm .... ork type (such as with multiple UUOP or Ether nets [Metcalfei6]). This goal 
requires consideration of the contents of an address as well as its syntax in order to deter­
mine which gateway to use. For example, the ARPANET is bringing up the Tep proto­
col to replace the old NCP protocol. No host at Berkeley runs both TOP and KCP, so it 
is necessary to look at the ARP A..l\TET host name to determine whether to route mail to 
an NCP gateway or a TCP gateway. 

(5) Configuration should not be compiled into the code. A single compiled program should 
be able to run as is at any site (barring such basic changes as the CPU type or the 
operating system). We have found this seemingly unimportant goal to be critical in real 
life. Besides the simple problems that occur when any program gets recompiled in a 
different environment, many sites like to "fiddle" with anything that they will be recom­
piling anyway. 

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let 
individuals specify their own forwarding, without modifying the system alias file. 

(i) Each user should be able to specify which mailer to execute to process mail being 
delivered for him. This feature allows users who are using specialized mailers that use a 
different format to build their environment without changing the system, and facilitates 
specialized functions (such as returning an "I am on vacation" message). 

(8) Network traffic should be minimized by batching addresses to a single host where possi­
ble, without assistance from the user. 

These goals motivated the architecture illustrated in figure 1. The user interacts with a 
mail generating and sending program. When the mail is created, the generator calls sendmail, 
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Figure 1 - Sendmail System Structure. 

3 

which routes the message to the correct maiJer(s). Since some of the senders may be network 
servers and some of the mailers may be network clients, aendmail may be used as an internet 
mail gateway. 

2. OVERVIE,\V 

2.1. System Organization 

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it col­
lects a message generated by a user interface program (UIP) such as Berkeley A-Jail, 1fS 
ICrockeri7b], or MH lBordeni9] , edits the message as required by the destination network, 
and calls appropriate mailers to do mail delivery or queueing for network transmisl;ion l , 

This discipline allows the insertion of new mailers at minimum cost. In this sense sendmail 
resembles the :Message Processing Module (}.{P}.I) of IPosteli9b]. 

2.2. Interfaces to the Outside '\Vorld 

There are three ways sendmail can communicate with the outside world, both in 
receiving and in sending mail. These are using the conventional U!\1X argument 
vector fret urn status, speaking SMTP over a pair of U~1X pipes, and speaking SMTP over 
an interprocess(or) channel. 

2.2.1. Argument vector/exit status 

This technique is the standard UNIX method for communicating with the process. 
A list of recipients is sent in the argument vector, and the message body is sent on the 
standard input. Anything that the mailer prints is simply collected and sent back to the 
sender if there were any problems. The exit status from the mailer is collected after the 
message is sent, and a diagnostic is printed if appropriate. 

lexc~pt when mailing to a file, when ullamail does the deli\'ery directly. 

Version 4.1 DRAFT Last Mod 7/25/83 



SENDMAIL 4 

2.2.2. SMTP over pipes 

The SMTP protocol [PosteI82] can be used to run an interactive lock-step interface 
with the mailer. A subprocess is still created, but no recipient addresses are passed to 
the mailer via the argument list. Instead, they are passed one at a time in commands 
sent to the processes standard input. Anything appearing on the standard output must 
be a reply code in a special format. 

2.2.3. SMTP over an IPC connection 

This technique is similar to the previous technique, except that it uses a 4.2BSD 
IPC channel [UN'LX83j. This method is e.-cceptionally flexible in that the mailer need not 
reside on the same machine. It is normally used to connect to a sendmail process on 
another machine. 

2.3. Operational Description 

\Vhen a sender wants to send a message, it issues a request to 8endmail using one of 
the three methods described above. SendmaiJ operates in two distinct phases. In the first 
phase, it collects and stores the message. In the second phase, message delivery occurs. If 
there were errors during processing during the second phase, sendmail creates and returns a 
new message describing the error and/or returns an status code telling what went wrong. 

2.3.1. Argument processing and address parsing 

U sendmail is called using one of the two subprocess techniques, the arguments are 
first scanned and option specifications are processed. Recipient addresses are then col­
lected, either from the command line or from the SMTP RCPT command, and a list of 
recipients is created. Aliases are expanded at this step, including mailing lists. As much 
validation as possible of the addresses is done at this step: synta.x is checked, and local 
addresses are verified, but detailed checking of host names and addresses is deferred until /' "'. 
delivery. Forwarding is also performed as the local addresses are verified. ~_ ./ 

Sendmail appends each address to the recipient list after parsing. When a name is 
aliased or forwarded, the old name is retained in the list, and a flag is set that tells the 
delivery phase to ignore this recipient. This list is kept free from duplicates, preventing 
alias loops and duplicate messages deliverd to the same recipient, as might occur if a 
person is in two groups. 

2.3.2. Message collection 

SendmaiJ then collects the message. The message should have a header at the 
beginning. No formatting requirements are imposed on the message except that they 
must be lines of text (i.e., binary data is not allowed). The header is parsed and stored 
in memory, and the body of the message is saved in a temporary file. 

To sivlplify the program interCace, the message is collected even if no addresses 
were valid. The message will be returned with an error. 

2.3.3. Message delivery 

For each unique mailer and host in the recipient list, 8endmail calls the appropriate 
mailer. Each mailer invocation sends to all users receiving the message on one host. 
Mailers that only accept one recipient at a time are handled properly. 

The message is sent to the mailer using one of the same three interfaces used to 
submit a message to sendmail. Each copy of the message is prepended by a customized 
header. The mailer status code is caught and checked, and a suitable error message 
given as appropriate. The exit code must con Corm to a system standard or a generic 
message ("Service unavailable") is given. 
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2.3.4. Queueing for retransmission 

If the mailer returned an status that indicated that it might be able to handle the 
mail later, 8tmdmail will queue the mail and try again later. 

2.3.5. Return to sender 

If errors occur during processing, 8endmail returns the message to the sender for 
retransmission. The letter can be mailed back or written in the file "dead.letter" in the 
sender's home directory2. 

2.4. Message Header Editing 

Certain editing of the message header occurs automatically. Header lines can be 
inserted under control of the configuration file. Some lines can be merged; for example, a 
"From:" line and a "Full-name:" line can be merged under certain circumstances. 

2.5. Configuration File 

Almost all configuration information is read at runtime from an ASCn file, encoding 
macro definitions (defining the value of macros used internally), header declarations (telling 
send mail the format of header lines that it will process specially, i.e., lines that it will add 
or reformat), maHer definitions (giving information such as the location and characteristics 
of each mailer), and address rewriting rules (a limited production system to rewrite 
addresses which is used to parse and rewrite the addresses). 

To improve performance when reading the configuration file, a memory image can be 
provided. This provides a "compiled" form of the configuration file. 

3. USAGE AND IMPLEMENTATION 

3.1. Arguments 

Arguments may be flags and addresses. Flags set various processing options. Follow­
ing flag arguments, address arguments may be given, unless we are running in S~·ITP mode. 
Addresses follow the synta.'\': in RFC822 [Crocker82] for ARPA1 ...... 'ET address formats. In 
brief, the format is: 

(1) Anything in parentheses is thrown away (as a comment). 

(2) Anything in angle brackets (" < > ") is preferred over anything else. This rule imple­
ments the ARP Al\'ET standard that addresses of the form 

user name < machine-address> 

will send to the electronic "machine-address" rather than the human "user name." 

(3) Double quotes ( " ) quote phrases; backslashes quote characters. Backslashes are more 
powerful in that they will cause otherwise equivalent phrases to compare differently -
for example, U8er and "u8er" are equivalent, but \u8er is different from either of them. 

Parentheses, angle brackets, and double quotes must be properly balanced and nested. 
The rewriting rules control remaining parsing3• 

3.2. Man to Files and Programs 

Files and programs are legitimate message recipients. Files provide archival storage of 
messages, useful for project administration and history. Programs are useful as recipients in 

20bviously, iC the site giving the error is not the originating site, t.he only reuonable option is to mail back to the 
sender. Also, there are many more error disposition options. but they only effect the error message - the "return to 
sender" Cunction is always handled in one or these two ways. 

3t>isdaimer: Some special processing is done a/'ter rewriting local names; see below. 
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a variety of situations, for example, to maintain a public repository of systems messages 
(such as the Berkeley mag8 program, or the :MARS system [Sattley78]). 

Any address passing through the initial parsing algorithm as a local address (i.e, not 
appearing to be a valid address for another mailer) is scanned for two special cases. If 
prefixed by a vertical bar (U I") the rest of the address is processed as a shell command. If 
the user name begins with a slash mark ("I") the name is used as a file name, instead of a 
login name. 

Files that have setuid or setgid bits set but no execute bits set have those bits honored 
if 8endmajl is running as root. 

3.3. Aliasing, Forwarding, Inclusion 

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding allows 
each user to reroute incoming mail destined for that account. Inclusion directs aendmal1 to 
read a file for a list of addresses, and is normally used in conjunction with aliasing. 

3.3.1. Aliasing 

Aliasing maps names to address lists using a system-wide file. This file is indexed 
to speed access. Only names that parse as local are allowed as aliases; this guarantees a 
unique key (since there are no nicknames for the local host). 

3.3.2. Forwarding 

After aliasing, recipients that are local and valid are checked for the existence of a 
".forward" file in their home directory. If it exists, the message is not sent to that user, 
but rather to the list of users in that file. Often this list will contain only one address, 
and the feature will be used for network mail forwarding. 

Forwarding also permits a user to specify a private incoming mailer. For example, 
fOf\'liardingto: 

"I/usr /Iocaljnewmail myname" 

will use a different incoming mailer. 

3.3.3. Inclusion 

Inclusion is specified in RFC i33 [Crocker77a] syntax: 

:Include: pathname 

An address of this form reads the file specified by pathname and sends to all users listed 
in that file. 

The intent is not to support direct use of this feature, but rather to use this as a 
subset of aliasing. For example, all alias of the form: 

project: :include:/usrjprojectjuserlist 

is a method of letting a project maintain a mailing list without intera.ction with the sys-
tem administra.tion, even if the alias file is protected. - . 

It is not necessary to rebuild the index on the alias database when a :include: list is 
changed. 

3.4. Message Collection 

Once all recipient addresses are parsed and verified, the message is collected. The mes­
sage comes in two parts: a message header and a message body, separated by a blank line. 

Version 4.1 

The header is formatted as a series of lines of the form 

field-name: field-nlue 
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Field-value can be split across Jines by starting the following lines with a space or a tab. 
Some header fields have special internal meaning, and have appropriate special processing .. 
Other headers are simply passed through. Some header fields may be added automatically, 
such as time stamps. 

The body is a series of text lines. It is completely uninterpreted and untouched, 
except that lines beginning with a dot have the dot doubled when transmitted over an 
SMTP channel. This extra dot is stripped by the receiver. 

3.5. Message Delivery 

The send queue is ordered by receiving host before transmission to implement message 
batching. Each address is marked as it is sent so rescanning the Jist is safe. An argument 
list is built as the scan proceeds. Mail to files is detected during the scan of the send list. 
The interface to the mailer is performed using one of the techniques described in section 2.2. 

After a connection is established, aendmail makes the per-mailer changes to the header 
and sends the result to the mailer. If any mail is rejected by the mailer, a flag is set to 
invoke the return-to-sender function after all delivery completes. 

3.6. Queued Messages 

If the mailer returns a "temporary failure" exit status, the message is queued. A con­
trol file is used to describe the recipients to be sent to and various other parameters. This 
control file is formatted as a series of lines, each describing a sender, a recipient, the time of 
submission, or some other salient parameter of the message. The header of the message is 
stored in the control file, so that the associated data file in the queue is just the temporary 
file that was originally collected. 

3.7. Configuration 

Configuration is controlled primarily by a configuration file read at startup. Sendmail 
should not need to be recomplied e.'Ccept 

(1) To change operating systems (\'6, Vi /32\', 4BSD). 

(2) To remove or insert the DBM rUNIX database) library. 

(3) To change ARPANET reply codes. 

(4) To add headers fields requiring special processing. 

Adding mailers or changing parsing (Le., rewriting) or routing information does not require 
recompilation. 

If the mail is being sent by a local user, and the file ".mailcf" exists in the sender's 
home directory, that file is read as a configuration file aCter the system configuration file. 
The primary use of this feature is to add header lines. 

The configuration file encodes macro definitions, header definitions, mailer definitions, 
rewriting rules, and options. 

3:; .1. Macros 

Macros can be used in three ways. Certain macros transmit unstructured textual 
information into the mail system, such as the name &endmail will use to identify itself in 
error messages. Other macros transmit inCormation Crom aendmail to the configuration 
file Cor use in creating other fields (such as argument vectors to mailers); e.g., the name 
of the sender, and the host and user of the recipient. Other macros are unused inter­
nally, and can be used as shorthand in the configuration file. 
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3.7.2. Header declarations 

Header dedarations inform ,endmail of the format of known header lines. 
Knowledge of a few header lines is built into ,tndmGI1, such as the "From:" and "Date:" 
lines. 

Most configured headers will be automatically inserted in the outgoing message if 
they don't exist in the incoming message. Certain headers are suppressed by some 
mailers. 

3.7.3. Mailer declarations 

Mailer declarations tell ,endmail of the various mailers available to it. The 
definition specifies the internal name of the mailer, the pathname of the program to call, 
some flags associated with the mailer, and an argument vector to be used on the call; 
this vector is macro-expanded before use. 

3.7.4. Address rewriting rules 

The heart of address parsing in ,endmail is a set of rewriting rules. These are an 
ordered list of pattern-replacement rules, (somewhat like a production system, except 
that order is critical), which are applied to each address. The address is rewritten textu­
aUy until it is either rewritten into a special canonical form (i.e., a (mailer, host, user) 
3-tuple, such as {arpanet, usc-isif, postel} representing the address "postel@usc-isif"), or 
it falls off the end. When a pattern matches, the rule is reapplied until it fails. 

The configuration file also supports the editing of addresses into different formats. 
For example, an address of the form: 

ucsfcgl!tef 

might be mapped into: 

tef@ucsfcgl.UUCP 

to conform to the domain syntax. Translations can also be done in the other direction. 

3.7.5. Option setting 

There are several options that can be set from the configuration file. These include 
the pathnll.mes of various support files, timeouts, default modes, etc. 

4. COMPARISON WITH OTHER MAILERS 

4.1. Delivermail 

(1) 

(2) 

(3) 

(4) 

(5) 

SendmGil is an outgrowth of delivermail. The primary differences are: 

Configuration information is not compiled in. This change simplifies many of the 
problems of moving to other machines. It also aUows easy debugging of new mailers. 

Address parsing is more fle."'Cible. For example, delivermailonly supported one gateway 
to any network, where3S ,endmG;l can be sensitive to host names and reroute to 
different gateways. 

Forwarding and :include: features eliminate the requirement that the system ali3S file 
be writll.ble by any user (or that an update program be written, or that the system 
administration make all changes). 

Sendmail supports message batching across networks when a message is being sent to 
multiple recipients. 

A mail queue is provided in ,endmail. Mail thll.t cannot be delivered immediately but 
can potentially be delh'ered later is stored in this queue for a later retry. The queue 
also provides a buffer against system cr3Shes; after the message has been collected it 
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may be reliably redelivered even if the system crashes during the initial delivery. 

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct inter~ 
face networks such as the ARPA~'ET and/or Ethernet using SMTP (the Simple Mail 
Transfer Protocol) over a TCP lIP connection. 

4.2. MMDF 

MJ.\IDF [Crockeri9} spans a wider problem set than ,endmail. For example, the 
domain of M1IDF includes a "phone network" mailer, whereas ,endmail calls on preexisting 
mailers in most cases. 

~l\IDF and ,endmaz7 both support aliasing, customized mailers, message batching, 
automatic forwarding to gateways, queueing, and retransmission. MMDF supports tw~ 
stage timeout, which ,endmail does not support. 

The configuration for ~L\IDF is compiled into the code4• 

Since ~1.\IDF does not consider backwards compatibility as a design goal, the address 
parsing is simpler but much less flexible. 

It is somewhat harder to integrate a new channels into }'l\IDF. In particular, ~I.\IDF 
must know the location and format of host tables ror all channels, and the channel must 
speak a special protocol. This allows 1vL\IDF to do additional verification (such as verifying 
host names) at submission time. 

M:'\IDF strictly separates the submission and delivery phases. Although 8endmail has 
the concept of each or these stages, they are integrated into one program, whereas in ~L\IDF 
they are split into two programs. 

4.3. Message Processing Module 

The Message Processing Module (MPM) discussed by Postel [posteli9b] matches 8end~ 
mail closely in terms or its basic architecture. However, like MMDF, the MP}'! includes the 
network interface software as part of its domain. 

!vIP1! also postulates a duplex channel to the receiver, as does MMDF, thus allowing 
simpler handling of errors by the mailer than is possible in ,endmail. When a message 
queued by ,endmail is sent, any errors must be returned to the sender by the mailer itself. 
Both },.'!P).1 and MMDF mailers can return an immediate error response, and a single error 
processor can create an appropriate response. 

~IPM prefers passing the message as a structured object, with typ~length-value 
tuples8 • Such a convention requires a much higher degree of cooperation between mailers 
than is required by send mail. MPM also assumes a universally agreed upon internet name 
space (with each address in the form of a net-host-user tuple), which sendmail does not. 

5. EVALUATIONS AND FUTURE PLANS 
Sendmail is designed to work in a nonhomogeneous environment. Every attempt is made 

to avoid imposing unnecessary constraints on the underlying mailers. This goal has driven 
much of the design. One of the major problems has been the lack of a uniform address space, 
as postulated in [Postel7gaJ and [PosteI79bJ. 

A nonuniform address space implies that a path will be specified in all addresses, either 
explicitly (as part of the address) or implicitly (as with implied forwarding to gateways). This 
restriction has the unpleasant effect of making replying to messages exceedingly difficult, since 

4Dynamie configuration !.abies are currently being considered for MMDF; allowing the installer to select either com­
piled or dynamic tables. 

'The M~mF equivalent or a ,endmlJil"mailer." 

8-fhis is similar to th~ ;\13S sta.ndard. 
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there is no one "address" Cor any person, but only a way to get there from wherever you are. 

Interfacing to mail programs that were not initially intended to be applied in an internet 
environment has been amazingly successful, and has reduced the job to a manageable task. 

Sendmaa1 has knowledge of a few difficult environments built in. It generates ARPAJ."\~T 
FTPjSMTP compatible error messages (prepended with three-digit numbers [Neigus73, Pos­
tel74 , Postel82]) as necessary, optionally generates UNIX-style ''From'' lines on the front of 
messages for some mailers, and knows how to parse the same lines on input. Also, error han­
dling has an option customized for BerkNet. 

The decision to avoid doing any type of delivery where possible (even, or perhaps espe­
cially, local delivery) has turned out to be a good idea. Even with local delivery, there are 
issues of the location of the mailbox, the format of the mailbox, the locking protocol used, etc., 
that are best decided by other programs. One surprisingly major annoyance in many internet 
mailers is that the location and format of local mail is built in. The feeling seems to be that 
local mail is so common that it should be efficient. This feeling is not born out by our experi­
ence; on the contrary, the location and format of mailboxes seems to vary widely from system 
to system. 

The ability to automatically generate a response to incoming mail (by forwarding mail to 
a program) seems useful ("I am on vacation until late August .... ") but can create problems 
such as forwarding loops (two people on vacation whose programs send notes back and forth, 
for instance) if these programs are not well written. A program could be written to do stan­
dard tasks correctly, but this would solve the general case. 

It might be desirable to implement some form of load limiting. I am unaware of any 
mail system that addresses this problem, nor am I aware of any reasonable solution at this 
time. 

The configuration file is currently practically inscrutable; considerable convenience could 
be realized with a higher-level format. 

It seems clear that common protocols will be changing soon to accommodate changing 
requirements and environments. These changes will include modifications to the message 
header (e.g., [1'<'BSSOj) or to the body of the message itself (such as for multimedia messages 
[PosteI80j). Experience indicates that these changes should be relatively trivial to integrate into 
the existing system. 

In tightly coupled environments, it would be nice to have a name server such as Grapvine 
[Birrel1S2] integrated into the mail system. This would allow a site such as "Berkeley" to 
appear as a single host, rather than as a collection of hosts, and would allow people to move 
transparently among machines without having to change their addresses. Such a facility would 
require an automatically updated database and some method of resolving conflicts. Ideally this 
would be effective even without all hosts being under a single management. However, it is not 
clear whether this feature should be integrated into the aliasing facility or should be considered 
a "value added" feature outside sendmail itself. 

As a more interesting case, the CS!\'ET name server [SolomonS1] provides an facility that 
goes beyond a single tightly-coupled environment. Such a facility would normally exist outside 
of sendmail however. 
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UNIX Implementation 

/(. Thompson 

ABSTRAOT 

This paper describes in high-lenl terms the implementation of t.he resident 
UNIXt kernel. This discussion is broken into three parts. The first part describes 
how the UNIX system views processes, users, and programs. The second part 
describes the I/O system. The last part describes the Ul\TJX file system. 

1. INTRODUCTION 
The UNIX kernel consists of about 10,000 lines of C code and about 1,000 lines of assembly 

code. The assembly code can be further broken down into 200 lines included for the sake of 
efficiency (they could have been written in C) and 800 lines to perform hardware functions not. pos­
sible in C. 

This code r~presents 5 to 10 percent. of what has been lumped into t.he broad expression "the 
Ul\1JX operating system." The kernel is the only UNIX code that. cannot be substituted by a user t.o 
his own liking. For this reason, the kernel should make as few real decisions as possible. This 
does not mean to allow the user a million options to do the same thing. Rath~r, it. means to allow 
only one way to do one thing, but have that way be the least-common divisor of all the opt.ions 
that might; have been provided. 

What is or is not implemented in the kernel represents both a great responsibility and a great 
power. It. is a soap-box platform on "the way things should be done." Even so, if "the way" is 
too radical, no one will follow it. Every important decision was weighed carefully. Throughout, 
simplicity has been substituted for efficiency. Complex algorithms are used only if their complex­
ity can be localized. 

2. PROCESS CONTROL 

In the Ul\'1X system, a user executes programs ill an em"ironment called a user process. \Vhen 
a system function is required, the user process caUs the system as a subrout.ine. At some point. in 
this call, there is a distinct switch of environments. After this, the process is said to be a system 
process. In the normal definition of processes, the user and system processes are different phases of 
the same process (they never execute simult.aneously). For protection, each system process has its 
own stack. 

The user process may execute from a read-only text segment, which is shared by all processes 
executing the same code. There is no functional benefit from shared-text segments. An efficiency 
benefit comes from the fact that. there is no need to swap read-only segments out. because the origi­
nal copy on secondary memory is still current. This is a great. benefit to interact.ive programs that 
tend to be swapped while waiting for terminal input. Furthermore, if two processes are executing 
simultaneously from the same copy of a r~ad-only segment, only one copy needs to reside in pri­
mary memory. This is a secondary effect, because simultaneous execution of a program is not com­
mon. It is ironic that this effect, which reduces the use of primary memory, only comes into play 
when there is an overabundance of primary memory, that is, when there is enough memory to keep 
waiting processes loaded. 

All current read-only text segments in the system are maintained from the text table. A text 
table entry holds the location of the text segment on secondary memory. If the .segment. is loaded, 
that table also holds the primary memory location and t.he count. of the number of processes shar­
ing this entry. When this count is reduced to zero, the entry is freed along with any primary and 
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secondary memory holding the segment. When a process 6rst executes a shared-text segment, a 
text table entry is allocated and the segment is loaded onto secondary memory. It a second process 
executes a text segment that is already allocated, the entry reference count is simply incremented. 

A user process has some strictly private read-write data contained in its dat.a segment. As 
far as possible, the system does not use the user's data segment to hold syst.em data. In particular, 
there are no I/O buffers in the user address space. 

The user data segment has two growing boundaries. One, increased automatically by the 
system as a result of memory faults, is used for a stack. The second boundary is only grown (or 
shrunk) by explicit requests. The eontents of newly allocated primary memory is initialized to 
zero. 

Also associated and swapped with a process is a small fixed-size syst.em data segment. This 
segment contains all the data about the process that the system needs only when t.he process is 
active. Examples of the kind of data contained in the system data segment are: saved central pro­
cessor registers, open file descriptors, accounting information, scratch dat.a area, and the stack for 
the system phase of the process. The system data segment is not addressable from the user process 
and is therefore protected. 

Last, there is a process table with one entry per process. This entry contains all the data 
needed by the system when t.he process is not active. EXllmples are the process's name, the loca­
tion of Lhe other segments, and scheduling information. The process table entry is allocated when 
the process is created, and freed when the process terminates. This process entry is always directly 
addressable by the kernel. 

Figure 1 shows the relationships between the various process control data. In a sense, the 
process table is the de6nition of all processes, because all the dat.a associated wit.h a process may be 
accessed starting from the process table entry. 
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Fig. I-Process control data structure. 

2.1. Process creation and program execution 

Processes are created by the system primitive fork. The newly creat.ed process (child) is a 
copy of the original process (parent). There is no detectable sharing of primary memory between 
the two processes. (Of course, if the parent. process was executing from a read-only t.ext segment, 
the child will share the text segment.) Copies of all writable data segments are made for the child 
process. Files that were open before the fork are truly shared after the fork. The processes are 
informed as to their part in the relationship to allow them to select t.heir own (usually non­
identical) destiny. The parent may wait for the terminat.ion of any of its childr~n. 

A process Dlay exec a 61e. This consists of exchanging the current t.ext. and dat.a segments of 
the process for new text. and data segments specified in the 61e. The old segm~nt.s are lost. Doing 

----"-------- -
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an exec does not change processes; the process that did the exec persists, but, after the exec it is 
executing a different program. Files that were open before the exec remain open after the exec. 

If a program, say the first pass of a compiler, wishes to overlay itself with another program, 
say the second pass, then it simply execs the second program. This is analogous to a "goto." If a 
program wishes to regain control after execing a second program, it should fork a child process, 
have the child exec the second program, and have the parent wait for the child. This is analo­
gous to a "call." Breaking up the call into a binding followed by a transfer is similar to the sub­
routine linkage in S1-S.1 

2.2. Swapping 

The major data associated with a process (the user data segment, the system data segment, 
and the text segment) are swapped to and from secondary memory, as needed. The user data seg­
ment and the system data segment are kept in contiguous primary memory to reduce swapping 
latency. (,When low-latency devices, such as bubbles, CCDs, or scatter/gather devices, are used, 
this decision will have to be reconsidered.) Allocation of both primary and secondary memory is 
performed by the same simple first-fit algorithm. When a process grows, a new piece of primary 
memory is allocated. The contents of the old memory is copied to the new memory. The old 
memory is freed and the tables are updat.ed. If there is not enough primary memory, secondary 
memory is allocated instead. The process is swapped out onto the secondary memory'. ready to bc 
swapped in with its new size. 

One separate process in the kernel, the swapping process, simply swaps the other processes in 
and out of primary memory. It examines the process table looking for a process that, is swapped 
out and is ready to run. It allocates primary memory for that process and reads its segments into 
primary memory, where that process competes for the central processor with other loaded 
processes. If no primary memory' is available, the swapping process makes memory available by 
examining the process table for processes that. can be swapped out. It selects a process to swa.p 
out, writes it to secondary memory, frees the primary memory, and then goes back to look for a 
process to swap in. 

Thus there are two specific algorithms to the swapping process. Which of the possibly many 
processes that are swapped out is to 'be swapped ill? This is decided by secondary storage residence 
time. The one with the longest time out is swa.pped in first. There is a slight penalty for larger 
processes. 'Which of the possibly many processes that are loaded is to be swapped out? Processes 
that are waiting for slow events (i.e., not currently running or waiting for disk I/O) are picked 
first, by age in primary memory, again with size penalties. The other processes are examined by 
the same age algorithm. but are not taken out unless they are at least of some age. This adds hys­
teresis to the swapping and prevcnts total thrashing. 

These swapping algorithms are the most· suspect in the system. With limited primary 
memory, these algorithms cause total swapping. This is not bad in itself. because the swapping 
does not impact the execution of the resident processes. However, if the swapping device must also 
be used for file storage, the swapping traffic severely impacts the file system traffic. It is exactly 
these small systems that tend to double usage of limited disk resources. 

2.3. Synchronisation and scheduling 

Process synchronization is accomplished by having processes wait for event.s. Events are 
represented by arbitrary int.egers. By convention, events are chosen to be addresses of tables a8..<;()­

dated with those events. For example, a process that is waiting for any of its children to ter­
minate will wait for an event that is the address of its own process table ent.ry. When a process 
terminates, it signals the ennt represented by its parent's process table entry. Signaling an event. 
on which no process is waiting has no effect. Similarly, signaling an event. on which many 
processes are waiting will wake all of them up. This differs considerably from Dijkst.ra's P and V 
synchronization operations,2 in that no memory is associated wit.h events. Thus there need be no 
allocation of event.s prior to their use. Events exist simply by being used. 
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On the negative side, because there is no memory associated with events, no notion of "how 
muchH can be signaled via the event mechanism. For example, processes that want memory might 
wait on an event associated with memory allocation. When any amount. of memory becomes 
available, the event would be signaled. All the competing processes would then wa.ke up to fight 
over the new memory. (In reality, the swapping process is the only process that waits for primary 
memory to become available.) 

If an event occurs between the time a process decides to wait for that event and the time 
that process enters the wait state, then the process will wait on an event that. has already hap­
pened (and may never happen again). This race condition happens because there is no memory 
associated with the event to indicate that the event has occurred; the only act.ion of an event is to 
change a set of processes from wait state to run state. This problem is relieved largely by the fact 
that process switching can only occur in the kernel by explicit calls to the event-wait mechanism. 
If the event in question is signaled by another process, then there is no problem. But. if the event 
is signaled by a hardware interrupt, then special care must be taken. These synchronization races 
pose the biggest problem when UNIX is adapted to multiple-processor configurat.ions.3 

The event-wait code in the kernel is like a eo-routine linkage. At any time, all but one of the 
processes has called event-wait. The remaining process is the one currently executing. When it 
calls event-wait, a process whose event has been signaled is selected and that process returns from 
its can to event-wait. 

Which of the runable processes is to run next.? Associated with each process is a priorit.y. 
The priority of a system process is assigned by the code issuing the wait on an event. This is 
roughly equivalent to the response that one would expect on such an event. Disk events have high 
priorit.y, teletype events are low, and time-of-day events are very low. (From observation, the 
difference in system process priorities has little or no performance impact.) All user-process priori­
ties are lower than the lowest system priority. User-process priorities are assigned by an algorit.hm 
based on the recent ratio of the amount of compute time to real time consumed by the process. A 
process that has used a lot of compute time in t.he last real-time unit is assigned a low user prior­
ity. Because interactive processes are charact.erized by low ratios of compute to real time, int.erac­
tive response is maintained without. any special arrangements. 

The scheduling algorithm simply picks the process wit·h the highest priority, thus picking all 
system processes first and user processes second. The compute-to-real-time rat.io is updated every 
second. Thus, all other things being equal, looping user processes will be scheduled round-robin 
with a I-second quantum. A high-priority process waking up wi1I preempt a running, low-priority 
process. The scheduling algorithm has a very desirable negative feedback character. If a process 
uses its high priority to hog the computer, its priority will drop. At the same time, if a low­
priority process is ignored for a long time, its priorit.y will rise. 

8. I/O SYSTEM 
The IjO system is broken into two completely separate systems: the block I/O system and 

the character I/O system. In retrospect, the names should have been "st.ruct.ul'ed I/O" and 
"unstructured I/O," respectively; while the term "block I/O" has some meaning, "character I/O" 
is a complete misnomer. 

Devices are characterized by a major device number, a minor device number, and a class 
(block or character). For each class, there is an array of entry points into the device drivers. The 
major device number is used to index the array when calling the code for a particular device driver. 
The minor device number is passed to the device driver as an argument. The minor number has 
no significance other than that attributed to it by the driver. Usually, the driver uses the minor 
number to access one of several identical physical devices. 

The use of the array of entry points (configuration table) as the only connection between t.he 
system code and the device drivers is very important. Early versions of the syst.em had a much 
less formal connection with the drivers, so that it was extremely hard to handcraft differently 
configured systems. Now it is possible to create new device drivers in an average of a few hours. 
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The configuration table in most cases is created automatically by a program that reads the 
system's parts list. 

3.1. Block I/O system 

The model block I/O device consists of randomly addressed, secondary memor~' blocks of 512 
bytes each. The blocks 8J'e uniformly addressed 0, 1, ... up to the size of the device. The block 
device driver has the job of emulating this model on a physical device. 

The block I/O devices are accessed through a layer of buffering software. Th{' system main­
tains a list of buffers (typically between 10 and 70) each assigned a device namE' and a device 
address. This buffer pool constitutes a data cache for the block devices. On a read request, the 
cache is searched for the desired block. If the block is found, the data are made available to the 
requester without any physical I/O. If the block is not in the cache, the least recently used block 
in the cache is renamed, the correct device driver is called to fill up the renamed buffer, and then 
the data are made available. Write requests are handled in an analogous mannel', The correct 
buffer is found and relabeled if necessary, The write is performed simply by marking the buffer as 
"dirty.u The physical I/O is then deferred until the buffer is renamed. 

The benefits in reduction of physical I/O of this scheme are substantial, especially consider­
ing the file system implementat.ion. There are, however, some drawbacks. ThE' asynchronous 
nature of the algorithm makes error reporting and meaningful user errOl' handling almost impossi­
ble. The cavalier approach to I/O error handling in the UNIX system is partly due to the asyn­
chronous nature of the block I/O system. A second problem is in the delayed writes. If the system 
stops unexpectedly, it. is almost certain t.hat. there is a lot of logically complete, but physically 
incomplete, I/O in the buffers. There is a system primitive to flush all outstanding I/O activit.y 
from the buffers. Periodic use of t.his primitive helps, but does not solve, t.he problem. Finally, 
the associativity in the buffers can alter the physical I/O sequence from that of the logical I/O 
sequence. This means that there are times when data structures on disk are inconsistent, ev{'n 
though the software is careful t.o perform I/O in the correct order. 011 non-random devices, not­
ably magnetic tape, the inversions of writes can be disastrous. The problem with magnetic tapes is 
"cured" by allowing only one outstanding write request per drive. 

3.2. Character I/O system 

The character I/O system consist.s of all devices that. do not fall into the blo('k I/O model. 
This includes the "classical" charact.er devices such as communicat.ions lines, paper ta.pe, and line 
printers. It also includes magnetic tape and disks when they are not. used in a stereotyped wa~', for 
example, SO-byte physical records on tape and track-at~a-time disk copies. In short. the character 
I/O interface means "everything other than block." I/O requests from the user arE" sent to the 
device driver essentially unalt.ered. The implementation of these requests is, of course, up to the 
device driYef. There are guidelines and conventions to help the implementation of cE'rtain types of 
device drivers. 

3.2.1. Disk drivers 

Disk drivers are implemented with a queue of transaction records. Each J't'('ord holds a 
read/write flag, a primary memory address, a secondary memory address, and a transfer byt.e 
count. Swapping is accomplished by passing such a record to the swapping devicE" driver. The 
block I/O interface is implemented by passing such records with requests to fill and empty srstem 
buffers. The character I/O interra.ce to the disk drivers create a transaction record that. points 
directly into the user 8J'ea. The routine that. crea.tes this record also insures that. the user is not 
swapped during this 1/0 transaction. Thus by implementing the general disk driver. it is possible 
to use the disk as a block device, a character devire, and a swap device. The only really disk­
specific code in normal disk drivers is the pre-sort of transactions to minimize latency for a particu­
lar device, and the actual issuing of the I/O request. 
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8.2.2. Charuter lists 

Real character-oriented devices may be implemented using the common code to handle char­
acter lists. A character list is a queue of characters. One routine puts a chara.cter on a queue. 
Another gets a character from a queue. It is also possible to ask how many chara.cters are 
currently on a queue. Storage for all queues in the system comes from a single common pool. Put­
ting a character on a queue will allocate space from the common pool and link the character onto 
the data structure defining the queue. Getting a character from a queue returns thE' corresponding 
space to the pool. 

A typical character-output device (paper tape punch, for example) is implemellted by passing 
characters from the user onto a character queue until some maximum number of <"haracters is on 
the queue. The I/O is prodded to start as soon as there is anything on the queue and, once 
started, it is sustained by hardware completion interrupts. Each time there is a completion inter­
rupt, the driver gets the next character from the queue and sends it to the hardware. The number 
of characters on the queue is checked and, as the count falls through some intermpdiate level, an 
event (the queue address) is signaled. Tbe process that is passing characters from the user to the 
queue can be waiting on the event, and refill the queue to its ma.ximum when the evpnt occurs. 

A typical character input device (for example, a paper tape reader) is handled in a very simi­
lar manner. 

Another class of character devices is the terminals. A terminal is represented U;\' t,hree char­
acter queues. There are two input queues (raw and canonical) and an out,put qUf>lU'. Characters 
going to the output of a terminal are handled by common code exact.ly as describt'd above. The 
main difference is that there is also code to interpret the output stream as ASCII characters and to 
perform some translations, e.g., escapes for deficient terminals. Another common 3!';pect of termi­
nals is code to insert real-time delay after certain control characters. 

Input on terminals is a little different. Characters are collected from the terminal and placed 
on a raw input queue. Some device-dependent code conversion and escape interpl'etnt ion is handled 
here. When a line is complete in the raw queue, an event is signaled. The code cal ('hing t,his sig­
nal then copies a line from the raw queue to a canonical queue performing the charll<"ter erase and 
line kill editing. User read requests on terminals can be directed at either the raw or canonical 
queues. 

3.2.3. Other character devices 

Finally, there are devices that fit no general category. These devices are set up as character 
I/O drivers. An example is a driver that reads and writes unmapped primary memory as an I/O 
device. Some devices are too fast. to be treated a character at time, but. do not fit t.he disk I/O 
mold~ Examples are fast communications lines and fast line printers. These devirt"S either have 
their own buffers or "borrow" block I/O buffers for a while and then give them back. 

4. THE Fn.E SYSTEM 
In the UNIX system, a file is a (one-dimensional) array of bytes. No other strlwture of files is 

implied by the system. Files are attached anywhere (and possibly multiply) onto a hierarchy of 
directories. Directories are simply files that users cannot write. For a further di"('ussion of the 
external view of files and directories, see Ref. 4. 

The UNIX file system is a disk data structure accessed completely through thl' block I/O sys­
tem. As stated before, the canonical view of a "disk" is a randomly addressable an'n), of 512-byte 
blocks. A file system breaks the disk into four self-identifying regions. The first blo('k (address 0) 
is unused by the file system. It is left aside for booting procedures. The second block (address 1) 
contains the so-called "super-block." This block, among other things, contains the size of the disk 
and the boundaries of the other regions. Next. comes t,he i-list, a list of file definit ions. Each file 
definition is a 64-byte structure, called an i-node. The offset of a particular i-node within the i-list 
is called its i-number. The combination of device name (major and minor numbeN) and i-number 
serves to uniquely name a particular file. After the i-list, and to the end of the disk, come free 
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storage blocks that are available for the contents of files. 

The free space on a disk is maintained by a linked list of available disk blocks. Every block 
in this chain contains a disk address of the next block in the chain. The remaining space contains 
the address of up to 50 disk blocks that are also free. Thus with one I/O operation, the system 
obtains 50 free blocks and a pointer where to find more. The disk allocat.ion algorithms are very 
straightforward. Since all allocation is in fixed-size blocks and there is strict accounting of space, 
there is no need to compact or garbage collect. However, as disk space becomes dispersed, latency 
gradually increases. Some installations choose to occasionally compact disk space to reduce 
latency. 

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the 
first 10 blocks of a file. If a file is larger than 10 blocks (5,120 bytes), then the eleventh address 
points at a block that contains the addresses of the next 128 blocks of the file. If the file is still 
larger than this (70,656 bytes), then the twelfth block points at up to 128 blocks, each pointing to 
128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth address for a "triple 
indirect" address. The algorithm ends here with the maximum file size of 1,082,201,087 bytes. 

A logical directory hierarchy is added to this ftat physical structure simply by adding a new 
type of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-byte 
entries consisting of a 14-byte name alld an i-number. The root. of the hierarchy is at a known i­
number (viz., 2). The file system structure allows an arbitral'Y, directed graph of directories with 
regular files linked in at arbitrary places in this graph. In fact, very early UNIX systems used such 
a structure. Administration of such a structure became so chaotic that later systems were res­
tricted to a directory tree. Even now, with regular files linked multiply into arbitrary pla.ces in the 
tree, accounting for space has become a problem. It may become necessary to restrict the entire 
structure to a tree, and allow a new form of linking that is subservient to the tree structure. 

The file system allows easy creation, easy removal, easy random accessing, and very easy 
space allocation. With most. physical addresses confined to a small contiguous section of disk, it is 
also easy to dump, restore, and check the consistency of the file system. Large files suffer from 
indirect addressing, but the cache prevents most of the implied physical I/O without adding much 
execution. The space overhead properties of this scheme are quit.e good. For example, on one par­
ticular file system, there are 2S,000 files containing 130M bytes of data-file cont.ent. The overhead 
(i-node, indirect blocks, and last block breakage) is about 1l.SM bytes. The direct.ory structure to 
support these files has about I,SOO directories containing 0.6M bytes of directory content. and 
about O.S1.1 bytes of overhead in accessing the directories. Added up any way, this comes out to 
less than a 10 percent overhead for actual stored data. Most systems have this much overhead in 
padded trailing blanks alone. 

4.1. File system implementation 

Because the i-node defines a file, the implementation of the file system centers around access 
to the i-node. The system maintains a table of all active i-nodes. A1; a new file is accessed, the 
system locates the corresponding i-node, allocates an i-node table entry, and reads the i-node into 
primary memory. A1; in the buffer cache, the table entry is considered to be the current version of 
the i-node. Modifications to the i-node are made to the table entry. When the last access to the 
i-node goes away, the table entry is copied back to the secondary store i-list. and the table entry is 
freed. 

All I/O operations on files are carried out with the aid of the corresponding i-node table 
entry. The accessing of a file is a straightforward implementation of the algorithms mentioned 
previously. The user is not aware of i-nodes and i-numbers. References to the file syst.em are 
made in terms of path names of the directory tree. Converting a path name into an i-node table 
entry is also straightforward. Starting at some known i-node (the root or ·the current directory of 
some process), the next component of the path name is searched by rea.ding the directory. This 
gives an i-number and an implied device (that of the directory). Thus the next i-node table entry 
can be accessed. If that was the last component of the path name, then this i-node is the result. If 
not., this i-node is the directory needed toO look up the next component. of t.he path name, and the 
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algorithm is repeated. 

The user process accesses the file system with certain primitives. The most common of these 
are open, create, read, write, seek, and close. The data structures maintained are shown in 
Fig. 2. 
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Fig. 2-File system data structure. 
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In the system data segment associat.ed with a user, there is room for some (usually between 10 and 
50) open files. This open file table consist.s of pointers that can be used to access corresponding i­
node table entries. Associated with each of these open files is a current I/O point.er. This is a byt.e 
offset of the next read/write operation on the file. The system treats each read/write request as 
random with an implied seek to the I/O pointer. The user usually thinks of the file as sequential 
with the I/O pointer automatically count.ing the number of bytes that have been read/written 
from the file. The user may, of course, perform random I/O by setting the I/O pointer before 
reads/writes. 

With file sharing, it is necessary to allow related processes to share a common I/O pointer 
and yet have separate I/O pointers for independent processes that access t.he same file. With these 
two conditions, the I/O pointer cannot reside in the i-node table nor can it reside in the list of 
open files for the process. A new table (the open file table) was invent.ed for the sole purpose of 
holding the I/O pointer. Processes that share the same open file (the result. of forks) share a com­
mon open file table entry. A separate open of the same file will only share the i-node table entry, 
but will have distinct open file table entries. 

The main file system primitives are implemented as follows. open converts a file system 
path name into an i-node table entry. A pointer to the i-node table entry is placed in a newly 
created open file table entry. A point.er to the file table entry is placed in the syst.em data segment 
for the process. create first creates a new i-node entry, writes the i-number into a directory, and 
then builds the same structure as for an open. read and 'Write just. access the i-node entry as 
described above. seek simply manipulates the I/O pointer. No physical seeking is done. close 
just frees the structures built by open and create. Reference counts are kept on the open file 
table entries and the i-node table entries to free these structures after the last. reference goes away. 
unlink simply decrements the count of the number of directories pointing at. the given i-node. 
When the last reference to an i-node table entry goes away, if the i-node has no directories pointing 
to it, then the file is removed and the i-node is freed. This delayed removal of files prevents prob­
lems arising from removing active files. A file may be removed while still open. The resulting 
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unnamed file vanishes when the file is closed. This is a method of obtaining temporary files. 

There is a type of unnamed FIFO file caned a pipe. Implementation of pipes consists of 
implied seeks before each read or write in order to implement first-in-first-out. There are also 
checks and synchronization to prevent the writer from grossly outproducing the reader and to 
prevent the reader from overtaking the writer. 

4.2. Mounted file systems 

The file system of a UNIX system starts with some designated block device formatted as 
described above to contain a hierarchy. The root of this structure is the root of the UNIX file sys­
tem. A second formatted block device may be mounted at any leaf of the current hierarchy. This 
logically extends the current hierarchy. The implementation of mounting is trivial. A mount 
table is maintained containing pairs of designated leaf i-nodes and block devices. When converting 
a path name into an i-node, a check is made to see if the new i-node is a designated leaf. If it is, 
the i-node of the root of the block device replaces it. 

Allocation of space for a file is taken from the free pool on the device on which the file lives. 
Thus a file system consisting of many mounted devices does not have a common pool of free secon­
dary stora.ge space. This separation of space on different devices is necessary to allow easy 
unmounting of a device. 

4.3. Other system functions 

There are some other things that the system does for the user-a litt.le accounting, a little 
tracing/debugging, and a little access protection. Most of these things are not very well developed 
because our use of the system in computing science research does not need them. There are some 
features that are missed in some applications. for example, better inter-process communication. 

The UNIX kernel is an I/O multiplexer more than a complete operating system. This is as it 
should be. Because of this outlook, many features are found in most other operating systems that 
are missing from the UNIX kernel. For example, the UNIX kernel does not support file access 
methods, file disposition, file formats, file maximum size, spooling, command language, logical 
records, physical records, assignment of logical file names, logical file names, more than one charac­
ter set, an operator's console, an operator, log-in, or log-out. Many of these things are sympt.oms 
rather than features. Many of these things are implement,ed in user software using the kernel as a 
tool. A good example of this is the command language.4 Each user may have his own command 
language. Maintenance of such code is as easy as maintaining user code. The idea of implement­
ing "system" code with general user primitives comes directly from MULTICS.5 
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The UNIX I/O System 

Dennis M. Ritchie 

This paper gives an overview of the workings of the UNIXt I/O system. It was written with 
an eye toward providing guidance to writers of device driver routines, and is oriented more toward 
describing the environment and nature of device drivers than the implementation of that part of 
the file system which deals with ordinary files. 

It is assumed that the reader has a good knowledge of the overall structure of the file system 
as discussed in the paper "The UNIX Time-sharing System." A more detailed discussion appears in 
"UNIX Implementation;" the current document restates parts of that one, but is still more 
detailed. It is most useful in conjunction with a copy of the system code, since it is basically an 
exegesis of that code. 

Device Classes 

There are two classes of device: block and character. The block interface is suitable for dev­
ices like disks, tapes, and DECtape which work, or can work, with addressible 512-byte blocks. 
Ordinary magnetic tape just barely fits in this category, since by use of forward and backward 
spacing any block can be read, even though blocks can be written only at the end of the tape. 
Block devices can at least potentially contain a mounted file system. The interface to block dev­
ices is very highly structured; the drivers for these devices share a great many routines as well as a 
pool of buffers. 

Character-type devices have a much more straightforward interface, although more work 
must be done by the driver itself. 

Devices of both types are named by a major and a minor device number. These numbers 
are generally stored as an integer with the minor device number in the low-order 8 bits and the 
major device number in the next-higher 8 bits; macros major and minor are available to access 
these numbers. The major device number selects which driver will deal with the device; the minor 
device number is not used by the rest of the system but is passed to the driver at appropriate 
times. Typically the minor number selects a subdevice attached to a given controller, or one of 
several similar hardware interfaces. 

The major device numbers for block and character devices are used as indices in separate 
tables; they both start at 0 and therefore overlap. 

Overview or I/O 

The purpose of the open and creat system calls is to set up entries in three separate system 
tables. The first of these is the u_ofiJe table, which is stored in the system's per-process data area 
u. This table is indexed by the file descriptor returned by the open or creat, and is accessed dur­
ing a read, wn'te, or other operation on the open file. An entry contains only a pointer to the 
corresponding entry of the fiJe table, which is a per-system data base. There is one ent.ry in the 
fiJe table for each instance of open or creat. This table is per-system because the same instance of 
an open file must be shared among the several processes which can result from lorks after the file is 
opened. A fiJe table entry contains flags which indicate whether the file was open for reading or 
writing or is a pipe, and a count which is used to decide when all processes using the entry have 
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terminated or closed the file (so the entry can be abandoned). There is also a 32-bit file offset 
which is used to indicate where in the file the next read or write will take place. Finally, there is a 
pointer to the entry for the file in the inode table, which contains a copy of the file's i-node. 

Certain open files can be designated "multiplexed" files, and several other flags apply to such 
channels. In such a case, instead of an offset, there is a pointer to an associated multiplex channel 
table. Multiplex channels will not be discussed here. 

An entry in the JUe table corresponds precisely to an instance of open or crud; if the same 
file is opened several times, it will have several entries in this table. However, there is at most one 
entry in the inode table for a given file. Also, a file may enter the inode table not only because it 
is open, but also because it is the current directory of some process or because it is a special file 
containing a currently-mounted file system. 

An entry in the inode table differs somewhat from the corresponding i-node as stored on the 
disk; the modified and accessed times are not stored, and the entry is augmented by a flag word 
containing information about the entry, a count used to determine when it may be allowed to 
disappear, and the device and i-number whence the entry came. Also, the several block numbers 
that give addressing information for the file are expanded from the 3-byte, compressed format used 
on the disk to full long quantities. 

During the processing of an open or creat call for a special file, the system always calls the 
device's open routine to allow for any special processing required (rewinding a tape, turning on the 
data-terminal-ready lead of a modem, etc.). However, the e/ose routine is called only when the 
last process closes a file, that is, when the i-node table entry is being deallocated. Thus it is not 
feasible for a device to maintain, or depend on, a count of its users, although it is quite possible to 
implement an exclusive-use device which cannot be reopened until it has been closed. 

When a read or write takes place, the user's arguments and the file table entry are used to 
set up the variables v.u_base, v.v_covnt, and u.v_offset which respectively contain the (user) 
address of the I/O target area, the byte-count for the transfer, and the current location in the file. 
If the file referred to is a character-type special file, the appropriate read or write routine is called; 
it is responsible for transferring data and updating the count and current location appropriately as 
discussed below. Otherwise, the current location is used to calculate a logical block number in the 
file. If the file is an ordinary file the logical block number must be mapped (possibly using indirect 
blocks) to a physical block number; a block-type special file need not be mapped. This mapping is 
performed by the IImap routine. In any event, the resulting physical block number is used, as dis­
cussed below, to read or write the appropriate device. 

Character Device Drivers 

The cdev8w table specifies the interface routines present for character devices. Each device 
provides five routines: open, close, read, write, and special-function (to implement the ioctl system 
call). Any of these may be missing. If a calion the routine should be ignored, (e.g. open on 
non-exclusive devices that require no setup) the cdevsw entry can be given as nvl/dev; if it should 
be considered an error, (e.g. wn'te on read-only devices) node v is used. For terminals, the cdev8w 
structure also contains a pointer to the tty structure associated with the terminal. 

The open routine is called each time the file is opened with the full device number as argu­
ment. The second argument is a flag which is non-zero only if the device is to be written upon. 

The close routine is called only when the file is closed for the last time, that is when the very 
last process in which the file is open closes it. This means it is not possible for the driver to main­
tain its own count of its users. The first argument is the device number; the second is a flag which 
is non-zero if the file was open for writing in the process which performs the final close. 

When write is called, it is supplied the device as argument. The per-user variable u.V_tOUR.t 

has been set to the number of characters indicated by the user; for character devices, this number 
may be 0 initially. fl. fl_btJ8e is the address supplied by the user from which to start taking charac­
ters. The system may call the routine internally, so the flag u.f1._segjlg is supplied that indicates, 
if on, that fl. u_b4"e refers to the system address space instead of the user's. 

o 
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The writc routine should copy up to u.,,--count characters from the user's buft'er to the dev­
ice, decrementing u.u_count for each character passed. For most drivers, which work one charac­
ter at a time, the routine cpa'lI( ) is used to pick up characters from the user's buft'er. Successive 
calls on it return the characters to be written until u. ,,--count goes to 0 or an error occurs, when it 
returns -1. Cpa" takes care of interrogating u.u_,egftg and updating u.u_covnt. 

Write routines which want to transfer a probably large number of characters into an internal 
buft'er may also use the routine iomove(bvffer, off,et, count, ftag) which is faster when many char­
acters must be moved. Iomove transfers up to count characters into the buffer starting offllet 
bytes from the start of the buft'er; flag should be B_ WRITE (which is 0) in the write case. Cau­
tion: the caller is responsible for making sure the count is not too large and is non-zero. .As an 
efficiency note, iomove is much slower if any of buffer+off,et, count or u.u_648e is odd. 

The device's read routine is called under conditions similar to write, except that v.v_covnt 
is guaranteed to be non-zero. To return characters to the user, the routine pallllc{c) is available; it 
takes care of housekeeping like cpa88 and returns -1 as the last character specified by u.u_count is 
returned to the user; before that time, 0 is returned. Iomove is also usable as wit.h wn'te; the flag 
should be B_READ but the same cautions apply. 

The "special-functions" routine is invoked by the IItty and gtty system calls as follows: (*p) 
(dev, v) where p is a pointer to the device's routine, dev is the device number, and v is a vector. 
In the gtty case, the device is supposed to place up to 3 words of status information into the vec­
tor; this will be returned to the caller. In the IItty case, v is 0; the device should take up to 3 
words of control information from the array u.u_arg{O ... tj. 

Finally, each device should have appropriate interrupt-time routines. When an interrupt 
occurs, it is turned into a C-compatible call on the devices's interrupt routine. The interrupt­
catching mechanism makes the low-order four bits of the "new PS" word in the trap vector for the 
interrupt available to the interrupt handler. This is conventionally used by drivers which deal 
with multiple similar devices to encode the minor device number. After the interrupt has been 
processed, a return from the interrupt handler will return from the interrupt itself. 

A number of subroutines are available which are useful to character device drivers. Most of 
these handlers, for example, need a place to buft'er characters in the internal interface between their 
"top half" (read/write) and "bottom half" (interrupt) routines. For relatively low data-rate dev­
ices, the best mechanism is the character queue maintained by the routines getc and putc. A queue 
header has the structure 

struct { 
int c_cc; /* character count * / 
char *c_cf;/* first character * / 
char *Lcl;/* last character */ 

} queue; 

A character is placed on the end of a queue by pute(e, 8queuc) where c is the character and queuc 
is the queue header. The routine returns -1 if there is no space to put the character, 0 otherwise. 
The first c.haracter on the queue may be retrieved by getc(8qucvc) which returns either the (non­
negative) character or -1 if the queue is empty. 

Notice that the space for characters in queues is shared among all devices in the system and 
in the standard system there are only some 600 character slots available. Thus device handlers, 
especially write routines, must take care to avoid gobbling up excessive numbers of characters. 

The other major help available to device handlers is the sleep-wakeup mechanism. The call 
&leep(event, priority) causes the process to wait (allowing other processes to run) until the evcnt 
occurs; at that time, the process is marked ready-to-run and the call will return when there is no 
process with higher priority. 

The call wakevp(event) indicates that the event has happened, that is, causes processes sleep­
ing on the event to be awakened. The ·event is an arbitrary quantity agreed upon by the sleeper 
and the waker-up. By convention, it is the address of some data area used by the driver, which 
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guarantees that events are unique. 

Processes sleeping on an event should not assume that the event has really happened; they 
should check that the conditions which caused them to sleep no longer hold. 

Priorities can range from 0 to 127; a higher numerical value indicates a less-favored schedul­
ing situation. A distinction is made between processes sleeping at priority less than the parameter 
PZERO and those at numerically larger priorities. The former cannot be interrupted by signals, 
although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep with priority 
less than PZERO on an event which might never occur. On the other hand, calls to ,leep with 
larger priority may never return if the process is terminated by some signal in the meantime. 
Incidentally, it is a gross error to call &leep in a routine called at interrupt time, since the process 
which is running is almost certainly not the process which should go to sleep. Likewise, none of 
the variables in the user area "u." should be touched, let alone changed, by an interrupt routine. 

If a device driver wishes to wait for some event for which it is inconvenient or impossible to 
supply a wakeup, (for example, a device going on-line, which does not generally cause an inter­
rupt), the call ,/eep{8Ibolt, prioritll) may be given. Lbolt is an external cell whose address is awak­
ened once every 4 seconds by the clock interrupt routine. 

The routines ,p14( ), 6p15{ ), ,pI6{ ), ,pI7{ ) are available to set the processor priority level as 
indicated to avoid inconvenient interrupts from the device. 

If a device needs to know about real-time intervals, then timeout{/une, arg, interval) will be 
useful. This routine arranges that after interval sixtieths of a second, the lune will be called with 
arg as argument, in the style (*Iune}{arg). Timeouts are used, for example, to provide real-time 
delays after function characters like new-line and tab in typewriter output, and to terminat.e an 
attempt to read the 201 Dataphone dp if there is no response within a specified number of seconds. 
Notice that the number of sixtieths of a second is limited to 32767, since it must appear to be posi­
tive, and that only a bounded number of timeouts can be going on at once. Also, the specified 
lune is called at clock-interrupt time, so it should conform to the requirements of interrupt rou­
tines in general. 

The Block-device Interrace 

Handling of block devices is mediated by a collection of routines that manage a set of buffers 
containing the images of blocks of data on the various devices. The most important purpose of 
these routines is to assure that several processes that access the same block of the same device in 
multiprogrammed fashion maintain a consistent view of the data in the block. A secondary but, 
still important purpose is to increase the efficiency of the system by keeping in-core copies of blocks 
that are being accessed frequently. The main data base for this mechanism is the table of buffers 
bu/. Each buffer header contains a pair of pointers (L/orw, Lbaek) which maintain a doubly­
linked list of the buffers associated with a particular block device, and a pair of pointers (av-lorw, 
av_back) which generally maintain a doubly-linked list of blocks which are "free," that is, eligible 
to be reallocated for another transaction. Buffers that have I/O in progress or are busy for other 
purposes do not appear in this list. The buffer header also contains the device and block number 
to which the buffer refers, and a pointer to the actual storage associated with the buffer. There is 
a word count which is the negative of the number of words to be transferred to or from the buffer; 
there is also an error byte and a residual word count used to communicate information from an 
I/O routine to its caller. Finally, there is a flag word with bits indicating the status of the buffer. 
These flags will be discussed below. 

Seven routines constitute the most important part of the interface with the rest of the sys­
tem. Given a device and block number, both bread and getblk return a pointer to a buffer header 
for the block; the difference is that bread is guaranteed to return a buffer actually containing the 
current data for the block, while getblk returns a buffer which contains the data in the block only 
if it is already in core (whether it is or not is indicated by the B_DONE bit; see below). In either 
case the buffer, and the corresponding device block, is made "busy," so that other processes refer­
ring to it are obliged to wait until it becomes free. Getblk is used, for example, when a block is 
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about to be totally rewritten, so that its previous contents are not useful; still, no other process 
can be allowed to refer to the block until the new data is placed into it. 

The breada routine is used to implement read-ahead. it is logically similar to bread, but 
takes as an additional argument the number of a block (on the same device) to be read asynchro­
nously after the specifically requested block is available. 

Given a pointer to a buffer, the brelae routine makes the buffer again available to other 
processes. It is called, for example, after data has been extracted following a bread. There are 
three subtly-different write routines, all of which take a buffer pointer as argument, and all of 
which logically release the buffer for use by others and place it on the free list. Bwrite puts the 
buffer on the appropriate device queue, waits for the write to be done, and sets the user's error flag 
if required. Bawrite places the buffer on the device's queue, but does not wait for completion, so 
that errors cannot be reBected directly to the user. Bdwrite does not start any I/O operat.ion at 
all, but merely marks the buffer so that if it happens to be grabbed from the free list to contain 
data from some other block, the data in it will first be written out. 

Bwrite is used when one wants to be sure that I/O takes place correctly, and that errors are 
reflected to the proper user; it is used, for example, when updating i-nodes. Bawrite is useful when 
more overlap is desired (because no wait is required for I/O to finish) but when it is reasonably cer­
tain that the write is really required. Bdwn'te is used when there is doubt that the write is needed 
at the moment. For example, bdwrite is called when the last byte of a write system call falls short 
of the end of a block, on the assumption that another write will be given soon which will re-use 
the same block. On the other hand, as the end of a block is passed, hawn'te is called, since prob­
ably the block will not be accessed again soon and one might as well start the writing process as 
soon as possible. 

In any event, notice that the routines getblk and bread dedicate the given block exclusively 
to the use of the caller, and make others wait, while one of 6rel8e, bwrite, 6awrite, or bdwrite must. 
eventually be called to free the block for use by others. 

As mentioned, each buffer header contains a Bag word which indicates the status of the 
buffer. Since they provide one important channel for information between the drivers and the 
block I/O system, it is important to understand these flags. The following names are manifest 
constants which select the associated flag bits. 

B-.READ This bit is set when the buffer is handed to the device strategy routine (see below) to 
indicate a read operation. The symbol B_ WRITE is defined as 0 and does not define a 
flag; it is provided as a mnemonic convenience to callers of routines like 8wap which 
have a separate argument which indicates read or write. 

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is 
turned on when the operation completes, whether normally as the result of an error. It 
is also used as part of the return argument of getblk to indicate if 1 that the returned 
buffer actually contains the data in the requested block. 

BJ:RROR This bit may be set to 1 when BJ)ONE is set to indicate that an I/O or other error 
occurred. If it is set the Lerror byte of the buffer header may contain an error code if 
it is non-zero. If Lerror is 0 the nature of the error is not specified. Actually no 
driver at present sets Lerror; the latter is provided for a future improvement whereby 
a more detailed error-reporting scheme may be implemented. 

BJ3USY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to 
someone's exclusive use. The buffer still remains attached to the list of blocks associ­
ated with its device, however. When getblk (or bread, which calls it) searches the 
buffer list for a given device and finds the requested block with this bit on, it sleeps 
until the bit clears. 

BJ'HYS This bit is set for raw I/O transactions that need to allocate the Unibus map on an 
11/70. 
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B-MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone rou­
tine knows to deallocate the map. 

B_WANTED 
This flag is used in conjunction with the B_BUSY bit. Before sleeping as described 
just above, gdblk sets this flag. Conversely, when the block is freed and the busy bit 
goes down (in brelse) a wakeup is given for the block header whenever B_ WANTED is 
on. This strategem avoids the overhead of having to call wakeup every time a buffer is 
freed on the chance that someone might want it. 

RAGE This bit may be set on buffers just before releasing them; if it is on, the buffer is placed 
at the head of the free list, rather than at the tail. It is a performance heuristic used 
when the caller judges that the same block will not soon be used again. 

B-ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer 
should be released when the write has been finished, usually at interrupt time. The 
difference between bwrite and bawrite is that the former starts I/O, waits until it is 
done, and frees the buffer. The latter merely sets this bit and starts I/O. The bit indi­
cates that relse should be called for the buffer on completion. 

B-DEL WRIThis bit is set by bdwrite before releasing the buffer. When getMk, while searching for 
a free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes the 
block to be written out before reusing it. 

Block Device Drivers 

The bdevsw table contains the names of the interface routines and that of a table for each 
block device. 

Just as for character devices, block device drivers may supply an open and a close routine 
called respectively on each open and on the final close of the device. Instead of separate read and 
write routines, each block device driver has a strategy routine which is called with a pointer to a 
buffer header as argument. As discussed, the buffer header contains a read/write flag, the core 
address, the block number, a (negative) word count, and the major and minor device number. The 
role of the strategy routine is to carry out the operation as requested by the information in the 
buffer header. When the transaction is complete the B_DONE (and possibly the B.-ERROR) bits 
should be set. Then if the B-ASYNC bit is set, brelse should be called; otherwise, wakeup. In 
cases where the device is capable, under error-free operation, of transferring fewer words than 
requested, the device's word-count register should be placed in the residual count slot of the buffer 
header; otherwise, the residual count should be set to O. This particular mechanism is really for 
the benefit of the magtape driver; when reading this device records shorter than requested are quite 
normal, and the user should be told the actual length of the record. 

Although the most usual argument to the strategy routines is a genuine buffer header allo­
cated as discussed above, all that is actually required is that the argument be a pointer to a place 
containing the appropriate information. For example the swap routine, which manages movement 
of core images to and from the swapping device, uses the strategy routine for this device. Care has 
to be taken that no extraneous bits get turned on in the flag word. 

The device's table specified by bdevsw has a byte to contain an active flag and an error 
count, a pair of links which constitute the head of the chain of buffers for the device (LJorw, 
Lback), and a first and last pointer for a device queue. Of these things, all are used solely by the 
device driver itself except for the buffer-chain pointers. Typically the flag encodes the state of the 
device, and is used at a minimum to indicate that the device is currently engaged in transferring 
information and no new command should be issued. The error count is useful for counting retries 
when errors occur. The device queue is used to remember stacked requests; in the simplest case it 
may be maintained as a first--in first--out list. Since buffers which have been handed over to the 
strategy routines are never on the list of free buffers, the pointers in the buffer which maintain the 
free list (av-forw, av_back) are also used to contain the pointers which maintain the device queues. 
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A couple of routines are provided which are useful to block device drivers. iodone(bp) 
arranges that the buffer to which bp points be released or awakened, 88 appropriate, when the stra­
tegy module has finished with the buffer, either normally or after an error. (In the latter case the 
B_ERR OR bit has presumably been set.) 

The routine geterror(bp) can be used to examine the error bit in a buffer header and arrange 
that any error indication found therein is reflected to the user. It may be called only in the non­
interrupt part of a driver when I/O has completed (B-DONE has been set). 

Raw Block-device I/O 

A scheme has been set up whereby block device drivers may provide the ability to transfer 
information directly between the user's core image and the device without the use of buffers and in 
blocks as large as the caller requests. The method involves setting up a character--type special file 
corresponding to the raw device and providing read and write routines which set up what is usu­
ally a private, non-shared buffer header with the appropriate information and call the device's stra­
tegy routine. If desired, separate open and close routines may be provided but this is usually 
unnecessary. A special-function routine might come in handy, especially for magtape. 

A great deal of work has to be done to generate the "appropriate information" to put in the 
argument buffer for the strategy module; the worst part is to map relocated user addresses to phy­
sical addresses. Most of this work is done by ph,lsio(strat, bp, dev, rw) whose arguments are the 
name of the strategy routine 8trat, the buffer pointer bp, the device number dev, and a read-write 
flag rw whose value is either B..READ or B_ WRITE. Ph,aio makes sure that the user's base 
address and count are even (because most devices work in words) and that the core area affected is 
contiguous in physical space; it delays until the buffer is not busy, and makes it busy while the 
operation is in progress; and it sets up user error return information. 
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On the Security of UNIX 

Dennis M. Ritchie 

Recently there has been much interest in the security aspects of operating systems and 
software. At issue is the ability to prevent undesired disclosure of information, destruction of 
information, and harm to the functioning of the system. This paper discusses the degree ofsecu­
rity which can be provided under the UNIXt system and offers a number of hints on how to 
improve security. 

The first fact to face is that UNIX was not developed with security, in any realistic sense, in 
mind; this fact alone guarantees a vast number of holes. (Actually the same statement can be 
made with respect to most systems.) The area of security in which UNIX is theoretically weakest is 
in protecting against crashing or at least crippling the operation of the system. The problem here 
is not mainly in uncritical acceptance of bad parameters to system calls- there may be bugs in 
this area, but none are known- but rather in lack of checks for excessive consumption of 
resources. Most notably, there is no limit on the amount of disk storage used, either in total space 
allocated or in the number of files or directories. Here is a particularly ghastly shell sequence 
guaranteed to stop the system: 

while: ; do 
mkdir x 
cd x 

done 

Either a panic will occur because all the i-nodes on the device are used up, or all the disk blocks 
will be consumed, thus preventing anyone from writing files on the device. 

In this version of the system, users are prevented Crom creating more than a set number of 
processes simultaneously, so unless users are in collusion it is unlikely that. anyone can stop the 
system altogether. However, creation of 20 or so CPU or disk~bound jobs leaves few resources 
available for others. Also, if many large jobs are run simultaneously, swap space may run out, 
causing a panic. 

It should be evident that excessive consumption of disk space, files, swap space, and processes 
can easily occur accidentally in malfunctioning programs as well as at command level. In fact 
UNIX is essentially defenseless against this kind of abuse, nor is there any easy fix. The best that 
can be said is that it is generally fairly easy to detect what has happened when disaster strikes, to 
identify the user responsible, and take appropriate action. In practice, we have found that 
difficulties in this area are rather rare, but we have not been faced with malicious users, and enjoy 
a fairly generous supply of resources which have served to cushion us against accidental overcon­
sumption. 

The picture is considerably brighter in the area of protection of information from unauthor­
ized perusal and destruction. Here the degree of security seems (almost) adequate theoretically, 
and the problems lie more in the necessity for care in the actual use of the system. 

Each UNIX file has associated with it eleven bits of prot.ection information together with a 
user identification number and a user-group identification number (UID and GID). Nine of the 
protection bits are used to specify independently permission to read, to write, and to execute the 
file to the user himself, to members of the user's group, and to all other users. Each process 
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generated by or for a user has associated with it an eft'ective UID and a real UID, and an effective 
and real GID. When an attempt is made to access the file for reading, writing, or execution, the 
user process's effective UID is compared against the file's UID; if a match is obtained, access is 
granted provided the read, write, or execute bit respectively for the user himself is present. If the 
UID for the file and for the process fail to match, but the GID's do match, the group bits are used; 
if the GID's do not match, the bits for other users are tested. The last two bits of each file's pro­
tection information, called the set-UID and set-GID bits, are used only when the file is executed as 
a program. H, in this case, the set-UID bit is on for the file, the eft'ective UID for the process is 
changed to the UID associated with the file; the change persists until the process terminates or 
until the UID changed again by another execution of a set-UID file. Similarly the effective group 
ID of a process is changed to the GID associated with a file when that file is executed and has the 
set-GID bit set. The real UID and GID of a process do not change when any file is executed, but 
only as the result of a privileged system call. 

The basic notion of the set-UID and set-GID bits is that one may write a program which is 
executable by others and which maintains files accessible to others only by that program. The 
classical example is the game-playing program which maintains records of the scores of its players. 
The program itself has to read and write the score file, but no one but the game's sponsor can be 
allowed unrestricted access to the file lest they manipulate the game to their own advantage. The 
solution is to tum on the set-UID bit of the game program. When, and only when, it is invoked 
by players of the game, it may update the score file but ordinary programs executed by others can­
not access the score. 

There are a number of special cases involved in determining access permissions. Since execut­
ing a directory as a program is a meaningless operation, the execute-permission bit, for directories, 
is taken instead to mean permission to search the directory for a given file during the scanning or a 
path name; thus if a directory has execute permission but no read permission for a given user, he 
may access files with known names in the directory, but may not read (list) the entire contents or 
the directory. Write permission on a directory is interpreted to mean that the user may create and 
delete files in that directory; it is impossible for any user to write directly into any directory. 

Another, and from the point of view or security, much more serious special case is that there 
is a "super user" who is able to read any file and write any non-directory. The super-user is also 
able to change the protection mode and the owner UID and GID or any file and to invoke 
privileged system calls. It must be recognized that the mere notion of a super-user is a theoretical, 
and usually practical, blemish on any protection scheme. 

The first necessity for a secure system is or course arranging that all files and directories have 
the proper protection modes. Traditionally, UNIX software has been exceedingly permissive in this 
regard; essentially all commands create files readable and writable by everyone. In the current ver­
sion, this policy may be easily adjusted to suit the needs or the installation or the individual user. 
Associated with each process and its descendants is a mask, which is in effect and-ed with the 
mode of every file and directory created by that process. In this way, users can arrange that, by 
default, all their files are no more accessible than they wish. The standard mask, set by login, 
allows all permissions to the user himself and to his group, but. disallows writing by others. 

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to 
make one's files inaccessible to others. The lack of sufficiency could follow from the existence of 
set-UID programs created by the user and the possibility of total breach of system security in one 
of the ways discussed below (or one of the ways not discussed below). For greater protection, an 
encryption scheme is available. Since the editor is able to create encrypted documents, and the 
c"1lpt command can be used to pipe such documents into the other text-processing programs, the 
length of time during which c1eartext versions need be available is strictly limited. The encryption 
scheme used is not one of the strongest known, but it is judged adequate, in the sense that cryp­
tanalysis is likely to require considerably more eft'ort than more direct methods of reading the 
encrypted files. For example, a. user who stores data that he regards as truly secret should be 
aware that he is implicitly trusting the system administrator not to install a version or the crypt 
command that stores every typed password in a file. 

/'\ 
.. ,,--) 



c 

-3-

Needless to say, the system administrators must be at least as careful as their most demand­
ing user to place the correct protection mode on the files under their control. In particular, it is 
necessary that special files be protected from writing, and probably reading, by ordinary users 
when they store sensitive files belonging to other users. It is easy to write programs that examine 
and change files by accessing the device on which the files live. 

On the issue of password security, UNIX is probably better than most systems. Passwords 
are stored in an encrypted form which, in the absence of serious attention from specialists in the 
field, appears reasonably secure, provided its limitations are understood. In the current version, it 
is based on a slightly defective version oC the Federal DES; it is purposely deCective so that easily­
available hardware is useless Cor attempts at exhaustive key-search. Since both the encryption 
algorithm and the encrypted passwords are available, exhaustive enumeration oC potential pass­
words is still Ceasible up to a point. We have observed that users choose passwords that are easy 
to guess: they are short, or Crom a limited alphabet, or in a dictionary. Passwords should be at 
least six characters long and randomly chosen Crom an alphabet which includes digits and special 
characters. 

OC course there also exist Ceasible non-cryptanalytic ways oC finding out passwords. For 
example: write a program which types out "login: " on the typewriter and copies whatever is typed 
to a file oC your own. Then invoke the command and go away until the vict.im arrives. 

The set-UID (set-GID) notion must be used carefully if any security is to be maintained. The 
first thing to keep in mind is that a writable set-UID file can have another program copied onto it. 
For example, if the super-user (&u) command is writable, anyone can copy the shell onto it and get 
a password-Cree version oC &u. A more subtle problem can come Crom set-UID programs which are 
not sufficiently careful oC what is Ced into them. To take an obsolete example, the previous version 
of the mail commandwasset-UID and owned by the super-user. This version sent mail to the 
recipient's own directory. The notion was that one should be able to send mail to anyone even if 
they want to protect their directories Crom writing. The trouble was that mail was rather dumb: 
anyone could mail someone else's private file to himself. Much more serious is the following 
scenario: make a file with a line like one in the password file which allows one to log in as the 
super-user. Then make a link named ".mail" to the password file in some writable directory on 
the same device as the password file (say /tmp). Finally mail the bogus login line to /tmpj.mail; 
You can then login as the super-user, clean up the incriminating evidence, and have your will. 

The fact that users can mount their own disks and tapes as file systems can be another way 
oC gaining super-user status. Once a disk pack is mounted, the system believes what is on it. 
Thus one can take a blank disk pack, put on it anything desired, and mount it. There are obvious 
and unfortunate consequences. For example: a mounted disk with garbage on it will crash the sys­
tem; one of the files on the mounted disk can easily be a password-Cree version of &u; other files 
can be unprotected entries for special files. The only easy fix for this problem is to forbid the use 
of mount to unprivileged users. A partial solution, not so restrictive, would be to have the mount 
command examine the special file for bad data, set-UID programs owned by others, and accessible 
special files, and balk at unprivileged invokers. 
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Password Security: A Case History Encryption Computing 

INTRODUCTION 

Robert Mom3 

Ken Thomp30n 

Password security on the UNJXt time-sharing system [1] is provided by a eollection of pro­
grams whose elaborate and strange design is the outgrowth of many years of experienee with ear­
lier versions. To help develop a secure system, we have had a eontinuing eompetition to devise 
new ways to attaek the seeurity of the system (the bad guy) and, at the same time, to devise new 
techniques to resist the new attacks (the good guy). This competition has been in the same vein as 
the competition of long standing between manufacturers of armor plate and those of armor­
piercing shells. For this reason, the description that follows will trace the history of the password 
system rather than simply presenting the program in its eurrent state. In this way, the reasons for 
the design will be made clearer, as the design cannot be understood without also understanding the 
potential attacks. 

An underlying goal has been to provide password security at minimal inconvenience to the 
users of the system. For example, those who want to run a completely open system without pass­
words, or to have passwords only at the option of the individual users, are able to do so, while 
those who require all of their users to have passwords gain a high degree of security against pene­
tration of the system by unauthorized users. 

The password system must be able not only to prevent any access to the system by unau­
thorized users (i.e. prevent them from logging in at all), but it must also prevent users who are 
already logged in from doing things that they are not authorized to do. The so called "super-user" 
password, for example, is especially critical because the super-user has all sorts of permissions and 
has essentially unlimited access to all system resources. 

Password security is of course only one component of overall system security, but it is an 
essential component. Experience has shown that attempts to penetrate remote-access systems have 
been astonishingly sophisticated. 

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are 
threats at the remote terminal, along the communications link, as well as at the computer itself. 
Although the security of a password encryption algorithm is an interesting intellectual and 
mathematical problem, it is only one tiny facet of a very large problem. In practice, physical secu­
rity of the computer, communications security of the communications link, and physical control of 
the computer itself loom as far more important issues. Perhaps most important of all is control 
over the actions of ex-employees, since they are not under any direct control and they may have 
intimate knowledge about the system, its resources, and methods of access. Good system security 
involves realistic evaluation of the risks not only of deliberate attacks but also of easual unauthor­
ized access and accidental disclosure. 

PROLOGUE 
The UNIX system was first implemented with a password file that eontained the actual pass­

words of all the users, and for that reason the password file had to be heavily protected against 
being either read or written. Although historieally, this had been the technique used for remote­
access systems, it was eompletely unsatisfactory for several reasons. 

t UNIX is a trademark of Bell Laboratories. 
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The technique is excessively vulnerable to lapses in security. Temporary loss of protection 
can occur when the password file is being edited or otherwise modified. There is no way to prevent 
the making of copies by privileged users. Experience with several earlier remote-access systems 
showed that such lapses occur with frightening frequency. Perhaps the most memorable such occa­
sion occurred in the early 60's when a system administrator on the CTSS system at MIT was edit­
ing the password file and another system administrator was editing the daily message that is 
printed on everyone's terminal on login. Due to a software design error, the temporary editor files 
of the two users were interchanged and thus, for a time, the password file was printed on every ter­
minal when it was logged in. 

Once such a lapse in security has been discovered, everyone's password must be changed, usu­
ally simultaneously, at a considerable administrative cost. This is not a great matter, but far 
more serious is the high probability of such lapses going unnoticed by the system administrators. 

Security against unauthorized disclosure of the passwords was, in the last analysis, impossi­
ble with this system because, for example, if the contents of the file system are put on to magnetic 
tape for backup, as they must be, then anyone who has physical access to the tape can read any­
thing on it with no restriction. 

Many programs must get information of various kinds about the users of the system, and 
these programs in general should have no special permission to read the password file. The infor­
mation which should have been in the password file actually was distributed (or replicated) into a 
number of files, all of which had to be updated whenever a user was added to or dropped from the 
system. 

THE FIRST SCHEME 
The obvious solution is to arrange that the passwords not appear in the system at all, and it 

is not difficult to decide that this can be done by encrypting each user's password, putting only the 
encrypted form in the password file, and throwing away his original password (the one that he 
typed in). When the user later tries to log in to the system, the password that he types is 
encrypted and compared with the encrypted version in the password file. If the two match, his 
login attempt is accepted. Such a scheme was first described in [3, p.91ft'.J. It also seemed advis­
able to devise a system in which neither the password file nor the password program itself needed 
to be protected against being read by anyone. 

All that was needed to implement these ideas was to find a means of encryption that was 
very difficult to invert, even when the encryption program is available. Most of the standard 
encryption methods used (in the past) for encryption of messages are rather easy to invert. A con­
venient and rather good encryption program happened to exist on the system at the time; it simu­
lated the M-209 cipher machine [4J used by the U.S. Army during World War II. It turned out 
that the M-209 program was usable, but with a given key, the ciphers produced by this program 
are trivial to invert. It is a much more difficult matter to find out the key given the cleartext 
input and the enciphered output of the program. Therefore, the password was used not as the text 
to be encrypted but as the key, and a constant was encrypted using this key. The encrypted result 
was entered into the password file. 

ATTACKS ON THE FIRST APPROACH 
Suppose that the bad guy has available the text of the password encryption program and the 

complete password file. Suppose also that he has substantial computing capacity at his disposal. 

One obvious approach to penetrating the password mechanism is to attempt to find a general 
method of inverting the encryption algorithm. Very possibly this can be done, but few successful 
results have come to light, despite substantial efforts extending over a period of more than five 
years. The results have not proved to be very useful in penetrating systems. 

Another approach to penetration is simply to keep trying potential passwords until one 
succeeds; this is a general cryptanalytic approach called key ,earch. Human beings being what 
they are, there is a strong tendency for people to choose relatively short and simple passwords that 
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they can remember. Given free choice, most people will choose their passwords from a restricted 
character set (e.g. alilower-ease letters), and will often choose words or names. This human habit 
makes the key search job a great deal easier. 

The critical factor involved in key search is the amount of time needed to encrypt a potential 
password and to check the result against an entry in the password file. The running time to 
encrypt one trial password and check the result turned out to be approximately 1.25 milliseconds 
on a PDP-11/70 when the encryption algorithm was recoded for maximum speed. It is takes 
essentially no more time to test the encrypted trial password against all the passwords in an entire 
password file, or for that matter, against any collection of encrypted passwords, perhaps collected 
from many installations. 

If we want to check all passwords of length n that consist entirely of lower-case letters, the 
number of such passwords is 26-. If we suppose that the password consists of printable characters 
only, then the number of possible passwords is somewhat less than 95-. (The standard system 
"character erase" and "line kill" characters are, for example, not prime candidates.) We can 
immediately estimate the running time of a program that will test every password of a given 
length with all of its characters chosen from some set of characters. The following table gives esti­
mates of the running time required on a PDP-11/70 to test all possible character strings of length 
n chosen from various sets of characters: namely, aU lower-case letters, aU lower-case letters plus 
digits, all alphanumeric characters, all 95 printable ASCII characters, and finally all 128 ASCII 
characters. 

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII 
n letters and digits characters characters characters 

1 30 msec. 40 msec. 80 msec. 120 msec. 160 msec. 
2 800 msec. 2 sec. 5 sec. 11 sec. 20 sec. 
3 22 sec. 58 sec. 5 min. 17 min. 43 min. 
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs. 
5 4 hrs. 21 hrs. 318 hrs. 
6 107 hrs. 

One has to conclude that it is no great matter for someone with access to a PDP-ll to test all 
lower-case alphabetic strings up to length five and, given access to the machine for, say, several 
weekends, to test all such strings up to six characters in length. By using such a program against 
a collection of actual encrypted passwords, a substantial fraction of all the passwords will be 
found. 

Another profitable approach for the bad guy is to use the word list from a dictionary or to 
use a list of names. For example, a large commercial dictionary contains typicallJy about 250,000 
words; these words can be checked in about five minutes. Again, a noticeable fraction of any col­
lection of passwords will be found. Improvements and extensions will be (and have been) found by 
a determined bad guy. Some "good" things to try are: 

The dictionary with the words spelled backwards. 

A list of first names (best obtained from some mailing list). Last names, street names, and 
city names also work well. 

The above with initial upper-case letters. 

All valid license plate numbers in your state. (This takes about five hours in New Jersey.) 

Room numbers, social security numbers, telephone numbers, and the like. 

The authors have conducted experiments to try to determine typical users' habits in the 
choice of passwords when no constraint is put on their choice. The results were disappointing, 
except to the bad guy. In a collection of 3,289 passwords gathered from many users over a long 
period of time; 

15 were a single ASCn character; 
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72 were strings of two ABon characters; 

464 were strings of three ABOn characters; 

477 were string of four alphamerics; 

706 were five letters, all upper-case or all lower-case; 

605 were six letters, all lower-case. 

An additional 492 passwords appeared in various available dictionaries, name lists, and the like. A 
total of 2,831, or 86% of this sample of passwords fell into one of these classes. 

There was, of course, considerable overlap between the dictionary results and the character 
string searches. The dictionary search alone, which required only five minutes to run, produced 
about one third of the passwords. 

Users could be urged (or forced) to use either longer passwords or passwords chosen from a 
larger character set, or the system could itself choose passwords for the users. 

AN ANECDOTE 
An entertaining and instructive example is the attempt made at one installation to force 

users to use less predictable passwords. The users did not choose their own passwords; the system 
supplied them. The supplied passwords were eight characters long and were taken from the char­
acter set consisting of lower-case letters and digits. They were generated by a pseudo-random 
number generator with only 216 starting values. The time required to search (again on a PDP-
11/70) through all character strings of length 8 from a 36-character alphabet is 112 years. 

Unfortunately, only 216 of them need be looked at, because that is the number of possible 
outputs of the random number generator. The bad guy did, in fact, generate and test each of 
these strings and found every one of the system-generated passwords using a total of only about 
one minute of machine time. 

IMPROVEMENTS TO THE FmST APPROACH 

1. Slower Encryption 

Obviously, the first algorithm used was far too fast. The announcement of the DES encryp­
tion algorithm [2J by the National Bureau of Standards was timely and fortunate. The DES is, by 
design, hard to invert, but equally valuable is the fact that it is extremely slow when implemented 
in software. The DES was implemented and used in the following way: The first eight characters 
of the user's password are used as a key for the DES; then the algorithm is used to encrypt a con­
stant. Although this constant is zero at the moment, it is easily accessible and can be made 
installation-dependent. Then the DES algorithm is iterated 25 times and the resulting 64 bits are 
repacked to become a string of 11 printable characters. 

2. Less Predictable Passwords 

The password entry program was modi~ed so as to urge the user to use more obscure pass­
words. If the user enters an alphabetic password (all upper-case or all lower-case) shorter than six 
characters, or a password from a larger character set shorter than five characters, then the program 
asks him to enter a longer password. This further reduces the efficacy of key search. 

These improvements make it exceedingly difficult to find any individual password. The user 
is warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he is not 
prevented from using his spouse's name if he wants to. 

8. Salted Passwords 

The key search technique is still likely to turn up a few passwords when it is used on a large 
collection of passwords, and it seemed wise to make this task as difficult as possible. To this end, 
when a password is first entered, the password program obtains a 12-bit random number (by read­
ing the real-time clock) and appends this to the password typed in by the user. The concatenated 
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string is encrypted and both the 12-bit random quantity (called the '41t) and the 64-bit result of 
the encryption are entered into the password file. 

When the user later logs in to the system, the 12-bit quantity is extracted from the password 
file and appended to the typed password. The encrypted result is required, as before, to be the 
same as the remaining 64 bits in the password file. This modification does not increase the task of 
finding any individual password, starting from scratch, but now the work of testing a given char­
acter string against a large collection of encrypted passwords has been multiplied by 4096 (212). 

The reason for this is that there are 4096 encrypted versions of each password and one of them has 
been picked more or less at random by the system. 

With this modification, it is likely that the bad guy can spend days of computer time trying 
to find a password on a system with hundreds of passwords, and find none at all. More important 
is the fact that it becomes impractical to prepare an encrypted dictionary in advance. Such an 
encrypted dictionary could be used to crack new passwords in milliseconds when they appear. 

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible to 
find out whether a person with passwords on two or more systems has used the same password on 
all of them, unless you already know that. 

4. The Threat of the DES Chip 

Chips to perform the DES encryption are already commercially available and they are very 
fast. The use of such a chip speeds up the process of password hunting by three orders of magni­
tude. To avert this possibility, one of the internal tables of the DES algorithm (in particular, the 
so-called E-table) is changed in a way that depends on the 12-bit random number. The E-table is 
inseparably wired into the DES chip, so that the commercial chip cannot be used. Obviously, the 
bad guy could have his own chip designed and built, but the cost would be unthinkable. 

5. A Subtle Point 

To login successfully on the UNIX system, it is necessary after dialing in to type a valid user 
name, and then the correct password for that user name. It is poor design to write the login com­
mand in such a way that it tells an interloper when he has typed in a invalid user name. The 
response to an invalid name should be identical to that for a valid name. 

When the slow encryption algorithm was first implemented, the encryption was done only if 
the user name was valid, because otherwise there was no encrypted password to compare with the 
supplied password. The result was that the response was delayed by about one-half second if the 
name was valid, but was immediate if invalid. The bad guy could find out whether a particular 
user name was valid. The routine was modified to do the encryption in either case. 

CONCLUSIONS 

On the issue of password security, UNIX is probably better than most systems. The use of 
encrypted passwords appears reasonably secure in the absence of serious attention of experts in the 
field. 

It is also worth some effort to conceal even the encrypted passwords. Some UNIX systems 
have instituted what is called an "external security code" that must be typed when dialing into 
the system, but before logging in. If this code is changed periodically, then someone with an old 
password will likely be prevented from using it. 

Whenever any security procedure is instituted that attempts to deny access to unaut.horized 
persons, it is wise to keep a record of both successful and unsuccessful attempts to get at the 
secured resource. Just as an out-or-hours visitor to a computer center normally must not only 
identify himself, but a record is usually also kept of his entry. Just so, it is a wise precaution to 
make and keep a record of all attempts to log into a remote-access time-sharing system, and cer­
tainly all unsuccessful attempts. 

Bad guys fall on a spectrum whose one end is someone with ordinary access to a system and 
whose goal is to find out a particular password (usually that of the super-user) and, at the other 
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end, someone who wishes to collect as much password information as possible from as many sys­
tems as possible. Most of the w91"k reported here serves to frustrate the latter type; our experience 
indicates that the former type of bad guy never was very successful. 

We recognize that a time-sharing system must operate in a hostile environment. We did not 
attempt to hide the security aspects of the operating system, thereby playing the customary 
make-believe game in which weaknesses of the system are not discussed no matter how apparent. 
Rather we advertised the password algorithm and invited attack in the belief that this approach 
would minimize future trouble. The approach has been successful. 
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Uucp Implementation Description 

D. A. Nowitz 

Introduetion 

Uucp is a series of programs designed to permit communication between UNIXt systems using 
either dial-up or hardwired communication lines. It is used for file transfers and remote command 
execution. The first version of the system was designed and implemented by M. E. Lesk. l This 
paper describes the current (second) implementation of the system. 

Uucp is a batch type operation. Files are created in a spool directory for processing by the uucp 
demons. There are three types of files used for the execution of work. Data jiJes contain data for 
transfer to remote systems. Work jiJes contain directions for file transfers between systems. 
Execution jiJC8 are directions for UNIX command executions which involve the resources of one or 
more systems. 

The uucp system consists of four primary and two secondary programs. The primary programs 
are: 

uucp 

uux 

uucico 

uuxqt 

This program creates work and gathers data files in the spool directory for the 
transmission of files. 

This program creates work files, execute files and gathers data files for the remote 
execution of UNIX commands. 

This program executes the work files for data transmission. 

This program executes the execution files for UNIX command execution. 

The secondary programs are: 

uulog This program updates the log file with new entries and reports on the status of 
uucp requests. 

uuclean This program removes old files from the spool directory. 

The remainder of this paper will describe the operation of each program, the installation of the 
system, the security aspects of the system, the files required for execution, and the administration 
of the system. 

1. Uuep - UNIX to UNIX File Copy 

The uucp command is the user's primary interface with the system. The uucp command was 
designed to look like cp to the user. The syntax is 

uucp [ option] ... source... destination 

where the source and destination may contain the prefix system-name! which indicates the system 
on which the file or files reside or where they will be copied. 

The options interpreted by uucp are: 

-d Make directories when necessary for copying the file. 

-c Don't copy source files to the spool directory, but use the specified source when 
the actual transfer takes place. 

t UNlX is a trademark of Bell Laboratories. 
1 M. E. Lesk a.nd A. S. Cohen, UNlX Software Distribution by Communication Link, private communication. 
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Put letter in as the grade in the name of the work file. (This can be used to 
change the order of work for a particular machine.) 

-m Send mail on completion of the work. 

The following options are used primarily for debugging: 

-r 

-sdir 

Queue the job but do not start uueieo program. 

Use directory dir for the spool directory. 

-xnum Num is the level of debugging output desired. 

The destination may be a directory name, in which case the file name is taken from the last part of 
the source's name. The source name may contain special shell characters such as "fit!/". H a 
source argument has a ",tem-name! prefix for a remote system, the file name expansion will be 
done on the remote system. 

The command 

uucp *.c usg!/usr/dan 

will set up the transfer of all files whose names end with ".c" to the "/usr/dan" directory on 
the"usg" machine. 

The source and/or destination names may also contain a - u,er prefix. This translatl'S to the login 
directory on the specified system. For names with partial path-names, the current directory is 
prepended to the file name. File names with .. / are not permitted. 

The command 

uucp usg!- dan/*.h -dan 

will set up the transfer of files whose names end with ".h" in dan's login directory on system 
"usg" to dan's local login directory. 

For each source file, the program will check the source and destination file-names and the system­
part of each to classify the work into one of five types: 

[lJ Copy source to destination on local system. 

[2J Receive files from other systems. 

[3J Send files to a remote systems. 

[4J Send files from remote systems to another remote system. 

[5J Receive files from remote systems when the source contains special shell characters as 
mentioned above. 

After the work has been set up in the spool directory, the uueieo program is started t.o try to con­
tact the other machine to execute the work (unless the -r option was specified). 

Type 1 

A ep command is used to do the work. The -d and the -m options are not honored in this case. 

Type 2 

A one line work file is created for each file requested and put in the spool directory with the follow­
ing fields, each separated by a blank. (All work file, and ezeeute files use a blank as the field 
separator. ) 

[1] R 

[2] The full path-name of the source or a -user/path-name. The - u,er part will be 
expanded on the remote system. 

[3J The full path-name of the destination file. H the - u,er notation is used, it will be 
immediately expanded to be the login directory for the user. 

[4] The user's login name. o 
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[5] A IC_" followed by an option list. (Only the -m and -d options will appear in this 
list. ) 

Type 3 

For each source file, a work Jile is created and the source file is copied into a data Jile in the spool 
directory. (A IC-C" option on the uucp command will prevent the data file from being made.) In 
this case, the file will be transmitted from the indicated source.) The fields of each entry are given 
below. 

[1] S 
[2] The full-path name of the source file. 

13] The full-path name of the destination or -user/file-name. 

[4J The user's login name. 

[5] A "-" followed by an option list. 

[61. The name of the data Jile in the spool directory. 

[7J The file mode bits of the source file in octal print format (e.g. 0666). 

Type " and Type 5 

UtlCP generates a tltICP command and sends it to the remote machine; the remote tltIcieo executes 
the tltICP command. 

2. Uux - UNIX To UNIX Execution 
The tlUX command is used to set up the execution of a UNIX command where the execution 
machine and/or some of the files are remote. The syntax of the uux command is 

UtiX [-] [ option J ... command-string 

where the command-string is made up of one or more arguments. All special shell characters such 
as "< > IA" must be quoted either by quoting the entire command-string or quoting the character 
as a separate argument. Within the command-string, the command and file names may contain a 
8118tem-name! prefix. All arguments which do not contain a "!" will not be treated as files. (They 
will not be copied to the execution machine.) The "-" is used to indicate that the standard input 
for command-string should be inherited from the standard input of the uux command. The 
options, essentially for debugging, are: 

-I' 

-xnum 

The command 

Don't start uucico or tluxqt after queuing the job; 

Num is the level of debugging output desired. 

pI' abc I uux - usg!lpr 

will set up the output of "PI' abc" as standard input to an lpr command to be executE.'d on systE.'m 
"usg". 

Uux generates an execute Jile which contains the names of the files required for execution (includ­
ing standard input), the user's login name, the destination of the standard output, and the com­
mand to be executed. This file is either put in the spool directory for local execution or sent to the 
remote system using a generated send command (type 3 above). 

For required files which are not on the execution machine, tlUX will generate receive command files 
(type 2 above). These command-files will be put on the execution machine and executed by the 
tlucico program. (This will work only if the local system has permission to put files in the remote 
spool directory as controlled by the remote USERFlLE. ) 

The execute file will be processed by the uuxqt program on the execution machine. It is made up 
of several lines, each of which contains an identification character and one or more arguments. 
The order of the lines in the file is not· relevant and some of the lines may not be present. Each 
line is described below. 
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User Line 

U user system 

where the UBer and ay8tem are the requester's login name and system. 

Required File Line 

F file-name real-name 

where the jile-name is the generated name of a file for the execute machine and real-name is 
the last part of the actual file name (contains no path information). Zero or more of these 
lines may be present in the ezecute file. The uuzqt program will check for the existence of 
all required files before the command is executed. 

Standard Input Line 

I file-name 

The standard input is either specified by a cc <" in the command-string or inherited from the 
standard input of the uuz command if the CC_" option is used. If a standard input is not 
specified, cc /dev /null" is used. 

Standard Output Line 

o file-name system-name 

The standard output is specified by a ">" within the command-string. If a standard out.put 
is not specified, "/dev/null" is used. (Note - the use of "> >" is not implemented.) 

Command Line 

C command [arguments] ... 

The arguments are those specified in the command-string. The standard input and standard 
output will not appear on this line. All required jilCB will be moved to the execution direc­
tory (a subdirectory of the spool directory) and the UNIX command is execut.ed using the 
Shell specified in the uuep.h header file. In addition, a shell "PATH" statement is prepended 
to the command line as specified in the uuzqt program. 

After execution, the standard output is copied or set up to be sent to the proper place. 

3. Uueieo - Copy In, Copy Out 

The uucieo program will perform the following major functions: 

Scan the spool directory for work. 

Place a call to a remote system. 

Negotiate a line protocol to be used. 

Execute all requests from both systems. 

Log work requests and work completions. 

Uucieo may be started in several ways; 

a) by a system daemon, 

b) 
c) 
d) 

by one of the uucp, uuz, uuzqt or uucico programs, 

directly by the user (this is usually for testing), 

by a remote system. (The uucico program should be specified as the "shell" field in the 
"/etc/passwd" file for the ccuucp" logins.) 

When started by method a, b or c, the program is considered to be in MASTER mode. In this 
mode, a connection will be made to a remote system. If started by a remote system (method d), 
the program is considered to be in SLA VE mode. 
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The MASTER mode will operate in one of two ways. If no system name is specified (-s option 
not specified) the program will scan the spool directory for systems to call. If a system name is 
specified, that system will be called, and work will only be done Cor that system. 

The uucico program is generally started by another program. There are several opt.ions used for 
execution: 

-rl Start the program in MASTER mode. This is used when uucico is started by a 
program or "cron" shell. 

-S8'118 Do work only Cor system 8'118. If -8 is specified, a call to the specified system will 
be made even iC there is no work Cor system ''118 in the spool directory. This is 
useCul Cor polling systems which do not have the hardware to initiate a connec­
tion. 

The Collowing options are used primarily Cor debugging: 

-ddir Use directory dir Cor the spool directory. 

-xnum Num is the level of debugging output desired. 

The next part oC this section will describe the major steps within the uucico program. 

Scan For Work 

The names oC the work related files in the spool directory have Cormat 

type. system-name grade number 

where: 

Type is an upper case letter, ( G - copy command file, D - data file, X - execute file); 

System-name is the remote system; 

Grade is a character; 

Number is a four digit, padded sequence number. 

The file 

C.res45nOO31 

would be a work file Cor a file transCer between the local machine and the "res45" machine. 

The scan Cor work is done by looking through the spool directory Cor work files (files with prefix 
"C."). A list is made of all systems to be called. Uucico will then call each system and process all 
work files. 

Call Remote System 

The call is made using inCormation Crom several files which reside in the uucp program directory. 
At the start oC the call process, a lock is set to Corbid multiple conversations between t he same two 
systems. 

The system name is Cound in the £.8118 file. The inCormation contained Cor each system is; 

[IJ 
[2] 
[3] 
[4] 
[5J 

system name, 

times to call the system (days-oC-week and times-oC-day), 

device or device type to be used Cor call, 

line speed, 

phone number if field [3J is AGU or the device name (same as field [3]) if not AGU, 

[6] login inCormation (multiple fields), 

The time field is checked against the present time to see if the call should be made. 

The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into dial 
sequences using the L-dialcodu file. 
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The L-detJices file is scanned using fields [3J and [4] rrom the L.s1ls file to find an available device 
ror the call. The program will try all devices which satisfy 13J and [4J until the call is made, or no 
more devices can be tried. H a device is successfully opened, a lock file is created so that another 
copy or ncico will not try to use it. If the call is complete, the login information (field [6] of 
L.s1ls) is used to login. 

The conversation between the two ncico programs begins with a handshake started by the called, 
SLA VE, system. The SLA VE sends a message to let the MASTER know it is ready to receive the 
system identification and conversation sequence number. The response from the MASTER is 
verified by the SLA VE and ir acceptable, protocol selection begins. The SLA VE can also reply 
with a "call-back required" message in which case, the current conversation is terminated. 

Line Protocol Selection 
The remote system sends a message 

Pproto-list 

where proto-list is a string or characters, each representing a line protocol. 

The calling program checks the proto-list for a letter corresponding to an available line protocol 
and returns a u8e-protocol message. The use-protocol message is 

Ucode 

where code is either a one character protocol letter or N which means there is no common protocol. 

Work Processing 

The initial roles ( MASTER or SLA VE ) ror the work processing are the mode in which each pro­
gram starts. (The MASTER has been specified by the "-rI" uucico option.) The AfA.STER pro­
gram does a work search similar to the one used in the "Scan For Work" section. 

There are five messages used during the work processing, each specified by the first character of the 
message. They are; 

S send a file, 

R receive a file, 

C copy complete, 

X execute a uucp command, 

H hangup. 

The MASTER will send R, S or X messages until all work from the spool directory is complete, 
at which point an H message will be sent. The SLA VE will reply with SY, SN, RY, RN, HY, HN, 
Xl'; XN, corresponding to yes or no for each request. 

The send and receive replies are based on permission to access the requested file/directory using the 
USERFlLE and read/write permissions of the file/directory. After each file is copied into the 
spool directory or the receiving system, a copy-complete message is sent by the receiver of the file. 
The message OY will be sent if the file has successfully been moved from the temporary spool file 
to the actual destination. Otherwise, a ON message is sent. (In the case or ON, the transferred 
file will be in the spool directory with a name beginning with "TM'.) The requests and results are 
logged on both systems. 

The hangup response is determined by the SLA VE program by a work scan of the spool directory. 
H work ror the remote system exists in the SLA VE's spool directory, an HN message is sent and 
the programs switch roles. H no work exists, an BY response is sent. 
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Conversation Termination 

When a HY message is received by the MASTER it is echoed back to the SLA VE and the proto­
cols are turned off. Each program sends a final "00" message to the other. The original SLA VE 
program will clean up and terminate. The MASTER will proceed to call other systems and pro­
cess work as 10Il,g as possible or terminate if a -a option was specified. 

4. Uuxqt - Uucp Command Execution 

The uuxqt program is used to execute e:recute jilea generated by uux. The uuxqt program may be 
started by either the uucico or uu:r programs. The program scans the spool direct.ory for ezecute 
jiles (prefix "X. "). Each one is checked to see if all the required files are available and if 50, the 
command line or send line is executed. 

The execute jile is described in the "Uux" section above. 

Command Execution 

The execution is accomplished by executing a sh -c of the command line after appropriate standard 
input and standard output have been opened. If a standard output is specified, the program will 
create a send command or copy the output file as appropriate. 

5. Uulog - Uucp Log Inquiry 

The uucp programs create individual log files for each program invocation. Periodically, uulog 
may be executed to prepend these files to the system logfile. This method of logging was chosen to 
minimize file locking of the logfile during program execution. 

The uulog program merges the individual log files and outputs specified log entries. The output 
request is specified by the use of the following options: 

-ss1ls Print entries where sys is the remote system name; 

-uuser Print entries for user user. 

The intersection of lines satisfying the two options is output. A null S1lS or user means all system 
names or users respectively. 

6. Uuclean - Uucp Spool Directory Cleanup 

This program is typically started by the daemon, once a day. Its function is to remove files from 
the spool directory which are more than 3 days old. These are usually files for work which can not 
be completed. 

The options available are: 

-ddir The directory to be scanned is dir. 

-m Send mail to the owner of each file being removed. (Note that most files put into 
the spool directory will be owned by the owner of the uucp programs since the 
setuid bit will be set on these programs. Themail will therefore most often go to 
the owner of the uucp programs.) 

-nhours Change the aging time from 72 hours to hours hours. 

-ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be 
specified.) 

-Xflum This is the level of debugging output desired. 

7. Security 

The uucp system, left unrestricted, will let any outside user execute any 
commands and copy in/out any file which is readable/writable by the 
uucp login user. It is up to the individual sites to be aware of this and 
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apply the protections that they feel are necessary. 

There are several security features available aside from the normal file mode protections. These 
must be set up by the installer of the tluep system. 

The login for uucp does not get a standard shell. Instead, the uueieo program is started. 
ThereCore, the only work that can be done is through uueieD. 

A path check is done on file names that are to be sent or received. The USERFlLE supplies 
the inCormation for these checks. The USERFILE can also be set up to require call-back Cor 
certain login-ids. (See the "Files required for execution" section for the file description.) 

A conversation sequence count can be set up so that the called system can be more confident 
that the caller is who he says he is. 

The uuxqt program comes with a list of commands that it will execute. A "PATH" shell state­
ment is prepended to the command line as speciCed in the uuxqt program. The installer may 
modify the list or remove the restrictions as desired. 

The L.3113 file should be owned by uucp and have mode 0400 to protect the phone numbers and 
login information for remote sites. (Programs uucp, uutico, uux, uuxqt should be also owned 
by uucp and have the setuid bit set.) . 

8. Uucp Installation 

There are several source modifications that may be required before the system programs are com­
piled. These relate to the directories used during compilation, the directories used during execu­
tion, and the local uuep 311stem-name. 

The Cour directories are: 

lib (jusr/src/cmd/uucp) This directory contains the source files for generating the 
uuep system. 

program (jusr/lib/uucp) This is the directory used Cor the executable system programs 
and the system files. 

spool 

xqtdir 

(jusr/spool/uucp) This is the spool directory used during tltlep execution. 

(jusr/spool/uucp/.xQTDffi) This directory is used during execution of execute 
fiJes. 

The names given in parentheses above are the default values for the directories. The italicized 
named lib, program, xqtdir, and spool will be used in the following text to represent the appropri­
ate directory names. 

There are two files which may require modification, the makefiJe file and the tlucp.h file. The fol­
lowing paragraphs describe the modifications. The modes of 81'001 and xqtdir should be made 
"0777" . 

Uucp.h modification 

Change the program and the 81'001 names from the default values to the directory names to be 
used on the local system using global edit commands. 

Change the define value for MYNAME to be the local tAUep system-name. 

makefile modification 

There are several make variable definitions which may need modification. 

INSDffi This is the program directory (e.g. INSDffi=/usr/lib/uucp). This parameter is 
used if "make cp" is used after the programs are compiled. 

IOCTL This is required to be set if an appropriate ioctl interface subroutine does not 
exist in the standard "C" library; the statement "IOCTL=ioctl.o" is required in 
this case. /' .... " 

U 
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PKON The statement "PKON=pkon.o" is required if the packet driver is not in the ker­
nel. 

Compile the system The command 

make 

will compile the entire system. The command 

make cp 

will copy the commands to the to the appropriate directories. 

The programs uucp, uux, and uu/og should be put in "/usr Ibin". The programs uuxqt, uucico, 
and uuclean should be put in the program directory. 

Files required for execution 

There are four files which are required for execution, all of which should reside in the program 
directory. The field separator for all files is a space unless otherwise specified. 

L-deviees 

This file contains entries for the call-unit devices and hardwired connections which are to be used 
by uucp. The special device files are assumed to be in the / dev directory. The format for each 
entry is 

line call-unit speed 

where; 

line 

call-unit 

is the device for the line (e.g. culO), 

is the automatic call unit associated with line (e.g. cuaO), (Hardwired lines 
have a number "0" in this field.), 

speed 

The line 

is the line speed. 

culO cuaO 300 

would be set up for a system which had device culO wired to a call-unit cuaO for use at 300 baud. 

L-dialeodes 

This file contains entries with location abbreviations used in the L.81/8 file (e.g. py, mh, boston). 
The entry format is 

where; 

abb 

dial-seq 

The line 

abb dial-seq 

is the abbreviation, 

is the dial sequence to call that location. 

py 165-

would be set up so that entry py7777 would send 165-7777 to the dial-unit. 

LOGIN/SYSTEM NAMES 
It is assumed that the login name used by a remote computer to call into a local computer is not 
the same as the login name of a normal user of that local machine. However, several remote com­
puters may employ the same login name. 

Each computer is given a unique system name which is transmitted at the start of each call. This 
name identifies the calling machine to the called machine. 



- 10-

USERFILE 
This file contains user accessibility information. It specifies four types of constraint; 

[1] which files can be accessed by a normal user of the local machine, 

[2] which files can be accessed from a remote computer, 

[3] which login name is used by a particular remote computer, 

[4] whether a remote computer should be called back in order to confirm its identity. 

Each line in the file has the following format 

login,sys [c] path-name [path-name] ... 

where; 

login is the login name for a user or the remote computer, 

sys is the system name for a remote computer, 

c is the optional call-back required flag, 
path-name is a path-name prefix that is acceptable for U3er. 

The constraints are implemented as follows. 

[1] When the program is obeying a command stored on the local machine, MASTER 
mode, the path-names allowed are those given for the first line in the USERFlLE that 
has a login name that matches the login name of the user who entered the command. 
If no such line is found, the first line with a null login name is used. 

[2] When the program is responding to a command from a remote machine, SLA VE mode, 
the path-names allowed are those given for the first line in the file that has the system 
name that matches the system name of the remote machine. If no such line is found, 
the first one with a null system name is used. 

[3] When a remote computer logs in, the login name that it uses must appear in the 
USERFILE. There may be several lines with the same login name but one of them 
must either have the name of the remote system or must contain a null system name. 

[4] If the line matched in ([3]) contains a "c", the remote machine is called back before any 
transactions take place. 

The line 

u,m jusr jxyz 

allows machine m to login with name u and request the transfer of files whose names start with 
"jusr/xyz". 

The line 

dan, /usr/dan 

allows the ordinary user dan to issue commands for files whose name starts with "/usr/dan". 

The lines 

u,m /usr/xyz jusr/spool 
u, jusr/spool 

allows any remote machine to login with name u, but if its system name is not m, it can only ask 
to transfer files whose names start with "/usrjspool". 

The lines 

root, / 
, jusr 

allows any user to transfer files beginning with "/usr" but the user with login root can transfer 
any file. 
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L.sys 

Each entry in this file represents one system which can be called by the local uucp programs. The 
fields are described ,below. 

system name 

The name of the remote system. 

time 
This is a string which indicates the days-of-week and times-of-day when the system should 
be called (e.g. MoTuThOSOO-I730). 

The day portion may be a list containing some of 

StI. Mo Ttl. We Th Fr Sa 

or it may be WI: for any week-day or Any for any day. 

The time should be a range of times {e.g. 0800-1230}. If no time portion is specified, any 
time of day is assumed to be ok for the call. 

device 

This is either ACU or the hardwired device to be used for the call. For the hardwired case, 
the last part of the special file name is used (e.g. ttyO). 

speed 

This is the line speed for the call (e.g. 300). 

phone 

The phone number is made up of an optional alphabetic abbreviation and a numeric part. 
The abbreviation is one which appears in the L-dialcodeB file (e.g. mh5900, bost.on995-9980). 

For the hardwired devices, this field contains the same string as used for the device field. 

login 

The login information is given as a series of fields and subfields in the format 

expect send [expect send] ... 

where; expect is the string expected to be read and Bend is the string to be sent when the 
expect string is received. 

The expect field may be made up of subfields of the form 

expect[-send-expect] ... 

where the Bend is sent if the prior ezpect is not successfully read and the e:rpect following 
the Bend is the next expected string. 

There are two special names available to be sent during the login sequence. The string EOT 
will send an EOT character and the string BREAK will try to send a BREAK character. 
(The BREAK character is simulated using line speed changes and null characters and may 
not work on all devices and/or systems.) 

A typical entry in the L.sys file would be 

sys Any ACU 300 mh7654 login uucp ssword: word 

The expect algorithm looks at the last part of the string as illustrated in the password field. 



9. Administration 

This section indicates some events and files which must be administered for the ncp system. 
Some administration ean be accomplished by .hell filu which can be initiated by crontab entries. 
Others will require manual intervention. Some sample .hell Jiles are given toward the end of this 
section. 

SQFILE - sequence check file 

This file is set up in the program directory and contains an entry for each remote system with 
which you agree to perform conversation sequence cheeks. The initial entry is just the system 
name of the remote system. The first conversation will add two items to the line, the conversation 
count, and the date/time of the most resent conversation. These items will be updated with each 
conversation. If a sequence check fails, the entry will have to be adjusted. 

TM - temporary data files 

These files are created in the .poo/ directory while files are being copied from a remote machine. 
Their names have the form 

TM.pid.ddd 

where pid is a process-id and ddd is a sequential three digit number starting at zero for each invo­
cation of uucico and incremented for each file received. 

After the entire remote file is received, the TM file is moved/copied to the requested destination. 
If processing is abnormally terminated or the move/copy fails, the file will remain in the spool 
directory. 

The leftover files should be periodically removed; the nclean program is useful in this regard. 
The command 

uuclean -pTM 

will remove all TM files older than three days. 

LOG - log entry files 

During execution of programs, individual LOG files are created in the spool directory with infor­
mation about queued requests, calls to remote systems, execution of uux commands and file copy 
results. These files should be combined into the LOGFILE by using the uu/og program. This pro­
gram will put the new LOG files at the beginning of the existing LOGFILE. The command 

uulog 

will accomplish the merge. Options are available to print some or all the log entries after the files 
are merged. The LOGFILE should be removed periodically since it is copied each time new LOG 
entries are put into the file. 

The LOG files are created initially with mode 0222. If the program which creates the file ter­
minates normally, it changes the mode to 0666. Aborted runs may leave the files with mode 0222 
and the uu/og program will not read or remove them. To remove them, either use rm, uuclean, or 
change the mode to 0666 and let nlog merge them with the LOGFILE . 

STST - system status files 

These files are created in the spool direetory by the uucico program. They contain information of 
failures such as login, dialup or sequence cheek and will contain a TALKING status when to 
machines are conversing. The form of the file name is 

STST.sys 

where ''Us is the remote system name. 

For ordinary failures (dialup, login), the file will prevent repeated tries for about one hour. For 
sequence cheek failures, the file must be removed before any future attempts to converse with that 
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remote system. 

If the file is left due to an aborted run, it may contain a TALKING status. In this case, the file 
must be removed before a conversation is attempted. 

LCK - lock fU~s 

Lock files are created for each device in use (e.g. automatic calling unit) and each system convers­
ing. This prevents duplicate conversations and multiple attempts to use the same devices. The 
form of the lock file name is 

LCK •• str 

where atr is either a device or system name. The files may be left in the spool directory if runs 
abort. They will be ignored (reused) after a time of about 24 hours. When runs abort and calls 
are desired before the time limit, the lock files should be removed. 

Shell Files 

The uucp program will spool work and attempt to start the uucico program, but the starting of 
uucico will sometimes fail. (No devices available, login failures etc.). Therefore, the uucico pr~ 
gram should be periodically started. The command to start uucico can be put in a "shell" file 
with a command to merge LOG files and started by a crontab entry on an hourly basis. The file 
could contain the commands 

program /uulog 
program /uucico -rl 

Note that the "-rl" option is required to start the uucico program in MASTER mode. 

Another shell file may be set up on a daily basis to remove TM, ST and LCK files and O. or D. 
files for work which can not be accomplished for reasons like bad phone number, login changes etc. 
A shell file containing commands like 

program /uuclean -pTM -pC. -pD. 
program /uuclean -pST -pLCK -n12 

can be used. Note the "-nI2" option causes the ST and LCK files older than 12 hours to be 
deleted. The absence of the "-n" option will use a three day time limit. 

A daily or weekly shell should also be created to remove or save old LOGFILEs. A shell like 

cp spool/LOGFILE spool/o.LOGFILE 
rm spool/LOGFll..E 

can be used. 

Login Entry 

One or more logins should be set up for uucp. Each of the "/etc/passwd" entries should have the 
"program/uucico" as the shell to be executed. The login directory is not used, but if the system 
has a special directory for use by the users for sending or receiving file, it should as the login entry. 
The various logins are used in conjunction with the USERFILE to restrict file access. Specifying 
the shell argument limits the login to the use of uucp ( uucico) only. 

File Modes 

It is suggested that the owner and file modes of various programs and files be set as follows. 

The programs uuep, uuz, uucico and uuzqt should be owned by the uucp login with the "setuid" 
bit set and only execute permissions (e.g. mode 04111). This will prevent outsiders from modifying 
the programs to get at a standard 8hell for the tlUCP logins. 

The L.8118, SQFILE and the USERFILE which are put in the program directory should be owned 
by the UtlCP login and set with mode 0400. 
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Uucp Implementation Description 

D. A. Nowitz 

ABSTRACT 

Uucp is a series of programs designed to permit communication between 
UNIX systems using either dial-up or hardwired communication lines. This docu­
ment gives a detailed implementation description of the current (second) imple­
mentation of uucp. 

This document is for use by an administrator/installer of the system. It is 
not meant as a user's guide. 

October 31, 1978 
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A Dial-Up Network of UNJXTM Systems 

D. A. Nowitz 

M. E. Lesk 

ABSTRAOT 

A network oC over eighty UNlXt computer systems has been esta,blished 
using the telephone system as its primary communication medium. The network 
was designed to meet the growing demands Cor soCtware distribution and 
exchange. Some advantages oC our design are: 

The startup cost is low. A system needs only a dial-up port, but systems 
with automatic calling units have much more flexibility. 

No operating system changes are required to install or use the system. 

The communication is basically over dial-up lines, however, hardwired com­
munication lines can be used to increase speed. 

The command Cor sending/receiving files is simple to use. 

Keywords: networks, communications, soCtware distribution, soCtware 
maintenance 

August 18, 1978 

t UNIX is a trademark or Bell Laboratories. 
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A Dial-Up Network of UNJX1'M Systems 

D. A. Nowitz 

M. E. UlSk 

1. Purpose 

The widespread use of the UNIX system ritchie thompson bstj 1978 within Bell Laboratories 
has produced problems of software distribution and maintenance. A conventional mechanism was 
set up to distribute the operating system and associated programs from a central site to the vari­
ous users. However this mechanism alone does not meet all software distribution needs. Remote 
sites generate much software and must transmit it to other sites. Some UNIX systems are them­
selves central sites for redistribution of a particular specialized utility, such as the Switching Con­
trol Center System. Other sites have particular, often long-distance needs for software exchange; 
switching research, for example, is carried on in New Jersey, Illinois, Ohio, and Colorado. In addi­
tion, general purpose utility programs are written at all UNIX system sites. The UNIX system is 
modified and enhanced by many people in many places and it would be very constricting to deliver 
new software in a one-way stream without any alternative for the user sites to respond with 
changes of their own. 

Straightforward software distribution is only part of the problem. A large project may 
exceed the capacity of a single computer and several machines may be used by the one group of 
people. It then becomes necessary for them to pass messages, data and other information back an 
forth between computers. 

Several groups with similar problems, both inside and outside of Bell Laboratories, have con­
structed networks built of hardwired connections only. dolotta mashey 1978 bstj network unix 
system chesson Our network, however, uses both dial-up and hardwired connections so that service 
can be provided to as many sites as possible. 

2. Design Goals 

Although some of our machines are connected directly, others can only communicate over 
low-speed dial-up lines. Since the dial-up lines are often unavailable and file transfers may take 
considerable time, we spool all work and transmit in the background. We also had to adapt to a 
community of systems which are independently operated and resistant to suggestions that they 
should all buy particular hardware or install particular operating system modifications. Therefore, 
we make minimal demands on the local sites in the network. Our implementation requires no 
operating system changes; in fact, the transfer programs look like any other user entering the sys­
tem through the normal dial-up login ports, and obeying all local protection rules. 

We distinguish "active" and "passive" systems on the network. Active systems have an 
automatic calling unit or a hardwired line to another system, and can initiate a connection. Pas­
sive systems do not have the hardware to initiate a connection. However, an active system can be 
assigned the job of calling passive systems and executing work found there; this makes a passive 
system the functional equivalent of an active system, except for an additional delay while it waits 
to be polled. Also, people frequently log into active systems and request copying from one passive 
system to another. This requires two telephone calls, but even so, it is faster than mailing tapes. 

\\"here convenient, we use hardwired communication lines. These permit much faster 
transmission and multiplexing of the communications link. Dial-up connections are made at either 
300 or 1200 baud; hardwired connections are asynchronous up to 9600 baud and might run even 
(aster on special-purpose communications hardware. (raser spider 1974 ieee (raser channel network 
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datamation 1975 Thus, systems typically join our network first as passive systems and when they 
find the service more important, they acquire automatic calling units and become active systems; 
eventually, they may install high-speed links to particular machines with which they handle a 
great deal of traffic. At no point, however, must users change their programs or procedures. 

The basic operation of the network is very simple. Each participating system has a spool 
directory, in which work to be done (files to be moved, or commands to be executed remotely) is 
stored. A standard program, uucico, performs all transfers. This program starts by identifying a 
particular communication channel to a remote system with which it will hold a conversation. 
U.cico then selects a device and establishes the connection, logs onto the remote machine and 
starts the •• cico program on the remote machine. Once two of these programs are connected, 
they first agree on a line protocol, and then start exchanging work. Each program in tum, begin­
ning with the calling (active system) program, transmits everything it needs, and then asks the 
other what it wants done. Eventually neither has any more work, and both exit. 

In this way, all services are available from all sites; passive sites, however, must wait until 
called. A variety of protocols may be used; this conforms to the real, non-standard world. As 
long as the caller and called programs have a protocol in common, they can communicate. Furth­
ermore, each caller knows the hours when each destination system should be called. If a destina­
tion is unavailable, the data intended for it remain in the spool directory until the destination 
machine can be reached. 

The implementation of this Bell Laboratories network between independent sites, all of which 
store proprietary programs and data, illustratives the pervasive need for security and administra­
tive controls over file access. Each site, in configuring its programs and system files, limits and 
monitors transmission. In order to access a file a user needs access permission for the machine that 
contains the file and access permission for the file itself. This is achieved by first requiring the user 
to use his password to log into his local machine and then his local machine logs into the remote 
machine whose files are to be accessed. In addition, records are kept ident.ifying all files that. are 
moved into and out of the local system, and how the requestor of such accesses identified himself. 
Some sites may arrange to permit users only to call up and request work to be done; the calling 
users are then called back before the work is actually done. It is then possible to verify that the 
request is legitimate from the standpoint of the target system, as well as the originating system. 
Furthermore, because of the call-back, no site can masquerade as another even if it knows all the 
necessary passwords. 

Each machine can optionally maintain a sequence count for conversations with other 
machines and require a verification of the count at the start of each conversation. Thus, even if 
call back is not in use, a successful masquerade requires the calling party to present the correct 
sequence number. A would-be impersonator must not just steal the correct phone number, user 
name, and password, but also the sequence count, and must call in sufficiently promptly to precede 
the next legitimate request from either side. Even a successful masquerade will be det,ected on the 
next correct conversation. 

8. Processing 

The user has two commands which set up communications, uucp to set up file copying, and 
flu:&' to set up command execution where some of the required resources (system and/or files) are. 
not on the local machine. Each of these commands will put work and data files into the spool 
directory for execution by uucp daemons. Figure 1 shows the major blocks of the file transfer pro­
cess. 

File Copy 

The flfIcico program is used to perform all communications between the two systems. It per­
forms the following functions: 

Scan the spool directory for work. 
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Place a call to a remote system. 

Negotiate a line protocol to be used. 
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Start program "ueieo on the remote system. 

Execute all requests Crom both systems. 

Log work requests and work completions. 

Uveieo may be started in several ways; 

a) by a system daemon, 

b) by one oC the vuep or vuz programs, 

c) by a remote system. 

Scan For Work 

Nowitz 

The file names in the spool directory are constructed to allow tbe daemon programs (uutieo, 
uuzqt) to determine the files they should look at, the remote machines they should call and the 
order in which the files Cor a particular remote machine should be processed. 

Call Remote System 

The call is made using inCormation Crom several files which reside in the uucp program direc­
tory. At the start oC the call process, a lock is set on the system being called so that another call 
will not be attempted at the same time. 

The system name is Cound in a "systems" file. The inCormation contained Cor each system is: 

[lJ system name, 

[2J times to call the system (days-oC-week and times-oC-day), 

[3J device or device type to be used Cor call, 

[4] line speed, 

[5] phone number, 

[6] login inCormation (multiple fields). 

The time field is checked against the present time to see iC the call should be made. The 
phone number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial 
sequences using a "dial-codes" file. This permits the same "phone number" to be stored at every 
site, despite local variations in telephone services and dialing conventions. 

A "devices" file is scanned using fields [3] and [4J Crom the "systems" file to find an available 
device Cor the connection. The program will try all devices which satisCy [3J and [4] until a connec­
tion is made, or no more devices can be tried. If a non-multiplexable device is successCully opened, 
a lock file is created so that another copy of "ueieo will not try to use it. If the connection is com­
plete, the login information is used to log into the remote system. Then a command is sent to the 
remote system to start the uueieo program. The conversation between the two uueieo programs 
begins with a handshake started by the called, SLAVE, system. The SLA VE sends a message to 
let the MASTER know it is ready to receive the system identification and conversation sequence 
number. The response from the AlASTER is verified by the 8LA VE and iC acceptable, protocol 
selection begins. 

Line Protocol Selection 

The remote system sends a message 

Pproto-Ii8t 

where proto-li8t is a string of characters, each representing a line protocol. The calling program 
checks the proto-list for a letter corresponding to an available line protocol and returns a U8e­

protocol message. The u8e-protoeol message is 
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Uc:ode 

where code is either a one character protocol letter or a N which means there is no common proto­
col. 

Greg Chesson designed and implemented the standard line protocol used by the uucp 
transmission program. Other protocols may be added by individual installations. 

Work Pl"Ocessing 

During processing, one program is the MASTER and the other is SLA VE. Initially, the cal­
ling program is the MASTER. These roles may switch one or more times during the conversation. 

There are four messages used during the work processing, each specified by the first character 
of the message. They are 

center; c 1. S send a file, R receive a file, C copy complete, H hangup. 

The MASTER will send R or S messages until all work from the spool directory is complete, a,t 
which point an H message will be sent. The SLA VE will reply with SY, SN, RY, RN, BY, HN, 
corresponding to lIes or no for each request. 

The send and receive replies are based on permission to access the requested file! directory. 
After each file is copied into the spool directory of the receiving system, a copy-complete message is 
sent by the receiver of the file. The message CY will be sent if the UNIX cp command, used to 
copy from the spool directory, is successful. Otherwise, a CN message is sent. The requests and 
results are logged on both systems, and, if requested, mail is sent to the user reporting completion 
(or the user can request status information from the log program at any time). 

The hangup response is determined by the SLA VE program by a work scan of the spool 
directory. If work for the remote system exists in the SLA VE's spool directory, a HN message is 
sent and the programs switch roles. If no work exists, an BY response is sent. 

A sample conversation is shown in Figure 2. 

Conversation Termination 

When a BY message is received by the MASTER it is echoed back to the SLA VE and the 
protocols are turned off. Each program sends a final "00" message to the other. 

4. Present Uses 

One application of this software is remote mail. Normally, a UNIX system user writes "mail 
dan" to send mail to user "dan". By writing "mail usg!dan" the mail is sent to user "dan" on 
system "usg". 

The primary uses of our network to date have been in software maintenance. Relatively few 
of the bytes passed between systems are intended for people to read. Instead, new programs (or 
new versions of programs) are sent to users, and potential bugs are returned to authors. Aaron 
Cohen has implemented a "stockroom" which allows remote users to call in and request software. 
He keeps a "stock list" of available programs, and new bug fixes and utilities are added regularly. 
In this way, users can always obtain the latest version of anything without bothering the authors 
of the programs. Although the stock list is maintained on a particular system, the items in the 
stockroom may be warehoused in many places; typically each program is distributed from the 
home site of its author. Where necessary, uucp does remote-to-remote copies. 

We also routinely retrieve test cases from other systems to determine whether errors on 
remote systems are caused by local misconfigurations or old versions of software, or whether they 
are bugs that must be fixed at the home site. This helps identify errors rapidly. For one set of 
test programs maintained by us, over 70% of the bugs reported from remote sites were due to old 
software, and were fixed merely by distributing the current version. 

Another application of the network for software maintenance is to compare files on two 
different machines. A very useful utility on one machine has been Doug McDroy's "diff" program 
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which compares two text files and indicates the differences, line by line, between them. hunt mcil­
roy file Only lines which are not identical are printed. Similarly, the program "uudiff" compares 
files (or directories) on two machines. One of these directories may be on a passive system. The 
"uudiff" program is set up to work similarly to the inter-system mail, but it is slightly more com­
plicated. 

To avoid moving large numbers of usually identical files, uudiO' computes file checksums on 
each side, and only moves files that are different for detailed comparison. For large files, this pro­
cess can be iterated; checksums can be computed for each line, and only those lines that are 
different actually moved. 

The "uux" command has been useful for providing remote output. There are some machines 
which do not have hard-copy devices, but which are connected over 9600 baud communication 
lines to machines with printers. The uuz command allows the formatting of the printout on the 
local machine and printing on the remote machine using standard UNIX command programs. 

5. Performance 

Throughput, of course, is primarily dependent on transmission speed. The table below shows 
the real throughput of characters on communication links of different speeds. These numbers 
represent actual data transferred; they do not include bytes used by the line protocol for data vali­
dation such as checksums and messages. At the higher speeds, contention for the processors on 
both ends prevents the network from driving the line full speed. The range of speeds represents 
the difference between light and heavy loads on the two systems. If desired, operating system 
modifications can be installed that permit full use of even very fast links. 

center; c c n n. Nominal speed Characters/sec. 300 baud 27 1200 baud 100-110 9600 
baud 200-850 

In addition to the transfer time, there is some overhead for making the connection and logging in 
ranging from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte source pro­
gram can be transferred in four minutes instead of the 2 days that might be required to mail a 
tape. 

Traffic between systems is variable. Between two closely related systems, we observed 20 files 
moved and 5 remote commands executed in a typical day. A more normal traffic out of a single 
system would be around a dozen files per day. 

The total number of sites at present in the main network is 82, which includes most of the 
Bell Laboratories full-size machines which run the UNIX operating system. Geographically, the 
machines range from Andover, Massachusetts to Denver, Colorado. 

Uucp has also been used to set up another network which connects a group of systems in 
operational sites with the home site. The two networks touch at one Bell Labs computer. 

6. Further Goals 

Eventually, we would like to develop a full system of remote software maintenance. Conven­
tional maintenance (a support group which mails tapes) has many well-known disadvantages. 
brooks mythical man month 1975 There are distribution errors and delays, resulting in old 
software running at remote sites and old bugs continually reappearing. These difficulties are 
aggravated when there are 100 different small systems, instead of a few large ones. 

The availability of file transfer on a network of compatible operating systems makes it possi­
ble just to send programs directly to the end user who wants them. This avoids the bottleneck of 
negotiation and packaging in the central support group. The "stockroom" serves this function for 
new utilities and fixes to old utilities. However, it is still likely that distributions will not be sent 
and installed as often as needed. Users are justifiably suspicious of the "latest version" that has 
just arrived; all too often it features the "latest bug." What is needed is to address bot.h problems 
simultaneously: 
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1. Send distributions whenever programs change. 

2. Have sufficient quality control so that users will install them. 

To do this, we recommend systematic regression testing both on the distributing and receiving sys­
tems. Acceptance testing on the receiving systems can be automated and permits the local system 
to ensure that its essential work can continue despite the constant installation of changes sent from 
elsewhere. The work of writing the test sequences should be recovered in lower coull'ieling and dis­
tribution costs. 

Some slow-speed network services are also being implemented. We now have inter-system 
"mail" and "diff," plus the many implied commands represented by "uux." Howevt>r, we still need 
inter-system "write" (real-time inter-user communication) and "who" (list of people logged in on 
different systems). A slow-speed network of this sort may be very useful for speeding up counsel­
ing and education, even if not fast enough for the distributed data base applications that attract 
many users to networks. Effective use of remote execution over slow-speed lines, however, must 
await the general installation of multiplexable channels so that. long file transfers do not lock out 
short inquiries. 

7. Lessons 

The following is a summary of the lessons we learned in building these programs. 

1. By starting your network in a way that requires no hardware or major opf'rating syst.em 
changes, you can get going quickly. 

2. Support will follow use. Since the network existed and was being used, systt:'m maintainers 
were easily persuaded t.o help keep it operating, including purchasing additional hardware to 
speed traffic. 

3. Make the network commands look like local commands. Our users have 1I resistance t.o 
learning anything new: all t.he inter-system commands look very similar to standard U1'\IX 
system commands so that little training cost is involved. 

4. An initial error was not coordinating enough with existing communications projects: thus, 
the first version of this net.work was restricted to dial-up, since it did not support the variolls 
hardware links between systems. This has been fixed in the current system. 
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The C Programming Language - Reference Manual 

Denni8 M. Ritchie 

This manual is a reprint, with updates to the current C standard, from The 0 Programming 
Language, by Brian W. Kernighan and Dennis M. Richie, Prentice-Hall, Inc., 1978. 

1. Introduction 

This manual describes the C language on the DEC PDP-llt, the DEC VAX-Il, and the 
AT&T 3B 20+. Where differences exist, it concentrates on the VAX, but tries to point out 
implementation-dependent details. With few execptions, these dependencies follow directly from 
the underlying properties of the hardware; the various compilers are generally quite compatible. 

2. Lexical Conventions 

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and 
other separators. Blanks, tabs, new-lines, and comments (collectively, "white space") as described 
below are ignored except as they serve to separate tokens. Some white space is required to separate 
otherwise adjacent identifiers, keywords, and constants. 

If the input stream has been parsed into tokens up to a given character, the next t.oken IS 

taken to include the longest string of characters which could possibly constitute a token. 

2.1. Comments 

The characters /. introduce a comment which terminates with the characters *j. COlJllIll'lIt'" 

do not nest. 

2.2. Identifiers (Names) 

An identifier is a sequence of letters and digits. The first character must be a letter. Thl' 
underscore (_) counts as a letter. Uppercase and lowercase letters are different. Although there j" 

no limit on the length of a name, only initial characters are significant: at least eight character,:, of 
a non-external name, and perhaps fewer for external names. Moreover, some implementations may 
collapse case distinctions Cor external names. The external name sizes include: 

PDP-ll 
VA.X-ll 
AT&T 3B 20 

7 characters, 2 cases 
> 100 characters, 2 cases 
> 100 characters, 2 cases 

t DEC PDP-H, and DEC VAX-ll are trademarks or Digital Equipment Corporation. 

* 3B 20 is a trademark or AT&T. 
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2.S. Keywords 

The following identifiers are reserved for use as keywords and may not be used otherwise: 

auto do for return typedef 
break double goto short union 
case else if si.eof unsigned 
char enum. int static void 
continue external long struct whUe 
default float register switch 

Some implementations also reserve the words fortran, asm, gfloat, hfloat and quad 

2.4. Constants 

There are several kinds of constants. Each has a type; an introduction to types is given in 
"NAMES." Hardware characteristics that affect sizes are summarized in "Hardware Characteris­
tics" under "LEXICAL CONVENTIONS." 

2.4.1. Integer Constants 

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 
(digit zero). An octal constant consists of the digits 0 through 7 only. A sequence of digits pre­
ceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits 
include a or A through for F with values 10 through 15. Otherwise, the integer constant is taken 
to be decimal. A decimal constant whose value exceeds the largest signed machine integer is taken 
to be long; an octal or hex constant which exceeds the largest unsigned machine integer is likewise 
taken to be long. Otherwise, integer constants are into 

2.4.2. Explicit Long Constants 

A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L 
is a long constant. As discussed below, on some machines integer and long values may be con­
sidered identical. 

2.4.3. Character Constants 

A character constant is a character enclosed in single quotes, as in 'x'. The value of a char­
acter constant is the numerical value of the character in the machine's character set . 

. Certain nongraphic characters, the single quote (') and the backslash (\), may be represented 
according to the following table of escape sequences: 

new-line NL (LF) \n 
horizontal tab HT \t 
vertical tab VT \v 
backspace BS \b 
carriage return CR \r 
form feed FF \f 
backslash \ \\ 
single quote \' 
bit pattern ddd \ddd 

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are takelJ 
to specify the value of the desired character. A special case of this construction is \0 (not followed 
by a digit), which indicates the character NUL. If the character following a backslash is not one 
of those specified, the behavior is undefined. A new-line character is illegal in a character constant. 
The type of a character constant is into 
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2.4.4. Floating Constants 

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, 
and an optionally signed integer exponent. The integer and fraction pa.rts both consist of a 
sequence of digits. Either the integer part or the fraction pa.rt (not both) may be missing. Either 
the decimal point or the e and the exponent (not both) may be missing. Every floating constant 
has type double. 

2.4.6. Enumeration Constants 

Names decla.red as enumerators (see "Structure, Union, and Enumeration Declarations" 
under "DECLARATIONS") have type into 

2.6. Strings 

A string is a sequence of characters surrounded by double quotes, as in " ••• ". A string has 
type "array of char" and storage class static (see "NAMES") and is initialized with the given 
characters. The compiler places a null byte (\0) at the end of each string so that programs which 
scan the string can find its end. In a string, the double quote character (") must be preceded by a 
\; in addition, the same escapes as described for cha.racter constants may be used. 

A \ and the immediately following new-line a.re ignored. All strings, even when written 
identically, are distinct. 

2.6. Hardware Characteristics 

The following figure summarize certain ha.rdware properties that vary from machine to 
machine. 

DECPDP-ll DECVAX-ll AT&T3B 
(ASCII) (ASCII) (ASCII) 

char 8 bits 8 bits 8bits 
int 16 32 32 
short 16 16 16 
long 32 32 32 
float 32 32 32 
double 64 64 64 

float range ±10 
:1:38 

±10 
:1:38 ±10 :1:38 

double range ±10 
:1:38 

±10 
:1:38 ±10 :1:38 

3. Syntax Notation 

Syntactic categories a.re indicated by italic type and literal words and characters in bold 
type. Alternative categories are listed on separate lines. An optional terminal or nonterminal 
symbol is indicated by the subscript "opt," so that 

{ezpre88ion } 
opt 

indicates an optional expression enclosed in braces. The syntax is summa.rized in "SYNTAX SUM­
MARY". 



4. Names 
The C language bases the interpretation of an identifier upon two attributes of the identifier 

- its storage clu8 and its type. The storage class determines the location and lifetime of the 
storage associated with an identifier; the type determines the meaning of the values found in the 
identifier's storage. 

4.1. Storage Class 

There are four declarable storage classes: Automatic Static External Register. 

Automatic variables are local to each invocation of a block (see "Compound Statement or 
Block" in "STATEMENTS") and are discarded upon exit from the block. Static variables are 
local to a block but retain their values upon reentry to a block even after control has left the 
block. External variables exist and retain their values throughout the execution of the entire pro­
gram and may be used for communication between functions, even separately compiled functions. 
Register variables are (if possible) stored in the fast registers of the machine; like automatic vari­
ables, they are local to each block and disappear on exit from the block. 

4.2. Type 

The C language supports several fundamental types of objects. Objects declared as charac­
ters (char) are large enough to store any member of the implementation's character set. If a 
genuine character from that character set is stored in a char variable, its value is equivalent to the 
integer code for that character. Other quantities may be stored into character variables, but the 
implementation is machine dependent. In particular, char may be signed or unsigned by default. 

Up to three sizes of integer, declared short int, int, and long int, are available. Longer 
integers provide no less storage than shorter ones, but the implementation may make either short 
integers or long integers, or both, equivalent to plain integers. "Plain" integers have the natural 
size suggested by the host machine architecture. The other sizes are provided to meet special 
needs. 

The properties of enum types (see "Structure, Union, and Enumeration Declarations" under 
"DECLARA.TIONS") are identical to those of some integer types. The implementation may use 
the range of values to determine how to allocate storage. 

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n where n is the 
number of bits in the representation. (On the PDP-Il, unsigned long quantities are not sup­
ported.) 

Single-precision floating point (float) and double precision floating point (double) may be 
synonymous in some implementations. 

Because objects of the foregoing types can usefully be interpreted as numbers, they will be 
referred to as arithmetic types. Char, int of all sizes whether unsigned or not, and enum will 
collectively be called integral types. The float and double types will collectively be called floating 
types. 

The void type specifies an empty set of values. It is used as the type returned by functions 
that generate no value. 

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived 
types constructed from the fundamental types in the following ways: Arrays of objects of most 
types Functions which return objects of a given type Pointers to objects of a given type Stf'tl.cture8 
containing a sequence of objects of various types Unions capable of containing anyone of several 
objects of various types. 

In general these methods of constructing objects can be applied recursively. 
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5. Objects and Lvalues 

An object is a manipulatable region of storage. An Iva/ue is an expression referring to an 
object. An obvious example of an lvalue expression is an identifier. There are operators which 
yield Ivalues: for example, if E is an expression of pointer type, then .E is an Ivalue expression 
referring to the object to which E points. The name "lvalue" comes from the assignment expres­
sion El = E2 in which the left operand El must be an lvalue expression. The discussion of each 
operator below indicates whether it expects lvalue operands and whether it yields an lvalue. 

8. Conversions 

A number of operators may, depending on their operands, cause conversion of the value of an 
operand from one type to another. This part explains the result to be expected from such conver­
sions. The conversions demanded by most ordinary operators are summarized under "Arithmetic 
Conversions." The summary will be supplemented as required by the discussion of each operator. 

8.1. Characters and Integers 

A character or a short integer may be used wherever an integer may be used. In all cases the 
value is converted to an integer. Conversion of a shorter integer to a longer preserves sign. 
Whether or not sign-extension occurs for characters is machine dependent, but it is guaranteed that 
a member of the standard character set is non-negative. Of the machines treated here, only the 
PDP-ll and VAX-ll sign-extend. On these machines, char variables range in value from -128 to 
127. The more ex~licit type unsigned char forces the values to range from 0 to 255. 

On machines that treat characters as signed, the characters of the ASCn set are all non­
negative. However, a character constant specified with an octal escape suffers sign extension and 
may appear negative; for example, \377' has the value -1. 

When a longer integer is converted to a shorter integer or to a char, it is truncated on the 
left. Excess bits are simply discarded. 

8.2. Float and Double 

All floating arithmetic in C is carried out in double precision. Whenever a float appears in 
an expression it is lengthened to double by zero padding its fraction. When a double must be 
converted to float, for example by an assignment, the double is rounded before truncation to 
float length. This result is undefined if it cannot be represented as a float. On the VAX, the com­
piler can be directed to use single percision for expressions containing only float and interger 
operands. 

8.3. Floating and Integral 

Conversions of floating values to integral type are rather machine dependent. In particular, 
the direction of truncation of negative numbers varies. The result is undefined if it will not fit in 
the space provided. 

Conversions of integral values to floating type are well behaved. Some loss of accuracy 
occurs if the destination lacks sufficient bits. 

8.4. Pointers and Integers 

An expression of integral type may be added to or subtracted from a pointer; in such a case, 
the first is converted as specified in the discussion of the addition operator. Two pointers to 
objects of the same type may be subtracted; in this case, the result is converted to an integer as 
specified in the discussion of the subtraction operator. 

8.5. Unsigned 

Whenever an unsigned integer and a plain integer are combined, the plain integer is con­
verted to unsigned and the result is unsigned. The value is the least unsigned integer congruent to 
the signed integer (modulo 2wordsize). In a 2'8 complement representation, this conversion is 
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conceptual; and there is no actual change in the bit pattern. 

When an unsigned short integer is converted to long, the value of the result is the same 
numerically as that of the unsigned integer. Thus the conversion amounts to padding with zeros 
on the left. 

8.8. Arithmetic Conversions 

A great many operators cause conversions and yield result types in a similar way. This pat­
tero will be called the "usual arithmetic conversions." First, any operands of type char or short 
are converted to int, and any operands of type unsigned char or unsigned short are converted 
to unsigned into Then, if either operand is double, the other is converted to double and that is 
the type of the result. Otherwise, if either operand is unsigned long, the other is converted to 
unsigned long and that is the type of the result. Otherwise, if either operand is long, the other 
is converted to long and that is the type of the result. Otherwise, if one operand is long, and the 
other is unsigned int, they are both converted to unsigned long and that is the type of the 
result. Otherwise, if either operand is unsigned, the other is converted to unsigned and that is 
the type of the result. Otherwise, both operands must be Int, and that is the type of the result. 

8.7. Void 

The (nonexistent) value of a void object may not be used in any way, and neither explicit 
nor implicit conversion may be applied. Because a void expression denotes a nonexistent value, 
such an expression may be used only as an expression statement (see "Expression Statement" 
under "STATEMENTS") or as the left operand of a comma expression (see "Comma Operator" 
under "EXPRESSIONS"). 

An expression may be converted to type void by use of a cast. For example, this makes 
explicit the discarding of the value of a function call used as an expression statement. 

7. Expressions 

The precedence of expression operators is the same as the order of the major subsections of 
this section, highest precedence first. Thus, for example, the expressions referred to as the 
operands of + (see "Additive Operators") are those expressions defined under "Primary Expres­
sions", "Unary Operators", and "Multiplicative Operators". Within each subpart, the operators 
have the same precedence. Left- or right-associativity is specified in each subsection for the opera­
tors discussed therein. The precedence and associativity of all the expression operators are sum­
marized in the grammar of "SYNTAX SUMMARY". 

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler 
considers itself free to compute sub expressions in the order it believes most efficient even if the 
sub expressions involve side effects. The order in which subexpression evaluation takes place is 
unspecified. Expressions involving a commutative and associative operator (*, +, &:., L .) may be 
rearranged arbitrarily even in the presence of parentheses; to force a particular order of evaluation, 
an explicit temporary must be used. 

The handling of overflow and divide check in expression evaluation is undefined. Most exist­
ing implementations of C ignore integer overflows; treatment of division by 0 and all floating-point 
exceptions vanes between machines and is usually adjustable by a library function. 

7.1. Primary Expressions 

Primary expressions involving " - >, subscripting, and function calls group left to right. 
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prima'1l- ezpreaaion [ e:tprC3,ion J 
prima'1l-ezpre88ion ( e:tpre88ion-1i8t ) 

. "d 'fi opt pnma'1l-ezpre'31on . I enh er 
prima'1l-ezpre88ion - > identifier 

ezpreaaion-/i,t: 
ezpreaaion 
ezpreaaion-liat , e:tpre88ion 

An identifier is a primary expression provided it has been suitably declared as discussed 
below. Its type is specified by its declaration. It the type of the identifier is "array of ... ", then 
the value of the identifier expression is a pointer to the first object in the array; and the type of 
the expression is "pointer to ... ". Moreover, an array identifier is not an lvalue expression. Like­
wise, an identifier which is declared "function returning ... ", when used except in the function­
name position of a call, is converted to "pointer to function returning ... ". 

A constant is a primary expression. Its type may be int, long, or double depending on its 
form. Character constants have type int and floating constants have type double. 

A string is a primary expression. Its type is originally "array of char", but following the 
same rule given above for identifiers, this is modified to "pointer to char" and the result is a 
pointer to the first character in the string. (There is an exception in certain initializers; see "Ini­
tialization" under "DECLARATIONS.") 

A parenthesized expression is a primary expression whose type and value are identical to 
those of the unadorned expression. The presence of parentheses does not affect whether the expres­
sion is an lvalue. 

A primary expression followed by an expression in square brackets is a primary expression. 
The intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer to 
... ", the subscript expression is int, and the type of the result is " ... ". The expression El[E2] is 
identical (by definition) to 0I<((El)+E2». All the clues needed to understand this notation are con­
tained in this subpart together with the discussions in "Unary Operators" and "Additive Opera­
tors" on identifiers, 01< and + respectively. The implications are summarized under "Arrays, 
Pointers, and Subscripting" under "TYPES REVISITED." 

A function call is a primary expression followed by parentheses containing a possibly empty, 
comma-separated list of expressions which constitute the actual arguments to the function. The 
primary expression must be of type "function returning .' .. ," and the result of the function call is 
of type" ... ". As indicated below, a hitherto unseen identifier followed immediately by a left 
parenthesis is contextually declared to represent a function returning an integer; thus in the most 
common case, integer-valued functions need not be declared. 

Any actual arguments of type float are converted to double before the call. Any of type 
ehar or short are converted to into Array names are converted to pointers. No other conversions 
are performed automatically; in particular, the compiler does not compare the types of actual argu­
ments with those of formal arguments. It conversion is needed, use a cast; see "Unary Operators" 
and "Type Names" under "DECLARATIONS." 

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all 
argument passing in C is strictly by value. A function may change the values of its formal param­
eters, but these changes cannot affect the values of the actual parameters. It is possible to pass a 
pointer on the understanding that the. function may change the value of the object to which the 
pointer points. An array name is a pointer expression. The order of evaluation of arguments is 



undefined by the language; take note that the various compilers differ. Recursive calls to any func­
tion are permitted. 

A primary expression followed by a dot followed by an identifier is an expression. The first 
expression must be a structure or a union, and the identifier must name a member of the structure 
or union. The value is the named member of the structure or union, and it is an Ivalue if the first 
expression is an Ivalue. 

A primary expression followed by an arrow (built from - and > ) followed by an identifier 
is an expression. The first expression must be a pointer to a structure or a union and the identifier 
must name a member of that structure or union. The result is an lvalue referring to the named 
member of the structure or union to which the pointer expression points. Thus the expression 
El->MOS is the same as (*EI).MOS. Structures and unions are discussed in "Structure, 
Union, and Enumeration Declarations" under "DECLARATIONS." 

7.2. Unary Operators 

Expressions with unary operators group right to left. 

unary-ezpression: 
* ezpression 
& Ivalue 
- ezpression 
~ expression 

expression 
++ Ivalue 
--Ivalue 
Ivalue ++ 
Ivalue --
( type-name) ezpression 
sizeof ezpression 
sizeof ( type-name) 

The unary * operator means indirection; the expression must be a pointer, and the result is 
an lvalue referring to the object to which the expression points. If the type of the expression is 
"pointer to ... ," the type of the result is " ... ". 

The result of the unary &. operator is a pointer to the object referred to by the lvalue. If the 
type of the lvalue is" ... ", the type of the result is "pointer to ... ". 

The result of the unary - operator is the negative of its operand. The usual arithmetic 
conversions are performed. The negative of an unsigned quantity is computed by subtracting its 
value from 2n where n is the number of bits in the corresponding signed type. 

There is no unary + operator. 

The result of the logical negation operator! is one if the value of its operand is zero, zero if 
the value of its operand is nonzero. The type of the result is into It is applicable to any arith­
metic type or to pointers. 

The - operator yields the one's complement of its operand. The usual arithmetic conver­
sions are performed. The type of the operand must be integral. 

The object referred to by the lvalue operand of prefix ++ is incremented. The value is the 
new value of the operand but is not an lvalue. The expression ++x is equivalent to x=x+l. See 
the discussions "Additive Operators" and "Assignment Operators" for information on conversions. 

The lvalue operand of prefix -- is decremented analogously to the prefix ++ operator. 

When postfix ++ is applied to an lvalue, the result is the value of the object referred to by 
the lvalue. After the result is noted, the object is incremented in the same manner as for the prefix 
++ operator. The type of the result is the same as the type of the lvalue expression. 
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When postfix -- is applied to an lvalue, the result is the value of the object referred to by 
the lvalue. After the result is noted, the object is decremented in the manner as for the prefix -­
operator. The type of the result is the same as the type of the lvalue expression. 

An expression preceded by the parenthesized name of a data type causes conversion of the 
value of the expression to the named type. This construction is called a ea8t. Type names are 
described in "Type Names" under "Declarations." 

The ai.eor operator yields the size in bytes of its operand. (A 6yte is undefined by the 
language except in terms of the value of aizeor. However, in all existing implementations, a byte 
is the space required to hold a char.) When applied to an array, the result is the total number of 
bytes in the array. The size is determined from the declarations of the objects in the expression. 
This expression is semantically an unsigned constant and may be used anywhere a constant is 
required. Its major use is in communication with routines like storage allocators and I/O systems. 

The aizeor operator may also be applied to a parenthesized type name. In that case it yields 
the size in bytes of an object of the indicated type. 

The construction aizeor( type) is taken to be a unit, so the expression aizeor( type )-2 is the 
same as (si.eor(type »-2. 
7.3. Multiplicative Operators 

The multiplicative operators *, /, and % group left to right. The usual arithmetic conver­
sions are performed. 

multiplicative ezpre8sion: 
expre88ion * expression 
expre8sion / expre88ion 
expression % ezpre8sion 

The binary * operator indicates multiplication. The * operator is associative, and expressions 
with several multiplications at the same level may be rearranged by the compiler. The binary / 
operator indicates division. 

The binary % operator yields the remainder from the division of the first expression by the 
second. The operands must be integral. 

When positive integers are divided, truncation is toward OJ but the form of truncation is 
machine-dependent if either operand is negative. On all machines covered by this manual, the 
remainder has the same sign as the dividend. It is always true that (a/b)*b + a%b is equal to a 
(if b is not 0). 

7.4. Additive Operators 

The additive operators + and - group left to right. The usual arithmetic conversions are 
performed. There are some additional type possibilities for each operator. 

additive-expression: 
expres8ion + ezpres8ion 
expression - ezpression 

The result of the + operator is the sum of the operands. A pointer to an object in an array 
and a value of any integral type may be added. The latter is in all cases converted to an address 
offset by multiplying it by the length of the object to which the pointer points. The result is a 
pointer of the same type as the original pointer which points to another object in the same array, 
appropriately offset from the original object. Thus if P is a pointer to an object in an array, the 
expression P+l is a pointer to the next object in the array. No further type combinations are 
allowed for pointers. 

The + operator is associative, and expressions with several additions at the same level may 
be rearranged by the compiler. 
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The result of the - operator is the di1ference of the operands. The usual arithmetie conver­
sions are performed. Additionally, a value of any integral type may be subtracted from a pointer, 
and then the same conversions for addition apply. 

H two pointers to objects of the same type are subtracted, the result is converted (by division 
by the length of the object) to an int representing the number of objects separating the pointed~to 
objects. This conversion will in general give unexpected results unless the pointers point to objects 
in the same array, since pointers, even to objects of the same type, do not necessarily differ by a 
multiple of the object length. 

'1.5. Shift Operators 

The shift operators < < and > > group left to right. Both perform the usual arithmetic 
conversions on their operands, each of which must be integral. Then the right operand is con­
verted to inti the type of the result is that of the left operand. The result is undefined if the right 
operand is negative or greater than or equal to the length of the object in bits. On the V.AJC a 
negative right operand is interpreted as reversing the direction of the shift. 

ahift-expre88ion: 
ezpre88ion < < ezpre88ion 
e:rpre88ion > > ezpre88ion 

The value of El < <E2 is El (interpreted as a bit pattern) left-shifted E2 bits. Vacated 
bits are 0 filled. The value of El> > E2 is El right-shifted E2 bit positions. The right shift is 
guaranteed to be logical (0 fill) if El is unsigned; otherwise, it may be arithmetic. 

'1.6. Relational Operators 

The relational operators group left to right. 

relational· e:rpre88ion: 
ezpre88ion < e:rpression 
ezpres8ion > e:rpres8ion 
e:rpreB8ion < = ezpre88ion 
e:rpression > = ezpre8sion 

The operators < (less than), > (greater than), <= (less than or equal to), and >= 
(greater than or equal to) all yield 0 if the specified relation is false and 1 if it is true. The type of 
the result is into The usual arithmetic conversions are performed. Two pointers may be com· 
pared; the result depends on the relative locations in the address space of the pointed-to objects. 
Pointer comparison is portable only when the pointers point to objects in the same array. 

'1.'1. Equality Operators 

equalitll-ezpre88ion: 
ezpre8sion == ezpre88ion 
expression != expression 

The == (equal to) and the != (not equal to) operators are exactly analogous to the rela­
tional operators except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and 
c<d have the same truth value). 

A pointer may be compared to an integer only if the integer is the constant O. A pointer to 
which 0 has been assigned is guaranteed not to point to any object and will appear to be equal to 
O. In conventional usage, such a pointer is considered to be null. 

//.~ 

'''--.) 
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7.8. Bitwise AND Operator 

and-ezpreaaion: 
e:tpreaaion e ezpreaaion 

The &. operator is associative, and expressions involving & may be rearranged. The usual 
arithmetic conversions are performed. The result is the bitwise AND function of the operands. 
The operator applies only to integral operands. 

7.9. Bitwise Exelusive OR Operator 

e:tc/uaive-or-ezpreaaion: 
ezprealJion A ezprelJlJion 

The A operator is associative, and expressions involving A may be rearranged. The usual 
arithmetic conversions are performed; the result is the bitwise exclusive OR function of the 
operands. The operator applies only to integral operands. 

7.10. Bitwise Inclusive OR Operator 

inclusive-or-ezprcssion: 
ezpression I czpression 

The I operator is associative, and expressions involving I may be rearranged. The usual 
arithmetic conversions are performed; the result is the bitwise inclusive OR function of its 
operands. The operator applies only to integral operands. 

7.11. Logical AND Operator 

10 gic al- and-czprcssion: 
ezprcssion ee ezprcssion 

The && operator groups left to right. It returns 1 if both its operands evaluate to nonzero, 
o otherwise. Unlike &., &&. guarantees left to right evaluation; moreover, the second operand is 
not evaluated if the first operand is O. 

The operands need not have the same type, but each must have one of the fundamental 
types or be a pointer. The result is always into 

7.12. Logical OR Operator 

logical-or-ezpression: 
ezpression 1/ ezprcssion 

The 1/ operator groups left to right. It returns 1 if either of its operands evaluates to 
nonzero, 0 otherwise. Unlike L "guarantees left to right evaluation; moreover, the second operand 
is not evaluated if the value of the first operand is nonzero. 

The operands need not have the Same type, but each must have one of the fundamental 
types or be a pointer. The result is always into 

7 .13. Conditional Operator 

conditional-ezprcsaion: 
ezprcasion f ezpreasion : ezpression 

Conditional expressions group right to left. The first expression is evaluated; and if it is 
nonzero, the result is the value of the second expression, otherwise that of third expression. If pos­
sible, the usual arithmetic conversions are performed to bring the second and third expressions to a 
common type. If both are structures or unions of the same type, the result. has the type of the 
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structure or union. If both pointers are of the same type, the result has the common type. Other­
wise, one must be a pointer and the other the constant 0, and the result has the type of the 
pointer. Only one of the second and third expressions is evaluated. 

'1.14. Assignment Operators 

There are a number of assignment operators, all of which group right to left. All require an 
Ivalue as their left operand, and the type of an assignment expression is that of its left operand. 
The value is the value stored in the left operand after the assignment has taken place. The two 
parts of a compound assignment operator are separate tokens. 

tu8ignment- ezpre88ion: 
lvalue == ezpru8ion 
lvalue + = ezpre8sion 
lvalue -= ezpre8sion 
lvalue *= ezpression 
Ivalue / == ezpre8sion 
lvalue %== ezpreuion 
lvalue > > = ezpreuion 
lvalue < < = ezpression 
lvalue &= expression 
lvalue • = expression 
'value 1= expression 

In the simple assignment with =, the value of the expression replaces that of the object 
referred to by the lvalue. If both operands have arithmetic type, the right operand is converted to 
the type of the left preparatory to the assignment. Second, both operands may be structures or 
unions of the same type. Finally, if the left operand is a pointer, the right operand must in gen­
eral be a pointer of the same type. However, the constant 0 may be assigned to a pointer; it is 
guaranteed that this value will produce a null pointer distinguishable from a pointer to any object. 

The behavior of an expression of the form El op = E2 may be inferred by taking it as 
equivalent to El = El op (E2); however, El is evaluated only once. In += and -=, the left 
operand may be a pointer; in which case, the (integral) right operand is converted as explained in 
"Additive Operators." All right operands and all non pointer left operands must have arithmetic 
type. 

'1.15. Comma Operator 

comma-ezpression: 
expression , expre8sion 

A pair of expressions separated by a comma is evaluated left to right, and the value of the 
left expression is discarded. The type and value of the result are the type and value of the right 
operand. This operator groups left to right. In contexts where comma is given a special meaning, 
e.g., in lists of actual arguments to functions (see "Primary Expressions") and lists of initializers 
(see "Initialization" under "DECLARATIONS"), the comma operator as described in this subpart 
can only appear in parentheses. For example, 

f'(a, (t=3, t+2), c) 

has three arguments, the second of which has the value 5. 

8. Declarations 

Declarations are used to specify the interpretation which C gives to each identifier; they do 
not necessarily reserve storage associated with the identifier. Declarations have the form 

'" j 
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The declarators in the declarator-list contain the identi6.ers being declared. The declo 
specifiers consist of a sequence of type and storage class speci6.ers. 

decl·specifier8: 
t,pe.specifier decl.8pecifiers 
sc.specifier decl.8pecifiers opt 

op, 

The list must be self-consistent in a way described below. 

8.1. Storage Class Specifiers 

The sc-specifiers are: 

se.specifier: 
auto 
static 
extern 
register 
typedef 

The typedef specifier does not reserve storage and is called a "storage class specifier" only 
for syntactic convenience. See "Typedef" for more information. The meanings of the various 
storage classes were discussed in "Names." 

The auto, static, and register declarations also serve as de6.nitions in that they cause an 
appropriate amount of storage to be reserved. In the extern case, there must be an external 
de6.nition (see "External De6.nitions") for the given identi6.ers somewhere outside the function in 
which they are declared. 

A register declaration is best thought of as an auto declaration, together with a hint to the 
compiler that the variables declared will be heavily used. Only the 6.rst few such declarations in 
each function are effective. Moreover, only variables of certain types will be stored in registers; on 
the PDP-Il, they are int or pointer. One other restriction applies to register variables: the 
address-of operator 1£ cannot be applied to them. Smaller, faster ,programs can be expected if 
register declarations are used appropriately, but future improvements in code generation may 
render them unnecessary. 

At most, one sc·specifier may be given in a declaration. If the sc-speci6.er is missing from a 
declaration, it is taken to be auto inside a function, extern outside. Exception: functions are 
never automatic. 

8.2. Type Specifiers 

The type-specifiers are 



type-.peeifier: 
.trvet-or-union-.peeifier 
twede/-name 
enum-.peeifier 

6a.ie-type-.peeifier: 
6a.ie-type 
6a.ic-tJlpe 6a.ic-type-.peeifier. 

6a.ic-tJlpe: 
char 
short 
int 
long 
unsigned 
float 
double 
void 
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At most one of the words long or short may be specified in conjunction with int; the mean­
ing is the same as if int were not mentioned. The word long may be specified in conjunction with 
float; the meaning is the same as double. The word unsigned may be specified alone, or in con­
junction with int or any of its short or long varieties, or with ehar. 

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival 
use of long, short, or unsigned is not permitted with typedef names. U the type-specifier is 
missing from a declaration, it is taken to be into 

Specifiers for structures, unions, and enumerations are discussed in "Structure, Union, and 
Enumeration Declarations." Declarations with typedef names are discussed in "Typedef." 

8.3. Deelarators 

The declarator-list appearing in a declaration is a comma-separated sequence of declarators, 
each of which may have an initializer. 

declarator-list: 
intt- declarator 
tnit-declarator, declarator-list 

init-declarator: 
declarator initializer 

opt 

Initializers are discussed in "Initialization". The specifiers in the declaration indicate the 
type and storage class of the objects to which the declarators refer. Declarators have the syntax: 

declarator: 
identifier 
( declarator ) 
* declarator 
declarator () 
declarator I e0n4tant-ezpre88ion J 

Dpt 

The grouping is the same as in expressions. 

8.4. Meaning of Deelarators 

Each declarator is taken to be an assertion that when a construction of the same form as the 
declarator appears in an expression, it yields an object of the indicated type and storage class. 

----. __ .- ------_._--_.- -----
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Each declarator contains exactly one identifier; it is this identifier that is declared. If an una­
dorned identifier appears as a declarator, then it has the type indicated by the specifier heading the 
declaration. 

A declarator in parentheses is identical to the unadorned declarator, but the binding oC com­
plex declarators may be altered by parentheses. See the examples below. 

Now imagine a declaration 

TDI 

where T is a type-specifier (like int, etc.) and Dl is a declarator. Suppose this declaration makes 
the identifier have type " . .. T /' where the " ... " is empty if Dl is just a plain identifier (so 
that the type of x in lint x" is just int). Then if Dl has the Corm 

*D 

the type oC the contained identifier is " . .. pointer to T ." 

If Dl has the Corm 

D( ) 

then the contained identifier has the type" ... Cunction returning T." 
If Dl has the Corm 

D [ constant-ezpression ] 

or 

D[] 

then the contained identifier has type" ... array oC T." In the first case, the constant expression is 
an expression whose value is determinable at compile time , whose type is int, and whose value is 
positive. (Constant expressions are defined precisely in "Constant Expressions.") \\Then several 
"array oC" specifications are adjacent, a multidimensional array is created; the constant expressions 
which specify the bounds oC the arrays may be missing only Cor the first member oC the sequence. 
This elision is useCul when the array is external and the actual definition, which allocates storage, 
is given elsewhere. The first constant expression may also be omitted when the declarator is Col­
lowed by initialization. In this case the size is calculated Crom the number of initial elements sup­
plied. 

An array may be constructed Crom one of the basic types, from a pointer, from a structure or 
union, or Crom another array (to generate a multidimensional array). 

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions 
are as Collows: Cunctions may not return arrays or Cunctions although they may return pointers; 
there are no arrays oC Cunctions although there may be arrays of pointers to functions. Likewise, a 
structure or union may not contain a Cunction; but it may contain a pointer to a Cunction. 

As an example, the declaration 

int i, *ip, f(), .tipO, (*pfi)O; 

declares an integer i, a pointer ip to an integer, a function r returning an integer, a function fip 
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is 
especially useful to compare the last two. The binding of *fipO is *(flp()). The declaration sug­
gests, and the same construction in an expression requires, the calling of a Cunction fip. Using 
indirection through the (pointer) result to yield an integer. In the declarator (*pfi)O, the extra 
parentheses are necessary, as they are also in an expression, to indicate that indirection through a 
pointer to a function yields a function, which is then called; it returns an integer. 



As another example, 

float fa[17], *afP[17]; 
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declares an array of float numbers and an array of pointers to float numbers. Finally, 

static int x3d[3][S][7J; 

declares a static 3-dimensional array of integers, with rank 3X5X7. In complete detail, x3d is an 
array of three items; each item is an array of five arrays; each of the latter arrays is an array of 
seven integers. Any of the expressions x3d, x3d[i], x3d[i] UJ, x3d[i] U] [k} may reasonably appear 
in an expression. The first three have type "array" and the last has type into 

8.5. Structure and Union Declarations 

A structure is an object consisting of a sequence of named members. Each member may have 
any type. A union is an object which may, at a given time, contain anyone of several members. 
Structure and union specifiers have the same form. 

struct-or-union-specifier: 
strutt-or-union { struet-decl-list } 
struct-or-union identifier { struct-deel-list } 
struct-or-union identifier 

stru ct-or-union: 
struct 
union 

The struct-decl-list is a sequence of declarations for the members of the structure or union: 

struct-decl-list: 
struet-deelaration 
strutt-declaration struct-deel-list 

stru ct-declaration: 
type-specifier struct-deelarator-list .. 

struct-declarator-list: 
struct-declarator 
struct-declarator, struct-declarator-list 

In the usual case, a struct-declarator is just a declarator for a member of a structure or 
union. A structure member may also consist of a specified number of bits. Such a member is also 
called a field .. its length, a non-negative constant expression, is set off from the field name by a 
colon. 

struct-declarator: 
declarator 
declarator: constant-ezpre8sion 
: constant-ezpression 

Within a structure, the objects declared have addresses which increase as the declarations are 
read left to right. Each nonfield member of a structure begins on an addressing boundary 
appropriate to its type; therefore, there may be unnamed holes in a structure. Field members are 
packed into machine integers; they do not straddle words. A field which does not fit into the space 
remaining in a word is put into the next word. No field may be wider than a word. 

Fields are assigned right to left on the PDP-ll and V AX-Il, left to right on the 3B 20. 
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A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field 
useful for padding to conform to externally-imposed layouts. As a special case, a field with a 
width of 0 specifies alignment of the next field at an implementation dependant boundary. 

The language does not restrict the types of things that are declared as fields, but implemen­
tations are not required to support any but integer fields. Moreover, even int fields may be con­
sidered to be unsigned. On the PDP.Il, fields are not signed and have only integer values; on the 
VAX-Il, fields declared with int are treated as containing a sign. For these reasons, it is strongly 
recommended that fields be declared as unsigned. In all implementations, there are no arrays of 
fields, and the address-of operator 1£ may not be applied to them, so that there are no pointers to 
fields. 

A union may be thought of as a structure all of whose members begin at offset 0 and whose 
size is sufficient to contain any of its members. At most, one of the members can be stored in a 
union at any time. 

A structure or union specifier of the second form, that is, one of 

atl'uet identifier { ,truet-deel-/iBt } 
union identifier { ,truet-decl-/iBt } 

declares the identifier to be the Btructure tag (or union tag) of the structure specified by the list. A 
subsequent declaration may then use the third form of specifier, one of 

atl'uet identifier 
union identifier 

Structure tags allow definition of self-referential structures. Structure tags also permit the 
long part of the declaration to be given once and used several times. It is illegal to declare a struc­
ture or union which contains an instance of itself, but a structure or union may contain a pointer 
to an instance of itself. 

The third form of a structure or union specifier may be used prior to a declaration which 
gives the complete specification of the structure or union in situations in which the size of the 
structure or union is unnecessary. The size is unnecessary in two situations: when a pointer to a 
structure or union is being declared and when a typedef name is declared to be a synonym for a 
structure or union. This, for example, allows the declaration of a pair of structures which contain 
pointers to each other. 

The names of members and tags do not conflict with each other or with ordinary variables. 
A particular name may not be used twice in the same structure, but the same name may be used 
in several different structures in the same scope. 

ture: 
A simple but important example of a structure declaration is the following binary tree struc-

stl'uet tnode 
{ 

}; 

char t'Wol'd[20]; 
int eount; 
atl'uct tnode .Ieft; 
atl'uct tnode *J'ight; 

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once 
this declaration has been given, the declaration 

atruet tnode 8, "P; 

declares 8 to be a structure of the given sort and Bp to be a pointer to a structure of the given sort. 
With these declarations, the expression 
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sp->count 

refers to the count field of the structure to which sp points; 

a.left 

refers to the left subtree pointer of the structure 8; and 

a.right- >tword[O] 

refers to the first character of the word member of the right subtree of 8. 

8.6. Enumeration Declarations 

Enumeration variables and constants have integral type. 

enum-8pecifier: 
enum { enum-liBt } 
enum identifier { enum-list } 
enum identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

The identifiers in an enum-list are declared as constants and may appear wherever constants 
are required. If no enumerators with = appear, then the values of the corresponding constants 
begin at 0 and increase by 1 as the declaration is read from left to right. An enumerator with = 
gives the associated identifier the value indicated; subsequent identifiers continue the progression 
from the assigned value. 

The names of enumerators in the same scope must all be distinct from each other and from 
those of ordinary variables. 

The role of the identifier in the enum-specifier is entirely analogous to that of the structure 
tag in a struct-specifier; it names a particular enumeration. For example, 

enum color { chartreuse, burgundy, elaret=20, winedark }; 

enum color **cp, col; 

col = claret; 
cp = &col; 

if (**ep == burgundy) ••• 

makes color the enumeration-tag of a type describing various colors, and then declares cp as a 
pointer to an object of that type, and col as an object of that type. The possible values are drawn 
from the set {O,1,20,21}. 

8.7. Initialization 

A declarator may specify an initial value for the identifier being declared. The initializer is 
preceded by = and consists of an expression or a list of values nested in braces. 

/ 
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initializer: 
= ezpre88ion 
= { initializer-li8t } 
= { initializer-li8t , } 

initializer-li8t: 
ezpreuion 
initializer-li8t , initia/izer-li8t 
{ initia/izer-/i8t } 
{ initializer-/i8t , } 
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All the expressions in an initializer for a static or external variable must be constant expres­
sions, which are described in "CONSTANT EXPRESSIONS", or expressions which reduce to the 
address of a previously declared variable, possibly offset by a constant expression. Automatic or 
register variables may be initialized by arbitrary expressions involving constants and previously 
declared variables and functions. 

Static and external variables that are not initialized are guaranteed to start off as zero. 
Automatic and register variables that are not initialized are guaranteed to start off as garbage. 

When an initializer applies to a 8calar (a pointer or an object of arithmetic type), it consists 
of a single expression, perhaps in braces. The initial value of the object is taken from the expres­
sion; the same conversions as for assignment are performed. 

When the declared variable is an aggregate (a structure or array), the initializer consists of a 
brace-enclosed, comma-separated list of initializers for the members of the aggregate written in 
increasing subscript or member order. If the aggregate contains subaggregates, this rule applies 
recursively to the members of the aggregate. If there are fewer initializers in the list than there are 
members of the aggregate, then the aggregate is padded with zeros. It is not permitted to initialize 
unions or automatic aggregates. 

Braces may in some cases be omitted. If the initializer begins with a left brace, then the 
succeeding comma-separated list of initializers initializes the members of the aggregate; it is errone­
ous for there to be more initializers than members. If, however, the initializer does not begin with 
a left brace, then only enough elements from the list are taken to account for the members of the 
aggregate; any remaining members are left to initialize the next member of the aggregate of which 
the current aggregate is a part. 

A final abbreviation allows a char array to be initialized by a string. In this case successive 
characters of the string initialize the members of the array. 

For example, 

int x[] = { 1, 3, 5 }; 

declares and initializes x as a one-dimensional. array which has three members, since no size was 
specified and there are three initializers. 

float ,.[4] [3] = 
{ 

}; 

{ 1, 8, 5 }, 
{ 2, 4, 8 }, 
{ 8, 5, 7 }, 

is a completely-bracketed initialization: 1, 3, and S initialize the first row of the array ,.[0], namely 
,.[0][0], ,.[0][1], and ,.[0][2]. Likewise, the next two lines initialize Y[l] and y[2]. The initializer 
ends early and therefore y[3] is initialized with O. Precisely, the same effect could have been 
achieved by 



float y[4][3] = 
{ 

1, 3, 5, 2, 4, 8, 3, 5, 7 
}; 

---_. --------
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The initializer for y begins with a left brace but that for y[O] does not; therefore, three ele­
ments from the list are used. Likewise, the next three are taken successively for Y[I] and y[2]. 
Also, 

float y[4][3] = 
{ 

{ 1 }, { 2 }, { 3 }, { 4 } 
}; 

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest O. 

Finally, 

char msgO = "Syntax error on line %s\n"; 

shows a character array wh~e members are initialized with a string. 

8.8. Type Names 

In two contexts (to specify type conversions explicitly by means of a cast and as an argument 
of silleot), it is desired to supply the name of a data type. This is accomplished using a "type 
name", which in essence is a declaration for an object of that type which omits the name of the 
object. 

type-name: 
type-specifier abstract-declarator 

abstract- declarator: 
empty 
( abstract-declarator) 
* abstract-declarator 
ab81ract-declarator () 
abstract-declarator {constant-expression 1 

opt 

. To avoid ambiguity, in the construction 

( abstract-declarator) 

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to identify 
uniquely the location in the abstract-declarator where the identifier would appear if the construc­
tion were a declarator in a declaration. The named type is then the same as the type of the 
hypothetical identifier. For example, 

int 
int* 
int *[3] 
int (*)[3] 
int*O 
int (*)0 
int (*[3])0 

name respectively the types "integer," "pointer to integer," "array of three pointers to integers," 
"pointer to an array of three integers," "function returning pointer to integer," "pointer to func­
tion returning an integer," and "array of three pointers to functions returning an integer." 
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8.9. Typedet 

Declarations whose "storage class" is typedet do not define storage but instead define 
identifiers which can be used later as if they were type keywords naming fundamental or derived 
types. 

t1lpede/-name: 
identifier 

Within the scope of a declaration involving typedet, each identifier appearing as part of any 
declarator therein becomes syntactically equivalent to the type keyword naming the type associ­
ated with the identifier in the way described in "Meaning of Declarators." For example, after 

typedef int MILES, .t(LICKSP; 
typedef suuct { double re, im; } complex; 

the constructions 

MILES distance; 
extern KLICKSP metricp; 
complex a, *ap; 

are all legal declarations; the type of distance is int, that of metricp is "pointer t,o int, " and 
that of a is the specified structure. The ap is a pointer to such a structure. 

The typedet does not introduce brand-new types, only synonyms for types which could be 
specified in another way. Thus in the example above distance is considered to have exactly the 
same type as any other int object. 

9. Statements 

Except as indicated, statements are executed in sequence. 

9.1. Expression Statement 

Most statements are expression statements, which have the form 

e:rpression ; 

Usually expression statements are assignments or function calls. 

9.2. Compound Statement or Block 

So that several statements can be used where one is expected, the compound statement (a]so. 
and equivalently, called "block") is provided: . 

compound-statement: 
{declaration-list statement-list } 

opt opt 

declaration-list: 
declaration 
declaration declaration-list 

statement-list: 
statement 
statement statement-list 

If any of the identifiers in the declaration-list were previously declared, the outer declaration 
is pushed down for the duration of the block, after which it resumes its force. 

Any initializations of auto or register variables are performed each time the block is 
entered at the top. It is currently possible (but a bad practice) to transfer into a block; in that 
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case the initializations are not performed. Initializations of static variables are performed only 
once when the program begins execution. Inside a block, extern declarations do not reserve 
storage so initialization is not permitted. 

9.3. Conditiona) Statement 

The two forms of the conditional statement are 

it ( ezpre&&ion ) &tatement 
it ( ezpre&&ion ) &tatement else &tatement 

In both cases, the expression is evaluated; and if it is nonzero, the first substat.ement is exe­
cuted. In the second case, the second substatement is executed if the expression is O. The "else" 
ambiguity is resolved by connecting an else with the last encountered else-less it. 

9.4. While Statement 

The while statement has the form 

while ( ezpre&&ion ) statement 

The substatement is executed repeatedly so long as the value of the expression remains 
nonzero. The test takes place before each execution of the statement. 

9.5. Do Statement 

The do statement has the form 

do statement while ( ezpression ) ; 

The substatement is executed repeatedly until the value of the expression becomes O. The 
test takes place after each execution of the statement. 

9.B. For Statement 

The for statement has the form: 

for ( ezp-l ; ezp-2 ; ezp-9 ) statement 
Dpt Dpt opt 

Except for the behavior of continue, this statement is equivalent to 

ezp-l ; 
while ( ezp-2 ) 
{ 

} 

statement 
ezp-9 ; 

Thus the first expression specifies initialization for the loop; the second specifies a test, made 
before each iteration, such that the loop is exited when the expression becomes O. The third 
expression often specifies an incrementing that is performed after each iteration. 

Any or all of the expressions may be dropped. A missing ezp-2 makes the implied while 
clause equivalent to while(l); other missing expressions are simply dropped from the expansion 
above. 

9.'1. Switch Statement 

The switch statement causes control to be transferred to one of several statements depending 
on the value of an expression. It has the form 
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switch ( ezprusion ) statement 

The usual arithmetic conversion iB performed on the expression, but the result must be into 
The statement is typically compound. Any statement within the statement may be labeled with 
one or more case prefixes as follows: 

ease cORstant-ezprusion : 

where the constant expression must be into No two of the case constants in the same switch may 
have the same value. Constant expressions are preciBely defined in "CONSTANT EXPRES­
SIONS." 

There may also be at most one statement prefix of the form 

default: 

When the switch statement is executed, its expression is evaluated and compared with each 
case constant. If one of the case constants is equal to the value of the expression, control is passed 
to the statement following the matched case prefix. If no case constant matches the expression and 
if there is a default, prefix, control passes to the prefixed statement. If no case matches and if 
there iB no default, then none of the statements in the switch is executed. 

The prefixes ease and default do not alter the flow of control, which continues unimpeded 
across such prefixes. To exit from a switch, see "Break Statement." 

Usually, the statement that is the subject of a switch is compound. Declarations may appear 
at the head of thiB statement, but initializations of automatic or register variables are ineffective. 

9.S. Break Statement 

The statement 

break; 

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to 
the statement following the terminated statement. 

9.9. Continue Statement 

The statement 

continue; 

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for 
statement; that is to the end of the loop. More precisely, in each of the statements 

Iw(2i) Iw(2i) Iw(2i}. 
while ( ••• ) { do { for ( ... ) { 

statement; statement; 
contin: ; cantin: ; 

} } while ( ... ); } 

statement; 
contin: ; 

a continue is equivalent to goto contin. (Following the cantin: iB a null statement, see "Null 
Statement". ) 

9.10. Return Statement 

A function returns to its caller by means of the return statement which has one of the forms 

return ; 
return e:rpression ; 
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In the first case, the retumed val~ is undefin~. In the second case, the value of the expres­
sion is returned to the caller of the function. If nquired, the expression is converted, as if by 
assignment, . to the type of function in which it appears. Flowing oft' the end of a function is 
equivalent to a return with no returned value. The tipressioD may be parenthesized. 

9.11. Goto Statement 

Control may be transferred unconditionally by means of the fltatement 

loto identifier; 

The identifier must be a label (see "Labeled Statement") located in the current function. 

9.12. Labeled Statement 

Any statement may be preeeded by label prefixes of the fOTm 

identifier: 

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. 
The scope of a label is the current function, excluding any subblocks in which the same identifier 
has been redeclared. See "SCOPE RULES." 

9.13. Null Statement 

The null statement has the rorm 

A null statement is useful to carry a label just belore the } oT a compound statement or to 
supply a null body to a looping statement such as while. 

10. External Definitions 

A C program consists of a sequence oT external definitions. An external definition declares an 
identifier to have storage class extern (by default) or perhaps static, and a specified type. The 
type-specifier (see "Type Specifiers" in "DECLARATIONS") may also be empty, in which case the 
type is taken to be into The scope of external definitions persists to the end of the file in which 
they are declared just as the effect of declarations persists to the end of a block. The syntax of 
external definitions is the same as that or all declarations except that only at this level may the 
code for functions be given. 

10.1. External Function Definitions 

Function definitions have the form 

function-definition: 
decl-8pecifier8 functioa-decicrct<lr ,,,,,ttiDa-body 

opt 

The only sc-specifiers allowed among the ded-specifiers are extern or static; see "Scope of 
Externals" in "SCOPE RULES" for the distinction between them. A function declarator is similar 
to a declarator for a "function returning ... " except that it lists the formal parameters of the 
function being defined. 

function-declarator: 
declarator ( paramete,...li8t ) 

opZ 

parameter-li8t: 
identifier 
identifier, paramder-/iBt 

1\ 
( J 
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declaration-/iat compound-statement 
tlpt 

The identifiers in the parameter list, and only those identifiers, may be declared in the 
-declaration list. Any identifiers whose type is not given are taken to be into The only storage 
class which may be specified is register; if it is specified, the corresponding actual parameter will 
be copied, if possible, into a register at the outset of the function. 

A simple example of a complete Cunction definition is 

int max(a, b, e) 

{ 

} 

int a, b, e; 

intm; 

m = (a > b) ! a : b; 
return«m > e) ! m : e); 

Here int is the type-specifier; max(a, b, c) is the Cunction-declarator; int a, b, Cj is the 
declaration-list Cor the Cormal parameters; { ••• } is the block giving the code for the statement. 

The C program converts all float actual parameters to double, so Cormal parameters 
declared float have their declaration adjusted to read double. All char and short formal param­
eter declarations are similarly adjusted to read into Also, since a reCerence to an array in any con­
text (in particular as an actual parameter) is taken to mean a pointer to the first element of the 
array, declarations of formal parameters declared "array of ... " are adjusted to read "pointer to 

" 

10.2. External Data Definitions 

An external data definition has the form 

data-definition: 
declaration 

The storage class of such data may be extern (which is the default) or static but not auto 
or register. 

11. Scope Rules 

A C program need not all be compiled at the same time. The source text of the program may 
be kept in several files, and precompiled routines may be loaded from libraries. Communication 
among the functions of a program may be carried out -both through explicit calls and through 
manipulation of external data. 

Therefore, there are two kinds of scopes to consider: first, what may be called the l.exkal 
scap.e. of an identifier, which is essentially the region of a program during which it may be used 
without drawing "undefined identifier" diagnostics; and second, the scope associated with external 
identifiers, which is characterized by the rule that references to the same external identifier are 
references to the same object. 

11.1. Lexical Scope 

The lexical scope of identifiers declared in external definitions persists from the definition 
through the end of the source file in which they appear. The lexical scope of identifiers which are 
formal parameters persists through the function with which they are associated. The lexical scope 
of identifiers declared at the head of a -block persists until the end of the block. The lexical scope 
of labels is the whole of the function in which they appear. 
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In all cases, however, if an identifier is explicitly declared at the head of a block, including 
the block constituting a function, any declaration of that identifier outside the block is suspended 
until the end of the block. 

Remember also (see "Structure, Union, and Enumeration Declarations" in "DECLARA­
TIONS") that tags, identifiers associated with ordinary variables, and identities associated with 
structure and union members form three disjoint classes which do not conflict. Members and tags 
follow the same scope rules as other identifiers. The enum constants are in the same class as ordi­
nary variables and follow the same scope rules. The typedef names are in the same class as ordi­
nary identifiers. They may be redeclared in inner blocks, but an explicit type must be given in the 
inner declaration: 

typedef float distance; 

{ 
auto int distance; 

} 

The int must be present in the second declaration, or it would be taken to be a declaration 
with no declarators and type distance. 

11.2. Scope of Externals 

If a function refers to an identifier declared to be extern, then somewhere among the files or 
libraries constituting the complete program there must be at least one external definition for the 
identifier. All functions in a given program which refer to the same external identifier refer to the 
same object, so care must be taken that the type and size specified in the definition are compatible 
with those specified by each function which references the data. 

It is illegal to explicitly initialize any external identifier more than once in the set of files and 
libraries comprising a multi-file program. It is legal to have more than one data definition for any 
external non-function identifier; explicit use of extern does not change the meaning of an external 
declaration. 

In restricted environments, the use of the extern storage class takes on an additional mean­
ing. In these environments, the explicit appearance of the extern keyword in external data 
declarations of identities without initialization indicates that the storage for the identifiers is allo­
cated elsewhere, either in this file or another file. It is required that there be exactly one definition 
of each external identifier (without extern) in the set of files and libraries comprising a mult-file 
program. 

Identifiers declared static at the top level in external definitions are not visible in other files. 
Functions may be declared static. 

12. Compiler Control Lines 

The C compiler contains a preprocessor capable of macro substitution, conditional compila­
tion, and inclusion of named files. Lines beginning with # communicate with this preprocessor. 
There may be any number of blanks and horizontal tabs between the # and the directive. These 
lines have syntax independent of the rest of the language; they may appear anywhere and have 
effect which lasts (independent of scope) until the end of the source program file. 

12.1. Token Replacement 

A compiler-control line of the form 

#define identifier token-string 
opt 

causes the preprocessor to replace subsequent instances of the identifier with the given string of 
tokens. Semicolons in or at the end of the token-string are part of that string. A line of the form 
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#define identifier{identifier, ... )token-atring 
opl 

where there is no space between the first identifier and the (, is a macro definition with arguments. 
There may be zero or more formal parameters. Subsequent instances of the first identifier followed 
by a (, a sequence of tokens delimited by commas, and a ) are replaced by the token string in the 
definition. Each occurrence of an identifier mentioned in the formal parameter list of the definition 
is replaced by the corresponding token string from the call. The actual arguments in the call are 
token strings separated by commas; however, commas in quoted strings or protected by 
parentheses do not separate arguments. The number of formal and actual parameters must be the 
same. Strings and character constants in the token-string are scanned for formal parameters, but 
strings and character constants in the rest of the program are not scanned for defined identifiers to 
replacement. 

In both forms the replacement string is rescanned for more defined identifiers. In both forms 
a long definition may be continued on another line by writing \ at the end of the line to be contin­
ued. 

This facility is most valuable for definition of "manifest constants," as in 

#define TAB SIZE 100 

int table [ T ABSIZE ] ; 

A control line of the form 

#undet identifier 

causes the identifier's preprocessor definition (if any) to be forgotten. 

If a #defined identifier is the subject of a subsequent #define with no intervening #undef, 
then the two token-strings are compared textually. If the two token-strings are not. identical (all 
white space is considered as equivalent), then the identifier is considered to be redefined. 

12.2. File Inelusion 

A compiler control line of the form 

#inelude "filename" 

causes the replacement of that line by the entire contents of the file filename. The named file is 
searched for first in the directory of the file containing the #inelude, and then in a sequence of 
specified or standard places. Alternatively, a control line of the form 

#inelude <filename> 

searches only the specified or standard places and not the directory of the #inelude. (How the 
places are specified is not part of the language.) 

#ineludes may be nested. 

12.3. Conditional Compilation 

A compiler control line of the form 

#it reBtricted-conatant-e:rpreBBion 

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions are 
discussed in "CONSTANT EXPRESSIONS"; the following additional restrictions apply here: the 
constant expression may not contain siseot casts, or an enumeration constant.) 

A restricted constant expression may also contain the additional unary expression 
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defined identifier 

or 

defined( identifier ) 

which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is not. 

All currently defined identifiers in restricted-constant-expressions are replaced by their token­
strings (except those identifiers modified by defined) just as in normal text. The restricted con­
stant expression will be evaluated only after all expressions have finished. During this evaluation, 
all undefined (to the procedure) identifiers evaluate to zero. 

A control line of the form 

#itdef identifier 

checks whether the identifier is currently defined in the preprocessor; i.e., whether it. has been the 
subject of a #define control line. It is equivalent to #ifder( identifier). A control line of the form 

#ifndef identifier 

checks whether the identifier is currently undefined in the preprocessor. It is equivalent to 

#if ! defined( identifier). 

All three forms are followed by an arbitrary number of lines, possibly containing a control 
line 

#else 

and then by a control line 

#endit 

If the checked condition is true, then any lines between #else and #endif are ignored. If the 
checked condition is false, then any lines between the test and a #else or, lacking a #else, the 
#endif are ignored. 

These constructions may be nested. 

12.4. Line Control 

For the benefit of other preprocessors which generate C programs, a line of the form 

#line constant "filename" 

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next 
source line is given by the constant and the current input file is named by "filename". If "filename" 
is absent, the remembered file name does not change. 

13. Implicit Declarations 

It is not always necessary to specify both the storage class and the type of identifiers in a 
declaration. The storage class is supplied by the context in external definitions and in declarations 
of formal parameters and structure members. In a declaration inside a function, if a storage class 
but no type is given, the identifier is assumed to be int; if a type but no storage class is indicated, 
the identifier is assumed to be auto. An exception to the latter rule is made for functions because 
auto functions do not exist. If the type of an identifier is "function returning ... ," it is implicitly 
declared to be extern. 

In an expression, an identifier followed by ( and not already declared is contextually declared 
to be "function returning int." 

/ 
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14. Types Revisited 

This part summarizes the operations which can be performed on objects of certain types. 

14.1. Structures and Unions 

Structures and unions may be assigned, passed as arguments to functions, and returned by 
functions. Other plausible operators, such as equality comparison and structure casts, are not 
implemented. 

In a reference to a structure or union member, the name on the right of the - > or the . 
must specify a member of the aggregate named or pointed to by the expression on the left. In gen­
eral, a member of a union may not be inspected unless the value of the union has been assigned 
using that same member. However, one special guarantee is made by the language in order to sim­
plify the use of unions: if a union contains several structures that share a common initial sequence 
and if the union currently contains one of these structures, it is permitted to inspect. the common 
initial part of any of the contained structures. For example, the following is a legal fragment: 

union 
{ 

struct 
{ 

int 
} n; 
struct 
{ 

int 
int 

} ni; 
struct 
{ 

int 
float 

} nf; 
} u; 

type; 

type; 
intnode; 

type; 
floatnode; 

u.nt.type = FLOAT; 
u.nt.floatnode = 3.14; 

it (u.n.type == FLOAT) 
••• sine u.nf.f1oatnode) .•• 

14.2. Functions 

There are only two things that can be done with a function m, call it or take it.s address. If 
the name of a function appears in an expression not in the function-name position of a call, a 
pointer to the function is generated. Thus, to pass one function to another, one might say 

int r(); 

g(f); 



Then the definition of g might read 

g(tuncp) 
int (*funcp )(); 

{ 

(*funcp)O; 

} 
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Notice that r must be declared explicitly in the calling routine since its appearance in g(f) 
was not followed by (. 

14.3. Arrays, Pointers, and Subscripting 

Every time an identifier of array type appears in an expression, it is converted into a pointer 
to the first member of the array. Because of this conversion, arrays are not lvalues. By definition, 
the subscript operator D is interpreted in such a way that EI[E2] is identical to *((EI)+E2». 
Because of the conversion rules which apply to +, if EI is an array and E2 an integer, then 
El[E2] refers to the E2-th member of EI. Therefore, despite its asymmetric appearance, sub­
scripting is a commutative operation. 

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional 
array of rank ixjx ... xk, then E appearing in an expression is converted to a pointer to an (n-l)­
dimensional array with rank jX ... Xk. If the * operator, either explicitly or implicitly as a result of 
subscripting, is applied to this pointer, the result is the pointed-to (n-l)-dimensional array, which 
itself is immediately converted into a pointer. 

For example, consider 

int x[3J[5]; 

Here x is a 3X5 array of integers. When x appears in an expression, it is converted to a 
pointer to (the first of three) 5-membered arrays of integers. In the expression xli], which is 
equivalent to *(x+i), x is first converted to a pointer as described; then i is converted to the type 
of x, which involves multiplying i by the length the object to which the pointer points,namely 5-
integer objects. The results are added and indirection applied to yield an array (of five integers) 
which in turn is converted to a pointer to the first of the integers. If there is another subscript, the 
same argument applies again; this time the result is an integer. 

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the 
declaration helps determine the amount of storage consumed by an array. Arrays play no other 
part in subscript calculations. 

14.4. Explicit Pointer Conversions 

Certain conversions involving pointers are permitted but have implementation-dependent 
aspects. They are all specified by means of an explicit type-conversion operator, see "Unary 
Operators" under"EXPRESSIONS" and "Type Names"under "DECLARATIONS." 

A pointer may be converted to any of the integral types large enough to hold it. Whether an 
int or long is required is machine dependent. The mapping function is also machine dependent 
but is intended to be unsurprising to those who know the addressing structure of the machine. 
Details for some particular machines are given below. 

An object of integral type may be explicitly converted to a pointer. The mapping always 
carries an integer converted from a pointer ba.ck to the same pointer but is otherwise machine 
dependent. 

A pointer to one type may be converted to a pointer to another type. The resulting pointer 
may cause addressing exceptions upon use if the subject pointer does not refer to an object suitably 
aligned in storage. It is guaranteed that a. pointer to an object of a given size may be converted to 
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a pointer to an object of a smaller size and back again without change. 

For example, a storage-allocation routine might accept a size (in bytes) of an object to allo­
cate, and return a char pointer; it might be used in this way. 

extern ehar *IIlalloeO; 
double *dp; 

dp = (double *) malloe(aiseof(double»; 
*dp = 22.0 / 7.0; 

The alloe must ensure (in a machine-dependent way) that its return value is suitable for 
conversion to a pointer to double; then the U8e of the function is portable. 

The pointer representation on the PDP-ll corresponds to a 16-bit integer and measures 
bytes. The char's have no alignment requirements; everything else must have an even address. 

On the V AX-ll, pointers are 32 bits long and measure bytes. Elementary objects are aligned 
on a boundary equal to their length, except that double quantities need be aligned only on even 
4-byte boundaries. Aggregates are aligned on the strictest boundary required by any of their con­
stituents. 

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are 
aligned on 4-byte boundaries. Shorts are aligned in all cases on 2-byte boundaries. Arrays of char­
acters, all structures, ints, longs, floats, and doubles are aligned on 4-byte boundries; but struc­
ture members may be packed tighter. 

14.5. CONSTANT EXPRESSIONS 

In several places C requires expressions that evaluate to a constant: after ease, as array 
bounds, and in initializers. In the first two cases, the expression can involve only integer constants, 
character constants, casts to integral types, enumeration constants, and aiseor expressions, possi­
bly connected by the binary operators 

+ _ * / % & I A « »==!= < > <= >= && II 

or by the unary operators 

or by the ternary operator 

1: 

Parentheses can be used for grouping but not for function calls. 

More latitude is permitted for initializers; besides constant expressions as discussed above, 
one can also use floating constants and arbitrary casts and can also apply the unary &:. operator to 
external or static objects and to external or static arrays subscripted with a constant expression. 
The unary &:. can also be applied implicitly by appearance of unsubscripted arrays and functions. 
The basic rule is that initializers must evaluate either to a constant or to the address of a previ­
ously declared external or static object plus or minus a constant. 

15. Portability Considerations 

Certain parts of C are inherently machine dependent. The following list of potential trouble 
spots is not meant to be all-inclusive but to point out the main ones. 

Purely hardware issues like word size and the properties of floating point arithmetic and 
integer division have proven in practice to be not much of a problem. Other facets of the 
hardware are reflected in differing implementations. Some of these, particularly sign extension 
(converting a negative character into a negative integer) and the order in which bytes are placed in 
a word, are nuisances that must be carefully watched. Most of the others are only minor 
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problems. 

The number of resister variables that can actually be placed in registers varies from 
machine to machine as does the set of valid types. Nonetheless, the compilers all do things prop­
erly for their own machine; excess or invalid resister declarations are ignored. 

Some difficulties arise only when dubious coding practices are used It is exceedingly unwise 
to write programs that depend on any of these properties. 

The order of evaluation of function arguments is not specified by the language. The order in 
which side effects take place is also unspecified. 

Since character constants are really objects of type int, multicharacter character constants 
may be permitted. The specific implementation is very machine dependent because the order in 
which characters are assigned to a word varies from one machine to another. 

Fields are assigned to words and characters to integers right to left on some machines and 
left to right on other machines. These differences are invisible to isolated programs that do not 
indulge in type punning (e.g., by converting an int pointer to a char pointer and inspecting the 
pointed-to storage) but must be accounted for when conforming to externally-imposed storage lay­
outs. 

16. Syntax Summary 

This summary of C syntax is intended more for aiding comprehension than as an exact state­
ment of the language. 

16.1. Expressions 

The basic expressions are: 

expression: 
primary 
* expression 
&Ivalue 
- expression 
~ expre88ion 

expression 
++ Ivalue 
--Ivalue 
Ivalue ++ 
Ivalue --
sizeof expression 
sizeof (type-name) 
( type-name) expression 
expression binop expression 
expression f expression : expression 
Ivalue asgnop expression 
expreuion , expression 

primary: 
identifier 
constant 
string 
( expression) 
primary ( expression-list ) . f . J Dpt pnmary expressIon 
primary. identifier 
primary - identifier 

"'-.. / 
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Ivalue: 
identifier 
primary I expression J 
Ivalue . identifier 
primary - identifier 
* expression 
(Ivalue) 

The primary-expression operators 

o 0 . -
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have highest priority and group left to right. The unary operators 

* & - ! - ++ -- sizeof (type-name) 

have priority below the primary operators but higher than any binary operator and group right to 
left. Binary operators group left to right; they have priority decreasing as indicated below. 

binop: 

* / % 
+ 
» 
< 

& 

I 
&& 
II 

« 
> <= 
!= 

>= 

The conditional operator groups right to left. 

Assignment operators all have the same priority and all group right to left. 

asgnop: 
= += _= *= /= %= »= «= &= A= 1== 

The comma operator has the lowest priority and groups left to right. 

16.2. Declarations 

declaration: 
decl-specifiers init-declarator-/ist ; 

opt 

decl-specifiers: 
type-specifier decl-specifiers 

'ji d I 'ji opt 
4C-8pec. er ec -spec, ers 

8C-8pec,'jier: 
auto 
static 
extern 
register 
typedef 

opt 



type-8pecifier: 
8trtlct-or-union-8pecifier 
typede/-name 
enum-8pecifier 

basic-type-specifier: 
ba8ic-type 
ba8ic-type basic-t,lpe-specifiers 

basic- type: 
char 
short 
int 
long 
unsigned 
float 
double 
void 

enum-specifier: 
enum { enum-list } 
enum identifier { enum-list } 
enum identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

init- declarator-list: 
init-declarator 
init-declarator, init-declarator-list 

init-declarator: 
declarator initializer 

opt 

declarator: 
identifier 
( declarator) 
* declarator 
declarator () 
declarator I con8tant-expression J 

opt 

strtlct-or-union-8pecifier: 
struct { 8lrtlct-decl-list } 
struct identifier { 8trtlct-decl-list } 
struct identifier 
union { 8trtlct-decl-list } 
union identifier { 8trtlct-decl-li8t } 
union identifier 
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3truC t-d ecl-list: 
3truct-declaration 
3truct-declaration 3truct-decl-lilt 

3truct-declaration: 
type-3pecifier 3truct-declarator-lilt ; 

3truct-declarator-lilt: 
3truct-declarator 
3truct-declarator, 3truct-declarator-list 

3truct-declarator: 
declarator 
declarator: con3tant-erpression 
: con3tant-e:rpression 

in itializer: 
= e:rpression 
= { initializer-list } 
= { initializer-list , } 

initializer-list: 
expression 
initializer-list , initia/izer-/ist 
{ initializer-list } 
{ initializer-list , } 

type-name: 
type-specifier abstract-declarator 

abstract- d eel ara tor: 
empty 
( ab3tract-declarator ) 
* abstract-declarator 
abstract-declarator () 
abstract-declarator! constant-expression J 

opt 

typedef-name: 
identifier 

18.3. Statements 

compound-3tatement: 
{declaration-list statement-list } 

opt opt 

declaration-list: 
declaration 
declaration declaration-lilt 

3tatement-list: 
3tatement 
3tatement 3tatement-/ist 



8tatement: 
compound-8tatement 
ezpre88ion ,-
if ( ezpression ) 8tatement 
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if ( ezpression ) 8tatement else 8tatement 
while ( ezpre88ion ) 8tatement 
do 8tatement while ( ezprusion ) ,­
for (ezp ?,;ezp oppezp opJ statement 
switch ( ezpression ) atatement 
case eonstant-ezpre88ion: 8tatement 
default : 8tatement 
break ; 
continue; 
return; 
return ezpre8sion ; 
goto identifier ,­
identifier: statement 
; 

16.4. External definitions 

program: 
ezternal-definition 
external-definition program 

external-definition: 
function-definition 
data-definition 

function- definition: 
decl-specifier function-declarator function-body 

opt 

function-declarator: 
declarator ( parameter-list ) 

opt 

parameter-list: 
identifier 
identifier, parameter-list 

function- body: 
declaration-list compound-8tatement 

opl 

data- definition: 
extern declaration; 
static declaration ; 

" ) 

C) 
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17. Preprocessor 

#define identifier token-Itringopt 
#define identifier{ identifier, ••• )token-&tring 
#undel identifier opt 

#ine1ude "filename" 
#include <filename> 
#if re&tricted-con&tant-ezpre&&ion 
#ifdet identifier 
#ifndef identifier 
#eJse 
#endif 
#llne con&tant "filename" 
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Recent Changes to C 

November 15, 1978 

A few extensions have been made to the C language beyond what is described in the reference 
document ("The C Programming Language," Kerninghan and Ritchie, Prentice--Hall, 1978). 

1. Structure assignment 

Structures may be assigned, passed as arguments to functions, and returned by functions. 
The types of operands taking part must be the same. Other plausible operators, such as equality 
comparison, have not been implemented. 

There is a subtle defect in the PDP-ll implementation of functions that return structures: if 
an interrupt occurs during the return sequence, and the same function is called reentrantly during 
the interrupt, the value returned form the first call may be corrupted. The problem can occur only 
in the presence of true interrupts, as in an operating system or a user program that makes 
significant use of signals; ordinary recursive calls are quite safe. 

2. Enumeration type 

There is a new data type analogous to the scalar types of Pascal. To the type--specifiers in the 
syntax on p. 193 of the C book add 

with syntax 

enum-specifier 

enum-specifier: 
enum (enum-iist) 
enum identifier ( enum-iist ) 
enum identifier 

enum-/ist: 
enumerator 
enum-iist , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a 
struct-specifier; it names a particular enumerations. For example. 

enum color ( chartreuse, burgundy, claret, wined ark ); 

enum color ·cp, col; 

makes color the enumeration-tag of a type describing various colors, and then declares cp as a 
pointer to an object of that type, and col as an object of that type. 

The identifiers in the enum-list are declared as constants, and may appear wherever constants 
are required. If no enumerators with = appear, then the values of the constants begin at 0 and 
increase by 1 as the declaration is read from left to right. An enumerator with = gives the associ­
ated identifier the value indicated: subsequent identifiers continue the progression from the 
assigned value. 
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Enumeration tags and constants must all be distinct, and, unlike structure tags and 
members, are drawn from the same set as ordinary identifiers. 

Objects of given enumeration type are regarded as having a type distinct from objects of all 
other types, and lint flags type mismatches. In the PDP-ll implementation all enumeration vari­
ables are treated as if they were into 
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Lint, a C Program Checker 

S. O. Johnson 

ABSTRAOT 

Lint is a command which examines C source programs, detecting a number 
of bugs and obscurities. It enforces the type rules of C more strictly than the C 
compilers. It may also be used to enforce a number of portability restrictions 
involved in moving programs between different machines and/or operating sys­
tems. Another option detects a number of wasteful, or error prone, constructions 
which nevertheless are, strictly speaking, legal. 

Lint accepts multiple input files and library specifications, and checks them 
for consistency. 

The separation of function between lint and the C compilers has both his­
torical and practical rationale. The compilers turn C programs into executable 
files rapidly and efficiently. This is possible in part because the compilers do not 
do sophisticated type checking, especially between separately compiled programs. 
Lint takes a more global, leisurely view of the program, looking much more care­
fully at the compatibilities. 

This document discusses the use of lint, gives an overview of the implemen­
tation, and gives some hints on the writing of machine independent C code. 

July 26, 1978 
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Lint, a C Program Checker 

S. O. John,on 

Introduction and Usage 

Suppose there are two 0 1 source files, file1. c and filet. c, which are ordinarily compiled and 
loaded together. Then the command 

lint file1.c file2.c 

produces messages describing inconsistencies and inefficiencies in the programs. The program 
enforces the typing rules of 0 more strictly than the 0 compilers (for both historical and practical 
reasons) enforce them. The command 

lint -p file1.c file2.c 

will produce, in addition to the above messages, additional messages which relate to the portability 
of the programs to other operating systems and machines. Replacing the -p by -h will produce 
messages about various error-prone or wasteful constructions which, strictly speaking, are not 
bugs. Saying -hp gets the whole works. 

The next several sections describe the major messages; the document closes with sections dis­
cussing the implementation and giving suggestions for writing portable O. An appendix gives a 
summary of the lint options. 

A Word About Philosophy 

Many of the facts which lint needs may be impossible to discover. For example, whether a 
given function in a program ever gets called may depend on the input data. Deciding whether exit 
is ever called is equivalent to solving the famous "halting problem," known to be recursively unde­
cidable. 

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it can 
never be called. If a function is mentioned, lint assumes it can be called; this is not necessarily so, 
but in practice is quite reasonable. 

Lint tries to give information with a high degree of relevance. Messages of the form "xxx 
might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of real 
bugs they uncover. If this fraction of real bugs is too small, the messages lose their credibility and 
serve merely to clutter up the output, obscuring the more jmportant messages. 

Keeping these issues in mind, we now consider in more detail the classes of messages which 
lint produces. 

Unused Variables and Functions 

As sets of programs evolve and develop, previously used variables and arguments to func­
tions may become unused; it is not uncommon for external variables, or even entire functions, to 
become unnecessary, and yet not be removed from the source. These "errors of commission" rarely 
cause working programs to fail, but they are a source of inefficiency, and make programs harder to 
understand and change. Moreover, information about such unused variables and functions can 
occasionally serve to discover bugs; if a function does a necessary job, and is never called, some­
thing is wrong! 

Lint complains about variables and functions which are defined but not otherwise mentioned. 
An exception is variables which are declared through explicit extern statements but are never 
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referenced; thus the statement 

extern float sin(}; 

will evoke no comment if .in is never used. Note that this agrees with the semantics of the C 
compiler. In some cases, these unused external declarations might be of some interest; they can be 
discovered by adding the -x flag to the Unt invocation. 

Certain styles of programming require many functions to be written with similar interfaces; 
frequently, some of the arguments may be unused in many of the calls. The -v option is available 
to suppress the printing of complaints about unused arguments. When -v is in effect, no messages 
are produced about unused arguments except for those arguments which are unused and also 
declared as register arguments; this can be considered an active (and preventable) waste of the 
register resources of the machine. 

There is one case where information about unused, or undefined, variables is more distracting 
than helpful. This is when lint is applied to some, but not all, files out of a collection which are to 
be loaded together. In this ease, many of the functions and variables defined may not be used, 
and, conversely, many functions and variables defined elsewhere may be used. The -u flag may be 
used to suppress the spurious messages which might otherwise appear. 

Set/Used Information 

Lint attempts to detect cases where a variable is used before it is set. This is very difficult 
to do well; many algorithms take a good deal of time and space, and still produce messages about 
perfectly valid programs. Lint detects local variables (automatic and register storage classes) 
whose first use appears physically earlier in the input file than the first assignment to the variable. 
It assumes that taking the address of a variable constitutes a "use," since the actual use may occur 
at any later time, in a data dependent fashion. 

The restriction to the physical appearance of variables in the file makes the algorithm very 
simple and quick to implement, since the true flow of control need not be discovered. It does mean 
that Unt can complain about some programs which are legal, but these programs would probably 
be considered bad on stylistic grounds (e.g. might contain at least two goto's). Because static and 
external variables are initialized to 0, no meaningful information can be discovered about their 
uses. The algorithm deals correctly, however, with initialized automatic variables, and variables 
which are used in the expression which first sets them. 

The set/used information also permits recognition of those local variables which are set and 
never used; these form a frequent source of inefficiencies, and may also be symptomatic of bugs. 

Flow of Control 

Lint attempts to detect unreachable portions of the programs which it processes. It will 
complain about unlabeled statements immediately following goto, break, continue, or return 
statements. An attempt is made to detect loops which can never be left at the bottom, detecting 
the special cases while( 1 ) and tor(;;} as infinite loops. Lint also complains about loops which 
cannot be entered at the top; some valid programs may have such loops, but at best they are bad 
style, at worst bugs. 

Lint has an important area of blindness in the flow of control algorithm: it has no way of 
detecting functions which are called and never return. Thus, a call to exit may cause unreachable 
code which lint does not detect; the most serious effects of this are in the determination of returned 
function values (see the next section). 

One form of unreachable statement is not usually complained about by lint; a break state-
. ment that cannot be reached causes no message. Programs generated by yaee ,2 and especially 
lex,3 may have literally hundreds of unreachable break statements. The -0 flag in the C com­
piler will often eliminate the resulting object code inefficiency. Thus, these unreached statements 
are of little importance, there is typically nothing the user can do about them, and the resulting 
messages would clutter up the lint output. If these messages are desired, lint can be invoked with 
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the -b option. 

Function Values 

Sometimes functions return values which are never used; sometimes programs incorrectly use 
function "values" which have never been returned. Lint addresses this problem in a number of 
ways. 

and 

Locally, within a function definition, the appearance of both 

return( ezpr ); 

return; 

statements is cause for alarm; lint will give the message 

function name contains return(e) and return 

The most serious difficulty with this is detecting when a function return is implied by flow of con­
trol reaching the end of the function. This can be seen with a simple example: 

f(a){ 
if ( a ) return ( 3 ); 
g (); 
} 

Notice that, if a tests false, I will call 9 and then return with no defined return value; this will 
trigger a complaint from lint. H g, like ezit, never returns, the message will still be produced when 
in fact nothing is wrong. 

In practice, some potentially serious bugs have been discovered by this feature; it also 
accounts for a substantial fraction of the "noise" messages produced by lint. 

On a global scale, lint detects cases where a function returns a value, but this value is some­
times, or always, unused. \Vhen the value is always unused, it may constitute an inefficiency in 
the function definition. When the value is sometimes unused, it may represent bad style (e.g., not 
testing for error conditions). 

The dual problem, using a function value when the function does not return one, is also 
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of occa­
sions in "working" programs; the desired function value just happened to have been computed in 
the function return register! 

Type Checking 

Lint enforces the type checking rules of C more strictly than the compilers do. The addi­
tional checking is in four major areas: across certain binary operators and implied assignments, at 
the structure selection operators, between the definition and uses of functions, and in the use of 
enumerations. 

There are a number of operators which have an implied balancing between types of the 
operands. The assignment, conditional ( ?: ), and relational operators have this property; the 
argument of a return statement, and expressions used in initialization also suffer similar conver­
sions. In these operations, char, short, int, long, unsigned, float, and double types may be 
freely intermixed. The types of pointers must agree exactly, except that arrays of z's can, of 
course, be intermixed with pointers to z's. 

The type checking rules also require that, in structure references, the left operand of the - > 
be a pointer to structure, the left operand of the. be a structure, and the right operand of these 
operators be a member of the structure implied by the left operand. Similar checking is done for 
references to unions. 
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Strict rules apply to function argument and return value matching. The types float and 
double may be freely matched, as may the types char, ahort, int, and unsigned. Also, pointers 
can be matched with the associated arrays. Aside from this, all actual arguments must agree in 
type with their declared counterparts. 

With enumerations, checks are made that enumeration variables or members are not mixed 
with other types, or other enumerations, and that the only operations applied are =, initialization, 
==, 1=, and function arguments and return values. 

Type Casts 
The type cast feature in C was introduced largely as an aid to producing more portable pro­

grams. Consider the assignment 

p= 1; 

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment 

p = (char *)1 ; 

in which a cast has been used to convert the integer to a character pointer. The programmer obvi­
ously had a strong motivation for doing this, and has clearly signaled his intentions. It seems 
harsh for lint to continue to complain about this. On the other hand, if this code is moved to 
another machine, such code should be looked at carefully. The -c flag controls the printing of 
comments about casts. When -c is in effect, casts are treated as though they were assignments 
subject to complaint; otherwise, all legal casts are passed without comment, no matter how strange 
the type mixing seems to be. 

Nonportable Character Use 

On the PDP-ll, characters are signed quantities, with a range from -128 to 127. On most of 
the other C implementations, characters take on only positive values. Thus, lint will flag certain 
comparisons and assignments as being illegal or nonportable. For example, the fragment 

char Ci 

iC( (c = getchar()) < 0 ) .... 

works on the PDP-Il, but will fail on machines where characters always take on positive values. 
The real solution is to declare c an integer, since getchar is actually returning integer values. In 
any case, lint will say "nonportable character comparison". 

A similar issue arises with bitfields; when assignments of constant values are made to 
bitfields, the field may be too small to hold the value. This is especially true because on some 
machines bitfields are considered as signed quantities. While it may seem unintuitive to consider 
that a two bit field declared of type int cannot hold the value 3, the problem disappears if the 
bitfield is declared to have type unsigned. 

Assignments or longs to ints 

Bugs may arise from the assignment of long to an int, which loses accuracy. This may hap­
pen in programs which have been incompletely converted to use typedets. When a typedet vari­
able is changed from int to long, the program can stop working because some intermediate results 
may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons for 
assigning longs to ints, the detection of these assignments is enabled by the -a flag. 

Strange Constructions 

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the messages 
hopefully encourage better code quality, clearer style, and may even point out bugs. The -h flag is 
used to enable these checks. For example, in the statement 
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*p++ ; 

the * does nothing; this provokes the message "null effect" from lint. The program fragment 

unsigned x; 
if(x<O) ... 

is clearly somewhat strange; the test will never succeed. Similarly, the test 

if(x>O) ... 

is equivalent to 

if( x != 0 ) 

which may not be the intended action. Lint will say "degenerate unsigned comparison" in these 
cases. IT one says 

if( 1 != 0 ) .... 

lint will report "constant in conditional context", since the comparison of 1 with 0 gives a con­
stant result. 

Another construction detected by lint involves operator precedence. Bugs which arise from 
misunderstandings about the precedence of operators can be accentuated by spacing and format­
ting, making such bugs extremely hard to find. For example, the statements 

if( x&077 == 0 ) ... 

or 

x«2 + 40 

probably do not do what was intended. The best solution is to parenthesize such expressions, and 
lint encourages this by an appropriate message. 

Finally, when the -h flag is in force lint complains about variables which are redeclared in 
inner blocks in a way that conflicts with their use in outer blocks. This is legal, but is considered 
by many (including the author) to be bad style, usually unnecessary, and frequently a bug. 

Ancient History 

There are several forms of older syntax which are being officially discouraged. These fall into 
two classes, assignment operators and initialization. 

The older forms of assignment operators (e.g., =+, =-, ... ) could cause ambiguous e>..-pres­
sions, such as 

a =-1; 

which could be taken as either 

a=- 1; 

or 

a = -1; 

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro sub­
stitution. The newer, and preferred operators (+=, -=, etc. ) have no such ambiguities. To spur 
the abandonment of the older forms, lint complains about these old fashioned operators. 

A similar issue arises with initialization. The older language allowed 

int xl; 

to initialize z to 1. This also caused syntactic difficulties: for example, 



-6-

int x (-1 ) i 

looks somewhat like the beginning of a function declaration: 

int x (y) { ... 

and the compiler must read a fair ways past :r in order to sure what the declaration really is .. 
Again, the problem is even more perplexing when the initia.lUer involves a macro. The current 
syntax places an equals sign between the variable and the initiaJUer: 

int x == -1 ; 

This is free of any pos5ible syntactic ambiguity. 

Pointer Alignment 
Certain pointer assignments may be reasonable on some machines, and illegal on others, due 

entirely to alignment restrictions. For example, on the PDP-H, it is reasonable to assign integer 
pointers to double pointers, since double precision values may begin on any integer boundary. On 
the Honeywell 6000, double precision values must begin on even word boundaries; thus, not all 
such assignments make sense. Lint tries to detect cases where pointers are assigned to other 
pointers, and such alignment problems might arise. The message "possible pointer alignment 
problem" results from this situation whenever either the -p or -h flags are in effect. 

Multiple Uses and Side Effects 

In complicated expressions, the best order in which to evaluate subexpressions may be highly 
machine dependent. For example, on machines (like the PDP-H) in which the stack runs back­
wards, function arguments will probably be best evaluated from right-to-Ieft; on machines with a 
stack running forward, left-to-right seems most attractive. Function calls embedded as arguments 
of other functions mayor may not be treated similarly to ordinary arguments. Similar issues arise 
with other operators which have side effects, such as the assignment operators and the increment 
and decrement operators. 

In order that the efficiency of C on a particular machine not be unduly compromised, the C 
language leaves the order of evaluation of complicated expressions up to the local compiler, and, in 
fact, the various C compilers have considerable differences in the order in which they will evaluate 
complicated expressions. In particular, if any variable is changed by a side effect, and also used 
elsewhere in the same expression, the result is explicitly undefined. 

Lint checks for the important special case where a simple scalar variable is affected. For 
example, the statement 

ali] == b[i++] ; 

will draw the complaint: 

warning: i evaluation order undefined 

Implementation 
Lint consists of two programs and a driver. The first program is a version of the Portable C 

Compiler4,5 which is the basis of the mM 370, Honeywell 6000, and Interdata 8/32 C compilers. 
This compiler does lexical and syntax analysis on the input text, constructs and maintains symbol 
tables, and builds trees for expressions. Instead of writing an intermediate file which is passed to a 
code generator, as the other compilers do, lint produces an intermediate file which consists of lines 
of ascii text. Each line contains an external variable name, an encoding of the context in which it 
was seen (use, definition, declaration, etc.), a type specifier, and a source file name and line 
number. The information about variables local to a function or file is collected by accessing the 
symbol table, and examining the expression trees. 

j 
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Oomments about local problems are produced as detected. The information about external 
names is collected onto an intermediate file. After all the source files and library descriptions have 
been collected, the intermediate file is sorted to bring all information collected about a given exter­
nal name together. The second, rather small, program then reads the lines from the intermediate 
file and compares all of the definitions, declarations, and uses for consistency. 

The driver controls this process, and is also responsible for making the options available to 
both passes of lint. 

Portability 

o on the Honeywell and mM systems is used, in part, to write system code for the host 
operating system. This means that the implementation of 0 tends to follow local conventions 
rather than adhere strictly to UNIXt system conventions. Despite these differences, many 0 pro­
grams have been successfully moved to GOOS and the various IDM installations with little effort. 
This section describes some of the differences between the implementations, and discusses the lint 
features which encourage portability. 

UninitiaIized external variables are treated differently in different implementations of O. 
Suppose two files both contain a declaration without initialization, such as 

inta; 

outside of any function. The UNIX loader will resolve these declarations, and cause only a single 
word of storage to be set aside for G. Under the GOOS and mM implementations, this is not feasi­
ble (for various stupid reasons!) so each such declaration causes a word of storage to be set aside 
and called G. When loading or library editing takes place, this causes fatal conflicts which prevent 
the proper operation of the program. If lint is invoked with the -p flag, it will detect such multi­
ple definitions. 

A related difficulty comes from the amount of information retained about external names 
during the loading process. On the UNIX system, externally known names have seven significant 
characters, with the upper flower case distinction kept. On the mM systems, there are eight 
significant characters, but the case distinction is lost. On GOOS, there are only six characters, of a 
single case. This leads to situations where programs run on the UNIX system, but encounter loader 
problems on the mM or GOOS systems. Lint -p causes all external symbols to be mapped to one 
case and truncated to six characters, providing a worst-case analysis. 

A number of differences arise in the area of character handling: characters in the UNIX system 
are eight bit ascii, while they are eight bit ebcdic on the mM, and nine bit ascii on GOOS. More­
over, character strings go from high to low bit positions ("left to right") on GOOS and mM, and 
low to high ("right to left") on the PDP-H. This means that code attempting to construct strings 
out of character constants, or attempting to use characters as indices into arrays, must be looked 
at with great suspicion. Lint is of little help here, except to flag multi-character character con­
stants. 

Of course, the word sizes are different! This causes less trouble than might be expected, at 
least when moving from the UNIX system (16 bit words) to the mM (32 bits) or GOOS (36 bits). 
The main problems are likely to arise in shifting or masking. C now supports a bit-field facility, 
which can be used to write much of this code in a reasonably portable way. Frequently, portabil­
ity of such code can be enhanced by slight rearrangements in coding style. Many of the incompati­
bilities seem to have the flavor of writing 

x &= 0177700 ; 

to clear the low order six bits of z. This suffices on the PDP-Il, but fails badly on GOOS and 
mM. If the bit field feature cannot be used, the same effect can be obtained by writing 

t UNO{ is a trademark or Bell Laboratories. 
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x &==,." 077 ; 

which will work on all these machines. 

The right shift operator is arithmetic shift on the PDP-ll, and logical shift on most other 
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned. 
Characters are considered signed integers on the PDP-ll, and unsigned on the other machines. 
This persistence of the sign bit may be reasonably considered a bug in the PDP·ll hardware which 
has infiltrated itself into the C language. If there were a good way to discover the programs which 
would be affected, C could be changed; in any case, lint is no help here. 

The above discussion may have made the problem of portability seem bigger than it in fact 
is. The issues involved here are rarely subtle or mysterious, at least to the implementor of the pro­
gram, although they can involve some work to straighten out. The most serious bar to the porta­
bility of UNIX system utilities has been the inability to mimic essential UNIX system functions on 
the other systems. The inability to seek to a random character position in a text file, or to estab­
lish a pipe between processes, has involved far more rewriting and debugging than any of the 
dift'erences in C compilers. On the other hand, lint has been very helpful in moving the UNIX 
operating system and associated utility programs to other machines. 

Shutting Lint Up 

There are occasions when the programmer is smarter than lint. There may be valid reasons 
for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, as specified 
above, the Bow of control information produced by lint often has blind spots, causing occasional 
spurious messages about perfectly reasonable programs. Thus, some way of communicating with 
lint, typically to shut it up, is desirable. 

The form which this mechanism should take is not at all clear. New keywords would require 
current and old compilers to recognize these keywords, if only to ignore them. This has both phi­
losophical and practical problems. New preprocessor syntax suft'ers from similar problems. 

What was finally done was to cause a number of words to be recognized by lint when they 
were embedded in comments. This required minimal preprocessor changes; the preprocessor just 
had to agree to pass comments through to its output, instead of deleting them as had been previ­
ously done. Thus, lint directives are invisible to the compilers, and the eft'ect on systems with the 
older preprocessors is merely that the lint directives don't work. 

The first directive is concerned with Bow of control information; if a particular place in the 
program cannot be reached, but this is not apparent to lint, this can be asserted by the directive 

/* NOTREACHED */ 
at the appropriate spot in the program. Similarly, if it is desired to turn oft'strict type checking 
for the ne~-t expression, the directive 

/* NOSTRICT * / 
can be used; the situation reverts to the previous default after the next expression. The -v flag 
can be turned on for one function by the directive 

/* ARGSUSED * / 
Complaints about variable number of arguments in calls to a function can be turned oft' by the 
directive 

/* V ARARGS * / 
preceding the function definition. In some cases, it is desirable to check the first several arguments, 
and leave the later arguments unchecked. This can be done by following the V ARARGS keyword 
immediately with a digit giving the number of arguments which should be checked; thus, 
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/* V ARARGS2 * / 
will cause the first two arguments to be checked, the others unchecked. Finally, the directive 

/* LINTLmRARY * / 
at the head of a file identifies this file as a library declaration file; this topic is worth a section by 
itself. 

Library Declaration Files 

Lint accepts certain library directives, such as 

-ly 

and tests the source files for compatibility with these libraries. This is done by accessing library 
description files whose names are constructed from the library directives. These files all begin with 
the directive 

/* LINTLmRARY * / 
which is followed by a series of dummy function definitions. The critical parts of these definitions 
are the declaration of the function return type, whether the dummy function returns a value, and 
the number and types of arguments to the function. The V ARARGS and ARGSUSED directives 
can be used to specify features of the library functions. 

Lint library files are processed almost exactly like ordinary source files. The only difference 
is that functions which are defined on a library file, but are not used on a source file, draw no com­
plaints. Lint does not simulate a full library search algorithm, and complains if the source files 
contain a redefinition of a library routine (this is a feature!). 

By default, lint checks the programs it is given against a standard library file, which con­
tains descriptions of the programs which are normally loaded when a C program is run. '\Then the 
-p flag is in effect, another file is checked containing descriptions of the standard I/0 library rou­
tines which are expected to be portable across various machines. The -n flag can be used to 
suppress all library checking. 

Bugs, etc. 

Lint was a difficult program to write, partially because it is closely connected with matters of 
programming style, and partially because users usually don't notice bugs which cause lint to miss 
errors which it should have caught. (By contrast, if lint incorrectly complains about something 
that is correct, the programmer reports that immediately!) 

A number of areas remain to be further developed. The checking of structures and arrays is 
rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up struc­
ture and union declarations across files. Some stricter checking of the use of the typedef is clearly 
desirable, but what checking is appropriate, and how to carry it out, is still to be determined. 

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for a 
special version of the preproceswr to be constructed which checks for things such as unused macro 
definitions, macro arguments which have side effects which are not expanded at all, or are 
expanded more than once, etc. 

The central problem with lint is the packaging of the information which it collects. There 
are many options which serve only to turn off, or slightly modify, certain features. There are pres­
sures to add even more of these options. 

In conclusion, it appears that the general notion of having two programs is a good one. The 
compiler concentrates on quickly and accurately turning the program text into bits which can be 
run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be wrong, 
since incorrectness and over-conservatism are merely annoying, not fatal. The compiler can be fast 
since it knows that lint will cover its flanks. Finally, the programmer can concentrate at one stage 
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of the programming process solely on the algorithms, data. structures, and correctness of the pro­
gram, and then later retrofit, with the aid or lint, the desira.ble properties or universality and por­
tability. 

.r\. 
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Appendix: Current Lint Options 

The command currently has the Corm 

lint [-options J files ... library-descriptors ... 

The options are 

h Perform heuristic cheeks 

p Perform portability cheeks 

v Don't report unused arguments 

u Don't report unused or undefined externals 

b Report unreachable break statements. 

x Report unused external declarations 

a Report assignments of long to int or shorter. 

e Complain about questionable casts 

n No library checking is done 

s Same as h (for historical reasons) 
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A Tour through the UNIXt C Compiler 
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The Intermediate Language 

Communication between the two phases of the compiler proper is carried out by means of a 
pair of intermediate files. These files are treated as having identical structure, although the second 
file contains only the code generated for strings. It is convenient to write strings out separately to 
reduce the need for multiple location counters in a later assembly phase. 

The intermediate language is not machine-independent; its structure in a number of ways 
reflects the fact that C was originally a one-pass compiler chopped in two to reduce the maximum 
memory requirement. In fact, only the latest version of the compiler has a complete intermediate 
language at all. Until recently, the first phase of the compiler generated assembly code for those 
constructions it could deal with, and passed expression parse trees, in absolute binary form, to the 
second phase for code generation. Now, at least, all inter-phase information is passed in a describ­
able form, and there are no absolute pointers involved, so the coupling between the phases is not 
so strong. 

1. 

The areas in which the machine (and system) dependencies are most noticeable are 

Storage allocation for automatic variables and arguments has already been performed, and 
nodes for such variables refer to them by offset from a display pointer. Type conversion (for 
example, from integer to pointer) has already occurred using the assumption of byte address­
ing and 2-byte words. 

2. Data representations suitable to the PDP-ll are assumed; in particular, floating point con­
stants are passed as four words in the machine representation. 

As it happens, each intermediate file is represented as a sequence of binary numbers without 
any explicit demarcations. It consists of a sequence of conceptual lines, each headed by an opera­
tor, and possibly containing various operands. The operators are small numbers; to assist in recog­
nizing failure in synchronization, the high-order byte of each operator word is always the octal 
number 376. Operands are either 16-bit binary numbers or\strings of characters representing 
names. Each name is terminated by a null character. - There is no alignment requirement for 
numerical operands and so there is no padding after a name string. 

The binary representation was chosen to avoid the necessity of converting to and from char­
acter form and to minimize the size of the files. It would be very easy to make each operator­
operand 'line' in the file be a genuine, printable line, with the numbers in octal or decimal; this in 
fact was the representation originally used. 

The operators fall naturally into two classes: those which represent part of an expression, and 
all others. Expressions are transmitted in a reverse-Polish notation; as they are being read, a tree 
is built which is isomorphic to the tree constructed in the first phase. Expressions are passed as a 
whole, with no non-expression operators intervening. The reader maintains a stack; each leaf of 
the expression tree (name, constant) is pushed on the stack; each unary operator replaces the top of 
the stack by a node whose operand is the old top-of-stack; each binary operator replaces the top 

tuNIX is a Trademark of Bell Laboratories. 
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pair on the staek with .. single entry. When the expression is complete there is exactly one item on 
the stack. Following each expression is a special operator which passes the unique previous expres­
sion to the 'optimizer' described below and then to the code generator. 

Here is the list of operators not themselves part of expressions. 

EOF 
marks the end of an input file. 

BDATA /lag data ... 
specifies a sequence of bytes to be assembled as static data. It is followed by pairs of words; 
the first member of the pair is non-zero to indicate that the data continue; a zero eag is not 
followed by data and terminates the operator. The data bytes occupy the low-order part of 
a word. 

WDATA /lag data ... 

specifies a sequence of words to be assembled as static data; it is identical to the BDATA 
operator except that entire words, not just bytes, are passed. 

PROG 
means that subsequent information is to be compiled as program text. 

DATA 
means that subsequent information is to be compiled as static data. 

BSS 
means that subsequent information is to be compiled as unitialized static data. 

SYMDEF name 

means that the symbol name is an external name defined in the current program. It is pro­
duced for each external data or function definition. 

CSPACE name 8ize 

indicates that the name refers to a data area whose size is the specified number of bytes. It is 
produced for external data definitions without explicit initialization. 

SSPACE 8ize 

indicates that 8ize bytes should be set aside for data storage. It is used to pad out short ini­
tializations of external data and to reserve space for static (internal) data. It will be pre­
ceded by an appropriate label. 

EVEN 
is produced after each external data definition whose size is not an integral number of words. 
It is not produced after strings except when they initialize a character array. 

NLABEL name 

is produced just before a BDATA or WDATA initializing external data, and serves as a label 
for the data. 
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RLABEL name 

is produced just before each function definition, and labels its entry point. 

SNAME name number 

is produced at the start of each function for each static variable or label declared therein. 
Subsequent uses of the variable will be in terms of the given number. The code generator 
uses this only to produce a debugging symbol table. 

ANAME name number 

Likewise, each automatic variable's name and stack offset is specified by this operator. Argu­
ments count as automatics. 

RNAME name number 

Each register variable is similarly named, with its register number. 

SAVE number 

produces a register-save sequence at the start of each function, just after its label (RLABEL). 

SETREG number 

is used to indicate the number of registers used for register variables. It actually gives the 
register number of the lowest free register; it is redundant because the RNAME operators 
could be counted instead. 

PROFn. 

is produced before the save sequence for functions when the profile option is turned on. It 
produces code to count the number of times the function is called. 

SWIT deftab line label value ... 

is produced for switches. When control flows into it, the value being switched on is in the 
register forced by RFORCE (below). The switch statement occurred on the indicated line of 
the source, and the label number of the default location is deftab. Then the operator is fol­
lowed by a sequence of label-number and value pairs; the list is terminated by a 0 label. 

LABEL number 

generates an internal label. It is referred to elsewhere using the given number. 

BRANCH number 

indicates an unconditional transfer to the internal label number given. 

RETRN 
produces the return sequence for a function. It occurs only once, at the end of each function. 

EXPR line 

causes the expression just preceding to be compiled. The argument is the line number in the 
source where the expression occurred. 

NAME cla88 type name 
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NAME cl483 ',pc number 

indicates a name occurring in an expression. The first form is used when the name is exter­
nal; the second when the name is automatic, static, or a register. Then the number indicates 
the stack offset, the label number, or the register number as appropriate. Class and type 
encoding is described elsewhere. 

CON ',pc value 

transmits an integer constant. This and the next two operators occur as part of expressions. 

FCON ',pc 4-word-value 

transmits a floating constant as four words in PDP-ll notation. 

SFCON t,pe value 

transmits a floating-point constant whose value is correctly represented by its high-order 
word in PDP-ll notation. 

NULL 
indicates a null argument list of a function call in an expression; call is a binary operator 
whose second operand is the argument list. 

CBRANCH label cond 

produces a conditional branch. It is an expression operator, and will be followed by an 
EXPR. The branch to the label number takes place if the expression's truth value is the 
same as that of condo That is, if cond=l and the expression evaluates to true, the branch is 
taken. 

bblary-operator type 

There are binary operators corresponding to each such source-language operator; the type of 
the result of each is passed as well. Some perhaps-unexpected ones are: COMMA, which is a 
right-associative operator designed to simplify right-to-IeCt evaluation of function arguments; 
prefix and postfix ++ and -, whose second operand is the increment amount, as a CON; 
QUEST and COLON, to express the conditional expression as 'a?(b:c)'; and a sequence oC 
special operators for expressing relations between pointers, in case pointer comparison is 
different from integer comparison (e.g. unsigned). 

unary-operator type 

There are also numerous unary operators. These include ITOF, FTOI, FTOL, LTOF, ITOL, 
LTOI which convert among floating, long, and integer; JUMP which branches indirectly 
through a label expression; INIT, which compiles the value of a constant expression used as 
an initializerj RFORCE, which is used before a return sequence or a switch to place a value 
in an agreed-upon register. 

Expreasion Optimisation 

Each expression tree, as it is read in, is subjected to a fairly comprehensive analysis. This is 
performed by the optim routine and a number of subroutines; the major things done are 

1. Modifications and simplifications of the tree so its value may be computed more efficiently 
and conveniently by the code generator. 

2. Marking each interior node with an estimate of the number of registers required to evaluate 
it. This register count is needed to guide the code generation algorithm. 

One thing that is definitely not done is discovery or exploitation of common subexpressions, 
nor is this done anywhere in the compiler. 
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The basic organization is simple: a depth-first scan of the tree. Optim does nothing for leaf 
nodes (except for automatics; see below), and calls "noptim to handle unary operators. For binary 
operators, it calls itself to process the operands, then treats each operator separately. One impor­
tant case is commutative and associative operators, which are handled by IIcommute. 

Here is a brief catalog of the transformations carried out by by optim itself. It is not 
intended to be complete. Some of the transformations are machine-dependent, although they may 
well be useful on machines other than the PDP-H. 
1. As indicated in the discussion of "noptim below, the optimizer can create a node type 

corresponding to the location addressed by a register plus a constant offset. Since this is pre­
cisely the implementation of automatic variables and arguments, where the register is fixed 
by convention, such variables are changed to the new form to simplify later processing. 

2. Associative and commutative operators are processed by the special routine IIcommute. 

3. After processing by IIcommute, the bitwise & operator is turned into a new IIndn operator; 'a 
& b' becomes 'a IIndn -b'. This is done because the PDP-ll provides no lind operator, but 
only IIndn. A similar transformation takes place for '=&'. 

4. Relationals are turned around so the more complicated expression is on the left. (So that '2 
> f{x)' becomes 'f{x) < 2'). This improves code generation since the algorithm prefers to 
have the right operand require fewer registers than the left. 

S. An expression minus a constant is turned into the expression plus the negative constant, and 
the IIcommute routine is called to take advantage of the properties of addition. 

6. Operators with constant operands are evaluated. 

7. Right shifts (unless by 1) are turned into left shifts with a negated right operand, since the 
PDP-Il lacks a general right-shift operator. 

8. A number of special cases are simplified, such as division or multiplication by 1, and shifts 
by O. 

The unoptim routine performs the same sort of processing for unary operators. 

1. '*&x' and '&*x' are simplified to 'x'. 

2. If r is a register and c is a constant or the address of a static or external variable, the expres­
sions '*(r+c)' and '*r' are turned into a special kind of name node which expresses the name 
itself and the offset. This simplifies subsequent processing because such constructions can 
appear as the the address of a PDP-Il instruction. 

3. When the unary '&' operator is applied to a name node of the special kind just discussed, it 
is reworked to make the addition explicit again; this is done because the PDP-ll has no 'load 
address'instruction. 

4. Constructions like '*r++' and '*-r' where r is a register are discovered and marked as being 
implementable using the PDP-ll auto-increment and -decrement modes. 

S. If 'I' is applied to a relational, the'!' is discarded and the sense of the relational is reversed. 

6. Special cases involving reflexive use of negation and complementation are discovered. 

7. Operations applying to constants are evaluated. 

The IIcommute routine, called for associative and commutative operators, discovers clusters 
of the same operator at the top levels of the current tree, and arranges them in a list: for 
'a+({b+c)+{d+f))' the list would be'a,b,c,d,e,f'. After each subtree is optimized, the list is sorted 
in decreasing difficulty of computation; as mentioned above, the code generation algorithm works 
best when left operands are the difficult ones. The 'degree of difficulty' computed is actually finer 
than the mere number of registers required; a constant is considered simpler than the address of a 
static or external, which is simpler than reference to a variable. This makes it easy to fold all the 
constants together, and also to merge together the sum of a constant and the address of a static or 
external (since in such nodes there is space for an 'offset' value). There are also special cases, like 
multiplication by 1 and addition of O. 
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A special routine is invoked to handle sums of products. DUtrib is based on the fact that it is 
better to compute 'cl*c2*x + d*yt 88 'c1*(c2*x + y)' and makes the divisibility tests required to 
assure the correctness of the transformation. This transformation is rarely possible with code 
directly written by the user, but it invariably occurs 88 a result of the implementation of multi­
dimensional arrays. 

Finally, IJcommute reconstructs a tree from the list of expressions which result. 

Code Generation 
The grand plan for code-generation is independent of any particular machine; it depends 

largely on a set of tables. But this fact does not necessarily make it very easy to modify the com­
piler to produce code for other machines, both because there is a good deal of machine-dependent 
structure in the tables, and because in any event such tables are non-trivial to prepare. 

The arguments to the basic code generation routine rcexpr are a pointer to a tree representing 
an expression, the name of a code-generation table, and the number of a register in which the value 
of the expression should be placed. Rcexpr returns the number of the register in which the value 
actually ended up; its caller may need to produce a mot! instruction if the value really needs to be 
in the given register. There are four code generation tables. 

Regtab is the basic one, which actually does the job described above: namely, compile code 
which places the value represented by the expression tree in a register. 

Cctab is used when the value of the expression is not actually needed, but instead the value 
of the condition codes resulting from evaluation of the expression. This table is used, for example, 
to evaluate the expression after il. It is clearly silly to calculate the value (0 or 1) of the expression 
'a==b' in the context 'if (a==b) ... t 

The Bptab table is used when the value of an expression is to be pushed on the stack, for 
example when it is an actual argument. For example in the function call 'r(a)' it is a bad idea to 
load a into a register which is then pushed on the stack, when there is a single instruction which 
does the job. 

The efftab table is used when an expression is to be evaluated for its side effects, not its 
value. This occurs mostly for expressions which are statements, which have no value. Thus the 
code for the statement 'a = b' need produce only the approoriate mot! instruction, and need not 
leave the value of b in a register, while in the expression 'a + (b = c)' the value of 'b = c' will 
appear in a register. 

All of the tables besides regtab are rather small, and handle only a relatively few special 
cases. If one of these subsidiary tables does not contain an entry applicable to the given expression 
tree, rcexpr uses regtab to put the value of the expression into a register and then fixes things up; 
nothing need be done when the table was efftab, but a tBt instruction is produced when the table 
called for was cctab, and a mov instruction, pushing the register on the stack, when the table was 
8ptab. 

The rcexpr routine itself picks off some special cases, then calls cexpr to do the real work. 
Cexpr tries to find an entry applicable to the given tree in the given table, and returns -1 if no 
such entry is found, letting rcexpr try again with a different table. A successful match yields a 
string containing both literal characters which are written out and pseudo-operations, or macros, 
which are expanded. Before studying the contents of these strings we will consider how table 
entries are matched against trees. 

Recall that most non-leaf nodes in an expression tree contain the name of the operator, the 
type of the value represented, and pointers to the subtrees (operands). They also contain an esti­
mate of the number of registers required to evaluate the expression, placed there by the 
expression-optimizer routines. The register counts are used to guide the code generation process, 
which is based on the Sethi-Ullman algorithm. 

The main code generation tables consist of entries each containing an operator number and a 
pointer to a subtable for the corresponding operator. A subtable consists of a sequence of entries, 
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each with a key describing certain properties or the operands of the operator involved; associated 
with the key is a code string. Once the subtable corresponding to the operator is round, the subt­
able is searched linearly until a key is round such that the properties demanded by the key are 
compatible with the operands or the tree node. A successrul match returns the code string; an 
unsuccessrul search, either for the operator in the main table or a compatble key in the subtable, 
returns a railure indication. 

The tables are all contained in a file which must be processed to obtain an assembly language 
program. Thus they are written in a special-purpose language. To provided definiteness to the 
following discussion, here is an example or a sub table entry. 

%n,aw 
F 
add A2,R 

The '%' indicates the key; the inrormation following (up to a blank line) specifies the code string. 
Very briefly, this entry is in the subtable ror '+' of regta6i the key specifies that the lert operand is 
any integer, character, or pointer expression, and the right operand is any word quantity which is 
directly addressible (e.g. a variable or constant). The code string calls ror the generation or the 
code to compile the lert (first) operand into the current register ('F') and then to produce an 'add' 
instruction which adds the second operand ('A2') to the register (CR'). All of the notation will be 
explained below. 

Only three reatures of the operands are used in deciding whether a match has occurred. 
They are: 

1. Is the type of the operand compatible with that demanded? 

2. Is the 'degree of difficulty' (in a sense described below) compatible? 

3. The table may demand that the operand have a '*' (indirection operator) as its highest 
operator. 

.As suggested above, the key for a subtable entry is indicated by a '%,' and a comma­
separated pair of specifications for the operands. (The second specification. is ignored for unary 
operators). A specification indicates a type requirement by including one or the following letters. 
If no type letter is present, any integer, character, or pointer operand will satisry the requirement 
(not float, double, or long). 

b A byte (character) operand is required. 

w A word (integer or pointer) operand is required. 

r A float or double operand is required. 

d A double operand is required. 

I A long (32-bit integer) operand is required. 

Before discussing the 'degree of difficulty' specification, the algorithm has to be explained 
more completely. Rcezpr (and cezpr) are called with a register number in which to place their 
result. Registers 0, 1, ... are used during evaluation of expressions; the maximum register which 
can be used in this way depends on the number or register variables, but l.D any event only regis­
ters 0 through 4 are available since r5 is used as a stack rrame header and r6 (sp) and r7 (pc) have 
special hardware properties. The code generation routines assume that when called with register n 
as argument, they may use n+1, ... (up to the first register variable) as temporaries. Consider the 
expression 'X+ Y', where both X and Yare expressions. .As a first approximation, there are three 
ways or compiling code to put this expression in register n. 

1. If Y is an addressible cell, (recursively) put X into register n and add Y to it. 

2. 

3. 

If Y is an expression that can be calculated in k registers, where k smaller than the number of 
registers available, compile X into register n, Y into register n+l, and add register n+l to n. 

Otherwise, compile Y into register n, save the result in a temporary (actually, on the stack) 
compile X into register n, then add in the temporary. 
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The distinction between cases 2 and 3 therefore depends on whether the right operand can be 
compiled in fewer than t registers, where t is the number of free registers left after registers 0 
through n are taken: 0 through n-l are presumed to contain already computed temporary results; 
n will, in case 2, contain the value of the left operand while the right is being evaluated. 

These considerations should make clear the specification codes for the degree of difficulty, 
bearing in mind that a number of special cases are also present: 

z is satisfied when the operand is zero, 80 that special code can be produced for expressions like 
'x = 0'. 

1 is satisfied when the operand is the constant 1, to optimize cases like left and right shift by 
1, which can be done efficiently on the PDP-H. 

c is satisfied when the operand is a positive (IS-bit) constant; this takes care of some special 
cases in long arithmetic. 

a is satisfied when the operand is addressible; this occurs not only for variables and constants, 
but also for some more complicated constructions, such as indirection through a simple vari­
able, '*p++' where p is a register variable (because of the PDP-U's auto-increment address 
mode), and '*(p+c)' where p is a register and e is a constant. Precisely, the requirement is 
that the operand refers to a cell whose address can be written as a source or destination of a 
PDP-ll instruction. 

e is satisfied by an operand whose value can be generated in a register using no more than k 
registers, where k is the number of registers left (not counting the current register). The Ie' 
stands for 'easy.' 

n is satisfied by any operand. The In' stands for 'anything.' 

These degrees of difficulty are considered to lie in a linear ordering and any operand which 
satisfies an earlier-mentioned requirement will satisfy a later one. Since the subtables are searched 
linearly, if a '1' specification is included, almost certainly a 'z' must be written first to prevent 
expressions containing the constant 0 to be compiled as if the 0 were 1. 

Finally, a key specification may contain a '*' which requires the operand to have an indirec­
tion as its leading operator. Examples below should clarify the utility of this specification. 

Now let us consider the contents of the code string associated with each subtable entry. Con­
ventionally, lower-case letters in this string represent literal information which is copied directly to 
the output. Upper-case letters generally introduce specific macro-operations, some of which may be 
followed by modifying information. The code strings in the tables are written with tabs and new­
lines used freely to suggest instructions which will be generated; the table-compiling program 
compresses tabs (using the 0200 bit of the next character) and throws away some of the new-lines. 
For example the macro eF' is ordinarily written on a line by itself; but since its expansion will end 
with a new-line, the new-line after 'F' itself is dispensable. This is all to reduce the size of the 
stored tables. 

The first set of macro-operations is concerned with compiling subtrees. Recall that this is 
done by the eezpr routine. In the following discussion the 'current register' is generally the argu­
ment register to eezprj that is, the place where the result is desired. The 'next register' is num­
bered one higher than the current register. (This explanation isn't fully true because of complica­
tions, described below, involving operations which require even-odd register pairs.) 

F causes a recursive call to the reezpr routine to compile code which places the value of the first 
(left) operand of the operator in the current register. 

Fl generates code which places the value of the first operand in the next register. It is 
incorrectly used if there might be no next register; that is, if the degree of difficulty of the 
first operand is not 'easy;' if not, another register might not be available. 

FS generates code which pushes the value of the first operand on the stack, by calling reexpr 
specifying ,ptab as the table. 

C) 
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compile the second (right) operand into the current register, the next register, or onto the 
stack. 

To deal with registers, there are 

R which expands into the name of the current register .. 

Rl which expands into the name of the next register. 

R+ which expands into the the name of the current register plus 1. It was suggested above that 
this is the same as the next register, except for complications; here is one of them. Long 
integer variables have 32 bits and require 2 registers; in such cases the next register is the 
current register plus 2. The code would like to talk about both halves of the long quantity, 
so R refers to the register with the high-order part and R+ to the low-order part. 

R- This is another complication, involving division and mod. These operations involve a pair of 
registers of which the odd-numbered contains the left operand. Otxpr arranges that the 
current register is odd; the R- notation allows the code to refer to the next lower, even­
numbered register. 

To refer to addressible quantities, there are the notations: 

AI causes generation of the address specified by the first operand. For this to be legal, the 
operand must be addressible; its key must contain an Ca' or a more restrictive specification. 

A2 correspondingly generates the address of the second operand providing it has one. 

We now have enough mechanism to show a complete, if suboptimal, table for the + operator 
on word or byte operands. 

%n,z 
F 

%n,1 
F 
inc R 

%n,aw 
F 
add A2,R 

%n,e 
F 
SI 
add Rl,R 

%n,n 
SS 
F 
add (sp)+,R 

The first two sequences handle some special cases. Actually it turns out that handling a right 
operand of 0 is unnecessary since the expression-optimizer throws out adds of o. Adding 1 by 
using the 'increment' instruction is done next, and then the case where the right operand is addres­
sible. It must be a word quantity, since the PDP·ll lacks an 'add byte' instruction. Finally the 
cases where the right operand either can, or cannot, be done in the available regisiers are treated. 

The next macro-instructions are conveniently introduced by noticing that the above table is 
suitable for subtraction as well as addition, since no use is made of the commutativity of addition. 
All that is needed is substitution of 'sub' for 'add' and 'dec' for 'inc.' Considerable saving of space 
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is achieved by factoring out several similar operations. 

I is replaced by a string from another table indexed by the operator in the node being 
expanded. This secondary table actually contains two strings per operator. 

r is replaced by the second string in the side table entry for the current operator. 

Thus, given that the entries for '+' and '-' in the side table (which is called in8ta6) are 'add' 
and 'inc,' 'sub' and 'dec' respectively, the middle of of the above addition table can be written 

%n,l 
F 
I' 

%n,aw 
F 
I 

R 

A2,R 

and it will be suitable for subtraction, and several other operators, as well. 

Next, there is the question of character and floating-point operations. 

Bl generates the letter 'b' if the first operand is a character, If' if it is float or double, and noth­
ing otherwise. It is used in a context like 'movBl' which generates a 'mov', 'movb', or 
'mov!' instruction according to the type of the operand. 

B2 is just like Bl but applies to the second operand. 

BE generates 'b' if either operand is a character and null otherwise. 

BF generates 'f' if the type of the operator node itself is float or double, otherwise null. 

For example, there is an entry in efftab for the '=' operator 

%a,aw 
%ab,a 

mE A2,Al 

Note first that two key specifications can be applied to the same code string. Next, observe that 
when a word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruc­
tion, a mov or mov6 as appropriate, does the job. However, when a byte is assigned to a word, it 
must pass through a register to implement the sign-extension rules: 

%a,n 
S 
ml R,Al 

Next, there is the question of handling indirection properly. Consider the expression 'X + 
*Y', where X and Y are expressions, Assuming that Y is more complicated than just a variable, 
but on the other hand qualifies as 'easy' in the context, the expression would be compiled by plac­
ing the value of X in a register, that of *y in the next register, and adding the registers. It is easy 
to see that a better job can be done by compiling X, then Y (into the next register), and producing 
the instruction symbolized by 'add (Rl),R'. This scheme avoids generating the instruction 'mov 
(Rl),Rl' required actually to place the value of *y in a register. A related situation occurs with 
the expression 'X + *(p+6)', which exemplifies a construction frequent in structure and array refer­
ences. The addition table shown above would produce 

[put X in register R] 
mov p,Rl 
add S6,Rl 
mov (Rl),Rl 
add Rl,R 

when the best code is 
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[put X in R] 
mov p,Rl 
add 6(Rl),R 
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As we said above, a key specification for a code table entry may require an operand to have an 
indirection as its highest operator. To make use of the requirement, the following macros are prcr 
vided. 

F* the first operand must have the form *X. If in particular it has the form *(Y + c), for some 
constant e, then code is produced which places the value of Y in the current register. Other­
wise, code is produced which loads X into the current register. 

Fl * resembles F* except that the next register is loaded. 

S* resembles F* except that the second operand is loaded. 

SI * resembles S* except that the next register is loaded. 

FS* The first operand must have the form '*X'. Push the value of X on the stack. 

SS* resembles FS* except that it applies to the second operand. 

To capture the constant that may have been skipped over in the above macros, there are 

#1 The first operand must have the form *Xj iC in particular it has the form *(Y + c) Cor c a 
constant, then the constant is written out, otherwise a null string. 

#2 is the same as #1 except that the second operand is used. 

Now we can improve the addition table above. Just before the '%n,e' entry, put 

%n,ew* 
F 
SI* 
add #2(Rl),R 

and just before the '%n,n' put 

%n,nw* 
SS* 
F 
add *(sp)+,R 

When using the stacking macros there is no place to use the constant as an index word, so that 
particular special case doesn't occur. 

The constant mentioned above can actually be more general than a number. Any quantity 
acceptable to the assembler as an expression will do, in particular the address oC a static cell, 
perhaps with a numeric offset. If z is an external character array, the expression 'x[i+5] = 0' will 
generate the code 

mov i,rO 
elrb x+5(rO) 

via the table entry (in the '=' part of efftab) 

%e*,z 
F 
I'BI #1(R) 

Some machine operations place restrictions on the registers used. The divide instruction, used to 
implement the divide and mod operations, requires the dividend to be placed in the odd member of 
an even-odd pair; other peculiarities of multiplication make it simplest to put the multiplicand in 
an odd-numbered register. There is no theory which optimally accounts for this kind of require­
ment. Oezpr handles it by checking for a multiply, divide, or mod operation; in these cases, its 
argument register number is incremented by one or two so that it is odd, and if the operation was 
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divide or mod, so that it is a member of a free even-odd pair. The routine which determines the 
number of registers required estimates, conservatively, that at least two registers are required for a 
multiplication and three for the other peculiar operators. After the expression is compiled, the 
register where the result actually ended up is returned. (Divide and mod are actually the same 
operation except for the location of the result). 

These operations are the ones which cause results to end up in unexpected places, and this 
possibility adds a further level of complexity. The simplest way of handling the problem is always 
to move the result to the place where the caller expected it, but this will produce unnecessary regis­
ter moves in many simple cases; 'a == b*c' would generate 

mov b,rl 
mul c,rl 
mov rl,rO 
mov rO,a 

The next thought is used the passed-back information as to where the result landed to change the 
notion of the current register. While compiling the '==' operation above, which comes from a table 
entry like 

%a,e 
S 
mov R,AI 

it is sufficient to redefine the meaning of 'R' after processing the'S' which does the multiply. This 
technique is in fact used; the tables are written in such a way that correct code is produced. The 
trouble is that the technique cannot be used in general, because it invalidates the count of the 
number of registers required for an expression. Consider just 'a*b + X' where X is some expres­
sion. The algorithm assumes that the value of a*b, once computed, requires just one register. If 
there are three registers available, and X requires two registers to compute, then this expression 
will match a key specifying '%n,e'. If a*b is computed and left in register 1, then there are, con­
trary to expectations, no longer two registers available to compute X, but only one, and bad code 
will be produced. To guard against this possibility, ccxpr checks the result returned by recursive 
calls which implement F, S and their relatives. If the result is not in the expected register, then 
the number of registers required by the other operand is checked; if it can be done using those 
registers which remain even after making unavailable the unexpectedly-occupied register, then the 
notions of the 'next register' and possibly the 'current register' are redefined. Otherwise a register­
copy instruction is produced. A register-copy is also always produced when the current operator is 
one of those which have odd-even requirements. 

Finally, there are a few loose-end macro operations and facts about the tables. The opera-
tors: 

V is used for long operations. It is written with an address like a machine instruction; it 
expands into 'adc' (add carry) if the operation is an additive operator, 'sbc' (subtract carry) 
if the operation is a subtractive operator, and disappears, along with the rest of the line, oth­
erwise. Its purpose is to allow common treatment of logical operations, which have no car­
ries, and additive and subtractive operations, which generate carries. 

T generates a 'tst' instruction if the first operand of the tree does not set the condition codes 
correctly. It is used with divide and mod operations, which require a sign-extended 32-bit 
operand. The code table for the operations contains an 'sxt' (sign-extend) instruction to gen­
erate the high-order part of the dividend. 

H is analogous to the 'F' and'S' macros, except that it calls for the generation of code for the 
current tree (not one of its operands) using regtab. It is used in cctab for all the operators 
which, when executed normally, set the condition codes properly according to the result. It 
prevents a Ctst' instruction from being generated for constructions like 'if (a+b) .. .' since after 
calculation of the value of 'a+b' a conditional branch can be written immediately. 
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All of the discussion above is in terms of operators with operands. Leaves of the expression 
tree (variables and constants), however, are peculiar in that they have no operands. In order to 
regularize the matching process, ce:rpr examines its operand to determine if it is a leaf; if so, it 
creates a special 'load' operator whose operand is the leaf, and substitutes it for the argument tree; 
this allows the table entry for the created operator to use the 'AI' notation to load the leaf into a 
register. 

Purely to save space in the tables, pieces of subtables can be labelled and referred to later. It 
turns out, for example, that rather large portions of the the efltab table for the '=' and '=+' 
operators are identical. Thus '=' has an entry 

%[move3:J 
%a,aw 
%ab,a 

mE. A2,Al 

while part of the '=+' table is 

%aw,aw 
% [move3J 

Labels are written as '%[ ." : J', before the key specifications; references are written with '% [ ... l' 
after the key. Peculiarities in the implementation make it necessary that labels appear before 
references to them. 

The example illustrates the utility of allowing separate keys to point to the same code string. 
The assignment code works properly if either the right operand is a word, or the left operand is a 
byte; but since there is no 'add byte' instruction the addition code has to be restricted to word 
operands. 

Delaying and reordering 

Intertwined with the code generation routines are two other, interrelated processes. The first, 
implemented by a routine called delay, is based on the observation that naive code generation for 
the expression 'a = b++' would produce 

mov b,rO 
inc b 
mov rO,a 

The point is that the table for postfix ++ has to preserve the value of b before incrementing it; the 
general way to do this is to preserve its value in a register. A cleverer scheme would generate 

mov b,a 
inc b 

Delay is called for each expression input to rce:rpr, and it searches for postfix ++ and - operators. 
If one is found applied to a variable, the tree is patched to bypass the operator and compiled as it 
stands; then the increment or decrement itself is done. The effect is as if 'a = b; b++' had been 
written. In this example, of course, the user himself could have done the same job, but more com­
plicated examples are easily constructed, for example 'switch (x++)'. An essential restriction is 
that the condition codes not be required. It would be incorrect to compile 'if (a++) ... ' as 

tst a 
inc a 
beq 

because the 'inc' destroys the required setting of the condition codes. 

Reordering is a similar sort of optimization. Many cases which it detects are useful mainly 
with register variables. If r is a register variable, the expression 'r = x+y' is best compiled as 



mov x,r 
add y,r 

but the codes tables would produce 

mov x,rO 
add y,rO 
mov rO,r 

- 14-

which is in fact preferred if r is not a register. (If r is not a register, the two sequences are the 
same size, but the second is slightly faster.) The scheme is to compile the expression as if it had 
been written 'r == Xj r ==+ y'. The reorder routine is called with a pointer to each tree that rcezpr 
is about to compilej if it has the right characteristics, the 'r == x' tree is constructed and passed 
recursively to rcezprj then the original tree is modified to read 'r ==+ y' and the calling instance of 
rcezpr compiles that instead. Of course the whole business is itself recursive so that more extended 
forms of the same phenomenon are handled, like 'r = x + y I z'. 

Care does have to be taken to avoid 'optimizing' an expression like 'r = x + r' into 'r = x; r 
=+ r'. It is required that the right operand of the expression on the right of the '=' be a " dis­
tinct from the register variable. 

The second case that reorder handles is expressions of the form 'r = X' used as a subexpres-
Slon. Again, the code out of the tables for 'x = r = y' would be 

mov y,rO 
mov rO,r 
mov rO,x 

whereas if r were a register it would be better to produce 

mov y,r 
mov r,x 

When reorder discovers that a register variable is being assigned to in a subexpression, it calls 
rcezpr recursively to compile the subexpression, then fiddles the tree passed to it so that the regis­
ter variable itself appears as the operand instead of the whole subexpression. Here care has to be 
taken to avoid an infinite regress, with rcezpr and reorder calling each other forever to handle 
assignments to registers. 

A third set of cases treated by reorder comes up when any name, not necessarily a register, 
occurs as a left operand of an assignment operator other than '=' or as an operand of prefix c++' 
or '--:-'. Unless condition-code tests are involved, when a subexpression like '(a =+ b)' is seen, the 
assignment is performed and the argument tree modified so that 4 is its operand; effectively 'x + (y 
=+ z)' is compiled as 'y =+ z; x + y'. Similarly, prefix increment and decrement are pulled out 
and performed first, then the remainder of the expression. 

Throughout code generation, the expression optimizer is called whenever delay or reorder 
change the expression tree. This allows some special cases to be found that otherwise would not be 
seen. 
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A Tour Through the Portable C Compiler 

S. C. Johnaon 

Introduction 

A 0 compiler has been implemented that has proved to be quite portable, serving as the 
basis for 0 compilers on roughly a dozen machines, including the Honeywell 6000, IDM 370, and 
Interdata 8/32. The compiler is highly compatible with the C language standard.1 

Among the goals of this compiler are portability, high reliability, and the use of state-of-the­
art techniques and tools wherever practical. Although the efficiency of the compiling process is not 
a primary goal, the compiler is efficient enough, and produces good enough code, to serve as a pro­
duction compiler. 

The language implemented is highly compatible with the current PDP-ll version of C. 
Moreover, roughly 75% of the compiler, including nearly all the syntactic and semantic routines, is 
machine independent. The compiler also serves as the major portion of the program lint, 
described elsewhere.2 

A number of earlier attempts to make portable compilers are worth noting. While on co­
OP assignment to Bell Labs in 1973, Alan Snyder wrote a portable 0 compiler which was the basis 
of his Master's Thesis at M.I.T.3 This compiler was very slow and complicated, and contained a 
number of rather serious implementation difficulties; nevertheless, a number of Snyder's ideas 
appear in this work. 

:Most earlier portable compilers, including Snyder's, have proceeded by defining an intermedi­
ate language, perhaps based on three-address code or code for a stack machine, and writing a 
machine independent program to translate from the source code to this intermediate code. The 
intermediate code is then read by a second pass, and interpreted or compiled. This approach is 
elegant, and has a number of advantages, especially if the target machine is far removed from the 
host. It suffers from some disadvantages as well. Some constructions, like initialization and sub­
routine prologs, are difficult or expensive to express in a machine independent way that still allows 
them to be easily adapted to the target assemblers. Most of these approaches require a symbol 
table to be constructed in the second (machine dependent) pass, and/or require powerful target 
assemblers. Also, many conversion operators may be generated that have no effect on a given 
machine, but may be needed on others (for example, pointer to pointer conversions usually do 
nothing in 0, but must be generated because there are some machines where they are significant). 

For these reasons, the first pass of the portable compiler is not entirely machine independent. 
It contains some machine dependent features, such as initialization, subroutine prolog and epilog, 
certain storage allocation functions, code for the awitch statement, and code to throw out 
unneeded conversion operators. 

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C com­
piler has roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000 out of 
3400 in Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine dependent (12% 
in Pass 1, 30% in Pass 2). These percentages can be expected to rise slightly as the compiler is 
tuned. The percentage of machine-dependent code for the IDM is 22%, for the Honeywell 25%. If 
the assembler format and structure were the same for all these machines, perhaps another 5-10% of 
the code would become machine independent. 

These figures are sufficiently misleading as to be almost meaningless. A large fraction of the 
machine dependent code can be converted in a straightforward, almost mechanical way. On the 
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other hand, a certain amount of the code requres hard intellectual effort to convert, since the algo­
rithms embodied in this part or the code are typically complicated and machine dependent. 

To summarize, however, if you need a C compiler written for a machine with a reasonable 
architecture, the compiler is already three quarters finished! 

Overview 

This paper discusses the structure and organization of the portable compiler. The intent is 
to give the big picture, rather than discussing the details of a particular machine implementation. 
After a brief overview and a discussion of the source file structure, the paper describes the major 
data structures, and then delves more closely into the two passes. Some of the theoretical work on 
which the compiler is based, and its application to the compiler, is discussed elsewhere.of One of the 
major design issues in any C compiler, the design of the calling sequence and stack frame, is the 
subject of a separate memorandum.5 

The compiler consists of two passes, paad and pa&&t, that together turn C source code into 
assembler code for the target machine. The two passes are preceded by a preprocessor, that han­
dles the #deftne and #include statements, and related features (e.g., #itdet, etc.). It is a nearly 
machine independent program, and will not be further discussed here. 

The output of the preprocessor is a text file that is read as the standard input of the first 
pass. This produces as standard output another text file that becomes the standard input of the 
second pass. The second pass produces, as standard output, the desired assembler language source 
code. The preprocessor and the two passes all write error messages on the standard error file. 
Thus the compiler itself makes few demands on the I/O library support, aiding in the bootstrap­
ping process. 

Although the compiler is divided into two passes, this represents historical accident more 
than deep necessity. In fact, the compiler can optionally be loaded so that both passes operate in 
the same program. This "one pass" operation eliminates the overhead of reading and writing the 
intermediate file, so the compiler operates about 30% faster in this mode. It also occupies about 
30% more space than the larger of the two component passes. 

Because the compiler is fundamentally structured as two passes, even when loaded as one, 
this document primarily describes the two pass version. 

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also con­
structs parse trees for expressions, and keeps track of the types of the nodes in these trees. Addi­
tional code is devoted to initialization. Machine dependent portions of the first pass serve to gen­
erate subroutine prologs and epilogs, code for switches, and code for branches, label definit.ions, 
alignment operations, changes of location counter, etc. 

The intermediate file is a text file organized into lines. Lines beginning with a right 
parenthesis are copied by the second pass directly to its output file, with the parenthesis stripped 
off. Thus, when the first pass produces assembly code, such as subroutine prologs, etc., each line is 
prefaced with a right parenthesis; the second pass passes these lines to through to the assembler. 

The major job done by the second pass is generation of code for expressions. The expression 
parse trees produced in the first pass are written onto the intermediate file in Polish Prefix form: 
first, there is a line beginning with a period, followed by the source file line number and name on 
which the expression appeared (for debugging purposes). The successive lines represent the nodes 
of the parse tree, one node per line. Each line contains the node number, type, and any values 
(e.g., values of constants) that may appear in the node. Lines representing nodes with descendants 
are immediately followed by the left subtree of descendants, then the right. Since the number of 
descendants of any node is completely determined by the node number, there is no need to mark 
the end of the tree. 

There are only two other line types in the intermediate file. Lines beginning with a left 
square bracket ('[') represent the beginning of blocks (delimited by { ... } in the C source); lines 
beginning with right square brackets ('J ') represent the end of blocks. The remainder of these lines 
tell how much stack space, and how many register variables, are currently in use. C) 
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Thus, the second pass reads the intermediate files, copies the ')' lines, makes note of the 
information in the 'I' and ')' lines, and devotes most oC its effort to the'! lines and their associated 
expression trees, turning them turns into assembly code to evaluate the expressions. 

In the one pass version oC the compiler, the expression trees that are built by the first pass 
have been declared to have room Cor the second pass inC ormation as well. Instead of writing the 
trees onto an intermediate file, each tree is transCormed in place into an acceptable form for the 
code generator. The code generator then writes the result oC compiling this tree onto the standard 
output. Instead oC 'I' and 'l' lines in the intermediate file, the information is passed directly to the 
second pass routines. Assembly code produced by the first pass is simply written out, without the 
need for ')' at the head oC each line. 

The Source Files 

The compiler source consists of 22 source files. Two files, man.leat and macde/s, are header 
files included with all other files. Man.leet has declarations Cor the node numbers, types, storage 
classes, and other global data definitions. Macde/e has machine-dependent definitions, such as the 
size and alignment oC the various data representations. Two machine independent header files, 
mjiJe1 and mjiJe2, contain the data structure and maniCest definitions Cor the first and second 
passes, respectively. In the second pass, a machine dependent header file, mac2de/s, contains 
declarations of register names, etc. 

There is a file, common, containing (machine independent) routines used in both passes. 
These include routines for allocating and Creeing trees, walking over trees, printing debugging 
information, and printing error messages. There are two dummy files, comml.c and comm2.c, 
that simply include common within the scope of the appropriate pass! or pass2 header files. When 
the compiler is loaded as a single pass, common only needs to be included once: comm2.c is not 
needed. 

Entire sections of this document are devoted to the detailed structure of the passes. For the 
moment, we just give a brief description of the files. The first pass is obtained by compiling and 
loading scan.c, cgram.c, zde/s.c, p/tn.c, trees.c, optim.c, local.c, code.c, and comm1.c. Scan.c 
is the lexical analyzer, which is used by cgram.c, the result of applying Yacc6 to the input gram­
mar cgram.y. Xde/s.c is a short file of external definitions. P/tn.c maintains the symbol table, 
and does initialization. Treee.c builds the expression trees, and computes the node types. 
Optim.c does some machine independent optimizations on the expression trees. Oomm1.c includes 
common, that contains service routines common to the two passes oC the compiler. All the above 
files are machine independent. The files local.c and code.c contain machine dependent code for 
generating subroutine prologs, switch code, and the like. 

The second pass is produced by compiling and loading reader.c, a/lo.c, matck.c, comml.c, 
order. c, local. c, and table. c. Reader. c reads the intermediate file, and controls the major logic of 
the code generation. AI/o.c keeps track of busy and free registers. Matck.c controls the matching 
of code templates to subtrees of the expression tree to be compiled. Oomm2.c includes the file 
common, as in the first pass. The above files are machine independent. Order.c controls the 
machine dependent details of the code generation strategy. Local2. c has many small machine 
dependent routines, and tables of opcodes, register types, etc. Table.c has the code template 
tables, which are also clearly machine dependent. 

Data Structure Considerations. 

This section discusses the node numbers, type words, and expression trees, used throughout 
both passes of the compiler. 

The file mantleet defines those symbols used throughout both passes. The intent is to use 
the same symbol name (e.g., MINUS) for the given operator throughout the lexical analysis, pars­
ing, tree building, and code generation phases; this requires some synchronization with the Yacc 
input file, cgram.1I, as well. 
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A token like MINUS may be seen in the lexical analyzer before it is known whether it is a 
unary or binary operator; clearly, it is necessary to know this by the time the parse tree is con­
structed. Thus, an operator (really a macro) called UNARY is provided, so that MINUS and 
UNARY MINUS are both distinct node numbers. Similarly, many binary operators exist in an 
assignment form (for example, -=), and the operator ASG may be applied to such node names to 
generate new ones, e.g. ASG MINUS. 

It is frequently desirable to know if a node represents a leaf (no descendants), a unary opera­
tor (one descendant) or a binary operator (two descendants). The macro optfPe(o} returns one of 
the manifest constants LTYPE, UTYPE, or BITYPE, respectively, depending on the node number 
o. Similarly, aa,op(o) returns true if 0 is an assignment operator number (==, +===, etc. ), and 
lo,op(o} returns true if 0 is a relational or logical (&&, IL or I) operator. 

e has a rich typing structure, with a potentially infinite number of types. To begin with, 
there are the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as UCHAR, 
USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a structure), 
UNIONTY, and ENUMTY. Then, there are three operators that can be applied to types to make 
others: if t is a type, we may potentially have types pointer to t, function returning t, and array 
of t's generated from t. Thus, an arbitrary type in e consists of a basic type, and zero or more of 
these operators. 

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold the 
basic type, and the remaining bits are divided into tW4>bit fields, containing 0 (no operator), or 
one of the three operators described above. The modifiers are read right to left in the word, start­
ing with the two-bit field adjacent to the basic type, until a field with 0 in it is reached. The mac­
ros PTR, FTN, and ARY represent the pointer to, function returning, and array of operators. 
The macro values are shifted so that they align with the first two-bit field; thus PTR+INT 
represents the type for an integer pointer, and 

ARY + (PTR«2) + (FTN«4) + DOUBLE 

represents the type of an array of pointers to functions returning doubles. 

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives 
the basic type. ISPTR(t} , ISARY(t} , and ISFTN(t) ask if an object of this type is a pointer, 
array, or a function, respectively. MODTYPE(t,b) sets the basic type of t to b. DECREF(t) 
gives the type resulting from removing the first operator from t. Thus, if t is a pointer to t', a 
function returning t', or an array of t', then DECREF(t) would equal t'. INCREF(t) gives the 
type representing a pointer to t. Finally, there are operators for dealing with the unsigned types. 
ISUNSIGNED(t) returns true if t is one of the four basic unsigned types; in this case, 
DEUNSIGN(t) gives the associated 'signed' type. Similarly, UNSIGNABLE(t) returns true if t is 
one of the four basic types that could become unsigned, and ENUNSIGN(t) returns the unsigned 
analogue of t in this case. 

The other important global data structure is that of expression trees. The actual shapes of 
the nodes are given in mjilt1 and mjile2. They are not the same in the two passes; the first pass 
nodes contain dimension and size information, while the second pass nodes contain register alloca­
tion information. Nevertheless, all nodes contain fields called 01', containing the node number, and 
type, containing the type word. A function called talloc{} returns a pointer to a new tree node. 
To free a node, its 0, field need merely be set to FREE. The other fields in the node will remain 
intact at least until the next allocation. 

Nodes representing binary operators contain fields, left and right, that contain pointers to 
the left and right descendants. Unary operator nodes have the left field, and a value field called 
"al. Leaf nodes, with no descendants, have two value fields: Ivai and "al. 

At appropriate times, the function tcheck{} can be called, to check that there are no busy 
nodes remaining. This is used as a compiler consistency check. The function tcopy(p) takes a 
pointer l' that points to an expression tree, and returns a pointer to a disjoint copy of the tree. 
The function walkf(p'/) performs a postorder walk of the tree pointed to by 1', and applies the 
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function 1 to each node. The function Iwalk(p,/,dj does a preorder walk of the tree pointed to by 
p. At each node, it calls a function I. passing to it the node pointer, a value passed down from its 
ancestor, and two pointers to values to be passed down to the left and right descendants (if any). 
The value d is the value passed down to the root. FwtJIk is used for a number of tree labeling and 
debugging activities. 

The other major data structure, the symbol table, exists only in pass one, and will be dis­
cussed later. 

Pass One 

The first pass does lexical analysis, parsing. symbol table maintenance, tree building, optimi­
zation, and a number of machine dependent things. This pass is largely machine independent, and 
the machine independent sections can be pretty successfully ignored. Thus, they will be only 
sketched here. 

Lexical Analysis 

The lexical analyzer is a conceptually simple routine that reads the input and returns the 
tokens of the C language as it encounters them: names, constants, operators, and keywords. The 
conceptual simplicity of this job is confounded a bit by several other simple jobs that unfor­
tunately must go on simultaneously. These include 

• Keeping track of the current filename and line number, and occasionally setting this informa­
tion as the result of preprocessor control lines. 

• Skipping comments. 

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well as 
character strings. 

To achieve speed, the program maintains several tables that are indexed into by character 
value, to tell the l~ical analyzer what to do next. To achieve portability, these tables must be ini­
tialized each time the compiler is run, in order that the table entries reflect the local character set 
values. 

Parsing 

As mentioned above, the parser is generated by Yacc from the grammar on file egram.lI. The 
grammar is relatively readable, but contains some unusual features that are worth comment. 

Perhaps the strangest feature of the grammar is the treatment of declarations. The problem 
is to keep track of the basic type and the storage class while interpreting the various stars, brack­
ets, and parentheses that may surround a given name. The entire declaration mechanism must be 
recursive, since declarations may appear within declarations of structures and unions, or even 
within a sizeof construction inside a dimension in another declaration! 

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to handle 
constructions where a lot of left context information must be kept around. The problem is that 
the original PDP-ll compiler is top-down in implementation, and some of the semantics of C 
reflect this. In a top-down parser, the input rules are restricted somewhat, but one can naturally 
associate temporary storage with a rule at a very early stage in the recognition of that rule. In a 
bottom-up parser, there is more freedom in the specification of rules, but it is more difficult to 
know what rule is being matched until the entire rule is seen. The parser described by egram.c 
makes effective use of the bottom-up parsing mechanism in some places (notably the treatment of 
expressions), but struggles against the restrictions in others. The usual result is that it is necessary 
to run a stack of values "on the side", independent of the Yacc value stack, in order to be able to 
store and access information deep within inner constructions, where the relationship of the rules 
being recognized to the total picture is not yet clear. 

In the case of declarations, the attribute information (type, etc.) for a declaration is carefully 
kept immediately to the left of the declarator (that part of the declaration involving the name). In 
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this way, when it is time to declare the name, the name and the type information can be quickly 
brought together. The "SO" mechanism of Yacc is used to accomplish this. The result is not 
pretty, but it works. . The storage class information changes more slowly, so it is kept in an exter­
nal variable, and stacked if necessary. Some of the grammar could be considerably cleaned up by 
using some more recent features of Yacc, notably actions within rules and the ability to return 
mUltiple values for actions. 

A stack is also used to keep track of the current location to be branched to when a break or 
continue statement is processed. 

This use of external stacks dates from the time when Yacc did not permit values to be struc­
tures. Some, or most, of this use of external stacks could be eliminated by redoing the grammar to 
use the mechanisms now provided. There are some areas, however, particularly the processing of 
structure, union, and enum declarations, function prologs, and switch statement processing, when 
having all the affected data together in an array speeds later processing; in this case, use of exter­
nal storage seems essential. 

The cgram." file also contains some small functions used as utility functions in the parser. 
These include routines for saving case values and labels in processing switches, and stacking and 
popping values on the external stack described above. 

Storage Classes 

o has a finite, but fairly extensive, number of storage classes available. One of the compiler 
design decisions was to process the storage class information totally in the first pass; by the second 
pass, this information must have been totally dealt with. This means that all of the storage allo­
cation must take place in the first pass, so that references to automatics and parameters can be 
turned into references to cells lying a certain number of bytes offset from certain machine registers. 
Much of this transformation is machine dependent, and strongly depends on the storage class. 

The classes include EXTERN (for externally declared, but not defined variables), E:XTDEF 
(for external definitions), and similar distinctions for USTATIC and STATIO, UFORTRAN and 
FORTRAN (for fortran functions) and ULABEL and LABEL. The storage classes REGISTER and 
AUTO are obvious, as are STNAME, UNAME, and ENAME (for structure, union, and enumera­
tion tags), and the associated MOS, MOU, and MOE (for the members). TYPEDEF is treated as 
a storage class as well. There are two special storage classes: P ARAM and SNULL. SNULL is 
used to distinguish the case where no explicit storage class has been given; before an entry is made 
in the symbol table the true storage class is discovered. Similarly, PARAM is used for the tem­
porary entry in the symbol table made before the declaration of function parameters is completed. 

The most complexity in the storage class process comes from bit fields. A separate storage 
class is kept for each width bit field; a Ie bit bit field has storage class Ie plus FIELD. This enables 
the size to be quickly recovered from the storage class. 

Symbol Table Maintenance. 

The symbol table routines do far more than simply ent.er names into the symbol table; con­
siderable semantic processing and checking is done as well. For example, if a new declaration 
comes in, it must be checked to see if there is a previous declaration of the same symbol. If there 
is, there are many eases. The declarations may agree and be compatible (for example, an extern 
declaration can appear twice) in which case the new declaration is ignored. The new declaration 
may add information (such as an explicit array dimension) to an already present declaration. The 
new declaration may be different, but still correct (for example, an extern declaration of something 
may be entered, and then later the definition may be seen). The new declaration may be incompa­
tible, but appear in an inner block; in this case, the old declaration is carefully hidden away, and 
the new one comes into force until the block is left. Finally, the declarations may be incompatible, 
and an error message must be produced. 

A number of other factors make for additional complexity. The type declared by the user is 
not always the type entered into the symbol table (for example, if an formal parameter to a 
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function is declared to be an array, 0 requires that this be changed into a pointer before entry in 
the symbol table). Moreover, there are various kinds of illegal types that may be declared which 
are difficult to check for syntactically (for example, a function returning an array). Finally, there 
is a strange feature in 0 that requires structure tag names and member names for structures and 
unions to be taken from a different logical symbol table than ordinary identifiers. Keeping track of 
which kind of name is involved is a bit of struggle (consider typedeC names used within structure 
declarations, for example). 

The symbol table handling routines have been rewritten a number of times to extend 
features, improve performance, and fix bugs. They address the above problems with reasonable 
effectiveness but a singular lack of grace. 

When a name is read in the input, it is hashed, and the routine lookup is called, together 
with a flag which tells which symbol table should be searched (actually, both symbol tables are 
stored in one, and a flag is used to distinguish individual entries). If the name is found, lookup 
returns the index to the entry found; otherwise, it makes a new entry, marks it UNDEF 
(undefined), and returns the index of the new entry. This index is stored in the rval field of a 
NAME node. 

When a declaration is being parsed, this NAME node is made part of a tree with UNARY 
MUL nodes for each *, LB nodes for each array descriptor (the right descendant has the dimen­
sion), and UNARY OALL nodes for each function descriptor. This tree is passed to the routine 
tymerge, along with the attribute type of the whole declaration; this routine collapses the tree to a 
single node, by calling tyreduce, and then modifies the type to reflect the overall type of the 
declaration. 

Dimension and size information is stored in a table called dimtab. To properly describe a 
type in 0, one needs not just the type information but also size information (for structures and 
enums) and dimension information (for arrays). Sizes and ofl'sets are dealt with in the compiler by 
giving the associated indices into dimtab. Tymerge and t1/reduce call dstash· to put the discovered 
dimensions away into the dimtab array. T,Imerge returns a pointer to a single node that contains 
the symbol table index in its rval field, and the size and dimension indices in fields csiz and cdim, 
respectively. This information is properly considered part of the type in the first pass, and is car­
ried around at all times. 

To enter an element into the symbol table, the routine defid is called; it is handed a storage 
class, and a pointer to the node produced by ,ymerge. Defid calls jiztype, which adjusts and 
checks the given type depending on the storage class, and converts null types appropriately. It 
then calls jizclass, which does a similar job for the storage class; it is here, for example, that regis­
ter declarations are either allowed or changed to auto. 

The new declaration is now compared against an older one, if present, and several pages of 
validity checks performed. If the definitions are compatible, with possibly some a.dded informa­
tion, the processing is straightforward. If the definitions difl'er, the block levels of the current an9 
the old declaration are compared. The current block level is kept in blevel, an external variable; 
the old declaration level is kept in the symbol table. Block level 0 is for external declarations, 1 is 
for arguments to functions, and 2 and above are blocks within a function. If the current block 
level is the same as the old declaration, an error results. If the current block level is higher, the 
new declaration overrides the old. This is done by marking the old symbol table entry "hidden", 
and making a new entry, marked "hiding". Lookup will skip over hidden entries. When a block 
is left, the symbol table is searched, and any entries defined in that block are destroyed; if they hid 
other entries, the old entries are "unhidden". 

This nice block structure is warped a bit because labels do not follow the block structure 
rules (one can do a goto into a block, for example); deCault definitions of functions in inner blocks 
also persist clear out to the outermost scope. This implies that cleaning up the symbol table after 
block exit is more subtle than it might first seem. 

For successful new definitions, de!id also initializes a "general purpose" field, offset, in the 
symbol table. It contains the stack ofl'set for automatics and parameters, the register number for 



register variables, the bit olset into the structure for structure members,and the internal label 
number for static variables and labels. The offset field is set by ,.lIoe for bit fields, and delBtruet 
for structures and unions. 

The symbol table entry itself thus contains the name, type word, size and dimension offsets, 
olset value, and declaration block level. It also has a field of flags, describing what symbol table 
the name is in, and whether the entry is hidden, or hides another. Finally, a field gives the line 
number of the last use, or of the definition, of the name. This is used mainly for diagnostics, but 
is useful to lint as well. 

In some special cases, there is more than the above amount of information kept for the use of 
the compiler. This is especially true with structures; for use in initialization, structure declarations 
must have access to a list of the members of the structure. This list is also kept in dimtd. 
Because a structure can be mentioned long before the members are known, it is necessary to have 
another level of indirection in the table. The two words following the C8IZ entry in dimta/} are 
used to hold the alignment of the structure, and the index in dim tab of the list of members. This 
list contains the symbol table indices for the structure members, terminated by a-I. 

Tree Building 

The portable compiler transforms expressions into expression trees. As the parser recognizes 
each rule making up an expression, it calls 6uildtrcc which is given an operat.or number, and 
point.ers to the left and right descendants. Buildtrcc first examines the left and right. descendants, 
and, if they are both constants, and the operator is appropriate, simply does the constant compu­
tation at compile time, and returns the result as a constant. Otherwise, 6uildtrcc allocates a node 
for the head of the tree, attaches the descendants to it, and ensures that conversion operators are 
generated if needed, and that the type of the new node is consistent with the types of the 
operands. There is also a considerable amount of semantic complexity here; many combinations of 
types are illegal, and the portable compiler makes a strong effort to check the legality of expression 
types completely. This is done both for lint purposes, and to prevent such semantic errors from 
being passed through to the code generator. 

The heart of 6uildtrce is a large table, accessed by the routine opact. This routine maps the 
types of the left and right operands into a rather smaller set of descriptors, and then accesses a 
table (actually encoded in a. switch statement) which for each operator and pair of types causes an 
action to be returned. The actions are logical or's of a number of separate actions, which may be 
carried out by 6ttildtrcc. These component actions may include checking the left side to ensure 
that it is an Ivalue (can be stored into), applying a type conversion to the left or right operand, 
setting the type of the new node to the type of the left or right operand, calling various routines to 
balance the types of the left and right operands, and suppressing the ordinary conversion of arrays 
and function operands to pointers. An important operation is OTHER, which causes some special 
code to be invoked in 6uildtrcc, to handle issues which are unique to a particula,r operator. Exam­
ples of this are structure and union reference (actually handled by the rout.ine Bfrc!) , the building 
of NAME, ICON, STRING and FCON (floating point constant) nodes, unary * and St., structure 
assignment, and calls. In the case of unary * and &, 6uildtrcc will cancel a * applied to a tree, the 
top node of which is &, and conversely. 

Another special operation is PUN; this causes the compiler to check for type mismatches, 
such as intermixing pointers and integers. 

The treatment of conversion operators is still a rather strange area of the compiler (and of 
C!). The recent introduction of type casts has only confounded this situation. Most of the conver­
sion operators are generated by calls to tymateh and ptmateh, both of which are given a tree, and 
asked to make the operands agree in type. Ptm.teh treats the case where one of the operands is a 
pointer; t,mateh treats all other cases. Where these routines have decided on the proper type for 
an operand, they call m.kct" which is handed a tree, and a type word, dimension offset, and size 
olset. If necessary, it inserts a conversion operation to make the types correct. Conversion opera­
tions are never inserted on the left side of assignment operators, however. There are two conver­
sion operators used; PCONY, if the conversion is to a non-basic type (usuaJly a pointer), and 
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SCONV, if the conversion is to a basic type (scalar). 

To allow for maximum flexibility, every node produced by buildtree is given to a machine 
dependent routine, c/ocal, immediately after it is produced. This is to allow more or less immedi­
ate rewriting of those nodes which must be adapted for the local machine. The conversion opera­
tions are given to c/ocal as well; on most machines, many of these conversions do nothing, and 
should be thrown away (being careful to retain the type). It this operation is done too early, how­
ever, later calls to bvildtree may get confused about correct type of the subtrees; thus c/ocal is 
given the conversion ops only after the entire tree is built. This topic will be dealt with in more 
detail later. 

InitiaU.ation 

Initialization is one of the messier areas in the portable compiler. The only consolation is 
that most of the mess takes place in the machine independent part, where it is may be safely 
ignored by the implementor of the compiler for a particular machine. 

The basic problem is that the semantics of initialization really calls for a co-routine struc­
ture; one collection of programs reading constants from the input stream, while another, indepen­
dent set of programs places these constants into the appropriate spots in memory. The dramatic 
differences in the local assemblers also come to the fore here. The parsing problems are dealt with 
by keeping a rather extensive stack containing the current state of the initialization; the assembler 
problems are dealt with by having a fair number of machine dependent routines. 

The stack contains the symbol table number, type, dimension index, and size index for the 
current identifier being initialized. Another entry has the offset, in bits, of the beginning of the 
current identifier. Another entry keeps track of how many elements have been seen, if the current 
identifier is an array. Still another entry keeps track of the current member of a structure being 
initialized. Finally, there is an entry containing flags which keep track of the current state of the 
initialization process (e.g., tell if a } has been seen for the current identifier.) 

When an initialization begins, the routine begin it is called; it handles the alignment restric­
tions, if any, and calls inBtk to create the stack entry. This is done by first making an entry on 
the top of the stack for the item being initialized. If the top entry is an array, another entry is 
made on the stack for the first element. If the top entry is a structure, another entry is made on 
the stack for the first member of the structure. This continues until the top element of the stack is 
a scalar. [nBtk then returns, and the parser begins collecting initializers. 

When a constant is obtained, the routine doinit is called; it examines the stack, and does 
whatever is necessary to assign the current constant to the scalar on the top of the stack. gotBeal 
is then called, which rearranges the stack so that the next scalar to be initialized gets placed on top 
of the stack. This process continues until the end of the initializers; endinit cleans up. If a { or } 
is encountered in the string of initializers, it is handled by calling ilbraee or irbrate, respectively. 

A central issue is the treatment of the "holes" that arise as a result of alignment restrictions 
or explicit requests for holes in bit fields. There is a global variable, in oJf , which contains the 
current offset in the initialization (all offsets in the first pass of the compiler are in bits). Doinit 
figures out from the top entry on the stack the expected bit offset of the next identifier; it calls the 
machine dependent routine inforee which, in a machine dependent way, forces the assembler to set 
aside space if need be so that the next scalar seen will go int.o the appropriat.e bit offset position. 
The scalar itself is passed to one of the machine dependent routines fineode (for floating point ini­
tialization), ineode (for fields, and other initializations less than an int in size), and einit (for all 
other initializations). The size is passed to all these routines, and it is up to the machine depen­
dent routines to ensure that the initializer occupies exactly the right size. 

Character strings represent a bit of an exception. It a character string is seen as the initial­
izer for a pointer, the characters making up the string must be put out under a different location 
counter. When the lexical analyzer sees the quote at the head of a character st.ring, it returns the 
token STRING, but does not do anything with the contents. The parser calls getBtr, which sets up 
the appropriate location counters and flags, and calls IZBtr to read and process the contents of the 
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string. 

If the string is being used to initialize a character array, lulr calls ,.t6,1tc, which in effect 
simulates dotnit for each character read. If the string is used to initialize a character pointer, IX8tr 
calls a machine dependent routine, 6,code, which stashes away each character. The pointer to this 
string is then returned, and processed normally by dotntt. 

The null at the end of the string is treated as if it were read explicitly by lutr. 

Statements 

The first pass addresses four main areas; declarations, expressions, initialization, and state­
ments. The statement processing is relatively simple; most of it . is carried out in the parser 
directly. Most of the logic is concerned with allocating label numbers, defining the labels, and 
branching appropriately. An external symbol, rcached, is 1 if a statement can be reached, 0 other­
wise; this is used to do a bit of simple flow analysis as the program is being parsed, and also to 
avoid generating the subroutine return sequence if the subroutine cannot "fall through" the last 
statement. 

Conditional bralfches are handled by generating an expression node, CBRANCH, whose left 
descendant is the conditional expression and the right descendant is an ICON node containing the 
internal label number to be branched to. For efficiency, the semantics are that the label is gone to 
if the condition is lal8e . 

The switch statement is compiled by collecting the case entries, and an indication as to 
whether there is a deCault case; an internal label number is generated for each of these, and remem­
bered in a big array. The expression comprising the value to be switched on is compiled when the 
switch keyword is encountered, but the expression tree is headed by a special node, FORCE, which 
tells the code generator to put the expression value into a special distinguished register (this same 
mechanism is used for processing the return statement). When the end of the switch block is 
reached, the array containing the case values is sorted, and checked for duplicate entries (an error); 
if all is correct, the machine dependent routine gen8witch is called, with this array of labels and 
values in increasing order. Gen8witch can assume that the value to be tested is already in the 
register which is the usual integer return value register. 

Optimization 

There is a machine independent file, optim. c, which contains a relatively short optimization 
routine, optim. Actually the word optimization is something of a misnomer; the results are not 
optimum, only improved, and the routine is in fact not optional; it must be called for proper 
operation of the compiler. 

Optim is called after an expression tree is built, but before the code generator is called. The 
essential part of its job is to call clocal on the conversion operators. On most machines, the treat­
ment of & is also essential: by this time in the processing, the only node which is a legal descen­
dant of & is NAME. (Possible descendants of * have been eliminated by 6uildtree.) The address of 
a static name is, almost by definition, a constant, and can be represented by an ICON node on 
most machines (provided that the loader has enough power). Unfortunately, this is not universally 
true; on some machine, such as the mM 370, the issue of addressability rears its ugly head; thus, 
before turning a NAME node into an ICON node, the machine dependent function anda6/e is 
called. 

The optimization attempts of optim are currently quite limited. It is primarily concerned 
with improving the behavior of the compiler with operations one of whose arguments is a constant. 
In the simplest case, the constant is placed on the right if the operation is commutative. The com­
piler also makes a limited search for expressions such as 

(x+a)+6 

where a and 6 are constants, and attempts to combine a and 6 at compile time. A number of 
special cases are also examined; additions of 0 and multiplications by 1 are removed, although the 
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correct processing of these cases to get the type of the resulting tree correct is decidedly nontrivial. 
In some cases, the addition or multiplication must be replaced by a conversion op to keep the types 
from becoming fouled up. Finally, in cases where a relational operation is being done, and one 
operand is a constant, the operands are permuted, and the operator altered, if necessary, to put the 
constant on the right. Finally, multiplications by a power of 2 are changed to shifts. 

There are- dozens of similar optimizations that can be, and should be, done. It seems likely 
that this routine will be expanded in the relatively near future. 

Machine Dependent StuB' 

A number of the first pass machine dependent routines have been discussed above. In gen­
eral, the routines are short, and easy to adapt from machine to machine. The two exceptions to 
this general rule are docal and the function prolog and epilog generation routines, blcode and 
e/code. 

Cloeal has the job of rewriting, if appropriate and desirable, the nodes constructed by build­
tree. There are two major areas where this is important; NAME nodes and conversion operations. 
In the case of NAME nodes, c/oca/ must rewrite the NAME node to reflect the actual physical 
location of the name in the machine. In effect, the NAME node must be examined, the symbol 
table entry found (through the rval field of the node), and, based on the storage class of the node, 
the tree must be rewritten. Automatic variables and parameters are typically rewritten by treating 
the reference to the variable as a structure reference, off the register which holds the stack or argu­
ment pointer; the strel routine is set up to be called in this way, and to build the appropriate tree. 
In the most general case, the tree consists of a unary * node, whose descendant is a + node, with 
the stack or argument register as left operand, and a constant offset as right operand. In the case 
of LABEL and internal static nodes, the rvat field is rewritten to be the negative of the internal 
label number; a negative rva/ field is taken to be an internal label number. Finally, a name of 
class REGISTER must be converted into a REG node, and the rvat field replaced by the register 
number. In fact, this part of the e/oca/ routine is nearly machine independent; only for machines 
1I.ith addressability problems (ffiM 370 again!) does it have to be noticeably different, 

The conversion operator treatment is rather tricky. It is necessary to handle the application 
of conversion operators to constants in c/oca/, in order that all constant expressions can have their 
values known at compile time. In extreme cases, this may mean that some simulation of the arith­
metic of the target machine might have to be done in a cross-compiler. In the most common case, 
conversions from pointer to pointer do nothing. For some machines, however, conversion from 
byte pointer to short or long pointer might require a shift or rotate operation, which would have to 
be generated here. 

The extension of the portable compiler to machines where the size of a pointer depends on its 
type would be straightforward, but has not yet been done. 

The other major machine dependent issue involves the subroutine prolog and epilog genera­
tion. The hard part here is the design of the stack frame and calling sequence; this design issue is 
discussed elsewhere.5 The routine blcode is called with the number of arguments the function is 
defined with, and an array containing the symbol table indices of the declared parameters. Bleode 
must generate the code to establish the new stack frame, save the return address and previous 
stack pointer value on the stack, and save whatever registers are to be used for register variables. 
The stack size and the number of register variables is not known when blcode is called, so these 
numbers must be referred to by assembler constants, which are defined when they are known (usu­
ally in the second pass, after all register variables, automatics, and temporaries have been seen). 
The final job is to find those parameters which may have been declared register, and generate the 
code to initialize the register with the value passed on the stack. Once again, for most machines, 
the general logic of blcode remains the same, but the contents of the printl calls in it will change 
from machine to machine. e/eode is rather simpler, having just to generate the default return at 
the end of a function. This may be nontrivial in the case of a function returning a structure or 
union, however. 
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There seems to be no really good place to discuss structures and unions, but this is as good a 
place as any. The 0 language now supports structure assignment, and the passing of structures as 
8l"gUments to functions, and the receiving of structures back from functions. This was added 
rather late to 0, and thus to the portable compiler. Consequently, it fits in less well than the older 
features. Moreover, most of the burden of making these features work is placed on the machine 
dependent code. 

There are both conceptual and practical problems. Conceptually, the compiler is structured 
around the idea that to compute something, you put it into a register and work on it. This notion 
causes a bit of trouble on some machines (e.g., machines with 3-address opcodes), but matches 
many machines quite well. Unfortunately, this notion breaks down with structures. The closest 
that one can come is to keep the addresses of the structures in registers. The actual code sequences 
used to move structures vary from the trivial (a multiple byte move) to the horrible (a function 
call), and are very machine dependent. 

The practical problem is more painful. When a function returning a structure is called, this 
function has to have some place to put the structure value. If it places it on the stack, it has 
difficulty popping its stack frame. If it places the value in a static temporary, the routine fails to 
be reentrant. The most logically consistent way of implementing this is for the caller to pass in a 
pointer to a spot where the called function should put the value before returning. This is rela­
tively straightforward, although a bit tedious, to implement, but means that the caller must. have 
properly declared the function type, even if the value is never used. On some machines, such as 
the Interdata 8/32, the return value simply overlays the argument region (which on the 8/32 is 
part of the caller's stack frame). The caller takes care of leaving enough room if the returned 
value is larger than the arguments. This also assumes that the caller know and declares the func­
tion properly. 

The PDP-ll and the VAX. have stack hardware which is used in function calls and returns; 
this makes it very inconvenient to use either of the above mechanisms. In these machines, a static 
area within the called functionis allocated, and the function return value is copied into it on 
return; the function returns the address of that region. This is simple to implement, but is non­
reentrant. However, the function can now be called as a subroutine without being properly 
declared, without the disaster which would otherwise ensue. No matter what choice is taken, the 
convention is that the function actually returns the address of the return structure value. 

In building expression trees, the portable compiler takes a bit for granted about structures. 
It assumes that functions returning structures actually return a pointer to the structure, and it 
assumes that a reference to a structure is actually a reference to its address. The structure assign­
ment operator is rebuilt so that the left operand is the structure being assigned to, but the right 
operand is the address of the structure being assigned; this makes it easier to deal with 

a=b=c 

and similar constructions. 

There are four special tree nodes associated with these operations: STASG (structure assign­
ment), STARG (structure argument to a function call), and STCALL and UNARY STOALL (calls 
of a function with nonzero and zero arguments, respectively). These four nodes are unique in that 
the size and alignment information, which can be determined by the type for all other objects in 0, 
must be known to carry out these operations; special fields are set aside in these nodes to contain 
this information, and special intermediate code is used to transmit this informat.ion. 

Firat Pass Summary 
There are may other issues which have been ignored here, partly to justify the title "tour", 

and partially because they have seemed to cause little trouble. There are some debugging flags 
which may be turned on, by giving the compiler's first pass the argument 

-X[flags] 

Some of the more interesting flags are -Xd for the defining and freeing of symbols, -Xi for 
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initialization comments, and -Xb for various comments about the building of trees. In many 
eases, repeating the flag more than once gives more information; thus, -Xddd gives more informa­
tion than -Xd. In the two pass version of the compiler, the 8ags should not be set when the out­
put is sent to the second pass, since the debugging output and the intermediate code both go onto 
the standard output. 

We turn now to consideration of the second pass. 

Pass Two 

Code generation is far less well understood than parsing or lexical analysis, and for this rea­
son the second pass is far harder to discuss in a file by file manner. A great deal of the difficulty is 
in understanding the issues and the strategies employed to meet them. Any particular function is 
likely to be reasonably straightforward. 

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy 
in the code generator, and will not get too intimate with the details. 

Overview. 

It is difficult to organize a code generator to be 8exible enough to generate code for a large 
number of machines, and still be efficient for anyone of them. Flexibility is also important when 
it comes time to tune the code generator to improve the output code quality. On the other hand, 
too much 8exibility can lead to semantically incorrect code, and potentially a combinatorial explo­
sion in the number of cases to be considered in the compiler. 

One goal of the code generator is to have a high degree of correctness. It is very desirable to 
have the compiler detect its own inability to generate correct code, rather than to produce incorrect 
code. This goal is achieved by having a simple model of the job to be done (e.g., an expression 
tree) and a simple model of the machine state (e.g., which registers are free). The act of generating 
an instruction performs a transformation on the tree and the machine state; hopefully, the tree 
eventually gets reduced to a single node. If each of these instruction/transformation pairs is 
correct, and if the machine state model really represents the actual machine, and if the transforma­
tions reduce the input tree to the desired single node, then the output code will be correct. 

For most real machines, there is no definitive theory of code generation that encompasses all 
the C operators. Thus the selection of which instruction/transformations to generate, and in what 
order, will have a heuristic 8avor. If, for some expression tree, no transformation applies, or, more 
seriously, if the heuristics select a sequence of instruction/transformations that do not in fact 
reduce the tree, the compiler will report its inability to generate code, and abort. 

A major part of the code generator is concerned with the model and the transformations, -
most of this is machine independent, or depends only on simple tables. The flexibility comes from 
the heuristics that guide the transformations of the trees, the selection of subgoals, and the order­
ing of the computation. 

The Machine Model 

The machine is assumed to have a number of registers, of at most two different t.ypes: A and 
B. Within each register class, there may be scratch (temporary) registers and dedicated registers 
(e.g., register variables, the stack pointer, etc.). Requests to allocate and free registers involve only 
the temporary registers. 

Each of the registers in the machine is given a name and a number in the maetde/8 file; the 
numbers are used as indices into various tables that describe the registers, so they should be kept 
small. One such table is the r8tatu8 table on file loealt.e. This table is indexed by register 
number, and contains expressions made up from manifest constants describing the register types: 
SAREG for dedicated AREG's, SAREGt3TAREG for scratch AREGS's, and SBREG and 
SBREGt3TBREG similarly for BREG's. There are macros that access this information: i8breg{r) 
returns true if register number r is a BREG, and i8treg{r) returns true if register number r is a 
temporary AREG or BREG. Another table, mame8, contains the register names; this is used when 
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putting out assembler code and diagnostics. 

The usage of registers is kept track of by an array called 6uay. BuayfrJ is the number of uses 
of register r in the current tree being processed. The allocation and freeing of registers will be dis­
cussed later as part of the code generation algorithm. 

General OrganiJlation 

As mentioned above, the second pass reads lines from the intermediate file, copying through 
to the output unchanged any lines that begin with a ')" and making note of the information about 
stack usage and register allocation contained on lines beginning with 'l' and '['. The expression 
trees, whose beginning is indicated by a line beginning with'.', are read and rebuilt into trees. If 
the compiler is loaded as one pass, the expression trees are immediately available to the code gen­
erator. 

The actual code generation is done by a hierarchy of routines. The routine delay is first 
given the tree; it attempts to delay some postfix ++ and - computations that. might reasonably 
be done after the smoke clears. It also attempts to handle comma (,) operators by computing the 
left side expression first, and then rewriting the tree to eliminate the operator. DelaV calls codgen 
to control the actual code generation process. Codgen takes as arguments a pointer to the expres­
sion tree, and a second argument that, for socia-historical reasons, is called a cookie. The cookie 
describes a set of goals that would be acceptable for the code generation: these are assigned to indi­
vidual bits, so they may be logically or'ed together to form a large number of possible goals. 
Among the possible goals are FOREFF (compute for side effects only; don't worry about the 
value), INTEMP (compute and store value into a temporary location in memory), INAREG (com­
pute into an A register), INTAREG (compute into a scratch A register), INBREG and INTBREG 
similarly, FORCC (compute for condition codes), and FORARG (compute it as a function argu­
ment; e.g., stack it if appropriate). 

Codgen first canonicalizes the tree by calling canon. This routine looks for certain transfor­
mations that might now be applicable to the tree. One, which is very common and very powerful, 
is to fold together an indirection operator (UNARY MUL) and a register (REG); in most machines, 
this combination is addressable directly, and so is similar to a NAME in its behavior. The 
UNARY M1JL and REG are folded together to make another node type called OREG. In fact, in 
many machines it is possible to directly address not just the cell pointed to by a register, but also 
cells differing by a constant offset from the cell pointed to by the register. Canon also looks for 
such cases, calling the machine dependent routine noloff to decide if the offset is acceptable (for 
example, in the mM 370 the offset must be between 0 and 4095 bytes). Another optimization is to 
replace bit field operations by shifts and masks if the operation involves extracting the field. 
Finally, a machine dependent routine, aucomp, is called that computes the Sethi-Ullman numbers 
for the tree (see below). 

After the tree is canonicalized, codgen calls the routine atore whose job is to select a subtree 
of the tree to be computed and (usually) stored before beginning the computation of the full tree. 
Store must return a tree that can be computed without need for any temporary storage locations. 
In effect, the only store operations generated while processing the subtree must be as a response to 
explicit assignment operators in the tree. This division of the job marks one of the more 
significant, and successful, departures from most other compilers. It means t.hat the code generator 
can operate under the assumption that there are enough registers to do its job, without worrying 
about temporary storage. If a store into a temporary appears in the output, it is always as a 
direct result of logic in the .tore routine; this makes debugging easier. 

One consequence of this organization is that code is not generated by a treewalk. There are 
theoretical results that support this decision.7 It may be desirable to compute several subtrees and 
store them before tackling the whole tree; if a subtree is to be stored, this is known before the code 
generation for the subtree is begun, and the subtree is computed when all scratch registers are 
available. 
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The ,lore routine decides what subtrees, it any, should be stored by making use of numbers, 
called Sethi- Ullman number" that give, for each subtree of an expression tree, the minimum 
number of scratch registers required to compile the subtree, without any stores into temporaries.8 

These numbers are computed by the machine-dep~ndent routine ,acomp, called by canon. The 
basic notion is that, knowing the Sethi-Ullman numbers for the descendants of a node, and know­
ing the operator of the node and some information about the machine, the Sethi-Ullman number of 
the node itselC can be computed. If the Sethi-Ullman number for a tree exceeds the number of 
scratch registers available, some subtree must be stored. Unfortunately, the theory behind the 
Sethi-Ullman numbers applies only to uselessly simple machines and operators. For the rich set of 
C operators, and for machines with asymmetric registers, register pairs, different kinds of registers, 
and exceptional forms of addressing, the theory cannot be applied directly. The basic idea of esti­
mation is a good one, however, and well worth applying; the application, especially when the com­
piler comes to be tuned for high code quality, goes beyond the park of theory into the swamp of 
heuristics. This topic will be taken up again later, when more of the compiler structure has been 
described. 

Mter examining the Sethi-Ullman numbers, "ore selects a subtree, if any, to be stored, and 
returns the subtree and the associated cookie in the external variables ,'otree and ,tocoole. If a 
subtree has been selected, or if the whole tree is ready to be processed, the routine order is called, 
with a tree and cookie. Order generates code for trees that do not require temporary locations. 
Order may make recursive calls on itself, and, in some eases, on codgen; Cor example, when pro­
cessing the operators &&, IL and comma (' ,'), that have a left to right evaluation, it is incorrect for 
,tore examine the right operand for subtrees to be stored. In these cases, order will call codgen 
recursively when it is permissible to work on the right operand. A similar issue arises with the? : 
operator. 

The order routine works by matching the current tree with a set of code templates. If a 
template is discovered that will match the current tree and cookie, the associated assembly 
language statement or statements are generated. The tree is then rewritten, as specified by the 
template, to represent the effect of the output instruction(s). If no template match is found, first 
an attempt is made to find a match with a different cookie; for example, in order to compute an 
expression with cookie INTEMP (store into a temporary storage location), it is usually necessary to 
compute the expression into a scratch register first. If all attempts to match the tree fail, the 
heuristic part of the algorithm becomes dominant. Control is typically given to one of a number 
of machine-dependent routines that may in tum recursively call order to achieve a subgoal of the 
computation (for example, one of the arguments may be computed into a temporary register). 
Mter this sub goal has been achieved, the process begins again with the modified tree. If the 
machine-dependent heuristics are unable to reduce the tree further, a number of default rewriting 
rules may be considered appropriate. For example, it the left operand of a + is a scratch register, 
the + can be replaced by a += operator; the tree may then match a template. 

To close this introduction, we will discuss the steps in compiling code for tbe expression 

a += b 

where a and b are static variables. 

To begin with, the whole expression tree is examined with cookie FOREFF, and no match is 
found. Search with other cookies is equally fruitless, so an attempt at rewriting is made. Suppose 
we are dealing with the Interdata 8/32 for the moment. It is recognized that the left hand and 
right hand sides of the += operator are addressable, and in particular the left hand side has no 
side effects, so it is permissible to rewrite this as 

a=a+b 

and this is done. No match is found on this tree either, so a machine dependent rewrite is done; it 
is recognized that the left hand side of the assignment is addressable, but the right hand side is not 
in a register, so order is called recursively, being asked to put the right hand side of the assign­
ment into a register. This invocation of order searches the tree for a match, and fails. The 
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machine dependent rule tor + notices that the right hand operand is addressable; it decides to put 
the left operand into a scratch register. Another recursive call to order is made, with the tree con­
sisting solely of the leaf II, and the cookie asking that the value be placed into a scratch register. 
This now matches a template, and a load instruction is emitted. The node consisting of II is 
rewritten in place to represent the register into which II is loaded, and this third call to order 
returns. The second call to order now finds that it has the tree 

rea + 6 

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a += 
operator, since the lett operand is a scratch register. When this is done, there is a match: in fact, 

rea += 6 

simply describes the effect of the add instruction on a typical machine. Arter the add is emitted, 
the tree is rewritten to consist merely of the register node, since the result of the add is now in the 
register. This agrees with the cookie passed to the second invocation of order, so this invocation 
terminates, returning to the first level. The original tree has now become 

II = rea 
which matches a template for the store instruction. The store is output, and the tree rewritten to 
become just a single register node. At this point, since the top level call to order was interested 
only in side effects, the call to order returns, and the code generation is completed; we have gen­
erated a load, add, and store, as might have been expected. 

The effect of machine architecture on this is considerable. For example, on the Honeywell 
6000, the machine dependent heuristics recognize that there is an "add to storage" instruction, so 
the strategy is quite different; 6 is loaded in to a register, and then an add to storage instruction 
generated to add this register in to II. The transformations, involving as they do the semantics of 
0, are largely machine independent. The decisions as to when to use them, however, are almost 
totally machine dependent. 

Having given a broad outline of the code generation process, we shall next consider the heart 
of it: the templates. This leads naturally into discussions of template matching and register alloca­
tion, and finally a discussion of the machine dependent interfaces and strategies. 

The Templates 

The templates describe the effect of the target machine instructions on the model of computa­
tion around which the compiler is organized. In effect, each template has five logical sections, and 
represents an assertion of the form: 

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve (2), 
and we have sufficient free resources (3), then we may emit an instruction or instructions (4), 
and rewrite the subtree in a particular manner (5), and the rewritten tree will achieve the 
desired goals. 

These five sections will be discussed in more detail later. First, we give an example of a tem­
plate: 

ASGPLUS, INAREG, 
SAREG, 
SNAME, 

TINT, 
TINT, 
0, .. RLEFT, 

add AL.AR\n", 
The top line specifies the operator (+=) and the cookie (compute the value of the subtree into an 
AREG). The second and third lines specify the left and right descendants, respl'ctively, of the += 
operator. The left descendant must be a REG node, representing an A register, and have integer 
type, while the right side must be a NAME node, and also have integer type. The fourth line con­
tains the resource requirements (no scratch registers or temporaries needed), and the rewriting rule 
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(replace the subtree by the left descendant). Finally, the quoted string on the last line represents 
the output to the assembler: lower case letters, tabs, spaces, etc. are copied f1erbatim. to the out­
put; upper case letters trigger various macro-like expansions. Thus, AL would expand into the 
Address Corm oC the Left operand - presumably the register number. Similarly, AR would 
expand into the name of the right operand. The add instruction oC the last section might well be 
emitted by this -template. 

In principle, it would be possible to make separate templates for all legal combinations of 
operators, cookies, types, and shapes. In practice, the number of combinations is very large. 
Thus, a considerable amount oC mechanism is present to permit a large number of subtrees to be 
matched by a single template. Most of the shape and type specifiers are individual bits, and can 
be logically or'ed together. There are a number of special descriptors Cor matching classes of 
operators. The cookies can also be combined. As an example of the kind of template that really 
arises in practice, the actual template for the Interdata 8/32 that subsumes the above example is: 

ASG OPSIMP, INAREGrORCC, 
SAREG, TINTtrUNSIGNEDtrPOINT, 
SAREG~NAME~OREG~CON, TINTtrUNSIGNEDtrPOINT, 

0, RLEFT~SCC, 
.. OI AL,AR\n", 

Here, OPSTh1P represents the operators +, -, L &, and •. The 01 macro in the output string 
expands into the appropriate Integer Opcode for the operator. The left and right sides can be 
integers, unsigned, or pointer types. The right side can be, in addition to a name, a register, a 
memory location whose address is given by a register and displacement (OREG), or a constant. 
Finally, these instructions set the condition codes, and so can be used in condition contexts: the 
cookie and rewriting rules reflect this. 

The Template Matching Algorithm. 

The heart of the second pass is the template matching algorithm, in the routine match. 
Match is called with a tree and a cookie; it attempts to match the given tree against some tem­
plate that will transform it according to one of the goals given in the cookie. If a match is success­
ful, the transformation is applied; expand is called to generate the assembly code, and then 
reclaim rewrites the tree, and reclaims the resources, such as registers, that might have become free 
as a result of the generated code. 

This part of the compiler is among the most time critical. There is a spectrum of implemen­
tation techniques available for doing this matching. The most naive algorithm simply looks at the 
templates one by one. This can be considerably improved upon by restricting the search for an 
acceptable template. It would be possible to do better than this if the templates were given to a 
separate program that ate them and generated a template matching subroutine. This would make 
maintenance of the compiler much more complicated, however, so this has not been done. 

The matching algorithm is actually carried out by restricting the range in the table that 
must be searched for each opcode. This introduces a number of complications, however, and needs 
a bit of sympathetic help by the person constructing the compiler in order ,to obtain best results. 
The exact tuning of this algorithm continues; it is best to consult the code and comments in match 
for the latest version. 

In order to match a template to a tree, it is necessary to match not only the cookie and the 
op of the root, but also the types and shapes of the left and right descendants (if any) of the tree. 
A convention is established here that is carried out throughout the second pass of the compiler. If 
a node represents a unary operator, the single descendant is always the "left" descendant. If a 
node represents a unary operator or a leaf node (no descendants) the "right" descendant is taken 
by convention to be the node itself. This enables templates to easily mat.ch leaves and conversion 
operators, for example, without any additional mechanism in the matching program. 

The type matching is straightforward; it is possible to specify any combination of basic 
types, general pointers, and pointers to one or more of the basic types. The shape matching is 



-18 -

80mewhat more complicated, but still pretty simple. Templates have a collection of possible 
operand shapes on which the opcode might match. In the simplest case, an add operation might 
be able to add to either a register variable or a scratch register, and might be able (with appropri­
ate help from the assembler) to add an integer constant (ICON), a static memory cell (NAME), or 
a stack location (OREG). 

It is usually attractive to specify a number of such shapes, and distinguish between them 
when the assembler output is produced. It is possible to describe the union of many elementary 
shapes such as ICON, NAME, OREG, AREG or BREG (both scratch and register forms), etc. To 
handle at least the simple forms of indirection, one can also match some more complicated forms 
of trees; STARNM and STARREG can match more complicated trees headed by an indirection 
operator, and SFLD can match certain trees headed by a FLD operator: these patterns call machine 
dependent routines that match the patterns of interest on a given machine. The shape SW ADD 
may be used to recognize NAME or OREG nodes that lie on word boundaries: this may be of some 
importance on word-addressed machines. Finally, there are some special shapes: these may not be 
used in conjunction with the other shapes, but may be defined and extended in machine dependent 
ways. The special shapes SZERO, SONE, and SMONE are predefined and match constants 0, 1, 
and -1, respectively; others are easy to add and match by using the machine dependent routine 
apecial. 

When a template has been found that matches the root of the tree, the cookie, and the 
shapes and types of the descendants, there is still one bar to a total match: the template may call 
for some resources (for example, a scratch register). The routine allo is called, and it attempts to 
allocate the resources. If it cannot, the match fails; no resources are allocated. If successful, the 
allocated resources are given numbers 1, 2, etc. for later reference when the assembly code is gen­
erated. The routines t%pand and reclaim are then called. The match routine then returns a spe­
cial value, ?vIDONE. If no match was found, the value MNOPE is returned; this is a signal to the 
caller to try more cookie values, or attempt a rewriting rule. Match is also used to select rewriting 
rules, although the way of doing this is pretty straightforward. A special cookie, FORREW, is 
used to ask match to search for a rewriting rule. The rewriting rules are keyed to various opcodes; 
most are carried out in order. Since the question of when to rewrite is one of the key issues in 
code generation, it will be taken up again later. 

Register Allocation. 

The register allocation routines, and the allocation strategy, playa central role in the correct­
ness of the code generation algorithm. If there are bugs in the Sethi-Ullman computation that 
cause the number of needed registers to be underestimated, the compiler may run out of scratch 
registers; it is essential that the allocator keep track of those registers that are free and busy, in 
order to detect such conditions. 

Allocation of registers takes place as the result of a template match; the routine allo is called 
with a word describing the number of A registers, B registers, and temporary locations needed. 
The allocation of temporary locations on the stack is reiatively straightforward, and will not be 
further covered; the bookkeeping is a bit tricky, but conceptually trivial, and requests for tem­
porary space on the stack will never fail. 

Register allocation is less straightforward. The two major complications are pairing and 
aAaring. In many machines, some operations (such as multiplication and division), and/or some 
types (such as longs or double precision) require even/odd pairs of registers. Operations of the first 
type are exceptionally difficult to deal with in the compiler; in fact, their theoretical properties are 
rather bad as well.o The second issue is dealt with rather more successfully; a machine dependent 
function called ,zt,(t) is called that returns 1 or 2, depending on the number of A registers 
required to hold an object of type t. If ,zt, returns 2, an even/odd pair of A registers is allocated 
for each request. 

The other issue, sharing, is more subtle, but important for good code quality. When registers 
are allocated, it is possible to reuse registers that hold address information, and use them to con­
tain the values computed or accessed. For example, on the mM 360, if register 2 has a pointer to 



( 

c 

- 19-

an integer in it, we may load the integer into register 2 itseIr by saying: 

L 2,0(2) 

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing the 
target register first, and then inserting the desired character: 

SR 3,3 
IC 3,0(2) 

In the first case, if register 3 were used as the target, it would lead to a larger number of registers 
used for the expression than were required; the compiler would generate inefficient code. On the 
other hand, if register 2 were used as the target in the second case, the code would simply be 
wrong. In the first case, register 2 can be ,hared while in the second, it cannot. 

In the specification of the register needs in the templates, it is possible to indicate whether 
required scratch registers may be shared with possible registers on the left or the right of the input 
tree. In order that a register be shared, it must be scratch, and it must be used only once, on the 
appropriate side of the tree being compiled. 

The allo routine thus has a bit more to do than meets the eye; it calls /reereg to obtain a 
free register for each A and B register request. Freereg makes multiple calls on the routine ",able 
to decide if a given register can be used to satisfy a given need. U,able calls ,hareit if the register 
is busy, but might be shared. Finally, ,hareit calls ",hare to decide if the desired register is actu­
ally in the appropriate subtree, and can be shared. 

Just to add additional complexity, on some machines (such as the IDM 370) it is possible to 
have "double indexing" forms of addressing; these are represented by OREGS's with the base and 
index registers encoded into the register field. While the register allocation and deallocation per se 
is not made more difficult by this phenomenon, the code itseIr is somewhat more complex. 

Having allocated the registers and expanded the assembly language, it is time to reclaim the 
resources; the routine reclaim does this. Many operations produce more than one result. For 
example, many arithmetic operations may produce a value in a register, and also set the condition 
codes. Assignment operations may leave results 'both in a register and in memory. Reclaim is 
passed three parameters; the tree and cookie that were matched, and the rewriting field of the tem­
plate. The rewriting field allows the specification of possible results; the tree is rewritten to reflect 
the results of the operation. If the tree was computed for side effects only (FOREFF), the tree is 
freed, and all resources in it reclaimed. If the tree was computed for condition codes, the resources 
are also freed, and the tree replaced by a special node type, FORCe. Otherwise, the value may be 
found in the left argument of the root, the right argument of the root, or one of the temporary 
resources allocated. In these cases, first the resources of the tree, and the newly allocated resources, 
are freed; then the resources needed by the result are made busy again. The final result must 
always match the shape of the input cookie; otherwise, the compiler error "cannot reclaim" is gen­
erated. There are some machine dependent ways of preferring results in registers or memory when 
there are multiple results matching multiple goals in the cookie. 

The Machine Dependent Interrace 

The files order.e, loea/f.c, and table.e, as well as the header file macfde!" represent the 
machine dependent portion of the second pass. The machine dependent portion can be roughly 
divided into two: the easy portion and the hard portion. The easy portion tells the compiler the 
names of the registers, and arranges that the compiler generate the proper assembler formats, 
opcode names, location counters, etc. The hard portion involves the Sethi-Ullman computation, 
the rewriting rules, and, to some extent, the templates. It is hard because there are no real algo­
rithms that apply; most of this portion is based on heuristics. This section discusses the easy por­
tion; the next several sections will discuss the hard portion. 

If the compiler is adapted from a compiler for a machine of similar architecture, the easy 
part is indeed easy. In macedc/s, the register numbers are defined, as well as various parameters 
for the stack frame, and various macros that describe the machine architecture. If double indexing 
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is to be permitted, for example, the symbol R2REGS is defined. Also, a number of macros that 
are involved in function call processing, especially for unusual function call mechanisms, are 
defined here. 

In localt. c, a large number oC simple Cunctions are defined. These do things such as write 
out opcodes, register names, and address forms Cor the assembler. Part of the function call code is 
defined here; that is nontrivial to design, but typically rather straightforward to implement. 
Among the easy routines in order. c are routines for generating a .created label, defining a label, 
aDd generating the arguments of a function call. 

These routines tend to have a local effect, and depend on a fairly straightforward way on the 
target assembler and the design decisions already made about the compiler. Thus they will not be 
Curther treated here. . 

The Rewriting Rules 

When a tree fails to match any template, it becomes a candidate Cor rewriting. Before the 
tree is rewritten, the machine dependent routine neztcook is called with the tree and the cookie; it 
suggests another cookie that might be a better candidate Cor the matching oC the tree. If all else 
fails, the templates are searched with the cookie FORREW, to look Cor a rewriting rule. The 
rewriting rules are of two kinds; Cor most of the common operators, there are machine dependent 
rewriting rules that may be applied; these are handled by machine dependent functions that are 
called and given the tree to be computed. These routines may recursively call order or codgen to 
cause certain subgoals to be achieved; iC they actually call for some alteration of the tree, they 
return 1, and the code generation algorithm recanonicalizes and tries again. If these routines 
choose not to deal with the tree, the deCault rewriting rules are applied. 

The assignment ops, when rewritten, call the routine ,eta'g. This is assumed to rewrite the 
tree at least to the point where there are no side effects in the left hand side. If there is still no 
template match, a default rewriting is done that causes an expression such as 

a += b 

to be rewritten as 

a = a + b 

This is a useful default for certain mixtures of strange types (for example, when a is a bit field and 
b an character) that otherwise might need separate table entries. 

Simple assignment, structure assignment, and all forms of calls are handled completely by 
the machine dependent routines. For historical reasons, the routines generat.ing the calls return 1 
on failure, 0 on success, unlike the other routines. 

The machine dependent routine ,db"n handles binary operators; it too must do most of the 
job. In particular, when it returns 0, it must do so with the left hand side in a temporary register. 
The default rewriting rule in this case is to convert the binary operator into the associated assign­
ment operator; since the left hand side is assumed to be a temporary register, this preserves the 
semantics and often allows a considerable saving in the template table. 

The increment and decrement operators may be dealt with with the machine dependent rou­
tine ,etincr. If this routine chooses not to deal with the tree, the rewriting rule replaces 

z++ 

by 

({z += 1) -1) 

which preserves the semantics. Once again, this is not too attractive for the most common cases, 
but can generate close to optimal code when the type of x is unusual. 

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The 
machine dependent routine off,'ar is extremely important Cor the efficient generation of code. 
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OjJ,tar is called with a tree that is the direct descendant of a UNARY MUL node; its job is to 
transform this tree so that the combination of UNARY MUL with the transformed tree becomes 
addressable. On most machines, ojJ,tar can simply compute the tree into an A or B register, 
depending on the architecture, and then elmon will make the resulting tree into an OREG. On 
many machines, ojJ,tar can profitably choose to do less work than computing its entire argument 
into a register. For example, if the target machine supports OREGS with a constant offset from a 
register, and ojJ,tar is called with a tree of the form 

ezpr + con,t 

where con,t is a constant, then ojJ,tar need only compute ezpr into the appropriate form of regis­
ter. On machines that support double indexing, ojJ,tar may have even more choice as to how to 
proceed. The proper tuning of ojJ,tar, which is not typically too difficult, should be one of the 
first tries at optimization attempted by the compiler writer. 

The Sethi-Ullman Computation 

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This comput~ 
tion is closely linked with the rewriting rules and the templates. As mentioned before, the Sethi­
Ullman numbers are expected to estimate the number of scratch registers needed to compute the 
subtrees without using any stores. However, the original theory does not apply to real machines. 
For one thing, the theory assumes that all registers are interchangeable. Real machines have gen­
eral purpose, floating point, and index registers, register pairs, etc. The theory also does not 
account for side effects; this rules out various forms of pathology that arise from assignment and 
assignment ops. Condition codes are also undreamed of. Finally, the influence of types, conver­
sions, and the various addressability restrictions and extensions of real machines are also ignored. 

Neyertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly use­
ful in a real compiler. The notion that one should attempt to estimate the resource needs of trees 
before starting the code generation provides a natural means of splitting the code generation prob­
lem, and provides a bit of redundancy and self checking in the compiler. Moreover, if writing the 
Sethi-Ullman routines is hard, describing, writing, and debugging the alterna.tive (routines that 
attempt to free up registers by stores into temporaries "on the fly") is even worse. Nevertheless, it 
should be clearly understood that these routines exist in a realm where there is no "right" way to 
write them; it is an art, the realm of heuristics, and, consequently, a major source of bugs in the 
compiler. Often, the early, crude versions of these routines give little trouble; only after the com­
piler is actually working and the code quality is being improved do serious problem have to be 
faced. Having a simple, regular machine architecture is worth quite a lot at this time. 

The major problems arise from asymmetries in the registers: register pairs, having different 
kinds of registers, and the related problem of needing more than one register (frequently a pair) to 

store certain data types (such as longs or doubles). There appears to be no general way of treating 
this problem; solutions have to be fudged for each machine where the problem arises. On the 
Honeywell 66, for example, there are only two general purpose registers, so a need for a pair is the 
same as the need for two registers. On the mM 370, the register pair (0,1) is used to do multipli­
cations and divisions; registers 0 and 1 are not generally considered part of the scratch registers, 
and so do not require allocation explicitly. On the Interdata 8/32, after much consideration, the 
decision was made not to try to deal with the register pair issue; operations such as multiplication 
and division that required pairs were simply assumed to take all of the scratch registers. Several 
weeks of effort had failed to produce an algorithm that seemed to have much chance of running 
successfully without inordinate debugging effort. The difficulty of this issue should not be minim­
ized; it represents one of the main intellectual efforts in porting the compiler. Nevertheless, this 
problem has been fudged with a degree of success on nearly a dozen machines, so the compiler 
writer should not abandon hope. 

The Sethi-Ullman computations interact with the rest of the compiler in a number of rather 
subtle ways. As already discussed, the ,tore routine uses the Sethi-Ullman numbers to decide 
which subtrees are too difficult to compute in registers, and must be stored. There are also subtle 
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interactions between the rewriting routines and the Sethi-Ullman numbers. Suppose we have a tree 
such as 

A-B 
where A and B are expressions; suppose further that B takes two registers, and A one. It is pos­
sible to compute the full expression in two registers by first computing B, and then, using the 
scratch register used by B, but not containing the answer, compute A. The subtraction can then 
be done, computing the expression. (Note that this assumes a number of things, not the least of 
which are register-to-register subtraction operators and symmetric registers.) If the machine depen­
dent routine .et6;" , however, is not prepared to recognize this case and compute the more difficult 
side of the expression first, the Sethi-Ullman number must be set to three. Thus, the Sethi-Ullman 
number for a tree should represent the code that the machine dependent routines are actually wil­
ling to generate. 

The interaction can go the other way. If we take an expression such as 

*(p+i) 

where p is a pointer and ; an integer, this can probably be done in one register on most machines. 
Thus, its Sethi-Ullman number would probably be set to one. If double indexing is possible in the 
machine, a possible way of computing the expression is to load both p and ; into registers, and 
then use double indexing. This would use two scratch registers; in such a case, it is possible that 
the scratch registers might be unobtainable, or might make some other part of the computation 
run out of registers. The usual solution is to cause oJTltar to ignore opportunities for double 
indexing that would tie up more scratch registers than the Sethi-Ullman number had reserved. 

In summary, the Sethi-Ullman computation represents much of the craftsmanship and artis­
try in any application of the portable compiler. It is also a frequent source of bugs. Algorithms 
are available that will produce nearly optimal code for specialized machines, but unfortunately 
most existing machines are far removed from these ideals. The best way of proceeding in practice 
is to start with a compiler for a similar machine to the target, and proceed very carefully. 

Register Allocation 

Mter the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does register 
allocation, if appropriate. This routine does relatively little, in general; this is especially true if the 
target machine is fairly regular. There are a few cases where it is assumed that the result of a 
computation takes place in a particular register; switch and function return are the two major 
places. The expression tree has a field, rail, that may be filled with a register number; this is 
taken to be a preferred register, and the first temporary register allocated by a template match will 
be this preferred one, if it is free. If not, no particular action is taken; this is just a heuristic. If 
no register preference is present, the field contains NOPREF. In some cases, the result must be 
placed in a given register, no matter what. The register number is placed in rail, and the mask 
MUSTDO is logically or'ed in with it. In this ease, if the subtree is requested in a register, and 
comes back in a register other than the demanded one, it is moved by calling the routine "nove. 
If the target register for this move is busy, it is a compiler error. 

Note that this mechanism is the only one that will ever cause a register-to-register move 
between scratch registers (unless such a move is buried in the depths of some template). This 
simplifies debugging. In some eases, there is a rather strange interaction between the register allo­
cation and the Sethi-Ullman number; if there is an operator or situation requiring a particular 
register, the allocator and the Sethi-Ullman computation must conspire to ensure that the target 
register is not being used by some intermediate result of some far-removed computation. This is 
most easily done by making the special operation take all of the free registers, preventing any 
other partially-computed results from cluttering up the works. 
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Compiler Bugs 

The portable compiler has an excellent record of generating correct code. The requirement 
for reasonable cooperation between the register allocation, Sethi-Ullman computation, rewriting 
rules, and templates builds quite a bit of redundancy into the compiling process. The effect of this 
is that, in a surprisingly short time, the compiler will start generating correct code for those pr~ 
grams that it cn compile. The hard part of the job then becomes finding and eliminating those 
situations where the compiler refuses to compile a program because it knows it cannot do it right. 
For example, a template may simply be missing; this may either give a compiler error of the form 
"no match for op ... to , or cause the compiler to go into an infinite loop applying various rewriting 
rules. The compiler has a variable, nreeur, that is set to 0 at the beginning of an expressions, and 
incremented at key spots in the compilation process; if this parameter gets too large, the compiler 
decides that it is in a loop, and aborts. Loops are also characteristic of botches in the machine­
dependent rewriting rules. Bad Sethi-Ullman computations usually cause the scratch registers to 
run out; this often means that the Sethi-Ullman number was underestimated, so ,tore did not 
store something it should have; alternatively, it can mean that the rewriting rules were not smart 
enough to find the sequence that ,ueomp assumed would be used. 

. The best approach when a compiler error is detected involves several stages. First, try to get 
a small example program that steps on the bug. Second, turn on various debugging flags in the 
code generator, and follow the tree through the process of being matched and rewritten. Some 
flags of interest are -e, which prints the expression tree, -r, which gives inrormation about the all~ 
cation of registers, -a, which gives information about the perrormance of rallo, and -0, which gives 
information about the behavior of order. This technique should allow most bugs to be round rela­
tively quickly. 

Unfortunately, finding the bug is usually not enough; it must also be fixed I The difficulty 
arises because a fix to the particular bug or interest tends to break other code that already works. 
Regression tests, tests that compare the perrormance of a new compiler against the performance of 
an older one, are very valuable in preventing major catastrophes. 

Summary and Conclusion 

The portable compiler has been a useful tool for providing C capability on a large number or 
diverse machines, and for testing a number or theoretical constructs in a practical setting. It has 
many blemishes, both in style and runctionality. It has been applied to many more machines than 
first anticipated, of a much wider range. than originally dreamed of. Its use has also spread much 
faster than e."Cpected, leaving parts of the compiler still somewhat raw in shape. 

On the theoretical side, there is some hope that the skeleton of the ,ueomp routine could be 
generated for many machines directly from the templates; this would give a considerable boost to 
the portability and correctness of the compiler, but might affect tunability and code quality. 
There is also room for more optimization, both within optim and in the form of a portable 
"peephole" optimizer. 

On the practical, development side, the compiler could probably be sped up and made 
smaller without doing too much violence to its basic structure. Parts or the compiler deserve to be 
rewritten; the initialization code, register allocation, and parser are prime candidates. It might be 
that doing some or all of the parsing with a recursive descent parser might save enough space and 
time to be worthwhile; it would certainly ease the problem or moving the compiler to an environ­
ment where Yaee is not already present. 

Finally, I would like to thank the many people who have sympathetically, and even 
enthusiastically, helped me grapple with what has been a frustrating program to write, test, and 
install. D. M. Ritchie and E. N. Pinson provided needed early encouragement and philosophical 
guidance; M. E. Lesk, R. Muha, T. G. Peterson, G. Riddle, L. Rosier, R. W. Mitze, B. R. Rowland, 
S. I. Feldman, and T. B. London have all contributed ideas, gripes, and all, at one time or another, 
climbed "into the pits" with me to help debug. Without their help this effort would have not been 
possible; with it, it was often kind of fun. 
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ABSTRAOT 

The Fortran language has been revised. The new language, known as 
Fortran 77, became an official American National Standard on April 3, 1978. We 
report here on a compiler and run-time system for the new extended language. It 
is believed to be the first complete Fortran 77 system to be implemented. This 
compiler is designed to be portable, to be correct and complete, and to generate 
code compatible with calling sequences produced by C compilers. In partirular, 
this Fortran is quite usable on UNIXt systems. In this paper, we describp the 
language compiled, interfaces between procedures, and file formats assumed by the 
I/O system. Appendix A describes the Fortran 77 language extensions. 

1 August 1978 

Berkeley Notes 

This is a standard Bell Laboratories document reproduced with minor 
modifications to the text. The Bell Laboratory's appendix on "Differences 
Between Fortran 66 and Fortran 77" has been changed to Appendix A, and a local 
appendix has been added. Appendix B contains a list of Fortran 77 refert'nces 
(some from the original Bell document and some added at Berkeley). 

June 1983 

t UNIX is a trademark of Bell Laboratories. 
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A Portable Fortran 77 Compiler 

S. I. Feldman 

P. J. Weinberger 

Bell Laboratories 
Murray Hill, New Jersey 07974 

1. INTRODUCTION 
The Fortran language has been revised. The new language, known as Fortran 77, became an 
official American National Standard [lJ on April 3, 1978. Fortran 77 supplants 1966 Standard 
Fortran [2]. We report here on a compiler and run-time system for the new extended language. 
The compiler and computation library were written by S.I.F., the I/O system by P.J.W. We 
believe ours to be the first complete Fortran 77 system to be implemented. This compiler is 
designed to be portable to a number of different machines, to be correct and complete, and to gen­
erate code compatible with calling sequences produced by compilers for the C language [3J. In par­
ticular, it is in use on UNIX systems. Two families of C compilers are in use at Bell Laboratories, 
those based on D. M. Ritchie's PDP-ll compiler [4J and those based on S. C. Johnson's portable C 
compiler [5J. This Fortran compiler can drive the second passes of either family. In this paper, we 
describe the language compiled, interfaces between procedures, and file formats assumed by the I/O 
system. We will describe implementation details in companion papers. 

1.1. Usage 

At present, versions of the compiler run on and compile for the PDP-n, the VAX-1l/780, and 
the Interdata 8/32 UNIX systems. The command to run the compiler is 

f 77 flags file . .. 

177 is a general-purpose command for compiling and loading Fortran and Fortran-related 
files. EFL [6] and Ratfor [7J source files will be preprocessed before being presented to the 
Fortran compiler. C and assembler source files will be compiled by the appropriate pro­
grams. Object files will be loaded. (The f77 and ee commands cause slightly different load­
ing sequences to be generated, since Fortran programs need a few extra libraries and a 
different startup routine than do C programs.) The following file name suffIxes are under­
stood: 

.f Fortran source file 

.F Fortran source file 

.e EFL source file 

.r Ratfor source file 

.e C source file 
oS Assembler source file 
.0 Object file 

Arguments whose names end with .f are taken to be Fortran 77 source programs; they are 
compiled, and each object program is left on the file in the current directory whose name is 
that of the source with .0 substituted for .r. 
Arguments whose names end with .F are also taken to be Fortran 77 source programs; these 
are first processed by the C preprocessor beCore being compiled by f77. 
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Arguments whose names end with or or .e are taken to be Ratfor or EFL source programs, 
respectively; these are first transformed by the appropriate preprocessor, then compiled by 
('17. 

In the same way, 8l'gUments whose names end with .c or .. are taken to be C or assembly 
source programs and are compiled or assembled, producing a .0 file. 
The foUowin, flap are !lDderst,eyyJ. 

-c 

-g 

-i2 

-m 

-0 file 

-onetrip 

-p 

-pg 

-w 
-w66 

-u 

Compile but do not load. Output for x.t, x.F, x.e, x.r, X.C, or x.s is put 
on file x.o. 

Have the compiler produce additional symbol table information for tlbz{l). 
This only applies on the Vax UNIX system. Do not use with -0. 

On machines which support short integers, make the default integer con­
stants and variables short (see section 2.14). (-i4 is the standard value of 
this option). All logical quantities will be short. 

Apply the M4 macro preprocessor to each EFL or Ratfor source file before 
using the appropriate compiler. 

Put executable module on file file. (Default is a.out). 

Compile code that performs every do loop at least once (see section 2.12). 

Generate code to produce usage profiles. 

Generate code in the manner of -p, but invoke a run-time recording 
mechanism that keeps more extensive statistics. 

Suppress all warning messages. 

Suppress warnings about Fortran 66 features used. 

Make the default type of a variable undefined (see section 2.3). 

-0 Compile code that checks that subscripts are within array bounds. 
-Dname=tlef 

-Dname Define the name to the C preprocessor, as if by '#define'. H no definition is 

-Estr 

-F 

-Itlir 

-0 
-Rstr 

given, the name is defined as "I". (.F files only). 

Use the string str as an EFL option in processing .e files. 

Ratfor and and EFL source programs are pre-processed into Fortran files, but 
those files are not compiled or removed. 

'#incJude' files whose names do not begin with '/' are always sought first in 
the directory of the file argument, then in directories named in -I options, 
then in directories on a standard list. (.F files only). 

Invoke the object code optimizer. Do not use with -g. 

Use the string str as a Ratfor option· in processing .1' files. 

-u Do not convert upper case letters to lower case. The default is to convert 
Fortran programs to lower case except within character string constants. 

-S Generate assembler output for each source file, but. do not assemble it. 
Assembler output for a source file x.f, x.F, x.e, x.r, or x.c is put on file x.s. 

Other flags, all library names (arguments beginning -I), and any names not ending with one 
of the understood suffixes are passed to the loader. 

1.2. Documentation CODventions 

In running text, we write Fortran keywords and other literal strings in boldface lower case. 
Examples will be presented in lightface lower case. Names representing a class of values will 
be printed in italics. 

J 
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1.3. Implementation Strategy 

The compiler and library are written entirely in C. The compiler generates C compiler 
intermediate code. Since there are C compilers running on a variety of machines, relatively 
small changes will make this Fortran compiler generate code for any of them. Furthermore, 
this approach guarantees that the resulting programs are compatible with C usage. The run­
time computational library is complete. The runtime I/O library makes use of D. M. 
Ritchie's Standard C I/O package [8] for transferring data. With the few exceptions 
described below, only documented calls are used, so it should be relatively easy to modify to 
run on other operating systems. 

2. LANGUAGE EXTENSIONS 

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences briefly in 
Appendix A. The most important additions are a character string data type, file-oriented 
input/output statements, and random access I/O. Also, the language has been cleaned up consider­
ably. 

In addition to implementing the language specified in the new Standard, our compiler implements 
a few extensions described in this section. Most are useful additions to the language. The 
remainder are extensions to make it easier to communicate with C procedures or to permit compi­
lation of old (1966 Standard) programs. 

2.1. Double Complex Data Type 

The new type double complex is defined. Each datum is represented by a pair of double 
precision real variables. A double complex version of every complex built-in function is pro­
vided. The specific function names begin with. instead of c. 

2.2. Internal Files 

The Fortran 77 standard introduces "internal files" (memory arrays), but restricts their use 
to formatted sequential I/O statements. Our I/O system also permits internal files to be used 
in formatted direct reads and writes. 

2.3. Implicit Undefined Statement 

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state­
ment is integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an 
implicit statement for overriding this rule. As an aid to good programming practice, we 
permit an additional type, undefined. The statement 

implicit undefined(a-z) 

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for 
each variable that is used but does not appear in a type statement. Specifying the -u com­
piler flag is equivalent to beginning each procedure with this statement. 

2.4. Recursion 

Procedures may call themselves, directly or through a chain of other procedures. 

2.5. Automatic Storage 

Two new keywords are recognized, static and automatic. These keywords may appear as 
"types" in type statements and in implicit statements. Local variables are static by default; 
there is exactly one copy of the datum, and its value is retained between calls. There is one 
copy of each variable declared automatic for each invocation of the procedure. Automatic 
variables may not appear in equivalence, data, or save statements. 
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2.8. Source Input Format 

The Standard expects input to the compiler to be in 72-column format: except in comment 
lines, the first five characters are the statement number, the next is the continuation charac­
ter, and the next 66 are the body of the line. (If there are fewer than 72 characters on a line, 
the compiler pads it with blanks; characters after the seventy-second are ignored.) 

In order to make it easier to type Fortran programs, our compiler also accepts input in vari­
able length lines. An ampersand "&" in the first position of a line indicates a continuation 
line; the remaining characters form the body of the line. A tab character in one of the first 
six positions of a line signals the end of the statement number and. continuation part of the 
line; the remaining characters form the body of the line. A tab elsewhere on the line is 
treated as another kind of blank by the compiler. 

In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent with 
ordinary UNIX system usage, our compiler expects lower case input. By default, the compiler 
converts all upper case characters to lower case except those inside character constants. How­
ever, if the -U compiler flag is specified, upper case letters are not transformed. In this 
mode, it is possible to specify external names with upper case letters in them, and to have 
distinct variables differing only in case. Regardless of the setting of the flag, keywords will 
only be recognized in lower case. 

2.7. Include Statement 

The statement 

include ' stufi' 

is replaced by the contents of the file stuff; include statements may be nested to a reason­
able depth, currently ten. 

2.8. Binary Initialization Constants 

A variable may be initialized in a data statement by a binary constant, denoted by a letter 
followed by a quoted string. If the letter is b, the string is binary, and only zeroes and ones 
are permitted. If the letter is 0, the string is octal, with digits 0-7. If the letter is z or x, 
the string is hexadecimal, with digits 0-9, a-f. Thus, the statements 

integer a(3) 
data a / b' 1010' , 0' 12' , z' a' / 

.initialize all three elements of a to ten. 

2.9. Character Strings 

For compatibility with C usage, the following backslash escapes are recognized: 

\n newline 
\t tab 
\ b backspace 
\f form feed 
\0 null 
\' apostrophe (does not terminate a string) 
\ " quotation mark (does not terminate a string) 
\\ \ 
\z z, where z is any other character 

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system 
recognize both the apostrophe'" " and the double-quote" "". If a string begins with one 
variety of quote mark, the other may be embedded within it without using the repeated 
quote or backslash escapes. 

- ------------------ -- ---------
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Each character string constant appearing outside a data statement is followed by a null 
character to ease communication with C routines. 

2.10. Hollerith 

Fortran 77 does not have the old Hollerith "nh" notation, though the new Standard recom­
mends implementing the old Hollerith feature in order to improve compatibility with old pro­
grams. In our compiler, Hollerith data may be used in place of character string constants, 
and may also be used to initialize non-character variables in data statements. 

2.11. Equivalence Statements 

As a very special and peculiar case, Fortran 66 permits an element of a multiply-dimensioned 
array to be represented by a singly-subscripted reference in equivalence statements. For­
tran 77 does not permit this usage, since subscript lower bounds may now be different from 
1. Our compiler permits single subscripts in equivalence statements, under the interpreta­
tion that all missing subscripts are equal to 1. A warning message is printed for each such 
incomplete subscript. 

2.12. One-Trip DO Loops 

The Fortran 77 Standard requires that the range of a do loop not be performed if the initial 
value is already past the limit value, as in 

do 10 i = 2,1 

The 1966 Standard stated that the effect of such a statement was undefined, but it was com­
mon practice that the range of a do loop would be performed at least once. In order to 
accommodate old programs, though they were in violation of the 1966 Standard, the 
-onetrip compiler flag causes non-standard loops to be generated. 

2.13. Commas in Formatted Input 

The I/O system attempts to be more lenient than the Standard when it seems worthwhile. 
\Vhen doing a formatted read of non-character variables, commas may be used as value 
separators in the input record, overriding the field lengths given in the format statement. 
Thus, the format 

(il0, f20.10, i4) 

will read the record 

-345,.05e-3,12 

correctly. 

2.14. Short Integers 

On machines that support halfword integers, the compiler accepts declarations of type 
integer*2. (Ordinary integers follow the Fortran rules about occupying the same space as a 
REAL variable; they are assumed to be of C type long inti halfword integers are of C type 
short int.) An expression involving only objects of type integel'*2 is of that type. Generic 
functions return short or long integers depending on the actual types of their arguments. IT a 
procedure is compiled using the -12 flag, all small integer constants will be of type 
integer*2. IT the precision of an integer-valued intrinsic function is not determined by the 
generic function rules, one will be chosen that returns the prevailing length (Integer*2 when 
the -12 command flag is in effect). When the -i2 option is in effect, all quantities of type 
logical will be short. Note that these short integer and logical quantities do not obey the 
standard rules for storage association. 
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2.15. Additional Intrinsic Functions 

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In 
addition, there are functions for performing bitwise Boolean operations (or, and, xor, and 
not) and for accessing the UNIX command arguments (getarg and iargc) and environment 
(getenv). 

3. VIOLATIONS OF THE STANDARD 
We know only a few ways in which our Fortran system violates the new standard: 

8.1. Double Precision Alignment 

The Fortran Standards (both 1966 and 1977) permit common or equivalence statements to 
force a double precision quantity onto an odd word boundary, as in the following example: 

real a(4) 
double precision b,c 

equivalence (a(I),b), (a(4),c) 

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on 
double word boundaries; other machines (e.g., mM 370), run inefficiently if this alignment 
rule is not observed. It is possible to tell which equivalenced and common variables suffer 
from a forced odd alignment, but every double precision argument would have to be assumed 
on a bad boundary. To load such a quantity on some machines, it would be necessary to use 
separate operations to move the upper and lower halves into the halves of an aligned tem­
porary, then to load that double precision temporary; the reverse would be needed to store a 
result. We have chosen to require that all double precision real and complex quantities fall 
on even word boundaries on machines with corresponding hardware requirements, and to 
issue a diagnostic if the source code demands a violation of the rule. 

3.2. Dummy Procedure Arguments 

If any argument of a procedure is of type character, all dummy procedure arguments of that 
procedure must be declared in an external statement. This requirement arises as a subtle 
corollary of the way we represent character string arguments and of the one-pass nature of 
the compiler. A warning is printed if a dummy procedure is not declared external. Code is 
correct if there are no character arguments. 

3.3. T and TL Formats 

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective. 
These codes allow rereading or rewriting part of the record which has already been processed 
(section 6.3.2 in Appendix A). The implementation uses seeks, so if the unit is not one which 
allows seeks, such as a terminal, the program is in error. A benefit of the implementation 
chosen is that there is no upper limit on the length of a record, nor is it necessary to prede­
clare any record lengths except where specifically required by Fortran or the operating sys­
tem. 

3.4. Carriage Control 

The Standard leaves as implementation dependent which logical unites) are treated as 
"printer" files. In this implementation there is no printer file and thus no carriage control is 
recognized on formatted output, except by special arrangement [9]. 

3.5. Assigned Goto 

The optional lut associated with an assigned goto statement is not checked against the 
actual assigned value during execution. 
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4. INTER-PROCEDURE INTERFACE 
To be able to write C procedures that call or are called by Fortran procedures, it is necessary to 
know the conventions for procedure names, data representation, return values, and argument lists 
that the compiled code obeys. 

4.1. Proeedure Names 

On UNIX systems, the name of a common block or a Fortran procedure has an underscore 
appended to it by the compiler to distinguish it from a C procedure or external variable with 
the same user-assigned name. Fortran library procedure names have embedded underscores 
to avoid clashes with user-assigned subroutine names. 

4.2. Data Representations 

The following is a table of corresponding Fortran and C declarations: 

Fortran 

integel'*2 x 
integer x 
logical x 
real x 
double precision x 
complex x 
double complex x 
character*6 x 

c 
short int x; 
long int x; 
long int x; 
float x; 
double x; 
struct { float r, i; } x; 
struct { double dr, di; } x; 
char x[6J; 

(By the rules of Fortran, integer, logieal, and real data occupy the same amount of 
memory.) 

4.3. Return Values 

A function of type integer, logieal, real, or double precision declared as a C function 
returns the corresponding type. A eomplex or double eomplex function is equivalent to a 
C routine with an additional initial argument that points to the place where the return value 
is to be stored. Thus, 

complex function f( . . . ) 

is equivalent to 

L(temp, ... ) 
struct { float r, i; } *temp; 

A character-valued function is equivalent to a C routine with two extra initial arguments: a 
data address and a length. Thus, 

character*15 function g( ... ) 

is equivalent to 

g..(result, length, ... ) 
char result[ J; 
long int length; 

and could be invoked in C by 
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. char chars[15J; 

g..( chars, ISL, ... ); 

Subroutines are invoked as if they were integer-valued functions whose value specifies which 
alternate return to use. Alternate return arguments (statement labels) are not passed to the 
function, but are used to do an indexed branch in the calling procedure. (If the subroutine 
has no entry points with alternate return arguments, the returned value is undefined.) The 
statement 

call nret( d, *2, *3) 

is treated exactly as if it were the computed goto 

goto (1, 2, 3), nret() 

4.4. Argument Lists 
All Fortran arguments are passed by address. In addition, for every argument that is of type 
character or that is a dummy procedure, an argument giving the length of the value is 
passed. (The string lengths are long int quantities passed by value.) The order of arguments 
is then: 

Extra arguments for complex and character functions 
Address for each datum or function 
A long int for each character or procedure argument 

Thus, the call in 

external f 
character*7 s 
integer b(3) 

call sam(f, b(2), s) 

is equivalent to that in 

int fo; 
char s[7J; 
long int b[3]i 

saIlL(f, &b[l], s, OL, 7L); 

Note that the first element of a C array always has subscript zero, but Fortran arrays begin 
at 1 by default. Fortran arrays are stored in column-major order, C arrays are stored in 
row-major order. 

o. Fn..E FORMATS 

0.1. Structure or Fortran Files 

Fortran requires four kinds of external files: sequential formatted and unformatted, and 
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary 
files which are assumed to have the proper internal structure. 

Fortran I/O is based on recorda. When a direct file is opened in a Fortran program, the 
record length of the records must be given, and this is used by the Fortran I/O system to 
make the file look as if it is made up of records of the given length. In the special case that 
the record length is given as 1, the files are not considered to be divided into records, but are 
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read 
or write request on such a file keeps consuming bytes until satisfied, rather than being 
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restricted to a single record.) 

The peculiar requirements on sequential unformatted files make it unlikely that they will ever 
be read or written by any means except Fortran I/O statements. Each record is preceded and 
followed by an integer containing the record's length in bytes. 

The Fortran I/O system breaks sequential formatted files into records while reading by using 
each newline as a record separator. The result of reading off the end of a record is undefined 
according to the Standard. The I/O system is permissive and treats the record as being 
extended by blanks. On output, the I/O system will write a newline at the end of each 
record. It is also possible for programs to write newlines for themselves. This is an error, 
but the only effect will be that the single record the user thought he wrote will be treated as 
more than one record when being read or backspaced over. 

0.2. Portability Considerations 

The Fortran I/O system uses only the facilities of the standard C I/O library, a widely avail­
able and fairly portable package, with the following two nonstandard features: the I/O sys­
tem needs to know whether a file can be used for direct I/O, and whether .or not it is possible 
to backspace. Both of these facilities are implemented using the tseek routine, so there is a 
routine canseek which determines if tseek will have the desired effect. Also, the inquire 
statement provides the user with the ability to find out if two files are the same, and to get 
the name of an already opened file in a form which would enable the program to reopen it. 
Therefore there are two routines which depend on facilities of the operating system to pro­
vide these two services. In any case, the I/O system runs on the PDP-ll, VAX-ll/780, and 
Interdata 8/32 UNIX systems. 

5.3. Pre-Connected Files and File Positions 

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the stan­
dard input, unit 6 is connected to the standard output, and unit 0 is connected to the stan­
dard error unit. All are connected for sequential formatted I/O. 

All the other units are also preconnected when execution begins. Unit n is connected to a file 
named tort.n. These files need not exist, nor will they be created unless their units are used 
without first executing an open. The default connection is for sequential formatted I/O. 

The Standard does not specify where a file which has been explicitly opened for sequential 
I/O is initially positioned. The I/O system will position the file at the beginning. Therefore 
a write will destroy any data already in the file, but a read will work reasonably. To posi­
tion a file to its end, use a 'read' loop, or the system dependent 'fseek' function. The precon­
nected units 0, 5, and 6 are positioned as they come from the program's parent process. 
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APPENDIX A: Differences Between Fortran aa and Fortran '1'1 

The following is a very briet description of the differences between the 1966 [2J and the 1977 [1] 
Standard languages. We assume that the reader is familiar with Fortran 66. We do not pretend 
to be complete, precise, or unbiased, but plan to describe what we teel are the most important 
aspects of the new language. The best current information on the 1977 Standard is in publications 
of the X3J3 Subcommittee ot the American National Standards Institute, and the ANSI X3.9-1978 
document, the official description of the language. The Standard is written in English rather than 
a meta-language, but it is forbidding and legalistic. A number of tutorials and textbooks are 
available (see Appendix B). 

1. Features Deleted fl-om Fortran aa 

1.1. Hollerith 

All notions of "HollerithU (rah) as data have been officially removed, although our compiler, 
like almost all in the foreseeable future, will continue to support this archaism. 

1.2. Extended Range 

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is permissi­
ble to jump out of the range of a do loop, then jump back into it. Extended range has been 
removed in the Fortran 77 language. The restrictions are so special, and the implementation 
of extended range is so unreliable in many compilers, that this change really counts as no 
loss. 

2. Program Form 

2.1. Blank Lines 

Completely blank lines are now legal comment lines. 

2.2. Program and Block Data Statements 

A main program may now begin with a statement that gives that program an external name: 

program work 

Block data procedures may also have names. 

block data stuff 

There is now a rule that only one unnamed block data procedure may appear in a program. 
(This rule is not enforced by our system.) The Standard does not specify the effect of the pro­
gram and block data names, but they are clearly intended to aid conventional loaders. 

2.3. ENTRY Statement 

MUltiple entry points are now legal. Subroutine and function subprograms may have addi­
tional entry points, declared by an entry statement with an optional argument list. 

entry extra(a, b, c) 

Execution begins at the first statement following the entry line. All variable declarations 
must precede all executable statements in the procedure. If the procedure begins with a sub­
routine statement, all entry points are subroutine names. If it begins with a function 
statement, each entry is a function entry point, with type determined by the type declared 
for the entry name. If any entry is a character-valued function, then all entries must be. In 
a function, an entry name of the same type as that where control entered must be assigned a . 
value. Arguments do not retain their values between calls. (The ancient trick of calling one 
entry point with a large number of arguments to cause the procedure to "remember" the 
locations of those arguments, then invoking an entry with just a few arguments for later (\ 

~ .. 
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calculation, is still illegal. Furthermore, the trick doesn't work in our implementation, since 
arguments are not kept in static storage.) 

2.4. DO Loops 

do variables and range parameters may now be of integer, real, or double precision types. 
(The use of Boating point do variables is very dangerous because of the possibility of unex­
pected roundoff, and we strongly recommend against their use.) The action of the do state­
ment is now defined for all values of the do parameters. The statement 

do 10 i = 1, u, d 

performs max(O, L(u-i+d)/d h iterations. The do variable has a predictable value when 
exiting a loop: the value at the time a goto or return terminates the loop; otherwise the 
value that failed the limit test. 

2.5. Alternate Returns 

In a subroutine or subroutine entry statement, some of the arguments may be noted by an 
asterisk, as in 

subroutine s(a, *, b, *) 

The meaning of the "alternate returns" is described in section 5.2 of Appendix A. 

3. Declarations 

3.1. CHARACTER Data Type 

One of the biggest improvements to the language is the addition of a character-string data 
type. Local and common character variables must have a length denoted by a constant 
expression: 

character*17 a, b(3,4) 
character*(6+3) c 

If the length is omitted entirely, it is assumed equal to 1. A character string argument may 
have a constant length, or the length may be declared to be the same as that of the 
corresponding actual argument at run time by a statement like 

character*( *) a 

(There is an intrinsic function len that returns the actual length of a character string.) Char­
acter arrays and common blocks containing character variables must be packed: in an array 
of character variables, the first character of one element must follow the last character of the 
preceding element, without holes. 

3.2. IMPLICIT Statement 

The traditional implied declaration rules still hold: a variable whose name begins with i, j, k, 
I, m, or n is of type integer; other variables are of type real, unless otherwise declared. 
This general rule may be overridden with an implicit statement: 

implicit real(a-c,g), complex(w-z), character*(17) (5) 

declares that variables whose name begins with an a ,b, e, or g are real, those beginning 
with 'W, x, y, or • are assumed complex, and 50 on. It is still poor practice to depend on 
implicit typing, but this statement is an industry standard. 
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3.3. PARAMETER Statement 

It is now possible to give a constant a symbolic name, as in 

parameter (x=17, y-x/3, pi=3.14159dO, s=' hello') 

The type or each parameter name is governed by the same implicit and explicit rules as for a 
variable. The right side of each equal sign must be a constant expression (an expression 
made up of constants, operators, and already defined parameters). 

3.4. A:rray Declarations 

Arrays may now have as many as seven dimensions. (Only three were permitted in 1966.) 
The lower bound of each dimension may be declared to be other than 1 by using a colon. 
Furthermore, an adjustable array bound may be an integer expression involving constants, 
arguments, and variables in common. 

real a(-5:3, 7, m:n), b(n+l:2*n) 

The upper bound on the last dimension of an array argument may be denoted by an asterisk 
to indicate that the upper bound is not specified: 

integer a(5, *), b(*), c(O:I, -2:*) 

3.5. SAVE Statement 

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily 
retain their values between invocations of that procedure. At any instant in the execution of 
a program, if a common block is declared neither in the currently executing procedure nor in 
any of the procedures in the chain of callers, all of the variables in that common block also 
become undefined. (The only exceptions are variables that have been defined in a data 
statement and never changed.) These rules permit overlay and stack implementations for the 
affected variables. Fortran 77 permits one to specify that certain variables and common 
blocks are to retain their values between invocations. The declaration 

save a, /b/, c 

leaves the values of the variables a and c and aU of the contents of common block b 
unaffected by .a return. The simple declaration 

save 

has this effect on all variables and common blocks in the procedure. A common block must 
be saved in every procedure in which it is declared if the desired effect is to occur. 

3.6. INTRINSIC Statement 

All of the functions specified in the Standard are in a single category, "intrinsic functions", 
rather than being divided into "intrinsic" and "basic external" functions. If an intrinsic 
function is to be passed to another procedure, it must be declared intrinsic. Declaring it 
external (as in Fortran 66) causes a function other than the built-in one to be passed. 

4. Expressions 

4.1. Character Constants 

Character string constants are marked by strings surrounded by apostrophes. If an apos­
trophe is to be included in a constant, it is repeated: 

, abc' 
, ain" t' 

There are no null (zero-length) character strings 10 Fortran 77. Our compiler has two 
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different quotation marks, ", "and""". (See section 2.9 in the main text.) 

4.2. Concatenation 

One new operator has been added, character string concatenation, marked by a double slash 
"/ /". The result of a concatenation is the string containing the characters of the left 
operand followed by the characters of the right operand. The strings 

'ab' / / ' cd' 
, abcd' 

are equal. The strings being concatenated must be of constant length in all concatenations 
that are not the right sides of assignments. (The only concatenation expressions in which a 
character string declared adjustable with a ".(.)" modifier or a substring denotation with 
nonconstant position values may appear are the right sides of assignments.) 

4.3. Character String Assignment 

The left and right sides of a character assignment may not share storage. (The assumed 
implementation of character assignment is to copy characters from the right to the left side.) 
If the left side is longer than the right, it is padded with blanks. If the left side is shorter 
than the right, trailing characters are discarded. 

4.4. Substrings 

It is possible to extract a substring of a character variable or character array element, using 
the colon notation: 

a(i, j) (m:n) 

is the string of (n-m+l) characters beginning at the mth character of the character array 
element aij. Results are undefined unless m:$;n. Substrings may be used on the left sides of 
assignments and as procedure actual arguments. 

4.S. Exponentiation 

It is now permissible to raise real quantities to complex powers, or complex quantities to real 
or complex powers. (The principal part of the logarithm is used.) Also, multiple exponentia­
tion is now defined: 

a*.buc is equivalent to a iloilo (b.*c) 

4.6. Relaxation or Restrictions 

Mixed mode expressions are now permitted. (For instance, it is permissible to combine 
integer and complex quantities in an expression.) 

Constant expressions are permitted where a constant is allowed, except in data statements. 
(A constant expression is made up of explicit constants and parameters and the Fortran 
operators, except for exponentiation to a floating-point power.) An adjustable dimension may 
now be an integer expression involving constants, arguments, and variables in B common. 

Subscripts may now be general integer expressions; the old Ctl:/::c' rules have been removed. 
do loop bounds may be general integer, real, or double precision expressions. Computed 
goto expressions and I/O unit numbers may be general integer expressions. 

s. Executable Statements 
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6.1. IF-TBEN-ELSE 

At last, the if-then-e1se branching structure has been added to Fortran. It is called a "Block 
H". A Block H begins with a statement of the form 

if ( ... ) then 

and ends with an 

end if 

statement. Two other new statements may appear in a Block H. There may be several 

else if (. . .) then 

statements, followed by at most one 

else 

statement. H the logical expression in the Block H statement is true, the statements follow­
ing it up to the next else it, else, or end it are executed. Otherwise, the next else it state­
ment in the group is executed. H none of the else it conditions are true, control passes to the 
statements following the else statement, if any. (The else block must follow all else if 
blocks in a Block H. Of course, there may be Block Hs embedded inside of other Block If 
structures.) A ease construct may be rendered: 

if (s .eq. ' ab' ) then 

else if (s .eq. ' ed' ) then 

else 

end if 

6.2. Alternate Returns 

Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, 
as in: 

call joe(j, dO, m, *2) 

A return statement may have an integer expression, such as: 

return k 

If the entry point has n alternate return (asterisk) arguments and if l~k~n, the return is 
followed by a branch to the corresponding statement label; otherwise the usual return to the 
statement following the call is executed. 

8. Input/Output 

8.1. Format Variables 

A format may be the value of a character expression (constant or otherwise), or be stored in 
a character array, as in: 

write(6, ' (is)' ) x 

8.2. END=, ERR=, and IOSTAT= Clauses 

A read or write statement may contain end=, err=, and iostat= clauses, as in: 

--- --------------- ---
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write(6, 101, err=20, iostat=a(4)) 
read(5, 101, err=20, end=30, iostat=x) 

Here 5 and 6 are the units on which the I/0 is done, 101 is the statement number of the 
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error 
occurs during I/O, control returns to the program at statement 20. If the end of the file is 
reached, control returns to the program at statement 30. In any ease, the variable referred to 
in the iostat== clause is given a value when the I/O statement finishes. (Yes, the value is 
assigned to the name on the right side of the equal sign.) This value is zero if all went well, 
negative for end of file, and some positive value for errors. 

6.3. Formatted I/O 

6.3.1. Character Constants 

Character constants in formats are copied literally to the output. It is not allowed to read 
into character constants or hollerith fields. 

A format may be specified as a character constant within the read or write statement. 

write(6,' (i2," isn"" t " ,il),) 7, 4 

produces 

7 isn't 4 

In the example above, the format is the character constant 

(i2,' isn" t ' ,il) 

and the imbedded character constant 

isn't 

is copied into the output. 

The example could have been written more legibly by taking advantage of the two types of 
quote marks. 

write(6,' (i2," isn" t ",il)') 7, 4 

However, the double quote is not standard Fortran 77. 

6.3.2. Positional Editing Codes 

t, tl, tr, and x codes control where the next character is in the record. trn or nx specifies 
that the next character is n to the right of the current position. tin specifies that the next 
character is n to the left of the current position, allowing parts of the record to be recon­
sidered. tn says that the next character is to be character number n in the record. (See sec­
tion 3.3 in the main text.) 

6.3.3. Colon 

A colon in the format terminates the I/O operation if there are no more data items in the I/O 
list, otherwise it has no effect. In the fragment 

x=' ("hello", :, .. there", i4)' 
write(6, x) 12 
write(6, x) 

the first write statement prints 

hello there 12 

while the second only prints 
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hello 

8.3.4. Optional Plus Sians 

According to the Standard, each implementation has the option of putting plus signs in front 
of non-negative numeric output. The sp format code may be used to make the optional plus 
signs actually appear for all subsequent items while the format is active. The .. format code 
guarantees that the I/O system will not insert the optional plus signs, and the s format code 
restores the default behavior of the I/O system. (Since we never put out optional plus signs, 
.. and s codes have the same effect in our implementation.) 

8.3.5. Blanks on Input 

Blanks in numeric input fields, other than leading blanks, will be ignored following a bn code 
in a format statement, and will be treated as zeros following a b. code in a format state­
ment. rhe default for a unit may be changed by using the open statement. (Blanks are 
ignored by default.) 

8.3.8. Unrepresentable Values 

The Standard requires that if a numeric item cannot be represented in the form required by a 
format code, the output field must be filled with asterisks. (We think this should have been 
an option.) 

8.3.7. Iw.m 
There is a new integer output code, iw.m. It is the same as iw, except that there will be at 
least m digits in the output field, including, if necessary, leading zeros. The case iw. 0 is spe­
cial, in that if the value being printed is 0, the output field is entirely blank. iw.1 is the 
same as iw. 

8.3.S. Floating Point 

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. 
On output we always use e or d. The e and d format codes also have identical meanings. A 
leading zero before the decimal point in e output without a scale factor is optional with the 
implementation. There is a gw.d format code which is the same as ew.d and fw.d on input, 
but which chooses for e formats Cor output depending on the size of the number and of d. 

8.3.9. "A" Format Code 

The a code is used for character data. aw uses a field width oC w, while a plain a uses the 
length oC the internal character item. 

8.4. Standard Units 

There are default formatted input and output units. The statement 

read 10, a, b 

reads from the standard unit using format statement 10. The deCault unit may be explicitly 
specified by an asterisk, as in 

read(., 10) a,b 

Similarly, the standard output unit is specified by a print statement or an asterisk unit: 

print 10 
write(., 10) 

c 
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8.5. List-Directed FormattiDa 

List-directed I/O is a kind of free form input for eequential I/O. It is invoked by using an 
asterisk as the format identifier, as iD 

read(6, *) a,b,c 

On input, values are separated by strings of blanks and possibly a comma. Values, except 
for character strings, cannot contain blanks. End of record counts .as a blank, except in char­
acter strings, where it is ignored. Complex constants are given as two real constants 
separated by a comma and enclosed in parentheses. A null input field, such as between two 
consecutive commas, means the corresponding variable in the I/O list is not changed. Values 
may be preceded by repetition counts, as in 

4*(3.,2.) 2*,4*' hello' 

which stands for 4 complex constants, 2 null values, and 4 string constants. 

For output, suitable formats are chosen for each item. The values of character strings are 
printed; they are not enclosed in quotes, so they cannot be read back using list-directed 
input. 

8.6. Direct I/O 

A file connected for direct access consists of a set of equal-sized records each of which is 
uniquely identified by a positive integer. The records may be written or read in any order, 
using direct access I/O statements. 

Direct access read and write statements have an extra argument, rec=, which gives the 
record number to be read or written. 

read(2, rec=13, err=20) (a(i), i==l, 203) 

reads the thirteenth record into the array a. 

The size of the records must be given by an open statement (see below). Direct access files 
may be connected for either formatted or unformatted I/O. 

8.7. Internal Files 

Internal files are character string objects, such as variables or substrings, or arrays of type 
character. In the former cases there is only a single record in the file; in the latter case each 
array element is a record. The Standard includes only sequential formatted I/0 on internal 
files. (I/O is not a very precise term to use here, but internal files are dealt with using read 
and write.) There is no list-directed I/O on internal files. Internal files are used by giving 
the name of the character object in place of the unit number, as in 

character*80 x 
read(5,' (a)' ) x 
read(x,' (i3,i4)' ) nl,n2 

which reads a character string into x and then reads two integers from the front of it. A 
sequential read or write always starts at the beginning of an internal file. 

We also support a compatible extension, direct I/O on internal files. This is like direct I/O on 
external files, except that the number of records in the file cannot be changed. In this case a 
record is a single element of an array of character strings. 

8.S. OPEN, CLOSE, and INQUIRE Statements 

These statements are used to connect and disconnect units and files, and to gather informa­
tion about units and files. 
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8.8.1. OPEN 

The open statement is used to connect a file with a unit, 01' to alter some properties of the 
connection. The following is a minimal example. 

open(l, file=' fort.junk' ) 

open takes a variety of arguments with meanings described below. 

unit= a small non-negative integer which is the unit to which the file is to be connected. 
We allow, at the time of this writing, 0 through 19. If this parameter is the first one in 
the open statement, the unit= can be omitted. 

iostat= is the same as in read or write. 

err= is the same as in read or 'WI'ite. 

file= a character expression, which when stripped of trailing blanks, is the name of the file 
to be connected to the unit. The filename should not be given if the 
status=' scratch' • 

status= one of ' old' , , new' , , scratch' , or ' unknown'. If this parameter is not given, 
, unknown' is assumed. The meaning of ' unknown' is processor dependent; our sys­
tem will create the file if it doesn't exist. If' scratch' is given, a temporary file will be 
created. Temporary files are destroyed at the end of execution. If' new' is given, the 
file must not exist. It will be created Cor both reading and writing. If' old' is given, it 
is an error Cor the file not to exist. 

access= ' sequential' or ' direct', depending on whether the file is to be opened for 
sequential or direct I/O. 

form= ' formatted' or' unformatted'. On UNIX systems form=' print' implies' for­
matted' with vertical Corm at control. 

recl= a positive integer speciCying the record length oC the direct access file being opened. 
We measure all record lengths in bytes. On UNIX systems a record length oC 1 has the 
special meaning explained in section 5.1 oC the text. 

blank= 'null' or 'aero'. This parameter has meaning only Cor Cormatted I/O. The 
deCault value is ' null'. ' aero' means that blanks, other than leading blanks, in 
numeric input fields are to be treated as zeros. 

Opening a new file on a unit which is already connected has the effect oC first closing the old 
file. 

6.8.2. CLOSE 

close severs the connection between a unit and a file. The unit number must be given. The 
optional parameters are iostat= and err= with their usual meanings, and status= either 
, keep' or ' delete'. For scratch files the deCault is ' delete'; otherwise ' keep' is the 
deCault. ' delete' means the file will be removed. A simple example is 

elose(3, err=17) 

8.8.3. INQUIRE 

The inquire statement gives information about a unit ("inquire by unit") or a file ("inquire 
by file"). Simple examples are: 

inquire(unit=3, namexx) 
inquire(file=' junk' , number=n, exist=l) 



( 

- 19-

flle= a character variable specifies the file the inquire is about. Trailing blanks in the file 
name are ignored. 

unit= an integer variable specifies the unit the inquire is about. Exactly one of flle= or 
unit= must be used. 

iostat=, err= are as before. 

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and 
is set to .false. otherwise. 

opened= a logical variable. The logical variable is set to .true. if the file is connected to a 
unit or if the unit is connected to a file, and it is set to .false. otherwise. 

number= an integer variable to which is assigned the number of the unit connected to the 
file, if any. 

named= a logical variable to which is assigned .true. if the file has a name, or .false. 
otherwise. 

name= a character variable to which is assigned the name of the file (inquire by file) or the 
name of the file connected to the unit (inquire by unit). The name will be the full 
name of the file. 

aeeess= a character variable to which will be assigned the value' sequential' if the con­
nection is for sequential I/O, ' direct' if the connection is for direct I/O. The value 
becomes undefined if there is no connection. 

sequential= a character variable to which is assigned the value' yes' if the file could be 
connected for sequential I/O, ' no' if the file could not be connected for sequential I/O, 
and' unknown' if we can't tell. 

direct= a character variable to which is assigned the value ' yes' if the file could be con­
nected for direct I/O, ' no' if the file could not be connected for direct I/0, and ' unk­
nown' if we can't tell. 

form= a character variable to which is assigned the value' unformatted' if the file is con­
nected for unformatted I/O, ' formatted' if the file is connected for formatted I/0, or 
, print' for formatted I/O with vertical format control. 

formatted= a character variable to which is assigned the value ' yes' if the file could be 
connected for formatted I/O, ' no' if the file could not be connected for formatted I/O, 
and' unknown' if we can't tell. 

unformatted= a character variable to which is assigned the value' yes' if the file could be 
connected for unformatted I/O, ' no' if the file could not be connected for unformatted 
I/O, and ' unknown' if we can't tell. 

recl= an integer variable to which is assigned the record length of the records in the file if 
the file is connected for direct access. 

nextrec= an integer variable to which is assigned one more than the number of the the last 
record read from a file connected for direct access. 

blank= a character variable to which is assigned the value' null' if null blank control is in 
effect for the file connected for formatted I/O, ' fiero' if blanks are being converted to 
zeros and the file is connected for formatted I/O. 

The gentle reader will remember that the people who wrote the Standard probably weren't 
thinking of his needs. Here is an example. The declarations are omitted. 

open(I, file=' /dev /console') 

On a tJ1I.'IX system this statement opens the console for formatted sequential I/O. An 
inquire statement for either unit 1 or file" /dev /console" would reveal that the file exists, is 
connected to unit 1, has a name, namely "/dev/console", is opened for sequential I/O, could 
be connected for sequential I/O, could not be connected for direct I/O (can't seek), is con­
nected for formatted 1/0, could be connected for formatted I/O, could not be connected for 
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unformatted I/O (can't seek), has neither a record length nor a next record number, and is 
ignoring blanks in numeric fields. 

In the FORTRAN environment, the only way to discover what permissions you have for a file 
is to open it and try to read and write it. The err= parameter will return system error 
numbers. The inquire statement does not give a way of determining permissions. 

For further discussion of the UNIX Fortran I/O system see "Introduction to the f77 I/O 
Library" [9]. 

o 

o 
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Introduction to the f77 I/O Library 

David L. Wasley 

University of California, Berkeley 
Berkeley, California 94720 

The f77 I/O library, libI77.a, includes routines to perform all of the standard types of FOR­
TRAN input and output. Several enhancements and extensions to FORTRAN I/O have been added. 
The f77 library routines use the C stdio library routines to provide efficient buffering for file I/O. 

1. FORTRAN I/O 

The requirements of the ANSI standard impose significant overhead on programs that do 
large amounts of I/O. Formatted I/O can be very "expensive" while direct access binary I/O is 
usually very efficient. Because of the complexity of FORTRAN I/O, some general concepts deserve 
clarification. 

1.1. Types of I/O 

There are three forms of I/O: fOl'Dlatted, unformatted, and list-directed. The last is 
related to formatted but does not obey all the rules for formatted I/O. There are two modes of 
access to external and internal files: direct and sequential. The definition of a logical record 
depends upon the combination of I/O form and mode specified by the FORTRAN I/O statement. 

1.1.1. Direct access 

A logical record in a direct access external file is a string of bytes of a length specified when 
the file is opened. Read and write statements must not specify logical records longer than the ori­
ginal record size definition. Shorter logical records are allowed. Unformatted direct writes leave 
the unfilled part of the record undefined. Formatted direct writes cause the unfilled record to be 
padded with blanks. 

1.1.2. Sequential access 

Logical records in sequentially accessed external files may be of arbitrary and variable 
length. Logical record length for unformatted sequential files is determined by the size of items 
in the iolist. The requirements of this form of I/O cause the external physical record size to be 
somewhat larger than the logical record size. For formatted write statements, logical record 
length is determined by the format statement interacting with the iolist at execution time. The 
"newline" character is the logical record delimiter. Formatted sequential access causes one or more 
logical records ending with "newline" characters to be read or written. 

1.1.3. List directed I/O 
Logical record length for list-directed I/O is relatively meaningless. On output, the record 

length is dependent on the magnitude oC the data items. On input, the record length is determined 
by the data types and the file contents. 

1.1.4. Internal I/O 

The logical record length for an internal read or write is the length of the character variable 
or array element. Thus a simple character variable is a single logical record. A character variable 
array is similar to a fixed length direct access file, and obeys the same rules. Unformatted I/O is 
not allowed on "internal" files. 
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1.2. I/O execution 

Note that each execution of a FORTRAN unformatted I/O statement causes a single logical 
record to be read or written. Each execution of a FORTRAN tormatted I/O statement. causes one 
or more logical records to be read or written. 

A slash, "r, will terminate assignment of values to the input list during list-directed input 
and the remainder of the current input line is skipped. The standard is rather vague on this point 
but seems to require that a new external logical record be found at the start of any formatted 
input. Therefore data following the slash is ignored and may be used to comment the data file. 

Direct access list-directed I/O is not allowed. UDtormatted internal I/O is not 
allowed. Both the above will be caught by the compiler. All other flavors of I/O are allowed, 
although some are not part of the ANSI standard. 

Any error detected during I/O processing will cause the program to abort unless alternative 
action has been provided specifically in the program. Any I/O statement may include an err= 
clause (and iostat= clause) to specify an alternative branch to be taken on errors (and return the 
specific error code). Read statements may include end= to branch on end-oC-file. File position 
and the value of I/O list items is undefined following an error. 

2. Implementation details 

Some details of the current implementation may be useful in understanding constraints on 
FORTRAN I/O. 

2.1. Number of logical units 

The maximum number of logical units that a program may have open at one time is the 
same as the UNIX system limit, currently 20. Unit numbers must be in the range 0 - 19 because 
they are used to index an internal control table. 

2.2. Standard logical units 

By default, logical units 0, 5, and 6 are opened to "stderr", "stdin", and "stdout" respec­
tively. However they can be re-defined with an open statement. To preserve error reporting, it is 
an error to close logical unit 0 although it may be reopened to another file. 

If you want to open the default file name for any preconnected logical unit, remember to 
dose the unit first. Redefining the standard units may impair normal console I/O. An alternative 
is to use shell re-direction to externally re-define the above units. To re-define default blank con­
trol or format of the standard input or output files, use the open statement specifying the unit 
number and no file name (see § 2.4). 

The standard units, 0, 5, and 6, are named internally "stderr", "stdin " , and "stdout" 
respectively. These are not actual file names and can not be used for opening these units. Inquire 
will not return these names and will indicate that the above units are not named unless they have 
been opened to real files. The names are meant to make error reporting more meaningful. 

2.3. Vertical format control 

Simple vertical format control is implemented. The logical unit must be opened for sequential 
access with form = 'print' (see §3.2). Control codes "0" and "I" are replaced in t.he output file 
with "\n" and ',\f" respectively. The control character "+" is Dot implemented and, like any 
other character in the first position of a record written to a "print" file, is dropped. No vertical 
format control is recognized for direct tormatted output or list directed output. 

2.4. The open statement 

An open statement need not specify a file name. If it refers to a logical unit that is already 
open, the blank= and form= specifiers may be redefined without affecting the current file 
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position. Otherwise, if status = 'scratch' is specified, a temporary file with a name of the form 
"tmp.FXXXXXX" will be opened, and, by default, will be deleted· when closed or during termina­
tion of program execution. Any other status= specifier without an associated file name results in 
opening a file named "fort.N" where N is the specified logical unit number. 

It is an error to try to open an existing file with status = 'new'. It is an error to try to 
open a nonexistent file with status = 'old' . By default, status = 'unknown' will be assumed, 
and a file will be created if necessary. 

By default, files are positioned at their beginning upon opening, but see ioinit{3f) for alterna­
tives. Existing files are never truncated on opening. Sequentially accessed external files are trun­
cated to the current file position on close, backspace , or rewind only if the last access to the 
file was a write. An endfile always causes such files to be truncated to the current file position. 

2.5. Format interpretation 

Formats areparsed at the beginning of each execution of a formatted I/O statement. Upper 
as well as lower case characters are recognized in format statements and all the alphabetic argu­
ments to the I/O library routines. 

It the external representation of a datum is too large for the field width specified, the 
specified field is filled with asterisks (*). On Ew.dEe output, the exponent field will be filled with 
asterisks if the exponent representation is too large. This will only happen if ."e" is zero (see 
appendix B). 

On output, a real value that is truly zero will display as "0." to distinguish it from a very 
small non-zero value. This occurs in F and G format conversions. This was not done for E and 
D since the embedded blanks in the external datum causes problems for other input systems. 

Non-destructive tabbing is implemented for both internal and external formatted I/O. Tab­
bing left or right on output does not affect previously written portions of a record. Tabbing right 
on output causes unwritten portions of a record to be filled with blanks. Tabbing right off the end 
of an input logical record is an error. Tabbing left beyond the beginning of an input logical record 
leaves the input pointer at the beginning of the record. The format specifier T must be followed 
by a positive non-zero number. If it is not, it will have a different meaning (see § 3.1). 

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in I/O to a 
terminal or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit 
that can seek. Otherwise tabbing right or spacing with X will write blanks on the output. 

2.6. List directed output 

In formatting list directed output, the I/O system tries to prevent output lines longer than 
80 characters. Each external datum wiU be separated by two spaces. List-directed output of com­
plex values includes an appropriate comma. List-directed output distinguishes between real and 
double precision values and formats them differently. Output of a character string that includes 
"\n" is interpreted reasonably by the output system. 

2.7. I/O errors 

If I/O errors are not trapped by the user's program an appropriate error message will be 
written to "stderr" before aborting. An error number wiII be printed in [ 1 along with a brief error 
message showing the logical unit and I/O state. Error numbers < 100 refer to UNIX errors, and 
are described in the introduction to chapter 2 of the UNIX Programmer's Manual. Error numbers 
~ 100 come from the I/O library, and are described further in the appendix to this writeup. For 
internal I/O, part of the string will be printed with "r' at the current position in the string. For 
external I/O, part of the current record will be displayed if the error was caused during reading 
from a file that can backspace. 
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3. Non-HANSI Standard"ateDeicme 

Several extensions bsve been Jldded to the I/O systsl to provide for functions omitted or 
poorly defined in the standard. PJ'Ogrammers should be awa:re that these are non-portable. 

3.1. Format specifiers 

B is an acceptabJe edit control specifier. It causes Tetum to the default mode of blank 
interpretation. This is consistent with S which returns to default sign control. 

P by itself is equivalent to OP . It resets the scale factor to the default value, O. 

The form of the Ew.dEe format specifier has been extended to D also. The form Ew.d.e is 
allowed but is not standard. The "e" field specifies the minimum number of digits or spaces in the 
exponent field on output. If the value of the exponent is too large, the exponent notation e or d 
will be dropped from the output to allow one more character position. If this is still not adequate, 
the "e" field will 'be filled with asterisks (*). The default value for "e" is 2. 

An additional form of tab control specification has been added. The ANSI standard forms 
TRn, TLn, and Tn are supported where n is a positive non-zero number. If T or nT is specified, 
tabbing will be to the next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be 
lined up without counting. 

A format control specifier has been added to supp~ the newline at the end of the last 
record of a formatted sequential write. The specifier is a dollar sign ($). It is constrained by the 
same rules as the colon (:). It is used typically for console prompts. For example: 

write (*. "(,enter value for x: ',$)") 
read (*.*) x 

Radices other than 10 can be specified for formatted integer I/O conversion. The specifier is 
patterned after P, the scale factor for floating point conversion. It remains in effect until another 
radix is specified or format interpretation is complete. The specifier is defined as [n]R where 2 ~ n 
~ 36. If n is omitted, the default decimal radix is restored. 

In conjunction with the above. a sign control specifier has been added to cause integer values 
to be interpreted as unsigned during output conversion. The specifier is SU and remains in effect 
until another sign control specifier is encountered. or format interpretation is complete. Radix and 
"unsigned" specifiers could be used to format a hexadecimal dump, as follows: 

2000 format ( SU, 16R, 8110.8 ) 

Note: Unsigned integer values greater than (~.a0 - I), i.e. any signed nega.tive value, can not be 
read by FORTRAN input routines. All internal values will be output correctly. 

3.2. Print files 

The ANSI standard is ambiguous regarding the definition of a "print" file. Since UNIX has 
no default "print" file, an additional form= specifier is now recognized in the open statement. 
Specifying form = 'print' implies formatted and enables vertical format control for that logical 
unit. Vertical format control is interpreted only on sequential formatted writes to a "print" file. 

The inquire statement will return print in the form== string variable for logical units 
opened as "print" files. It willTetum -I for the unit number of an unconnected file. 

If a logical unit is already open, an open statement including the form= option or the 
blank= option will do nothing but re-define those options. This instance of the open statement 
need not include the file name, and must not include a file name if unit= refers to a st.andard 
input or output. Therefore, to re-define the standard output as a "print" file, use: 

(/~, 

o 



(-

. C 

- 5-

open (unit=6, form='print') 

3.3. Scratch flIes 

A close statement with status = 'keep' may be specified for temporary files. This is thl' 
default for all other files. Remember to get the scratch file's real name, using inquire , if you 
want to re-open it later. 

3.4. List directed I/O 

List directed read has been modified to allow input of a string not enclosed in quotes. The 
string must not start with a digit, and can not contain a separator (, or /) or blank (space or tab). 
A newline will terminate the string unless escaped with \. Any string not meeting the above res­
trictions must be enclosed in quotes (to or '). 

Internal list-directed I/O has been implemented. During internal list reads, bytes are con­
sumed until the iolist is satisfied, or the 'end-of-file' is reached. During internal list writes, records 
are filled until the iolist is satisfied. The length of an internal array element should be at least 20 
bytes to avoid logical record overflow when writing double precision values. Internal list read was 
implemented to make command line decoding easier. Internal list write should be avoided. 

4. Running older programs 

Traditional FORTRAN environments usually assume carriage control on all logical units, usu­
ally interpret blank spaces on input as "O"s, and often provide attachment of global file names to 
logical units at run time. There are several routines in the I/O library to provide these functions. 

4.1. Traditional unit control parameters 

If a program reads and writes only units 5 and 6, then including -1166 in the f77 command 
will cause carriage control to be interpreted on output and cause blanks to be zeros on input 
without further modification of the program. If this is not adequate, the routine ioinit(3f) can be 
called to specify control parameters separately, including whether files should be positioned at their 
beginning or end upon opening. 

4.2. Preattachment of logical units 

The ioinit routine also can be used to attach logical units to specific files at run time. It. will 
look for names of a user specified form in the environment and open the corresponding logical unit 
for sequential formatted I/O. Names must be of the form PREFIXnn where PREFIX is 
specified in the call to ioinit and nn is the logical unit to be opened. Unit numbers < 10 must 
include the leading "0". 

Ioinit should prove adequate for most programs as written. However, it is written in FOR­
TRAN-77 specifically so that it may serve as an example for similar user-supplied rout.ines. A copy 
may be retrieved by "ar x /usr/lib/libI77.a ioinit.f". 

5. Magnetic tape I/O 

Because the I/O library uses stdio buffering, reading or writing magnetic tapes should be 
done with great caution, or avoided if possible. A set of routines has been provided to read and 
write arbitrary sized buffers to or from tape directly. The buffer must be a character object. 
Internal I/O can be used to fill or interpret the buffer. These routines do not· use normal FOR­
TRAN I/O processing and do not obey FORTRAN I/O rules. See tapeio(3f) . 
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6. Caveat Programmer 

The I/O library is extremely complex yet we believe there are few bugs left. We've tried to 
make the system as correct as possible according to the ANSI X3.9-1978 document and keep it. 
compatible with the UNIX file system. Exceptions to the standard are noted in appendix B. 
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Appendix A 

I/O Library Error Messages 

The following error messages are generated by the I/O library. The error numbers are 
returned in the iostat= variable if the err= return is ta.ken. Error numbers < 100 are generated 
by the UNIX kernel. See the introduction to chapter 2 of the UNIX Programmers Manual for their 
description. 

/* 100 */ "error in format" 
See error message output for the location 
of the error in the format. Can be caused 
by more than 10 levels of nested 0, or 
an extremely long format statement. 

j* 101 */ "illegal unit number" 
It is illegal to close logical unit o. 
Negative unit numbers are not allowed. 
The upper limit is system dependent. 

/* 102 * / "formatted io not allowed" 
The logical unit was opened for 
unformatted I/O. 

/* 103 * / "unformatted io not allowed" 
The logical unit was opened for 
formatted I/O. 

/* 104 * / "direct io not allowed" 
The logical unit was opened for sequential 
access, or the logical record length was 
specified as o. 

/* 105 * / "sequential io not allowed" 
The logical unit was opened for direct 
access I/O. 

/* 106 */ "can't backspace file" 
The file associated with the logical unit 
can't seek. May be a device or a pipe. 

/* 107 * / "off beginning of record" 
The format specified a left tab beyond the 
beginning of an internal input record. 

/*108*/ "can't stat file" 
The system can't return status information 
about the file. Perhaps the directory is 
unreadable. 

/* 109 */ "no * after repeat count" 
Repeat counts in list-directed I/O must be 
followed by an * with no blank spaces. 
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/* 110 */ "off end of record" 
A formatted write tried to go beyond the (-", 
logical end-of-record. An unformatted read \,,-) 
or write will also cause this. 

/* III */ "truncation failed" 
The truncation of an external sequential file on 
tclose', 'backspace', 'rewind' or tendfile' failed. 

/* 112 */ "incomprehensible list input" 
List input has to be just right. 

/* 113 */ "out of free space" 
The library dynamically creates buffers for 
internal use. You ran out of memory for this. 
Your program is too big! 

/* 114 */ "unit not connected" 
The logical unit was not open. 

/* 115 */ "read unexpected charaeter" 
Certain format conversions can't tolerate 
non-numeric data. Logical data must be 
TorF. 

/*116*/ "blank logical input field" 

/*117*/ "'new' file exists" /~ . '\ 
You tried to open an existing file with 

~_/ 
"status='new'''. 

/* 118 */ "can't find told' file" 
You tried to open a non-existent file 
with "status='old'''. 

/* 119 * / "unknown system error" 
Shouldn't happen, but ..... 

/*120*/ "requires seek ability" 
Direct access requires seek ability. 
Sequential unformatted I/O requires seek 
ability on the file due to the special 
data structure required. Tabbing left 
also requires seek ability. 

/* 121 */ "illegal argument" 
Certain arguments to 'open', etc. will be 
checked for legitimacy. Often only non-
default forms are looked for. 
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/* 122 * / "negative repeat count" 
The repeat count for list directed input 
must be a positive integer. 

/* 123 * / "illegal operation for unit" 
An operation was requested for a device 
associated with the logical unit which 
was not possible. This error is returned 
by the tape I/O routines if attempting to 
read past end-of-tape, etc. 
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Appendix B 

Exceptions to the ANSI Standard 

A few exceptions to the ANSI standard remain. 

1) Vertical format control 

The "+" carriage control specifier is not implemented. It would be difficult to implement it 
correctly and still provide UNIX-like file I/O. 

Furthermore, the carriage control implementation is asymmetrical. A file written with car­
riage control interpretation can not be read again with the same characters in column 1. 

An alternative to interpreting carriage control internally is to run the output file through a 
"FORTRAN output filter" before printing. This filter could recognize a much broader range of car­
riage control and include terminal dependent processing. 

2) Default files 

Files created by default use of rewind or endfUe statements are opened for sequential for­
matted access. There is no way to redefine such a file to allow direct or unformatted access. 

3) Lower case strings 

It is not clear if the ANSI standard requires internally generated strings to be upper case or 
not. As currently written, the inquire statement will return lower case strings for any 
alphanumeric data. 

4) Exponent representation on Ew.dEe output 

If the field width for the exponent is too small, the standard allows dropping the exponent 
character but only if the exponent is > 99. This system does not enforce that restriction. Further, 
the standard implies that the entire field, 'w', should be filled with asterisks if the exponent can 
not be displayed. This system fills only the exponent field in the above case since that is more 
diagnostic. 

----" ---------------
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ABSTRACT 

Berkeley Pascal is designed for interactive instructional use and runs on the 
PDP /11 and v AX/11 computers. Interpretive code is produced, providing fast 
translation at the expense of slower execution speed. There is also a fully compa­
tible compiler for the VAX/H. An execution profiler and Wirth's cross reference 
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cal, and a small number of extensions. There is an option to suppress the exten­
sions. The extensions include a separate compilation facility and the ability to 
link to object modules produced from other source languages. 

The User's Manual gives a list of sources relating to the UNIXt system, the 
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vided for the Pascal components pi, px, pix, pc, and pxp. Errors commonly 
encountered in these programs are discussed. Details are given of special con­
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Introduction 

The Berkeley Pascal U8er', Manual consists of five major sections and an appendix. In sec­
tion 1 we give sources of information about UNIX, about the programming language Pascal, and 
about the Berkeley implementation of the language. Section 2 introduces the Berkeley implemen­
tation and provides a number of tutorial examples. Section 3 discusses the error diagnostics pro­
duced by the translators pc and pi, and the runtime interpreter pz. Section 4 describes 
input/output with special attention given to features of the interactive implementation and to 
features unique to UNIX. Section 5 gives details on the components of the system and explanation 
of all relevant options. The U,er', Manual concludes with an appendix to Wirth's Pascal Report 
with which it forms a precise definition of the implementation. 

History of the implementation 
The first Berkeley system was written by Ken Thompson in early 1976. The main features of 

the present system were implemented by Charles Haley and William Joy during the latter half of 
1976. Earlier versions of this system have been in use since January, 1977. 

The system was moved to the VAX-ll by Peter Kessler and Kirk McKusick with the porting 
of the interpreter in the spring of 1979, and the implementation of the compiler in the summer of 
1980. 

1. Sources of information 
This section lists the resources available for information about general features of UNIX, text 

editing, the Pascal language, and the Berkeley Pascal implementation, concluding with a list of 
references. The available documents include both so-called standard documents - those distributed 
with all Ul\i1X system - and documents (such as this one) written at Berkeley. 

1.1. Where to get documentation 

Current documentation for most of the UNIX system is available "on line" at your terminal. 
Details on getting such documentation interactively are given in section 1.3. 

1.2. Documentation describing UNIX 

The following documents are those recommended as tutorial and reference material about the 
UNIX system. We give the documents with the introductory and tutorial materials first, the refer­
ence materials last. 

UNIX For Beginners - Second Edition 

This document is the basic tutorial for UNIX available with the standard system. 

Communicating with UNIX 

This is also a basic tutorial on the system and assumes no previous familiarity with comput­
ers; it was written at Berkeley. 

An introduction to the C shell 

This document introduces csh, the shell in common use at Berkeley, and provides a good 
deal of general description about the way in which the system functions. It provides a useful glos­
sary of terms used in discussing the system. 
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UNIX Programmer'. Manual 

This manual is the major source of details on the components of the UNIX system. It con­
sists of an Introduction, a permuted index, and eight command sections. Section 1 consists of 
descriptions of most of the "commands" of UNIX. Most of the other sections have limited 
relevance to the user of Berkeley Pascal, being of interest mainly to system programmers. 

UNIX documentation often refers the reader to sections of the manual. Such a reference con­
sists of a command name and a section number or name. An example of such a reference would 
be: ed (1). Here ed is a command name - the standard UNIX text editor, and '(1)' indicates that 
its documentation is in section 1 of the manual. 

The pieces of the Berkeley Pascal system are pi (1), pz (1), the combined Pascal translator 
and interpretive executor piz (1), the Pascal compiler pc (1), the Pascal execution profiler pzp (1), 
and the Pascal cross-reference generator pzreJ (1). . 

It is possible to obtain a copy of a manual section by using the man (1) command. To get 
the Pascal documentation just described one could issue the command: 

% man pi 

to the shell. The user input here is shown in bold face; the '% " which was printed by the shell 
as a prompt, is not. Similarly the command: 

% man man 

asks the man command to describe itself. 

1.3. Text editing documents 

The following documents introduce the various UNIX text editors. Most Berkeley users use a 
version of the text editor ex; either edit, which is a version of ex for new and casual users, ex 
itself, or vi (visual) which focuses on the display editing portion of ex. 

A Tutorial Introduction to the UNIX Text Editor 

This document, written by Brian Kernighan of Bell Laboratories, is a tutorial for· the stan­
dard UNIX text editor ed. It introduces you to the basics of text editing, and provides enough 
information to meet day-to-day editing needs, for ed users. 

Edit: A tutorial 

This introduces the use of edit, an editor similar to ed which provides a more hospitable 
environment for beginning users. 

Ex/edit Command Summary 

This summarizes the features of the editors ex and edit in a concise form. If you have used 
a line oriented editor before this summary alone may be enough to get you started. 

Ex Reference Manual - Version 3.7 

A complete reference on the features of ex and edit. 
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An Introduction to Display Editing with Vi 

Vi is a display oriented text ed.itor. It can be used on most any CRT terminal, and uses the 
screen as a window into the file you are editing. Changes you make to the file are reflected in what 
you see. This manual serves both as an introduction to editing with vi and a reference manual. 

Vi Quick Reference 
This reference card is a handy quick guide to VI; you should get one when you get the intro­

duction to vi. 

1.4. Pascal documents - The language 

This section describes the documents on the Pascal language which are likely to be most use­
ful to the Berkeley Pascal user. Complete references for these documents are given in section 1.7. 

Pascal User Manual 
By Kathleen Jensen and Niklaus Wirth, the Uaer Manual provides a tutorial introduction to 

the features of the language Pascal, and serves as an excellent quick-reference to the language. The 
reader with no familiarity with Algol-like languages may prefer one of the Pascal text books listed 
below, as they provide more examples and explanation. Particularly important here are pages 
116-118 which define the syntax of the language. Sections 13 and 14 and Appendix F pertain only 
to the 60()()"3.4 implementation of Pascal. 

Pascal Report 

By Niklaus Wirth, this document is bound with the Uaer Manual. It is the guiding reference 
for implementors and the fundamental definition of the language. Some programmers find this 
report too concise to be of practical use, preferring the Uaer Manual as a reference. 

Books on Pascal 

Several good books which teach Pascal or use it as a medium are available. The books by 
Wirth Systematic Programming and Algorithms + Data Structures = Programa use Pascal as a 
vehicle for teaching programming and data structure concepts respectively. They are both recom­
mended. Other books on Pascal are listed in the references below. 

1.5. Pascal documents - The Berkeley Implementation 

This section describes the documentation which is available describing the Berkeley imple­
mentation of Pascal. 

User's Manual 

The document you are reading is the Uaer'a Manual for Berkeley Pascal. We often refer the 
reader to the Jensen-Wirth Uaer Manual mentioned above, a different document with a similar 
name. 

Manual sections 

The sections relating to Pascal in the UNIX Programmer's Manual are pix (1), pi (1), pc (1), 
px (1), pxp (1), and pxref (1). These sections give a description of each program, summarize the 
available options, indicate files used by the program, give basic information on the diagnostics pro­
duced. and include a list of known bugs. 

----------------------- -
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Implementation notes 

For those interested in the internal organization of the Berkeley Pascal system there are a 
series of Implementation Notes describing these details. The Berkeley Pascal PXP Implementation 
Notes describe the Pascal interpreter px j and the Berkeley Pascal PX Implementation Notes 
describe the structure of the execution profiler pxp . 

1.6. References 

UNIX Documents 

Oommunicating With UNIX 
Computer Center 
University of California, Berkeley 
January, 1978. 

Ricki Blau and James Joyce 
Edit: a tutorial 
UNlX User's Supplementary Documents (USD), 14 
University of California, Berkeley, CA. 94720 
April, 1986. 

Ex/ edit Oommand Summary 
Computer Center 
University of California, Berkeley 
August, 1978. 

William Joy 
Ex Reference Manual - Version 9.7 
UNlX User's Supplementary Documents (USD), 16 
University of California, Berkeley, CA. 94720 
April, 1986. 

William Joy 
An Introduction to Display Editing with Vi 
UN1X User's Supplementary Documents (USn), 15 
University of California, Berkeley, CA. 94720 
April, 1986. 

William Joy 
An Introduction to the 0 shell (Revised) 
UN1X User's Supplementary Documents (USD), 4 
University of California, Berkeley, CA. 94720 
April, 1986. 

Brian W. Kernighan 
UNIX for Beginners - Second Edition 
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UNIX User's Supplementary Documents (USD), 1 
University of California, Berkeley, CA. 94720 
April, 1986. 

Brian W. Kernighan 
A Tutorial Introduction to the UNIX Ted Editor 
UNIX User's Supplementary Documents (USD), 12 
University of California, Berkeley, CA. 94720 
April, 1986. 

Dennis M. Ritchie and Ken Thompson 
The UNIX Time Sharing System 
Reprinted from Communications of the ACM July 1974 in 
UNIX Programmer's Supplementary Documents, Volume 2 (PS2), 1 
University of California, Berkeley, CA. 94720 
April, 1986. 

Pascal Language Documents 

Cooper and Clancy 
Oh! Pascal!, end Edition 
W. W. Norton & Company, Inc. 
500 Fifth Ave., NY, NY. 10110 
1985, 475 pp. 

Cooper 
Standard Pascal User Reference Manual 
W. W. Norton & Company, Inc. 
500 Fifth Ave., NY, ~Y. 10110 
1983, 176 pp. 

Kathleen Jensen and Niklaus Wirth 
Pascal - User Manual and Report 
Springer-Verlag, New York. 
1975, 167 pp. 

Niklaus Wirth 
Algorithms + Data structures == Programs 
Prentice-Hall, New York. 
1976, 366 pp. 

Berkeley Pascal documents 

The following documents are available from the Computer Center Library at the University 
of California, Berkeley. 
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William N. Joy 
Berkeley Pa3cal PX Implementation Note8 
Version 1.1, April 1979. 
(Vax-ll Version 2.0 By Kirk McKusick, December, 1979) 

William N. Joy 
Berkeley Pa3cal PXP Implementation Note3 
Version 1.1, April 1979. 
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2. Basic UNIX Paseal 

The following sections explain the basics of using Berkeley Pascal. In examples here we use 
the text editor ez (1). Users of the text editor ed should have little trouble following these exam­
ples, as ez is similar to ed. We use ez because it allows us to make clearer examples.t The new 
UNIX user will find it helpful to read one of the text editor documents described in section 1.4 
before continuing with this section. 

2.1. A ftl'St program 

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and to 
'login' to the system on this account. These procedures are described in the documents Oommuni­
coting with UNIX and UNIX for Beginner8 . 

Once we are logged in we need to choose a name for our program; let us call it 'first' as this 
is the first example. We must also choose a name for the file in which the program will be stored. 
The Berkeley Pascal system requires that programs reside in files which have names ending with 
the sequence '.p' so we will call our file 'first.p'. 

A sample editing session to create this file would begin: 

% ex first.p 
"first.p" [New file] 

We didn't expect the file to exist, so the error diagnostic doesn't bother us. The editor now knows 
the name of the file we are creating. The ':' prompt indicates that it is ready for command input. 
We can add the text for our program using the 'append' command as follows. 

:append 
program first( output) 
begin 

writeln( 'Hello, world! ') 
end. 

The line containing the single '.' charact.er here indicated the end of the appended text. The ':' 
prompt indicates that ez is ready for another command. As the editor operates in a temporary 
work space we must now store the contents of this work space in the file 'first.p' so we can use the 
Pascal translator and executor pix on it. 

:write 
"first.p" [New file] 4 lines, 59 characters 
:quit 
% 

We wrote out the file from the edit buffer here with the 'write' command, and ex indicated the 
number of lines and characters written. We then quit the editor, and now have a prompt from the 
shell.; 

t Users with CRl' termina.1s should find the editor vi more ple.aant to use; we do not show its use here because 
its display oriented nature makes it difficult to illustrate. * Our examples here assume you are using eBh. 
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We are ready to try to translate and execute our program. 

% pix flrst.p 
Tue Oct 14 21:37 1980 first.p: 

2 begin 
e --t- Inserted 'j' 
Execution begins ... 
Hello, world! 
Execution terminated. 

1 statements executed in 0.02 seconds cpu time. 
% 

The translator first printed a syntax error diagnostic. The number 2 here indicates that the 
rest of the line is an image of the second line of our program. The translator is saying that it 
expected to find a 'j' before the keyword begin on this line. If we look at the Pascal syntax charts 
in the Jensen-Wirth U8er Manual, or at some of the sample programs therein, we will see that we 
have omitted the terminating 'j' of the program statement on the first line of our program. 

One other thing to notice about the error diagnostic is the letter Ie' at the beginning. It 
stands for 'error', indicating that our input was not legal Pascal. The fact that it is an Ie' rather 
than an 'E' indicates that the translator managed to recover from this error well enough that gen­
eration of code and execution could take place. Execution is possible whenever no fatal 'E' errors 
occur during translation. The other classes of diagnostics are 'w' warnings, which do not neces­
sarily indicate errors in the program, but point out inconsistencies which are likely to be due to 
program bugs, and's' standard-Pascal violations.t 

After completing the translation of the program to interpretive code, the Pascal system indi­
cates that execution of the translated program began. The output from the execution of the pro­
gram then appeared. At program termination, the Pascal runtime syst.em indicated the number of 
statements executed, and the amount of cpu time used, with the resolution of the latter being 
1/60'th of a second. 

Let us now fix the error in the program and translate it to a permanent object code file obj 
using pi. The program pi translates Pascal programs but stores the object code instead of execut­
ing iti. 

% ex first.p 
"first.p" 4 lines, 59 characters 
:1 print 
program first(output) 
:s/$/; 
program first(output); 
:write 
"first.p" 4 lines, 60 characters 
:quit 
% pi ftrst.p 
% 

If we now use the UNIX 18 list files command we can see what files we have: 

tThe standard Pascal warnings occur only when the associated 8 translator option is enabled. The 8 option is 
diseuased in sections S.l and A.6 below. Warning diagnostics are discussed at the end of section 3.2, the associ­
ated w option is described in section 5.2. 
fThis script indicates some other useful approaches to debugging Pascal programs. As in ed we can shorten 
commands in u to an initial prefix of the command name as we did with the 1U6,titute command here. 'We 
have also used the '!' shell escape command here to execute other commands with a shell without leaving the edi­
tor. 
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The file 'obj' here contains the Pascal interpreter code. We can execute this by typing: 

%pX obJ 
Hello, world! 

1 statements executed in 0.02 seconds cpu time. 
% 

Alternatively, the command: 

%obJ 

will have the same effect. Some examples of different ways to execute the program follow. 

%pX 
Hello, world! 

1 statements executed in 0.02 seconds cpu time. 
% pi -p first.p 
%px obJ 
Hello, world! 
% pix -p flrst.p 
Hello, world! 
% 

Note that px will assume that 'obj' is the file we wish to execute if we don't tell it otherwise. 
The last two translations use the -p no-post-mortem option to eliminate execution statistics and 
'Execution begins' and 'Execution terminated' messages. See section 5.2 for more details. If we 
now look at the files in our directory we will see: 

%ls 
first.p 
obj 
% 

We can give our object program a name other than 'obj' by using the move command mv (1). 
Thus to name our program 'hello': 

% mv obJ hello 
% hello 
Hello, world! 
%ls 
first.p 
hello 
% 



() 

( 

o 

-11-

Finally we can get rid of the Pascal object code by using the rm (I) remove file command, e.g.: 

% I'm hello 
%Is 
first.p 
% 

For small programs which are being developed pix tends to be more convenient to use than 
pi and px. Except for absence of the obi file after a pix run, a pix command is equivalent to a pi 
command followed by a px command. For larger programs, where a number of runs testing 
different parts of the program are to be made, pi is useful as this obi file can be executed any 
desired number of times. 

2.2. A larger program 

Suppose that we have used the editor to put a larger program in the file 'bigger.p'. We can 
list this program with line numbers by using the program cat-n i.e.: 

% eat -n bigger.p 
% 

This program is similar to program 4.9 on page 30 of the lensen-Wirth U6er Manual. A number 
of problems have been introduced into this example for pedagogical reasons. 

If we attempt to translate and execute the program using pix we get the following response: 

% pix bigger.p 
Tue Oct 14 21:37 1980 bigger.p: 

9 h == 34i (* Character position of x-axis *) 
". --------------j ---- (* in a (* ... *) comment 

16 for i :== 0 to lim begin 
e ------------------j ----- Inserted keyword do 

18 y :== exp(-x9 * sin(i * Xli 
E -------------i--- Undefined variable 
e -------------------------------- j --- Inserted '}' 

19 n := Round(s * y} + hi 
E ---------j ------ Undefined function 
E ------------------------------------ j -- Undefined variable 

23 writeln( '* 1 
e --------------- j ----- Inserted 'j' 

24 end. 
E ----j ---- Expected keyword until 
E ----j -- Unexpected end-of-file - QUIT 
Execution suppressed due to compilation errors 
% 

Since there were fatal IE' errors in our program, no code was generated and execution was 
necessarily suppressed. One thing which would be useful at this point is a listing of the program 
with the error messages. We can get this by using the command: 

% pi -I bigger.p 
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There is no point in using pi% here, since we know there are fatal errors in the program. This 
command will produce the output at our terminal. If we are at a terminal which does not produce 
a hard copy 'We may wish to print this listing off-line on a line printer. We can do this with the 
command: 

% pi -1 biger.p Ilpr 

In the next few sections w~ will illustrate various aspects of the Berkeley Pascal system by 
correcting this progrJml. 

2.3. Correcting the first errors 
Most of the errors which occurred in this program were 11Intactic errors, those in the format 

and structure of the program rather than its content. Syntax errors are flagged by printing the 
offending line, and then a line which flags the location at which an error was detect.ed. The flag 
line also gives an explanation stating either a possible cause of the error, a simple action which can 
be taken to recover from the error so as to be able to continue the analysis, a symbol which was 
expected at the point of error, or an indication that the input was 'malformed'. In the last case, 
the recovery may skip ahead in the input to a point where analysis of the program can continue. 

In this example, the first error diagnostic indicates that the translator detected a comment 
within a comment. While this is not considered an error in 'standard' Pascal, it usually 
corresponds to an error in the program which is being translated. In this case, we have acciden­
tally omitted the trailing '*)' of the comment on line 8. We can begin an editor session to correct 
this problem by doing: 

% ex bigger.p 
''bigger.p'' 24 lines, 512 characters 
:88/$/ .) 

s == 32i (* 32 character width for interval [x, x+l] *) 

The second diagnostic, given after line 16, indicates that the keyword do was expect,ed before 
the keyword begin in the for statement. If we examine the statement syntax chart on page 118 
of the Jensen-Wirth User Manual we will discover that do is a necessary part of the for state­
ment. Similarly, we could have referred to section 0.3 of the Jensen-Wirth User Manual to learn 
about the for statement and gotten the same information there. It is often useful to refer to these 
syntax charts and to the relevant sections of this book. 

We can correct this problem by first scanning for the keyword for in the file and then substi­
tuting the keyword do to appear in front of the keyword begin there. Thus: 

:/for 
for i :== 0 to lim begin 

:s/begin/ do &. 
for i := 0 to lim do begin 

The next error in the program is easy to pinpoint. On line 18, we didn't hit the shift key and got 
a '9' instead of a ')'. The translator diagnosed that 'x9' was an undefined variable and, later, that 
a I)' was missing in the statement. It should be stressed that pi is not suggesting that you should 
insert a I)' before the 'i'. It is only indicating that making this change will help it to be able to 
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continue analyzing the program so as to be able to diagnose further errors. You must then deter­
mine the true cause of the error and make the appropriate correction to the source text. 

This error also illustrates the Cact that one error in the input may lead to multiple error 
diagnostics. Pi attempts to give only one diagnostic Cor each error, but single errors in the input 
sometimes appear to be more than one error. It is also the case that pi may not detect an error 
when it occurs, but may detect it later in the input. This would have happened in this example iC 
we had typed 'x' instead oC 'x9'. 

The translator next detected, on line 19, that the Cunction Round and the variable h were 
undefined. It does not know about Round because Berkeley Pascal normally distinguishes between 
upper and lower case.t On UNIX lower-case is preferredt, and all keywords and buil~in proeedure 
and funetion names are composed oC lower-case letters, just as they are in the Jensen-Wirth Pa8-
cal Report. Thus we need to use the Cunction round here. As Car as h is concerned, we can see 
why it is undefined if we look back to line 9 and note that its definition was lost. in the non­
terminated comment. This diagnostic need not, thereCore, concern us. 

The next error which occurred in the program caused the translator to insert a';' beCore the 
statement calling write/n on line 23. If we examine the program around the point of error we will 
see that the actual error is that the keyword until and an associated expression have been omitted 
here. Note that the diagnostic Crom the translator does not indicate the actual error, and is some­
what misleading. The translator made the correction which seemed to be most plausible. As the 
omission oC a I;' character is a common mistake, the translator chose to indicate this as a possible 
fix here. It later detected that the keyword until was missing, but not until it saw the keyword 
end on line 24. The combination of these diagnostics indicate to us the true problem. 

The final syntactic error message indicates that the translator needed an end keyword to 
match the begin at line 15. Since the end at line 24 is supposed to match this begin, we can 
inCer that another begin must have been mismatched, and have matched this end. Thus we see 
that we need an end to match the begin at line 16, and to appear before the final end. We can 
make these corrections: 

:/x9/s/ Ix) 
y := exp{-x) * sin{i * x); 

:+s/Round/round 

:/write 

:/ 

:insert 

:$ 
end. 
:insert 

end 

n := round{s * y) + h; 

write{' '); 

writeln( , * ') 

until n = 0; 

tin "sta.nda.rd" Pascal no distinction is made based on case. 
~ne good reason for using lower-case is that it is easier to type. 
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At the end of each procedure or function and the end of the program the translator sum­
marizes references to undefined variables and improper usages of variables. It also gives warnings 
about potential errors. In our program, the summary errors do not indicate any further problems 
but the warning that c is unused is somewhat suspicious. Examining the program we see that the 
constant was intended to be used in the expression which is an argument to ,in, so we can correct 
this expression, and translate the program. We have now made a correction for each diagnosed 
error in our program. 

:!i !8/ /e / 
y :== exp(-x) * sin(c * x); 

:write 
''bigger.p'' 26 lines, 538 characters 
:quit 
% pi bigger.p 
% 

It should be noted that the translator suppresses warning diagnostics for a particular procedure, 
function or the main program when it finds severe syntax errors in that part of the source text. 
This is to prevent possibly confusing and incorrect warning diagnostics from being produced. 
Thus these warning diagnostics may not appear in a program with bad syntax errors until these 
errors are corrected. 
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We are now ready to execute our program for the first time. We will do so in the next sec­
tion after giving a listing of the corrected program for reference purposes. 

% cat -n bigger.p 
1 (* 

% 

2 * Graphic representation of a function 
3. * f(x) = exp(-x) * sin(2 * pi * x) 
4 *) 
5 program graphl(output); 
6 const 
7 
8 
9 

10 
11 
12 var 
13 
14 
15 begin 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 end. 

d - 0.0625; (* 1/16, 16 lines for interval [x, x+1] *) 
s - 32; (* 32 character width for interval [x, x+1] *) 
h - 34; (* Character position of x-axis *) 
c - 6.28138; (* 2 * pi *) 
lim = 32; 

x, y: real; 
i, n: integer; 

Cor i := 0 to lim do begin 
x :- d / i; 

end 

y :- exp(-x) * sin(c * x); 
n :- round(s * y) + h; 
repeat 

write(' }; 
n :- n - 1 

until n = 0; 
writeln('* } 

2.4. Executing the second example 

We are now ready to execute the second example. The following output was produced by 
our first run. 

%px 
Execution begins ... 

Floating point division error 

Error in "graphl"+2 near line 17. 
Execution terminated abnormally. 

2 statements executed in 0.05 seconds cpu time. 
% 
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Here the interpreter is presenting us with a runtime error diagnostic. It detected a 'division by 
zero' at line 17. Examining line 17, we see that we have written the statement 'x := d / i' instead 
of 'x := d * i'. We can correct this and rerun the program: 

% ex bigger.p 
"bigger.p" 26 lines, 538 characters 
:17 

x:= d / i 
:a'/'* 

x:= d * i 
:write 
"bigger.p" 26 lines, 538 characters 
:q 
% pix bigger.p 
Execution begins ... 

* 
* 
* 
* 

* 

* 

* 

* 
* 
* 
* 
* 
* 
* 

* 

* 
* 

* 
* 

* 
* 
* 
* 

* 
* 

* 

* 

* 
* 

* 
* 

* 
* 

~~~~-~--~---~~-------
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Execution terminated. 

2550 statements executed in 0.30 seconds cpu time. 
% 

This appears to be the output we wanted. We could now save the output in a file if we 
wished by using the shell to redirect the output: 

% px > graph 

We can use cat (1) to see the contents of the file graph. We can also make a listing of the graph 
on the line printer without putting it into a file, e.g. 

% px Ilpr 
Execution .begins ... 
Execution terminated. 

2550 statements executed in 0.37 seconds cpu time. 
% 

Note here that the statistics lines came out on our terminal. The statistics line comes out on the 
diagnostic output (unit 2.) There are two ways to get rid of the statistics line. We can redirect the 
statistics message to the printer using the syntax 'I &' to the shell rather than 'I', i.e.: 

% px 1& Ipr 
% 

or we can translate the program with the p option disabled on the command line as we did above. 
This will disable all post-mortem dumping including the statistics line, thus: 

% pi -p bigger.p 
% px Ilpr 
% 

This option also disables the statement limit which normally guards against infinite looping. You 
should not use it until your program is debugged. Also if p is specified and an error occurs, you 
will not get run time diagnostic information to help you determine what the problem is. 

2.5. Formatting the program listing 

It is possible to use special lines within the source text of a program to format the program 
listing. An empty line (one with no characters on it) corresponds to a 'space' macro in an assem­
bler, leaving a completely blank line without a line number. A line containing only a control-l 
(form-feed) character will cause a page eject in the listing with the corresponding line number 
suppressed. This corresponds to an 'eject' pseudo-instruction. See also section 5.2 for details on 
the nand i options of pi. 

2.6. Execution profiling 

An execution profile consists of a structured listing of (all or part of) a program with infor­
mation about the number of times each statement in the progra.m was executed for a particular 
run of the program. These profiles can be used for several purposes. In a program which was 
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abnormally terminated due to excessive looping or recursion or by a program fault, the counts can 
facilitate location of the error. Zero counts mark portions of the program which were not executed; 
during the early debugging stages they should prompt new test data or a re-examination of the 
program logic. The profile is perhaps most valuable, however, in drawing attention to the (typi­
cally small) portions of the program that dominate execution time. This information can be used 
for source level optimization. 

An example 

A prime number is a number which is divisible only by itself and the number one. The pro­
gram prime8, written by Niklaus Wirth, determines the first few prime numbers. In translating 
the program we have specified the • option to piz. This option causes the translat.or to generate 
counters and count instructions sufficient in number to determine the number of times each state­
ment in the program was executed.f When execution of the program completes, either normally or 
abnormally, this count data is written to the file pmon. out in the current directory.* It. is then pos­
sible to prepare an execution profile by giving pzp the name of the file associated wit.h t.his data, as 
was done in the following example. 

% pix -I -II primes.p 
Berkeley Pascal PI -- Version 2.0 (Sat Oct 1821:01:54 1980) 

Tue Oct 14 21:38 1980 primes.p 

1 program primes(output)j 
2 const n == 50; nl == 7; (*nl = sqrt(n)*) 
3 var i,k,x,inc,lim,square,l: int.eger; 
4 prim: boolean; 
5 p,V: array[1..nl] of int.eger; 
6 begin 
7 writ.e(2:6, 3:6); 1 := 2; 
8 x :== 1; inc :== 4; lim := 1; square :== 9; 
9 for i := 3 to n do 

10 begin (*find next prime*) 
11 repeat x :== x + inc; inc :- 6-inc; 
12 if square < == x then 
13 begin lim := lim+l; 
14 v [lim] := square; square :== sqr(p[lim+l]) 
15 end; 
16 k := 2; prim :== t.ruej 
17 while prim and (k<lim) do 
18 begin k :- k+lj 
19 if v[k] < x then v[k] :- v[k] + 2*p[k]j 
20 prim :== x < > v[kj 
21 end 
22 until prim; 
23 if i <- nl then p[iJ :== Xj 
24 write(x:6); I :- 1+1; 
25 if I = 10 then 

fThe counts are completely accurate only in the absence of runtime errors and nonlocal goto statements. This 
is not generally a problem, however, as in structured programs nonlocal goto statements occur infrequently, and 
counts are incorrect arter abnormal termination only when the upward look described below to get a count 
passes a suspended call point. 
Wmon.out has a name similar to mon.out the monitor file produced by the profiling facility of the C compiler 
cc (1). See prof (1) ror a discussion or the C compiler profiling facilities. 

--------- ---------------------------------------------~-
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26 begin writeln; I :- 0 
27 end 
28 end; 
29 writeln; 
30 end. 

Execution begins ... 
2 3 5 7 11 13 17 19 23 29 

31 37 41 43 47 53 59 61 67 71 
73 79 83 89 97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 

Execution terminated. 

1404 statements executed in 0.17 seconds cpu time. 
% 

Discussion 

The header lines of the outputs of pix and pxp in this example indicate the version of the 
translator and execution profiler in use at the time this example was prepared. The time given 
with the file name (also on the header line) indicates the time of last modification of the program 
source file. This time serves to ver8ion 8tamp the input program. Pxp also indicates the time at 
which the profile data was gathered. 

% pxp -& primes.p . 
Berkeley Pascal PXP -- Version 1.1 (May 7,1979) 

Tue Oct 14 21:38 1980 primes.p 

Profiled Tue Oct 21 18:48 1980 

1 I.-program primes(output); 
2 ~onst 
2 I n = 50; 
2 1 n1 - 7; (*n1 = sqrt(n)*) 
3 Ivar 
3 1 i, k, x, inc, lim, square, I: integer; 
4 1 prim: boolean; 
5 1 P, v: array [1..n1] of integer; 
6 J>egin 
7 I write(2: 6, 3: 6); 
7 I 1:= 2; 
8 1 x:= 1; 
8 1 inc:= 4; 
8 1 lim:- 1; 
8 1 square:= 9; 
9 1 for i :- 3 to n do begin (*find next prim~) 
9 48.-1 repeat 
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76.-1 x:= x + inc; 
I inc:= 6 - inc; 
I if square < == x then begin 

5.-1 lim:== lim + 1; 
t v[lim]:== square; 
1 square:== sqr(p[lim + 1]) 

end; 
k:= 2; 
prim := true; 

I while prim and (k < lim) do begin 
157.-1 k:== k + 1; 

I if v[k] < x then 
42.-1 v[k]:= v[k] + 2 * p[k]; 

1 prim:== x < > v[k] 
I end 
~ntil prim; 

1 if i <- nl then 
5·-1 p[i]:== x; 
I write(x: 6); 
I 1:== I + 1; 
I if I == 10 then begin 

5.-1 writeln; 
1 1:== 0 

end 
I end; 
I writeln 
~nd. 

To determine the number of times a statement was executed, one looks to the left of the 
statement and finds the corresponding vertical bar 'I'. H this vertical bar is labelled with a count 
then that count gives the number of times the statement was executed. If the bar is not labelled, 
we look up in the listing to find the first' r which directly above the original one which has a count 
and that is the answer. Thus, in our example, Ie was incremented 157 times on line 18, while the 
write procedure call on line 24 was executed 48 times as given by the count on the repeat. 

More information on pxp can be found in its manual section pzp (1) and in sections 5.4, 5.5 
and 5.10. 
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3. Error diagnostics 

This section of the U8er'8 Manual discusses the error diagnostics of the programs pi, pc and 
px. Pix is a simple but useful program which invokes pi and px to do all the real processing. See 
its manual section pix (1) and section 5.2 below for more details. All the diagnostics given by pi 
will also be given by pc. 

3.1. Translator syntax errors 

A few comments on the general nature of the syntax errors usually made by Pascal program­
mers and the recovery mechanisms of the current translator may help in using the system. 

DIegal eharacters 

Characters such as '$', 'I', and '@' are not part of the language Pascal. If they are found in 
the source program, and are not part of a constant string, a constant character, or a comment, 
they are considered to be 'illegal characters'. This can happen if you leave off an opening string 
quote "'. Note that the character '''', although used in English to quote strings, is not used to 
quote strings in Pascal. Most non-printing characters in your input are also illegal except in char­
acter constants and character strings. Except for the tab and form feed characters, which are used 
to ease formatting of the program, non-printing characters in the input file print as the character 
17' so that they will show in your listing. 

String errors 

There is no character string of length 0 in Pascal. Consequently the input 1 HI is not accept­
able. Similarly, encountering an end-of-line after an opening string quote'" without encountering 
the matching closing quote yields the diagnostic "Unmatched ' for string". It is permissible to use 
the character 1#' instead of ,,, to delimit character and constant strings for portability reasons. 
For this reason, a spuriously placed 1#' sometimes causes the diagnostic about unbalanced quotes. 
Similarly, a '#' in column one is used when preparing programs which are to be kept in multiple 
files. See section 5.11 for details. 

Comments in a comment, non-terminated comments 

As we saw above, these errors are usually caused by leaving off a comment delimiter. You 
can convert parts of your program to comments without generating this diagnostic since there are 
two different kinds of comments - those delimited by '{' and '}', and those delimited by I{*' and 
'*)'. Thus consider: 

{ This is a comment enclosing a piece of program 
a := functioncall; (* comment within comment *) 
procedurecall; 
lhs := rhs; (* another comment *) 
} 

By using one kind of comment exclusively in your program you can use the other delimiters 
when you need to "comment out" parts of your programt. In this way you will also allow the 
translator to help by detecting statements accidentally placed within comments. 

If a comment does not terminate before the end of the input file, the translator will point to 
the beginning of the comment, indicating that the comment is not terminated. In this case pro­
cessing will terminate immediately. See the discussion of "QUIT" below. 

tIr you wish to tra.nsport your progra.m, especia.!ly to the 6000-3.4 implementa.tion, you should use the character 
sequence '(*' to delimit comments. For tra.nsportation over the rcBlink to Pasca.! 600()'3.4, the character ':If:' 
should be used to delimit cha.racters and constant strings. 
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Diaits in numbers 

This part of the language is a minor nuisance. Pascal requires digits in real numbers both 
before and after the decimal point. Thus the following statements, which look quite reasonable to 
FORTRAN users, generate diagnostics in Pascal: 

Tue Oct 14 21:37 1980 digits.p: 
4 r:= 0.; 

e -- t - Digits required after decimal point 
5 r:- .0; 

e t - Digits required before decimal point 
6 r:= l.elO; 

e t - Digits required after decimal point 
7 r:= .05e-l0j 

e t - Digits required before decimal point 

These same constructs are also illegal as input to the Pascal interpreter px. 

Replacements, insertions, and deletions 

When a syntax error is encountered in the input text, the parser invokes an error recovery 
procedure. This procedure examines the input text immediately after the point of error and con­
siders a set of simple corrections to see whether they will allow the analysis to continue. These 
corrections involve replacing an input token with a different token, inserting a token, or replacing 
an input token with a different token. Most of these changes will not cause fatal syntax errors. 
The exception is the insertion of or replacement with a symbol such as an identifier or a numberj 
in this case the recovery makes no attempt to determine which identifier or what number should 
be inserted, hence these are considered fatal syntax errors. 

Oonsider the following example. 

% pix -I synerr.p 
Berkeley Pascal PI - Version 2.0 (Sat Oct 18 21:01:54 1980) 

Tue Oct 21 23:51 1980 synerr.p 

1 program syn(output); 
2 var i, j are integerj 

e t-- Replaced identifier with a ':' 
3 begin 
4 for j :* 1 to 20 begin 

e ---------t--- Replaced '*' with a '-' 
e ----------t-- Inserted keyword do 

5 write(j)j 
6 i - 2 ** jj 

e t-Inserted ':' 
E t- Inserted identifier 

7 writeln(i)) 
E t- Deleted')' 

8 end 
9 end. 
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% 

The only surprise here may be that Pascal does not have an exponentiation operator, hence the 
complaint about '**'. This error illustrates that, if you assume that the language has a feature 
which it does not, the translator diagnostic may not indicate this, as the translator is unlikely to 
recognize the construct you supply. 

Undefined or improper Identifiers 

If an identifier is encountered in the input but is undefined, the error recovery will replace it 
with an identifier of the appropriate class. Further references to this identifier will be summarized 
at the end of the containing procedure or funetion or at the end of the program if the reference 
occurred in the main program. Similarly, if an identifier is used in an inappropriate way, e.g. if a 
type identifier is used in an assignment statement, or if a simple variable is used where a record 
variable is required, a diagnostic will be produced and an identifier of the appropriate type 
inserted. Further incorrect references to this identifier will be flagged only if they involve incorrect 
use in a different way, with all incorrect uses being summarized in the same way as undefined vari­
able uses are. 

Expected symbols, malformed constructs 

If none of the above mentioned corrections appear reasonable, the error recovery will examine 
the input to the left of the point of error to see if there is only one symbol which can follow this 
input. If this is the case, the recovery will print a diagnostic which indicates that the given symbol 
was 'Expected'. 

In cases where none of these corrections resolve the problems in the input, the recovery may 
issue a diagnostic that indicates that the input is "malformed". If necessary, the translator may 
then skip forward in the input to a place where analysis can continue. This process may cause 
some errors in the text to be missed. 

Consider the following example: 

% pix -I synerr2.p 
Berkeley Pascal PI -- Version 2.0 (Sat Oct 18 21:01:54 1980) 

Tue Oct 14 21:38 1980 synerr2.p 

1 program synerr2(input,outpu); 
2 integer a(10) 

E ----j -- Malformed declaration 
3 begin 
4 read(b); 

E -------t -- Undefined variable 
5 for c := 1 to 10 do 

E - t - Undefined variable 
6 a(c):=b*cj 

E • t -- Undefined procedure 
E . t - Malformed statement 

7 end. 
E 1 - File outpu listed in program statement but not declared 
e 1 - The file output must appear in the program statement file list 



In program synerr2: 
E - a undefined on line 6 
E - b undefined on line 4 
E - c undefined on lines 5 6 
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Execution ~uppressed due to compilation errors 
% 

Here we misspelled output and gave a FORTRAN style variable declaration which the translator 
diagnosed as a 'Malformed declaration'. When, on line 6, we used '(' and C)' for subscripting (as in 
FORTRAN) rather than the 'I' and 'J' which are used in Pascal, the translator noted that a was not 
defined as a procedure. This occurred because procedure and function argument lists are del­
imited by parentheses in Pascal. As it is not permissible to assign to procedure calls the translator 
diagnosed a malformed statement at the point of assignment. 

Expected and unexpected end-or-file, "QUIT" 

It the translator finds a complete program, but there is more non-comment text in the input 
file, then it will indicate that an end-of-file was expected. This situation may occur after a brack­
eting error, or if too many ends are present in the input. The message may appear after the 
recovery says that it "Expected '.'" since'.' is the symbol that terminates a program. 

It severe errors in the input prohibit further processing the translator may produce a diagnos­
tic followed by "QUIT". One example of this was given above - a non-terminated comment; 
another example is a line which is longer than 160 characters. Consider also the following exam­
ple. 

% pix -I mism.p 
Berkeley Pascal PI -- Version 2.0 (Sat Oct 18 21:01:54 1980) 

Tue Oct 14 21:38 1980 mism.p 

1 program mismatch(output) 
2 begin 

e ---t -- Inserted ';' 
3 writeln( '*** 1; 
4 { The next line is the last line in the file } 
5 writeln 

E -----t - Unexpected end-of-file - QUIT 
% 

3.2. Translator semantic errors 

The extremely large number of semantic diagnostic messages which the translator produces 
make it unreasonable to discuss each message or group of messages in detail. The messages are, 
however, very informative. We will here explain the typical formats and the terminology used in 
the error messages so that you will be able to make sense out of them. In any case in which a 
diagnostic is not completely comprehensible you can refer to the Uaer Manual by Jensen and 
Wirth for examples. 

I~-", 

\_~ 
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Format of the error diagnostics 

As we saw in the example program above, the error diagnostics from the Pascal translator 
include the number of a line in the text of the program as well as the text of the error message. 
While this number is most often the line where the error occurred, it is occasionally the number of 
a line containing a bracketing keyword like end or until. In this case, the diagnostic may refer to 
the previous statement. This occurs because of the method the translator uses for sampling line 
numbers. The absence of a trailing 'i' in the previous statement causes the line number 
corresponding to the end or until. to become associated with the statement. As Pascal is a free­
format language, the line number associations can only be approximate and may seem arbitrary to 
some users. This is the only notable exception, however, to reasonable associations. 

Ineompatible types 

Since Pascal is a strongly typed language, many semantic errors manifest themselves as type 
errors. These are called 'type clashes' by the translator. The types allowed for various operators 
in the language are summarized on page 108 of the Jensen-Wirth Uaer Manval. It is important to 
know that the Pascal translator, in its diagnostics, distinguishes between the following type 
'classes': 

array 
pointer 

Boolean 
real 

char 
record 

file 
scalar 

integer 
string 

These words are plugged into a great number of error messages. Thus, if you tried to assign an 
integer value to a char variable you would receive a diagnostic like the following: 

Tue Oct 14 21:37 1980 clash.p: 
E 7 - Type clash: integer is incompatible with char 

... Type of expression clashed with type of variable in assignment 

In this case, one error produced a two line error message. If the same error occurs more than once, 
the same explanatory diagnostic will be given each time. 

Scalar 

The only class whose meaning is not self-explanatory is 'scalar'. Scalar has a precise meaning 
in the Jensen-Wirth Uaer Manval where, in fact, it refers to char, integer, real, and Boolean 
types as well as the enumerated types. For the purposes of the Pascal translator, scalar in an error 
message refers to a user-defined, enumerated type, such as opa in the example above or color in 

type color = (red, green, blue) 

For integers, the more explicit denotation integer is used. Although it would be correct, in the 
context of the User Manval to refer to an integer variable as a scalar variable pi prefers the more 
specific identification. 

Function and procedure type errol'S 

For built-in procedures and functions, two kinds of errors occur. If the routines are called 
with the wrong number of arguments a message similar to: 

Tue Oct 14 21:38 1980 sinl.p: 
E 12 - sin takes exactly one argument 
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is given. H the type of the argument is wrong, a message like 

Tue Oct 1421:381980 sin2.p: 
E 12 - sin's argument must be integer or real, not char 

is produced. A few functions and procedures implemented in Pascal 6000-3.4 are diagnosed as 
unimplemented in Berkeley Pascal, notably those related to segmented files. 

Can't read and write scalars, etc. 

The messages which state that scalar (user-defined) types cannot be written to and from files 
are often mysterious. It is in fact the case that if you define 

type color == (red, green, blue) 

"standard" Pascal does not associate these constants with the strings 'red', 'green', and 'blue' in 
any way. An extension has been added which allows enumerated types to be read and written, 
however if the program is to be portable, you will have to write your own routines to perform 
these functions. Standard Pascal only allows the reading of characters, integers and real numbers 
from text files. You cannot read strings or Booleans. It is possible to make a 

file of color 

but the representation is binary rather than string. 

Expression diagnostics 

The diagnostics for semantically ill-formed expressions are very explicit. Consider this sam­
ple translation: 

% pi -1 expr.p 
Berkeley Pascal PI -- Version 2.0 (Sat Oct 18 21:01:54 1980) 

Tue Oct 14 21:37 1980 expr.p 

1 program x( output)i 
2 var 
3 a: set of chari 
4 b: Boolean; 
5 c: (red, green, blue); 
6 p: t integer; 
7 A: alfai 
8 B: packed array [1..5J of char; 
9 begin 

10 
11 
12 
13 
14 
15 
16 

b :- true; 
c :- redi 
new(p); 
a:= [Ji 
A:= 'Hello, yellow'; 
b:= a and bi 
a:- a * 3i 

c 
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18 
19 
20 
21 end. 
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if input < 2 then writeln( 'boo '); 
if p <= 2 then writeln( 'sure nuff'); 
if A = B then writeln( 'same 1; 
if c - true then writeln( 'hue"s and color "5) 

E 14 - Constant string too long 
E 15 - -Left operand of and must be Boolean, not set 
E 16 - Cannot mix sets with integers and reals as operands of * 
E 17 - files may not participate in comparisons 
E 18 - pointers and integers cannot be compared - operator was <= 
E 19 - Strings not same length in = comparison 
E 20 - scalars and Booleans cannot be compared - operator was = 
In program x: 

w - constant green is never used 
w - constant blue is never used 
w - variable B is used but never set 

% 

This example is admittedly far-fetched, but illustrates that the error messages are sufficiently clear 
to allow easy determination of the problem in the expressions. 

Type equivalence 

Several diagnostics produced by the Pascal translator complain about 'non-equivalent types'. 
In general, Berkeley Pascal considers variables to have the same type only if they were declared 
with the same constructed type or with the same type identifier. Thus, the variables it and y 
declared as 

var 
x: t integer; 
y: t integer; 

do not have the same type. The assignment 

x:= y 

thus produces the diagnostics: 

Tue Oct 1421:38 1980 typequ.p: 
E 7 - Type clash: non-identical pointer types 

... Type of expression clashed with type of variable in assignment 

Thus it is always necessary to declare a type such as 

type intptr = t integer; 

and use it to declare 

val' x: intptr; y: intptr; 

Note that if we had initially declared 
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var x, y: t integer; 

then the assignment statement would have worked. The statement 

xt :- yt 
is allowed in either case. Since the parameter to a procedure or function must be declared with 
a type identifier rather than a constructed type, it is always necessary, in practice, to declare any 
type which will be used in this way. 

Unreachable statements 

Berkeley Pascal flags unreachable statements. Such statements usually correspond to errors 
in the program logic. Note that a statement is considered to be reachable if there is a potential 
path of control, even if it can never be taken. Thus, no diagnostic is produced for the statement: 

if' false then 
writeln( 'impossible! 1 

Goto's into structured statements 

The translator detects and complains about goto statements which transfer control into 
structured statements (for, while, etc.) It does not allow such jumps, nor does it allow branching 
from the then part oC an if' statement into the else part. Such checks are made only within the 
body oC a single procedure or Cunction. 

Unused variables, never set variables 

Although pi always clears variables to 0 at procedure and function entry, pc does not 
unless runtime checking is enabled using the C option. It is not good programming practice to 
rely on this initialization. To discourage this practice, and to help detect errors in program logic, 
pi flags as a 'w' warning error: 

1) Use oC a variable which is never assigned a value. 

2) A variable which is declared but never used, distinguishing between those variables for 
which values are computed but which are never used, and those completely unused. 

In Cact, these diagnostics are applied to all declared items. Thus a const or a procedure which is 
declared but never used is flagged. The w option of pi may be used to suppress these warnings; 
see sections 5.1 and 5.2. 

3.3. Translator panics, i/o errors 

Panics 

One class of error which rarely occurs, but which causes termination of all processing when it 
does is a panic. A panic indicates a translator-detected internal inconsistency. A typical panic 
message is: 

snark (rvalue) line=110 yyline=109 
Snark in pi 

If you receive such a message, the translation will be quickly and perhaps ungracefully terminated. 
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You should contact a teaching assistant or a member of the system staff, after saving a copy of 
your program for later inspection. If you were making changes to an existing program when the 
problem occurred, you may be able to work around the problem by ascertaining which change 
caused the anark and making a different change or correcting an error. in the program. A small 
number of panics are possible in pz. All panics should be reported to a teaching assistant or sys­
tems staff so that they can be fixed. 

Out of memory 

The only other error which will abort translation when no errors are detected is running out 
of memory. All tables in the translator, with the exception of the parse stack, are dynamically 
allocated, and can grow to take up the full available process space of 64000 bytes on the PDP-H. 
On the VAX-H, table sizes are extremely generous and very large (25000) line programs have been 
easily accommodated. For the PDP-H, it is generally true that the size of the largest translatable 
program is directly related to procedure and function size. A number of non-trivial Pascal pro­
grams, including some with more than 2000 lines and 2500 statements have been translated and 
interpreted using Berkeley Pascal on PDP-ll's. Notable among these are the Pascal-S interpreter, a 
large set of programs for automated generation of code generators, and a general context-free pars­
ing program which has been used to parse sentences with a grammar for a superset of English. In 
general, very large programs should be translated using pc and the separate compilation facility. 

If you receive an out of space message from the translator during translation of a large pro­
cedure or function or one containing a large number of string constants you may yet be able to 
translate your program if you break this one procedure or function into several routines. 

I/O errors 

Other errors which you may encounter when running pi relate to input-output. If pi cannot 
open the file you specify, or if the file is empty, you will be so informed. 

3.4. Run-time errors 

We saw, in our second example, a run-time error. \Ve here give the general description of 
run-time errors. The more unusual interpreter error messages are explained briefly in the manual 
section for pz (1). 

Start-up errors 

These errors occur when the object file to be executed is not available or appropriate. Typi­
cal errors here are caused by the specified object file not existing, not being a Pascal object, or 
being inaccessible to the user. 

Program execution errors 

These errors occur when the program interacts with the Pascal runtime environment in an 
inappropriate way. Typical errors are values or subscripts out of range, bad arguments to built~in 
functions, exceeding the statement limit because of an infinite loop, or running out of memoryi. 
The interpreter will produce a backtrace after the error occurs, showing alL the active routine calls, 
unless the p option was disabled when the program was translated. Unfortunately, no variable 
values are given and no way of extracting them is available .• 

As an example of such an error, assume that we have accidentally declared the constant n1 
to be 6, instead of 7 on line 2 of the program primes as given in section 2.6 above. If we run this 

fI'he checlts for running out of memory are not foolproof a.ad there is a chance that the interpreter will fault, 
producing a core image when it runs out of memory. This situation occurs very rarely . 
• On the v-,,"*U, each variable is restricted to allocate at most 65000 bytes of storage (this is a !'a'-llism that 
has survived to the VAX.) 



program we get the following response. 

% pix primes.p 
Execution begins ... 

2 357 
31 37 41 43 
73 79 83 89 

127 131 137 139 

Subscript out of range 
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11 13 
47 53 
97 101 

149 151 

Error in "primes"+8 near line 14. 
Execution terminated abnormally. 

17 
59 

103 
157 

941 statements executed in 0.50 seconds cpu time. 
% 

19 
61 

107 
163 

23 
67 

109 
167 

29 
71 

113 

Here the interpreter indicates that the program terminated abnormally due to a subscript out 
of range near line 14, which is eight lines into the body of the program primes. 

Interrupts 

If the program is interrupted while executing and the p option was not specified, then a 
backtrace will be printed.t The file pmon.out of profile information will be written if the program 
was translated with the II option enabled to pi or pix. 

110 interaction errors 

The final class of interpreter errors results from inappropriate interactions with files, includ­
ing the user's terminal. Included here are bad formats for integer and real numbers (such as no 
digits after the decimal point) when reading. 

toccasionally, the Pascal system will be in an inconsistent state when this occurs, e.g. when an interrupt ter­
minates a procedure or function entry or exit. In this case, the ba.cktrace will only contain the current line. 
A reverse call order list or procedures will not be given. 

------------------------------
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4. Input/output 

This section describes features of the Pascal input/output environment, with special con­
sideration of the features peculiar to an interactive implementation. 

4.1. Introduction 

Our first sample programs, in section 2, used the file output. We gave examples there of 
redirecting the output to a file and to the line printer using the shell. Similarly, we can read the 
input from a file or another program. Consider the following Pascal program which is similar to 
the program cat (1). 

% pix -I kat.p <primes 
Berkeley Pascal PI -- Version 2.0 (Sat Oct 18 21:01:54 1980) 

Tue Oct 14 21:38 1980 kat.p 

1 program kat(input, output); 
2 var 
3 ch: char; 
4 begin 
5 while not eof do begin 
6 while not eoln do begin 
7 read(ch); 
8 write(ch) 
9 end; 

10 readln; 
11 writeln 
12 end 
13 end { kat }. 

Execution begins ... 
2 3 5 7 11 13 17 19 23 29 

31 37 41 43 47 53 59 61 67 71 
73 79 83 89 97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 

Execution terminated. 

925 statements executed in 0.15 seconds cpu time. 
% 

Here we have used the shell's syntax to redirect the program input from a file in pn·mes in which 
we had placed the output of our prime number program of section 2.6. It is also possible to 'pipe' 
input to this program much as we piped input to the line printer daemon /pr (1) before. Thus, the 
same output as above would be produced by 

% eat primes I pix -I kat.p 

All of these examples use the shell to control the input and output from files. One very sim­
ple way to associate Pascal files with named UNIX files is to place the file name in the program 
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statement. For example, suppose we have previously created the file data. We then use it as input 
to another version of a listing program. 

% cat data 
line one. 
line two. 
line three is the end. 
% pix -I copydata.p 
Berkeley Pascal PI -- Version 2.0 (Sat Oct 18 21:01:54 1980) 

Tue Oct 14 21:37 1980 copydata.p 

1 program copydata(data, output); 
2 var 
3 ch: char; 
4 data: text; 
5 begin 
6 reset(data); 
7 while not eof(data) do begin 
8 while not eoln( data) do begin 
9 read(data, ch); 

10 write(ch) 
11 end; 
12 readln(data); 
13 writeln 
14 end 
15 end { copydata }. 

Execution begins ... 
line one. 
line two. 
line three is the end. 
Execution terminated. 

134 statements executed in 0.08 seconds cpu time. 
% 

By mentioning the file data in the program statement, we have indicated that we wish it to 
correspond to the UNIX file data. Then, when we 'reset(data}', the Pascal system opens our file 
'data' for reading. More sophisticated, but less portable, examples of using UNIX files will be given 
in sections 4.5 and 4.6. There is a portability problem even with this simple example. Some Pas­
cal systems attach meaning to the ordering of the file in the program statement file list. Berkeley 
Pascal does not do so. 

4.2. Eof and eoln 

An extremely common problem encountered by new users of Pascal, especially in the interac­
tive environment offered by UNIX, relates to the definitions of eo! and eoln. These functions are 
supposed to be defined at the beginning of execution of a Pascal program, indicating whether the 
input device is at the end of a line or the end of a file. Setting eo! or eoln actually corresponds to 
an implicit read in which the input is inspected, but no input is "used up". In fact, there is no 
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way the system can know whether the input is at the end-of-file or the end-of-line unless it 
attempts to read a line from it. If the input is from a previously created file, then this reading can 
take place without run-time action by the user. However, if the input is from a terminal, then the 
input is what the user types. t If the system were to do an initial read automatically at the begin­
ning of program execution, and if the input were a terminal, the user would have to type some 
input before execution could begin. This would make it impossible for the program to begin by 
prompting for input or printing a herald. 

Berkeley Pascal has been designed so that an initial read is not necessary. At any given 
time, the Pascal system mayor may not know whether the end-of-file or end-of-line conditions are 
true. Thus, internally, these functions can have three values - true, false, and "I don't know yet; 
if you ask me I'll have to find out". All files remain in this last, indeterminate state until the Pas­
cal program requires a value for eof or eoln either explicitly or implicitly, e.g. in a call to read. 
The important point to note here is that if you force the Pascal system to determine whether the 
input is at the end-of-file or the end-of-line, it will be necessary for it to attempt to read from the 
input. 

Thus consider the following example code 

while not eof do begin 
write{'number, please? '); 
read{i); 
writeln{ 'that was a " i: 2) 

end 

At first glance, this may be appear to be a correct program for requesting, reading and echoing 
numbers. Notice, however, that the while loop asks whether eof is true before the request is 
printed. This will force the Pascal system to decide whether the input is at the end-of-file. The 
Pascal system wiII give no messages; it will simply wait for the user to type a line. By producing 
the desired prompting before testing eo/, the following code avoids this problem: 

write(,number, please? '); 
while not eof do begin 

read{i); 
writeln{ 'that was a " i:2); 
write{ 'number, please? ') 

end 

The user must still type a line before the while test is completed, but the prompt will ask for it. 
This example, however, is still not correct. To understand why, it is first necessary to know, as we 
will discuss below, that there is a blank character at the end of each line in a Pascal text file. The 
read procedure, when reading integers or real numbers, is defined so that, if there are only blanks 
left in the file, it will return a zero value and set the end-of-file condition. If, however, there is a 
number remaining in the file, the end-of-file condition will not be set even if it is the last number, 
as read never reads the blanks after the number, and there is always at least one blank. Thus the 
modified code will still put out a spurious 

that was a 0 

at the end of a session with it when the end-of-file is reached. The simplest way to correct the 
problem in this example is to use the procedure readln instead of read here. In general, unless we 

tIt is not possible to det.ermine whether the input is a terminal, as the input may appear to be a file but actually 
be & pipe, the output of & program which is reading from the terminal. 
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test the end-of-file condition both before and alter calIs to read or reuln, there will be inputs for 
which our program will attempt to read past end-ol-file. 

4.3. More about eoln 

To have a good understanding of when eoln will be true it is necessary to know that in any 
file there is a special character indicating end-of-line, and that, in effect, the Pascal system always 
reads one character ahead of the Pascal read commands:t For instance, in response to 'rea.d(ch)', 
the system sets cia to the current input character and gets the next input character. If the current 
input character is the last character of the line, then the next input character from the file is the 
new-line character, the normal UNIX line separator. When the read routine gets the new-line char­
acter, it replaces that character by a blank (causing every line to end with a blank) and sets eoln 
to true. Eoln will be true as soon as we read the last character of the line and before we read the 
blank character corresponding to the end of line. Thus it is almost always a mistake to write a 
program which deals with input in the following way: 

read(ch); 
it eoln then 

Done with line 
else 

Normal processing 

as this will almost surely have the effect of ignoring the last character in the line. The 'read(ch}' 
belongs as part of the normal processing. 

as: 
Given this framework, it is not hard to explain the function of a readln call, which is defined 

while not eoln do 
get(input); 

get(input); 

This advances the file until the blank corresponding to th~ end-of-line is the current input symbol 
and then discards this blank. The next character available from relJd will therefore be the first 
character of the next line, if one exists. 

4.4. Output buffering 

A final point about Pascal input-output must be noted here. This concerns the buffering of 
the file output. It is extremely inefficient for the Pascal system to send each character to the user's 
terminal as the program generates it for output; even less efficient if the output is the input of 
another program such as the line printer daemon /pr (1). To gain efficiency, the Pascal system 
"buffers" the output characters (i.e. it saves them in memory until the buffer is full and then emits 
the entire buffer in one system interaction.) However, to allow interactive prompting to work as in 
the example given above, this prompt must be printed before the Pascal system waits for a 
response. For this reason, Pascal normally prints all the output which has been generated for the 
file output whenever 

1) A writdn occurs, or 

2) The program reads from the terminal, or 

3) The procedure message or ftush is called. 

tIn Puca.! terms, 'read( eh)' eorrespoDds to 'eh :- iDput'; gfl.(input)' 
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Thus, in the code sequence 

for i :== 1 to 5 do begin 
write(i: 2); 
Compute a lot with no output 

end; 
writeln 
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the output integers will not print until the writeln occurs. The delay can be somewhat disconcert­
ing, and you should be aware that it will occur. By setting the b option to 0 before the progr~ 
statement by inserting a comment of the form 

(*SbO*) 

we can cause outp.ut to be completely unbuffered, with a corresponding horrendous degradation in 
program efficiency. Option control in comments is discussed in section 5. 

4.5. Files, reset, and rewrite 

It is possible to use extended forms of the built-in functions reset and rewrite to get more 
general associations of UNIX file names with Pascal file variables. When a file other than input or 
output is to be read or written, then the reading or writing must be preceded by a reset or rewrite 
call. In general, if the Pascal file variable has never been used before, there will be no UNIX 
filename associated with it. .As we saw in section 2.9, by mentioning the file in the program 
statement, we could cause a UNIX file with the same name as the Pascal variable to be associated 
with it. If we do not mention a file in the program statement and use it for the first time with 
the statement 

reset(f) 

or 

rewrite(f) 

then the Pascal system will generate a temporary name of the form 'tmp.x' for some character 'x', 
and associate this UNIX file name name with the Pascal file. The first such generated name will be 
'tmp.l' and the names continue by incrementing their last character through the ASCII set. The 
advantage of using such temporary files is that they are automatically remove d by the Pascal sys­
tem as soon as they become inaccessible. They are not removed, however, if a runtime error causes 
termination while they are in scope. 

To cause a particular UNIX pathname to be associated with a Pascal file variable we can give 
that name in the reBet or rewrite call, e.g. we could have associated the Pascal file data with the 
file 'primes' in our example in section 3.1 by doing: 

reset( data, 'primes ') 

instead of a simple 

reset( data) 

In this case it is not essential to mention 'data' in the program statement, but it is still a good 
idea because is serves as an aid to program documentation. The second parameter to reBet and 
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rewrite may be any string value, including a variable. Thus the names of UNIX files to be associ­
ated with Pascal file variables can be read in at run time. Full details on file name/file variable 
associations are given in section A.S. 

4.8. Arse and argv 

Each UNIX process receives a variable length sequence of arguments each of which is a vari­
able length character string. The built-in function arge and the built-in procedure argv can be 
used to access and process these arguments. The value of the function «rge is the number of argu­
ments to the process. By convention, the arguments are treated as an array, and indexed from 0 
to «rge-1, with the zeroth argument being the name of the program being executed. The rest of 
the arguments are those passed to the command on the command line. Thus, the command 

% obj /ete/motd /uar/diet/words hello 

will invoke the program in the file obj with «rge having a value of 4. The zeroth element accessed 
by argv will be 'obj', the first '/etc/motd', etc. 

Pascal does not provide variable size arrays, nor does it allow character strings of varying 
length. For this reason, «rgv is a procedure and has the syntax 

argv(i, a) 

where i is an integer and a is a string variable. This procedure call assigns the (possibly truncated 
or blank padded) i 'th argument of the current process to the string variable «. The file manipu­
lation routines react and rewn'te will strip trailing blanks from their optional second arguments so 
that this blank padding is not a problem in the usual case where the arguments are file names. 

We are now ready to give a Berkeley Pascal program 'kat', based on that given in section 3.1 
above, which can be used with the same syntax as the UNIX system program cat (1). 

% eat kat.p 
program kat(input, output); 
var 

ch: char; 
i: integer; 
name: packed array [1..100] of char; 

begin 
i := 1; 
repeat 

if i < argc then begin 
argv(i, name}; 
reset(input, name}; 
i := i + 1 

end; 
while not eof do begin 

while not eoln do begin 
read(cb); 
write(ch} 

end; 
readln; 
writeln 
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end 
until i > == argc 

end { kat}. 
% 
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Note that the reset call to the file input here, which is necessary for a clear program, may be disal­
lowed on other systems. As this program deals mostly with argc and argv and UNIX system 
dependent considerations, portability is of little concern. 

If this program is in the file 'kat.p', then we can do 

% pi kat.p 
%mvobj kat 
% kat primes 

2 3 5 7 11 13 17 
31 37 41 43 47 53 59 
73 79 83 89 97 101 103 

127 131 137 139 149 151 157 
179 181 191 193 197 199 211 

930 statements executed in 0.18 seconds cpu time. 
% kat 
This is a line of text. 
This is a line of text. 

19 23 29 
61 67 71 

107 109 113 
163 167 173 
223 227 229 

The next line contains only an end-of-file (an invisible eontrol-d!) 
The next line contains only an end-of-file (an invisible control-d!) 

287 statements executed in 0.03 seconds cpu time. 
% 

Thus we see that, if it is given arguments, 'kat' will, like cat, copy each one in turn. If no argu­
ments are given, it copies from the standard input. Thus it will work as it did before, with 

% kat < primes 

now equivalent to 

% kat primes 

although the mechanisms are quite different in the two cases. Note that if 'kat' is given a bad file 
name, for example: 

% kat xxxxqqq 

Could not open xxxxqqq: No such file or directory 

Error in "kat"+5 near line 11. 

4 statements executed in 0.02 seconds cpu time. 
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% 
it will give a diagnostic and a post-mortem control flow baektraee for debugging. If we were going 
to use 'kat', we might want to translate it differently, e.g.: 

% pi -pb kat.p 
%mvobj kat 

Here we have disabled the post-mortem statistics printing, so as not to get the statistics or the full 
traceback on error. The b option will cause the system to block buffer the input/output so that 
the program will run more efficiently on large files. We could have also specified the t option to 
turn off runtime tests if that was felt to be a speed hindrance to the program. Thus we can try the 
last examples again: 

% kat xxxxqqq 

Could not open xxxxqqq: No such file or directory 

Error in "kat" 
% kat primes 

2 3 5 7 11 13 17 19 23 29 
31 37 41 43 47 53 59 61 67 71 
73 79 83 89 97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 

% 

The interested reader may wish to try writing a program which accepts command line argu­
ments like pi does, using argc and argv to process them. 
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5. Details on the components of the system 

5.1. Options 

The programs pi, pc, and pzp take a number oC options. t There is a standard UNIX conven­
tion Cor passing options to programs on the command line, and this convention is Collowed by the 
Berkeley Pascal system programs. AB we saw in the examples above, option related arguments 
consisted oC the character '-' Collowed by a single character option name. 

Except Cor the b option which takes a single digit value, each option may be set on (enabled) 
or off (disabled.) When an on/off valued option appears on the command line oC pi or it inverts 
the deCault setting of that option. Thus 

% pi -I roo.p 

enables the listing option I, since it defaults off, while 

% pi -t roo.p 

disables the run time tests option t, since it deCaults on. 

In additon to inverting the default settings of pi options on the command line, it is also pos­
sible to control the pi options within the body of the program by using comment.s of a special 
form illustrated by 

{$l-} 

Here we see that the opening comment delimiter (which could also be a '(*') is immediat.ely 
followed by the character '$'. After this '$', which signals the start of the option list., we can place 
a sequence of letters and option controls, separated by',' characters*. The most basic actions for 
options are to set them, thus 

{$l+ Enable listing} 

or to clear them 

{$t-,p- No run-time tests, no post mortem analysis} 

Notice that '+' always enables an option and '-' always disables it, no matter what the default is. 
Thus '-' has a different meaning in an option comment than it has on the command line. AB 
shown in the examples, normal comment text may follow the option list. 

5.2. Options common to Pi, Pc, and Pix 

The following options are common to both the compiler and the interpreter. With each 
option we give its default setting, the setting it would have if it appeared on the command line, 
and a sample command using the option. Most options are on/off valued, with the b option tak­
ing a single digit value. 

Buffering or the file output - b 

The b option controls the buffering of the file output. The default is line buffering, with 
flushing at each reCerence to the file input and under certain other circumstances detailed in section 

tAs piz uses pi to translate Pascal programs, it takes the options of pi also. We rerer to them here, however, as 
pi options. 
p'his format was chosen because it is used by Pascal 6()()()..3.4. In general the options common to both imple­
mentations are controlled in the same way so that comment control in options is mostly portable. It is recom­
mended, however, that only one control be put per comment for maximum portability, as the Pascal 6000-3.4 
implementatiol) will ignore controls after the first one which it does not recognize. 
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5 below. Mentioning b on the command line, e.g. 

% pi -b aasembler.p 

causes standard output to be block buffered, where a block is some system-defined number of char­
acters. The b option may also be controlled in comments. It, unique among the Berkeley Pascal 
options, takes a single digit value rather than an on or off setting. A value of 0, e.g. 

{thO} 
causes the file output to be unbuffered. Any value 2 or greater causes block buffering and is 
equivalent to the flag on the command line. The option control comment setting b must precede 
the program statement. 

Include ftle listing - i 

The i option takes the name of an include file, procedure or function name and causes it 
to be listed while translatingt. Typical uses would be 

% pix -i scanner.i eompiler.p 

to make a listing of the routines in the file scanner.i, and 

% pix -i scanner eompiler.p 

to make a listing of only the routine 8canner. This option is especially useful for conservation­
minded programmers making partial program listings. 

Make a listing - I 

The I option enables a listing of the program. The I option defaults off. When specified on 
the command line, it causes a header line identifying the version of the translator in use and a line 
giving the modification time of the file being translated to appear before the actual program list­
ing. The I option is pushed and popped by the i option at appropriate points in the program. 

Standard Pascal only - s 

The s option causes many of the features of the UNIX implementation which are not found in 
standard Pascal to be diagnosed as '5' warning errors. This option defaults off and is enabled 
when mentioned on the command line. Some of the features which are diagnosed are: non­
standard procedures and functions, extensions to the procedure write, and the padding of con­
stant strings with blanks. In addition, all letters are mapped to lower case except in strings and 
characters so that the case of keywords and identifiers is effectively ignored. The s option is most 
useful when a program is to be transported, thus 

% pi -8 isitstd.p 

will produce warnings unless the program meets the standard. 

Runtime tests - t and C 

These options control the generation of tests that subrange variable values are within bounds 
at run time. pi defaults to generating tests and uses the option t to disable them. pc defaults to 
not generating tests, and uses the option C to enable them. Disabling runtime tests also causes 

tlnclude files a.re discussed in section 0.0. 

c 
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assert statements to be treated as comments.; 

Suppress warning diagnostics - w 

The w option, which deCaults on, allows the translator to print a number oC warnings about 
inconsistencies it finds in the input program. Turning this option off with a comment oC the Corm 

{$w-} 

or on the command line 

% pi -w tryme.p 

suppresses these usually useCul diagnostics. 

Generate counters for a pxp execution profile - • 

The • option, which deCaults off, enables the production of execution profiles. By speciCying 
• on the command line, i.e. 

% pi -z foo.p 

or by enabling it in a comment beCore the program statement causes pi and pc to insert opera­
tions in the interpreter code to count the number oC times each statement was executed. An exam­
ple oC using pzp was given in section 2.6; its options are described in section 5.6. Note that the z 
option cannot be used on separately compiled programs. 

5.3. Options available in Pi 

Post-mortem dump - p 

The p option deCaults on, and causes the runtime system to initiate a post-mortem backtrace 
when an error occurs. It also cause pz to count statements in the executing program, enforcing a 
statement limit to prevent infinite loops. Specifying p on the command line disables these checks 
and the ability to give this post-mortem analysis. It does make smaller and Caster programs, how­
ever. It is also possible to control the p option in comments. To prevent the post-mortem back­
trace on error, p must be off at the end oC the program statement. Thus, the Pascal cross­
reCerence program was translated with 

% pi -pbt pxref.p 

5.4. Options available in Px 

The first argument to pz is the name of the file containing the program to be interpreted. If 
no arguments are given, then the file obj is executed. If more arguments are given, they are avail-

~ee section A.l for a description of usert sta.tements. 
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able to the Pascal program by using the built-ins argc and argv as described in section 4.6. 

p~ may also be invoked automatically. In this case, whenever a Pascal object file name is 
given as a command, the command will be executed with p~ prepended to it; that is 

% obj primes 

will be converted to read 

% px obj primes 

6.6. Options available in Pc 

Generate assembly language - S 

The program is compiled and the assembly language output is left in file appended .s. Thus 

% pc -s too.p 

creates a file foo.s. No executable file is created. 

Symbolic Debugger Information - g 

The g option causes the compiler to generate information needed by sdb(l) the symbolic 
debugger. For a complete description of sdb see Volume 2c of the UNIX Reference Manual. 

Redirect the output file - 0 

The name argument after the -0 is used as the name of the output file instead of a.out. Its 
typical use is to name the compiled program using the root of the file name. Thus: 

% pc -0 myprog myprog.p 

causes the compiled program to be called myprog. 

Generate counters tor a prof execution profile - p 

The compiler produces code which counts the number of times each routine is called. The 
profiling is based on a periodic sample taken by the system rather than by inline counters used by 
p~p. This results in less degradation in execution, at somewhat of a loss in accuracy. See prof( 1) 
for a more complete description. 

Run the object code optimizer - 0 

The output of the compiler is run through the object code optimizer. This provides an 
increase in compile time in exchange for a decrease in compiled code size and execution time. 

6.8. Options available in Pxp 

P~p takes, on its command line, a list of options followed by the program file name, which 
must end in '.p' as it must for pi, pc, and pi~. P~p will produce an execution profile if any of the 
Jl, t or c options is specified on the command line. If none of these options is specified, then pxp 
functions as a program reformatter. 
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It is important to note that only the. and w options of pzp, which are common to pi, pc, 
and pzp can be controlled in comments. All other options must be specified on the command line 
to have any effect. 

The following options are relevant to profiling with p:rp: 

Include the bodies of all routines in the profile - a 

Pzp normally suppresses printing the bodies of routines which were never executed, to make 
the profile more compact. This option forces all routine bodies to be printed. 

Suppress deelaration parts from a profile - d 

Normally a profile includes declaration parts. Specifying d on the command line suppresses 
declaration parts. 

Eliminate inelude directives - e 

Normally, pzp preserves include directives to the output when reformatting a program, as 
though they were comments. Specifying -e causes the contents of the specified files to be reformat­
ted into the output stream instead. This is an easy way to eliminate include directives, e.g. 
before transporting a program. 

Fully parenthesize expressions - f 

Normally pzp prints expressions with the minimal parenthesization necessary to preserve the 
structure of the input. This option causes p:rp to fully parenthesize expressions. Thus the state­
ment which prints as 

d := a + b mod c / e 

with minimal parenthesization, the default, will print as 

d := a + {(b mod c) / e) 

with the f option specified on the command line. 

Left justify all proeedures and funetions - j 

Normally, each procedure and funetion body is indented to reflect its static nesting depth. 
This option prevents this nesting and can be used if the indented output would be too wide. 

Print a table summarizing proeedure and funetion ealls - t 

The t option causes pxp to print a table summarizing the number of calls to each pro­
eedure and funetion in the program. It may be specified in combination with the. option, or 
separately. 

Enable and eontrol the profile - • 

The • profile option is very similar to the i listing control option of pi. If. is specified on 
the command line, then all arguments up to the source file argument which ends in '.p' are taken 
to be the names of procedures and functions or include files which are to be profiled. If this 
list is null, then the whole file is to be profiled. A typical command for extracting a profile of part 
of a large program would be 
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% pxp -s test parser.i compller.p 

This specifies that profiles of the routines in the file par8er. i and the routine ted are to be made. 

6.'1. Formatting programs using pxp 

The program pq can be used to reformat programs, by using a command of the form 

% pxp dlrty.p > elean.p 

Note that since the shell creates the output file 'clean.p' before pq executes, so 'clean.p' and 
'dirty.p' must not be the same file. 

Pzp automatically paragraphs the program, performing housekeeping chores such as com­
ment alignment, and treating blank lines,' lines containing exactly one blank and lines containing 
only a form-feed character as though they were comments, preserving their vertical spacing effect 
in the output. PZ'p distinguishes between four kinds of comments: 

1) Left marginal comments, which begin in the first column of the input line and are 
placed in the first column of an output line. 

2) Aligned comments, which are preceded by no input tokens on the input line. These are 
aligned in the output with the running program text. 

3) Trailing comments, which are preceded in the input line by a token with no more than 
two spaces separating the token from the comment. 

4} Right marginal comments, which are preceded in the input line by a token from which 
they are separated by at least three spaces or a tab. These are aligned down the right 
margin of the output, currently to the first tab stop after the 40th column from the 
current "left margin". 

Consider the following program. 

% eat eomments.p 
{ This is a left marginal comment. } 
program hello(output}; 
var i : integer; {This is a trailing comment} 
j : integer; {This is a right marginal comment} 
k : array [ 1..10J of array [1..10J of integer; {Marginal, but past the margin} 
{ 

An aligned, multi-line comment 
which explains what this program is 
all about 

} 
begin 
i :- 1; {Trailing i comment} 
{A left marginal comment} 
{An aligned comment} 

j := 1; {Right marginal comment} 
k[IJ :=1; 
writeln(i, j, k[lJ) 
end. 

When formatted by pzp the following output is produced. 

j 
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% pxp comments.p 
{ This is a left marginal comment. } 

program hello(output); 
var 
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i: integer; {This is a trailing comment} 
j: integer; 

{ 

} 

k: array [1..10] of array [1..10] of integer; 

An aligned, multi-line comment 
which explains what this program is 
all about 

begin 
i :== 1; {Trailing i comment} 

{A left marginal comment} 
{An aligned comment} 
j :== 1; 
k[l] := 1; 
writeln(i, j, k[l]) 

end. 
% 

{This is a right marginal comment} 
{Marginal, but past the margin} 

{Right marginal comment} 

The following formatting related options are currently available in pxp. The options f and j 
described in the previous section may also be of interest. 

Strip comments -s 

The s option causes pxp to remove all comments from the input text. 

Underline keywords -_ 

A command line argument of the form -_ as in 

% pxp -_ dirty.p 

can be used to cause pxp to underline all keywords in the output for enhanced readability. 

Specify indenting unit - [23456789] 

The normal unit which pxp uses to indent a structure statement level is 4 spaces. By giving 
an argument of the form -d with d a digit, 2 ~ d ~ 9 you can specify that d spaces are to be 
used per level instead. 

5.8. PXret 

The cross--reference program pxre/ may be used to make cross-referenced listings of Pascal 
programs. To produce a cross-reference of the program in the file 'foo.p' one can execute the com­
mand: 

% pxrettoo.p 

The cross-reference is, unfortunately, not block structured. Full details on pxre/ are given in its 
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manual section pzre/ (1). 

5.9. Multi-file programs 

A text inclusion facility is available with Berkeley Pascal. This facility allows the interpola­
tion of source text from other files into the source stream of the translator. It can be used to 
divide large programs into more manageable pieces for ease in editing, listing,. and maintenance. 

The include facility is based on that of the UNIX C compiler. To trigger it you can place the 
character '#' in the first portion of a line and then, after an arbitrary number of blanks or tabs, 
the word 'include' followed by a filename enclosed in single'" or double I'"~ quotation marks. The 
file name may be followed by a semicolon 'i' if you wish to treat this as a pseudo-Pascal statement. 
The filenames of included files must end in '.i'. An example of the use of included files in a main 
program would be: 

program compiler(input, output, obj); 

#inelude "globals.i" 
#inelude "scanner.i" 
#inelude "parser.i" 
#include "semantics.i" 

begin 
{ main program } 

end. 

At the point the include pseudo-statement is encountered in the input, the lines from the 
included file are interpolated into the input stream. For the purposes of translation and runtime 
diagnostics and statement numbers in the listings and post-mortem backtraces, the lines in the 
included file are numbered from 1. Nested includes are possible up to 10 deep. 

See the descriptions of the i option of pi in section 5.2 above; this can be used to control list­
ing when include files are present. 

When a non-trivial line is encountered in the source text after an include finishes, the 
'popped' filename is printed, in the same manner as above. 

For the purposes of error diagnostics when not making a listing, the filename will be printed 
before each diagnostic if the current filename has changed since the last filename was printed. 

5.10. Separate Compilation with Pc 

A separate compilation facility is provided with the Berkeley Pascal compiler, pc. This facil­
ity allows programs to be divided into a number of files and the pieces to be compiled individually, 
to be linked together at some later time. This is especially useful for large programs, where small 
changes would otherwise require time-consuming re-compilation of the entire program. 

Normally, pc expects to be given entire Pascal programs. However, if given the -c option on 
the command line, it will accept a sequence of definitions and declarations, and compile them into 
a .0 file, to be linked with a Pascal program at a later time. In order that procedures and func· 
tions be available across separately compiled files, they must be declared with the directive exter­
nal. This directive is similar to the directive forward in that it must precede the resolution of 
the function or procedure, and formal parameters and function result types must be specified at the 
external declaration and may not be specified at the resolution. 

C) 
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Type checking is performed across separately compiled files. Since Pascal type defintions 
define unique types, any types which are shared between separately compiled files must be the same 
definition. This seemingly impossible problem is solved using a facility similar to the include 
facility discussed above. Definitions may be placed in files with the extension .h and the files 
included by separately compiled files. Each definition from a .h file defines a unique type, and all 
uses of a definition from the same .h file define the same type. Similarly, the facility is extended 
to allow the definition of consts and the declaration of labels, val'S, and external functions and 
procedures. Thus procedures and functions which are used between separately compiled files 
must be declared external, and must be so declared in a .h file included by any file which calls or 
resolves the function or procedure. Conversely, functions and procedures declared external 
may only be so declared in .h files. These files may be included only at the outermost level, and 
thus define or declare global objects. Note that since only external function and procedure 
declarations (and not resolutions) are allowed in .h files, statically nested functions and pro­
cedures can not be declared external. 

An example of the use of included .h files in a program would be: 

program compiler(input, output, obj); 

#inelude "globals.h" 
#inelude "scanner.h" 
#include "parser.h" 
#inelude "semantics.h" 

begin 
{ main program} 

end. 

This might include in the main program the definitions and declarations of all the global 
labels, consts, types val'S from the file globals.h, and the external function and procedure 
declarations for each of the separately compiled files for the scanner, parser and semantics. The 
header file 8canner.h would contain declarations of the form: 

type 
token = record 

{ token fields} 
end; 

function scan(var inputfile: text): token; 
external; 
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Then the scanner might be in a separately compiled file containing: 

#include "globals.h" 
#include "scanner.h" 

function scan; 
begin -

{ scanner code} 
end; 

which includes the same global definitions and declarations and resolves the scanner functions and 
procedures declared external in the file scanner.h. 

---- -- - --------
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A. Appendix to Wirth's Pascal Report 

This section is an appendix to the definition of the Pascal language in Niklaus Wirth's Pascal 
Report and, with that Report, precisely defines the Berkeley implementation. This appendix 
includes a summary of extensions to the language, gives the ways in which the undefined 
specifications were resolved, gives limitations and restrictions of the current implemE'ntation, and 
lists the added functions and procedures available. It concludes with a list of differences with the 
commonly available Pascal 6000-3.4 implementation, and some comments on standard and port­
able Pascal. 

A.I. Extensions to the language Pascal 

This section defines non-standard language constructs available in Berkeley Pascal. The s 
standard Pascal option of the translators pi and pc can be used to detect these extensions in pro­
grams which are to be transported. 

String padding 

Berkeley Pascal will pad constant strings with blanks in expressions and as value parameters 
to make them as long as is required. The following is a legal Berkeley Pascal program: 

program x(output); 
var z : packed array [ 1 .. 13 J or char; 
begin 

z := 'red'; 
writeln(z) 

end; 

The padded blanks are added on the right. Thus the assignment above is equivalent to: 

z := 'red 

which is standard Pascal. 

Octal constants, octal and hexadecimal write 

Octal constants may be given as a sequence of octal digits followed by the character 'b' or 
'B'. The forms 

write(a:n oct) 

and 

write{a:n hex} 

cause the internal representation of expression a, which must be Boolean, character, integer, 
pointer, or a user-defined enumerated type, to be written in octal or hexadecimal respectively. 

Assert statement 

An assert statement causes a Boolean expression to be evaluated each time the statement is 
executed. A runtime error results if any of the expressions evaluates to be false. The assert state­
ment is treated as a comment if run-time tests are disabled. The syntax for assert is: 
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auert <expr> 

Enumerated type input-output 

Enumerated types may be read and written. On output the string name associated with the 
enumerated value is output. It the value is out of range, a runtime error occurs. On input an 
identifier is read and looked up in a table of names associated with the type of the variable, and 
the appropriate internal value is assigned to the variable being read. It the name is not found in 
the table a runtime error occurs. 

Structure returning functions 

An extension has been added which allows functions to return arbitrary sized structures 
rather than just scalars as in the standard. 

Separate compilation 

The compiler pc has been extended to allow separate compilation of programs. Procedures 
and functions declared at the global level may be compiled separately. Type checking of calls to 
separately compiled routines is performed at load time to insure that the program as a whole is 
consistent. See section 5.10 for details. 

A.2. Resolution of the undefined specifications 

File name - file variable associations 

Each Pascal file variable is associated with a named UNIX file. Except for input and output, 
which are exceptions to some of the rules, a name can become associated with a file in any of three 
ways: 

1) 

2) 

3) 

If a global Pascal file variable appears in the program statement then it is associated 
with UNIX file of the same name. 

It a file was reset or rewritten using the extended two-argument form of reset or 
rewrite then the given name is associated. 

It a file which has never had UNIX name associated is reset or rewritten without specify­
ing a name via the second argument, then a temporary name of the form 'tmp.x' is 
associated with the file. Temporary names start with 'tmp.l' and continue by incre­
menting the last character in the USASCII ordering. Temporary files are removed 
automatically when their scope is exited. 

The program statement 

The syntax of the program statement is: 

program <id> ( <file id> { , <file id > } ) ; 

The file identifiers (other than input and output) must be declared as variables of file type in the 
global declaration part. 

------------------~-
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The flies input and output 

The formal parameters input and output are associated with the UNIX standard input and 
output and have a somewhat special status. The following rules must be noted: 

1) 

2) 

The program heading must contains the formal parameter output. If input is used, 
explicitly or implicitly, then it must also be declared here. 

Unlike all other files, the Pascal files input and output must not be defined in a 
declaration, as their declaration is automatically: 

var input, output: text 

3) The procedure reaet may be used on input. If no UNIX file name has ever been associ­
ated with input, and no file name is given, then an attempt will be made to 'rewind' 
input. If this fails, a run time error will occur. Rewrite calls to output act as for any 
other file, except that output initially has no associated file. This means that a simple 

rewrite{output) 

associates a temporary name with output. 

Details for files 

If a file other than input is to be read, then reading must be initiated by a call to the pro­
cedure re8et which causes the Pascal system to attempt to open the associated UNIX file for read­
ing. If this fails, then a runtime error occurs. Writing of a file other than output must be ini­
tiated by a rewrite call, which causes the Pascal system to create the associated UNIX file and to 
then open the file for writing only. 

Buffering 

The buffering for output is determined by the value of the b option at the end of the pro­
gram statement. If it has its default value 1, then output is buffered in blocks of up to 512 char­
acters, flushed whenever a writeln occurs and at each reference to the file input. If it has the value 
0, output is unbuffered. Any value of 2 or more gives block buffering without line or input refer­
ence flushing. All other output files are always buffered in blocks of 512 characters. All output 
buffers are flushed when the files are closed at scope exit, whenever the procedure me880ge is called, 
and can be flushed using the built-in procedure flU8h. 

An important point for an interactive implementation is the definition of 'inputf'. If input 
is a teletype, and the Pascal system reads a character at the beginning of execution to define 
'inputt', then no prompt could be printed by the program before the user is required to type some 
input. For this reason, 'inputt' is not defined by the system until its definition is needed, reading 
from a file occurring only when necessary. 

The character set 

Seven bit USAsen is the character set used on UNIX. The standard Pascal symbols 'and', 'or', 
'not', '<=', '>=', '<>', and the uparrow It' (for pointer qualification) are recognized.t Less port­
able are the synonyms tilde ,-, for not, '&' for and, and 't for or. 

Upper and lower case are considered to be distinct. Keywords and built-in procedure and 
function names are composed of all lower case letters. Thus the identifiers GOTO and GOto are 
distinct both from each other and from the keyword goto. The standard type 'boolean' is also 

ton many terminals and printers, the up arrow is represented as a circumflex •••. These are not distinct charac­
ters. but rather different graphic representa.tions or the same internal codes. 
The proposed standard for Pascal considers them to be the same. 
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available as 'Boolean'. 

Character strings and constants may be delimited by the character '" or by the character 
'#'; the latter is sometimes convenient when programs are to be transported. Note that the '#' 
character has special meaning when it is the fi~t character ori a line - see Multi-file programs 
below. 

The standard types 

The standard type integer is conceptually defined as 

type integer == minint .. maxint; 

Integer is implemented with 32 bit twos complement arithmetic. Predefined constants of type 
integer are: 

const maxint == 2147483647; minint == -2147483648; 

The standard type char is conceptually defined as 

type char == min char .. maxchar; 

Built-in character constants are 'minchar' and 'maxchar', 'bell' and 'tab'; ord(minchar) == 0, 
ord(maxchar) == 127. 

The type real is implemented using 64 bit floating point arithmetic. The floating point 
arithmetic is done in 'rounded' mode, and provides approximately 17 digits of precision with 
numbers as small as 10 to the negative 38th power and as large as 10 to the 38th power. 

Comments 

Comments can be delimited by eit.her '{' and 'r or by '(.' and '.)'. If the character '{' 
appears in a comment delimited by '{' and ,}" a warning diagnostic is printed. A similar warning 
will be printed if the sequence '(.' appears in a comment delimited by '(.' and '.)'. The restriction 
implied by this warning is not part of standard Pascal, but detects many otherwise subtle errors. 

Option control 

Options of the translators may be controlled in two distinct ways. A number of options may 
appear on the command line invoking the translator. These options are given as one or more 
strings of letters preceded by the character '-' and cause the default setting of each given option to 
be changed. This method of communication of options is expected to predominate for UNIX. Thus 
the command 

% pi -I -8 foo.p 

translates the file foo.p with the listing option enabled (as it normally is off), and with only stan­
dard Pascal features available. 

If more control over the portions or the program where options are enabled is required, then 
option control in comments can and should be used. The format ror option control in comments is 
identical to that used in Pascal 6000-3.4. One places the character '$' as the first character of the 
comment and follows it by a comma separated list of directives. Thus an equivalent to the com­
mand line example given ahove would be: 

/-, 

:~) 
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{Sl+,s+ listing on, standard Pascal} 

as the first line of the program.· The 'I' option is more appropriately specified on the command 
line, since it is extremely unlikely in an interactive environment that one wants a listing of the 
program each time it is translated. 

Directives consist of a letter designating the option, followed either by a '+' to turn the 
option on, or by a '-' to turn the option off. The b option takes a single digit instead of a '+' or 
'-' 

Notes on the listings 

The first page of a listing includes a banner line indicating the version and date of generation 
of pi or pe. It also includes the UNIX path name supplied for the source file and the date of last 
modification of that file. 

Within the body of the listing, lines are numbered consecutively and correspond to the line 
numbers for the editor. Currently, two special kinds of lines may be used to rormat the listing: a 
line consisting of a form-feed character, control-I, which causes a page eject in the listing, and a 
line with no characters which causes the line number to be suppressed in the listing, creating a 
truly blank line. These lines thus correspond to 'eject' and 'space' macros round in many assem­
blers. Non-printing characters are printed as the character '1' in the listing.t 

The standard procedure write 

If no minimum field length parameter is specified ror a write, the rollowing default values are 
assumed: 

integer 10 
real 22 
Boolean length of 'true' or 'raIse' 
char 1 
string length of the string 
oct 11 
hex 8 

The end of each line in a text file should be explicitly indicated by 'writeln(f)', where 
'writeln(output)' may be written simply as 'writeln'. For UNIX, the built-in funct.ion 'page(f)' puts 
a single ASCII form-feed character on the output file. For programs which are to be transported the 
filter pee can be used to interpret carriage control, as UNIX does not normally do so. 

A.3 .. Restrictions and limitations 

Files 

Files cannot be members or files or members of dynamically allocated structures. 

Arrays, sets and strings 

The calculations involving array subscripts and set elements are done' with 16 bit arithmetic. 
This restricts the types over which arrays and sets may be defined. The lower bound or such a 
range must be greater than or equal to -32768, and the upper bound less than 32768. In particu­
lar, strings may have any length rrom 1 to 65535 characters, and sets may contain no more than 
65535 elements. 

fl'he charact.er generated by a control-i indents to the next 't.ab stop'. Tab stops are set every 8 columns in 
UNlX. Tabs thus provide a quick way of indent.ing in the program. 
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Line and symbol length 

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be distinct 
if they differ in any single position over their entire length. There is a limit, however, on the max­
imum input line length. This limit is quite generous however, currently exceeding 160 characters. 

Procedure and function nesting and program .iae 

At most 20 levels of procedure and function nesting are allowed. There is no fundamen­
tal, translator defined limit on the size of the program which can be translated. The ultimate limit 
is supplied by the hardware and thus, on the PDP-H, by the 16 bit address space. If one runs up 
against the 'ran out of memory' diagnostic the program may yet translate if smaller procedures are 
used, as a lot of space is freed by the translator at the completion of each procedure or function 
in the current implementation. 

On the VAX-ll, there is an implementation defined limit of 65536 bytes per variable. There 
is no limit on the number of variables. 

Overflow 

There is currently no checking for overflow on arithmetic operations at run-time on the PDP-
11. Overflow checking is performed on the VAX-U by the hardware. 

A.4. Added types, operators, procedures and functions 

Additional predefined types 

The type ai/a is predefined as: 

type alfa == packed array [ 1..101 of char 

The type int8et is predefined as: 

type intset == set of 0 .. 127 

In most cases the context of an expression involving a constant set allows the translator to deter­
mine the type of the set, even though the constant set itself may not uniquely determine this type. 
In the cases where it is not possible to determine the type of the set from local context, the expres­
sion type defaults to a set over the entire base type unless the base type is integert. In the latter 
case the type defaults to the current binding of intset, which must be "type set of (a subrange of) 
integer" at that point. 

Note that if int8et is redefined via: 

type intset == set of o .. 58; 

then the default integer set is the implicit int8et of Pascal -6000-3.4 

Additional predefined operators 

The relationaJs '<' and '>' of proper set inclusion are available. With a and b sets, note 
that 

(not (a < b)) < > (a >== b) 

fI'he current trauiator makes a special c:ase or the construct 'if ... in I ... I' and enforces only the more lax res­
triction on 16 bit arithmetic given above in this ease. 
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As an example consider the sets II = [0,2J and b - [IJ. The only relation true between these sets is 
'<>'. 

Non-standard procedures 

argv(i,a) where i is an integer and II is a string variable assigns the (possibly 
truncated or blank padded) i 'th argument of the invocation of the 
current UNIX process to the variable II. The range of valid i is 0 to 
IIrgc-l . 

date(a) 

flush(f) 

halt 

linelimit(f,x )* 

message(x, ... ) 

null 

remove(a) 

reset(f,a) 

rewrite( f ,a) 

stlimit(i) 

time(a) 

Non-standard functions 

argc 

card(x) 

clock 

expo(x) 

~urrently ignored by pdp-ll pz. 

assigns the current date to the alfa variable II in the format 'dd mmm 
yy " where 'mmm' is the first three characters of the month, i.e. 
'Apr'. 

writes the output buffered for Pascal file f into the associated UNIX 
file. 

terminates the execution of the program with a control flow back trace. 

with f a textfile and % an integer expression causes the program to be 
abnormally terminated if more than % lines are written on file f. If x 
is less than 0 then no limit is imposed. 

causes the parameters, which have the format of those t.o the built-in 
procedure write, to be written unbuffered on the diagnostic unit 2, 
almost always the user's terminal. 

a procedure of no arguments which does absolutely nothing. It is use­
ful as a place holder, and is generated by pxp in place of the invisible 
empty statement. 

where a is a string causes the UNIX file whose name is a, with trailing 
blanks eliminated, to be removed. 

where a is a string causes the file whose name is II (with blanks 
trimmed) to be associated with f in addition to the normal function 
of re8et. 

is analogous to 'reset' above. 

where i is an integer sets the statement limit to be i statements. 
Specifying the p option to pc disables statement limit counting. 

causes the current time in the form ' hh:mm:ss ' to be assigned to the 
alfa variable a. 

returns the count of arguments when the Pascal program was 
invoked. Argc is always at least 1. 

returns the cardinality of the set x, i.e. the number of elements con­
tained in the set. 

returns an integer which is the number of central processor mil­
liseconds of user time used by this process. 

yields the integer valued exponent of the floating-point representation 
of %; expo(x) - entier(log2(abs(x»). 



random(x) 

seed(i) 

sysclock 

undefined(x) 

wallclock 

where z is a real parameter, evaluated but otherwise ignored, invokes 
a linear congruential random number generator. Successive seeds are 
generated as (seed*a + c) mod m and the new random number is a 
normalization or the seed to the range 0.0 to 1.0; a is 62605, c is 
113218009, and m is 536870912. The initial seed is 7774755. 

where i is an integer sets the random number generator seed to .. and 
returns the previous seed. Thus seed(seed(i)) has no effect except to 
yield value i. 
an integer runction or no arguments returns the number or central 
processor milliseconds or system time used by this process. 

a Boolean runction. Its argument is a real number and it always 
returns ralse. 

an integer function or no arguments returns the time in seconds since 
00:00:00 GMT January 1, 1970. 

A.5. Remarks on standard and portable Pascal 

It is occasionally desirable to prepare Pascal programs which will be acceptable at other Pas­
cal installations. While certain system dependencies are bound to creep in, judicious design and 
programming practice can usually eliminate most of the non-portable usages. Wirth's Pascal 
Report concludes with a standard for implementation and program exchange. 

In particular, the rollowing differences may cause trouble when attempting to transport pro­
grams between this implementation and Pascal 6000-3.4. Using the s translator option may serve 
to indicate many problem areas.t 

Features not available in Berkeley Pascal 

Segmented files and associated functions and procedures. 

The function trune with two arguments. 

Arrays whose indices exceed the capacity of 16 bit arithmetic. 

Features available in Berkeley Pascal but not in Pascal 8000-3.4 

The procedures reset and rewrite with file names. 

The functions arge, aeed, s1lsclock, and wallclock. 

The procedures argv, /lush, and remove. 

Message with arguments other than character strings. 

Write with keyword hex. 

The assert statement. 

Reading and writing of enumerated types. 

Allowing functions to return structures. 

Separate compilation of programs. 

Comparison of records. 

tThe s option does not, however, check that identifiers differ in the first 8 characters. Pi and pc also do not 
check the semantics or paeked. 
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Other problem areas 

Sets and strings are more general in Berkeley Pascal; see the restrictions given in the Jensen­
Wirth Uaer Manual for details on the 6000-3.4 restrictions. 

The character set differences may cause problems, especially the use of the function ehr, char­
acters as arguments to ord, and comparisons of characters, since the character set ordering differs 
between the two machines. 

The Pascal 6000-3.4 compiler uses a less strict notion of type equivalence. In Berkeley Pas­
cal, types are considered identical only if they are represented by the same type identifier. Thus, 
in particular, unnamed types are unique to the variables/fields declared with them. 

Pascal 6000-3.4 doesn't recognize our option flags, so it is wise to put the control of Berkeley 
Pascal options to the end of option lists or, better yet, restrict the option list length to one. 

For Pascal 6000-3.4 the ordering of files in the program statement has significance. It is 
desirable to place input and output as the first two files in the program statement. 
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ABSTRACT 
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These PX Implementation Note8 have been updated from the original PDP 11/70 implementa­
tion notes to reflect the interpreter that runs on the VAX 11/780. These notes consist of four major 
parts. The first part outlines the general organization of p:t. Section 2 describes the operations 
(instructions) of the interpreter while section 3 focuses on input/output related activity. A final 
section gives conclusions about the viability of an interpreter based approach to language imple­
mentation for instruction. 

Related Berkeley Pascal documents 

The PXP Implementation Note8 give details of the internals of the execution profiler pzp; 
parts of the interpreter related to p:tp are discussed in section 2.10. A paper describing the syntac­
tic error recovery mechanism used in pi was presented at the ACM Conference on Compiler Con­
struction in Boulder Colorado in August, 1979. 
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1. Oraanisation 

Most of p% is written in the VAX 11/780 assembly language, using the UNIXt assembler 4S. 

Portions of p% are also written in the UNIX systems programming language C. pz consists of a 
main procedure that reads in the interpreter code, a main interpreter loop that transfers succes­
sively to various code segments implementing the abstract machine operations, built-in procedures 
and functions, and several routines that support the implementation of the Pascal input-output 
environment. 

The interpreter runs at a fraction of the speed of equivalent compiled C code, with this frac­
tion varying from 1/5 to 1/15. The interpreter occupies IS.5K bytes of instruction space, shared 
among all processes executing Pascal, and has 4.6K bytes or data space (constants, error messages, 
etc.) a copy or which is allocated to each executing process. 

1.1. Format of the object file 
pz normally interprets the code left in an object file by a run or the Pascal translator pi. 

The file where the translator puts the object originally, and the most commonly int.erpreted file, is 
called obj. In order that all persons using pz share a common text image, this executable file is a 
small process that coordinates with the interpreter to start execution. The interpreter code is 
placed at the end of a special "header" file and the size of the initialized data area of this header 
file is expanded to include this code, so that during execution it is located at an easily determined 
address in its data space. When executed, the object process creates a pipe, creat.es another process 
by doing a fork, and arranges that the resulting parent process becomes an instance of pz. The 
child process then writes the interpreter code through the pipe that it has to the interpreter process 
parent. When this process is complete, the child exits. 

The real advantage of this approach is that it does not require modifications to the shell, and 
that the resultant objects are "true objects" not requiring special treatment. A simpler mechanism 
would be to determine the name of the file that was executed and pass this to the interpreter. 
However it is not possible to determine this name in all cases.* 

1.2. General features of object code 

Pascal object code is relocatable as all addressing references for control transfers within the 
code are relative. The code consists of instructions interspersed with inline data. All instructions 
have a length that is an even number of bytes. No variables are kept in the object code area. 

The first byte of a Pascal interpreter instruction contains an operation code. This allows a 
total of 256 major operation codes, and 232 of these are in use in the current pz. The second byte 
of each interpreter instruction is called the "sub-operation code", or more commonly the sub­
opcode. It contains a small integer that may, for example, be used as a block-st.ructure level for 
the associated operation. If the instruction can take a longword constant, this constant is often 
packed into the sub-opcode if it fits into 8 bits and is not zero. A sub-oprode value of zero 
specifies that the constant would not fit and therefore follows in the next word. This is a space 
optimization, the value of zero for flagging the longer case being convenient because it is easy to 
test. 

Other instruction formats are used. The branching instructions take an offset in the follow­
ing word, operators that load constants onto the stack take arbitrarily long inline constant values, 
and many operations deal exclusively with data on the interpreter stack, requiring no inline data. 

t UNIX is a trademark of Bell Laboratories. * For instance, if the pzre/ program is placed in the directory '/usr/bin' then when the user types "pxref 
program.p" the Brst argument to the program, nominally the programs name, is "pxrer." While it would be pos­
lible to search in the standard place, i.e. the current directory, and the .ystem directories '/bin' and '/usr/bin' 
ror a corresponding object file, this would be expensive and not guaranteed to succeed. Several shells exist tha.t 
Illow other directories. to be searched for commands, and there is, in general, no way to determine what these 
directories are. 

c 



(" 

- 3-

1.3. St&ek strueture of the interpreter 

The interpreter emulates a stack-structured Pascal machine. The "load" instructions put 
values onto the stack, where all arithmetic operations take place. The "store" instructions take 
values oft' the stack and place them in an address that is also contained on the stack. The only 
way to move data or to compute in the machine is with the stack. 

To make the interpreter operations more powerful and to thereby increase the interpreter 
speed, the arithmetic operations in the interpreter are "typed". That is, length conversion of 
arithmetic values occurs when they are used in an operation. This eliminates interpreter cycles Cor 
length conversion and the associated overhead. For example, when adding an integer that fits in 
one byte to one that requires four bytes to store, no "conversion" operators are required. The one 
byte integer is loaded onto the stack, followed by the four byte integer, and then an adding opera­
tor is used that has, implicit in its definition, the sizes of the arguments. 

1.4. Data types in the interpreter 

The interpreter deals with several different fundamental data types. In the memory of the 
machine, 1, 2, and 4 byte integers are supported, with only 2 and 4 byte integers being present on 
the stack. The interpreter always converts to 4 byte integers when there is a possibility of 
overflowing the shorter formats. This corresponds to the Pascal language definition of overflow in 
arithmetic operations that requires that the result be correct if all partial values lie within the 
bounds of the base integer type: 4 byte integer values. 

Character constants are treated similarly to 1 byte integers for most purposes, as are Boolean 
values. All enumerated types are treated as integer values of an appropriate length, usually 1 
byte. The interpreter also has real numbers, occupying 8 bytes of storage, and sets and strings of 
varying length. The appropriate operations are included for each data type, such as set union and 
intersection and an operation to write a string. 

No special paeked data formats are supported by the interpreter. The smallest unit of 
storage occupied by any variable is one byte. The built-ins pack and unpack thus degenerate to 
simple memory to memory transfers with no special processing. 

1.5. Runtime environment 

The interpreter runtime environment uses a stack data area and a heap data area, that are 
kept at opposite ends of memory and grow towards each other. All global variables and variables 
local to procedures and functions are kept in the stack area. Dynamically allocated variables and 
buffers for input/output are allocated in the heap. 

The addressing of block structured variables is done by using a fixed display that contains 
the address of its stack frame for each statically active block.t This display is referenced by 
instructions that load and store variables and maintained by the operations for block entry and 
exit, and for non-local goto statements. 

1.6. Dp, Ie, loop 

Three "global" variables in the interpreter, in addition to the "display", are the ip, Ie, and 
the loop. The ip is a pointer to the display entry for the current block; the Ie is the abstract 
machine location counter; and the loop is a register that holds the address of the main interpreter 
loop so that returning to the loop to fetch the next instruction is a fast operation. 

1.7. The staek frame strueture 

Each active block has a stack frame consisting of three parts: a block mark, local variables, 
and temporary storage for partially evaluated expressions. The stack in the interpreter grows from 
the high addresses in memory to the low addresses, so that those parts of the stack frame that are 

t Here "block" is being used to mean any prDct:durt:, Junction or the main program. 
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"on the top" of the stack have the most negative offsets from the display entry for the block. The 
major parts of the stack frame are represented in Figure 1.1. 

Base of stack frame 

Block mark Positive offsets 

- Display entry points here 

Local 
variables 

Negative offsets 
Temporary 
expression 

space 

Top of stack frame 

Figure 1.1 - Structure of stack frame 

Note that the local variables of each block have negative offsets from the corresponding display 
entry, the "first" local variable having offset '-2'. 

1.B. The block mark 

The block mark contains the saved information necessary to restore the environment when 
the current block exits. It consists of two parts. The first and top-most part is saved by the CALL 

instruction in the interpreter. This information is not present for the main program as it is never 
"called". The second part of the block mark is created by the BEG begin block operator that also 
allocates and clears the local variable storage. The format of these blocks is represented in Figure 
1.2. 

The data sayed by the CAlL operator includes the line number lino of the point of call, that 
is printed if the program execution ends abnormally; the location counter Ie giving the return 
address; and the current display entry address dp at the time of call. 

The BEG begin operator sayes the preyious display contents at the level of t.his block, so that 
the display can be restored on block exit. A pointer to the beginning line number and the name of 
this block is also saved. This information is stored in the interpreter object code in-line after the 
BEG operator. It is used in printing a post-mortem back trace. The saved file name and buffer 
reference are necessary because of the input/output structure (this is discussed in detail in sections 
3.3 and 3.4). The top of stack reference gives the value the stack pointer should have when there 
are no expression temporaries on the stack. It is used for a consistency check in the LlNO line 
number operators in the interpreter, that occurs before each statement executed. This helps to 
catch bugs in the interpreter, that often manifest themselves by leaving the stack non-empty 
between statements. 

Note that there is no explicit static link here. Thus to set up the display correctly after a 
non-Iocalgoto statement one must "unwind" through all the block marks on the stack to rebuild 
the display. 

(~ 

c 
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Top of stack reference 

Created by CAlL 

Created by BEG 

Figure 1.2 - Block mark structure 

1.9. Arguments and return values 

A function returns its value into a space reserved by the calling block. Arguments to a 
function are placed on top of this return area. For both procedure and function calls, argu­
ments are placed at the end of the expression evaluation area of the caller. When a function com­
pletes, expression evaluation can continue after popping the arguments to the function off the 
stack, exactly as if the {unction value had been "loaded". The arguments to a procedure are also 
popped ofT the stack by the caller after its execution ends. 

As a simple example consider the following stack structure for a call to a function /, of the 
Corm "C(a)". 

Space for 
value returned 

Crom C 
Value of a 

Block Mark 

Figure 1.3 - Stack structure on Cunction call 'f(a)' 

If we suppose that I returns a real and that a is an integer, the calling sequence for this 
function would be: 

PUSH -8 
RV4:1 a 
CALL:I I 
POP 4 
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Here we use the operator PUSH to clear space for the return value, load 0 on the stack with a 
"right valueu operator, call the function, pop oft' the argument II, and can then complete evalua­
tion of the containing expression. The operations used here will be expl~ned in section 2. 

If the function I were given by 

10 function r(i: integer): real; 
11 begin 
12 r:- i 
13 end; 

then I would have code sequence: 

BEG:2 0 
11 
"r' 

LV:1 40 
RV4:1 32 
AS48 
END 

Here the BEG operator takes 9 bytes of inline data. The first byte specifies the length of t.he 
function name. The second longword specifies the amount of local variable storage, here none. 
The succeeding two lines give the line number or the begin and the name of the block for error 
traceback. The BEG operator places a name pointer in the block mark. The body or the function 
first takes an address of the function result variable I using the address of operator LV a. The 
next operation in the interpretation of this runction is the loading of the value of i. I is at the 
level of the function I, here symbolically I, and the first variable in the local variable area. The 
function completes by assigning the 4 byte integer on the stack to the 8 byte return location, 
hence the AS48 assignment operator, and then uses the END operator to exit the current block. 

1.10. The main interpreter loop 

The main interpreter loop is simply: 

iloop: 
caseb (lc)+,SO,S255 
< table of opcode interpreter addresses > 

The main opcode is extracted from the first byte of the instruction and used to index into the 
table of opcode interpreter addresses. Control is then transferred to the specified location. The 
sub-opcode may be used to index the display, as a small constant, or to specify one of several rela­
tional operators. In the cases where a constant is needed, but it is not small enough to fit in the 
byte sub-operator, a zero is placed there and the constant. follows in the next word. Zero is easily 
tested for, as the instruction that fetches the sub-opcode sets the condition code flags. A construc­
tion like: 

_OPER: 

Ll: 

cvtbl 
bneq 
evtwl 

(lc)+,rO 
L1 
(lc)+,rO 

is all that is needed to eft'ect this packing of data. This technique saves space in the Pascal obj 
object code. 

The address of the instruction at iloop is always contained in the register variable loop. 
Thus a return to the main interpreter is simply: 
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jmp (loop) 

that is both quick and occupies little space. 

1.11. Errors 

Errors during interpretation rall into three classes: 

1) Interpreter detected errors. 
2) Hardware detected errors. 
3) External events. 

Interpreter detected errors include I/O errors and built-in function errors. These errors cause 
a subroutine call to an error routine with a single parameter indicating the cause of the error. 
Hardware errors such as range errors and overflows are fielded by a special routine that determines 
the opcode that caused the error. It then calls the error routine with an appropriat.e error parame­
ter. External events include interrupts and system limits such as available memory. They gen­
erate a call to the error routine with an appropriate error code. The error routine processes the 
error condition, printing an appropriate error message and usually a back trace rrom the point of 
the error. 

2. Operations 

2.1. Naming conventions and operation summary 

Table 2.1 outlines the opcode typing convention. The expression "a above btl means that 'a' 
is on top or the stack with 'b' below it. Table 2.3 describes each of the opcodes. The character '*' 
at the end of a name specifies that all operations with the root prefix before the '*' are summarized 
by one entry. Table 2.2 gives the codes used to describe the type inline data expected by each 
instruction. 
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Table 2.1 - Ooerator SUff'lXes 

Unary operator suffixes 

Suffix Example Argument type 
2 NEG2 Short integer (2 bytes) 
4 SQR4 Long integer (4 bytes) 
8 ABS8 Real (8 bytes) 

Binary operator suff'lXes 

Suffix Example Argument type 
2 ADD2 Two short integers 

24 MUL24 Short above long integer 
42 REU2 Long above short integer 
4 DIY4 Two long integers 

28 DVD28 Short integer above real 
48 REUS Long integer above real 
82 SUB82 Real above short integer 
84 MUL84 Real above long integer 
8 ADDS Two reals 

Other Suffixes 

Suffix Example Argument types 
T ADDT Sets 
G RELG Strings 

Table 2.2 - Inline data type codes 

Code Descrintion 

a An address offset is given in the word following the 
instruction. 

A An address offset is given in the four bytes follow-
in!!: the instruction. 

I An index into the display is given in the sub-
opcode. 

r A relational operator is encoded in the sub-opcode. 
(see section 2.3) , A small integer is placed in the sub-opcode, or in 
the next word if it is zero or too laNe. 

t! Variable lenll:th inline data. 

to A word value in the following word. 

W A lonl!: value in the followinll: four bytes. .. An inline constant strinl!: . 
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Table 2.3 - Machine operations 
Mnemonic Reference n 
ASS. 2.1 Absolute value 
ADD. 2.1 Addition 
AND 2.4 Boolean and 
ARGC 2.14 Returns number or arguments to current process 
ARGV 2.14 Copy specified process argument into char array 
AS. 2.5 Assignment operators 
ASRT 2.12 Assert 'rue to continue 
ATAN 2.13 Returns arctangent oC argument 
BEGs,W,w,- 2.2,1.8 Write second part oC block mark, enter block 
BUFF 3.11 Speciry buffering ror file "output" 
CALLI,A 2.2,1.8 Procedure or runction call 
CARDs 2.11 Cardinality or set 
CASEOP. 2.9 Case statements 
CHR. 2.15 Returns integer to ascii mapping or argument 
CLCK 2.14 Returns user time or program 
CON.y 2.5 Load constant operators 
cos 2.13 Returns cos or argument 
COUNT W 2.10 Count a statement count point 
CTTOTs,w,w 2.11 Construct set 
DATE 2.14 Copy date into char array 
DEFNAME 3.11 Attach file name for program statement files 
DISPOSE 2.15 Dispose or a heap allocation 
DIV. 2.1 Fixed division 
DVO. 2.1 Floating division 
END 2.2,1.8 End block execution 
EOF 3.10 Returns true if end of file 
EOLN 3.10 Returns true ir end of line on input text file 
EXP 2.13 Returns exponential of argument 
EXPO 2.13 Returns machine representation oC real exponent 
Fn.E 3.9 Push descriptor Cor active file 
FLUSH 3.11 Flush a file 
FNn. 3.7 Check file initialized, not eoC, synced 
FOR. a 2.12 For statements 
GET 3.1 Get next record from a file 
GOTOl,A 2.2,1.8 Non-local goto statement 
HALT 2.2 Produce control flow backtrace 
IFa 2.3 Conditional transCer 
INs,w,w 2.11 Set membership 
INCT 2.11 Membership in a constructed set 
IND. 2.6 Indirection operators 
INX.s,w,w 2.6 Subscripting (indexing) operator 
ITOD 2.12 Convert integer to real 
ITOS 2.12 Convert integer to short. integer 
LINOs 2.2 Set line number, count statements 
LLIMIT 2.14 Set linelimit ror output text file 
LLVl,W 2.6 Address or operator 
LN 2.13 Returns natural log oC argument 
LRV.I,A 2.5 Right value (load) operators 
LVl,w 2.6 Address of operator 
MAXs,w 3.8 Maximum oC top oC stack and w 
MESSAGE 3.6 Write to terminal 
MINs 3.8 Minimum or toP oC stack and 8 
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Table 2.3 - Machine operations 
Mnemonic 1),.#. D. . 
MOD. 2.7 Modulus 
~ 2.7 MUltiplication 
NAMA 3.8 Convert enumerated type value to print format 
NEG. 2.7 Negation 
NEWs 2.15 Allocate a record on heap, set pointer to it 
Nn. 2.6 Assert non-nil pointer 
NODUMP s,w,w," 2.2 BEG main program, suppress dump 
NOT 2.4 Boolean not 
ODD. 2.15 Returns true if argument is odd, lalBe if even 
OFFs 2.5 Offset address, typically used for field reference 
OR 2.4 Boolean or 
PACK B,W,W,W 2.15 Convert and copy from unpacked to packed 
PAGE 3.8 Output a formfeed to a text file 
POPs 2.2,1.9 Pop (arguments) off stack 
PRED. 2.7 Returns predecessor of argument 
PUSHs 2.2,1.9 Clear space (for function result) 
PUT 3.8 Output a record to a file 
PXPBUF w 2.10 Initialize pzp count buffer 
RANDOM 2.13 Returns random number 
RANG. v 2.8 Subrange checking 
READ. 3.7 Read a record from a file 
REL.r 2.3 Relational test yielding Boolean result 
REMOVE 3.11 Remove a file 
RESET 3.11 Open file for input 
REWRITE 3.11 Open file for output 
ROUND 2.13 Returns TRUNC(argument + 0.5) 
RV.l,a 2.5 Right value (load) operators 
SCLCK 2.14 Returns system time of program 
SDUP 2.2 Duplicate top stack word 
SEED 2.13 Set random seed, return old seed 
SIN 2.13 Returns sin of argument 
SQR. 2.7 Squaring 
SQRT 2.13 Returns square root of argument 
STLIM 2.14 Set program statement limit 
STOD 2.12 Convert short integer to real 
STOI 2.12 Convert short to long integer 
SUB. 2.7 Subtraction 
SUCC. 2.7 Returns successor of argument 
TIME 2.14 Copy time into'char array 
TRAa 2.2 Short control transfer (local branching) 
TRA4A 2.2 Long control transfer 
TRACNTw,A 2.10 Count a procedure entry 
TRUNC 2.13 Returns integer part of argument 
UNDEF 2.15 Returns lalBe 
UNIT. 3.10 Set active file 
UNPACK s,w,w,w 2.15 Convert and copy from packed to unpacked 
WCLCK 2.14 Returns current time stamp 
WRITEC 3.8 Character unformatted write 
WRITEF I 3.8 General formatted write 
WRITES 1 3.8 String unformatted write 
WRITLN 3.8 Output a newline to a text file 
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2.2. Baaic control operations 

(- HALT 

c 

Corresponds to the Pascal procedure halt; causes execution to end with a post-mortem back­
trace as if a run-time error had occurred. 

BEG s,W,w," 

Causes the second part of the block mark to be created, and W bytes of local variable space 
to be allocated and cleared to zero. Stack overflow is detected here. w is the first line of the 
body of this section for error traceback, and the inline string (length s) the character 
representation of its name. 

NODUMP s,W,w: 

END 

Equivalent to BEG, and used to begin the main program when the up" option is disabled so 
that the post-mortem backtrace will be inhibited. 

Complementary to the operators CALL and BEG, exits the current block, calling the procedure 
pc/o8e to Bush buffers for and release any local files. Restores the environment of the caller 
from the block mark. If this is the end for the main program, all files are /lu8htd, and the 
interpreter is exited. 

CALL I,A 

Saves the current line number, return address, and active display entry pointer dp in the first 
part of the block mark, then transfers to the entry point given by the relative address A, 
that is the beginning of a procedure or function at level I. 

PUSHs 

Clears 8 bytes on the stack. Used to make space for the return value of a function just 
before calling it. 

POPs 

Pop 8 bytes off the stack. Used after a function or procedure returns to remove the argu­
ments from the stack. 

TRAa 

Transfer control to relative address a as a local goto or part of a structured statement. 

TRA.4A 

Transfer control to an absolute address as part of a non-local goto or to branch over pro-
cedure bodies. -. 

LINOs 

Set current line number to 8. For consistency, check that the expression stack is empty as it 
should be (as this is the start of a statement.) This consistency check will fail only if there is 
a bug in the interpreter or the interpreter code has somehow been damaged. Increment the 
statement count and if it exceeds the statement limit, generate a fault. 
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GOTOl,A 

Transfer control to address A that is in the block at level I of the display. This is a non­
local goto. Causes each block to be exited as if with END, flushing and freeing files with 
pclo8e, until the current display entry is at level I. 

SDUP. 
Duplicate the word or long on the top of the stack. This is used mostly for constructing sets. 
See section 2.11. 

2.3. If and relational operatol'S 

lFa 

The interpreter conditional transfers all take place using this operator that examines the 
Boolean value on the top of the stack. If the value is true, the next code is executed, other­
wise control transfers to the specified address. 

REL.r 
These take two arguments on the stack, and the sub-operation code specifies the relational 
operation to be done, coded as follows with 'a' above 'b' on the stack: 

Code O:(!eration 
0 a=b 
2 a<>b 
4 a<b 
6 a>b 
8 a <- b 
10 a >- b 

Each operation does a test to set the condition code appropriately and then does an indexed 
branch based on the sub-operation code to a test of the condition here specified, pushing a 
Boolean value on the stack. 

Consider the statement fragment: 

it a - b then 

If a and b are integers this generates the following code: 

RV4:1 a 
RV4:1 b 
REL4 -
IF Ehe part offset 

... Then part code ... 

2.4. Boolean operatol'S 

The Boolean operators AND, OR, and NOT manipulate values on the top of the stack. All 
Boolean values are kept in single bytes in memory, or in single words on the stack. Zero represents 
a Boolean lal8e, and one a Boolean true. 
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2.5. Right value, constant, and assignment operators 

( ". / LRV.I,A 
/ RV.I,a 

c~ 

The right value operators load values on the stack. They take a block number as a sub­
opcode and load the appropriate number or bytes rrom that block at the offset specified in 
the rollowing word onto the stack. As an example, consider LRV 4: 

J.RV4: 
evtbl 
addiS 
pushl 
jmp 

(lc)+,rO 
_display(rO),(lc)+,rl 
(rl) 
(loop) 

#rO has display index 
#rl has variable address 
#put value on the stack 

Here the interpreter places the display level in rOo It then adds the appropriate display value 
to the inline offset and pusbes the value at this location onto the stack. Control then returns 
to the main interpreter loop. The RV. operators have short inline data that reduces the space 
required to address the first 32K or stack space in each stack rrame. The operators RV14 and 
RV24 provide explicit conversion to long as the data is pushed. This saves the generation of 
STOI to align arguments to C subroutines. 

CON.r 

The constant operators load a value onto the stack Crom inline code. Small integer values 
are condensed and loaded by the CONI operator, that is given by 

_CONI: 
cvtbw 
jmp 

(lc)+,-(sp) 
(loop) 

Here note that little work was required as the required constant was available at (lc)+. For 
longer constants, Ie must be incremented before moving the constant. The operator CON 

takes a length specification in the sub-opcode and can be used to load strings and other vari­
able length data onto the stack. The operators CON14 and CON24 provide explicit conversion 
to long as the constant is pushed. 

The assignment operators are similar to arithmetic and relational operators in that they take 
two operands, both in the stack, but the lengths given ror them specify first the length of the 
value on the stack and then the length of the target in memory. The target address in 
memory is under the value to be stored. Thus the statement 

i:= 1 

where i is a Cull-length, 4 byte, integer, will generate the code sequence 

LV:I I 

CONI:I 

AS24 

Here LV will load the address oC i, that is really given as a block number in the sub-opcode 
and an offset in the rollowing word, onto the stack, occupying a single word. CONI, that is a 
single word instruction, then loads the constant 1, that is in its sub-opcode, onto the stack. 
Since there are not one byte constants on the stack, this becomes a 2 byte, single word 
integer. The interpreter then assigns a length 2 integer to a length 4 integer using AS24. The 
code sequence ror AS24 is given by: 



-AS24: 
inel 
cvtwl 
Jmp 

Ic 
(sp)+,*(sp)+ 
(loop) 

-14 -

Thus the interpreter gets the single word oft the stack, extends it to be a 4 byte integer gets 
the target address oft the stack, and finally stores the value in the target. This is a typical 
use of the constant and assignment operators. 

2.8. Addressing operations 

LLVI,W 
LVl,w 

The most common operation done by the interpreter is the "left value" or "address of" 
operation. It is given by: 

..LLV: 
cvtbl 
addiS 
Jmp 

(Jc)+,rO 
_dispJay(rO),(lc)+,-(sp) 
(loop) 

,*rO has display index 
,*push address onto the stack 

It calculates an address in the block specified in the sub-opcode by adding the associated 
display entry to the oftset that appears in the following word. The LV operator has a short 
inline data that reduces the space required to address the first 32K of stack space in each call 
frame. 

OFFs 

NIL 

The offset operator is used in field names. Thus to get the address of 

ptJl 

pi would generate the sequence 

RV:1 p 
OFF /1 

where the RV loads the value of p, given its block in the sub-opcode and offset in the follow­
ing word, and the interpreter then adds the offset of the field /1 in its record to get the 
correct address. OFF takes its argument in the sub-opcode if it is small enough. 

The example above is incomplete, lacking a cheek for a nil pointer. The code generated 
would be 

RV:1 p 
NIL 
OFF /1 

where the NIL operation cheeks for a nil pointer and generates the appropriate runtime error 
if it is. 
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LVCON .," 

A pointer to the specified length inline data is pushed onto the stack. This is primarily used 
for printf type strings used by WRITEF. (see sections S.6 and S.8) 

INX •• ,w,w 

The operators INX2 and JNX4 are used for subscripting. For example, the statement 

a[iJ :- 2.0 

with i an integer and a an "array [1..1000J or real" would generate 

LV:1 a 
RV4:1 i 
INX4:S 1,999 
CONS 2.0 
ASS 

Here the LV operation takes the address or a and places it on the stack. The value or i is 
then placed on top of this on the stack. The array address is indexed by the length 4 index 
(a length 2 index would use JNX2) where the individual elements have a size of 8 bytes. The 
code for JNX4 is: 

JNX4: 
cvtbl (lc)+,rO 
bneq 11 
cvtwl (lc)+,rO #rO has size of records 

11: 
cvtwl (lc)+,rl #r1 has lower bound 
movzwl (lc)+,r2 #r2 has upper-lower bound 
subl3 rl,(sp)+,r3 #r3 has base subscript. 
cmpl rS,r2 #check for out of bounds 
bgtru esubscr 
muJl2 rO,rS #calculate byte offset 
add12 rS,(sp) #calculate actual address 
jmp (loop) 

esubscr: 
movw SESUBSCR,_perrno 
jbr error 

Here the lower bound is subtracted, and range checked against the upper minus lower bound. 
The offset is then scaled to a byt.e offset into the array and added to t.he base address on the 
stack. Multi-dimension subscripts are translated as a sequence of single subscriptings. 

IND. 

For indirect references through var parameters and pointers, the interpreter has a set of 
indirection operators that convert a pointer on the stack into a value on the st.ack from that 
address. different IND operators are necessary because of the possibility of different length 
operands. The IND14 and IND24 operators do conversions to long as they push their data. 

2.7. Arithmetic operators 

The interpreter has many arithmetic operators. All operators produce results long enough to 
prevent overflow unless the bounds of the base type are exceeded. The basic operators available 
are 



Addition: ADD., SUCC. 
Subtraction: SUB., PRED. 
Multiplication: MULt, SQR. 
Division: DIY., DVD., MOD. 
Unary: NEG., ABS. 

2.8. Range checking 
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The interpreter has several range checking operators. The important distinction among these 
operators is between values whose legal range begins at zero and those that do not begin at zero, 
for example a subrange variable whose values range from 45 to 70. For those that begin at zero, a 
simpler "logical" comparison against the upper bound suffices. For others, both the low and upper 
bounds must be checked independently, requiring two comparisons. On the VAX 11/780 both checks 
are done using a single index instruction so the only gain is in reducing the inline data. 

2.9. Case operators 

The interpreter includes three operators for ease statements that are used depending on the 
width of the ease label type. For each width, the structure of the case data is the same, and is 
represented in figure 2.4. 

CASEOP 

No. of cases 

Case 
transfer 

table 

Array of case 
label values 

Figure 2.4 - Case data structure 

The CASEOP case statement operators do a sequential search through the case label values. If 
they find the label value, they take the corresponding entry from the transfer table and cause the 
interpreter to branch to the specified statement. If the specified label is not found, an error results. 

The CASE operators take the number of cases as a sub-opcode if possible. Three different 
operators are needed to handle single byte, word, and long case transfer table values. For example, 
the CASEOPI operator has the following code sequence: 

\ i 
'-./ 
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_CASEOP1: 
cvtbl (lc)+,rO 
bneq L1 
cvtwl {lc)+,rO #rO has length of case table 

L1: 
movaw (lc )lrO] ,r2 #r2 has pointer to case labels 
mov.wl (sp)+,r3 #r3 has the element to find 
loee r3,rO,(r2) #rO has index of located element 
beql caserr #element not found 
mnegl rO,rO #calculate new Ic 
cvtwl {r2)[rO],rl #r1 has lc offset 
addl2 rl,lc 
jmp (loop) 

caserr: 
moV'W SECASE,_permo 
jbr error 

Here the interpreter first computes the address of the beginning of the case label value area 
by adding twice the number of case label values to the address of the transfer t.able, since the 
transfer table entries are 2 byte address offsets. It then searches through the label values, and gen­
erates an ECASE error if the label is not found. If the label is found, the index of the correspond­
ing entry in the transfer table is extracted and that offset is added to the interpreter location 
counter. 

2.10. Operations supporting pxp 

The following operations are defined to do execution profiling. 

PXPBUFw 

Causes the interpreter to allocate a count buffer with w four byte counters and to clear them 
to zero. The count buffer is placed within an image of the pmon. out file as described in the 
PXP Implementation Note8. The contents of this buffer are written to the file pmon. out 
when the program ends. 

COUNTw 

Increments the counter specified by w. 

TRACNTw,A 

Used at the entry point to procedures and functions, combining a transfer to the entry point 
of the block with an incrementing of its entry count. 

2.11. Set operations 

The set operations: union ADDT, intersection MULT, element removal SUBT, and the set rela­
tionals RELT are straightforward. The following operations are more interesting. 

CARDs 
Takes the cardinality of a set of size 8 bytes on top of the stack, leaving a 2 byte integer 
count. CARD uses the frs opcode to successively count the number of set bits in the set. 

CTTOT s,W,w 

Constructs a set. This operation requires a non-trivial amount of work, checking bounds and 
setting individual bits or ranges of bits. This operation sequence is slow, and motivates the 
presence of the operator INCT below. The arguments to CTTOT include the number of 
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elements , in the constructed set, the lower and upper bounds of the set, the two w values, 
and a pair of values on the stack for each range in the set, single elements in constructed sets 
being duplicated with SDUP to form degenerate ranges. 

IN 8,W,W 

The operator in for sets. The value , specifies the size of the set, the two w values the lower 
and upper bounds of the set. The value on the stack is checked to be in the set on the stack, 
and a Boolean value of trut or 14/,t replaces the operands. 

lNeT 
The operator in on a constructed set without constructing it. The left operand of in is on 
top of the stack followed by the number of pairs in the constructed set, and then the pairs 
themselves, all as single word integers. Pairs designate runs of values and single values are 
represented by a degenerate pair with both value equal. This operator is genera.ted in gram­
matical constructs such as 

if character in ['+', '-', '.', '/1 

or 

U' h t' [' , , , 's' , 1 u c arac er m a .. z , ,_ 

These constructs are common in Pascal, and !NCT makes them run much fast.er in the inter­
preter, as if they were written as an efficient series of il statements. 

2.12. Miscellaneous 

Other miscellaneous operators that are present in the interpreter are ASRT that causes the 
program to end if the Boolean value on the stack is not trut, and STOI, STOD, ITOD, and ITOS that 
convert between different length arithmetic operands for use in aligning the arguments in pro­
cedure and lunction calls, and with some untyped built-ins, such as SIN and COS. 

Finally, if the program is run with the run-time testing disabled, there are special operators 
for lor statements and special indexing operators for arrays that have individual element size that 
is a power of 2. The code can run significantly faster using these operators. 

2.13. Mathematical Functions 

The transcendental functions SIN, cos, ATAN, EXP, LN, SQRT, SEED, and RANDOM are taken 
from the standard UNIX mathematical package. These functions take double precision floating 
point values and return the same. 

The functions EXPO, TRUNC, and ROUND take a double precision floating point number. EXPO 
returns an integer representing the machine representation of its argument.'s exponent, TRUNC 

returns the integer part of its argument, and ROUND returns the rounded integer part. of its argu­
ment. 

2.14. System functions and procedures 

LLIMIT 
A line limit and a file pointer are passed on the stack. If the limit is non-negative the line 
limit is set to the specified value, otherwise it is set to unlimited. The default is unlimited. 

STLIM 
A statement limit is passed on the stack. The statement limit is set as specified. The default 
is 500,000. No limit is enforced when the up" option is disabled. 

c 
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CLCK 
SCLeK 
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CLCK returns the number or milliseconds or user time used by the program; SCLCK returns the 
number or milliseconds oC system time used by the program. 

WCLCK 
The number or seconds since some predefined time is returned. Its primary userulness is in 
determining elapsed time and in providing a unique time stamp. 

The other system time procedures are DATE and TIME that copy an appropriate text string into a 
pascal string array. The runction ARGC returns the number or command line arguments passed to 
the program. The procedure ARGV takes an index on the stack and copies the specified command 
line argument into a pascal string array. 

2.15. Pascal procedures and functions 

PACK s,W,W,w 
UNPACK s,w,w,w 

They function as a memory to memory move with several semantic checks. They do no 
"unpacking" or "packing" in the true sense as the interpreter supports no packed data types. 

NEWs 
DISPOSE s 

An LV oC a pointer is passed. NEW allocates a record or a specified size and puts a pointer to 
it into the pointer variable. DISPOSE deallocates the record pointed to by the pointer and sets 
the pointer to NIL. 

The Cunction CHR. converts a suitably small integer into an ascii character. Its primary purpose is 
to do a range check. The function ODD. returns true ir its argument is odd and returns false ir its 
argument is even. The Cunction Ul'.'DEF always returns the value false. 

3. Input/output 

3.1. The files structure 

Each file in the Pascal environment is represented by a pointer to a files structure in the 
heap. At the location addressed by the pointer is the element in the file's window variable. 
Behind this window variable is information about the file, at the rollowing offsets: 

-108 
-30 
-26 
-22 
-18 
-14 
-10 
-6 
-4 
o 

FNAME 
LCOUNT 
LLIMIT 
FBUF 
FCHAIN 
FLEV 
PFNAME 
FUNIT 
FSIZE 

Text name or associated UNIX file 
Current count or lines output 
Maximum number of lines permitted 
UNIX FILE pointer 
Chain to next file 
Pointer to associated file variable 
Pointer to name or file Cor error messages 
File status flags 
Size or elements in the file 
File window element 

Here FBUF is a pointer to the system FILE block ror the file. The standard system I/O 
library is used that provides block buffered input/output, with 1024 charact,ers normally 
transCerred at each read or write. 
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The files in the Pascal environment, are all linked together on a single file chain through the 
FCHAIN links. For each file the FLEV pointer gives its associated file variable. These are used to 
free files at block exit as described in section 3.3 below. 

The FNAME and PFNAME give the associated file name for the file and the name to be used 
when printing error diagnostics respectively. Although these names are usually the same, input 
and output usually have no associated file name so the distinction is necessary. 

The FUNIT word contains a set of flags. whose representations are: 

EOF 
EOLN 
SYNC 
TEMP 
FREAD 
FWRITE 
FTEXT 
FDEF 

OxOlOO 
OX0200 
Ox0400 
Ox0800 
Ox 1 000 
Ox2000 
Ox4000 
Ox8000 

At end-of-file 
At end-of-line (text files only) 
File window is out of sync 
File is temporary 
File is open for reading 
File is open for writing 
File is a text file; process EOLN 
File structure created, but file not opened 

The EOF and EOLN bits here reflect the associated built-in function values. TEMP specifies 
that the file has a generated temporary name and that it should therefore be removed when its 
block exits. FREAD and FWRITE specify that reset and rewrite respectively have been done on 
the file so that input or output operations can be done. FTEXT specifies the file is a text file so 
that EOLN processing should be done, with newline characters turned into blanks, etc. 

The SYNC bit, when true, specifies that there is no usable image in the file buffer window. 
As discussed in the Berkeley Pascal User's Manual, the interactive environment necessitates having 
"input·" undefined at the beginning of execution so that a program may print. a prompt before the 
user is required to type input. The SYNC bit implements this. When it is set, it specifies that the 
element in the window must be updated before it can be used. This is never done until necessary. 

3.2. Initialization or files 

All the variables in the Pascal runtime environment are cleared to zero on block entry. This 
is necessary for simple processing of files. If a file is unused, its pointer will be nil. All references 
to an inactive file are thus references through a nil pointer. If the Pascal system did not clear 
storage to zero before execution it would not be possible to detect inactive files in this simple way; 
it would probably be necessary to generate (possibly complicated) code to initialize each file on 
block entry. 

When a file is first mentioned in a reset or rewrite call, a buffer of the form described above 
is associated with it, and the necessary information about the file is placed in this buffer. The file 
is also linked into the active file chain. This chain is kept sorted by block mark address, the FLEV 
entries. 

3.3. Block exit 

When block exit occurs the interpreter must free the files that are in use in the block and 
their associated buffers. This is simple and efficient because the files in the active file chain are 
sorted by increasing block mark address. This means that the files for the current block will be at 
the front of the chain. For each file that is no longer accessible the interpreter first flushes the files 
buffer if it is an output file. The interpreter then returns the file buffer and the files structure and 
window to the free space in the heap and removes the file from the active file chain. 

3.4. Flushing 
Flushing all the file buffers at abnormal termination, or on a call to the procedure flush or 

message is done by flushing each file on the file chain that has the FWRITE bit set in its flags 
word. 
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8.5. The active file 

For inpu~output, pz maintains a notion of an active file. Each operation that references a 
file makes the file it will be using the active file and then does its operation. A subtle point here is 
that one may do a procedure call to write that involves a call to a function that references another 
file, thereby destroying the active file set up before the write. Thus the active file is saved at block 
entry in the block mark and restored at block exit. t 

8.S. File operations 

Files in Pascal can be used in two distinct ways: as the object of read, write, get, and put 
calls, or indirectly as though they were pointers. The second use as pointers must be careful not to 
destroy the active file in a reference such as 

write(output, inputt) 

or the system would incorrectly write on the input device. 

The fundamental operator related to the use of a file is FNIL. This takes the file variable, as 
a pointer, insures that the pointer is not nil, and also that a usable image is in the file window, by 
forcing the SYNC bit to be cleared. 

A simple example that demonstrates the use of the file operators is given by 

writeln(f) 

that produces 

RV:I f 
UNIT 
WRITLN 

3.7. Read operations 

GET 

Advance the active file to the next input element. 

FNIL 

A file pointer is on the stack. Insure that the associated file is active and that the file is 
synced so that there is input available in the window. 

READ* 
If the file is a text file, read a block of text and convert it to the internal type of the specified 
operand. If the file is not a text file then do an unformatted read of t.he next record. The 
procedure READLN reads upto and including the next end of line character. 

READE A 

The operator READE reads a string name of an enumerated type and converts it to its inter­
nal value. READE takes a pointer to a data structure as shown in figure 3.2. 

t It would probably be better to dispense with the notion o( active file and use another mechanism that did not 
involve extra overhead on each procedure and (unction call. 
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No. of cases 

offsets 
()( -element 

Dames 

Array oC 
null terminated 
element names 

Figure 3.2 - Enumerated type conversion structure 

See the description or NAM in the next section Cor an example. 

3.8. Write operations 

PUT 

Output the element in the active file window. 

WRITEFs 
The argument(s) on the stack are output by the !print! standard I/O library routine. The 
su}).opcode'3 speeifi'e5,the1'l:umber of longword arguments on the stack. 

WRITEC 
The character on the top of the stack is output without formatting. Formatted characters 
must be output with WRITEF. 

WRITES 

The string specified by the pointer on the top of the stack is output by the !write standard 
I/O library routine. All characters including nulls are printed. 

WRITLN 

A linefeed is output to the active file. The line-count for the file is incremented and checked 
against the line limit. 

PAGE 
A rormfeed is output to the active file. 

NAMA 
The value on the top oCthestack is converted to a pointer to an enumerated type string 
name. The address A points to an enumerated type structure identical to that used by 
READE. An error is raised if the value is out of range. The form of this structure for the 
predefined type boolean is shown in figure 3.3. The code for NAM is 
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600/: 2 

6 

12 
17 

"false" 
"true" 

Figure 3.3 - Boolean type conversion structure 

.-NAM: 
inel 
addl3 
movl 
c:mpw 
bgequ 
movzwl 
pushab 
jmp 

Ic 
(lc)+,ap,r6 
(sp)+,r3 
r3,(r6)+ 
enamrng 
(r6)[r3] ,r4 
(r6)[r4] 
(loop) 

enamrng: 
movw $ENAMRNG,_perrno 
jbr error 

#r6 points to scalar name list 
#r3 has data value 
#check value out of bounds 

#r4 has string index 
#push string pointer 

The address of the table is calculated by adding the base address of the interpreter code, ap 
to the offset pointed to by Ie. The first word of the table gives the number of records and 
provides a range check of the data to be output. The pointer is then calculated as 

MAXs,w 

tblbase = ap + A; 
size = *tblbase++; 
return(tblbase + tblbase[value]); 

The sub-opcode 3 is subtracted from the integer on the top of the stack. The maximum of 
the result and the second argument, w, replaces the value on the top of the stack. This func­
tion verifies that variable specified width arguments are non-negative, and meet certain 

-minimum width requirements. 

MINs 

The minimum of the value on the top of the stack and the sub-opcode replaces the value on 
the top of the stack. 

The uses of files and the file operations are summarized in an example which outputs a real vari­
able (r) with a variable width field (i). 

writeln('r = ',r:i,' ',true); 

that generates the code 
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UNITOUT 
FILE 

CONl4:l 
CON14:3 

LVCON:4 "r =tf 

WRITES 
RV8:1 r 
RV4:1 i 
MAX:8 1 
RV4:1 i 
MAX:l 1 
LVCON:8 " % •.• E" 
FILE 
WRITEF:6 

CONC4 

WRITEC 

CONl4:1 

NAM bool 
LVCON:4 "%s" 
FILE 

WRITEF:3 

WRITLN 

Here the operator UNITOUT is an abbreviated rorm or the operator UNIT that is used when the 
file to be made active is output. A file descriptor, record count, string size, and a pointer to the 
constant string "r -" are pushed and then output by WRITES. Next the value of r is pushed on 
the stack and the precision size is calculated by taking seven less than the width, but not less than 
one. This is followed by the width that is reduced by one to leave space for the required leading 
blank. If the width is too narrow, it is expanded by !print!. A pointer to the format string is 
pushed followed by a file descriptor and the operator WRITEF that prints out r. The value of six 
on WRITEF comes from two longs ror r and a long each for the precision, width, format string 
pointer, and file descriptor. The operator CONC4 pushes the blank character onto a long on the 
stack that is then printed out by WRITEC. The internal representation for true is pushed as a long 
onto the stack and is then replaced by a pointer to the string "true" by the operator NAM using 
the table bool for conversion. This string is output by the operator WRITEF using the format 
string "%s". Finally the operator WRITLN appends a newline to the file. 

3.9. File activation and status operations 

UNIT. 
The file pointed to by the file pointer on the top of the stack is converted to be the active 
file. The opcodes UNITINP and UNITOUT imply standard input and output respectively 
instead of explicitly pushing their file pointers. 

FILE 

EOF 

The standard I/O library fiJe descriptor associated with the active file is pushed onto the 
stack. 

The file pointed to by the file pointer on the top of the stack is checked for end of file. A 
boolean is returned with tnJ.e indicating the end of file condition. 



( 

() 

- 25-

EOLN 

The file pointed to by the file pointer on the top of the stack is checked for end of line. A 
boolean is returned with true indicating the end of line condition. Note that only text files 
can check for end of line. 

3.10. File housekeeping operations 

DEFNAME 

Four data items are passed on the stack; the size of the data type associated with the file, the 
maximum size of the file name, a pointer to the file name, and a pointer to the file variable. 
A file record is created with the specified window size and the file variable set to point to it. 
The file is marked as defined but not opened. This allows program statement association of 
file names with file variables before their use by a RESET or a REWRITE. 

BUFFs 

The sub-opcode is placed in the external variable _btl/opt to specify the amount of I/O 
buffering that is desired. The current options are: 

o - character at a time buffering 
1 - line at a time buffering 
2 - block buffering 

The default value is 1. 

RESET 
REWRITE 

Four data items are passed on the stack; the size of the data type associated with the file, the 
maximum size of the name (possibly zero), a pointer to the file name (possibly null), and a 
pointer to the file variable. If the file has never existed it is created as in DEFNAME. If no file 
name is specified and no previous name exists (for example one created by DEFNAME ) then a 
system temporary name is created. RESET then opens the file for input, while REWRITE opens 
the file for output. 

The three remaining file operations are FLUSH that flushes the active file, REMOVE that takes 
the pointer to a file name and removes the specified file, and MESSAGE that flushes all the output 
files and sets the standard error file to be the active file. 

4. Conclusions 

It is appropriate to consider, given the amount of time invested in rewriting the interpreter, 
whether the time was well spent, or whether a code-generator could have been written with an 
equivalent amount of effort. The Berkeley Pascal system is being modified to interface to the code 
generator of the portable C compiler with not much more work than was involved in rewritting 
pz. However this compiler will probably not supercede the interpreter in an instructional environ­
ment as the necessary loading and assembly processes will slow the compilation process to a notice­
able degree. This effect will be further exaggerated because student users spend more time in com­
pilation than in execution. Measurements over the course of a quarter at Berkeley with a mixture 
of students from beginning programming to upper division compiler construction show that the 
amount of time in compilation exceeds the amount of time spent in the interpreter, the ratio being 
approximately 60/40. 

A more promising approach might have been a throw-away code generator such as was done 
for the WATFIV system. However the addition of high-quality post-mortem and interactive debug­
ging facilities become much more difficult to provide than in the interpreter environment. 
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EFL is a clean, general purpose computer language intended to encourage 
portable programming. It has a uniform and readable syntax and good data and 
control flow structuring. EFL programs can be translated into efficient Fortran 
code, so the EFL programmer can take advantage of the ubiquity of Fortran, the 
valuable libraries of software written in that language, and the portability that 
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The Programming Language EFL 

1. INTRODUCTION 

1.1. Purpose 

Stuart 1. Feldman 

Fortran 
Preprocessors 

Ratfor 

EFL is a clean, general purpose computer language intended to encourage portable program­
ming. It has a uniform and readable syntax and good data and control flow structuring. EFL 
programs can be translated into efficient Fortran code, so the EFL programmer can take advantage 
of the ubiquity of Fortran, the valuable libraries of software written in that language, and the por­
tability that comes with the use of a standardized language, without suffering from Fortran's many 
failings as a language. It is especially useful for numeric programs. Thus, the EFL language per­
mits the programmer to express complicated ideas in a comprehensible way, while permitting 
access to the power of the Fortran environment. 

1.2. History 

EFL can be viewed as a descendant of B. W. Kernighan's Ratfor II]; the name originally 
stood for 'Extended Fortran Language'. A. D. Hall designed the initial version of the language and 
wrote a preliminary version of a compiler. I extended and modified the language and wrote a full 
compiler (in C) for it. The current compiler is much more than a simple preprocessor: it attempts 
to diagnose all syntax errors, to provide readable Fortran output, and to avoid a number of nig­
gling restrictions. To achieve this goal, a sizable two-pass translator is needed. 

1.3. Notation 

In examples and syntax specifications, boldface type is used to indicate literal words and 
punctuation, such as while. Words in italic type indicate an item in a category, such as an 
expression. A construct surrounded by double brackets represents a list of one or more of those 
items, separated by commas. Thus, the notation 

[ item n 
could refer to any of the following: 

item 
item, item 
item, item, item 

The reader should have a fair degree of familiarity with some procedural language. There 
will be occasional references to Ratfor and to Fortran which may be ignored if the reader is unfam­
iliar with those languages. 
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2. LEXICAL FORM 

2.1. Character Set 

The following characters are legal in an EFL program: 

letter, abe d e t g h I j kim 

digit, 
white 'pace 
quote, 
,karp 
continuation 
6race, 
parentkue, 
otker 

nopqratuvwxys 
0128458789 
6/ank ta6 , .. 

*' 
{ } 
( ) 
, ; 
= 

Letter case (upper or lower) is ignored except within strings, so 'a' and 'A' are treated as the same 
character. All of the examples below are printed in lower case. An exclamation mark ('!') may be 
used in place of a tilde ('- '). Square brackets ('[' and 'J') may be used in place of braces ('{' and 
I}'). 

2.2. Lines 

EFL is a line-oriented language. Except in special cases (discussed below), the end of a line 
marks the end of a token and the end of a statement. The trailing portion of a line may be used 
for a comment. There is a mechanism for diverting input from one source file to another, so a sin­
gle line in the program may be replaced by a number of lines from the other file. Diagnostic mes­
sages are labeled with the line number of the file on which they are detected. 

2.2.1. White Space 

Outside of a character string or comment, any sequence of one or more spaces or tab charac­
ters acts as a single space. Such a space terminates a token. 

2.2.2. Comments 

A comment may appear at the end of any line. It is introduced by a sharp (#) character, 
and continues to the end of the line. (A sharp inside of a quoted string does not mark a com­
ment.) The sharp and succeeding characters on the line are discarded. A blank line is also a com­
ment. Comments have no effect on execution. 

2.2.3. Include Files 

It is possible to insert the contents of a file at a point in the source text, by referencing it in 
a line like 

include Joe 

No statement or comment may follow an include on a line. In effect, the include line is replaced 
by the lines in the named file, but diagnostics refer to the line number in the included file. 
Includes may be nested at least ten deep. 

2.2.4. Continuation 

Lines may be continued explicitly by using the underscore (;...) character. If the last character 
of a line (after comments and trailing white space have been stripped) is an underscore, the end of 
line and the initial blanks on the next line are ignored. Underscores are ignored in other contexts 
(except inside of quoted strings). Thus 
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LOO(L(XXL 
000 

There are also rules for continuing lines automatically: the end of line is ignored whenever it 
is obvious that the statement is not complete. To be specific, a statement is continued if the last 
token on a line is an operator, comma, left brace, or left parenthesis. (A statement is not contin­
ued just because of unbalanced braces or parentheses.) Some compound statements are also contin­
ued automatically; these points are noted in the sections on executable statements. 

2.2.5. Multiple Statements on a Line 

A semicolon terminates the current statement. Thus, it is possible to write more than one 
statement on a line. A line consisting only of a semicolon, or a semicolon following a semicolon, 
forms a null statement. 

2.3. Tokens 

A program is made up of a sequence of tokens. Each token is a sequence of characters. A 
blank terminates any token other than a quoted string. End of line also terminates a token unless 
explicit continuation (see above) is signaled by an underscore. 

2.3.1. Identifiers 

An identifier is a letter or a letter followed by letters or digits. The following is a list of the 
reserved words that have special meaning in EFL. They will be discussed later. 

array exit precision 
automatic external procedure 
break talse read 
call field readbin 
case tor real 
character function repeat 
common go retum 
complex goto select 
continue it short 
debug implicit siseor 
detault include static 
define initial struct 
dimension integer subroutine 
do internal true 
double lengthot until 
doubleprecision logical - value 
else long while 
end next write 
equivalence option writebin 

The use of these words is discussed below. These words may not be used for any other purpose. 

2.3.2. Strings 

A character string is a sequence of characters surrounded by quotation marks. If the string is 
bounded by single-quote marks ( , ), it may contain double quote marks ( " ), and vice versa. A 
quoted string may not be broken across a line boundary. 

'hello there' 
"ain't misbehavin -
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2.3.3. Integer Constants 

An integer constant is a sequence of one or more digits. 

2.3.4. Floating Point Constants 

o 
67 
123468 

---------- --------~ 

A floating point constant contains a dot and/or an exponent field. An ezponent field is a 
letter d or e followed by an optionally signed integer constant. If I and J are integer constants 
and E is an exponent field, then a floating constant has one of the following forms: 

.1 
I. 
I.J 
IE 
I.E 
.IE 
I.JE 

2.3.5. Punctuation 

Certain characters are used to group or separate objects in the language. These are 

parentheses () 
braces { } 
comma 
semicolon 
colon 
end-of-line 

The end-of-line is a token (statement separator) when the line is neither blank nor continued. 

2.3.6. Operators 

The EFL operators are written as sequences of one or more non-alphanumeric characters. 

+ - * / ** 
< <= > >= == 
&& II & I 
+= -= /= **= 
&&= 11= &= 1= 
-> .• 

A dot ('.') is an operator when it qualifies a structure element name, but not when it acts as a 
decimal point in a numeric constant. There is a special mode (see the Atavisms section) in which 
some of the operators may be represented by a string consisting of a dot, an identifier, and a dot 
(e.g., .It. ). 

2.4. Macros 

EFL has a simple macro substitution facility. An identifier may be defined to be equal to a 
string of tokens; whenever that name appears as a token in the program, the string replaces it. A 
macro name is given a value in a define statement like 

define count n += 1 

Any time the name count appears in the program, it is replaced by the statement 
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n+=l 

A define statement must appear alone on a line; the (orm is 

define name relt-of-Iine 

Trailing comments are part o( the string. 

3. PROGRAM FORM 

3.1. Files 

A file is a sequence of lines. A file is compiled as a single unit. It may contain one or more 
procedures. Declarations and options that appear outside of a procedure affect the succeeding pro­
cedures on that file. 

3.2. Procedures 

Procedures are the largest grouping of statements in EFL. Each procedure has a name by 
which it is invoked. (The first procedure invoked during execution, known as the main procedure, 
has the null name.) Procedure calls and argument passing are discussed in Section 8. 

3.3. Blocks 

Statements may be formed into groups inside of a procedure. To describe the scope of 
names, it is convenient to introduce the ideas of block and of nelting level. The beginning of a pro­
gram file is at nesting level zero. Any options, macro definitions, or variable declarations there are 
also at level zero. The text immediately (ollowing a procedure statement is at level 1. Mter the 
declarations, a left brace marks the beginning of a new block and increases the nesting level by 1; a 
right brace drops the level by 1. (Braces inside declarations do not mark blocks.) (See Section 7.2). 
An end statement marks the end of the procedure, levell, and the return to level O. A name 
(variable or macro) that is defined at level k is defined throughout that block and in all deeper 
nested levels in which that name is not redefined or redeclared. Thus, a procedure might look like 
the following: 

3.4. Statements 

# block 0 
procedure george 
real x 
x=2 

if(x > 2) 
{ # new block 
integer x # a different variable 
do x = 1,7 

write(,x) 

} # end of block 
end # end of procedure, return to block 0 

A statement is terminated by end of line or by a semicolon. Statements are of the following 
types: 
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Option 
Include 
Define 

Procedure 
End 

Declarative 
Executable 

The option statement is described in Section 10. The include, define, and end statements have 
been described above; they may not be followed by another statement on a line. Each procedure 
begins with a procedure statements and finishes with an end statement; these are discussed in 
Section 8. Declarations describe types and values of variables and procedures. Executable state­
ments cause specific actions to be taken. A block is an example of an executable statement; it is 
made up of declarative and executable statements. 

3.5. Labels 

An executable statement may have a label which may be used in a branch statement. A 
label is an identifier followed by a colon, as in 

reade, x) 
if'( x < 3) goto error 

error: tatal("bad input") 

4. DATA TYPES AND VARIABLES 
EFL supports a small number of basic (scalar) types. The programmer may define objects 

made up of variables of basic type; other aggregates may then be defined in terms of previously 
defined aggregates. 

4.1. Basic Types 

The basic types are 

logical 
integer 
field(m:n) 
real 
complex 
long real 
long complex 
character( n ) 

A logical quantity may take on the two values true and false. An integer may take on any whole 
number value in some machine-dependent range. A field quantity is an integer restricted to a par­
ticular closed interval ([m:n J). A 'real' quantity is a floating point approximation to a real or 
rational number. A long real is a more precise approximation to a rational. (Real quantities are 
represented as single precision floating point numbers; long reals are double precision floating point 
numbers.) A complex quantity is an approximation to a complex Dumber, and is represented as a 
pair of reals. A character quantity is a fixed-length string of fa characters. 

4.2. Constant. 

There is a notation for a constant of each basic type. 

A logical may take on the two values 

r-\ 
U 
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true 
false 

An integer or field constant is a fixed point constant, optionally preceded by a plus or minus sign, 
as in 

17 
-84 
+8 
o 

A long real ('double precision') constant is a floating point constant containing an exponent field 
that begins with the letter d. A real ('single precision') constant is any other floating point con­
stant. A real or long real constant may be preceded by a plus or minus sign. The following are 
valid real constants: 

17.3 
-.4 
7.8e-8 (- 7.9XI0-8) 

14e9 (- 1.4XI010) 

The following are valid long real constants 

7.8d-8 (- 7.9XIO-G) 
od3 

A character constant is a quoted string. 

4.3. Variables 

A variable is a quantity with a name and a location. At any particular time the variable 
may also have a value. (A variable is said to be undefined before it is initialized or assigned its 
first value, and after certain indefinite operations are performed.) Each variable has certain attri­
butes: 

4.3.1. Storage Class 

The association of a name and a location is either transitory or permanent. Transitory asso­
ciation is achieved when arguments are passed to procedures. Other associations are permanent 
(static). (A future extension of EFL may include dynamically allocated variables.) 

4.3.2. Scope or Names 

The names of common areas are global, as are procedure names: these names may be used 
anywhere in the program. All other names are local to the block in which they are declared. 

4.3.3. Precision 

Floating point variables are either of normal or long precision. This attribute may be stated 
independently of the basic type. 

4.4. Arrays 

It is possible to declare rectangular arrays (of any dimension) of values of the same type. 
The index set is always a cross-product of intervals of integers. The lower and upper bounds of 
the intervals must be constants for arrays that are local or eommon. A formal argument array 
may have intervals that are of length equal to one of the other formal arguments. An element of 
an array is denoted by the array name followed by a parenthesized comma-separated list of integer 
values, each of which must lie within the corresponding interval. (The intervals may include nega­
tive numbers.) Entire arrays may be passed as procedure arguments or in input/output lists, or 
they may be initialized; all other array references must be to individual elements. 



-8-

4.5. Structures 

It is possible to define new types which are made up of elements of other types. The com­
pound object is known as a ,tncturei its constituents are called member. of the structure. The 
structure may be given a name, which acts as a type name in the remaining statements within the 
scope of its declaration. The elements of a structure may be of any type (including previously 
defined structures), or they may be arrays of such objects. Entire structures may be passed to pro­
cedures or be used in input/output lists; individual elements of structures may be referenced. The 
uses of structures will be detailed below. The following structure might represent a symbol ta.ble: 

Rruct tableentl')" 
{ 
charactel'(8) name 
integer hashvalue 
integer numbel'ofelements 
field(O:I) initialiaed, used, set 
field(O:10) type 
} 

S. EXPRESSIONS 

Expressions are syntactic forms that yield a value. An expression may have any of the fol-
lowing forms, recursively applied: 

primary 
( ezpre8.ion ) 
unary-operator ezpre88ion 
ezpre88ion binary-operator ezpre88ion 

In the following table of operators, all operators on a line have equal precedence and have higher 
precedence than operators on later lines. The meanings of these operators are described in sections 
5.3 and 5.4. 

-> . 
"'* 
'" / unary + - ++ -
+ 
< <= > >= == --
& && 
I II 
s 
= += -= *= /= **= &= 1= &&= 11= 

Examples of expressions are 

a<b && b<c 
-(a + sin(x» / (S+cos(x»**2 

6.1. Pl'imaries 

Primaries are the basic elements of expressions, as follows: 

6.1.1. Constants 

Constants are described in Section 4.2. 

o 



( 

-9-

0.1.2. Variables 

Scalar variable names are primaries. They may appear on the left or the right side of an 
assignment. Unqualified names of aggregates (structures or arrays) may only appear as procedure 
arguments and in input/output lists. 

O.1.S. Array Elements 

An element of an array is denoted by the array name followed by a parenthesized list of sub­
scripts, one integer value for each declared dimension: 

0.1.4. Structure Members 

&(0) 
b(e,-S,4) 

A structure name followed by a dot followed by the name of a member of that structure con­
stitutes a reference to that element. If that element is itself a structure, the reference may be 
further qualified. 

a.b 
x(S).y( 4) •• (0) 

0.1.5. Procedure Invocations 

A procedure is invoked by an expression of one of the forms 

proccdurename ( ) 
proccdurcname ( c:rprc88ion ) 
procedurename ( e:rprc88ion-l, ... , ezpreuion-n ) 

The procedurename is either the name of a variable declared external or it is the name of a func­
tion known to the EFL compiler (see Section 8.5), or it is the actual name of a procedure, as it 
appears in a procedure statement. If a procedurename is declared external and is an argument 
of the current procedure, it is associated with the procedure name passed as actual argument; oth­
erwise it is the actual name of a procedure. Each exprc88ion in the above is called an actual argu­
ment. Examples of procedure invocations are 

f{x) 
workO 
I(X, y+S, 'xx') 

When one of these procedure invocations is to be performed, each of the actual argument expres­
sions is first evaluated. The types, precisions, and bounds of actual and formal arguments should 
agree. If an actual argument is a variable name, array element, or structure member, the called 
procedure is permitted to use the corresponding formal argument as the left side of an assignment 
or in an input list; otherwise it may only use the value. After the formal and actual arguments are 
associated, control is passed to the first executable statement of the procedure. When a return 
statement is executed in that procedure, or when control reaches the end statement of that pro­
cedure, the function value is made available as the value of the procedure invocation. The type of 
the value is determined by the attributes of the procedurcname that are declared or implied in the 
calling procedure, which must agree with the attributes declared for the function in its procedure. 
In the special case of a generic function, the type of the result is also affected by the type of the 
argument. See Chapter 8 for details. 

o.l.B. Input/Output Expressions 

The EFL input/output syntactic forms may be used as integer primaries that have a non­
zero value if an error occurs during the input or output. See Section 7.7. 
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6.1.'1. Coercions 

An expression of one precision or type may be converted to another by an expression of the 
form 

attri~utes ( ezpression ) 

At present, the only attri~utes permitted are precision and basic types. Attributes are separated 
by white space. An arithmetic value of one type may be coerced to any other arithmetic type; a 
character expression of one length may be coerced to a character expression of another length; logi­
cal expressions may not be coerced to a nonlogical type. As a special case, a quantity of complex 
or Jong complex type may be constructed from two integer or real quantities by passing two 
expressions (separated by a comma) in the coercion. Examples and equivalent values are 

integer(6.S) = 6 
long real(6) = 6.0dO 
complex(5,S) = 5+3i 

Most conversions are done implicitly, since most binary operators permit operands or different 
arithmetic types. Explicit coercions are or most use when it is necessary to convert the type or an 
actual argument to match that of the corresponding formal parameter in a procedure call. 

6.1.8. Sizes 

There is a notation which yields the amount or memory required to store a datum or an item 
or specified type: 

si.eof ( leftside ) 
si.eof ( attn'~utes ) 

In the first case, leftside can denote a variable, array, array element, or structure member. The 
value or sizeof is an integer, which gives the size in arbitrary units. If the size is needed in terms 
of the size of some specific unit, this can be computed by division: 

si.eof( x) / sileof(integer) 

yields the size or the variable x in integer words. 

The distance between consecutive elements or an array may not equal sileof because certain 
data types require final padding on some machines. The lengthof operator gives this larger value, 
again in arbitrary units. The syntax is 

6.2. Parentheses 

lengthof ( leftside ) 
lengthof ( attri~utes ) 

An expression surrounded by parentheses is itselr an expression. A parenthesized expression 
must be evaluated before an expression of which it is a part is evaluated. 

6.S. Unary Operators 

All of the unary operators in EFL are prefix operators. The result of a unary operator has 
the same type as its operand. 

6.S.1. Arithmetic 

Unary + has no effect. A unary - yields the negative of its operand. 

The prefix operator ++ adds one to its operand. The prefix operator - subtracts one from 
its operand. The value of either expression is the result or the addition or subt.raction. For these 
two operators, the operand must be a scalar, array element, or structure member or arithmetic 
type. (As a side effect, the operand value is changed.) 
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5.3.2. Logical 

The only logical unary operator is complement (-). This operator is defined by the equations 

- true == false 
- false == true 

5.4. Binary Operators 

Most EFL operators have two operands, separated by the operator. Because the character set 
must be limited, some of the operators are denoted by strings of two or three special characters. 
All binary operators except exponentiation are left associative. 

5.4.1. Arithmetic 

The binary arithmetic operators are 

+ addition 
subtraction 

• multiplication 
/ division 
•• exponentiation 

Exponentiation is right associative: a .. b •• c = a .. (b •• c) = a(6<) The operations have the conven­
tional meanings: 8+2 == 10, 8-2 == 6, 8.2 == 16, 8/2 == 4, 8 •• 2 == 82 == 64. 

The type of the result of a binary operation A op B is determined by the types of its 
operands: 

Type ofB 

T e of A inte er real Ion real com lex Ion com lex 
integer integer real long real complex long complex 
real real real long real complex long complex 
long real long real long real long real long complex long complex 
complex complex complex long complex complex long complex 
long complex long complex long complex long complex long complex long complex 

If the type of an operand differs from the type of the result, the calculation is done as if the 
operand were first coerced to the type of the result. If both operands are integers, the result is of 
type integer, and is computed exactly. (Quotients are truncated toward zero, so 8/3==2.) 

5.4.2. Logical 

The two binary logical operations in EFL, and and or, are defined by the truth tables: 

A B A and B A or B 
false 
false 
true 
true 

false 
true 
false 
true 

false 
false 
false 
true 

false 
true 
true 
true 

Each of these operators comes in two forms. In one form, the order of evaluation is specified. The 
expression 

a&&b 

is evaluated by first evaluating a; if it is false then the expression is false and b is not evaluated; 
otherwise the expression has the value of b. The expression 

a lib 
is evaluated by first evaluating a; if it is true then the expression is true and b is not evaluated; 
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otherwise the expressioD has the value of b. The other forms of the operators (Ie for and and I for 
01') do not imply an order of evaluation. With the latter operators, the compiler may speed up the 
code by evaluating the operands in any order. 

5.4.3. Relational Operatol"8 

There are six relations between arithmetic quantities. These operators are not associative. 

EFL 0l!erator Meaning 

< < less than 
<= ~ less than or equal to 
== == equal to 

= " not equal to 
> > greater than 
>= ~ greater than or equal 

Since the complex numbers are not ordered, the only relational operators that may take complex 
operands are == and -=. The character collating sequence is not defined. 

5.4.4. Assignment Operators 

All of the assignment operators are right associative. The simple form of assignment is 

60.&ic-/e/t-&ide = ezpre&&ion 

A baBic-/e/t-&ide is a scalar variable name, array element, or structure member of basic type. This 
statement computes the expression on the right side, and stores that value (possibly after coercing 
the value to the type of the left side) in the location named by the left side. The value of the 
assignment expression is the value assigned to the lett side after coercion. 

There is also an assignment operator corresponding to each binary arithmetic and logical 
operator. In each case, a op= b is equivalent to a == 0. op b. (The operator and equal sign must 
not be separated by blanks.) Thus, n+=2 adds 2 to n. 'The location of the left side is evaluated 
only once. 

5.5. Dynamic Structures 

EFL does not have an address (pointer, reference) type. However, there is a notation for 
dynamic structures, 

le/tBide - > &tructureno.me 

This expression is a structure with the shape implied by Btructurename but starting at the location 
of le/tBide. In effect, this overlays the structure template at the specified location. The le/tBide 
must be a variable, array, array element, or structure member. The type of the le/tBide must be 
one of the types in the structure declaration. An element of such a structure is denoted in the 
usual way using the dot operator. Thus, 

place(i) - > st.elt 

refers to the elt member of the at structure starting at the i'/& element of the array place. 

5.8. Repetition Operator 

Inside of a list, an element of the form 

inteler-COn&to.nt-upre&&ion S condo.nt-ezpreuion 

is equivalent to the appearance of the ezpre&&ion a Dumber of times equal to the first expression. 
Thus, . 

(3,3$4,5) 

is equivalent to 



- 13-

(S, 4, 4, 4, &) 

("', &.7. Constant Expressions 

( 

H an expression is built up out of operators (other than functions) and constants, the value 
of the expression is a constant, and may be used anywhere a constant is required. 

8. DECLARATIONS 

Declarations statement describe the meaning, shape, and size of named objects in the EFL 
language. 

8.1. Syntax 

A declaration statement is made up of attributes and variables. Declaration statements are 
of two form: 

attribute, variab/e·/i,t 
attri6utu { deelaration, } 

In the first case, each name in the variable·1i8t has the specified attributes. In the second, each 
name in the declarations also has the specified attributes. A variable name may appear in more 
than one variable list, so long as the attributes are not contradictory. Each name of a nonargu­
ment variable may be accompanied by an initial value specification. The deelaration8 inside the 
braces are one or more declaration statements. Examples of declarations are 

6.2. Attributes 

6.2.1. Basic Types 

integer k=2 

long real b(7,3) 

common( cname) 
{ 
integer i 
long real array(&,O:3) x, y 
charaeter(7) ch 
} 

The following are basic types in declarations 

logical 
integer 
field(m:n) 
character( k ) 
real 
complex 

In the above, the quantities k, m, and n denote integer constant expressions with the properties 
k>O and n >m. 

8.2.2. Arrays 

The dimensionality may be declared by an array attribute 

array( 61> ... ,6,,) 

Each of the hi may either be a single integer expression or a pair of integer expressions separated 
by a colon. The pair of expressions form a lower and an upper bound; the single expression is an 
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upper bound with an implied lower bound of 1. The number of dimensions is equal to n, the 
number of bounds. All of the integer expressions must be constants. An exception is permitted 
only if all of the variables associated with an array declarator are formal arguments of the pro­
cedure; in this case, each bound must have the property that .""er-Iower+l is equal to a formal 
argument of the proeedure. (The compiler has limited ability to simplify expressions, but it will 
recognize impoJ1;ant cases such as (Om-I). The upper bound for the last dimension (b.) may be 
marked by an asterisk ( • ) if the size of the array is not known. The following are legal array 
attributes: 

8.2.3. Structures 

array(6) 
array(6, 1:6, -8:0) 
array(6, *) 
array(O:m-l, m) 

A structure declaration is of the form 

struct atructname { declaration atatementa } 

The atructname is optional; if it is present, it acts as if it were the name of a type in the rest of its 
scope. Each name that appears inside the declarationa is a member of the structure, and has a 
special meaning when used to qualify any variable declared with the structure type. A name may 
appear as a member of any number of structures, and may also be the name of an ordinary vari­
able, since a structure member name is used only in contexts where the parent type is known. The 
following are valid structure attributes 

struct xx 
{ 
integer a, b 
real x(6) 
} 

stl'lJct { xx .(3); character(6) y } 

The last line defines a structure containing an array of three xx' a and a character string. 

8.2.4. Precision 

Variables of floating point (real or complex) type may be declared to be long to ensure 
they have higher precision than ordinary floating point variables. The default precision is short. 

8.2.6. Common 

Certain objects called common areaa have external scope, and may be referenced by any pro­
cedure that has a declaration for the name using a 

common ( commonareaname) 

attribute. All of the variables declared with a particular common attribute are in the same block; 
the order in which they are declared is significant. Declarations for the same block in differing pro­
cedures must have the variables in the same order and with the same types, precision, and shapes, 
though not necessarily with the same names. 

8.2.8. External 

If a name is used as the procedure name in a procedure invocation, it is implicitly declared to 
have the external attribute. If a procedure name is to be passed as an argument, it is necessary 
to declare it in a statement of the form 
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external [ name D 

If a name has the external attribute and it is a formal argument of the procedure, then it is associ­
ated with a procedure identifier passed as an actual argument at each call. If the name is not a 
formal argument, then that name is the actual name of a procedure, as it appears in the 
corresponding procedure statement. 

6.3. Variable List 

The elements of a variable list in a declaration consist of a name, an optional dimension 
specification, and an optional initial value specification. The name follows the usual rules. The 
dimension specification is the same form and meaning as the parenthesized list in an array attri­
bute. The initial value specification is an equal sign (=) followed by a constant expression. If the 
name is an array, the right side of the equal sign may be a parenthesized list of constant expres­
sions, or repeated elements or lists; the total number of elements in the list must not exceed the 
number of elements of the array, which are filled in column-major order. 

6.4. The Initial Statement 

An initial value may also be specified for a simple variable, array, array element, or member 
of a structure using a statement of the form 

initial IT var = val n 
The var may be a variable name, array element specification, or member of structure. The right 
side follows the same rules as for an initial value specification in other declaration statements. 

7. EXECUTABLE STATEMENTS 
Every useful EFL program contains executable statements - otherwise it would not do any­

thing and would not need to be run. Statements are frequently made up of other statements. 
Blocks are the most obvious case, but many other forms contain statements as constituents. 

To increase the legibility of EFL programs, some of the statement forms can be broken 
without an explicit continuation. A square (D) in the syntax represents a point where the end of a 
line will be ignored. 

7.1. Expression Statements 

7.1.1. Subroutine Can 

A procedure invocation that returns no value is known as a subroutine call. Such an invoca­
tion is a statement. Examples are 

work(in, out) 
rune) 

Input/output statements (see Section 7.7) resemble procedure invocations but do not yield a 
value. If an error occurs the program stops. 

7.1.2. Assignment Statements 

An expression that is a simple assignment (=) or a compound assignment (+= etc.) is a 
statement: 

a=b 
a = sin(x)/8 
x*=y 



'7.2. Blocks 

A block is a compound statement that acts as a statement. A block begins with a left brace, 
optionally followed by declarations, optionally followed by executable statements, followed by a 
right brace. A block may be used anywhere a statement is permitted. "A block is not an expres­
sion and does not have a value. An example of a block is 

{ 
integer i # this variable is unknown outside the braces 

big=O 
do i == 1,n 

} 

it(big < a(i» 
big = a(i) 

'7.3. Test Statements 

Test statements permit execution of certain statements conditional on the truth of a predi-
cate. 

7.3.1. If Statement 

The simplest of the test statements is the it statement, of form 

it ( logical-ezpreaaion ) 0 atatement 

The logical expression is evaluated; if it is true, then the atatement is executed. 

'7.3.2. If-Else 

A more general statement is of the form 

it ( logical-e:rpreaaion ) 0 atatement-l 0 else 0 atatement-f 

Ir the expression is true then atatement-l is executed, otherwise atatement-f is executed. Either of 
the consequent statements may itself be an it-else so a completely nested test sequence is possible: 

if(x<y) 
If(a<b) 

k=l 
else 

k=2 
else 

if(a<b) 
m=l 

else 
m=2 

An else applies to the nearest preceding un-elsed it. A more common use is as a sequential test: 

if(x==l) 
k=l 

else if(x==3 I x==5) 
k=2 

else 
k=3 
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1.3.3. Seleet Statement 

A multiway test on the value of a quantity is succinctly stated as a aeleet statement, which 
has the general form 

aeleet( ezpreuion ) 0 block 

Inside the block two special types of labels are recognized. A prefix of the form 

I eue [ con8tant D : 

marks the statement to which control is passed if the expression in the select has a value equal to 
one of the case constants. If the expression equals none of these constants, but there is a label 
default inside the select, a branch is taken to that point; otherwise the statement following the 
right brace is executed. Once execution begins at a ease or default label, it continues until the 
next ease or default is encountered. The else-it example above is better written as 

seleet(x) 
{ 
eue 1: 

k=1 
ease 3,5: 

k=2 
default: 

k=3 
} 

Note that control does not 'fall through' to the next case. 

1.4. Loops 

The loop forms provide the best way of repeating a statement or sequence of operations. The 
simplest (while) form is theoretically sufficient, but it is very convenient to have the more general 
loops available, since each expresses a mode of control that arises frequently in practice. 

1.4.1. While Statement 

This construct has the form 

while ( /ogical-ezpre88ion ) 0 8tatement 

The expression is evaluated; if it is true, the statement is executed, and then the test is performed 
again. If the expression is false, execution proceeds to the next statement. 

1.5. For Statement 

The for statement is a more elaborate looping construct. It has the form 

for ( initia/-Btatement , 0 logica/-ezpre88ion , 0 iteration-8tatement) 0 bod,l-8tatement 

Except for the behavior of the next statement (see Section 7.6.3), this construct is equivalent to 

initia/-8tatement 
while ( /ogical-ezpre88ion ) 

{ 
bod,l-8tatement 
iteration-8tatement 
} 

This form is useful for general arithmetic iterations, and for various pointer-type opera.tions. The 
sum of the integers from 1 to 100 can be computed by the fragment 
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n==O 
for(i == 1,1 <== 100, i +== 1) 

n+==i 

Alternatively, the computation could be done by the single statement 

for( {n == 0 J 1 == 1 }, 1<==100, (n +== 1; ++1}) 
; 

Note that the body or the for loop is a null statement in this case. An example of following a 
linked list will be given later. 

'1.6.1. Repeat Statement 

The statement 

repeat C ,tatement 

executes the statement, then does it again, without any termination test. Obviously, a test inside 
the ,tatement is needed to stop the loop. 

7.5.2. Repeat ••• Until Statement 

The while loop performs a test before each iteration. The statement 

repeat C ,tatement C until ( logical-ezpre88ion ) 

executes the ,tatement, then evaluates the logical; it the logical is true the loop is complete; other­
wise control returns to the ,tatement. Thus, the body is always executed at least once. The until 
refers to the nearest preceding repeat that has not been paired with an until. In practice, this 
appears to be the least frequently used looping construct. 

7.5.S. Do Loops 

The simple arithmetic progression is a very common one in numerical applications. EFL has 
a special loop form for ranging over an ascending arithmetic sequence 

do tJariable == ezpre88ion-l, e:tpre88ion-2, e:tpre"ion-9 
,tatement 

The variable is first given the value czpre"ion-l. The statement is executed, then c:rprc,8ion-9 is 
added to the variable. The loop is repeated until the variable exceeds e:tpre88ion-2. If expre'8ion-9 
and the preceding comma are omitted, the increment is taken to be 1. The loop above is 
equivalent to 

t2 = expression-2 
t3 = expression-3 
for(variable = expression-I, variable <= t2 , variable += t3) 

statement 

(The compiler translates EFL do statements into Fortran DO statements, which are in turn usu­
ally compiled into excellent code.) The do tJan'able may not be changed inside of the loop, and 
ezprc"ion-l must not exceed expre"ion-2. The sum of the first hundred positive integers could be 
computed by 

n==O 
do 1 == 1, 100 

n+==i 
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'1.8. Branch Statements 

Most of the need for branch statements in programs can be averted by using the loop and 
test constructs, but there are programs where they are very useful. 

'1.8.1. Goto Statement 

The most general, and most dangerous, branching statement is the simple unconditional 

goto label 

Mter executing this statement, the next statement performed is the one following the given label. 
Inside of a aelect the case labels of that block may be used as labels, as in the following example: 

seleet(k) 
{ 
ease 1: 

error('I) 

ease 2: 
k=2 
goto ease 4 

ease 3: 
k=o 
goto ease 4 

ease 4: 
fixup(k) 
goto default 

default: 
prmsg("oueh") 

} 

(IT two select statements are nested, the case labels of the outer select are not accessible from the 
inner one.) 

'1.8.2. Break Statement 

A safer statement is one which transfers control to the statement following the current select 
or loop form. A statement of this sort is almost always needed in a repeat loop: 

repeat 
{ 
do a computation 
if ( finished) 

break 
} 

More general forms permit controlling a branch out of more than one construct. 

break 3 

transfers control to the statement following the third loop and/or select surrounding the state­
ment. It is possible to specify which type of construct (for, while, repeat, do, or select) is to be 
counted. The statement 

break while 

breaks out of the first surrounding while statement. Either of the statements 
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break 8 for 
break for 8 

will transfer to the statement after the third enclosing for loop. 

'1.8.3. Next Statement 

The next statement causes the first surrounding loop statement to go on to the next itera­
tion: the next operation performed is the test of a while, the iter4tion-at4tement of a for, the 
body of a repeat, the test of a repeat ••• until, or the increment of a do. Elaborations similar to 
those for break are available: 

next 
next 3 
next 3 for 
next for 3 

A next statement ignores select statements. 

'1.8.4. Return 
The last statement of a procedure is followed by a return of control to the caller. If it is 

desired to effect such a return from any other point in the procedure, a 

return 

statement may be executed. Inside a function procedure, the' function value is specified as an argu­
ment of the statement: 

return ( ezpreaaion ) 

'1.'1. Input/Output Statements 

EFL has two input statements (read and readbin), two output statements (write and wri­
tebin), and three control statements (endfile, rewind, and backspace). These forms may be 
used either as a primary with a integer value or as a statement. If an exception occurs when one 
of these forms is used as a statement, the result is undefined but will probably be treated as a fatal 
error. If they are used in a context where they return a value, they return zero if no exception 
occurs. For the input forms, a negative value indicates end-of-file and a positive value an error. 
The input/output part of EFL very strongly reflects the facilities of Fortran. 

'1.'1.1. Input/Output Units 

Each I/O statement refers to a 'unit', identified by a small positive integer. Two special 
units are defined by EFL, the atandard input unit and the stand4rd output unit. These particular 
units are assumed if no unit is specified in an I/O transmission statement. 

The data on the unit are organized into records. These records may be read or written in a 
fixed sequence, and each transmission moves an integral number of records.. Transmission proceeds 
Crom the first record until the end 0/ file. 

'1.'1.2. Binal")" Input/Output 

The Nadbin and writebin statements transmit data in a machine-dependent but swift 
manner. The statements are oC the Corm 

writebin( unit, bifl4,.,-output-Iut ) 
readbin( unit, bina,.,-input-lisl ) 

Each statement moves one unCormatted record between storage and the device. The unit is an 
integer expression. A bina,.,-output-list is an iolut (see below) without any format specifiers. A 
bina,.,-input-list is an iotist without Cormat specifiers in which each of the expressions is a variable 
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name, array element, or structure member. 

7.7.3. Formatted Input/Output 

The read and write statements transmit data in the form of lines of characters. Each state­
ment moves one or more records (lines). Numbers are translated into decimal notation. The exact 
form of the lines is determined by format specifications, whether provided explicitly in the state­
ment or implicitly. The syntax of the statements is 

write( unit, formatted-output-list ) 
read( unit, formatted-input-list ) 

The lists are of the same form as for binary I/O, except that the lists may include format 
specifications. If the unit is omitted, the standard input or output unit is used. 

7.7.4. IoUsts 

An ;olist specifies a set of values to be written or a set of variables into which values are to 
be read. An ;olist is a list of one or more ioezpressions of the form 

ezpression 
{ ;olist } 
do-specification { iolist } 

For formatted I/O, an ioezpre88ion may also have the forms 

ioezpression : format-specifier 
: format-specifier 

A do-specification looks just like a do statement, and has a similar effect: the values in the braces 
are transmitted repeatedly until the do execution is complete. 

7.7.5. Formats 

The following are permissible format-specifiers. The quantities w, d, and k must be integer 
constant expressions. 

i(w) 
f(w,d) 

e(w,d) 

lew) 

e 
e(w) 
s(k) 
x(k) 
" " 

integer with w digits 
floating point number of w characters, 
d of them to the right of the decimal point. 
floating point number of w characters, 
d of them to the right of the decimal point, 
with the exponent field marked with the letter e 
logical field of width w characters, 
the first of which is t or r 
(the rest are blank on output, igI)ored on input) 
standing for true and raIse respectively 
character string of width equal to the length of the datum 
character string of width w 
skip k lines 
skip k spaces 
use the characters inside the string as a Fortran format 

If no format is specified for an item in a formatted input/output statement, a default form is 
chosen. 

If an item in a list is an array name, then the entire array is transmit.t.ed as a sequence of ele­
ments, each with its own format. The elements are transmitted in column-major order, the same 
order used for array initializations. 
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bacbpaee( unit) 
:rewSnd( unit) 
endfiJe( unit) 

look like ordinary procedure calls, but may be used either as statements or as integer expressions 
which yield non-zero if an error is detected. bacbpace causes the specified unit to back up, so 
that the next read will re-read the previous record, and the next write will over-write it. rewind 
moves the device to its beginning, so that the next input statement will read the first record. 
endfile causes the file to be marked so that the record most recently written will be the last record 
on the file, and any attempt to read past is an error. 

8. PROCEDURES 

Procedures are the basic unit of an EFL program, and provide the means of segmenting a 
program into separately compilable and named parts. 

8.1. Procedure Statement 

Each procedure begins with a statement of one of the forms 

procedure 
attributes procedure proeedurename 
attributes procedure proeedurename ( ) 
attributes procedure proeedurename ( [ name n ) 

The first case specifies the main procedure, where execution begins. In the two other cases, the 
attn'butes may specify precision and type, or they may be omitted entirely. The precision and 
type of the procedure may be declared in an ordinary declaration statement. If no type is declared, 
then the procedure is called a subroutine and no value may be returned for it. Otherwise, the pro­
cedure is a function and a value of the declared type is returned for each call. Each name inside 
the parentheses in the last form above is called a formal argument of the procedure. 

8.2. End Statement 

Each procedure terminates with a statement 

end 

8.3. Argument Association 

When a procedure is invoked, the actual arguments are evaluated. If an actual argument is 
the name of a variable, an array element, or a structure member, that entity becomes associated 
with the formal argument, and the procedure may reference the values in the object, and assign to 
it. Otherwise, the value of the actual is associat.ed with the formal argument, but the procedure 
may not attempt to change the value of that formal argument. 

If the value of one of the arguments is changed in the procedure, it is not permitted that the 
corresponding actual argument be associated with another formal argument or with a common 
element that is referenced in the procedure. 

8.4. Execution and Return V &lues 

Mter actual and formal arguments have been associated, control passes to the first executable 
statement of the procedure. Control returns to the invoker either when the end statement of the 
procedure is reached or When a return statement is executed. If the procedure is a function (has a 
declared type), and a return(value) is executed, the value is coerced to the correct type and preci-
sion and returned. . 
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8.0. Known Functions 

A number of functions are known to EFL, and need not be declared. The compiler knows 
the types of these functions. Some of them are generic; i.e., they name a family of functions that 
differ in the types of their arguments and return values. The compiler chooses which element of 
the set to invoke based upon the attributes of the actual arguments. 

8.0.1. Minimum and Maximum Functions 

The generic functions are min and max. The min calls return the value of their smallest 
argument; the max calls return the value of their largest argument. These are the only functions 
that may take different numbers of arguments in different calls. If any of the arguments are long 
real then the result is long real. Otherwise, if any of the arguments are real then the result is 
real; otherwise all the arguments and the result must be integer. Examples are 

8.0.2. Absolute Value 

mineo, x, -3.20) 
max(i, z) 

The abs function is a generic function that returns the magnitude of its argument. For 
integer and real arguments the type of the result is identical to the type of the argument; for com­
plex arguments the type of the result is the real of the same precision. 

8.0.3. Elementary Functions 

The following generic functions take arguments of real, long real, or complex type and 
return a result of the same type: 

sin sine function 
cos 
exp 
log 
log10 
sqrt 

cosine function 
exponential function (e·). 
natural (base e) logarithm 
common (base 10) logarithm 
square root function ('\1'%). 

In addition, the following functions accept only real or long real arguments: 

8.0.4. Other Generic Functions 

atan atan (z )=tan -1 z 

atan2 atan 2(z ,Y )=tan-1!.. 
1/ 

The sign functions takes two arguments of identical type; sign(z,y) == ,gn(1/) Ix I. The 
mod function yields the remainder of its first argument when divided by its second. These func­
tions accept integer and real arguments. 

9. ATAVISMS 

Certain facilities are included in the EFL language to ease the conversion of old Fortran or 
Ratfor programs to EFL. 

9.1. Escape Lines 

In order to make use of nonstandard features of the local Fortran compiler, it is occasionally 
necessary to pass a particular line through to the EFL compiler output. A line that begins with a 
percent sign ('%') is copied through to the output, with the percent sign removed but no other 
change. Inside of a procedure, each escape line is treated as an executable stat.ement. If a sequence 
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of lines constitute a continued Fortran statement, they should be enclosed in braces. 

9.2. Call Statement 

A subroutine call may be preceded by the keyword call. 

call Joe 
call 'Work(17) 

9.S. Obsolete Keywords 

The following keywords are recognized as synonyms of EFL keywords: 

9.4. Numeric Labels 

Fortran 

double precision 
function 
8ubroutine 

EFL 

long real 
procedure 
procedure (untyped) 

Standard statement labels are identifiers. A numeric (positive integer constant) label is also 
permitted; the colon is optional following a numeric label. 

9.5. Implicit Declarations 

If a name is used but does not appear in a declaration, the EFL compiler gives a warning and 
assumes a declaration for it. If it is used in the context of a procedure invocation, it is assumed to 
be a procedure name; otherwise it is assumed to be a local variable defined at nesting level 1 in the 
current procedure. The assumed type is determined by the first letter of the name. The associa­
tion of letters and types may be given in an implicit statement, with syntax 

implicit ( letter-list) type 

where a letter-list is a list of individual letters or ranges (pair of letters separated by a minus sign). 
If no implicit statement appears, the following rules are assumed: 

implicit (a-h, 0-.) real 
implicit (i-n) integer 

9.6. Computed goto 

Fortran contains an indexed multi-way branch; this facility may be used in EFL by the com­
puted GOTO: 

goto ( [ label] ), expression 

The expression must be of type integer and be positive but be no larger than the number of labels 
in the list. Control is passed to the statement marked by the label whose position in the list is 
equal to the expression. 

9.7. Go To Statement 

In unconditional and computed goto statements, it is permissible to separate the go and to 
words, as in 

go to xy. 

----~--- ---~--
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9.S. Dot Names 

Fortran uses a restricted character set, and represents certain operators by multi-character 
sequences. There is an option (dots=on; see Section 10.2) which forces the compiler to recognize 
the forms in the second column below: 

< .It. 
<= .Ie. 
> .gt. 
>= .ge • 
== • eq. 
- .ne. 

&; .and. 
I .or • 
&;&; • andand. 
II .oror . 

• not • 
true • true. 
false .false. 

In this mode, no structure element may be named It, Ie, etc. The readable forms in the left 
column are always recognized. 

9.9. Complex Constants 

A complex constant may be written as a parenthesized list of real quantities, such as 

(1.5,3.0) 

The preferred notation is by a type coercion, 

eomplex(1.5, 3.0) 

9.10. Function Values 

The preferred way to return a value from a function in EFL is the return( value) construct. 
However, the name of the function acts as a variable to which values may be assigned; an ordinary 
return statement returns the last value assigned to that name as the function value. 

9.11. Equivalence 

A statement of the form 

equivalence VI' V2, ••• , v" 

declares that each of the Vj starts at the same memory location. Each of the Vi may be a variable 
name, array element name, or structure member. 

9.12. Minimum and Maximum Functions 

There are a number of non-generic functions in this category, which differ in the required 
types of the arguments and the type of the return value. They may also have variable numbers of 
arguments, but all the arguments must have the same type. 



Function 
4minO 
aminl 
minO 
minI 
dminl 

10. COMPILER OPTIONS 

amaxO 
amaxl 
maxO 
maxI 
elmaxl 
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Argument Type 
integer 
real 
integer 
real 
long real 

integer 
real 
integer 
real 
long real 

Result Type 
real 
real 
integer 
integer 
long real 

real 
real 
integer 
integer 
long real 

A number of options can be used to control the output and to tailor it for various compilers 
and systems. The defaults chosen are conservative, but it is sometimes necessary to change the 
output to match peculiarities of the target environment. 

Options are set with statements of the form 

option [ opt] 

where each opt is of one of the forms 

opt;onname 
optionname = optionva/ue 

The optionva/ue is either a constant (numeric or string) or a name associated with that option. 
The two names yes and no apply to a number of options. 

10.1. Default Options 

Each option has a default setting. It is possible to change the whole set of defaults to those 
appropriate for a particular environment by using the system option. At present, the only valid 
values are system=unix and system=gc08. 

10.2. Input Language Options 

The dots option determines whether the compiler recognizes .It. and similar forms. The 
default setting is no. 

10.3. Input/Output Error Handling 

The ioerror option can be given three values: none means that none of the I/O statements 
may be used in expressions, since there is no way to detect errors. The implementation of the ibm 
form uses ERR= and END= clauses. The implementation of the tortran77 form uses 10S­
TAT= clauses. 

10.4. Continuation Conventions 

By default, continued Fortran statements are indicated by a character in column 6 (Standard 
Fortran). The option continue=colum.nl puts an ampersand (Be) in the first column of the con­
tinued lines instead. 

10.5. Default Formats 

If no format is specified for a datum in an iolist for a read or write statement, a default is 
provided. The default formats can be changed by setting certain options 

C) 
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Option 
itormat 
dormat 
dtormat 
.tormat 
.dtormat 
Itormat 

Type 
integer 
real 
long real 
complex 
long complex 
logical 

The associated value must be a Fortran format, such as 

option rf'ormat=f22.8 

10.8. Alignments and Sizes 

In order to implement character variables, structures, and the sizeof and lengthof opera­
tors, it is necessary to know how much space various Fortran data types require, and what boun­
dary alignment properties they demand. The relevant options are 

Fortran Type 
integer 
real 
long real 
complex 
logical 

Size Option 
isize 
raise 
dsize 
ssize 
lsize 

Alignment Option 
iaUgn 
ralign 
dalign 
zalign 
lalign 

The sizes are given in terms of an arbitrary unit; the alignment is given in the same units. The 
option charperint gives the number of characters per integer variable. 

10.7. Default Input/Output Units 

The options ttnin and ftnout are the numbers of the standard input and output units. The 
default values are ttnin=5 and ttnout=8. 

10.8. Miscellaneous Output Control Options 

Each Fortran procedure generated by the compiler will be preceded by the value of the proc­
header option. 

No Hollerith strings will be passed as subroutine arguments if hollincall=no is specified. 

The Fortran statement numbers normally start at 1 and increase by 1. It is possible to 
change the increment value by using the deltastno option. 

11. EXAMPLES 

In order to show the flavor or programming in EFL, we present a few examples. They are 
short, but show some of the convenience of the language. 

11.1. File Copying 

The following short program copies the standard input to the standard output, provided that 
the input is a formatted file containing lines no longer than a hundred characters. 



procedure '* main program. 
charaeter(IOO) line 

while( read( , line) ==== 0 ) 
write( , line) 

end 
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Since read returns zero until the end of file (or a read error), this program keeps reading and writ­
ing until the input is exhausted. 

11.2. Matrix Multiplication 

The following procedure multiplies the m X n matrix a by the n Xp matrix b to give the 
m Xp matrix c. The calculation obeys the formula Cij == bait b*j. 

procedure matmul( a,b,c, m,n,p) 
integer i, j, k, m, n, p 
long real a(m,n), b(n,p), c(m,p) 

do i == I,m 
doj == l,p 

{ 
c(iJ) == 0 
do k == l,n 

c(iJ) +== a(i,k) * b(kJ) 
} 

end 

11.3. Searching a Linked List 

Assume we have a list of pairs of numbers (x,1/). The list is stored as a linked list sorted in 
ascending order of z values. The following procedure searches this list for a particular value of x 
and returns the corresponding 1/ value. 

define LAST 0 
define NOTFOUND-I 

integer procedure val(list, first, x) 

# list is an array ot structures. 
# Each structure contains a thread index value, an x, and a y value. 

struct 
{ 
integer nextindex 
integer x, y 
} list(*) 

integer first, p, arg 

tor(p == first , p-=LAST Il.Il. Iist(p).x<==x ,p == list(p).nextindex) 
it'(list(p).x === x) 

return( list(p).y ) 

return(NOTFOUND) 
end 

The search is a single tor loop that begins with the head of the list and examines items until either 
the list is exhausted (p==LAST) or until it is known that the specified value is not on the list 
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(list(p).x > x). The two tests in the conjunction must be performed in the specified order to avoid 
using an invalid subscript in the list(p) reference. Therefore, the Ir.Ir. operator is used. The next 
element in the chain is found by the iteration statement p=list(p).nextindex. 

11.4. Walking a Tree 

As an example of a more complicated problem, let us imagine we have an expression tree 
stored in a common area, and that we want to print out an infix form of the tree. Each node is 
either a leaf (containing a numeric value) or it is a binary operator, pointing to a left and a right 
descendant. In a recursive language, such a tree walk would be implement by the following simple 
pseudocode: 

if thi8 node is a leaf 
print its value 

otherwise 
print a left parenthesis 
print the left node 
print the operator 
print the right node 
pn'nt tJ right parenthe8is 

In a nonrecursive language like EFL, it is necessary to maintain an explicit stack to keep track of 
the current state of the computation. The following procedure calls a procedure outch to print a 
single character and a procedure outval to print a value. 

procedure walk(first) # print out an expression tree 

integer first # index of root node 
integer currentnode 
integer stackdepth 
eommon(nodes) struct 

struct 

{ 
character( 1) op 
integer leftp, rightp 
real val 
} tree(lOO) # array of structures 

{ 
integer nextstate 
integer nodep 
} stackframe(lOO) 

define NODE 
define STACK 

tree( currentnode) 
Btaekframe(lItackdepth) 

# nextstate values 
define DOWN 1 
define LEFT 2 
define RIGHT 3 

'* initialiae stack with root node 
stack depth = 1 
STACK.nextstate = DOWN 
STACK.nodep = first 
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while( stackdepth > 0 ) 
{ 

end 

cUJ'l'entnode == STACKoIlodep 
eeleet(STACK.nextstate) 

} 

{ 
case DOWN: 

if'(NODE.op === II ") :# a leal 
{ 
outval( NODE.val ) 
staekdepth -== 1 
} 

else { '* a binary operator node 
outeh( "(") 
STACK.nextstate == LEFT 
stackdepth +== 1 
STACK.nextstate == DOWN 
STACK.nodep == NODE.leftp 
} 

case LEFT: 
outeh( NODE.op ) 
STACK.nextstate == RIGHT 
etackdepth +== 1 
STACK.nextstate == DOWN 
STACK.nodep == NODE.rightp 

case RIGHT: 

} 

outch( ")" ) 
etackdepth -== 1 

12. PORTABILITY 

One of the major goals of the EFL language is to make it easy to write portable programs. 
The output of the EFL compiler is intended to be acceptable to any Standard Fortran compiler 
(unless the fortran77 option is specified). 

12.1. Primitives 

Certain EFL operations cannot be implemented in portable Fortran, so a few machine­
dependent procedures must be provided in each environment. 

12.1.1. Character String Copying 

The subroutine enasc is called to copy one character string to another. If the target string 
is shorter than the source, the final characters are not copied. If the target string is longer, its end 
is padded with blanks. The calling sequence is 

subroutine eflasc(a, la, b, lb) 
integer a(-), la, b(-), lb 

and it must copy the first Ib characters from b to the first la characters of a. 
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12.1.2. Character String Oompariaons 

The function eflcmc is invoked to determine the oM« of two character strings. The 
declaration is 

integer function eCleme(a, J.a, b, lb) 
integer a("), la, b(*), Ib 

The function returns a negative value if the string a of length la preeedtlS the string b of length lb. 
It returns zero if the strings are equal, and a positive value otherwise. If the strings are of differing 
length, the comparison is carried out as if the end of the shorter stl'.ing were padded with blanks. 
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APPENDIX A. Relation Between EFL and Rattor 

There are a number of differences between 'Ratfor and EFt, since EFt is a defined language 
while Ratfor is the union of the special control structures and the language accepted by the under­
lying Fortran compiler. Ratfor running over Standard Fortran is almost a subset of EFt. Most. of 
the features described in the Atavisms section are present to ease the conversion of Ratfor pro­
grams to EFt. 

There are a few incompatibilities: The syntax of the for statement is slightly different in the 
two languages: the three clauses are separated by semicolons in Ratfor, but by commas in EFL. 
(The initial and iteration statements may be compound statements in EFt because of this change). 
The input/output syntax is quite different in the two languages, and there is no FORMAT state­
ment in EFt. There are no ASSIGN or assigned GOTO statements in EFL. 

The major linguistic additions are character data, factored declaration syntax, block struc­
ture, assignment and sequential test operators, generic functions, and data structures. EFL per­
mits more general forms for expressions, and provides a more uniform syntax. (One need not 
worry about the FortranjRatfor restrictions on subscript or DO expression forms, for example.) 

APPENDIX B. COMPn..ER 

B.!. Current Version 

The current version of the EFL compiler is a two-pass translator written in portable C. It 
implements all of the features of the language described above except for long complex numbers. 
Versions of this compiler run under the and UNIXt operating systems. 

B.2. Diagnostics 

The EFt compiler diagnoses all syntax errors. It gives the line and file name (if known) on 
which the error was detected. Warnings are given for variables that are used but not explicitly 
declared. 

B.S. Quality of Fortran Produced 

The Fortran produced by EFL is quite clean and readable. To the extent possible, the vari­
able names that appear in the EFt program are used in the Fortran code. The bodies of loops and 
test constructs are indented. Statement numbers are consecutive. Few unneeded GOTO and 
CONTINUE statements are used. It is considered a compiler bug if incorrect Fortran is produced 
(except for escaped lines). The following is the Fortran procedure produced by the EFL compiler 
for the matrix multiplication example (Section 11.2): 

subroutine matmul(a, b, c, m, n, p) 
integer m, n, p 
double precision a(m, n), ben, p), c(m, p) 
integer i, j, k 
do 8 i = 1, m 

do 2 j = 1, P 
c(i, j) = 0 
do 1 k = 1, n 

e(i, j) = e(i, j)+a(i, k)*b(k, j) 
1 continue 
2 continue 
8 continue 

end 

The following is the procedure for the tree walk (Section 11.4): 

t UNIX is a trademark or Bell Laboratories. 

/'" 
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subroutine walk(first) 
integer first 
common /nodes/ tree 
integer tree(4, 100) 
real treel(4, 100) 
integer staame(2, 100), stapth, curode 
integer constl(l) 
equivalence (tree(l,l), treel(l,l» 
data constl(1)/4h / 

c print out an expression tree 
c index of root node 
c array of structures 
c nextstate values 
c initialise stack with root node 

stapth = 1 
staame(l, stapth) = 1 
staame(2, stapth) = first 

1 if (stapth .le. 0) goto 9 
curode = staame(2, stapth) 
goto 7 

2 if (tree(l, curode) .ne. const1(I» goto 3 

c a leaf 
call outval(treel(4, curode» 

stapth = stapth-l 
goto 4 

3 call outch( IhO 
c a binary operator node 

staame(!, stapth) - 2 
stapth = stapth+l 
staame(l, stapth) = 1 
staame(2, stapth) = tree(2, curode) 

4 goto 8 
5 call outch(tree(l, curode» 

staame(l, stapth) = 3 
stapth = stapth+l 
staame(l, stapth) - 1 
staame(2, stapth) - tree(3, curode) 
goto 8 

6 call outch( Ih» 
stapth = stapth-l 
goto 8 

7 if (staame(l, stapth) .eq. 3) goto 6 
if (staame(l, stapth) .eq. 2) goto 5 
if (staame(l, stapth) .eq. 1) goto 2 

8 continue 
goto 1 

9 continue 
end 

----~------~--~~~ 

APPENDIX C. CONSTRAINTS ON THE DESIGN OF THE EFL LANGUAGE 
Although Fortran can be used to simulate any finite computation, there are realistic limit~ on 

the generality of a language that can be translated into Fortran. The design of EFL was ('on­

strained by the implementation strategy. Certain of the restrictions are petty (<:ix charn('1 er 
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external names), but others are sweeping (lack of pointer variables). The following paragraphs 
describe the major limitations imposed by Fortran. 

C.l. External Names 
External names (procedure and COMMON block names) must be no longer than six charac­

ters in Fortran. Further, an external name is global to the entire program. Therefore, EFL can 
support block structure within a procedure, but it can have only one level of external name if the 
EFL procedures are to be compilable separately, 88 are Fortran procedures. 

C.2. Procedure Interrace 

The Fortran standards, in effect, permit arguments to be passed between Fortran procedures 
either by reference or by copy-in/ copy-out. This indeterminacy of specification shows through into 
EFL. A program that depends on the method of argument transmission is illegal in either 
language. 

There are no procedure-valued variables in Fortran: a procedure name may only be passed as 
an ariUment or be invoked; it cannot be stored. Fortran (and EFL) would be noticeably simpler if 
a procedure variable mechanism were available. 

C.3. Pointers 

The most grievous problem with Fortran is its lack of a pointer-like data type. The imple­
mentation of the compiler would have been far easier if certain hard cases could have been handled 
by pointers. Further, the language could have been simplified considerably if pointers were accessi­
ble in Fortran. (There are several ways of simulating pointers by using subscripts, but they 
founder on the problems of external variables and initialization.) 

C.4. Recursion 

Fortran procedures are not recursive, so it was not practical to permit EFL procedures to be 
recursive. (Recursive procedures with arguments can be simulated only with great pain.) 

C.5. Storage Allocation 

The definition of Fortran does not specify the lifetime of variables. It would be possible but 
cumbersome to implement stack or heap storage disciplines by using CO~IMON blocks. 
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1. Background 

FP stands for a Functional Programming language. Functional programs deal with functions 
instead oC tlaluu. There is no explicit representation oC state, there are no assignment statments, 
and hence, no variables. Owing to the lack of state, FP Cunctions are free Crom side-effects; so we 
say the FP is applicafivc. 

All Cunctions take one argument and they are evaluated using the single FP operation, appli. 
cation (the colon ':' is the apply operator). For example, we read +: <3 4> as "apply the func­
tion '+' to its argument <34>". 

Functional programs express a functional-level combination of their components instead of 
describing state changes using value-oriented expressions. For example, we write the function 
returning the sin of the cos of its input, i.e., ,in (cos(z)), as: sin@ cos. This is a functional 
ezpression, consisting of the single combining form called compose ('@' is the compose operator) 
and its functional arguments sin and cos. 

All combining forms take functions as arguments and return Cunctions as results; functions 
may either be applied, e.g., sin@ cos: 3, or used as a Cunctional argument in another functional 
e."<pression, e.g., tan @ sin @ cos. 

& we have seen, FP's combining forms allow us to express control abstractions without the 
use of variables. The apply to all functional form (&) is another case in point. The function '& 
exp' exponentiates all the elements of its argument: 

eJezp : < 1.0 t.O> == < t. 718 7.989> (1.1) 

In (1.1) there are no induction variables, nor a loop bounds specification. Moreover, the code is 
useful for any size argument, so long as the sub-elements of its argument conform to the domain of 
the ezp function. 

We must change our view of the programming process to adapt to the functional style. 
Instead of writing down a set of steps that manipulate and assign values, we compose functional 
e."<pressions using the higher-level functional Corms. For example, the function that adds a scalar 
to all elements of a vector will be written in two steps. First, the function that distributes the 
scalar amongst each element of the vector: 

distl : < 9 < 4 6> > == < < 9 4> < 9 6> > (1.2) 

Next, the Cunction that adds the pairs of elements that make up a sequence: 

8+ : < < 9 4> <96> > == < 7 9> (1.3) 

In a .... alue-oriented programming language the computation would be expressed as: 

&+: dist/: <9 <46», (1.4) 

which means to apply 'disd' to the input and then to apply '+' to every element of the result. In 
FP we write (1.4) as: 

&+ @ distl: <9 <4 6> >. (1.5) 

The functional expression of (1.5) replaces the two step value expression of (1.4). 

OCten, functional expressions are built from the inside out, as in LISP. In the next example 
we derive a function that scales then shifts a vector, i.e., for scalars a, b and a vector ii, compute 
a + bii. This FP Cunction will have three arguments, namely 4, band ii. Of course, FP does 
not use Cormal parameter names, so they will be designated by the Cunction symbols I, 2, 3. The 
first code segment scales ii by 6 (defintions are delimited with curly braces '0'): 
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{seale Vee S. @ distl @ It,9/} 

The code segment in (1.5) shiCts the vector. The completed function is: 

{change Vee S+ @ diltl @ {1 , ,eale Vee/} 

December 10, 1982 

(1.6) 

(1.7) 

In the derivation of the program we wrote from right to left, first doing the distfs and then 
composing with the applll-to-/Z11 Cunctional form. Using an imperative language, such as Pascal, we 
would write the program Crom the outside in, writing the loop before inserting the arithmetic 
operators. 

Although FP encourages a recursive programming style, it provides combining forms to 
avoid explicit recursion. For example, the right insert combining form (!) can be used to write a 
function that adds up a list of numbers: 

1+: <1 t 9> 5: 6 (1.8) 

The equivalent, recursive Cunction is much longer: 

{addNumbers (null-> %0; + @ /1, addNumbers @ tlJ)} (1.9) 

The generality of the combining forms encourages hierarchical program development. Unlike 
APL, which restricts the use of combining Corms to certain builtin functions, FP allows combining 
Corms to take any Cunctional expression as an argument. 
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2. System Description 

2.1. Objects 

The set of objects n consists of the atoms and sequences < % 1> %2, ••• , x" > (where the 
1ft En). (Lisp users should note the similarity to the list structure syntax, just replace the 
parenthesis by angle brackets and commas by blanks. There are no 'quoted' objects, i.e., 'abc). 
The atoms uniquely determine the set of valid objects and consist of the numbers (of the type 
found in FRA.."iZ LISP [Fod80J), quoted ascii strings ("abed"), and unquoted alphanumeric strings 
(abc3). There are three predefined atoms, T and F, that correspond to the logical values 'true' and 
'false', and the undefined atom 1, bottom. Bottom denotes the value returned as the result of an 
undefined operation, e.g., division by zero. The empty sequence, < > is also an atom. The fol­
lowing are examples of valid FP objects: 

f 1.47 3888888888888 
ab "CD" <1,<2,3» 
<> T <a,<» 

There is one restriction on object construction: no object may contain the undefined atom, such an 
object is itself undefined, e.g., <1, f > == f. This property is the so-called "bottom preserving 
property" [Bai8]. 

2.2. Application 

This is the single FP operation and is designated by the colon (":"). For a function u and an 
object x, u:% is an application and its meaning is the object that results from applying u to % 

(i.e., evaluating u(.r». \Ve say that u is the operator and that % is the operand. The following are 
examples of applications: 

+:<7,8> 
1 :<a,b,c,d> 

2.3. Functions 

== 15 tl:<1,2,3> 
== a 2 :<a,b,cJd> 

<2,3> 
b 

All functions (F) map objects into objects, moreover, they are ,trict: 

u : f == f, \1 u E F (2.1) 

To formally characterize the primitive functions, we use a modification of McCarthy'S conditional 
expressions [~'lc60]: 

(2.2) 

This statement is interpreted as follows: return function e 1 if the predicate 'p l' is true, ... , ell if 
'P .. • is true. If none of the predicates are satisfied then default to e .. +l' It is assumed that 
Z, Xi, y, Yi, =i E 11. 
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2.3.1. Structural 

Selector Functions 

For a nonzero integer p, 

P: x E 

X=<%lI %~!> ..• , %Ic> ,,0 < p;S Ie - xp; 

%=<%11 X2, ••• , XIc> ,,-k;Sp<O - Z'1c+p+1; f' 

pick: <n,z> E 

%=<%11 X2, ••• , XIc> ,,0 < n ;S Ie - %ai 

X=<X1I X2,' .. , %Ic> ,,-k;Sn <0 - %.+11+1; f 

December 15, 1982 

The user should note that the function symbols 1,2,3, ... are to be distinguished from the 
atoms 1,2,3, .... 

last: x == 
%==<> - <>; 

%=<XlI X2, ••• , 2'1c> " k~l - %Ic; f 

first: % == 
%=<>-<>; 

X=<2'I' 2'2, ... , XIe> "k~l- 2'1; f 

Tail Functions 

tl : x == 
Z=<2'l> - <> ; 

Z=<2'l, X2, ... , 2'/0 > "k~ 2 - <z2 , ... , ZIc> ; ? 

tlr: Z == 
%=<X1> - <> ; 

%-<XlI Z2, ... , XIe> " k~ 2 - <xI, ... , XIc_I> ; f' 

Note: There is also a function tront that is equivalent to tlr. 

Distribute from left and right 

dist! : x == 
x=<y,<» - <>; 

%=<Y,<:I' %2,···, ZIe» - «Y'%I>'''''<Y'%Ic»; f 

.... -
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distr: x == 
x==«>,y> - <>i 
X==«YlI Y2 •... , YII>,Z> - «y"z>, ... ,<YII,z»j f 

Identity 

id: x == x 

out: x == x 

December 15, 1982 

Out is similar to id. Like id it returns its argument as the result, unlike id it prints its 
result on stdout - It is the only function with a side effect. Out is intended to be used for debug­
ging only. 

Append left and right 

apndl: x == 
x==<y,<» - <V>; 
x==<y,<zl, Z2, ... , z,,» - <Y.z!> Z2, ...• %.1:>; f 

apndr: x == 
x==«>,z> - <z>; 
X==«Vl. V2,···. Y.I:>,z> - <YII 712, ••.• Y/o z>; f 

Transpose 

trans: x == 
x==«>, ...• <» - <>; 

X==<Xl. x2, ...• x,,> - <VI, ...• !lm >j f 

where Xi == <Xii, ...• Xim > "!Ii == <Xli, ... ,Xlti>, 
l:Si:Sk , l:Si:Sm. 

reverse: x == 
x==<> -; 
X==<X1> x2 • ...• x.I: > - <Xb ...• Xl>; f 

Rotate Left and Right 

rot 1 : x == 
x==<> - <>; X==<Xl> - <xl>; 
X==<X1> X2, ...• x, > "k;:::2 - <x2' ...• X",Xl>; f 

rotr :X == 
x==<> - <>; X-<Xl> - <Xl>; 
x==<x1• X2, ...• x,> "k;:::2 - <x.l:, %1'··· ,X'_2. %.1:-1>; f 
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concat; % = 
%-< <%11 •... , %Ik >,<%211 ... , :r2. >,· •. ,<%mh ... ,:rmp » "k, m, n, p > 0 -
<%111 ... , %lk,%211 ... , %2", ... ,:r..lt ... , :tmp >;f 

Concatenate removes all occurrences of the null sequence: 

concat: «1,3>,<>,<2,4>,<>,<5» = <1,3,2,4,5> (2.3) 

pair: % = 
%= <%1> %:1I ••• , % .. > "k >0" k i, even - < <%11%2>, ... , <% .. _1,%. > >; 

%==<%1. %2 •. · .• %.>" k>O" Ie i, odd - «%1>%2>, ... , <%.»; f 

split: % = 
Z==<X1> - «%1>,<»; 

:r== <Xl> %2, ... , XJ: > " k >1 - < <%l> ... ,%rJ:/21>,<%rk/2lrh ... , XI< > >;? 

iota :% == 
%==0 - <>; 

% eN+ - <1,2, ... ,%>i f 

2.3.2. Predicate (Test) Functions 

atom: % == % E atoms - Ti %F?- Fi ? 

eq::r == X ==<1/,z> " 1/==Z - T; %=<1/,z> "1/ F Z - F; f 

Also less than «), greater than (», greater than or equal (> =), less than or equal ( < =), 
not equal C=); '=' is a synonym for eq. 

null:x = x==<> - T; %¢? - F; f 

length: X = % == <%1. %2 •... , %J: > - kj z=< > - OJ ? 

2.3.3. Arithmetic/Logical 

+: % = %==<1/,:>" 1/,= are number" - 1/+z; f 
- : % = %==<1/,z > " 1/ ,% are numbers - 1/-:j f 
• : % = %==<1/,:> ,,1/,% are numbers - 1/X:j f /: % = %==<1/,z> ,,1/,Z are numbers" ZF 
0- 1/+:j f 

And, or, not, xor 

and: <%,1/> = %=T -1/; %==F - Fi f 

or : <%,1/> = r==F -1/; :r=T- Tj f 

-8-



(j 

( 

o 

Berkeley FP Users Ma.nual Rev. 4.1 

xor : < % ,'II > == 
%-T A 'II-T - F; %-F A 'II=F - F; 

z=T A 'II-F - T; z=F A 'II-T - T; f 

not: z == z-T - F; z=F - T; f 

2.3.4. Library Routines 

sin: z == z is a number - sin (%); f 

asin: % == % is a number A Ix I ::;; 1- sin-lex); f 

cos: z == % is a number - cos(%); f 

acos : z == % is a number A 1% I :::; 1 - cos-l(x); f 

exp : x == % is a number - e~; f 

log: % == x is a positive number - In (x); f 

mod: <x,y> ==x andy arenumbers- x -'IIxl; j; p 

2.4. Functional Forms 

December 15, 1982 

Functional forms define new functions by operating on function and object parameters of the 
form. The resultant expressions can be compared and contrasted to the value-oriented expressions 
of traditional programming languages. The distinction lies in the domain of the operators; func­
tional forms manipulate functions, while traditional operators manipulate values. 

One functional form is composz"tion. For two functions tP and t/J the form tP @ 'r/J denotes 
their composition tP • t/J: 

(tP @ 'r/J): z == ¢:(1jI:x), \1 zen (2.4) 

The constant function takes an object parameter: 

%x:'II == 'II='? - '?; %, \1 X,'II en (2.5) 

The function % P always returns? 

In the following description of the functional forms, we assume that e, ei, (1, (1 i, T, and Tj are 
fun dons and that z, %i, 'II are objects. 

Composition 

((1 @ r):x == (1:{ r:x) 

Construction 

Note that construction is also bottom-preserving, e.g., 
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[+,/]: <3,0> = <3,~> - f 

Condition 

(e • > (7'; 1'):% IE 

(e:% )=T - 11:%; 

(e:%)==F - T:Xj f 

Rev. 4.1 December 15, 1982 

(2.6) 

The reader should be aware oC the distinction between functional expressions, in the variant 
oC McCarthy's conditional expression, and the functional form introduced here. In the Cormer case 
the result is a value, while in the latter case the result is a function. Unlike Backus' FP, the condi­
tional form must be enclosed in parenthesis, e.g., 

(isNegative -> - @ [%O,id] j id) 

Constant 

%X::v E 1/=? - f; x, \1 % En 

This Cunction returns its object parameter as its result. 

Right Insert 

!(7' :% IE 

%==<> - e, :Xj 

%==<%1> - Xl; 

%=<X1, %:l, .•. , XIt> " k >2 - O':<XI> !O':<X:l, ... , %It > >; ? 

e.g., !+:<4,5,6>=15. 

If 11 has a right identity element e, , then !11: < > = e" e.g., 

!+: <>=0 and ,-: <>=1 

(2.7) 

(2.8) 

Currently, identity functions are defined Cor + (0), - (0), .. (1), / (1), also for and (T), or (F), xor 
(F). All other unit Cunctions deCault to bottom (1). 

-8-
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Tree Insert 

10' : % E 

%==<> - eJ :%; 

%==<%1> - %1; 

%==<%11 %2, ... , %It> " Ie >1 -

Rev. 4.1 

tT: <10': <%11'" ,%flt/21> , ItT: <%flt/21+-l>'" ,Xlt»;r 
e.g., 

1+:<4,5,6,7> E +:<+:<4,5>,+:<6,7» E 15 

Tree insert uses the same identity functions as right insert. 

Apply to All 

&0': % E 

%=<> -<>; 

x=<x" %2, ... , %It> - <0':%1, ••• , tT:%/I >i r. 

\\llile 

(while { 0'):% E 

{:%=T - (while { O'):(tT:%)i 

{:%=F - Xi r 

2.5. User Defined Functions 

An FP definition is entered as follows: 

Un-name In-Iorm}, 

December 15, 1982 

(2.9) 

(2.10) 

where In-name is an ascii string consisting of letters, numbers and the underline symbol, and In­
lorm is any valid functional form, including a single primitive or defined function. For example 
the function 

Uacton'ai 1* @ iota} (2.11) 

is the non-recursive definition of the factorial function. Since FP systems are applicative it is 
permissible to substitute the actual definition of a function for any reference to it in a functional 
form: if I E 1@ 2 then I : % E 1@ 2 : %, \i % en. 

References to undefined functions bottom out: 

1:% E f\1 zen, I ~ (2.12) 

-9-
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3. Getting on and off the System 

Startup FP from the shell by entering the command: 

/usr/local/rp. 

The system will prompt you for input by indenting over six character positions. Exit from 
FP (back to the shell) with a controljD ("D). 

3.1. Comments 

A user may end any line (including a command) with a comment; the comment character is 
'#'. The interpreter will ignore any character after the '#' until it encounters a newline character 
or end-of-file, whichever comes first. 

3.2. Breaks 

Breaks interrupt any work in progress causing the system to do a FRANZ reset before return­
ing control back to the user. 

3.3. Non-Termination 

LISP's namestack may, on occasion, overflow. FP responds by printing "non-terminating" 
and returning bottom as the result of the application. It does a FRANZ reset before returning con­
trol to the user. 

4. System Commands 

System commands start with a right parenthesis and they are followed by the command­
name and possibly one or more arguments. All this information must be typed on a single line, and 
any number of spaces or tabs may be used to separate the components. 

4.1. Load 

Redirect the standard input to the file named by the command's argument. If the file 
doesn't exist then FP appends '.fp' to the file-name and retries the open (error if the file doesn't 
exist). This command allows the user to read in FP function definitions from a file. The user can 
also read in applications, but such operation is of little utility since none of the input is echoed at 
the terminal. Normally, FP returns control to the user on an end-of-file. It will also do so when­
ever it does a FRA!\Z reset, e.g., whenever the user issues a break, or whenever the system 
encounters a non-terminating application. 

4.2. Save 

Output the source text for all user-defined functions to the file named by the argument. 

4.3. Csave and Fsave 

These commands output the lisp code for all the user-defined functions, including the original 
source-code, to the file named by the argument. Csave pretty prints the code, Fsave does not. 
Unless the user wishes to examine the code, he should use 'fsave'; it is about ten times faster than 
'csave', and the resulting file will be about three times smaller. 

These commands are intended to be used with the liszt compiler and the 'cload' command, as 
explained below. 

·10-
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4.4. Cload 

This command loads or Casls in the file shown by the argument. First, FP appends a '.0' to 
the file-name, and attempts a load. Failing that, it tries to load the file named by the argument. 
Ir the user outputs his function definitions using Csave or csave, and then compiles them using liszt, 
then he may Casl in the compiled code and speed up the execution oC his defined Cunctions by a Cac­
tor oC 5 to 10. 

4.5. Pfn 

Print the source text(s) (at the terminal) for the user-defined Cunction(s) named by the 
argument(s) (error if the function doesn't exist). 

4.6. Delete 

Delete the user-defined function{s) named by the argument (error if the function doesn't 
e.xist). 

4.7. Fns 

List the names of all user-defined functions in alphabetical order. Traced functions are 
labeled by a trailing '@' (see § 4.7 for sample output). 

4.8. Stats 

The "stats" command has several options that help the user manage the collection of 
dynamic statistics for functions! and functional forms. Option names Collow the keyword "stats", 
e.g., ")stats reset". 

The statistic pa.ckage records the frequency of usa.ge for each function and functional form; 
also the size2 of all the arguments for all functions and functional e.'Cpressions. These two measures 
allow the user to derive the a.verage argument size per call. For functional forms the package tal­
lies the frequency of each functional argument. Construction has an additional statistic that tells 
the number of functional arguments involved in the construction. 

Statistics are gathered whenever the mode is on, except for applications that "bottom out" 
(i.e., return bottom - 1). Statistic collection slows the system down by X2 to X4. The following 
printout illustrates the use of the statistic package (user input is emboldened): 

1 Measurement oC user-defined (unctions is done with the aid or the trace package, discussed in § 4.0. 

2 "Size" is the top-lev~1 length or the argument, ror most runctions. Exceptions are: apndl, di,tl (top-level length or 
the second element), apndr, dislr (top-level length or the first element), and Iranlpo,e (top level length of each top level ele­
ment). 

-11-
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}stats on 

Stats collection turned on. 

+:<34> 
7 

!* @ iota:3 
6 

)stats print 

plus: times 1 

times: times 2 

iota: times 1 

insert: times 1 size 3 

Functional Args 
Name Times 
times 1 

compos: times 1 size 1 

Functional Args 
Name Times 
insert 1 
iota 1 

4.8.1. On 

Enable statistics collection. 

4.8.2. Off 

Disable statistics collection. The user may selectively collect statistics using the on and off 
commands. 

4.8.3. Print 

Print the dynamic statistics at the terminal, or, output them to a file. The latter option 
requires an additional argument, e.g., ")stats print fooBar" prints the stats to the file "fooBar". 

4.8.4. Reset 

Reset the dynamic statistics counters. To prevent accidental loss of collected statistics, the 
system will query the user if he tries to reset the counters without first outputting the data (the 
system will also query the user if he tries to log out without outputting the data). 

-12-
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4.9. Trace 

Enable or disable the tracing and the dynamic measurement of the user defined functions 
named by the argument(s). The first argument tells whether to turn tracing off or on and the oth· 
ers give the name of the functions affected. The tracing and untracing commands are independent 
of the dynamic statistics commands. This command is cumulative e.g., ')trace on fl', followed by 
')trace on f2' is equivalent to ')trace on C1 f2'. 

FP tracer output is similar to the FRANZ tracer output: function entries and exits, call level, 
the functional argument (remember that FP functions have only one argument!), and the result, 
are printed at the terminal: 

)pfn fact 

{fact (eqO -> %1 ; * @ lid, fact @ sl])} 
)fns 

eqO fact sl 

)trace on fact 
)fns 

eqO fact@ 

fact: 2 

1 >Enter> fact [2] 
12 > Enter > fact [1] 
13 >Enter> fact [OJ 
13 <EXIT< fact 1 
12 <EXIT < fact 1 
1 <EXIT < fact 2 

2 

4.10. Timer 

51 

FP provides a simple timing facility to time top-level applications. The command ")timer 
on" puts the system in timing mode, U)timer off" turns the mode off (the mode is initially off). 
While in timing mode, the system reports CPU time, garbage collection time, and elapsed time, in 
seconds. The timing output follows the printout of the result of the application. 

4.11. Script 

Open or close a script file. The first argument gives the option, the second the optional script 
file-name. The "open" option causes a new script-file to be opened and any currently open script 
file to be closed. If the file cannot be opened, FP sends and error message and, if a script file was 
already opened, it remains open. The command "}script close" closes an open script file. The user 
may elect to append script output to the script-file with the append mode. 

4.12. Help 

Print a short summary of all the system commands: 

-13-
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)help 
Commands are: 

load <file> 
save <file> 
prn <Cnl> .,. 
delete <Cnl> ... 
Cns 
stats on/ off/reset/print [file] 
trace on/off <fn1> ... 
timer on/of 
script open/close/append 
lisp 
debug on/off 
csave <file> 
cload < file> 
fsave < file> 

4.13. Special System Functions 

Rev. 4.1 December 15,1982 

Redirect input Crom <file> 
Save defined Cns in <file> 
Print source text of <Cnl> ... 
Delete <Cnl> ... 
List all functions 
Collect and print dynamic stats 
Start/Stop exec trace of <Cnl> ... 
Turn timer on/off 
Open or close a script-file 
Exit to the lisp system (return with 'OD') 
Turn debugger output on/off 
Output Lisp code Cor all user-defined fns 
Load Lisp code from a file (may be compiled) 
Same as csave except without pretty-printing 

There are two system functions that are not generally meant to be used by average users. 

4.13.1. Lisp 

This exits to the lisp system. Use "-0" to return to FP. 

4.13.2. Debug 

Turns the 'debug' flag on or off. The command CC)debug on" turns the flag on, ")debug off" 
turns the flag off. The main purpose of the command is to print out the parse tree. / -\ 

// 
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S. Programming Examples 

We will start oft' by developing a. larger FP program, mergeSort. We measure mergeSort 
using the trace package, and then we comment on the measurements. Following mergeSort we 
show an actual session at the terminal. 

5.1. MergeSort 

The source code for mergeSort is: 

# Use a divide and conquer strategy 
{mergeSort I merge} 

{merge atEnd @ mergeHelp @ [0, fixListsj} 

# Must convert atomic arguments into sequences 
# Atomic arguments occur at the leaves of the execution tree 
{fLxLists &(atom -> lid] ; id)} 

# lVlerge until one or both input lists are empty 
{mergeHelp (while and @ &(not@null) @ 2 

(firstIsSmaller -> takeFirst ; 
takeSecond ))} 

# Find the list with the smaller first element 
{firstIsSmaller < @ [1@1@2, 1@2@2]} 

# Take the first element of the first list 
{takeFirst [apndr@[1,1@1@2], [tl@1@2, 2@2]j} 

# Take the first element of the second list 
{takeSecond [apndr@[1,1@2@2j, [1@2, tl@2@2]]} 

# If one list isn't null, then append it to the 
# end of the merged list 
{atEnd (firstIsNull-> concat@[1,2@2] ; 

concat@[1,1@2])} 

{firstls~ull null@1@2} 

The merge sort algorithm uses a divide and conquer strategy; it splits the input in half, 
recursively sorts each half, and then merges the sorted lists. Of course, all these sub-sorts can exe­
cute in parallel, and the tree-insert (D functional rorm expresses this concurrency. lvlerge removes 
successively larger elements rrom the heads of the two lists (either takeFirat or takeSecond) and 
appends these elements to the end of the merged sequence. lv/erge terminates when one sequence is 
empty, and then atEnd appends any remaining non-empty sequence to the end of the merged one. 

On the next page we give the trace or the function merge, which inrormation we can use to 
determine the structure of merge's execution tree. Since the tree is well-balanced, many of the 
merge's could be executed in parallel. Using this trace we can also calculate the average length of 
the arguments passed to merge, or a distribution of argument lengths. This information is useful 
Cor determining comI,Ilunication costs. 
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)trace on merge 

mergeSort : <0 3 -2 1 11 8 -22 -33 > 
13 >Enter> merge [<03>] 

13 <EXIT< merge <03> 
3 >Enter> merge [<-2 1>] 

13 < EXIT < merge <-21> 
tl > Enter > merge 1«03> <-21»] 
tl < EXIT < merge <-201 3> 
13 >Enter> merge [<118» 
13 <EXIT< merge <811> 
13 >Enter> merge 1<-22 -33>] 
13 <EXIT< merge <-33 -22> 
~ >Enter> merge [«811> <-33 -22») 
tl <EXIT < merge <-33 -22 8 11 > 
1 >Enter> merge 1< <-2013> <-33 -22811> » 
1 <EXIT< merge <-33 -22 -2 0 1 3811> 

<-33 -22 -20 138 11> 
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5.2. FP Session 

User input is emboldened, terminal output in Roman script. 

f'p 

FP, v. 4.1 11/31/82 
)load ex-man 

{alUe} 
{sort} 
{abs_val} 
{find} 
{ip} 
{mm} 
{eqO} 
{fact} 
{subl} 
{alLfnd} 
{alLfact} 

)fns 

abs_val alLIe altJact altJnd eqO fact find 
ip mm sort sub 1 

abs_vaI : 3 

3 

3 

o 

abs_val: <-50 66> 

? 

&abs_val: <-5066> 

<5066> 

{abs_val ((> @ [id,%Oj) -> id ; (- @ [%O,id]))} 

[id,%O] :-3 

<-30> 

[%O,id] :-3 
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<0 -3> 

- @ [%O,id] : -3 

3 

alLle : < 1 3 5 7 > 

T 

alLle : < 1 0 5 7 > 

F 

)pfn aIUe 

{alUe ! and @ &<= @ distl @ [I,tl]} 

distl @ [l,tl] : <1 2 34> 

«12> <13> <14» 

Rev. 4.1 

&<= @ distl @ [I,tl] : <1234> 

<TTT> 

! and: <F T T> 

F 

! and: <T T T> 

T 

sort : < 3 1 2 4 > 

<1234> 

sort: <1> 

<1> 

sort: < > 

? 

sort: 4 

? 

)pfn sort 

{sort (null @ tl -> [1] ; (alUe -> apndl @ [l,sort@tlJi sort@rotl))} 

fact: 3 

6 
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)pfn fact subl eqO 

(/ 
{fact (eqO -> %1 j *@[id , ract@subl])} 

{subl -@[id,%Ij} 

{eqO = @ [id,%Oj} 

&fact: < 1 2 3 4 5 > 

<1 2624 120> 

eqO: 3 

F 

eqO: <> 

F 

eqO: 0 

T 

sub! : 3 

2 

%1: 3 

( 1 

alt_fact: 3 

6 

)pfn altJact 

{alLfact '* @ iota} 

iota: 3 

<123> 

'''' @ iota: 3 

6 

1+ : <123> 

6 

find: <3 <345» 

T 

find: «> <34<»> 
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T 

find: <3 <45» 

F 

)pfn find 

{find (null@2 -> %F; (=@[l,l@2j -> %T i find@!l,tl@2]))} 

[1,tI@2] : <3 <345» 

<3 <45» 

[1,1@2] : <3 <345» 

<33> 

alt3nd: <3 <345» 

T 

)pfn alt3nd 

{alLfnd ! or @ &eq @ distl } 

distl : < 3 < 3 4 5> > 

«33> <34> <35» 

&eq @ distl: <3 <345» 

<TFF> 

T 

F 

!or: <T F T> 

!or: <F F F> 

)delete alUnd 

)fns 

abs_val alLle alLfact eqO (act find ip 
mm sort subI 

alt_fnd: <3 <345» 

altJnd not defined 

1 
{g g} 
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{g} 
g:3 

non-terminating 

? 

[Return to top level] 

FP, v. 4.0 10/8/82 
[+,*] : <34> 

<712> 

[+,* : <34> 

synta.x error: 

[+,* : <3 4> 

ip : < < 3 4 5> < 5 6 7> > 

74 

)pfn ip 

{ip<!+ @ &* @ trans} 

trans: «345> <567» 

«35> <46> <57» 

Rev. 4.1 

&* @ trans: < <345> <567» 

<152435> 

mm: «<10> <01» «34> <56»> 

«34> <56» 

)pfn mm 

{mm &&ip @ &distl @ distr @[I,trans@2]} 

[1,trans@2]: «<1 0> <O~» «34> <58»> 

«<10> <01» «34> <56»> 

distr: «<10> <01» «34> <58»> 

«<10> «34> <56»> «01> «34> <56»» 

December 15, 1982 

&distl: «<10> «34> <58»> «01> «34> <56»» 

««10> <34» «10> <56»> «<01> <34» «01> <56»» 
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kip @ &:dist &: distr @ [1,trans @ 2] : < < <10> <0 1> > < <34> <5 6> > > 

syntax error: 

[+,* : <34> 
A 

&ip @ &distl ~ distr @ [I,trans @ 2] : «<10> <01» «34> <56»> 

kip @ kdistl @ distr @ [1,trans@2] : < < <10> <0 1> > < <34> <5 6> > > 

? 
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8. Implementation Notes 

FP was written in 3000 lines of FRANZ LISP [Fod 80]. Table 1 breaks down the distribution 
of the code by functionality. 

compiler 34 
user interface 32 
dynamic stats 16 
primitives 14 
miscellaneous 3 

Table 1 

8.1. The Top Level 

The top-level function runFp starts up the subsystem by calling the routine IpMain, that 
takes three arguments: 

(1) A boolean argument that says whether debugging output will be 
enabled. 

(2) A Font identifier. Currently the only one is supported 'ase 
(ASCII). 

(3) A boolean argument that identifies whether the interpreter was 
invoked from the shell. If so then all exits from FP return the 
user back to the shell. 

The compiler converts the FP Cunctions into LISP equivalents in two stages: first it Corms the 
parse tree, and then it does the code generation. 

8.2. The Scanner 

The scanner consists of a main routine, geLtkn, and a set oC action Cunctions. There exists 
one set of action Cunctions Cor each character font (currently only ASCII is supported). All the 
action Cunctions are named scan $ <Iont>, where <Iont> is the specified font, and each is keyed 
on a particular character (or sometimes a particular character-type - e.g., a letter or a number). 
geLtkn returns the token type, and any ancillary information, e.g., Cor the token "name" the name 
itselC will also be provided. (See Appendix C Cor the Cont-token name correspondences). When a 
character has been read the scanner finds the action Cunction by doing a 

(get ' ,can $ <Iont> < char> ) 

A syntax error message will be generated if no action exists Cor the particular character read. 

6.3. The Parser 

The main parsing function, parst, accepts a single argument, that identifies the parsing context, or 
type of construct being handled. Table 2 shows the valid parsing contexts. 
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id .. Il!t 

topJev initial call 
constr$$ construction 
compos$$ composition 
alpha$$ apply-to-all 
insert$$ insert 
ti$$ tree insert 
arrow$$ affirmative clause 

of conditional 
semi$$ negative clause 

of conditional 
Iparen$$ parenthetic expr. 
while$$ while 

Table 2, Valid Parsing Contexts 

For each type of token there exists a set of parse action functions, of the name p$ < tkn­
name>. Each parse-action function is keyed on a valid conte.'xt, and it is looked up in the same 
manner as scan action functions are looked up. If an action function cannot be found, then there 
is a synta.x error in the source code. Parsing proceeds as follows: initially parse is called from the 
top-level, with the context argument set to "top_lev". Certain tokens cause parse to be recursively 
invoked using that token as a context. The result is the parse tree. 

6.4. The Code Generator 

The system compiles FP source into LISP source. Normally, this code is interpreted by the 
FRA~Z LISP system. To speed up the implementation, there is an option to compile into machine 
code using the iis::t compiler [Joy 79]. This feature improves performance tenfold, for some pro­
grams. 

The compiler expands all functional forms into their LISP equivalents instead of inserting 
calls to functions that generate the code at run-time. Otherwise, liszt would be ineffective in speed­
ing up execution since all the functional forms would be executed interpretively. Although the 
amount of code generated by an expanding compiler is 3 or 4 times greater than would be gen­
erated by a non-expanding compiler, even in interpreted mode the code runs twice as quickly as 
unexpanded code. 'Vith lis:t compilation this performance advantage increases to more than ten­
fold. 

A parse tree is either an atom or a hunk of parse trees. An atomic parse-tree identifies either 
an fp built-in function or a user defined function. The hunk-type parse tree represents functional 
forms, e.g., compose or construct. The first element identifies the functional form and the other ele­
ments are its functional parameters (they may in turn be functional forms). Table 3 shows the 
parse-tree formats. 
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Form Format 
user-defined <atom> 
Cp builtin <atom> 
apply-to-all {alpha$$ cI>} 
insert { inae rt $$ cI> } 
tree insert {ti$$ cI>} 
select {aelect$$ p} 
constant {eon.stant$$ p} 
conditional {condit $$ cl>1 cl>2 cl>3} 
while {while $$ cl>l cl>2} 
compose {compoa $$ cl>1 cl>2} 
construct (con"tr $$ cI>, cI>., 

Note: cI> and the cI>. are parse-trees and p is an optionally 
signed integer constant. 

... 

Table 3, Parse-Tree Formats 

6.5. Function Definition and Application 

December 15, 1982 

cI> niH 

Once the code has been generated, then the system defines the Cunction via putd. The source 
code is placed onto a property list, , "ouree", to permit later access by the system commands. 

For an application, the indicated Cunction is compiled and then defined, only temporarily, as 
tmp $$. The single argument is read and tmp $$ is applied to it. 

6.6. Function Naming Conventions 

\¥hen the parser detects a named prlmltlve function, it returns the name < name> $Jp, 
where <name> is the name that was parsed (all primitive Cunction-names end in SJp). See 
Appendix D Cor the symbolic (e.g., compose, +) function names. 

Any name that isn't found in the list of builtin functions is assumed to represent a user­
defined Cunction; hence, it isn't possible to redefine FP primitive Cunctions. FP protects itself from 
accidental or malicious internal destruction by appending the suffix "-I p " to all user-defined func­
tion names, before they are defined. 

6.7. Measurement Impelementation 

This work was done by Dorab Patel at UCLA. Most of the measurement code is in the file 
'fp:\1easures.l'. Many oC the remaining changes were effected in 'primFp.l', to add calls on the 
measurement package at run-time; to 'codeGen.l', to add tracing of user defined functions; to 
'utils.l', to add the new system commands; and to 'CpMain.l', to protec~ the user lrom Corgetting to 
output statistics when he leaves FP. . 

6.1.1. Data Structures 

All the statistics are in the property list oC the global symbol Mea"uru. Associated with 
each each Cunction (primitive or user-defined, or Cunctional Corm) is an indicator; the statistics 
gathered Cor each lunction are the corresponding values. The names corresponding to primitive 
Cunctions and Cunctional Corms end in 'Slp' and the names corresponding to user-defined Cunctions 
end in 'Jp'. Each ol the property values is an association list: 

(get '}.Ieasures 'rot}Sfp) ==> ((times. 0) (size. 0)) 
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The car of the pair is the name or the statistic (i.e., times, size) and the cdr is the value. 
There is one exception. Functional forms have a statistic called funargtyp. Instead of being a dot-
ted pair, it is a list of two elements: !~", 

(get 'Measures 'composeSfp) ==== > 
«times. 2) (size. 4) (funargtyp {(selectSfp . 2) (subSfp . 2)))) 

The car is the atom 'funargtyp' and the cdr is an alist. Each element or the alist consists of 
a functional argument-frequency dotted pair. 

The statistic packages uses two other global symbols. The symbol DynTraceFlg is non-nil if 
dynamic statistics are being collected and is nil otherwise. The symbol TracedFns is a list (ini­
tially nil) of the names of the user functions being traced. 

8.7.2. Interpretation of Data Structures 

8.7.2.1. Times 

The number of times this function has been called. All functions and functional forms have 
this statistic. 

6.7.2.2. Size 

The sum of the sizes of the arguments passed to this function. This could be divided by the 
times statistic to give the average size of argument this function was passed. \Vith few exceptions, 
the size of an object is its top-level length (note: version 4.0 defined the size as the total number of 
atoms in the object); the empty sequence, "< >", has a size of 0 and all other atoms have size of 
one. The exceptions are: apndl, di8tl (top-level length of the second element), apndr, distr (top-level 
length of the first element), and transpose (top level length of each top level element). 

This statistic is not collected for some primitive functions (mainly binary operators like +,-

6.7.2.3. Funargno 

The number of functional arguments supplied to a functional form. 

Currently this statistic is gatherered only ror the construction functional form. 

6.7.2.4. Funargtyp 

How many times the named function was used as a functional parameter to the particular 
functional form. 

6.8. Trace Information 

The level number of a call shows the number of-steps required to execute the function on an 
ideal machine (i.e., one with unbounded resources). The level number is calculated under an 
assumption of infinite resources, and the system evaluates the condition of a conditional before 
evaluating either of its clauses. The number of functions executed at each level can give an idea of 
the distribution of parallelism in the given FP program. 
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Appendix A: Local Modifications 

1. Character Set Changes 

Backus [Ba78] used some characters that do not appear on our ASCn terminals, so we have 
made the following substitutions: 

constant i %% 
insert / ! 
apply-to-all Q &. 
composition • @ 
arrow - -> 
empty set tP <> 
bottom 1- ? 
divide / 
multiply X * 

2. Syntactic Modifications 

2.1. While and Conditional 

While and conditional functional expressions must be enclosed in parenthesis, e.g., 

2.2. Function Definitions 

(while I g) 

(p -> /; g) 

Function definitions are enclosed by curly braces; they consist of a name-definition pair, 
separated by blanks. For example: 

{fact !. @ iota} 

defines the function fact (the reader should recognize this as the non-recursive factorial function). 

2.3. Sequence Construction 

It is not necessary to separate elements of a sequences with a comma; a blank will suffice: 

<1,2,3> IE <123> 

For nested sequences, the terminating right angle bracket acts as the delimiter: 

«1,2,3>,<4,5,6» IE «123><456» 
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3. User Interface 

We have provided a rich set of commands that allow the user to catalog, print, and delete 
functions, to load them Crom a file and to save them away. The user may generate script files, 
dynamically trace and measure Cunctional expression execution, generate debugging output, and, 
temporarily exit to the FRANZ LISP system. A command must begin with a right parenthesis. Con­
sult Appendix C for a complete description of the command synta.x. 

Debugging in FP is difficult; all undefined results map to a single atom - bottom ("1"). To 
pinpoint the cause of an error the user can use the special debugging output function, out, or the 
tracer. 

4. Additions and Ommissions 

Many relational functions have been added: <, >, -, ~, ~, 2:; their synta.x is: <, >, 
==, -=, <=, >=. Also added are the iota Cunction (This is the APL iota function an n-element 
sequence of natural numbers) and the exclusive OR (~ function. 

Several new structural functions have been added: pair pairs up successive elements of a 
sequence, split splits a sequence into two (roughly) equal halves, last returns the last element of 
the sequence « > if the sequence is empty), first returns the first element of the sequence ( < > if 
it is empty), and concat concatenates all subsequences of a sequence, squeezing out null sequences 
« >). Front is equivalent to tlr. Pick is a parameterized form of the selector function; the first 
component of the argument selects a single element from the second component. Out is the only 
side-effect Cunction; it is equivalent to the id function but it also prints its argument out at the ter­
minal. This Cunction is intended to be used only Cor debugging. 

One new functional Corm has been added, tree insert. This Cunctional Corm breaks up the the 
argument into two roughly equal pieces applying itselC recursively to the two halves. The func­
tional parameter is applied to the result. 

The binary-to-unary Cunctions ('bu') has been omitted. 

Seven mathematical library Cunctions have been added: sin, cos, asin (sin-I), acos (COS-I), log, 
e."(p, and mod (the remainder function) 

-29· 



Berkeley FP Users Manual Rev. 4.1 December 15, 1982 

J. BNF Syntax 

CpInput -

fnDef­

application -

name­

nameList -

object -

fpSequence -

atom -

CunForm -

simpFn -

fpDefined -

fpBuiltin -

selectFn -

relFn -

binaryFn -

libFn -
composition -

construction -

formList -

conditional -

constantFn -

insertion -

alpha -

while -

II. Precedences 

l. 
2. 
3. 
4. 
5. 

%,!,& 
@ 
[ ... J 
.> .. . 
while 

Appendix B: FP Grammar 

(fnDef I application I fpCmda)* I'·D' 

'{' name funForm '}' 

funForm ':' object 

letter (letter I digit 1'-')* 

(name)* 

atom I fpSequence I '1' 

'<' (.: I object «',' I' ') object)*) '>' 
'T' I 'F' I' < >' I ,tt, (ascii-char). ,tt, I (letter I digit)* I number 

simpFn I composition I construction I conditional I 
constantFn I insertion I alpha I while 1'(' funForm ')' 

fpDefined I fpBuiltin 

name 

selectFn l'tl' I 'id' I 'atom' I 'not' I'eq' I relFn I 'null' I 'reverse' I 
'distl' I'distr' I 'length' I binaryFn I 'trans' I 'apndl' I 'apndr' I 
'tlr' I'rotl' I'rotr' I 'iota' I 'pair' I 'split' I 'concat' I 'last' l'libFn' 

(.: 1 '+' 1'-') unsignedlnteger 

'<=' 1'<' 1'==' 1'-==' I'>' 1'>=' 
'+' I '.' I '*' 1'/' I 'or' I 'and' I 'xor' 

'sin' I 'cos' I 'asin' I 'acos' I 'log' I 'exp' I 'mod' 

CunForm '@' funForm 

'[' formList 'l' 
.: I CunForm (',' funForm)* 

'(' funForm '->' funForm ';' CunForm ')' 

'%' object 

'I' funForm I't CunForm 

'&' funForm 

'(' 'while' funForm funForm ')' 

(highest) 

(least) 

.. Command Syntax is listed in Appendix C. 
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Appendix C: Command Syntax 

All commands begin with a right parenthesis (ee),,). 

)fns 
)pfn <nameList> 
)load <UI\.'JX file name> 
)cload <UNIX file name> 
)sa.ve <UI\.'JX file name> 
)csave <UNIX file name> 
)fsave <Ul\ilX file name> 
)delete < nameList > 
)stats on 
)stats off 
)stats reset 
)stats print [UNIX file name] 
)trace on <nameList> 
)trace off <nameList> 
)timer on 
)timer off 
)debug on 
)debug off 
)script open <Ul\'1X file name> 
)script close 
)script append <u1'llX file name> 
)help 
)lisp 
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Appendix D: Token-Name Correspondences 

Tokf.n N-"m .. 

f 
Ibrack$$ 
rbrack$$ 

{ IbraceSS 
} rbrace$$ 
( Iparen$$ 

~ rparen$$ 
eompos$$ 

! insert$$ 
I ti$$ 

&. alpha$$ 
; semi$$ 
: eolon$$ 
, eomma$$ 
+ builtin$$ 

+ pC select$$ 
01< builtin$$ 

/ builtin$$ 
= builtin$$ 
- builtin$$ 

-> arrow$$ 
-p select$$ 
> builtin$$ 

>= builtin$$ 
< builtin$$ 

<= builtin$$ - builtin$$ -
%ob constant$$ 

~ P is an optionally signed integer constant. 

bois any FP object. 
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Appendix E: Symbolic Primitive Function Names 

The scanner assigns names to the alphabetic primitive functions by appending the string 
"SCp" to the end of the function name. The following table designates the naming assignments to 
the non-alphabetic primitive function names. 

'1:'. Name 

+ plusSCp 
- minusSfp 

* timesSCp 
/ divSfp 

=== eq'Cp 
> gtSCp 

>== geSCp 
< ItSCp 

<= leSCp - neSfp = 
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Yacc: Yet Another Compiler-Compiler 

Stephen C. John8on 

ABSTRACT 

Computer program input generally has some structure; in fact, every com­
puter program that does input can be thought of as defining an "input language" 
which it accepts. An input language may be as complex as a programming 
language, or as simple as a sequence of numbers. Unfortunately, usual input facil­
ities are limited, difficult to use, and often are lax about checking their inputs for 
validity. 

Yacc provides a general tool for describing the input to a computer program. 
The Yacc user specifies the structures of his input, together with code to be 
invoked as each such structure is recognized. Yacc turns such a specification into 
a subroutine that handles the input process; frequently, it is convenient and 
appropriate to have most of the Bow of control in the user's application handled 
by this subroutine. 

The input subroutine produced by Yacc calls a user-supplied routine to 
return the next basic input item. Thus, the user can specify his input in terms of 
individual input characters, or in terms of higher level constructs such as names 
and numbers. The user-supplied routine may also handle idiomatic features such 
as comment and continuation conventions, which typically defy easy grammatical 
specification. 

Yacc is written in portable C. The class of specifications accepted is a very 
general one: LALR(l) grammars with disambiguating rules. 

In addition to compilers for 0, APL, Pascal, RATFOR, etc., Yacc has also 
been used for less conventional languages, including a phototypesetter language, 
several desk calculator languages, a document retrieval system, and a Fortran 
debugging system. 
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0: Introduetion 

Yacc provides a general tool for imposing structure on the input to a computer program. 
The Yacc User prepares a specification of the input process; this includes rules describing the input 
structure, code to be invoked when these rules are recognized, and a low-level routine to do the 
basic input. Yacc then generates a function to control the input process. This function, called a 
parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up the basic 
items (called tokens) from the input stream. These tokens are organized according to the input 
structure rules, called grammar rules ; when one of these rules has been recognized, then user code 
supplied for this rule, an action, is invoked; actions have the ability to return values and make use 
of the values of other actions. 

Yacc is written in a portable dialect of 0 1 and the actions, and output subroutine, are in C 
as well. Moreover, many of the syntactic conventions of Yacc follow C. 

The heart of the input specification is a collection of grammar rules. Each rule describes an 
allowable structure and gives it a name. For example, one grammar rule might be 

date : month...name day',' year ; 

Here, date, montlLname, day, and year represent structures of interest in the input process; 
presumably, montlLname, day, and year are defined elsewhere. The comma"," is enclosed in sin­
gle quotes; this implies that the comma is to appear literally in the input. The colon and semi­
colon merely serve as punctuation in the rule, and have no significance in controlling the input. 
Thus, with proper definitions, the input 

July 4, 1776 

might be matched by the above rule. 

An important part of the input process is carried out by the lexical analyzer. This user rou­
tine reads the input stream, recognizing the lower level structures, and communicates these tokens 
to the parser. For historical reasons, a structure recognized by the lexical analyzer is called a ter­
minal symbol, while the structure recognized by the parser is called a nonterminal symbol. To 
avoid confusion, terminal symbols will usually be referred to as token8. 

There is considerable leeway in deciding whether to recognize structures using the lexical 
analyzer or grammar rules. For example, the rules 

month...name 'J' 'a' 'n' 
month...name : 'F" e' 'b' ; 

month...name : 1)' 'e' 'c' ; 

might be used in the above example. The lexical analyzer would only need to recognize individual 
letters, and month_name would be a nonterminal symbol. Such low-level rules tend to waste time 
and space, and may complicate the specification beyond Yacc's ability to deal with it. Usually, the 
lexical analyzer would recognize the month names, and return an indication that a month_name 
was seen; in this ease, montlLname would be a token. 

Literal characters such as "," must also be passed through the lexical analyzer, and are also 
considered tokens. 

Specification files are very flexible. It is realively easy to add to the above example the rule 

date : month ' / ' day , /' year 

allowing 

7 /4/1776 

as a synonym for 

c 
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July 4, 1776 

In most cases, this new rule could be "slipped in U to a working system with minimal effort, and 
little danger of disrupting existing input. 

The input being read may not conform to the specifications. These input errors are detected 
as early as is theoretically possible with a leCt-to-right scan; thus, not only is the chance of reading 
and computing with bad input data substantially reduced, but the bad data can usually be quickly 
found. Error handling, provided as part of the input specifications, permits the reentry of bad 
data, or the continuation of the input process after skipping over the bad data. 

In some cases, Yacc fails to produce a parser when given a set of specifications. For example, 
the specifications may be self contradictory, or they may require a more powerful recognition 
mechanism than that available to Yacc. The former cases represent design errors; the latter cases 
can often be corrected by making the lexical analyzer more powerful, or by rewriting some of the 
grammar rules. While Yacc cannot handle all possible specifications, its power compares favorably 
with similar systems; moreover, the constructions which are difficult for Yacc to handle are also 
frequently difficult for human beings to handle. Some users have reported that the discipline of 
formulating valid Yacc specifications for their input revealed errors of conception or design early in 
the program development. 

The theory underlying Yacc has been described elsewhere.2, 3, 4 Yacc has been extensively used 
in numerous practical applications, including lint ,5 the Portable C Compiler,6 and a system for 
typesetting mathematics.7 

The next several sections describe the basic process of preparing a Yacc specification; Section 
1 describes the preparation of grammar rules, Section 2 the preparation of the user supplied actions 
associated with these rules, and Section 3 the preparation of lexical analyzers. Section 4 describes 
the operation of the parser. Section 5 discusses various reasons why Yacc may be unable to pro­
duce a parser from a specification, and what to do about it. Section 6 describes a simple mechan­
ism for handling operator precedences in arithmetic expressions. Section 7 discusses error detection 
and recovery. Section 8 discusses the operating environment and special features of the parsers 
Yacc produces. Section 9 gives some suggestions which should improve the style and efficiency of 
the specifications. Section 10 discusses some advanced topics, and Section 11 gives acknowledge­
ments. Appendix A has a brief example, and Appendix B gives a summary of the Yacc input syn­
tax. Appendix C gives an example using some of the more advanced features of Yacc, and, finally, 
Appendix D describes mechanisms and syntax no longer actively supported, but provided for his­
torical continuity with older versions of Yacc. 

1: Basic Specifications 

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be 
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include the 
lexical analyzer as part of the specification file; it may be useful to include other programs as well. 
Thus, every specification file consists of three sections: the declarations, {grammar} rules, and pro­
grams. The sections are separated by double percent "%%" marks. (The percent "%" is gen­
erally used in Yacc specifications as an escape character.) 

In other words, a full specification file looks like 

declarations 
%% 
rules 
%% 
programs 

The declaration section may be empty. Moreover, if the programs section is omitted, the 
second %% mark may be omitted also; thus, the smallest legal Yacc specification is 
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%% 
rules 

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi­
character reserved symbols. Comments may appear wherever a name is legal; they are enclosed in 
/* ... */, as in C and PL/l. 

The rules section is made up of one or more grammar rules. A grammar rule has the form: 

A : BODY; 

A represents a nonterminal name, and BODY represents a sequence of zero or more names and 
literals. The colon and the semicolon are Yacc punctuation. 

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore "_", 
and non-initial digits. Upper and lower case letters are distinct. The names used in the body of a 
grammar rule may represent tokens or non terminal symbols. 

A literal consists of a character enclosed in single quotes" "'. As in C, the backslash "\" is 
an escape character within literals, and all the C escapes are recognized. Thus 

\n' newline 
\r' return 
\" single quote" ", 
\ \' backslash "\" 
\t' tab 
\b' backspace 
\f' form feed 
\xxx' "xxx" in octal 

For a number of technical reasons, the NUL character (\0' or 0) should never be used in grammar 
rules. 

If there are several grammar rules with the same left hand side, the vertical bar "I" can be 
used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be 
dropped before a vertical bar. Thus the grammar rules 

A 
A 
A 

BCD 
E F 
G j 

can be given to Yacc as 

ABC D 
E F 
G 

It is not necessary that all grammar rules with the same left side appear together in the grammar 
rules section, although it makes the input much more readable, and easier to change. 

If a non terminal symbol matches the empty string, this can be indicated in the obvious way: 

empty: ; 

Names representing tokens must be declared; this is most simply done by writing 

%token namel name2 ... 

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name not 
defined in the declarations section is assumed to represent a nonterminal symbol. Every nontermi­
nal symbol must appear on the left side of at least one rule. 
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Of all the nonterminal symbols, one, called the start symbol, has particular importance. The 
parser is designed to recognize the start symbol; thus, this symbol represents the largest, most gen­
eral structure described by the grammar rules. By default, the start symbol is taken to be the left 
hand side of the first grammar rule in the rules section. It is possible, and in fact desirable, to 
declare the start symbol explicitly in the declarations section using the o/ostart keyword: 

o/ostart symbol 

The end of the input to the parser is signaled by a special token, called the endmarker. If 
the tokens up to, but not including, the endmarker form a structure which matches the start sym­
bol, the parser function returns to its caller after the endmarker is seen; it accepts the input. If 
the endmarker is seen in any other context, it is an error. 

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; 
see section 3, below. Usually the end marker represents some reasonably obvious I/O status, such 
as "end-of-file" or "end-of-record". 

2: Actions 

With each grammar rule, the user may associate actions to be performed each time the rule is 
recognized in the input process. These actions may return values, and may obtain the values 
returned by previous actions. Moreover, the lexical analyzer can return values for tokens, if 
desired. 

An action is an arbitrary C statement, and as such can do input and output, call subpro­
grams, and alter external vectors and variables. An action is specified by one or more statements, 
enclosed in curly braces "{" and "}". For example, 

A '(' B l' 
{ hello( 1, "abc"); } 

and 

:xxx : yyy ZZZ 
{ printf("a message\n"); 

flag = 25; } 

are grammar rules with actions. 

To facilitate easy communication between the actions and the parser, the action statements 
are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this context. 

To return a value, the action normally sets the pseudo-variable "$$" to some value. For 
example, an action that does nothing but return the value 1 is 

{ $$ = 1; } 

To obtain the values returned by previous actions and the lexical analyzer, the action may 
use the pseudo-variables $1, $2, ... , which refer to the values returned by the components of the 
right side of a rule, reading from left to right. Thus, if the rule is 

ABC D ; 

for example, then $2 has the value returned by C, and $3 the value returned by D. 

As a more concrete example, consider the rule 

expr : '(' expr ')' ; 

The value returned by this rule is usually the value of the ezpr in parentheses. This can be indi­
cated by 

expr : '(' expr ')' {$$=$2; } 
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By default, the value of a rule is the value of the first element in it ($1). Thus, grammar 
rules of the form 

A B 
frequently need not have an explicit action. 

In the examples above, all the actions came at the end of their rules. Sometimes, it is desir­
able to get control before a rule is fully parsed. Yacc permits an action to be written in the middle 
of a rule as well as at the end. This rule is assumed to return a value, accessible through the usual 
mechanism by the actions to the right of it. In tum, it may access the values returned by the 
symbols to its left. Thus, in the rule 

A B 
{ $$ = 1; } 

C 
{ x = $2; y = $3; } 

the eft'ect is to set % to 1, and 'II to the value returned by C. 

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new 
nonterminal symbol name, and a new rule matching this name to the empty string. The interior 
action is the action triggered oft' by recognizing this added rule. Yacc actually treats the above 
example as if it had been written: 

$ACT 

A 

/* empty */ 
{ $$ = 1; } 

B $ACT C 
{ x = $2; y = $3; } 

In many applications, output is not done directly by the actions; rather, a data structure, 
such as a parse tree, is constructed in memory, and transformations are applied to it before output 
is generated. Parse trees are particularly easy to construct, given routines to build and maintain 
the tree structure desired. For example, suppose there is a C function node, written so that the 
call 

node{ L, nl, n2 } 

creates a node with label L, and descendants nl and n2, and returns the index of the newly created 
node. Then parse tree can be built by supplying actions such as: 

expr : expr '+' expr 
{ $$ = node( '+', $1, $3); } 

in the specification. 

The user may define other variables to be used by the actions. Declarations and definitions 
can appear in the declarations section, enclosed in the marks "%{" and "%}". These declarations 
and definitions have global scope, so they are known to the action statements and the lexical 
analyzer. For example, 

%{ int variable = 0; %} 

could be placed in the declarations section, making variable accessible to all of the actions. The 
Yacc parser uses only names beginning in "yy"; the user should avoid such names. 

In these examples, all the values are integers: a discussion of values of other types will be 
found in Section 10. 
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3: Lexieal Analysis 

The user must supply a lexical analyzer to read the input stream and communicate tokens 
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called 
"lex. The function returns an integer, the token number, representing the kind of token read. If 
there is a value associated with that token, it should be assigned to the external variable "Ivai. 

The parser and the lexical analyzer must agree on these token numbers in order for commun­
ication between them to take place. The numbers may be chosen by Yacc, or chosen by the user. 
In either case, the "# define" mechanism of C is used to allow the lexical analyzer to return these 
numbers symbolically. For example, suppose that the token name DIGIT has been defined in the 
declarations section of the Yacc specification file. The relevant portion of the lexical analyzer 
might look like: 

yylexO{ 
extern int yylval; 
int c; 

c = getcharO; 

switch( c ) { 

case '0': 
case '1': 

case '9': 
yylval = c-'O'; 
return( DIGIT ); 

} 

The intent is to return a token number of DIGIT, and a value equal to the numerical value 
of the digit. Provided that the lexical analyzer code is placed in the programs section of the 
specification file, the identifier DIGIT will be defined as the token number associated with the 
token DIGIT. 

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to 
avoid using any token names in the grammar that are reserved or significant in C or the parser; for 
example, the use of token names if or while will almost certainly cause severe difficulties when the 
lexical analyzer is compiled. The token name error is reserved for error handling, a.nd should not 
be used naively (see Section 7). 

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the 
default situation, the numbers are chosen by Yacc. The default token number for a literal charac­
ter is the numerical value of the character in the local character set. Other names are assigned 
token numbers starting at 257. 

To assign a token number to a token (including literals), the first appearance of the token 
name or literal in the declarations section can be immediately followed by a nonnegative integer. 
This integer is taken to be the token number of the name or literal. Names and literals not defined 
by this mechanism retain their default definition. It is important that all token numbers be dis­
tinct. 

For historical reasons, the endmarker must have token number 0 or negative. This token 
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return 0 
or negative as a token number upon reaching the end of their input. 

A very useful tool for constructing lexical analyzers is the Lex program developed by Mike 
Lesk.8 These lexical analyzers are designed to work in close harmony with Yacc parsers. The 
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specifications for these lexical analyzers use regular expressions instead of grammar rules. Lex can 
be easily used to produce quite complicated lexical analyzers, but there remain some languages 
(such as FORTRAN) which do not fit any theoretical framework, and whose lexical analyzers must 
be cra.fted by hand. 

4: How the Parser Works 
Yacc turns the specification file into a C program, which parses the input according to the 

specification given. The algorithm used to go from the specification to the parser is complex, and 
will not be discussed here (see the references for more information). The parser itself, however, is 
relatively simple, and understanding how it works, while not strictly necessary, will nevertheless 
make treatment of error recovery and ambiguities much more comprehensible. 

The parser produced by Yacc consists of a finite state machine with a stack. The parser is 
also capable of reading and remembering the next input token (called the lookahead token). The 
current 8tate is always the one on the top of the stack. The states of the finite state machine are 
given small integer labels; initially, the machine is in state 0, the stack contains only state 0, and 
no lookahead token has been read. 

The machine has only four actions available to it, called 8hift, reduce, accept, and error. A 
move of the parser is done as follows: 

1. Based on its current state, the parser decides whether it needs a lookahead t.oken to decide 
what action should be done; if it needs one, and does not have one, it calls yyiell to obtain 
the next token. 

2. Using the current state, and the lookahead token if needed, the parser decides on its next 
action, and carries it out. This may result in states being pushed onto the stack, or popped 
off of the stack, and in the lookahead token being processed or left alone. 

The 8hift action is the most common action the parser takes. Whenever a shift action IS 

taken, there is always a look ahead token. For example, in state 56 there may be an action: 

IF shift 34 

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on the 
stack, and state 34 becomes the current state (on the top of the stack). The lookahead token is 
cleared. 

The reduce action keeps the stack from growing without bounds. Reduce actions are 
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to 
announce that it has seen an instance of the rule, replacing the right hand side by the left hand 
side. It may be necessary to consult the look ahead token to decide whether to reduce, but usually 
it is not; in fact, the default action (represented by a ". ") is often a reduce action. 

Reduce actions are associated with individual grammar rules. Grammar rules are also given 
small integer numbers, leading to some confusion. The action 

reduce 18 

refers to grammar rule 18, while the action 

IF shift 34 

refers to 8tate 34. 

Suppose the rule being reduced is 

A x y z 

The reduce action depends on the left hand symbol (A in this case), and the number of symbols on 
the right hand side (three in this case). To reduce, first pop off the top three states from the stack 
(In general, the number of states popped equals the number of symbols on the right side of the 
rule). In effect, these states were the ones put on the stack while recognizing Il, y, and z, and no 
longer serve any useful purpose. After popping these states, a state is uncovered which was the 

/ 



(j 

( 

(j 

- 9-

state the parser was in before beginning to process the rule. Using this uncovered state, and the 
symbol on the left side of the rule, perform what is in effect a shift of A. A new state is obtained, 
pushed onto the stack, and parsing continues. There are significant differences between the pro­
cessing of the left hand symbol and an ordinary shift of a token, however, so this action is called a 
loto action. In particular, the lookahead token is cleared by a shift, and is not affected by a goto. 
In any case, the uncovered state contains an entry such as: 

A goto 20 

causing state 20 to be pushed onto the stack, and become the current state. 

In effect, the reduce action "turns back the clock" in the parse, popping the states off the 
stack to go back to the state where the right hand side of the rule was first seen. The parser then 
behaves as if it had seen the left side at that time. If the right hand side of the rule is empty, no 
states are popped off of the stack: the uncovered state is in fact the current state. 

The reduce action is also important in the treatment of user-supplied actions and values. 
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In 
addition to the stack holding the states, another stack, running in parallel with it, holds the values 
returned from the lexical analyzer and the actions. When a shift takes place, the external variable 
"Ivai is copied onto the value stack. After the return from the user code, the reduction is carried 
out. When the goto action is done, the external variable 1/1/val is copied onto the value stack. 
The pseudo-variables $1, $2, etc., refer to the value stack. 

The other two parser actions are conceptually much simpler. The accept action indicates 
that the entire input has been seen and that it matches the specification. This action appears only 
when the lookahead token is the endmarker, and indicates that the parser has successfully done its 
job. The error action, on the other hand, represents a place where the parser can no longer con­
tinue parsing according to the specification. The input tokens it has seen, together with the looka­
head token, cannot be followed by aJlything that would result in a legal input. The parser reports 
an error, aJld attempts to recover the situation and resume parsing: the error recovery (as opposed 
to the detection of error) will be covered in Section 7. 

It is time for an example! Consider the specification 

%token DING DONG DELL 
%% 
rhyme sound place 

sound DING DONG 

place: DELL 

When Yacc is invoked with the -v option, a file called y.output is produced, with a human­
readable description of the parser. The ,.output file corresponding to the above grammar (with 
some statistics stripped off the end) is: 



state 0 
Saccept : Jhy~ Send 

DING shift 3 
· error 

rhyme goto 1 
sound goto 2 

state 1 
$accept : rhyme_Send 

Send accept 
error 

state 2 
rhyme : sound-place 

DELL shift 5 
· error 

place goto 4 

state 3 
sound : DING..DONG 

DONG shift 6 
error 

state 4 
rhyme sound place_ (1) 

reduce 1 

state 5 
place : DELL_ (3) 

reduce 3 

state 6 
sound DING DONG_ (2) 

· reduce 2 

- 10-

Notice that, in addition to the actions for each state, there is a description of the parsing rules 
being processed in each state. The _ character is used to indicate what has been seen, and what is 
yet to come, in each rule. Suppose the input is 

DING DONG DELL 

It is instructive to follow the steps of the parser while processing this input. 

Initially, the current state is state O. The parser needs to refer to the input in order to decide 
between the actions available in state 0, so the first token, DING, is read, becoming the look ahead 
token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the stack, and the 
lookahead token is cleared. State 3 becomes the current state. The next token, DONG, is read, 

(- , 

o 
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becoming the lookahead token. The action in state 3 on the token DONG is "shift 61!, so state 6 
is pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In 
state 6, without even consulting the lookahead, the parser reduces by rule 2. 

sound : DING DONG 

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the 
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound, 

sound goto 2 

is obtained; thus state 2 is pushed onto the stack, becoming the current state. 

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is pushed 
onto the stack, which now has 0, 2, and 5 on it, and the look ahead token is cleared. In state 5, 
the only action is to reduce by rule 3. This has one symbol on the right hand side, so one state, 5, 
is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3, is 
state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule l. 
There are two symbols on the right, so the top two states are popped off, uncovering state ° again. 
In state 0, there is a goto on rhyme causing the parser to enter state 1. In state 1, the input is 
read; the endmarker is obtained, indicated by "Send" in the y.output file. The action in state 1 
when the endmarker is seen is to accept, successfully ending the parse. 

The reader is urged to consider how the parser works when confronted with such incorrect 
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes 
spend with this and other simple examples will probably be repaid when problems arise in more 
complicated contexts. 

5: Ambiguity and Conflicts 

A set of grammar rules is ambiguous if there is some input string that can be structured in 
two or more different ways. For example, the grammar rule 

expr : expr '-' expr 

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put 
two other expressions together with a minus sign between them. Unfortunately, this grammar rule 
does not completely specify the way that all complex inputs should be structured. For example, if 
the input is 

expr - expr - expr 

the rule allows this input to be structured as either 

( expr - expr ) - expr 

or as 

expr - ( expr - expr ) 

(The first is called left association, the second right association ). 

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to 
consider the problem that confronts the parser when it is given an input such as 

expr - expr - expr 

When the parser has read the second expr, the input that it has seen: 

expr - expr 

matches the right side of the grammar rule above. The parser could reduce the input by applying 
this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The parser 
would then read the final part of the input: 
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- expr 

and again reduce. The effect of this is to take the left associative interpretation. 

Alternatively, when the parser has seen 

expr - expr 

it could defer the immediate application of the rule, and continue reading the input until it had 
seen 

expr - expr - expr 

It could then apply the rule to the rightmost three symbols, reducing them to ezpr and leaving 

expr - expr 

Now the rule can be reduced once more; the effect is to take the right associative interpretation. 
Thus, having read 

expr - expr 

the parser can do two legal things, a shift or a reduction, and has no way of deciding between 
them. This is called a a/nlt / reduce conflict. It may also happen that the parser has a choice of 
two legal reductions; this is called a reduce / reduce conflict. Note that there are never any 
"Shift/shift" conflicts. 

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does 
this by selecting one of the valid steps wherever it has a choice. A rule describing which choice to 
make in a given situation is called a disambiguating rule. 

Yacc invokes two disambiguating rules by default: 

1. In a shift/reduce conflict, the default is to do the shift. 

2. In a reduce/reduce conflict, the deCault is to reduce by the earlier grammar rule (in the input 
sequence). 

Rule 1 implies that reductions are deCerred whenever there is a choice, in favor of shifts. 
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but 
reduce/reduce conflicts should be avoided whenever possible. 

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while 
consistent, require a more complex parser than Yacc can construct. The use of actions within rules 
can also cause conflicts, if the action must be done before the parser can be sure which rule is being 
recognized. In these cases, the application oC disambiguating rules is inappropriate, and leads to 
an incorrect parser. For this reason, Yacc always reports the number of shift/reduce and 
reduce/reduce conflicts resolved by Rule 1 and Rule 2. 

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, 
it is also possible to rewrite the grammar rules so that the same inputs are read but there are no 
conflicts. For this reason, most previous parser generators have considered conflicts to be Catal 
errors. Our experience has suggested that this rewriting is somewhat unnatural, and produces 
slower parsers; thus, Yacc will produce parsers even in the presence of conflicts. 

As an example of the power of disambiguating rules, consider a Cragment Crom a program­
ming language involving an "if-then-else" construction: 

stat IF '(' cond ')' stat 
I· IF'(' cond ')' stat ELSE stat 

In these rules, IF and ELSE are tokens, cond is a non terminal symbol describing conditional (logi­
cal) expressions, and atat is a nonterminal symbol describing statements. The first. rule will be 
called the aimple-iJrule, and the second the il-elae rule. 

C~ 
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These two rules form an ambiguous construction, since input of the form 

IF ( Cl ) IF ( C2 ) SI ELSE S2 

("_ ) can be structured according to these rules in two ways: 

( 

o 

or 

IF ( Cl ) { 
IF ( C2 ) SI 
} 

ELSE S2 

IF ( Cl ) { 
IF ( C2 ) SI 
ELSE S2 
} 

The second interpretation is the one given in most programming languages having this construct. 
Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example, consider the 
situation where the parser has seen 

IF ( Cl ) IF ( C2 ) SI 

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get 

IF ( Cl ) stat 

and then read the remaining input, 

ELSE S2 

and reduce 

IF ( Cl ) stat ELSE S2 

by the if-else rule. This leads to the first of the above groupings of the input. 

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of 

IF ( Cl ) IF ( C2 ) SI ELSE S2 

can be reduced by the if-else rule to get 

IF ( Cl ) stat 

which can be reduced by the simple-if rule. This leads to the second of the above groupings of the 
input, which is usually desired. 

Once again the parser can do two valid things - there is a shift/reduce conflict. The applica­
tion of disambiguating rule 1 tells the parser to shift in this case, which leads to the desired group­
ing. 

This shift/reduce conflict arises only when there is a particular current input symbol, ELSE, 
and particular inputs already seen, such as 

IF ( Cl ) IF ( C2 ) SI 

In general, there may be many conflicts, and each one will be associated with an input symbol and 
a set of previously read inputs. The previously read inputs are characterized by the state of the 
parser. 

The conflict messages of Yacc are best understood by examining the verbose (-v) option out­
put file. For example, the output corresponding to the above conflict state might be: 
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23: shift/reduce conflict (shift 45, reduce 18) on ELSE 

state 23 

stat IF 
stat IF 

cond ) stat- (18) 
cond ) stat..ELSE stat 

ELSE shift 45 
reduce 18 

The first line describes the conflict, giving the state and the input symbol. The ordinary state 
description follows, giving the grammar rules active in the state, and the parser actions. Recall 
that the underline marks the portion of the grammar rules which has been seen. Thus in the 
example, in state 23 the parser has seen input corresponding to 

IF ( cond ) stat 

and the two grammar rules shown are active at this time. The parser can do two possible things. 
If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as part of its 
description, the line 

stat : IF ( cond ) stat ELSEJItat 

since the ELSE will have been shifted in this state. Back in state 23, the alternative action, 
described by ".t', is to be done if the input symbol is not mentioned explicitly in the above actions; 
thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule 18: 

stat : IF '(' cond l' stat 

Once again, notice that the numbers following "shift" commands refer to other states, while the 
numbers following "reduce" commands refer to grammar rule numbers. In the 1I.output file, the 
rule numbers are printed after those rules which can be reduced. In most one states, there will be 
at most reduce action possible in the state, and this will be the default command. The user who 
encounters unexpected shift/reduce conflicts will probably want to look at the verbose output to 
decide whether the default actions are appropriate. In really tough cases, the user might need to 
know more about the behavior and construction of the parser than can be covered here. In this 
case, one of the theoretical references2,3,4 might be consulted; the services of a local guru might 
also be appropriate. 

8: Precedence 

There is one common situation where the rules given above for resolving conflicts are not 
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used construc­
tions for arithmetic expressions can be naturally described by the notion of precedence levels for 
operators, together with information about left or right associativity. It turns out that ambiguous 
grammars with appropriate disambiguating rules can be used to create parsers that are faster and 
easier to write than parsers constructed from unambiguous grammars. The basic notion is to write 
grammar rules of the form 

expr : expr OP expr 

and 

expr : UNARY expr 

for all binary and unary operators desired. This creates a very ambiguous grammar, with many 
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding strength, of 
all the operators, and the associativity of the binary operators. This information is sufficient to 
allow Yacc to resolve the parsing conflicts in accordance with these rules, and construct a parser 
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that realizes the desired precedences and associativities. 

The precedences and associativities are attached to tokens in the declarations section. This is 
done by a series of lines beginning with a Yaec keyword: %left, %right, or %nonassoc, followed by 
a list of tokens. All of the tokens on the same line are assumed to have the same precedence level 
and associativity; the lines are listed in order of increasing precedence or binding strength. Thus, 

%left '+' '-' 
%left '*' 'j' 

describes the precedence and associativity of the four arithmetic operators. Plus and minus are left 
associative, and have lower precedence than star and slash, which are also left associative. The 
keyword %right is used to describe right associative operators, and the keyword %nonassoc is used 
to describe operators, like the operator .LT. in Fortran, that may not associate with themselves; 
thus, 

A .LT. B .LT. C 

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in 
Yacc. As an example of the behavior of these declarations, the description 

%right '-' 
%left '+' '-' 
%left '*' 'I' 

%% 

expr , 
expr expr 
expr '+' expr 
expr '-' expr 
expr '*' expr 
expr '1' expr 
NAME 

might be used to structure the input 

a = b = c*d - e - f.g 

as follows: 

\\'hen this mechanism is used, unary operators must, in general, be given a precedence. Sometimes 
a unary operator and a binary operator have the same symbolic representation, but different pre­
cedences. An example is unary and binary '-'; unary minus may be given the same strength as 
multiplication, or even higher, while binary minus has a lower strength than multiplication. The 
keyword, %prec, changes the precedence level associated with a particular grammar rule. %prec 
appears immediately after the body of the grammar rule, before the actipn or closing semicolon, 
and is followed by a token name or literal. It causes the precedence of the grammar rule to become 
that of the following token name or literal. For example, to make unary minus have the same pre­
cedence as multiplication the rules might resemble: 
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%left '+' 
, , 

%left '*' 'I' 

%% 

expr expr '+' expr 
expr '-' expr 
expr '*' expr 
expr 'I' expr 
'-' expr %prec '* ' 
NAME 

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by 
%token as well. 

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give 
rise to disambiguating rules. Formally, the rules work as follows: 

1. The precedences and associativities are recorded for those tokens and literals that have them. 

2. A precedence and associativity is associated with each grammar rule; it is the precedence and 
associativity of the last token or literal in the body of the rule. If the %prec construction is 
used, it overrides this default. Some grammar rules may have no precedence and associa­
tivity associated with them. 

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input 
symbol or the grammar rule has no precedence and associativity, then the two disambiguat­
ing rules given at the beginning of the section are used, and the conflicts are reported. 

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have 
precedence and associativity associated with them, then the conflict is resolved in favor of the 
action (shift or reduce) associated with the higher precedence. If the precedences are the 
same, then the associativity is used; left associative implies reduce, right associative implies 
shift, and nonassociating implies error. 

Conflicts resolved by precedence are not counted in the number of shift/reduce and 
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre­
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre­
cedences, and use them in an essentially "cookbook" fashion, until some experience has been 
gained. The y. output file is very useful in deciding whether the parser is actually doing what was 
intended. 

'1: Error Handling 

Error handling is an extremely difficult area, and many of the problems are semantic ones. 
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete or 
alter symbol table entries, and, typically, set switches to avoid generating any further output. 

It is seldom acceptable to stop all processing when an error is found; it is more useful to con­
tinue scanning the input to find further syntax errors. This leads to the problem of getting the 
parser "restarted" after an error. A general class of algorithms to do this involves discarding a 
number of tokens from the input string, and attempting to adjust the parser so that input can 
continue. 

To allow the user some control over this process, Yacc provides a simple, but reasonably gen­
eral, feature. The token name "error" is reserved for error handling. This name can be used in 
grammar rules; in effect, it suggests places where errors are expected, and recovery might take 
place. The parser pops its stack until it enters a state where the token "error" is legal. It then 
behaves as if the token "error" were the current look ahead token, and performs the action encoun­
tered. The look ahead token is then reset to the token that caused the error. If no special error 
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rules have been specified, the processing halts when an error is detected. 

In order to prevent a cascade of error messages, the parser, after detecting an error, remains 
in error state until three tokens have been successfully read and shifted. If an error is detected 
when the parser is already in error state, no message is given, and the input token is quietly 
deleted. 

As an example, a rule of the form 

stat: error 

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement 
in which the error was seen. More precisely, the parser will scan ahead, looking for three tokens 
that might legally follow a statement, and start processing at the first of these; if the beginnings of 
statements are not sufficiently distinctive, it may make a false start in the middle of a statement, 
and end up reporting a second error where there is in fact no error. 

Actions may be used with these special error rules. These actions might attempt to reinitial­
ize tables, reclaim symbol table space, etc. 

Error rules such as the above are very general, but difficult to control. Somewhat easier are 
rules such as 

stat error 
, , , 

Here, when there is an error, the parser attempts to skip over the statement, but will do so by 
skipping to the next ';'. All tokens after the error and before the next ';' cannot be shifted, and 
are discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action associated 
with it performed. 

Another form of error rule arises in interactive applications, where it may be desirable to per­
mit a line to be reentered after an error. A possible error rule might be 

input: error \n' { printf( ''Reenter last line: "); } input 
{ SS = $4; } 

There is one potential difficulty with this approach; the parser must correctly process three input 
tokens before it admits that it has correctly resynchronized after the error. If the reentered line 
contains an error in the first two tokens, the parser deletes the offending tokens, and gives no mes­
sage; this is clearly unacceptable. For this reason, there is a mechanism that can be used to force 
the parser to believe that an error has been fully recovered from. The statement 

yyerrok; 

in an action resets the parser to its normal mode. The last example is better written 

input: error \n' 
{ yyerrok; 

printf( ''Reenter last line: "-); } 
input 

{ $$ = $4; } 

As mentioned above, the token seen immediately after the "error" symbol is the input token 
at which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery 
action might take upon itself the job of finding the correct place to resume input. In this case, the 
previous lookahea.d token must be cleared. The statement 

yyclearin ; 

in an action will have this effect. For example, suppose the action after error were to call some 
sophisticated resynchronization routine, supplied by the user, that attempted to advance the input 
to the beginning of the next valid statement. After this routine was called, the next token 
returned by yylex would presumably be the first token in a legal statement; the old, illegal token 
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must be discarded, and the error state reset. This could be done by a rule like 

stat: error 
{ resynchO; 

yyerrok; 
yyclearin; } 

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of 
the parser from many errors; moreover, the user can get control to deal with the error actions 
required by other portions of the program. 

8: The Yacc Environment 

When the user inputs a specification to Yacc, the output is a file of C programs, called 
1I.tab.e on most systems (due to local file system conventions, the names may differ from installa­
tion to installation). The function produced by Yacc is called marse j it is an integer valued 
function. When it is called, it in tum repeatedly calls ,Iy/ez, the lexical analyzer supplied by the 
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which case 
(if no error recovery is possible) 1I1Iparse returns the value 1, or the lexical analyzer returns the 
endmarker token and the parser accepts. In this case, !I'!Iparse returns the value O. 

The user must provide a certain amount of environment for this parser in order to obtain a 
working program. For example, as with every C program, a program called main must be defined, 
that eventually calls lI'!1parBe. In addition, a routine called 1I1Ierror prints a message when a syntax 
error is detected. 

These two routines must be supplied in one form or another by the user. To ease the initial 
effort of using Yacc, a library has been provided with default versions of main and '!I'!Ierror. The 
name of this library is system dependent; on many systems the library is accessed by a -ly argu­
ment to the loader. To show the triviality of these default programs, the source is given below: 

mainO{ 
return( yyparseO ); 
} 

and 

#: include <stdio.h> 

yyerror(s) char *8; { 
fprintf( stderr, "o/os\n", s ); 
} 

The argument to '!Iyerror is a string containing an error message, usually the string "syntax error". 
The average application will want to do better than this. Ordinarily, the program should keep 
track of the input line number, and print it along with the message when a syntax error is 
detected. The external integer variable 1I11char contains the lookahead token number at the time 
the error was detected; this may be of some interest in giving better diagnostics. Since the main 
program is probablY supplied by the user (to read arguments, etc.) the Yacc library is useful only 
in small projects, or in the earliest stages of larger ones. 

The external integer variable lIydebug is normally set to O. If it is set to a nonzero value, the 
parser will output a verbose description of its actions, including a discussion of which input sym­
bols have been read, and what the parser actions are. Depending on the operating environment, it 
may be possible to set this variable by using a debugging system. 

/' 
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9: Hints for Preparing Specifications 

This section contains miscellaneous hints on preparing efficient, easy to change, and clear 
specifications. The individual subsections are more or less independent. 

Input Style 

It is difficult to provide rules with substantial actions and still have a readable specification 
file. The rollowing style hints owe much to Brian Kernighan. 

a. Use all capital letters ror token names, all lower case letters ror non terminal names. This 
rule comes under the heading or "knowing who to blame when things go wrong." 

b. Put grammar rules and actions on separate lines. This allows either to be changed without 
an automatic need to change the other. 

c. Put all rules with the same left hand side together. Put the lert hand side in only once, and 
let all rollowing rules begin with a vertical bar. 

d. Put a semicolon only alter the last rule with a given lert hand side, and put the semicolon on 
a separate line. This allows new rules to be easily added. 

e. Indent rule bodies by two tab stops, and action bodies by three tab stops. 

The example in Appendix A is written following this style, as are the examples in the text of 
this paper (where space permits). The user must make up his own mind about these stylistic ques­
tions; the central problem, however, is to make the rules visible through the morass of action code. 

Left Recursion 

The algorithm used by the Yacc parser encourages so called "lert recursive" grammar rules: 
rules of the form 

name: name resLoLrule ; 

These rules frequently arise when writing specifications of sequences and lists: 

list item 
list item 

and 

seq item 
seq item 

In each of these cases, the first rule will be reduced for the first item only, and the second rule will 
be reduced for the second and all succeeding items. 

With right recursive rules, such as 

seq item 
item seq 

the parser would be a bit bigger, and the items would be seen, and reduced, rrom right to left. 
More seriously, an internal stack in the parser would be in danger or overflowing if a very long 
sequence were read. Thus, the user should use left recursion wherever reasonable. 

It is worth considering whether a sequence with zero elements has any meaning, and ir so, 
consider writing the sequence specification with an empty rule: 

seq /* empty */ 
seq item 
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Once again, the first rule would always be reduced exactly once, before the first item was read, and 
then the second rule would be reduced once Cor each item read. Permitting empty sequences often 
leads to increased generality. However, conflicts might arise if Yacc is asked to decide which 
empty sequence it has seen, when it hasn't seen enough to know! 

Lexical Tie-ins 

Some lexical decisions depend On context. For example, the lexical analyzer might want to 
delete blanks normally, but not within quoted strings. Or names might be entered into a symbol 
table in declarations, but not in expressions. 

One way of handling this situation is to create a global flag that is examined by the lexical 
analyzer, and set by actions. For example, suppose a program consists of 0 or more declarations, 
followed by 0 or more statements. Consider: 

%{ 
int dflag; 

%} 
other declarations ... 

%% 

prog decls stats 

decls /* empty */ 
{ dflag = 1; } 

decls declaration 

stats /* empty */ 
{ dflag = 0; } 

stats statement 

... other rules ... 

The flag dftag is now 0 when reading statements, and 1 when reading declarations, except/or the 
first token in the first statement. This token must be seen by the parser before it can tell that the 
declaration section has ended and the statements have begun. In many cases, this single token 
exception does not affect the lexical scan. 

This kind of "back door" approach can be elaborated to a noxious degree. Nevertheless, it 
represents a way of doing some things that are difficult, if not impossible, to do otherwise. 

Reserved Words 

Some programming languages permit the user to use words like "if", which are normally 
reserved, as label or variable names, provided that such use does not conflict with the legal use of 
these names in the programming language. This is extremely hard to do in the framework of 
Yacc; it is difficult to pass information to the lexical analyzer telling it "this instance of 'if' is a 
keyword, and that instance is a variable". The user can make a stab at it, using t.he mechanism 
described in the last subsection, but it is difficult. 

A number of ways of making this easier are under advisement. Until then, it is better that 
the keywords be reserved ; that is, be forbidden for use as va.riable names. There are powerful 
stylistic reasons for preferring this, anyway. 

"' .. / 
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10: Advanced Topics 

This section discusses a number of advanced features of Yacc. 

Simulating Error and Accept in Actions 

The parsing actions of error and accept can be simulated in an action by use of macros 
YYACCEPT and YYERROR. YYACCEPT causes ""par8e to return the value 0; YYERROR 
causes the parser to behave as if the current input symbol had been a syntax error; "error is 
called, and error recovery takes place. These mechanisms can be used to simulat.e parsers with 
multiple endmarkers or context.-sensitive syntax checking. 

Accessing Values in Enclosing Rules. 

An action may refer to values returned by actions to the left of the current rule. The 
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in 
this case the digit may be 0 or negative. Consider 

sent adj noun verb adj noun 

adj 

noun: 

{ look at the 8entence . .. } 

THE { 
YOUNG { 

$$ = THE; } 
$$ = YOUNG; } 

DOG 
{ 

CROl\l"E 
{ 

$$ = DOG; } 

if( $0 == YOUNG ){ 
printf( "what?\n" ); 
} 

$$ = CRONE; 
} 

In the action following the word CRONE, a check is made that the preceding token shifted was 
not YOUNG. Obviously, this is only possible when a great deal is known about what might pre­
cede the symbol noun in the input. There is also a distinctly unstructured flavor about this. 
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few com­
binations are to be excluded from an otherwise regular structure. 

Support (or Arbitrary Value Types 

By default, the values returned by actions and the lexical analyzer are integers. Yacc can 
also support values of other types, including structures. In addition, Yacc keeps track of the types, 
and inserts appropriate union member names so that the resulting parser will be strictly type 
checked. The Yacc value stack (see Section 4) is declared to be a union of the various types of 
values desired. The user declares the union, and associates union member names to each token and 
nonterminal symbol having a value. When the value is referenced through a $$ or $n construction, 
Yacc will automatically insert the appropriate union name, so that no unwanted conversions will 
take place. In addition, type checking commands such as Lint 5 will be far more silent. 

There are three mechanisms used to provide for this typing. First, there is a way of defining 
the union; this must be done by the user since other programs, notably the lexical analyzer, must 
know about the union member names. Second, there is a way of associating a union member name 
with tokens and nonterminals. Finally, there is a mechanism for describing the type of those few 
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values where Yacc can not easily determine the type. 

To declare the union, the user includes in the declaration section: 

%union { 
body of union ... 
} 

This declares the Yacc value stack, and the external variables YlIlval and Y1Jval, to have type equal 
to this union. If Yacc was invoked with the -d option, the union declaration is copied onto the 
,.td.h file. Alternatively, the union may be declared in a header file, and a typedef used to define 
the variable YYSTYPE to represent this union. Thus, the header file might also have said: 

typedef union { 
body of union .,. 
} YYSTYPEj 

The header file must be included in the declarations section, by use of %{ and %}. 

Once YYSTYPE is defined, the union member names must be associated with the various 
terminal and non terminal names. The construction 

< name> 

is used to indicate a union member name. If this follows one of the keywords %token, %left, 
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus, say­
ing 

%left <optype> '+' '-' 
will cause any reference to values returned by these two tokens to be tagged with the UnIon 
member name optllpe. Another keyword, %type, is used similarly to associate union member 
names with nonterminals. Thus, one might say 

%type <nodetype> expr stat 

There remain a couple of cases where these mechanisms are insufficient. If there is an action 
within a rule, the value returned by this action has no a prion' type. Similarly, reference to left 
context values (such as So - see the previous subsection) leaves Yacc with no easy way of knowing 
the type. In this case, a type can be imposed on the reference by inserting a union member name, 
between < and >, immediately after the first S. An example of this usage is 

rule aaa { S<intval>$ = 3; } bbb 
{ fun( S<intval>2, $<other>O)j } 

This syntax has little to recommend it, but the situation arises rarely. 

A sample specification is given in Appendix C. The facilities in this subsection are not trig­
gered until they are used: in particular, the use of %type will tum on these mechanisms. When 
they are used, there is a fairly strict level of checking. For example, use of $n or $$ to refer to 
something with DO defined type is diagnosed. If these facilities are not triggered, the Yacc value 
stack is used to hold int's, as was true historically. 
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Appendix A: A Simple Example 

This example gives the complete Yacc specification for a small desk calculator; the desk cal­
culator has 26 registers, labeled "a" through "z", and accepts arithmetic expressions made up of 
the operators +, -, ., I, % (mod operator), & (bitwise and), I (bitwise or), and assignment. If an 
expression at the top level is an assignment, the value is not printed; otherwise it is. As in 0, an 
integer that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be decimal. 

As an example of a Yacc specification, the desk calculator does a reasonable job of showing 
how precedences and ambiguities are used, and demonstrating simple error recovery. The major 
oversimplifications are that the lexical analysis phase is much simpler than for most applications, 
and the output is produced immediately, line by line. Note the way that decimal and octal 
integers are read in by the grammar rules; This job is probably better done by the lexical analyzer. 

%{ 
# include <stdio.h> 
# include < ctype.h > 

int regs[26]; 
int base; 

%} 

o/ostart list 

%token DIGIT LETTER 

%1 eft 'I' 
%left '&' 
%left '+' , , 
%1 eft '*' 'j' '%' 
%left UMII\TUS 1* supplies precedence for unary mmus */ 

%% I· beginning of rules section */ 

list /* empty */ 
list stat \n' 
list error \n' 

{ yyerrok; } 

stat expr 
{ printf( "%d\n", $1 ); } 

LETTER '-
, 

expr 
{ regs[$IJ = $3; } 

expr l' expr l' 
{ $$ $2; } 

expr '+' expr 
{ $S - $1 + $3; } 

expr '-' expr 
{ $S - $1 - $3; } 

expr '.' expr 
{ $S = $1 * $3; } 
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expr 'I' expr 
{ as = $1 / 13; } 

expr '%' expr 
{ IS == SI % S3; } 

expr '&' expr 
{ S$= SI & S3; } 

'expr '1' expr 
{ 

'-' expr 
{ 

LETTER 
{ 

number 

DIGIT 

SS - SI I S3i } 
%prec UMINUS 

SS == - S2; } 

SS = regs[SI]; } 

{ ss = $li base = (SI==O) ? 8 10;} 
number DIGIT 

{ $$ = base * $1 + $2i } 

%% /* start of programs */ 

yylexO { /* lexical analysis routine */ 
/* returns LETTER for a lower case letter, yylval = 0 through 25 */ 
/* return DIGIT for a digit, yylval = 0 through 9 */ 
/* all other characters are returned immediately */ 

int c; 

while( (c=getchar()) == " ) {/* skip blanks */ } 

/* c is now nonblank */ 

if( islower( c ) ) { 
yylval = c - 'a'; 
return ( LETTER ); 
} 

if( isdigi t( c ) ) { 
yylval = c - '0 '; 
return ( DIGIT ); 
} 

return{ c ); 
} 

(~ 
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Appendix B: Yaee Input Syntax 

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context 
dependencies, etc., are not considered. Ironically, the Yacc input specification language is most 
naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a rule, 
immediately following an action. H this identifier is followed by a colon, it is the start of the next 
rule; otherwise it is a continuation of the current rule, which just happens to have an action 
embedded in it. As implemented, the lexical analyzer looks ahead after seeing an identifier, and 
decide whether the next token (skipping blanks, newlines, comments, etc.) is a colon. H so, it 
returns the token CJDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) 
are also returned as IDENTIFIERS, but never as part of CJDENTIFIERs. 

%token 
%token 
%token 

/* grammar for the input to Yacc */ 

/* basic entities 
IDENTIFIER 
CJDENTIFIER 
NUMBER 

*/ 
/* includes identifiers and literals */ 
/* identifier (but not literal) followed by colon 

/* [0-9]+ */ 

/* reserved words: %type => TYPE, %left => LEFT, etc. */ 

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION 

%token MI\RK /* the %% mark */ 
%token LCURL /* the %{ mark */ 
%token RCURL /* the %} mark */ 

/* ascii character literals stand for themselves */ 

( %start spec 

%% 

spec 

tail 

defs 

def 

rword 

c 

defs MARK rules tail 

MARK { In thi8 action, eat up the re8t of the file } 
/* empty: the second MARK is optional */ 

/* empty */ 
defs def 

START IDENTIFIER 
UNION { Oopy union definition to output } 
LCURL { Oopy 0 code to output file } RCURL 
ndefs rword tag nlist 

TOKEN 
LEFT 
RIGHT 
NONASSOC 



tag 

nlist 

nmno 

rules 

rule 

rbody 

act 

prec 
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TYPE 

1* empty: union tag is optional *1 
, <' IDENTIFIER '> # 

nmno 
nlist nmno 
nlist " # nmno 

IDENTIFIER 
IDENTIFIER NUMBER 

1* rules section *1 

CJDENTIFIER rbody prec 
rules rule 

CJDENTIFIER rbody prec 
'r rbody prec 

1* empty *1 
rbody IDENTIFIER 
rbody act 

1* NOTE: literal illegal with %type *1 
1* NOTE: illegal with %type *1 

'{' { COP'll action, translate $$, etc. } l' 

1* empty *1 
PREC IDENTIFIER 
PREC IDENTIFIER act 
prec 'j' 

i-\. 

'0 

C) 



( 

o 
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Appendix C: An Advanced Example 

This Appendix gives an example of a grammar using some of the advanced features discussed 
in Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator 
that does floating point interval arithmetic. The calculator understands floating point constants, 
the arithmetic operations +, -, *, /, unary -, and = (assignment), and has 26 floating point vari­
ables, "a" through "z". Moreover, it also understands intenJals, written 

(x,y) 

where % is less than or equal to 1/. There are 26 interval valued variables "A" through "Z" that 
may also be used. The usage is similar to that in Appendix A; assignments return no value, and 
print nothing, while expressions print the (floating or interval) value. 

This example explores a number of interesting features of Yacc and C. Intervals are 
represented by a structure, consisting of the left and right endpoint values, stored as double's. 
This structure is given a type name, INTERVAL, by using t1/pede/. The Yacc value stack can also 
contain floating point scalars, and integers (used to index into the arrays holding the variable 
values). Notice that this entire strategy depends strongly on being able to assign structures and 
unions in C. In fact, many of the actions call functions that return structures as well. 

It is also worth noting the use of YYERROR to handle error conditions: division by an inter­
val containing 0, and an interval presented in the wrong order. In effect, the error recovery 
mechanism of Yacc is used to throwaway the rest of the offending line. 

In addition to the mixing of types on the value stack, this grammar also demonstrates an 
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate expres­
sions. Note that a scalar can be automatically promoted to an interval if the context demands an 
interval value. This causes a large number of conflicts when the grammar is run through Yacc: 18 
Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at the two input lines: 

2.5 + ( 3.5 - 4. ) 

and 

2.5 + ( 3.5 , 4. ) 

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this 
fact is not known until the"," is read; by this time, 2.5 is finished, and the parser cannot go back 
and change its mind. More generally, it might be necessary to look ahead an arbitrary number of 
tokens to decide whether to convert a scalar to an interval. This problem is evaded by having two 
rules for each binary interval valued operator: one when the left operand is a scalar, and one when 
the left operand is an interval. In the second case, the right operand must be an interval, so the 
conversion will be applied automatically. Despite this evasion, there are still many cases where the 
conversion may be applied or not, leading to the above conflicts. They are resolved by listing the 
rules that yield scalars first in the specification file; in this way, the conflicts will be resolved in the 
direction of keeping scalar valued expressions scalar valued until they are forced to become inter­
vals. 

This way of handling multiple types is very instructive, but not very general. If there were 
many kinds of expression types, instead of just two, the number of rules needed would increase 
dramatically, and the conflicts even more dramatically. Thus, while this example is instructive, it 
is better practice in a more normal programming language environment to keep the type informa­
tion as part of the value, and not as part of the grammar. 

Finally, a word about the lexical analysis. The only unusual feature is the treatment of 
floating point constants. The C library routine atol is used to do the actual conversion from a 
character string to a double precision value. If the lexical analyzer detects an error, it responds by 
returning a token that is illegal in the grammar, provoking a syntax error in the parser, and thence 
error recovery. 



%{ 

# include <stdio.h> 
# include < ctype.h > 

typedef struct interval { 
double 10, hi; 
} INTERVAL; 

INTERVAL vmulO, vdivO; 

double atofO; 

double dreg[ 26]; 
INTERVAL vreg[ 26 ]; 

%} 

o/ostart lines 

%union { 
int ival; 
double dval; 
INTERVAL vval; 
} 
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%token <ivaI> DREG VREG /* indices into dreg, vreg arrays */ 

%token <dval> CONST /* Boating point constant */ 

%type <dval> dexp /* expression */ 

%type <vval> vexp /* interval expression */ 

/* precedence information about the operators */ 

%left '+' '-' 
%left '*' , /' 
%left VMIl\'US /* precedence for unary minus */ 

%% 

lines /* empty */ 
lines line 

line dexp \n' 
{ printf( "%15.81\n", $1 ); } 

vexp \n' 
{ printf( "(%15.8f , %l5.8f )\n", $1.10, Sl.hi ); } 

DREG '=' dexp \n' 
{ dreg[Sl] = $3; } 

VREG '=' vexp \n' 



dexp : 
I 

I 

vexp : 

( 

o 

{ vreg[SI J = $3; } 
error \n' 

{ yyerrok;} 

CONST 
DREG 

{ SS = dreg[SIJ; } 
dexp , +' dexp 

{ IS = $1 + S3; } 
dexp '-' dexp 

{ $S = $1 - $3; } 
dexp '.' dexp 

{ $S = $1 * S3; } 
dexp , /' dexp 

{ $S = $1 / $3; } 
'-' dexp %prec UMINUS 

{ IS = - $2; } 
'(' dexp l' 

{ $$ = S2; } 

dexp 
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{ $S.hi = $$.10 = $1; } 
'(' dexp ',' dexp 1 ' 

{ 
$$.10 = $2; 
$$.hi = $4; 
if( S$.1o > $S.hi ){ 

} 
VREG 

printf( "interval out of order\n" ); 
YYERROR; 
} 

{ $$ = vreg[$I]; } 
vexp , +' vexp 

{ S$.hi = $1.hi + S3.hi; 
$$.10 = $1.10 + $3.10; } 

dexp , +' vexp 
{ $$.hi = $1 + S3.hi; 

$$.10 = $1 + $3.10; } 
vexp '-' vexp 

{ S$.hi = S1.hi - S3.10; 
$$.lo = $1.10 - $3.hi; } 

dexp '-' vexp 
{ S$.hi = $1 - S3.10; 

$$.lo = $1 - $3.hi; } 
vexp , *' vexp 

{ S$ = vmul( SUo, $1.hi, $3 ); } 
dexp '.' vexp 

{ $$ = vmul( $1, $1, $3 ); } 
vexp , /' vexp 

{ if( dcheck( $3 ) ) YYERROR; 
$$ = vdiv( $1.10, $1.hi, $3 ); } 



%% 
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dexp , /' vexp 
{ if( dcheck( $3 ) ) YYERROR; 

IS = vdiv( $1, $1, $3 ); } 
'-' vexp %prec UMINUS 

{ 'S.hi == -$2.10; $$.10 == -$2.hi; } 
'(' vexp Y . { 'S == $2; } 

# define BSZ 50 /* buffer size for floating point numbers */ 

/ * lexical analysis * / 

yylexO{ 
register c; 

while( (c=getchar()) === " ){ /* skip over blanks */ } 

if( isupper( c ) ){ 
yylval.ival = c - 'A'; 
return( VREG ); 
} 

if( islower( c ) ){ 
yylval.ival = c - 'a'; 
return( DREG ); 
} 

if( isdigit( c ) II c=='.' ){ 
/* gobble up digits, points, exponents */ 

char buf[BSZ+ 1], *cp = buf; 
int dot == 0, exp = 0; 

fore ; (cp-buf)<BSZ ; ++cp,c=getcharO ){ 

*cp = c; 
if( isdigit( c ) ) continue; 
if( c === '.' ){ 

if( dot++ II exp ) return( 
continue; 
} 

if( c == 'e' ){ 

" ). . , / * will cause syntax error * / 

if( exp++ ) return( 'e'); /* will cause syntax error */ 
continue; 
} 

/* end of number */ 
break; 
} 

*cp == \0'; 
if( (cp-buf) >= BSZ ) printf( "constant too long: truncated\n" ); 

C· "\ 
../ 
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else ungetc( c, stdin)i /* push back last char read */ 
yylval.dval = atof( buf )i 
return( CONST )i 
} 

return( c )i 
} 

INTERVAL hilo( a, b, c, d ) double a, b, c, di { 
/* returns the smallest interval containing a, b, c, and d */ 
/* used by *, / routines */ 
INTERVAL Vi 

if( a>b ) { v.hi 
else { v.hi = bi 

= ai v.lo - b i } 
v.lo = ai } 

if( c>d ) { 
if( c>v.hi ) v.hi - Ci 
if( d<v.lo ) v.lo - di 
} 

else { 
if( d>v.hi ) v.hi = di 
if( c<v.lo ) v.lo = Ci 
} 

return( v )i 
} 

INTERVAL vmul( a, b, v ) double a, bi INTERVAL Vi { 
return( hilo( Mv.hi, MV.lo, b*v.hi, b*v.lo ) ); 
} 

dcheck( v ) INTERVAL v; { 
if( v.hi >= o. && v.lo <= o. ){ 

printf( "divisor interval contains O.\n" ); 
return( 1 ); 
} 

return ( 0 ); 
} 

INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v; { 
return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo ) )i 
} 



- 34-

Appendix D: Old FeatUl'eS Supported but not Encouraged 

This Appendix mentions synonyms and features which are supported for historical con­
tinuity, but, for various reasons, are not encouraged. 

1. Literals may also be delimited by double quotes """. 

2. Literals may be more than one character long. If all the characters are alphabetic, numeric, 
or .., the type number of the literal is defined, just as if the literal did not have the quotes 
around it. Otherwise, it is difficult to find the value for such literals. 

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it 
suggests that Yacc is doing a job which must be actually done by the lexical analyzer. 

3. Most places where % is legal, backslash "\" may be used. In particular, \ \ is the same as 
%%, \left the same as %left, etc. 

4. There are a number of other synonyms: 

%< is the same as %left 
%> is the same as %right 
%binary and %2 are the same as %nonassoc 
%0 and %term are the same as %token 
%= is the same as %prec 

5. Actions may also have the form 

={ ... } 

and the curly braces can be dropped if the action is a single C statement. 

6. C code between %{ and %} used to be permitted at the head of the rules section, as well as 
in the declaration section. 
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Lex - A Lexical Analyzer Generator 

M. E. Leak and E. Schmidt 

ABSTRAOT 

Lex helps write programs whose control flow is directed by instances of regu­
lar expressions in the input stream. It is well suited for editor-script type 
transformations and for segmenting input in preparation for a parsing routine. 

Lex source is a table of regular expressions and corresponding program frag­
ments. The table is translated to a program which reads an input stream, copying 
it to an output stream and partitioning the input into strings which match the 
given expressions. As each such string is recognized the corresponding program 
fragment is executed. The recognition of the expressions is performed by a deter­
ministic finite automaton generated by Lex. The program fragments written by 
the user are executed in the order in which the corresponding regular expressions 
occur in the input stream. 

The lexical analysis programs written with Lex accept ambiguous 
specifications and choose the longest match possible at each input point. If neces­
sary, substantial lookahead is performed on the input, but the input stream will 
be backed up to the end of the current partition, so that the user has general free­
dom to manipulate it. 

Lex can generate analyzers in either C or Ratfor, a language which can be 
translated automatically to portable Fortran. It is available on the PDP-ll 
UNIX, Honeywell GCOS, and IBM OS systems. This manual, however, will only 
discuss generating analyzers in C on the UNIX system, which is the only sup­
ported form of Lex under UNIX Version 7. Lex is designed to simplify interfacing 
with Yacc, for those with access to this compiler-compiler system. 

1. Introduction. 

Lex is a program generator designed for 
lexical processing of character input streams. 
It accepts a high-level, problem oriented 
specification for character string matching, 
and produces a program in a general purpose 
language which recognizes regular expressions. 
The regular expressions are specified by the 
user in the source specifications given to Lex. 
The Lex written code recognizes these expres­
sions in an input stream and partitions the 
input stream into strings matching the expres­
sions. At the boundaries between strings pro­
gram sections provided by the user are exe­
cuted. The Lex source file associates the regu­
lar expressions and the program fragments. 
As each expression appears in the input to the 

program written by Lex, the corresponding 
fragment is executed. 

-The user supplies the additional code 
beyond expression matching needed to com­
plete his tasks, possibly including code writ­
ten by other generators. The program that 
recognizes the expressions is generated in the 
general purpose programming language 
employed for the user's program fragments. 
Thus, a high level expression language is pro­
vided to write the string expressions to be 
matched while the user's freedom to write 
actions is unimpaired. This avoids forcing 
the user who wishes to use a string manipula­
tion language for input analysis to write pro­
cessing programs in the same and often inap­
propriate string handling language. 



Lex is not a complete language, but 
rather a generator representing a new 
language feature which can be added to 
different programming languages, called "host 
languages." Just as general purpose languages 
can produce code to run on different computer 
hardware, Lex can write code in different host 
languages. The host language is used for the 
output code generated by Lex and also for the 
program fragments added by the user. Com­
patible run-time libraries for the different host 
languages are also provided. This makes Lex 
adaptable to different environments and 
different users. Each application may be 
directed to the combination of hardware and 
host language appropriate to the task, the 
user's background, and the properties of local 
implementations. At present, the only sup­
ported host language is C, although Fortran 
(in the form of Ratfor [2] has been available 
in the past. Lex itself exists on UNIX, GCOS, 
and OS/370; but the code generated by Lex 
may be taken anywhere the appropriate com­
pilers exist. 

Lex turns the user's expressions and 
actions (called 80urce in this memo) into the 
host general-purpose language; the generated 
program is named yylex. The yylex program 
will recognize expressions in a stream (called 
input in this memo) and perform the specified 
actions for each expression as it is detected. 
See Figure 1. 

Source - Lex - yylex 

Input - yylex - Output 

An overview of Lex 
Figure 1 

For a trivial example, consider a pro­
gram to delete from the input all blanks or 
tabs at the ends of lines. 

%% 
[\t]+S ; 

is all that is required. The program contains 
a %% delimiter to mark the beginning of the 
rules, and one rule. This rule contains a regu­
lar expression which matches one or more 
instances of the characters blank or tab (writ­
ten \t for visibility, in accordance with the C 
language convention) just prior to the end of 
a line. The brackets indicate the character 
class made of blank and tab; the + indicates 
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"one or more ... "; and the S indicates "end of 
line," as in QED. No action is specified, so 
the program generated by Lex (yylex) will 
ignore these characters. Everything else will 
be copied. To change any remaining string of 
blanks or tabs to a single blank, add another 
rule: 

%% 
[\t]+$ 
[ \t]+ printf(tI tI); 

The finite automaton generated for this source 
will scan for both rules at once, observing at 
the termination of the string of blanks or tabs 
whether or not there is a newline character, 
and executing the desired rule action. The 
first rule matches all strings of blanks or tabs 
at the end of lines, and the second rule all 
remaining strings of blanks or tabs. 

Lex can be used alone for simple 
transformations, or for analysis and statistics 
gathering on a lexical level. Lex can also be 
used with a parser generator to perform the 
lexical analysis phase; it is particularly easy 
to interface Lex and Yacc [3]. Lex programs 
recognize only regular expressions; Yacc writes 
parsers that accept a large class of context 
free grammars, but require a lower level 
analyzer to recognize input tokens. Thus, a 
combination of Lex and Yacc is often 
appropriate. When used as a preprocessor for 
a later parser generator, Lex is used to parti­
tion the input stream, and the parser genera­
tor assigns structure to the resulting pieces. 
The flow of control in such a case (which 
might be the first half of a compiler, for 
example) is shown in Figure 2. Additional 
programs, written by other generators or by 
hand, can be added easily to programs writ­
ten by Lex. 

lexical 
rules 

grammar 
rules 

! 
Yacc 

Input-~ 

Lex with Yacc 
Figure 2 

- Parsed 
input 

. Yacc users will realize that the name "lex is 
what Yacc expects its lexical analyzer to be 
named, so that the use of this name by Lex 
simplifies interfacing. 

0' 
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source [4]. The automaton is interpreted, 
rather than compiled, in order to save space. 
The result is still a fast analyzer. In particu­
lar, the time taken by a Lex program to 
recognize and partition an input stream is 
proportional to the length of the inRut. The 
number of Lex rules or the complexity of the 
rules is not important in determining speed, 
unless rules which include forward context 
require a significant amount of rescanning. 
What does increase with the number and 
complexity of rules is the size of the finite 
automaton, and therefore the size of the pro­
gram generated by Lex. 

In the program written by Lex, the 
user's fragments (representing the actions to 
be performed as each regular expression is 
found) are gathered as cases of a switch. The 
automaton interpreter directs the control flow. 
Opportunity is provided for the user to insert 
either declarations or additional statements in 
the routine containing the actions, or to add 
subroutines outside this action routine. 

Lex is not limited to source which can 
be interpreted on the basis of one character 
lookahead. For example, if there are two 
rules, one looking for a6 and another for 
abedelg, and the input stream is abcdelh, 
Lex will recognize ab and leave the input 
pointer just before cd. . . Such backup is 
more costly than the processing of simpler 
languages. 

2. Lex Source. 

The general format of Lex source is: 
{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

where the definitions and the user subroutines 
are often omitted. The second %% is 
optional, but the first is required to mark the 
beginning of the rules. The absolute 
minimum Lex program is thus 

%% 
(no definitions, no rules) which translates into 
a program which copies the input to the out­
put unchanged. 

In the outline of Lex programs shown 
above, the ,..les represent the user's control 
decisions; they are a table, in which the left 
column contains regular e:rpressiona (see sec-
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tion 3) and the right column contains actionB, 
program fragments to be executed when the 
expressions are recognized. Thus an indivi­
dual rule might appear 

integer printf("found keyword INT"); 
to look for the string integer in the input 
stream and print the message "found keyword 
INT" whenever it appears. In this example 
the host procedural language is C and the C 
library function printl is used to print the 
string. The end of the expression is indicated 
by the first blank or tab character. If the 
action is merely a single C expression, it can 
just be given on the right side of the line; if it 
is compound, or takes more than a line, it 
should be enclosed in braces. As a slightly 
more useful example, suppose it is desired to 
change a number of words from British to 
American spelling. Lex rules such as 

colour printf("color"); 
mechanise printf("mechanize"); 
petrol printf("gas"); 

would be a start. These rules are not quite 
enough, since the word petroleum would 
become gaseum; a way of dealing with this 
will be described later. 

3. Lex Regular Expressions. 

The definitions of regular expressions 
are very similar to those in QED [5]. A regu­
lar expression specifies a set of strings to be 
matched. It contains text characters (which 
match the corresponding characters in the 
strings being compared) and operator charac­
ters (which specify repetitions, choices, and 
other features). The letters of the alphabet 
and the digits are always text characters; thus 
the regular expression 

integer 
matches the string integer wherever it appears 
and the expression 

a57D 
looks for the string "S7D. 

Operators. The operator characters are 
,,\[]A_?*+ I()$/{}%< > 

and if they are to be used as text characters, 
an escape should be used. The quotation 
mark operator (tt) indicates that whatever is 
contained between a pair of quotes is to be 
taken as text characters. Thus 

xyz"++" 
matches the string zyz++ when it appears. 
Note that a part of a string may be quoted. 
It is harmless but unnecessary to quote an 



ordinary text character; the expression 
"xyz++" 

is the same as the one above. Thus by quot­
ing every non-alphanumeric character being 
used as a text character, the user can avoid 
remembering· the list above of current opera­
tor characters" and is safe should further 
extensions to Lex lengthen the list. 

An operator character may also be 
turned into a text character by preceding it 
with \ as in 

xyz\+\+ 
which is another, less readable, equivalent of 
the above expressions. Another use of the 
quoting mechanism is to get a blank into an 
expression; normally, as explained above, 
blanks or tabs end a rule. Any blank charac­
ter not contained within [J (see below) must 
be quoted. Several normal C escapes with \ 
are recognized: \n is newline, \t is tab, and \b 
is backspace. To enter \ itself, use \ \. Since 
newline is illegal in an expression, \n must be 
used; it is not required to escape tab and 
backspace. Every character but blank, tab, 
newline and the list above is always a text 
eharacter. 

Character cla88e8. Classes of characters 
can be specified using the operator pair []. 
The construction /abc} matches a single char­
acter, which may be a, 6, or c. Within 
square brackets, most operator meanings are 
ignored. Only three characters are special: 
these are \ - and '. The - character indi­
cates ranges. For example, 

[a-zO-9 < >-J 
indicates the character class containing all the 
lower case letters, the digits, the angle brack­
ets, and underline. Ranges may be given in 
either order. Using - between any pair of 
characters which are not both upper case 
letters, both lower case letters, or both digits 
is implementation dependent and will get a 
warning message. (E.g., [O-zJ in ASCn is 
many more eharacters than it is in EBCDIC). 
If it is desired to melude the character - in a 
eharacter class, it should be first or last; thus 

[-+O-9J 
matches all the digits and the two signs. 

In character classes, the • operator must 
appear as the first character after the left 
bracket; it indicates that the resulting string 
is to be complemented with respect to the 
computer character set. Thus 

l"abcJ 

-4-

matches all characters except a, b, or c, 
including all special or eontrol characters; or 

ra-zA-Z] 
is any character which is not a letter. The \ 
character provides the usual escapes within 
character class brackets. 

Ar6itra,., character. To match almost 
any character, the operator character 

is the class of all characters except newline. 
Escaping into octal is possible although non­
portable: 

[\40-\176] 
matches all printable characters in the ASCn 
character set, from octal 40 (blank) to octal 
176 (tilde). 

Optional espre88ion8. The operator f 
indicates an optional element of an expres­
sion. Thus 

ab?c 
matches either ac or abc . 

Repeated espre •• ion8. Repetitions of 
classes are indicated by the operators * and 
+. 

4* 

is any number of consecutive a characters, 
including zero; while 

80+ 
is one or more instances of a. For example, 

[a-zJ+ 
is all strings of lower case letters. And 

[A-Za-z] [A-Za-zO-9]* 
indicates all alphanumeric strings with a lead­
ing alphabetic character. This is a typical 
expression for recognizing identifiers in com­
puter languages. 

Alternation and Grouping. The opera­
tor I indicates alternation: 

(ab Icd) 
matches either ab or cd. Note that 
parentheses are used for grouping, although 
they are not necessary on the outside level; 

ab Icd 
would have sufficed. Parentheses can be used 
for more complex expressions: 

(ab Icd+)?(ef}* 
matches such strings as abe/e/, e/e/e/, cde/, 
or eddd ; but not abc , abcd, or abcde/. 

Oonte:d 8en.itivity. Lex will recognize 
a small amount of surrounding context. The 
two simplest operators for this are' and $ . 
If the first character of an expression is • , the 
expression will only be matched at the begin- c 
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ning of a line (after a newline character, or at 
the beginning of the input stream). This can 
never conflict with the other meaning of ., 
complementation of character classes, since 
that only applies within the [] operators. If 
the very last character is $, the expression 
will only be matched at the end of a line 
(when immediately followed by newline). The 
latter operator is a special case of the / 
operator character, which indicates trailing 
context. The expression 

ab/cd 
matches the string 4b, but only if followed by 
cd. Thus 

ab$ 
is the same as 

ab/\n 
Left context is handled in Lex by atart condi­
tiona as explained in section 10. If a rule is 
only to be executed when the Lex automaton 
interpreter is in start condition :E, the rule 
should be prefixed by 

<x> 
using the angle bracket operator characters. 
If we considered "being at the beginning of a 
line" to be start condition ONE, then the • 
operator would be equivalent to 

< Ol\lE > 
Start conditions are explained more fully 
later. 

Repetitiona and Definitions. The 
operators {} specify either repetitions (if they 
enclose numbers) or definition expansion (if 
they enclose a name). For example 

{digit} 
looks for a predefined string named digit and 
inserts it at that point in the expression. The 
definitions are given in the first part of the 
Lex input, before the rules. In contrast, 

a{I,5} 
looks for 1 to 5 occurrences of a . 

Finally, initial % is special, being the 
separator for Lex source segments. 

4. Lex Actions. 

When an expression written as above is 
matched, Lex executes the corresponding 
action. This section describes some features 
of Lex which aid in writing actions. Note 
that there is a 'default action, which consists 
of copying the input to the output. This is 
performed on all strings not otherwise 
matched. Thus the Lex user who wishes to 
absorb the entire input, without producing 

- 5-

any output, must provide rules to match 
everything. When Lex is being used with 
Yacc, this is the normal situation. One may 
consider that actions are what is done instead 
of copying the input to the out.put; thus, in 
general, a rule which merely copies can be 
omitted. Also, a character combination which 
is omitted from the rules and which appears 
as input is likely to be printed on the output, 
thus calling attention to the gap in the rules. 

One of the simplest things that can be 
done is to ignore the input. Specifying a C 
null statement, j as an action causes this 
result. A frequent rule is 

[ \t\n] 
which causes the three spacing characters 
(blank, tab, and newline) to be ignored. 

Another easy way to avoid writing 
actions is the action character I, which indi­
cates that the action for this rule is the action 
for the next rule. The previous example could 
also have been written 

tt " 

"til 
"nt • 

with the same result, although in different 
style. The quotes around \n and \t are not 
required. 

In more complex actions, the user will 
often want to know the act.ual text that 
matched some expression like /a-z}+. Lex 
leaves this text in an external character array 
named 1I1Itext. Thus, to print the name 
found, a rule like 

[a-z] + printf("o/os", yytext); 
will print the string in 1/1/text. The C func­
tion print! accepts a format argument and 
data to be printed; in this case, the format is 
"print string" (% indicating data conversion, 
and a indicating string type), and the data 
are the characters in "text. So this just 
places the matched string on the output. 
This action is so common that it may be 
written as ECHO: 

[a-z]+ ECHO; 
is the same as the above. Since the default 
action is just to print the characters found, 
one might ask why give a rule, like this one, 
which merely specifies the default action? 
Such rules are often required to avoid match­
ing some other rule which is not desired. For 
example, if there is a rule which matches read 
it will normally match the instances of read 
contained in bread or readjust; to avoid this, 



a rule of the form [.-z}+ is needed. This is 
explained further below. 

Sometimes it is more Convenient to 
know the end of what has been found; hence 
Lex also provides a count "/eng of the 
number of characters matched. To count 
both the number of words and the number of 
characters in words in the input, the user 
might write 
[a-zA-Z)+ {words++i chars += yyleng;} 

which accumulates in chAr. the number of 
characters in the words recognized. The last 
character in the string matched can be 
accessed by 

yytext[yyleng-I) 

Occasionally, a Lex action may decide 
that a rule has not recognized the correct span 
of characters. Two routines are provided to 
aid with this situation. First, "more(j can 
be called to indicate that the next input 
expression recognized is to be tacked on to the 
end of this input. Normally, the next input 
string would overwrite the current entry in 
'lItezt. Second, "/e88 {a} may be called to 
indicate that not all the characters matched 
by the currently successful expression are 
wanted right now. The argument a indicates 
the number of characters in "tezt to be 
retained. Further characters previously 
matched are returned to the input. This pro­
vides the same sort of look ahead offered by 
the / operator, but in a different form. 

Ezample: Consider a language which 
defines a string as a set of characters between 
quotation (tI) marks, and provides that to 
include a tI in a string it must be preceded by 
a \. The regular expression which matches 
that is somewhat confusing, so that it might 
be preferable to write 

\"["")* { 
if (yytext[yyleng-I) == ' \\') 

yymoreO; 
else 

... normal user processing 
} 

which will, when faced with a string such as 
"dc\"dc/" first match the five characters 
"de\; then the call to 'lImore() will cause 
the next part of the string, "del, to be tacked 
on the end. Note that the final quote ter­
minating the string should be picked up in 
the code labeled "normal processing". 
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The function "le.8() might be used to 
reprocess text in various circumstances. Con­
sider the C problem of distinguishing the 
ambiguity of u=_a". Suppose it is desired 
to treat this as "=- a" but print a message. 
A rule might be 
=-Iar-zA.-Z] { 

printf("Op (=-) ambiguous\n"); 
yyless(yyleng-l); 
... action for =- ... 
} 

which prints a message, returns the letter 
after the operator to the input stream, and 
treats the operator as U=_". Alternatively it 

. ed thO U " might be deslr to treat IS as = -a . 
To do this, just return the minus sign as well 
as the letter to the input: 
=-[a-zA.-Z] { 

printf("Op (=-) ambiguous\n"); 
yyless(yyJeng-2); 
... action for = ... 
} 

will perform the other interpretation. Note 
that the expressions for the two cases might 
more easily be written 

=-/[A-Za-z) 
in the first case and 

=/-[A-Za-z) 
in the second; no backup would be required in 
the rule action. It is not necessary to recog­
nize the whole identifier to observe the ambi­
guity. The possibility of "=-3", however, 
makes 

=-/[" \t\n) 
a still better rule. 

In addition to these routines, Lex also 
permits access to the I/O routines it uses. 
They are: 

I) iaput() which returns the next input 
character; 

2) output{c} which writes t,he character c 
on the output; and 

3) .aput(c} pushes, the character c back 
onto the input stream to be read later 
by iap.t(). 

By default these routines are provided as 
macro definitions, but the user can override 
them and supply private versions. These rou­
tines define the relationshipbet.ween external 
files and internal characters, and must all be 
retained or modified consistently. They may 
be redefined, to cause input or output. to be 
transmitted to or from strange places, includ­
ing other programs or internal memory; but 
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the character set used must be consistent in 
all routines; a value of zero returned by in,ut 
must mean end of tile; and the relationship 
between un,ut and in,.t must be retained or 
the Lex lookahead will not work. Lex does 
not look ahead at all if' it does not have to, 
but every rule ending in + * f or' or con­
taining / implies look ahead. Lookahead is 
also necessary to match an expression that is 
a prefix of another expression. See below for 
a discussion of the character set used by Lex. 
The standard Lex library imposes a 100 char­
acter limit on backup. 

Another Lex library routine that the 
user will sometimes want to redefine is 
1IlIwra,(j which is called whenever Lex reaches 
an end-of-file. If "wra, returns a 1, Lex con­
tinues with the normal wrapup on end of 
input. Sometimes, however, it is convenient 
to arrange for more input to arrive from a 
new source. In this case, the user should p~ 
vide a "wra, which arranges for new input 
and returns O. This instructs Lex to continue 
processing. The default J'IIwra, always 
returns 1. 

This routine is also a convenient place 
to print tables, summaries, etc. at the end of 
a program. Note that it is not possible to 
write a normal rule which recognizes end-of­
tile; the only access to this condition is 
through "wrap. In fact, unless a private ver­
sion of tnputO is supplied a file containing 
nulls cannot be handled, since a value of 0 
returned by input is taken to be end-of-file. 

5. Ambiguous Source Rules. 

Lex can handle ambiguous 
specifications. When more than one expres­
sion can match the current input, Lex chooses 
as follows: 

1) The longest match is preferred. 

2) Among rules which matched the same 
number of characters, the rule given 
first is preferred. 

Thus, suppose the rules 
integer keyword action ... ; 
[a-z] + identifier action ... ; 

to be given in that order. If the input is 
integer&, it is taken as an identifier, because 
!a-zj+ matches 8 characters while integer 
matches only 7. If the input is integer, both 
rules match 7 characters, and the keyword 
rule is selected because it was given first. 
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Anything shorter (e.g. int) will not match the 
. expression integer and so the identifier 

interpretation is used. 

The principle of preferring the longest 
match makes rules containing expressions like 
.* dangerous. For example, , .. ' 
might seem a good way of recogmzmg a 
string in single quotes. But it is an invitation 
for the program to read far ahead, looking for 
a distant single quote. Presented with the 
input 

, first' quoted string here, ' second' here 
the above expression will match 

, first' quoted string here, ' second' 
which is probably not what was wanted. A 
better rule is of the form 

, [A' \n].' 
which, on the above input, will stop after 
, jird'. The consequences of errors like this 
are mitigated by the fact that the. operator 
will not match newline. Thus expressions like 
.* stop on the current line. Don't try to 
defeat this with expressions like [.\n}+ or 
equivalents; the Lex generated program will 
try to read the entire input file, causing inter­
nal buffer overflows. 

Note that Lex is normally partitioning 
the input stream, not searching for all possi­
ble matches of each expression. This means 
that each character is accounted for once and 
only once. For example, suppose it is desired 
to count occurrences of both &he and he in an 
input text. Some Lex rules to do this might 
be 

she s++; 
he h++; 
\n I 

, 
where the last two rules ignore everything 
besides lae and ,he. Remember that . does 
not include newline. Since Blae includes he, 
Lex will normally not recognize the instances 
of /ae included in &/ae, since once it has passed 
a ,lae those characters are gone. 

Sometimes the user would like to over­
ride this choice. The action REJECT means 
"go do the next alternative." It causes what­
ever rule was second choice after the current 
rule to be .executed. The position of the input 
pointer is adjusted accordingly. Suppose the 
user really wants to count the included 
instances of lae: 

she {s++; REJECT;} 



he {h++; REJECT;} 
\n I 
. , 

these rules are one way of changing the previ­
ous example to do just that. Arter counting 
each expression, it is rejected; whenever 
appropriate, the other expression will then be 
counted. In this example, of course, the user 
could note that ike includes he but not vice 
versa, and omit the REJECT action on he; in 
other cases, however, it would not be possible 
a priori to tell which input characters were in 
both classes. 

Consider the two rules 
a[bc] + { ... j REJECT;} 
a[cd]+ { ... j REJECT;} 

IC the input is ab, only the first rule matches, 
and on ad only the second matches. The 
input string /led matches the first rule for 
four characters and then the second rule for 
three characters. In contrast, the input /Iced 
agrees with the second rule for four characters 
and then the first rule for three. 

In general, REJECT is useful whenever 
the purpose of Lex is not to partition the 
input stream but to detect all examples of 
some items in the input, and the instances of 
these items may overlap or include each other. 
Suppose a digram table of the input is 
desired; normally the digrams overlap, that is 
the word the is considered to contain both th 
and he. Assuming a two-dimensional array 
named digr/lm to be incremented, the 
appropriate source is 
%% 
[a-z][a-z] { 

digram [yytext[olJ [yytext[ 1 Jl ++; 
REJECT; 
} 

\n ; 
where the REJECT is necessary to pick up a 
letter pair beginning at every character, 
rather than at every other character. 

8. Lex Souree DefinitioDs. 

Remember the format of the Lex source: 
{definitions} 
%% 
{rules} 
%% 
{user routines} 

So far only the rules have been described. 
The user needs additional options, though, to 
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define variables Cor use in his program and for 
use by Lex. These can go either in the 
definitions section or in the rules section. 

Remember that Lex is turning the rules 
into a program. Any source not intercepted 
by Lex is copied into the generated program. 
There are three classes of such things. 

1) 

2) 

3) 

Any line which is not part of a Lex rule 
Of action which begins with a blank or 
tab is copied into the Lex generated pro­
gram. Such source input prior to the 
first %% delimiter will be external to 
any Cunction in the code; if it appears 
immediately after the first %%, it 
appears in an appropriate place for 
declarations in the function written by 
Lex which contains the actions. This 
material must look like program frag­
ments, and should precede the first Lex 
rule. 

As a side effect of the above, lines which 
begin with a blank or tab, and which 
contain a comment, are passed through 
to the generated program. This can be 
used to include comments in either the 
Lex source or the generated code. The 
comments should follow the host 
language convention. 

Anything included between lines con­
taining only %{ and %} is copied out 
as above. The delimiters are discarded. 
This format permits entering text like 
preprocessor statements that must begin 
in column 1, or copying lines that do 
not look like programs. 

Anything after the third %% delimiter, 
regardless of formats, etc., is copied out 
after the Lex output. 

Definitions intended for Lex are given 
before the first %% delimiter. Any line in 
this section not contained between %{ and 
%}, and begining in column 1, is assumed to 
define Lex substitution strings. The format of 
such lines is 

name translation 
and it causes the string given as a translation 
to be associated with the name. The name 
and translation must be separated by at least 
one blank or tab, and the name must begin 
with a letter. The translation can then be 
called out by the {name} syntax in a rule. 
Using {D} for the digits and {E} for an 
exponent field, for example, might abbreviate c 
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rules to recognize numbers: 
J) (~9] 
E [J)Ede][-+]?{J)}+ 
%% 
{J)}+ 
{J)}+ ..... {J)}*( {E})1 
{J)l*' .... {J)}+( {E})1 
{J)}+{E} 

printf("integer")i 
I 
I 

Note the first two rules for real numbersi both 
require a decimal point and contain an 
optional exponent field, but the first requires 
at least one digit before the decimal point and 
the second requires at least one digit after the 
decimal point. To correctly handle the prob­
lem posed by a Fortran expression such as 
95.EQ.I, which does not contain a real 
number, a contex~sensitive rule such as 

[~9]+j"."EQ printf("integer")i 
could be used in addition to the normal rule 
for integers. 

The definitions section may also contain 
other commands, including the selection of a 
host language, a character set table, a list of 
start conditions, or adjustments to the default 
size of arrays within Lex itself for larger 
source programs. These possibilities are dis­
cussed below under "Summary of Source For­
mat," section 12. 

7. Usage. 

There are two steps in compiling a Lex 
source program. First, the Lex source must 
be turned into a generated program in the 
host general purpose language. Then this 
program must be compiled and loaded, usu­
ally with a library of Lex subroutines. The 
generated program is on a file named 
lez.YJI.c. The I/O library is defined in terms 
of the C standard library [6]. 

The C programs generated by Lex are 
slightly different on OS/370, because the OS 
compiler is less powerful than the UN1X or 
GeOS compilers, and does less at compile 
time. e programs generated on GeOS and 
UN1X are the same. 

UNIX. The library is accessed by the 
loader flag -1/. So an appropriate set of com­
mands is 

lex source cc lex.yy.c -11 
The resulting program is placed on the usual 
file 4. out for later execution. To use Lex with 
Yacc see below. Although the default Lex 
I/O routines use the e standard library, the 
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Lex automata themselves do not do SOi if 
private versions of inpat, oatptd and anput 
are given, the library can be avoided. 

8. Lex and Yaee. 

H you want to use Lex with Yacc, note 
. that what Lex writes is a program named 
"/ex(), the name required by Yacc for its 
analyzer. Normally, the default main pro­
gram on the Lex library calls this routine, but 
if Yacc is loaded, and its main program is 
used, Yacc will call 1IJ11ez(). In this case each 
Lex rule should end with 

return(token)j 
where the appropriate token value is returned. 
An easy way to get access to Yacc's names for 
tokens is to compile the Lex output file as 
part of the Yacc output file by placing the 
line 

# include "lex.yy .c" 
in the last section of Yacc input. Supposing 
the grammar to be named "good" and the 
lexical rules to be named "better" the UN1X 
command sequence can just be: 

yacc good 
lex better 
cc y.tab.c -ly-ll 

The Yacc library (-ly) should be loaded before 
the Lex library, to obtain a main program 
which invokes the Yacc parser. The genera­
tions of Lex and Yacc programs can be done 
in either order. 

9. Examples. 

As a trivial problem, consider copying 
an input file while adding 3 to every positive 
number divisible by 7. Here is a suitable Lex 
source program 

%% 
int ki 

[~9]+ { 
k = atoi(yytext); 
if (k%7 == 0) 

printf("%d", k+3)i 
else 

printf("%d" ,k)i 
} 

to do just that. The rule 1~9J+ recognizes 
strings of digitsi ato; converts the digits to 
binary and stores the result in k. The opera­
tor % (remainder) is used to check whether Ie 
is divisible by 7i if it is, it is incremented by 3 
as it is written out. It may be objected that 
this program will alter such input items as 
49.69 or X7. Furthermore, it increments the 



absolute value of all negative numbers divisi­
ble by 7. To avoid this, just add a few Jnore 
rules after the active one, as here: 
%% 

int kj 
-1 [0-9J+ { 

k == atoi(yytext)j 
printf("%d", 
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k%7 == 0 1 k+3: k)j 
} 

-1[0-9.]+ ECHOj 
[A-Za-z][A-Za-zO-9J+ ECHOj 
Numerical strings containing a "." or pre­
ceded by a letter will be picked up by one of 
the last two rules, and not changed. The 
i/-el,e has been replaced by a C conditional 
expression to save spacej the form af6:c 
means "if a then 6 else c". 

For an example of statistics gathering, 
here is a program which histograms the 
lengths of words, where a word is defined as a 
string of letters. 

%% 
[a-z] + 

\n 
%% 
yywrapO 
{ 
int ij 

int lengs[l00Jj 

lengs[yyleng]++j 
I 

printf("Length No. words\n"); 
for(i=O; i < 100; i++) 

if (lengs[i] > 0) 
printf("%5d%10d\n",i,lengs[i]); 

return(l); 
} 

This program accumulates the histogram, 
while producing no output. At the end of the 
input it prints the table. The final statement 
return{l}j indicates that Lex is to perform 
wrapup. If "wrap returns zero (false) it 
implies that further input is available and the 
program is to continue reading and process­
ing. To provide a "wrap that never returns 
true causes an infinite loop. 

As a larger example, here are some parts 
of a program written by N. L. Schryer to con­
vert double precision Fortran to single preci­
sion Fortran. Because Fortran does not dis­
tinguish upper and lower case letters, this 
routine begins by defining a set of classes 
including both cases of each letter: 

a faA] 

b [bB] 
c [cCJ 

z [zZ] 
An additional class recognizes white space: 

W [\t]* 
The first rule changes "double precision" to 
"real", or "DOUBLE PRECISION" to 
"REAL". 
{d}{o}{u}{b}{I}{e}{W}{p}{r}{e}{cHiHs}{i}{oHn} { 

printf(yytext[O]==' d' 1 "real" : ''REAL''); 
} 

Care is taken throughout this program to 
preserve the case (upper or lower) of the origi­
nal program. The conditional operator is 
used to select the proper form of the keyword. 
The next rule copies continuation card indica­
tions to avoid confusing them with constants: 

All 'T 0] ECHO; 
In the regular expression, the quotes surround 
the blanks. It is interpreted as "beginning of 
line, then five blanks, then anything but 
blank or zero." Note the two different mean­
ings of A. There follow some rules to change 
double precision constants to ordinary float­
ing constants. 
[0-9]+{wHd}{W}[+-]1{W}[0-9]+ I 
[0-9] +{W}"."{W}{d}{W}[+-]?{W}[0-9] + I 
"."{W}[0-9]+{W}{d}{W}[+-]?{W}[0-9]+ { 

/* convert constants */ 
for(p=yytext; *p != 0; p++) 

{ 
if (*p == ' d' II *p == ' D' ) 

*p=+ ' e' - , d' j 

ECHO; 
} 

Mter the floating point constant is recog­
nized, it is scanned by the lor loop to find the 
letter tl or D. The program than adds 
, e J t1 , which converts it to t.he next letter 
of the alphabet. The modified constant, now 
single-precision, is written out again. There 
follow a series of names which must be 
respelled to remove their initial d. By using 
the array "fezt the same action suffices for 
all the names (only a sample of a rather long 
list is given here). 

{d}{s}{i}{n} 
{dHc}{oHs} 
{dHsHqHr}{t} 
{d}{aHtHaHn} 

{dHfHIHo}{a}{t} printf("%s",yytext+l); 
Another list of names must have init.ial d 

(-'\ 
I ' 

\,,--~ 
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changed to initial a: 
{dHIHoHg} I 
{dHl}{o}{g}IO I 
{dHm}{i}{n}1 I 
{dHm}{a}{x}1 { 

yytext!O] =+ I a' - I d' ; 
ECHO; 
} 

And one routine must have initial tl changed 
to initial r: 
{d}l{m}{aHcHh} {yytext[O] =+ I r - I d' ; 

To avoid such names as uin% being detected 
as instances of tl3in, some final rules pick up 
longer words as identifiers and copy some sur­
viving characters: 

[A-Za-z] !A-Za-z0-9] * 
[0-9]+ 
\n 

I 
I 
I 
ECHO; 

Note that this program is not complete; it 
does not deal with the spacing problems in 
Fortran or with the use of keywords as 
identifiers. 
10. Lett Context Sensitivity. 

Sometimes it is desirable to have several 
sets of lexical rules to be applied at different 
times in the input. For example, a compiler 
preprocessor might distinguish preprocessor 
statements and analyze them differently from 
ordinary statements. This requires sensitivity 
to prior context, and there are several ways of 
handling such problems. The " operator, for 
example, is a prior context operator, recogniz­
ing immediately preceding left context just as 
$ recognizes immediately following right con­
text. Adjacent left context could be extended, 
to produce a facility similar to that for adja­
cent right context, but it is unlikely to be as 
useful, since often the relevant left context 
appeared some time earlier, such as at the 
beginning of a line. 

This section describes three means of 
dealing with different environments: a simple 
use of flags, when only a few rules change 
from one environment to another, the use of 
,'art contlition, on rules, and the possibility 
of making multiple lexical analyzers all run 
together. In each case, there are rules which 
recognize the need to change the environment 
in which the following input text is analyzed, 
and set some parameter to reflect the change. 
This may be a flag explicitly tested by the 
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user's action code; such a flag is the simplest 
way of dealing with the problem, since Lex is 
not involved at all. It may be more con­
venient, however, to have Lex remember the 
flags as initial conditions on the rules. Any 
rule may be associated with a start condition. 
It will only be recognized when Lex is in that 
start condition. The current start condition 
may be changed at any time. Finally, if the 
sets of rules for the different environments are 
very dissimilar, clarity may be best achieved 
by writing several distinct lexical analyzers, 
and switching from one to another as desired. 

Consider the following problem: copy 
the input to the output, changing the word 
magic to fir,' on every line which began with 
the letter a, changing magic to ,econd on 
every line which began with the letter 6, and 
changing magic to tlaird on every line which 
began with the letter c. All other words and 
all other lines are left unchanged. 

These rules are so simple that the easi­
est way to do this job is with a flag: 

int flag; 
%% 
"a {flag = I a/ ; ECHO;} 
"b {flag = ' b' ; ECHO;} 
"c {flag = I c' ; ECHO;} 
\n {flag = 0; ECHO;} 
magic { 

switch (flag) 
{ 
case I a' : printf("first"); break; 
case I b' : printf("second"); break; 
case' c' : printf{"third"); break; 
default: ECHO; break; 
} 
} 

should be adequate. 

To handle the same problem with start 
conditions, each start condition must be 
introduced to Lex in the definitions section 
with a line reading 

%Start namel name2 ... 
where the conditions may be named in any 
order. The word Start may be abbreviated to 
, or S. The conditions may be referenced at 
the head of a rule with the < > brackets: 

<namel > expression 
is a rule which is only recognized when Lex is 
in the start condition namel. To enter a 
start condition, execute the action statement 

BEGIN namel; 
which changes the start condition to name1. 



To resume the normal state, 
BEGINOi 

resets the initial condition of the Lex automa­
ton interpreter. A rule may be active in 
several start conditions: 

<name1,name2,name3 > 
is a legal prefix. Any rule not beginning with 
the < > prefix operator is always active. 

The same example as before can be 
written: 
%START AA BB CC 
%% 
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Aa {ECHO; BEGIN AAi} 
Ab {ECHOi BEGIN BBi} 
AC {ECHOi BEGIN CCi} 
\n {ECHO; BEGIN Oil 
<AA> magic printf("first")i 
<BB>magic printf("second")i 
< CC > magic printf("third")i 
where the logic is exactly the same as in the 
previous method of handling the problem, but 
Lex does the work rather than the user's code. 

11. Character Set. 

The programs generated by Lex handle 
character I/O only through the routines 
input, output, and unput. Thus the character 
representation provided in these routines is 
accepted by Lex and employed to return 
values in ,ytext. For internal use a character 
is represented as a small integer which, if the 
standard library is used, has a value equal to 
the integer value of the bit pattern represent­
ing the character on the host computer. Nor­
mally, the letter 4 is represented as the same 
form as the character constant' 4'. If this 
interpretation is changed, by providing I/O 
routines which translate the characters, Lex 
must be told about it, by giving a translation 
table. This table must be in the definitions 
section, and must be bracketed by lines con­
taining only "%T". The table contains lines 
of the form 

{integer} {character string} 
which indicate the value associated with each 
character. Thus the next example 

%T 
1 Aa 
2 Bb 

26 Zz 
27 \n 
28 + 
29 

30 0 
31 1 

39 9 
%1' 

Sample character table. 
maps the lower and upper case letters 
together into the integers 1 through 26, new­
line into 27, + and - into 28 and 29, and the 
digits into 30 through 39. Note the escape for 
newline. If a table is supplied, every charac­
ter that is to appear either in the rules or in 
any valid input must be included in the table. 
No character may be assigned the number 0, 
and no character may be assigned a bigger 
number than the size of the hardware charac­
ter set. 

12. Summary or Source Format. 

The general form of a Lex source file is: 
{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

The definitions section contains a combination 
of 

1) Definitions, in the form "name space 
translation" . 

2) Included code, in the form "space code". 

3) Included code, in the form 
%{ 
code 
%} 

4) Start conditions, given in the form 
%S name1 name2 '" 

5) Character set tables, in the form 
%T 
number space character-string 

%T 
6) Changes to internal array sizes, lD the 

form 
%z nnn 

where nnn is a dedmal integer 
representing an array size and z selects 
the parameter as follows: 

Letter Parameter 
p positions 
n states 
e tree nodes 
a transitions 

c 



.. 

c 

() 

k 
o 

packed character classes 
output array size 

Lines in the rules section have the rorm 
"expression action" where the action may be 
continued on succeeding lines by using braces 
to delimit it. 

Regular expressions in Lex use the rol­
lowing operators: 
x the character "x" 
"x" 
\x 
[xy] 
[x-z] 
[·x] 

·x 

an "x", even ir x is an operator. 
an "x", even ir x is an operator. 
the character x or y. 
the characters x, y or z. 
any character but x. 
any character but newline. 
an x at the beginning or a line. 
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<y>x 
x$ 

an x when Lex is in start condition y. 
an x at the end or a line. 

x? 
x* 
x+ 
xbr 
(x) 
x/y 
{xx} 

an optional x. 
0,1,2, ... instances of x. 
1,2,3, ... instances of x. 
an x or a y. 
an x. 
an x but only if followed by y. 
the translation of xx from the 
definitions section. 

x{m,n} m through n occurrences of x 

13. Caveats and Bugs. 

There are pathological expressions which 
produce exponential growth of the tables 
when converted to deterministic machines; 
fortunately, they are rare. 

REJECT does not rescan the input; 
instead it remembers the results of the previ­
ous scan. This means that if a rule with 
trailing context is found, and REJECT exe­
cuted, the user must not have used unput to 
change the characters forthcoming from the 
input stream. This is the only restriction on 
the user's ability to manipulate the not-yet­
processed input. 
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RATFOR - A Preprocessor tor a Rational Fortran 

Brian W. Kernighan 

structured programming, control flow, programming 

ABSTRACT 

Although Fortran is not a pleasant language to use, it does have the advantages of universality and 
(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran while 
retaining its desirable qualities, by providing decent control flow statements: 

• statement grouping 

• if-else and switch for decision-making 

• while, for, do, and repeat-until for looping 

• break and next for controlling loop exits 

and some "syntactic sugar": 

• free form input (multiple statements/line, automatic continuation) 

• unobtrusive comment convention 

• translation of >, >=, etc., into .GT., .GE., etc. 

• return(expression) statement for functions 

• define statement for symbolic parameters 

• include statement for including source files 

Ratfor is implemented as a preprocessor which translates this language into Fortran. 

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is remark­
ably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to debug, 
maintain and modify than their Fortran equivalents. 

It is readily possible to write Ratfor programs which are portable to other env ironments. Ratfor is 
written in itself in this way, so it is also portable; versions of RaUor are now running on at least two dozen 
different types of computers at over five hundred locations. 

This paper discusses design criteria for a Fortran preprocessor, the RaUor language and its implemen­
tation, and user experience. 

September 16, 1986 
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RA TFOR - A Preprocessor for a Rational Fortran 

Brian W. Kernighan 

structured programming, control flow, programming 

1. INTRODUCTION 

Most programmers will agree that Fortran is 
an unpleasant language to program in, yet there 
are many occasions when they are forced to use it. 
For example, Fortran is often the only language 
thoroughly supported on the local computer. 
Indeed, it is the closest thing to a universal pro­
gramming language currently available: with care 
it is possible to write large, truly portable Fortran 
programs!l]. Finally, Fortran is often the most 
"efficient" language available, particularly for pro­
grams requiring much computation. 

But Fortran ;8 unpleasant. Perhaps the 
worst deficiency is in the control flow statements 
- conditional branches and loops - which express 
the logic of the program. The conditional state­
ments in Fortran are primitive. The Arithmetic IF 

forces the user into at least two statement 
numbers and two (implied) GOTO'S; it leads to 
unintelligible code, and is eschewed by good pro­
grammers. The Logical IF is better, in that the 
test part can be stated clearly, but hopelessly res­
trictive because the statement that follows the IF 

can only be one Fortran statement (with some 
further restrictions!). And of course there can be 
no ELSE part to a Fortran IF: there is no way to 
specify an alternative action if the IF is not 
satisfied. 

The Fortran DO restricts the user to going 
forward in an arithmetic progression. It is fine for 
"I to N in steps of 1 (or 2 or ... )", but there is no 
direct way to go backwards, or even (in A.lIJSI For­
tran!2]) to go from 1 to N-l. And of course the 
DO is useless if one's problem doesn't map into an 
arithmetic progression. 

The result of these failings is that Fortran 
programs must be written with numerous labels 
and branches. The resulting code is particularly 
difficult to read and understand, and thus hard to 
debug and modify. 

When one is faced with an unpleasant 
language, a useful technique is to define a new 
language that overcomes the deficiencies, and to 

translate it into the unpleasant one with a prepro­
cessor. This is the approach taken with Ratfor. 
(The preprocessor idea is of course not new, and 
preprocessors for Fortran are especially popular 
today. A recent listing !3] of preprocessors shows 
more than SO, of which at least half a dozen are 
widely available.) 

2. LANGUAGE DESCRIPTION 

Design 

Ratfor attempts to retain the merits of For­
tran (universality, portability, efficiency) while hid­
ing the worst Fortran inadequacies. The language 
;8 Fortran except for two aspects. First, since con­
trol flow is central to any program, regardless of 
the specific application, the primary task of Ratfor 
is to conceal this part of Fortran from the user, by 
providing decent control flow structures. These 
structures are sufficient and comfortable for struc­
tured programming in the narrow sense of pro­
gramming without GOTO'S. Second, since the 
preprocessor must examine an entire program to 
translate the control structure, it is possible at the 
same time to clean up many of the "cosmetic" 
deficiencies of Fortran, and thus provide a 
language which is easier and more pleasant to read 
and write. 

Beyond these two aspects - control flow 
and cosmetics - Ratfor does nothing about the 
host of other weaknesses of Fortran. Although it 
would be straightforward to extend it to provide 
character strings, for example, they are not needed 
by everyone, and of course the preprocessor would 
be harder to implement. Throughout, the design 
principle which has determined what should be in 
Ratfor and what should not has been Ratfor 
doe8n't know any Fortran. Any language feature 
which would require that Ratfor really understand 
Fortran has been omitted. We will return to this 
point in the section on implementation. 

Even within the confines of control flow and 
cosmetics, we have attempted to be selective in 

This paper is a. revised. a.nd exp~ded ver~ioD of oe published in SoftwlJre-PrlJctice and E:rperience, October 
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what features to provide. The intent has been to 
provide a small set of the most useful constructs, 
rather than to throw in everything that has ever 
been thought useful by someone. 

The rest of this section contains an informal 
description of the Ratfor language. The control 
ftow aspects will be quite familiar to readers used 
to languages like Algol, PL/I, Pascal, etc., and the 
cosmetic changes are equally straightforward. We 
shall concentrate on showing what the language 
looks like. 

Statement Grouping 

Fortran provides no way to group state­
ments together, short of making them into a sub­
routine. The standard construction "if a condition 
is true, do this group of things," for example, 

if (x > 100) 
{ call error("x> 100"); err == 1; return } 

cannot be written directly in Fortran. Instead a 
programmer is forced to translate this relatively 
clear thought into murky Fortran, by stating the 
negative condition and branching around the 
group of statements: 

10 

if (x .Ie. 100) goto 10 
call error{5hx> 100) 
err = 1 
return 

When the program doesn't work, or when it must 
be modified, this must be translated back into a 
clearer form before one can be sure what it does. 

Ratfor eliminates this error-prone and 
confusing back-and-forth translation; the first form 
;8 the way the computation is written in RaUor. 
A group of statements can be treated as a unit by 
enclosing them in the braces { and }. This is true 
throughout the language: wherever a single RaUor 
statement can be used, there can be several 
enclosed in braces. (Braces seem clearer and less 
obtrusive than begin and end or do and end, 
and of course do and end already have Fortran 
meanings.) 

Cosmetics contribute to the readability of 
code, and thus to its understandability. The char­
acter ">" is clearer than ",GT,", so Ratfor 
translates it appropriately, along with several 
other similar shorthands. Although many Fortran 
compilers permit character strings in quotes (like 
"x> 100"), quotes are not allowed in ANSI Fortran, 
so Ratfor converts it into the right number of H's: 
computers count better than people do. 

Ratfor is a free-form language: statements 
may appear anywhere on a line, and several may 
appear on one line if they are separated by semi­
colons. The example above could also be written 
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as 

if (x > 100) { 

} 

call error("x> 100") 
err == 1 
return 

In this case, no semicolon is needed at the end of 
each line because Ratfor assumes there is one 
statement per line unless told otherwise. 

Of course, if the statement that follows the 
if is a single statement (Ratfor or otherwise), no 
braces are needed: 

if (y <= 0.0 & z <== 0.0) 
write(6, 20) y, Z 

No continuation need be indicated because the 
statement is clearly not finished on the first line. 
In general Ratfor continues lines when it seems 
obvious that they are not yet done. (The con­
tinuation convention is discussed in detail later.) 

Although a free-form language permits wide 
latitude in formatting styles, it is wise to pick one 
that is readable, then stick to it. In particular, 
proper indentation is vital, to make the logical 
structure of the program obvious to the reader. 

The "else" Clause 

RaUor provides an else statement to handle 
the construction "if a condition is true, do this 
thing, otherwise do that thing." 

if (a <= b) 
{ sw = 0; write(6, 1) a, b } 

else 
{ sw = 1; write(6, 1) b, a} 

This writes out the smaller of a and b, then the 
larger, and sets 8W appropriately. 

The Fortran equivalent of this code is circui­
tous indeed: 

if (a .gt. b) goto 10 
sw = 0 
write(6, 1) a, b 
gotQ.2O 

10 sw = 1 
write(6, 1) b, a 

20 

This is a mechanical translation; shorter forms 
exist, as they do for many similar situations. But 
all translations suffer from the same problem: since 
they are translations, they are less clear and 
understandable than code that is not a translation. 
To understand the Fortran version, one must scan 
the entire program to make sure that no other 
statement branches to statements 10 or 20 before 
one knows that indeed this is an if-else construc-

\ : 
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tion. With the RaUor version, there is no question 
about how one gets to the parts of the statement. 
The it-else is a single unit, which can be read, 
understood, and ignored if not relevant. The pro­
gram says what it means. 

As before, if the statement following an it or 
an else is a single statement, no braces are needed: 

if (a <= b) 
sw = 0 

else 
sw = 1 

The syntax of the it statement is 

if (legal Fortran condition) 
Ratlor 6latement 

else 
Ratlor statement 

where the else part is optional. The legal Fortran 
condition is anything that can legally go into a 
Fortran Logical IF. Rattor does not check this 
clause, since it does not know enough Fortran to 
know what is permitted. The Ratlor statement is 
any RaUor or Fortran statement, or any collection 
of them in braces. 

Nested it's 

Since the statement that follows an it or an 
else can be any Ratfor statement, this leads 
immediately to the possibility of another if or 
else. As a useful example, consider this problem: 
the variable t is to be set to -1 if x is less than 
zero, to + 1 if x is greater than 100, and to 0 oth­
erwise. Then in Rattor, we write 

if(x < 0) 
f =-1 

else if (x > 1(0) 
f = +1 

.else 
f=O 

Here the statement after the first else is another 
it-else. Logically it is just a single statement, 
although it is rather complicated. 

This code says what it means. Any version 
written in straight Fortran will necessarily be 
indirect because Fortran does not let you say what 
you mean. And as always, clever shortcuts may 
turn out to be too clever to understand a year 
from now. 

Following an else with an it is one way to 
write a multi-way branch in Ratfor. In general the 
structure 
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if ( ... ) 

else if (oo.) 

else if (oo.) 

else 

provides a way to specify the choice of exactly one 
of several alternatives. (Ratfor also provides a 
switch statement which does the same job in cer­
tain special cases; in more general situations, we 
have to make do with spare parts.) The tests are 
laid out in sequence, and each one is followed by 
the code associated with it. Read down the list of 
decisions until one is found that is satisfied. The 
code associated with this condition is executed, 
and then the entire structure is finished. The 
trailing else part handles the "default" case, 
where none of the other conditions apply. If there 
is no default action, this final else part is omitted: 

if (x < 0) 
x=O 

else if (x > 100) 
x = 100 

it-else ambiguity 

There is one thing to notice about compli­
cated structures involving nested if's and else's. 
Consider 

if (x > 0) 
if(y > 0) 

write(6, 1) x, y 
else 

write(6, 2) Y 

There are two if's and only one else. Which if 
does the else go with? 

This is a genuine ambiguity in Ratfor, as it 
is in many other programming languages. The 
ambiguity is resolved in Ratfor (as elsewhere) by 
saying that in such cases the else goes with the 
closest previous un-else'ed it. Thus in this case, 
the else goes with the inner if, as we have indi­
cated by the indentation. 

It is a wise practice to resolve such cases by 
explicit braces, just to make your intent clear. In 
the case above, we would write 

if (x > 0) { 
if (y > 0) 

write(6, 1) x, y 
else 

write(6, 2) Y 
} 



which does not change the meaning, but leaves no 
doubt in the reader's mind. If we want the other 
association, we mast write 

if (x > O){ 
if(y> 0) 

write(6, 1) x, y 
} 
else 

write(6, 2) y 

The "switch" Statement 

The switch statement provides a clean way 
to express multi-way branches which branch on 
the value of some integer-va.lued expression. The 
syntax is 

switch (ezpression) { 

} 

case ezprl : 
statements 

case expr2, ezpr9: 
statements 

detault: 
statements 

Each case is followed by a list of comma.­
separated integer expressions. The ezpreuion 
inside switch is compared against the case expres­
sions ezprl, ezpr2, and so on in turn until one 
matches, at which time the statements following 
that case are executed. If no cases match ezpres­
Mon, and there is a detault section, the state­
ments with it are done; if there is no detault, 
nothing is done. In all situations, as soon as some 
block of statements is executed, the entire switch 
is exited immediately. (Readers familiar with C[4] 
should beware that this behavior is not the same 
as the C switch.) 

The "do" Statement 

The do statement in Ratfor is quite similar 
to the DO statement in Fortran, except that it uses 
no statement number. The statement number. 
after all, serves only to mark the end of the DO, 

and this can be done just as easily with braces. 
Thus 

do i = I, n { 

} 

is the same as 

xCi) = 0.0 
y(i) = 0.0 
z(i) = 0.0 
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do 10 i = 1, n 
xCi) = 0.0 
y(i) = 0.0 
z(i) = 0.0 

10 continue 

The syntax is: 

do legal-Fortran-DO-ten 
Ratlor statement 

The part that follows the keyword do has to be 
something that can legally go into a Fortran DO 
statement. Thus if a local version of Fortran 
allows DO limits to be expressions (which is not 
currently permitted in ANSI Fortran), they can be 
used in a RaUor do. 

The Ratlor statement part will often be 
enclosed in braces, but as with the it, a single 
statement need not have braces around it. This 
code sets an array to zero: 

do i = 1, n 
xCi) = 0.0 

Slightly more complicated, 

do i = 1, n 
do j = 1, n 

m(i, j) = 0 

sets the entire array m to zero, and 

do i = 1, n 
do j = 1, n 

if(i < j) 
m(i, j) =-1 

else if (i == j) 
m(i, j) = 0 

else 
m(i, j) = +1 

sets the upper triangle of m to -1, the diagonal to 
zero, and the lower triangle to +1. (The operator 
== is "equals", that is, ... EQu.) In each case, the 
statement that follows the do is logically a single 
statement, even though complicated, and thus 
needs no braces. 

"break" and "next" 

Ratfor provides a statement for leaving a 
loop early, and one for beginning the next itera­
tion. break causes an immediate exit from the 
do; in effect it is a branch to the statement alter 
the do. next is a branch to the bottom of the 
loop, so it causes the next iteration to be done. 
For example, this code skips over negative values 
in an array: 

J 
/' 
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do i = I, n ( 

} 

if (x(i) < 0.0) 
next 

procea8 p08itive element 

break and next also work in the other Ratfor 
looping constructions that we will talk about in 
the next few sections. 

break and next can be followed by an 
integer to indicate breaking or iterating that level 
of enclosing loop; thus 

break 2 

exits from two levels of enclosing loops, and 
break 1 is equivalent to break. next 2 iterates 
the second enclosing loop. (Realistically, multi­
level break's and next's are not likely to be much 
used because they lead to code that is hard to 
understand and somewhat risky to change.) 

The "while" Statement 

One of the problems with the Fortran DO 

statement is that it generally insists upon being 
done once, regardless of its limits. If a loop begins 

DO 1= 2, I 

this will typically be done once with I set to 2, 
even though common sense would suggest that 
perhaps it shouldn't be. Of course a Ratfor do 
can easily be preceded by a test 

if (j <= k) 
do i = j, k { 

} 

but this has to be a conscious act, and is often 
overlooked by programmers. 

A more serious problem with the DO state­
ment is that it encourages that a program be wri~ 
ten in terms of an arithmetic progression with 
small positive steps, even though that may not be 
the best way to write it. If code has to be con­
torted to fit the requirements imposed by the For­
tran DO, it is that much harder to write and 
understand. 

To overcome these difficulties, Ratfor prcr 
vides a while statement, which is simply a loop: 
"while some condition is true, repeat this group of 
statements". It has no preconceptions about why 
one is looping. For example, this routine to com­
pute sin(x) by the Maclaurin series combines two 
termination criteria. 
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real function sin(x, e) 
f returns sin(x) to accuracy e, by 
f sin(x) = x - x •• 3/3! + x .. S/S! - ... 

sin =x 
term = x 

i=3 
while (abs(term»e & i<IOO) { 

} 

term = -term. x •• 2 / float(i.(i-I)) 
sin = sin + term 
i=i+2 

return 
end 

Notice that if the routine is entered with 
term already smaller than e, the loop will be done 
zero times, that is, no attempt will be made to 
compute x .. 3 and thus a potential underflow is 
avoided. Since the test is made at the top of a 
while loop instead of the bottom, a special case 
disappears - the code works at one of its boun­
daries. (The test 1<100 is the other boundary -
making sure the routine stops after some max­
imum number of iterations.) 

A1> an aside, a sharp character Iff" in a line 
marks the beginning of a comment; the rest of the 
line is comment. Comments and code can ccrexist 
on the same line - one can make marginal 
remarks, which is not possible with Fortran's "C 
in column 1" convention. Blank lines are also per­
mitted anywhere (they are not in Fortran); they 
should be used to emphasize the natural divisions 
of a program. 

The syntax of the while statement is 

while (legal Fortran condition) 
Ratfor statement 

A1> with the ir, legal Fortran condition is some­
thing that can go into a Fortran Logical IF, and 
Ratfor 8tatement is a single statement, which may 
be multiple statements in braces. 

The while encourages a style of coding not 
normally practiced by Fortran programmers. For 
example, suppose nexteh is a function which 
returns the next input character both as a function 
value and in its argument. Then a loop to find 
the first non-blank character is just 

while (nextch(ich) == iblank) 

A semicolon by itself is a null statement, which is 
necessary here to mark the end of the while; if it 
were not present, the while would control the next 
statement. When the loop is broken, ieh contains 
the first non-blank. Of course the same code can 



be written in Fortran as 

100 if (nextch(ich) .eq. iblank) goto 100 

but many Fortran programmers (and a few com­
pilers) believe this line is illegal. The language at 
one's disposal strongly influences how one thinks 
about a problem .. 

The "for" Statement 

The for statement is another Ratfor loop, 
which attempts to carry the separation of loop­
body from reason-for-looping a step further than 
the whUe. A for statement allows explicit initiali­
zation and increment steps as part of the state­
ment. For example, a DO loop is just 

for (i = 1; i <= n; i == i + 1) ... 

This is equivalent to 

i=1 
while (i <= n) { 

i== i+ 1 
} 

The initialization and increment of i have been 
moved into the for statement, making it easier to 
see at a glance what controls the loop. 

The for and whUe versions have the advan­
tage that they will be done zero times if n is less 
than 1; this is not true of the do. 

The loop of the sine routine in the previous 
section can be re-written with a for as 

for (i=3; abs(term) > e & i < 100; i=i+2) ( 
term = -term. x •• 2 / fioat(i.(i-l» 
sin = sin + term 

} 

The syntax of the for statement is 

for ( init ; condition; increment) 
Ratfor statement 

init is any single Fortran statement, which gets 
done once before the loop begins. increment is any 
single Fortran statement, which gets done at the 
end of each pass through the loop, before the test. 
condition is again anything that is legal in a logi­
cal IF. Any of init, condition, and jncrement may 
be omitted, although the semicolons mUlt always 
be present. A non-existent condition is treated as 
always true, so for(;;) is an indefinite repeat. (But 
see the repea~until in the next section.) 

The for statement is particularly useful for 
backward loops, chaining along lists, loops that 
might be done zero times, and similar things which 
are hard to express with a DO statement, and 
obscure to write out with IF's and GOTO'S. For 

example, here is a backwards DO loop to find the 
last non-blank character on a card: 

for (i == 80; i > 0; i = i-I) 
if (card(i) != blank) 

break 

("!=" is the same as ".NE."). The code scans the 
columns from 80 through to 1. If a non-blank is 
found, the loop is immediately broken. (b"ak 
and next work in for's and while's just as in 
do's). If i reaches zero, the card is all blank. 

This code is rather nasty to write with a 
regular Fortran DO, since the loop must go for­
ward, and we must explicitly set up proper condi­
tions when we fall out of the loop. (Forgetting 
this is a common error.) Thus: 

DO 10 J == 1,80 
I = 81 - J 
IF (CARD(I) .NE. BLANK) GO TO 11 

10 CONTINUE 
1=0 

11 

The version that uses the for handles the termina­
tion condition properly for free; i i, zero when we 
fall out of the for loop. 

The increment in a for need not be an 
arithmetic progression; the following program 
walks along a list (stored in an integer array ptr) 
until a zero pointer is found, adding up elements 
from a parallel array of values: 

sum = 0.0 
for (i == first; i > 0; i = ptr(i» 

sum == sum + value(i) 

Notice that the code works correctly if the list is 
empty. Again, placing the test at the top of a 
loop instead of the bottom eliminates a potential 
boundary error. 

The "repea~until" statement 

In spite of the dire warnings, there are times 
when one rllally needs a loop that tests at the bot­
tom after one pass through. This service is pro­
vided by the repea~until: 

repeat 
Ratfor ,tatement 

until (legal Fortran condition) 

The Ratfor ,tatement part is done once, then the 
condition is evaluated. If it is true, the loop is 
exited; if it is false, another pass is made. 

The until part is optional, so a bare repeat 
is the cleanest way to specify an infinite loop. Of 
course such a loop must ultimately be broken by 
some transfer of control such as stop, "turn, or 
break, or an implicit stop such as running out of 
input with a READ statement. C) 
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As a matter of observed fact[8J, the 
repeaf;..until statement is much less used than the 
other looping constructions; in particular, it is typ­
ically outnumbered ten to one by for and while. 
Be cautious about using it, for loops that test only 
at the bottom often don't handle null cases well. 

More on break and next 

break exits immediately from do, while, 
for, and repeaf;..until. next goes to the test part 
of do, while and repeaf;..untll, and to the incre­
ment step of a for. 

"return" Statement 

The standard Fortran mechanism for 
returning a value from a function uses the name of 
the function as a variable which can be assigned 
to; the last value stored in it is the function value 
upon return. For example, here is a routine equal 
which returns 1 if two arrays are identical, and 
zero if they differ. The array ends are marked by 
the special value-I. 

'* equal _ compare strl to str2; '* return 1 if equal, 0 if not 
integer function equal(strl, str2) 
integer strl(I00), str2(100) 
integer i 

says 

for (i = 1; strl(i) == str2(i); i = i + I) 
if (strl(i) == -1) { 

} 
equal = 0 
return 
end 

equal = 1 
return 

In many languages (e.g., PL/I) one instead 

return (ezpre88ion) 

to return a value from a function. Since this is 
often clearer, Ratfor provides such a return state­
ment - in a function F, return(expression) is 
equivalent to 

{ F = expression; return } 

For example, here is equal again: 
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'* equal _ compare strl to str2; '* return 1 if equal, 0 if not 
integer function equa1(strl, str2) 
integer strl(I00), str2(l00) 
integer i 

for (i = 1; str1(i) == str2(i); i = i + 1) 
if (strl(i) == -1) 

return(O) 
end 

return(l) 

If there is no parenthesized expression after 
return, a normal RETURN is made. (Another ver­
sion of equal is presented shortly.) 

Cosmetics 

As we said above, the visual appearance of a 
language has a substantial effect on how easy it is 
to read and understand programs. Accordingly, 
Ratfor provides a number of cosmetic facilities 
which may be used to make programs more read­
able. 

Free-form Input 

Statements can be placed anywhere on a 
line; long statements are continued automatically, 
as are long conditions in if, while, for, and until. 
Blank lines are ignored. Multiple statements may 
appear on one line, if they are separated by semi­
colons. No semicolon is needed at the end of a 
line, if Ratfor can make some reasonable guess 
about whether the statement ends there. Lines 
ending with any of the characters 

+ • 
are assumed to be continued on the next line. 
Underscores are discarded wherever they occur; all 
others remain as part of the statement. 

Any statement that begins with an all­
numeric field is assumed to be a Fortran label, and 
placed in columns 1-5 upon output. Thus 

write(6, 100); 100 format("hello") 

is converted into 

write(6, 100) 
100 format(5hhello) 

Translation Services 

Text enclosed in matching single or double 
quotes is converted to nH ••• but is otherwise unal­
tered (except for formatting - it may get split 
across card boundaries during the reformatting 
process). Within quoted strings, the backslash '\' 
serves as an escape character: the next character is 
taken literally. This provides a way to get quotes 



(and of course the backslash itself) into quoted 
strings: 

'\\\' " 
is a string containing a backslash and an apos­
trophe. (This is not the standard convention of 
doubled quotes, but it is easier to use and more 
general.) 

Any line that begins with the character '%' 
is left absolutely unaltered except for stripping off 
the '%' and moving the line one position to the 
left. This is useful for inserting control cards, and 
other things that should not' be transmogrified 
(like an existing Fortran program). Use '%' only 
for ordinary statements, not for the condition 
parts of it, while, etc., or the output may come 
out in an unexpected place. 

The following character translations are 
made, except within single or double quotes or on 
a line beginning with a '%'. 

== .eq. != .ne. 
> .gt. >= .ge . 
< .It. <= .Ie. 
& .and. I .or . 

. not. ... .not . 

In addition, the following translations are provided 
for input devices with restricted character sets. 

I 
$( 

{ 
{ 

"define" Statement 

I 
$) 

} 
} 

Any string of alphanumeric characters can 
be defined as a name; thereafter, whenever that 
name occurs in the input (delimited by non­
alphanumerics) it is replaced by the rest of the 
definition line. (Comments and trailing white 
spaces are stripped off). A defined name can be 
arbitrarily long, and must begin with a letter. 

define is typically used to create symbolic 
parameters: 

define ROWS 100 
define COLS 50 

dimension a(ROWS), b(ROWS, eOLS) 

if (i > ROWS Ii> eOLS) ... 

Alternately, definitions may be written as 

define(ROWS, 1(0) 

In this case, the defining text is every~ing after 
the comma up to the balancing right parenthesis; 
this allows multi-line definitions. 

It is generally a wise practice to use sym­
bolic parameters for most constants, to help make 
clear the function of what would otherwise be 
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mysterious numbers. As an example, here is the 
routine equal again, this time with symbolic con­
stants. 

define 
define 
define 
define 

YES 
NO 
EOS 
ARB 

1 
o 
-1 
100 

* equal _ compare strl to str2; * return YES if equal, NO if not 
integer function equal(strl, str2) 
integer strl(ARB), str2(ARB) 
integer i 

for (i = 1; strl(i) == str2(i); i = i + I) 
if (strl{i) == EOS) 

return(YES) 
return{NO) 
end 

"include" Statement 

The statement 

include file 

inserts the file found on input stream file into the 
Ratior input in place of the include statement. 
The standard usage is to place COMMON blocks on 
a file, and include that file whenever a copy is 
needed: 

subroutine x 
include common blocks 

end 

suroutine y 
include commonblocks 

end 

This ensures that all copies of the COMMON blocks 
are identical 

Pit.falls, Botches, Blemishes and other Fail­
ings 

Ratfor catches certain syntax errors, such as 
missing braces, else clauses without an it, and 
most errOrs involving missing parentheses in state­
ments. Beyond that, since Ratfor knows no For­
tran, any errors you make will be reported by the 
Fortran compiler, so you will from time to time 
have to relate a Fortran diagnostic back to the 
Ratfor source. 

Keywords are reserved - using it, else, etc., 
as variable names will typically wreak havoc. 
Don't leave spaces in keywords. Don't use the 
Arithmetic IF. 



The Fortran nH convention is not recog­
nized anywhere by Ratfor; use quotes instead. 

3. IMPLEMENTATION 

Ratfor was originally written in 014J on the 
UNDC operating systeml5J. The language is 
specified by a context free grammar and the com­
piler constructed using the YACC compiler­
compilerl6J. 

The Ratfor grammar is simple and straight­
forward, being essentially 

prog stat 
prog stat 

stat it ( ... ) stat 
it ( ... ) stat elae stat 
while ( ... ) stat 
tor (oo.; oo.; oo.) stat 
do ... stat 
repeat stat 
repeat stat until ( ... ) 
switch ( ... ) { case ... : prog ... 

I return 
I break 
I next 
I digits stat 
I{ prog } 

detault: prog } 

I anything unrecognizable 

The observation that Ratfor knows no Fortran fol­
lows directly from the rule that says a statement is 
"anything unrecognizable". In fact most of For­
tran falls into this category, since any statement 
that does not begin with one of the keywords is by 
definition "unrecognizable." 

Code generation is also simple. If the first 
thing on a source line is not a keyword (like it, 
else, etc.) the entire statement is simply copied to 
the output with appropriate character translation 
and formatting. (Leading digits are treated as a 
label.) Keywords cause only slightly more compli­
cated actions. For example, when if is recognized, 
two consecutive labels L and L+ 1 are generated 
and the value of L is stacked. The condition is 
then isolated, and the code 

if (.not. (condition» goto L 

is output. The statement part of the it is then 
translated. When the end of the statement is 
encountered (which may be some distance away 
and include nested it's, of course), the code 

L continue 

is generated, unless there is an elae clause, in 
which case the code is 

gotoL+l 
L continue 
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In this latter case, the code 

L+ 1 continue 

is produced after the statement part of the else. 
Code generation for the various loops is equally 
simple. 

One might argue that more care should be 
taken in code generation. For example, if there is 
no trailing ellie, 

if (i > 0) x = a 

should be left alone, not converted into 

if (.not. (i .gt. 0» goto 100 
x=a 

100 continue 

But what are optimizing compilers for, if not to 
improve code? It is a rare program indeed where 
this kind of "inefficiency" will make even a 
measurable difference. In the few cases where it is 
important, the offending lines can be protected by 
'%'. 

The use of a compiler-compiler is definitely 
the preferred method of software development. 
The language is well-defined, with few syntactic 
irregularities. Implementation is quite simple; the 
original construction took under a week. The 
language is sufficiently simple, however, that an ad 
hoc recognizer can be readily constructed to do the 
same job if no compiler-compiler is available. 

The C version of Ratfor is used on UNIX and 
on the Honeywell GCOS systems. 0 compilers are 
not as widely available as Fortran, however, so 
there is also a Ratfor written in itself and origi­
nally bootstrapped with the 0 version. The Ra.t­
for version was written so as to translate into the 
portable subset of Fortran described in [1], so it is 
portable, having been run essentially without 
change on at least twelve distinct machines. (The 
main restrictions of the portable subset are: only 
one character per machine word; subscripts in the 
form C*t!::l::c; avoiding expressions in places like DO 

loops~ consistency in subroutine argument usage, 
and in COMMON declarations. Ratfor itself will not 
gratuitously generate non-standard Fortran.) 

The Ratfor version is about 1500 lines of 
Ratfor (compared to about 1000 lines of C); this 
compiles into 2500 lines of Fortran. This expan­
sion ratio is somewhat higher than average, since 
the compiled code contains unnecessary 
occurrences of COMMON declarations. The execu­
tion time of the Ratfor version is dominated by 
two routines that read and write cards. Clearly 
these routines could be replaced by machine coded 
local versions; unless this is done, the efficiency of 
other parts of the translation process is largely 
irrelevant. 



.t. EXPERIENCE 

Good Things 

"It's so much better than Fortran" is the 
most common response of users when asked how 
well Rattor meets their needs. Although cynics 
might consider this to be vacuous, it does seem to 
be true that decent control flow and cosmetics con­
verts Fortran from a bad language into quite a 
reasonable one, assuming that Fortran data struc­
tures are adequate for the task at hand. 

Although there are no quantitative results, 
users feel that coding in Ratfor is at least twice as 
fast as in Fortran. More important, debugging 
and subsequent revision are much faster than in 
Fortran. Partly this is simply because the code 
can be read. The looping statements which test at 
the top instead of the bottom seem to eliminate or 
at least reduce the occurrence of a wide class of 
boundary errors. And of course it is easy to do 
structured programming in Ratfor; this self­
discipline also contributes markedly to reliability. 

One interesting and encouraging fact is that 
programs written in Ratfor tend to be as readable 
as programs written in more modern languages 
like Pascal. Once one is freed from the shackles of 
Fortran's clerical detail and rigid input format, it 
is easy to write code that is readable, even estheti­
cally pleasing. For example, here is a Ratfor 
implementation of the linear table search discussed 
by Knuth [7]: 

A(m+l) = x 
for (i = 1; A(i) != x; i = i + 1) 

, 
if(i > m){ 

m=i 
B(i) = 1 

} 
else 

B(i) = B(i) + 1 

A large corpus (5400 lines) of Ratfor, including a 
subset of the Ratfor preprocessor itself, can be 
found in [81. 

Bad Things 

The biggest single problem is that many 
Fortran syntax errors are not detected by Ratfor 
but by the local Fortran compiler. The compiler 
then prints a message in terms of the generated 
Fortran, and in a few cases this may be difficult to 
relate back to the offending Ratfor line, especially 
if the implementation conceals the generated For­
tran. This problem could be dealt with by tagging 
each generated line with some indication of the 
source line that created it, but this is inherently 
implementation-dependent, so no action has yet 
been taken. Error message interpretation is actu-
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ally not so arduous as might be thought. Since 
Ratfor generates no variables, only a simple pat­
tern of IF's and GOTO'S, data-related errors like 
missing DIMENSION statements are easy to find in 
the Fortran. Furthermore, there has been a steady 
improvement in Ratfor's ability to catch trivial 
syntactic errors like unbalanced parentheses and 
quotes. 

There are a number of implementation 
weaknesses that are a nuisance, especially to new 
users. For example, keywords are reserved. This 
rarely makes any difference, except for those hardy 
souls who want to use an Arithmetic IF. A few 
standard Fortran constructions are not accepted 
by Ratfor, and this is perceived as a problem by 
users with a large corpus of existing Fortran pro­
grams. Protecting every line with a '%' is not 
really a complete solution, although it serves as a 
stop-gap. The best long-term solution is provided 
by the program Struct [9], which converts arbi­
trary Fortran programs into Ratfor. 

Users who export programs often complain 
that the generated Fortran is "unreadable" 
because it is not tastefully formatted and contains 
extraneous CONI'INUE statements. To some extent 
this can be ameliorated (Ratfor now has an option 
to copy Ratfor comments into the generated For­
tran), but it has always seemed that effort is better 
spent on the input language than on the output 
esthetics. 

One final problem is partly attributable to 
success - since Ratfor is relatively easy to modify, 
there are now several dialects of Ratfor. For­
tunately, so far most of the differences are in char­
acter set, or in invisible aspects like code genera­
tion. 

5. CONCLUSIONS 

Ratfor demonstrates that with modest effort 
it is possible to convert Fortran from a bad 
language into quite a good one. A preprocessor is 
clearly a useful way to extend or ameliorate the 
facilities of a base language. 

When designing a language, it is important 
to concentrate on the essential requirement of pro­
viding the user with the best language possible for 
a. given effort. One must avoid throwing in 
"features" - things which the user may trivially 
construct within the existing framework. 

One must also avoid getting sidetracked on 
irrelevancies. For instance it seems pointless for 
Rattor to prepare a neatly formatted listing of 
either its input or its output. The user is presum­
ably capable of the self-disCipline required to 
prepare neat input that reflects his thoughts. It is 
much more important that the language provide 
free-form input so he can format it neatly. No one 

) 



should read the output anyway except in the most 
dire circumstances. 
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Appendix: Usage on UNIX and Goos. 
Beware - local customs vary. Check with a native before going into the jungle. 

UNIX 
The program rattor is the basic translator; it takes either a list of file names or the standard input 

and writes Fortran on the standard output. Options include -Ox, which uses x as a continuation character 
in column 6 (UNDC uses Ie in column I), and -0, which causes Ratfor comments to be copied into the gen­
erated Fortran. . 

The program rc provides an interface to the rattol' command which is much the same as ceo Thus 

rc [options] files 

compiles the files specified by files. Files with names ending in .1' are Ratfor source; other files are assumed to 
be for the loader. The flags -0 and -Ox described above are recognized, as are 

-c compile only; doni t load 
-1 save intermediate Fortran .f files 
-r Ratfor only; implies -c and -f 
-2 use big Fortran compiler (for large programs) 
-U flag undeclared variables (not universally available) 

Other flags are passed on to the loader. 

GOOS 

The program ./rattor is the bare translator, and is identical to the UNDC version, except that the con­
tinuation convention is lit. in column 6. Thus 

,fratfor files >output 

translates the RaUor source on files and collects the generated Fortran on file 'output' for subsequent pro­
cessing . 

• /rc provides much the same services as rc (within the limitations of ooos), regrettably with a some­
what different syntax. Options recognized by ./rc include 

name 
h=/name 
r=/name 
a= 
c= 
f=name 
g=name 

Ratfor source or library, depending on type 
make TSS H. file (runnable version); run as /name 
update and use random library 
compile as ascii (default is bed) 
copy comments into Fortran 
Fortran source file 
gmap source file 

Other options are as specified for the ./ce command described in \4]. 

TSO, TSS, and other systems 

Ratfor exists on various other systems; check with the author for specifics. 

( 

.~. 
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The M4 Macro Processor 

Brian W. Kernighan 

Denni8 M. Ritchie 

ABSTRAOT 

M4 is a macro processor available on UNIXt and GCOS. Its primary use has 
been as a front end for RatCor for those cases where parameterless macros are not 
adequately powerful. It has also been used for languages as disparate as C and 
Cobol. M4 is particularly suited for functional languages like Fortran, PLjI and 
C since macros are specified in a functional notation. 

M4 provides features seldom found even in much larger macro processors, 
including 

• 
• 
• 
• 
• 

July 1, 1977 

arguments 

condition testing 

arithmetic capabilities 

string and substring functions 

file manipulation 

This paper is a user's manual Cor M4. 

t UNIX is a. tra.dema.rk or Bell La.bora.tories. 
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The M4 Macro Processor 

Brian W. Kernighan 

Denni& M. Ritchie 

Introduetion 

A macro processor is a useful way to 
enhance a programming language, to make it 
more palatable or more readable, or to tailor 
it to a particular application. The #define 
statement in C and the analogous define in 
Ratfor are examples of the basic facility pro­
vided by any macro processor - replacement 
of text by other text. 

The M4 macro processor is an extension 
of a macro processor called M3 which was 
written by D. M. Ritchie for the AP-3 mini­
computer; M3 was in turn based on a macro 
processor implemented for [1]. Readers 
unfamiliar with the basic ideas of macro pro­
cessing may wish to read some of the discus­
sion there. 

M4 is a suitable front end for Ratfor 
and C, and has also been used successfully 
with Cobol. Besides the straightforward 
replacement of one string of text by another, 
it provides macros with arguments, condi­
tional macro expansion, arithmetic, file mani­
pulation, and some specialized string process­
ing functions. 

The basic operation of M4 is to copy its 
input to its output. As the input is read, 
however, each alphanumeric "token" (that is, 
string of letters and digits) is checked. If it is 
the name of a macro, then the name of the 
macro is replaced by its defining text, and the 
resulting string is pushed back onto the input 
to be rescanned. Macros may be called with 
arguments, in which case the arguments are 
collected and substituted into the right places 
in the defining text before it is rescanned. 

M4 provides a collection of about 
twenty built-in macros which perform various 
useful operations; in addition, the user can 
define new macros. Built-ins and user-defined 
macros work exactly the same way, except 
that some of the built-in macros have side 

effects on the state of the process. 

Usage 

On UNIX, use 

m4 [files] 

Each argument file is processed in order; if 
there are no arguments, or if an argument is 
'-', the standard input is read at that point. 
The processed text is written on the standard 
output, which may be captured for subse­
quent processing with 

m4 [files] >outputfile 

On GCOS, usage is identical, but the program 
is called ./m4-. 

Defining Mac:ros 

The primary built-in function of M4 is 
define, which is used to define new macros. 
The input 

define(name, stuft') 

causes the string name to be defined as stuff. 
All subsequent occurrences of name will be 
replaced by stuff. name must be 
alphanumeric and must begin with a letter 
(the underscore _ counts as a letter). stuff is 
any text that contains balanced parentheses; 
it may stretch over multiple lines. 

Thus, as a typical example, 

define(N, 100) 

if (i > N) 

defines N to be 100, and uses this "symbolic 
constant" in a later if statement. 

The left parenthesis must immediately 
follow the word define, to signal that define 
has arguments. If a macro or built-in name is 
not followed immediately by '(', it is assumed 
to have no arguments. This is the situation 



tor N above; it is actually a macro with no 
arguments, and thus when it is used there 
need be no ( ... ) following it. 

You should also notice that a macro 
name is only recognized as such if it appears 
surrounded by non-alphanumerics. For exam­
ple, in 

deflne(N, 100) 

it (NNN > 100) 

the variable NNN is absolutely unrelated to 
the defined macro N, even though it contains 
a lot of N's. 

Things may be defined in terms of other 
things. For example, 

define(N, 100) 
define(M, N) 

defines both M and N to be 100. 

What happens if N is redefined? Or, to 
say it another way, is M defined as N or as 
l00? In M4, the latter is true - M is 100, so 
even if N subsequently changes, M does not. 

This behavior arises because M4 
expands macro names into their defining text 
as soon as it possibly can. Here, that means 
that when the string N is seen as the argu­
ments of define are being collected, it is 
immediately replaced by 100; it's just as if 
you had said 

define(M,100) 

in the first place. 

If this isn't what you really want, there 
are two ways out of it. The first, which is 
specific to this situation, is to· interchange the 
order of the definitions: 

define(M, N) 
define(N, 100) 

Now M is defined to be the string N, so when 
you ask for M later, you'll always get the 
value of N at that time (because the M will 
be replaced by N which will be replaced by 
100). 

Quoting 

The more general solution is to delay 
the expansion of the arguments of define by 
quoting them. Any text surrounded by the 
single quotes ' and ' is not expanded immedi­
ately, but has the quotes stripped off. If you 
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say 

deflne(N, 100) 
deflne(M, 'N1 

the quotes around the N are stripped off as 
the argument is being collected, but they have 
8erved their purpose, and M is defined as the 
string N, not 100. The general rule is that 
M4 always strips off one level of single quotes 
whenever it evaluates something. This is true 
even outside of macros. If you want the word 
define to appear in the output, you have to 
quote it in the input, as in 

'define' -= 1; 

As another instance of the same thing, 
which is a bit more surprising, consider 
redefining N: 

deflne(N, 100) 

deflne(N, 200) 

Perhaps regrettably, the N in the second 
definition is evaluated as soon as it's seen; 
that is, it is replaced by 100, so it's as if you 
had written 

deflne(lOO, 200) 

This statement is ignored by M4, since you 
can only define things that look like names, 
but it obviously doesn't have the effect you 
wanted. To really redefine N, you must delay 
the evaluation by quoting: 

deflne(N, 100) 

define('N', 200) 

In M4, it is often wise to quote the first argu­
ment of a macro. 

If ' and ' are not convenient for some 
reason, the quote characters can be changed 
with the built-in changequote: 

changequote([, ]) 

makes the new quote characters the left and 
right brackets. You can restore the original 
characters with just 

changequote 

There are two additional built-ins 
related to define. undeflne removes the 
definition of some macro or built-in: 
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undefineCN ') 

removes the definition of N. (Why are the 
quotes absolutely necessary?) Buil~ins can be 
removed with undefine, as in 

undefine('define ') 

but once you remove one, you can never get it 
back. 

The buil~in ifdef provides a way to 
determine if a macro is currently defined. In 
particular, M4 has pre-defined the names 
unix and gC08 on the corresponding systems, 
so you can tell which one you're using: 

ifdef('unix', 'define(wordsize,18)' ) 
ifdef('gc08', 'define(wordsize,38)' ) 

makes a definition appropriate for the partic­
ular machine. Don't forget the quotes! 

ifdef actually permits three arguments; 
if the name is undefined, the value of ifdef is 
then the third argument, as in 

ifdef('unix', on UNIX, not on UNIX) 

Arguments 

So far we have discussed the simplest 
form of macro processing - replacing one 
string by another (fixed) string. User-defined 
macros may also have arguments, so different 
invocations can have different results. Within 
the replacement text for a macro (the second 
argument of its define) any occurrence of $n 
will be replaced by the nth argument when 
the macro is actually used. Thus, the macro 
bump, defined as 

define(bump, $I = $1 + I) 

generates code to increment its argument by 
1: 

bump(x) 

is 

x=x+1 

A macro can have as many arguments 
as you want, but only the first nine are acces­
sible, through $I to $9. (The macro name 
itself is SO, although that is less commonly 
used.) Arguments that are not supplied are 
replaced by null strings, so we can define a 
macro cat which simply concatenates its 
arguments, like this: 
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define(cat,313233$4303837$839) 

Thus 

cat(x, y, z) 

is equivalent to 

xyz 

$4 through $9 are null, since no correspond­
ing arguments were provided. 

Leading unquoted blanks, tabs, or new­
lines that occur during argument collection 
are discarded. All other white space is 
retained. Thus 

define( a, b c) 

defines a to be b c. 

Arguments are separated by commas, 
but parentheses are counted properly, so a 
comma "protected" by parentheses does not 
terminate an argument. That is, in 

define( a, (b,c» 

there are only two arguments; the second is 
literaJJy (b,c). And of course a bare comma 
or parenthesis can be inserted by quoting it. 

Arithmetic Built-ins 

M4 provides two built-in functions for 
doing arithmetic on integers (only). The sim­
plest is incr, which increments its numeric 
argument by 1. Thus to handle the common 
programming situation where you want a 
variable to be defined as "one more than N", 
write 

define(N,IOO) 
define(Nl, 'incr(N) ') 

Then NI is defined as one more than the 
current value of N. 

The more general mechanism for arith­
metic is a buil~in called eval, which is capa­
ble of arbitrary arithmetic on integers. It 
provides the operators (in decreasing order of 
precedence) 



unary + and-
** or A ( exponentiation) 
* / % (modulus) 
+ -
== !== 
! 
&or&& 
lor II 

< <= > >== 
(not) 
(logical and) 
(logical or) 

Parentheses may be used to group operations 
where needed. All the operands of an expres­
sion given to eva} must ultimately be 
numeric. The numeric value of a true relation 
(like 1>0) is 1, and false is o. The precision 
in eval is 32 bits on UNIX and 36 bits on 
GCOS. 

As a simple example, suppose we want 
M to be 2**N+l. Then 

define(N,3) 
define(M, 'eval(2**N+l) 1 

As a matter of principle, it is advisable to 
quote the defining text for a macro unless it is 
very simple indeed (say just a number); it 
usually gives the result you want, and is a 
good habit to get into. 

File Manipulation 

You can include a new file in the input 
at any time by the built-in function include: 

include(filename) 

inserts the contents of filename in place of 
the include command. The contents of the 
file is often a set of definitions. The value of 
include (that is, its replacement text) is the 
contents of the filej this can be captured in 
definitions, etc. 

It is a fatal error if the file named in 
include cannot be accessed. To get some 
control over this situation, the alternate form 
sinclude can be usedj sinclude ("silent 
include") says nothing and continues if it 
can't access the file. 

It is also possible to divert the output of 
M4 to temporary files during processing, and 
output the collected material upon command. 
M4 maintains nine of these diversions, num­
bered 1 through 9. If you say 

divert(n) 

all subsequent output is put onto the end of a 
temporary file referred to as n. Diverting to 
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this file is stopped by another divert com­
mand; in particular, divert or divert(O) 
resumes the normal output process. 

Diverted text is normally output all at 
once at the end of processing, with the diver­
sions output in numeric order. It is possible, 
however, to bring back diversions at any 
time, that is, to append them to the current 
diversion. 

undivert 

brings back all diversions in numeric order, 
and undivert with arguments brings back 
the selected diversions in the order given. 
The act of undiverting discards the diverted 
stuff, as does diverting into a diversion whose 
number is not between 0 and 9 inclusive. 

The value of undivert is not the 
diverted stuff. Furthermore, the diverted 
material is not rescanned for macros. 

The built-in divnum returns the 
number of the currently active diversion. 
This is zero during normal processing. 

System Command 

You can run any program in the local 
operating system with the syscmd built-in. 
For example, 

syscmd( date) 

on UNIX runs the date command. Normally 
syscmd would be used to create a file for a 
subsequent include. 

To facilitate making unique file names, 
the built-in maketemp is provided, with 
specifications identical to the system function 
mktemp: a string of xxxx:x in the argument 
is replaced by the process id of the current 
process. 

Conditionals 

There is a built-in called it else which 
enables you to perform arbitrary condit.ional 
testing. In the simplest form, 

ifelse(a, b, c, d) 

compares the two strings a and b. If these 
are identical, ifelse returns the string Cj oth­
erwise it returns d. Thus we might define a 
macro called compare which compares two 
strings and returns "yes" or "no" if they are 
the same or different. 
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define( comp8.J'e, 'lfelse(S1, S2, yes, no) 1 
Note the quotes, which prevent too-early 
evaluation of if'else. 

IT the fourth argument is missing, it is 
treated as empty. 

if'else can actually have any number of 
arguments, and thus provides a limited form 
of multi-way decision capability. In the input 

ifelse(a, b, c, d, e, f, g) 

if the string a matches the string b, the result 
is c. Otherwise, if d is the same as e, the 
result is f. Otherwise the result is g. If the 
final argument is omitted, the result is null, 
so 

ifelse(a, b, c) 

is c if a matches b, and null otherwise. 

String Manipulation 

The built-in len returns the length of 
the string that makes up its argument. Thus 

len( abcdef) 

is 6, and Jen«a,b» is 5. 

The built-in substr can be used to pro­
duce substrings of strings. substr(s, i, n) 
returns the substring of s that starts at the 
ith position (origin zero), and is n characters 
long. If n is omitted, the rest of the string is 
returned, so 

substr('now is the time', 1) 

IS 

ow is the time 

If i or n are out of range, various sensible 
things happen. 

index(sl, s2) returns the index (posi­
tion) in sl where the string s2 occurs, or -1 if 
it doesn't occur. A1s with substr, the origin 
for strings is O. 

The built-in tl'anslit performs character 
transliteration. 

translit(s, f, t) 

modifies s by replacing any character found in 
f by the corresponding character of t. That 
is, 

translit(s, aeiou, 12345) 

replaces the vowels by the corresponding 

digits. If t is shorter than f, characters which 
don't have an entry in t are deleted; as a lim­
iting case, if t is not present at all, characters 
from r are deleted from s. So 

translit(s, aeiou) 

deletes vowels from s. 

There is also a built-in called dnl which 
deletes all characters that follow it up to and 
including the next newline; it is useful mainly 
for throwing away empty lines that otherwise 
tend to clutter up M4 output. For example, 
if you say 

define(N, 100) 
define(M, 200) 
define(L, 300) 

the newline at the end of each line is not part 
of the definition, so it is copied into t,he out­
put, where it may not be wanted. If you add 
001 to each of these lines, the new lines will 
disappear. 

Another way to achieve this, due to J. 
E. Weythman, is 

divert(-I) 
define( ••• ) 

divert 

Printing 

The built-in errprint writes its argu­
ments out on the standard error file. Thus 
you can say 

el'l'pl'int( 'fatal errol' 1 
dumpdef is a debugging aid which 

dumps the current definitions of defined 
terms. If there are no arguments, you get 
everything; otherwise you get the ones you 
name as arguments. Don't forget to quote 
the names! 

Summ8.J'Y of Buil~ins 
Each entry is preceded by the page 

number where it is described. 



3 changequote(L, R) 
1 define(name, replacement) 
4 divert(number) 
4 divnum 
5 dnl 
5 dumpdef('name', 'name', ... ) 
5 errprint(s, s, ... ) 
4 eval(numeric expression) 
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3 ifdef('name', this if true, this if false) 
5 ifelse(a, b, c, d) 
4 inelude(file) 
3 incr(number) 
5 index(sl, s2) 
5 len(string) 
4 maketemp( .. .xxxxx ... ) 
4 sinclude(file) 
5 substr(string, position, number) 
4 syscmd(s) 
5 translit(str, from, to) 
3 undefine(,name 1 
4 undivert(number,number, ... ) 
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ABSTRAOT 

Sed is a non-interactive context editor that runs on the UNIXt operating sys­
tem. Sed is designed to be especially useCul in three cases: 

1) To edit files too large Cor comCortable interactive editing; 
2) To edit any size file when the sequence of editing commands is too 

complicated to be comfortably typed in interactive mode. 
3) To perform multiple 'global' editing funct,ions efficiently in one pass 

through the input. 

This memorandum constitutes a manual for users of sed. 
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Introduction 

SED - A Non-interactive Text Editor 

Lee E. McMahon 

Context search 
Editing 

Sed is a non-interactive context editor designed to be especially useful in three cases: 

I) To edit files too large Cor comfortable interactive editing; 
2) To edit any size file when the sequence of editing commands is too complicated to be 

comCortably typed in interactive mode; 
3) To perform multiple 'global' editing Cunctions efficiently in one pass through the input. 

Since only a Cew lines oC the input reside in core at one time, and no temporary files are used, the 
effective size oc file that can be edited is limited only by the requirement that. the input and output 
fit simultaneously into available secondary storage. 

Complicated editing scripts can be created separately and given to lied as a command file. For 
complex edits, this saves considerable typing, and its attendant, errors. Sed running Crom a com­
mand file is much more efficient than any interactive editor known to the author, even iC that edi­
tor can be driven by a pre-written script. 

The principal loss of Cunctions compared to an interactive editor are lack of relative addressing 
(because of the line-at-a-time operation), and lack of immediate verification that a command has 
done what was intended. 

Sed is a lineal descendant oC the UNIX editor, ed. Because of the differences between interactive 
and non-interactive operation, considerable changes have been made between ed and lied; even 
confirmed users of ed will Crequently be surprised (and probably chagrined), if they rashly use lied 
without reading Sections 2 and 3 of this document. The most striking family resemblance between 
the two editors is·in the class of patterns ('regular expressions') they recognize; the code for match­
ing patterns is copied almost verbatim from the code for ed, and the description of regular expres­
sions in Section 2 is copied almost verbatim from the Ul\TIX Programmer's Manual[I]. (Both code 
and description were written by Dennis M. Ritchie.) 

1. Overall Operation 

Sed by default copies the standard input to the standard output, perhaps performing one or more 
editing commands on each line beCore writing it to the output. This behavior may be modified by 
flags on the command line; see Section 1.1 below. 

The general Cormat oC an editing command is: 

laddressl ,address2] [function] [arguments] 

One or both addresses may be omitted; the format oC addresses is given in Section 2. Any number 
oC blanks or tabs may separate the addresses Crom the Cunction. The function must be present; the 
available commands are discussed in Section 3. The arguments may be required or optional, 
according to which Cunction is given; again, they are discussed in Section 3 under each individual 
function. 

Tab characters and spaces at the beginning of lines are ignored. 
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1.1. Command-Une Flap 

Three flags are recognized on the command line: 
-n: tells ,ed not to copy all lines, but only. those specified by p functions or p flags after B 

functions (see Section 3.3)i 
-e: tells ,ed to take the next argument as an editing command; 
-f: tells ltd to take the next argument as a file name; the file should contain editing com-

mands, one to a line. 

1.2. Order of Application of Editing Commands 

Before any editing is done (in fact, before any input file is even opened), all the editing commands 
are compiled into a form which will be moderately efficient during the execution phase (when the 
commands are actually applied to lines of the input file). The commands are compiled in the order 
in which they are encountered; this is generally the order in which they will be attempted at execu­
tion time. The commands are applied one at a time; the input. to each command is the output of 
all preceding commands. 

The default linear order of application of editing commands can be changed by the flow-of-control 
commands, t and b (see Section 3). Even when the order of application is changed by these com­
mands, it is still true that the input line to any command is the output of any previously applied 
command. 

1.3. Pattern-apace 
The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one line 
of the input text, but more than one line can be read into the pattern space by using the N com­
mand (Section 3.6.). 

1.4. Examples 

Examples are scattered throughout the text. Except where otherwise noted, the examples all 
assume the following input text: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

(In no case is the output of the Bed commands to be considered an improvement on Coleridge.) 

Example: 

The command 

2q 

will quit after copying the first two lines of the input. The output will be: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 

2. ADDRESSES: Selecting Unes for editing 

Lines in the input file(s) to which editing commands are to be applied can be selected by addresses. 
Addresses may be either line numbers or context addresses. 

The application of a group of commands can be controlled by one address (or address-pair) by 
grouping the commands with curly braces (I{ },)(Sec. 3.6.). 

---"-'-' --- .-- .- -- - .. _. 

/ 
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2.1. Line-number Addresses 

A line number is a decimal integer. As each line is read from the input, a line-number counter is 
incremented; a line-number address matches (selects) the input line which causes the internal 
counter to equal the address line-number. The counter runs cumulatively through multiple input 
files; it is not reset when a new input file is opened. 

As a special case, the character' matches the last line of the last input file. 

2.2. Context Addresses 

A context address is a pattern ('regular expression') enclosed in slashes ('I'). The regular expres­
sions recognized by ,ed are constructed as follows: 

1) An ordinary character (not one of those discussed below) is a regular expression, and 
matches that character. 

2) A circumflex '"' at the beginning of a regular expression matches the null character at 
the beginning of a line. 

3) A dollar-sign '.' at the end of a regular expression matches the null character at the end 
of a line. 

4) The characters '\n' match an imbedded newline character, but not the newline at the 
end of the pattern space. 

5) A period'.' matches any character except the terminal newline of the pattern space. 
6) A regular expression followed by an asterisk '*' matches any number (including 0) of 

adjacent occurrences of the regular expression it follows. 
7) A string of characters in square brackets '[ J' matches any character in the string, and 

no others. If, however, the first character of the string is circumflex '.', the regu­
lar expression matches any character except the characters in the string and the 
terminal newline of the pattern space. 

8) A concatenation of regular expressions is a regular expression which matches the con­
catenation of strings matched by the components of the regular expression. 

9) A regular expression between the sequences '\(' and '\)' is ident.ical in effect to the una­
dorned regular expression, but has side-effects which are described under the 8 

command below and specification 10) immediately below. 
10) The expression '\d' means the same string of characters matched by an expression 

enclosed in '\(' and '\)' earlier in the same pattern. Here d is a single digit; the 
string specified is that beginning with the dth occurrence of '\(' counting from the 
left. For example, the expression '"\(.*\)\1' matches a line beginning with two 
repeated occurrences of the same string. 

11) The null regular expression standing alone (e.g., 'I I') is equivalent to the last regular 
expression compiled. 

To use one of the special characters r $ . * [ J \ I) as a literal (to match an occurrence of itself in 
the input), precede the special character by a backslash '\'. 

For a context address to 'match' the input requires that the whole pattern within the address 
match some portion of the pattern space. 

2.3. Number of Addresses 

The commands in the next section can have 0, 1, or 2 addresses. Under each command the max­
imum number of allowed addresses is given. For a command to have more addresses than the 
maximum allowed is considered an error. 

If a command has no addresses, it is applied to every line in the input. 

If a command has one address, it is applied to all lines which match that address. 

If a command has two addresses, it is applied to the first line which matches the first address, and 
to all subsequent lines until (and including) the first subsequent line which matches the second 
address. Then an attempt is made on subsequent lines to again match the first address, and the 
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process is repeated. 

Two addresses are separated by a comma. 

Examples: 

lanl 
Ian. * ani 
rani 

matches lines 1, 3, 4. in our sample text 
matches line 1 
matches no lines 

1·1 matches aU lines 
!\·I matches line 5 
Ir*anl 
!\(an\). *\11 

matches lines 1,3, 4. (number == zero!) 
matches line 1 

8. FUNCTIONS 
All functions are named by a single character. In the following summary, the maximum number 
of allowable addresses is given enclosed in parentheses, then the single character function name, 
possible arguments enclosed in angles « », an expanded English translation of the single­
character name, and finally a description of what each function does. The angles around the argu­
ments are not part of the argument, and should not be typed in actual editing commands. 

3.1. Whole-line Oriented Functions 

(2)d - delete lines 

The d function deletes from the file (does not write to the output) all those lines 
matched by its addressees). 

It also has the side effect that no further commands are attempted on the corpse 
of a deleted line; as soon as the d function is executed, a new line is read from the 
input, and the list of editing commands is re-started from the beginning on the 
new line. 

(2)n - next line 

(l)a\ 

The n function reads the next line from the input, replacing the current line. The 
current line is written to the output if it should be. The list of editing commands 
is continued following the n command. 

<text> - append lines 

(l)i\ 

The 4 function causes the argument <text> to be written to the output after the 
line matched by its address. The 4 command is inherently multi-line; a must 
appear at the end of a line, and <text> may contain any number of lines. To 
preserve the one-command-to-a-line fiction, the interior new lines must be hidden 
by a backslash character (IV) immediately preceding the newline. The <text> 
argument is terminated by the first unhidden newline (the first one not immedi­
ately preceded by backslash). 

Once an II function is successfully executed, <text> will be written to the output 
regardless of what later commands do to the line which triggered it. The trigger­
ing line may be deleted entirely; <text> will still be written to the output. 

The < text> is not scanned for address matches, and no editing commands are 
attempted on it. It does not cause any change in the line-number counter. 

<text> - insert lines 

The i function behaves identically to the a function, except that <text> is 
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written to the output hefore the matched line. All other comments about the a 
function apply to the i function as well. 

< text> - change lines 

The e function deletes the lines selected by its address(es), and replaces them with 
the lines in <text>. Like a and i, e must be followed by a newline hidden by a 
backslash; and interior new lines in <text> must be hidden by backslashes. 

The e command may have two addresses, and therefore select a range of lines. If 
it does, all the lines in the range are deleted, but only one copy of <text> is 
written to the output, not one copy per line deleted. As with a and .: <text> is 
not scanned for address matches, and no editing commands are attempted on it. 
It does not change the line-number counter. 

After a line has been deleted by a e function, no further commands are attempted 
on the corpse. 

H text is appended after a line by a or r functions, and the line is subsequently 
changed, the text inserted by the c function will be placed he/ore the text of the a 
or r functions. (The r function is described in Section 3.4.) 

Note: Within the text put in the output by these functions, leading blanks and tabs will disappear, 
as always in 8ed commands. To get leading blanks and tabs into the output, precede the first 
desired blank or tab by a backslash; the backslash will not appear in the output. 

Example: 

The list of editing commands: 

n 
a\ 
XXXX 
d 

applied to our standard input, produces: 

In Xanadu did Kubhla Khan 
XXXX 
Where Alph, the sacred river, ran 
XXXX 
Down to a sunless sea. 

In this particular case, the same effect would be produced by either of the two following command 
lists: 

n 
i\ 
XXXX 
d 

n 
c\ 
XXXX 

3.2. Substitute Function 

One very important function changes parts of lines selected by a context search within the line. 

(2)s<pattern> <replacement> <flags> - substitute 

The 8 function replaces part of a line (selected by <pattern» with <replace­
ment>. It can best be read: 

Substitute for <pattern>, <replacement> 

The <pattern> argument contains a pattern, exactly like the patterns In 
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addresses (see 2.2 above). The only difference between <pattern> and a context 
address is that the context address must be delimited by slash ('f') characters; 
<pattern> may be delimited by any character other than space or newline. 

By default, only the first string matched by <pattern> is replaced, but see the 9 
Jlag below. 

The <replacement> argument begins immediately after the second delimiting 
character of <pattern>, and must be followed immediately by another instance 
of the delimiting character. (Thus there are exactly three instances of the delimit­
ing character.) 

The <replacement> is not a pattern, and the characters which are special in pat­
terns do not have special meaning in <replacement>. Instead, other characters 
are special: 

& is replaced by the string matched by < pattern > 

\d (where d is a single digit) is replaced by the dth substring matched by 
parts of <pattern> enclosed in '\(' and '\)'. If nested substrings 
occur in <pattern>, the dth is determined by counting opening 
delimiters ('\('). 

As in patterns, special characters may be made literal by preced­
ing them with backslash ('\'). 

The <flags> argument may contain the following flags: 

g - substitute <replacement> for all (non-overlapping) instances of 
<pattern> in the line. After a successful substitution, the scan 
for the next instance of < pattern> begins just after the end of 
the inserted characters; characters put into the line from 
<replacement> are not rescanned. 

p - print the line if a successful replacement was done. The p flag causes 
the line to be written to the output if and only if a substitution 
was actually made by the 8 function. Notice that if several 8 

functions, each followed by a p flag, successfully substitute in the 
same input line, multiple copies of the line will be written to the 
output: one for each successful substitution. 

w <filename> -- write the line to a file if a successful replacement was 
done. The w flag causes lines which are actually substituted by 
the 8 function to be written to a file named by <filename>. If 
<filename> exists before sed is run, it is ovenvritten; if not, it is 
created. 

A single space must separate wand <filename>. 

The possibilities of multiple, somewhat different. copies of one 
input line being written are the same as for p. 

A maximum of 10 different file names may be mentioned after w 
flags and w functions (see below), combined. 

The following command, applied to our standard input, 

s/to/by Iw changes 

produces, on the standard output: 

C·"'\· 
. I 
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In Xanadu did Kubhla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless by man 
Down by a sunless sea. 

and, on the file 'changes': 

Through caverns measureless by man 
Down by a sunless sea. 

If the nocopy option is in effect, the command: 

s/[.,;?:J/*P&* /gp 

produces: 

A stately pleasure dome decree*P:* 
Where Alph*P,* the sacred river*P,* ran 
Down to a sunless sea*P.* 

Finally, to illustrate the effect of the , flag, the command: 

/X/s/an/ANjp 
produces (assuming nocopy mode): 

In XANadu did Kubhla Khan 

and the command: 

/X/s/an/ANjgp 
produces: 

In XANadu did Kubhla KhAN 

3.3. Input-output Functions 

(2}p -- print 

The print function writes the addressed lines to the standard output file. They 
are written at the time the p function is encountered, regardless of what succeed­
ing editing commands may do to the lines. 

(2}w <filename> - write on <filename> 

The write function writes the addressed lines to the file named by <filename>. If 
the file previously existed, it is overwritten; if not, it is creat.ed. The lines are 
written exactly as they exist when the write function is encountered for each line, 
regardless of what subsequent editing commands may do to them. 

Exactly one space must separate the wand < filename> . 

A maximum of ten different files may be mentioned in write functions and w flags 
after 8 functions, combined. 

(l}r <filename> - read the contents of a file 

The read function reads the contents of <filename>, and appends them after the 
line matched by the address. The file is read and appended regardless of what 
subsequent editing commands do to the line which matched its address. H r and a 
(unctions are executed on the same line, the text from the a functions and the r 
(unctions is written to the output in the order that the functions are executed. 

Exactly one space must separate the r and <filename>. If a file mentioned by a 
r (unction cannot be opened, it is considered a null file, not an error, and no diag­
nostic is given. 
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NOTE: Since there is a limit to the number of files that can be opened simultaneously, care should 
be taken that no more than ten files be mentioned in til functions or flags; that number is reduced 
by one if any r functions are present. (Only one read file is open at one time.) 

Examples 

Assume that the file 'note 1 ' has the following contents: 

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was t.he grandson 
and most eminent successor of Genghiz (Chingiz) l<han, and founder of the 
Mongol dynasty in China. 

Then the following command: 

jKubla/r note 1 

produces: 

In Xanadu did Kubla Khan 
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson 
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the 
Mongol dynasty in China. 

A stately pleasure dome decree: 
\\There Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

3.4. Multiple Input-line Functions 

Three functions, all spelled with capital letters, deal specially with pattern spaces containing 
imbedded new lines; they are intended principally to provide pattern matches across lines in the 
input. 

(2)N - Next line 

The next input line is appended to the current line in the pattern space; the two 
input lines are separated by an imbedded newline. Pattern matches may extend 
across the imbedded newline(s). 

(2)D - Delete first part of the pattern space 

Delete up to and including the first newline character in the current pattern space. 
Ir the pattern space becomes empty (the only newline was the terminal newline), 
read another line from the input. In any case, begin the list of editing commands 
again from its beginning. 

(2)P - Print first part of the pattern space 

Print up to and including the first newline in the pattern space. 

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded 
new lines in the pattern space. 

3.5. Hold and Get Functions 

Four functions save and retrieve part of the input for possible later use. 

(2)h - hold pattern space 

The h functions copies the contents of the pattern space into a hold area (destroy­
ing the previous contents of the hold area). 

(2)H - Hold pattern space 

The H function appends the contents of the pattern space to the contents of the 

\~ 
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hold area; the former and new contents are separated by a newline. 

(2)g - get contents of hold area 

The 9 function copies the contents of the hold area into the pattern space (des­
troying the previous contents of the pattern space). 

(2)G - Get contents of hold area 

The G function appends the contents of the hold area to the contents of the pat­
tern space; the former and new contents are separated by a newline. 

(2)x - exchange 

The exchange command interchanges the contents of the pattern space and the 
hold area. 

Example 

The commands 

lh 
ls/ did.*/ / 
Ix 
G 
s/\n/ :/ 

applied to our standard example, produce: 

In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In Xanadu 
\Vhere Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

3.6. Flow-at-Control Functions 

These functions do no editing on the input lines, but control the application of functions to the 
lines selected by the address part. 

(2)! - Don't 

The Don't command causes the next command (written on the same line), to be 
applied to all and only those input lines not selected by the adress part. 

(2){ - Grouping 

The grouping command '{' causes the next set of commands to be applied (or not 
applied) as a block to the input lines selected by the addresses of the grouping 
command. The first of the commands under control of the grouping may appear 
on the same line as the 'f or on the next line. 

The group of commands is terminated by a matching '}' standing on a line by 
itself. 

Groups can be nested. 

(O):<label> - place a label 

The label function marks a place in the list of editing commands which may be 
referred to by b and t functions. The <label> may be any sequence of eight or 
fewer characters; if two different colon functions have identical labels, a compile 
time diagnostic will be generated, and no execution attempted. 

(2)b < label > - branch to label 
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The branch function causes the sequence of editing commands being applied to 
the current input line to be restarted immediately after the place where a colon 
function with the same <label> was encountered. If no colon function with the 
same label can be found after all the editing commands have been compiled, a 
compile time diagnostic is produced, and no execution is attempted. 

A 6 function with no <label> is taken to be a branch to the end of the list of 
editing commands; whatever should be done with the current input line is done, 
and another input line is read; the list of editing commands is restarted from the 
beginning on the new line. 

(2)t<label> - test substitutions 

The t function tests whether any successful substitutions have been made on the 
current input line; if so, it branches to <label>; if not, it does nothing. The flag 
which indicates that a successful substitution has been executed is reset by: 

1) reading a new input line, or 
2) executing a t function. 

3.7. Miscellaneous Functions 

(1)== - equals 

The = function writes to the standard output the line number of the line matched 
by its address. 

(l)q - quit 

Reference 

The q function causes the current line to be written to the output (if it should be), 
any appended or read text to be written, and execution to be terminated. 

[IJ Ken Thompson and Dennis M. Ritchie, The UNIX Programmer'8 Manual. Bell Laboratories, 
1978. 



() 

( 

() 

Awk -APattem Scanning and Processing Language 
(Second Edition) 

Alfred V. Aho 

Brian W. Kernighan 

Peter J. Weinberger 

ABSTRACT 

Awk is a programming language whose basic operation is to search a set of 
files for patterns, and to perform specified actions upon lines or fields of lines 
which contain instances of those patterns. Awk makes certain data selection and 
transformation operations easy to express; for example, the awk program 

length> 72 

prints all input lines whose length exceeds 72 characters; the program 

NF%2=O 

prints all lines with an even number of fields; and the program 

{ $1 = log($1}; print} 

replaces the first field of each line by its logarithm. 

Awk patterns may include arbitrary boolean combinations of regular expres­
sions and of relational operators on strings, numbers, fields, variables, and array 
elements. Actions may include the same pattern-matching constructions as in pat­
terns, as well as arithmetic and string expressions and assignments, it-else, while, 
for statements, and multiple output streams. 

This report contains a user's guide, a discussion of the design and implemen­
tation of awk, and some timing statistics. 

September 1, 1978 
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Awk -APattem Scanning and Processing Language 
(Second Ediuon) 

AI/red V. Aho 

Brian W. Kernighan 

Peter J. Weinberger 

1. Intl'Oductlon 
A wk is a programming language designed to 

make many common information retrieval and 
text manipulation tasks easy to state and to per­
form. 

The basic operation of awk is to scan a set 
of input lines in order, searching for lines which 
match any of a set of patterns which the user has 
specified. For each pattern, an action can be 
specified; this action will be performed on each line 
that matches the pattern. 

Readers familiar with the UNIXt program 
grep 1 will recognize the approach, although in 
awk the patterns may be more general than in 
grep, and the actions allowed are more involved 
than merely printing the matching line. For 
example, the awk program 

{print $3, $2} 

prints the third and second columns of a table in 
that order. The program 

$2 -- /AIB 10/ 
prints all input lines with an A, B, or C in the 
second field. The program 

$1 != prey {print; prey = $1 } 

prints all lines in which the first field is different 
from the previous first field. 

1.1. Usage 

The command 

awk program [files] 

executes the awk commands in the string program 
on the set of named files, or on the standard input 
if there are no files. The statements can also be 
placed in a file pfile, and executed by the com­
mand 

awk - r pfile [files] 

t UNIX is a trademark or Bell Laboratories. 

1.2. Program Structure 

An awk program is a sequence of statements 
of the form: 

pattern 
pattern 

{ fiction} 
{ action} 

Each line of input is matched against each of the 
patterns in turn. For each pattern that matches, 
the associated action is executed. When all the 
patterns have been tested, the next line is fetched 
and the matching starts over. 

Either the pattern or the action may be left 
out, but not both. If there is no action for a pat­
tern, the matching line is simply copied to the out­
put. (Thus a line which matches several patterns 
can be printed several times.) If there is no pattern 
for an action, then the action is performed for 
every input line. A line which matches no pattern 
is ignored. 

Since patterns and actions are both 
optional, actions must be enclosed in braces to dis­
tinguish them from patterns. 

1.3. Records and Fields 

Awk input is divided into "records" ter­
minated by a record separator. The default record 
separator is a newline, so by default awk processes 
its input a line at a time. The number of the 
current record is available in a variable named 
NR. 

Each input record is considered to be 
divided into "fields." Fields are normally separated 
by white space - blanks or tabs - but the input 
field separator may be changed, as described 
below. Fields are referred to as $1, $2, and so 
forth, where $ 1 is the first field, and $ 0 is the 
whole input record itself. Fields may be assigned 
to. The number of fields in the current record is 
available in a variable named NF. 

The variables FS and RS refer to the input 
field and record separators; they may be changed 



at any tilne to any single character. The optional 
command-line argument - Fe may also be used to 
set FS to the character e. 

If the record separator is empty, an empty 
input line is taken as the record separator; and 
blanks, tabs and new lines are treated as field 
separators. 

The variable F1LENAME contains the name 
of the current input file. . 

1.4. Printing 

An action may have no pattern, in which 
case the action is executed for all lines. The sim­
plest action is to print some or all of a record; this 
is accomplished by the Gwk command print. The 
Gwk program 

{ print} 

prints each record, thus copying the input to the 
output intact. More useful is to print a field or 
fields from each record. For instance, 

print $2, $1 

prints the first two fields in reverse order. Items 
separated by a comma in the print statement will 
be separated by the current output field separator 
when output. Items not separated by commas will 
be concatenated, so 

print $I $2 

runs the first and second fields together. 

The predefined variables NF and NR can be 
used; for example 

{ print NR, NF, $ 0 } 

prints each record preceded by the record number 
and the number of fields. 

Output may be diverted to multiple files; 
the program 

{ print $I > "roo 1 "; print S2 > "ro02" } 

writes the first field, $1, on the file roo 1 , and the 
second field on file ro02. The > > notation can 
also be used: 

print $1 > > "roo" 

appends the output to the file roo. (In each case, 
the output files are created if necessary.) The file 
name can be a variable or a field as well as a con­
stant; for example, 

print $1 >$2 

uses the contents of field 2 as a file name. 

Naturally there is a limit on the number of 
output files; currently it is 10. 

Silnilarly, output can be piped into another 
process (on UNIX only); for instance, 

print I "maD bwk" 

mails the output to bwk. 

The variables OFS and ORS may be used 
to change the current output field separator and 
output record separator. The output record 
separator is appended to the output of the print 
statement. 

Awk also provides the print! statement for 
output formatting: 

print! ronnat expr, expr, _ 

formats the expressions in the list according to the 
specification in ronnat and prints them. For 
example, 

print! ~.2r %.Old\n", $1, $2 

prints $1 as a floating point number 8 digits wide, 
with two after the decimal point, and $ 2 as a 10-
digit long decimal number, followed by a newline. 
No output separators are produced automatically; 
you must add them yourself, as in this example. 
The version of print! is identical to that used with 
C.2 

2. Pattems 

A pattern in front of an action acts as a 
selector that determines whether the action is to 
be executed. A variety of expressions may be used 
as patterns: regular expressions, arithmetic rela­
tional expressions, string-valued expressions, and 
arbitrary boolean combinations of these. 

2.1. BooINandEND 

The special pattern BooIN matches the 
beginning of the input, before the first record is 
read. The pattern END matches the end of the 
input, after the last record has been processed. 
BEnIN and END thus provide a way to gain con­
trol before and after processing, for initialization 
and wrapup. 

As an example, the field separator can be set 
to a colon by • 

BEnIN {FS -= ":" } 
•.. rest 0/ progrGm ... 

Or the input lines may be counted by 

END {print NR } 

If BEXJIN is present, it must be the first pattern; 
END must be the last if used. 

c 



( 

2.2. Regular Depressions 

The simplest regular expression is a literal 
string of characters enclosed in slashes, like 

/amthl 
This is actually a complete /lwk program which 
will print all lines which contain any occurrence of 
the name "smith". If a Jine contains "smith" as 
part of a larger word, it will also be printed, as in 

blae Ius mthing 

Awk regular expressions include the regular 
expression forms found in the UNIX text editor 
ed 1 and grep (without back-referencing). In addi­
tion, /lwk allows parentheses for grouping, I for 
alternatives, + for "one or more", and ! for "zero 
or one", all as in lex. Character classes may be 
abbreviated: [a- sA- ZO- 9] is the set of all 
letters and digits. As an example, the /lwk pro­
gram 

/[Aa]ho I[Ww]einberger 1[Kk]emighanl 

will print all lines which contain any of the names 
"Aho," "Weinberger" or "Kernighan," whether 
capitalized or not. 

Regular expressions (with the extensions 
listed above) must be enclosed in slashes, just as in 
ed and sed. Within a regular expression, blanks 
and the regular expression metacharacters are 
significant. To turn of the magic meaning of one 
of the regular expression characters, precede it 
with a backslash. .AJJ. example is the pattern 

IVAII 
which matches any string of characters enclosed in 
slashes. 

One can also specify that any field or vari­
able matches a regular expression (or does not 
match it) with the operators - and !-. The pro­
gram 

Sl - /[jJ]ohnl 

prints all lines where the first field matches "john" 
or "John." Notice that this will also match" John­
son", "St. Johnsbury", and so on. To restrict it 
to exactly (jJ]ohn, use 

Sl ...., r [jJ)ohnS I 
The caret A refers to the beginning of a line or 
field; the dollar sign S refers to the end. 

1.3. Relational Dcpreaaions 

.AJJ. /lwk pattern can be a relational expres­
sion involving the usual relational operators <, 
<-=, -=, !-, >=, and> . .AJJ. example is 

SI > S1 + 100 
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which selects lines where the second field is at least 
100 greater than the first field. Similarly, 

NF%I-O 

prints lines with an even number of fields. 

In relational tests, if neither operand is 
numeric, a string comparison is made; otherwise it 
is numeric. Thus, 

$1 > ..... "s" 

selects lines that begin with an s, ~ u, etc. In the 
absence of any other information, fields are treated 
as strings, so the program 

$1 > U 

will perform a string comparison. 

1.4. Combinations otPattems 

A pattern can be any boolean combination 
of patterns, using the operators II (or), && (and), 
and ! (not). For example, 

SI >= "s" && $1 < Nt" && $1 != ".mUI" 

selects lines where the first field begins with "s", 
but is not "smith". && and II guarantee that 
their operands will be evaluated from left to right; 
evaluation stops as soon as the truth or falsehood 
is determined. 

2.5. Patte m Ranges 

The "pattern" that selects an action may 
also consist of two patterns separated by a comma, 
as in 

paU, pat2 { - } 

In this case, the action is performed for each line 
between an occurrence of patl and the next 
occurrence of pat2 (inclusive). For example, 

Istart/, lampl 
prints all lines between start and smp, while 

NR ........., 100, NR === 200 { _ } 

does the action for lines 100 through 200 of the 
input. 

3 • .Actions 

.AJJ. /lwk action is a sequence of action state­
ments terminated by newlines or semicolons. 
These action statements can be used to do a 
variety of bookkeeping and string manipulating 
tasks . 

3.1. Built-in Functions 

Awk provides a "length" function to com­
pute the length of a string of characters. This pro­
gram prints each record, preceded by its length: 



{print. length, SO} 

length by itself is a "pseudo-variable" which 
yields t.he length of the current record; 
length(argument.} is a function which yields the 
length of its argument, as in the equivalent 

{print. Ie ngtb(S 0), SO} 

The argument may be any expression. 

Alllk also provides the arithmetic functions 
aq~ Jog, exp, and int., for square root, base e 
logarithm, exponential, and integer part of their 
respective arguments. 

The name of one of these built-in functions, 
without argument or parentheses, stands for the 
value of the function on the whole record. The 
program 

length < 10 "length > 20 

prints lines whose length is less than 10 or greater 
than 20. 

The function substr(a, m, n} produces the 
substring of s that begins at position m (origin 1) 
and is at most n characters long. If n is omitted, 
the substring goes to the end of s. The function 
index(d,82) returns the position where the 
string a2 occurs in ai, or zero if it does not. 

The function aprintl(f, el, e2, •• ) produces 
the value of the expressions e 1, e2, etc., in the 
printt format specified by f. Thus, for example, 

x - sprintl("~.2f ~Old", SI, $2) 

sets x to the string produced by formatting the 
values of $ 1 and $ 2. 

3.2. Variables, EKpressions, and Assign­
menU! 

Awk variables take on numeric (floating 
point) or string values according to context. For 
example, in 

x is clearly a number, while in 

x -= "smith" 

it is clearly a string. Strings are converted to 
numbers and vice versa whenever context demands 
it. For instance, 

x - "3" + "4" 

assigns 7 to x. Strings which cannot be inter­
preted as numbers in a numerical context will gen­
erally have numeric value zero, but it is unwise to 
count on this behavior. 

By default, variables (other than built-ins) 
are initialized to the null string, which has numeri­
cal value zero; this eliminates the need for most 
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BOOJN sections. For example, the sums of the 
first two fields can be computed by 

{ sl +- H; 82 +- $2 } 
END { print sl, 82 } 

Arithmetic is done internally in floating 
point. The arithmetic operators are +, - , *, I, 
and % (mod). The C increment ++ and decre­
ment - - operators are also available, and so are 
the assignment operators + -, - -, * ... , 1-, and 
%-. These operators may all be used in expres­
sions. 

3.3. Field Variables 

Fields in 4111k share essentially all of the 
properties of variables - they may be used in 
arithmetic or string operations, and may be 
assigned to. Thus one can replace the first field 
with a sequence number like this: 

{ SI -= NR; print } 

or accumulate .two fields into a third, like this: 

{ $ 1 -= $2 + $3; print $ 0 } 

or assign a string to a field: 

{ if ($3 > 1000) 
$ 3 -= "too big" 

print 
} 

which replaces the third field by "too big" when it 
is, and in any case prints the record. 

Field references may be numerical expres­
sions, as in 

{ print. $i, $(i+l), $(i+n) } 

Whether a field is deemed numeric or string 
depends on context; in ambiguous cases like 

if ($1 -= $2) _ 

fields are treated as strings. 

Each input line is split into fields automati­
cally as necessary. It is also possible to split any 
variable or string into fields: 

n .... split(s, array, .aep) 

splits the the string a into array[I}, ... , array[n). 
The number of elements found is returned. If the 
aep argument is provided, it is used as the field 
separator; otherwise FS is used as the separator. 

3.4. String Concatenation 

Strings may be concatenated. For example 

Ie ngth($ 1 $2 $3) 

returns the length of the first three fields. Or in a 
print statement, C) 
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print $ 1 " is " $ 2 

prints the two fields separated by " is". Variables 
and numeric expressions may also appear in con­
catenations. 

3.5. Arrays 

Array elements are not declared; they spring 
into existence by being mentioned. Subscripts 
may have any non-null value, including non­
numeric strings. As an example of a conventional 
numeric subscript, the statement 

x[NR] ..... $0 

assigns the current input record to the NR-th ele­
ment of the array x. In fact, it is possible in prin­
ciple (though perhaps slow) to process the entire 
input in a random order with the awA: program 

{ x(NR] -= So } 
END { ... program ... } 

The first action merely records each input line in 
the array x. 

AIray elements may be named by non­
numeric values, which gives awk a capability 
rather like the associative memory of Snobol 
tables. Suppose the input contains fields with 
values like apple, orange, etc. Then the program 

/apple/ {x["apple"]+ + } 
/orange/ { x["orange1++ } 
END { print x["apple"], x["orangej } 

increments counts for the named array elements, 
and prints them at the end of the input. 

3.8. FIow-ot-Conu-ol StatementB 

AwA: provides the basic flow-of-control state­
ments it-else, while, tor, and statement grouping 
with braces, as in C. We showed the it statement 
in section 3.3 without describing it. The condition 
in parentheses is evaluated; if it is true, the state­
ment following the it is done. The else part is 
optional. 

The while statement is exactly like that of 
C. For example, to print all input fields one per 
line, 

i==1 
while (i <== NF) { 

print $ i 
++i 

} 

The tor statement is also exactly that of C: 

tor (i -= 1; i <=- NF; i++) 
print $ i 

does the same job as the while statement above. 
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There is an alternate form of the tor state­
ment which is suited for accessing the elements of 
an associative array: 

tor (i in aft'&y) 
"atement 

does statement with i set in turn to each element 
of aft'&y. The elements are accessed in an 
apparently random order. Chaos will ensue if i is 
altered, or if any new elements are accessed during 
the loop. 

The expression in the condition part of an 
it, while or tor can include relational operators 
like <, < ..... , >, >-=, -== ("is equal to"), and 
1-= ("not equal to"); regular expression matches 
with the match operators - and !-; the logical 
operators I L Idt, and !; and of course parentheses 
for grouping. 

The break statement causes an immediate 
exit from an enclosing while or tor; the continue 
statement causes the next iteration to begin. 

The statement next causes awA: to skip 
immediately to the next record and begin scanning 
the patterns from the top. The statement exit 
causes the program to behave as if the end of the 
input had occurred. 

Comments may be placed in awA: programs: 
they begin with the character # and end with the 
end of the line, as in 

print x, y", tJtis is a comment 

4. Design 

The UNIX system already provides several 
programs that operate by passing input through a 
selection mechanism. Grep, the first and simplest, 
merely prints all lines which match a single 
specified pattern. Egrep provides more general 
patterns, i.e., regular expressions in full generality; 
fgrep searches for a set of keywords with a partic­
ularly fast algorithm. Sed 1 provides most of the 
editing facilities of the editor ed, applied to a 
stream of input. None of these programs provides 
numeric capabilities, logical relations, or variables. 

Lex 3 provides general regular expression 
recognition capabilities, and, by serving as a C 
program generator, is essentially open-ended in its 
capabilities. The use of lex, however, requires a 
knowledge of C programming, and a lex program 
must be compiled and loaded before use, which 
discourages its use for one-shot applications. 

AwA: is an attempt to fil! in another part of 
the matrix of possibilities. It provides general reg­
ular expression capabilities and an implicit 
input/output loop. But it also provides con­
venient numeric processing, variables, more general 
selection, and control flow in the actions. It does 



not require compilation or a knowledge of C. 
Finally, awk provides a convenient way to access 
fields within lines; it is unique in this respect. 

Awk also tries to integrate strings and 
numbers completely, by treating all quantities as 
both string and numeric, deciding which represen­
tation is appropriate as late as possible. In most 
cases the user can simply ignore the differences. 

Most of the effort in developing awk went 
into deciding what 4wk should or should not do 
(for instance, it doesn't do string substitution) and 
what the syntax should be (no explicit operator for 
concatenation) rather than on writing or debug­
ging the code. We have tried to make the syntax 
powerful but easy to use and well adapted to scan­
ning files. For example, the absence of declara­
tions and implicit initializations, while probably a 
bad idea for a general-purpose programming 
language, is desirable in a language that is meant 
to. be used for tiny programs that may even be 
composed on the command line. 

In practice, awk usage seems to fall into two 
broad categories. One is what might be called 
"report generation" - processing an input to 
extract counts, sums, sub-totals, etc. This also 
includes the writing of trivial data validation pro­
grams, such as verifying that a field contains only 
numeric information or that certain delimiters are 
properly balanced. The combination of textual 
and numeric processing is invaluable here. 

A second area of use is as a data 
transformer, converting data from the form pro­
duced by one program into that expected by 
another. The simplest examples merely select 
fields, perhaps with rearrangements. 

5. Implementation 

The actual implementation of awk uses the 
language development tools available on the UNIX 
operating system. The grammar is specified with 
yaee ;4 the lexical analysis is done by lez; the regu­
lar expression recognizers are deterministic finite 
automata constructed directly from the expres­
sions. An awk program is translated into a parse 
tree which is then directly executed by a simple 
interpreter. 

Awk was designed for ease of use rather 
than processing speed; the delayed evaluation of 
variable types and the necessity to break input 
into fields makes high speed difficult to achieve in 
any case. Nonetheless, the program has not pro­
ven to be unworkably slow. 

Table I below shows the execution (user + 
system) time on a PDP-U/70 of the UNIX pro­
grams we, grep, egrep, !grep, Bed, lez, and awk 
on the following simple tasks: 

1. count the number of lines. 

2. print all lines containing "doug". 

3. print all lines containing "doug", "ken" or 
"dmr". 

4. print the third field of each line. 

5. print the third and second fields of each line, 
in that order. 

6. append all lines containing "doug", "ken", 
and "dmr" to files "j doug " , "j ken ", and 
"jdmr", respectively. 

7. print each line prefixed by "line-number: ". 

8. sum the fourth column of a table. 

The program we merely counts words, lines and 
characters in its input; we have already mentioned 
the others. In all cases the input was a file con­
taining 10,000 lines as created by the command Is 
-I; each line has the form 

- rw- rw- rw- 1 ava 123 Oct 15 17:05 xxx 

The total length of this input is 452,960 charac­
ters. Times for lez do not include compile or load. 

As might be expected, awk is not as fast as 
the specialized tools we, Bed, or the programs in 
the grep family, but is faster than the more gen­
eral tool lez. In all cases, the tasks were about as 
easy to express as awk programs as programs in 
these other languages; tasks involving fields were 
considerably easier to express as awk programs. 
Some of the test programs are shown in awk, sed 
and lez. 
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P rOJl!;ram 1 2 

we 8.6 
grep 11.7 13.1 
egrep 6.2 11.5 
fgrep 7.7 13.8 
sed 10.2 11.6 
lez 65.1 150.1 
awk 15.0 25.6 

3 

11.6 
16.1 
15.8 

144.2 
29.9 

-7-

Task 
4 

29.0 
67.7 
33.3 

5 

30.5 
70.3 
38.9 

6 7 8 

16.1 
104.0 81.7 92.8 
46.4 71.4 31.1 

Table I. Execution Times of Programs. (Times are in sec.) 

The programs for some of these jobs are 
shown below. The lez programs are generally too 
long to show. 

AWK.: 

1. END {print NR} 

2. /doug/ 

3. /ken Idoug Idmr/ 

4. {print $3} 

LEX: 

I. ~ 
int i; 
~ 
~ 
\n i++; 

~ 
yywrapO { 

printl("o/'cd\n", i); 
} 

2. ~ 

- ----------~--- ----~ 

5. {print $3, S2} - .. doug .. $ printl("~\n", yytext); 

6. /ken/ 
/doug/ 
/dmr/ 

{print> "jken"} 
{print > "jdoug"} 
{print > "jdmr"} 

7. {print NR H: " SO} 

8. {sum == sum + S4} 
END {print sum} 

SED: 

1. $= 

2. /doug/p 

3. /doug/p 
/doug/d 
/ken/p 
/ken/d 
/dmr/p 
/dmr/d 

4. /I"]t [ ]t[' ]t [ ]t\W ]*\) "/.//V/p 

5. /f']* [ ]*\W ]*\) [ ]*\W ]*\) .. /./1\2 \I/p 

6. /ken/w jken 
/doug/w jdoug 
/dmr/w jdmr 

; 
\n ; 
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DC - An Interactive Desk Calculator 

Robert Morris 

Lorinda Oherry 

ABSTRAOT 

DC is an interactive desk calculator program implemented on the UNIXt 
time-sharing system to do arbitrary-precision integer arithmetic. It has provision 
for manipulating scaled fixed-point numbers and for input and output in bases 
other than decimal. 

The size of numbers that can be manipulated is limited only by available 
core storage. On typical implementations of UNIX, the size of numbers that can 
be handled varies from several hundred digits on the smallest systems to several 
thousand on the largest. 

September 12, 1986 

t UN]){ is a tra.dema.rk of Bell Laboratories. 
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DC - An Interactive Desk Calculator 

Robert Morria 

Lorinda Oherry 

DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing sys­
tem in the form of an interactive desk calculator. It works like a stacking calculator using reverse 
Polish notation. Ordinarily DC operates on decimal integers, but one may specify an input base, 
output base, and a number of fractional digits to be maintained. 

A language called BC [1] has been developed which accepts programs written in the familiar 
style of higher-level programming languages and compiles output which is interpreted by DC. 
Some of the commands described below were designed for the compiler interface and are not easy 
ror a human user to manipulate. 

Numbers that are typed into DC are put on a push-down stack. DC commands work by 
taking the top number or two oft' the stack, performing the desired operation, and pushing the 
result on the stack. If an argument is given, input is taken from that file until its end, then from 
the standard input. 

SYNOPTIC DESCRIPTION 

Here we describe the DC commands that are intended Cor use by people. The additional 
commands that are intended to be invoked by compiled output are described in the detailed 
description. 

Any number of commands are permitted on a line. Blanks and new-line characters are 
ignored except within numbers and in places where a register name is expected. 

The rollowing constructions are recognized: 

number 

The value of the number is pushed onto the main stack. A number is an unbroken string of 
the digits 0-9 and the capital letters A-F which are treated as digits with values 10-15 
respectively. The number may be preceded by an underscore to input a negative number. 
Numbers may contain decimal points. 

+-*%. 

ax 

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided (f), 
remaindered (%), or exponentiated ("). The two entries are popped oft' the stack; the result 
is pushed on the stack in their place. The result of a division is an integer truncated toward 
zero. See the detailed description below for the treatment or numbers with decimal points. 
An exponent must not have any digits after the decimal point. 

The top of the main stack is popped and stored into a register named x, where x may be any 
character. If the. is capitalized, :r is treated as a stack and the value is pushed onto it. Any 
character, even blank or new-line, is a valid register name. 
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The value in TeSister :r ispush~ onto the stack. The register :t is not altered. If the I is cap­
italized, register :t is treated as a stack and its top value is popped onto the main stack. 

All registers start with empty value which is treated as a zero by the command 1 and is treated as 
an error by the command L. 

d 

p 

t 

x 

[ ... ] 

q 

The top value on the stack is duplicated. 

The top value on the stack is printed. The top value remains unchanged. 

All values on the stack and in registers are printed. 

treats the top element of the stack as a character string, removes it from the stack, and exe­
cutes it as a string of DC commands. 

puts the bracketed character string onto the top of the stack. 

exits the program. If executing a string, the recursion level is popped by two. If q is capital­
ized, the top value on the stack is popped and the string execution level is popped by that 
value. 

<:t >:t =:t !<:t !>x !=:t 

v 

e 

i 

The top two elements of the stack are popped and compared. Register:t is executed if they 
obey the stated relation. Exclamation point is negation. 

replaces the top element on the stack by its square root. The square root of an integer is 
truncated to an integer. For the treatment of numbers with decimal points, see the detailed 
description below. 

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX 
command terminates. 

All values on the stack are popped; the stack becomes empty. 

The top value on the stack is popped and used as the number radix Cor Curther input. If i is 
capitalized, the value of the input base is pushed onto the stack. No mechanism has been 
provided Cor the input oCarbitrary numbers in bases less than 1 or greater than 16. 

c 
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The top value on the stack is popped and used as the number radix for further output. If 0 

is capitalized, the value of the output base is pushed onto the stack. 

The top of the stack is popped, and that value is used as a scale factor that influences the 
number of decimal places that are maintained during multiplication, division, and exponen­
tiation. The scale factor must be greater than or equal to zero and less than 100. If k is 
capitalized, the value of the scale factor is pushed onto the stack . 

The value of the stack level is pushed onto the stack. 

A line of input is taken from the input source (usually the console) and executed. 

DETAU..ED DESCRIPTION 

Internal Representation or Numbers 

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the 
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The string is 
stored with the low-order digit at the beginning of the string. For example, the representation of 
157 is 57,1. After any arithmetic operation on a number, care is taken that all digits are in the 
range 0-99 and that the number has no leading zeros. The number zero is represented by the 
empty string. 

Negative numbers are represented in the 100's complement notation, which is analogous to 
two's complement notation for binary numbers. The high order digit of a negative number is 
always -1 and all other digits are in the range 0-99. The digit preceding the high order -1 digit is 
never a 99. The representation of -157 is 43,98,-1. We shall call this the canonical form of a 
number. The advantage of this kind of representation of negative numbers is ease of addition. 
When addition is performed digit by digit, the result is formally correct. The result need only be 
modified, if necessary, to put it into canonical form. 

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition 
can be carried out and the handling of carries done later when that is convenient, as it sometimes 
is. 

An additional byte is stored with each number beyond the high order digit to indicate the 
number of assumed decimal digits after the decimal point. The representation of .001 is 1,9 where 
the scale has been italicized to emphasize the fact that it is not the high order digit. The value of 
this extra byte is called the scale factor of the number. 

The Allocator 

DC uses a dynamic string storage allocator for all of its internal storage. All reading and 
writing of numbers internally is done through the allocator. Associated with each string in the 
allocator is a four-word header containing pointers to the beginning of the string, the end of the 
string, the next place to write, and the next place to read. Communication between the allocator 
and DC is done via pointers to these headers. 

The allocator initially has one large string on a list of free strings. Al) headers except the one 
pointing to this string are on a list of free headers. Requests for strings are made by size. The size 
of the string actually supplied is the next higher power of 2. When a request for a string is made, 
the allocator first checks the free list to see if there is a string of the desired size. If none is found, 
the allocator finds the next larger free string and splits it repeatedly until it has a string of the 
right size. Left-over strings are put on the free list. If there are no larger strings, the allocator 
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tries to coalesce smaller free strings into larger ones. Since all strings are the result of splitting 
large strings, each string has a neighbor that is next to it in core and, if free, can be combined with 
it to make a string twice as long. This is an implementation of the 'buddy systemt of allocation 
described in [2]. 

Failing to find a string of the proper length after coalescing, the allocator asks the system for 
more space. The amount of space on the system is the only limitation on the size and number of 
strings in DC. It at any time in the process of trying to allocate a string, the allocator runs out of 
headers, it also asks the system for more space. 

There are routines in the allocator for reading, writing, copying, rewinding, forward-spacing, 
and backspacing strings. All string manipulation is done using these routines. 

The reading and writing routines increment the read pointer or write pointer so that the 
characters of a string are read or written in succession by a series of read or write calls. The write 
pointer is interpreted as the end of the information-containing portion of a string and a call to 
read beyond that point returns an end-o$-string indication. An attempt to write beyond the end of 
a string causes the allocator to allocate a larger space and then copy the old string into the larger 
block. 

Internal Arithmetic 
All arithmetic operations are done on integers. The operands (or operand) needed for the 

operation are popped from the main stack and their scale factors stripped off. Zeros are added or 
digits removed as necessary to get a properly scaled result from the internal arithmetic routine. 
For example, if the scale of the operands is different and decimal alignment is required, as it is for 
addition, zeros are appended to the operand with the smaller scale. After performing the required 
arithmetic operation, the proper scale factor is appended to the end of the number before it is 
pushed on the stack. 

A register called seale plays a part in the results of most arithmetic operations. seale is the 
bound on the number of decimal places retained in arithmetic computations. seale may be set to 
the number on the top of the stack truncated to an integer with the k command. K may be used 
to push the value of scale on the stack. scale must be greater than or equal to 0 and less than 
100. The descriptions of the individual arithmetic operations will include the exact effect of seale 
on the computations. 

Addition and Subtraction 

The scales of the two numbers are compared and trailing zeros are supplied to the number 
with the lower scale to give both numbers the same scale. The number with the smaller scale is 
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the 
larger of the scales of the two operands. 

Subtraction is performed by negating the number to be subtracted and proceeding as in addi-
tion. 

Finally, the addition is performed digit by digit from the low qrder end of the number. The 
carries are propagated in the usual way. The resUlting number is brought into canonical form, 
which may require stripping of leading zeros, or for negative numbers replacing the high-order 
configuration 99,-1 by the digit -1. In any case, digits which are not in the range 0-99 must be 
brought into that range, propagating any carries or borrows that result. 

Multiplication 

The scales are removed from the two operands and saved. The operands are both made posi­
tive. Then multiplication is performed in a digit by digit manner that exactly'mimics the hand 
method of multiplying. The first number is multiplied by each digit of the second number, begin­
ning with its low order digit. The intermediate products are accumulated into a partial sum which 
becomes the final product. The product is put into the canonical form and its sign is computed 
from the signs of the original operands. c 
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The seale of the result is set equal to the sum of the scales of the two operands. If that scale 
is larger than the internal register scale and also larger than both of the seales of the two 
operands, then the seale of the result is set equal to the largest of these three last quantities. 

Division 

The scales are removed from the two operands. Zeros are appended or digits removed from 
the dividend to make the scale of the result of the integer division equal to the internal quantity 
scale. The signs are removed and saved. 

Division is performed much as it would be done by hand. The difference of the lengths of the 
two numbers is computed. If the divisor is longer than the dividend, zero is returned. Otherwise 
the top digit of the divisor is divided into the top two digits of the dividend. The result is used as 
the first (high-order) digit of the quotient. It may turn out be one unit too low, but if it is, the 
next trial quotient will be larger than 99 and this will be adjusted at the end of the process. The 
trial digit is multiplied by the divisor and the result subtracted from the dividend and the process 
is repeated to get additional quotient digits until the remaining dividend is smaller than the divi­
sor. At the end, the digits of the quotient are put into the canonical form, with propagation of 
carry as needed. The sign is set from the sign of the operands. 

Remainder 

The division routine is called and division is performed exactly as described. The quantity 
returned is the remains of the dividend at the end of the divide process. Since division truncates 
toward zero, remainders have the same sign as the dividend. The seale of the remainder is set to 
the maximum of the seale of the dividend and the seale of the quotient plus the seale of the divi­
sor. 

Square Root 

The seale is stripped from the operand. Zeros are added if necessary to make the integer 
result have a scale that is the larger of the internal quantity seale and the scale of the operand. 

The method used to compute sqrt(y) is Newton's method with successive approximations by 
the rule 

The initial guess is found by taking the integer square root of the top two digits. 

Exponentiation 

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 
1. If the exponent is negative, then it is made positive and the base is divided into one. The scale 
of the base is removed. 

The integer exponent is viewed as a binary number. The base is repeatedly squared and the 
result is obtained as a product of those powers of the base that correspond to the positions of the 
one-bits in the binary representation of the exponent. Enough digits of the result are removed to 
make the scale of the result the same as if the indicated multiplication had been performed. 

Input Conversion and Base 

Numbers are converted to the internal representation as they are read in. The scale stored 
with a number is simply the number of fractional digits input. Negative numbers are indicated by 
preceding the number with a _. The hexadecimal digits A-F correspond to the numbers 10-15 
regardless of input base. The i command can be used to change the base of the input numbers. 
This command pops the stack, truncates the resulting number to an integer, and uses it as the 
input base for all further input. The input base is initialized to 10 but may, for example be 
changed to 8 or 16 to do octal or hexadecimal to decimal conversions. The command I will push 
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the value of the input base on the stack. 

Output Commands 

The command p causes the top of the stack to be printed. It does not remove the top of the 
stack. All of the stack and internal registers can be output by typing the command r. The 0 com­
mand can be used to change the output base. This command uses the top of the stack, truncated 
to an integer as the base for all further output. The output base in initialized to 10. It will work 
correctly for any base. The command 0 pushes the value of the output base on the stack. 

Output Format and Base 

The input and output bases only aO'ect the interpretation of numbers on input and output; 
they have no effect on arithmetic computations. Large numbers are output with 70 characters per 
line; a \ indicates a continued line. All choices of input and output bases work correctly, although 
not all are useful. A particularly useful output base is 100000, which has the effect of grouping 
digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-hexadecimal conversions. 

Internal Registers 

Numbers or strings may be stored in internal registers or loaded on the stack from registers 
with the commands s and I. The command sz pops the top of the stack and stores the result in 
register x. z can be any character. lz puts the contents of register x on the top of the stack. The 
I command has no effect on the contents of register z. The s command, however, is destructive. 

Stack Commands 

The command c clears the stack. The command d pushes a duplicate of the number on the 
top of the stack on the stack. The command. pushes the stack size on the stack. The command 
X replaces the number on the top of the stack with its seale factor. The command Z replaces the 
top of the stack with its length. 

Subroutine Definitions and Calls 

Enclosing a string in 0 pushes the ascii string on the stack. The q command quits or in exe­
cuting a string, pops the recursion levels by two. 

Internal Registers - Programming DC 

The load and store commands together with 0 to store strings, x to execute and the testing 
commands '<', I>', '=', '!<', 'I>', '!=' can be used to program DC. The x command assumes 
the top of the stack is an string of DC commands and executes it. The testing commands compare 
the top two elements on the stack and if the relation holds, execute the register that follows the 
relation. For example, to print the numbers 0-9, 

[lipl+ si lilO>a]sa 
Osi lax 

Push-Down Registers and Arrays 

These commands were designed for used by a compiler, not by people. They involve push­
down registers and arrays. In addition to the stack that commands work on, DC can be thought 
of as having individual stacks for each register. These registers are operated on by the commands 
S and L. Sz pushes the top value of the main stack onto the stack for the register z. Lz pops the 
stack for register z and puts the result on the main stack. The commands s and I also work on 
registers but not as push-down stacks. I doesn't effect the top of the register stack, and s destroys 
what was there before. 

The commands to work on arrays are : and;. :z pops the stack and uses this value as an 
index into the array z. The next element on the stack is stored at this index in z. An index must 

) 
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be greater than or equal to 0 and less than 2048. ;% is the command to load the main stack from 
the array %. The value on the top of the stack is the index into the array % of the value to be 
loaded. 

Miscellaneous Commands 

The command! interprets the rest of the line as a UNIX 
command and passes it to UNIX to execute. One other compiler command is Q. This command 

uses the top of the stack as the number of levels of recursion to skip. 

DESIGN CHOICES 

The real reason for the use of a dynamic storage allocator was that a general purpose pro­
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some 
value for input and for compiling (i.e. the bracket [ ... ] commands) where it cannot be known in 
advance how long a string will be. The result was that at a modest cost in execution time, all con­
siderations of string allocation and sizes of strings were removed from the remainder of the pro­
gram and debugging was made easier. The allocation method used wastes approximately 25% of 
available space. 

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. 
Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in space, 
debugging was made a great deal easier and decimal output was made much faster. 

The reason for a stack-type arithmetic design was to permit all DC commands from addition 
to subroutine execution to be implemented in essentially the same way. The result was a consider­
able degree of logical separation of the final program into modules with very little communication 
between modules. 

The rationale for the lack of interaction between the scale and the bases was to provide an 
understandable means of proceeding after a change of base or scale when numbers had already 
been entered. An earlier implementation which had global notions of scale and base did not work 
out well. If the value of scale were to be interpreted in the current input or output base, then a 
change of base or scale in the midst of a computation would cause great confusion in the interpre­
tation of the results. The current scheme has the advantage that the value of the input and out­
put bases are only used for input and output, respectively, and they are ignored in all other opera­
tions. The value of scale is not used for any essential purpose by any part of the program and it is 
used only to prevent the number of decimal places resulting from the arithmetic operations from 
growing beyond all bounds. 

The design rationale for the choices for the scales of the results of arithmetic were that in no 
case should any significant digits be thrown away if, on appearances, the user actually wanted 
them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give him 
thi result 5.017 without requiring him to unnecessarily specify his rather obvious requirements for 
precision. 

On the other hand, multiplication and exponentiation produce results with many more digits 
than their operands and it seemed reasonable to give as a minimum the number of decimal places 
in the operands but not to give more than that number of digits unless the user asked for them by 
specifying a value for scale. Square root can be handled in just the same way as multiplication. 
The operation of division gives arbitrarily many decimal places and there is simply no way to 
guess how many places the user wants. In this case only, the user must specify a scale to get any 
decimal places at all. 

The scale of remainder was chosen to make it possible to recreate the dividend from the quo­
tient and remainder. This is easy to implement; no digits are thrown away. 



-8-

References 

[IJ L. L; Cherry, R. Morris, BO - An Ar6itra'l' Preciaion Deak-OtJIculator Language. 

[2J K. C. Knowlton, A F4at Storage AUocator, Comm. ACM 8, pp. 623-625 (Oct. 1965). 



(~/. 

( 

BC - An Arbitrary Precision Desk-Calculator Language 

Lon'nda Cherry 

Robert MOrri8 

ABSTRACT 

Be is a language and a compiler for doing arbitrary precision arithmetic on 
the PDP-ll under the UNIXt time-sharing system. The output of the compiler is 
interpreted and executed by a collection of routines which can input, output, and 
do arithmetic on indefinitely large integers and on scaled fixed-point numbers. 

These routines are themselves based on a dynamic storage allocator. 
Overflow does not occur until all available core storage is exhausted. 

The language has a complete control structure as well as immediate-mode 
operation. Functions can be defined and saved for later execution. 

Two five hundred-digit numbers can be multiplied to give a thousand digit 
result in about ten seconds. 

A small collection of library functions is also available, including sin, cos, 
arctan, log, exponential, and Bessel functions of integer order. 

Some of the uses of this compiler are 

to do computation with large integers, 

to do computation accurate to many decimal places, 

conversion of numbers from one base to another base. 

September 12, 1986 

t UNIX is a trademark or Bell Laboratories. 
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BC - An Arbitrary Precision Desk-Calculator Language 

Introduction 

Lorinda Cherry 

Robert Morna 

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX time­
sharing system [1]. The compiler was written to make conveniently available a collection of rou­
tines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size. The com­
piler is by no means intended to provide a complete programming language. It is a minimal 
language facility. 

There is a scaling provision that permits the use of decimal point notation. Provision is 
made for input and output in bases other than decimal. Numbers can be converted from decimal 
to octal by simply setting the output base to equal 8. 

The actual limit on the number of digits that can be handled depends on the amount of 
storage available on the machine. Manipulation of numbers with many hundreds of digits is possi­
ble even on the smallest versions of UNIX. 

The syntax of BC has been deliberately selected to agree substantially with the C language 
[2]. Those who are familiar with C will find few surprises in this language. 

Simple Computations with Integers 

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, 
if you type in the line: 

142857 + 285714 

the program responds immediately with the line 

428571 

The operators -, *, /, %, and " can also be used; they indicate subtraction, multiplication, divi­
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer 
result truncated toward zero. Division by zero produces an error comment. 

Any term in an expression may be prefixed by a minus sign to indicate that it is to be 
negated (the 'unary' minus sign). The expression 

7+-3 

is interpreted to mean that -3 is to be added to 7. 

More complex expressions with several operators and with parentheses are interpreted just as 
in Fortran, with" having the greatest binding power, then * and % and /, and finally + and -. 
Contents of parentheses are evaluated before material outside the parentheses. Exponentiations are 
performed from right to left and the other operators from left to right. The two expressions 

a"b"c and a"(b"c} 

are equivalent, as are the two expressions 

a*b*c and (a*b)*c 

BC shares with Fortran and C the undesirable convention that 
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a/b*c is equivalent to (a/b)*c 

Internal storage registers to hold numbers have single lower-case letter names. The value of 
an expression can be assigned to a register in the usual way. The statement 

x==x+3 

has the effect ot increasing by three the value of the contents of the register named x. When, as in 
this case, the outermost operator is an ==, the assignment is performed but the result is not 
printed. Only 26 of these named storage registers are available. 

There is a built-in square root function whose result is truncated to an integer (but see scal­
ing below). The lines 

x == sqrt(191) 
x 

produce the printed result 

13 

Bases 

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase', ini­
tially set to 10, determines the base used for interpreting numbers read in. For example, the lines 

ibase == 8 
11 

will produce the output line 

9 

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the 
input base back to decimal by typing 

ibase = 10 

Because the number 10 is interpreted as octal, this statement will have no effect. For those who 
deal in hexadecimal notation, the characters A-F are permitted in numbers (no matter what base 
is in effect) and are interpreted as digits having values 10-15 respectively. The statement 

ibase = A 

will change you back to decimal input base no matter what the current input base is. Negative 
and large positive input bases are permitted but useless. No mechanism has been provided for the 
input of arbitrary numbers in bases less than 1 and greater than 16. 

lines 
The contents of 'obase', initially set to 10, are used as the base for output numbers. The 

obase == 16 
1000 

will produce the output line 

3E8 

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permitted, 
and they are sometimes useful. For example, large numbers can be output in groups of five digits 
by setting 'obase' to 100000. Strange (i.e. 1, 0, or negative) output bases are handled appropri­
ately. 

Very large numbers are split across lines with 70 characters per line. Lines which are contin­
ued end with ,. Decimal output conversion is practically instantaneous, but output of very large C··" 

'j 
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numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output conver­
sion of a one hundred digit number takes about three seconds. 

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of inter­
nal computation or on the evaluation of expressions, but only affect input and output conversion, 
respectively. 

Scaling 

A third special internal quantity called 'scale' is used to determine the scale of calculated 
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional 
part is retained in further computations. We refer to the number of digits after the decimal point 
of a number as its scale. 

When two scaled numbers are combined by means of one of the arithmetic operations, the 
result has a scale determined by the following rules. For addition and subtraction, the scale of the 
result is the larger of the scales of the two operands. In this case, there is never any truncation of 
the result. For multiplications, the scale of the result is never less than the maximum of the two 
scales of the operands, never more than the sum of the scales of the operands and, subject to those 
two restrictions, the scale of the result is set equal to the contents of the internal quantity 'scale'. 
The scale of a quotient is the contents of the internal quantity 'scale'. The scale of a remainder is 
the sum of the scales of the quotient and the divisor. The result of an exponentiation is scaled as 
if the implied multiplications were performed. An exponent must be an integer. The scale of a 
square root is set to the maximum of the scale of the argument and the contents of 'scale'. 

All of the internal operations are actually carried out in terms of integers, with digits being 
discarded when necessary. In every case where digits are discarded, truncation and not rounding is 
performed. 

The contents of 'scale' must be no greater than 99 and no less than O. It is initially set to O. 
In case you need more than 99 fraction digits, you may arrange your own scaling. 

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like other 
variables. The line 

scale = scale + 1 

increases the value of 'scale' by one, and the line 

scale 

causes the current value of 'scale' to be printed. 

The value of 'scale' retains its meaning as a number of decimal digits to be retained in inter­
nal computation even when 'ibase' or 'obase' are not equal to 10. The internal computations 
(which are still conducted in decimal, regardless of the bases) are performed to the specified number 
of decimal digits, never hexadecimal or octal or any other kind of digits. 

Functions 

The name of a function is a single lower-case letter. Function names are permitted to collide 
with simple variable names. Twenty-six different defined functions are permitted in addition to 
the twenty-six variable names. The line 

define a(x){ 

begins the definition of a function with one argument. This line must be followed by one or more 
statements, which make up the body of the function, ending with a right brace}. Return of con­
trol from a function occurs when a return statement is executed or when the end of the function is 
reached. The return statement can take either of the two forms 

return 
return{x) 
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In the first case, the value of the function is 0, and in the second, the value of the expression in 
parentheses. 

Variables used in the function can be declared as automatic by a statement of the form 

auto x,y,Z 

There can be only one 'auto' statement in a function and it must be the first statement in the 
definition. These automatic variables are allocated space and initialized to zero on entry to the 
function and thrown away on return. The values of any variables with the same names outside 
the function are not disturbed. Functions may be called recursively and the automatic variables at 
each level of call are protected. The parameters named in a function definition are treated in the 
same way as the automatic variables of that function with the single exception that they are given 
a value on entry to the function. An example of a function definition is 

define a(x,y){ 
auto z 

} 

z = x*y 
return(z) 

The value of this function, when caBed, wiIJ be the product of its two arguments. 

A function is called by the appearance of its name foHowed by a string of arguments enclosed 
in parentheses and separated by commas. The result is unpredictable if the wrong number of argu~ 
ments is used. 

Functions with no arguments are defined and called using parentheses with nothing between 
them: bOo 

If the function a above has been defined, then the line 

&(7,3.14) 

would cause the result 21.98 to be printed and the line 

x = a(&(3,4),5) 

would cause the value of x to become 60. 

Subscripted Variables 

A single lower-case letter variable name foHowed by an expression in brackets is called a sub­
scripted variable (an array element). The variable name is called the array name and the expres­
sion in brackets is called the subscript. Only one-dimensional arrays are permitted. The names of 
arrays are permitted to collide with the names of simple variables and function names. Any frac­
tional part of a subscript is discarded before use. Subscripts must be greater than or equal to zero 
and less than or equal to 2047. 

Subscripted variables may be freely used in expressions, in function calls, and in return state­
ments. 

An array name may be used as an argument to a function, or may be declared as automatic 
in a function definition by the use of empty brackets: 

f(a[]) 
define f(a[]) 
auto a[] 

When an array name is so used, the whole contents of the array are copied for the use of the func­
tion, and thrown away on exit from the function. Array names which refer to whole arrays cannot 
be used in any other contexts. 
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Control Statements 

The 'if', the 'while', and the 'for' statements may be used to alter the flow within programs 
or to cause iteration. The range of each of them is a statement or a compound statement consist­
ing of a collection of statements enclosed in braces. They are written in the following way 

or 

it'(relation) statement 
whil e( relation) statement 
for( expression 1 ; relation; expression2) statement 

it'(relation) {statements} 
while(relation) {statements} 
for(expressionl; relation; expression2) {statements} 

A relation in one of the control statements is an expression of the form 

x>y 

where two expressions are related by one of the six relational operators <, >, < =, > =, ==, 
or !=. The relation == stands for 'equal to' and != stands for 'not equal to'. The meaning of 
the remaining relational operators is clear. 

BEWARE of using = instead of == in a relational. Unfortunately, both of them are legal, 
so you will not get a diagnostic message, but = really will not do a comparison. 

The 'it" statement causes execution of its range it' and only it' the relation is true. Then con­
trol passes to the next statement in sequence. 

The 'while' statement causes execution of its range repeatedly as long as the relation is true. 
The relation is tested before each execution of its range and if the relation is false, control passes to 
the next statement beyond the range of the while. 

The 'for' statement begins by executing 'expression 1 '. Then the relation is tested and, if 
true, the statements in the range of the 'for' are executed. Then 'expression2' is executed. The 
relation is tested, and so on. The typical use of the 'for' statement is for a controlled iteration, as 
in the statement 

for(i=l; i<=lO; i=i+l) i 

which will print the integers from 1 to 10. Here are some examples of the use of the control state­
ments. 

The line 

define f(n}{ 
auto i, x 
x=l 
for(i=l; i<=n; i=i+l) x=x·i 
return(x) 
} 

f(a) 

will print a factorial if a is a positive integer. Here is the definition of a function which will com­
pute values of the binomial coefficient (m and n are assumed to be positive integers). 
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x==1 
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ror(j=l; j<=mj j j+l) x=x*(n-j+l)/j 
retum(x) 
} 

The rollowing runction computes values or the exponential runction by summing the appropriate 
series without regard ror possible truncation errors: 

scale = 20 
define e(x){ 

} 

auto a, b, c, d, n 
a=1 
b==1 
c= 1 
d==O 
n=1 
while{I===I){ 

} 

a = a*x 
b == b*n 
c == c + a/b 
n==n+l 
ir(c==d) return(c) 
d==c 

Some Details 

There are some language reatures that every user should know about even if he will not use 
them. 

Normally statements are typed one to a line. It is also permissible to type several statements 
on a line separated by semicolons. 

IT an assignment statement is parenthesized, it then has a value and it can be used anywhere 
that an expression can. For example, the line 

(x=y+17) 

not only makes the indicated assignment, but also prints the resulting value. 

Here is an example or a use of the value or an assignment statement even when it is not 
parenthesized. 

x == a[i=i+l] 

causes a value to be assigned to x and also increments i berore it is used as a subscript. 

The rollowing constructs work in BC in exactly the same manner as they do in the C 
language. Consult the appendix or the C manuals [2] ror their exact workings. 

c 
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x=y=z is the same as 
x=+y 
x=-y 
x=*y 
x=/y 
x=%y 
x =. y 
x++ 
x­
++x 
-x 
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x==(y=z) 
x=x+y 
x=x-y 
x= x*y 
x=x/y 
x=x%y 
x=x·y 
(x=x+I)-1 
(x=x-I)+I 
x=x+1 
x=x-I 

Even if you don't intend to use the constructs, if you type one inadvertently, something correct 
but unexpected may happen. 

WARl\i1NGl In some of these constructions, spaces are significant. There is' a real difference 
between x=-y and x= -y. The first replaces x by x-y and the second by -y. 

Three Important Things 

1. To exit a BC program, type 'quit'. 

2. There is a comment convention identical to that of C and of PL/I. Comments begin with 
'/*' and end with '*j'. 

3. There is a library of math functions which may be obtained by typing at command level 

be -I 

This command will load a set of library functions which, at the time of writing, consists of sine 
(named's'), cosine ('c'), arctangent ('a'), natural logarithm ('1'), exponential ('e') and Bessel func­
tions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The library sets 
the scale to 20. You can reset it to something else if you like. The design of these mathematical 
library routines is discussed elsewhere [3]. 

If you type 

be file ... 

BC will read and execute the named file or files before accepting commands from the keyboard. In 
this way, you may load your favorite programs and function definitions. 
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Appendix 

1. Notation 

In the following pages syntactic categories are in italic8; literals are in bold; material in 
brackets [J is optional. 

2. Tokens 

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separa­
tors may be blanks, tabs or comments. Newline characters or semicolons separate statements. 

2.1. Comments 

Comments are introduced by the characters /'" and terminated by '" /. 

2.2. Identifiers 

There are three kinds of identifiers - ordinary identifiers, array identifiers and function 
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by 
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly dimen­
sioned and may contain up to 2048 elements. Indexing begins at zero so an array may be indexed 
from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed by 
parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a program 
can have a variable named x, an array named x and a function named x, all of which are separate 
and distinct. 

2.3. Keywords 

The following are reserved keywords: 
ibase if 
obase break 
seale define 
sqrt auto 
length return 
while quit 
tor 

2.4. Constants 

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade­
cimal digits A-F are also recognized as digits with values 10-15, respectively. 

3. Expressions 

The value of an expression is printed unless the main operator is an assignment. Precedence 
is the same as the order of presentation here, with highest appearing first. Left or right associa-
tivity, where applicable, is discussed with each operator. ' 
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8.1. Primitive expressions 

8.1.1. Named expressions 

Named expressions are places where values are stored. Simply stated, named expressions are 
legal on the left side of an assignment. The value of a named expression is the value stored in the 
place named. 

8.1.1.1. identlJler8 

Simple identifiers are named expressions. They have an initial value of zero. 

8.1.1.2. array-name [ ezpre8sion ] 

Anay elements are named expressions. They have an initial value of zero. 

3.1.1.3. scale, ibase and obase 

The internal registers scale, ibase and obase are all named expressions. scale is the 
number of digits after the decimal point to be retained in arithmetic operations. scale has an ini­
tial value of zero. ibase and obase are the input and output number radix respectively. Both 
ibase and obase have initial values of 10. 

3.1.2. Function calls 

3.1.2.1. function-name ([ expre8sion [, expression . .. J ]) 

A function call consists of a function name followed by parentheses containing a comma­
separated list of expressions, which are the function arguments. A whole array passed as an argu­
ment is specified by the array name followed by empty square brackets. All function arguments 
are passed by value. As a result, changes made to the formal parameters have no effect on the 
actual arguments. If the function terminates by executing a return statement, the value of the 
function is the value of the expression in the parentheses of the return statement or is zero if no 
expression is provided or if there is no return statement. 

3.1.2.2. sqrt ( expre88ion) 

The result is the square root of the expression. The result is truncated in the least significant 
decimal place. The scale of the result is the scale of the expression or the value of scale, whichever 
is larger. 

8.1.2.3. length ( expre88ion ) 

The result is the total number of significant decimal digits in the expression. The scale of the 
result is zero. 

3.1.2.4. scale ( expre8sion) 

The result is the scale of the expression. The scale of the result is zero. 

3.1.3. Constants 
Constants are primitive expressions. 

3.1.4. Parentheses 

An expression surrounded by parentheses is a primitive expression. The parentheses are used 
to alter the normal precedence. 
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8.2. Unary operators 

The unary operators bind right to left. 

8.2.1. - expression 

The result is the negative of the expression. 

8.2.2. ++ named-expression 

The named expression is incremented by one. The result is the value of the named expres­
sion after incrementing. 

8.2.3. - named-expression 

The named expression is decremented by one. The result is the value of the named expres­
sion after decrementing. 

3.2.4. named-expression ++ 
The named expression is incremented by one. The result is the value of the named expres­

sion before incrementing. 

3.2.5. named-expression-

The named expression is decremented by one. The result is the value of the named expres­
sion before decrementing. 

3.3. Exponentiation operator 

The exponentiation operator binds right to left. 

3.3.1. expression· expression 

The result is the first expression raised to the power of the second expression. The second 
expression must be an integer. If 4 is the scale of the left expression and 6 is the absolute value of 
the right expression, then the scale of the result is: 

min ( aX6, max ( scale, 4) ) 

8.4. Multiplicative operators 

The operators *, I, % bind left to right. 

3.4.1. expression· expression 

The result is the product of the two expressions. If a and 6 are the scales of the two expres­
sions, then the scale of the result is: 

min ( 4+6, max ( scale, a, 6) ) 

8.4.2. expression / expression 

The result is the quotient of the two expressions. The scale of the result is the value of 
scale. 

3.4.3. expression % expreuion 

The % operator produces the remainder of the division of the two expressions. More pre­
cisely, a%6 is a-a/6*6. 

The scale of the result is the sum of the scale of the divisor and the value of scale 



( 

( 

(j 

- 11-

3.0. Additive operators 

The additive operators bind left to right. 

3.0.1. ezpreaaion + ezpreaaion 

The result is the sum of the two expressions. The scale of the result is the maximun of the 
scales of the expressions. 

3.0.2. ezpreaaion - ezpreuion 

The result is the difference of the two expressions. The scale of the result is the maximum of 
the scales of the expressions. 

3.6. 88Signment operators 

The assignment operators bind right to left. 

3.6.1. named-ezpreaaion = ezpreaaion 

This expression results in assigning the value of the expression on the right to the named 
expression on the left. 

3.6.2. named-expreaaion =+ expreaaion 

3.6.3. named-expreaaion =- expreuion 

3.6.4. named-ezpreaaion =* expruaion 

3.6.0. named-expreasion =/ expression 

3.6.6. named-expression =% expression 

3.6.7. named-expression =" expreasion 

The result of the above expressions is equivalent to "named expression = named expression 
OP expression", where OP is the operator after the = sign. 

4. Relations 

Unlike all other operators, the relational operators are only valid as the object of an if, 
while, or inside a for statement. 

4.1. expression < expression 

4.2. expression > ezpression 

4.3. expression < = expreuion 

4.4. expression > = expreasion 

4.0. expreasion == ezpreuion 

4.6. expression != ezpreaaion 

O. Storage CI88SeS 

There are only two storage classes in Be, global and automatic (local). Only identifiers that 
are to be local to a function need be declared with the auto command. The arguments to a func­
tion are local to the function. All other identifiers are assumed to be global and available to all 
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runctions. All identifiers, global and local, have initial values of zero. Identifiers declared as auto 
are allocated on entry to the function and released on returning rrom the function. They therefore 
do not retain values between function calls. auto arrays are specified by the array name followed 
by empty square brackets. 

Automatic variables in BC do not work in exactly the same way as in either C or PLjl. On 
entry to a runction, the old values of the names that appear as parameters and as automatic vari­
ables are pushed onto a stack. Until return is made rrom the function, rererence to these names 
refers only to the new values. 

8. Statements 

Statements must be separated by semicolon or newline. Except where altered by control 
statements, execution is sequential. 

8.1. Expression statements 

When a statement is an expression, unless the main operator is an assignment, the value of 
the expression is printed, followed by a newline character. 

8.2. Compound statements 

Statements may be grouped together and used when one statement is expected by surround­
ing them with { }. 

8.3. Quoted string statements 

"any string" 

This statement prints the string inside the quotes. 

8.4. It statements 

ir( relation) statement 

The substatement is executed if the relation is true. 

8.5. While statements 

while ( relation) statement 

The statement is executed while the relation is true. The test occurs before each execution of 
the statement. 

8.8. For statements 

for ( expression; relation; expression) statement 

The for statement is the same as 
first- expression 
while (relation) { 

} 

statement 
last-expression 

All three expressions must be present. 

8.'1. Break statements 

break 

break causes termination of a for or while statement. 
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The auto statement causes the values of the identifiers to be pushed down. The identifiers 
can be ordinary identifiers or array identifiers. Array identifiers are specified by following the 
array name by empty square brackets. The auto statement must be the first statement in a func­
tion definition. 

6.9. Define statements 

define( [parameter [ , parameter . .. l] ) { 
statements} 

The define statement defines a function. The parameters may be ordinary identifiers or array 
names. Array names must be followed by empty square brackets. 

6.10. Return statements 

return 

return( expression) 

The return statement causes termination of a function, popping of its auto variables, and 
specifies the result of the function. The first form is equivalent to return(O). The result of the 
function is the result of the expression in parentheses. 

6.11. Quit 

The quit statement stops execution of a Be program and returns control to UNIX when it is 
first encountered. Because it is not treated as an executable statement, it cannot be used in a func­
tion definition or in an if, for, or while statement. 
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PROC286S Software Support and 
the Dose Command under ICON/UXB@ 

Mark Muhlestein 

ICON INTERNATIONAL, INC. 
October 10, 1986 

This document describes the implementation oC d08c and related soCtware Cor 
the ICON computer systems. It is intended to assist developers and system 
administrators to understand the interCace between ICON/UXB and the 
ICON/DOS environment. l 

1. Hardware 

The PROC286 has a 16K message buffer which is addressable Crom both the 
PROC286 and the DCP (Disk Cache Processor). This message buffer is used Cor param­
eter and data buffers which support terminal and disk I/O Crom the DCP. The message 
buffer is fully dual-ported and supports indivisible read-modify-write accesses. The mes­
sage buffer starts at OxDCOOOOOO in the PROC286 address space. The PROC286 and 
the DCP are also capable oC interrupting each other. 

2. Software 

2.1. Character device support 

The first half of the message buffer is dedicated to character silos which handle the 
transfer of character data to and from the PROC286. This memory is divided into 
eight slots which provide bi-directional character I/O capability for up to eight Multi­
LinkS partitions. There are two silos for each of the eight slots, one for input to the 
PROC286 one for output. Each silo has a header which contains the insert and extract 
pointers within the silo. A version of MultiLink is provided which reads and writes 
these silos. If the consumer side of a silo is unable to remove the data fast enough, the 
producer side must wait for space to become available before inserting more data into 
the silo. 

ICON/UXB supports access to the silos as terminal (tty) devices. They are typi­
cally called /dev /mttyO through /dev /mtty7. They behave as ordinary terminal dev­
ices for all ICON/UXB software. Data written to mtty lines appears in the PROC286 
input silos, and data placed in PROC286 output· silos may be read by reading the 
appropriate mtty line. 

The dosc program simply opens one of the mtty lines and then listens to the user's 
terminal for keyboard input, as well as listening to the mtty line for MultiLink output. 
All keyboard input is scanned to watch for exit and suspend sequences, then written to 
the mtty line. All mtty input (MultiLink output) is simply displayed on the user's ter­
minal. 

1 The lCON/DOS package includes a licensed version of Ms.-DOS. from Microsoft, and other 
ICON-developed support programs. The term "DOS" will be used throughout to refer generically 
to the ICON/DOS environment and services provided by Ms.-DOS. 

PROC286 and ICONfUXB are trademarks of ICON INTERNATIONAL, INC. 
MS-DOS is a trademark of Microsoft, Inc. 

MultiLink is a trademark of The Software Link, Inc. 



Unless the user specifies a partition, the first thing dosc has to do is find an avail­
able partition. The directory /usr /spool/uucp is scanned to find the first available par­
tition which does not have a lock file. The lock files are named LCK .. mttyn, and dosc 
creates one exclusively for the mtty line it opens. If, for some reason, a dosc process is 
killed and does not exit normally, the lock file may be left in /usr /spool/uucp. Until 
the lock file is removed, d08c will not access the corresponding mtty line. During sys­
tem restart all lock files are automatically removed by /etc/rc. 

The file /etc/mttys should contain with the number of MultiLink partitions which 
have been started. If all MultiLink partitions are busy, the user is directed to try again 
later. 

When d08c initializes, it first determines the terminal type by examining the 
environment variable TERM.2 The terminal is sent an initialization sequence which 
causes the screen to blank then repaint the MultiLink partition's screen image. Once 
d08c has initialized the terminal, the terminal keyboard sends make-break scan codes. 
This means that if dosc is not able to send the reset command to the terminal before 
exiting (the system went down or the dosc process was killed), the terminal will send 
unintelligible scan codes to the ICON/UXB environment. To correct this situation, it is 
necessary to power the terminal off then back on, then, if the user is still logged in, type 
'reset A J' (control-J) to reset the sUy parameters to some-thing sensible. If the reset com­
mand doesn't seem to work, try it again. As a last resort, kill the user's shell process. 

There are two ways to return from the DOS environment to the ICON/UXB 
environment: exit and suspend. See the manual entry for dosc(1) for the exact key 
sequence to use for each. The exit sequence causes dosc to reset the keyboard to nor­
mal ascii mode, remove the lock file, and exit. Because the lock file is removed, dosc 
will be successful the next time it attempts to access the corresponding partition. This 
means that the user will have the same DOS environment the original user had when he 
left. For this reason, it may not be advisable to use the exit command sequence while 
in an DOS application because it may be confusing to the next user of that partition. 

The suspend sequence causes dosc to reset the keyboard to normal ascii mode, but 
it leaves the lock file in place. It then sends itself a STOP signal which suspends execu­
tion and returns to csh. The user may then use any desired ICON/UXB commands 
without danger of his DOS session being interfered with. When the user is ready to 
continue the DOS session, he may do so by using the 'fg' command of csh. If the user 
has other background jobs he can do a 'jobs' command to see which one to 'fg' back to. 

2.2. Disk support 

The other half of the message buffer is dedicated to handling disk requests from 
DOS. There is a small parameter block at the start of the disk section, followed by 
seventeen 512 byte buffers. DOS never requests more than seventeen contiguous blocks, 
so all requests can be satisfied n one transfer. The PROC286 BIOS has been imple­
mented to support disk type 14 as an "ICON/UXB" type disk. All DOS requests to 
type 14 disks are routed through the PROC286 message buffer and access specially 
designated partitions on hard disks which are physically connected to the DCP. 

2 The current version supports fully only one type of terminal: the ICON DT1200· Data 
Terminal. Other types of terminals may be supported, but they may have problems interacting 
with MultiLink. See the MultiLink Advanced manual for a discussion of support for other 
terminals. 

DT1200 is a trademark of ICON INTERNATIONAL, INC. C· "" . . j 
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Part of the function of the DCP is to periodically examine the PROC286 message 
buffer for disk requests. Since the BIOS interface is at the block level, I/O requests are 
in the form of a read or write of a specified number of blocks, starting with a specified 
block number. 

Currently the DOS disks are assigned as follows: If the PROC286 setup indicates 
that drive 0 is other than type 14, the BIOS assumes a real PC-type disk is present and 
it assigns it as drive C. If drive 0 is type 14, it is assigned to the first ICONjUXB vir­
tual disk.3 If drive 1 is type 14, it is assigned to the next available ICONjUXB virtual 
disk. It is currently not possible to have the ICONjUXB disk as drive C and a real 
PC-type disk as drive D. It is imperative that any PROC286 type 14 drives have 
an ICON /UXB virutal disk defined tor them. 

Once the ICONjUXB system is up, DOS initialization of type 14 disks and instal­
lation of DOS software may proceed normally (fdisk, format, etc.). Disk access is tran­
sparent to programs which use the BIOS for disk requests except that file accesses are 
likely to be much faster because the DCP uses its cache memory for servicing the 
requests. 

One of the difficult issues with using the above-described interface is that certain 
popular DOS-compatible programs make direct access to the disk hardware for the pur­
pose of enforcing copy protection schemes. Obviously, if no disk hardware is present on 
the PROC286 these schemes are doomed to failure. Users should be aware that it is 
possible to destroy distribution diskettes by attempting to install the copy protected 
software onto a type 14 disk. The application's install program copies the software to 
the hard disk, issues commands to the (non-existent) hard disk controller, then disables 
the installation diskette from further use. Any method which allows the application to 
be copied will permit it to be successfully installed. 

2.3. Special utilities to facilitate ICON/UXB-DOS synergy (or at least, 
peaceful coexistence). 

This section describes the programs available under DOS which can be used to 
facilitate access to ICONjUXB resources, as well as to allow ICON/UXB to have access 
to DOS files. These utilities use the UNIXn and SLPTn DOS device drivers to imple­
ment a data path between the two systems. 

2.3.1. The UNIXn DOS device driver 

The config.sys file supplied by ICON should have an entry for 
device UNIX.DEV in it. This interface supports eight character devices, UNIXO 
through UNIX7. These devices correspond to /dev /mttyO through /dev /mtty7 on the 
ICONjUXB side, and may be used to write software to communicate between the pro­
cessors. Because the data path is totally internal to the machine, the data transfer 
rates are adequate for most file transfer purposes. Greater speed can be achieved by 
directly manipulating the PROC286 message buffer, at the cost of somewhat increased 
application program complexity. Contact ICON for further information. 

3 See dosdisk(8} and dosdisks(5). 
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2.3.2. The SLPTn DOS device driver 
This driver permits the redirection of DOS printer output to the ICONjUXB 

spooling system. Eight virtual spooled devices are supported, SLPTO through SLPT7. 
Data written to these devices is read by a server process (dospr.'nt) on the ICONjUXB 
system through one of the /dev /mtty devices (/dev /mtty6 by default). 

The config.sys entry for this driver has the following form: 

device-SLPT.DEV [mtt)'n] (LPT1>SLPTnl] tLPTa>SLPTna] (LPT3>SLPTnS] 

where items enclosed in square brackets are optional. 

The first parameter a.lIows overriding the mtty line used for communication with 
ICON/UXB. The default value of mtty6 should be used unless it is necessary to use the 
corresponding MultiLink partition for some reason. If it becomes necessary to change 
this parameter, the correct a.rgument to the ICON/UXB dosprint program (described 
below) must be supplied. 

The other three optional parameters may be used to intercept output which would 
normally go to the standard DOS parallel printers and redirect it to the desired SLPT 
printer for eventual printing by the ICON/UXB spooler. For example, the line 

device=SLPT .DEV LPT1>SLPTO 1..,PT2>SLPT5 
in the config.sys file will cause all output for the LPTI printer to go to SLPTO, the out­
put for the LPT2 printer to go to SLPT5, and the output for the LPT3 printer (if any) 
to go to the actual DOS printer. 

All output to the SLPT devices is spooled into files on the ICON/UXB file system. 
The spool files are created in the /usr /spool/dos directory. If two MultiLink partitions 
direct output to the same printer two different spool files will be created. It is not 
necessary to use the MultiLink spooler when using the SLPT driver.4 

The dosprint program runs as an ICON/UXB "daemon" server process which is 
initiated as part oC the startup procedure. Its function is to interpret the data stream 
from the SLPT driver. This data has header inCormation which tells which MultiLink 
partition and SLPT printer generated that data. As data is received it is sorted and 
output to the correct spool file. Every 10 seconds the dosprint program checks to see 
which active spool files have received data. If two consecutive checks pass without data 
being sent to a given spool file, that file is closed and all accumulated data is queued Cor 
printing using the ICON/UXB /pr command. The interval between checks Cor active 
spool files may be adjusted from 10 seconds if necessary (e.g. on a heavily loaded sys­
tem). 

The file /etc/dosprinters is provided in order to route the output from a specific 
SLPT print device to the desired ICON/UXB spooled printer. This file consists of zero 
or more lines in the following format: 

x pr [opt] 
where x is 0-7 corresponding to SLPT0-7, pr is the ICON/UXB printer to receive the 
output, and [opt] is an optional string which is passed to Ipr which can be used to set 
various modes. For example, 

• Actually. there appears to be an incompatibility in the current release of MultiLink with the 
DOS PRINT command. Since background printing is available through either the SLPT driver or 
MultiLink spooling, this is not seen as a serious problem. 



1 Ip 
3 Ip -p -h 
7 icanthor 

- 5 -

specifies that the output from SLPTI should be spooled to Hlp" (this is actually the 
default); the output from SLPT3 is spooled to lp with the -p and -h Hags (which causes 
lpr to pass the file through the pr filter and print it without the header); and the out­
put from SLPT7 is spooled to a printer known in /etc/printcap as "icanthor". If the 
printer specifies a remote destination (that is, on another node on the ICON/UXB net­
work), the ICON/UXB spooler will automatically forward print files to that node. 
Notice that it is not necessary to specify an entry for all eight printers; all SLPT dev­
ices default to "lp" with no options. See the manual entries for printcap(5) and lpr(l) 
in the MPS/UX Reference Manual for further information on setting up the ICON/UXB 
spooler. 

2.3.3. The UCOPY program 

UCOPY is an DOS program that allows users to transfer data between the DOS 
and ICON/UXB environments. Because peripheral devices are accessed as files in both 
environments it is also possible to copy data to and from those peripheral devices. 
UCOPY communicates to an ICON/UXB server process (doscopycl) through the 
/dev /mtty7 port. This device is currently reserved for use by DOS utility programs 
which use doscopyd. 

The UCOPY command syntax is 

UCOPY[/A] :[user]:pathnamel pathname2 
or 

UCOPY[/A] pathnamel :[user]:pathname2 

In both cases, pathnamel is copied to pathname2 with the ':' indicating the 
ICON/UXB pathname. Between the colons the user may supply an optional 
ICON/UXB user name to be used for the copy. If no user name is given, the default is 
the user name of the dosc process. If the command is given from the DOS main console 
(which is not logged in under ICON/UXB) a user name must be supplied. 

The pathnamel and pathname2 arguments must be specified as files on both 
systems; they may not be directory names. Either forward or backward slashes may be 
used to specify path names for either argument; UCOPY converts them to the appropri­
ate type for each environment. 

The DOS environment variable UDm. may be set to a directory pathname in the 
ICON/UXB file structure. UDm. will be prepended to the ICON/UXB pathname argu­
ment if the argument does not begin with a slash. This allows several files to be copied 
to or from the same ICON/UXB directory without having to specify the directory every 
time UCOPY is invoked. 

If the ICON/UXB d08copyd daemon verifies that the permissions are correct, the 
source file exists, etc., the transfer is made. If the ICON/UXB file can not be accessed 
or created because the ICON/UXB user name is not authorized to perform the action, 
or because a specified user name requires a password, UCOPY prompts the user for a 
new user name and password. This is continued until the user supplies a valid user 
name and password, or UCOPY runs out of patience. 

The /A switch should be used for copying text type files. It specifies that when 
transferring from ICON/UXB to DOS, ascii CR characters are to be inserted at the end 
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of each line. When copying from DOS to ICON/UXB all ascii CR characters are 
removed from the data stream, and copying stops if a AZ is encountered. The fA 
option thus converts text files to the appropriate standard representation for each of 
the systems. 

Application-specific conversion packages are available which allow various data­
base, word processing, etc., file formats to be utilized on both systems. 

Currently the UCOPY functionality is only available from the DOS environment, 
and it allows only one user to do file transfers at a time. This is because of the single­
threaded nature of DOS. In the future, ICON may provide a server running in a Mul­
tiLink partition to allow handling multiple concurrent copies, as well as copy requests 
from ICON /UXB users. 

2.3.4. The TAR utility tor DOS 
The DOS version of TAR provides the user in the DOS environment the ability to 

back up and restore files and directory structures. It uses the same format as the 
ICON/UXB tar program for data storage and tar files may be freely interchanged 
between the two environments. TAR uses the ICON/UXB d08copyd server process to 
copy data to and from the backup medium. Any suitable ICON/UXB file or device 
may be used. The command syntax for DOS TAR is the same as that used in 
ICON/UXB except that the rand u options are not supported.5 TAR may be used to 
copy or move a directory structure to another part of the DOS file system without hav­
ing to copy each directory and subdirectory individually. Individual files may also be 
extracted from the backup. 

2.3.5. Whodos 
Whodo8 provides a user in the ICON/UXB environment the ability to monitor 

dose users and determine which MultiLink partitions are in use and by whom. It can 
be useful when all partitions are in use, or a specific partition is needed and it is in use. 
It is invoked from the ICON/UXB environment simply by entering the command 

whod08 

from the shell. The number of partitions available is determined from the file 
fetcfmttys. 

6 The subset of TAR options supported is not yet finalized. 
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JOVE Manual for UNIX Users 

Jonathan Payne 
(revised for .4,.9BSD by Doug Kingston and Mark Seiden) 

1. Introduction 

JOVE* is an advanced, self-documenting, customizable real-time display editor. It (and this tutorial intro­
duction) are based on the original EMACS editor and user manual written at M.I.T. by Richard Stall­
man+. 

JOVE is considered a display editor because normally the text being edited is visible on the screen and is 
updated automatically as you type your commands. 

It's considered a real-time editor because th~ display is updated very frequently, usually after each charac­
ter or pair of characters you type. This minimizes the amount of information you must keep in your head 
as you edit. 

JOVE is advanced because it provides facilities that go beyond simple insertion and deletion: filling of text; 
automatic indentations of programs; view more than one file at once; and dealing in terms of characters, 
words, lines, sentences and paragraphs. It is much easier to type one command meaning "go to the end of 
the paragraph" than to find the desired spot with repetition of simpler commands. 

Self-documenting means that at almost any time you can easily find out what a command does, or to find 
all the commands that pertain to a topic. 

Customizable means that you can change the definition of JOVE commands in little ways. For example. 
you can rearrange the command set; if you prefer to use arrow keys for the four basic cursor motion com­
mands (up, down, left and right), you can. Another sort of customization is writing new commands by 
combining built in commands. 

2. The Organization of the Screen 

JOVE divides the screen up into several sections. The biggest of these sections is used to display the text 
you are editing. The terminal's cursor shows the position of point, the location at which editing takes 
place. \Vhile the cursor appears to point at a character, point should be thought of as between characters; 
it points before the character that the cursor appears on top of. Terminals have only one cursor, and when 
output is in progress it must appear where the typing is being done. This doesn't mean that point is mov­
ing; it is only that JOVE has no way of showing you the location of point except when the terminal is idle. 

The lines of the screen are usually available for displaying text but sometimes are pre-empted by typeout 
from certain commands (such as a listing of all the editor commands). Most of the time, output from com­
mands like these is only desired for a short period of time, usually just long enough to glance at it. When 
you have finished looking at the output, you can type Space to make your text reappear. (Usually a Space 
that you type inserts itself, but when there is typeout on the screen, it does nothing but get rid of that). 
Any other command executes normally, after redrawing your text. 

2.1. The Message Line 

The bottom line on the screen, called the message line, is reserved for printing messages and for accepting 
input from the user, such as filenames or search strings. When JOVE prompts for input, the cursor will 
temporarily appear on the bottom line, waiting for you to type a string. When you have finished typing 
your input, you can type a Return to send it to JOVE. If you change your mind about running the com­
mand that is waiting for input, you can type Control-G to abort, and you can continue with your editing. 

-JOVE stands for Jonathan's Own Version of Emacs. 
+Although JOVE is meant to be compatible with EMACS, and indeed many of the basic commands are very 
similar, there are some major differences between the two editors, and you should not rely on their behaving 
identically. 
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When JOVE is prompting for a filename, all the usual editing facilities can be used to fix typos and such; in 
addition, JOVE has the following extra functions: 

AN Insert the next filename from the argument list. 

Ap Insert the previous filename from the argument list. 

AR Insert the full pathname of the file in the current buffer. 

Sometimes you will see -more- on the message line. This happens when typeout from a command is too 
long to fit in the screen. It means that if you type a Space the next screenful of typeout will be printed. If 
you are not interested, typing anything but a Space will cause the rest of the output to be discarded. Typ­
ing C-G will discard the output and print A60rted where the -more- was. Typing any other command 
will discard the rest of the output and also execute the command. 

The message line and the list of filenames from the shell command that invoked JOVE are kept in a special 
buffer called Mini6ufthat can be edited like any other buffer. 

2.2. The Mode Line 

At the bottom of the screen, but above the message line, is the mode line. The mode line format looks like 
this: 

JOVE (major minor) Buft'er: burr "file" * 
maior is the name of the current maior mode. At any time, JOVE can be in only one major mode at a time. 
Currently there are only four major modes: Fundamental, Text, Lisp and O. 

minor is a list of the minor modes that are turned on. Abbrev means that Word A66rev mode is on; AI 
means that Auto Indent mode is on; Fill means that Auto Fill mode is on; OvrWt means that Over Write 
mode is on. Def means that you are in the process of defining a keyboard macro. This is not really a 
mode, but it's useful to be reminded about it. The meanings of these modes are described later in this 
document. 

6ufr is the name of the currently selected 6uffer. Each buffer has its own name and holds a file being 
edited; this is how JOVE can hold several files at once. But at any given time you are editing only one of 
them, the selected buffer. When we speak of what some command does to "the buffer", we are talking 
about the currently selected buffer. Multiple buffers makes it easy to switch around between several files, 
and then it is very useful that the mode line tells you which one you are editing at any time. (You will see 
later that it is possible to divide the screen into multiple windows, each showing a different buffer. If you 
do this, there is a mode line beneath each window.) 

file is the name of the file that you are editing. This is the default filename for commands that expect a 
filename as input. 

The asterisk at the end of the mode line means that there are changes in the buffer that have not been 
saved in the file. If the file has not been changed since it was read in or saved, there is no asterisk. 

3. Command Input Conventions 

3.1. Notational Conventions for ASCn Characters 

In this manual, "Control" characters (that is, characters that are typed with the Control key and some 
other key at the same time) are represented by ftC-ft followed by another character. Thus, C-A is the char­
acter you get when you type A with the Control key (sometimes labeled CTRL) down. Most control char­
acters when present in the JOVE buffer are displayed with a caret; thus, • A for C-A. Rubout (or DEL) is 
displayed as A1, escape as A [. 

3.2. Command and Filename Completion 

When you are typing the name of a JOVE command, you need type only enough letters to make the name 
unambiguous. At any point in the course of typing the name, you can type question mark (?) to see a list 
of all the commands whose names begin with the characters you've already typed; you can type Space to 
have JOVE supply as many characters as it can; or you can type Return to complete the command if there 

-------------
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is only one possibility. For example, if you have typed the letters "au" and you then type a question mark, 
you will see the list 

auto-execute-command 
auto-execute-macro 
auto-fill-mode 
auto-indent-mode 

If you type a Return at this point, JOVE will complain by ringing the bell, because the letters you've typed 
do not unambiguously specify a single command. But if you type Space, JOVE will supply the charact.ers 
otto_" because all commands that begin "IIU" also begin "auto-". You could then type the letter ",. followed 
by either Space or Return, and JOVE would complete the entire command. 

Whenever JOVE is prompting you for a filename, say in the find-file command, you also need only type 
enough of the name to make it unambiguous with respect to files that already exist. In this case, question 
mark and Space work just as they do in command completion, but Return always accepts the name just as 
you've typed it, because you might want to create a new file with a name similar to that of an existing file. 

4. Commands and Variables 

JOVE is composed of commands which have long names such as next-line. Then keys such as CoN are con­
nected to commands through the command di8patch tllble. When we say that CoN moves the cursor down 
a line, we are glossing over a distinction which is unimportant for ordinary use, but essential for simple 
customization: it is the command next-line which knows how to move a down line, and C-N moves down a 
line because it is connected to that command. The name for this connection is a binding; we say that the 
key C-N is bound to the command next-line. 

Not all commands are bound to keys. To invoke a command that isn't bound to a key, you can type the 
sequence ESC X, which is bound to the command execute-named-command. You will then be able to type 
the name of whatever command you want to execute on the message line. 

Sometimes the description of a command will say "to change this, set the variable mumble-foo". A variable 
is a name used to remember a value. JOVE contains variables which are there so that you can change them 
if you want to customize. The variable's value is examined by some command, and changing that value 
makes the command behave differently. Until you are interesting in customizing JOVE, you can ignore this 
information. 

4.1. Prefix Characters 

Because there are more command names than keys, JOVE provides prefix characters to increase the number 
of commands that can be invoked quickly and easily. When you type a prefix character JOVE will wait for 
another character before deciding what to do. IT you wait more than a second or so, JOVE will print the 
prefix character on the message line as a reminder and leave the cursor down there until you type your next 
character. There are two prefix characters built into JOVE: Escape and Control-X. How the next character 
is interpreted depends on which prefix character you typed. For example, if you type Escape followed by B 
you'll run backward-word, but if you type Control-X followed by B you'll run select-buffer. Elsewhere in 
this manual, the Escape key is indicated as ''ESC'', which is also what JOVE displays on the message line for 
Escape. 

4.2. Help 

To get a list of keys and their associated commands, you type ESC X describe-bindings. IT you want to 
describe a single key, ESC X describe-key will work. A description of an individual command is available 
by using ESC X describe-command, and descriptions of variables by using ESC X describe-variable. IT you 
can't remember the name of the thing you want to know about, ESC X apropos will tell you if a command 
or variable has a given string in its name. For example, ESC X apropos describe will list the names of the 
four describe commands mentioned briefly in this section. 



S. Basic Editing Commands 

5.1. Inserting Text 

To insert printing characters into the text you are editing, just type them. All printing characters you 
type are inserted into the text at the cursor (that is, at point), and the cursor moves forward. Any charac­
ters after the cursor move forward too. If the text in the buffer is FOOBAR, with the cursor before the B, 
then if you type XX, you get FOOXXBAR, with the cursor still before the B. 

To correct text you have just inserted, you can use Rubout. Rubout deletes the character be/ore the cursor 
(not the one that the cursor is on top of or under; that is the character after the cursor). The cursor and 
all characters after it move backwards. Therefore, if you typing a printing character and then t.ype 
Rubout, they cancel out. 

To end a line and start typing a new one, type Return. Return operates by inserting a line-separator, so if 
you type Return in the middle of a line, you break the line in two. Because a line-separator is just a single 
character, you can type Rubout at the beginning of a line to delete the line-separator and join it wit.h the 
preceding line. 

As a special case, if you type Return at the end of a line and there are two or more empty lines just below 
it, JOVE does not insert a line-separator but instead merely moves to the next (empty) line. This behayior 
is convenient when you want to add several lines of text in the middle of a buffer. You can use t.he 
Control-O (newline-and-backtlp) command to "open" several empty lines at once; then you can insert. t.he 
new text, filling up these empty lines. The advantage is that. JOVE does not have to redraw the bottom 
part of the screen for each Return you type, as it would ordinarily. That "redisplay" can be both slow and 
distracting. 

If you add too many characters to one line, without breaking it with Return, the line will grow too long to 
display on one screen line. When this happens, JOVE puts an "!" at the extreme right. margin, and doesn't. 
bother to display the rest of the line unless the cursor happens to be in it. The "!" is not part of your text; 
conversely, even though you can't see the rest of your line, it's still there, and if you break the line, the "'" 
will go away. //", 

Direct insertion works for printing characters and space, but other characters act as editing commands and,,-j 
do not insert themselves. If you need to insert a control character, Escape, or Rubout, you must first quote 
it by typing the Control-Q command first. 

5.2. Moving the Cursor 

To do more than insert characters, you have to know how to move the cursor. Here are a few of the com­
mands for doing that. 

C-A Move to the beginning of the line. 

C-E Move to the end of the line. 

C-F Move forward over one character. 

C-B 

C-N 

C-P 

ESC < 
ESC> 

ESC, 

ESC. 

Move backward over one character. 

Move down one line, vertically. If you start in the middle of one line, you end in the 
middle of the next. 

Move up one line, vertically. 

Move to the beginning of the entire buffer. 

Move to the end or the entire buffer. 

Move to the beginning of the visible window. 

Move to the end of the visible window. 

c: 
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&.3. Erasing Text 

Rubout 

C-D 

C-K 

Delete the character before the cursor. 

Delete the character after the cursor. 

Kill to the end oC the line. 

You already know about the Rubout command which deletes the character beCore the cursor. Another 
command, Control-D, deletes the character aCter the cursor, causing the rest oC the text on the line to shiCt 
leCt. IT Control-D is typed at the end oC a line, that line and the next line are joined together. 

To erase a larger amount oC text, use the Control-K command, which kills a line at a time. IC Control-K is 
done at the beginning or middle oC a line, it kills all the text up to the end of the line. If Control-K is 
done at the end oC a line, it joins that line and the next line. IT Control-K is done twice, it kills the rest of 
the line and the line separator also. 

&.4. Files - Saving Your Work 

The commands above are sufficient for creating text in the JOVE buffer. The more advanced JOVE com­
mands just make things easier. But to keep any text permanently you must put it in a file. Files are the 
objects which UNIXt uses Cor storing data for a length of time. To tell JOVE to read text into a file, choose 
a filename, such as foo.bar, and type C-X C-R foo.bar<return>. This reads the file foo.bar so that its 
contents appear on the screen for editing. You can make changes, and then save the file by typing C-X C­
S (save-file). This makes the changes permanent and actually changes the file foo.bar. Until then, the 
changes are only inside JOVE, and the file foo.bar is not really changed. IC the file foo.bar doesn't exist, and 
you want to create it, read it as iC it did exist. When you save your text withC-X C-S the file will be 
created. 

&.5. Exiting and Pausing - Leaving JOVE 

The command C-X C-C (exit-jove) will terminate the JOVE session and return to the shell. IC there are 
modified but unsaved buffers, JOVE will ask you for confirmation, and you can abort the command, look at 
what buffers are modified but unsaved using C-X C-B (list-buffers), save the valuable ones, and then exit. 
If what you want to do, on the other hand, is preserve the editing session but return to the shell tem­
porarily you can (under Berkeley UNIX only) issue the command ESC S (pau8e-jove), do your UNIX work 
within the c-shell, then return to JOVE using the fg command to resume editing at the point where you 
paused. For this sort of situation you might consider using an interactive 8hell (that is, a shell in a JOVE 

window) which lets you use editor commands to manipulate your UNIX commands (and their output) while 
never leaving the editor. (The interactive shell feature is described below.) 

5.6. Giving Numeric Arguments to JOVE Commands 

Any JOVE command can be given a numeric argument. Some commands interpret the argument as a 
repetition count. For example, giving an argument of ten to the C-F command (forward-character) moves 
forward ten characters. With these commands, no argument is equivalent to' an argument of 1. 

Some commands use the value of the argument, but do something peculiar (or nothing) when there is no 
argument. For example, ESC G (goto-/ine) with an argument n goes to the beginning of the n'th line. 
But ESC G with no argument doesn't do anything. Similarly, C-K witn an argument kills that many 
lines, including their line separators. Without an argument, C-K when there is text on the line to the right 
of the cursor kills that text; when there is no text after the cursor, C-K deletes the line separator. 

The fundamental way of specifying an argument is to use ESC followed by the digits of the argument, for 
example, ESC 123 ESC G to go to line 123. Negative arguments are allowed, although not all of the com­
mands know what to do with one. 

Typing C-U means do the next command Cour times. Two such C-U's multiply the next command by six­
teen. Thus, C-U C-U C-F moves forward sixteen characters. This is a good way to move forward quickly, 

t UNIX is a. tra.demark of Bell Laboratories. 
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since it moves about 1/4 of a line on most terminals. Other useful combinations are: C-U C-U C-N (move 
down a good fraction of the screen), C-U C-U 0.0 (make "a lot" of blank lines), and o.U o.K (kill four 
lines - note that typing C-K four times would kill 2 lines). 

There are other, terminal-dependent ways of specifying arguments. They have the same effect but may be 
easier to type. If your terminal has a numeric keypad which sends something recognizably different from 
the ordinary digits, it is possible to program JOVE to to allow use of the numeric keypad for specifying 
arguments. 

0.'1. The Mark and the Region 
In general, a command that processes an arbitrary part of the buffer must know where to start and where 
to stop. In JOVE, such commands usually operate on the text between point and the mark. This body of 
text is called the region. To specify a region, you set point to one end of it and mark at the other. It 
doesn't matter which one comes earlier in the text. 

C-@ Set the mark where point is. 

C-X C-X Interchange mark and point. 

For example, if you wish to convert part of the buffer to all upper-case, you can use the o.X C-U com­
mand, which operates on the text in the region. You can first go to the beginning of the text to be capital­
ized, put the mark there, move to the end, and then type O-X C-U. Or, you can set the mark at the end 
of the text, move to the beginning, and then type C-X C-U. C-X C-U runs the command case-region­
upper, whose name signifies that the region, or everything between point and mark, is to be capitalized. 

The way to set the mark is with the O-@ command or (on some terminals) the o.Space command. They 
set the mark where point is. Then you can move point away, leaving mark behind. When the mark is set, 
"[Point pushed]" is printed on the message line. 

Since terminals have only one cursor, there is no way for JOVE to show you where the mark is located. 
You have to remember. The usual solution to this problem is to set the mark and then use it soon, before 
you forget where it is. But you can see where the mark is with the command o.X C-X which puts the 
mark where point was and point where mark was. The extent of the region is unchanged, but the cursor 
and point are now at the previous location of the mark. 

5.8. The Ring of Marks 

Aside from delimiting the region, the mark is also useful for remembering a spot that you may want to go 
back to. To make this feature more Useful, JOVE remembers 16 previous locations of the mark. Most com­
mands that set the mark push the old mark onto this stack. To return to a marked location, use O-U 0-
@. This moves point to where the mark was, and restores the mark from the stack of former marks. So 
repeated use of this command moves point to all of the old marks on the stack, one by one. Since the 
stack is actually a ring, enough uses of C-U O-@ bring point back to where it was originally. 

Some commands whose primary purpose is to move point a great distance take advantage of the stack of 
marks to give you a way to undo the command. The best example is ESC <, which moves to the begin­
ning of the buffer. If there are more than 22 lines between the beginning of the buffer and point, ESC < 
sets the mark first, so that you can use O-U C-@ or O-X C-X to go back to where you were. You can 
change the number of lines from 22 since it is kept in the variable mark-threshold. By setting it to 0, you 
can make these commands always set the mark. By setting it to a very large number you can prevent 
these commands from ever setting the mark. If a command decides to set the mark, it prints the message 
[Point pushed}. 

0.9. Killing and Moving Text 

The most common way of moving or copying text with JOVE is to kill it, and get it back again in one or 
more places. This is very safe because the last several pieces of killed text are all remembered, and it is 
versatile, because the many commands for killing syntactic units can also be used for moving those units. 
There are also other ways of moving text for special purposes. 
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5.10. Deletion and Killing 

Most commands which erase text from the buffer save it so that you can get it back if you change your 
mind, or move or copy it to other parts of the buffer. These commands are known as kill commands. The 
rest of the commands that erase text do not save it; they are known as delete commands. The delete com­
mands include o.D and Rubout, which delete only one character at a time, and those commands that 
delete only spaces or line separators. Commands that can destroy significant amounts of nontrivial data 
generally kill. A command's name and description will use the words kill or delete to say which one it 
does. 

o.D 

Rubout 

ESC \ 

o.X C-O 

o.K 

o.W 

ESCD 

ESC Rubout 

ESCK 

o.X Rubout 

5.11. Deletion 

Delete next charact.er. 

Delete previous character. 

Delete spaces and tabs around point. 

Delete blank lines around the current line. 

Kill rest of line or one or more lines. 

Kill region (from point to the mark). 

Kill word. 

Kill word backwards. 

Kill to end of sent.ence. 

Kill to beginning of sentence. 

The most basic delete commands are C-D and Rubout. o.D deletes the character after the cursor, the one 
the cursor is "on top of' or "underneath". The cursor doesn't move. Rubout deletes the character before 
the cursor, and moves the cursor back. Line separators act like norma] characters when deleted. Actually, 
o.D and Rubout aren't always delete commands; if you give an argument, they kill instead. This prevents 
you from losing a great deal of text by typing a large argument to a o.D or Rubout. 

The other delete commands are those which delete only formatting characters: spaces, tabs, and line 
separators. ESC \ (delete-white-8pace) deletes all the spaces and tab characters before and after point. C­
X 0.0 (delete-blank-line8) deletes all blank lines after the current line, and if the current line is blank 
deletes all the blank lines preceding the current line as well (leaying one blank line, the current line). 

5.12. Killing by Lines 

The simplest kill command is the o.K command. If issued at the beginning of a line, it kills all the text on 
the line, leaving it blank. If given on a line containing only white space (blanks and tabs) the line disap­
pears. As a consequence, if you go to the front of a non-blank line and type two o.K's, the line disappears 
completely. 

More generally, C-K kills from point up to the end of the line, unless it is at the end of a line. In that 
case, it kills the line separator following t he line, thus merging the next line into the current one. Invisible 
spaces and tabs at the end of the line are ignored when deciding which case applies, so if point appears to 
be at the end of the line, you can be sure the line separator will be killed. 

o.K with an argument of zero kills all the text before point on the current line. 

5.13. Other Kill Commands 

A kill command which is very general is o.W (kill-region), which kills everything between point and the 
mark.* With this command, you can kill and save contiguous characters, if you first set the mark at one 
end of them and go to the other end. 

Other syntactic units can be killed, too; words, with ESC Rubout and ESC D; and, sentences, with ESC K 
and o.X Rubout. 

·Often users switch this binding from C-W to C-X C-K because it is too ea.sy to hit C-W accidentally. 
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5.14. Un-killing 

Un-killing (yanking) is getting back text which was killed. The usual way to move or copy text is to kill it 
and then un-kill it one or more times. 

C-Y Yank (re-insert) last killed text·. 

ESC Y Replace re-inserted killed text with the previously killed text. 

ESC W Save region as last killed text without killing. 

Killed text is pushed onto a ring buffer called the kill ring that remembers the last 10 blocks of text that 
were killed. (Why it is called a ring buffer will be explained below). The command C-Y (,ank) reinserts 
the text of the most recent kill. It leaves the cursor at the end of the text, and puts the mark at the begin­
ning. Thus, a single C-Y undoes the C-W. 

If you wish to copy a block of text, you might want to use ESC W (copy-region), which copies the region 
into the kill ring without removing it from the buffer. This is approximately equivalent to C-W followed 
by C-Y, except that ESC W does not mark the buffer as "changed" and does not cause the screen to be 
rewritten. 

There is only one kill ring shared among all the buffers. After visiting a new file, whatever was last killed 
in the previous file is still on top of the kill ring. This is important for moving text between files. 

5.15. Appending Kills 

Normally, each kill command pushes a new block onto the kill ring. However, two or more kill commands 
immediately in a row (without any other intervening commands) combine their text into a single entry on 
the ring, so that a single C-Y command gets it all back as it was before it was killed. This means that you 
don't have to kill all the text in one command; you can keep killing line after line, or word after word, 
until you have killed it all, and you can still get it all back at once. 

Commands that kill forward from point add onto the end of the previous killed text. Commands that kill 
backward from point add onto the beginning. This way, any sequence of mixed forward and backward kill 
commands puts all the killed text into one entry without needing rearrangement. 

5.16. Un-killing Earlier Kills 

To recover killed text that is no longer the most recent kill, you need the ESC Y (yank-pop) command. 
The ESC Y command can be used only after a C-Y (yank) command or another ESC Y. It takes the un­
killed text inserted by the C-Y and replaces it with the text from an earlier kill. So, to recover the text of 
the next-to-the-last kill, you first use C-Y to recover the last kill, and then discard it by use of ESC Y to 
move back to the previous kill. 

You can think of all the last few kills as living on a ring. After a C-Y command, the text at the front of 
the ring is also present in the buffer. ESC Y "rotates" the ring bringing the previous string of text to the 
front and this text replaces the other text in the buffer as well. Enough ESC Y commands can rotate any 
part of the ring to the front, so you can get at any killed text so long as it is recent enough to be still in 
the ring. Eventually the ring rotates all the way around and the most recently killed text comes to the 
front (and into the buffer) again. ESC Y with a negative argument rotates the ring backwards. 

When the text you are looking for is brought into the buffer, you can stop doing ESC Y's and the text will 
stay there. It's really just a copy of what's at the front of the ring, so editing it does not change what's in 
the ring. And the ring, once rotated, stays rotated, so that doing another C-Y gets another copy of what 
you rotated to the front with ESC Y. 

If you change your mind about un-killing, C-W gets rid of the un-killed text, even after any number of 
ESCY's. 

8. Searching 

The search commands are useful for finding and moving to arbitrary positions in the buffer in one swift 
motion. For example, if you just ran the spell program on a paper and you want to correct some word, 
you can use the search commands to 1J)0ve directly to that word. There are two flavors of search: Btring 
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,earch and incremental ,earch. The former is the default flavor-if you want to use incremental search you 
must rearrange the key bindings (see below). 

8.1. Conventional Search 

C-S Search forward. 

C-R Search backward. 

To search for the string "Faa" you type "C-S FOO<return>". If JOVE finds Faa it moves point to the 
end of it; otherwise JOVE prints an error message and leaves point unchanged. C-S searches forward from 
point so only occurrences of Faa after point are found. To search in the other direction use C-R. It is 
exactly the same as C-S except it searches in the opposite direction, and if it finds the string, it leaves point 
at the beginning of it, not at the end as in C-S. 

While JOVE is searching it prints the search string on the message line. This is so you know what JOVE is 
doing. When the system is heavily loaded and editing in exceptionally large buffers, searches can take 
several (sometimes many) seconds. 

JOVE remembers the last search string you used, so if you want to search for the same string you can type 
"C-S <return>". If you mistyped the last search string, you can type C-S followed by C-R. C-R, as 
usual, inserts the default search string into the minibuffer, and then you can fix it up. 

8.2. Incremental Search 

This search command is unusual in that is is incremental; it begins to search before you have typed the 
complete search string. AI; you type in the search string, JOVE shows you where it would be found. When 
you have typed enough characters to identify the place you want, you can stop. Depending on what you 
will do next, you mayor may not need to terminate the search explicitly with a Return first. 

The command to search is C-S (i-,earch-/orwarJ). C-S reads in characters and positions the cursor at the 
first occurrence of the characters that you have typed so far. If you type CoS and then F, the cursor moves 
in the text just after the next ''F''. Type an "0", and see the cursor move to after the next "Fa". Alter 
another "0", the cursor is after the next ''Faa''. At the same time, the ''Faa'' has echoed on the message 
line. 

If you type a mistaken character, you can rub it out. Alter the Faa, typing a Rubout makes the "0" 
disappear from the message line, leaving only ''FO''. The cursor moves back in the buffer to the ''Fa''. 
Rubbing out the "0" and ''F'' moves the cursor back to where you started the search. 

When you are satisfied with the place you have reached, you can type a Return, which stops searching, 
leaving the cursor where the search brought it. Also, any command not specially meaningful in searches 
stops the searching and is then executed. Thus, typing C-A would exit the search and then move to the 
beginning of the line. Return is necessary only if the next character you want to type is a printing charac­
ter, Rubout, Return, or another search command, since those are the characters that have special meanings 
inside the search. 

Sometimes you search for ''FOO'' and find it, but not the one you hoped to find. Perhaps there is a second 
Faa that you forgot about, after the one you just found. Then type another COS and the cursor will find 
the next FOO. This can be done any number of times. If you overshoot, you can return to previous finds 
by rubbing out the C-S's. 

Alter you exit a search, you can search for the same string again by typing just CoS C-S: one CoS com­
mand to start the search and then another C-S to mean "search again for the same string". 

If your string is not found at all, the message line says ''Failing I-search". The cursor is after the place 
where JOVE found as much of your string as it could. Thus, if you search for FOOT and there is no 
FOOT, you might see the cursor after the FOO in FOOL. At this point there are several things you can 
do. If your string was mistyped, you can rub some of it out and correct it. If you like the place you have 
found, you can type Return or some other JOVE command to "accept what the search offered". Or you can 
type CoG, which undoes the search altogether and positions you back where you started the search. 
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You can also type C-R at any time to start searching backwards. If a search fails because the place you 
started was too late in the file, you should do this. Repeated C-R's keep looking backward for more 
occurrences of the last search string. A C-S starts going forward again. C-R's can be rubbed out just like 
anything else. 

&.3. Searching with Regular Exp:ressioDS 

In addition to the searching facilities described above, JOVE can search for patterns using regular expres­
sions. The handling of regular expressions in JOVE is like that of ed(l) or vi(l), but with some notable 
additions. The extra metacharacters understood by JOVE are \ <, \ >, \ I and \ {. The first two of these 
match the beginnings and endings of words; Thus the search pattern, "\ <Exec" would match all words 
beginning with the letters "Exec". 

An \ I signals the beginning of an alternative - that is, the pattern "foo\ "ar" would match either "foo" or 
"bar". The "curly brace" is a way of introducing several sub-alternatives into a pattern. It parallels the [] 
construct of regular expressions, except it spedfies a list of alternative words instead of just alternative 
characters. So the pattern "foo\ {bar,baz\ }bie" matches "foobarbie" or "foobazbie". 

JOVE only regards metacharacters as special if the variable match-regular-e:t:pruaiona is set to "on". The 
ability to have JOVE ignore these characters is useful if you're editing a document a.bout patterns and regu­
lar expressions or when a novice is learning JOVE. 

Another variable that affects searching is case-ignore-sulrch. If this variable is set 10 "on" then upper case 
and lower case letters are considered equal. 

7. Replacement Commands 

Global search-and-replace operations are not needed as often in JOVE as they are in other editors, but they 
are available. In addition to the simple Replace operation which is like that found in most editors, there is 
a Query Replace operation which asks, for each occurrence of the pattern, whether to replace it. 

7.1. Global replacement / "'. 

To replace every occurrence of FOO after point with BAR, you can do, e.g., ''ESC R FOO<return>BAR"~ . ./ 
as the replace-string command is bound to the ESC R. Replacement takes place only between point and 
the end of the buffer so if you want to cover the whole buffer you must go to the beginning first. 

7.2. Query Replace 

If you want to change only some of the occurrences of FOO, not all, then the global replace-string is inap­
propriate; Instead, use, e.g., ''ESC Q FOO<return>BAR", to run the command query-replace-siring. This 
displays each occurrence of FOO and waits for you to say whether to replace it with a BAR. The things 
you can type when you are shown an occurrence of FOO are: 

Space to replace the FOO. 

Rubout to skip to the next FOO without replacing this one. 

Return 

Period 

10rP 

C-R or R 

C-W 

u 

to stop without doing any more replacements. 

to replace this FOO and then stop. 

to replace all remaining FOO's without asking. 

to enter a recursive editing level, in case the FOO needs to be edited rather than just 
replaced with a BAR. When you are done, exit the recursive editing level with C-X C-C 
and the next FOO will be displayed. 

to delete the FOO, and then start editing the buffer. When you are finished editing what­
ever is to replace the FOO, exit the recursive editing level with C-X C-C and the next 
FOO will be displayed. 

move to the last replacement and undo it. 

Another alternative is using replace.in-region which is just like replace-stn·ng except it searches only within 
the region. c 
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8. Commands tor English Text 

JOVE has many commands that work on the basic units of English text: words, sentences and paragraphs. 

8.1. Word Commands 
JOVE has commands for moving over or operating on words. By convention, they are all ESC commands. 

ESC F Move Forward over a word. 

ESC B Move Backward over a word. 

ESC D Kill forward to the end of a word. 

ESC Rubout Kill backward to the beginning of a word. 

Notice how these commands form a group that parallels the character- based commands, C-F, C-B, C-D, 
and Rubout. 

The commands ESC F and ESC B move forward and backward over words. They are thus analogous to 
Control-F and Control-B, which move over single characters. Like their Control- analogues, ESC F and 
ESC B move several words if given an argument. ESC F with a negative argument moves backward like 
ESC B, and ESC B with a negative argument moves forward. Forward motion stops right after the last 
letter of the word, while backward motion stops right before the first letter. 

It is easy to kill a word at a time. ESC D kills the word after point. To be precise, it kills everything 
from point to the place ESC F would move to. Thus, if point is in the middle of a word, only the part 
after point is killed. If some punctuation comes after point, and before the next word, it is killed along 
with the word. If you wish to kill only the next word but not the punctuation, simply do ESC F to get to 
the end, and kill the word backwards with ESC Rubout. ESC D takes arguments just like ESC F. 

ESC Rubout kills the word before point. It kills everything from point back to where ESC B would move 
to. If point is after the space in "FOO, BAR", then "FOO, .. is killed. If you wish to kill just ''FOO'', then 
do a ESC B and a ESC D instead of a ESC Rubout. 

8.2. Sentence Commands 

The JOVE commands for manipulating sentences and paragraphs are mostly ESC commands, so as to 
resemble the word-handling commands. 

ESC A Move back to the beginning of the sentence. 

ESC E Move forward to the end of the sentence. 

ESC K Kill forward to the end of the sentence. 

C-X Rubout Kill back to the beginning of the sentence. 

The commands ESC A and ESC E move to the beginning and end of the current sentence, respectively. 
They were chosen to resemble Control-A and Control-E, which move to the beginning and end of a line. 
Unlike them, ESC A and ESC E if repeated or given numeric arguments move oyer successive sentences. 
JOVE considers a sentence to end wherever there is a It.", "?", or "!" followed by the end of a line or by one 
or more spaces. Neither ESC A nor ESC E moves past the end of the line or spaces which delimit the sen­
tence. 

Just as C-A and C-E have a kill command, C-K, to go with them, so ESC A and ESC E have a 
corresponding kill command ESC K which kills from point to the end of the sentence. With minus one as 
an argument it kills back to the beginning of the sentence. Positive arguments serve as a repeat count. 

There is a special command, C-X Rubout for killing back to the beginning of a sentence, because this is 
useful when you change your mind in the middle of composing text. 

8.S. Paragraph Commands 

The JOVE commands for handling paragraphs are 

ESC [ Move back to previous paragraph beginning. 
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ESC] Move forward to next paragraph end. 

ESC I moves to the beginning of the current or previous paragraph, while ESC J moves to the end of the 
current or next paragraph. Paragraphs are delimited by lines of differing indent, or lines with text for­
matter commands, or blank lines. JOVE knows how to deal with most indented paragraphs correctly, 
although it can get confused by one- or two-line paragraphs delimited only by indentation. 

8.4. Text Indentation Commands 

Tab 

LineFeed 

ESCM 

Indent "appropriately" in a mode-dependent fashion. 

Is the same as Return, except it copies the indent of the line you just left. 

Moves to the line's first non-blank character. 

The way to request indentation is with the Tab command. Its precise effect depends on the major mode. 
In Tezt mode, it indents to the next tab stop. In C mode, it indents to the "right" position for C pro­
grams. 

To move over the indentation on a line, do ESC M (first.non-blank). This command, given anywhere on a 
line, positions the cursor at the first non-blank, non-tab char!\('ter on the line. 

8.5. Text Filling 

Auto Fill mode causes text to be jilled (broken up into lin~ that fit in a specified width) automatically as 
you type it in. If you alter existing text so that it is no longer properly filled, JOVE can fill it again if you 
ask. 

Entering Auto Fill mode is done with ESC X auto-jill-mode. From then on, lines are broken automatically 
at spaces when they get longer than the desired width. To leave Auto Fill mode, once again execute ESC X 
auto-fill-mode. When Auto Fill mode is in effect, the word Fill appears in the mode line. 

If you edit the middle of a paragraph, it may no longer correctly be filled. To refill a paragraph, use the 
command ESC J (fill-paragraph). It causes the paragraph that point is inside to be filled. All the line 
breaks are removed and new ones inserted where necessary. 

The maximum line width for filling is in the variable right-margin. Both ESC J and auto-fill make sure 
that no line exceeds this width. The value of right-margin is initially 72. 

Normally ESC J figures out the indent of the paragraph and uses that same indent when filling. If you 
want to change the indent of a paragraph you set left-margin to the new position and type C-U ESC J. 
fill-paragraph, when supplied a numeric argument, uses the value of left-margin. 

If you know where you want to set the right margin but you don't know the actual value, move to where 
you want to set the value and use the "'ght-margin-here command. left-margin-here does the same for the 
left-margin variable. 

8.6. Case Conversion Commands 

ESCL 

ESCU 

ESCC 

Convert following word to lower case. 

Convert following word to upper case. 

Capitalize the following word. 

The word conversion commands are most useful. ESC L converts the word after point to lower case, mov­
ing past it. Thus, successive ESC Vs convert successive words. ESC U converts to all capitals instead, 
while ESC C puts the first letter of the word into upper case and the rest into lower case. All these com­
mands convert several words at once if given an argument. They are especially convt'nient for converting a 
large amount of text from all upper case to mixed case, because you can move through the test using ESC 
L, ESC U or ESC C on each word as appropriate. 

'When given a negative argument, the word case conversion commands apply to the appropriate number of 
words before point, but do not move point. This is convenient when you have just typed a word in the 
wrong case. You can give the case conversion command and continue typing. 
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If a word case conversion command is given in the middle of a word, it applies only to the part of the word 
which follows the cursor, treating it as a whole word. 

The other case conversion functions are case-region-upper and case-region-Iower, which convert everything 
between point and mark to the specified case. Point and mark remain unchanged. 

8.7. Commands for Fixing Typos 

In this section we describe the commands that are especially useful for the times when you catch a mistake 
on your text after you have made it, or change your mind while composing text on line. 

Rubout Delete last character. 

ESC Rubout Kill last word. 

C-X Rubout 

C-T 

C-X C-T 

ESC Minus ESC L 

ESC Minus ESC U 

ESC Minus ESC C 

Kill to beginning of sentence. 

Transpose two characters. 

Transpose two lines. 

Convert last word to lower case. 

Convert last word to upper case. 

Convert last word to lower case with capital initial. 

8.8. Killing Your Mistakes 

The Rubout command is the most important correction command. 'When used among printing (self­
inserting) characters, it can be thought of as canceling the last character typed. 

When your mistake is longer than a couple of characters, it might be more convenient to use ESC Rubout 
or C-X Rubout. ESC Rubout kills back to the start of the last word, and C-X Rubout kills back to the 
start of the last sentence. C-X Rubout is particularly useful when you are thinking of what to write as you 
type it, in case you change your mind about phrasing. ESC Rubout and C-X Rubout save the killed text 
for C-Y and ESC Y to retrieve. 

ESC Rubout is often useful even when you have typed only a few characters wrong. if you know you are 
confused in your typing and aren't sure what you typed. At such a time, you cannot correct with Rubout 
except by looking at the screen to see what you did. It requires less thought to kill the whole word and 
start over again, especially if the system is heavily loaded. 

If you were typing a command or command parameters, C-G will abort the command with no further pro­
cessing. 

8.9. Transposition 

The common error of transposing two characters can be fixed with the C-T (transpose-characters) com­
mand. Normally, C-T transposes the two characters on either side of the cursor and moves tht' cursor for­
ward one character. Repeating the command several times "drags" a character to the right. (Remember 
that point is considered to be between two characters, even though the visible cursor in your terminal is on 
only one of them.) When given at the end of a line, rather than switching the last character of the line 
with the line separator, which would be useless, C-T transposes the last two characters on the line. So, if 
you catch your transposition error right away, you can fix it with just a C-T. If you don't catch it so fast, 
you must move the cursor back to between the two characters. 

To transpose two lines, use the C-X C-T (transpose-lines) command. The line containing the cursor is 
exchanged with the line above it; the cursor is left at the beginning of the line following its original posi­
tion. 

8.10. Checking and Correcting Spelling 

When you write a paper, you should correct its spelling at some point close to finishing it. To correct the 
entire buffer, do ESC X spell-buffer. This invokes the UNIX spell program, which prints a list of all the 
misspelled words. JOVE catches the list and places it in a JOVE buffer called Spell. You are given an 
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opportunity to delete from that buffer any words that aren't really errors; then JOVE looks up each 
misspelled word and remembers where it is in the buffer being corrected. Then you can go forward to each 
misspelled word with C-X C-N (next-error) and backward with C-X C-P (previous-error). See the section 
entitled Error Mes8age Parsing. 

9. File Handling 

The basic unit of stored data is the file. Each program, each paper, lives usually in its own file. To edit a 
program or paper, the editor must be told the name of the file that contains it. This is called vi8iting a 
file. To make your changes to the file permanent on disk, you must 8ave the file. 

9.1. Visiting Files 

C-XC-V 

c..X c..R 

c..x C-S 
ESO -

Visit a file. 

Same as c..X C-V. 

Save the visited file. 

Tell JOVE to forget that the buffer has been changed. 

Visiting a file means copying its contents into JOVE where you can edit them. JOVE remembers the name of 
the file you visited. Unless you use the multiple buffer feature of JOVE, you can only be visiting one file at 
a time. The name of the current selected buffer is visible in the mode line. 

The changes you make with JOVE are made in a copy inside JOVE. The file itself is not changed. The 
changed text is not permanent until you satle it in a file. The first time you change the text, an asterisk 
appears at the end of the mode line; this indicates that the text contains fresh changes which will be lost 
unless you save them. 

To visit a file, use the command C-X O-V. Follow the command with the name of the file you wish to 
visit, terminated by a Return. You can abort the command by typing O-G, or edit the filename with 
many of the standard JOVE commands (e.g., C-A, O-E, C-F, ESO F, ESO Rubout). If the filename you 
wish to visit is similar to the filename in t.he mode line (the default filename), you can type O-R to insert 
the default and then edit it. If you do type a Return to finish the command, the new file's text appears on \"--__ ~/ 
the screen, and its name appears in the mode line. In addition, its name becomes the new default filename. 

If you wish to save the file and make your changes permanent, type O-X O-S. Mter the save is finished, 
O-X O-S prints the filename and the number of characters and lines that it wrote to the file. If there are 
no changes to save (no asterisk at the end of the mode line), the file is not saved; otherwise the changes 
saved and the asterisk at the end of the mode line will disappear. 

What if you want to create a file? Just visit it. JOVE prints (New file) but aside from that behayes as if 
you had visited an existing empty file. If you make any changes and save them, the file is created. If you 
visit a nonexistent file unintentionally (because you typed the wrong filename), go ahead and visit the file 
you meant. If you don't save the unwanted file, it is not created. 

If you alter one file and then visit another in the same buffer, JOVE offers to save the old one. If you 
answer YES, the old file is saved; if you answer NO, all the changes you have made to it since the last save 
are lost. You should not type ahead after a file visiting command, because your type-ahead might answer 
an unexpected question in a way that you would regret. 

Sometimes you will change a buffer by accident. Even if you undo the effect of the change by editing, JOVE 

still knows that "the buffer has been changed". You can tell JOVE to pretend that there have been no 
changes with the ESO - command (make-buffer-unmodified). This command simply clears the "modified" 
flag which says that the buffer contains changes which need to be saved. Even if the buffer really i8 
changed JOVE will still act as if it were not. 

U JOVE is about to save a file and sees that the date of the version on disk does not match what JOVE last 
read or wrote, JOVE notifies you of this fact, and asks what to do, because this probably means that some­
thing is wrong. For example, somebody else may have been editing the same file. If this is so, there is a 
good chance that your work or his work will be lost if you don't take the proper st.eps. You should first 
find out exactly what is going on. If you determine that somebody else has modified t.he file, save your file 
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under a different filename and then DlFF the two files to merge the two sets of changes. (The "patch" com­
mand is useful for applying the results of context diffs directly). Also get in touch with the other person so 
that the files don't diverge any further. 

9.2. How to Undo Drastic Changes to a File 

If you have made several extensive changes to a file and then change your mind about them, and you 
haven't yet saved them, you can get rid of them by reading in the previous version of the file. You can do 
this with the C-X C-V command, to visit the unsaved version of the file. 

9.S. Recovering from system/editor crashes 

JOVE does not have Auto Save mode, but it does provide a way to recover your work in the event of a 
system or editor crash. JOVE saves information about the files you're editing every so many changes to a 
buffer to make recovery possible. Since a relatively small amount of information is involved it's hardly 
even noticeable when JOVE does this. The variable "sync-frequency" says how often to save the necessary 
information, and the default is every 50 changes. 50 is a very reasonable number: if you are writing a 
paper you will not lose more than the last 50 characters you typed, which is less than the average length of 
a line. 

9.4. Miscellaneous File Operations 

ESC X write-file <file> <return> writes the contents of the buffer into the file <file>, and then visits 
that file. It can be thought of as a way of "changing the name" of the file you are visiting. Unlike C-X C­
S, write-file saves even if the buffer has not been changed. C-X C-W is another way of getting this com­
mand. 

ESC X insert-file <file> <return> inserts the contents of <file> into the buffer at. point, leaving point 
unchanged before the contents. You can also use C-X C-I to get this command. 

ESC X write-region <file> <return> writes the region (the text between point and mark) to the specified 
file. It does not set the visited filename. The buffer is not changed, 

ESC X append.region < file> <return> appends the region to < file> . The text is added to the end of 
<file>. 

10. Using Multiple Buffers 

When we speak of "the buffer", which contains the text you are editing, we have given the impression that 
there is only one. In fact, there may be many of t.hem, each with its own body of text. At any time only 
one buffer can be selected and available for editing, but it isn't hard to switch to a different one. Each 
buffer individually remembers which file it is visiting, what modes are in effect, and whether there are any 
changes that need saving. 

C-X B Select or create a buffer. 

C-X C-F Visit a file in its own buffer. 

C-X C-B 

C-XK 

List the existing buffers. 

Kill a buffer. 

Each buffer in JOVE has a single name, which normally doesn't change. A buffer's name can be any length. 
The name of the currently selected buffer and the name of the file visited in it are visible in the mode line 
when you are at top level. A newly started JOVE has only one buffer, named Main, unless you specified 
files to edit in the shell command that started JOVE. 

10.1. Creating and Selecting Buffers 

To create a new buffer, you need only think of a name for it (say, FOO) and then do C-X B 
FOO < return > , which is the command C-X B (select.buffer) followed by the name. This makes a new, 
empty buffer (if one by that name didn't previously exist) and selects it for editing. The new buffer is not 
visiting any file, so if you try to save it you will be asked for the filename to use. Each buffer has its own 
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major mode; the new buffer's major mode is Ted mode by default. 

To return to buffer FOO later after having switched to another, the same command C-X B FOO<return> 
is used, since O-X B can tell whether a buffer named FOO exists already or not. O-X B Main <return > 
reselects the buffer Main that JOVE started out with. Just O-X B<return> reselects the previous buffer. 
Repeated O-XB<return>'s alternate between the last two buffers selected. 

You can also read a file into its own newly created buffer, all with one command: O-X o.F (find-file), fol­
lowed by the filename. The name o( the buffer is the last element o( the file's pathname. o.F stands (or 
"Find", because if the specified file already resides in a buffer in your JOVE, that buffer is reselected. So you 
need not remember whether you have brought the file in already or not. A buffer created by O-X O-F can 
be reselected later with O-X B or o.X o.F, whichever you find more convenient. Nonexistent files can be 
created with o.X o.F just as they can with o.X 0. V. 

10.2. Using Existing Buffers 

To get a list of all the buffers that exist, do O-X o.B (liBt-buffer8). Each buffer's type, name, and visited 
filename is printed. An asterisk before the buffer name indicates a buffer which contains changes that have 
not been saved. The number that appears at the beginning of a line in a o.X O-B listing is that buffer's 
buffer number. You can select a buffer by typing its number in place of its name. If a buffer with that 
number doesn't already exist, a new buffer is created with that number as its name. 

If several buffers have modified text in them, you should save some of them with o.X C-M (wn'te­
modified-file8). This finds all the buffers that need saving and then saves them. Saving the buffers this 
way is much easier and more efficient (but more dangerous) than selecting each one and typing C-X C-S. 
If you give C-X o.M an argument, JOVE will ask for confirmation before saving each buffer. 

ESC X rename-buffer <new name> <return> changes the name of the currently selected buffer. 

ESC X erase-buffer <buffer name> <return> erases the contents of the <buffer name> without deleting 
the buffer entirely. 

10.S. Killing Buffers 

After you use a JOVE for a while, it may fill up with buffers which you no longer need. Eventually you can 
reach a point where trying to create any more results in an "out of memory" or "out of lines" error. When 
this happens you will want to kill some buffers with the O-X K (delete-buffer) command. You can kill the 
buffer FOO by doing CoX K FOO<return>. If you type CoX K <return> JOVE will kill the previously 
selected buffer. If you try to kill a buffer that needs saving JOVE will ask you to confirm it. 

If you need to kill several buffers, use the command kill-8ome-buffer8. This prompts you with t.he name of 
each buffer and asks for confirmation before killing that buffer. 

11. Controlling the Display 

Since only part of a large file will fit on the screen, JOVE tries to show the part that is likely to be interest­
ing. The display control commands allow you to see a different part o( the file. 

o.L Reposition point at a specified vertical position, OR clear and redraw the screen with 
point in the same place. 

o.v 
ESC V 

o.z 
ESCZ 

Scroll forwards (a screen or a few lines). 

Scroll backwards. 

Scroll forward some lines. 

Scroll backwards some lines. 

The terminal screen is rarely large enough to display all of your file. If the whole buffer doesn't fit on the 
screen, JOVE shows a contiguous portion of it, containing point. It continues to show approximately the 
same portion until point moves outside o( what is displayed; then JOVE chooses a new portion centered 
around the new point. This is JOVE's guess as to what you are most interested in seeing, but if the guess is 
wrong, you can use the display control commands to see a different portion. The available screen area 
through which you can see part of the buffer is called the window, and the choice of where in the buffer to 
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start displaying is also called the window. (When there is only one window, it plus the mode line and the 
input line take up the whole screen). 

First we describe how JOVE chooses a new window position on its own. The goal is usually to place pnint 
half way down the window. This is controlled by the variable 3croll-31ep, whose value is the numbf'T of 
lines above the bottom or below the top of the window that the line containing point is placed. A vallie of 
o (the initial value) means center point in the window. 

The basic display control command is o.L (redraw-di3pla1l). In its simplest form, with no argument, it tells 
JOVE to choose a new window position, centering point half way from the top as usual. 

O-L with a positive argument chooses a new window so as to put point that many lines from the top. An 
argument of zero puts point on the very top line. Point does not move with respect to the text; rather. the 
text and point move rigidly on the screen. 

If point stays on the same line, the window is first cleared and then redrawn. Thus, two o.L's in a row are 
guaranteed to clear the current window. ESC O-L will clear and redraw the entire screen. 

The scrolling commands o.V, ESC V, O-Z, and ESC Z, let you move the whole display up or down a few 
lines. O-V (next-page) with an argument shows you that many more lines at the bottom of the sen'en, 
moving the text and point up together as O-L might. o.V with a negative argument shows you more lines 
at the top of the screen, as does ESC V (previous-page) with a positive argument. 

To read the buffer a window at a time, use the C-V command with no argument. It takes the last linp at 
the bottom of the window and puts it at the top, followed by nearly a whole window of lines not vj;..ible 
before. Point is put at the top of the window. Thus, each C-V shows the "next page of text", except for 
one line of overlap to provide context. To move backward, use ESC V without an argument, which moves 
a whole window backwards (again with a line of overlap). 

o.Z and ESC Z scroll one line forward and one line backward, respectively. These are convenient for InOV­

ing in units of lines without having to type a numeric argument. 

11.1. Multiple W'mdows 

JOVE allows you to split the screen into two or more windows and use them to display parts of diff"rent 
files, or different parts of the same file. 

o.X 2 Divide the current window into two smaller ones. 

o.X 1 Delete all windows but the current one. 

o.XD 

o.XN 

o.XP 

o.XO 

O-X· 

ESC o.V 

Delete current window. 

Switch to the next window. 

Switch to the previous window. 

Same as O-X P. 

Make this window bigger. 

Scroll the other window. 

When using multiple window mode, the text portion of the screen is divided into separate parts called 1I'1n­

dOW6, which can display different pieces of text. Each window can displ~y different files, or parts of the 
same file. Only one of the windows is active; that is the window which the cursor is in. Editing normnIly 
takes place in that window alone. To edit in another window, you would give a command to movt' the 
cursor to the other window, and then edit there. 

Each window displays a mode line for the buffer it's displaying. This is useful to keep track of which win­
dow corresponds with which file. In addition, the mode line serves as a separator between windows. By 
setting the variable mode-/ine-3hould-3tandout to "on" you can have JOVE display the mode-line in rl'yt'rse 
video (assuming your particular terminal has the reverse video capability). 

The command O-X 2 (3plit-cu"ent-window) enters multiple window mode. A new mode line appears lie-TOSS 

the middle of the screen, dividing the text display area into two halves. Both windows contain the same 
buffer and display the same position in it, namely where point was at the time you issued the command. 
The cursor moves to the second window. 
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To return to viewing only one window, use the command C-X 1 (delete-other-window8). The current win­
dow expands to fill the whole screen, and the other windows disappear until the next C-X 2. (The buffers 
and their contents are unaffected by any of the window operations). 

While there is more than one window, you can use C-X N (next-window) to switch to the next window, and 
C-X P (previotla-window) to switch to the previous one. Ir you are in the bottom window and you type C­
X N, you will be placed in the top window, and the same kind of thing happens when you type C-X P in 
the top window, namely you will be placed in the bottom window. C-X 0 is the same as C-X P. It stands 
for "other window" because when there are only two windows, repeated use of this command will switch 
between the two windows. 

Often you will be editing one window while using the other just for reference. Then, the command ESC 
C-V (page-nezt-window) is very useful. It scrolls the next window, as if you switched to the next window, 
typed C-V, and switched back, without your having to do all that. With a negative argument, ESC C-V 
will do an ESC V in the next window. 

When a window splits, both halves are approximately the same size. You can redistribute the screen space 
between the windows with the C-X • (grow-window) command. It makes the currently selected window 
grow one line bigger, or as many lines as is specified with a numeric argument. Use ESC X ahrink-window 
to make the current window smaller. 

11.2. Multiple Wmdows and Multiple Buffers 

Buffers can be selected independently in each window. The C-X B command selects a new buffer in wldch­
ever window contains the cursor. Other windows' buffers do not change. 

You can view the same buffer in more than one window. Although the same buffer appears in both win­
dows, they have different values of point, so you can move around in one window while the other window 
continues to show the same text. Then, having found one place you wish to refer to, you can go back into 
the other window with C-X 0 or C-X P to make your changes. 

If you have the same buffer in both windows, you must beware of trying to visit a different file in one of 
the windows with C-X C-V, because if you bring a new file into this buffer, it will replaced the old filp in 
both windows. To view different files in different windows, you must switch buffers in one of the windows 
first (with C-X B or C-X C-F, perhaps). 

A convenient "combination" command for viewing something in another window is C-X 4 (window-find). 
With this command you can ask to see any specified buffer, file or tag in the other window. Follow the C­
X 4 with either B and a buffer name, F and a filename, or T and a tag name. This switches to the 01 her 
window and finds there what you specified. If you were previously in one-window mode, multiple-winrlow 
mode is entered. C-X 4 B is similar to C-X 2 C-X B. C-X 4 F is similar to C-X 2 C-X C-F. C-X 4 T is 
similar to C-X 2 C-X T. The difference is one of efficiency, and also that C-X 4 works equally well if you 
are already using two windows. 

12. Processes Under JOVE 

Another feature in JOVE is its ability to interact with UNiX in a useful way. You can run other UNIX rom­
mands from JOVE and catch their output in JOVE buffers. In this chapter we will discuss the different ways 
to run and interact with UNIX commands. 

12.1. Non-interactive UNIX commands 

To run a UNIX command from JOVE just type "C-X '" followed by the name of the command terminated 
with Return. For example, to get a list of all the users on the system, you do: 

C-X ! who <return> 

Then JOVE picks a reasonable buffer in which the output from the command will be placed. E.g., "who" 
uses a buffer called who; lOpS alx" uses ps; and "fgrep -n foo *.c" uses fgnp. If JOVE wants to use a buffer 
that already exists it first erases tbe old contents. If the buffer it selects bolds a file, not output from a pre­
vious shell command, you must first delete that buffer with C-X K. c 
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Once JOVE has picked a buffer it puts that buffer in a window so you can see the command's output as it is 
running. If there is only one window JOVE will automatically make another one. Otherwise, JOVE tries to 
pick the most convenient window which isn't the current one. 

It's not a good idea to type anything while the command is running. There are two reasons for this: 

(i) JOVE won't see the characters (thus won't execute them) until the command finishes, so you may for­
get what you've typed. 

(ii) Although JOVE won't know what you've typed, it will know that you've typed something, and then 
it will try to be "smart" and not update the display until it's interpreted what you've typed. But, of 
course, JOVE won't interpret what you type until the UNIX command completes, so you're left with 
the uneasy feeling you get when you don't know what the hell the computer is doing·. 

If you want to interrupt the command for some reason (perhaps you mistyped it, or you changed your 
mind) you can type o.J. Typing this inside JOVE while a process is running is the same as typing C-C 
when you are outside JOVE, namely the process stops in a hurry. 

When the command finishes, JOVE puts you back in the window in which you started. Then it prints a 
message indicating whether or not the command completed successfully in its (the command's) opinion. 
That is, if the command had what it considers an error (or you interrupt it with 0.]) JOVE will print an 
appropriate message. 

12.2. Limitations or Non-Interactive Processes 

The reason these are called non-interactive processes is that you can't type any input to them; you can't 
interact with them; they can't ask you questions because there is no way for you to answer. For example, 
you can't run a command interpreter (a shell), or mail or cf'1/pt with C.-X! because there is no way to pro­
vide it with input. Remember that JOVE (not the process in the window) is listening to your keyboard. and 
JOVE waits until the process dies before it looks at what you type. 

o.X ! is useful for running commands that do some output and then exit. For example, it's very useful to 
use with the C compiler to catch compilation error messages (see Compiling C Programs), or with the grep 
commands. 

12.3. Interactive Processes - Run a Shell in a Window 

Some versions of JOVEt have the capability of running interactive processes. This is more useful than 1I0n­
interactive processes for certain types of jobs: 

(i) You can go off and do some editing while the command is running. This is useful for commands that 
do sporadic output and run for fairly long periods of time. 

(ii) Unlike non-interactive processes, you can type input to these. In addition, you can edit what you 
type with the power of all the JOVE commands before you send the input to the process. This is a 
really important feature, and is especially useful for running a shell in a window. 

(iii) Because you can continue with normal editing while one of the processes is running, you can cre:lte a 
bunch of contexts and manage them (select them, delete them, or temporarily put them aside) with 
JOVE's window and buffer mechanisms. 

Although we may have given an image of processes being attached to windows, in fact they are attach('d to 
buffers. Therefore, once an i.process is running you can select another buffer into that window, or if you 
wish you can delete the window altogether. If you reselect that buffer later it will be up to date. That is, 
even though the buffer wasn't visible it was still receiving output from the process. You don't han to 
worry about missing anything when the buffer isn't visible. 

·This is a bug and should be fixed, but probably won't be for a while. 
t For example, the version provided with 4.3BSD. 
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12.4. Advantages or Running Proeesses in .JOVE Windows. 

There are several advantages to running a shell in a window. What you type isn't seen immediately by the 
process; instead JOVE waits until you type an entire line berore passing it on to the process to read. This 
means that before you type <return> all of JOVE's editing capabilities are available for fixing errors- on 
your input line. If you discover an error at the beginning of the line, rather than erasing the whole line 
and starting over, you can simply move to the error, correct it, move back and continue typing. 

Another feature is that you have the entire history of your session in a JOVE buffer. You don't have to 
worry about output from a command moving past the top of the screen. If you missed some output you 
can move back through it with ESC V and other commands. In addition, you can save yourself retyping a 
command (or a similar one) by sending edited versions of previous commands, or edit the output of one 
command to become a list of commands to be executed ("immediate shell scripts"). 

12.5. Differences between Normal and I-process Buffers 

JOVE behaves differently in several ways when you are in an i-procc&& buffer. Most obviously, <return> 
does different things depending on both your position in the buffer and on the state of the process. In the 
normal case, when point is at the end of the buffer, Return does what you'd expect: it inserts a line­
separator and then sends the line to the process. If you are somewhere else in the buffer, possibly posi­
tioned at a previous command that you want to edit, Return will place a copy of that line (with the 
prompt discarded if there is one) at the end of the buffer and move you there. Then you can edit the line 
and type Return as in the normal case. If the process has died for some reason, Return does nothing. It 
doesn't even insert itself. If that happens unexpectedly, you should type ESC X list-prOcc88c8<return> to 
get a list of each process and its state. If your process died abnormally, list-proccssc8 may help you figure 
out why. 

12.6. How to Run a Shell in a Window 

Type ESC X i-shcll<return> to start up a shell. As with C-X !, JOVE will create a buffer, called shell-I, 
and select a window for this new buffer. But unlike C-X ! you will be left in the new window. Now, the 
shell process is said to be attached to shell-I, and it is considered an i-procc8s buffer. (-~ 

13. Directory Handling 

To save having to use absolute pathnames when you want to edit a nearby file JOVE allows yoU: to move 
around the UI\TJX filesystem just as the c-shell does. These commands are: 

cd dir Change to the specified directory. 

pushd [dirl Like cd; but save the old directory on the directory stack. With no directory argument, 
simply exchange the top two directories on the stack and cd to the new top. 

popd Take the current directory off the stack and cd to the directory now at the top. 

dirs Display the contents of the directory stack. 

The names and behavior of these commands were chosen to mimic those in the c-shell. 

14. Editing C Programs 

This section details the support provided by JOVE for working on C programs. 

14.1. Indentation Commands 

To save having to layout C programs "by hand", JOVE has an idea of the correct indentation of a line, 
based on the surrounding context. When you are in C Mode, JOVE treats tabs specially - typing a tab at 
the beginning of a new line means "indent to the right place". Closing braces are also handled specially, 
and are indented to match the corresponding open brace. 
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14.2. Parenthesis and Brace Matching 

To check that parentheses and braces match the way you think they do, turn on Show Match mode (ESC 
X show-match-mode). Then, whenever you type a close brace or parenthesis, the cursor moves momen­
tarily to the matching opener, if it's currently visible. If it's not visible, JOVE displays the line containing 
the matching opener on the message line. 

14.3. C Tags 

Often when you are editing a C program, especially someone else's code, you see a function call and wonder 
what that function does. You then search for the function within the current file and if you're lucky find 
the definition, finally returning io the original spot when you are done. However, if are unlucky, the func­
tion turns out to be external (defined in another file) and you have to suspend the edit, grep for the func­
tion name in every .c that might contain it, and finally visit the appropriate file. 

To avoid this diversion or the need to remember which function is defined in which file, Berkeley UNIX has 
a program called dags(l), which takes a set of source files and looks for function definitions, producing a 
file called tags as its output. 

JOVE has a command called C-X T (find-tag) that prompts you for the name of a function (a tag), looks up 
the tag reference in the previously constructed tags file, then visits the file containing that tag in a new 
buffer, with point positioned at the definition of the function. There is another version of this command, 
namely find-tag-at-point, that uses the identifier at point. 

So, when you've added new functions to a module, or moved some old ones around, run the ciags program 
to regenerate the tags file. JOVE looks in the file specified in the tag-file variable. The default is "./tags", 
that is, the tag file in the current directory. If you wish to use an alternate tag file, you use C-U CoX T, 
and JOVE will prompt for a file name. If you find yourself specifying the same file again and again, you 
can set tag-file to that file, and run find-tag with no numeric argument. 

To begin an editing session looking for a particular tag, use the -t tag command line option to JOVE. For 
example, say you wanted to look at the file containing the tag SkipChar, you would invoke JOVE as: 

% jove -t Skip Char 

14.4. Compiling Your Program 

You've typed in a program or altered an existing one and now you want to run it through the compiler to 
check for errors. To save having to suspend the edit, run the compiler, scribble down error messages, and 
then resume the edit, JOVE allows you to compile your code while in the edit.or. This is done with the CoX 
C-E (compile-it) command. If you run compile-it with no argument it runs the UNIX make program into a 
buffer; If you need a special command or want to pass arguments to make, run compile-if with any argu­
ment (C-U is good enough) and you will be prompted for the command to execute. 

If any error messages are produced, they are treated specially by JOVE. That treatment is the subject of 
the next section. 

14.5. Error Message Parsing and Spelling Checking 

JOVE knows how to interpret the error messages from many UNIX commands; In particular, the messages 
from cc, grep and lint can be understood. After running the compile-it command, the parse-errors com­
mand is automatically executed, and any errors found are displayed in a new buffer. The files whose names 
are found in parsing the error messages are each brought into JOVE buffers and the point is positioned at 
the first error in the first file. The commands current-error, C-X C-N (next-error), and C-X C-P (previous­
error) can be used to traverse the list of errors. 

If you already have a file called errs containing, say, c compiler messages then you can get JOVE t.o inter­
pret the messages by invoking it as: 

% jove -p errs 
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JOVE has a special mechanism for checking the the spelling of a document; It runs the UNIX spell program 
into a buffer. You then delete from this buffer all those words that are not spelling errors and then JOVE 

runs the parse-spelling-errors command to yield a list of errors just as in the last section. 

15. Simple Customisation 

15.1. Major Modes 

To help with editing particular types of file, say a paper or a C program, JOVE has several major modes. 
These are as follows: 

15.1.1. Text mode 

This is the default major mode. Nothing special is done. 

15.1.2. C mode 

This mode affects the behavior of the tab and parentheses characters. Instead of just inserting the tab, 
JOVE determines where the text "ought" to line up for the C language and tabs to that position instead. 
The same thing happens with the close brace and close parenthesis; they are tabbed to the "right" place 
and then inserted. Using the aulo-execute-command command, you can make JOVE enter C Mode whenever 
you edit a file whose name ends in .c. 

15.1.3. Lisp mode 

This mode is analogous to C Mode, but performs the indentation needed to layout Lisp programs prop­
erly. Note also the gn'nd-s-erpr command that prettyprints an s-expression and the kill-mode-expression 
command. 

15.2. Minor Modes 

In addition to the major modes, JOVE has a set of minor modes. These are as follows: 

15.2.1. Auto Indent 

In this mode, JOVE indents each line the same way as that above it. That is, the Return key in this mode 
acts as the Linefeed key ordinarily does. 

15.2.2. Show Mateh 

Move the cursor momentarily to the mat,ching opening parenthesis when a closing parenthesis is typed. 

15.2.3. Auto Fill 

In Auto Fill mode, a newline is automatically inserted when the line length exceeds the right margin. This 
way, you can type a whole paper without having to use the Return key. 

15.2.4. Over Write 

In this mode, any text typed in will replace the previous contents. (The default is for new text to be 
inserted and "push" the old along.) This is useful for editing an already-formatted diagram in which you 
want to change some things without moving other things around on the screen. 

15.2.5. Word Abbrev 

In this mode, every word you type is compared to a list of word abbreviations; whenever you type an 
abbreviation, it is replaced by the text that it abbreviates. This can save typing if a particular word or 
phrase must be entered many times. The abbreviations and their expansions are held in a file that looks 
like: 

abbrev:phrase 
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This file can be set up in your - f. ioverc with the read-word-abbrev-jiJe command. Then, whenever you are 
editing a buffer in Word Abbrev mode, JOVE checks for the abbreviations you've given. See also the com­
mands read-word-abbrev-jiJe, write-word-abbrev-jiJe, edit-word-abbrev8, define-global-word-abbrev, define­
mode-word-abbrev, and bind-macro-to-word-abbrev, and the variable auto-ca8e-abbrev. 

15.3. Variables 

JOVE can be tailored to suit your needs by changing the values of variables. A JOVE variable can be given 
a value with the 8et command, and its value displayed with the print command. 

The variables JOVE understands are listed along with the commands in the alphabetical list at the end of 
this document. 

15.4. Key Re-binding 

Many of the commands built into JOVE are not bound to specific keys. The command handler in JOVE is 
used to invoke these commands and is activated by the execute-extended-command command (ESC X). 
When the name of a command typed in is unambiguous, that command will be executed. Since it is very 
slow to have to type in the name of each command every time it is needed, JOVE makes it possible to bind 
commands to keys. When a command is bound to a key any future hits on that key will invoke that com­
mand. All the printing characters are initially bound to the command 8elf-in8ert. Thus, typing any print­
ing character causes it to be inserted into the text. Any of the existing commands can be bound to any 
key. (A key may actually be a control character or an e8cape 8equence as explained previously under Com­
mand Input Convention8). 

Since there are more commands than there are keys, two keys are treated as prefi:r commands. When a key 
bound to one of the prefix commands is typed, the next character typed is interpreted on the basis that it 
was preceded by one of the prefix keys. Initially AX and ESC are the prefix keys and many of the built in 
commands are initially bound to these "two stroke" keys. (For historical reasons, the Escape key is often 
referred to as "Meta"). 

15.5. Keyboard Macros 

Although JOVE has many powerful commands, you often find that you have a task that no individual com­
mand can do. JOVE allows you to define your own commands from sequences of existing ones "by exam­
ple"; Such a sequence is termed a macro. The procedure is as follows: First you type the 8tart-remembering 
command, usually bound to C-X (. Next you "perform" the commands which as they are being executed 
are also remembered, which will constitute the body of the macro. Then you give the 8top-rememben'ng 
command, usually bound to C-X). You now have a keyboard macro. To run this command sequence 
again, use the command execute-keyboard-macro, usually bound to C-X E. You may find this bothersome 
to type and re-type, so there is a way to bind the macro to a key. First, you must give the keyboard 
macro a name using the name-keyboard-macro command. Then the binding is made with the bind-macro­
to-key command. We're still not finished because all this hard work will be lost if you leave JOVE. What 
you do is to save your macros into a file with the write-macros-to-jiJe command. There is a corresponding 
read-macros-from-jiJe command to retrieve your macros in the next editing session. 

15.8. Initialiaation Files 

Users will likely want to modify the default key bindings to their liking. Since it would be quite annoying 
to have to set up the bindings each time JOVE is started up, JOVE has the ability to read in a "startup" file. 
Whenever JOVE is started, it reads commands from the file . ioverc in the user's home directory. These 
commands are read as if they were typed to the command handler (ESC X) during an edit. There can be 
only one command per line in the startup file. If there is a file /u8r/lib/jovejjoverc, then this file will be 
read before the user's . joverc file. This can be used to set up a system-wide default startup mode for JOVE 

that is tailored to the needs of that system. 

The 80urce command can be used to read commands from a specified file at any time during an editing ses­
sion, even from inside the . joverc file. This means that a macro can be used to change the key bindings, 
e.g., to enter a mode, by reading from a specified file which contains all the necessary bindings. 
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18. Alphabetical List ot Commands and Variables 

18.1. Prefix-l (Escape) 

This reads the next character and runs a command based on the character typed. If you wait for more 
than a second or so before typing the next character, the message "ESC" will be printed on the message line 
to remind you that JOVE is waiting for another character. 

18.2. Prefix-2 (O-X) 
This reads the next character and runs a command based on the character typed. If you wait for more 
than a second or so before typing another character, the message HC-X" will be printed on the message line 
to remind you that JOVE is waiting for another character. 

18.3. Prefix-3 (Not Bound) 

This reads the next character and runs a command based on the character typed. If you wait for more 
than a second or so before typing the next character, the character that invoked Prefix-3 will be printed on 
the message line to remind you that JOVE is waiting for another one. 

16.4. allow-· S-and- • Q (variable) 

This variable, when set, tells JOVE that your terminal does not need to use the characters C-Sand C-Q for 
flow control, and that it is okay to bind things to them. This variable should be set depending upon what 
kind of terminal you have. 

18.5. allow-bad-filenames (variable) 

If set, this variable permits filenames to contain "bad" characters such as those from the set *&%!"o:]{}. 
These files are harder to deal with, because the characters mean something to the shell. The default nlue 
is "off". 

18.6. append-region (Not Bound) 

This appends the region to a specified file. If the file does not already exist it is created. 

16.7. apropos (Not Bound) 

This types out all the commands, variables and macros with the specific keyword in their names. For each 
command and macro that contains the string, the key sequence that can be used to execute the command 
or macro is printed; with variables, the current value is printed. So, to find all the commands that are 
related to windows, you type 

ESC X apropos window <Return > 

18.8. auto-case-abbrev (variable) 

When this variable is on (the default), word abbreviations are adjusted for case automatically. For exam­
ple, if "jove" were the abbreviation for "jonathan's own version of emacs", then typing "jove" would give 
you "jonathan's own version of emacs", typing "Jove" would give you "Jonathan's own version of ema('s", 
and typing "JOVE" would give you "Jonathan's Own Version of Emacs". When this variable is "off", upper 
and lower case are distinguished when looking for the abbreviation, i.e., in the example above, "JOVE" and 
"Jove" would not be expanded unless they were defined separately. 

18.9. auto-exeeute-eommand (Not Bound) 

This tells JOVE to execute a command automatically when a file whose name matches a specified pattern is 
visited. The first argument is the command you want executed and the second is a regular expression pat­
tern that specifies the files that apply. For example, if you want to be in show-match-mode when you t'dit 
C source files (that is, files that end with ".c" or ".h") you can type 
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ESC X auto-execute-command show-match-mode .*.[ch]* 

18.10. auto-execute-macro (Not Bound) 

This is like auto-execute-command except you use it to execute macros automatically instead of built-in 
commands. 

18.11. auto-fill-mode (Not Bound) 

This turns on Auto Fill mode (or off if it's currently on) in the selected buffer. When JOVE is in Auto Fill 
mode it automatically breaks lines for you when you reach the right margin so you don't have to 
remember to hit Return. JOVE uses 78 as the right margin but you can change that by setting the variable 
right-margin to another value. See the ,ct command to learn how to do this. 

18.12. auto-indent-mode (Not Bound) 

This turns on Auto Indent mode (or off if it's currently on) in the selected buffer. When JOVE is in Auto 
Indent mode, Return indents the new line to the same position as the line you were just on. This is useful 
for lining up C code (or any other language (but what else is there besides 01)). This is out of date because 
of the new command called newline-and-indent but it remains because of several "requests" on the part of, 
uh, enthusiastic and excitable users, that it be left as it is. 

18.13. backward-character (O-B) 

This moves point backward over a single character. If point is at the beginning of the line it moves to the 
end of the previous line. 

18.14. backward-paragraph (ESC [) 

This moves point backward to the beginning of the current or previous paragraph. Paragraphs are 
bounded by lines that begin with a Period or Tab, or by blank lines; a change in indentation may also sig­
nal a break between paragraphs, except that JOVE allows the first line of a paragraph to be indented 
differently from the other lines. 

18.15. backward-s-expression (ESC O-B) 

This moves point backward over a s-expression. It is just like forward-s-expression with a negative argu­
ment. 

18.18. backward-sentence (ESC A) 

This moves point backward to the beginning of the current or previous sentence. JOVE considers the end of 
a sentence to be the characters ..... , "!" or .. ? .. followed by a Return or by one or more spaces. 

18.17. backward-word (ESC B) 

This moves point backward to the beginning of the current or previous word. 

18.18. bad-filename-extensions (variable) 

This contains a list of words separated by spaces which are to be considered bad filename extensions, and 
so will not be counted in filename completion. The default is ".0" so if you have jove.c and jove.o in the 
same directory, the filename completion will not complain of an ambiguity because it will ignore jove.o. 

18.19. beginning-of-file (ESC <) 
This moves point backward to the beginning of the buffer. This sometimes prints the ''Point Pushed" mes­
sage. If the top of the buffer isn't on the screen JOVE will set the mark so you can go back to where you 
were if you want. 
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18.20. begirming-of.line (O-A) 
This moves point to the beginning of the current line. 

18.21. beginning-of-window (ESC ,) 
This moves point to the beginning of the current window. The sequence "ESC ," is the same as ''ESC <" 
(beginning of file) except without the shift key on the" <Of, and can thus can easily be remembered. 

18.22. bind-to--key (Not Bound) 

This attaches a key to an internal JOVE command so that future hits on that key invoke that command. 
For example, to make "O-W" erase the previous word, you type "ESC X bind-to-key kill-previous-word 0-
W". 

18.23. bind-macro-to--key (Not Bound) 

This is like bind-to-kell except you use it to attach keys to named macros. 

18.24. bind-macro-to-word-abbrev (Not Bound) 
This command allows you to bind a macro to a previously defined word abbreviation. Whenever you type 
the abbreviation, it will first be expanded as an abbreviation, and then the macro will be executed. ~ote 
that if the macro moves around, you should set the mark first (O-@) and then exchange the point and 
mark last (O-X CoX). 

18.25. buffer-position (Not Bound) 

This displays the current file name, current line number, total number of lines, percentage of the way 
through the file, and the position of the cursor in the current line. 

18.26. c-mode (Not Bound) 

This turns on C mode in the currently selected buffer. This is one of currently four possible major modes: 
Fundamental, Text, C, Lisp. \Vhen in C or Lisp mode, Tab, "}", and ")" behave a little differently from 
usual: They are indented to the "right" place for C (or Lisp) programs. In JOVE, the "right" place is simply 
the way the author likes it (but I've got good taste). 

18.27. case-character-capitalize (Not Bound) 

This capitalizes the character after point, i.e., the character undo the cursor. If a negative argument IS 

supplied that many characters be/ore point are upper cased. 

18.28. case-ignore.seareh (variable) 

This variable, when set, tells JOVE to treat upper and lower case as the same when searching. Thus "jove" 
and "JOVE" would match, and "JoVe" would match either. The default value of this variable is "off'. 

18.29. ease-region-Iower (Not Bound) 

This changes all the upper case letters in the region to their lower case equivalent. 

18.30. ease-region-upper (Not Bound) 

This changes all the lower case letters in the region to their upper case equivalent. 

18.31. ease-word-capit&lize (ESC C) 

This capitalizes the current word by making the current letter upper case and making the rest of the word 
lower case. Point is moved to the end of the word. If point is not positioned on a word it is first moved 
forward to the beginning of the next word. If a negative argument is supplied that many words be/ore 
point are capitalized. This is useful for correcting the word just typed without having to move point to 
the beginning of the word yourself. 



( 

o 

-27-

18.32. ease-word-Iower (ESC L) 

This lower-cases the current word and leaves point at the end of it. If point is in the middle of a word the 
rest of the word is converted. If point is not in a word it is first moved forward to the beginning of the 
next word. If a negative argument is supplied that many words be/ore point are converted to lower rase. 
This is useful for correcting the word just typed without having to move point to the beginning of t.he 
word yourself. 

18.33. ease-word-upper (ESC U) 

This upper-cases the current word and leaves point at the end of it. If point is in the middle of a word the 
rest of the word is converted. If point is not in a word it is first moved forward to the beginning of the 
next word. If a negative argument is supplied that many words be/ore point are converted to upper case. 
This is useful for correcting the word just typed without having to move point to the beginning of t.he 
word yourself. 

18.34. eharacter-to-octal-insert (Not Bound) 

This inserts a Back-slash followed by the ascii value of the next charaeter typed. For example, "('-a" 
inserts the string '\007". 

18.35. cd (Not Bound) 

This ehanges the current directory. 

18.36. clear-and-redraw (ESC O-L) 

This clears the entire sereen and redraws all the windows. Use this when JOVE gets confused about what's 
on the sereen, or when the sereen gets filled with garbage eharaeters or output from another program. 

18.37. eomment-tormat (variable) 

This variable tells JOVE how to format your eomments when you run the eommand fill-comment. Its for­
mat. is this: 

<open pattern>%!<line header>%c<line trailer> %! < close pattern> 

The %!, %c, and %! must appear in the format; everything else is optional. A newline (represented by 
%n) may appear in the open or close patterns. %% is the representation for %. The default eomment for­
mat is for a eomments. See fill-comment for more. 

16.38. compile-it (O-X O-E) 

This compiles your program by running the UNIX command "make" into a buffer, and automatically pars­
ing the error messages that are created (if any). See the parse-errors and parse-special-errors commands. 
To compile a a program without "make", use "c-u a-x C-E" and JOVE will prompt for a command to run 
instead of make. (And then the command you type will become the default command.) You can use t.his 
to parse the output from the a compiler or the "grep" or "lint" programs. 

16.39. continue-process (Not Bound) 

This sends SIaaONT to the current interactive process, i/ the proeess is currently stopped. 

18.40. copy-region (ESC W) 

This takes all the text in the region and copies it onto the kill ring buffer. This is just like running kill­
region followed by the yank command. See the kill-region and yank eommands. 

16.41. current-error (Not Bound) 

This moves to the current error in the list of parsed errors. See the nezt-error and previous-error com­
mands for more detailed information. 
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16.42. date (Not Bound) 

This prints the date on the message line. 

16.43. define-mode-word-abbrev (Not Bound) 

This defines a mode-specific abbreviation. 

18.44. define-alobal-word-abbrev (Not Bound) 

This defines a global abbreviation. 

16.45. delete-blank-lines (O-X 0-0) 
This deletes all the blank lines around point. This is useful when you previously opened many lines with 
"e-O" and now wish to delete the unused ones. 

16.46. delete-buffer (O-X K) 

This deletes a buffer and frees up all the memory associated with it. Be careful! Once a buffer has been 
deleted it is gone forever. JOVE will ask you to confirm if you try to delete a buffer that needs saying. 
This command is useful for when JOVE runs out of space to store new buffers. 

16.47. delete-macro (Not Bound) 

This deletes a macro from the list of named macros. It is an error to delete the keyboard-macro. Once the 
macro is deleted it is gone forever. If you are about to save macros to a file and decide you don't want to 
save a particular one, delete it. 

16.48. delete-next-character (O-D) 

This deletes the character that's just after point (that is, the character under the cursor). If point. is at the 
end of a line, the line separator is deleted and the next line is joined with the current one. 

16.49. delete-other-windows (O-X 1) 

This deletes all the other windows except the current one. This can be thought of as going back int.o One 
Window mode. 

16.50. delete-previous-character (Rubout) 

This deletes the character that's just before point (that is, the character before the cursor). If point is at 
the beginning of the line, the line separator is deleted and that line is joined with the previous one. 

16.51. delete-white-spaee (ESC \) 

This deletes all the Tabs and Spaces around point. 

16.52. delete-current-window (O-X D) 

This deletes the current window and moves point into one of the remaining ones. It is an error to t.ry to 
delete the only remaining window. 

16.53. describe-bindings (Not Bound) 

This types out a list containing each bound key and the command that gets invoked every time that key is 
typed. To make a wall chart of JOVE commands, set aend-t,lpeout-to-buffer to "on" and JOVE will store the 
key bindings in a buffer which you can save to a file and then print. 

16.64. describe-command (Not Bound) 

This prints some info on a specified command. 
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18.55. describe-key (Not Bound) 

This waits for you to type a key and then tells the name of the command that gets invoked every time 
that key is hit. Once you have the name of the command you can use the describe-command command to 
find out exactly what it does. 

18.56. describe-variable (Not Bound) 

This prints some info on a specified variable. 

16.57. digit (ESC [0-9» 

This reads a numeric argument. When you type "ESC" followed by a number, "digit" keeps reading 
numbers until you type some other command. Then that command is executes with the numeric argument 
you specified. 

16.58. digit-1 (Not Bound) 

This pretends you typed ''ESC 1". This is useful for terminals that have keypads that send spl'cial 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type ''ESC'' when you want to specify an argument. 

16.59. digit-2 (Not Bound) 

This pretends you typed ''ESC 2". This is useful for terminals that have keypads that send sp~cial 

sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type ''ESC'' when you want to specify an argument. 

16.60. digit-3 (Not Bound) 

This pretends you typed ''ESC 3". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type "ESC" when you want to specify an argument. 

16.61. digit-4 (Not Bound) 

This pretends you typed ''ESC 4". This is useful for terminals that have keypads that send sp(>cial 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type ''ESC'' when you want to specify an argument. 

16.62. digit-5 (Not Bound) 

This pretends you typed ''ESC 5". This is useful for terminals that have keypads that send sp(>cial 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type "ESC" when you want to specify an argument. 

16.63. digit-6 (Not Bound) 

This pretends you typed ''ESC 6". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type ''ESC'' when you want to specify an argument. 

16.64. digit-7 (Not Bound) 

This pretends you typed ''ESC 7". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type "ESC" when you want to specify an argument. 

16.65. digit-8 (Not Bound) 

This pretends you typed ''ESC 8". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
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save having type "ESC" when you want to specify an argument. 

18.88. digit-9 (Not Bound) 

This pretends you typed "ESC 9". This is useful for terminals that have keypads that send spt'cial 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type "ESC" when you want to specify an argument. 

18.67. digit-O (Not Bound) 

This pretends you typed "ESC 0". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This can 
save having type "ESC" when you want to specify an argument. 

16.88. dirs (Not Bound) 

This prints out the directory stack. See the "cd", "pushd", "popd" commands for more info. 

18.69. disable-biff (variable) 

When this is set, JOVE disables bitT when you're editing and enables it again when you get out of JOVE, or 
when you pause to the parent shell or push to a new shell. (This means arrival of new mail will not be 
immediately apparent but will not cause indiscriminate writing on the display). The default is "off". 

16.70. dstop-proeess (Not Bound) 

Send the "dsusp" character to the current. process. This is the character that suspends a process on the next 
read from the terminal. Most people have it set to 0-Y. This only works if you have the interactive pro­
cess feature, and if you are in a buffer bound to a process. 

16.71. edit-word-abbrevs (Not Bound) 

This creates a buffer with a list of each abbreviation and the phrase it expands into, and enters a recursive 
edit to let you change the abbreviations or add some more. The format of this list is "abbreviation:phrase" 
so if you add some more you should follow that format. It's probably simplest just to copy some already 
existing abbreviations and edit them. When you are done you type "O-X O-C" to exit the recursive edit. 

18.72. end-of-file (ESC » 
This moves point forward to the end of the buffer. This sometimes prints the ''Point Pushed" message. If 
the end of the buffer isn't on t.he screen JOVE will set the mark so you can go back to where you were if you 
want. 

16.78. end-of-line (C-E) 

This moves point to the end of the current line. If the line is too long to fit on the screen JOVE will scroll 
the line to the left to make the end of the line visible. The line will slide back to its normal position when 
you move backward past the leftmost visible character or when you move off the line altogether. 

18.74. end-of-window (ESC .) 
This moves point to the last character in the window. 

18.75. eof-proeess (Not Bound) 

Sends EOF to the current interactive process. This only works on versions of JOVE which run under 4.2-3 

BSD VAX UNlX. You can't send EOF to processes on the 2.9 BSD PDP-ll UNIX. 

18.76. erase-buffer (Not Bound) 

This erases the contents of the specified buffer. This is like delete-buffer except it only erases the contents 
of the buffer, not the buffer itself. If you try to erase a buffer that needs saving you will be asked to 

\ 
\~ 
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confirm it. 

18.77. error-window-sise (variable) 

This is the percentage oC the screen to use for the error-window on the screen. When you execute compile­
it. error-window-aize percent of the screen will go to the error window. If the window already exists and is 
a different size, it is made to be this size. The default value is 20%. 

18.78. exchange-point-and-mark (O-X O-X) 

This moves point to mark and makes mark the old point. This is for quickly moving Crom one end of the 
region to another. 

18.79. execute-named-command (ESC X) 

This is the way to execute a command that isn't bound to any key. When you are prompted with "; "you 
can type the name of the command. You don't have to type the entire name. Once the command is 
unambiguous you can type Space and JOVE will fill in the rest for you. If you are not sure of the name of 
the command, type "1" and JOVE will print a list of all the commands that you could possibly match given 
what you've already typed. If you don't have any idea what the command's name is but you know it has 
something to do with windows (for example), you can do ''ESC X apropos window" and JOVE will print a 
list of all the commands that. are related to windows. If you find yourself constantly executing the same 
commands this way you probably want to bind them to keys so that you can execute them more quickly. 
See the bind-to-key command. 

18.80. execute-keyboard-macro (O-X E) 

This executes the keyboard macro. If you supply a numeric argument the macro is executed that many 
times. 

18.81. execute-macro (Not Bound) 

This executes a specified macro. If you supply a numeric argument the macro is executed that many times. 

16.82. exit-jove (O-X O-C) 

This exits JOVE. If any buffers need saving JOVE will print a warning message and ask for confirmation. If 
you leave without saving your buffers all your work will be lost. If you made a mistake and really do want 
to exit then you can. If you are in a recursive editing level exit-jove will return you Crom that. 

16.83. file-creation-mode (variable) 

This variable has an octal value. It contains the mode (see chmod{l) ) with which files should be created. 
This mode gets modified by your current umask setting (see uma8k{1}). The deCault value is usually 0666 
or 0644. 

16.84. files-should-end-with-newline (variable) 

This variable indicates that all files should always have a newline at the end. This is often necessary for 
line printers and the like. When set, if JOVE is writing a file whose last character is not a newline, it will 
add one automatically. 

18.85. fill-comment (Not Bound) 

This command fills in yoUl' C comments to make them pretty and readable. This filling is done according 
the variable comment-format. 

/* 
* the default format makes comments like this. 

*/ 
This can be changed by changing the format variable. Other languages may be supported by changing the 
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format variable appropriately. The formatter looks backwards from dot for an open comment symbol. It 
found, all indentation is done relative the position of the first character of the open symbol. It there is a 
matching close symbol, the entire comment is formatted. It not, the region between dot and the open 8ym- (-
hoI is reCormatted. ~ 

18.88. fill-paragraph (ESC J) 
This rearranges words between lines so that all the lines in the current paragraph extend as close to the 
right margin as possible, ensuring that none of the lines will be greater than the right margin. The default 
value tor "'ght-margin is 78, but can be changed with the 3et and right-margin-here commands. JOVE has a 
complicated algorithm for determining the beginning and end of the paragraph. In the normal ease JOVE 
will give all the lines the same indent as they currently have, but if you wish to force a new indent you can 
supply a numeric argument to fiJI-paragraph (e.g., by typing e-U ESC J) and JOVE will indent each line to 
the column specified by the left-margin variable. See also the left-margin variable and left-margin-here 
command. 

18.87. fill-region (Not Bound) 
This is like fill-paragraph, except it operates on a region instead of just a paragraph. 

18.88. filter-region (Not Bound) 
This sends the text in the region to a UNIX command, and replaces the region with the output from that 
command. For example, iC you are lazy and don't like to take the time to write properly indented C code, 
you can put the region around your C file and filter-region it through cb, the UNIX C beautifier. If you 
have a file that contains a bunch of lines that need to be sorted you can do that Crom inside JOVE too. by 
filtering the region through the 30rt UNIX command. BeCore output Crom the command replaces the region 
JOVE stores the old text in the kill ring, so if you are unhappy with the results you can easily get back the 
old text with "e-Y". 

18.80. find-file (C-X O-F) 

This visits a file into its own buffer and then selects that buffer. If you've already visited this file in 
another buffer, that buffer is selected. If the file doesn't yet exist, JOVE will print "(New file)" so that you 
know. 

16.00. find-tag (O-X T) 

This finds the file that contains the specified tag. JOVE looks up tags by default in the "tags" file in the 
current directory. You can change the default tag name by setting the tag-file variable to another name. 
It you specify a numeric argument to this command, you will be prompted for a tag file. This is a good 
way to specify another tag file without changing the default. If the tag cannot be found the error is 
reported and point stays where it is. 

18.01. find-tag. at-point (Not Bound) 

This finds the file that contains the tag that point is currently on. See find-tag. 

18.02. first-non-blank (ESC M) 

This moves point back to the indent of the current line. 

18.03. forward-eharacter (O-F) 

This moves forward over a single character. If point is at the end of the line it moves to the. beginning of 
the next one. 
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18.94. forward-paragraph (ESC ]) 

This moves point forward to the end of the current or next paragraph. Paragraphs are bounded by lines 
that begin with a Period or Tab, or by blank lines; a change in indentation may also signal a break 
between paragraphs, except that JOVE allows the first line of a paragraph to be indented differently from 
the other lines. 

18.95. forward-s-expl'eSSion (ESC C-F) 

This moves point forward over a s-expression. IT the first significant character after point is .. ( .. , this moves 
past the matching .. )". IT the character begins an identifier, this moves just past it. This is mode depen­
dent, 50 this will move over atoms in LISP mode and C identifiers in C mode. JOVE also matches .. {". 

18.98. forward-sentence (ESC E) 

This moves point forward to the end of the current or next sentence. JOVE considers the end of a sentence 
to be the characters ..... , .. , .. or .. ? .. followed by a Return, or one or more spaces. 

18.97. forward-word (ESC F) 

This moves point forward to the end of the current or next word. 

18.98. fundamental-mode (Not Bound) 

This sets the major mode to Fundamental. This affects what JOVE considers as characters that make up 
words. For instance, Single-quote is not part of a word in Fundamental mode, but is in Text mode. 

18.90. goto-line (ESC G) 

IT a numeric argument is supplied point moves to the beginning of that line. IT no argument is supplied, 
point remains where it is. This is so you don't lose your place unintentionally, by accidentally hitting the 
"G" instead of "F". 

18.100. grind-s-expr (Not Bound) 

When point is positioned on a .. ( .. , this re-indents that LISP expression. 

18.101. grow-window (C-X ") 

This makes the current window one line bigger. This only works when there is more than one window and 
provided there is room to change the size. 

18.102. paren-Bash 0 } ]) 
This handles the C mode curly brace indentation, the Lisp mode paren indentation, and the Show Match 
mode paren/curly brace/square bracket flashing. 

18.103. handle-tab (Tab) 

This handles indenting to the "right" place in C and Lisp mode, and just inserts itself in Text mode. 

18.104. i-seareh-fol"Ward (Not Bound) 

Incremental search. Like search-forward except that instead of prompting for a string and searching for 
that string all at once, it accepts the string one character at a time. Mter each character you type as part 
of the search string, it searches for the entire string 50 far. When you like what it found, type the Return 
key to finish the search. You can take back a character with Rubout and the search will back up to the 
position before that character was typed. C-G aborts the search. 
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18.105. i-search-reverse (Not Bound) 

Incremental search. Like search-reverse except that instead of prompting for a string and searching for 
that string all at once, it accepts the string one character at a time. After each character you type as part 
of the search string, it searches for the entire string so far. When you like what it found, type the RE'turn 
key to finish the search. You can take back a character with Rubout and the search will back up to the 
position before that character was typed. O-G aborts the search. 

18.108. insert-file (C-X C-I) 
This inserts a specified file into the current buffer at point. Point is positioned at the beginning of the 
inserted file. 

18.107. internal-tabstop (variable) 

The number of spaces JOVE should print when it displays a tab character. The default value is 8. 

16.108. interrupt-process (Not Bound) 

This sends the interrupt character (usually C-C) to the interactive process in the current buffer. This is 
only for versions of JOVE that have the interactive processes feature. This only works when you are inside 
a buffer that's attached to a process. 

16.109. i-shell (Not Bound) 

This starts up an interactive shell in a window. JOVE uses "shell-I" as the name of the buffer in which the 
interacting takes place. See the manual for information on how to use interactive processes. 

16.110. i-shell-command (Not Bound) 

This is like IIhell-command except it lets you continue with your editing while the command is running. 
This is really useful for long running commands with sporadic output. See the manual for information on 
how to use interactive processes. 

16.111. kill-next-word (ESC D) 

This kills the text from point to the end of the current or next word. 

16.112. kill-previous-word (ESC Rubout) 

This kills the text from point to the beginning of the current or previous word. 

16.113. kill-process (Not Bound) 

This command prompts for a buffer name or buffer number (just as select-buffer does) and then sends the 
process in that buffer a kill signal (9). 

16.114. kill-region (C-W) 
This deletes the text in the region and saves it on the kill ring. Commands that delete text but save it on 
the kill ring all have the word "kill" in their names. Type "0-Y"to yank back the most recent kill. 

18.115. kill-e-expression (ESC C-K) 

This kills the text from point to the end of the current or next s-expression. 

18.116. kill-some-buffers (Not Bound) 

This goes through all the existing buffers and asks whether or not to kill them. If you decide to kill a 
buffer, and it turns out that the buffer is modified, JOVE will offer to save it first. This is useful for when 
JOVE runs out of memory to store lines (this only happens on PDP-U's) and you have lots of buffers that 
you are no longer using. 

c 
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18.117. kill-to-begiDDJne.-of'-BeJl't.eDce {C-X Rubout) 

This kills Crom point to the beginning oC the current or previous sentence. 

18.118. kill-to-end-oC·liDe (C-K) 

This kills Crom point to the end oC the current line. When point is at the end oC the line the line separator 
is deleted and the next line is joined with current one. U a numeric argument is supplied that many lines 
are killed; iC the argument is negative that many lines be/ore point are killed; iC the argument is zero the 
text Crom point to the beginning oC the line is kill«l. 

18.119. kill-to-end-oC-aenteDce (ESC K) 

This kills Crom point to the end of the current or next sentence. If a negative numeric argument is supplied 
it kills from point to the beginning oC the current or previous sentence. 

18.120. left-margin (variable) 

This is how Car lines should be indented when au~indent mode is on, or when the newline-and-illdent 
command is run (usually by typin~ LineFeed). It is also used by fill-paragraph and auto-fill mode. If the 
value is zero (the deCault) then the left margin is determined from the surrounding lines. 

18.121. lert-margin-here (Not Bound) 

This sets the le/t-margin variable to the current position of point. This is an easy way to say, ''MakE> the 
left margin begin here," without having to count the number of spaces over it actually is. 

18.122. lisp-mode (Not BonDd) 

This turns on Lisp mode. Lisp mode is one of Cour mutually exclusive major modes: Fundamental, Text, 
C, and Lisp. In Lisp mode, tiM characters Tab and ) are treated specially, similar to the way they are 
treated in C mode. Also, Auto Indent mode is affected, and handled specially. 

18.123. list-buffers (C-X C-B) 

This types out a list containing various information about each buffer. Right now that list looks like this: 

(* means the buffer needs saving) 
NO Lines Type Name File 

1 
2 
3 

1 File 
1 Scratch 
519 File 

Main 
01< Minibur 
.. commands.doc 

[No file] 
[No file] 
commands.doc 

The first column lists the buffer's number. When .JOVE promptAs for a buffer name you can either type in 
the full name, or you can simply type the buffer's number. The second column is the number of lines in 
the buffer. The third says what type of buffer. There are four types: "File", "Scratch", ''Process'', "1-
Process". "File" is simply a buffer that holds a file; "Scratch" is for buffers that JOVE uses internally; ''Pro­
cess" is one that holds the output from a UNlX command; "I-Process" is one that has an interactive process 
attached to it. The next column contains the name of the buffer. And the last column is the name of the 
file that's attached to the buffer. In this ease, both MinibuC and commands. doc have been changed but not 
yet saved. In Cact MinibuC won't be saved since it's an internal JOVE buffer that 1 don't even care about. 

18.124. list-processes (Not Bound) 

This makes a list somewhat like "list-buffers" does, except its list consists of the current interactive 
processes. Right now the list looks like this: 



ButTer 

shell-! 
fgrep 

Status 

Running 
Done 
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Command name 

i-shell 
fgrep -n ButTer *.c 

The first column has the name of the buffer to which the process is attached. The second has the status of 
the process; if a process has exited normally the status is "Done" as in fgrep; if the process exited with an 
error the status is "Exit Nfl where N is the value of the exit code; if the process was killed by some signal 
the status is the name of the signal that was used; otherwise the process is running. The last column is the 
name of the command that is being run. 

18.125. mailbox (variable) 

Set this to the full pathname of your mailbox. JOVE will look here to decide whether or not you have any 
unread mail. This defaults to /usr/spool/mail/SUSER, where SUSER is set to your login name. 

18.128. mail-check-frequency (variable) 

This is how often (in seconds) JOVE should check your mailbox for incoming mail. See also the mailbox and 
disable-biffvariables. 

16.127. make-backup-files (variable) 

If this variable is set, then whenever JOVE writes out a file, it will move the previous version of the file (if 
there was one) to "#filename". This is often convenient if you save a file by accident. The default value of 
this variable is "oft'''. Note: this is an optional part of JOVE, and your guru may not have it enabled, so it 
may not work. 

16.128. make-buffer-unmodified (ESC -) 

This makes JOVE think the selected buffer hasn't been changed even if it has. Use this when you acciden­
tally change the buffer but don't want it considered changed. Watch the mode line to see the * disappear 
when you use this command. 

16.120. make-macro-interactive (Not Bound) 

This command is meaningful only while you are defining a keyboard macro. Ordinarily, when a command 
in a macro definition requires a trailing text argument (file name, search string, etc.), the argument you 
supply becomes part of the macro definition. If you want to be able to supply a different argument each 
time the macro is used, then while you are defining it, you should give the make-macro-interactive com­
mand just before typing the argument which will be used during the definit.ion process. Note: you must 
bind this command to a key in order to use it; you can't say ESC X make-macro-interactive. 

16.130. mark-threshold (variable) 

This variable contains the number of lines point may move by before the mark is set. If, in a search or 
something, point moves by more than this many lines, the mark is set so tha,t you may return easily. The 
default value of this variable is 22 (one screenful, on most terminals). 

18.131. marks-should-float (variable) 

When this variable is "otT", the position of a mark is remembered as a line number within the buffer and a 
character number within the line. If you add or delete text before the mark, it will no longer point to the 
text you marked originally because that text is no longer at the same line and character number. When 
this variable is "on", the position of a mark is adjusted to compensate for each insertion and deletion. This 
makes marks much more sensible to use, at the cost of slowing down insertion and deletion somewhat. 
The default value is "on". 
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18.132. match-regular-expressions (variable) 

When set, JOVE will match regular expressions in search patterns. This makes special the characters ., *, [, 
J, ., and $, and the two-character sequences \ <, \ >, \ {, \} and \ ~ See the e.d(l) manual page. the 
tutorial "Advanced Editing in UNIX ", and the section above "Searching with Regular Expressions" for more 
information. 

18.133. meta-key (variable) 

You should set this variable to "on" if your terminal has a real Meta key. If your terminal has such a key, 
then a key sequence like ESC Y can be entered by holding down Meta and typing Y. 

18.134. mode-line (variable) 

The format of the mode line can be determined by setting this variable. The items in the line are specified 
using a printf(3) format, with the special things being marked as "%x". Digits may be used between the 'x' 
may be: 

C check for new mail, and displays "[New mail]" if there 
is any (see also the mail-cheek-interval and disable-biff 
variables) 

F the current file name, with leading path stripped 
M the current list of major and minor modes 
b the current buffer name 
c the fill character (-) 
d the current directory 
e end of string-this must be the last item in the string 
f the current file name 
I the current load average (updated automatically) 
m the buffer-modified symbol (*) 
n the current buffer number 
s 
t 

[ J 
( ) 

space, but only if previous character is not a space 
the current time (updated automatically) 
the square brackets printed when in a recursive edit 
items enclosed in %( ... %) will only be printed on 
the bottom mode line, rather than copied when the 
window is split 

In addition, any other character is simply copied into the mode line. Characters may be escaped with a 
backslash. To get a feel for all this, try typing ''ESC X print mode-line" and compare the result with your 
current mode line. 

18.135. mode-Iine-should-standout (variable) 

If set, the mode line will be printed in reverse video, if your terminal supports it. The default for this vari­
able is "ofr'. 

18.138. name-keyboard-maero (Not Bound) 

This copies the keyboard macro and gives it a name freeing up the keyboard macro so you can define some 
more. Keyboard macros with their own names can be bound to keys just like built in commands can. See 
the re.ad-macro8-file.-file. and write.-macro8-to-file. commands. 

18.137. newline (Return) 

This divides the current line at point moving all the text to the right of point down onto the newly creat.ed 
line. Point moves down to the beginning of the new line. 
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18.138. newline-And-backup (0-0) 
This divides the current line at point moving all the text to the right of point down onto the newly created 
line. The difference between this and "newline" is that point does not move down to the beginning of the 
new line. 

18.139. newline-And-indent (LineFeed) 
This behaves the same was as Return does when in Auto Indent mode. This makes Auto Indent mode 
obsolete but it remains in the name of backward compatibility. 

18.140. next-error (O-X O-N) 

This moves to the next error in the list of errors that were parsed with parse-errors or parse-special-errors. 
In one window the list of errors is shown with the current one always at the top. In another window is the 
file that contains the error. Point is positioned in this window on the line where the error occurred. 

18.141. next-line (O-N) 

This moves down to the next line. 

18.142. next-page (O-V) 
This displays the next page of the buffer by taking the bottom line of the window and redrawing the win­
dow with it at the top. If there isn't another page in the buffer JOVE rings the bell. If a numeric argument 
is supplied the screen is scrolled up that many lines; if the argument is negative the screen is scrolled down. 

18.143. next-window (C-X N) 

This moves into the next window. Windows live in a circular list so when you're in the bottom window 
and you try to move to the next one you are moved to the top window. It is an error to use this command 
with only one window. 

16.144. number-Iines-in-window (Not Bound) 

This displays the line numbers for each line in the buffer being displayed. The number isn't actually part 
of the text; it's just printed before the actual buffer line is. To turn this off you run the command again; it 
toggles. 

18.145. over-write-mode (Not Bound) 

This turns Over Write mode on (or off if it's currently on) in the selected buffer. When on, this mode 
changes the way the self-inserting characters work. Instead of inserting themselves and pushing the fe"t of 
the line over to the right, they replace or over-write the existing character . .'\.1so, Rubout replaces the rhar­
acter before point with a space instead of deleting it. When Over Write mode is on "OvrWt" is displllyed 
on the mode line. 

18.148. page-next-window (ESC 0-V) 

This displays the next page in the next window. This is exactly the same as "C-X N C-V CoX pIt. 

18.147. paren-flash-delay (variable) 

How long, in tenths of seconds, JOVE should pause on a matching parenthesis in Show mode. The default 
is 5. 

18.148. pane-errors (Not Bound) 

This takes the list of C compilation errors (or output from another program in the same format) in the 
current buffer and parses them for use with the next-error and previous-error and current-error commands. 
This is a very useful tool and helps with compiling C programs and when used in conjunction with the 
"grep" UNIX command very helpful in making changes to a bunch of files. This command understands 
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errors produced by cc, cpp, and lint; plus any other program with the same format (e.g., "grep _not). JOVE 

visits each file that has an error and remembers each line that contains an error. It doesn't matter if later 
you insert or delete some lines in the buffers containing errors; JOVE remembers where they are regardless. 
next-error is automatically executed after one of the parse commands, so you end up at the first error. 

18.149. parse-special-errors (Not Bound) 

This parses eJT(jrs in an unknown format. Error parsing works with regular expression search strings with 
\('s around the the file name and the line number. So, you can use parse-special-errors to parse lines that 
are in a slightly different format by typing in your own search string. IT you don't know how to use regu­
lar expressions you can't use this command. 

18.150. parse-spelling-errors-in-buffer (Not Bound) 

This parses a list of words in the current buffer and looks them up in another buffer that you specify. This 
will probably go away soon. 

18.151. pause-jove (ESC S) 

This stops JOVE and returns control to the parent shell. This only works for users using the C-shell. and 
on systems that have the job control facility. To return to JOVE you type "fg" to the C-shell. 

18.152. physical-tabstop (variable) 

How many spaces your terminal prints when it prints a tab character. 

18.153. pop-mark (Not Bound) 

This gets executed when you run set-mark with a numeric argument. JOVE remembers the last 16 marks 
and you use pop-mark to go backward through the ring of marks. IT you execute" pop-mark enough times 
you will eventually get back to where you started. 

16.154. popd (Not Bound) 

This pops one entry off the directory stack. Entries are pushed with the pushd command. The names were 
stolen from the C-shell and the behavior is the same. 

18.155. previous-error (O-X O-P) 

This is the same as next-error except it goes to the previous error. See next-error for documentation. 

16.156. previous-line (O-P) 

This moves up to the previous line. 

16.157. previous-page (ESC V) 

This displays the previous page of the current buffer by taking the top line and redrawing the window with 
it at the bottom. IT a numeric argument is supplied the screen is scrolled down that many lines; ir the 
argument is negative the screen is scrolled up. 

18.158. previous-window (O-X P and O-X 0) 
This moves into the next window. Windows live in a circular list so when you're in the top window and 
you try to move to the previous one you are moved to the bottom window. It is an error to use this rom­
mand with only one window. 

16.159. print (Not Bound) 

This prints the value of a JOVE variable .. 
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18.180. print-message (Not Bound) 

This command prompts Cor a message, and then prints it on the bottom line where JOVE messages are 
printed. 

18.181. pl'ocess-bind-to-key (Not Bound) 
This command is identical to bind-~key, except that it only affects your bindings when you are in a buffer 
attached to a process. When you enter the process buffer, any keys bound with this command will 
automatically take their new values. When you switch to a non-process buffer, the old bindings Cor t.hose 
keys will be restored. For example, you might want to execute 

process-bind-to-key stop-process A Z 
process-bind-to-key interrupt-process AC 

Then, when you start up an interactive process and switch into that buffer, C-Z will execute stop-process 
and C-C will execute interrupt- process. When you switch back to a non-process buffer, C-Z will go hack 
to executing scroll-up (or whatever you have it bound to). 

18.182. process-newline (Return) 

This this only gets executed when in a buffer that is attached to an interactive-process. JOVE does two 
different things depending on where you are when you hit Return. When you're at the end of the I-Process 
buffer this does what Return normally does, except it also makes the line available to the process. When 
point is positioned at some other position that line is copied to the end of the buffer (with the prompt 
stripped) and point is moved there with it, so you can then edit that line before sending it to the process. 
This command mU8t be bound to the key you usually use to enter shell commands (Return), or else you 
won't be able to enter any. 

18.183. process-prompt (variabJe) 

What a prompt looks like from the i-shell and i-shell-command processes. The default is "% It, the default 
C-shell prompt. This is actually a regular expression search string. So you can set it to be more than one 
thing at once using the \1 operator. For instance, for LISP hackers, the prompt can be 

"% -> <[0-9]>:". 

18.164. push-shell (Not Bound) 

This spawns a child shell and relinquishes control to it. This works on any version of Ul\1JX, but this isn't 
as good as pau8e-love because it takes time to start up the new shell and you get a brand new environment 
every time. To return to JOVE you type "C-D". 

18.185. pushd (Not Bound) 

This pushes a directory onto the directory stack and cd's into it. It asks for the directory name but if you 
don't specify one it switches the top two entries no the stack. It purposely behaves the same as C-shell's 
pU8hd. 

18.166. pwd (Not Bound) 

This prints the working directory. 

18.187. quadl'upJe-numerie-argument (C-U) 

This multiplies the numeric argument by 4. So, "C-U C-F" means forward 4 characters and "O-U Cop 0-
N" means down 16 lines. 

) 
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18.188. query-replace-string (ESC Q) 
This replaces the occurrences of a specified string with a specified replacement string. When an OCCUrfi'nCe 
is found point is moved to it and then JOVE asks what to do. The options are: 

Space 
Period 
Rubout 
C-R 

C-W 

U 
P or! 

Return 

to replace this occurrence and go on to the next one. 
to replace this occurrence and then stop. 
to skip this occurrence and go on to the next one. 
to enter a recursive edit. This lets you temporarily 
suspend the replace, do some editing, and then return 
to continue where you left off. To continue with the 
Query Replace type "C-X C-C" as if you were trying to 
exit JOVE. Normally you would but when you are in a 
recursive edit all it does is exit that recursive 
editing level. 
to delete the matched string and then enter a recursive 
edit. 
to undo the last replacement. 
to go ahead and replace the remaining occurrences without 
asking. 
to stop the Query Replace. 

The search for occurrences starts at point and goes to the end of the buffer, so to replace in the entire 
buffer you must first go to the beginning. 

18.169. quit-process (Not Bound) 

This is the same as typing "C-," (the Quit character) to a normal UNIX process, except it sends it to the 
current process in JOVE. This is only for versions of JOVE that have the interactive processes feature. This 
only works when you are inside a buffer that's attached to a process. 

16.170. quoted-insert (C-Q) 

This lets you insert characters that normally would be executed as other JOVE commands. For examplp, to 
insert "C-F" you type "C-Q C-F". 

16.171. read-word-abbrev-flle (Not Bound) 

This reads a specified file that contains a bunch of abbreviation definitions, and makes those abbreviations 
available. IT the selected buffer is not already in Word Abbrev mode this command puts it in that mode. 

16.172. read-maeros-from-file (Not Bound) 

This reads the specified file that contains a bunch of macro definitions, and defines all the macros that. were 
currently defined when the file was created. See write-macros-to-file to see how to save macros. 

18.173. redraw-display (C-L) 

This centers the line containing point in the window. If that line is already in the middle the window is 
first cleared and then redrawn. H a numeric argument is supplied, the line is positioned at that offset from 
the top of the window. For example, "ESC 0 C-L" positions the line containing point at the top of the 
window. 

18.174. recursive-edit (Not Bound) 

This enters a recursive editing level. This isn't really very useful. I don't know why it's available for pub­
lic use. I think I'll delete it some day. 



18.175. :rename-buffer (Not Bound) 

This lets you rename the current buffer. 

18.178. replace-in-region (Not Bound) 
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This is the same as replace-,tring except that it is restricted to occurrences between Point and Mark. 

18.177. replace-string (ESC R) 

This replaces all occurrences of a specified string with a specified replacement string. This is just. like 
que'7l-replaee-,tring except it replaces without asking. 

18.178. right-margin (variable) 
Where the right margin is for Auto Fill mode and the ju,tily-paragraph and justily-region commands. The 
default is 78. 

18.179. right-margin-here (Not Bound) 

This sets the right-margin variable to the current position of point. This is an easy way to say, ''Makt> the 
right margin begin here," without having to count the number of spaces over it actually is. 

18.180. save-file (O-X C-S) 

This saves the current buffer to the associated file. This makes your changes permanent so you should be 
sure you really want to. If the buffer has not been modified save-file refuses to do the save. If you really 
do want to write the file you can use "C-X C-W" which executes write-file. 

16.181. scroll-down (ESC Z) 

This scrolls the screen one line down. II the line containing point moves past the bottom of the window 
point is moved up to the center of the window. If a numeric argument is supplied that many lines are 
scrolled; if the argument is negative the screen is scrolled up instead. 

16.182. scroll-step (variable) 

How many lines should be scrolled if the previous-line or next-line commands move you off the top or bot­
tom of the screen. You may wish to decrease this variable if you are on a slow terminal. 

16.183. scroll-up (C-Z) 

This scrolls the screen one line up. If the line containing point moves past the top of the window point is 
moved down to the center of the window. If a numeric argument is supplied that many lines are scrolled; 
if the argument is negative the screen is scrolled down instead. 

16.184. search-exit-char (variable) 

Set this to the character you want to use to exit incremental search. The default is Newline, which makes 
i-search compatible with normal string search. 

18.185. search-forward (O-S) 

This searches forward for a specified search string and positions point at the end of the string if it's found. 
If the string is not found point remains unchanged. This searches from point to the end of the buffer, so 
any matches before point will be missed. 

18.186. search-reverse (O-R) 

This searches backward for a specified search string and positions point at the beginning if the string if it's 
found. If the string is not found point remains unchanged. This searches from point to the beginning of 
the buffer, so any matches after point will be missed. 

c/ 
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18.187. select;..buffer (C-X B) 

This selects a new or already existing buffer making it the current one. You can type either the buffer 
name or number. If you type in the name you need only type the name until it is unambiguous, at which 
point typing Escape or Space will complete it for you. If you want to create a new buffer you can type 
Return instead of Space, and a new empty buffer will be created. 

18.188. selt-insert (Most Printing Characters) 

This inserts the character that invoked it into the buffer at point. Initially all but a few of the printing 
characters are bound to &el/-imert. 

18.189. send-typeout-to-bufl'er (variable) 

When this is set JOVE will send output that normally overwrites the screen (temporarily) to a buffer 
instead. This aft'ects commands like lid-buffers, Iist-proces&e&, and other commands that use command 
completion. The default value is "off". 

18.190. set (Not Bound) 

This gives a specified variable a new value. Occasionally you'll see lines like "set this variable to that value 
to do this". Well, you use the Bet command to do that. 

18.191. set;..mark (O-@) 

This sets the mark at the current position in the buffer. It prints the message ''Point pushed" on the mes­
sage line. It says that instead of ''Mark set" because when you set the mark the previous mark is still 
remembered on a ring of 16 marks. So ''Point pushed" means point is pushed onto the ring of marks and 
becomes the value of "the mark". To go through the ring of marks you type "C-U C-@", or execut" the 
pop-mark command. If you type this enough times you will get back to where you started. 

18.192. shell (variable) 

The shell to be used with all the shell commands command. If your SHELL environment variable is set. it 
is used as the value of shell; otherwise "/bin/csh" is the default. 

18.193. shell-command (O-X I) 

This runs a Ul\TJX command and places the output from that command in a buffer. JOVE creates a buffer 
that matches the name of the command you specify and then attaches that buffer to a window. So, when 
you have only one window running this command will cause JOVE to split the window and attach the new 
buffer to that window. Otherwise, JOVE finds the most convenient of the available windows and uses that 
one instead. If the buffer already exists it is first emptied, except that if it's holding a file, not some output 
from a previous command, JOVE prints an error message and refuses to execute the command. If you really 
want to execute the command you should delete that buffer (saving it first, if you like) or use shell­
command-to-buffer, and try again. 

18.194. shell-command-to-buft'er (Not Bound) 

This is just like ehell-command except it lets you specify the buffer to use instead of JOVE. 

18.195. ahell-ftags (variable) 

This defines the flags that are passed to shell commands. The default is "-c". See the shell variable to 
change the default shell. 

18.198. show-match-mode (Not Bound) 

This turns on Show Match mode (or off if it's currently on) in the selected buffer. This changes "}" and ")" 
so that when they are typed the are inserted as usual, and then the cursor flashes back to the matching "{" 
or "(" (depending on what was typed) for about half a second, and then goes back to just after the "}" or 
")" that invoked the command. This is useful for typing in complicated expressions in a program. You can 
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change how long the cursor sits on the matching paren by setting the "paren-ftash-delay" variable in tenths 
of a second. If the matching "{tt or "(to isn't visible nothing happens. 

18.197. shrink-window (Not Bound) 

This makes the current window one line shorter, if possible. Windows must be at least 2 lines high, one for 
the text and the other for the mode line. 

18.198. source (Not Bound) 

This reads a bunch of JOVE commands from a file. The format of the file is the same as that in your ini­
tialization file (your tt .joverc") in your main directory. There should be one command per line and it 
should be as though you typed ''ESC X" while in JOVE. For example, here's part of my initialization file: 

bind-to-key i-search-reverse ·R 
bind-to-key i-search-forward ·S 
bind-to-key pause-jove· [S 

What they do is make "C-R" call the i-search-rewrse command and "C-S" call i-search-forward and ''ESC 
S" call pause-jove. 

18.199. spell-buffer (Not Bound) 

This runs the current buffer through the Ul\TJX spell program and places the output in buffer "Spell". Then 
JOVE lets you edit the list of words, expecting you to delete the ones that you don't care about, i.e., the 
ones you know are spelled correctly. Then the parse-8pelling-error8-in-buffer command comes along and 
finds all the misspelled words and sets things up so the error commands work. 

16.200. split-current-window (O-X 2) 

This splits the current window into two equal parts (providing the resulting windows would be big enough) 
and displays the selected buffer in both windows. Use "C-X I" to go back to 1 window mode. 

16.201. start-remembering (O-X 0 
This starts remembering your key strokes in the Keyboard macro. To stop remembering you type "C-X )". 
Because of a bug in JOVE you can't stop remembering by typing ''ESC X stop-remembering"; stop­
remembering must be bound to "C-X )" in order to make things work correctly. To execute the remem­
bered key strokes you type "C-X E" which runs the ezecute-keyboard-macro command. Sometimes you 
may want a macro to accept different input each time it runs. To see how to do this, see the make-macro­
interactive command. 

16.202. stop-process (Not Bound) 

This sends a stop signal (C-Z, for most people) to the current process. It only works if you have the 
interactive process feature, and you are in a buffer attached to a process. 

16.203. stop-remembering (O-X » 
This stop the definition of the keyboard macro. Because of a bug in JOVE, this must. be bound to "C-X )". 
Anything else will not work properly. 

16.204. string-length (Not Bound) 

This prints the number of characters in the string that point sits in. Strings are surrounded by double 
quotes. JOVE knows that '\007" is considered a single character, namely "C-G", and also knows about 
other common ones, like '\rtl (Return) and ,\n" (LineFeed). This is mostly useful only for C programmers. 
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18.205. suspend-jove (ESC S) 

This is a synonym for pau3e-jove. 

18.206. sync-frequency (variable) 
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The temporary files used by JOVE are forced out to disk every Bync-frequency modifications. The default is 
50, which really makes good sense. Unless your system is very unstable, you probably shouldn't fool with 
this. 

16.207. tag-file (variable) 

This the name of the file in which JOVE should look up tag definitions. The default value is ".jtags". 

18.208. tex~mode (Not Bound) 

This sets the major mode to Text. Currently the other modes are Fundamental, C and Lisp mode. 

18.209. transpose-characters (O-T) 

This switches the character before point with the one after point, and then moves forward one. This 
doesn't work at the beginning of the line, and at the end of the line it switches the two characters before 
point. Since point is moved forward, so that the character that was before point is still before point .. you 
can use "c. T" to drag a character down the length of a line. This command pretty quickly becomes very 
useful. 

16.210. transpose-lines (O-X C-T) 

This switches the current line with the one above it, and then moves down one so that the line that was 
above point is still above point. This, like tranBpose-characters, can be used to drag a line down a pagE'. 

16.211. unbind-key (Not Bound) 

Use this to unbind any key sequence. You can use this to unbind even a prefix command, since this ('om­
mand does not use "key-map completion". For example, ''ESC X unbind-key ESC [It unbinds the seqUE-nce 
''ESC [". This is useful for "turning off" something set in the system-wide" .joverc" file. 

18.212. update-tIme-frequency (variable) 

How often the mode line is updated (and thus the time and load average, if you display them). The 
default is 30 seconds. 

16.213. use-i/d-char (variable) 

If your terminal has insert/delete charact.er capability you can tell JOVE not to use it by setting thi" to 
"off". In my opinion it is only worth using insert/delete character at low baud rates. WARNING: if you 
set this to "on" when your terminal doesn't have insert/delete character capability, you will get weird 
(perhaps fatal) results. 

18.214. version (Not Bound) 

Displays the version number of this JOVE. 

18.215. visible-bell (variable) 

Use the terminal's visible bell instead of beeping. This is set automatically if your terminal has the capa­
bility. 

18.216. visible-spaces-in-window (Not Bound) 

This displays an underscore character instead of each space in the window and displays a greater-than fol­
lowed by spaces for each tab in the window. The actual text in the buffer is not changed; only the screen 
display is affected. To turn this off you run the command again; it toggles. 
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10.217. vislt.-file (O-X O-V) 

This reads a specified file into the current buffer replacing the old text. If the buffer needs saving JOVE will 
offer to save it for you. Sometimes you use this to start over, say if you make lots of changes and then 
change your mind. If that's the case you don't want JOVE to save your buffer and you answer "NO" to the 
question. 

16.218. window-find (O-X 4) 
This lets you select another buffer in another window three different ways. This waits for another charac­
ter which can be one of the following: 

T Finds a tag in the other window. 
F Finds a file in the other window. 
B Selects a buffer in t.he other window. 

This is just a convenient short hand for "C-X 2" (or "C-X 0" if there are already two windows) followed by 
the appropriate sequence for invoking each command. With this, though, there isn't the extra overhead of 
having to redisplay. In addition, you don't have to decide whether to type "C-X 2" or "C-X 0" since "C-X 
4" does the right thing. 

16.219, word-abbrev-mode (Not Bound) 

This turns on Word Abbrev mode (or off if it's currently on) in the selected buffer. Word Abbrev mode 
lets you specify a word (an abbreviation) and a phrase with which JOVE should substitute the abbreviation. 
You can use this to define words to expand into long phrases, e.g., "jove" can expand into "Jonathan's Own 
Version of Emacs"; another common use is defining words that you often misspell in the same way, e.g., 
"thier" = > "their" or "teh" = > "the". See the information on the auto-case-abbrev variable. 

There are two kinds of abbreviations: mode specific and global. If you define a Mode specific abbreviation 
in C mode, it will expand only in buffers that are in C mode. This is so you can have the same abbrE'via-
tion expand to different things depending on your context. Global abbreviations expand regardless of the /. 
major mode of the buffer. The way it works is this: JOVE looks first in the mode specific table, and then in "'--
the global table. Whichever it finds it in first is the one that's used in the expansion. If it doesn't find the 
word it is left untouched. JOVE tries to expand words as they are typed, when you type a punctuation 
character or Space or Return. If you are in Auto Fill mode the expansion will be filled as if you typE'd it 
yourself. 

16.220. wrap-search (variable) 

If set, searches will "wrap around" the ends of the buffer instead of stopping at the bottom or top. The 
default is "ofr'. 

16.221. write-files-on-make (variable) 

When set, all modified files will be written out before calling make when the compile-it command is exe­
cuted. The default is "on", 

16.222. write-word-abbrev-file (Not Bound) 

This writes the currently defined abbreviations to a specified file. They can be read back in and automati­
cally defined with read-word-abbrev-fiJe. 

16.223. write-file (O-X O-W) 

This saves the current buffer to a specified file, and then makes that file the default file name for this 
buffer. If you specify a file that already exists you are asked to confirm over-writing it. 

c 
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18.224. write-maeros-to-file (Not Bound) 

This writes the currently defined macros to a specified file. The macros can be read back in with read­
macro8-from-file so you can define macros and still use them in other instantiations of JOVE. 

18.225. write-modified-files (O-X O-M) 

This saves all the buffers that need saving. If you supply a numeric argument it asks for each butTer 
whether you really want to save it. 

18.228. write-region (Not Bound) 

This writes the text in the region to a specified file. If the file already exists you are asked to confirm 
over-writing it. 

18.227. yank (O-Y) 

This undoes the last kill command. That is, it inserts the killed text at point. When you do multiple kill 
commands in a row, they are merged so that yanking them back with "C-Y" yanks back all of them. 

18.228. yank-pop (ESC y) 
This yanks back previous killed text. JOVE has a kill ring on which the last 10 kills are stored. Yan~· 

yanks a copy of the text at the front of the ring. If you want one of the last ten kills you use ''ESC Y" 
which rotates the ring so another ditTerent entry is now at the front. You can use ''ESC Y" only immedi­
ately following a "e-Y" or another ''ESC Y". If you supply a negative numeric argument the ring is 
rotated the other way. If you use this command enough times in a row you will eventually get back to 
where you started. Experiment with this. It's extremely useful. 
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An Introduction to the Revision Control System - Revised 

Walter F. Tichy 

Department of Computer Sciences 
Purdue University 

West Lafayette, IN 47907 

ABSTRACT 

The Revision Control System (RCS) manages software libraries. It 
greatly increases programmer productivity by centralizing and catalog­
ing changes to a software project. This document describes the benefits 
of using a source code control system. It then gives a tutorial introduc­
tion to the use of RCS. 

Functions of ReS 

The Revision Control System (RCS) manages multiple revision of text files. RCS 
automates the storing, retrieval, logging, identification, and merging of revisions. ReS 
is useful for text that is revised frequently, for example programs, documentation, 
graphics, papers, form letters, etc. It greatly increases programmer productivity by 
providing the following functions: 

1. ReS stores and retrieves multiple revisions of program and other text. Thus, one 
can maintain one or more releases while developing the next release, with a 
minimum of space overhead. Changes no longer destroy the original - previous 
revisions remain accessible. 

a. Maintains each module as a tree of revisions. 

b. Project libraries can be organized centrally, decentralized, or any way you 
like. 

c. ReS works for any type of text: programs, documentation, memos, papers, 
graphics, VLSI layouts, form letters, etc. 

2. ReS maintains a complete history of changes. Thus, one can find out what hap­
pened to a module easily and quickly, without having to compare source listings or 
having to track down colleagues. 

a. RCS performs automatic record keeping. 

b. ReS logs all changes automatically. 

c. ReS guarantees project continuity. 

3. ReS manages multiple lines of development. 

4. ReS can merge multiple lines of development. Thus, when several parallel lines of 
development must be consolidated into one line, the merging. of changes is 
automatic. 

5. ReS flags coding conflicts. If two or more lines of development modify the same 
section of code, RCS can alert programmers about overla.pping changes. 
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6. RCS resolves access conflicts. When two or more programmers wish to modify the 
same revision, RCS alerts the programmers and makes sure that one change will 
not wipe out the other one. 

7. -RCS provides high-level retrieval functions. Revisions can be retrieved according 
to ranges of revision numbers, symbolic names, dates, authors, and states. 

8. RCS provides release and configuration control. Revisions can be marked as 
released, stable, experimental, etc. Configurations of modules can be described 
simply and directly. 

9. RCS performs automatic identification of modules with name, revision number, 
creation time, author, etc. Thus, it is always possible to determine which revisions 
of which modules make up a given configuration. 

10. Provides high-level management visibility. Thus, it is easy to track the status of a 
software project. 

a. RCS provides a complete change history. 

b. RCS records who did what when to which revision of which module. 

11. RCS is fully compatible with existing software development tools. ROS is unob­
trusive - its interface to the file system is such that all your existing software 
tools can be used as before. 

12. RCS' basic user interface is extremely simple. The novice only needs to learn two 
commands. Its more sophisticated features have been tuned towards advanced 
software development environments and the experienced software professional. 

13. RCS simplifies software distribution if customers also maintain sources with ROS. 
This technique assures proper identification of versions and configurations, and 
tracking of customer changes. Customer changes can be merged into distributed 
versions locally or by the development group. 

14. ROS needs little extra space for the revisions (only the differences). If intermedi-. 
ate revisions are deleted, the corresponding differences are compressed into the 
shortest possible form. 

Getting Started with RCS 
Suppose you have a file fe that you wish to put under control of ROS. Invoke the 

checkin command: 

ci r.c 

This command creates fc,v, stores J.c into it as revision 1.1, and deletes J.c. It also 
asks you for a description. The description should be a synopsis of the contents of the 
file. All later checkin commands will ask you for a log entry, which should summarize 
the changes that you made. 

Files ending in ,v are called ROS files ("v" stands for "versions"), the others are 
called working files. To get back the working file fe in the previous example, use the 
checkout command: 

co r.c 

(j 
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This command extracts the latest revision from fe,v and writes it into fe. You can 
now edit fe and check it back in by invoking: 

ci r.e 

Oi increments the revision number properly. If ei complains with the message 

ci error: no lock set by <your login> 

then your system administrator has decided to create all Res files with the locking 
attribute set to "strict". With strict locking, you must lock the revision during the pre­
vious checkout. Thus, your last checkout should have been 

co -1 r.e 

Locking assures that you, and only you, can check in the next update, and avoids nasty 
problems if several people work on the same file. Of course, it is too late now to do the 
checkout with locking, because you probably modified fe already, and a second 
checkout would overwrite your changes. Instead, invoke 

res -1 r.e 

This command will lock the latest revision for you, unless somebody else got ahead of 
you already. If someone else has the lock, you will have to negotiate your changes with 
them. . 

If your ReS file is private, i.e., if you are the only person who is going to deposit 
revisions into it, strict locking is not needed and you can turn it off. If strict locking is 
turned off, the owner of the ReS file need not have a lock for checkin; all others still do. 
Turning strict locking off and on is done with the command: 

res -u r.e and res -L r.e 

You can set the locking to strict or non-strict on every ReS file. 

If you do not want to clutter your working directory with ReS files, create a sub­
directory called ReS in your working directory, and move all your ReS files there. 
ReS commands will look first into that directory to find needed files. All the commands 
discussed above will still work, without any change. * 

To avoid the deletion of the working file during checkin (should you want to con­
tinue editing), invoke 

ei -1 r.c 

This command checks in fe as usual, but performs an additional checkout with locking. 
Thus, it saves you one checkout operation. There is also an option -u for ei that does a 
checkin followed by a checkout without locking. This is useful if you want to compile 

• Pairs of ReS and working files can really be specified in 3 ways: a) both are given, b) only the 
working file is given, and c) only the ReS file is given. Both files may have arbitrary path 
prefixes; ReS commands pair them up intelligently. 
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the file after the checkin. Both options also update the identification markers in your 
file (see below). 

You can give ci the number you want assigned to a checked in revision. Assume 
all your revisions were numbered 1.1, 1.2, 1.3, etc., and you would like to start release 2. 

The command 

e:i -r2 f.e: or e:i -r2.1 f.e: 

assigns the number 2.1 to the new revision. From then on, ci will number the subse­
quent revisions with 2.2, 2.3, etc. The corresponding co commands 

e:o -r2 r.e: and e:o -r2.1 r.e: 

retrieve the latest revision numbered 2.x and the revision 2.1, respectively. Co without 
a revision number selects the latest revision on the "trunk", i.e., the highest revision 
with a number consisting of 2 fields. Numbers with more than 2 fields are needed for 
branches. For example, to start a branch at revision 1.3, invoke 

e:i -r1.3.1 r.e: 

This command starts a branch numbered 1 at reVISIon 1.3 and assigns the number 
1.3.1.1 to the new revision. For more information about branches, see rcsji/e(5). 

Automatic Identification 

RCS can put special strings for identification into your source and object code. To 
obtain such identification, place the marker 

$Header$ 

into your text, for instance inside a comment. RCS will replace this marker with a 
string of the form 

$Header: filename revisionnumber date time author state $ 

You never need to touch this string, because RCS keeps it up to date automatically. 
To propagate the marker into your object code, simple put it into a literal character 
string. In 0, this is done as follows: 

static char rcsid[ 1 == "$Header$"; 
The command ident extracts such markers from any file, even object code. Thus, 

ident helps you to find out which revisions of which modules were used in a given pro­
gram. 

You may also find it useful to put the marker 

$Log$ 

into your text, inside a comment. This marker accumulates the log messages that are 
requested during checkin. Thus, you can maintain the complete history of your file 

( 
1-
~/ 

c 
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directly inside it. There are several additional identification markers; see co(l) for 
details. 

Numbering of Revisions 
Revisions are organized in a tree that grows from the initial revision. The tree has 

a main trunk, along which the revisions are normally numbered 1.1, 1.2, 1.3, ... 2.1, 2.2, 
'" etc. Every revision can sprout several branches. A branch starting at revision X is 
assigned a revision level of X.y, and revisions on that branch have numbers X.y.z. For 
example, branches starting at revision 1.3 are numbered 1.3.1, 1.3.2, 1.3.3, etc., and 
revisions on branch 1.3.1 are numbered 1.3.1.1, 1.3.1.2, 1.3.1.3, etc. Note that revisions 
on branches may sprout new branches, and the numbering works analogously. 

Revisions and branches may also be labeled symbolically. For instance, branch 
1.3.1 could be labeled "Experimental". Revisions on a labeled branch can then be 
identified using the branch label as a prefix. For example, revision 1.3.1.1 would be 
identified as "Experimental.1". Of course, it is also possible to give a symbolic name to 
an individual revision. This label can then be used to identify the revision and as a 
prefix for branches starting with that revision. Note that labels are mapped to revision 
numbers. Labels start with letters and are followed by letters, digits, and underbars. 

How to Combine MAKE and RCS 

If your ROS files are in the same directory as your working files, you can put a 
default rule into your makefile. Do not use a rule of the form .c,v.e, because such a 
rule keeps a copy of every working file checked out, even those you are not working on. 
Instead, use this: 

.SUFFIXES: .c,v 

.c,v.o: 
co -q $*.c 
cc $(OFLAGS) -c $*.c 
rm -f $*.c 

prog: fl.o f2.0 ... 
cc fl.o f2.0 '" -0 prog 

This rule has the following effect. If a file f.e does not exist, and f.o is older than f.e,v, 
MAKE checks out f.c, compiles f.e into f.o, and then deletes f.e. From then on, MAKE 
will use f.o until you change f.e,v. 

If f.e exists (presumably because you are working on it), the default rule .c.o take 
precedence, and f.c is compiled into f.o but not deleted. 

If you keep your ROS file in the directory ./ROS, all this will not work and you 
have to write explicit checkout rules for every file, like 

fI.e: RCS/fl.e,v; eo -q (I.e 

Unfortunately, these rules do not have the property of removing unneeded .c-files. 
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Printing RCS Markers 
RCS markers like "$Revision: 2.3 $" etc., can be pretty-printed (i.e., without the 

leading keyword and the $-signs) as follows. 

In nroff/troff, define the following macro: 

The call 

.deVL 
\$2 

.VL $Revision: 1.2 $ 

picks out the number (actually, the value field of any RCS marker). In all manual 
pages, it is recommended that you use an identification section instead of an author sec­
tion, which looks something like this: 

.SH IDENTIFICATION 
Author: Walter F. Tichy, 
Purdue University, West Lafayette, IN, 47907 . 
. sp 0 
Revision Number: 
.VL $Revision: 3.0 $ 
; Release Date: 
.VL $Date: 82/11/27 11:43:39 $ 

.sp 0 
Copyright c 1982 by Walter F. Tichy. 

One could use the same trick with C-macros, but, unfortunately, these macros want 
commas separating the arguments. Instead, the following is the only offering: 

char *getkeyval(s) 
char *s' , 
{ static char keyval[I00]; 

sscanf(s,"%*s%s",keyval); 
ret urn keyval; 

} 

An example of using getkeyval() is the following greeting message: 

printf(,'Program version %sO,getkeyval("$Revision 1.2 $"»; 

There is not an option in RCS that strips off the keywords, for a good reason: If the 
keyword is stripped off, it becomes impossible to updat.e the keyword value automati­
cally. 

There is not a way to suppress the keyword expansion, either. If you absolutely need a 

c) 

(/ 
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keyword in ReS format unexpanded, piece it together from two strings in e, or imbed 
the null-character in nroff/troff. 

Enhancements to ReS for Release 3 
The major differences between release 2 and release 3 of ReS are: 

• Release 3 ci determines whether the file to be checked in is different from the pre­
vious revision. If it is not different, ci asks whether to do a checkin anyway, or, if 
-q is present, ci suppresses the checkin. This feature avoids redundant checkins. A 
checkin can be forced with the new option -f. 

• 

• 

The option -Ion release 3 ci now works properly: After the checkin, an implicit 
checkout with locking occurs. The keywords are updated. A new option, -u, also 
performs an implicit checkout, but does not lock. 

The option -k looks through the working file to pick up keyword values for the 
revision number, date, author and state, and assigns them to the checked-in revi­
sion, rather then computing them from existing locks, the clock, etc. This is useful 
for software distribution: Suppose a file is maintained in ReS format at several 
sites. If an update is sent to these sites and checked in with the -k option, then the 
original revision number, date, author, and state are preserved. 

Co generates full path names for ReS files during the keyword expansion. (Deter­
mining the full path causes a noticeable slowdown of co; this can be mitigated by 
checking out several files in a single command.) 

A new keyword, $Locker$, expands to the id of the user currently holding a lock 
on the revision. 

The option -L to rlog omits all files that have no locks set. The option -R prints 
only the ReS file name. Try "rlog -L -R" or "rlog -L -h". 

• Rcsdiff (a new operation) runs diff on a checked-out file and a revision in an ReS 
file. This is useful for figuring out what modifications were made since the last ci. 
Rcsdiff can also run diff on 2 revisions in an ReS file. 

• Rcsmerge (a new operation) merges the changes between 2 revisions in an ReS file 
into the checked out revision. 

• Merge, the 3-way file merge, now has an option to print the result to stdout. 

• Release 3 ReS no longer removes suffixes of working files. In addition, the suffix 
for ReS files is now ",v" instead of ".v". Thus, a working file of the form "f.c" is 
stored into "f.c,v". 

• 

All you have to do is to rename your existing ".v"-files. Don't forget to add the 
suffix of the working file, if it was stripped off. 

Note that this change restricts the length of working file names to 12 characters 
(ReS detects violations reliably). The ",v" was necessary to keep make(l} happy. 

During the initial checkin, the ReS file inherits the read and execute permission 
from the working file. During subsequent checkouts, the working file inherits the 
read and execute permission from the ReS file. Thus, an executable file containing 
a shell program will still be executable after a ci-co cycle. 

The working file is normally generated with write permission for the owner. An 
exception is if locking is set to strict, and checkout is without locking. The working 
file is then generated without write permission, resulting in an error if one tries to 
edit it. 
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• Release 3 is portable. It has been tested on a V AX-ll/780 (Unix 4.1BSO), a PDP-
11/70, and a POP-ll/45 (Unix 2.8BSO), and it runs on these machines without 
change. Porting RCS to Berkeley Unix 4.2 is trivial by changing one macro. Also 
included are the modifications that were necessary to run -release 2 on the BBN­
e70 (BBN's C-machine), IBM 4341 with VM/UTS, M68000, Intel 86/330 with 
Xenix-86, Onyx with V7 Unix, VAX/VMS/Eunice 2:2. However, it has not been 
tested on these systems. Currently. RCS is being ported to the DEC-20. 

Numerous minor problems have been fixed. RCS now dies gracefully in case the file 
system fills up, or if there are other read/write errors. (Gracefully in this case means 
that RCS files are not mutilated.) RCS operations can no longer be interrupted during 
the renaming of ReS files (and thus will no longer throwaway ReS filesif interrupted). 
There were some problems with nil-revision numbers and with printing of nil-strings; 
these have all been fixed. If stdin is not a terminal, ci and res now suppress the 
prompts for the log message and the descriptive text. Calls to getlogin() have been 
replaced with getpUJUid(getuid()). The default for overwriting working files by co has 
been changed to not overwriting. 00 does overwrite without asking if the file is read­
only (generated by unlocking checkout, but with locking set to strict.) A serious, but 
extremely rare problem with the regeneration of older revisions has been fixed. The 
comment-leader for .h-files is now initialJy set to" * fl. 

Lots of fixes were necessary to make RCS portable. These include sign-extension 
bugs, long identifiers, conflicting structure members, and expression overflows in older 
C-compilers. One person reported that %02d in printf doesn't work on his usa system; 
a macro, OATEFORM, now exists which uses either %02d or %.2d. 

Additional Information on ReS 
If you want to know more about RCS, for example how to work with a tree of 

revisions and how to use symbolic revision numbers, read the following paper: 

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control Sys­
tem," in Proceedings of the 6th International Conference on Software Engineering, IEEE, 
Tokyo, Sept. 1982. 

Taking a look at the manual page RCSFILE(5) should also help to understand the 
revision tree permitted by RCS. 

( \. 
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Technical Note on ICON/UXB Magnetic Tape Support 

Mark Muhie,tein 

ICON INTERNATIONAL 
December 29, 1986 

This document describes certain special reatures or ICON/UXB support for magnetic tape. 
It is assumed that the reader has a basic system understanding of ICON/UXB. See also the 
man pages ror mt(l} and dd(l). 

1. HaI'dwaI'e 

ICON/UXB supports a variety of tape drives in order to allow for the maximum in media 
compatibility and cost effectiveness. Currently four drive types and their associated media are 
supported: 

1.1. CS20 Cassette Tape Drive 

This drive is normally shipped as the standard drive for ICON systems. It provides 
approximately 22 !\-ffi of storage on a standard 500 foot cassette, and approximately 26.5 ~ on 
a 600 foot tape. The data is stored in a serpentine fashion with four recording tracks. Data is 
stored in fixed length blocks of 512 bytes, similar to the QIC formats. The media is available 
from ICON and large computer equipment suppliers. This drive provides an inexpensive, reli­
able backup capability, but it does not enjoy the media interchangeability of more standard 
devices. 

1.2. CS50 Cassette Tape Drive 

This drive is similar to the CS20, but it has nine tracks instead of four. This gives it 
approximately 50 ~ on a 500 foot tape and 60 ~ on a 600 foot tape. The recording area is 
narrower than the CS20 in order to accommodate the extra tracks, but the new tracks are 
interspersed between the four tracks used by the CS20. This allows the CS50 to read tapes 
created on an CS20. We have seen no problems with a CS20 reading the first four tracks of a 
tape written on an CS50, although the drive manufacturer does not guarantee this direction of 
compatibility. The CS20 and the CS50 both use the same type of cassette tape media. 

1.3. MT18 9-Track %-Inch Tape Drive 

This is a streaming half inch nine track tape drive which is compatible with industry stan­
dard 1600 bpi PE format tapes. The drive can write/read blocks up to 48000 bytes long, at 
either 25 inches per second or 100 inches per second (streaming mode). 

1.4. CR80 Quarter-Inch CaI'tricige Tape Drive 

This drive supports both the QIC-ll and QIC-24 quarter inch cartridge standards. These 
cartridges store up to 60~. The CR60 uses a direct drive mechanism which gives excellent 
reliability and media interchangeability. 
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2. Software support UDder ICON{VXB 

2.1. Device Dames 

There are several entries in the /dev directory pertaining to tape support. The different 
names refer to the special characteristics and options that may be specified. Ourrently, only 
one ot each type ot drive may be installed on a given system. IOON/UXB uses a slightly 
different naming convention for tape devices than other UNJX8 systems, as detailed below: 

2.1.1. /dev /etO 

This device name reters to the cassette tape drive, which may be either an OS20 or an 
OS50. Data written to this device is organized in 512 byte blocks, and 100N/UXB buffers 128 
ot these blocks per physical write. If the length ot the data to be written is not a multiple of 
512 when the device is closed, the last block is padded with zero bytes before it is written. 
When the device is closed atter writing, one file mark is written at the end ot the datat. Alter 
closing, the tape rewinds. To avoid rewinding on close use /dev /rctO. 

There are several peculiarities with the cassette tape drives. First, there are only two 
places data can be written: at beginning of tape (after rewinding), and at end of recorded data 
(after 'mt fseof'). It is not sufficient to use the 'mt fsf' command to move to the end of recorded 
data; 'mt fseof' must be used. 

Users may notice that during a space forward operation (space backward is not supported) 
system operation may seem suspended. This is because the current system (by virtue of the dev­
ice controller) does not support SOSI disconnect/reconnect. Another feature is that the cassette 
tape drives return control immediately after beginning a rewind; there is no indication of when 
the command completes. This is done so that the common operation of rewinding does not lock 
up the SOSI bus. Both these problems will be cleared up when a device controller with higher 
performance than the cassette tape drive manufacturer's becomes available. 

2.1.2. /dev/retO 

This device is exactly like /dev/ctO except that the rewind on close is suppressed. 

2.1.3. /dev/mtO 

This device refers to the half inch nine track tape drive at 1600 bpi. Note that the device 
is not treated as a filesystem file (i.e. seeks are ignored, etc.). The size of the tape blocks for 
write system calls is determined by the length passed. For reads, if the buffer length is greater 
than or equal to the size of the record read, the entire record is passed and the number of bytes 
actually read is returned. If the buffer is smaller than the block from tape, the record is trun­
cated and the excess data will be lost; the next read will result in another physical I/O. 

2.1.4. /dev/rmtO 

This device is exactly like /dev /mtO except that the rewind on close is suppressed. 

2.1.0. /dev /hmtO 

This device is exactly like /dev /rmtO except that the tape is operated at 100 ips (high 
speed). This mode is especially usetul for spacing operations or if the data blocks are long. 

UNIX is a registered trade mark or AT&T. 
t In versions or ICON/UXB prior to Release 2.16, a tape mark was not automatically written when 

/dev /ctO or /dev /rctO was closed. Users upgrading rrom prior relea.ses should take note or this. 

o 

o 
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2.1.8. Other poaaible devices for the MT16 

The major device number for the MT16 driver is (in decimal) 12, and the minor device 
number is encoded from the following bit string: 

zzrdduuu 

where zz is always zero, r is a no-rewind-on-c1ose flag, dd is the density and transport speed 
selector, and uuu is the drive unit. Currently, uu must be zero, as only one MT16 tape drive 
per system is supported. The following table shows the meaning of the different density (dd) 
values: 

MT16 Density Options 
Value of "dd" Tape Density Transport 8J)eed 

00 800 bpi 25 ips 
01 1600 bpi 25 ips 
10 3200 bpi 25 ips 
11 1600 bpi 100 ips 

For example, the minor device number for an MT16 using 800 bpi tapes with no rewind-on-close 
would be (in binary) 00100000, or (in decimal) 32. New device entries can be made using 
mknod{8} once the major and minor device numbers have been ascertained. 

2.1.7. /dev/qie24, /dev/rqie24, /dev/qieU, /dev/rqiell 

/dev /qic24 refers to the MTS-l QIC drive in QIC-24 format. It is very similar to the 
cassette drives in operation. /dev/rqic24 is the non-rewind on close version, and /dev/qicll and 
/dev /rqicll can be used to read and write QIC-ll format tapes. If it is necessary to read a 
tape when the format is unknown, try QIC-24 first, then if that does not appear to work, try 
QIC-ll. 

( 2.2. The TAPE environment variable 

c 

The mt{l), tar{1}, dump{8}, and rutore{8} programs look for the special environment 
variable TAPE for the default device name to use. This should normally be set to the "r" ver­
sions of the device names (e.g. /dev/rmtO) because mt operations generally do not operate 
correctly if a rewind is issued after the operation. The other programs (tar, dump and rutore) 
look at TAPE and if it begins with a "/dev /r" they will remove the "r" and use the rewinding 
version. It is necessary to use the "r' key-flag if it is desired to use non-rewinding devices. 

If TAPE is not set, these programs default to /dev /rctO. 

2.3. Options to dump(8) 

The dump program has a new option which allows the user to directly specify a tape 
capacity. This is useful for cartridge and cassette media because the old version made assump­
tions about inter-record gaps which are incorrect for these media. The new option is "c" fol­
lowed by the length in megabytes;. For example, 

dump Ocf 80 /dev/qic24/dev/acOg 

specifies a "0" level dump, on a 60 MB tape (jdev/qic24), of the filesystem on /dev/scOg. The 
default dump assumes an C820 (21 MB). For half-inch tape, it is necessary to specify a capa­
city of zero in order to enable the density and length options. For example, 

dump Ocfad 0 /dev/mtO 2400 1600 /dev/acOg 

specifies a "0" level dump, on a 2400 foot tape at 1600 bpi density, of the filesystem /dev /scOg. 

* That is, 1,000,000 bytes, Dot l024XI024 bytes. 
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2.4. Meant .. or MTIOCGET Btatus 
Each of the devices returns different status information from the MTIOCGET toell call 

(see /usr/include/sys/mtio.h). Certain portions are common to all SCSI drives, however. In 
particular, the third byte or the status tells whether various end of media, end oC file, etc., con­
ditions have been encountered. The interpretation oC this byte is as Collows: 

CmiOkkkk' 

where "r' is set when a filemark was encountered on the last command, "m" is set when end of 
media was encountered, "i" (meaningrul for MTS-3 only) indicates a block shorter than 48112 
bytes was read (this is the normal condition), "0" is a zero bit, and "kkkk" is the sense key. The 
meaning or the various sense keys and the other status inrormation is not normally needed, but 
it can be obtained Crom ICON ir necessary. 

c 

o 
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COMMENTS 

ICON/UXB REFERENCE MANUAL Volume 9 P /N 172-022-004 

Your comments and suggestions are appreciated and will help us to provide you with the very best 
in system and application documentation. Send your comments to the address at the bottom of this 
page. Users who respond will be entitled to free updates of this manual for one year. 

1. How would you rate this manual for COMPLETENESS? (Please Circle) 
Excellent Poor 

5 ------------- 4 -------------- 3 ------------- 2 -------------- 1 ------------- 0 

2. Is there any information that you feel should be included or removed? 

3. How would you rate this manual for ACClTRA.CY? (Please Circle) 
Excellent Poor 

5 ------------- 4 -------------- 3 ------------- :2 -------------- 1 ------------- 0 

4. Indicate the page number and nature of any error(s) found in this manual. 

5. How would you rate this manual for USABILITY? (Please Circle) 
Excellent Poor 

5 ------------- 4 -------------- 3 ------------- :2 -------------- 1 ------------- 0 

6. Describe any format or packaging problems you have experienced with this manual and/or 
binder. 

7. Do you have any general comments or suggestions regarding this publication or future 
pu blications? 

YourName ____________________________________________ ~--------------
COmpany ____________________________________________________________ _ 

Address ___________________ Phont> ( __ ), ____ _ 

City & State Zip Code ______ _ 
Job Function _______________________________________________________ _ 

(/ Type of Equipment Installed: _______________________________________ _ 
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