pICS

RPG Il and System Additional To

IBM System/3
Disk System
Programmer’s Guide

00000000 00000000000 Q000000 0000000 0000000 00000 00000 0000000 0000000000000000 00Q00Q000Q0CO 0Q00000 0000000 000000000000
Q0000000 000000000000 0000000 0000000 000000000 00000 00000 000000000 0000000000000000 0000000000000 0000000 0000000 . ©00000Q000000
00000000 0000000000000 00000000 00000000 00000000000 000000 Q00000 00000000000 0000000000000000 0000000000000 00000000 00000000 000000000000
©0000000 00000000000000 000000Q0C 00000000 000000000000 000000 ©00000 000000000000 0000000000000000 00000G0000000 00000000 ©00060000 000000000000
o000 0000 00000 000000 000000 00000 0000 00000 00000 00000 0000 0000 0000 0©OOOO 0000 0000 000000 000000 0000 0000
0000 9000 00000 0000000 0000000 00000 Q000 0000 0000 Q0000 0000 0000 0000 0000 000 @000 0000000 0000 o 0000 0000
ocoo 0000 00000 0000000 0000000 00000 ©000000000 0000 0000 2000 0000000 0000000 0000
0000 00000000000 000000000 0000 00600000000 000000 Q000000000 0000 00000000 000000000000000 00000
0000 0000000000 0000000000060000 0000000000 000000 000000000 o000 0000000 000000000000000 0000000
0000 0000000000 0000000000900000 0000000000 0000 0000000000 0000 0000000 000000000000000 00000000
0000 00000000000 0000 00000 000O 0000000000 0000 0000000000 0000 00000000 0000 00000 0000 000000000
0000 0000 00000 0000 00000 0000 00000 0000 00000 0000 0000 0000 00000 0000 00004¢Q
0000 [-3-1-1-] 00000 0000 00000 0000 00000 Q0000 09000 00000 00000 0000 0000 0000 0000 00Q00 0000 00000 00004q
0000 0000 00000 0000 00O 0000 00000 00000 Q000 00000 00000 0000 0000 0000 0000 000 0000 00000 Q0004¢
00000000 00000000000000 ©00000 ©O0O0 ©O0O000O 00000 20000 20000000 90000 00000 00000000 0000000000000 000000 000 000000 00000 00004Q
00000000 0000000000000 000000 000 000000 0000000000000 00000000 0000000000000 00000000 0000000000000 000000 ©O00 000000 000000000000Q
00000000 000000000000 000000 o 000200 00000000000 00000000 00000090000 00000000 - 0000000000000 000000 -} 000000 000000000060
00000000 00000000000 ©00000 -] 060000 000000000 00000000 000000000 00000000 0000000000000 000000 o 000000 000000000

0000000 0000000 . 9000000

N

IBM System/3

Disk System

RPG Il and System Additional Topics
Programmer’s Guide

Preface

This manual assumes that you have had programming ex-
perience on the IBM System/3 Disk System. You should
now be familiar with basic RPG II concepts and disk con-
cepts presented in the following manuals:

e IBM System/3 Disk System Introduction, GC21-7510.

e IBM System/3 Card and Disk System RPG II Fundamen-
tals Programmer’s Guide, GC21-7502.

e IBM System/3 Disk System Concepts and Programming
Programmer’s Guide, GC21-7503.

You should also be familiar with the term disk system
management. A group of system programs called disk
system management loads and runs programs on the disk
system.

This manual presents additional RPG II and disk concepts
that can help you in programming applications. Each
chapter of this manual is a separate unit of instruction. A
list is provided at the beginning of each chapter which de-
tails the contents of the chapter and the concepts you
should be familiar with before reading that chapter. A
series of review questions is provided at the end of each
chapter to help you evaluate what you have learned.

First Edition (September 1970)

This manual discusses direct file organization and the fol-
lowing processing methods:

o Consecutive processing of direct files.
e Random processing of sequential and direct files.

o Processing of disk files by record address files.

It also discusses concepts and coding for the following disk
system features:

o ADDROUT sort.

e Automatic file allocation.

e Multi-volume files.

e Inquiry.

o Dual programming feature (DPF).

e Storing programs and procedures on disk.

Changes are continually made to the specifications herein; any such change will be

reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative

or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming

Publications, Department 425, Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1970

Additional RPG II concepts are presented on the following
topics:

o Controlling the performance of operations.

e Altering the order of file processing.

o Describing input fields that control processing.
o Using the printer.

e Using arrays.

e Changing data structure.

Four manuals are available for further reference:

o IBM System/3 Disk System Operation Control Language
and Disk Utilities Reference Manual, GC21-7512.

o IBM System/3 Disk System Disk Sort Reference
Manual, SC21-7522.

o IBM System/3 Disk System RPG II Reference Manual,
SC21-7504.

o IBM System/3 Disk System Operator’s Guide,
GC21-7508.

CHAPTER 1. DIRECT FILE ORGANIZATION

Introduction .

Relative Record Number
Deriving the Relative Record Number
Synonym Records .

Processing Direct Files . . . e .
Random Processing by Relatrve Record Number
Consecutive Processing of Direct Files

Direct Files: Adding and Deleting Records .
Adding Records to Direct Files
Deleting Records from Direct Files

When To Use Direct File Organization
Considerations . e
Summary .

How To Create a Drrect Frle
Creating a Direct File Without Synonyms
Creating a Direct File With Synonyms
Example of Creating a Direct File .

REVIEW1

ANSWERS TO REVIEW 1

CHAPTER 2. CONSECUTIVE PROCESSING OF
DIRECT FILES
—Introduction .
~ When to Process Direct Flles Consecutrvely ..
How to Code for Consecutive Processing of a Direct File .
Consecutive Retrieval From a Direct File
Consecutive Updating of a Direct File
REVIEW 2 ..
ANSWERS TO REVIEW 2

‘CHAPTER 3. RANDOM PROCESSING OF DIRECT AND
SEQUENTIAL FILES
Introduction .
When to Process Direct and Sequentral Flles Randomly
Considerations e e e e e e e e
Relative Record Numbers . .
Random Processing by Relative Record Number
Coding for Random Processing of Direct and Sequenual
Files . .
CHAIN Operatron
Random Retrieval From a Dlrect Fr]e
Random Updating of a Direct File
REVIEW 3 .o
ANSWERS TO REVIEW 3

* CHAPTER 4. SORTING A FILE TO PRODUCE AN

ADDROUTFILE.
Introduction .
Input and Output for ADDROUT Sort

File Placement . . C e e e

Determining Storage and Frle Srzes
Coding Sequence Specifications . .
OCL Statements. . e e e

Example: ADDROUT Sort
REVIEW 4

ANSWERS TO REVIEW4.

1-1

14
14
1-6

1-8

1-9
1-10
1-10
1-10
1-10
1-11
1-11
1-12
1-12
1-12
1-15
1-21
1-22

2-1
2-2
23
2-3
23
2-8
2-11
2-12

3-1
3-2

3-2
3-2
3-2

34
3-5
3-6
3-12
3-15
3-16

4-2
42
44
4-5
47
4-8
4-9

411

412

~

Contents

' CHAPTER 5. PROCESSING DISK FILES BY RECORD
ADDRESS FILES
Introduction .
Files Containing Relatlve Record Number
(ADDROUT Files)
Files Containing Record Key Limits .
Random Processing by ADDROUT Files .
Considerations for Using ADDROUT Files
RPG II Specifications (Processing by ADDROUT
File) . . .
Example: Processmg by ADDROUT Frle .
Sequentially Processing an Indexed File Within Limits .
Creating a Record Address File Within Limits
Processing Sequentially Within Limits
RPG II Specifications (Sequential Processing Wrthrn
Limits)
Example: Sequenually Processmg Pa.rt of an Indexed
File .
REVIEW § .
ANSWERS TO REVIEW 5

' CHAPTER 6. MULTI-VOLUME FILES .
Introduction . . .
- Creating Multi-Volume Flles
Creating a Sequential File .
Creating a Direct File .
-, Considerations for Creating Multi- Volume Frles
Processmg Multi-Volume Files .) ..
. Processing Files Consecutively
Processing Files Randomly . .
Coding the RPG II File Description Sheet to Process
Multi-Volume Files
- Coding Parameters on the File Statement to Process
Multi-Volume Files)
Parameters for the PACK Keyword
‘Parameters for the UNIT Keyword

Parameters for the TRACKS or RECORDS Keyword .

Parameters for the LOCATION Keyword

Parameters for the RETAIN Keyword
Example: Comparative Sales Analysis
REVIEW6
ANSWERS TOREVIEW6.

CHAPTER 7. AUTOMATIC FILE ALLOCATION

" Introduction .

Allocating File Space Automatrcally . ..
Considerations for Using Automatic File Allocatlon
REVIEW7

ANSWERS TO REVIEW 7

CHAPTER 8. STORING PROGRAMS AND
PROCEDURESONDISK
Introduction . .
Advantages of Storing Programs and Procedures on DlSk
Increasing System Efficiency .
Decreasing Processing Time

Storing Programs and Their Data Frles on Removable

Disks

5-1
5-2

52
5-2
5-2
5-3

5-8

5-11
5-12

6-2

64

6-6
6-7
6-8
6-9
6-9
6-9

6-10
6-13
6-14

7-1
7-2
7-2
7-3
7-5
7-6

8-1

84

84

84

Location of Libraries on Disk .
Object Libraries .
Physical Characteristics of the Object Lrbrary
Source Libraries . .
Physical Characteristics of the Source Lrbrary
Storing Programs and Procedures Into Libraries .
The Library Maintenance Program . .
Using RPG II to Store an Object Program on Drsk .
Compiling and Storing a Source Program Into an
Object Library
REVIEWS8 . .
ANSWERS TO REVIEW 8

CHAPTER 9. INQUIRY

Introduction .

Requesting Inquiry in an Interrupt Envrronment
Functions of the Inquiry Request Key

Classifying Programs for Inquiry .

Inquiry in an Interrupt Environment .

File Planning . .

Planning Inquiry Programs

REVIEW 9

ANSWERS TO REVIEW 9

CHAPTER 10. DUAL PROGRAMMING FEATURE .
Introduction .

Advantages of Running Programs ina DPF Envrronment .

Main Storage . . e e e e
Input/Output Devwes
Processing Time . . .
Considerations for Operating Under DPF
Considerations When Running System/3 Programs in a
DPF Environment e
Inquiry
Disk Sort, Alternate Track Ass1gnment and Drsk
Initialization . .
Executing RPG II Object Programs ina DPF
Environment . .
Loading Programs in a DPF Envrronment
Sample Job Streams
REVIEW 10 .
ANSWERS TO REVIEW 10

CHAPTER 11. CONTROLLING THE PERFORMANCE
OF OPERATIONS IN AN RPG II PROGRAM
Introduction .
Increasing the Speed of Operatrons (Dual I/ 0 Areas)
Dual Input Areas . .
Dual Output Areas .
Using Subroutines to Control the Processmg of
Calculations .
Controlling Overlay By Usmg Subroutmes
Using Subroutines to Repeat the Same Calculatrons
Several Times in One Cycle . .
Specifications for Coding A Subroutine .
REVIEW 11. SUBROUTINES .
ANSWERS TO REVIEW 11. SUBROUTINES
Repetitive Qutput (EXCPT Operation)
Using EXCPT and *PLACE . .
Conditioning the Use of EXCPT Operatlon .
REVIEW 11. EXCEPTION OUTPUT .
ANSWERS TO REVIEW 11. EXCEPTION OUTPUT

iv

8-5
8-6
8-6
8-8
8-8
89
8-9
8-15

8-15
8-17

818.

10-1
10-3
10-3
10-3
10-3
10-3
10-4

10-7
10-7

10-7
10-8

10-8
10-9

. 10-11
. 1012

11-1
11-3
11-3
11-3
114

11-6
11-6

11-6

. 11-10
. 11-17
. 11-18
. 11-19
. 11-19
. 11-22
. 1123
. 11-24

Performing Total Operations Without a Control Break .
Internal Control Level Indicator LO
Causing Control Breaks. . .
Coding Control Level Indicators As Calchlatron
Conditioning Indicators . .o
Controlling When Operations are Performed
Halt Indicators (H1-H9)
External Indicators . . .
REVIEW 11. INDICATORS . .
ANSWERS TO REVIEW 11. INDICATORS
Binary Field Operations (Controlling Switches) .
BITON Operation Code . .
BITOF Operation Code
TESTB Operation Code
Example .
REVIEW 11. BINARY FIELD OPERATIONS
ANSWERS TO REVIEW 11. BINARY FIELD
OPERATIONS
Altering the Order of Operatrons on the Basrs of the
Next Record in a File
Processing Card or Disk Files .
Checking for Duplicates
Doing Special Operations for OnIy One Record ina
Group . .
Doing Special Operatlons for the Last Record ina
Group . .
Additional Pomts to Consrder About Look Ahead
REVIEW 11. LOOK AHEAD
ANSWERS TO REVIEW 11. LOOK AHEAD

CHAPTER 12. DESCRIBING INPUT FIELDS THAT
CONTROL PROCESSING
Introduction .
Control Fields .
Split Control Fields . .
Field Record Relation Indicators .
OR Relationship . .

OR Relationship With Fleld Record Relatron Entnes .
. 12-10
. 12-10

Field Record Relation with Control Fields .
Field Record Relation with Split Control Fields
Using Match Fields With Field Record Relation For
More Than One Record Type ...
REVIEW 12 . . .
ANSWERS TO REVIEW 12

CHAPTER 13, USING THE PRINTER .
Introduction .
Using Overflow and Fetch Overﬂow to Control Page
Formatting
Overflow Indrcators .
Specifications for Using Overﬂow Indrcators
Overflow Logic . . .
The Effect of Skipping and Spacmg On Overﬂow
Printing Over the Perforation . .
REVIEW 13. OVERFLOW AND FETCH OVERFLOW
ANSWERS TO REVIEW 13. OVERFLOW AND
FETCH OVERFLOW . . .
Using *PLACE To Print Duplicate Informatlon
Specifications for Using *PLACE .
Formation of Print Lines
Printing a Field Several Times on the Same Lme
REVIEW13. *PLACE. . . .
ANSWERS TO REVIEW 13. *PLACE

. 11-2§
. 1125
. 11227

. 1127
. 11-28
. 11-28
. 11-32
. 11-37
. 11-38
. 11-39
. 11-39
. 1140
. 1140
. 1141
. 11-43

. 1144

. 1145
. 1145
. 11-46

. 11-55

. 11-58
. 11-58
. 11-59
. 11-60

12-1
12-2
12-2
12-5
12-7
12-7
12-8

. 12-11
. 12-16
. 12-18

13-1
13-2

13-2
13-3
13-3
13-6
13-9

. 1310
. 1313

. 13-14
. 1315
. 1318
. 1319
. 13223
. 1325
. 13-26

Using the Dual Feed Carriage Feature to Print Two
Output Files for One Progtam
File Description Specifications
Output-Format Specifications . .
Example: End-of-the-Month Billing . . .
REVIEW 13, DUAL FEED CARRIAGE . .

Using the Printer-Keyboard as a Second Printer .
Using the Printer-Keyboard to Communicate With
the Operator
Using the Prmter—Keyboa:d as an Output Devrce
for RPGII Programs . . . e e
REVIEW 13. PRINTER-KEYBOARD .
ANSWERS TO REVIEW 13. PRINTER-KEYBOARD

CHAPTER 14. ALTERING THE ORDER OF
PROCESSING FILES
Introduction. . .
FORCE: Specifying the Next Flle to Process
Forcing a Number of Records from a File

Look-Ahead to Determine Whether a File is to be Forced .

REVIEW14
ANSWERS TO REVIEW 14 .

CHAPTER 15. ARRAYS .
Introduction .
When to Use An Array Instead of A Table
Defining An Array
Referencing All Fields in An Array
Array to Array Calculations . .
Calculations Using Arrays and Single Frelds
(or Constants) . ., . . .
Adding All Fields Within An Array .
Output of An Entire Array
Accumulating Groups of Totals . .
Referencing Individual Fields of An Array
Indexing an Array . .
Output of Individual Frelds of an Array .
Referencing Only Part of a Field .
LOKUP of an Array .
Searching an Array for a Partlcular Freld
Searching An Array for More Than One Field
Output During an Array Search

. 13227
. 13-28
. 13-28
. 13-29
. 13-33
ANSWERS TO REVIEW 13. DUAL FEED CARRIAGE .
. 13-35

13-34

. 13-35

. 13-36
. 1339
. 13-40

14-1
14-2
14-3
14-4
14-10

. 14-13
. 14-14

15-1
15-2
15-2
15-3
154
15-6

15-9

. 15-10
. 15-10
. 1515
. 1522
. 1522
. 15-24
. 15-26
. 15-30
. 15-30
. 15-36
. 15-38

Describing Data and Storing It in an Array
Entire Array Data On One Record
Array Data On More Than One Record

REVIEW 15 . . e e e

ANSWERS TO REVIEW 15

CHAPTER 16. CHANGING DATA STRUCTURE.
Character Structure . ..
Represéntation of Negative Numbers
Representation of Characters in Storage .
Difference Between Character Representation on
Cards and in Storage .
Identifying Bit Combinations wrth Numencal Values
Assigning Numerical Values to Zone and Digit
Portions e e e e
Packed Decimal Format
Binary Format . .
Collating Sequence of Cha.racters .
Collating By Zone Or Digit
Altering the Collating Sequence
Specifying Changes in Collating Sequence
Coding Characters to be Equal
Punched Cards for the Altered Sequence .
Altering the Structure of Characters .
How Move Zone Operations Work
Coding a Move Zone Operation
Differences in the Move Zone Operations
Field Format and Move Zone Operations
Example of a Move Zone Operation . .
Choosing the Model Character for Factor 2 .
Translating Characters . Coe e
Need for File Translation .
Specifying File Translation . .
Punched Cards for the Translation Table
REVIEW16 . . .
ANSWERS TO REVIEW 16

INDEX

. 1539
. 1539
. 15-42
. 15-51
. 15-55

16-1
16-2
16-3
16-5

16-6

. 16-12

. 16-16
. 16-20
. 16-21
. 16-23
. 16-28
. 16-31
. 1631
. 16-36
. 16-40
. 1643
. 1643
. 1643
. 16-44
. 1645
. 1646
. 1647
. 1647
. 1647
. 16-47
. 16-52
. 16-53
. 16-57

DIRECT FILE ORGANIZATION

CHAPTER 1 DESCRIBES:
Direct file organization.
How records are retrieved from direct files.
How to handle synonym records.
Two ways to process direct files.
Adding and deleting records from a direct file.
Applications for direct file organization.

Creating a direct file with RPG II.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Describe System/3 disk storage concepts.
Describe sequential and indexed files.
Define consecutive and random processing.
Define addition and deletion of records.
Code RPG II specification sheets to process sequential and indexed files.

Note: These topics are described in IBM System/3 Disk System Concepts and
Programming Programmer’s Guide, GC21-7503.

Direct File C

~AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Describe direct ﬁie organization.
Define relative record number and synonym records.
List the three ways direct files can be processed.
Describe how records are added to or deleted from a direct file.

List several applications where direct file organization is preferable to other file
organizations.

Code the RPG II specification sheets to create (load) a direct file.

INTRODUCTION

A direct file is a file on disk in which records are assigned
specific record positions. Direct file organization enables
you to directly access any record in the file without
examining other records or searching an index. Thus, in
some processing situations, direct file organization has
advantages over sequential and indexed organizations
(see When to Use Direct File Organization).

Figure 1-1 represents direct file organization. Records are
assigned specific locations, regardless of the order they are
put into the file. Record locations exist for all records
which can be put into the file, although not all locations
contain records. The location in the file where a record

will be placed is determined from a control field in the
record. Records can be scattered throughout the file,
depending on the distribution of the control fields. The
unused record locations contain blanks. How the locations
became blank is discussed in How to Create a Direct File.

Direct files may span multiple disk volumes. When a direct
file is processed, however, all volumes containing portions
of the file must be mounted on the disk drive, since every
record in the file must be accessible. Therefore, multi-
volume direct files are limited to two volumes with a

single disk drive (one fixed volume and one removable
volume) and four volumes with dual disk drives (two fixed
volumes and two removable volumes).

Control
Field

Record 1 2
Location:

Unused record
locations (blanks)

Figure 1-1. Direct File Organization

Direct File Organization 1-3

RELATIVE RECORD NUMBER

In a direct file, a record is written and retrieved directly by
specifying the location of the record in relation to the
‘beginning of the file. This relative position is called the
relative record number. The relative record number is not
a disk address, but is a positive, whole number that is con-
verted by disk system management to the disk address of
the record to be accessed.

Deriving the Relative Record Number

A relative record number is similar to the key of an indexed

file or the control information in a sequential file: it is de-
pendent upon a specific field (control field) in the record.
The control field can either be used directly (without
change) as a relative record number or it can be mathemat-
ically converted to provide an acceptable relative record
number.

Direct Method

An easy way to derive relative record numbers is to have
them correspond directly to the control fields in the
records. Because the control information need not be
converted into a relative record number, manipulation and
programming are kept to a minimum. For example, in
Figure 1-1 the record with a 1 in the control field becomes
relative record number one; the record with a 5 becomes
relative record number five, and so forth. This method is
practical where control numbers can be assigned on a
sequential basis, such as employee numbers for payroll
records, student numbers in a school, and customer
numbers for customer files.

Suppose a small college has an enrollment of 5,000
students. A master student file is maintained including
currently enrolled students and graduates for the last
two years. The master file contains approximately 7,000
words. Each student is assigned a 6-digit file number as
follows:

7419397
Expected A unique identification number
year of | from 1 - 9999
graduation |

The identifying numbers are assigned on a sequential basis
and numbers retired from the master file are available for
reassignment.

A direct file with 10,000 record locations is used for the
student master file, satisfying a need for fast access to each
student’s record. Since the identifying numbers range
between 1 and 9999 and there are no duplicates, the
relative record number is taken directly from the student
file number. Figure 1-2 shows relative record numbers
taken from the student file number being used to update
student addresses.

Conversion Method

Conversion refers to any technique for obtaining a desirable
range of relative record numbers from the control fields of
the records. The conversion method must be used when
the values in the control fields cannot be used directly as
relative record numbers. For example, employee numbers
in a factory range from 0001 to 1500, but only 450 numbers
are in use since numbers belonging to employees who have
retired or terminated have not been reused. A file large
enough for 1500 records is not needed; therefore, a tech-
nique for converting the employee numbers to approx-
imately a 1 through 500 range must be found. This pro-
vides 50 locations for file expansion.

When the conversion method is used, every possible control
field in the file must convert to a relative record number in
the allotted range (in this case, 1 through 500), and the
-resulting relative record numbers should be distributed
evenly across the allotted range so that there are few

» synonym records. Synonym records are two or more

s records whose control fields yield the same relative record

- number (see Synonym Records). Your program must

- allow for synonyms if they are generated. (As a general
rule, 15 percent of a file should be reserved for expansion
and synonym records.)

One way to convert the range of employee numbers from
1500 to 500 is to divide the employee number by 3 and
drop the remainder (thus 3 becomes 1; 6 becomes 2; 1500
becomes 500). However, unless the file is perfectly dis-
tributed, there will be synonym records. For example, if
the numbers 6, 7, and 8 are present, all three become
relative record number 2.

An alternate technique that produces fewer synonyms is
to divide the employee number by 2 and drop the remain-
der. This compresses 1500 numbers to 750. There are
300 unused locations in this case, but fewer synonyms.

REW » JOHN W RR2)

Control
. 1010 12 13 14 95 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 W 32
Field
GLENCOE s MINN
34 35 36 37 38 39 40 & 43 44 45 A6 47 48 49 SO 51 52 53 54 55 56 57 53 59 60 6! 62 63 o4
2716)
94 3% 9o
19 20 21 22 23 24 25 26 27 26 29 30 W 32
126 127 128
35 36 37 8 39 40 41 42 43 44 45 46 47 48 43 50 512 53 54 55 56 $7 58 59 60 61 62 €3 64 B
A
h 8 Student
Q4 95 9e 4
: ~+—————— Address
LT) File
- A A
49 QCH MID, 8 8
10112 13y \S'S‘IIﬂlDZOII1213242525272329301!‘u ; 4
2
B ! 62 63 b4 1
8 B
A A
8 8
4
Direct
Student

Master File

Record

Relative '
e } 496 497 498 8006 8007 8008
Number '

Figure 1-2. Relative Record Numbers Corresponding Directly to a Control Field

Direct File Organization 1-5

If there is no sequence to numbers in a control field (such
as part numbers), a conversion technique that produces
random numbers can be used. The resulting numbers
should be distributed evenly within the selected range
(depending upon the number of record locations needed)
and should be suitable as relative record numbers (positive,
whole numbers). One such technique is squaring the num-
ber in the control field and selecting certain digits from the
resulting number as the relative record number. The cal-
culation must be performed every time the program must
seek a record. For example, suppose you have part numbers
that consist of six digits, with certain digits having a special
meaning. No two part numbers are alike. The part number
is squared and, of twelve resulting digits, the center four
are used as the relative record number for the parts inven-
tory file.

Part number = 468152

468152 x 468152 = 219

Relative record number = 6629

Since four digits are selected, random numbers from 1 to
9999 could be developed. Therefore, a file containing
10,000 record locations should be provided for the parts
inventory.

Even the technique used in the example above is likely to
produce synonym records, since the center four digits of
the square of two different part numbers can be identical.
If a conversion technique produces too many synonyms,
it may be necessary to find a different technique or even a
different file organization. The complexity of processing
and programming for synonyms may outweigh the advan-
tages of direct file organization.

Synonym Records

Two or more records whose control fields yield the same
relative record number are called synonym records. Syn-
onyms have the same relative record numbers, but contain
different data. Only one of a group of synonyms can be
stored in the record location which agrees with its relative
record number. Therefore, you must find a way to store
and retrieve the other synonyms.

One way to handle synonyms is to link them together so
that all can be found by locating the first, as in Figure 1-3.
The first record is stored in the record location indicated
by its relative record number. That location is called the
home location; the record placed there is called the home
record. The first synonym is stored in the first unoccupied
record location (a location for which no relative record
nuniber was developed). The relative record number of the
second location is then stored in the home record; that is,
the first synonym is linked to the home record. The
second synonym, if present, would be stored in the next
unoccupied record location and would be linked to the
first, and so forth.

In Figure 1-3, all records that are synonyms are loaded
into the file after records that can be stored in their home
location have been loaded. (See How to Create a Direct
File, Creating a File With Synonyms.)

If a new record is added to the file, but its home location
is occupied by a synonym for a different record location,
that record must be treated as a synonym for its home
location. Figure 1-4 shows the file that resulted from the
addition of synonyms in Figure 1-3. The home location
for record Cis occupied by a synonym for record B, so
record Cis placed in the first unoccupied location. Since
record By is already linked to record B, record C must be
linked through B to its home location.

When you process a direct file containing synonyms, you
must verify every record retrieved. For example, when
you retrieve relative record 3 from the file in Figure 14,
you get record Bl , which is a synonym for relative record
2. This is unacceptable. However, if you check the record
retrieved, you find that it is a synonym. You can now
chain to the relative record location, if any, indicated by
the first record and retrieve the second record. You can
continue this process until you find the record you want
or until the chain of synonyms ends. In this case, you
probably have an error because the requested record is
not in the file.

A similar method for handling synonyms is to set aside a

- portion of the file for synonym records. Suppose, for

example, a file for 8500 records is set up to provide

relative record numbers between 0 and 9999. By actually
setting aside enough area for 11,000 records, any synonyms
developed can be stored in record locations from 10,000

t0 10,999.

Direct File
o —— N e

Synonym
records

Y 9999 10,000

Relative record numbers 0-999

10,999

Unoccupied locations \
No
synonyms A /*
1 10
Synonym
A »
8, added B /
1 2 3
Home
Location /\
s l
ynonym | - a B |3] B /*
B,, added | !
{
1 2 3
Record B Synonym B,
contains location contains location
of synonym B,. of synonym 82.

Figure 1-3. Storing Synonym Records in a Direct File

1 L
1 |
' *
A B :3 B1 | 5 D 32 J /
1 1
1 1
1 2 3 4 5 10
c Record C is relative record number 3, but
location 3 is already occupied. Therefore,
record C must be placed in the first avail-
able location.
N N A
[} 1 |
A B 13| B, |5 D B, 6] c G H J A
! L 2
1 1 I
1 1 1
1 2 3 4 5 6 7 8 10

Figure 1-4. Storing a Record When Its Home Location Is Occupied —

Direct File Organization 1-7

The relative record number of a synonym is stored in the
home location, and a chain of synonyms is built as in the
previous method.

— 1

If records are added to the file, this method can be better
than the previous method, since a home location is kept
free for each different relative record number. Only one
seek is required for records without synonyms. However,
this method wastes more space because 11,000 locations
are used for 8500 records.

Other methods for handling synonyms can be devised.
Whatever the method used, extra accesses are required for
synonym records, and coding for verifying records is neces-
sary.

PROCESSING DIRECT FILES

Direct files can be processed in three ways:
e Randomly by relative record number.

e Consecutively.

o Randomly by ADDROUT file (see Chapter 5).

1-8

B D4 ?
4 10,000 10,001
N —TT T ——

Synonyms

Random Processing by Relative Record Number

Processing direct files by relative record number is similar
to random processing of indexed files by key. In both
cases, the file is processed randomly by the CHAIN opera-
tion code during calculation time in the RPG II object
program cycle. In either type of file, only the records you
specify are processed.

For direct files, the relative record number is used to locate
the record you want. An index of record locations on disk
is not required. The disk address of the record is calculated
for you from the relative record number. Since no index
search is required, random access of a direct file by relative
record number can be faster than random access of an in-
dexed file by key. (It may not be faster if a large number
of synonym records exist, since the average number of
seeks per record could become greater than the two re-
quired by an indexed file.)

Figure 1-5 shows the steps that occur in updating a direct
master file with changes read from the MFCU. The master
file is updated randomly as changes are read.

Random processing by relative record number can be used
for retrieving or updating records from a direct file. (See
Chapter 3, Random Processing of Direct and Sequential
Files, for more detailed information.)

Consecutive Processing of Direct Files

If you process only a low volume of specific records from
a direct file, random processing by relative record numbers
is usually faster. If you process the entire file, you can
process it consecutively, that is, one record after another
from beginning to end.

In consecutive processing of both sequential and direct
files, the contents of every record location is processed
until the end of the file is reached or until the end of job
conditions are met.

Since record locations containing blanks may be encountered
in direct organization, you must allow for the blank records
in your program.

Consecutive processing can be used to retrieve or update
records from a direct file which is specified as a primary or
secondary file. Detailed information on consecutive proces-
sing of direct files is presented in Chapter 2, Consecutive
Processing of Direct Files.

O ')
Change records are ﬁo" —_—————3t————10
read in from the N\
MFCU. (6——————-—— +4—t++t+——— 6 @Relative record
TN numbers are
8 e e ——— b e -_—]..._._ 8 provided by a
—_ control field.
/3-—- — ——— — — e el s s — — 3
L/
\ , ®
Relative record
numbers are used
to chain to the
master file.
Relative
Record #
.
/I»

DIRECT MASTER FILE

@Master records are

updated in the order
changes are received: 3,8, 6, 10, 5.

Figure 1-5. Random Processing of a Direct File

Direct File Organization 1-9

DIRECT FILES: ADDING AND DELETING RECORDS

After a file is created, file maintenance is usually necessary
to keep the file current. Adding and deleting records are
file maintenance functions common to all disk files.

Adding Records to Direct Files

Unlike sequential and indexed files, direct files can have
space available between existing records for records to be
added. (With either sequential or indexed files, new records
are physically added at the end of records already in the
file.) Records are added to a direct file by means of a
normal update operation as follows:

1. The relative record number for the record to be
added is developed.

2. Thelocation is read into main storage.
3. If the location is blank, the new record is stored.

4. If the location is occupied, the new record is stored
as a synonym (see Synonym Records).

In any file organization the situation can arise when records
must be added, but the allotted file space is full. To add
records, you must increase the total space available for the
file by using the Disk Copy/Dump program to copy the file
into a larger area (see IBM System/3 Disk System Operation
Control Language and Disk Utilities Reference Manual,
GC21-7512).

Deleting Records from Direct Files

As with sequential and indexed files, records in direct files
can be identified for deletion by a delete code. This code
is usually a single character at a particular location in the
record. When the file is processed, your program must
check for the delete code; if the code is present, the record
can be bypassed.

Since the record has been deleted, the record location is
available for a new record. Either a synonym for a differ-
ent location can be stored or the location can be reused by
assigning the relative record number to a new record. If the
file contains synonyms, be careful not to delete synonyms
chaining information when you delete a record and reuse
the location.

Note: Records cannot be deleted from a direct file using
the Disk Copy/Dump program. Because the DELETE
parameter of the COPYFILE control statement causes
physical deletion of identified records, the function would
destroy the relative record positions on which direct file
organization depends.

WHEN TO USE DIRECT FILE ORGANIZATION

When choosing a file organization, you must consider the
use, size, activity, and volatility of the file.

Direct file organization can best be applied to files with
the following characteristics:

o Low activity.

e Random processing (on an inquiry basis or by unordered
transactions).

o Stable file size, not expanding beyond predictable limits.

e Control fields that can be used as or converted to a
relative record number.

Most file uses which indicate direct file organization also
indicate indexed organization. However, direct organiza-
tion can have certain advantages over indexed:

o Direct file organization can require less main storage for
processing because no index handling routines, index
input/output areas, and master core index are needed.

o Random access of direct files can be faster, since a record
can be retrieved by only a single access (seek and read
or write). Similar access of an indexed file requires two
accesses, one for the index and one for the data record.

Like indexed files, direct files allow immediate inquiry and
response from any record in the file. This is important in
applications such as:

o Demand deposit accounting when you must find the
current balance of a specific account.

e Inventory control when you must retrieve information
on inventory items.

® Accounts receivable when you must retrieve current
customer information.

Also, like indexed files, direct master files allow processing
of both ordered and unordered transactions. therefore,
transactions need not be presorted. Thus, direct files can be
used in a variety of jobs with several other files, sequenced
or unsequenced, so long as the relative record number is
furnished.

Considerations

A significant consideration in using direct file organization
is developing the relative record number. If you use a sim-
ple method which produces few synonyms, direct file
organization can be advantageous for you. Remember,
however, that you must provide the relative record number,
handle synonyms, and validate records retrieved. If the
programming to perform these functions becomes too
complex or requires too much main storage, you may want
to consider indexed file organization as an alternative.

You may waste file space by allowing for synonym records
or by not reassigning relative record numbers when records

are deleted. If too many synonyms are produced, the
average number of seeks per record for a direct file can
increase to a level where it is slower to process than an
indexed file. Perhaps future additions and deletions to the
file will upset the balance of your conversion technique.
You must consider all these factors in choosing the file
organization best suited to your needs.

A restriction inherent in direct organization or any other
file organization which supports random processing is that
the entire file must be online. That is, all volumes of the
file must be mounted while the file is being processed. This
means that a direct file is limited to two volumes in a single
drive environment or four volumes in a dual drive environ-
ment. Since the number of volumes is limited, you will
want to be sure that, at its maximum probable size, your
direct file can be contained on the available disk space.

Summary

In summary, direct file organization can be used when:
o Direct inquiry capability is desired.

o Unordered (random) transactions are processed.

o Access speed is important to you.

o The size of the file is stable.

o The control field lends itself to developing a relative
record number.

Considerations when using direct organization are:

@ It can require more complicated programming and
extra main storage, since the programmer must:

1. Provide the relative record number.
2. Handle synonym records.
3. Validate records retrieved.
e Unused file space can result from blank record locations.

o All volumes must be online.

Direct File Organization 1-11

HOW TO CREATE A DIRECT FILE

To create a direct file, you must define a disk file as a
chained output file in file description specifications
(Figure 1-6). In this way, the file is uniquely identified as
a direct file to disk system management. Disk system
management then allocates disk space for the file and clears
that space to blanks. From that point, the method you use
to write data records on the file depends on whether or not
you must check for synonyms among those records.

Whether or not you must check for synonyms, relative
record numbers are used with the CHAIN operation code in
your program to make the corresponding record locations
available for loading. The data used as a relative record
number in the chain operation can be a field in an input
record, or it can be created in your program.

Creating a Direct File Without Synonyms

If you will not have synonyms, you can load records into a
direct file in a single pass. You do this by specifying a
chained output file and writing records in the file by means
of the CHAIN operation. Record locations cannot be in-
spected before they are filled with data. If a synonym is
encountered, it is written over the previous record and the

" previous record is lost.

Example of Creating a Direct File in this section describes
- the creation of a file without synonyms. This method of
creating a direct file can be used when the relative record
number either corresponds to a field containing sequential
values or is derived in such a way that no synonyms are
produced. '

Creating a Direct File With Synonyms

If you have synonyms, you can create a direct file by using
more than one pass to load records into the file. The exact
method you use depends on your scheme for handling
synonym records (see Relative Record Number, Synonym
Records). Your first job must define the disk file as a
direct file and clear the file to blanks. Once the file has
been cleared, one or more subsequent jobs can be run using
the update function to read record locations and check for
synonyms while loading the file.

Figure 1-7 shows a method of defining a direct file and
clearing it to blanks. In this method, the input card file
from which the direct file is created is placed in the MFCU.

The disk file is specified as a chained output file and is
cleared to blanks by disk system management after the job
begins. The CHANUM field from the card file is used to
chain to the corresponding location in the direct file and
the first record is placed in the file. The last record (LR)
indicator is then turned on by a SETON operation, forcing
the end of job condition. The direct file now contains a
single record. This job can be immediately followed by
one or more jobs which read the remaining cards from the
MFCU and write out the disk records using the update
function.

You learned in Relative Record Number, Synonym Records
in this chapter that there are several ways to handle
synonyms. Two methods described were:

1. Storingall synonyms in an area of the file set aside
for them.

2. Storing synonyms in unused record locations between
the records in the file.

After your direct file is defined and cleared to blanks, dif-
ferent steps are required to put records into the file for the
two methods listed.

If the first method is used, all records can be placed in the
direct file in a single job. That job would retrieve and
check each record location before it is filled. If the loca-
tion already contains a record (that is, the record to be
written is a synonym), the synonym is stored in the next
available location in the portion of the file set aside for
synonyms. Thus, all home records and synonyms are
placed in the file in a single job.

If the second method is used, two jobs are required to place
home records and synonyms in the direct file. The first job
loads all home records; any synonyms encountered are by-
passed. The second job loads synonyms in the record loca-
tions available between home records. Both jobs are done
using the update function to check each record location.

Whatever method you use to handle synonym records, you
will have to devise a sequence of jobs similar to those
described above. Remember:

1. A disk file is defined as a direct file by being specified
as a chained output file.

2. In order to check for synonyms, you must employ
the update function. Random update with direct
files is described in Chapter 3, Random Processing
of Direct and Sequential Files.

File Description Specifications
File Type Mode of Processing File Addition/Unordered
N o Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type] for DAM Number of Extents
. . Type of File 2 . Symbolic Name of Tape
Line Filename Sequence Organization b Device D‘(/avice G| Label Exit Rewind
File Format or Additional Area g’ 5 -
=] 3 ile
§ ale 2 {overfiow Indicator < i. Condition
Ol 5 (-2 2 X
E 39| |4 Black Record sle Key Field | 3 P Core Index . vy
H <] g ul$ 5 Length tength g § g Stanif\g = 5 % >
Location
3 5[6]7 8 9 10 11 12 13 14 |15]16 19]20 21 22 23]24 25 26 27{ 28|29 30}31|32]33 34135 36 37 3813940 41 42 43 44 45 4647 48 49 50 51 52|53| 64 55 56 57 58 5960 61 62 63 64 65]/66(67|68 69]70{71 72)73 74
o] IF olel i IF R R
of3| {f | :
olal Ir Note: Shaded columns must remain blank; blank columns are variable
ols| ¢ T or optional. .
ole| |F
ol7| |F
E
F

Figure 1-6. File Description Entries to Define a Direct File

IBM { Business Machines C: i Form X21-9092
< Printed in U.S.A.
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

12 75 76 77 78 79 80
Date — .
Punching | Graphic Page [D ng'? m
Instruction
Program Punch
Control Card Specifications
0
8| stering g
5 3
5.l Lel | |& g
Core | 2] Core ggaég 13| Number |] .
Line Sizeto | 3|9| Sizeto k1 gl51e | Elg|of Print | = Refer to the specific System Reference Library manual for actual entries.
&[compile | 3| B Execute 2151212 121 £) B posit 3
2 2lS 21=15(2|2]Ele o
£ §IE R EE S H
K 3|3 HE M 5
<
3 4 50617 8 9 |10{11{12 13 14]15{16 17|18 |19}20]21]22]23 24 25]/26] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 57 58 59 60 61 62 63 64 65 %578859707!727374
op[]][] loed® EERENNEREERANN NN R RN AR NN NN NEEN
File Description Specifications
File Type Mode of Processing File Addition/Unordered
- B N Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
Type of File Symboli N f Tape
i i Sequence = . 'mbolic ame o
Line Filename eau Organization o Device Dyevice T Label Exit Rewind
File Format or Additional Area g 5 —
o N ile
g] I 2 [overflow Indicator < A Condition
o 5 2 b4
E 3]s o Block Record = é Key Field | £ = Core findex . . u1.u8
2 QZ|u|]|E] Lo | e [S)F1Q) f Swrine x 3 2 3
Location
3 4 5{617 8 9 1011 12 13 14 J1s|16}17]{18]19]20 21 22 23|24 25 26 27}28)29 30|31]32]33 34|35 36 37 38[39 41 42 43 44 45 46/47 48 43 50 51 5251235_56 57 58 59160 61 62 63 64 65{66167|68 63|70{71.72|73 74
2| |F|oiRECT] | ble] | || 2| [12BIR 1 SK| 1
ofs| [rlclalRD) 1P| IF| | 2l | 96 IFiclu/1
ola| Ir [[|

Figure 1-7. Defining a Direct File and Clearing It to Blanks (part 1 of 4)

Direct File Organization 1-13

IBM International Business Machines Corporation Form X21-8094

Printed in U.S.A.
RPG INPUT SPECIFICATIONS

1.2 75 76 77 78 79 8O
Date Program
Punching | Graphic Pese D] Wentification
Program Instruction Punch
P
5 Record Identification Codes . . Field
% Field Location)
5 3 _ < Indicators
2 1 2 z & 5
® H 2 z k]
E_: ﬂnﬂ § = & Sterling
Line Filename Z| |E5 gl 2| Field Name | 3 ° Sign
g =ls| § 3|3 I g g |zero | position
2 == Position |~ g position || |E| Position |= g 2 .§ From To = 3 & |Plus [m
€ ES?, HEH Zlo|s Zlalg|g|& £ g 5 Blank
£ 2 SIN|E 518 SR 3
g 3|8| 2 215|5 35]6 55|5|a|« & 3 &
3 4 s5|6|7 8 9 10111213 1415 16[17{18{19 20|21 22 23 2425|2627} 28 29 30 31|32|33]34|35 36 37 38|39{40]41[42|43 44 45 46 47|48 49 50 51[52|53 54 55 56 57 58|59 60]61 62|63 6465 66]67 63|69 70|71 72 73 74
ol [|:|ellRol W T Wis| | ¥5] [T 1] le|1 I l
oj2| |1 3 CIHANU
of3| It 1 6| |[RECIoIR
ola| |1

Figure 1-7. Defining a Direct File and Clearing It to Blanks (part 2 of 4)

IBM ional Business Machines i Form X21-8093
| Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching | Graphic Page D] Program
Program Instruction Punch
Resulting
Indicators Indicators
Arithmetic
- e Plus |Minus| Zero
[. k= ’I‘
i A And And : E . Field |=|Z| Compare
Line §35 Factor 1 Operation actor 2 Result Field Length § 5 Tigh [Low [Eaval Comments
= B3] 1>2)1<21-2
eleJ]
S ég g ‘zs g &ls Lookup
Table (Factor 2) is
High | Low [Equal
3 a s|el7 sf9fio|friz[13[raf15[16]17]18 19 20 21 22 23 24 25 26 27}28 20 30 31 32|33 34 35 36 37 38 39 40 41 2’3344454647‘82251 52[5354 55166 5758 5960 61 62 63 64 65 66 67 68 69 70 71 72 73 74
i M CHANY CHA! Wol RIEICT
of2| [c SIE|TIOM LIR
oy3} lc
0|4 Cc
ols| (c
ofs6 c
0|7 (o]
0|8 [
o9 c
11n ~

Figure 1-7. Defining a Direct File and Clearing It to Blanks (part 3 of 4)

IBM

RPG

Internationat Business Machines Corporation

OUTPUT - FORMAT SPECIFICATIONS

Form X21-9090
Printed in U.S.A.

7576 77 78 79 80

Date Graphic

Program ' I l

Punching
Program Instruction ",
E
é Space| . Skip Output Indicators Edit Codes
g Commas | 2¢ro Balances. .\ o CR X = Remove
S l | S to Print o Plus Sign Sterting
. . | N 3 Sign
Line Filename @l Field Name z| End S Yes Yes 1 ALy 1Y = Date it
. NE And A 2| positon v Yes No 2 3 |k Field Edit Pasition
3 gég et B2 g No Yes 3 C | L [Z= Zero
'; AHHHEI R R E R RE I3[ouwu |2 No | Mo 4 lolm] Seers
£ glelalsl @ | < |= = z =gl R S
5 >| X = ecord | &
w = 2 u & n Constant or Edit Word
3 4 516)7 8 9 10111213 14115[16§17]18]19 20{21 22)23(24[25{26 |27|28]29|30 (31 {32 33 34 35 36 37|38 [39 |40 41 42 4344 |45 46 47 48 49 50 §1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70}7t 72 73 74
ot [0/ RIEICT | D
o2 Jo RECORD bl
0l3 o

Figure 1-7. Defining a Direct File and Clearing It to Blanks (part 4 of 4)

Example of Creating a Direct File

A distributor wishes to create a customer file on disk. He
lists the following as significant characteristics of the file:

Customer numbers are assigned on a sequential basis;
new customers are assigned the next higher number.

There are few deletions from the file.

The file will be used to process invoices, orders, and
cash payments in an unordered manner.

The file must allow direct inquiry to any customer’s
record.

The file has low activity; for example, out of 5000
customer records, only 100 invoices are processed per
day.

The distributor needs both direct and consecutive proces-
sing capability. These are offered by indexed and direct

file organizations. Because the customer numbers are as-
signed consecutively, synonym records are not a consider-
ation. For this reason, and because there will be few
deletions from the file creating wasted space, direct file
organization provides maximum flexibility and access
speed.

His first step, then, is to create the direct file. He decides
that the record format shown in Figure 1-8 satisfies his
information needs. Additional fields in the record will
contain information to be used in specific jobs, such as
customer payments, invoicing, and sales analysis. (Various
applications using the customer file are described in
Chapter 2 and Chapter 3.)

The file is created from data on input cards (Figure 1-8).
The customer number (CUSTNO) is used directly as the
relative record number to chain to the direct file. The cus-
tomer data from the input cards is then written on disk.
As a check on the creation of the file, each record written
on disk is also printed in the report shown in Figure 1-9.

Direct File Organization 1-15

\
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 32
33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 48 49 50 5! 52 53 54 35 56 57 58 59 60 61 62 63 64
€5 66 67 68 69 70 7I 2 7374 75 76 77 78 79 80 B1 B2 83 B84 85 86 87 88 89 90 91 92 93 94 95 96
B 96 |W 101,102 JVO 105 1« 107908 109 PO 1N 112 N3 N4 1S 116 117 N8 19 120 12) 122 123 124 125 126 127 128 B
A o Input
8 ‘CUSNAM 8 npu
4 Card
2 2
1B 12 3 4 %5 6°7 8'9 10n%1213 |4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ;
A A
P 8
8~ADDR -CTYSTA——{ 2IP 2
2 2
1B 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4849 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 1B
A A
8 8
4 4
2 2
1 €5 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 8 82 83 84 85 06 87 88 89 90 91 92 93 94 95 96 1
§ 1BM 3700 /

———— — — C— — —— S— — — G ——) — — ——

/ CUSNAM /

Disk
Record

11 4 1 2 3 18

(Length)

l'""—_—"'_———_————__———-_————'——/———"’7

/ Il / / /
/ ADDR / CTYSTA / zIp / (Additional [/
/ / Data)
/ / /
/ / / / /

16 16 5 61

Total
Length = 128

Figure 1-8. Record Formats fér Creating a Direct Customer File

L1-1 uonezZiuesIO 1] 1031d

$pI099Y Iowro}sn) Jo Sunsr pajuLy ‘6-T 9InSLy

IIll|111||222|22222223333333333444444444]4555555555566666656667777777777888888888899999 99!99(‘)
|2345678?0|23456789012'34567890\234567890!23}5673901234567890!234567590123456789012345678901234567i590
H ICU] TOME TY.PE i -r,_jH’N; ME L LT T lApDRESS | Z|P CODE T{%RRJTO&Y SALES MAN
a [T BERENIE 808 SSSRSEEIREEEIRI SRS NR1 N ERNDERERERNRRARERE NEE
3| XK | X KRXRIKRKRRK KR KX KKK KKK KKKEXXK | XX KKK MK RK X XX X] | XXX || XK. [XXX
sldeysmno). (TyPe) C [Ceuswam) |l T apaR) 1T T i(drvista) 1171 (2ip) | | CTRRTRY). | ((SLSMA%)
LIRS R R TR 5 ST | S S S R : N e
CUSTOMER TYPE NAME ADDRESS ZIP CODE TERRITORY SALESMAN
1637 B JONES VARIETY 14 S MAIN BEDROCK, TEX 45412 12 015
4301 B JIM'S 5 AND 10 1103 FRANKLIN ST GLENCOE, MN 55336 12 015
3601 D SCHMIDT HARDWARE 600 1ST ST NW HILL CITY, MD 21222 02/\016—-/
W

Specification Sheets

Figure 1-10 shows the RPG II coding necessary to create
the direct customer file.

IBM Internationat Business Machines Corporation ! Form X21-9092

RPG CONTROL.CARD AND FILE DESCRIPTION SPECIFICATIONS st S A
12 75 76 77 78 79 80

Date o — . Program
Punching | Graphic Page @ Togram

Instruction

Program Punch
Control Card Specifications
§ Sterling g
g 2
S
HAREIRRE &
Core o| »| Core o NEH @{Number | €
Line Sizeto |3 5| sizeto HHEHAE 3 Of Print | & Refer to the specific System Reference Library manua! for actual entries.
@ ol B K Slale | < i £
E Compile | 3| 8| Execute § % F1 E & | Positions| 3
- <1212 o Py
E BI2 HEABEEHAHN 5
Bl 3 A B S g
5 |8 -3 g 3 13 G216 I 1 £
2 5|3 Sz £18 k]
<
3 4 s|6|7 8 9 f10]11]12 13 14)15]16|17}18[19]20] 21|22)23 24 25)26]27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 _65 66 67 68 69 70 71 72 73 74
of [Iu[[] L EEREERERREEEREERREREERRREENRENENENNRRERENERERENE

File Description Specifications

File Type Mode of Processing File Addition/Unordered
N S Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. Type of File . i Tape
Line Filename Sequence Organization 5 Device ?)\;T;::hc & ’::g: (E’i i R;ind
- File Format or Additional Area g 5 ! —
| ile
g sle = |Overtiow Indicator| & 2 Condition
o 5 = =
e 319 |4 Block Record <|e Key Field | 2 s Core Index . . u1Us
s 8|2.1% 2| Length Length (€ § S Starting | X ki I s
Location h . fil . d
3 4 5[6|7 8 9 10 11 12 13 14 |15]16]17]18[19]20 21 22 23{24 25 26 27| 28|29 30]|31{32|33 34)35 36 37 38/39]40 41 42 43 44 TedlrECt Iebelngcreate 62 63 64 65|66|67|68 69|70]71 72|73 74
ol2| [FlelgisiTie 3 is defined as a chained output
o3| IFICIUSITIA le. @i
ol¢| |FICIISITIL
1
ofs| IF LN A
111 Random Processing
ofe| |¢ . R
Chained Output File
0|7 F
F
F

Figure 1-10. Creating a Direct File (part 1 of 4)

IBM International Business Machines Corporation ::;’:‘le"‘j?;
RPG INPUT SPECIFICATIONS
1.2 75 76 77 78 79 80
P
Date Punching Graphic Pags@g Geniica
Program Instruction Punch
5 Record Identification Codes i
H ! Field Location ped
2 1 2 3 z 3 5 ndicators
2, £ e = |5 s
£3 8 d gl Sterling
Line Filename HRED g é Z| FietdName | 3 |33 ; Sign
8 Z|a § 5 5 3|3 & 3|t 8 Zero | position
> == Position |~ &| Position [~] |E| Position |= 1 .§ From To = 2 |22l & [Plus mi
e ESE 2ol Z|o| & ERHEE E g |52l = Blank
13 E =8]8 z|5l 5 M N s £ [25] 3
g 2|5| & 3|53 5[5 3[5)al8[« 3 5 |28) 2
3 4 5|6)7 8 9 1011 12 13 14|15 16]17(18{19 20 |21 22 23 24|25|26|27]|28 29 30 3132333435 36 37 38|39]|40{41]J42|43 |44 45 46 47|48 49 50 61|52|53 54 56 56 &7 68|59 60|61 6263 6465 66|67 68|69 70|71 72 73 74
o] |1elUIS|TICAIRDIVS| | @it 1 |l
of2] |1 12| 5 ClisiTvo
o] Ir b 6| [TIYPH
ol |1 1 3| [TIRRTIRY
ofs| |1 | 11} [S|ILISIMNI#
ole 12) | 24| |cuisivia
of7} |t @ | 45 ADD
ool A ARNZIEdaliEn
ofof |1 62| | bb| B P
1] |1 2 F EICOR!D]
AR |
Figure 1-10. Creating a Direct File (part 2 of 4)
Business Machines Ct Form X21-9093
IBMo Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic Page@@ ngr.a:," -
Program Instruction Punch
Resulting
Indicators Indicators
Arithmetic
- 7 Plus |Minus | Zero
o . 5|=
i 39 And And ; . Field |%|Z| _Compare
Line g ia Factor 1 Operation Factor 2 Result Field Lengtn |22 HighIwa Eaqual Comments
Zlz 2 slT[1>2[1<2|1=2
els3 ElZ
.f 53 ZS Zs é‘,’ g 3 Lookup
Table (Factor 2) is
High | Low [Equal
3 4 s5{6{7 8] 910|11]12|13|14]15|16 2434‘4545474849505'525354555657259805'8283&8506578809707|72737‘
ol fef 11 @11 Ci 1REERN i
o2 c . .
CUSTNO field from the input
il records is used to chain to the
bl direct file. Indicator 04 turns on
os| |c if a record is not found in the
ofs| |c CHAIN operation (see CHAIN
ol7| [c Operation, in Chapter 3).
ols[e FTELTTirrrrrrterrTa

Figure 1-10. Creating a Direct File (part 3 of 4)

Direct File Organization 1-19

" Machi " Form X21-9090
IBM" Busiows Printed in U.S.A.

RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80

Date "
Punching Graphic Page D:] Program y

Instruction | py, oy

Program
E’ Space] . Skip Output Indicators Edit Codes
é | 3 Commas zer:’:,,ar'i:r;m NoSign | CR | - [X = :z‘“;':n ?nling
Line Filename g é A A Field Name [Sgf End § Yes Ye Y v ae Position
: Slslsls| 21 s [" . gé . 3 No No 2 S e]" s
: I ER R ERRE P e -
v -le o i Constant or Edit Word
3 4 5|/6]|7 8 9 10 11 12 13 14}15{16]17|18]19 20|21 22| 38 [39 |40 41 42 4344)45 46 47 48 49 50 51 62 53 54 55 66 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 74
o[1] [olel[s[rlel IL]e[d HERERRERREEN
ol2| jo A disk record is written
ofa] lo for each successful chain
ol+| [ojelVisiTIL ISITIH | 2114 operation.
ofs| |o o e la |
ols| |o 3| |'EVISTIOMER]!
ofrl o 14l I"ITviPE("
ols| o 217) |’ WAME
ols| [o 517 | ADDRESIS/|'
t|o| o Pl i<l CoDE'
1[1] |o 9¢ ' R/ TORY’
1]2] fo 190 |"S4lLESMAN'
13l |o Dl 1 ¢1
1]s] fo CIUIS [TINO 4
1ls} [o yiPlE | 12
° CUISWIAM 4
o D 512
° c7Ysi] 14
o Z P 71
o TRR[TRIY| 26
o S|L|siMwi 91

Figure 1-10. Creating a Direct File (part 4 of 4)

1-20

Review 1

What distinguishes direct file organization from indexed or consecutive organization?
What is a relative record number? How can you determine a relative record number?
What must be done when a synonym record is encountered?

How do you add a record to a direct file?

Code RPG II specification sheets to create a direct file. The file is an inventory master file. The
relative record numbers are the part numbers. The file is created from input cards in the following

format:
N
1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 €0 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 108 10 1M1 112 U3 114 1S 146 17 18 N9 120 121 122 123 124 125 126 127 128,

Part Description Price
No.
12 3 4 56,7 8 9 10 1M 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3} 32
On
_hand

33 34 35 36 37 [P 39 40 &1 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

‘8" Card Code

S“NAODPW-NIOPT=NIOD>D
“NLPOPOD=NLO>PD=NDOD>E

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 90 89 90 91 92 93 94 95 96

L 1BM 3700

N\

The disk records should have the same format except the delete code should be in column 38. The
delete code should be initialized to A. When the record is deleted, the code will be changed to D.

Direct File Organization 1-21

Answers to Review 1

1.22

Records are loaded and retrieved from a direct file by specifying the relative position of the record
in the file. Records can be scattered throughout the file. The sequence in which they are loaded
depends on the sequence of relative positions supplied.

The relative record number is used to reference records in a direct file. It is the position of the
record in relation to the beginning of the file. Relative record numbers can be determined in dif-
ferent ways. The direct method is a technique of using the control field directly as the relative record
number. There are several methods of conversion by manipulating a control field mathemtically to
determine an acceptable relative record number

When a synonym record is encountered, two control fields have been converted to the same relative
record number. The programmer must provide an alternative record location for the synonym in

these cases.

Records are added to blank or inactive locations within the file. Records can be deleted by activating
the delete code and ignoring any data recorded in that record position or by blanking out the record.

See coding sheets (Figure 1-11).

IBM International Business Machines Corporation Form X21-8092
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS s
12 75 76 77 78 79 80
Date — .
Punching | Graphic Page @ ngr.a'.“ .
Instruction
Program uetion | punch
Control Card Specifications
@ . 3
§ Sterling §
3
g 2 3
D|w - -
Core |] Core 2|2 o= |8] . |&|Number | €
Line Sizeto |3 ,<:_> Size to g é e é El= Of Print -='€ Refer to the specific System Reference Library manual for actual entries.
é Compile [3| &) Execute| (21515 (5] % § Positions | §
uloe ols 2 glel8 2
g HE HEEEEEEE g
2 o|3 als S8 2
- <
3 4 5/6]7 8 9 [10f11{12 13 14{15}16{17]18[19]20] 21 23 24 25{26)27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74|
o] [u[[HEEERERENRERERERERENRERENRRRRNNERRRERERRNARNDE
File Description Specifications
File Type Mode of Pracessing File Addition/Unordered
N . Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of Fite Record Address Type for DAM Number of Extents
Type of File . T
Line Filename Sequence Ovennirati = Device Svn!bollc _| Nameof ape
ganization % Device Wi Label Exit Rewind
File Format or Additional Area {8 5 -
Q o - 3 = File
§ ole «~ | Overflow Indicator, s - Condition
Ol 5 = =
M 35| [af.] Breec | fecore <2 Key Field | £ H Core Index . v1.U8
£ S « ¥ " b 8 =)
K sle|.|§ E Length Length | £l8 Starting | X 5 < B3
Location
3 4 5|6}7 8 9 10 11 12 13 14 J15]16]17]18|19{20 21 22 Z!EE‘ZS 27 28'29 30]31)32, _5&22&39 40 41 42 43 44 45 4647 48 49 50 51 52 53'54_52&_11.__9_2.5;62 63 64 65|66/67|68 69]70{71 72|73 74
ol2) [FRIARDLS IPE [Fl | ge| | 94 MIFCU 1]
ols| [FlDI/IS|K oiC 38| | |3B[R Dl 1S s
olal Ir | |

/

Figure 1-11. Creating a Direct Inventory File (part 1 of 4)

IBM International Business Machines Corporation Form X21-9094
Printed in US.A.
; 1 2 75 76 77 78 79 80
Date Program
Punching | Graphic Page EE icati
Program Instruction Punch
8 Record Identification Codes . . Field
3 Field Location Indi
g 1 2 3 > 5 € ndicators
£ § k]
2, & £ iz, 3 .
. > ol 8) 2 |8g| Sterling
Line Filename Z| |£° glo 4| Field Name T |2s| ® Sign
g =5l & o Jzl® & & lLel g J2ero | position
2 Blg|3 | Pesion [z &| vosition || [Ef Position || [5[Z]x| From To |3 2|22 & [Pus [Minusfor
£ 5181 3 Elols Zlols Slelslzle E £ 15l = Blank
al ¢ 4 sIN| 8 HINE " 8 clss|l =
£ 2|8| & 2|5l8 2518 3|s|8lze & 5|28| 2
3 4 5|6{7 8 9 1011 1213 14|15 16[17|18[19 20|21 22 23 24|25| 26|27 28 29 30 31[32|a3[3a |35 35 37 38)30|a0|a1{az}as|4a 45 46 47{48 49 50 51[52]53 54 55 56 57 5859 60|61 62[63 6465 66[67 68|60 70[71 72 73 74

08
[+

o|1] |*|CIAIRDIS AAl | B | B8

olz| |1 1 4 IPBIRT WO
o3| |t 5 | 25| DESC
ofa| |1 26 | BlA2PRI |ele
bl i 33| | B[PV HAND
olsl 1 ‘

Figure 1-11. Creating a Direct Inventory File (part 2 of 4)

Direct File Organization 1-23

Form X21-9093

IBM International Business Machines Corporation
Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic Page@@ ngr.ar N !
Program. Instruction Punch
Resulting
Indicators Indicators
Arithmetic
- H Plus |Minus | Zero
[. o
3 And And : . Field |=|Z Compare
Line § i Factor 1 Operation Factor 2 Result Field Length § % [Figh [Low [Eaqual Comments
.-Ej 'g§1>2|<2 1=2
el b=
5(53|s - - i 8l= Lookup
els3fs| | 18] | |2 8)F
2z z z Tabte (Factor 2) is
High | Low |Equal
3 4 5{6]7 slojiofi1)12[13]14]15{16{17]18 19 20 21 22 23 24 25 26 272829 30 31 32|33 34 35 36 37 38 39 40 47 42]43 44 45 45 47 48]49 60 515205354 55|56 57|58 9{60 61 62 63 64 65 66 67 68 63 70 71 72 73 74
T T e PAF?T BERAYEAS
olz| fe [(TTTTTTHL [CELUTTTTTT et

Figure 1-11. Creating a Direct Inventory File (part 3 of 4)

IBM International Business Machines Corporation Form X21-9090
s Printed In US.A.
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80
Datt .
ate Punching Graphic Page @ Progrur.n
Program Instruction Punch
g
% Space] . Skip Output Indicators f Edit Codes
: 9 [comme [P = hosin [cn | - [~ omom -
£ I E Plus Sign Si
Li i Tls Field N o| End & Y Y 1 A |3 |Y= Date i
ine Filename g & And And ield Name N Y:ss N:s ! Al P Edit Position
g S[El.| | « 2|8 2 No Yes 3 [c|L|z=2m
[Zlslslsl S 1 B (4 = - 3 £ Output |8 No No 4 DM Suppress
3 sle @ ° ° ° x ¥
H § % ojd| o | < |z z z =] 6] Record |8
u Flg w | r Constant or Edit Word
3 4 slel7 8 9 10 11 12 13 1415]16|17]18]19 2021 22|23[24|25]26 z7mzsao:13233g'a_s£ra_7n 40 41 42 43144145 46 47 48 49 50 51 52 63 64 65 56 57 58 59 60 61 62 63 64 65 66 67 68 €3 70}71 72 73 74
ol lofD[1[s|K D B
of2| o PARTINO “H
ofs] o DEISC 215
ofa| o PIR 1CIEl 312
°ol5| |° ONHAND 817
ofe| fo B Al
ol7 o l

Figure 1-11. Creating a Direct Inventory File (part 4 of 4) -

1-24

CHAPTER 2 DESCRIBES:
Consecutive processing of direct files.
When to process direct files consecutively.

How to code the RPG II specification sheets to process a direct file consecutively.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Code basic RPG II programs using sequential and indexed files.
Describe consecutive processing.

| Define activity and volatility of a file.
Describe, in concept, direct file organization.

Define synonym record.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
- Describe, in concept, consecutive processing of direct files.
Code RPG II specification sheets to consecutively retrieve records from a direct file.
Code RPG II specification sheets to consecutively update records in a direct file.

State the conditions for selecting consecutive processing of direct files.

Consecutive Processing of Direct Files 2-1

INTRODUCTION

Consecutive processing of direct files is similar to consec-
utive processing of sequential files. Record locations are
processed one after another until end of job requirements
are met. Blank record locations are processed along with
those containing data. Remember that a direct file is
cleared to blanks when it is created, and record locations
which are not filled remain blank. See Chapter 1 for a
description of direct file organization.

The File Description Sheet entries required for consecutive
processing (Figure 2-1) are identical for direct and sequen-
tial file organizations. As shown in Figure 2-1, dual input/
output areas can be requested (column 32 of the File
Description Sheet) for primary and secondary direct input
files. (The use of dual input/output areas is described in
Chapter 11.) Consecutive processing can be used to re-
trieve and update primary and secondary direct files. It
cannot be used to create a direct file.

When retrieving and updating a direct file consecutively,
you may want to check each record for synonyms and
handle the synonyms differently from other records.
However, since consecutive processing is not dependent
upon relative record numbers, a direct file can be processed
consecutively without regard for synonyms.

If a consecutively processed direct file is in a logical sequence
by a control field, it can be used in multifile processing.
The same rules apply to direct files used in multifile
processing which apply to other primary and secondary
files. A complete description of multifile processing is in
the IBM System/3 Disk System RPG II Reference Manual,
SC21-7504.

File Description Specifications
File Type Mode of Processing File Addition/Unordered
N L Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. . Type of File B
Line Filename Sequence Organization s Device SDym.bohc o '::;"T:‘
o File Format - or Additional Area g evice 5 el Exit
§ ole 2 | overfiow Indicator] < :
Ol 5 = -
' 3|o - Block Record = :" Key Field | & 3 Core Index
s gial 1513 Lenan Length § s Starting 3 £
Location
3 4 5/6|/7 8 9 1011 12 13 14 |15]16}17]18119{20 21 22 23124 25 26 27|28]29 31§32]3: 35 36 37 38 0 41 42 43 44 45 46|47 48 49 50 51 52|S: 59]60 61 62 63 64 65
o2 IF 1P| IF 1 SIK
ola| I¢ 15 F D1 (SIK]
o4l Ir 0IP| | |F PISIK
os| IF ISl | |F DI BK
ole| |F
o|7| |F
E
E

Note: Shaded columns are not used; blank columns are
variable or optional.

Figure 2-1. File Description Specifications for Consecutive Processing

WHEN TO PROCESS DIRECT FILES CONSECUTIVELY

Consecutive processing of direct files is desirable in the
following situations:

1. You want to process all or most of the records in the
file (activity is high).

2. The physical sequence of the file is appropriate to
your job. Either you do not care about the sequence
(updating sales data, changing activity codes), or the
physical sequence of the records (by account number,
stock number, and so forth) is satisfactory for your
purpose.

Direct files are often employed where the activity of a file
is low and direct inquiry from the file is necessary. There
are times, however, when the activity on a direct file is high
for certain jobs, such as a writing a report where the entire
file is listed. It can be desirable, in such cases, to process
the file consecutively.

In Chapter 1, for example, a direct customer file is created
for a distributor (see How to Create a Direct File in Chapter
1). The distributor selects direct file organization because
the activity of the file is expected to be low, unordered
transactions are to be processed, and he desires immediate
inquiry capability. Each day, invoices are prepared, records
are updated with sales information and customer payments,
and inquiries concerning customer accounts are processed
on a demand basis using random processing. At the end of
each sales period, sales analysis reports are prepared and
periodic adjustments are made to sales figures. These
periodic jobs use consecutive processing, because all records
are to be processed. Because the customer numbers used

as relative record numbers are sequential, the periodic
reports are in customer number sequence.

HOW TO CODE FOR CONSECUTIVE PROCESSING
OF A DIRECT FILE

Consecutive Retrieval From a Direct File

Consecutive retrieval of records from a direct file requires
the same File Description Sheet entries as consecutive re-
trieval from a sequential file. The required entries for
retrieval are shown in Figure 2-1 (I in column 15 indicates
that the file is an input file). The file named in columns
7-14 must be a previously created direct file. Because the
file is an input file, it must also be defined on the Input
Specifications Sheet.

Example 1

Suppose the direct customer file, CUSTFILE, created in
Chapter 1, is processed to produce a monthly report. This
report shows all customers that have had no sales activity
during the period. It is analyzed by sales personnel, who
then make follow-up calls. The records of all customers
are examined and the file is in sequence by customer num-
ber; therefore, the report is produced by consecutive
processing of the direct file.

Consecutive Processing of Direct Files 2-3

The format of the disk records in CUSTFILE is shown in
Figure 2-2.

Figure 2-3 shows a part of the report produced by the
consecutive processing job. The report consists of fields
selected from CUSTFILE and an accumulated total for
accounts receivable (TOTAR).

L&) A X T o
G5 F e S ge
/SISl & I E FEL /
N Disk
Y ¢ Record
3 % Format
11 4 1 2 3 55
Length

S A A A2
/§/ 3 / & / 3 / 4 /

& &
(o) Q a
N ~ 12 A
S / & / & / S /

(s} S (s o
é}? / é‘?& / g / (Reserved)

/ / / /

/8
/& 7

Total length of record = 128 positions

Figure 2-2, Disk Record Format for Direct Customer File, CUSTFILE

24

a1 39911 © JO SuIsso00Iq SAINOSSUOD) WOIJ SIOWI0ISN) SARIRUL APUaoay Jo yoday *g-g amndrg

S-C SII 3109M(] JO SUISSE00I] 9ANNIISUOD

l1!ll§11‘|l1222’2222222]'3333333333444444444‘4555555555566 6/6!6(616:6]/6(7 7|7;7{7,7(8js|8i8/B8|B8|8]{B|B!B|9|9(9|9|9 99!99&&
|2345678901234[56739012'3456789f01234567890!23}‘65678901234567890!23456739012345678901234567690I234§678901
| 'Iclu/SIToMER | - VAME] el TY, STATE || | SA|LESMAN T LIaSIT] ORDER | [sLis PREV [PER | cRDT| | [ToT, A/R
LR SEREE SO S i SERE NS IR RRSENI RN NE EEDESERERNRRERRNENELE
3l | XXX ; xxxxxxx& xxxxxxxx XXX OO T XXX XXX XXX XXX+ 7T XX xxmggcx
slllcosimwo). . | . .L,(,c,usMM)H e .ﬂF,T(fC'TY-STTA) (st mwj - JcsroreD! [T cesTPER) 11 (cRED]] T) (TOTAR). |
R R e B R e R R
CUSTOMER NAME CITY,STATE SALESMAN LAST ORDER SLS PREV PER CRDT TOT A/R
1637 JONES VARIETY BEDROCK , TEX 15 4/13/71 240.37 01 .00
2279 GREEN GROCERY,INC BIG CITY,CALIF 102 4/27/71 1200.00 01 600.00
2331 STAR MARKET GOODTOWN, GA 74 4/01/71 31.95 03 937.16
———— — —— : e

Figure 2-4 shows the specification sheets necessary to
consecutively retrieve records from CUSTFILE to produce
REPORT], a list of recently inactive customers.

Since the direct file probably contains blank record loca-
tions and inactive records, a technique is employed on the
Input Sheet to bypass such records (Figure 2-4). Ifa
method is not used to bypass unidentified records, the
program will halt when they are encountered.

IBM International Business Machines Corporation Form X21-9092
Printed in US.A.
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
12 75 76 77 78 79 80
Date — o
- i—
Program Instruction Punch
Control Card Specifications
§ Sterling §
s 3
HANERRE]
Core .| a] Core 2|21, £lg & |Number | €
Line sizeto |2|.6] Sizeto 2=l 21218 1 El=|of Prine | 3 Refer to the specific System Reference Library manual for actual entries.
el Slz|s{Dle 3 =
& compite | 3| 5| Execute| 2[5 [[L1 [|8 positions| 3
> % o RHEEEER <
3 £ g HE AR ®
E B BEFIPEIER
<
3 4 s|lel7 8 9 lio]r1|12 13 14]15|16|17]18[19]20]) 21]22 |23 24 25}26] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 €5 66 67 68 69 70 71 72 73 74|
0
DLW (] HEEREREEREENNREREREANEREEENERERERENRNNNEENEEEE
File Description Specifications
File Type Mode of Processing File Addition/Unardered
N T Length of Key Field or . Number of Track:
File Designation of Record Address Field Extent Exit 'o‘:névji'n‘;er rOavcersflow
End of File Record Address Type for DAM Number of Extents
. . Type of File i
S o . Symbolic N f T:
Line Filename . Organization b Device Dy ice & L:;n Tg it R::im
a File Format or Additional Area g .W'C . el Exi -
2] - N -
g g8 ? [overtiow Indiator| 3 The d}rect file is described Condition
s 515 Block Key Field | 2 as a disk file to be processed e Index ut-ug
E s ;] . . . 2 o
S 2 Length Starting | X consecutively (identical to the 2 ES
3 4 5(6|7 8 9 10 11 12 13 14 description of a sequential disk: sz 3 e4 65]es|s7}ss eo[70l1 7213 74
olo[[elelu[sTTIFILENP | [F [2[5%) file). 1
: gy xRy
o3| |-|REPDRIT el it R
of4| [F
o|s| |r
ole| |F
o|7| {r
3
F

Figure 2-4. Consecutive Retrieval From a Direct File (part 1 of 4)

2-6

IBM o s s s fam
RPG INPUT SPECIFICATIONS
1 2 75 76 77 78 79 80
Date —————— Punching | Graphic Page @ z‘e’ﬁ:?f'i"mn
Program Instruction Punch
g Record Identification Codes Field Location ::r::zia o
el : :] 3|, |2
) ‘_g:__ " :% E . :-_L', g% i’ Sterling
Line o Filename Ea E s . . . %_; % g Field Name g %E % e }s’z?ﬁo"
,E ;g: E g ‘é Position B e g Position z|a § Position s N gg 3 From To E 3 gg : Plus [Minus| grlank
8 g |2|82 3|5|5 3(5(6 3(55/5|« & § 58| 2
3 4 5|6|7 8 9 1011 1213 1415 1617|1819 20 |21 22 23 24|25|26(27|28 29 30 3132|3334 |35 36 37 38]39|4041|42[43 |44 45 46 47|48 49 50 51]52|53 54 55 56 57 5859 60)61 62|63 64|65 66|67 6869 70|71 72 73 724
o[1 e [R [cA
0|2 1 -
o An OR line with any record 3 6| CUISTING
ol4] [T identifying indicator not used 1q 112| iS|LISMIVHE
ols| 1 elsewhere in the program 13| | 3D CWiSw
ojs| |1 causes unwanted records to 41 | 1614 leinyisiT]
of7| |1 " be bypassed, including blank 68 | 16/9] \CIREDU IT]
ofg| |1 records. 7 75| ILISTORD
ofs] |1 B3| | [#5]2LS|TPIER
ASRE 716 1IZARL T3
U 192] 1 @ 12I4R\3 06D
2] p 1?8 11 3RARLP7
s [t LIt 117 2alRovVi?
el F 2RI THSIPEIR
1fs| |1

Figure 2-4. Consecutive Retrieval From a Direct File (part 2 of 4)

IBM International Business Machines Corporatian Form X21.9093
L Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic Page Progr'ar_n "
Program, Instruction Punch
Resulting
Indicators indicators
Arithmetic
. F Plus Minusl Zero
o« . 2
Line & E; And And Factor 1 Operation Factor 2 Result Field i':r:gm g % HighulzrreEqual Comments
2ls o 5|3 1>21<2|1=2
g gg 5 P 5 g 5 Lookup
“1°=1= z = °1F Table (Factor 2) is
High | Low |Equal
3 4 sl6l7 siopolith213l1a]15/16117118 19 20 21 22 23 24 25 26 27[28 20 30 31 32133 34 35 36 37 38 39 40 41 42]43 44 45 46 47 48)49 50 51[s2)53[54 65|56 57|58 sof60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
of] Je] [B2 THSIPER oM | A T
o2 el | | P2 P Z -ADDIARLITI3 TOTAR | | |7
of3] |¢ P2 @4l | | [TOTAR D 306D ror
ol4] |° 912 P Tor 1 DD vl TOTAR)
ojs| e 2 P TOTAR DD ﬂ)47 TOT|R
ol6 c

Figure 2-4. Consecutive Retrieval From a Direct File (part 3 of 4)

Consecutive Processing of Direct Files 2-7

IBM Internstional Business Machines Corporation Form X21-8090
[Printed in U.S.A.
RPG OUTPUT - FORMAT SPECIFICATIONS
Date o 7576 77 78 79 80
unchi Graphic . A ogram
Program rnnr:c;‘in Pun:h Peg [’A" Identification
E Space] . Skip Output Indicators Edit Codes
o (oo [t [noswn [on | - [x - memone omiog
Line Filename @] Field Name (& | End £ Yes Yes 1 A |J |Y= Date Sign
SH] And _And 2 Positon (1 Yes No 2 |8 |k Field Edit Position
g §§3_ 1 . £|E] No Yes 3 c L |z= zeo
E gg § g g :9'% g g é ;E :é g:;z:,; % No No 4 D |m Suppress
& il 5 @ i Constant or Edit Word
3456789‘0"|2|314151617|B19202122232‘15262f2329303|3233343536373812240‘14243;45‘6‘74&49505152535455555758596051625384556667585970717273'"
ol1] |o|REPORITIL H] | IRiIPH 1P
o2 o o OIF
ols| Jo leWISTIOMER"
ola] [o 1] |' MAME'
2T o 42| |"lelr|7lv, SriATE"
ols| o 56| |'ISAILE N’
ol7] |o b9t |' JAST] ORDER'
sl To gl |"IslLis| [PRIEV] IPIEIR
ols] Jo g I 6£ 7] [}
ol Jo A9 'lTar AiR"
o 1 D2 o4
12| jo ClUS[TNO
13| o C U S (V A M
e CTYSITA
1{s| |o L SMN# 5
~:
P) SITORD|Y g
) LS|ITIPIER|Y 2
° CIRED! |T] 9
o ToTAR V| | 10
0 |
Figure 24. Consecutive Retrieval From a Direct File (part 4 of 4)
Consecutive Updating of a Direct File Example 2

In the preceding example of consecutive retrieval, none of
the fields in CUSTFILE were modified; data was taken from
the disk records and used to produce a report. If, on the
other hand, you want to modify certain data in the disk
records, you must use the update function. If all or most
of the records in the direct file are to be processed, you
may want to update the file consecutively.

Consecutive updating of records in a direct file requires the
same File Description Sheet entries as consecutive updating
of a sequential file. The required entries for updating are
shown in Figure 2-1 (U in column 15 means update). The
file named in columns 7-14 must be a previously created
direct file. Because the file is an update file, it must also
be defined with input and output-format specifications.

2-8

Suppose the direct customer file created in Chapter 1 and
retrieved consecutively in Example 1 is to be updated. At
the end of each sales period, when all reports are completed,
the sales figures for that period must be adjusted. Sales
amounts for the last period (LSTPER, Figure 2-2) are
replaced by the sales amounts from the current period
(THSPER). The field containing the current sales amount
is reset to zero for the accumulation of the next selling
period. The fields containing accounts receivable overdue
amounts will be updated when the monthly accounts re-
ceivable statements are written.

Figure 2-5 shows the coding necessary to consecutively
update CUSTFILE. As an update file, CUSTFILE must be
defined by file description specifications and the fields to
be updated must be described by input and output specif-
ications. Customer records are read, updated, and written
out in the order they physically appear in the direct file.

IBM International Business Machines Corporation Form X21-9092

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS Fresin S

12 75 76 77 78 79 80
Date "
instruction
Program Punch
Control Card Specifications
;]
8| sterling H
3 3
g k3 3
"] b
Core | 2| Core 2|8 |51 {3 |number | 2
Line ° Sizeto | 3| _5 Size to % E 2 § £ § Of Print | & Refer to the specific System Reference Library manual for actual entries.
- l2le S o =
E Compile | S| S| Execute| |2 MBS % S Positions | §
12| 2|=12| 2| 8I2] £|§ 2
€ 3|E 216 2e|S s
5 =|8 FlE B EEHE £
e ol|d al= £|3]
<
3 4 s|6[7 8 9|10f11]12 13 14]15}16[17]18]19|20|21[22]23 24 25]26]27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 50 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
o 4 1] L1 INERRRREERRRNERENENRERENENRERENNEERENERERERERRRNND

File Description Specifications

File Type Mode of Processing File Addition/Unordered
" - Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. . Type of File o
Line Filename Sequence Organization 3 Device Syn?bolic _| Name OfA ;ape. q
- " P Device Wl Label Exit ewin
o File Format or Additional Area E S File
8 ol = | Overfiow Indicator| ¢ z Condition
> g g P 5 = “ore Index ut-ug
€ . L .
5 3la stoting |2 The direct file is described 2 3l [
Y R, as a sequential disk file to
13 61 62 63 64 S5|ﬁ 67|68 69170]71 72|73 74
be updated. u
° cY's TIF|/ : i
0]3| |F
ofa] [F
ols| Ir CETET Tt

Figure 2-5. Consecutive Update of a Direct File (part 1 of 4)

IBM International Business Machines Corporation Form X21-9094
Printed in U.S.A.
RPG INPUT SPECIFICATIONS
1 2 75 76 77 78 719 80
Date .. Pi
e Punching Graphic Page@g rooram
Program Instruction Punch
5 Record Identification Codes i
3 Field Location Field
3 1 2 3 > = < Indicators
- g ” s | %
o n H 2 lga]| & Sterling
Line Filename Z| |58 Bl Z| FieldName | 5 [23| ® Sign
2 Zls| 5 . Azle k4 & (L] & ~|Zero | position
> g 15=2 position || |E&| Position || [E] Position |=| {E|2|%| From To |3 2 22| & frus|m
< HHAE =L Zlo|® Z(ol8(3|2 £ ERE S Blank
£ o S MNH £ (85 2
H 5 (2|58 HEE HEH 3|518l8]2 H HIEHE
3 4 5|67 8 9 1011 12 13 14115 16[17{18]19 20|21 22 23 24|25{26(27]28 29 30 31 35 36 37 38|39|40[41[42]|43 |44 45 46 47|48 49 50 5152|53 54 S5 56 57 58|59 60|61 62|63 64|65 66|67 68|69 70|71 72 73 74
o] {Helols|TIAL LIE 11C2 || 14 ICA
02 1
ola] |1 An OR line with any record 212 R8|2HIsPE
identifying indicator not
ofs} |1 ying incls 4| | 95ALSTIPER
olsl 13 used elsewhere in the program
ARRE causes unwanted (blank)
records to be bypassed.
o N 11l IS I TR I | |
ole| [t Frrrrrerr Tt

Figure 2-5. Consecutive Update of a Direct File (part 2 of 4)

Consecutive Processing of Direct Files 2-9

T

RPG

International Business Machines Corporation

OUTPUT - FORMAT SPECIFICATIONS

Form X21-9090
Printed in U.S.A.

: 12 7576 77 18 79 80
Date i Program
0 Graphic og!
r";‘"'".g " Page @ Identification
Pfog'am nstructio Punch
g
. : T
‘=§ Space| Skip Output Indicators Edit Codes
5 Zero Balances 9 =
3 = Commas | < LE ™ | NoSign [cR [- [X :fm;ye Sterling
_|§ 2 Y - Date Sign
Line Filename ol Field Name [|“jg| End = Yes Yes 1 Alld i
Els And And Sl positon | v Yes No 2 a |k Field Edit Position
8 Slgtel | o 2l& i [No Yes 3 fc|L|z=zem
s Z|8|s|E] s E (5 5 5 31| outp |3 No No 4 DM Suppress
§ g g Sl<| &1 < |2 2 z = E| Record 3
w "lE ul@ x Constant or Edit Word
3 4 5167 8 9 1011 12 13 14} 4617!819202‘2223242576272829303132333435353738E9404|42‘344 5 46 47 48 49 50 51 62 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 74
o 1] loleIsITF(/]2l
oj2| Jo ' Consecutive update of a TH|SPERR 88
oj3| fo disk file is done only at LISITIPIER 45
o141 {° detail time.
olsl lo Prerrrrrrrrtl
Figure 2-5. Consecutive Update of a Direct File (part 3 of 4)
IBM International Business Machines Corporation Form X21-9093
o Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching | Graphic | Page@@ Program
Program Instruction Punch J
Resulting
Indicators Indicators
Arithmetic
- e Plus | Minus | Zero
L 3% And And Factor 1 Operati Factor 2 Result Field Field § E] Gompars Co
B peration SUlt 1€ | ength |1 & [Fioh [Low [Equa mments
=15 o 5[g 1>2f1< 212
e[= E|Z
HEERREREE £ 5[0
Table (Factor 2) is
High | Low |Equal
3 4 5/617 8 9|0||12|J|415|S|7|8'\9202|222324252521282930313733343535TIJRRSW4|42‘344454€4748492_5152535455555753 Wﬂﬂ_s_li‘_‘_slﬁﬂ£597071727374
ofr] e 2 z-A%DrHsFP R S[TPER
ofz2| le \2] -ADD HSPER
o3| |c (1 |

Figure 2-5. Consecutive Update of a Direct File (part 4 of 4)

2-10

Review 2

‘1. What points must you consider when processing a direct file consecutively?

2. What is the difference between coding for retrieval of a direct file consecutively and a sequential file
consecutively?

Consecutive Processing of Direct Files 2-11

Answers to Review 2

2-12

a. There will probably be blank and inactive records to be bypassed.
b. The physical sequence of the file may or may not be meaningful as a logical sequence.
¢. You may encounter synonym records and must take steps to allow for them.

d. The activity of the file for this run will probably determine whether to process randomly or
consecutively.

Those coding routines required to take care of blanks and synonyms must be added. The File
Description and Input Sheets will be identical.

CHAPTER

RANDOM PROCESSING OF DIRECT AND SEQUENTIAL FILES

CHAPTER 3 DESCRIBES:
When random processing is desirable.
Random processing by relative record number.
How to code the RPG II specification sheets to process direct and sequential files
randomly.
BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Code basic RPG II programs lising sequential and indexed files.
Describe random processing.
Describe, in concept, direct file organization.

Define synonym record.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
State the conditions for selecting random processing by relative record number.
Describe, in concept, random processing by relative record number.

Code RPG II specification sheets to randomly retrieve records from direct and
sequential files.

Code RPG II specification sheets to randomly update records in direct and
sequential files.

Random Processing of Direct and Sequential Files 3-1

INTRODUCTION

Note: In a data processing context, the words random and
direct are often used interchangeably. The word random,
in this context, does not have the same meaning as it has
in the term random number, which is a number obtained
by chance. Here, random processing means that data
records are accessed directly in a file, without regard to the
physical or logical sequence of the records and without ac-
cessing other records first.

Sequential files and direct files are designed for different
methods of processing. Records in a sequential file are
normally processed consecutively; whereas records in a
direct file are normally processed randomly. However,
basic similarities exist between the two file organizations.
Both consist of a data area containing only record locations,
and neither uses an index. Both sequential and direct files
can be processed consecutively. In fact, as shown in
Chapter 2, the File Description Sheet entries for consecu-
tive processing are identical for the two files. Because of
the similarity in organization, sequential files, like direct
files, can sometimes be processed randomly.

WHEN TO PROCESS DIRECT AND SEQUENTIAL
FILES RANDOMLY

Direct files are organized for low activity processing. In
low activity processing, a relatively low percentage of
records from a file are processed at one time. For example,
perhaps only 100 records per day out of 5000 are proces-
sed. Efficiency is reduced when you must read all the
records in the file just to process a few, so the file is proc-
essed randomly.

Random processing enables you to process only the records
you want, disregarding all other records. This immediate
access is important when a file is processed on a demand
basis, requiring immediate inquiry and response. Random
processing also enables you to process transactions on either
an ordered or an unordered basis, increasing processing
versatility and eliminating the need for presorting inquiries
and transactions.

32

Considerations

Remember that most advantages of random processing are
available either with direct files or indexed files. A signif-
icant consideration when using direct file organization is
that you must develop relative record numbers. If a simple
method is used that produces few synonyms, direct organ-
ization can have the advantages of speed and space-saving
over indexed organization. In any case, you must provide
the relative record number, handle synonyms, and verify
records yourself. If these functions become complex or
require too much main storage, you might want to consider
consecutive processing or indexed organization.

The opportunities for random processing of sequential disk
files are limited. If the sequential file is in order by control
fields and there are no missing or duplicate records, the
contents of the control fields can be used as relative record
numbers. Thisisa se’condary use, however, since sequential
files are designed for high-activity consecutive processing.

RELATIVE RECORD NUMBERS

Random processing of direct and sequential files is done by
using relative record numbers. A relative record number is
the numeric position of a record in relation to the begin-
ning of the file. A relative record number must be a
positive, whole number.

RANDOM PROCESSING BY RELATIVE RECORD
NUMBER

Random processing of indexed files is accomplished by
using the control field value (record key) to search an index.
If a match is found, the record at the disk location contained
in the index entry can be accessed. The control field value,
therefore, is not related to the actual location of the record
on disk. When processing randomly by relative record num-
ber, however, the relative record number is used by disk
system management to calculate the disk location of the
record. No index area and index search are required, since
the control field value is directly related to the record loca-
tion. Therefore, random processing by relative record
number can be faster than random processing by key of an
indexed file. If a large number of synonyms exist in the
file, the advantage of fewer accessed required to retrieve a
record may be negated by more complicated programming
to handle synonyms and an increase in the average number
of seeks per record due to synonyms (see Synonym Records
in Chapter 1 for ways to handle synonym records).

Random processing by relative record number can be used
to retrieve and update direct and sequential disk files. With
either organization, the file is specified as a chained file to
be processed by the CHAIN operation code. Records can
be processed either in an ordered or an unordered manner.
Processing of records in sequence is usually faster than un-
ordered processing, since less movement of the disk access

mechanism is required. Figure 3-1 shows the steps involved
in random processing of a disk file by relative record num-
ber. In the figure, relative record numbers are obtained for
control fields in the input records; however, they could also
be generated by your program. Random retrieval includes
steps one, two, and three in the figure; random update in-
cludes all five steps.

\
&
o Record is read from 9)
the input file.
N\
4
z)
-
L/
|/
§ » 9 New information is
inserted in the record
_ if update is indicated.
Y
\
\ >
\
AN
\
\
\ \. / \
\
\
\
\\
\ 6 Disk record is
Q Relative record number from \\ retrieved. 9
the input record control field \ Updated disk
is used to chain to the disk file. \ record is written.
\
\
Disk N\ .
File \ /
\
1 2 3 4 5 6 \@ g8 9 10

Figure 3-1. Random Processing by Relative Record Number (Direct or Sequential Disk File)

Random Processing of Direct and Sequential Files 33

CODING FOR RANDOM PROCESSING OF DIRECT
AND SEQUENTIAL FILES

Figure 3-2 shows the basic file description specifications
for random processing by relative record number. The
entries shown apply to both direct and sequential files.

Columns 7-14: These columns must contain the disk
filename.

Column 15: This column contains an / entry for random
retrieval or a U entry for random update. An O entry in
this column with a C'in column 16 defines a chained out-
put file (see How to Create a Direct File in Chapter 1).

Column 16: The Cin this column indicates a chained file
processed randomly by the CHAIN operation code. A
maximum of 15 chained files are allowed per program.

Column 19: Must contain an F.

Columns 20-23: A number which is equal to or a multiple
of the disk record length must be entered in these columns.
This entry affects the size of the input/output area allocated
by RPG II. The maximum block length for disk files in
4096. If you assign a block length which is equal to the
record length, an efficient block length is calculated for
you by RPG II (Figure 3-3). Blocking disk records can
increase the input/output efficiency of your program by
reducing the number of accesses. You must be sure, how-
ever, that you have enough main storage available for your
input/output area.

Columns 24-27: These columns contain the length of the
disk record (1-4096). Remember that random update can-
not change the record length for a file; record length is
fixed when the file is created.

File Description Specifications

Column 28: This column must contain an R for random
processing. '

Columns 40-46: These columns contain the device name,
DISK.

Columns 68-69: These columns give the number of volumes
containing the file. For random processing, two volumes
are allowed on a single drive and four volumes are allowed
on two drives. All volumes must be online.

Columns 71-72: Direct and sequential files can be condi-
tioned by a U1-U8 external indicator.

Block length Input/output | Number of
Record computed by area allocated | records per
length RPG 1l by RPG Il block

32 256 256 8
60 240 512 4
64 256 256 4
80 240 512 3
96 192 512 2
128 256 256 2
256 256 256 1
512 512 512 1

Figure 3-3. Block Length and Size of Input/Qutput Area Computed
by RPG II for Random Processing By Relative Record
Number

File Type Mode of Processing

Length of Key Field or
of Record Address Field

File Designatibn

End of File Record Address Type

Type of File
Organization
“or Additional Area

Line Filename Sequence

File Format

« | Overflow Indicator|
Block
Length

Record
Length

Key Field
Starting
Location

1/0/U/C/D
P/S/C/R/T/D
A/D

Extension Code E/L

7 8 9 101112 1314

8|20 21 22 23]24 25 26 27

S~ IE
B

B
L

File Addition/Unordered

Number of Tracks
for Cylinder Overfiow

Extent Exit’
for DAM

Number of Extents

Name of
Label Exit

Symbolic
Device

Tape

Device Rewind

File
Condition

Core Index

Labels (S, N, or E)

AU

40 41 42 43 44 45 4

15K

Mm|[m |7 [} n]o FormType

o|lafafjw|s]s

olofe|o]|o]w

Note: Shaded columns are not used.
I T T O O O O B A Y |

Figure 3-2. Basic File Description Specifications for Random Processing of Direct and Sequential Files

34

.CHAIN Operation

In direct and sequential files, records to be accessed random-
ly are identified by relative record numbers in CHAIN state-
ments. One record is read for each CHAIN statement
executed. Records identified in CHAIN statements are read
during calculations in the program cycle. Fields from the
records can be used during detail or total calculations. For
example, a record read during detail calculations can be
altered during detail calculations and written out during
detail output. The same applies to total calculations and
total output.

Figure 3-4 shows the entries to be made in a CHAIN state- .
ment.

Columns 7-17: Indicators can be used.
Columns 18-27: Factor 1 entry is either the name of the

field containing the relative record number or the relative
record number itself.

Columns 33-42: Factor 2 entry is the name of the file from
which a record is read.

Columns 54-55: An indicator entered in these columns
will be turned on if the record is not found. This condition
occurs when:

1. The relative record number is zero or negative.

2. The relative record number is greater than the number
of record locations in the file.

If the indicator in columns 54-55 is on, the chained file
cannot be updated. If an indicator is not specified, the
program will halt when a record is not found, displaying a
1U halt code. The program can be restarted by pressing
HALT/RESET on the processing unit. Use of an indicator
in columns 54-55 is recommended; because, if the bypass
option is selected after a 1U halt, the next record may not
be read from the same file. Therefore, the results of the
bypass option may not be predictable.

IBM International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

Form X21-9093
Printed in US.A.

12 75 76 77 78 79 80

Date Punching Graphic

Instruction [o -0

Program.

-0

Indicators

Resulting
Indicators

Arithmetic

_ R [Ptus [Minus] Zero |
Line |g g? And And Factor 1 Operation Factor 2 Result Field ii:r:gth E 2”: Highca:;:vanEqual Comments
.g;:.g".u . . gg 1>2L1<k21=z
2183)3 2 2 °|* [Tabe (?ac::r 20
High | Low |Equal
3455139|D|1|’Z|3|4|516""‘"”"‘"""""‘""‘”“‘"‘JLSQSGO:":H""""“““" ** "7143 44 45 46 47 48 555657555950&&_6_3_&&&&6869707!727374
o[1] |c / Relative record \ |C|#A]] Ny Name of chained nm
of2| [e | number or field) file B
ol3| [e \ name
0]4 [
0}5 [
Z : : " Note: Shaded columns must remain blank; blank columns are variable or optional.
ofg| |c
R E:] [
1|0 c
11 [
112 c
113 c
114 [
1|5 c
[
c
c
c

Figure 3-4. CHAIN Statement for Random Processing by Relative Record Number

Random Processing of Direct and Sequential Files 3-§

Random Retrieval From a Direct File

The entries on the File Description Sheet that are charac-
teristic of random retrieval are shown in the first coding
line on ‘Figure 3-2. Random retrieval is distinguished from
random update by an / in column 15.

The records in the direct file to be retrieved must be further
described on input specifications. On the Input Sheet, a
direct file being retrieved must have an alphabetic sequence
entry (columns 15-16), since sequence checking cannot be
done during random processing.

If the direct file being retrieved contains synonym records,
calculations must be included in the program to test for
synonyms and retrieve the desired record.

Exémple)

Suppose the direct customer file, CUSTFILE, created in
Chapter 1 (How to Create a Direct File) and processed con-
secutively in Chapter 2 is to be retrieved randomly. The
distributor wants to make demand inquiries as necessary
during each day concerning customer sales and account
information. Inquiries are received on cards (Figure 3-5)
containing an 7 in column one followed by the customer
number of the record to be retrieved. These cards are read
from the primary MFCU hopper. Each time an inquiry card
is read, the customer number (CSTMER) is used as the ’
relative record number to chain to CUSTFILE.

The format of the disk records in CUSTFILE is shown in
Figure 3-6.

3-6

If a record is found in CUSTFILE which corresponds to the
number on the inquiry card, a response is printed in the
format shown in Figure 3-7. This response lists pertinent
sales information and the total accounts receivable amount.

The RPG II coding to accomplish the random inquiry
application is shown in Figure 3-8. The RPG II specifica-
tions would be identical if CUSTFILE were a sequential
disk file to be retrieved randomly.

N\
1 2 3 4 5 6 7 8B 9 1011 12 13 %4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Record ID Code

33 1 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

€ 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 61 82 83 84 85 86 BY 68 89 90 9 92 93 94 95 96

7,98 99 §)0 10t 102 103 104 105 106 107 108 109 110 1M1 112 N3 114 NS 196 17 118 N 120 121 22 123 124 125 126 127 128
B B
A A
8 8
4 4
2 2
1 1
B 172 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 B
A A
8 8
4 4
2 2
1 1
B 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 €3 64 B8
A A
8 8
4 4
2 2
1 65 66 67 68 69 70 71 72 73 74 7S 76 77 78 79 80 ©1 82 83 84 85 86 87 86 89 90 91 92 93 94 95 96 1

. 18M 3700 /

Figure 3-5. Inquiry Card Format

(T S T T TS ST

7 & le/ &/ § /7 Feux 4

SS ¢ 8, 9 SSE

Ss1871 & /&S 8/ &L |

O'V Disk

¢ & Record
g § Format

1 1 4 1 2 3 55

Length

AN A A A

ST T T T T T T T T T T T T T T
/ 2 S S / /

& § & & .
/ vg. / $ / ?@‘ / é_ / (Reserved) /

Total length of record = 128 positions

Figure 3-6. Disk Record Format for Direct Customer File, CUSTFILE

Random Processing of Direct and Sequential Files 3-7

8-€

sysonboy Annbuy wiopuey woiy yndinQ 13Ul °L-¢ 3Ty

W i2f21212(2(2(2|2121213§313131313(31313/3|4|4]4|4|4|4l4|4(ala|5|5(5(5|5|5|5[5]|5!5|6|6|6[6!6|6|6[61616|7|7|7|7|7:7|7|7|7 7|8|8(8[8{8|8|8!8(8/8/9(9{9{9(9(9|9
) 112{3]4|5|6(7|8|9|0]1|2]3{4{5|6|7|8{9|0]1|2{3|4|5|6]7|8|9]0}1]2|3|4|5|6|7|8]9|0|1|2|3|4|5]6|7|8]|9|0|1]|2|3|4|5{6|7|8]9|0]1|2|3{4|5|6|7|8|9]|0|1]|2]3]4|5]6|7|B|9|0|1|2|3|4|5[|6]|7|8!9|0]1|2}3]4[5/6
Mﬁ,'! s'rpT ER | ACTIVITY | ISALESMAN | |CREDIT! | LAST ORDER | [HASIT PAY. . 1sLs THI S, PIER SLS [LAST :rERr TolTAL A
2 BEE T ; ' RSN NEDRRREERR R NRE R auaNRuEE SEH BE RSN BN N
DetineX | 3] | XXX X] XXX . XX T IKOOOMCX DK T T DOCGODOAA T2 1 XM .+ | XXXXKX
alCeusTNG). i |(AcCopE) : |(sLSMNA) I(CREDIT) ([LSTORD). _ (caTPay)l [I(THSPERN |1 (LSTIPER). | . (TPITAR)
sl A BN ERENEEE ERER NS S NN SRS SRR FEEE NN RN R A EEEESE BRI R
LR [1 P : I : R : i ! i

CUSTOMER ACTIVITY SALESMAN CREDIT LAST ORDER LAST PAY SLS THIS PER SLS LAST PER TOTAL A/R

3119 A 105 01 4/17/71 4/01/71 360.00 239.50 360.00

6678 RECORD NOT FOUND--INVALID RECORD NUMBER

1703 I 35 - 03 11/19/70 12/01/70 .00 .00 .00
™ e — ‘ e R S

International Business Machines Cotporation Form X21-9092

IBM Printed in US.A.

©
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
12 75 76 77 78 719 80
Date — Punching Graphic Page .ngr.ar.n .
Program Instruction Punch
Control Card Specifications
g Sterling g‘
3
8 B & 2]
Core ||| Core 28] 1518] |3 INumber | €
Line Sizeto | & .<_=> Size to K 2 5, E Els|ofprint | B Refer to the specific System Reference Library manual for actual entries.
&| compite | 5| &] Execute| [215|€ L% £ eositions|3
- efe 2152141312181 @
e gle HEEEE E
g 1 AEEEEHE g
2 3|3 s El8 2
<
3 4 sl6|7 8 9}i0]11]12 13 14]15|16]17}18]19]20] 2122|238 24 2526| 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 56 67 58 59 60 61 62 63 64 65 66 67 63 69 70 71 72 73 74
of] W]1 | | HIREENEEAREEEENERERNENENERERENNRRNENENRNEEE

File Description Specifications

File Type Mode of Processing File Addition/Unordered
N T Length of Key Field or 5 Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
A . Type of File o . Symbolic Name of Tape
Line Filename i Orgonizstion |t Device Device |5| Label Exit Rewind
a File Format or Additional Area § 5 -
. e
§ ole 2 {overflow tndicator € i, Condition
Ol 5 = =
e Sls Block Record s|e Key Fieid | £ s Core iIndex utus
s slal, 3 5 Length Length |€ é =) Starting | X “ 3 g
Location The direct file is defined
3 4 5{6}7 8 9 101112 13 14 |15]16]17|18J19]20 21 22 23}24 25 26 27§28|29 30]|231{32|33 34|35 36 37 38|39]40 41 42 43 44 - . . 39§60 61 62 63 64 65(66(67{68 69]70{71 72|73 74
o[[FIVCIAIRD - ; as a chained input file to
be retrieved randomly.
ofs| |rplusiTle L
ol4l_IFIPRILMT
ois| |f
ole| |f Random processing
ol7| ¢ Chained input file
E
F

Figure 3-8. Random Retrieval from a Direct File (part 1 of 4)

Random Processing of Direct and Sequential Files 3-9

IBM s pomzaes
RPG INPUT SPECIFICATIONS
12 75 76 77 78 79 80
[3}
ate Punching Graphic Page @g :::z?;?cation
Program Instruction Punch
% Record Identification Codes Field Location Fiel.d
g) 2 3 z . 5 Indicators
g, = g 2ls |3
£ P e Sterli
Line Filename z %5 g é 3% Field Name T E% % ser0 Sit:r'lmg
g s I=18] 8 " s . REE . 151813 E < LR - Position
i g ‘Eé 'E Position % g g Position §g E Position ‘z; g E % E rom To 2 g gg ; Plus [Mi o«
: i 25|& HEL 5155 5[5|al8| H 5|88 2
3 4 5167 8 9 1011 1213 1415 16{17{18|19 20 |21 22 23 24|25|26|27]28 29 30 31 35 36 37 38]39|40|41]42|43|44 45 46 47}48 49 50 51|52 (53 54 55 56 57 58|59 60|61 62{63 64|65 66|67 €8)69 70{71 72 73 74
o['] [1]rIMclARD | lwis| | 7] | | 11 €lr l
Z 8] ICISTIMEIR
2| | | 12 ACicloDE]
3| | | 6] eus|Tvo]
2] |S|LIS MmN
of7] |1 _46? CRIED
ofs| |1 7 5| LS| TIORD
ols| |1 3‘1 LIS PA‘I’
el |t 212 | 818) (TIHS|P)
QoaE g5 |L|STIPER
12| |1
Figure 3-8. Random Retrieval from a Direct File (part 2 of 4)
I ional Business Machines C i Form X21-8093
IBM nternational Business Machines Corporation . A
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic Page Progr:!r'n "
Program Instruction Punch
Resulting
Indicators Indicators
Arithmetic
- T T 2 Plus |Minus| Zero
=5 i 2z
Line |4 §; And And Factor 1 Operation Factor 2 Result Field E::;h E, g Highco:; ::msqua' Comments
»335,- 5|5l 1>2(1<2{1=2
glE 2 £l=
5iE3ls 5 5 8l Lookup
“1° == = = °F Table (Factor 2) is
3 4 s{6f7 8|9fiof1112]13]1a]15(16 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
of1] |c o -
2T The customer number from the -
input card is used as the relative -
ol3| |c .
record number to chain to the
Ll A direct file. Indicator 13 will
hd A _ turn on if a record is not found
o8| |¢ Indicator 13 is used to condition in the direct file. R
0)7| Jec subsequent operations. LLLrrtrerrrrtirtid
ofe] le LELELE R Err e RERRRERRRERERAEES

Figure 3-8. Random Retrieval from a Direct File (part 3 of 4)

3-10

Form X21-9090

IBM International Business Machines Corporation
Printed in U.S.A.

RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80

Date N
° Punching Graphic Page @ ngr,a’.“ . I I

Instruction | p,o o

Program
T
. ; ; r
é Space| . Skip Output Indicators Edit Codes
& Commas | 2670 Balances |\ o, ¢R | - | X = Remove 3
= | I 2] 10 Print n Plus Sign Sterling
. | S . g Sign
Line Filename ©|s Field Name & End] Yes Yes 1 A JJ Y= Date Position
NH And And =2l positon [Yes No 2 8| K Field Edit .
KN © £1&] in [No Yes 3 C L |Z= Zeo
Slalelst 2 & |5 5 5 8|Z] ouwpn |3 No No 4+ |po|m Suppress
g % 2l & | < |2 z z 1€l Recora |8
n = w @ : w Constant or Edit Word
a
7 8 9 10 11 12 13 14]15]16]17]18]19 20|21 22|23(24|25)26 [27)|28129{30 31 |32 33 34 35 36 37|38 940414243“4546474349502_5253545556575859806|62536455668768897D7|727374

PRl INTIOWIT] 4 | |11 !
o) O|F

w
»
o
olo|lo |00 |o FormType

N
[+%)

[
E
g (Other headings — see printed report)

N13 means that this line
will not be printed if a

0
record is not found in (. i | T |
the direct file. { (Other fields — see printed report)

oljolo|jo|o|ojo|ojo|O

W When a record is not SITIME]
found in the direct file, 33[[' RECIARD] Wo(T] [FouwD~-t MVIALL D |
this line is printed. 6 |'IRECIARD WUIMBER!

o|lc|o|oloO

Figure 3-8. Random Retrieval from a Direct File (part 4 of 4)

Random Processing of Direct and Sequential Files 3-11

Random Updating of a Direct File

The coding entries on the File Description Sheet that are
characteristic of random update are shown in the second
coding line on Figure 3-2. Random update is distinguished
from random retrieval by a Uin column 15.

The fields to be updated must be further described on both
Input and Output-Format Sheets. If the direct file being
updated contains synonym records, calculations must be
included in the program to test for synonyms and locate
the desired record.

Example 2

Each day, the distributor described in Example 1 prepares
invoices for customer orders. Information from the invoices
is used to update the customer file, CUSTFILE. Since this
information is read from cards (Figure 3-9) in an unordered
manner, a random update job is required. The input cards
contain the date and total amount of the transactions for
each customer. New addresses are also contained on this
card when required. As each card is read, the customer
number (CUSTMR) is used to chain to the direct file. The
amount of the transaction is added to total sales for the
period (THSPER) and to the accounts receivable amount
(ARLT30). The date of the transaction is placed in the
date of last order field (LSTORD) in the customer record.
If an address change is indicated by an X in column 18 of
the input card, the new customer address replaces the old.
If a blank record location is encountered in processing, the
input card is listed on the printer along with the statement

“No master record for the above record.” Similarly, if a
record is not found in CUSTFILE because of an invalid
relative record number (see CHAIN Operation in the pre-
ceding text), the input card is printed, followed by the
statement “Above record not found — invalid record num-
ber.”

CUSTFILE, described as a chained update file, must be
described on both Input and Output-Format Specifications
Sheets, since data is both read from and written on the file.
The specifications are shown in Figure 3-10.

/ 1t 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 S5 56 57 58 59 60 61 62 €3 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 B2 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99100 101 102.103 104 105 106 107 108 109 110 111 12 13 1} N5 16 17 118 19 120 121 122 123 124 125 126 127 128 B
B
A . A
8 DATE [TOCOST 8
4 4
2 2
é 1°2 3 4 5 ‘5 7 8 9 10 1M 12 13 14 15 16 17718 19 20 21 22 23 24 25 26 27 28 29 30 3 32 ;
A A
8 8
NAMADD
4 4
2 2
1 1
8 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5! S2 53 54 55 56 57 58 59 60 61 62 63 64 B
A A
8 8
4 4
2 2
1 65 66 67 63 69 7O 71 72 73 74 75 76 77 78 79 80 81 82 B3 84 85 86 87 88 89 90 91 92 93 94 95 96 1
K 1BM 3700 /

Figure 3-9. Daily Invoicing Card for Updating CUSTFILE

International Business Machines Corporation

IBM

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Form X21-9092
Printed in US.A.

12 75 76 77 78 79 80
Date Punchin_g Graphic Page an Progr.a(n _
Program Instruction Punch —
Control Card Specifications
8] sterling ¢
3 . 2
HEREREE 4
Core] w| Core HERE 81 |8 |Number { 2]
Line . Sizeto | 3| § Size to E ‘—; g g & £l Of Print § Refer to the specific System Reference Library manual for actual entries.
&| Compile | 3 OS Execute 241e é g & § Positions |3
- |2 o|215l5[2[3]3|2 2
£ S5 3i81E{2|818] 5| 2
2 5|3 SiE{ HES z
- <
3 4 51617 8 9 |10{11]12 13 14|15]16 {1718} 19]20]21{22]|23 24 25]26] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 63 70 71 72 73 74|
of [W] HEENEEERERRRNERREREERREERERNRERERRRERERNRNRER
File Description Specifications
File Type Mode of Processing File Addition/Unordered
N N " Length of Key Field or Number of Track
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
i : Type of Fil .
Line Filename Sequence Organization = Device gym_bo“c z ':::T Ef‘ ;‘::n "
- File Format or Additional Area g evice s el Exit -
§ gle 2 [overfiow tndicator| g z Condition
o© 5 2 =
= 3|s Block Record sle Key Field | £ = Core Index ut-Us
5 glaf 1$[Z| tength | Lengh | ¥ls Starting | % 3 2 3
Location
3 4 5[6}7 8 9 101112 13 14 |515171519202'7223742525Z728|29303l32333435353738394041l243l44546474849505|52535&555557585960615263545565676859707|7?7374
o2 [slelalibl i [[rPl | |Fl [19le] | el MFCldl1
o) IFCWISITIFI LEEUIC] | IF| (256 11FR | Dis 1
ol4| [FIPRI MT Ol Fl| 9@ | 9 PRI INTE]
ols| [r [
Figure 3-10. Updating a Direct File Randomly (part 1 of 4)
Busil Machines Ce Form X21-9094
IBM Printed in US.A.
v
RPG INPUT SPECIFICATIONS
1.2 75 76 77 78 79 80
Date [Program
Punching | Graphic Fage aa Identification
Program Instruction Punch
5 Record ldentification Codes i
% Field Location IFr:;Ii:ators
2 1 2 3 2 & §
- 2 " s |
£: @ s 2 |gg| & Sterling
Line Filename 2| |£5 Ele Z| FieldName | 3 |23]| © Sign
g =|g| & 2|3 < § (i) 8 ~ Jzero | position
> =12 Position |~ & Pposition || |E| Pesiion || |&|?|%] From To] = |22] & [Puus M
= 3lsle Z|o|t Zlo|3 HEEEE £ S15E| = Blank
E HE MENEH MN FRE B g £ |58 =
i3 2|8f & 215(6 2156 2|5]615]a a ER R
34587B910“|2‘|3|4I516|7|8|9102|222324252627282930:"373334353637383940414243l4454647484950515153545556575859606'52636465565768697071717374
ot |*iclAIRD /M | WS | 1L 1|
of2| |1 2 5] CUSTMR
of3| |1 11 D TE|
of+] |1 1 17 2To/Clo ST
ofs| |1 13| | LR| INEWADR
ofs] |1 19 | 73] MAMADD
of7| |1 1) | 96| CAIRD
o8| |"ICWISITIAI ILEWVS
ofs| |1 3| 6| COSTWO
o] |1 2| | [RIg|ATH|SIPIE
ML 9o 11@1 ZAJ[R LT3
2l |2 []

Figure 3-10. Updating a Direct File Randdmly (part 2 of 4)

Random Processing of Direct and Sequential Files 3-13

IBM International Business Machines Corporation Form X21-9093
L Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS ‘
12 75 76 77 78 79 80
Date nchi Graphic H Program
Program Punch
- R;sulting
Indicators Indicators
Arithmetic
- e Plus [Minus | Zero
Line 2 E; And And Factor 1 Operation Factor 2 Result Field Zﬂ;h 5 Eg' Highcol_n;:m&ual Comments
|2 g g§1>zl1<zL=z
E gi § E g E ?E Lookup
Table (Factor 2) is
High | Low [Equat
3 4 s1617 8]9[10]11112]13/14[15[16{17{18 19 20 21 22 23 24 25 26 27|28 29 30 31 32|33 34 35 36 37 38 39 40 41 42}43 44 45 46 47 48{49 50 51 52|53 &_ﬁ!ﬁﬁﬁﬁs SUA_?GGEiEE_E_‘IE_SQ 70 71 72 73 74
ofi] Je cluisiT] CHAlINClUSITIA(LTE 13] f
o2 fef | | WAMII3 | | IClUISITIMO CloMP_|" 8| il
o2 e 1OWI1I3IMIATHISIPIE 41D TIOC|0/SIT] THSIPER
ofa] [e 18N13WI1HARILIT3 TIoCoiSIT] LT3
| [[1AM1BA 14 Eu,{An comP| ||’ 15|
olel e CTTTTTT
Figure 3-10. Updating a Direct File Randomly (part 3 of 4)
IBM Internstiona! Business Machines Corporation ::'"':“;‘:ﬁ
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80
Punchin, Page e
proaram Instrucl:m P - @ Identification
% Space| Skip Output Indicators Edit Codes
i ero Balant
2 S Commas | Z loBPrlimcs NoSign [CR | - | X = g::s";';" 2:;1:“"9
Line Filename g &f A Field Name S5 ion;{m" & Yo ves Tlay Y e e Position
g S| &}, ° 21& i 2 No Yes 3 C L |Z=2r
= Zlajsle) s & s = - 1| outour |3 No No 4 o m Suppress
E glelal<] 8] < |2 2 2 z|E| Recors |3
2 - § Cla l Constant or Edit Word
3 4 5|6|7 8 9 101112 13 14|15|16]17}18]19 20f21 22]23(2425{26 [27{28|29(30[31 |32 33 34 35 36 37|38 Wl|424334546474849505|525.’!545556575859606|62636455666763697071727374
of1| lole|ulS[TIFI LIEID 1AN L3N L
ol2[|o | DAT| 5]
ols| Jo 18IV 1131141
o4 |° AWND 15
ols| [o WA 6]
olei [oIPIRIIINIT, 1] 19 1113
°7] |o DR vI13 L4
ofs| Jo I CAIRD 76
ofs| |° D | A 17 13
10| |o 2.4 |' AIBolVE| R ECORD WolTl FlaunD-|-|'
1] o 4ol |'|/IMVALID| RECARD WY MBEIR'
1]2] o D | 12 ML3| 114
2 o ‘Wo_#ials RIECORD _FIOR [TIHE|
1e] [o 'HBIVE Co|RD'
1|5 o
o
o
o
o
4]

Figure 3-10. Updating a Direct File Randomly (part 4 of 4)

3-14

1. What is a relative record number?

Review 3

2. How is the relative record number used to access a record randomly?

3. Code a program to update a direct file randomly:

Problem Description

ITEM
CARD
Y
PRINTER SYSTEM/3
Disk Record
Positions Contents
1-2 Code =20
3-5 Product number
6-25 Description
26-32 Price (2 decimal positions)
32-38 Quantity on hand
39 Activity code = A
Card Record
| Columns Contents
1-2 Code =10
35 Part number
6-11 Customer number
12-16 Quantity ordered

MASTER

DISK

Update the disk file quantity on hand by subtracting the quantity ordered on the item card. If the
quantity on hand is zero or negative, print the item number, description, order quantity, quantity on

hand, and the message, “out of stock™.

Random Processing of Direct and Sequential Files 3-15

Answers to Review 3

1. Arelative record number is a value representing the numeric position of a record in a file relative to
the beginning of the file. A relative record number must be a positive, whole number.

2. The correct relative record number for the desired record must be supplied by the programmer, either
as an input variable, a derived variable or a constant. This value is converted automatically to the
disk address of the desired record. The disk address is used to access the required record.

3. See coding sheets (Figure 3-11).

IBM International Business Machines Corporation Form X21-9092
Printed in U.S.A.
RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
. 12 75 76 77 73 79 80
Date .. N
e Punching Graphic Page En Prog(atn .
Instruction P
Program . unch
Pr
Control Card Specifications
r
g Sterling §
3
5 g
&l & b k4
Core | a| Core 2121 1= 18] [3]Number | €
Line Sizeto | 2|6} Sizeto 2[2| 81218 1 €| 5ot Print |2 Refer to the specific System Reference Library manual for actual entries.
§ Compile é g Execute § Fl" ﬁ-.: <& £ ﬁ Positions | §
= 2 1513|133l 2
E B2 HEEHEEHEAHE H
5 o|8 SlLisl=lol) 218 £
04 S|3 8l= E|& H
. <
3 4 s|6]7 8 9 |0]11]12 13 1af15}16|17|18]|19j20{ 21]22]23 24 25]26| 27 28 20 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56_67 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
oft[o[[i EREEREERENEEREN RN RN AN NENREENEENRENENERENEREEES
File Description Specifications
File Type Mode of Processing File Addition/Unordered
N . Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. Type of File . i Tape
Line Filename Sequence Organization 5' Device Sv"TbOIIC I Name Of, Rewind
- L @ Device W1 Label Exit
o File Format or Additional Area g s File
g olE Z [overtiow Indicator] = A Condition
Sl 5 L 12} ¥
" 3[g| [o].]| Box | Recore sl Key Fietd | 2 2 Core Index | e
H 2lu[R)F| Lnen | Lewn (S| (]S | Surine (3 3 g 3
3 4 s|e|7 8 o 1011 12 13 14 |1slis|17)18]10}20 21 22 23]24 25 26 27| 28}20 30|31)32[a3 3435 26 37 38]39]40 41 42 43 44 45 46|47 48 49 50 51 szsa{sassss 57 58 59|60 61 62 63 64 65]6667]68 697011 72|73 74
T VT] | Julel | IFL R | BAIR oli s L
o] |FICAIRD|/ 1o | IF | 96 MFIClU
o4| |FIARIIMT] O Fl| 26l | 7 PRINTE]
olsi |F
o6 F
o|7{ |F
3
F

Figure 3-11. Updating a Direct Inventory File (part 1 of 4)

3-16

IBM International Business Machines Corporation :::‘T.:f; :0&9:
RPG INPUT SPECIFICATIONS
12 75 76 77 78 79 80
oate ————— Punciing | Graptic el
Program Instruction Punch
- Tdentificath -
g Record Identification Codes Field Location :::li:aw,s
: : : . g \ al, | £
£: @ H 2 la g 2 Sterling
Line | Filename N 5 Ele % Field Name 3 EE ° zer0 Sign
s 18] 2 | position || {5] posion || || positon |=| |2[2[E]| From To [5 3 l2%| & |pus mnser | Foste
p HEN A Zlo|} ERHE £ B 25| S Blank
€ 2 = 5 = s F sl3 8 g ls2l ®
: 2(3(2 5|53 2(5(5 HEHHA & 5|35 &
3 4 5)6|7 8 9 1011 12 13 1415 1617|1819 20|21 22 23 24|25|26|27] 28 29 30 31{32|33|34]35 36 37 33|39]|40[41]42]43|44 45 46 47|48 49 50 61]52|53 54 65 56 57 58|59 60|61 62|63 64|65 66{67 68|69 70{71 72 73 74
oft] [riclaiRiDi|N | M| | @la] | | 2] felal | | [2 C
olz[1 3 5 [PARRIT VO
o3| |1 el | 1111 CUiS[TIVO
of¢] |1 12| | [16léqITYlo|RD
ofs| [t IMVTY | | Wis! | @il |] 1] iela] |} 2] e
ofs| 1 3 51 IPAIRIT]
of7] |1 2.5] SiC
ofs| |1 2 2|AR| 11C
ojo] |1 33| | B ulie,
1lof [1
Figure 3-11. Updating a Direct Inventory File (part 2 of 4)
International Busii i I i Form X21-9093
IBM International Business Machines Carporation iy
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date _ Punching Graphic Page ng'?[“ .
Program Instruction Punch
Resulting
Indicators Indicators
Arithmetic
- 2 Plus {Minus | Zero
x N s
Line 1g gz And And Factor 1 Operation Factor 2 Result Field ileer::th 3 Eg HighCo': ::"Equal Comments
iéé §|3[1>2f1<2|1-2
HH 3 5 “ 5 KB Lookup
£18=)2 = =)™ [Fable tFacwor 2
High | Low |Equal
3 4 5l6]7 8 9|0|||2|3|415|S|7|ﬂ19202l222324252542_32930313233343536373839404143!4344A546474849505'52532_5555575869|Sn_|l222_i§_16869707|727374
o [{e T8l PalRTwO | | | lcklal Wi wviTH A1
o2 [T HY Gofrol| |EMD] | |. Reelorp| Vo] |EMD
oJ3 J¢ PARTING CloMP |PARIT HIZH 2,
ofef e GoTo| [EMD WIRONIG! IRIECO|RT
°)8| |¢ A TYo suiB_| RITIYi0IRD QTIYIOH D404
ofs] e ENVD TAG]
of7| |c ,
ofs| |c
ole| |c
1]o| |c
1[1] |c
12 |c

Figure 3-11. Updating a Direct Inventory File (part 3 of 4)

Random Processing of Direct and Sequential Files 3-17

IBM Internationsl Business Machines Corporation Form X21-9090

Printed in U.S.A.
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80

Date —
Instruction

Program Punch

i
N ; r
;g_ Space| Skip Output Indicators Edit Codes
]
Zero Balances " - Ix R
2 I l = Commas 10 Print No Sign | CR - PI:':;':" Sterling
_|§ . 1 g Sign
Line Filename wlg Field Name z| Emd E Yes Yes 1 A | 3 |Y= Date i
HE And And 2l positon [Yes No 2 | a|x Field Edit Position
g S|8[,[[o £|El i o No Yes 3 [c|L|z=2erm
= Zialsisl s | & {+ = P 3l<l oupr |3 No No 2 b Im Suppress
£ glsalz| 2)% |2] 2 =¥ 3
G >| < £|&] Record |8
I [2 ul & 1 Constant or Edit Word
a
3 4 5 7 8 9 101112 13 14|15|16}17}18}19 2021 22]23|24]25]|26 |27}28}2930{31}32 33 34 35 36 37|38 {39 |40 41 42 43|44)45 46 47 48 49 50 51 52 53 654 55 56 57 58 59 60 61 62 63 64 65 66 67 638 69 70|71 72 73 74
o1| Jo|PRII IV D P2 |BHNHIL
02 ANID NIHI
ofs P NO 5]
ola ? ¢

o
C
ORDJ
(o,

[GI=3%)

=
o|lofol0o]|]O0}O0|O0|O0/O0|O|O |o

Figure 3-11. Updating a Direct Inventory File (part 4 of 4)

3-18

CHAPTER 4
SORTING A FILE TO PRODUCE AN ADDROUT FILE

CHAPTER 4 DESCRIBES:
ADDROUT sort and its output.
Sequence specifications and OCL statements required for the ADDROUT sort.

How to determine storage and file sizes for the ADDROUT sort.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Describe tag-along sort.
Code the Sequence Specifications to execute a tag-along sort.

Describe the functions of the keyword parameters on the FILE statement.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Describe output of an ADDROUT sort and compare it to the output of a tag-along
sort.

State the advantages of using the ADDROUT sort over the tag-along sort.
List the sequence specifications required by the Disk Sort program.
List the three files used by the Disk Sort program to put out an ADDROUT file.

Calculate storage and file sizes so your requiréments do not exceed the amount of
main storage and disk storage you have.

Code sequence specifications and OCL statements to execute the Disk Sort program.

Sorting a File to Produce an ADDROUT File 4-1

INTRODUCTION

The Disk Sort program performs either of two jobs:
e A tag-along sort that creates a sorted sequential file.

e An ADDROUT sort that creates a sorted record-address
file.

The two types of sort differ in output. A tag-along sort
produces output records that retain the control fields and
the data, only the data, or only the control field:

RECORD 1 RECORD 2
control control
field data field data‘
RECORD 1 RECORD 2
data data
RECORD 1 RECORD 2
control field control field

An ADDROUT sort produces output records that contain
the relative record numbers of the sorted records. A relative
record number indicates to disk system management the
relative position (first, second, twenty-second) of a record
in a file. The relative record number is a binary number
contained in a 3-byte field. The disk file containing relative
record numbers is known as an ADDROUT file.

The ADDROUT file can then be used as input (in the form
of a record-address file) to process the source file in an
RPG II program.

By sorting a file in several sequences based on different con-
trol fields in each record of the file, the file can be used to
create several ADDROUT files. For example, you have a
transaction file in order by stock number. By performing
two ADDROUT sorts on the transaction file, you could
have one ADDROUT file sequenced by customer number
and another by invoice number. Consequently, the trans-
action file can be processed in several sequences: stock
number, customer number, or invoice number.

INPUT AND OUTPUT FOR ADDROUT SORT

Note: The circled numbers in the following text relate to
the circled numbers in the Figure 4-1.

Instructions for sorting a file are coded on Sequence Spec-
ifications sheets . Sequence specifications are comprised
of three types of information: header, record type, and
control field.

e Header specifications identify the type of sort you want
the program to perform.

e Record type specifications identify input records you
want the program to use.

o Control field specifications identify the input record
fields (control fields) you want the program to use in
sorting output records.

The sort program then processes input, work, and output
files according to the specifications.

The input file contains the records you want sorted.
The program sorts the control fields and the relative record
numbers of the input records to be sorted according to the
control fields that you specify are to determine the sequence
of the output. There are no size limitations on an input

file: it can be a multi-volume file.

The work ﬁle@ contains the control fields and relative
record numbers of the records that you select to be sorted
from the input file. The Disk Sort program uses the work
file space for sorting the relative record numbers in the
order you specify before writing them out on the output
file. A work file can be on the same disk as the input file
if there is enough room. If the space on the disk you are
using is limited, the work file can be on any other disk.
You must allow enough space for the work file. Work
records are used internally by the program and are not
necessarily in their final form. For an ADDROUT sort,
work records take the following form:

control field | relative record number

The control field in a work record is that field you spec-
ified as the control field on the Sequence sheet for a cor-
responding input record.

The output file @ contains only a 3-byte relative record
number for each of the sorted input records.

o Header Specifications
® Record Type Specifications
o Field Specifications

O

Sequence
Sequential Specification
Indexed or
-Direct File —

O ©

Disk
Sort
Disk Program
Input
File
N———" Y @
Sorted
Disk
Qutput
File
ADDROUT Sort Output:
Relative Relative

Record Number Record Number

Figure 4-1. Summary of Input and Output for ADDROUT Sort

Sorting a File to Produce an ADDROUT File 4-3

File Placement

Records being sorted from the disk input files must be
copied to the disk work file. Therefore, disk access
mechanism movement between the input file and the
work file should be minimized.

Records are sorted in the work file. When you must make
the work file multi-volume on the same drive, the start-
ing track location on each volume should be approxi-
mately the same. By doing this, minimum disk access
mechanism movement on the work file is maintained.

o The work file is copied to the disk output file. Disk
access mechanism movement between the work and
output files should be minimized.

o The placement of the input, work, and output files are
inter-related.

Figure 4-2 shows the most effective placement of files for
various disk drive configurations.

One disk, one disk drive

|
I l Input | Work Outputl | Rt
| | J
or
) 1
Output | Work Input | Rt
|
Three disks, two disk drives
!
Drive 1 Work | R1
[]
1
Input J' R2
Drive 2 |
Qutput I F2
]

This figure illustrates placement of input, work, and output files
on disk. Efficiency ranges from minimum to maximum (A-D).

Two disks, one disk drive
|
Work Input I R1
]
|
Output | Input I F1
]
i
Four disks, two disk drives -
|
Input l R1
1
Drive 1 i
Output ' F1
|
I
Work : R2
Drive 2 '
Work l F2
]

Figure 4-2. Placement of Files on Disk Drives

44

DETERMINING STORAGE AND FILE SIZES

Before you run a Disk Sort program, you should determine
the amount of main storage available. For optimum per-
formance, the Disk Sort program requires at least 9K bytes
of main storage (K=1024). It will run in as little as 5K main
storage, but takes approximately twice as long. To deter-
mine how much main storage is available to the Disk Sort
program, subtract the supervisor size from your total
amount of main storage.

The remainder is the amount in which you can execute the
program. The remainder is also used to determine the work
file size factor that is used to calculate the size of the work
file.

You must then calculate file sizes so that your files will
not be too large for the amount of disk storage available.
You can use the following formulas to determine file sizes
in number of tracks:

e Input File — Multiply the number of input records by
the length of the input records. Divide by 6144.

e Work File — Multiply the number of work records by
the length of the work records. Divide by 6144. Mul-
tiply the answer by the work file size factor (Figure 4-3).

Note: The number of work records is equal to the num-
ber of records selected for sorting. If you have an 8,000
record file and all the records are to be sorted, the num-
bher of work records is 8,000 also. The length of the work
record will be the sum of the control fields plus three.

o Output File — Multiply the number of work records by

three. Divide by 6144.

Note: In an ADDROUT sort, the length of the output
record is always three bytes, since the relative record
number is three bytes long.

Storage Size Available Maximum Work File Size Factor
for ADDROUT Sort
5K 1.52
8K 1.17
9K 1.15
12K 1.09
20K 1.07
28K 1.07

Note: This is the maximum factor. When the Disk Sort
program is run, an actual factor will be printed. You can
then re-calculate your file size using this factor.

Figure 4-3. Work File Size Factor for ADDROUT Sort

Sorting a File to Produce an ADDROUT File 4-5

If your calculations result in an uneven number, always
round the figure to the next higher number of tracks.
Figure 44 illustrates the calculation of file sizes for both
an ADDROUT and tag-along sort. This illustration assumes
that tag-along sorts the entire record. The input files for

both sorts are 66 tracks in length. Notice that the work and
output files for the tag-along sort occupy 73 tracks, while

“these files occupy only four tracks for the ADDROUT sort.

Since the size of the files for the ADDROUT sort are smal-
ler, ADDROUT sort will take less time to sort the file.

Assume these values for this example:

Main storage for Disk Sort = 8192 bytes

Number of input records = 2000

Number of work records = 1000 (half are included)
Input record length = 200 bytes

Work size file factor = 1.17

Tag-along sort:

Work record length = 210 bytes
(control field length = 10)

Output record-length = 200 bytes
(drop control field)

ADDROUT Sort:

Work record length = 13 bytes
(control field length = 13)

Output record length = 3 bytes

Input 2000 x 200\ =65.1 2000 x 200\ =65.1
File T 6144 6144

66 tracks 66 tracks
Work 1000 x 210} x 1.17 = 39.99 1000x 13} x1.17=25
File T 6144 6144

40 tracks 3 tracks
Output 1000 x 200\ = 32.6 1000x 3) =049
File T 6144 6144

33 tracks 1 track

Total tracks used = 139 tracks

Total tracks used = 70 tracks

Figure 4-4. Example of Calculating File Sizes for SORTR and SORTA

4-6

CODING SEQUENCE SPECIFICATIONS e Do not include output record length in columns 29-32
on the header specification, because it is always three

Sequence specifications for an ADDROUT sort are similar bytes.

to specifications for a tag-along sort.

There are two exceptions for an ADDROUT sort: Figure 4-5 is a column summary of the sequence specifica-
tions. If you need further explanation of column-by-column
o Code SORTA in columns 7-11 on the header specifica- entries, refer to the IBM System/3 Disk System Disk Sort

tion to identify an ADDROUT sort is to be performed. Reference Manual, SC21-7522.

5 N N Form X21-9089
IBM Business Printed in US.A.
¢ SEQUENCE SPECIFICATIONS vue [||
Header i 2
Line Job MATCH [2} SORTR
@ g
I\SAOE’;I}E Longest T?tlal g Stacker Select | | 2 s
Control Field | < S13I5)8] output Reserved Job Description
Nomber MATCH of any Record .%. =15|2[S] recora
SELECT Type HA R EBEFHEEE
8 K] 2[El g 3{ Length
2 SORTA ‘gummuoozﬁé;
SORTR z{g|=|o
3 4 s]6]7 8 9 10 11 12]13 14 15 16 17 |18 19|20 {21 |22]|23]24)25 |26 |27 |28 |29 30 31 32[33 34 35 36 37 38 39)a0 a1 42 43 44 45 45 47 43 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 N 72
oJofofn) ENRERNENNEREERENERNNEEENENREEREERRENE
Record Type
Line Bl Factor 1 Rel. Factor 2 {Field or Constant) Comments
< ! €Q
MER NE - - 1
JHRi o Constr
Number MEEED GT 1 Record |
HEN 2 Location LE Location] Name]
Fldisla, e ol
' From To [From To |' |
34 5 9 110 11 12[13 14 15 16|17 18 }19}20 21 22 23)24 25 26 27128 29 30 31 32 33 34 35 36 37 38 3940 41 42 43 44 45 456 47|48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72|

‘3
: Consider specifications for the shaded columns:
Control Field and Data Field . .
Line Forced —(1) Identify the job as an ADDROUT sort job
§ .
8 gy FTTT~" - Select input records by comparing the contents
Number | |S HHE caa | - of afield against a constant
N % o Location T % fg: Name 1
s|&[8 8|55 . . "
= |=o From I 1 " 3) Select input records by comparing two fields
3 4 5(6{7{8§9 10 11 12{13 14 15 16{17{18[13 2 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 33]40 41 42 43 44 45 .

in the records

IS
=

I Describe normal control fields

[Describe opposite control fields

1
$
e <

12 F l/\
NAREC :\‘3_/ Describe forced control fields
el I NN NN EEE]

Figure 4-5. Column Summary (ADDROUT Sort)

Sorting a File to Produce an ADDROUT File 4-7

OCL STATEMENTS

In order for the Disk Sort program to do the job you spec-
ify, you must use certain OCL statements. Figure 4-6
explains these statements.

Parameter summaries for all OCL control statements are
explained in the IBM System/3 Disk System Operation

Control Language and Disk Utilities Reference Manual,
GC21-7512.

OCL statements and sequence specifications can be stored
in the source library and loaded into main storage. Chapter
8, Storing Programs and-Procedures on Disk, describes how
to store programs and procedures in a source library.

1 4 12 16 20 24 28 32 36 40 44 48 52 56 60 6¢
/1§
/\/| ILIOAD
ML K=ol UM TR
[/ FIL
/) FiIL 1
1
// LOAD $DSORT -- This statement tells disk system management to load the disk sort program from the
fixed disk. $DSORT is the IBM name for the Disk Sort program. F1 is a fixed disk.
/l FILE -- As you know, every file used in a program must be defined by a // FILE statement.
For a disk sort job, you must always define three files: an input file, a work file, and
an output file, The input file is the file you want sorted. The work file is space on the
disk that the program uses to do the sort job. The output file is the new file created
from the input file as a result of the sort job.
The keyword parameters for NAME are INPUT, WORK, and OUTPUT. These three
words are predetermined by IBM. For the program to use a file in one of these three
ways, you must correctly use these three words.
// RUN -- A RUN statement is always the last OCL statement for a job.

Figure 4-6. OCL Statements for a Disk Sort Job

48

EXAMPLE: ADDROUT SORT

You have a customer master file containing:
e Customer number and addresses.

e Salesman number.

® Accounts receivable amount.

The file is an indexed file processed by customer number
throughout the month for invoicing and at the end of every
month for customer statements. Along with the monthly
statements, the sales department wants the accounts re-
ceivable for customers owing more than $2500.00 to be
printed by customer number within salesman number. This
informs each salesman which of his customers have large
accounts receivable outstanding.

In order to do this, records of those customers who owe
more than $2500.00 must be sorted according to salesman
number. Because there is not enough disk space for a tag-
along sort, an ADDROUT sort is used.

Figure 4-7 is a Sequence Specification Sheet for this sort.

'SORTA in columns 7-11 on the header specification indi-

cates that the Disk Sort program is to perform an ADDROUT
sort. The sum of lengths of the control fields is nine. (Sales-
man number is three positions long and the customer num-
ber is six positions long.)

Because only specific customer records are to be included
in the sort, record type specifications must be coded. Iin
column 6 indicates that only those customer records with

a balance of more than $2500 are to be included in the
sort. (Positions 95 through 101 of the input record contain
the amount owed to the company.)

The field specifications indicate that two input record fields
are to be used as control fields: salesman number (SALNGC)
in positions 102 through 104 of the input record, and cus-
tomer number (CUSTNO) in positions 1 through 6.

The Nin column 7 of the field specification and the 4 in
column 18 of the header specification indicate that the
control fields are to be sorted in normal ascending sequence.

Form X21-8089
IBM Business Machines Ct i Printed in US.A,
¢ SEQUENCE SPECIFICATIONS Page
Header)
Line Job MATCH g SORTR -
a o
SORT Longest Total |3 al Ie
. Stacker Select ||
MERGE Control Field (& © Z 3l& '% Output Reserved Job Description
Number MATCH of any Record | & S[S|Z[S] Recora
o| SELECT Type SlslsfplelstP|8IE|2| 2| Lengn
5 gg: gummuoozgggos
<
3456789|0|||2|3|4|5|6|7|8|92OZ|222324252627282930313233343535373339404147‘3“‘54647!84950515253545556575859605'62635‘6566676889707!72
ololo]x[SORTIN [I | | 19 HNEEEENEEEENEENE NN RERERERRERRNEEEERENEERER
Record Type
Line s Factor 1 Rel. Factor 2 (Field or Constant} Comments
gl [Ea
5{-| 8! e | L e m
S 2 2lar L'E Constant 1
Number [=] 215 5 eor| [T~~~ ~~-~ 1 Record !
HHNE Location LE Lacation 1 Name]
Fl3810]a, e |©
From To & From T | 1
3 4 56789'10|||2|3|4|5|SI7|8|92021222324252627'2829303‘32333‘3536373839404‘4243“454647'4849505(5253545555575359506|5253646566576859707|72
> T T
1
ot 95 1210 YA \ 1
0|2 | |
ofs 1 '
T
0|4 1 |
T T
ols 1 \
|]
o8 1 1
Control Field and Data Field
Line Forced Comments
]
P stegt = =- =
£ HHE !
Number | |8 e Field 1
z =] Location e é E Name |
elz[8 i
[P b From To zl1al3 |
3 45 578910"|2|3|4‘5|517|B19207|22132425757728?9303|323334353637383940“42434445"547484950515253545555575359606!62636455%57686970”72
of7] [F 102 104 SS L :
ofe| [¢ 1 a ST
ofs] [¢ FTTT T

‘Figure 4-7. Sequence Specifications to Sort Customer Records Owing More than $2,500.00

Sorting a File to Produce an ADDROUT File 4-9

4-10

Review 4

What output is created by the tag-along sort? How is this output used in an RPG II program?
What output is created by the ADDROUT sort?

What disk areas are required by the sort program?

Calculate the total disk space requirements for the following sort using ADDROUT sort:

e 2000 records.

e 100 bytes per record.

e 10 byte control field.

o 9K bytes of storage available for the Disk Sort program.

What are the primary reasons for choosing the ADDROUT sort over the tag-along sort?

Fill out the sort specification sheets for the following job, using the ADDROUT sort:

Sort the receipt records in an inventory transaction file into purchase order number sequence to be
used for purging a file of outstanding purchase orders. Receipts all have a 1 in position 96. Other

transactions in the file have codes other than I in position 96. The purchase order number is in
positions 13-18 of the records.

Sorting a File to Produce an ADDROUT File 4-11

Answers to Review 4

1. The output of the tag-along sort is a consecutive data file. It is processed by an RPG II program as
any other consecutive file would be processed.
2. The output of the ADDROUT sort is a file of the relative record numbers of records in the input
file. The relative record numbers are in the sequence in which you wish to process the input file.
3. The disk areas required are: the input file, a work area, and an output area.
4. 2000 records X 100 bytes per record = 200,000 bytes.
200,000 bytes + 6144 = 32.55 or 33 tracks for the input file.
2,000 records X 13 bytes (3 byte relative record numbers, 10 byte control field) = 26,000 bytes
work records.
26,000 bytes X 1.15 file size factor = 29,900 bytes
29,900 bytes <+ 6144 = 4.87 or 5 tracks for the work file.
2,000 records X 3 byte relative record numbers = 6,000 bytes.
6,000 bytes + 6144 = .98 or 1 track for the output file.
5. The primary reasons for choosing ADDROUT sort over tag-along sort should be disk storage
capacity and less time to sort the file.
6. See specification sheet.
Form X21.9089
IBM International Business Machines Corporation Printed in U.S.A,
j SEQUENCE SPECIFICATIONS pe []
Header 17
Line Job R MATCH g SORTR
1al E €
;oE'l?(-:E (‘;::?:I‘ Ii‘:ld‘ 3 Stacker Select 3 -§ Output Reserved Job Description
Number MATCH of any Record | & 2|Z|o] Recors
N SELECT Type §ls|s[r{r]s EI21E] Length
2 SORTA Zlumm]uio B
3 4 51617 GSOQR.I;gﬂ 1213 14 15 16 17 |18]19 |20 |21 {2223 7475;272829303' 32]33 34 35 36 37 38 39[40 41 42 43 44 45 46 47 48 43 SO 51 52 53 54 55 56 57 58 59 60 61 62 63 64 €5 66 67 68 69 70 M 72
ofo]o]u TTTITTTTT T ESTIoN 6 REVIEW [T TTTTTTTT]
Record Type
Line s Factor 1 Rel. Factor 2 (Field or Constant) Comments
g [£Q
I g 2 ,;;: ':f Constant ————=——— o~ - T 7% 1
Number [S] 2 % b: etr{F-"=>"7"=- 1 Record 1
HHE E. Location LE Location ' Name |
“1°1° 21 From To GE s From To } |
3456739"0||I2I314|5|6I7|819202|22232‘252521'25293031323334353637383940414243“0546‘7'4!‘9505‘5253545556515859505‘62636‘5565676869701!72
LTI Q6EIQCl1 : JINCILUIDE] ONILY! REICELPT
02 : :
03 | !
ofa) 1
0|5 : :
ofs ! !
Control Field and Data Field
Line Forced Comments
B
a sigf . =" -
< HE B '
Number g g E g Field 1
HE Location BlE| € Hama]
é ég From To 3 § é |
3 4 5 6789IOI!ﬂl3|4lS!S"!BI9202|222324252627282930313233343536373839‘0"42434445'46474849505!52535455555758595061526364856667655970"72
o] ¢ 13111 ‘PURCHASIE
olal [¢l | . I

CHAPTER

PROCESSING DISK FILES BY RECORD ADDRESS FILES

CHAPTER 5 DESCRIBES:
Random processing by ADDROUT files,
Considerations when processing by ADDROUT files.
RPG II specifications to process by ADDROUT files.
Processing indexed files sequentially within limits.
How to create a record address file containing record key limits.

RPG II specifications to process sequentially within limits.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:
How a file is sorted to produce an ADDROUT file.
“Indexed file organization (record keys).
Primary files, secondary files, and the end-of-file condition.
Alphameric and numeric character sets.

The purpose of using RPG II File Description and Extension Sheets.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Describe ADDROUT files.
‘Describe how to process a file by an ADDROUT file.
List the considerations when processing by ADDROUT files.
Code RPG II specifications to process a file using an ADDROUT file.
Describe record address files containing record key limits.
Describe how to process an indexed file sequentially within limits.
Code RPG II specifications to process an indexed file sequentially within limits.

List the rules for creating record address files containing record key limits.

Processing Disk Files by Record Address Files 5-1

INTRODUCTION

Record address files are input files that indicate which
records are to be read from disk files and the order in
which the records are to be read. There are two types of
. record address files:

o Files containing relative record numbers.

o Files containing record-key limits.

Files Containing Relative Record Numbers (ADDROUT
Files)

A record address file that contains relative record numbers
is called an ADDROUT file. (ADDROUT files are pro-
duced by the Disk Sort program.) ADDROUT files are
comprised of binary 3-byte relative record numbers that
indicate the relative position (first, twentieth, ninety-ninth)
of records in the file to be processed.

An ADDROUT file can only be a disk file. Any file organ-
ization can be processed using an ADDROUT file.
Files Containing Record Key Limits

A record address file with record key limits contains the
lowest and the highest key fields for a specified section of

an indexed file. Record address files containing record key
limits can be entered from disk, card, or a printer-keyboard.
They are used to process only indexed files. When a sec-
tion of an indexed file is processed using record key limits,
the processing method is known as sequential within limits.

Example: You have an indexed file, but want to process
only the records with keys 2,000 through 3,000. The
record key limits in this record address file would be 2,000
(lowest) and 3,000 (highest key field). Through RPG II
specifications the appropriate section (records with keys
2,000 through 3,000) of the indexed file would be
processed.

RANDOM PROCESSING BY ADDROUT FILES

All types of file organizations (sequential, indexed, or
direct) used as primary or secondary files can be processed
by ADDROUT file. When an RPG II program processes a
file using an ADDROUT file, it reads a relative record
number from the ADDROUT file, then locates and reads the
record situated at that relative position in the file being
processed. Only those records whose relative record num-
bers are located in the ADDROUT file are processed.
Records are read in this manner until the end of the
ADDROUT file is reached. Figure 5-1 shows an ADDROUT
file used to process a disk file.

ADDROUT file
(containing relative
record numbers)

First Third Fourth
Record | Record | Record

/ Y [
File to be processed

(relative positions 1 2 3 4
of records)

Sixth
Record
5 6

Note: The RPG Il program will read the ADDROUT file and
find that the first record to be read is in relative position one

of the file being processed. The second record to be read is in
relative position three. Since all records are not read, processing
by ADDROUT file is random processing.

Figure 5-1. Processing a File by ADDROUT File

5-2

Considerations for Using ADDROUT Files

The following three points should be considered for using
ADDROUT files:

RPG |1 Specifications (Processing by ADDROUT File)

To process a file by an ADDROUT file in an RPG II pro-
gram, additional entries must be made on the File Descrip-

not be written

“tion and File Extension Sheets. (Input specifications need

for the ADDROUT file.)

One file can be sorted in several sequences based on
different control fields in each record of the file.
Several ADDROUT files can be created from the

same input file to be used as input to RPG II programs.
For example, you have a transaction file in order by
stock number. By performing two ADDROUT sorts
on the transaction file, you could have one ADDROUT
file sequenced by customer number and another by
invoice number. Consequently, you can access the
transaction file in an RPG II program by several
sequences: stock number, customer number, or
invoice number.

Less disk space is required to process a file by an
ADDROUT file than by the output file of a tag-
along sort becuase the output records of the
ADDROUT file are only three bytes long.

If an ADDROUT file is used to process a multi-
volume file, all volumes of that file must be mounted
during processing becuase the next record required
may be on any volume.

File Description Specifications

FILES BEING PROCESSED MUST
HAVE:
|Column Entry Meaning
28 (Mode of R File is to be processed
Processing) by ADDROUT file.
31 (Record Address | File is to be processed by
Type) relative record numbers
- from ADDROUT file,
ADDROUT FILES MUST HAVE:
Column Entry Meaning
15 (File Type) I File is an input file.
16 (File Designation)| IR File is a record address.
17 {End-of-File) E Records from the file
must be processed
before the program
can end.
19 (File Format) F File consists of fixed-
length records.
20-23 (Block) 3 Block length is three,
y Length)
24-27 (Record 3 The ADDROUT file
Length) consists of 3-byte
relative record numbers.
31 (Record Address | | File is an ADDROUT file|
- Type)
32 (Type of File T File is an ADDROUT
Organization) file.
39 (Extension E File must be further
Code) defined on the
Extension sheet.
40-46 (Device) DISK File is a disk file.
68-69 (Number of number of 01 is assumed if you
Extents) volumes do not code this entry.
containing
the file

Processing Disk Files by Record Address Files 5-3

Figure 5-2 is a sample File Description Sheet describing two
input files: a master file and the ADDROUT file used to
process it. The master file to be processed is coded the same
as any other input file with two exceptions: Column 28
contains an R and column 31 contains an . These two
columns indicate that the file is processed by an ADDROUT
file.

The ADDROUT file contains an / in column 15 indicating
that it is an input file. Columns 16, 31, and 32 contain an
R, I, and T respectively. These three columns indicate that
the file is a record address file consisting of relative record
numbers. Columns 20-27 and 29-30 contain 3 and 03 re-
spectively. These columns indicate the block and record
length of the file and the length of the record address field.
Column 39 contains an £ indicating that the ADDROUT
file is further defined on the File Extension Sheet.

File Extension Specifications

If you are processing by ADDROUT file, entries in columns
11-18 and 19-26 on the File Extension Sheet must be
coded:

o Columns 11-18 (From Filename) must contain the name
of the record address file. This must be the same name
given to the record address file on the File Description
Sheet.

o Columns 19-26 (To Filename) must contain the name
of the file to be processed. This must be the same file-
name that was defined on the File Description Sheet.
This entry indicates that the file is to be processed by
the ADDROUT file coded in columns 11-18.

54

Figure 5-3 is a sample File Extension Sheet corresponding
to the File Description Sheet in Figure 5-2. The entries
tell the compiler that MASTER is to be processed by the
ADDROUT file labeled ADDROUT.

Example: Processing by ADDROUT File
You have a customer master file containing:
e Customer numbers and addresses.

e Salesman numbers. |

e Accounts receivable amounts.

The file is an indexed file processed by customer number
throughout the month for invoicing and at the end of every
month for customer statements. Along with the monthly
statements, the sales department wants the accounts re-
ceivable for all customers owing more than $2500.00 to be
printed by customer number within salesman number. This
informs each salesman which of his customers have large
accounts receivable outstanding.

In order to do this, the records of customers who owe more
than $2500.00 must be sorted according to salesman num-
ber. You sort the file using ADDROUT sort because there
is not enough disk storage to use a tag-along sort. After the
file is sorted, you have an ADDROUT file consisting of
those records to be printed. The output of the sort becomes
input to an RPG II program. Figures 5-2 and 5-3 show the
RPG II entries required to use the ADDROUT file as input
to an RPG II program.

File Description Specifications
File Type Mode of Processing File Addition/Unordered
N . Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. R Type of File o . Symbotic Name of Tape
Line Filename Sequence Organization 3 Device ym .) Remind
L @ Device Label Exit
File Format or Additional Area § 5 —
o a
g S = 2 [overflow Indicator H i Condition
> «© 5 12) -
= 515 Block Record - l; Key Fietd | - Core Index u1-ug
3 olal 1912 Length Length & XI5 Starti < 2 2 2
2 S{sjuwl o 3 <= arting 1.3 3 < 2
Location
3 4 s5lef7 8 9 101112 13 14 1516]17}18[10]20 21 22 23]24 25 26 2] 28|20 30|31[32]33 34|35 36 37 38]39]40 41 42 43 44 45 45)47 48 49 50 51 52|53]54 65 56 57 68 5960 61 62 63 64 6566]67]68 69{70)71 72173 74
° !
FMASIT] 1P| F 194] |1G4ARDE| 1| (DISK] 1
ofs|_|-]ADIDROUT] [1[RE! |F] 3T EDI%K 1
ole| r | l t

Figure 5-2. File Description Sheet for Processing by ADDROUT File

Form X21.9091
IBM. Business Machis i Printed in US.A.
RPG EXTENS!ION AND LINE COUNTER SPECIFICATIONS
12 7 7 77 78 79 80
— X
ue e | i e Progra
Pr Instruction | punch =
P Extension Specifications
Record Sequence of the Chaining File > > ~
N " Number g g
lumber of the Chaining Field of Number @)l . Tabl alg]
N Length | |€[8 able or {engh |u]Sla
Line | g| To Filename Table or Entries | of o,mm 2(Z|2| Array Name | o alg|z Comments
g Array Name | Per Entries 3l Alternati el
= i Record | PerTable | Entry [3|5|8| (Atternating Jemuy | SIT18
From Filename S|E[E] Formay %l ElS
E or Array ?.- L] % o g 3
e o 8 0 ;. o 4§
3 4 5)el7 sle 10)1112 13 14 15 16 17 18|19 20 21 22 23 24 25 2627 28 20 30 31 32/33 34 35|36 37 38 39140 a1 42]43]aales a6 47 48 49 50 51 565758 59 60 61 62 63 64 65 66 67 68 69 70 7172 73 74
of1] e UIT] I l
of2 [FHTTHT FTTETTT IRRRREAREREL FTTTTTT

Figure 5-3. File Extension Sheet for Processing by ADDROUT File

Processing Disk Files by Record Address Files 5-5

SEQUENTIALLY PROCESSING AN INDEXED FILE
WITHIN LIMITS

Processing a section of an indexed file sequentially is some-
times necessary. For example, you have a customer file
with account numbers ranging from 1000 to 4999. Each
week statements are sent to 1,000 of the customers. By
using a record address file containing record key limits, you
can tell the RPG II program what records are to be proc-
essed. This type of processing is known as sequential within
limits.

Creating a Record Address File Within Limits

A record address file containing record key limits can be
‘entered from a disk, card, or a printer-keyboard. The fol-
lowing rules must be observed when you are creating a
record address file:

e You can use only one record address file for each RPG
IT program, but the record address file can contain
" several sets of limits.

e Only one set of limits is allowed on each record in a
record address file. The length of each record is at least
twice as long as the length of the record key, since each
record is comprised of two keys.

o The low record key must begin in position one of the
record. Each record is twice as long as the record key
since each record is comprised of two keys.

5-6

® The high record key must immediately follow the low
record key. No spaces are allowed between the two
keys.

If the key field were four bytes long and the low record
key were 2000 and the high record key were 2999, the
record would look like this:

I 20002999

Each record key can be from 1-29 characters in length.

® The length of the keys must be equal. Therefore, it may
be necessary to place leading zeros in a numeric record
key to make the length of the keys equal. For example,
if the low record key were three positions (200) and the
high record key were four positions (2999), a zero must
be placed before the 200 to make it a four-position num-
ber. The record would look like this:

I 02002999

Each key length must equal the key field length you
specify in columns 29-30 of the File Description Sheet.
Each key length in the record address file must be equal
to the key length in the indexed file.

e An alphameric record key can contain blanks.

o The same set of limits can appear on more than one
record in a record address file. Therefore, records within
a set of limits can be processed as many times as you
wish.

e The two record keys in a set of limits can be identical.
For example, both the low and high record key can be
2999. In this case, only one record (2999) will be
processed.

Processing Sequentially Within Limits

Processing a section of an indexed file by record keys is
known as sequential within limits. The RPG II program
uses one set of limits (one record in a record address file)
at a time. Records are read according to the arrangement
of the record keys in the section of the indexed file speci-
fied by the limits. When the records identified in one sec-
tion are read, the program reads another set of limits from
‘the record address file. The program continues reading
records in this manner until the end of the record address
file is reached or an end-of-file condition on the indexed
file is reached.

An end-of-file condition can occur if a file being processed
ends before the high record key in a set of limits is reached.
For example, if you specify the high record key as 2999
and the last record in that section of the file is 2800, the
program ends when record 2800 is processed if there are no
other sets of limits to be processed.

RPG !l Specifications {Sequential Processing Within Limits)

To process a file by a record address file using RPG II, you
must make additional entries on the File Description and
File Extension Sheets. (Input specifications need not be
written for the record address file.)

File Description Specifications

INDEXED FILE TO BE PROCESSED

MUST HAVE:

Column Entry Meaning

28 (Mode of L Records are to be read
Processing) from this file sequentially

within limits.

Record keys are used in
processing and loading
indexed files.

31 (Record Address| A
. Type))

RECORD ADDRESS FILE CONTAINING L
RECORD KEYS MUST HAVE:

Column Entry Meaning
15 (File Type) 1 File is an input file.
16 (File Designation) R File is a record
' address file.
17 (End-of-File) E File must be
. processed before the
program can end.
19 (File Format) F File contains fixed-
o length records.
20-23 (Block Length) number Block length for the
Y file.
24-27 (Record Length) number Record length for the

file.

29-30 (Length of Record | length of the Maximum length is

Address Field) record key 29 positions.
39 (Extension Code) - E File is further defined
on the Extension
Sheet.
40-46 {Device) input device Input device for the

file.

Processing Disk Files by Record Address Files - 5-7

Figure 5-4 is a sample File Description Sheet describing
two input files: an indexed file (MCUSTFLE) to be
processed and a record address file (RAFILE) to process
it. MCUSTFLE is coded as any other indexed file with
two exceptions: column 28 contains an L and column 31
contains an 4. Together these two columns indicate that
MCUSTFLE is to be processed sequentially within limits.

RAFILE contains R in column 16 indicating that the file
is a record address file. Columns 29-30 contain the length
of the record key. In this case the record key is seven
positions long. Column 39 contains an E indicating the
file is further defined on the File Extension Sheet.

File Extension Specifications

If you are processing a file using a record address file, entries
in columns 11-18 and 19-26 of the File Extension Sheet
must be coded:

e Columns 11-18 (From Filename) must contain the name
of the record address file. This must be the same name
as the record address file on the File Description Sheet.

o Columns 19-26 (To Filename) must contain the name of
the indexed file to be processed. This must be the same
filename that was defined on the File Description Sheet.

These two entries indicate that the indexed file is to be
processed by the record address file named in columns
11-18.

File Description Specifications

Figure 5-5 is a sample Extension Sheet corresponding to
the File Description Sheet in Figure 5-4. The entries indi-
cate that RAFILE is used to process MCUSTFLE sequen-
tially within limits. ‘

Example: Sequentially Processing Part of an Indexed File

You have a master customer file on disk consisting of 128-
character records. The file is organized by customer num-
ber within customer class. Customers are separated into
such classes as wholesalers or retailers. Together the cus-
tomer number and class form a composite customer account

~number (key) in the form: ccnnnnn.

cc is the customer class and nnnnn is the customer number.
Customer classes begin at 01 and are in ascending order.
Within each customer class, customer numbers range from
00000-99999.

You must prepare separate reports by the customer class
categories for sales analysis purposes. A record address
file can be used to supply the particular class categories
and customer number ranges as shown in Figure 5-6. The
key in each disk record begins in column 2 and the record
address file is loaded in MFCU1. Figures 54 and 5-5 show
the necessary File Description and Extension entries for
this job.

File Type Mode of Processing File Addition/Unordered
P . Length of Key Field or . Number of Tracks
ile Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
Type of File i T
Line Filename Sequence Ovemntzati = Device Symbolic [| Name of ape
‘ganization w Device i) Label Exit Rewind
e File Format or Additional Area g 5 i
- ile
g ole 2 | overtiow Indicator| ¢ z| Condition
Ol = -
I 3lg| | Block Record < g Key Field | 2 s Core Index . utus_|
5 <} 13 ¥ 3 8
H 2[u|]|}} e | e (5} (LIS [Surting |3 i 2 2
Location
3 4 5}16|/7 B 9 1011 12 13 14 |5|S|7|BlS?ﬂZl2223242526272829303!2]333‘3536373_8]39404‘4143‘4‘546‘7‘8‘9505|52|532_i§_ﬁ25§59m5|6253645566676@69707‘72737‘
oz | Tl
U LIE[I [P 256 11281 A7All 2 D) 1
:
of| |-RAFILIIMIT]RE 1] | Ll @7 EMFCUL
olal Ir [1 [[Fl I

Figure 5-4. File Description Sheet for Processing by Record Address File Within Limits

Form X21-9091
IBM International Business Machines Corporation Printed in US.A.
:
RPG EXTENSION AND LINE COUNTER SPECIFICATIONS
12 7 76 77 78 79 80
Date Punching |_Graphic Page [D Program
Program Instruction | Punch
P Extension Specifications
Record Sequence of the Chaining File > 2
e 2
Number of the Chaining Field Number @ | el Tab! = 4
Length | |20 aDle OF | Length |113]8
Line g To Filename Table or ;’ i Meng, 213[<| Array Name | of = b B Comments
& Array Name ntries iy |B[2l8| (Anenating ey [B|E]%
- E . Per Table | Entry 1X15)2 Y FHH
€ rom Filename A S|E|8| Format) SlElg
£ or Array £l s
H w818 |8 .g
w a|aiv alQ
3 4 5]6]17 819 10]11 12 13 14 15 16 17 18|19 20 21 22 23 24 25 26|27 28 29 30 31 32|33 34 35|36 37 38 39)40 41 42|43)4a4]45]46 47 48 49 50 51|52 53 54| 25859505|62635465666788697071727374
ANG LT IMITMCUSTIFL l |
ol2l [e [t FITTrrerrrTd [l (TTTTT

Figure 5-5. File Extension Sheet for Processing by Record Address File Within Limits

Record address file

(03000000399999

01000000199999

™

J

0100000
0199999

0200000
0299999
0300000

0399999
0400000

0499999

|

Symbolic representation
of customer ranges on
the disk file.

Figure 5-6. Files for the Example of Processing an Indexed File
Sequentially Within Limits

Processing Disk Files by Record Address Files 5-9

5-10

Review 5

How is the output of the ADDROUT sort used by an RPG II program for processing data?

Fill out the RPG II File Description and File Extension Specification Sheets for a program to access
a data file using output from the ADDROUT sort.

The data file is an indexed sequential file that contains 5000 records. Each record is 96 positions.
The account number is used as the key field and is contained in the first six positions of the record.

In processing between limits how are the limits supplied to the program?

Describe briefly how an indexed file is processed between limits.

Code the File Description and File Extension Specification Sheets to define an indexed file and the
record address file used to process it between limits. The key for the indexed file is customer number

and is stored in positions one through six. The record address file will be read in the primary hopper
of the MFCU.

Processing Disk Files by Record Address Files 5-11

Answers to Review 5

1. The output file created by an ADDROUT sort is specified as a record address file to the RPG II
program. The record address file is used to access a data file for processing. The record address file
contains the relative record numbers of the records in the data file to be processed. Records in the

data file are accessed in the sequence in which their relative record numbers appear in the record
address file.

2. See specification sheets.

File Description Specifications

File Type Mode of Processing File Addition/Unordered
N ~ Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overfiow
End of File Record Address Type for DAM Number of Extents
Type of File . : T
Line Filename Sequence Orgomization 5 Device Syrr!bollc _ Name of) R::ind
- o © Device Wl Label Exit
File Format . or Additional Area g 5 =
| ile
g a S 2 |overtiow indicator| e z Condition
Ol 5 2 =
A (5| ||, Bk | Recora <[|e Key Field |2 z Core Index | VR
= 3 x -
5 8[2] I3[z] rersn | tenwn [gls Starting | % g 3 32
Location
4 5lel7 8 9 101112 13 14 |1s|16]17]18]19]20 21 22 23|24 25 26 2] 28]29 3043113233 34|35 36 37 38]39)40 41 42 43 44 45 4s]a7 48 49 50 51 52|53]54 55 66 57 53 59160 61 62 63 64 65 e9]70f71 7273 74
*MAST] Q4 | B
STIER | 1P| |F l EDI 1
os| [-IN\DDRESES|([RE |F | [3 T EMDI 1
ote| [r Il I (11 |
Form X21-9091
IBM Business Printed in US.A.
3 .

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS 5 76 7 78 79 50

12
[o~] -
Date oo Punching { Graphic Page I:D Program) .‘EEBUE
Instruction Identification [

Program Punch

Extension Specifications

Record Sequence of the Chaining File E 2
2
N <|, £,
Number of the Chaining Field Tobl N'umb« Length r: § 5 Table or Longth :: § 5
Line |g! To Filename able or ; . of 2|%|<| Array Name | o 21F < Comments
Array Name ntries B|< Alternatiny B
2| . per Tavte | Entry |2|3[8] ¢ S [Ey [x]5)8
From Filename SIE|§]| Format) Bl E|S
£ or Array =l 3 alzls
S {88 w|8 ‘§'
e ala|a ala
3 4 s|el7 8i9 10[11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26{27 28 29 30 31 32|33 34 35]36 37 38 39)40 41 42]43]as]a5 |46 47 48 49 50 51§52 63 54[55|5657]58 59 60 61 62 63 64 65 66 67 68 69 70 717273 74
. 1573
o E El HEN]
of2] [e | ITTTT TTTTTT [TTTTTH

5-12

3. Limits are specified to the program via a record address file on cards, the printer-keyboard, or from
disk.

4. The record address file contains the high and low keys to be processed. These are read from con-
secutive positions of the record address file records, beginning with the first position. The program
accesses the record in the indexed file that has the low limit key and processes the file sequentially
until the high limit key has been processed. Multiple sets of limits can be used in one program and
the upper and lower limits for one set can be the same to process asingle record.

5. See specification sheets.

File Description Specifications
File Type Mode of Processing File Addition/Unordered
N N N Length of Key Field or N Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. . Type of File 2 . Symbolic Name of Tape
Line Filename Sequence Organization S Device Divice 3] Label Exit Rewind
File Format or Additional Area g 5 File
2 a S ” | Overflow tndicator| ¢ = ' Condition
Sl 2 £21 r '
E i S o Block Record Key Field g ﬁ Core Index . S ut-ug
S Slel IS| 3 tength | Lengh | f:a;.‘:.:n X k] 2 s
3 4 51617 8 9 10 11 12 13 14 |15{16[17118{19{20 21 22 2324 25 26 27 3334353537383940"‘243444516474849505151“53&5555575859*2&5753“5553576359707‘727374
0
*RAFIILE | NRE [F 1 EMFCUI
o3| [FMASTER | |\ ATF 06 l EID IS
ols] el | |

Form X21-9091
Printed in US.A.

Business Machis

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

7% 76 77 18 79 80

12
Date "
w1 .. QUESTS
Program Instruction | pynch
Extension Specifications
Record Sequence of the Chaining File > >
Number g 3
A |, £,
Number of the Chaining Field Tabi of] N'umbef Length ::: £ 5 Table or Length an' g5
Line |g To Fitename able or Entries | o of @|E(<] Array Name | of olglz Comments
g Array Name | Per Entries 3|< (Alternating | entry | 8|51 %
- . Record | PerTable | Enty |4]s § nry FEE
From Filename) =] £18] Format) I
£ or Array a. (.Sl 3 afsls
5 v| 8|8 v| 8 ‘§
w ajalwn a0
3 4 si6]7 819 10|11 12 13 14 15 16 17 18119 20 21 22 23 24 25 2627 28 29 30 31 32|33 34 35]36 37 38 3940 41 42]43aa}ss [45 47 48 49 50 51[52 63 54]55[56[67|58 69 60 61 62 63 64 65 65 67 68 69 70 7172 73 74
W PAIE | S
ol2f [e CETTTTTITTTETT (1

Processing Disk Files by Record Address Files 5-13

5-14

CHAPTER

MULTI-VOLUME FILES

CHAPTER 6 DESCRIBES:
Multi-volume files.
Creating and processing multi-volume files.
Coding the OCL FILE statement and the RPG II File Description Sheet to create
and process multi-volume files.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Describe the function of the RPG II File Description Sheet.
Describe the function and format of the FILE statement.

Describe sequential and direct file organization.
List the types of processing these file organizations permit.
Distinguish between a fixed and a removable disk.

Distinguish between cylinders and tracks.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Define multi-volume files.
List the two ways multi-volume files are created and processed.

Code the FILE statement and RPG II File Description Sheet to create and process
multi-volume files.

Multi-Volume Files 6-1

INTRODUCTION

A multi-volume file is a file that is contained on more than
one disk (volume).

CREATING MULTI-VOLUME FILES

. Coding parameters on the RPG II File Description Sheet
and on the OCL FILE statement will cause disk system
management to create a multi-volume file. Disk system -
management créates sequential or direct multi-volume~
files. : v

The way in which a multi-volume file is created depends
on the number of disks the file will occupy and on the file
organization (sequential or direct). Sequential files are
created consecutively; direct files are created randomly.

Creating a Sequential File

When you create a multi-volume sequential file, records
are placed in consecutive order on as many volumes as
needed. When the first volume is filled, records are placed
on the second volume.

You can mount all the disks to contain the file at the same
time or you can add or replace disks as needed. When all
the disks are mounted at the same time, the file is created
as an online, multi-volume file. If disks are added or re-
placed during creation, the file is created as an offline,
multi-volume file.

To create an offline, multi-volume, sequential file, you must

use removable disks only. If you have a one-drive system,
the first volume is created. Another disk is then placed on
the disk drive, and the next volume is created. This is con-
tinued until the entire multi-volume file is completed. If
you have a two-drive system, you can alternate the process
from one drive to another. You can mount two removable
disks, then after the first volume is created, you can replace
it by another disk while the second volume is created. An
offline, multi-volume, sequential file can have a maximum
of 50 volumes.

When you create an online multi-volume file, you can use
both fixed and removable disks. The file, however, cannot
exceed the number of disks that can be on the system at
one time. Therefore, a single-drive system is limited to a
two-volume file, and a two-drive system can have a max-
imum file size of four volumes.

6-2

Creating a Direct File

Direct files are created randomly (Figure 6-1). Recall that
records in sequential files are stored consecutively on the
first volume until it is filled, then records are stored on the
second volume. Unlike sequential file loading, direct files
can have records placed alternately between the first and
second volumes.

For example, assume you have an input file labeled INPUT
that you want loaded on two volumes, the first of which
can store 1000 records. The relative record numbers of the
first five records are: 1, 1000, 3000, 500, and 4000
(Figure 6-2).

When records 1 and 1000 are read, they are placed in rela-
tive positions 1 and 1000 on the first volume. The next
record is placed in relative position 3000 of the file, which
is on the second volume. Records 500 and 4000 are then
read and placed in their relative positions on volumes one
and two respectively. Blanks are in all positions that do
not contain records. Disk system management initializes
the disk to blanks before creation of the file begins.

When creating a multi-volume direct file, the file must be
created as an online, multi-volume file. The files can be
contained on both fixed and removable disks. On a one-
drive system, the file must be contained on two volumes.
On a two-drive system, the maximum direct file size is
four volumes.

Considerations for Creating Multi-Volume Files

No matter what type of file organization you use, you must
consider these points when planning to use multi-volume
files:

e Multi-volume files must be created on consecutive tracks
of each volume. For example, a disk file cannot occupy
tracks 20-30 and tracks 41-50 of the same volume. The
file can occupy tracks 2040 of one volume, or the data
from tracks 41-50 can be placed on the second volume.

o No volume except the first volume of the file can con-
tain scratch files during creation or addition to a file.

o Those volumes containing the multi-volume file cannot
contain any other file, if you do not specify the file

location for your multi-volume file.

o If you do specify a file location, ensure that no other
files are on that volume in that location.

e Volume names must be unique:

INPUT FILE

Relative Record
Numbers

N\

LOADED FILE
1 2 3 4

b B [3| B

/*

A direct file is not loaded onto a disk in any consecutive order.
The file is loaded according to relative record numbers. In this
figure, record 3 is read first and placed in relative position 3 on
disk. Record 8 is then read and loaded in position 8. When
record 6 is read, it is placed between record 3 and 8 in position
6. Once a direct file is on disk, the records containing data do
not necessarily follow one another. There can be blank records
between the records containing data. This type of loading is
called a random load.

Figure 6-1. Loading a Direct File

INPUT

Relative
Record
Numbers

-+ 1

-¢— 1000
3000 =»~

- 500
4000 =»-

Figure 6-2. Loading a Direct File on Multi-Volumes

Multi-Volume Files 6-3

PROCESSING MULTI-VOLUME FILES

Multi-volume files can be processed conseoutively or ran-

. domly. Disk system management reads all the recordsin a
file when processing consecutively, but processes only
specified records. When processing randomly, disk system
management both reads and processes only specified records
in a file.

Processing Files Consecutively

When you are consecutively processing multi-volume files
with all volumes offline, all the volumes must be removable.
If you have a one-drive system, you can mount a disk, wait
until all of the records have been read, then mount the next
disk. If you have two drives, you can mount two disks,
wait until all of the records have been read from the first
disk, then replace it with the next volume while your pro-
gram reads from the second disk.

If you are consecutively processing multi-volume files with
all volumes online, any combination of fixed and remov-
able disks is permitted, but all must be mounted initially
and remain mounted throughout the entire job.

When processing consecutively, you must consider the
following:

o If you are creating or adding to a file, the job:must not
be cancelled between volumes, or the file must be com-
pletely reloaded. No more records can be added to the
portion of the file that was completed because the pro-
gram cannot recognize which disk was the last volume.
(Records can be added only at the end of the last vol-

‘ume.) Records can be retrieved from it, however.

® Aslong as all file names and record lengths are identical,
two files not created as a multi-volume file can still be
processed as a multi-volume file. For example, two files
could be created at separate times on different volumes.
They could both be labeled FILEA and contain 128-
position records. The two files can then be processed
together as one multi-volume file. Records from this
type of file can be consecutively retrieved or updated.

6-4

Processing Files Randomly

Because disk system management directly accesses spec-
ified records during random processing and the records can
be on different volumes, all volumes of the multi-volume
file must be online. The file can reside on both fixed and
removable disks. If you have one drive, the multi-volume
file is on two volumes. " If you have two drives, the maximum
multi-volume file size is four volumes. If a fixed disk is
used, you can copy the file to the fixed disk prior to run-
ning the job and back to the removable disk for storage
after the volume has been processed. This leaves the fixed
disk free to perform other functions when the multi-volume
file is not being processed.

Figure 6-3 is a summary of the maximum number of vol-
umes permitted for multi-volume files.

CODING THE RPG Il FILE DESCRIPTION SHEET TO
PROCESS MULTI-VOLUME FILES

When processing single volume files, you must enter 01 in
columns 68-69 (Number of Extents) on the File Descrip-
tion Sheet. (An extent is definable area on disk where data
is stored.) This entry tells the disk system management the
number of volumes in your file. When processing multi-
volume files, enter in these columns the total number of
volumes that contain your file.

Figure 64 is an example of coding the Number of Extents
specification.

One Drive " Two Drives *
Maximum Number Maximum Number Maximum Number Maximum Number
of Volumes of Volumes of Volumes of Volumes
Allowed Online Allowed Online
Removable
Disks Only 50 1 ' 50 2
Removable and
Fixed Disk 2 2 ‘4 4
Figure 6-3. Maximum Number of Volumes for Multi-Volume Files
File Description Specifications
File Type Mode of Processing File Addition/Unordered
) o Length of Key Field or) Number of Tracks
File Designation of Record Address Field Extent Exit for Cytinder Overflow
End of File Record Address Type for DAM Number of Extents
) . Type of File . Symbolic Name of Tape
Le Filename — Orgnization |5 Deviee Device S| Label Exit Rewind
a File Format or Additional Area g 5 File
g ale 2 overflow Indicator| 2 2 Condition
I S| 5 —2 e Core Index u1-us
£ 3{o Block Record Sle Key Field | S 2 —
5 glgl, g 2| Length Length | & § S Starting | § 3 g
- - -~ Location
3 4 516)7 8 9 1011 12 13 14 {15]16]17]18]1920 21 22 23]24 25 26 27]28§29 30{31]32|33 34]35 36 37 38|39 40 41 42 43 44 45 46]47 48 43 50 51 5253'545556575859506'62635455www69 70171.72§73 74
ke o = 7 -
of2| [¢]y il | Fi Cia ciu1
os|_[-AUTIPUT] 24d | &b DI L2
of4] |F 1o
ols| | Columns 68-69 are the only columns which tell the
olsl IF system you are processing multi-volume files. In this {
NEEE figure, an output file is being created on two disks.
T
E

Figure 6-4. File Description Specifications for Multi-Volume Files

Multi-Volume Files 6-5

CODING PARAMETERS ON THE FILE STATEMENT

TO PROCESS MULTI-VOLUME FILES

The only difference between coding the FILE statement to
process a single volume file and a multi-volume file is that
you must define and code additional parameters for these

keywords: PACK, UNIT, TRACKS, RECORDS, and
LOCATION.

These additional parameters are necessary for two reasons:

1. When files contained on more than a single volume
are processed, the system must be supplied with ad-
ditional information about each additional volume
in order to perform all the protection and checking

functions it performs.

2.

Additional information is needed to determine and
check the sequence in which the volumes are proc-
essed and the way they are to be mounted on the
disk drives.

You should already be familiar with the format of
keywords and parameters on the FILE statement for
single volume files. For multi-volume files, you must
code the keywords that require additional parameters
as follows:

KEYWORD-‘data list’

A data list is a list of parameters that must be en-
closed by single quotes. Each item in the list must
be separated from the next by commas, for example
‘50, 100, 500°. Figure 6-5 shows an example of data
lists in parameters.

14 8 12 16 5660 64 68 72
/It HRREAN
/ 1ILE -MVIFlL

Figure 6-5. Data Lists on the FILE Statement

6-6

Parameters for the PACK Keyword

The names of the disks that contain, or will contain, the
multi-volume file must follow the keyword PACK. The
PACK names must be unique. Figure 6-6 shows an example
of the PACK parameter for a 3-volume multi-volume file.
The volumes are named VOL1, VOL2, and VOL3.

When a multi-volume file is created, disk system manage-
ment writes sequence numbers on the volumes to indicate
the order in which the volumes are created. They are num-
bered in the order that you list their names in the PACK
parameter. They are numbered in consecutive, ascending
order (01, 02, and so on).

When a multi-volume file is processed consecutively, disk
system management provides two checks to ensure that the
disks are processed in the proper order:

1. It checks to ensure that the disks are used in the order
that their names are listed in the PACK parameter.

2. It checks the sequence numbers of the disks used to
ensure that they are in ascending order (01, 03, 07
and so on).

If you are reloading a multi-volume file, the PACKS must
be in consecutive, ascending order.

If the file was not created as a multi-volume file, the se-
quence number is ignored, since no sequence number was
written at creation of the file.

Disk system management stops when it detects a disk that

is out of sequence. The operator can do one of the follow-

ing three things if the system stops:

e Mount the proper disk and restart the system.

o Restart the system and process the disk that is mounted
(if the PACK sequence number is greater than the last

one processed).

e End the program.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
/¢ (L]
J/IATICE IMAMEFMYIALLE, ONIT

Figure 6-6. Sample PACK Parameter for Multi-Volume Files

Multi-Volume Files 6-7

Parameters for the UNIT Keyword

The keyword UNIT must be followed by codes indicating
where on the disk drive the disks containing the file are
" located.

The codes are as follows:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

The order of codes in the UNIT parameter must correspond
to the order of names in the PACK parameter. For ex-
ample, assume that a direct file is being created on two
disks named VOL1 and VOL2. Further assume that VOL1
is a removable disk to be used on drive one, and VOL2 is a
removable disk to be used on drive two. Figure 6-7 shows
the PACK and UNIT parameters for this file.

When you are creating an offline sequential file or proces-
sing an offline sequential file consecutively, you can use
the same drive for more than one of the disks. The disks
must be removable, however. If you do use the same
drive, do not repeat thé code for the drive in the UNIT
parameter. When the number of codes in the UNIT para-
meter is less than the number of names in the PACK para-
meter, disk system management uses the codes alternately.

For example, assume that your program processes a file
consecutively. The disks containing the file are named
VOL1, VOL2, and VOL3, respectively. You intend to
mount VOL1 and VOL3 on drive one, and VOL2 on
drive two.

Figure 6-8 shows the PACK and UNIT parameters for the
file. Disk system management uses R1, then R2, as speci-
fied for VOL1 and VOL2, and then goes back to R1 for
VOL3. If, in the preceding example, all three disks were
used on drive one, the UNIT parameter in Figure 6-9 would
have been used. Consecutive files that are created separately
as single volume files can be processed as a multi-volume
file, but they must all have the same name.

If any fixed unit (F1 or F2) is specified, the number of

PACK parameters must be equal to the number of UNIT
parameters. The file must be an online, multi-volume file.

60 64 68 72

60 64 68 72

Figure 6-8. Sample UNIT Parameter: Same Unit for Two Disks

LT FLETLETTrrrrrreerrrrerre et

Figure 6-9. Sample UNIT Parameter: Same Unit for All Disks

6-8

1 4 8 12 16 20 24 28 32 56 60 64 68 72
/¢ L] |
/I/1 ARILE -Vl ILlel, IPlalckl-] volLia]ivial

[l TETTTerTr

Parameters for the TRACKS or RECORDS Keyword

The keyword TRACKS or RECORDS must be followed by
numbers that indicate the amount of space needed on each
of the disks containing the multi-volume file. The order of
these numbers must correspond to the order of the names
in the PACK parameter.

For example, assume that your program is creating a sequen-
tial file on three disks: VOL1, VOL2, and VOL3. The

first 50 records are to be placed on VOLI, the next 500 on
VOL?2, and the last 200 on VOL3.

The PACK and RECORDS parameters for the file are
shown in Figure 6-10.

Parameters for the LOCATION Keyword

The keyword LOCATION must be followed by the track
numbers indicating where the file begins on each disk you
use for the file. The order of the numbers must correspond
to the order of the names in the PACK parameter.

For example, assume your program is creating a direct file
on three disks: VOLI1, VOL2 and VOL3. The track loca-

tions of your file on each disk are: track 198 in VOLI,
track 10 in VOL2, and track 8 in VOL3.

The PACK and LOCATION parameters for the file are
shown in Figure 6-11. If you omit the LOCATION para-
meter, disk system management chooses the beginning
track on each of the disks. You must either specify the
starting location on all disks of a multi-volume file or on
none of the disks.

If you do not give a location parameter, none of the file
volumes can contain any type of file. If you do give a
location parameter, make sure there are no files on that
volume in that location.

Parameters for the RETAIN Keyword

You can specify a multi-volume file as a scratch file
(RETAIN-S) only if it is created on line. If RETAIN-S is
used to create a multi-volume file on line, you can change
it to a temporary file (RETAIN-T) only if this is also done
on line.

An offline, multi-volume file defined as a scratch file can-
not be processed. If, however, you change it to a temporary
file, you can then process it as an offline file.

Figure 6-10. Sample RECORDS Parameter for Multi-Volume Files

(et el

56 60 €

«

Figure 6-11. Sample LOCATION Parameter for Multi-Volume Files

rrrrrrrrerrerrirrree e tee ettt

Multi-Volume Files 6-9

EXAMPLE: COMPARATIVE SALES ANALYSIS

Assume that you are preparing a comparative sales analysis
report for your company to analyze the sales made to each
customer. You want to compare the amount of sales by
product made to a customer each quarter of one year to
sales made to the same customer each quarter of the pre-
vious year. This analysis will provide the sales department
with information about problem areas for future sales
efforts. This type of comparative sales analysis involves a
great deal of historical data because data about sales for
two years must be processed. Your job is to write an RPG
II program to create and process a multi-volume file con-
taining the historical sales data.

First, you must determine the number of volumes that will
be required to store the data and the type of processing
you desire. For this example, assume that the historical
data file (SLSHIS) can be loaded onto two volumes from
card files (CARDIN). Since all the data will be processed,
the file organization is sequential. Remember, the only
additional entry that is required to tell the system that you
are creating a multi-volume file is an entry in columns 68-
69 on the File Description Sheet. Figure 6-12 shows an
example of this coding. Assume you have a one-drive sys-
tem. Since you might expand the historical data file in the
future, you decide to use removable disks. Remember, with
a one drive system, it is possible to mount two volumes for
loading at the same time by using both the fixed and re-
movable disk. However, you can process only two volumes

6-10

for the file. (In this case, for expansion purposes, it is bet-
ter to use only removable disks.) Therefore, you would
mount one volume, wait until it i§ filled, and then mount
the next volume. /

Before the volumes can be loaded, however, your job stream
must indicate to disk system management what you want

to do. The only difference in OCL statements between
processing single-volume and multi-volume files is that key-
words on the FILE statement require data list parameters.
Assume that 2500 records will be placed on each disk be-
ginning on track 55 of the first volume and track 10 of the
second volume. Figure 6-13 shows an example of the FILE
statement for this program.

After your file is created, you must process it. In this case,
the disk output file which was created now becomes the
input file. Once again the only entry in your RPG II pro-
gram which tells the system you are processing a multi-
volume file is the entry in columns 68-69 on the File
Description Sheet (Figure 6-14).

The volumes will be mounted for processing in the same
manner they were mounted for creation. The FILE state-
ment is very similar except that you do not code the
LOCATION, TRACKS, or RECORDS parameters, because
they are required only for loading a file. Figure 6-15 shows
an example of the coding for defining SLSHIS on the File
Description Sheet.

Figure 6-12. File Description Sheet for Loading SLSHIS

File Description Specifications
File Type Mode of Processing File Addition/Unordered
" . Length of Key Field or 3 Number of Tracks
Fite Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
Type of File) 1 Ta
Line Filename Sequence O i 3 Device Sym.bollc _| Name of' pe
gant Device Wl Label Exit Rewind
File Format or Additional Area g 5 =
o > ile
8 g I 2 | overtlow Indicator € i. Condition
> g = 2 2
E 319f ||| o Record sle Key Field | & z Core iIndex s . VU8
9 X " -
5] g ul2] S Length Length g 3 g Sumr.m X 3 2 3
Location
3 4 s|6l7 8 9 1011 12 13 14 f15)16]17]|18]19]20 21 22 2324 25 26 27] 28|29 30|31)|32|33 34[35 35 37 38|39|40 41 42 43 44 45 45|47 43 49 50 51 sz5354_!&[55;57585960516263;‘:_6556676869 70§71 72[73 74
° | o]
CARDIN | |l 6 6 . Cul1
ofa| IFSLISHIS | O F| 24 6 l
0)4 F
ofs| el |

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/¢ I
- /
/| FIILIE SILSHIIS, JUNIHTI-RiL|, IPACIKI-!M VIOLIL| NIOLI2) |,
P 7 pn /
| E g -‘|25 3,125 l’\,LOC TlOIIN-‘55,1¢
Figure 6-13. FILE Statement for Loading SLSHIS
File Description Specifications
File Type Made of Processing File Addition/Unordered
N T Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. . Type of File 2 . Symbolic Name of Tape
Line Filename Sequence nization o Device v @ i i
! R P—— oo:fddi;oml Area g Device 5 Label Exit R:’I:d
g ole | overtiow tndicator] & 2 Condition
' § 5 Block Record sle Key Field | 2 H Core Index u1-us
H gigf g § Length Length | § S Starting [8
Location
3 4 5]6)7 8 9 10111213 14 15|5|7IB|9202|22232‘252527&32&32&3‘_35%373839404|4243“45464748495051522&_5356575859606|62636455
of-] FSUSHIS T 1P | |F 12 | Dl
o3 IFOUTIRUTL | O 124 1 PRINTE
olal el | [[
Figure 6-14. File Description Sheet for Processing SLSHIS
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

NIN=
S e

L = S|LIUINT

I
W
!

P

Figure 6-15. FILE Statement for Processing SLSHIS

<
«
—
N
—

Multi-Volume Files 6-11

6-12

Review 6

1. What distinguishes a multi-volume file from other files?
2. What types of file organizations can be specified for multi-volume files?

3. You are going to create a file named SALES on three offline multi-volumes. Assume the following
specifications:

e The volumes are named SALES1, SALES2, and SALES3.

The first volume should begin on track 30 and each of the others on track 5.

The first volume will have 5000 records and each of the others 7000 records:

This is a two-drive system and the volumes should be mounted on alternate drives
as the file is loaded.

a. Write a FILE statement for creating this file.

b. Complete the File Description Sheet for describing the file in an RPG II program.

File Description Specifications
File Type Mode of Processing File Addition/Unordered
N L tength of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
Type of File Symboli N f Te
. . S < . ymbolic lame o pe
Line Filename equence Organization & Device Device S| Label Exit Rewind
File Format or Additional Area g 5 —
=) o . ile
2 sle = | Overfiow Indicator| ¢ Z Condition
S & 5 2 2 Core index §
e 3ig| |4 Block Record sle Key Field | & > . . u1-us
: S
H Sla| 15|32 tength | Lengn = £ie Starting | % ki b4 s
Location
3 4 5{6]7 8 9 10 11 12 13 14 {15{16[17|18]19]20 21 22 23]24 25 26 272829303'3233343536373&39 40 41 42 43 44 45 46]47 48 49 50 51 52|53)54 55 56 67 58 59|60 61 62 63 64 65]66|67[68 69)70[71 72]73 74
2
FSALES | 10 || |F 150 11
ofsl I (T T

Multi-Volume Files 6-13

Answers to Review 6

1. A multi-volume file is contained on more than one disk.
2. Sequential and Direct.

3. a

[FLILIE “ISIALEIS, UNW T iR IK2) '] [PACIKI-| LFSI,SLSZ;SALFESB';
R |D =+ {1 ¢’1|Q Il’ (IIOIN—‘BI's'ISI [

File Description Specifications
File Type Mode of Processing File Addition/Unordered
N N Length of Key Field or . Number of Tracks
File Designation of Record Address Field . Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
i i Type of File] . Symbolic Name of Tape
Line Filename Soduence Organization b Device Dlvice @] Label Exit Rewind
File Format or Additional Area g 5 —
Q D o 1le
g elE - | Overtiow Indicator| & i Condition
(3] 4 5 ks 4 ’
E 3l 1, Block Record <|e Key Field | £ : Core Index . U1-UB
5 UEu|R[R] Lo | tenan S| (Z]S) | Serting 3 3 g B
. Location
3 4 5|e]7 8 9 101112 13 14 [1shs|17]18]10]20 21 22 23|24 25 26 27] 28|20 30]31)32]33 34)35 36 37 38|30]40 41 42 43 44 45 46|47 43 49 50 51 52|53]54 55 56 57 58 69)60 61 62 63 64 6566 |67]68 69]70[71 72|13 74
2
o2 | 4&L SHRNZN 1 LDl | 1@3
olal [11 I i1 Ul R Ll l

614

\ CHAPTER
AUTOMATIC FILE ALLOCATION

CHAPTER 7 DESCRIBES:

Automatic file allocation.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Describe the use of the FILE statement.
Determine the size of a file.

Define permanent, temporary, and scratch files.

Define removable and fixed disks.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Define automatic file allocation.
Describe how disk system management performs automatic file allocation.
State the advantages and restrictions of using automatic file allocation.

Code the FILE statement to use automatic file allocation.

Automatic File {.ocation 7-1

INTRODUCTION

You can allocate disk space for a file by determining the
size of the file and the location of an available number of
tracks that can contain that file. (If you have planned the
location of your files, you know where files are located and
the tracks that are available for further allocation. The Disk
File Layout Chart, GX21-9108, is available to document
your file locations.) After you have determined where to
place your file, you can code the LOCATION parameter of
the FILE statement to tell disk system management on
which track the file is to begin. Figure 7-1, part A,is a
sample FILE statement containing a LOCATION parameter
to tell disk system management that FILEA is to be located
on disk pack VOL1 beginning on track 10.

If, as in Figure 7-1, part B, no LOCATION parameter is

coded, FILEA is located on the disk pack automatically for
you. The process used by disk system management to allo-
cate file space for you is known as automatic file allocation.

ALLOCATING FILE SPACE AUTOMATICALLY

When allocating file space, disk system management calcu-
lates the length of the file and checks the volume label to
determine which tracks are available for allocation. (The
volume label contains the status of each track and indicates
which tracks are available for allocation.) Disk system
management then:

1. Finds a continuous string of available tracks.

2. Allocates space for permanent files, then temporary
files, and finally scratch files, if multiple files are be-
ing allocated.

Disk system management places your file on a continuous
-string of available tracks that is as near to the length of your
file as possible. For example, it can determine that your
file is 10 tracks long and find one string of 12 available
tracks and another of 15 tracks. It places your file in the
string of 12 tracks because the 12-track string is closer to
the length of the file.

If an area is found containing the number of available tracks
and two files are already on either side of the area, the new
file will be placed adjacent to a file with similar attributes,
if possible. For example, permanent files are placed ad-
jacent to permanent files. Figure 7-2, parts A and B, shows
a permanent file being placed adjacent to another permanent
file. Files are placed adjacent to files with similar attributes,
so there will be as few unused tracks between files as pos-
sible. Itis more important, however, to locate a new file

on a string of tracks as close to the length of your file as
possible. Therefore, a permanent file could be allocated
space next to a temporary or scratch file, if the number of
tracks at that location can contain the permanent file.

If your file is the first file placed on a disk, the system al-
locates space for the file beginning at the highest numbered
track. After a disk contains files and two areas are available
for a new file, the file is placed beginning at the highest
numbered available location. This is done to allow you as
many available tracks as possible next to the object library
which is located at the lowest numbered tracks, so the ob-
ject library can expand, if necessary.

available] Scratch
Part A | Permanent File] New Permanent File Jtracks | file
available Permanent
Part B | Scratch File|tracks |New Permanent File] File

Disk system management determines the type of file to the left
of the available tracks. If the file to the left is similar, the new
file is left-adjusted (Part A). If the file to the left is not similar,
it is right-adjusted (Part B).

Figure 7-2. File Placement of Automatic File Allocation

Figure 7-1. FILE Statement and Use of the LOCATION Parameter

7-2

1 i 4 8| 12 16 20 24 28 32 36 40 44 48 52 56 60 6
/ [L1T]
A/ WIAMELE] LR, [Pl lkl-Wiolcla], ol iri-iRta], Iralclkisi-1i Ioclalr) o —1gr_®_ ,
/| FIL %v -IFILLIEIN PAC -VQ[LI,LdlM‘ T-m,TIRAc Sl-f2 | H |

CONSIDERATIONS FOR USING AUTOMATIC FILE
ALLOCATION

If you let disk system management allocate file space, you
do not have to determine where to locate files. It is easier,
but there are some considerations in determining whether
to use automatic file allocation. After you have gained ex-
perience, you should be able to locate a file more efficiently
than disk system management. Disk system management
may leave a string of available tracks between files which

is unusable, because it is not long enough to locate another
file.

If you plan your own files, you can determine where files
are located by checking the Disk File Layout Chart, if you
keep your layout chart up-to-date. If you automatically
allocate some files and then want to locate a file yourself,
you must check the volume label to determine what tracks
are available. This is done by using the File and Volume
Label Display utility program. (See the IBM System/3 Disk
System Operation Control Language and Disk Utilities
Reference Manual, GC21-7512 for more information on
this utility program.)

Automatic file allocation can increase the time needed to
copy programs using the Copy Dump utility program. (See
the IBM System/3 Disk System Operation Control Language
and Disk Utilities Reference Manual, GC21-7512.) For
example, you have used automatic file allocation and now
wish to copy a file onto tracks 30 through 50 of the disk on
F1. However, disk system management placed the file to

be copied on tracks 50 through 70 of the disk on R1. Copy-
ing time increases when a file is copied from one location

on a disk to another location on another disk, because the
access mechanism must move. It would be more advan-
tageous to allocate the file space on tracks 30 through 50

of R1 yourself so that the file can be copied onto the same
tracks (tracks 30 through 50) of F1.

Automatic file allocation considers effective use of file space,
but not the usage of the files. It does not consider file plan-
ning for multiple input files in a program or job-to-job
transitions. If you plan your own file locations, you can
place files that are used in conjunction close together on
disk. When files used together are located near one another,
processing time may be improved.

Automatic File Location 7-3

74

Review 7

1. What does automatic file allocation mean?

2. What advantages are there to using automatic file allocation? Disadvantages?

3. How is automatic file allocation indicated on the FILE statement?

4. Consider the following diagram of a disk and its allocated files.

100
Obiject Blank Tfemporarv St_:ratch Tfemporary, St':ratch P?rmanent St.:ratch ?Irmanent
Library 15 tracks File File File File File File ile
5 tracks 10 tracks 12 tracks 15 tracks 10 tracks 15 tracks —

Where would the disk system allocate the following files?

a. A temporary file requiring 12 tracks.

b. A temporary file requiring 7 tracks.

c. A permanent file requiring 10 tracks.

d. A permanent file requiring 5 tracks.

¢. A permanent file requiring 12 tracks.

Automatic File Location 7-5

Answers to Review 7

7-6

With automatic file allocation, the programmer is not concerned with specifying the placement of
data files. The disk system automatically finds a space for each file as it is loaded.

Automatic file allocation is easier to use, although it can cause some wasted space on the disk.
Performance time may be slower with automatic allocation when data files are not aligned between
the fixed and removable disk.

The location parameter is omitted.

You should have used the following logic in determining where to place the data files:

a. The available area closest to the required number of tracks is determined.

b. If the file on the left of the available area has the same attribute as the file to be allocated, the file
is left-adjusted.

c. If not, the file is right-adjusted.

Object
A Library
B Object
Library
c Object
Library
b Object
Library
E Object
Library

STORING PROGRAMS AND PROCEDURES ON DISK

CHAPTER 8 DESCRIBES:

Source programs, object programs, and Operation Control Language (OCL), utility
program control statements.

Advantages and considerations for storing programs and procedures on disk.
Object libraries and source libraries.

The Library Maintenance programs.

RPG II object output.

The CALL statement.

The COMPILE statement.

BEFORE READING THIS QHAPTER YOU SHOULD BE ABLE TO:
Describe basic disk concepts such as sector and disk system management.
Differentiate between fixed and removable disks.

Define source programs, object programs, and OCL.
Define permanent and temporary programs.

Describe how programs and OCL statements are loaded into storage from cards.

Storing Programs and Procedures on Disk 8-1

8-2

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Define procedures.
List the advantages and considerations for storing programs and procedures on disk.
Describe object libraries and source libraries.
List the functions of the Library Maintenance program.

Code the OCL and program control statements to build object and source libraries
and store programs and procedures.

Describe the CALL statement.
Code the RPG II Control Card Specification Sheet for object output.

Code the COMPILE Statement.

INTRODUCTION

In the System/3 Disk System, programs and OCL statements
can be stored on disk and transferred as needed into main
storage.

The area in which programs are stored on disk is called a
library. Two types of libraries can be located on a disk:
object libraries and source libraries. Object libraries con-
tain object programs; source libraries contain source pro-
grams, OCL statements, and utility program control state-
ments.

When OCL statements and utility program control state-
ments are stored in a source library, they are call procedures.

The System/3 Library Maintenance program can be used to:
o Allocate space for libraries.

e Enter programs and procedures into libraries.

e Maintain libraries.

More information about this program and its functions is

given later in this chapter under The Library Maintenance
Program.

Storing Programs and Procedures on Disk 8-3

ADVANTAGES OF STORING PROGRAMS AND
PROCEDURES ON DISK

By storing frequently used programs and procedures on
disk, you can increase the efficiency of your system opera-
tion and reduce the amount of time required to process
jobs. When you need a particular program or procedure, it
can be loaded from disk, reducing card handling. When
programs and procedures are located on disk, firm opera-
ting procedures can be established.

Increasing System Efficiency

All programs and procedures can be placed on a master
pack and copied to the fixed disk for execution. For
example, you can load an entire series of application pro-
grams and procedures on a fixed disk with a minimum
number of control statements. Assume you run payroil
every Friday morning. On Friday, you can use a pre-
tested procedure to transfer all the required programs and
their procedures from the master pack to a fixed disk,
then run payroll.

There are two library functions that make this method
particularly efficient: naming conventions and object lib-
rary expansion.

Naming Conventions: You can transfer all the correct pro-
grams and procedures from the master pack to the fixed
disk using one Library Maintenance control statement, if
you establish and use a naming convention. The names of
all programs and procedures used in an application series
should begin with the same letters. For example, name all
payroll programs and their corresponding procedures be-
ginning with the letters PAY. Then, with one COPY con-
trol statement, all payroll programs and procedures in both
libraries will be copied onto the fixed disk.

(The COPY control statement is described under The Lib-
rary Maintenance Program.)

Object Library Expansion: Object libraries are capable of
expanding their size for temporary entries. When you copy
an object program onto the fixed disk, you can designate

it as a temporary entry. Then if you add a permanent
entry, reallocate the library, or delete all temporary entries,
the object library will return to its normal size. Consequent-
ly, by using this function, you use a minimum amount of
storage on the fixed disk, leaving it free to perform other
functions when you are not using the object library.

Decreasing Processing Time

Disk system management takes more time to read programs
from caras into main storage than to read programs from
disk into main storage. Once your programs and procedures
are located on disk, programs can be transferred quickly
into main storage, thereby decreasing the amount of time
to run your jobs. Operating time is also saved because the
operator does not handle card decks.

Storing Programs and Their Data Files on Removable Disks

If space on the fixed disk is limited, or if you prefer to do
so, programs and the data files they process can be stored
on a removable disk. By placing programs and data files on
the same disk,'you can reduce the number of times disk
packs must be changed. This is especially true if a program
uses only one data file. This also allows more available
space on the fixed disk, a more flexible arrangement of
space for output files on the fixed disk, and placement of
files to minimize access time.

84

14 8 jzl 16 20 24I 8 32 136 40 a4 48 52 56 60 64 68 72
/|
A/ aPy| IFIROM-R1l, ITia-1A1], [Li1 IBRARNY}- ALIL], -IPAYL.AILIL

PR R A

There are certain things you must consider when placing
both programs and data files on a removable disk, however.
First, more space is required on the removable disk.

Maintaining programs on a removable disk is more difficult,
because they are scattered across several disks instead of all
located on a master pack. For example, if the format of an
inventory record changed, you must search several packs to
update all the programs using that record, rather than search-
ing just one master pack. You should have a master pack

so that you have copies of your programs if something
happens to one of the other disks.

You should not place data and programs on the same packs
if you are processing multi-volume files. The pack contain-
ing the program cannot be removed during the job.

LOCATION OF LIBRARIES ON DISK

You can place a source library, an object library, or both
on a disk. If space is allocated for only a source or object
library, the Library Maintenance program places the library
in the first available disk area large enough to contain the
library.

If you are allocating space for a source library on a disk
containing an object library, a disk area large enough for
the source library must immediately precede or follow the
object library (Figure 8-1). If the disk area follows the ob-
ject library, the Library Maintenance program moves the
object library to allow space for the source library pre-
cedingit.

If an object library is being allocated on a disk with a source
library, space for the object library must immediately fol-
low the source library.

User

e Libr:
Area Source Library

swaA (2)

Directory

Directory

|
[
{ Obiject Library
|
]

User
Area

tracks.

Upper Boundary

@ If there are no use files present at the time the
library is created, this area contains alternate

(2) scheduler Work Area for Roll-in/Roll-out.

T

Figure 8-1. Relative Positions of Libraries on Disk

Storing Programs and Procedures on Disk 8-5

OBJECT LIBRARIES

The object library is an area on disk used to store object
programs and routines. Object programs, or executable
programs, are programs and subroutines that can be loaded
for execution. Routines, or nonexecutable programs, are
programs and subroutines that need further translation be-
fore being loaded for execution. Nonexecutable programs
are used by the compiler and must be on the same disk
pack as the compiler. Figure 8-2 is a sample object library.

The object library is one physical area containing two
logically different types of entries: object programs and
routines. When these entries are copied into the object
library, they are given different object library designations.
Object programs are given an O library designation; routines
are given an R library designation. Figure 8-3 shows the
logical library entries within the object library.

V\/\v\ff\ﬂ

Source Library (optional)

Object Library Directory
Object Library containing:

1. Executable object
programs

2. Routines (nonexecutable
object programs)

Upper Boundary

User Area

Figure 8-2. Format of the Object Library

8-6

Physical Characteristics of the Object Library

Size: The minimum size of a library not on a system pack
is three tracks. The minimum size of an object library on a
system pack is 30 tracks. (You can build an object library
on any disk pack, but you must have one library online
containing the systems programs.)

For the object library consisting of system programs, the
disk area forming the library must also be large enough to
contain a work area for disk system management. The
number of tracks for the work area space need not be in-
cluded in the number of tracks you specify for the library;
the Library Maintenance program calculates and assigns the
additional space for you. The amount of additional space
needed depends on the capacity of your system and whether
your programming system has inquiry capability or the dual
programming feature. Figure 8-4 is a table showing the
work area size required for various system capacities.

OBJECT LIBRARY
W
O. Library Entries
Permanent Entries and

R. Library Entries

O. Library Entries
Temporary Entries and

R. Library Entries
W

The O library entries are executable pragrams. They are
loaded by the LOAD statement.

The R library entries are nonexecutable routines used by
the compiler. They must be on the same disk as the compiler.

Figure 8-3. Logical Parts of an Object Library

Directory: The Library Maintenance program creates a
directory for every object library (Figure 8-2). The direc-
tory acts as a table of contents for the programs contained
within the object library. It contains such information as
the name and location of the entries. If the object library
is on a system pack, three of the requested tracks are re-
served for the directory. If not, only the first track is re-
served for the directory.

Upper Boundary: The upper boundary of the object lib-
rary (Figure 8-2) will automatically expand only if more
space is needed for temporary entries and if area next to
the library is available. When permanent entries are placed
in the library, all the temporary entries are deleted and the
object library returns to its normal size.

To make efficient use of this feature, the area next to the
upper boundary of the object library should be kept free
of data files. When disk system management automatically
allocates file space for you, the area next to the object lib-
rary is probably free because your files are placed as close
to the end of the disk pack as possible. When allocating
your own file space, you should allocate your files toward
the end of the pack, also. This leaves room for object lib-
rary expansion.

Organization of Entries: Entries are stored in the object
library serially; that is, a twenty-sector program occupies
20 consecutive sectors. Temporary entries follow all per-
manent entries in the object library. The permanent entry
is loaded into the first available space large enough to hold
it, usually the space following the last permanent entry.

Gaps can occur in the object library when a permanent entry
is deleted and replaced with one using fewer sectors. The
Library Maintenance program scans the library to locate
available sectors, then places the entry into the smallest gap
large enough to hold it.

You should use the Library Maintenance program to re-
organize the library when you delete permanent entries,
when a great number of additions and deletions take place,
or when there is no apparent room.

In reorganizing entries, the Library Maintenance program
shifts entries so that gaps do not appear between them.
This makes more sectors available for use. ‘

Frequent adding, replacing, and deleting of entries causes
unusable sectors. You can determine how many sectors are
unusable by printing the library directory using the Library
Maintenance program.

Scheduler Work Area Size

No Inquiry No Inquiry Inquiry Inquiry ROLL-IN/
Capacity Without DPF With DPF Without DPF With DPF ROLL-OUT
12K bytes 2 tracks 4 tracks 6 tracks 8 tracks 4 tracks
16K bytes 2 tracks 4 tracks 7 tracks 9 tracks b tracks
24K bytes 2 tracks 4 tr;cks 8 tracks 10 tracks 7 tracks
32K bytes 2 tracks 4 tracks 9 tracks 11 tracks 9 tracks

@ Dual Programming Feature.

@Tracks needed by the scheduler to retain information concerning an interrupted program.

Figure 8-4. Work Area Size

Storing Programs and Procedures on Disk 8-7

SOURCE LIBRARIES

Source libraries can contain source program statements and
procedures. Examples of source statements are RPG II
source programs and sequence specifications for the Disk
Sort program.

Procedures are sets of OCL statements. The procedures for
utility programs can include program control statements.

Entries in the source library can be comprised of ahy valid
System/3 characters. Figure 8-5 shows the format of the
source library.

The source library is one physical area containing two
logically different types of entries. When these entries are
copied into source libraries, they are given different source
library designations. Source programs are given an S library
designation; procedures are given a P library designation.
Figure 8-6 shows the logical entries within the source
library.

~ "N

User Area

Source Library Directory

Source Library containing:

1. Source program
statements

2. Procedures

Object Library Directory

Figure 8-S. Format of the Source Library

88

Physical Characteristics of the Source Library

Size: The minimum size of a source library is one track.

Directory: Note the area labeled source library directory
in Figure 8-5. The directory acts as a table of contents for
each source library entry containing such information as
the name and location of each entry. The first two sectors
of the first track are always assigned to the directory with
additional sectors'used as needed.

Organization of Entries: Entries within the source library
need not be stored in consecutive sectors. An entry can be
stored in widely separated sectors with each sector contain-
ing a pointer to the next sector that contains the next part
of the entry.

The boundary of the source library cannot be expanded;
therefore, an entry must fit within the available library
space. The system provides maximum space within the pre-
scribed limits of the source library by compressing entries.
That is, all duplicate characters are removed from entries.
Later, if the entries are printed or punched, the duplicate
characters are reinserted.

SOURCE LIBRARY

G g N

S. Library Entries
and
P. Library Entries

WN

The S library entries are source programs. Procedures
cannot be executed from this library.

The P library entries are procedures which can be executed.

Figure 8-6. Logical Entries Within the Source Library

STORING PROGRAMS AND PROCEDURES INTO
LIBRARIES

There are three methods you can use to store programs into
libraries: the Library Maintenance program, a specification
on the RPG II Control Card Sheet, or the COMPILE OCL
statement.

The Library Maintenance Program

Depending upon your specifications, the Library Mainten-
ance program can:

o Allocate space for a library. It can create, reorganize,
change the size of, or delete a library.

o Delete entries from a library.

o Copy entries from one location to another within a lib-
rary, from one library to another, from the input device
to alibrary, from the library to a printer, or from a lib-
rary to a punch, and give new names if requested.

o Rename library entries.

In this discussion, only creation of libraries and storing of
programs and procedures into libraries from an input de-
vice are described. Maintenance functions of the program
are mentioned only in general terms. More information
about maintenance is in the IBM System/3 Disk System
Reference Manual, GC21-7512.

OCL Statements and Program Control Statements
The Library Maintenance program (SMAINT) requires the

same OCL statements as other utility programs. A sample
job stream to load the program from F1 into storage is:

4 8 12 16 20 24 28

RUNA'D LN, |H2

l a/nf,co nlor(] |di '01,64175:1)

~SNSISNINT-
PN e
O

Program control statements follow OCL statements in the

job stream and provide the program with information con-
cerning its functions. The program control statements and
their associated functions are:

o ALLOCATE: assigns or cancels disk space for libraries.
Using this statement you can also reorganize or change
the size of libraries. '

o DELETE: removes entries from a library.

o COPY: copies entries from one location to another
within a library (renaming the entries), from one lib-
rary to another, from the input device to a library, from
the library to a printer, or from a library to a punch.

o CEND: follows card decks to be copied from the reader
into a library and indicates the end of the input to be
copied.

o RENAME: changes the name of a library entry.

o END: follows the program control statement and in-

dicates to disk system management that the job stream
for the Library Maintenance program has ended.

Storing Programs and Procedures on Disk 8-9

A sample job stream loading the program and creating an
object library consisting of five tracks on R1 is:

12

1 4 8 I 16 20 24 28 32 36 40 44 48 52
(I
OCL Statements / / | AD T . Fl
1 I/ R HNF '
Program Control { /\/ ékl TIEl |TIO-RIL ,O%J EICITI-15
Statements / / D
|

Remember that the library program control statements must
be terminated by an END statement. :

Storing Programs In an Object Library

To store object programs in an object library you must first
use the Library Maintenance program to create an object
library. You can then copy the program from an input
device or another library into the library.

The Library Maintenance program creates object libraries
according to the specifications you code on the ALLOCATE
statement. Figure 8-7 shows the format of the ALLOCATE
statement to create an object library. The keyword para-
meters for the ALLOCATE statement include TO,
OBJECT, SYSTEM, and WORK.

The TO keyword parameter indicates the location of the
disk drive on which the library is to be created.

The OBJECT keyword parameter indicates the number of
tracks to be used for the library. If an O is coded, the lib-
rary is deleted; if an R is coded, the library is reorganized.

The SYSTEM keyword parameter assigns the number of
tracks for the object library directory. If NO is coded, one
track is assigned to the directory, and the directory will not
be large enough to contain system program entries. If YES
is coded, three tracks are assigned to the directory, and the
directory will be large enough to contain entries for the

system programs. The parameter YES must be assigned if a
disk is being created to contain a minimum system.

The WORK keyword parameter indicates the drive on
which a second disk containing a disk system management
work area is located. A work area is required if you are:

o Reallocating space for an existing library.

Allocating space to create a source library on a disk that
contains only an object library.

Removing a source library from a disk that also contains
an object library.

{
Library entries are temporarily stored in the work area
while the program moves and reorganizes libraries.

Creating an Object Library: Assume you are creating an
object library on a disk located on R1 that consists of 12
tracks. You are not storing a minimum system in the lib-
rary, so only one track is needed for the directory. The
ALLOCATE statement looks like this:

12

R1
/I ALLOCATE TO—{ :‘2 },OBJECT— iNUNF'{BEag SYSTEM— %

F2

1 4 8 16 20 24 28 32 I 36
/1€
/Y| INULIOCATIEL [TO-IR1], 0BYIELC -12,sverMI—
R1
NO F1
YES% 'WORK_{Rz}
F2

Figure 8-7. Format of the ALLOCATE Statement to Create an Object

8-10

Library

Since you are not reallocating space for the library, note The NAME keyword parameter further identifies the entries

that the WORK keyword parameter is not required. to be copied into the library. (The NAME, LIBRARY and
‘ RETAIN keyword parameters are used together to identify
Once you have created the library, you can store object the entries to be copied.) The possible data that can fol-

programs into it. The Library Maintenance program copies low NAME are:

entries into a library according to the specifications you

code on the COPY statement (Figure 8-8). The keyword e name — Name of the library entry to be copied.
parameters for the COPY statement are FROM, LIBRARY,

NAME, TO, RETAIN, and NEWNAME. o characters. ALL — Only those entries beginning with the

indicated characters are to be copied. Up to five charac-

The FROM keyword parameter indicates the location of ters can be used.

the input file containing the entries to be copied. The

input file may be on cards in the reader or on disk in a e ALL— All entries (of the type indicated to the LIBRARY

library. parameter) are to be copied.

The LIBRARY keyword parameter indicates the type of

entry being stored into a library: e DIR — Directory entries for all library entries of the
type indicated in the LIBRARY keyword parameter are

e S — Source statements to be stored in a source library. to be copied. If the LIBRARY keyword parameter is

ALL, system directory entries are also printed.

e P — OCL procedures to be stored into a source library.
o SYSTEM — Only system programs comprising a minimum

e O — Object programs to be stored into an object library. system are to be copied.
o R — Routines to be stored into an object library. o $cc.ALL — The IBM program with the name beginning
with the indicated characters ($cc) is to be copied. For
e ALL — All types of entries are to be copied to the example, SMA.ALL means the Library Maintenance
corresponding libraries. program (SMAINT) is to be copied.
R1 s name 211
F1 P S characters.ALL ? R2
// COPY FROM-— < R2 LLIBRARY—{ O NAME- ¢ ALL ,TO-{ F2
F2 R vaTEM PRINT
'READER ALL ScCALL PUNCH
: PRTPCH
T name
RETAIN— ll; ,/NEWNAME— i characters. ALL%

Figure 8-8. COPY Statement Format

Storing Programs and Procedures on Disk 8-11

The TO keyword parameter indicates on what device the
output file is located. The possible devices are:

o Disk drive — R1, F1, R2, F2.

e PRINT — Entries are to be printed on the system
printed.

o PUNCH — Entries are to be punched on cards.

o PRTPCH — Entries are to be both punched and printed.

The RETAIN keyword parameter identifies the status of

an entry and can change the status of an existing entry.

The possible parameters are:

e T — Temporary entry.

o P — Permanent entry.

o R — Replaces an entry. This parameter is used if you
are copying an entry into a library on a disk that al-
ready has an entry with that name. The new entry is

placed in the library and the old entry is deleted. A
temporary entry cannot replace a permanent entry.

The NEWNAME keyword parameter indicates the name
you want used on the entries being copied on disk. With-
out this keyword parameter, the program uses the NAME
keyword parameter. The NEWNAME-characters. ALL
parameter indicates you want to use these characters to
identify all the entries you are placing on disk instead of
the characters specified in the NAME-characters. ALL
statement.

Storing an Object Program: Assume you want to store an
object program in the library created on R1. The object
program is labeled PAYO02 and is stored on cards. It will
be a permanent entry. Figure 8-9 is the COPY statement
to load PAY02. The job stream for this program is shown
in Figure 8-10.

Storing Programs and Procedures in a Source Library

To store programs and procedures in source libraries, you
must first use the Library Maintenance program to create
a source library, then copy entries into the source library.

1é 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/ .
/V| CIOPY| FIROM-READER. LI BRARY[-10, INAMEI-BEAYPI2!, O -R11{, RIETAL M-

| gr‘BH ’ ['Im ’ ’ INI &
Figure 8-9. A COPY Statement for Loading PAY02 Into the Object Library
1£ 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/ .
% LIOAD| [§MAIINT], A1 ILIOBIDY 1L RRIARI] W1 NTIEANICE OIGRAM
/7 COPY PROA-READER, LIERARN- 0 JWlie- Pz - i RErhlI-7

(OBUEICT] [PROGIRAM)
/|/| ICEIND CE! ISIT| |TIERM| INAITIE| OBUIEICIT] DIEIC
/\/ QD F| LI.EJTQ TIERMIINATIE! SIT TEnE 1S
C G
RHH PR A CENANCE- PP

Figure 8-10. Job Stream to Load PAY02 Into the Object Library

812

The Library Maintenance program creates a source library
according to your specifications on the ALLOCATE state-
ment. The ALLOCATE statement to build a source lib-
rary looks like this:

R1 R1
F1 NUMBER F1
// ALLOCATE TO- - -
{Rz},sounce 3 R } WORK—¢ Lo
F2 F2

The TO keyword parameter indicates on which drive the
disk containing the library is located.

The SOURCE keyword parameter indicates the number of
tracks comprising the library. If O is coded, the library is
deleted; if R is coded, the library is reorganized.

The WORK keyword parameter indicates on which drive a
second disk containing a disk system management work
area is located. A work area is required if you are:

e Reallocating space for an existing library.

e Allocating space to build a source library on a disk con-
taining only an object library.

e Removing a source library from a disk also containing
an object library.

Library entries are temporarily stored in the work area
while the program moves and reorganizes libraries.

}

Creating a Source Library: Assume you want to create a
source library on a disk already containing an object lib-
rary. The library will contain 15 tracks and be located on
R1. The ALLOCATE statement looks like this:

16 20 24 32 K
| I

[
URClE-IL5],
1 TT1

=
ES
fee]

~I\.
-

O-R1l.5

If you are allocating space for a source library on a disk
that contains an object library, you must designate a work
area. Your choices in this case are F1, R2, or F2, depend-
ing on which disk has the available work space.

After a source library is created, you can load procedures
or source programs into it. The Library Maintenance pro-
gram copies entries into the library according to your
specifications on the COPY statement. The format and
possible keyword parameters for the COPY statement are
described in the section Creating an Object Library.

Note: For the purpose of instruction, creation of source
and object libraries have been described separately. Itis
most advantageous, however, to create both libraries at the
same time.

Storing Programs and Procedures on Disk 8-13

Storing a Procedure in the Source Library: As stated pre-
viously under Storing an Object Program, the program
PAYO02 was loaded into an object library. Now that a
source library has also been created, the procedures needed
to execute PAYO02 can also be stored on disk. Figure 8-11
shows the COPY statement required to enter the procedure
(named PAYPRO) from cards into the library. Notice that

keyboard. The job stream required to merge procedures
and execute the appropriate program looks like this:

12 28 32 36

LIBRARY-P is coded. P designates that a procedure is to
be copied into the source library. (LIBRARY-S would in-
dicate that a source program is being copied into the source
library.)

The job stream needed to load the Library Maintenance
program and copy PAYPRO into the source library is shown
in Figure 8-12.

~N-
—
])

[[T {

CALL statements tell disk system management to merge
procedures into the job stream. The CALL statements are,
in effect, replaced by the procedures they identify and can-
not be placed in the source library.

The statement required to merge the procedure PAYPRO
into the job stream are:

Calling Procedures: Procedures in the source library will 1 a4 8 12 16 20 2a 28
not be executed until they are placed into a job stream by / $
disk system management from either cards or the printer- NEn viokeld Rl
il Rﬁt‘& '
[
14 8 |12 16 | 20 24 28 32| | 36 40 44 a8 52 56 60 64 68 72
/] |
/1] IcloPy] RO{M}-RE | LI/ BRIARY!-TH, -P vpn{o\ro- 1|, RETAIN- P
Figure 8-11. COPY Statement to Load PAYPRO Into the Source Library
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/¢ L]
/| ILOAD 1INTLIFi
/|/| IRU .
/|/] I FIROM-[READIER, LI BRARYI-|P, -PAYPRO, TO-[Ri1|, [RETIALN-
This procedure is
stored in the source }: / / CAD P 2 1
library under the // E’L N El- Y| ST\P "V'OLI\ NILIT]-[R12
name PAYPRO. /1] IRUIN))
/|| \clen
/|l EW

Figure 8-12. Job Stream to Load PAYPRO Into a Source Library

8-14

Using RPG 1l to Store an Object Program on Disk

You can use RPG II to indicate the type of object output
you want after compiling a source program. The compiled
program can be stored in an object library or punched into
cards. You usually want the object program written in the
object library until you have corrected the severe errors in
your program. When a program is written temporarily in
the object library, it is overlaid by the next program written
in that object library. The object program is written in the
same object library containing the compiler, unless a
COMPILE statement indicates otherwise. (See Compiling
and Storing a Source Program Into the Object Library for
further information.)

Column 10 of the RPG II Control Card Sheet is used to
specify the object output. The following entries can be
made:

Entry Explanation

blank The object program is written temporarily
in the object library.

C The object program is written permanently
in the object library.

P The object program is punched into cards.

Columns 75-80 of the control card are used to name your
object program. This name is used in the library directory
which also contains the location of your program on disk.
The name may be comprised of any System/3 characters,
but the first character must be alphabetic. If columns
75-80 are left blank, the compiler assumes the name is
RPGOBIJ.

Compiling and Storing a Source Program Into an Object
Library

The COMPILE OCL statement tells disk system manage-
ment to:

1. Compile a source program from a source library and
store the object program in an object library, or

2. Compile a source program from cards and store the
object in an object library.

The format of the COMPILE statement looks like this:

R2 R2

SR1 R1

F1 F1

// COMPILE SOURCE—name,UNIT—l },OBJECT—{ }
F2 F2

The SOURCE keyword parameter is used if the source pro-
gram is located in a source library. You must supply the

‘same name given to the source program when it was stored

in the library by the Library Maintenance program. The
UNIT parameter must be used with the SOURCE parameter
to identify the disk location of the source program to be
compiled.

If the SOURCE keyword parameter is not used, the source
program is assumed to be on cards following the RUN
statement in the job stream.

The OBJECT keyword parameter tells the system where
the disk which will contain the object program is located.
If the source program is on cards, the OBJECT keyword
parameter is the only parameter which can be specified. If
the OBJECT keyword parameter is omitted in either case,
the object program is placed on the same disk pack as the
compiler. The name assigned to object program in the
object library is the name you assigned in the Program
Identification (columns *75-80) on the RPG II Control
Card Sheet. If you did not assign a name in these columns,
RPGOBJ is assumed.

Storing Programs and Procedures on Disk 8-15

Sample Statements

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
/¢

MO SA#FQ,Fl

/] \CloMPlLILIE Clel- CLIST‘U%IT-FI,OBJECT— 1

/|/ RII

This sample job stream tells the system that the source pro-
gram named SALES is located on a fixed disk on drive one

(F1). The OBJECT-R1 keyword parameter tells the system
to place the object program on a removable disk on drive

one (R1).
1 4 8 12 16 20 24 28
/I€]
/|/{ LIOA Gl,[AL
/1] \clomPliLIE! I0BIIEICIT-IR1
/l/] IRIUN
(laotudrlcle] Hielck])

This sample job stream compiles a source program on cards
and stores it in an object library on R1. If the OBJECT
parameter was not coded, the program would be compiled
and placed into the same object library as the compiler (F1).

816

10.

Review 8

What types of programs are stored in the source library? The object library?

What is a procedure?

What are two advantages of storing programs and procedures on disk?

What are the three ways entries can be copied into the source or object library?

Write the control statements to set aside ten tracks for the object library on a new disk.

Write the control statements to execute an object program named ARQO1 which is stored in the
object library on F1. The program uses no disk files.

Write the control statements to copy the procedure in question 6 into the source library on F1.

Write the control statements to copy an RPG II object program stored in cards into the object
library on F1 with the name ARQO1. ‘

Write the control statements to transfer the program named AR0O1 in the object library on F1 to the
object library on R1 and delete the current AROO1 on R1.

Write the control statements to print out the object library directory from F1.

Storing Programs and Procedures on Disk 8-17

Answers to Review 8

8-18

RPG II source programs and OCL procedures are stored in the source libraries.
Executable object programs and nonexecutable subroutines are stored in the object libraries.

A procedure is a set of OCL statements for a given job.

When the source and procedure libraries are used, time is saved loading programs and operation is
made simpler.

Entries can be cataloged into the source and object library via the library maintenance program.
RPG 1II object programs can be cataloged into the object library at compilation time by specifying
C or blank in column 10 of the RPG II control (HCC6) card. A blank entry specifies that the
program be cataloged with a temporary attribute. Cis used to catalog the programs permanently.

1 4 8 12 16 20 24 28 32
AT T
H LIOADL BEMAILINT], 1
I\ Oc|ATIEl trol-F{1], JoBUIECIT]-
il
|
1 4 8 12 16 20 24 28
/¢
/V/1 ILIO REOMLI . IFl1
/|/
[l

[=
o
©Q
Yo
)
=
o —]
w
<
[
[t
]
4 -~
o~y
S \
<
Q
]
=))
©
@]
uj
=
o
3]
& |
>
¥ &
-~
Q +
N
1
© L =
4+ Tuyly]
[Py
HES]
w —
(0%
<X |
©
() > Q
)
QD Q[O[ul
< ~ O - uy
U TSNNSO
[NSNS

[=]
©
[{o]
0
1
=
o —|
n
—
i
7 =
i
1]
M \
O
=
Q —
[{e]
™
1
L1
o
™
O..
«Q 1
N
Y
d
[
[,
S i
]
W.
v
o Tl T
4+ [wl
 —
= _,T&
N — A
- (@AY
(a4
5 [LL| Y
LY ——
[an) > TS
= QA [
QO[O | il =i
< .LDmC” (W X1
A ST SN ~IS~
- NN SN S I

72

68

60

56

52

48

40

36

32

28

24

1], ITl0-IR1l, RETAIN-

El-

20

16

JFIL]
uaV INA]]

12

Y-,

Y| IF]

d

A/ LOAD A

/|/

(|/| CIEM

h’eqp
10

/|¢

Jil

60

56

52

40

36

32

28

24

20

16

12

Y-, N AME - Dl R [ro PRI

NG

~[R1,|LIB

[

§

/I/l LD
NN R

/|| CIOPY| FIR
/\/|_ENID

Storing Programs and Procedures on Disk 8-19

8-20

INQUIRY

CHAPTER 9 DESCRIBES:
Inquiry programs.
The use of the 5471 Printer-Keyboard for inquiry.
Coding RPG II control card specifications to classify inquiry programs.

How inquiry operates in a dedicated environment.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO:

Define basic disk system concepts such as disk, main storage, and disk system
management.

Define online.

Define object library.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Define inquiry.
List and define the three classifications of programs for inquiry.
Describe roll-out and roll-in.

Describe the use of the 5471 Printer-Keyboard.

Inquiry 9-1

INTRODUCTION

In some data processing applications, inquiries that require
immediate answers occur. One customer may want the
status of his account; another may want to know if an
item is in stock for immediate delivery. To answer these
inquiries, you must be able to access certain disk records.
The object program you use to retrieve this information is
called an inquiry program.

Inquiry programs can be executed as part of a normal job
stream, or they can interrupt other programs that are
executing (interrupt environment). After a request for in-
quiry is made in an interrupt environment, the following
things occur:

1. A program being executed is interrupted.
2. The current status of the program is stored on disk.

3. The inquiry program is loaded to retrieve and display
the requested information.

4. The original program is reloaded.

REQUESTING INQUIRY IN AN INTERRUPT
ENVIRONMENT

To interrupt a job prior to loading an inquiry program,
you must make an inquiry request. To request inquiry,
you must have a printer-keyboard such as an IBM 5471
Printer-Keyboard (Figure 9-1). On the 5471, the key
labeled REQ is the Request Key. When pressed, it causes
an interrupt and indicates to disk system management
that an inquiry program is about to be loaded and the
program that is executing must be stored on disk. The
OCL statements for the inquiry program are then initiated
from the printer-keyboard. (At least the READER state-
ment indicating what input device contains the OCL state-
ments must be entered from the keyboard.)

The inquiry program must be loaded from the object li-
brary (see Chapter 8. Storing Programs and Procedures on
Disk). If you interrupt a program that is processing input
from cards, refer to the IBM System/3 Disk System
Operator's Guide, GC21-7508 for information on how to
clear the MFCU.

92

Functions of the Inquiry Request Key
The Inquiry Request Key can be pressed to:

1. Interrupt an executing program and thereby enter
the interrupt environment.

2. Initiate an inquiry program that is already in main
storage waiting for an inquiry request to begin execu-
tion.

3. Initiate the reading of input data from the printer-
keyboard for a program described in the second item
of this list.

CLASSIFYING PROGRAMS FOR INQUIRY

Not all programs can be interrupted by an inquiry program.
By coding specifications in column 37 (Figure 9-2) on the
RPG II Control Card Sheet, you determine whether the
program can be interrupted. The entries which classify the
program are:

o P (blank) — A B-type program is a processing program
that does not recognize an inquiry request. It cannot
be interrupted.

e B — A B-type program is a processing program that
recognizes an inquiry request, and, therefore, can be
interrupted or stored on disk.

e I — While I-type programs can be loaded as inquiry pro-
grams in an interrupt environment (see note), a program
is usually classified as an I-type when it is used as an in-
quiry program that is to remain in main storage for the
servicing of inquiries. An I-type program can be exec-

uted only by an inquiry request (pressing the Request Key).

An I-type program cannot be interrupted and stored on
disk. If aninput file is to be entered from the printer-key-
board for an J-type program, you must again press the
Request Key to initiate reading of the input file.

Note: An inquiry program that interrupts a B-type pro-
gram can be classified as B, §, or Itype. An inquiry pro-
gram loaded to perform a complete job is usually classi-
fied as a B-type program. An inquiry program loaded to
answer one request or few requests is usually loaded as an -
Itype program (see Planning Inquiry Programs for further
information). If a B-type program is rolled out by an in-
quiry program also classified as B-type, the iriquiry pro-
gram must complete execution before another inquiry
request is made.

= < N H % ’ > * () - +
EnD ||PROCEED
1 2 3 4 5 6 7 8 9 () . &
¢
Q w E R T Y U 1 o P e
RETURN
_ ! " REQUEST
LOCK A s D F G H J K L $ PENDING
1 = ?
SHIFT 2 x c v 8 N M , / SHIFT CANCEL

I 53309

Figure 9-1. Keyboard Format of ‘the 5471 Printer-Keyboard

Control Card Specifications
8| sterling E’
HRERERE F
Core _'ECore §'§Q§§‘_§Numw 2 »)
Line % zi:ex?h §_§ zi::ot‘x. § g ;5' %g § § ’?f:‘,.i"(% Refer to the specific System Reference Library manual for actual entries.
£ Rt 11 23 1611 L) N i . If you leave the column blank, this
§ §§ §§ EE|ls g g é RPG Inquiry Support program cannot be interrupted.
3 4 5(6)7 8 9 [10l11]12 13 14]1616]17|13]19{20]21]22]23 24 25;‘6 27 28 29 30 3% 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
opl M 1] L IERNEENRNERENR RN NN RN RN NN AN EREEE
Control Card Specifications
g Sterling E
5 g
HARERBE H
) Core |, || Core 28] {=(8] .| 3| Number | & ” i i
Line Size to g §| sizeto HH g 5k £ § Of Print | 8 Refer to the specific System Reference Library manual for actual entries.
é 11 W M L 3 g o8 If you code a B, this program
HE HHEHBEAHE g i
5 HH HHEE S HH B RPG Inquiry Support can be interrup{ed
3 4 BJ6)7 8 9]10{11]|12 13 14[15]16[17]18 l9201|222324252<6 27 28 29 30 31 32 33 34 35 45 46 47 48 49 50 51 52 63 54 55 56 57 58 59 60 61 62 63 64 65 66 67 63 69 70 71 72 73 74|
o[W 11 L] NEEEENNN AR AN NN RN AN N A RNEEE

Control Card Specifications
§ Sterling g
HRERERE H
Core | a] Core ‘é §‘ © Elg E Number | 2|
Line Sizeto | 2] 6] Sizeto 22| 21E |8 | Els ot prine |2 Refer to the specific System Reference Library manual for actual entries.
§ Compile |3 § Excane| {2153 i < E posiions |3 If you code an |, this program
£ gé Eg HEHHE g H RPG Inquiry Support can only be executed when an
- ° - 2 ; x‘ inquiry request is [made.
3 4 5(6]7 8 9 |10{11]12 13 14[15]|16|17]18]19]20]21{22|23 24 25]26|27 28 29 30 31 32 33 34 35 7 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 uwu o S9 70 71 72 73 74
ofp] I [1 [] RN RNRENENNEN: NRENER AR NN RN AN RN N RN AR

Figure 9-2. Coding RPG II Inquiry Support on the Control Card Sheet

Inquiry 9-3

INQUIRY IN AN INTERRUPT ENVIRONMENT

An inquiry program can be loaded into storage as any

other program, or it can be loaded when an inquiry request
is made to interrupt a program that is executing. When
your system is controlled by one program at any one time,
you have a dedicated system. Therefore, in an interrupt
environment you must interrupt the executing program to
allow the inquiry program to control the system. You re-
quest an interrupt by pressing the Request Key on the
printer-keyboard. You can only interrupt B-type programs.
As soon as the Request Key is pressed, the system sets

an indicator and the executing program completes the
execution cycle it is in. A system routine called

roll-out then transfers the B-type program from main
storage onto disk, retaining the current status of the pro-
gram (Figure 9-3, insert A). Space is allocated for the rolled
out program at system generation time. (See the IBM
System/3 Disk System Operator’s Guide, GC21-7508 for
system generation procedures.) Chapter 8. Storing Pro-
grams and Procedures on Disk contains the scheduler work
area size including space requirements for roll-out/roll-in.
The inquiry program is then loaded into main storage for
execution. (The inquiry program may be a §, I, or another
B-type program.) Figure 9-3, insert B shows the inquiry pro-
gram being loaded from disk into main storage. After the
inquiry program reaches the end of its processing, the B-
type program that was interrupted is transferred back into
main storage by the roll-in routine (Figure 9-3, insert C).
The interrupted program begins execution at the point of
the interruption.

Notice that the inquiry program that was loaded does not
get rolled out onto disk. Therefore, you cannot accumu-
late any information such as totals to be saved from one
inquiry request to the next.

FILE PLANNING

When an inquiry program is loaded, the files for that pro-
gram must be online. If an inquiry is received and the
proper file is not online, then the inquiry cannot be
processed. Your correct files must be mounted before
processing can occur.

This involves some file planning and job scheduling on your
part. For example, if most inquiries about stock status
come early in the morning, then the inventory file should
be online at that time, and programs using that file such as
invoicing or inventory transactions can also be run at the
same time.

PLANNING INQUIRY PROGRAMS

Since B-type programs can be interrupted, you must deter-
mine what types of programs should be classified as B-type.
Usually long reports that do not have to be finished immedi-
ately are classified as B-type. Such a report might be an
end-of-month stock status report.

Inquiry programs that can interrupt B-type programs can
be classified as ¥, B, or I-type. For example, suppose you
are running an end-of-month stock status report, and now
find you must run a payroll job. The payroll job can roll-
out the stock status job. It is a short job that must be
finished immediately. Another example of an inquiry pro-
gram that might need to be loaded immediately would be
a request to determine where a certain inventory item is
located so that it can be shipped. Since the inventory file
is online for the stock status report, the location of the
item could be determined quickly by an inquiry program.

Those programs you do not want rolled out should be
type. For example, you may be running a payroll job and
checks are positioned on the printer. You may not want
the payroll program rolled out, since the operator may have
to remove the checks and not reposition them correctly. If
you are running a teleprocessing program, you may not
want it rolled out because you may lose telephone con-
nections.

Programs classified as Itype can serve two purposes. In
dual programming (see Chapter 10. Dual Programming
Feature), an inquiry program can be loaded into one level
and remain there to service inquiries. Such a program must
be classified as Ftype. In a dedicated system, an Ftype pro-
gram could be loaded for a length of time to answer re-
quests. For example, an I-type program could be loaded
during the second shift of a day to answer inquiries into
the amount or location of items in a warehouse. An Itype
program remaining in main storage can only be executed
by pressing of the Request Key.

System/3

The B-type
@ B-Type program is
P rolled out
rogram onto disk.
System/3
The inquiry
program is

Inquiry

loaded into

-q\ storage.
Program
OBJECT LIBRARY

System/3

The B-type
B-Type program is

rolled back
Program into storage.

Figure 9-3. Roll-out and Roll-in

Inquiry 9-5

Review 9

What is meant by inquiry?
What are the three classifications of programs related to inquiry?
What is meant by roll-out and roll-in?

What is the significance of the 5471 Printer Keyboard in inquiry?

Inquiry 9-7

Answers to Review 9

9-8

Inquiry is a request for the contents of a specific disk record. This can be either in a batch environ-
ment or an interrupt environment where an executing program is interrupted to perform the inquiry.

An I-type program is an inquiry program which can only execute upon an inquiry request. A B-type
program can be interrupted. Any type can interrupt a B-type program. A J-type (blank) program
cannot be interrupted.

When an inquiry request is made, the executing program is halted and written out onto an area of
disk, preserving the current status of the program. The inquiry program is read in from disk. When
inquiry is completed, the original program is read back into storage and execution continued.

The 5471 Printer-Keyboard is required to perform inquiry and roll-in/roll-out. The inquiry request
is initiated by pressing the Request Key on the keyboard.

DUAL PROGRAMMING FEATURE

CHAPTER 10 DESCRIBES:
Operation of the dual programming feature (DPF).
Advantages of running programs under DPF.
Considerations for operating under DPF.
Considerations for running System/3 programs under DPF.
How to execute an RPG II program in DPF.

PARTITION statement and considerations for loading programs in a DPF environment.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:

Basic disk concepts such as I/O, main storage, supervisor, processing time, and
dedicated environment.

File processing, removable and fixed disks, and Initial Program Load (IPL).
The function of inquiry (B, B, and I-type programs). |

The function of teleprocessing.

Compilation of RPG II programs.

Function of DATE, LOG, NOHALT, HALT, IMAGE, and FORMS statement.

Overlays.

Dual Programming Feature 10-1

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO:
Describe how DPF operates.
List the advantages of running under DPF.
List the considerations for operating under DPF.

Demonstrate understanding of some of the considerations for running System/3
programs under DPF.

Describe how to execute RPG II object programs in DPF.

Identify, using reference material, the OCL statements that require special
considerations when loading a program in DPF.

Describe the function and coding for a PARTITION statement.

10-2

INTRODUCTION

With the dual programming feature (DPF), you can have
two programs in main storage at the same time. Only one,
however, can be executing instructions at any one time.

When DPF is operating, main storage contains the super-
visor and two programs. Control is transferred from one
program to the other whenever the program that is execu-
ting must await completion of an input or output opera-
tion. For example, one program requests a print opera-
tion, but the printer is still busy with a previous request.
Control is then transferred to the other program. Similarly,
one program requests that a card be read for processing.
Since the program must wait until reading is completed
before it can process the data, control is transferred to the
other program. The second program must await comple-
tion of an input or output operation, before control is re-
turned to the first program. Similarly, control is trans-
ferred when a halt occurs in one program level.

Most programs have a significant amount of time when
they are waiting for I/O completion. If both programs are
waiting, the program whose I/O completes first receives
control.

Figure 10-1 shows how main storage is organized in a DPF
environment. The supervisor occupies 4K (4,096) bytes of
storage in DPF. The storage areas occupied by the two
programs are called program level 1 and program level 2.
Each level must have a minimum of 4K bytes, if the level
is active.

4K bytes Supervisor
Minimum of
P
4K bytes 1 rogram Level 1
Unused Area
Minimum of
4K bytes T Program Level 2

The arrows indicate the direction in which
storage is allocated to each level. If the two
programs do not occupy the entire amount
of storage you have, an unassigned area
exists between program levels. This area
can then be used by disk system manage-
ment to increase the efficiency of your
system operation.

Figure 10-1. Main Storage in a DPF Environment

ADVANTAGES OF RUNNING PROGRAMS IN A DPF
ENVIRONMENT

Main Storage

DPF enables you to make more efficient use of your sys-
tem storage. For example, if you were to run a 4K program
on a 12K system in a dedicated environment, you would
only be using 7K of your storage:

Program =4K
Supervisor =3K
Used Storage =7K

Consequently, 5K storage is unused.

In a DPF environment, you could run two 4K programs on
a 12K system and use the entire storage capacity:

Two programs = 8K

Supervisor = 4K
Used storage = 12K
Input/Output Devices

With proper planning, DPF also enables you to use your
system input/output devices more effectively. In a dedi-
cated environment, you may run a program to copy one
disk to another. The MFCU and printer are not used. In
DPF, you could run two programs: one to copy a disk,
the other to read cards from the MFCU and print the data
on the printer.

Processing Time

DPF permits more efficient use of the computer’s proces-
sing time. When a program is executing, the central
processing unit is executing the program’s instructions.
When instructions are not being executed, the processing
capabilities of the computer are not used. For example, if
an instruction cannot be executed because data is not
available to be processed (waiting for a card to be read)

or because a device is not ready to execute the requested
instruction (printer is busy with a previous print instruc-
tion), execution of the program is suspended until the re-
quired conditions are satisfied. When the execution is sus-
pended, the computer’s processing time is lost because no
instructions can be executed. DPF allows control to trans-
fer to another program. That program can then begin
executing instructions, thereby using the processing time.

Dual Programming Feature 10-3

The inquiry function of System/3 and teleprocessing (BSC)
can be operated more efficiently under DPF than a dedi-
cated environment. In a dedicated environment, an inquiry
program must reside in storage or be loaded every time a
request is made, consequently rolling out a program that

is executing. In DPF, the inquiry program can be loaded
into one program level, and a program can still execute in
the other level.

If you are using teleprocessing (BSC), one program level
could be dedicated to teleprocessing; the other level would
be available for running other programs. For example, if
messages are being relayed from one terminal to another,
program level 2 can be assigned to teleprocessing. Although
messages are not relayed constantly through the day, the
teleprocessing program may have to be in storage at all
times. Therefore, if the teleprocessing program is loaded
into program level 2, it is available when needed. When
the teleprocessing program is inactive, normal processing
programs can use system resources.

CONSIDERATIONS FOR OPERATING UNDER DPF

You must consider the following points when planning to
use DPF:

1. You must determine that you have enough storage.
Because the supervisor requires 4K bytes, you could
not, for example, run one 4K program and one 5K
program on a 12K system. One of the two programs
could not be loaded.

2. Two programs in storage must use the proper com-
bination of I/O devices. Both program levels cannot
use the MFCU or the printer.

For example, if you were running two jobs both of
which require the printer, such as an invoicing and a
sales analysis job, one program could not execute be-
cause the printer would not be available. The disk
and the printer-keyboard can be shared by two pro-
grams. The disk data file can be shared depending
upon the type of disk file processing. Figure 10-2
shows the normal considerations for efficient file
processing. Figure 10-3 shows the restrictions when
a data file is shared by two program levels.

3. Care should be taken when the printer-keyboard is
used as: ’

o The system input device for both program levels.
e The system input device in one level and as an in-
put device for an RPG II program in the other

level.

104

If these situations arise, the operator must first deter-
mine which level is requesting information. Use of
the RPG I DSPLY operation code may help deter-
mine which level is requesting information. The per-
formance of DPF may also be less efficient, because
the operator may hold up your system when keying
in information.

4. Each one of these IBM programs requires dedicated
use of the system: RPG II Compiler, Library Main-
tenance, Basic Assembler, and IBM 1255 Utility
Program.

Note: Object programs denoted by a LOAD* OCL
card cannot be loaded into level 2. In order for an
object program on cards to be loaded into level 2, it
must first be copied from the reader to an object lib-
rary and then loaded from the object library.

5. File planning is necessary to avoid problems that
arise when two programs use the same disk drives.
For example, if two programs were using two separate
files on the same disk (Figure 10-4), the access arm
may have to move every time each program requests
1/0. Movement of the access arm will increase access
time, slowing the performance of the program. To
avoid this problem, it is most advantageous to have
files for each active program on separate disk drives.
You could, however, have separate files on two re-
movable disks or one file immediately above the
other file on fixed and removable disks as shown in
Figure 10-5.

Processing Method

Consecutive |Indexed | Random by Relative
Record Number
Consecutive Yes No Yes
s
" Create or
g retrieve-Yes
8 Indexed lf--------- Yes Yes
o Add or
2 update--No
i
Direct Yes No Yes

Note: You cannot reload a permanent file. If you reload
an indexed file as a consecutive or direct file, that
indexed file becomes a consecutive or direct file,
respectively.

Figure 10-2. Considerations for Efficient File Planning

Program Level 1

Read a File | Create or Add | Update Records
to a File in a File
Read a File Yes No Yes
g Create or
H Add to a No No No
- o
File
£ i
E
§’ Update
a Records Yes No No
in a File

Figure 10-3. Disk File Processing of a Data File Stored by Two Program Levels

Supervisor

Program Level 1

Program Level 2

Depending upon file locations, the access arm may
have to move a great distance between files.

Figure 10-4. File Locations Causing Arm Movement

FILEA

FILEB

requests 1/0.

-

5

If files are located one above the other, the access
arm may not have to move as far when each program

Figure 10-5. File Locations Causing Less Arm Movement

Dual Programming Feature 10-5

10-6

Points to Remember When Planning Files

e If two programs reference the same disk unit (R1,
F1, R2, F2), they must be processing the same
disk pack, because you cannot change a pack on
that unit for each program’s 1/0 request.

® If you load programs or procedures from a disk,
or use a disk for IPL, the disk cannot be removed.
In this case, it may be best to have programs and
procedures on the fixed disk, leaving the remov-
able disks free for changing.

o If one of the programs uses offline, multi-volume
files, the other program must not have files on the
same volumes. When a disk is replaced for one
program, it may contain files still needed by the
other.

® If two programs are initiated, one of which uses
data files on the system drive, the job that does
not use data files on that disk should be initiated
first. Program initiation involves numerous
accesses to the system programs that could greatly
increase your access time. If the program using
data files on the system drive were initiated first,
initiation of the other program would cause the
access arm to move frequently from the data files
to the system programs. If the program not using
data files on the system drive were initiated first,
it would read the system programs and be finished
with the drive, leaving it free for initiation and
execution of the program using the data files on
the system drive.

Individual programs will not necessarily run in any
less time under DPF than they would in a dedicated
environment. In fact, an individual program may
take longer to run in DPF. A set of programs, how-
ever, may finish sooner than they would if they were
run in a dedicated environment. For example, if you
had two jobs to run, neither of the individual jobs
may run in any less time. However, the set may be
finished sooner in a DPF environment, because one
program would be using any processing time that the
other could not use. If the programs were run con-
secutively, processing time may be wasted during
each program’s run.

JOB1 JOB3
An inquiry A stock status report
program that: that:
Program e Reads printer- e Reads disk.
Level 1 keyboard.
e Prints.
o Reads disk.

updating program job that:
that:
Program o Reads cards. o Reads cards.

Level 2

DPF requires efficient job scheduling because of the
preceding considerations. Suppose you had four jobs
to be run requiring the I/Q shown in Figure 10-6.
Jobs 1 and 2 and Jobs 3 and 4 can be run together,
because they do not require the same I/O devices. If
Job 2 finishes before Job 1, you could run Job 4
because Jobs 1 and 4 do not require the same devices.
If, on the other hand, Job 1 finishes first, Job 3
could not be run with Job 2, because both jobs re-
quire the printer for output.

e Writes printer-
keyboard.

JOB2 JoBs4

An inventory A detail punching

o Reads disk. o Punches cards.
e Updates disk.

e Prints.

Figure 10-6. Job Scheduling for DPF

CONSIDERATIONS WHEN RUNNING SYSTEM/3
PROGRAMS IN A DPF ENVIRONMENT

The inquiry function, the Disk Sort Program, the Alternate
Track Assignment Program, and the Disk Initialization
Program require special considerations when operating in

a DPF environment.

Inquiry

An inquiry program can either reside in one of the two
program levels in main storage or not reside in main storage.
If it is not in storage, an executing program must be rolled
out when an inquiry request is made. Remember the three
classifications of programs for inquiry:

e [-type is an inquiry program that cannot be rolled out.
e }-type cannot be rolled out.
e B-type can be rolled out.

If the inquiry program is in main storage, it must be an I
type program, and the other level must contain a §-type
program. The Itype program is then executed when the
Inquiry Request Key is pressed.

If the inquiry program does not reside in main storage, it
can be any of the three program types. However, if both
partitions are active, you must have a B-type program in
level 1 and a J-type program in level 2 to operate inquiry
when the inquiry program is not resident in storage. This

is because the system does not allow level 2 to be rolled out
upon an inquiry request. Consequently, no B-type program
can reside in level 2.

When a B-type program is rolled out in level 1, the OCL
statements for the inquiry program must be initiated from
the printer-keyboard (at least a READER statement indica-
ting what device contains the OCL statements must be en-
tered). The same storage and I/O devices are available to
the inquiry program as were available to the B-type program
when it was rolled out. However, if the inquiry program is
to share the same disk file as the B-type program, the file
processing restrictions in Figure 10-2 and Figure 10-3 apply.

Disk Sort, Alternate Track Assignment, and Disk
Initialization

The Disk Sort, Alternate Track Assignment, and Disk
Initialization programs require a minimum of 5K bytes
each to execute.

If they are loaded into program level 2, they are assigned
5K bytes unless you use an OCL PARTITION statement.
(You can use an OCL PARTITION statement to indicate
the size of the program you wish to run in level 2.)

The programs cannot be run in a 12K DPF system, if level
2 is active or a previous job used the PARTITION state-
ment for level 2. (4K for the supervisor plus 4K for pro-
gram level 2 leaves only 4K for the program in level 1.) If
the PARTITION statement was used for the previous pro-
gram, you must perform another IPL to run the programs.
You can never use more than 4K for program level 2 on a
12K DPF system.

Note: If you load the Disk Sort Program into level 1, all
storage except 4K bytes for the supervisor is used unless
level 2 is already active or you preassigned storage to level
2 using a PARTITION statement.

Dual Programming Feature 10-7

EXECUTING RPG Il OBJECT PROGRAMS IN A DPF
ENVIRONMENT

The amount of storage available for object program execu-
tion may differ from the amount of storage available for
object program generation. When the storage sizes differ,
you should indicate on the RPG II Control Card Sheet the
amount of main storage the object program can use. If this
amount results in overlays, some of the DPF performance
advantage may be lost. Columns 12-14 (Core Size to
Execute) indicate the amount of storage in which the pro-
gram will execute. The entries for these columns are:

Entry Explanation

Blank Storage available for object program
execution is the same as that for pro-
gram compilation.

001-029 Storage available for program execu-

tion (if different from storage for
program compilation).

The entry must end in column 14. The entry is some mul-
tiple of 1K bytes of storage (K = 1,024). To determine
the entry, subtract the amount of storage occupied by the
second program level and the supervisor from the total
storage capacity of the system. It is rarely desirable to
specify less than 4K since that is the minimum partition
size. Figure 10-7 is a sample Control Card Sheet indicating
the object program will execute in 4K bytes.

LOADING PROGRAMS IN A DPF ENVIRONMENT

A program can be loaded into either program level first.
You téll the supervisor which system input device contains
the job streams for the programs by selecting the device on
the Dual Program Control Switch. (Refer to the IBM
System/3 Disk System Operator’s Guide, GC21-7508 for
further operating procedures.) When preparing your job
streams, you should be aware of the following OCL con-
siderations:

1. DATE statement. The DATE statement you use as
an IPL statement to set the system date must be sup-
plied with the first program loaded. Do not provide
a DATE statement for the other program level.

A DATE statement that temporarily changes the sys-
tem date can be used within the set of OCL state-
ments for programs in either program level. This
DATE statement applies only to the program for
which it is used.

2. LOG statement. LOG statements can be placed any-
where among the statements in either job stream.
There are, however, certain restrictions on their use.

e Only LOG statements for program level 1 can tell
the system to use a different logging device. The
device used for level 1 is also used for level 2.

IBM tnternational Business Machines Corporation

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Form X21-9092
Printed in U.S.A.

1.2 75 76 77 78 79 80

pate Punching | Graphic

Instructi
Program <ton | pyunch

-
Page Dj rngra‘"‘ i

Control Card Specifications

0l
8| sterting H
S 3
3
HAREREE £
Core .| a| Core 22|, _f.§ | 8| Number | £
Line o Size to g.§ Size to 2 4=': e 5‘;: El=]ofPint |5 Refer to the specitic System Reference Library manual for actual entries.
&| compie | 3| &| Execute| |21 (2 [S &2 positions 3
= 2 a;"‘; 21218|e 4
€ BlE HEaEHEEHES H
2 8|3 1151 H
<
3 4 si{6}7 8 9|10{t1]12 13 14]15|16[17]18]19]20]21]22]23 24 25[26] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 64 55 56 57 58 59 60 61 62 63 64 65 66 67 63 69 70 71 72 73 74
of [W [11 lopi4 EERERNERERERERENRNRERRERRNNERAERNEERENRNRRERED

Figure 10-7. Core Size to Execute

10-8

o LOG must be on for both program levels before
logging can occur. If a LOG statement for either
program level stops the logging function, logging
is stopped for both levels.

o When the printer is the logging device, OCL state-
ments and message codes are not printed if the
program in either level uses the printer as an out-
put device.

Figure 10-8 shows sample LOG statements in a job
stream.

NOHALT statement. The NOHALT statement is in-
valid for program level 2. The program in this level
always stops after each job.

HALT statement. The HALT statement is ignored by
program level 2.

IMAGE and FORMS statements. These statements
are invalid if the other level has the printer allocated
to it and the job cannot be run.

PARTITION statement. The PARTITION statement
is used only in DPF.

The PARTITION statement is used to indicate the
size of the program you wish to run in program level
2. If you do not use a PARTITION statement, when
loading a program into level 2, the supervisor auto-
matically assigns 4K bytes of storage to level 2, if the
storage is available. To ensure that storage is available
for program level 2 you should use a PARTITION
statement (Figure 10-9). You should only assign as
much storage as needed for level 2, however, because
some IBM programs can use unassigned storage to
organize their performance.’ Only another PARTI-
TION statement or another IPL can then change the
size of program level 2.

The PARTITION statement must be supplied in the
job stream for program level 1. If can only be assigned
when a program in level 2 is at end of job.

The format of the PARTITION statement is:

// PARTITION size

You must state the number of bytes of storage you want to
save for program level 2. The number must be equal to or
greater than 4096. The amount of storage you specify is
rounded to the next highest 256 bytes by the supervisor,

if it is not a multiple of 256 bytes.

Sample Job Streams

Figure 10-10 shows the job streams required to load the
four jobs shown in Figure 10-6. Assume the system has the
minimum system configuration plus the 5471 Printer-
Keyboard and dual drives. The Dual Program Switch in-
dicates from what device OCL statements are read. MFCU
is always hopper 1, and at system generation time P-KY was
assigned to the 5471 Printer-Keyboard.

1 4 8 12 16 20 24
/[ILbolet PIR Wil
V| LD |AROG,IF
M
/\/| LloG OlAF
Lolaln |ARldl62], A1
/| IRUN
/\/ qQG OIN

The first LOG statement indicates that the printer is
used as the logging device while program PROG1 is
being run. OCL statements and error messages are not
printed for program PROG2 because of the second
LOG statement. The third LOG statement causes the
logging device to be.used again.

Figure 10-8. LOG Statement Example

Dual Programming Feature 10-9

Supervisor Supervisor
Program Level 1 Program Level 2
Unused Area Unused Area
e e e e e e e e —————]
+ Program Level 2 Program Level 2 +
| 4K bytes (a minimum of 4K bytes |
| ’ of storage is reserved) |
| |
| |
Without a PARTITION statement With a PARTITION statement
if level 1 is not using the storage and a program If a PARTITION statement is used, the assigned
is loaded into level 2, it is assigned at least 4K storage can only be used by the program in level
bytes. When the program in level 2 comes to 2. Itis reserved. Even when the program in level
end of job, the storage for level 2 is no longer 2 comes to end of job that storage is reserved for
reserved and level 1 can use it. future programs in level 2,

Figure 10-9. Assigning Storage to Program Level 2

1 4 8 12 16 ' 20 24 28 32 36 40 44 43 52 56 60 64 = 7 76 80 84 88
P ISTE[T_lufal] [PRlcleTRIAM Is[ul: Friclut [Tio P4ﬂ§ FolR [LIEMEL TEERINRERNRN
% pIRlelss| [1Inirele/Rlulefr] kil almpl Iklely [vlv lolele| [FIRlo[M |piR]sIniriE(R- IK|E|¥iBlolalrIp| [X]
/| IDAIT 7|~ 1218]- 7 IS|ET| [SIYISITIEM IDlAITIE
/1 PRI T o Klolald | 1 sl JAlsliple kx| LEViEL 12
/| |doap| | vidPle] [l T [l INQJIRY PiRoGIRA
/7| IFlr|Llel WAMEL-pisiTl AR, [U1 [7]-IFI2, IPalcld- 17 XiE D) [2]
V| ILldel | [elolaislolele] isle 1 M7EIR-|delvlBlo als| [Lolslelr D eV i)
/7| RIUM 1)
£
b slaT IDu[ALl P|Ro6IRlaM [skwli Ticlr| [rle] MIEC|u] FFlolr] Lielvielilal 3
¥ |CAIRIDiS| I INV| HiolPiPlEridl |
x| PIRIEls]s| I WiTlE[RRlolPiTl (K el :
/Y| Loap| [vribalre, [Flal | | [tolalp] fro] [vielD) TFF&PSTE INﬁgNToR? il
/[FlLle WaMel- | Mviem v r|7-IR 4, IPlalcid-IMAlsiT|elR
DIATIEl IB)71-Izlel-1n clH wbq slyls alTiE TrientAo|Raklr LY
/] lolel | o icowislolle [vis|ed [Flold [tloals|tiNet [1M [BolTlH| [LIEMEL
/17| RUM | |908]2]
EEEEET A AR
% Hl EN] Pl S|ALAPED [FoRr| [ElEvELL] PIRESS] AL/ RlEsEr
11/ Llog TiisirAl, IFl1 Lolaipy [s\Tioldi] simaiTivis] lolelL] IFiklolm| PRI WITIER|-{KElYiBiolAIED |
/| IFlilLle - MsirlplRT], UM (|T-IFZ, IplaclkrF 1[xE |
Lblé] Mol |lolsisliwial lolekew]Rs), lulnfrle L] laWojtiniEle] kiolsi-low] |riv] LIgvieila| I1is| Realp
/| 1Ry JolBl3
/¢
WHIEN] [EN] pli|slplLialy] [FolRl LIEVIEILL], Rleisls LiTl/Rles|efT] e
¥ ClAIRDIS| |1V KlolpldlE[R ¥
/|/ ildai Inlefilely], F[1 | [clolap| lolclc] IEbR| [slo/Bi4 [Fielolm MFcly
/7] [RuiN|-| 1384l
144 diaitjal={- -
/ |
I Tl

Figure 10-10. Sample Job Stream

10-10

Review 10

What advantages does DPF offer?

Indicate with S (shared) or NV (not shared) which devices can be shared between the two levels of
programs under DPF:

a. MFCU

b. Printer

c. Printer/Keyboard

d. Disk drive

e. Disk file

What limitations apply to shared disk files?

Name two programs which cannot be run in a DPF environment.

How do you allocate storage to the two programs to be run under DPF?

Dual Programming Feature 10-11

Answers to Review 10

10-12

DPF enables you to make more efficient use of system storage, I/O devices, and processing time.

a. N

b. N

c. S

d s

e. S (Refer to Figures 10-2 and 10-3 for instances when a disk file can be shared.)

Two programs in DPF cannot write to the same file.

Basic Assembler, RPG II compiler, Library Maintenance, 1255 Utility Program.

By specifying in the H control cards how much storage should be used to execute the programs and

specifying how much storage should be allocated to the second partition with the PARTITION OCL
statement.

\ CHAPTER,
CONTROLLING THE PERFORMANCE OF OPERATIONS IN AN RPG Il PROGRAM

CHAPTER 11 DESCRIBES:
Dual input/output areas.
Subroutines.
Exception output (EXCPT operation code).
Halt, L0, and external indicators.
Look ahead feature.

Binary field operations (BITON, BITOF, TESTB).

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:
RPG II object cycle.
Object library.
Function of RPG II indicators, specifically L1-L9.
Looping (GOTO-TAG).
Multi-file processing.
Use of the SETON and SETOFF operation codes.
Use of *PLACE.
Overflow and fetch overflow.

Binary data.

Controlling the Performance of Operations in an RPG II Program 11-1

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:
Function and coding for dual input/output areas.
Function and coding for subroutines.
Function and coding for exception output (EXCPT operation code).
Halt, L0, and external indicators.
Look ahead feature.
Effects of exception output and look ahead on the RPG II object cycle.

Binary field operations (BITON, BITOF, TESTB).

11-2

INTRODUCTION

There are several ways that you as a programmer can con-
trol the performance of operations in an RPG II program.
This chapter discusses six programming techniques which
control operations:

1. Dual input/output areas may increase the speed of
operations in an RPG II program.

2. Subroutines repeat operations in a program and
eliminate duplicate coding.

3. Exception output (EXCPT operation code) repeats
output operations during calculation time and elim-
inates duplicate coding.

4. Indicators can prevent certain operations from being
performed and perform total time operations without
a control break.

5. Binary field operations set and test bits in storage
allowing you to control operations based on certain
conditions that you specify.

6. The look ahead feature allows you to alter the order
of operations based on the next record in a file.

INCREASING THE SPEED OF OPERATIONS (DUAL
1/0 AREAS)

During a normal RPG II cycle, a record is read, calculations
are performed, and output (printed or punched) is pro-
duced. The cycle is repeated for each record.

The speed at which the cycle is done depends upon the
speed at which records are read and output produced.
Calculations take less time than reading, printing, or
punching. Reading, printing, and punching can be speeded
up by using dual input/output areas.

Dual Input Areas

When dual input areas are used, the program cycle is
changed. First arecord is read. At the same time, calcu-
lations are being performed on this record, another record
is being read. Thus, the contents of two records are in the
computer at the same time. Figure 11-1 shows how the
records are processed when two input areas are used.

Dual input areas can be specified for sequential or direct
input files. No stacker selection can be specified, nor can
the input files be specified as combined or update files.

Dual input areas require more computer storage space than
one input area, because two records are in storage during
each cycle. If you have a large program, you might not
have enough storage space to accomodate two input areas.
If your program plus two input areas require more space
than is available, certain RPG II object cycle routines re-
main on disk during execution and are called into storage
as needed. If too many routines remain on disk, the per-
formance of your program may be decreased.

The effect of dual input areas can be determined only if
you have knowledge of a program’s processing require-
ments and experience in RPG I programming. In some
cases, you can only make a final determination by actual
experiementation.

Input area 1

initially read into

2 storage.

Record C After Record A is
processed, Record C
2 is read while Record

S Records A and B are

Record B

Input area 2

input area 1

B is processed.

Input area 2

Input area 1 After Record B is
processed, Record D
is read while Record
C is processed.

Input area 2 Record D

Note: The shaded areas represent records being processed.

Figure 11-1. Dual Input Areas

Controlling the Performance of Operations in an RPG II Program 11-3

Specifications: One entry on the File Description Sheet is
required to specify dual input areas; any digit 1-9 in column
32 assigns dual input areas for the specified file. Figure 11-2
shows the file MASTER has been assigned dual input areas.

Dual Output Areas

When dual output areas are used, the program cycle is
changed. A record is either printed or punched at the

same time calculation and output operations are being
done to produce the next record. (Calculation operations
are not done at the same time as punching or printing when
only one output area is used.) Figure 11-3 shows how out-
put records are produced using dual output areas.

File Description Specifications

Dual output areas, like dual input areas, require more com-
puter storage. Consequently, the same space considerations
that apply to dual input areas also apply to dual output
areas. Dual output areas can only be used for sequential
and direct files that do not have stacker selection entries,
nor are specified as combined lor update files.

Specifications: One entry is required on the File Descrip-
tion Sheet to specify dual output areas, any digit 1-9 can
be entered in column 32 for an output file. Figure 11-4
shows the file PRINT has been assigned dual output areas.

File Type Mode of Processing File Addition/Unordered
N o tength of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. . Type of File 2 . Symbolic Name of Tape
Line Filename Sequence Organization S Device D\:evice G| Label Exit Rewind
File Format or Additional Area g 5 o
[=] o > ife
§ g E o [Overflow Indicator| & : Condition
3 5 = =
'é 38| |a | Bk Record s o Key Field | £ = Core Index . 3 vius_|
. &
S [3 wlz| 3 Length Length § 3] Stamr.lg X ﬂ b3 s
Location
3 4 s|ef7 8 9 1011 12 13 14 f1s|16|17}18[19]20 21 22 23}24 25 2627|2820 30|31]32|33 3435 36 37 38]30)40 41 42 43 44 45 46|47 48 49 50 51 52|53]54 65 66 57 58 59)60 61 62 63 64 65666768 €3}70|71 72]73 74|
of2| [r =
STE Pl | |Fl |2 128 2 DI SK 1
0}3 F
ola] |F
0|5 F
06 F
oj7| |F
3
E

Figuré 11-2. Specifying a Dual Input Area

114

Output area 1

Output area 2 Record B

Output area 1 Record C

Output Area 2

Output area 1

Output area 2 Record D

punched, or printed.

P, AN N et

Record A is in output area 1.
While record A is being put out,
calculations are performed on
record B, and it is moved to
output area 2.

When record A is finished, record
B is ready to be put out. While
record B is being put out from area
2, record C is calculated and moved
into area 1.

Record D is calculated and
moved into area 2, while
record C is being put out.

Note the shaded blocks represent records being written,

Figure 11-3. Dual Output Areas

File Description Specifications

File Type

Mode of Processing

Length of Key Field or

File Addition/Unordered
Number of Tracks

File Designation of Recard Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. Type of File i Taj
Line Filename Sequence Organizati = Device Symbolic | | Nameof "
reEnization o Device @) Label Exit Rewind
o File Format or Additional Area g 5 —
o - A ile
g ele 2 | Overflow Indicator| = a2 Condition
Ot 5 2 b3
e Sisl § | | sk | Recora sle Key Field | £ = Core Index s s uug_ i
[¥ 0 k- a
5 S g w2 5 Length Length 1€ %S Sum._-g = k) Py S
Location
3 4 s516l7 8 9 10 11 12 13 14 [15]16]17[18[19[20 21 22 23[24 25 26 27{28{29 30]31{32{33 34}35 36 37 38}39}40 41 42 43 44 45 4647 48 49 50 51 52|53]54 55 56 57 58 53]60 61 62 63 64 65{66[67)68 69]70]|71 72|73 74
LT[R 1A | [Fl 1256 128 | [1] T
E I 1
o3| IFIBRINT | [O [| [Fl [132] 1372 2 PRIINTE
ola| {F

o

Figure 11-4. Specifying Dual Output Areas

Controlling the Performance of Operations in an RPG II Program 11-5

USING SUBROUTINES TO CONTROL THE PROCESSING
OF CALCULATIONS

You may want to specify parts of an RPG II program as
subroutines. Subroutines can be used to:

e Reduce the storage requirements for RPG II programs.
When a program exceeds available storage, certain RPG
I object cycle routines remain on disk to be called in

* as needed. This is known as overlgy and it could de-
crease performance if many routines remain on disk.
Subroutines can be stored on disk in place of certain
RPG II routines. By coding infrequently used routines
as subroutines, you can control the way RPG II performs
overlay. You must determine which subroutines should
remain on disk. The compiler cannot determine which
subroutines are infrequently used.

o Perform the same calculations several times during one
cycle. This eliminates duplicate coding. Similarly, a
subroutine can perform the same calculations in several
different programs. For example, you can have a tax
routine used by several invoicing jobs. By coding the
routine as a subroutine, it needs to be coded and tested
only once.

Controlling Overlay By Using Subroutines

By using subroutines, you can control the routines that the
compiler stores on disk if overlay is necessary. You can
have certain exception routines in a program, such as credit
check, invalid part number, or invalid customer number,
that are used less frequently than the object cycle routines
the compiler stores on disk. By coding these exception
routines as subroutines, the compiler can place them, in-
stead of object cycle routines, on disk in the object library
after compilation. Your main program is never entirely
loaded into main storage at one time. Only as many ob-
_ject cycle routines or subroutines will be executed from
disk as-'necessary.

The compiler gives priority to object cycle routines based
on the normal expected frequency of use. Those routines
that are seldom used are stored on disk before overflow
routines.

11-6

You must give priority to subroutines to determine which
subroutines, rather than object cycle routines, should be
stored on disk. Those subroutines used infrequently should
be the first routines stored in the object library. Priority is
established through the order in which the subroutines ap-
pear at compilation time. The last subroutine in your
source program will be the first subroutine stored in the
object library. Consequently, you should place an infre-
quently used subroutine as the last subroutine in your
source program:

Subroutine

1
‘Subroutine

2

. The last subroutine in your

Subroutine . 4

3 e SOUFCE program is the first

subroutine stored on disk.

Using Subroutines to Repeat the Same Calculations
Several Times in One Cycle

In many programs, the same operation may be required
several times in one cycle. When coding the job, you can
specify the operations as many times as needed. This often
involves large amounts of coding, however. If the same
operations are done several times in succession, you can
use loops (GOTO-TAG) to reduce the amount of coding.

If the same operations are not done several times in suc-
cession, but are performed at many different points in your
program, creating a loop could not work. As an example,
consider the job which creates a weekly Sales Commission
Report. The report desired (Figure 11-5) shows two things:

1. Total commission earned by each salesman.

2. Total commission paid in each district. \

The area in which all salesmen work is divided into three
districts: A, B, and C. Some salesmen work in only one
district while others can work in parts of two or more dis-
tricts.

For each salesman, the input file contains a record for-
matted as shown in Figure 11-6. The amounts in the dis-
trict fields show total weekly sales made by that salesman
in each district. If the salesman did not work a district or
made no sales in that district, the field contains a zero.

The report must contain the commission earned in each
district by each salesman. In addition, total commission
must be accumulated for each salesman and each district.
The percentage of commission is:

o Three percent of the gross sales up to 1000.00 dollars

o Plus two percent of the gross sales between 1000.01 and
5000.00 dollars

o Plus one percent of the gross sales over 5000.00 dollars.

COMMISSION REPORT
Salesman Dist A Dist B Dist C Total
Joe Arness 41.93 23.16 9.43 7452
Bob Brown 113.16 24.93 138.09
Charles Butler 26.98 449.16 109.38 585.52
/’/\v P— -
e
1,998.02 * 986.43 * 1,043.97 *
Figure 11-5. Sales Commission Report
Name DISTA DIST B DISTC
1 25 26 32 33 39 40 46

Figure 11-6. Input for the Sales Commission Report

_Controlling the Performance of Operations in an RPG II Program 11-7

Figure 11-7 shows the calculations needed to find the in-
formation required for the report. You first compare the
contents of each district field to zero to find out if the
salesman sold anything in that district. If it is not zero,
you calculate the commission (COMM) earned. You then
add commission earned to total commission for the sales-
man (MANTOT) and to total commission paid in each dis-
trict (TOTALA, TOTALB, or TOTALC).

The calculations needed to find commission earned are the
same for each district (Figure 11-7, inserts A, B, C, lines
3-16). Rather than coding these calculations three times,

you can code them once and branch to them each time
they are needed (Figure 11-8).

Using GOTO and TAG, you could easily branch to the cal-
culations needed to find commission. But since you could
branch to them from three different places, it would be
difficult to determine where you should return. You could
return to the point where totals are accumulated for district
A, the point they are accumulated for district B, or the
point they are accumulated for district C. The RPG II ob-
ject program can return to the correct point in the calcula-
tions after a subroutine is used by establishing the neces-
sary instructions to branch back to the main program.

IBM International Business Machines Corporation Form X21-9093

[Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS

12 75 76 77 78 79 80

Date Punching Graphic

Program
P
oo Identification

Instruction
Program Punch

Indicators :::siucl:xi:?s
g Fa [E|2 Tu:iﬁ?’%;
Line 3 §g And And Factor 1 Operation Factor 2 Result Field L::ngth é: ‘é ':'3'2 :‘5’:[?,“ ;I Comments
E §,3, § ;6 § ji Table"(?a::rﬂ is
High | Low |Equat
o|1] |c |8 EBIEE gr ;r FL_ TTTTTTTT
of2l fel [| 9O 070 B
o3| I LS CIOMP| [1 1
oj4] |c 1 D ST VLT |- 23 CO 62H
ofs| |¢ GOTO [TOTIAL!
ols| |e DS COMP: 5 . 1211114111
o|7] |c 11 DI S UIB 1 OVE! Calculations
ofs| |c 1i2 OVE VLT ﬁz comm required to find |
ols| |c 11 30 D | b co l commission earned. |
el e ra ror
T 12 DS SB[15 ol
(12l iR OVEE] LT O H
del el || 10 113 0 | co C /
T e TIOTIALA G
el fe CO DD TioT] I |62
16 o co TIOTAL TOrALN i
17| | TIAG
®:
AE

Figure 11-7. Calculations for Sales Commission Job (part 1 of 2)

11-8

IBM Business i Form X21-9093
{ Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Oate . raphic age Program
' o e w1
Program.
Resulting
Indicators Indicators
Avrithmetic
- "g' _ PIus|Minus Zero
tine g E Z’, And And Factor 1 Operation Factor 2 Result Field tier::th ;?:' 7:%1; HighTme‘:v:[Equﬁl Comments
':—Ef 3|3 1>21<z]1=2
§ §3 3 s| | |z &|E[__tookor
“1° == = = = Table {Factor 2} is
High | Low |Equa!
3 4 516 |7 8| 9o{11]12]13|14]15}16[17]18 19 20 21 22 23 &II_S_ZS 27128 29 30 31 32 33£35 36 37 38 39 40 i".’ 43 44 45 46 47 4&%25' 52153 542_52‘57 58 _5_9_@&_1__1&_366 _SLEGQ 70 71 72 73 74
o[e D[S]T] coMP] i o0]
o|2| [c T B! . .
ofa] fe Di MNP [LB2E - 191
of4] |¢ 1 1SIT UL |- @3 cO 2|4
ojs| ¢ GATO TALB
ojs| lc 1'STB COMP| 15 B 121010112
o|7] |¢ 11 D’ S B SUB! 4 QVER Calculations 1
ofs| fc 11 QVIE VLT |. 22 COMMB m required to find
o8| |c 11 3D - DD | ICOMMB COMMB , commission earned._j
o] e Q1A TO
1 fe 12 DISTR UB | 15032 QVIE
el Je[[] f22 OVER T . I@i2 CoMM H
sl el [T 1221 1d. DD | ICO Com ,
1] e TOTIALB T
sl e coO MANTOT T R
¢ COMMB TQaT TOT] v
¢ B T
IBM i Busi Machines Cq i Form X21-9093
v Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date . raphic age Program
' ol R [] Tt
Program
Resulting
Indicators Indicators
Arithmetic
— g _ | Plus |Minus Zero
Line 2 g; And And Factor 1 Operation Factor 2 Result Field E:::th EF: %‘5_: Hl.ghct:f’ijual Comments
Flz ‘§§|>21<21-2
EEIH 5 5 &|E|Lookue
(=|zZ F4 z Table (Factor 2) is
3 4 5)ef7 8} 9rof11fr2|13[14]15[16}17{18 19 20 21 22 23 24 25 26 ELZQ 30 31 32(33 34 35 36 37 38 39 40 41 4_5’43 44 45 46 47 4&“9 50 5|lﬂ 53 ;Ig 5';027_;;“.:9' Mﬂﬁ?ﬂﬂﬂ_ﬁiﬂﬁa 69 70 71 72 73 74
o[Je |1 ST OMp 1]]
ol2| e GOTO
ofs] fe DISTC COMP, |1 101
ol4] |¢ 1 DU ST LLT |- 43 CoMmMc 2H
ols) je OTQ [TOTALC
ole] [DISITC COMP, 15 121111111
o7y Ie 11 D STIC SUB! | 1 . OVE Calculations aE
o8] |e 11 OVIE! LTl . @2 COMMC H required to find |
oo |c 11 Q. CoOMMC COMMC {| commission _e_arrled._r_—
o] Je GOTO! [TOTALC |
1] Je 122 DLSTC SUB | 59307 | OVE
2l e 12 OVE! UL 1. A1 cQ
el e 12| 11 COMMC O
1]al |c T LC| T J 7
sl e - C D T O
© c COMMC D TOT]| TOTALC | [7)
e B || TIAG |

Figure 11-7. Calculations for Sales Commission Job (part 2 of 2)

Controlling the Performance of Operations in an RPG II Program 11-9

Not this:
District A

calculate
commission

Accumulate totals
District B

calculate
commission

Accumulate totals
District C

calculate
commission

Accumulate totals
But this: -

District A
Accumulate totals

District B Calculate

Commission

Accumulate Totals /

District C

Accumulate totals

Figure 11-8. Branching to Similar Calculations

Specifications for Coding A Subroutine

You specify subroutines on the Calculation Sheet after all
detail and total operations. Every statement in the sub-
routine must be identified as part of the subroutine by the
letters SR in columns 7-8 (Figure 11-9). In addition, the
operation codes BEGSR and ENDSR must be coded to
establish the beginning and end of the subroutine.

The name of each subroutine must appear in factor 1 on
the same line as the BEGSR operation code (Figure 11-9).
Every subroutine used in the program must have a unique
name. The rules for establishing a subroutine name are the
same as those for forming a field name.

11-10

IBM International
) RPG CALCUL/
Dot e Punching Graphic
Program. Instruction m
Indicators
-5
Line g § < And And Factor 1 Operation F
AtirERrREr
2|8 212 2 2
3‘567!9I0"|113|‘15‘517‘8‘9202121_7124252827282930113233343538
of1] lc
ofz| Jc
ol3] |c
ol4f |c
ols| fc
ole| |c
o1 5% 50 5
ol8]| |c
ole| [c[S]
1lo] |ci§
11| [cS
1|2 {c S‘R EMD
113l {c
1|a] e
1ls] |c
c
c
[+
[4
c

Figure 11-9. Structure of a Subroutine

Calling the Subroutine

When using GOTO and TAG, you use a GOTO operation
code to branch to the next operation to be performed.
When you do the operations in a subroutine, you do not
branch to the subroutine; you call it.

When you call a subroutine, you use the execute subroutine
(EXSR) operation code. This operation code can be placed
anywhere in the calculation operations. Whenever the
EXSR operation code is encountered, all operations in the
subroutine will be performed. After the subroutine has
been executed, RPG II branches back to the main program
and continues execution with the next statement after the
EXSR statement (Figure 11-10).

Fields Used in a Subroutine

The same fields can be used by both the subroutine and the
main routine. You may define the field in either routine.
However, the name and characteristics of the field must be
the same in both routines.

The fields you define in a subroutine should be general so
that they apply to all situations for which a subroutine is
used. For example, if DISTA is used as the field name in a
subroutine to calculate district sales, you always take in-
formation from the DISTA field when calculating commis-
sion. However, you want the routine also to handle infor-
mation from the fields DISTB and DISTC. Using specific
fields limits the correct use of a subroutine to one situation.

Instead, if you use a general field name such as SALES, this
one subroutine can be used to calculate commission in all
three districts (Figure 11-11, insert C). However, because
there is no input field called SALES, you must use the
Z-ADD operation code to place information in this field
(Figure 11-11, insert B). The information in the appropri-
ate district field (DISTA, DISTB, or DISTC) is moved into
the field called SALES before the subroutine is executed.
When finding commission earned in district A, DISTA is
moved into SALES; when finding commission earned for
district B, DISTB is moved into. SALES, etc. In this way,
you ensure that the subroutine uses the correct informa-
tion each time it is called.

Using Subroutines in the Sales Commission Report Example

Now that you have learned how subroutines are used, de-
fined, and executed, see how they are used in the Sales
Commission Report job. All specifications.are shown in
Figure 11-11.

Main Program Subroutine

Figure 11-10. EXSR (Order in Which Calculations are Performed)

- First a record is read. Now commission earned in each dis-

trict must be calculated.

1. DISTA is compared to zero to see if the salesman
sold anything in that district. If the field is greater
than zero, commission must be calculated. If the
field is zero, a branch is taken to B, where another
comparison is made.

2. Before the subroutine can be called, it must be sup-
plied with the correct amount of sales. Thus, the
contents of DISTA are moved into SALES.

3. The subroutine is called by the EXSR operation code.

4. The commission is calculated by operations specified
in the subroutine.

5. The subroutine is finished when ENDSR statement is
executed. The instruction following EXSR is executed.
The commission found by the subroutine is added to
the total commission earned by the salesman)
(MANTOT) and to the total commission paid in the
district (TOTALA).

6. Now DISTB is compared to zero to see if commission
earned should be calculated. If so, information from
:the field DISTB is moved to SALES, and the sub-
routine is called. The next steps are basically the same
-as those already described. Follow the rest of the job.

Controlling the Performance of Operations in an RPG II Program 11-11

Form X21-9094

International Business Machines Corporation O
Printed in U.S.A.

RPG INPUT SPECIFICATIONS

1.2 75 76 77 78 79 80
pae Punching | Graphic Pase[[] Program
Program Instruction Punch
g Record ldentification Codes Field Location ri;l'd
3 7 2 3 z s s ndicators
@ £ “ g 5
Ei = H b} g-ﬁ 2 Sterling
Line | Filename EHRER E|e 5| Field Name R Zeor0 | 5
2 ‘;9 2 | positon || [B[rositon || |B] posion [s| |E[2 | From To |3 3lee f‘: Pras fuinuslor | PO
. Elalfl T el T sl g 2 i
g 2|5] 2 81513 ER ENEHHE 2 5|23 ¢
3 4 s{6|7 8 9 1011 12131415 16]17]18]19 20{21 22 23 2425/ 26[27| 28 29 30 3 35 36 37 38 42|43 44 45 46 47|48 49 50 51[52[53 64 55 56 57 58|59 6061 62[63 64|65 6667 68[69 70|79 72 73 74
ol |1ISIAL S | | 1
ol2| [t 1 | 25 E
ofs| |1 26 | 3R12DIIST]
ZZDI 33 | 392D STB
adt 4? 462D S[TIC!
IBM International Business Machines Corporation Form X21-9093
. Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date - Punching Graphic PageDj P"’gr.'r." ;
Program Instruction Punch
Resulting
Indicators Indicators
Arithmetic
z g Plus Minus' Zero
Line 2 g; And And Factor 1 Operation Factor 2 Result Field E:::th :é ;:{ Highc": fvmiqw Comments
ez 5 53| 1>2)1<2|1=2
£ E S| els
il =l § § g 3 Lookup
Table (Factor 2) is
Higll:ow Equal
3 4 516]7 8 9|0|||2'314l5161718192021221324757627'32930313233M3§£118_39404|42'34‘45464143]4950“52532555657585960&_1_3&2_3&'6_76!89107'727374
ol fe Dl ST CIOMP L§§
ojz| [e 9 GATIQ [B
o e OVIE! [DIST SIAL 7
o[e EXISR[ISALISUB
o|s| |c ClOM R Tar Al 0 72
ofe] e clo TOTIALA QarTi 7R
o[e - \ O 62
ols| |c - R T
ofof | DLSIT Cl o8
i fel [] 98 GO0 K
i e OVIE[IDIISTR SALES!
e Je EX/SR ISIALSUB
sl fe C DD TOT TOT
el fe Co DD | [TOTALB TOTIALB
15} Jc z: 0 C Q
¢ C
c DI ISTIC COMP, | vl
c N OVIE| [DISTiC SALE
¢ - E SIALSUB
c C ADD | MANTIOT TOT]

Figure 11-11. Sales Commission Job Using a Subroutine (part 1 of 3)

11-12

IBM Business Machi " Form X21-9093
! Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date - unchi Graphic Page Progr?@ "
Program IPnstr:nn:)n Pu I'lCh g
Resulting
Indicators Indicators
Arithmetic
- g PluslMinus Zero
Line |o g?, And And Factor 1 Operation Factor 2 Result Field i::gth zﬁ» % H‘ghc",z :IamEqual Comments
e b s§1>21<21=2
£ Eg 5 b s g 3 Lookup
<18=|2 2 2 o Table (Factor 2) is
3 4 5|67 8 910"(213!4|515|71819202|2223242526272828303!32333435363735394041424344454547484925152535’:'?55':;7_;‘;]2&&25164%&&&597071127374
o[e co D Tl TIQTALIC 4]
of2] e 2~ NDID(| OMMC 2
o|3| |c *
ol4| jc P&
o[+ Jels S EGS
ofe] |ls] L COMP| L 141
o[R |1 SIALIE uLT [.143 d &R
ols] [elsR 11 1e0ra [F|1NIISH
O LE COMP ISZ8d . 12110
1ol |elSR} 1Ll UR OVE| 62
il JeJSR_l1) E T | 142 ca
12| [elS vl . Cd
a3l |e 11 O |E[IN ST
4l SR 1112 SALES U . QVE
1ls| |c 1 ULITI .81 Co
6| | 1 1114- O
117 I-1SK LN SH E :
c
c
[1€

Figure 11-11, Sales Commission Job Using a Subroutine (part 2 of 3)

Controlling the Performance of Operations in an RPG II Program 11-13

— — o
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80
oy Punching | — Peg |:|:| Identification
E Space| . Skip Qutput Indicators Edit Codes
'.; v 3 Commas Zer;l!;ll:r;ces NoSign |CR | - [X = slzr:;t;n 2,‘;'“"“
o i K : — N £ e Y = e o
Line Filename &g b Field Name g S [Yes s Ay At it Position
& QE e ® gl&l in g No Yes 3 c|L |Z= Zero
- Z|alelE] 2 | B |+ 5 5 32| outpr |2 No No 4 D (Mm Suppress
£ glrS(<| & | < (2 2 z 215 Record (8
o - § w |a@ u Constant or Edit Word
3‘5673910“‘21314|5|5|7|8|9202|222’3242525272829303|3233_3_&35363738 940414143:‘4‘54547‘849502‘_5753_.’:4__5i56575359606162538455565768@707‘717374
o[i[[0 REPOR 1 1P 1]
02| |o ' 68 ['COMMI SSILON._REPORT|”
°of3 |o H | {31111 1P}
ojal |o 0 oV
ofs| [o 35 MSALE !
ofs| |o 58 MDILST Al
o7] jo 68 PDIS ‘
o 1o 78} D STl
o[s[Jo 110 FTOTAL
1lo| |o 2 1
1| o E A5
112{ |0 GO A 1 55
1[s] Jo CO 111165
114] Jo COMMCL |1 15
1|8| [O TO lﬂ 1 1
° u LR
o TOTAILAI 55
0 TOT 1] 165
OD ° TOTALCH | | [75
L o
Figure 11-11. Sales Commission Job Using a Subroutine (part 3 of 3)
Using Valid Subroutine Operations 2. You may branch to the ENDSR statement if you put

Any operation code that can be used in calculations can be

used in a subroutine except BEGSR and ENDSR. This 3.
means that you can use all arithmetic, compare and testing,

move look-up, EXSR, and branching operations.

There are limitations on some of the operations: 5.
1. You may only branch to another statement in the

subroutine when using the GOTO statement (Figure
11-12).

11-14

a name in Factor 1 of the ENDSR statement.

You may not branch to a statement outside of the
subroutine.

You can not branch to a TAG within the subroutine
from a GOTO outside of the subroutine (Figure 11-12).

You can not have a subroutine coded within another
subroutine. However, one subroutine can call another
subroutine. This means that within one subroutine
you may have an EXSR statement (Figure 11-13). A
subroutine, however, cannot call its caller.

Figure 11-12. Branching Within a Subroutine

IBM International € IBM International £
RPG CALCULA RPG CALCUL#
Date Punching Graphic Date Punching Graphic
Program Instruction [g cn Program. tnstruction [o
Indicators Indicators
g 5
Line ||% And And Factor 1 Operation Fe Line |olE o« And And Factor 1 Operation Fi
[=] . 3 e}
=15 o Fls o
SETT TR EERTT I T T
2(3 2|2 2 k3 2(8 22 kS K
3 4 5|67 8] 9io]11}12]13[14]15]16[17]18 19 20 21 22 23 24 25 26 2728 29 30 31 32|33 34 35 36 3 4 5]6]|7 8 9 [1ol11 12 13|1a]15]16l17{18 19 20 21 22 23 24 25 26 2728 29 30 31 32(33 34 35 36
ST T TT17T ol 7 T TT 11111737, -
DO THIS: Use a GOTO statement —t DO THIS: Use one subroutine ?O
to branch to another s call another subroutine
. oluy o
statement within the
s T ola| |c
subroutine.
o|s| |C|" ols| fc
ofe| |c ole| [c
o|7{ [e o|7] |cl§ SiU EG
ols} fc ola| {c
EIN ole| |c§
1]o] [e 1]o] lc EX SU
UERES SUB ‘BEGS 11} |c
12| |e - 12| |e NDSR
= [SR 1B1 GOTO [END JORE SU 6
14 cs 1|a] |c
15 clg ils| |c§
T8 [[SR END ENDS 16 -5
17 |5 ENDS
IBM International B ¢
RPG CALCULA c
Date Punching Graphic ¢
Program. Instruction Punch
! Figure 11-13. Using EXSR Within a Subroutine
Indicators
5
Line | o8 o And And Factor 1 Operation Fz
===
3
ST T
218312 2 2
3 4 sie |7 s8|9f10(1112]13[14]15}16[17]18 19 20 21 22 23 24 25 26 27|28 29 30 31 32|33 34 35 36
n I 1 I n I
OR THIS: Use a GOTO statement
outside the subroutine GloTIo INAME
to branch to a TAG
statement within the
subroutine.
o|6| [C
o|7{ lc
ols| |c
ol9| |c
1{o] |c
I e [SR EGS
12| |c
el e ME AG
14| |c S
1{5] |c[S
14 oS fE DS
~

Controlling the Performance of Operations in an RPG II Program 11-15

Conditioning Subroutine Statements

Any indicator which is valid in columns 9-17 can be used to
condition an operation within the subroutine. That opera-
tion will then be performed only when the conditions estab-
lished by the indicators are satisfied. The BEGSR and
ENDSR operation code, however, cannot be conditioned by
any indicators.

The EXSR statement can also be conditioned by indicators.
In this case, the entire subroutine will be performed only

when conditions for the EXSR statement are met. For
example, in Figure 11-14, insert A, the subroutine will be
performed only if MR is on.

Control level indicators cannot be used to condition state-
ments within a subroutine since SR must appear in columns
7-8. The indicators used on the EXSR statement deter-
mine whether the entire subroutine is performed at detail
time or at total time (Figure 11-14, insert B).

Figure 11-14. Conditioning Calculations Within a Subroutine

11-16

IBM International Business Machines Carporation Form X21.9093
Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic Page[l:] Progr‘ay.n .
Program Instruction (o
i Resulting
Indicators Indicators
Arithmetic
- e PIusIMinus] Zero
3% And And ; Field |£|Z[" Ccompare
ine folge " n Factor 1 Operation Factor 2 Result Field Length K Tigh | Low [Equal Comments
- a
I a‘§1>z|1<z|=z
gled HE
S S3 g ;5 ;5 g :‘I:_ﬂ Lookup
Table (Factor 2) is
High | Low |Equal
3 4 slefs slofohfi213]14f15|1617]15 19 20 21 22 23 24 25 26 2728 29 30 31 32[33 34 35 36 37 38 39 40 41 42}43 44 45 46 47 48|49 50 51]s2[53|54 5556 57(58 59)60 61 62 63 64 £5 66 67 63 69 70 71 72 73 74
of1] e |
o2l e @ EXSR| |SU SUBA will be executed at detail _
o3 time if MR is on.
ola| |c
ofs| |c
ofs| e[t EXISR| ISU SUBA will be executed at total time.
ol7] e UL
|11 | EENNNNNNNEEE
ST 11 I T T

Review 11. Subroutines

When should a subroutine be used?

What are the operations used to define and execute a subroutine? What entry must be made for each
calculation operation of a subroutine that is different from all other calculations?

What limitations in the use of GOTO and TAG apply to subroutines?

Where must subroutines be coded?

Controlling the Performance of Operations in an RPG II Program 11-17

Answers to Review 11. Subroutines

11-18

A subroutine can be used whenever the same calculations must be executed at several different places
in a program or when it is desired to control the number of overlays within your program.

The first line of a subroutine must have the BEGSR operation code in columns 28-32 with the sub-
routine name in factor 2, The last line in a subroutine must have ENDSR operation code in columns
28-32. This line can have a name in factor 1, and this name can then be referenced by a GOTO state-
ment. Every subroutine operation code must have SR in columns 7-8.

No branches can be made from a GOTO statement within a subroutine within a subroutine to a TAG
statement outside that subroutine. No branches can be made from outside the subroutine to a TAG

statement within the subroutine.

All subroutines must appear on the Calculation Sheet after all detail and total calculations.

REPETITIVE OUTPUT (EXCPT OPERATION)

RPG II has a special operation code called EXCPT which
allows you to write or punch as many records as are re-
quired during one program cycle.

Normally a record is written or punched at either detail or
total output time. Using EXCPT, records can be put out
during detail or total calculation time. Each time you use
the operation code EXCPT, specified records are written

immediately. For example, if you use eight EXCPT opera- A

tion codes in succession, you can get an exception output
cycle eight times. The records are identical if the data
fields in the exception records are not altered between the
EXCPT operation codes on the Calculation Sheet.

When you use the EXCPT operation code, you also must
specify which records are to be put out during calculation
time. These records are identified by an E in column 15 of
the Output-Format Sheet. Only those output lines iden-
tified by an £ will be put out during an exception output
cycle.

Using EXCPT and *PLACE

The reserved word *PLACE duplicates fields and places
them on the same line. In the discussion of *PLACE in
Chapter 13, an example is used in which three mailing
labelsjwere printed for each customer using *PLACE. If
you wanted to print 15 labels for each customer, however,
you could not use only the reserved word *PLACE. The
only way would be to print the same three mailing labels
five times in succession.

In the RPG Il program cycle, each record specified is writ-
ten or punched only once per cycle. For each record read
for the job shown in Figure 11-15, the detail line specified
in lines 01-04 is written only once. Remember that the
*PLACE entry causes the field to be duplicated. Using
*PLACE one line is printed with three identical names. The
same is true for each of the other records specified. If you
want to print 15 identical mailing labels, you need all
records printed five times each.

Figure 11-16 shows the specifications necessary to print 15
mailing labels per customer. The *PLACE specifications on
the Output-Format Sheet will cause three mailing labels to
be printed side by side on the paper. Each EXCPT code
used on the Calculation Sheet causes all records identified
by an E in column 15 of the Qutput-Format Sheet to be
printed one time in the order shown on the sheet. Because
all four lines are to be printed on the mailing label, all are
identified by an E. The five EXCPT codes will cause five
rows of three mailing labels each to be printed.

Another set will not be printed at detail output time, be-
cause all records having an E in column 15 can be printed
only at calculation time when the EXCPT operation code is
encountered.

EXCPT can be used with punched cards or disk as well as
printed output. It operates in the same way in all cases.
Each time the EXCPT code is encountered, output lines
identified by an E in column 15 are executed.

Only output files may have EXCPT records specified;
EXCPT cannot be used for combined files. All EXCPT
records must be specified after all heading, detail, and
total lines on the Output-Format Sheet.

Controlling the Performance of Operations in an RPG II Program 11-19

IBM Internationat Business Machines Corporation Form X21-9080

Printed in US.A.
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80
Date L N
Punching Graphic P”'D] ng’.’(")
Program Instruction Punch
E |
5 Space| Skip Output Indicators f Edit Codes
§ Commas | 2ero Balances |\, g | cr | - | X = Remove
° > 1o Print n Plus S} Sterling
| € g Y D"s an Sign
Line Filename I k4 Field Name z| End s Yes Yes 1 AlJ = Date iti
El% And And 8 podton |5 Yes No 2 B |k Field Edit Position
g HEN ® HE RS e No Yes 3 c|L|Z= Zero
[Zl3)s|E] s | & |. - o < 2 No No 4 D |M Suppress
AUslel 21 £ |8 3 5 81| Output |$
€ 8lslal<| @ | < |2 2 z M %
5 >x £|S] Record | @&
& - § w |] Constant or Edit Word
o
3 4 5 789|0|||2'3|4|5|5|7|81920212223242526272829303132333435363738L9lol14243“4546474849505'5153545556575859606'52635‘656661868970"727374
ol1] [o[PRILINIT]
o2 MLE 5
ofs LIAICE] 5

5

pIEEIE 3
p.s)

[w)

m

(m]
mim
—

Ot

5,18,

YN (P N T S e A Y [
VOOV O] _ DVOW

’—l
SO o [2 [[~

=)
o|lojo|ojojJo|o|o|0o|O0|O0|O|Q0|O0O}|OC|O0|O0|C|O |0 |=

Figure 11-15. Detail Output Operations

1120

IBM International Business Machines Carporation Form X21-9093

RPG CALCULATION SPECIFICATIONS rsiusa

1 2 75 76 77 78 79 8O
Date Punching | Graphic Pasel:l:l Program
Program. Instruction Punch
Resulting
Indicators Indicators
Arithmetic
-] Plus |Minus | Zero
o« . o=
% And And : . Field |=|Z|_ _ Compare
Line g §5 n Factor 1 Operation Factor 2 Result Field Length &\ 5 [an [Low lEquaI Comments
[b= s|T]1>2[1<2]|1=2
|23 . ElZ
HEETE N 8|5 Loow
Table (Factor 2) is
High | Low |Equal
3 4 s)els slojtolirhzli3f1alts6l17)1e 10 20 21 22 23 24 25 26 2728 20 30 31 32[33 34 35 36 37 38 39 40 41 42|43 44 45 46 47 4849 50 S1}s2]53 54 55|56 57|58 60)60 61 62 63 64 65 65 67 68 69 70 71 12 73 74
o] |° ENCPT
ol2| |e EXCPT]
o[e EXCPT
o[EXIC
ofs] | ENCIPT]
International Business Machines Corporation Form X21.909
IBM ——
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80
Date — Punching Graphic Page D] ng',’." : ,—r_l_l_—[_l—l
Program Instruction [pyncry
=
é Space| . Skip Output Indicators Edit Codes
5
é | 3] Commas zer&BParli:\:ces NoSign | CR | - X = s:::g’l’g’n Sterling
i o ; i v = om sin
Line Filename g 2 And And Field Name 8 s::“on & ::: ;:s ; ;Bx ‘J< Flel: Edic Position
S a|g), ® L12| in 2 No Yes 3 Cc L]Z= zero
e 5 «Xg E o2 é‘:; 8 8 s 31| output E No No 4 p|M Suppress
g gelaj<] &} < 2 2 2 = | Record 8
“ "la |2 r Constant or Edit Word
3 4 5l6|7 8 9 10111213 14f1s}16]17}18|19 20§21 22]23|24]25[26|27]28|29]30 131 {32 33 34 35 36 37]38 30 |40 41 42 43]44]45 45 47 48 49 50 61 52 53 54 55 66 57 8 69 60 61 62 63 64 65 66 67 68 69 7071 72 73 74
of] lo{PRINT | | £ [32 [|
ol o NAME 35
o wPLIACIE[| [[[715)
ol |0 *PLACE 115
o|s| [0 E ri
ofsl fo DR 35
e PLAC 15
ofs] [o LIACIE! 11115
ols| |o El 2
10| |o UTIY! 28
e STATIE 35
o[o WPL A5
1[5 Jo PLIACE! | | 11215
11a] lo £l | 3 |
1]s] [o 2/ [P 35
1 o WPLIACE] | || 115
7 |° PLIACIE 115
o
o
¢}

Figure 11-16. EXCPT Operation Code Used with Exception Records

Controlling the Performance of Operations in an RPG II Program 11-21

Conditioning the Use of EXCPT Operation

There are two ways you can condition an EXCPT opera-
tion: (1) on the Calculation Sheet; and (2) on the Output-
Format Sheet.

The EXCPT operation can be conditioned on the Calculation
Sheet in the same way as any other operation. As shown in
Figure 11-17, the EXCPT records are put out only when

MR is on.

An indicator used on the Calculation Sheet controls the
printing or punching of all EXCPT records. Individual
EXCPT records are controlled by indicators specified in
colummns 23-31 of the Qutput-Format Sheet. These indica-
tors are used in the same way for EXCPT records as they
are for all other records.

Restriction: Overflow indicators cannot be used to con-
dition an EXCPT line. This means that an EXCPT record
cannot be a record that is printed only when the end of
the page has been reached.

Remember, these lines are exceptions. They print only at
calculation time, not at output time. Therefore, they
could not possibly be printed when other overflow lines
are.

An EXCPT line may be, however, printed on the overflow
line. If it is, the overflow indicator will be turned on as
usual. EXCPT lines can even fetch overflow. You may
place an F in column 16 of any exception line. If the over-
flow indicator is on when the EXCPT line having an F in
column 16 is reached, all lines conditioned by the over-
flow indicator will be printed before the exception line is
printed.

IBM International Business Machines Corporation Form x21-9093
. Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Dat: N
e Punching | Graphic P,geD:l Program
Program Instruction Punch
. Resulting
Indicators Indicators
Arithmetic
- H PlusIMinus Zero
o o
T2 ; . Field |2|E[__ Compare
1 Line e And And Factor 1 Operation Factor 2 Result Fiel 2|3
g8 P eld Length{<| % HighlLow Equal Comments
Pl o = =
E%g '§§I>2‘I<21 2
£ - =
E(s2|2] | |2 | |2 8| Lok
Table (Factor 2} is
High | Low [Equal
3 4 5|sl2 sjoliofir]r21al1a]15|16}17)18 19 20 21 22 23 24 25 26 27|28 20 30 31 3233 34 35 36 37 38 39 40 41 42)43 44 45 46 47 a8)49 60 51{s2]53]54 55]56 6758 5950 61 62 63 64 65 66 67 63 69 70 71 72 73 74
o1 |c
clos DD_|_[TioTAlL] ine
0|2
: EXCIPT |
o|3| |c
ofa] |c
0|5 c

Figure 11-17. Conditioning the EXCPT Operation Code

1122

Review 11. Exception Output

1. What occurs when the EXCPT operation code is executed?

2. Ina program used to create a tub file, you need to punch a specified number of cards for each item.
This number will be punched in each input card. Refer to the coded input sheet for record layouts
and code the Calculation and Output-Format Sheets for the job.

IBM International Business Machines Corporation Form X21-9094
Printed in U.S.A.
t 2 75 76 77 78 79 80
Date P
- N Page rogram
Punchln? Graphic ¢ D] Identification
Program Instruction Punch
P
s Record Identification Codes . . Field
8 Field Location)
B 1 2 3 > < Indicators
£ H] o S
= £ ” 2 ls K
£3 @ 2 2 =
. >° W 8 2|82 & Sterling
Line Filename S| [£5 §le Z| FieldName | 3 |33] o Si
o |l E 2= 3 2 |E2| 3 gn
g b 1 B . 5 . 5 . |38 a 5 1s%] 8 |Zero | position
2 P Position || |B| Position i [Z] Position || [Z)0H% From To |3 2 (22 & |Plus Minus|or
£ g1g| 8 HEH HSH HEHHE - £ 55| = Blank
] S
£ 2|8]& 2|5)5 3l5[6 2|5[5[a]a & 8 |26| &
3 4 6|6|7 8 9 1011 12 13 14{15 1617|1819 20 |21 22 23 24|25|26]27| 28 29 30 31|32|33|34|35 36 37 38|39]40141[42]43|44 45 46 47|48 49 50 51|52|53 54 55 56 57 58|59 60|61 62|63 64|65 66|67 68|69 70|71 72 73 74
oft| IMTIURF!LE 1 1] ClL
of2| |1 2| | | 71 I TEMNOLT
ofa| |1 V. N E R
ole] [t 1|96 C
T T 1 I

Controlling the Performance of Operations in an RPG II Program 11-23

Answers to Review 11. Exception Output

1. Immediate output for specified records occurs. These records are coded as exception records by an £
in column 15 of the Output-Format Sheet.

2. See specification sheets.

IBM International Business Machines Corporation Form X21-9093
I Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date _ Punching | Graphic Pml:l] Program
Program Instruction Punch
i Resulting
Indicators Indicators
Arithmetic
- 2 Plus [Mimn! Zero
@ . =]
i T2 And And Factor 1 ; . Field [Z[Z[__Compare
Line § 5 < 0! Operation Factor 2 Result Field Length|& § Tigh [Low [Equal Comments
135 o 3|3 1>2f1<2|1=-
g £ E" ° 13 13 5 3 Lookuj
< |8 2|2 2 2 =184 Ld
Table (Factor 2) is
High | Low [Equa!
3 4 5|67 8|elrol1112[13]14]15 |G171812_20 lZ?E?l 25_?_5_17 28&303' 313334353637383940i42 43 44 45 46 47 48)49 5051*5_25354 55555758_51@&2__3_54_5_26;216869 70 71 72 73 74
i ERNRNNNNN
of1 c
0l2 [+
03] |c
ofsf Jo 1 ST TIAG
o5 el 1| At EXCIPT]
olel o 1 NUMBE S 1 E
o|7] |e 1 25 | GOTO ISTART
i I T T
IBM International Business Machines Corporation Form X21-6000
Printed in U.S.A.
RPG OUTPUT - FORMAT SPECIFICATIONS
12 75 76 77 78 79 80
Date N P
—_——— . Graphic rogram
:’u r:chu:.g Page [D Identification
Program nstruction Punch
z
. 0 r
E|space| skip Output Indicators Edit Codes
% Co Zero Balances No Si ¢R | - | X = Remove
o > mmas | o Print o Sign Peer Sterling
_ls . - v Sign
Line Filename @lg Field Name [Fig| End)5 Yes Yes 1 A | J |Y = Dae Position
Els And And Zl Positon [¥ Yes No 2 B [K Field Edit
g 2] 8| ® £|E| in 2 No Yes 3 c|L |Z= zero
g NE BN gl
= SlalelEl £ &[5 5 = 3| oupu |B No No 4 DM Suppress
clsls] 5] =
3 & Slel<) < |2 £ 2 £15| Record 18 5
* S8 o | v Constant or Edit Word
o
3 4 5|67 8 9 1011 12 13 14]15]16/17]18)19 20{21 22]23}24|25]26 |27]28]29(30(31 |32 33 34 35 36 37|38 40 41 42 43]44 |45 46 47 48 49 50 61 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70{71 72 73 74;
opr] [olICARDS El |
012 [o]
0|3 o
nia n

11-24

PERFORMING TOTAL OPERATIONS WITHOUT A
CONTROL BREAK

In this section, you will learn to work with a special internal
control level indicator LO. You will also learn another use
of the L1-L9 indicators.

Internal Control Level Indicator LO

L0 is a unique control level indicator which is always on.
You cannot assign it to a field, as you do L1-L9, by enter-
ing it in columns 59-60 of the Input sheet. But, you can
use it to condition a calculation operation. The operation
so conditioned will be done at total time for every program
cycle, since L0 is always on.

The main purpose of the LO indicator is to allow you to
specify total operations when indicator L1-L9 are not
available or when they cannot accomplish the job.

Consider the use of LO in a summary punching job. Basic-
ally the job consists of finding payment due by subtracting
discount received from total purchases and punching this
amount along with other information into a summary card
(Figure 11-18). The input file shown in Figure 11-19 con-
sists of three record types:

o Name/address cards.

o Item cards which describe an individual item purchased
by the customer.

o Blank cards which are to be summary punched.

The amount of discount each customer receives is shown
by the last digit of the account number. The discount code
is as follows:

0 — no discount
1 — two percent discount
2 — four percent discount

For each item card, quantity (QTY) must be multiplied by
price (PRICE). The result is then accumulated in a field
called TOTAL. After all cards of a group have been read,
you can find the discount and net payment. These two
operations are total operations that should be conditioned
by control level indicators.

Is there a field which can be used as a control field?
CUSTNO could be used, but if CUSTNO is defined as the
control field, the blank card has no CUSTNO field. There-
fore, control field contents will not be checked when this
card is read, and a control break will not occur at the cor-
rect time.

However, when the name/address card is read, a control
break will occur since the contents of CUSTNO on the
name/address card are different from the previous name/
address and item cards. Total operations will be done.
Summary punching the blank card is a total operation. Thus
the punching'will occur, but the wrong card will be punched.
The only card available for punching at total time is the one
that caused the control break — the name/address card.

This card instead of the blank card will be punched.

RPG II control field logic will not work for this job. The
blank card, not the name/address card, should cause a con-
trol break, but it never will since it has no control field on
it.

12434HENRY J JOHNSON 10)
T2 3 4 %5 6 7 8 9 1011 1213 M 1516 17 18 1 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 ?‘5 48 47 48 49 30 S1 52 53 34 55 56 57 58 59 60 &) 62 63 64
65 66 67 63 69 7O 71 72 73 74 73 76 77 78 79 80 51 B2 83 64 85 86 87 06 €9 50 91 92 93 94 95 96
8 97 98 99 100 101 102 103 104 105 106 107 108 109 110 11 112 M3 114 NS 16 |nmmm|ﬂﬂllam|ﬁl2‘l”ﬂ.a
A A
8 CUST NAME 8
4 4
2 NO. 2
é 1 2 3 4.5 67 5 9 101 12131415 % 17 18 19 20 29 22 23 24 23 26 27 28 29 30 N 32 é
A A
s DATEH TOTAL Discou NET 8
y 4
4 RURC PAYMENT, :
‘B 33 34 33 36 37 38 39 40 4) 42 43 44 45 45 47 48 49 50 51 52 53 S4 53 56 57 S8 59 60 61 62 63 64 ;
A A
) 8
4 4
2 2
1 65 66 67 68 69 70 71 72 73 74 73 76 77 78 79 80 81 62 83 84 85 06 87 88 89 90 1 92 93 94 95 96 1
L 13K 3700 /

Figure 11-18. Summary Card

Controlling the Performance of Operations in an RPG II Program 11-25

12 3 4.5 67 8 91011 121314151617 1819 2021 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 4) 44 45 46 47 48 49 50 51 52 33 54 53 34 37 38 59 60 61 62 €3 64

65 66 67 €8 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 68 87 90 91 92 93 4 93 96

$7 98 9% 100 101 102 103 104 105 106 107108 109 10 T M2 N3 N4 N3 116 17 MG N9 120 120 22 123 124 125 126 177 128

12 345 67 8 910N 12131415 171819202 222324252627282930N N

33 34 33 36 37 38 39 40 41 42 43 44 45 46 47 48 .49 50 51 52 53 84 55 56 57 S8 33 60 61 62 63 64

1=NDAMABD>DO=NIOP>POD

1=NbOD>PO=NIOD>D

12430421004043867 |KIRON BRACES |)

12 3 4.5 67 6 91011 1213 1415161718 19 2021 22 23 24 2526 27 28 29 30 N 32

14 DPPEEPIETRRR49

0
33 34 35 36 37 36 39 40 41 42 43 44 43 46 47 48 49 S2 53 3453 56 57 58 39 60 61 62 63 64

-
-
H

€5 66 67 68 69 70 71 72 73 74 73 76 77 78 79 00 61 02 63 B4 85 68 87 83 89 90 91 92 93 94 95 96

'$7 98 99 300 101 102 103104 105 106 107106 109 MO M 112 M3 M4 NS 16 17 18 N9 120 120 122 123 124 125 126 127 128

CUST|SMAN| QTY | ITEM DESC
NO.

1.2 3 45 67 8 9 10N 1213141518 17181920 21 2223 24252627282923003 32
WGT,| UNIT UNIT
PRICE COsST]|

2
o

33 3435 36 37 38 39 40 41 42 43 44 43 46 47 45 49 50 51 52 33 34 53 56 37 58 59 €0 61 62 €I 64

12430HENRY J JOHNSON 14

B
A
8

Y

“NLODPU=NAOD>PO=N

(

~\

“Nd2ODPO=NIOD>PO=NIDO>OD

L

— Blank Summary Cards

Item Cards
(may be several per account)

12 345 67 8 9101 121354151617 18 19 2021 2223 24 25 26 27 20 29 30 31 32

Ee§1‘n ﬁ!g 41 42 43 44 43 45 47 48 43 soﬂeﬂggﬁwg !!Il-ol; 223 :4

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 60 81 82 B3 84 83 36 87 08 89 30 91 92 93 94 95 96

§7 98 99 100 101 102 103 104 105 106 107 106 109 1O M1 112 N3 M4 NS 116 N7 BO N9 120 121 VZ 123 124 123 126 127 128

CuUsT NAME

4
o

12 34356 7 0 9 0N 1213141516 171819202 2223524252627282030 32

ADDR CITY/STATE

33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 46849 30 51 52 53 34 S5 36 57 58 59 60 61 62 63

CODE :
“N2ODPOD=NIODPID=NIOD>DO

€3 66 87 63 69 70 71 72 73 74 T3S 76 77 79 79 80 81 82 8 64 85 05 87 88 89 30 91 92 93 94 93 96

13M 3700 /

Figure 11-19. Record Types in an Input File

11-26

CODE

&
-
H

L

— Name/Address Cards

(1 per account)

Causing Control Breaks

When it is necessary to do total operations but no control
fields are available to cause a control break, you may use
LO to cause an artificial control break.

Remember that total operations are those conditioned by
L1-L9 or LR. L1-L9 will not turn on unless there is a con-
trol break or unless they are set on. For the job just dis-
cussed, L1 must be artificially set on since total operations
are required but a control break does not occur.

If total operations are ever to be done, they must be con-
ditioned by LO, L1-L9, LR. L1-L9 are not available, but
L0 is since LO is always on. Thus you can use LO to con-
dition the operation which will set L1 on. When L1 is
turned on you can do total operations necessary for the
job.

In this case, you wish to do total operations when the blank
card is read. 03 is the indicator assigned to the blank card.
Thus, you must set L1 on when the record identifying in-
dicator 03 is on. The SETON operation is, therefore, con-
ditioned by both L0 and 03 (Figure 11-20).

Control level indicators should be set on at total time. If
they are set on at detail time, they are turned off before
any operations which they condition are encountered.

Coding Control Level Indicators As Calculation Conditioning
Indicators

Control level indicators are normally entered in columns

7-8 of the Calculation Sheet where they specify which cal-
culations are to be done at total time. They may, also, be
used in columns 9-17 where they indicate which detail opera-
tions are to be done on the first card of a control group.

Control level indicators are turned on near the beginning of
the program cycle if the contents of the control field on
the card just read are different from the contents of the
previous control field. Since the indicator is not turned off
until the end of the cycle, it is on during total and detail
time. Thus, it is available to use as a conditioning indicator
during detail time as well as total time.

When an operation is not conditioned by control level in-
dicators specified in columns 7-8 of the Calculation Sheet,
the operation is done at detail time. If the operation is con-
ditioned by control level indicator specified in columns
9-17, and not in 7-8, the operation is still done at detail
time when L1 is on. L1 is on only during the processing of
the first card in a control group for only the first card in a
new group causes a control break.

IEM

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS

Form X21-9033
Printed in U.S.A.

12 75 76 77 78 79 80

Date .
Punching | Graphic

Program

ion
Program Instructios Punch

(1]

Figure 11-20. Conditioning the SETON Operation

. Resulting
Indicators Indicators
- | | a Plus ﬁllinull Zero
i 3 5. And And : . Field |2[Z Compare
Line |ol2 < Factor 1 Operation Factor 2 Result Field Length a_g % [Fian TLow TEamal Comments
i_é‘—"; 9 7§§1>2I:21=z
5 ‘63 = 5 5 2ls Lookup
822 2 z °F Table {Factor 2) is
High | Low [Equal
34s|sls afoliolifroizf1a]is|16f17)1s 19 20 21 22 23 24 25 26 27{28 70 30 31 32{33 34 35 36 37 38 39 40 41 42043 44 45 46 47 48[4 50 51 51£Fﬁssigsgsnsig_eaﬁg§_is1gse 70 71 72 73 74
o[+ e TN [ULIT] [PRILICE] EISULTT] [712
ol2| Je ESUL TOTA TIOTIAL] 2
o3 |¢ll 3 SIEITION 1
of| {¢]L QVE| ICUSTINO E
ofs| leild CODE C i 1] 1 1
ofs] le[L11 1 TIOT/AL UL |- 04 | D1SC] 712k
ol7] felLil 11 TIAL! ULIT! |. @2 D1S 7i2H
ols| [elLit TOTIAL S [q PAYMNT] | 712
alai le

Controlling the Performance of Operations in an RPG II Program 11-27

CONTROLLING WHEN OPERATIONS ARE PERFORMED

When you are processing a job, there can be certain con-
ditions determing when operations should or should not be
performed. This section will discuss two indicators which
can control when operations are performed: halt indicators
and external indicators.

Halt Indicators (H1-H9)
Halt indicators may be used to:
e Stop a program after finding an error.

e Condition calculation or output operations after finding
an error. This is necessary because the system does not
halt until after all calculation and detail output opera-
tions are performed for the record that caused the error.
Halt indicators can be used in the same way as indicators
01-99 to condition operations.

Stopping a Program After an Error Occurs

Halt indicators are used to stop an RPG program when a
specified condition is satisfied. Halt indicators can be used
as record identifying, field, or resulting indicators. When
halt indicators are used as record identifying indicators, a
halt will be caused by a specific type of record; when used
as field indicators, a halt will be caused by a specific type
of input data; when used as resulting indicators, a halt will
be caused by a specific type of results from calculations.

11-28

A halt indicator can be turned on at one of four different
times (Figure 11-21). Its use, of course, will determine
when it is turned on. The program does not halt immedi-
ately when a halt indicator is turned on. All total and de-
tail operations remaining in the cycle are performed first;
then the program halts. This means that processing will
still be completed on information from the card that
caused the specified condition.

After a halt, you can continue processing by pressing
START on the processing unit. Halt indicators are always
turned off before another program cycle begins.

Preventing Calculations From Being Performed When An
Error Occurs

Halt indicators are usually used to test for an error condi-
tion in your data. Specifications shown in Figure 11-22
illustrate the use of Hl to test for an error condition. A

test is made to determine if the INSTOK field in the amount

card is minus, which indicates an error condition. When
this occurs, H1 is turned on. Since calculations should be
done when this error does not occur, they must be condi-
tioned by NH1. This means that the calculations will be
done only when H1 is not on.

Halt indicators can also be specified on the Calculation
Sheet to test for an error. For example, in Figure 11-23,
H1 is set on if the result of operation in line 01 is negative.
If quantity in stock (INSTOK) is negative after quantity
shipped (QTYSH) has been subtracted, an error has oc-
curred. H1 turns on and the system will halt after the cur-
rent cycle.

START

° []
[J
[
M Read
HALT eada
card
Turn on halt
indicators when
Perform detail used as record
output identifying indiators
[}
Perform detail @ ®
calculation. Change in
Turn halt indicators control field?
used as resulting Yes, turn on
indicators on or off @ control level PY
° @ indicators
Move data from card
selected into Perform total
processing area. calculations.
@ [urn halt indicators Turn halt indicators used
used as field asresulting
indicators on or off indicators on or
® Perform total off
output

Figure 11-21. Logic for Halt Indicators

Controlling the Performance of Operations in an RPG II Program 11-29

= N et USA

RPG INPUT SPECIFICATIONS

1.2 75 76 77 78 79 80
Date Program
" . Pa;
Punching | Graphic . D] Identification
Program Instruction Punch
5 Record Identification Codes) N i
5 Field Location ::'e‘,d
5 1 2 3 > & c ndicators
= g =4 | 3
2: 3 2 < |5 s
= @ H 2 |gal & Sterling
. - 2 - = " 33
Line Filename EHRER Sl K Field Name H 5 z Sign
3 Zl5| & 3 v €0 | Position
z 18|12 | poston || |8 poson |s| [E| posttion |o| |E[31E| From To |3 3 gl & |ewsm i
2 HAE 2|o|E 2lo|8 Zlal5l5lz g 2 15%] = Blank
£ 2 M N =] & M E g g 5| 3
£ 2|5|& 2 (5|5 3[5)5 2|5|5)a|a a 8 |58 &

=
N

43|44 45 46 47|48 49 50 515253 54 55 56 57 58|59 60

l
NO

2
@
i

3 4 5)6|7 8 9 1011 1213 14{15 16 19 20 |21 22 23 24 |2 27|28 29 30 31(32|33|34{35 36 37 38|39|40[41 63 6465 6667 68|69 70|71 72 73 74

o['] 'MONTHRP| @1 08|

3
@
2l

[R1E]

T

NO—=

NP 14| IDATIE |
AL 15 | [23dI

ols| |1 2 96 CS

ol6 I 1

o7 1 4‘ L

W
S
Xe]
(oA
(@)
(fd

_‘~
> O] =
oM Hm ﬂﬂm___

00 InEd

%)
LD KOS IOn

oj9] |1 !
10| |1 I- D E
11 1 1 2 o)
120 Ir
M International Business Machines Corporation Form X21-6093
IB) Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic Page[D Pw,’r," .
Instructi
Pyogram nstruction Punch
Resulting
Indicators Indicators
Arithmetic
Plus IMimn[Zero
&) Field I| Compare
-G . .
tne |g §;“; And And Factor 1 Operation Factor 2 Result Field Length E Tian [Low [Equat Comments
' Py Tl1>2(1<2|1=2
Fls o g
3 Eg b3 s Lookup
s 5 k3 g £
£8=2 z z Table (Factor 2] is
High | Ltow |Equal
3 aslel78 7[18 19 20 21 22 23 24 25 26 2742829 30 31 32|33 34 35 36 37 38 39 40 41 42|43 44 45 46 47 48)49 60 51]s2]s53|54 65[56 57)58 6960 61 62 63 64 65 66 67 €8 69 70 71 72 73 74
T
ot e IINS SU TOTAL LNSTO
of2] e ORDE] DD | [IINSTOl IINSTO
of3 Cc
olaf |c
T [

Figure 11-22. Conditioning Calculations by a Halt Indicator

11-30

IBM International Business Machines Corporation Form X21-9093
Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Dato o Punching Graphic PageD:l Program
Program Instruction Punch
P
Resulting
Indicators Indicators
Arithmetic
- ' I 2 Plus {Minus | Zero
- : S|z
i T4 And And ; . Field [Z]Z| Compare
Line 2 5 © Factor 1 Operation Factor 2 Result Field Length é' § Figh [Low [Equal Comments
S FZ|1>21<2|1=2
g|£3 =
5 S ,6, .6 k-3 I 00kup
c)32 alT
z z 2 Table (Factor 2) is
34 5le a9|o|||z|314aamn':am:ozi22232425262723293031323334353537333940414:4344454541449505' 3 64 65 66 67 68 69 70 71 72 73 74
oj1] |¢ I NISTIOK] SuUB TYISH 1INSTIO
02 [
alal e

Figure 11-23. Testing Result Field for Error Conditions

Controlling the Performance of Operations in an RPG II Program 11-31

External Indicators
External indicators have two major functions:
¢ They can condition the use of files.

e They can control which calculations should be done for
a specific job run.

Using One Program To Do Two Jobs

One program can be used to do similar jobs if you use ex-
ternal indicators.

Consider, for example, the following jobs. Two jobs of
reports are required each week. One is a sales analysis re-
port showing what items sold during the week; the second
is an inventory report showing balance on hand for each
item in stock. Notice the similarity in the format of the
reports (Figure 11-24),

Two files are available: The MASTER file which contains
balance forward records for all items in the store and a
transaction file (TRANS) which contains all the weekly
sales for each item (Figure 11-25). Both files are in ascend-
ing order by item number.

The sales analysis job requires only a listing of records
found in the transaction file.

SALES ANALYSIS
ITEM NUMBER AMOUNT SOLD DATE
46732 7 09/15/68
8 09/16/68
2 09/17/68
1 09/19/68
46739 12 09/15/68
20 09/16/68
25 09/17/68
8 09/18/68
3 09/19/68

Figure 11-24. Two Similar Reports from Two Different Jobs

11-32

The inventory report is a matching records job. When
records from both files match, the number sold is sub-
tracted from the balance on hand. The new balance is then
printed on the report following the list of transactions.

The inventory job requires two files; the other only one.
You can write one program to do jobs which have such dif-
ferent file requirements by using external indicators to tell
the program when to expect two files.

Setting External Indicators

Although most indicators are set by the program, you set
external indicators prior to the execution of the program.
This is done by including a SWITCH statement in your
Operation Control Language. The format of the SWITCH
statement is:

// SWITCH indicator settings

The indicator settings are:
1 = indicator is on.
0 = indicator is off.

X = indicator is unaffected.

BALANCE FORWARD
ITEM NUMBER AMOUNT SOLD DATE BALANCE
46732 7 09/15/68
8 09/16/68
2 09/17/68
1 09/19/68
.150*
46733
32+
46739 12 09/15/68
20 09/16/68

"\/\/J

Item Number

MASTER
FILE

/ \
/

/

12 3 4 5 6 7 8 9 1011 1213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43 49 50 51 52 33 S4 53 55 57 58 59 60 61 62 63 64
65 66 67 68 69 70 7t 72 73 74 75 76 77 78 79 80 B) 82 83 84 85 86 87 82 89 90 91 92 93 ¥4 95 95

S7 98 99 100 101 102 103 104 K05 106 107108 109 N0 1 112 13 14 NS 16 17 N N9 120 121 ©2 123 124 125 126 127 128

ITEM |BALFOR|DATE

12 34 5 6 7 8 9 K01 1213141536 17 1819 20 21 22 23 24 25 26 27 28 29 30 3 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5t 52 53 34 55 56 57 38 59 60 61 62 63 64

“NLMODPUNIDODPDTD=NIODD

65 65 67 64 69 70 71 72 73 74 TS 76 77 78 79 80 81 82 83 84 85 86 87 58 89 90 91 92 93 94 95 96

IBM 3700

AN

“NA2IPD~=NAID>PT-=NO>D

/

Item Number

/

TRANSACTION
FILE

N

/ 1 2 3 4 5 67 8 91011 1213 WU 151617 1819 2021 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 34 53 36 57 58 59 60 6! 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 70 79 80 81 82 83 84 83 56 87 88 89 90 91 92 93 94 95 96
B ¥7 98 99 100 101 102 103 104 105 108 107 108 109 N0 M n:vumnsmmmnstzomnzmmmuzcmma
A A
8 , 8
8 1TeEM |soLD | DATE 4
2 2
1B 1 2 3 4 5 67 8 9 0N 12131415 % 17 18 19 20 21 22 23 24 25 26 27 28 29 30 N 32 ;
A A
8 8
4 4
2 2
;!!M!SMS7SI!!‘0‘Il!‘)‘d(!“"l“”!ﬁﬂ!2535‘55“57505"05!‘2.)64é
A A
8 8
4 q
2 2
1‘5“l7“6l7°7l7!7)7‘757‘717.7’”.!Hﬂ“”u'7‘l”!0"'l’!“!’!‘1
\ 1BM 3700 /

Figure 11-25. Format of Records Used in Sales Analysis and Balance Forward Jobs

Controlling the Performance of Operations in an RPG II Program 11-33

Figure 11-26 shows a SWITCH statement which sets exter-
nal indicators one and eight on and indicators two through
six off. Indicator seven is unaffected.

Once an indicator is set, it is not changed until you provide
another SWITCH statement or perform IPL. You cannot
use the SETON or SETOF operation codes with external
indicators.

Using an External Indicator to Condition a File

You can assign an external indicator to a file. When the in-
dicator is on, the file is used; when it is off, the file is not
used. This, then, is how you can tell a program when to
expect one file and when to expect two. Consider again the
two jobs discussed previously: sales analysis and inventory.

1 4 8 12 16 20 24 28
AL 1]
/I/| BN ITICH [1ip@B@aEx]L

Figure 11-26. SWITCH Control Statement

The TRANS file is needed for both jobs, the MASTER file
is only needed for the inventory job. Thus, the MASTER
file is assigned the U1 indicator. You set the indicator on
for the inventory job (MASTER is used here) and off for
the sales analysis job (MASTER is not used).

The Ul indicator is assigned to a file on the File Description
Sheet in columns 71-72. Any of the eight external indica-
tors (U1-U8) could be used. Ul was arbitrarily chosen for
this job (Figure 11-27).

When writing a program to do two jobs, be certain that the
jobs are similar. When the jobs require many different cal-
culations and output operations, writing two different pro-
grams would be easier than using external indicators.

File Description Specifications
File Type Mode of Processing File Addition/Unordered
N L Length of Key Field or . Number of Tracks
File Designation of Record Address Field Extent Exit for Cylinder Overflow
End of File Record Address Type for DAM Number of Extents
. Type of File g . Symbolic Name of Tape
Line Filename Sequence Organization S Device ym = . Rewind
- ® Device Wi Label Exit
o File Format or Additional Area § 5 —
g ol 2 |overflow Indicator| 2 2 Condition
I Q& 5 2 2 Core Index u1-ug
£ 3(o a Block Record § = Key Field § 2
o« T a2
S glal 18|3] tength | Lengh |E gle itam?g 5 2 2
.ocation
3 4 s|6]7 8 9 1011 12 13 14 J15]16[17|18]19{20 21 22 73(24_&5_76 271 28| 291.13‘ 32)33 34§35 36 37 38|39]40 41 42 43 44 45 4647 48 49 50252'53%25_56 57 68 59|60 61 62 63 64 65|66|67
o[- [-MASITIER | [1]P 96 FIC
os| |rirRANS | | €IS 96| | 96 J2
ol4) |=IPRI INT] 0 Fl [1132] (113
ofs| |r
ole| |r
of7| |r
F
e

Figure 11-27. Assignment of an External Indicator

11-34

Controlling Calculations For A Specific Job When Using
One Program for Several Jobs

Naturally, the calculations performed and the type of re-
port written depends upon the job being done. Different
calculation and output-format;specifications are needed
for each job. In order to determine which specifications
to use for a particular job, calculation and output-format
specifications must also be conditioned by the external
indicator.

Consider for example, calculations done for a sales analysis
job. For each item in stock, monthly total sold is calcu-
lated and then added to the previous month’s year-to-date

total to find the current year-to-date total. In the first
month of a new year, monthly totals should not be added
to prior year-to-date totals because totals are not carried
over from year to year. This last statement, the year-to-
date addition statement, therefore, is not done for all
program runs. By conditioning the statement with an
external indicator, you can control when the operation is
done. In Figure 11-28, the monthly total is added to prior
year-to-date only when Ul is on.

When one program is written to do two similar jobs, some
calculations may be used for both jobs and some for only
one. Again, you use external indicators to control which

calculation specifications are used for each job.

Form X21-9083

IBM International Business Machines Corporation
- Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic Pagel:l:] ongv?rf\ "
Program Instruction Punch
. Resulting
Indicators Indicators
Arithmetic
- e Plus {Minus | Zero
' . olz
i 39 And And F. i N Fietd |Z|Z| _ Compare
> actor 1 Factor 2 2|'s
Line 2 & Operation act Result Field Length |& | & [Fiah [Low [Equa Comments
= 5|5 1>2[1<2]1=2
Elza HE
- o 5
k3 3 g 5 z° g i1 Lookup
Table (Factor 2) is
High | Low (Equal
3 4aslelr s 13114115 16[17}18 19 20 21 22 23 24 25 26 27|28 29 30 31 3233 34 35 36 37 38 39 40 41 42}43 44 45 46 47 48)49 60 61]52]53}54 55|56 57|58 59]650 651 62 63 64 65 66 67 68 69 70 71 72 73 74
1 R I
o] J° BALFO D | ISOLID BALNCIE| | 7
of2] [e ; I [
NS T [| | I

Figure 11-28. Conditioning a Calculation by an External Indicatcr

—

Controlling the Performance of Operations in an RPG II Program 11-35

11-36

Review 11. Indicators

When do the following indicators turn on?

H1-H9, LO, U1-U8

When are they turned off?

How is the RPG II logic altered by the halt indicators?

What are the two major uses for the external indicators, U1-U8?

Controlling the Performance of Operations in an RPG II Program 11-37

Answers to Review 11. Indicators

11-38

H1-H9 are turned on immediately when the condition being tested is true. LO is always on. U1-U8 is
turned on by the OCL SWITCH statement.

H1-H9 are turned off at the beginning of the next RPG II cycle. L0 is never off. U1-U8 is never affected
by RPGII. Only the OCL SWITCH statement affects these indicators.

When halt indicators are turned on, the program continues through all total and detail calculation and
output; then halts.

U1-U8 indicators are used to condition certain calculations or to condition the activity of a file for a
certain run of a program. These conditions can be changed without recompiling the program.

BINARY FIELD OPERATIONS (CONTROLLING
SWITCHES)

RPG II provides certain operation codes which set and test
individual bits in storage. These individual bits can be set
and tested to allow you further control over processing.
The bits are called switches and their functions are similar
to that of RPG II indicators. The operation codes which
set and test the bits are known as binary field operations.
A binary field is a one-byte field containing 8 bits labeled
0-7. The bits can be set on, set off, and tested. Since each
bit can be utilized, there are eight indicators in every byte.

When using binary field operations, remember how data
fields are initialized by the system:

e Alphameric fields are initialized to Hexadecimal ‘40’.

e Numeric fields are initialized to Hexadecimal ‘FO’.

You should initialize the binary field containing the bits to
be set and tested to binary zero (Hexadecimal ‘00) at the
beginning of the program.

BITON Operation Code

Figure 11-29 shows a Calculation Sheet containing the
BITON operation code. This operation code causes
specified bits in Factor 2 to turn on (set to 1) in the field
named as the Result Field. The field named in the Result
Field must be one-position alphameric field. Since it is one
position in length, a 1 must be entered in column 51 of
Field Length. One or more of the eight bits can be turned
on. To turn on the first bit in a field, enter 0 in Factor 2.
These bit numbers must be enclosed by apostrophes.

You can use conditioning indicators in columns 7-17. You
may also turn on a bit in an array element, but that array
element must be one position in length.

In Figure 11-29, bits 0, 1, and 7 are set to 1 in the binary
field labeled CODE.

Figure 11-29. The BITON Operation Code

IBM International Business Machines Corporation Form X21-9093
{ Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic P"ge[D Prcgrﬂn .
Program Instruction [-
Resulting
Indicators Indicators
Arithmetic
- £ Plus [Minus] Zero
= 3 k:l
: B9 And And " . Field |=|Z Compare
Line g ic Factor 1 Operation Factor 2 Result Field Length g §[Fion [Low [Eaual Comments
Flsq 3|3|1>2)1<2f1=2
3 E
HEELH 3 5 S Lookup
Table (Factor 2} is
High | Low |Equal
3 4 5|6)7 8]910[11]12 13[14]15]16]17] 28293031323314353637383_9_(0_&4243“4546474849505' sos'_a_?_ia_ﬁ_SigﬂsQ70'"72737‘
of1] [c | N7 ! DE [] 1
ol2| |c
03] |c
oja| |c
ols| lc Note: The shaded columns
e are not used. Leave them blank.
§ DU TN N VR N TN OO N N IS N N B Iy B
ol7l e TP TTTTierrrTTT Il

Controlling the Performance of Operations in an RPG II Program 11-39

BITOF Operation Code

Figure 11-30 is a sample Calculation Sheet containing the
BITOF operation code. This operation code causes speci-

fied bits identified in Factor 2 to turn off (set to 0) in a
field named as the Result Field. In Figure 11-30, bits 0,

3, and 4 are turned off (set to 0) in the binary field labeled

CODE.

All other specifications are the same as those specified under

BITON Operation Code.

TESTB Operation Code

Figure 11-31 is a sample Calculation Sheet with the TESTB
operation code. This operation code causes specified bits

identified in Factor 2 to be tested for an off or on condi-
tion. Resulting indicators in columns 54-59 are set depend-
ing upon the conditions. At least one resulting indicator
must be used with the TESTB operation, and as many as
three can be named for one operation. Two indicators may
be the same for one TESTB operation, but not three. Re-
sulting indicators in these columns have the following
meanings:

e Columns 54-55: An indicator in these columns is turned
on if each bit in Factor 2 is off (set to 0).

e Columns 56-57: An indicator in these columns is turned
on if two or more bits were tested and found to be of
mixed status, some bits on and other bits off.

o Columns 58-59: An indicator in these columns is turned
on if each bit in Factor 2 is on.

Form X21-9093

Figure 11-30. The BITOF Operation Code

1140

IBM international Business Machines Corporation
. Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date Punching Graphic Pagelj] Progr?{n .
Instruction Identification
Program Punch
. Resulting
Indicators Indicators
Arithmetic
- 2 Plus |Minus | Zero
o . k=] =
. 39 And And F 1 erati E R . Field |&|Z[Compare
Line g ia actor Operation actor 2 esult Field Length & §[igh [Cow [Comments
fes e sl2]1>2[1<2|1=2
ele 3 EIZ
E :§ g é .26 § g :-'E Lookup
Table (Factor 2) is
High | Low |Equal
3 4 516 |7 8{9110[11]12113]|14]15[16[17]18 19 20 21 22 23 24 25 26 27[28 29 30 31 32|33 34 35 36 37 38 39 40 41 42143 44 45 46 47 48|49 50 651}52{53}54 55{56 57|58 59)60 61 62 63 64 65 66 67 68 €9 70 71 72 73 74
N / T 11171711
o] Je | TIOF* B34 CODE []
02 c
o[T
oja c .
Note: The shaded columns
ik il I are not used. Leave them
ols| |c blank.
L T T T O IO A

In Figure 11-31, bits 4, 5, and 6 in the binary field named For example, assume you have a customer master file on

CODE are tested. Resulting indicator 66 is turned on if cards. You have four columns containing the following in-
bits 4, 5, and 6 are off. If some are on and others off, re- formation:

sulting indicator 77 is turned on. If they are all on, result-

ing indicator 88 is turned on. o Whether the customer is a wholesaler or retailer.

All other specifications are the same as those specified o If the customer is entitled to a discount.

under BITON Operation Code. However, you need not

define the Result Field as one position in length, since this o If orders should be checked by the credit department.

is done when the field is used in a BITON or BITOF opera-

tion code. o If due to a bad payment history, the shipment should be
sent cash on delivery.

Now you want to place the card file on disk, and the in-
formation from the four columns in four bits in a binary
field labeled CHECK. The four columns will be labeled
WHLSE, DSCT, CREDIT, and COD respectively. The
following operations should be performed:
Example
1. If WHLSE s equal to 1, turn on bit 0 in CHECK.
Fields are sometimes present in customer master files to

indicate particular types of customers. When such a mas- 2. IfDSCT isequal to 1, turn on bit 1 in CHECK.
ter file is created, each of the conditions indicating a par-
ticular customer type is represented in a card by one 3. IfCREDIT is equal to 1, turn on bit 2 in CHECK.
column. Since each card column occupies one byte of
storage, four columns indicating customer types will be 4. IfCODis equal to 1, turn on bit 3 in CHECK.
stored in four bytes of storage. You can use binary field
operations to convert each one-byte card column to one Figure 11-32 shows correct coding for this problem. Re-
bit of information on disk. Therefore, four bytesof in- member that before setting up datalin a binary field, the
formation can be reduced to four bits of information on binary field should be set to binary zero. This can be done
disk. by the BITOF instruction (Line 1, Figure 11-32).

IBM International Business Machines Corporation Form X21-9093

Printed in U.S.A.

RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80

Date i
Punching | Graphic Page |:|:| Program
Instruction

Program Punch

. Resulting
Indicators Indicators
Arithmetic
- 2 Plus | Minus| Zero
o . ol
T2 . . Field {2|Z[Compare
Line) And And Factor 1 Operation Factor 2 Result Field o=
g3 ° Length || & [Figh [Low [Equat Comments
{35 o slg]1>2)1<2(1=
e|2d HEX
H - o o S
L8 2}2 2 2 &l Lookup
Table (Factor 2) is
High | Low |Equal
3 4 5lels sfoiofiniz|13liars]16l17]18 19 20 21 22 23 24 26 26 27|28 29 30 31 32033 34 35 36 37 38 39 40 41 42|43 44 45 46 47 48)49 50 51|s253]s54 55|56 67[58 s9)60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
0 c \ /
! TIESTR" 456 CODE 66
o|2| |c
olzl le

Figure 11-31. The TESTB Operation Code

Controlling the Performance of Operations in an RPG II Program 11-41

IBM International Business Machines Corporation Form X21-9093
! Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
R — Punching | Srepic rlll] e
Pyugmm nstruction Punch
Resulting
Indicators Indicators
Arithmetic
- I I 4 PluslMinus Zero
- . . |Field |2|E]__ca
Line 'g’ i; And And Factor 1 Operation Factor 2 Result Field l-:'lgth n_.g ';i " :o:auequn Comments
EES; EEI>21<21'2
5135 - - gls Lookup
w822 2 2 1 Table (Factor 2) is
High | Low {Equal
3 4 slsl7 alohofnfziajralrsire[s7lis 19 20 21 22 23 24 25 26 2728 29 30 31 32/33 34 35 36 37 38 39 40 41 42]43 44 45 46 47 48J49 60 51[s2053]54 65156 67158 59 |60 61 62 63 64 65 66 67 €8 69 70 71 72 73 74
o[e | BITIOF [B1[23/4i5167[“|CHEICKK | | Tt
ol [e HSIL CopMp| [1 14
of2] e DSCT COMP! |1 11
oj4f |¢ CREDIT ICOMP! (2 12
ool Je D Comp 1 13
ofe[el Tt B TON g CHEC
o] [11 BILTIONI* 11 CHEC
os| e 12 |ITON 21/ CHEC|
ol Je 13 B TON3” CHECK|
1(o] fc
- |

Figure 11-32, Exa.mple of Binary Field Operations

1142

Review 11. Binary Field Operations

What are bit switches used for?

Code the calculation specification to:

a. Set on bits 4 and 7 in a field called TESTER.
b. Set off bits 1, 2, and 3 in TESTER.

c. Test to see whether bits 1, 2, and 3 in TESTER are all on or all off. Set on indicator 01 if they are
all on and set on indicator 02 if they are all off.

Controlling the Performance of Operations in an RPG II Program 1143

Answers to Review 11. Binary Field Operations

1. Bit switches are used to code and test for specified situations. With System/3 Disk System, they are
stored in one-byte alphameric fields in storage and on disk. One example is credit information in an
accounts receivable file. The first bit might mean a COD only; the second, payment due in 30 days;
the third, credit limit $1000; etc. When these conditions are coded as bit switches they take up less
disk space than single character codes that might be used in the same way.

2. See coding sheets.

IBM International Business Machines Corporation Form X21-9093
‘ Printed in US.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
Date — Punching Graphic Page D] Program
Program Instruction Punch
| Resulting
Indicators Indicators
Arithmetic
P Fd Plus {Minus | Zero
54 And And Field |2|Z Compare
Li : Factor 1 Operati Factor 2 Result Fi 215
ine § 5‘5 peration esult Field Length &3 [Pigh [Low [Equa Comments
233 8|3[1>21<2]1-
283z | 3] | |2 8[F|_ oo
Table (Factor 2) is
. L High | Low (Equal
3 4 slsly sleholibairahiafrshiolrlie 10 20 21 22 23 24 25 26 27}28 29 30 31 :23\33435353738394041 42]43 44 45 46 47 48]49 50 6152]53]54 65|56 57|58 5960 61 62 63 64 65 65 67 68 €9 70 71 72 73 74
of1]| [c I 4
ITTIONI* 47 ESTIER [11 UEST]ION_2
of2| |c [N / -
[TOFM1213 ESTER UEISIT]1ION
0j3 [+ N\ / -
TEESTRM112 1| QUESTIIION [2C
o4 [
0|5 c
nip Lol

1144

ALTERING THE ORDER OF OPERATIONS ON THE
BASIS OF THE NEXT RECORD IN A FILE

Calculations to be performed may depend upon informa-
tion in the record or the type of record to be processed
next. For example, if, while processing a record, you know
the next record is identical to the one being currently
processed, you can bypass calculations for the current
record.

The RPG II language has a special feature called look ahead,
which extends the basic RPG II logic. It will allow the com-
puter to look at information in the next record to be
processed while it is processing the current record. This
means that information in record B can be used while record
A is being processed. By using this feature, you can write

a program that uses information from the next record
available for processing.

Through the use of

Look Ahead, information
from this card is

available to use

while the previous

card is being processed.

Processing Card or Disk Files

As the card (Card A) is read, data recorded on it is trans-
ferred to the input area. The card then moves on to the
wait station (Figure 11-33). According to the RPG II pro-
gram cycle, information is transferred from the input area
to the processing area right before detail time. At detail
time, then, calculations can be done on data from the card
which is shown sitting in the wait station. '

However, when look ahead is specified, another card (Card
B) is read before detail-time operations are performed in
the current cycle. Card A is stacked and information from
Card A is moved to the processing area. Then information
on Card B just read is transferred to the input area and is
available to use for determining what detail calculations
should be done on data from Card A, now in the stacker.

T

==
-~ \ 4

HOPPER

8 o il i id ik D ol o o e |
IR R ERSRELERN]

N A%

READER HEAD

P _-

Z

This card is moved to a
stacker and information
from the card is moved
to the processing area.

Pl XX N,

r————

C

V-
WAIT STATION

Figure 11-33. The Look Ahead Function

.
el
STACKER

Note: Thisis not a
combined file.

Controlling the Performance of Operations in an RPG II Program 1145

Figure 11-34 shows processing of three records from two
disk input files, one primary and one secondary. The first
record from each file is read (Figure 11-34, insert A).
Figure 11-34 shows records being selected for processing.
The records available for look ahead during the processing
of these records are:

Record Processed Records Available
P1 P2 and S1
P2 P3 and S1
S1 P3 and S2

In general, when the record being processed is from an
input file, the next record in the input file is available as
are the records which were read but not selected from the
other files.

Checking for Duplicates
Duplicate records or records with duplicate fields are some-
times considered erroneous. Only one of the duplicates

should be used for the job.

Consider, for example, the case of a company which has a
large turnover in inventory items. Quite frequently new

11-46

items are added and others deleted from the inventory. A
number for a deleted part is to be assigned to a new part.
Some mistakes have occurred, however, and one part num-
ber has been assigned to two different items. - As a result
of this error, inventory balances for these items have not
been updated correctly, and errors have been made on
customer invoices. If this situation is possible, a regular
check should be made for duplicate part numbers.

Each month, a report is created showing the complete in-
ventory. All part numbers are listed on the report. You
could look through the report to check for duplicate part
numbers, but it would be easier and more accurate if you
could add a few specifications that would check for dup-
licates and indicate on the report which item numbers are
duplicate.

By using the look ahead feature you have access to infor-
mation that is coming up. You can then use this informa-
tion to determine what operations to do. If you are process-
ing a record with part number 64322, and you know that
the next record also has part number 64322, you can print
a message indicating duplicate part numbers, then halt.
But, if you are processing the record with part number
64322 and you do not know that the next record also has
part number 64322, you can do nothing special because
you are not aware that you are processing a record which
contains a duplicate entry.

PRIMARY FILE SECONDARY FILE

==y

(P2)] (P3)] (P4)| (P5) (s2)] (S3)| (s4)| (s5)

—_— @Read first record

@Read first record

from primary file.

I_ - —M;:c;-ﬁ; _____ | from secondary file.
; |

: 1 | Areainto which records

| (s1) | areread (read area).

I |

S S S -

| 1

|

| I Area into which records

[| are selected for

| | processing {process area).

| |

e e e e e ——— J

@222? ;ef‘:g“md ®3) (pa)f (ps5) s2f (sa)| (sa| (s5)
primary file.
r-———F " —=—————- a

Read Area

Process Area

@Select first record

from primary file
for processing.

Figure 11-34. Available Records: Two Input Files (part 1 of 2)

Controlling the Performance of Operations in an RPG II Program 1147

® T
Read third

primary file.
r T T T I e e T ————— i]
| l
: 2 1 i
Read Are
, (P3) s | ?
I I
| I -
: |
I
| I
| | Process Area
| I
| I
e e e e e J
@Select second record ‘ Q
from primary file for :1' | Processed Records
ina. i
processing. !...(.P.Ql
N\ J N\ J
2 3 . 2 2 3

(s3)| (s4)| (ss5)

@Read second record
from secondary file.

Read Area

Process Area

———

—

@Select first record from
secondary file for processing.

Processed Records

(P1)]

Figure 11-34. Available Records: Two Input Files (part 2 of 2)

11-48

Writing Specifications for Look Ahead All look ahead fields must be defined as being in a record
type different from the others defined. This is done by
Any field which you want to look at in the next record to using a unique alphabetic sequence entry in columns 15-16.
be processed must be defined as a look ahead field. If that No record identifying indicator (01-99) can be used. A
field is also used in normal processing (other than as a look double asterisk (**) is placed in columns 19-20 to specify
ahead field), it must be defined in the normal way. Thus, that the fields described in the following lines are look

most look ahead fields will be specified twice. ahead fields. Field location is also specified for look ahead
fields.
Figure 11-35, lines 01-05, shows specifications needed to Every look ahead field must be named, but the name given
describe the input file used in the inventory listing job. mmust be different than when it was described as a normal
When checking for duplicates, PARTNO is the field you input Tield. The same field is given two names so that you
want to use when looking ahead at the next field; there- can distinguish between the field on the record being
fore, PARTNO must be defined as a look ahead field. The processed and that same field (the look ahead field) on the
specifications in Figure 11-30, lines 06-07, do this. record that is to be processed next (Figure 11-36).
IBM foral Business : Pimas oA
RPG INPUT SPECIFICATIONS
12 75 76 77 78 79 80
Date oo Punching Graphic Page [D Progr.ar.n i
Program Instruction Punch
5 Record tdentification Codes . . Field
,‘g ; ’ " . Field Location . s In:Iicators
'§'= % § :—" E =» g Sterling
Line | Filename HR %8 HY | Field Name % EE 3 2 Sign
E E e i’ Position |~ g Position || E| position |- g ‘f’f g From To ; = g‘ug-' g Plus [Minus 77e | Position
€ £l8]3 HEE ENH HRHHE £ g |55 3 Blak
H 3l5| & (55 3(5(3 3[S[8lale H 5 (23| 2
3 4 5|6|7 8 9 10 11 12 13 1415 1617|1819 20 |21 22 23 24|25|26[27|28 29 30 31|32{33]34[35 36 37 38|39|40|41]42[43 |44 45 46 47)48 49 50 51|52|53 54 55 56 57 5859 60|61 62|63 64|65 66|67 68|69 70|71 72 73 74|
o] i[NP,] |
o[|n 1/ [| |5 [PARTING
ola| |1 6l | 25 [DES
ofs| |r 26 | [3112IPRICIE
ofs| |1 32| | 135
ole| |1 3% Y] l
of7| |1 1 5 X[T
olr T |

Figure 11-35. Look Ahead Specifications

Controlling the Performance of Operations in an RPG II Program 11-49

12644 l

(NEXTNO)

INPUT AREA

(PARTNO)

PROCESSING AREA

Figure 11-36. Look Ahead Field: A Field With Two Names

Using Look Ahead Information

Now that you have specified the look ahead field, you can
use it as you would any other field. The only exceptions
are that you cannot use it as a result field in calculations,
nor can it be blanked after for output.

For the listing job, you have to make a comparison between
part numbers from two records. If PARTNO on the record
being processed is the same as NEXTNO on the next record
to be processed, you wish to print a message indicating dup-
licate entries. If the PARTNO and NEXTNO fields do not
match, there are no duplicates for that part number, and
the item is merely listed.

11-50

NEXTNO refers to
columns 1-5 in the
card to be processed next.

PARTNO refers to columns
1-5 in the card being currently
processed.

Figure 11-37 shows specifications for the job. The opera-
tion in line 01 of the Calculation Sheet compares the part
number on the record being processed (PARTNO) to the
part number on the record coming next (NEXTNO). If
they are equal, indicator 07 is turned on. Notice on the
Output-Format Sheet that when 07 is on, the word
duplicate is printed.

The SETON and SETOF operations in lines 02-04 of the
Calculation Sheet are used so that the computer will
duplicate the record when the second record having the
duplicate part number is processed.

IBM International Business Machines Corporation Form X21-9093
i Printed in U.S.A.
RPG CALCULATION SPECIFICATIONS
12 75 76 77 78 79 80
tnstruction Identification
Program. Punch
. Resulting
indicators Indicators
Arithmetic
o~ H] Plus |Minus | Zero
o« . =)
. 9 And And E . . Field [=|Z Compare
Line § 5 < actor 1 Operation Factor 2 Result Field Length é:- g Tiah [Low |Eaual Comments
E?_,T; §g1>2‘l<21-2
Table {Factor 2) is
High | Low |Equal
34 s5lef7 slofioft1)1213(1a15[16]17}18 19 20 21 22 23 24 25 26 2728 20 30 31 32[33 34 35 36 37 38 39 40 41 42|43 44 45 46 47 48]49 50 51}52]53]54 65)56 57|58 59)60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
1] Je PIART ClcMP] INEIXT 71 1]]
ol2| e 7 SETION 51
ol [l 151N SEE g[52217,
O 52 ETIOA 15
IBM S—— pp——
) Printed in US.A.
RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 18 79 80
Date . [
_— i Graphic rogram
T:s'x‘:::::.gan Page I Identification | I
Program Punch
[
=g Space| . Skip Output Indicators Edit Codes
£ Commas | 2670 Balances | /o cR | - | X = Remove
2 | | 2] to Print oo Plus Sign Sterling
N - — . i e Sign
Line Filename i) B Field Name @| End H Yes Yes 1 A |J Y= Date N
NH And _ And 2l positon [Yes No 2 |8 |K Field Edit Fosltion
g SIEl.| [5|8 o No Yes 3 |cifL|2z= 2
[= Zlals|el s | £ |« 3 5 31l outpue |3 No No 4 DM Suppress
E glslglz] 8| 2)2 2 2 =|E[Recora |8
5 Sl% 5| & .
uw L 2 W |a A Constant or Edit Word
a
3 4 5]6|7 8 9 101112 13 14f1s|16]17]18|19 20]21 22|23)24{25]26 |27]28)29[30 |31]32 33 34 35 36 37|38 30|40 41 42 43{a4 45 46 47 48 49 50 51 52 63 64 55 56 67 58 59 60 61 62 63 64 65 66 67 63 69 70]71 72 73 74
o/'| joPRILNT] | | D
012 o p T 0 25
of3| |o S
o[Jo NHAND] | 17
[¢] \ /
® 7 DUPLIClATIE
n j | I

Figure 11-37. Using Information from the Look Ahead Field to Check for Duplicates

Consider, for example, records Al, A2, and B. The first duplicate record is processed, to turn on. During the next

two records are duplicates; the third is not. When Al is program cycle, the compare does not indicate duplicates;

processed, the program looks ahead to A2 and, by com- therefore 07 is not on. But 51 is on, meaning that the

paring, knows that A2 is the same as A1. When A2 is record being processed is a duplicate since the part number

processed, the program looks ahead to B. The compare will ~ on it matched the part number on the previous record.

say that A2 is not a duplicate since it does not match B1. Therefore, 07 is set on. Remember 07 conditions those

But A2 really is a duplicate because it is the same as Al. output operations which are to be done for duplicates.

Thus, when processing A1, you have to set an indicator

which will be on when A2 is processed and which will in-

dicate that A2 is a duplicate since it matches the previous

record. In line 04, indicator 51 is set off so that it will not indicate
duplicates in the following cycle. Indicator 51 is necessary

When PARTNO equals NEXTNO, 07 turns on. This, in so that 51 will be set off for the last duplicate record, not

turn, causes indicator 51, which is used to indicate that a the first. Figure 11-38 shows the program logic for this job.

Controlling the Performance of Operations in an RPG II Program 11-51

12455 DOOR KNOB 48 DUPLICATE

Note: This card is read
only if the Look Ahead
feature is used. It
is read after data
@ from the first
card is moved
into the processing
area.

Turn off
record identifying
indicator O1

Turn on [J
) record identifying
Perform detail indicator 01

output

Perform detail calculations:

Compare PARTNO fields:
12455 to 12455

They are equal so turn H1 on.

H1 is on so SETON 51.

Move data from card
selected into processing
area. If Look Ahead is
used, read another card.
The first card is stacked.

Figure 11-38. Logic for Look Ahead (part 1 of 3)

11-52

//12457
12456

12455 DOOR KNOB 48 DUPLICATE

12455 HINGE, 6" 90 DUPLICATE

F:

START

[] Z
Turn off [}’S/

record identifying /'_13555 _____
indicator 01 ‘L

Turnon
record identifying L4

Perform 'detail indicator 01

output

Perform detail calculations:

Compare PARTNO fields:
12455 to 12456

Not equal so turn 07 off
SETON 07 and 52
SETOF 51 and 52

Move data from card selected

[] into processing area. If Look
Ahead is specified, read another
card. The first card is stacked.

Figure 11-38, Logic for Look Ahead (part 2 of 3)

Controlling the Performance of Operations in an RPG II Program 11-53

12455 DOOR KNOB 48 DUPLICATE

12455 HINGE, 6" 90 DUPLICATE

12456 HINGE, 8" 75

®
Turn off

record identifying
indicator 01

Perform detail
output operations

Perform detail calculations:
Compare PARTNO fields:
12456 to 12457
® Unequal so turn 07 off.

Figure 11-38. Logic for Look Ahead (part 3 of 3)

11-54

12457

Move data from card
selected into processing
area. |f Look Ahead is
used, read another card.
The first card is stacked.

e

Turnon
record identifying
indicator 01

Doing Special Operations for Only One Record in a Group

It is often important to know if and when you are process-
ing the only record in a group. The job described in the
following paragraphs is such a case.

A report is prepared showing charges made by customers
during the week (Figure 11-39). The input file is organ-
ized in ascending order by customer number. During the
month some customers will have made one charge; others
several.

When only one charge is made per customer, the total line
is nearly a duplicate of the only detail line. In this case,
you do not need to print both the detail and total lines
because the total line will do.

But how will you know during any one program cycle
whether the current record is the only one in a group?
You can find out by looking at information on the next
record.

Remember that any time it is necessary to use information
from the next record available for processing in order to
determine what to do while processing the current record,
you must use the look ahead feature. Account number is
established as a look ahead field in this job. Any look
ahead field specified applies to all record types. Thus each
record read contains information that will be looked at be-
fore the record itself is processed. By looking ahead into
this field you will know whether or not the next record to
be processed is part of a new group.

Whenever a card is read, the current ACCT field is com-
pared to the one coming up. If the fields are equal, you
know you are processing a record that is not the only one
in a group. Therefore, a detail line should print. If the
ACCT fields are not equal, however, the current card is the
only one in the group, and the detail line should not print.
Figure 11-40 shows the specifications for the job.

MONTHLY CHARGES
ACCTNO NAME CHARGE
47653 JILL ARNDT 4.97
5.99 }Detail lines
23.87
47653 JILL ARNDT 34,83 * Total
49832 NANCY BENNET 87.93* Total
59821 JOAN BOND 7.42 Detall

Figure 11-39. Format of Monthly Charges Report

Controlling the Performance of Operations in an RPG II Program 11-55

IBM ral Buinss Machines orporat Pt n G5 A

RPG INPUT SPECIFICATIONS

12 75 76 77 78 79 B0
Date Program
Punching Graphic Page D:] e
Program Instruction Panch
13 Record ldentification Codes N f
8 Field Location Field
k] 1 2 3 > _ . Indicators
=] = 2
o £ w e 5
. — ';.':. h § 2igz| & Sterling
Line Filename Zl |ES gla | FieldName | 5 |23| ® Sign

& || 8 213 < g |l g Zero | position

z H] FH 3 Position || |E| Position || g Position [—f &7 3 From To |3 2 |22| & |Pus mi

: ¢ R Eleldl " =lslEl T ElefElglE ; 1 E Fark

E = &]

& & (28| & 2|5|s 3516 £|5[s3|e B 5 (55| &

3 4 5[6|7 8 9 1011 1213 1415 16 [17]18 19 20 |21 22 23 24|25}26|27|28 29 30 31|32{33{34 |35 36 37 38|39|4041[42|43|44 45 46 4748 49 50 515253 54 S5 56 57 58|59 60|61 62|63 6465 66|67 68|69 70|71 72 73 74
of'[|'lCIARDS] | | 1A | 1212 |
ozl It 1 CCITINALI
ABRE A INAME
‘ 2 | 38 G
0 1 3,L C
i i

IBM International Business Machines Corporation Form X21.9093
| Printed in US.A.
RPG CALCULATION SPECIFICATIONS
. 12 75 76 77 78 79 80
Date Punching Graphic PageD] Progr?rr\ "
Program Instruction Punch
Progr
Resulting
Indicators Indicators
Arithmetic
- 2 Plus lMinus‘ Zero
e [oJ32] ma ans Factor 1 Operati Factor 2 Rosult Fielg |F/e1d | [comoure
Line | o i actor peration actor esult Fiel Length|&] & [Figh | Low [Eavat Comments
C1% o 5|3|1>21<21-2
elgd £
HEELE s k3 &|5[Lookw
Table (Factor 2) is
High | Low {Equal
3 4 slel7 sjolofinfrz]13]1al15(16]17[18 19 20 21 22 23 24 25 26 27[28 29 30 31 32|33 34 35 36 37 38 39 40 41 42[43 44 45 45 47 48 69 70 71 72 73 74
oft] Je CqTl OMP| NEXIT]
oz | |1 99 E[TON
ofs] e CHRG | IMOTCHG [| [[TOTICHG | 62
ol SETOF A
c
~

Figure 11-40. Using Look Ahead to Find the First and Only Card in a Group (part 1 of 2)

11-56

Form X21-9090

IBM Internationat Business Machines Corporation
Printed in US.A,

RPG OUTPUT - FORMAT SPECIFICATIONS
12 7576 77 78 79 80

Date ¢ [
: Graphic rogram
Punching Page D] Identification

Instruction { p, 0 on

Program
[
=g Space] . Skip Output Indicators Edit Codes
5 (Zero Balances X =
I = Commas | “#0 " 20 | NoSign | CR [- [X ;‘Iemgye Sterling
£ . \é v Dus ign Sign
Line Filename [Field Name a| End H Yes Yes 1 Al = Date Positi
N £l And _ And Sl Positon [Yes No 2 |8 [k Field Edit son
g 28|e o g8 n @ No Yes 3 [c|L|z= 2w
Tlaleld 2] s 3 s
[Zi3lslE] | & |~ - - < 3 No No 4 D|M uppress
w[T|EL B & {o 8 ° 8 -~ Output | £
£ gysldl<] &} < |2 2 2 =%l = g
S > % A K ecord | S .
w "ls ul |@ r Constant or Edit Word
3 4 5{6]7 8 9 10 1t 12 13 14}115]16{17{18[19 20421 22{23|24[25|26 |27)|28]29|30|31 |32 33 34 35 36 37|38 |39 |40 41 42 43|4445 46 47 48 49 50 51 52 53 54 55 56 57 53 59 60 61 62 63 64 65 66 67 68 69 70471 72 73 74
o[\ [o[RE H[[3 1P L] L
\ 7
of2| [o 5 bNT L CH 148
o3| |o 13 |
0|4 o \ CCT ¢
ofs| |o N MLE ’

,._
e e
O[O Gio [Ov

~I~JIOSIN[WIS I[N

ojJo|jo|oc|O0O|0o|lOo|O|OC}O| O
=
b
[33)
=
—

Figure 11-40. Using Look Ahead to Find the First and Only Card in a Group (part 2 of 2)

Controlling the Performance of Operations in an RPG II Program 11-57

Doing Special Operations for the Last Record in a Group

In some jobs, it may be necessary to do special operations
on the last record of a control group. This is because, un-
less the last record in the control group is of a different
type (have different record identification), it is impossible
to know when you are processing the last record in the
group. When all records are of the same type, you have to
know what is on the next record before you know whether
or not you are processing the last record in the group. To
look at information in the next record, you must use the
look ahead feature.

Figure 11-41 shows four cards which are to be processed.
The first three belong to one control group; the fourth is
the beginning of the next group. The last card of the
group (the third card in this case) requires special process-
ing. In order to know when the last card in the group is
to be processed, you must look at the account number in
the next card. When it is different, you know that the
last card in the group is being processed.

Additional Points to Consider About Look Ahead

You must consider the following things when you are
planning to use look ahead:

‘e Look ahead may be used with update or combined files,
but the results are different than look ahead with input
files. When look ahead is used with a combined or up-
date file, and that file is the only input file in the pro-
gram, the field looked at is not on the next record, but
on the record currently being processed. Therefore,
there is little use for look ahead with update or com-
bined files in a single file program.

e Look ahead is never used with chained, demand, or out-
put files.

11-58

e Only one look ahead record type specification may be
used for a file. There may be several fields listed under
that one record type specification however.

e Any look ahead fields specified apply to all types of
records in the file. Therefore, all records read from the
file will be treated as if they have look ahead fields.

e Look ahead is used more in jobs requiring two files than
in jobs requiring one file.

Csé':’
(7

47654

{Account field
specified also as p—
a look ahead field)

In the processing of

this card, the

Look Ahead feature

shows that the next

account number is different.
Therefore, this is the

last card of a group

and as such requires

special operations.

Figure 11-41. Using Look Ahead to Find Last Card in a Group

Review 11. Look Ahead

1. Basically, what does the look ahead facility allow you to do? What limitations apply to its use?

2. To the input specifications given add those which will allow you to look ahead in order to read the next
part number (PARTNO) and next code in column 96.

IBM International Business Machines Corporation Form X21-9094
Printed in U.S.A.
RPG INPUT SPECIFICATIONS
1.2 75 76 77 78 79 80
Date P
Punching | Graphic Pﬂﬂe[]:] i
Program Instruction Punch
P
5 Record Identification Codes i
H Field Location Field
g 1 2 3 > 5 c Indicators
£ H] 3 2
2 £ " < |5 o
+ ~ §:s. - b S E 5 2| & Sterling
Line Filename Z| |£° 8la 5| FieldName | 5 |33 » Sign
g =ls| & Kk I L X Zero | position
=(2]| 2 . 5 - 5 - 5[3 I3 T < i g |p :
e Position [~ &| Position | &| Position | v |% rom o 5 Z 2| & lus [Minus| or
3lsle E K Z[a|B Z|o|8|E|F] 3 |28 Blank
£ - ik ENE AR 3 £ (23 3 ™
2 zZ|o] & 2|ol6 2|c{5 2|5|E[5]a a 8 |26 &
3 4 5|6[7 8 9 10111213 1415 16{17]18}19 2021 22 23 24[25]26|27| 28 20 30 31 35 36 37 38|39]40[41]a2]4344 45 46 47|48 49 50 51]52|53 54 55 56 57 58[59 6061 62|63 6465 6667 68|69 70|71 72 73 74
o] [livPuT | [1AW | 1114 | P&l IC9 |
o2 |t 1 6|_[PARTNO
o[] 732 pIsa
o+ s 33 | 372QrY
(A1) 1
T T

Controlling the Performance of Operations in an RPG II Program 11-59

Answers to Review 11. Look Ahead

1. Look ahead allows you to use data on the next record to be processed. Normally only the data on the
record currently being processed is available to the RPG II program. Look ahead should only be used
with input files. If it is used with combined or update files, information in the look ahead field will be
from the record currently being processed, not the combines or update file.

2. ** must be specified in columns 19-20 to indicate that the fields listed are to be looked at in the next
card available for processing. Look ahead fields must be given different field names than those used
when describing the file. A unique sequence entry must also be used.

IBM Internstional Business Machines Corporation Form X21-9094
1 Printed in US.A.
RPG INPUT SPECIFICATIONS

1.2 75 76 77 78 79 80
Date Program
. . P
Punchmg Graphic a8 D:l Identification
Program Instruction Punch
] Record Identification Codes . 3 .
5 Field Location F'e!d
2 1 2 3 > _ c Indicators
£ & g S
) £ - Zls | =
. . }:L 7 s 2 |ss} & Sterling
Line Filename B3 % 5 Slo ‘%1 Field Name % 2El P 2 Sign
g =|s k] £ = ero | Position
s Z[E|2 | position || [B] positon |of || posion [=] |E|3|Z| From To (% 3 28| & [Pus Minusfor st
s Blsle Z|o|B Zialg EHRNMEE H 5 [£€| =
E HEIR vhg -hg :N§§“ 5 ‘E 3'§ © Blank
3 2 o ol o
g 2)8|& 215/6 2)s)6 2)5|6)ala 8 8|28 &
3 4 5|e|7 8 9 1011 12 13 1415 16|17{18|19 20|21 22 23 24|25]26]27] 28 29 30 31|32|33[34|35 26 37 38[30|a0]a1[az]43]44 45 46 47|48 49 50 51]52[s3 54 55 56 57 58)59 60|61 62]63 64|65 €667 68)69 70)71 72 73 74
[T INBOT [T AN | 18] 196 |
o[o 1 PARTING
3
BN 7132 miisc
ol]t 33 | B7PQTYOH
aONE BB | XX
o EINEXT]
! 1 NEXITINO
o|7| |1 {
ofs| [1 K| |

11-60

CHAPTER

DESCRIBING INPUT FIELDS THAT CONTROL PROCESSING

CHAPTER 12 DESCRIBES:
Control fields and split control fields.
Field record relation indicators with the OR relationship, split control fields, and
match fields.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:
Function and coding of input fields on the RPG II Input Sheet.
Function of RPG II indicators.
RPG II object cycle.

Match fields and matching records logic.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:
Function and RPG II coding for control fields and split control fields.

Function and RPG II coding for field record relation indicators.

Describing Input Fields That Control Processing 12-1

INTRODUCTION

For every job,‘you must describe the type of information
the RPG II Compiler will be working with. This means that
you must describe the input file on the File Description
Sheet and the types of records in the file on the Input
Sheet.

To describe a record you must describe the fields in the
record plus any information that identifies each type of
record. It also means you must indicate that certain fields
on the record are to be used as control fields or match
fields.

CONTROL FIELDS

A basic job in any data processing installation is the prep-
aration of detail reports that consist of one line of printing
for each record read, such as a transaction listing. Figure
12-1 shows what a detail report would look like.

Because product classes are repeated for each line, the re-
port is cluttered and hard to read. The same report (Figure
12-2) grouped by class is much easier to read. Here, all
items from one class are listed together with headings used
on each page to identify the information. Since all items
on one page apply to the same class, the class is printed
only once. Such a report is sometimes referred to as a
group-indicated report. Group-indication is the printing of
control information on one line per group. The date is
printed at the bottom.

12-2

A control field is any field used to indicate when a certain
type of processing should be done. Since the CLASS field
(Figure 12-3) controls processing, it must be specified as
the control field. Each time a record is read, this control
field is checked for a change in contents (control break).
When a control break occurs, a different type of processing
or additional processing is to occur. In this case, a change
in the CLASS field indicates:

1. Skip to the bottom of the page.
2. Print the date.
3. Skip to a new page.

4. Print heading.

CLASS ITEMNO DESCRIPTION ON HAND
00124 7657352 SWEATER, V-NK, §Z 32 10
00124 63241B1 SWEATER, V-NK, §Z 34 16
00124 43151CK CARDIGAN, SZ 36 17

. .

4 .
00124 76738K2 CARDIGAN, SZ 40 8
00125 54321K4 T-SHIRT, WH, SZ 30 1
00125 56422K4 T-SHIRT, WH, SZ 32 14
00125 57381J4 T-SHIRT, WH, SZ 40 15
00125 58324B1 T-SHIRT, WH, SZ 42 8

* L4
00125 57421C2 T-SHIRT, BK, SZ 46 12
00126 67341B3 WOOL SOCKS, BL 10 1"

IN STOCK AS OF 10/30/70

Figure 12-1. Printed Report of all Items in Stock

CLASS

00124

CLASS

00125

CLASS

00126

ITEM NO

467321
6324181
43151CK

DESCRIPTION

SWEATER, V-NK, SZ 32
SWEATER, V-NK, SZ 34

CARDIGAN, SZ 36

IN STOCK AS OF 10/30/70

ITEMNO

54321K4
56422K4
57381J4
5832481

DESCRIPTION

T-SHIRT, WH, SZ 30
TSHIRT, WH, SZ 32
TSHIRT, WH, SZ 40
T-SHIRT, WH, SZ 42

IN STOCK AS OF 10/30/70

ITEM NO

6734183
6743283

DESCRIPTION

WOOL SOCKS, BL 10
WOOL SOCKS, GR 10

IN STOCK AS OF 10/30/70

Figure 12-2. Report Group — Indicated by Department Number

PAGE 0001

ON HAND

10
16
17

PAGE 0002

ON HAND

1
14
15

8

ON HAND

CLASS ITEMNO

DESC

ONHAND

DATE

5 6 12 13

Figure 12-3. Item Record

32 33 38 39

Describing Input Fields That Control Processing 12-3

Coding Control Fields

The RPG 1I specifications for the job are shown in Figure
12-4. The entry L1 on line 02 of the Input Sheet (Figure
124, insert A) establishes the CLASS field as a control
field. When the information in the control field changes
(a control break occurs) L1 is turned on. The L1 indicator
is used on the Output-Format Sheet (Figure 124, insert B)
to condition those operations which should be performed
only when a control break occurs.

IBM International Business Machines Corporation Form X21-9094

Printed in US.A.
RPG INPUT SPECIFICATIONS
12 75 76 77 78 79 80

Date .. Program
Punching Graphic Page D] am

Instruction

Program Punch
s Record Identification Codes . . Field
3 Field Location Indi
- P 2 3 > 5 < ndicators
> 2 2 2
2, & 2 Sl |2 .
) = o i1 EREEIR Sterling
Line Filename HINEE glo Z| Field Name 3 |25 ® Sign
- =[5l 8 . 5 = s . “|21s 4 & |Li g ~ |Zero | Pposition
ey E e = Position |~ 1 Position |- g Position |~ g e £ From To B Z | £8| & |Plus [Minusior
< HHE Z(al} Z|o| 8 Zlo|B|5|E £ £152| = Blank
] =Nl & <iN| & HINEED g E|RE| =
5|8 5] 3]
2 HEI z|[s|6 25|56 2|6(5|3|a S 8 (26 &
3 4 5]6}7 8 9 1011 1213 14|15 16[17{18 19 20 |21 22 23 24|25 26|27 28 20 30 31|32|33|34]35 36 37 38[30]|40]a1}42[43|44 45 46 47]48 49 50 51]52[53 54 55 56 57 58]59 60|61 62|63 6465 6667 68|69 7071 72 73 74

o] 1] P’UT

ol2| |1 [5| CILASS| (L1

ofa] | 6 | 112 || TIEMNO

£ HE s

® 5 AT |

IBM International Business Machines Corporation :::‘,: ::?:

RPG OUTPUT - FORMAT SPECIFICATIONS
7576 77 78 19 80

12
Date N Progr:
Punching | Grephic Pmm rogram
Instruction

Program Punch .

Iy
' ; r
éSpace Skip Output Inducator‘s Edit Codes
B
Zero Balances " - | x =R
é | 3 Commas | ™" print | NoSion | CR Ploa Sion Sterling
. ~le e Sign
Line Filename gls Field Name =| End & Yes Yes 1 A |3 |Y= Date o
NH Ard __And B pogiton |+ ves No 2 |8 |« Field Edit Position
glzle g 5| & in 2 No Yes 3 c|L |Z= 2ero
S|8lelE] | & |5 5 5 32| ouput |3 No No 4 oM Suppress
glsla|c| & | < |2 z 2 elEl Record |2
SH £|5| Recod |8 i
"lE u |@ 1 Constant or Edit Word
a
3 4 5 7 B 9 10 11 12 13 14]15]16[17]18]19 20421 22|23]24|25{26 27(28]29)30]31 |32 33 34 35 36 37|38 940"4243“454647484950&5153545556575859506'6753646555575859707‘72737‘
o' o DUITIPUIT] L1
o2 0 OVINILI
/
o3 CILIAIS
ola

HELA RS
—
m
O
~

olo
~

O] IO

o
o | o

o
o
sjujo|o|lojo|o|o|[o|0| 0|0 |0|O|O |o FormType

Figure 12-4, Defining and Using a Control Field

124

Split Control Fields

Two separate parts of a field or two separate fields can be
used as one control field known as a split control field.
This is done by assigning the same control level indicator to
both parts of the field. The compiler will consider the data
in the split control fields as one continuous field.

Suppose you have a 3-character customer number field in
the record and now need a 6-character field. The problem
is how to put a larger customer number (such as 100010,
100020) in a 3-character field. You cannot change records
easily because there is no room for expansion on either
side of the customer number field (Figure 12-5), and to
expand the field, the entire record format would have to be
changed. All programs using these records would also have
to be changed to accomodate the changed record format.
This would be considerable work and inconvenience. RPG
I provides the split control field feature to meet changing
data processing needs with minimum effort.

The solution to the problem is to add a 3-character portion
to the customer number field using three columns which

are not adjacent to the original customer number field
(Figure 12-6). The original three numerals of the customer
number remain in the original field. The three additional
numbers are put in the new customer number field.

At the end of each month, a report is produced consisting
of:

1. Customer number.

2. Adescription of each purchase.
3. The cost of each purchase.

4. The total cost of all purchases.

The report is group-indicated as shown in Figure 12-7.

The customer number determines when totals would be
printed and thus must be used as a control field. However,
on each record the customer number is split into two parts
(two fields). Both must be used in order to get the correct
customer number (Figure 12-8).

CUSTNO ITEMNO DESC QTYORD COSsT }
1 34 12 13 32 33 37 38 44
Figure 12-5. Three Digit Customer Field

CNUM2 ITEMNO DESC QTYORD COST CNUM1 é
1 34 12 13 32 33 37 38 44 45 47 48

Figure 12-6. One Customer Number Split into Two Parts

Describing Input Fields That Control Processing 12-5

Figure 12-7. Report Group Printed by Customer Number

Coding Split Control Fields

Split control fields must be described in specification lines
which follow one another (Figure 12-8).

CNUMLI, the field in the high order position of the record
(columns 4547), must be specified on the Input Sheet be-
fore CNUM2, the field in positions 1-3. This is required

CUSTOMER PURCHASES COST
001249 #14 NAILS 2.49
9NAILS 3.78
$ 6.27 *
001254 HAMMER 1.29
ELECTRIC SAW 42.85
$44.14 *
001497 2' X 4's 17.93
| $17.93 *
001972 PLYWOOD 7.43
$ 743 *
002024 TILE 87.93
/_/\/\/‘\/'/__fz;gi:,__/

because the three digits in CNUM2 are the first three digits
of the customer number.

Parts of a split control field may be either alphameric or
numeric. In this example, they were both defined as
numeric (indicated by the entry in column 52). If one of
them, however, had been defined as numeric and one as
alphameric, they both are considered numeric by the com-
piler.

iomal Business y Form X21.9094
IBM. . Printed in US.A.
RPG INPUT SPECIFICATIONS
12 75 76 77 78 719 80
Date Program
Punching | Graphic Page [D Identicaton
Program Instruction Punch
5 Record Identification Codes i
'§ Field Location r';l,d
2 1 2 3 > s < ndicators
E) & w 2ls | 3
& o H Slgal @ Sterling
Line | Filename z g 3 gleo i Field Name T 2sl 2 2 Sign
zla K i ero iti
5 ZI8|2 | ostion |o| || positon |of || postion |<| |2|2|E] From To |2 312 § |rws Minuslor | Posten
= HHE Elolt Zlo|% 2lo|3lz|2 E 2 l5s] = Blank
£ £ = =] 5 Mk 55l 2
2 2|5 5|51 3[5|3 5(5|al3(x H A
3 4 5|6|7 8 9 1011 12 13 14[15 16 |17[18{19 20|21 22 23 24|25|26]27|28 29 30 31 3 35 36 37 38|39)40}41]42|43 |44 45 46 47|48 49 50 51|52]53 54 55 56 57 58|59 60|61 62|63 64|65 66|67 68|69 70|71 72 73 74
o[[s[RECIDISTIIN[NS | 1 5 | 47eCNUML| L1
o2 |1 1| [BACNUM2] L1
oyl |1 4 | 112 ITIE NP
ofs] |1 1% 32| DE
ofs| |1 3 370QTIYOR
ofs| |1 38 | 442C0S]T

Figure 12-8. Specifying a Split Control Group

12-6

FIELD RECORD RELATION INDICATORS

You may have some programs which process several |dif-
ferent record types. Two or more record types might con-
tain identical fields. To eliminate coding these identical
fields for every record type you may use the OR relation- -
ship which indicates that certain fields are found on all
record types. Not all fields are identical in different record
types, however. You must have some way of specifying
those fields found on only specific record types in the OR
relationship. Field record relation indicators indicate those
fields found on only specific record types.

Field record relation indicators will relate:
e A field to a specific record type in the OR relationship.

Control fields and split control fields to a specific record
type in an OR relationship.

Match fields for more than one record type.

OR Relationship

You can eliminate duplicate coding by using an OR relation-
ship to describe identical record types. This method also
reduces the size of the program.

When using the OR relationship, you need to write the
names of identical fields from more than one type of record
only once on the Input Sheet. OR relationship specifica-
tions indicate that the fields named may be found on all

of the record types. The following input specifications are
necessary to set up the OR relationship:

Record identifying indicators (01-99) for each record

1.
type.

2. The letters OR in columns 14-15 for all record types
other than the first.

3. Entries describing the record identification code of

each record type (columns 21-31).

The record identifying codes must be described for all types
of records in the file before any fields are described (Figure
12-9). The letters OR are placed before the description of
each record type except the first. OR indicates that the
fields listed may be found on all record types. In this
example, the fields listed may be found on records identi-
fied by an N, D, or O in column 96. Idéntical fields are
described after the entries which establish the OR relation-
ship.

IBM International Business Machines Corporation Form X21-9094
i Printed in U.S.A.
RPG INPUT SPECIFICATIONS ,,
1.2 75 76 77 78 79 80
Date Program
Punchin.g Graphic Page [D Identification
Program Instruction Punch
5 Record Identification Codes i
3 Field Location e e
£ o Z |5 s
! AR N § 3 ggl 2 Sterling
Line | Filename HREE Ele G| Field Name 3 S5 e 2 Sign
=l 5 [y ero iti
2 F % position. [15[position || |Ef poson |5 |3 2 ¥ From To |3 3 12| & |eus i Fosition
E HHH SI85 HEH RIEHHE H £l5sl 3 Blank
& 3 |12|8] & 2|56 2lo|5 2(3|5|5]a S S |26] i
3 4 5]6]7 8 9 1011 1213 14|15 16|17|18 |19 20|21 22 23 24]25]26]27| 28 20 30 31[32|33]3a]35 36 37 38{30]40[a1]4243] 44 45 46 47|43 49 50 s1[s2|53 54 65 65 57 5859 e0l6t 62[6a 6465 €667 68|69 70|71 72 73 74
o' [[INNVEINTIRYY 1l | Q6 I
of2| |1 OR| 2| | 96 Cg
oja |1 OR 3 | 94 [C
ol |t 1 5 CLA§ S
ofs| |1 6 | 1120 [1ITIEMND
ol 113 | 32| DESC] |
o 3313 AMP
JoNE 39 T H E
alol 1 NEREREN

Figure 12-9. Using the OR Relationship to Describe Identical Record Types

Describing Input Fields That Control Processing 12-7

OR Relationship With Field Record Relation Entries

In the example of printing a report by product class, all
record types had identical fields (Figure 12-3). Suppose
that the information on each record type is organized dif-
ferently; the records have some fields which are identical
and some which are not (Figure 12-10). Now you want to
print only a description of new items. The record identified
by an N is the only one with the DESC field. All card types
still have CLASS, ITEMNO, DATE, and ONHAND fields.

Remember that OR relationship can be used when all fields
are not identical. In this case, additional entries must be

made in the field record relation columns (63-64) on the
Input Sheet. The entry consists of any of the record iden-
tifying indicators (01-99) assigned to a record type speci-
fied in the OR relationship. The record identifying indica-
tor entered in columns 63-64 relates a field to a particular
record by identifying the record type in which the field is
found.

When columns 63-64 are blank, the fields listed are assumed
to be found in the positions specified on all records in the
OR relationship. When an entry is specified in columns
63-64, the field is found only on the record type having
that record identifying indicator.

e}
e}
CLASS ITEMNO DESC ONHAND DATE =4
[}
2
5 6 12 13 32 33 40 90 95 96
New Item Record
)
. o
CLASS ITEMNO ONHAND DATE 1>
n
o
5 6 12 13 20 90 95 96
Regular Item Record
o
o}
CLASS ITEMNO ONHAND DATE r?1
]
o
5 6 12 13 20 90 95 96

Discontinued Item Record

Figure 12-10. Record Types with Some Identical Fields

12-8

To use the OR relationship with field record relation entries 3. Specify all fields that are found only on the first
you must: record type in the OR relationship, then the second
record type, then the third, and so on (Figure 12-11,
lines 10, 11, 12, and 13).
1. Code the specifications describing record types in the
OR relationship (Figure 12-11, lines 02, 03, and 04). In this example, the only fields for the first record type
which have not been described are DESC and ONHAND.

2. Describe all fields which are identical on all record For each field, the entry 01 must be made in columns
types (Figure 12-11, lines 06, 07, and 08). In this 63-64. This entry means that DESC and ONHAND are
example, the identical fields are CLASS, ITEMNO, found on only the record type 01 identified by an ¥V in
and DATE. column 96.

IBM International Business Machines Corporation :::.T .:Il:ﬁl
RPG INPUT SPECIFICATIONS
Date 1 2 75 76 77 78 79 80
o | e el 1] s
§ ‘ Record ldentizfication Codes . . Field Location ::I:Z:(:a -
Line | Filename ’E‘ _ %‘6 é- é % Field Name % %:; ; Zero g;_mh_ng
,; égé § Position 2/o ’:‘:’ Pasition %E g Position % o §§ § From To % -é gg § Pus ftinuslor Position
h HEH 51518 3I5(6 3|518)5|~ & § (28| ¢
o' %D 1 BE LI ICARDITYRES [N _[THE O LAT\ONSHI[P [RI RS %
ol2| 1]l NVEINTIRY|AA 11196 € ‘
03] |1 O 21 94 [Cn
o4 |1 O 3 | 96 Clo
ois| 'KTHESE |Fl1ELDS ARE | THIC LN ALLL] CARD [TYPES %
ols| |1 1 5 ClL 9
ol Tz 6 | [112] [1TIEMNO
o8| |1 od | 9 TE
olo| |*MTHEISIE| F|l ELLIDS E [FIOUND ON ONE| PARTHCUL CARD [TIY[PE]
1ol |1 1 DESC 1
AL 3 \ 1
1|2 1 13 pl 2
HEIRES 13 2 N |3

Figure 12-11, Field Record Relation

Describing Input Fields That Control Processing 12-9

The DESC field is related to the record identified by an
NN because this is the only record type having.a DESC field.

ONHAND, however, is found on all record types. ONHAND

must be related to the record having an &V in column 96
because it is in a different location on this record type.
The field location of ONHAND must be specified and re-
lated to the corresponding record type by the record iden-
tifying indicators (Figure 12-12, line 11).

Remember that when fields are not identical on all record
types, the field must be described and related to all record
types on which it is found.

All fields relating to only one record type must be entered
as a group and must be given the same record identifying
indicators in columns 63-64.

If most fields are common, describing the record type with
field record relation usually reduces the number of speci-
fications you must write and the amount of storage neces-
sary to hold the instructions.

Field Record Relation with Control Fields

Control fields can also be related to a specific record type
in an OR relationship by field record relation entries. In

Figure 12-12 the CLASS field is a control field (L1 in
columns 59-60). It is also found on all record types; blanks
in the columns 63-64 indicate this. However, if a control
field is found on only one record type, the control field
must be related to the record type in which it is found by
an entry in columns 63-64 (Figure 12-12, line 07).

The number of control fields need not be the same for
every record in the OR relationship. Regardless of the
number of control fields per record type, all control fields
and all other fields related to the same record type are
entered as a group (Figure 12-12, lines 07 and 08).

Field Record Relation with Split Control Fields

The rules applying to field record relation with control
fields also apply to field record relation with split control
fields. In addition, when split control fields are found on
record types described in an OR relationship used with
field record relation entries, all portions of the split con-
trol field must be assigned to same control level indicator
and the same field record relation entry. This is necessary
because all parts of a split control field are on the same
record rather than on two different records.

Figure 12-12. Field Record Relation with Control Fields

12-10

IBM Intesnational Business Machines Corporation :::‘"':‘:‘:" 3;91
m
RPG INPUT SPECIFICATIONS
1.2 75 76 77 78 79 80
D! P
ate Punching Graphic Page [D ldr:::iair'::ation
Program Instruction Punch
5 Record Identification Cod i
3 eoore Cenies il Field Location ona
2 1 2 z 5 |
£ s g 33,2 .
> [S 2 |gz| Sterling
Line Filename Z| [E58 Sl Z| FieldName | 5 [33] © Sign
g =ls| & k] 4 & (5el g Zero [position
> ek position [~| |&]| Position [=| |E] Position |=| |E|?|%| From To | 2 |E2 Plus [Mi
S Lk ZlolB Zlo|t E Bk E £ g [5E] % Blank
£ ElE] 8 N Z|N| 5 FHEHER g E 85| 3
& 2|5] & 2ls)6 2|o|6 2|5[5|8(a I3 3 |26|