
--- ------ ----- ---- ------- -------------·-

SR30-0220-1 

I BM Series/1 
Event Driven Executive 

Study Guide 

GENERAL 
SYSTEMS 
DIVISION 
EDUCATION 

0 p:ac1 o 

Ii 
11111111111111111111111111111111111111111111111 

Cl 

lllllllllllllllllllllllllillllllllllllllllllllll 

D [])D []) 

1111111111111111111 ~ 
0 []JI 

111111111111111111111111111111111111111111111111 

Series/1 



Second Edition (January 1979) 

This edition applies to the IBM Series/1 Event Driven Executive, Versions 1 and 2, and to 
all subsequent versions and modifications until otherwise indicated in new editions. 

Use this publication only for purposes stated in Section 1. Introduction to This Course. 

This publication could contain technical inaccuracies or typographical errors. 

A form for reader's comments is provided at the back of this publication. If the form has 
been removed, address your comments to IBM Corporation, General Systems Division, 
Technical Publications, Department 796, P.O. Box 2150, Atlanta, Georgia 30301. 
Comments become the property of IBM. IBM may use and distribute any of the infor­
mation you supply in any way it believes appropriate without incurring any obligation 
whatever. You may, of course, continue to use the information you supply. 

©Copyright International Business Machines Corporation 1978, 1979 



Section 1. Introduction to This Course . . . . . . . 1-1 
Course Overview . . . . . . . . . . . . . . . . . . . . . . 1-1 
Material Requirements . . . . . . . . . . . . . . . . . . . 1-3 
Study Tips . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
Course Objectives . . . . . . . . . . . . . . . . . . . . . . 1-4 
Event Driven Executive Components - Version 1 . 1-5 

Basic Supervisor and Emulator (5798-NND) . . 1-5 
Event Driven Executive Utilities (5798-NNC) . . 1-5 
Event Driven Executive Macro Library 

(5798-NNB) . . . . . . . . . . . . . . . . . . . . . . . 1-5 
Event Driven Executive/Base Program Preparation 

Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
Series/1 Standalone Utilities (5719-SC2) . . . . . 1-6 
BPPF Text Editor . . . . . . . . . . . . . . . . . . . . 1-6 
BPPF Macro Assembler . . . . . . . . . . . . . . . . 1-6 
BPPF Link Editor . . . . . . . . . . . . . . . . . . . . 1-6 

Event Driven Executive Components - Version 2 . 1-6 
Basic Supervisor and Emulator - Version 2 

(5798-NRR) . . . . . . . . . . . . . . . . . . . . . . 1-7 
Event Driven Executive Utilities - Version 2 

(5798-NRQ) . . . . . . . . . . . . . . . . . . . . . . 1-7 
Event Driven Executive Macro Library/Host 

(5798-NRK) . . . . . . . . . . . . . . . . . . . . . . 1-7 
Event Driven Executive Program Preparation 

Facility (5798-NRQ) . . . . . . . . . . . . . . . . . 1-8 
Event Driven Executive-An Operational Overview 1-8 

Section 2. Instruction Format . . . . . . . . . . . . . 2-1 
Language Syntax/Coding Conventions . . . . . . . . 2-1 
Instruction Format . . . . . . . . . . . . . . . . . . . . . 2-2 
Instruction Format Review Exercise - Questions . 2-5 
Instruction Format Review Exercise - Answers . . 2-6 

Section 3. Programs/Tasks . . . . . . . . . . . . . . . . 3-1 
Program/Task Concepts and Structure . . . . . . . . 3-1 

Single Task Program . . . . . . . . . . . . . . . . . . 3-2 
Multiple Task Programs . . . . . . . . . . . . . . . . 3-3 
Multiple Program Structure . . . . . . . . . . . . . 3-5 
Overlay Program Structure . . . . . . . . . . . . . . 3-7 

Program/Task Definition ................. 3-10 
Program/Task Execution ................. 3-12 

Program Loading . . . . . . . . . . . . . . . . . . . . 3-12 
Program Synchronization ............... 3-15. 
Task Synchronization ................. 3-18 

Queuable Resources .................... 3-21 
WAIT /POST Operation .................. 3-24 

Contents 

Attention Lists . . . . . . . . . . . . . . . . . . . . . . . . 3-26 
Programs/Tasks Review Exercise - Questions ... 3-29 
Programs/Tasks Review Exercise - Answers .... 3-32 

Section 4. Data Definition . . . . . . . . . . . . . . . . 4-1 
DAT A Statement . . . . . . . . . . . . . . . . . . . . . . 4-1 
BUFFER Statement . . . . . . . . . . . . . . . . . . . . 4-6 
TEXT Statement . . . . . . . . . . . . . . . . . . . . . . 4-8 
Data Definition Review Exercise - Questions ... 4-11 
Data Definition Review Exercise - Answers .... 4-12 

Section 5. Data Manipulation . . . . . . . . . . . . . . 5-1 
Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . 5-1 

Optional Operands . . . . . . . . . . . . . . . . . . . 5-2 
Floating Point Arithmetic . . . . . . . . . . . . . . . . 5-3 
Data Movement Instructions . . . . . . . . . . . . . . . 5-4 
Logical Instructions . . . . . . . . . . . . . . . . . . . . 5-6 
Data Manipulation Review Exercise - Questions . 5-10 
Data Manipulation Review Exercise -Answers .. 5-12 

Section 6. Queue Processing (Version 2 Only) . . . 6-1 
DEFINEQ. . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
LASTQ/FIRSTQ/NEXTQ . . . . . . . . . . . . . . . . 6-4 
Queue Processing Review Exercise - Questions . . 6-9 
Queue Processing Review Exercise - Answers . . . 6-12 

Section 7. Program Control . . . . . . . . . . . . . . . 7-1 
Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
SUBROUT Statement . . . . . . . . . . . . . . . . . . . 7-1 
CALL Statement . . . . . . . . . . . . . . . . . . . . . . 7-2 
Passing Subroutine Parameters . . . . . . . . . . . . . 7-2 
USER Statement . . . . . . . . . . . . . . . . . . . . . . 7-5 
Program Control Review Exercise - Questions . . . 7-9 
Program Control Review Exercise - Answers . . . . 7-10 

Section 8. Program Sequencing . . . . . . . . . . . . 8-1 
GOTO Statement . . . . . . . . . . . . . . . . . . . . . . 8-1 
IF Statement . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Relational Conjunctions . . . . . . . . . . . . . . . . 8-6 
DO Statement . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Program Sequencing Review Exercise - Questions 8-11 
Program Sequencing Review Exercise - Answers . 8-14 

Section 9. Timers . . . . . . . . . . . . . . . . . . . . . 9-1 
GETTIME Instruction . . . . . . . . . . . . . . . . . . . 9-1 
INTIME Instruction . . . . . . . . . . . . . . . . . . . . 9-2 

Contents iii 



STIMER Instruction . . . . . . . . . . . . . . . . . . . . 9-3 
Timing Functions - Coding Example . . . . . . . . . 9-4 
Timers Review Exercise - Questions . . . . . . . . . 9-7 
Timers Review Exercise - Answers . . . . . . . . . . 9-8 

Section 10. Disk/Diskette 1/0 . . . . . . . . . . . . . 10-1 
Physical Layout - Diskette . . . . . . . . . . . . . . . 10-1 
Physical Layout - Disk .................. 10-2 
Disk and Diskette Logical Layout . . . . . . . . . . . 10-4 
PROGRAM Statement OS= Operand ......... 10-5 
READ/WRITE Statements ................ 10-6 
NOTE/POINT Statements ................ 10-10 
Disk/Diskette 1/0 Coding Examples .......... 10-10 
Load-Time Data Set Definition ............. 10-16 
Disk/Diskette 1/0 Review Exercise -

Questions .......................... 10-22 
Disk/Diskette 1/0 Review Exercise -

Answers ........................... 10-26 

Section 11. Terminal 1/0 . . . . . . . . . . . . . . . . 11-1 
TERMINAL Statement .................. 11-1 

Roll Screens . . . . . . . . . . . . . . . . . . . . . . . 11-2 
NHIST =Operand .................... 11-2 
Static Screens . . . . . . . . . . . . . . . . . . . . . . 11-3 

ENQT /D EQT Instructions . . . . . . . . . . . . . . . . 11-4 
IOCB Statement . . . . . . . . . . . . . . . . . . . . . . . 11-6 
Data Representation . . . . . . . . . . . . . . . . . . . . 11-8 
PRINTEXT Instruction .................. 11-8 
READTEXT Instruction ................. 11-16 
Operator Control of Program Execution ....... 11-19 

PF and Attention Key Handling .......... 11-19 
QUESTION Instruction ................ 11-2f 
WAIT KEY Instruction ................ 11-22 
HARDCOPY PF Key .................. 11-23 

Static Screen Coding Example .............. 11-24 
ERASE Instruction ................... 11-26 
TERMCTRL Instruction ............... 11-27 

RDCURSOR Instruction ................. 11-43 
PRINTNUM/GETVALUE Instructions ........ 11-43 
PRINTIME/PRINDATE Instructions ......... 11-52 
Terminal 1/0 Review Exercise - Questions ..... 11-53 
Terminal 1/0 Review Exercise - Answers ...... 11-56 

Section 12. Data Formatting . . . . . . . . . . . . . . 12-1 
Data Conversion . . . . . . . . . . . . . . . . . . . . . . . 12-1 
CONVTO Instruction ................... 12-2 
CONVTB Instruction ................... 12-3 
CONVTD/CONVTB Coding Examples . . . . . . . . 12-4 
GETEDIT/PUTEDIT Introduction ........... 12-7 
PUTEDIT/GETEDIT Instructions ........... 12-10 
FORMAT Statement .................... 12-11 
Data Formatting Review Exercise - Questions ... 12-19 
Data Formatting Review Exercise - Answers .... 12-20 

iv SR30-0220 

Section 13. Sensor 1/0 . . . . . . . . . . . . . . . . . . 13-1 
Sensor Based 1/0 . . . . . . . . . . . . . . . . . . . . . . 13-1 

Digital Input/Output .................. 13-4 
Analog Input/Output . . . . . . . . . . . . . . . . . 13-4 

Event Driven Executive Sensor 1/0 Support . . . . . 13-6 
IODEF Statement ...................... 13-8 
SBIO Statement ....................... 13-10 

Sensor 1/0 Coding Examples ............. 13-12 
Sensor 1/0 Review Exercise - Questions ....... 13-19 
Sensor 1/0 Review Exercise - Answers ........ 13-20 

Section 14. Utility Programs . . . . . . . . . . . . . . 14-1 
Supervisor Utility Functions . . . . . . . . . . . . . . . 14-1 

$A .............................. 14-1 
$8 .............................. 14-2 
$C .............................. 14-2 
$0 and $P ......................... 14-2 
$CP ............................. 14-2 
$E .............................. 14-3 
$T and $W ........................ 14-3 
$VARYON and $VARYOFF ............ 14-4 

Supervisor Utility Function Example ......... 14-4 
System Utility Programs ................. 14-6 
BSC Utilities (Version 2 Only) . . . . . . . . . . . . . 14-7 

$BSCTRCE . . . . . . . . . . . . . . . . . . . . . . . . 14-7 
$BSCUT1 . . . . . . . . . . . . . . . . . . . . . . . . . 14-7 
$BSCUT2 . . . . . . . . . . . . . . . . . . . . . . . . . 14-7 

Display Processor (Graphics) Utilities ......... 14-7 
$DIUTIL ......................... 14-8 
$DICOMP ......................... 14-8 
$DllNTR ......................... 14-8 

Host Program Preparation Utilities . . . . . . . . . . . 14-8 
$HCFUT1 . . . . . . . . . . . . . . . . . . . . . . . . . 14-8 
$EDIT1/$UPDATEH ................. 14-9 
$RJE2780/$RJE3780 (Version 2 Only) ..... 14-9 
$PRT2780/$PRT3780 (Version 2 Only) ..... 14-9 

DASO Management/Maintenance Utilities ...... 14-10 
$DISKUT1 ........................ 14-10 
$1NITDSK ........................ 14-17 
$COMPRES ........................ 14-19 
$COPY ........................... 14-19 
$COPYUT1 (Version 2 Only) ............ 14-21 
$DISKUT2 ........................ 14-21 
$DASDI (Version 2 Only) .............. 14-24 
$MOVEVOL ....................... 14-25 

Terminal 1/0 Utilities (Version 2 Only) ........ 14-26 
$TERMUT1 ....................... 14-26 
$TERMUT2 ....................... 14-27 
$TERMUT3 ....................... 14-32 
$PFMAP .......................... 14-32 

Program Preparation Utilities .............. 14-33 
$EDITIN ......................... 14-33 



$UPDATE ......................... 14-36 
$FSEDIT/$EDXASM/EDXLIST/$LINK/ 

$JOBUTIL ....................... 14-37 
Miscellaneous Utilities ................... 14-37 

$DEBUG ......................... 14-37 
$IMAGE (Version 2 Only) .............. 14-37 
$10TEST ......................... 14-43 

Section 15. System Installation ............ 15-1 
Machine Readable Material . . . . . . . . . . . . . . . . 15-1 
Installation Overview . . . . . . . . . . . . . . . . . . . 15-4 
I nstall i ng the Starter System . . . . . . . . . . . . . . . 15-4 

NR0001/NNC001 ................... 15-5 
User System Generation ................. 15-14 

SYSGEN Overview ................... 15-14 
Allocate Required Data Sets ............. 15-14 
Edit System Configuration Statements ...... 15-16 
Estimating Supervisor Size .............. 15-22 
Select Supervisor Support Modules ........ 15-29 
Edit $JOB UT IL Procedure File ........... 15-33 
Assemble/Link/Format ................ 15-36 
Copy Tailored Supervisor ............... 15-40 
IPL Tailored Supervisor ................ 15-42 

Section 16. Program Preparation Using BPPF ... 16-1 
Application Program Preparation . . . . . . . . . . . . 16-1 
Program Preparation Overview ............. 16-1 
Preparing the Disk/Diskette :_ Step 1 . . . . . . . . . 16-3 
Create a Source Module - Step 2 . . . . . . . . . . . . 16-9 
Assemble the Source Module - Step 3 ........ 16-11 
Format the Object Module - Step 4 .......... 16-13 
Program Preparation Review Exercise - Questions 16-15 
Program Preparation Review Exercise - Answers 16-18 

Section 17. Online Program Preparation . . . . . . . 17-1 
Program Preparation Overview . . . . . . . . . . . . . 17-1 

$FSEDIT ......................... 17-3 
$FSEDIT Primary Options ............ 17-3 
Creating a New Source Statement File . . . . 17-4 
Option 4: Write . . . . . . . . . . . . . . . . . . . 17-6 
Option 3: Read . . . . . . . . . . . . . . . . . . . 17-7 
Option 6: List . . . . . . . . . . . . . . . . . . . . 17-8 
Option 1: Browse . . . . . . . . . . . . . . . . . . 17-8 
Option 7: Merge ................... 17-13 
Option 2: Edit .................... 17-14 
Edit Mode Line Commands ........... 17-17 

$EDXASM ........................ 17-32 
$EDXLIST ........................ 17-35 
$LINK ........................... 17-35 
$JOBUTI L ........................ 17-37 

Program Preparation Example .............. 17-41 
Problem Description .................... 17-41 

Create/Modify Source Module ............ 17-42 
$1MOPEN ....................... 17-45 
$1MDEFN ....................... 17-46 
$1MPROT/$1MDATA ............... 17-46 

Assemble Source Module ............... 17-51 
Produce Assembly Listing .............. 17-53 
Link Edit Object Modules .............. 17-54 
Format Object Module ................ 17-57 
$EDXASM Copy Code Function .......... 17-59 
Job Stream Procedure ................. 17-66 

Appendix A. SYSGEN Listings . . . . . . . . . . . . A-1 

Appendix B. Program Preparation Listings . . . . . B-1 

Contents v 



This page intentionally left blank. 

vi SR30-0220 



COURSE OVERVIEW 

Section 1. Introduction to This Course 

This course is intended to give Series/1 personnel a general knowledge 
of the concepts and theory incorporated in the Event Driven Execu­
tive system. Upon completion of this course, the student shou Id be 
able to install, generate and maintain an Event Driven Executive 
system as well as write and execute basic application programs. 

The Event Driven Executive software offering is available in two forms: 
Version 1 and Version 2. This study guide applies to both versions. 
Functions exclusive to a particular version are treated as separate 
topics or sections; slight differences in functions available in both 
versions are pointed out in the text. 

Reading References/Reading assignments will be given for both the 
Version 1 (SB30-1053) and Version 2 (5830-1213) Program 
Description and Operations Manuals, as appropriate for the topic 
presented. Where both manuals are referenced, either will suffice. 

The prerequisite for this course is successful completion of Introduction 
to Smaller Systems Student Text (SR30-0185) or equivalent experience. 
Programming experience using high level languages is also strongly 
recommended. 

The Event Driven Executive instruction set and system support 
programs have been divided into several broad functional groups, 
each group constituting a section of this study guide. An attempt 
has been made to organize the sections in a logical sequence for 
study. Each section, however, is also as modular as possible, and 
can be studied as a separate unit, or in a sequence other than 
presented, if desired. 

Section 1. Introduction to This Course 
Contains introductory material, as well as a brief operational 
overview of the Event Driven Executive system. 

Section 2. Instruction Format 
Coding conventions/syntax rules for coding Event Driven 
Executive instructions. 

Section 3. Programs/Tasks 
This section covers program/task structure, application program 
design considerations, and all of the Event Driven Executive 
instructions used for task control and synchronization. 

Introduction to This Course 1-1 



1-2 SR30-0220 

Section 4. Data Definition 
Section 5. Data Manipulation 
These two sections cover all of the basic instructions required to 
define, move, or perform logical or arithmetic operations on data 
in storage. 

Section 6. Queue Processing (Version 2 Only) 
Discussion and illustration of the queue definition and processing 
instructions available in Version 2. 

Section 1. Program Control 
How to define and use both Event Driven Executive subroutines, 
and subroutines written in Series/1 Assembler Language. 

Section 8. Program Sequencing 
Discussion and illustration of JF and DO structures, and the 
relational statements used with them. 

Section 9. Timers 
Instructions to access the system's 24 hour clock and the elapsed 
time clock, and to wait for a time delay are discussed. 

Section 10. Disk/Diskette 1/0 
Discussion and examples of defining and accessing data sets from 
an application program. 

Section 11. Terminal 1/0 
Section 12. Data Formatting 
The comprehensive terminal 1/0 support provided by the Event 
Driven Executive is discussed in detail, with several coding 
examples. Data Formatting, support is used with terminals, and 
therefore immediately follows. 

Section 13. Sensor Input/Output 
This section includes some basic sensor 1/0 concepts, as well as 
how to incorporate the sensor 1/0 support in a supervisor and to 
access sensor 1/0 devices from a user program. 

Section 14. System Utilities 
All of the system utilities are described. Those utilities required 
most often are discussed in detail. 

Section 15. System Installation 
This section covers installation of the supplied supervisor and system 
programs as received from PIO, and generation of a tailored supervisor, 
using the on line Program Preparation Facility (5798-N RP). 

Section 16. Program Preparation Using BPPF 
This optional topic is for those users who will be using the Series/1 
Base Program Preparation Facilities (5719-PA1) to prepare application 
programs for execution. 

Section 11. Online Program Preparation 
$EDXASM (online assembler), $LINK (link editor), and $JOBUTIL 
(job stream processor) are used to prepare a program for execution. 
The example includes use of the COPY CODE assembler feature and 
the AUTOCALL link editor option. 



MATERIAL REQUIREMENTS 

STUDY TIPS 

Course Materials 

*I BM Series/1 Event Driven Executive 
**Study Guide 

Additional Materials 

*I BM Series/1 Event Driven Executive Program 
Description/Operations Manual (PDOM) 

**IBM Series/ 1 Event Driven Executive Program 
Description/Operations Manual - Version 2 
(PDOM) 

***IBM Series/1 Stand-Alone Utilities User's Guide 

***I BM Series/1 Base Program Preparation 
Facilities User's Guide 

***IBM Series/1 Base Program Preparation 
Facilities Macro Assembler Programmer's Guide 

*Required for students who will be using Version 1 of 
the Event Driven Executive 

**Required for students who will be using Version 2 of 
the Event Driven Executive 

***Required for all users of Version 1, and for Version 2 
users who intend to incorporate Series/1 Assembler 
Language Code in their Event Driven Executive 
application programs 

Form No. 

SR30-0220 

SB30-1053 

SB30-1213 

GC34-0070 

SC34-0072 

SC34-0074 

Each section has a set of objectives. Read the objectives carefully so 
that you understand what you should be learning in that section. In 
each section you will find a READING REFERENCE and for each 
topic you will find a READING ASSIGNMENT. Read the referenced 
reading assignment in the PDOM and then continue in the Self Study 
Guide. At the end of most sections you will find a Review Exercise. 
Try to complete it prior to looking at the correct answers and be sure 
you understand your mistakes before proceeding to the next topic or 
section. 

The total amount of study time you will need is estimated at 50 to 
60 hours. This may extend over a period of two or three weeks if 
your study periods are brief and somewhat separated because of 
other duties. 

Introduction to This Course 1-3 



COURSE OBJECTIVES 

1-4 SR30-0220 

For best results, set a short time goal rather than a long one and then 
make every effort to meet that goal. Study sessions should be about 
2 hours long but use whatever time you wish. You may find that 
several short sessions are more productive than one longer session. 

Finally: 

When you begin a new topic, SCAN THE ENTIRE TOPIC 
RAPIDLY. You will get the "big picture" of the topic. Look 
for definitions, coding rules and descriptive examples. NEXT, 
REREAD THE TOPIC SLOWLY TO GRASP DETAILS. 

The second time through, concentrate on points that seem unclear 
to you. Check for more information about the topic in the table of 
contents of the PDOM. You may find an expanded definition or 
more meaningful example. 

After examining an illustration or coding example, EXPLAIN IT 
ALOUD TO YOURSELF. As you hear the words of explanation, the 
descriptive printed statements often take on new or more complete 
meanings. 

The student upon completion of this self-study course should be able 
to: 

1. Describe the major components and facilities of the Series/1 
Event Driven Executive system 

2. Install an Event Driven Executive system on a Series/1 

3. Use the utility programs to maintain a system 

4. Invoke Supervisor utility functions from a terminal 

5. Use most of the Event Driven Executive instructions 
necessary to code application programs 

6. Load application programs from a terminal, or from other 
programs 

7. Understand the use of overlay programs, multitasking, and 
task/program synchronization 



EVENT DRIVEN EXECUTIVE COMPONENTS - VERSION 1 

The Version 1 Event Driven Executive software offering consists 
of three Field Developed Programs (FDPs); 

1. Basic Supervisor and Emulator (5798-NND). 

2. Event Driven Executive Utilities (5798-NNC). 

3. Event Driven Executive Macro Library (5798-NNB). 

These programs are distributed on diskette, and are available from the 
IBM Program Information Department. 

Basic Supervisor and Emulator (5798-NND) 

The Event Driven Executive system supports a high-level instruction 
set. These instructions may be assembled from macros, utilizing the 
Base Program Preparation Facilities on a Series/1, a host macro 
assembler on a 370 host system, or may be assembled directly (no macro 
library used) on a Series/1 using the online Program Preparation Facility 
FDP, 5798-N RP. At execution time, the assembled output of these 
instructions is passed to the Emulator portion of the Supervisor/Emu­
lator, and the Emulator links to the appropriate routine in the super­
visor to perform the desired operation. The Supervisor portion of the 
Supervisor/Emulator manages the various system and 1/0 resources for 
the application programs currently in execution. 

Event Driven Executive Utilities (5798-NNC) 

The system utilities also operate under the control of the Supervisor. 
They provide online, interactive support for a tailored supervisor 
generation, source module preparation, disk initialization, data set/ 
volume maintenance, etc. 

Event Driven Executive Macro Library (5798-NNB) 

The Event Driven Executive Macro Library contains the macro proto­
types for the instruction set, and all of the macros necessary to build 
a Supervisor that is tailored to a user's unique system configuration. 

EVENT DRIVEN EXECUTIVE/BASE PROGRAM PREPARATION FACILITIES 

If a user chooses to do program preparation on a Series/1 using the 
Event Driven Executive Macro Library (5798-NNB), the Series/1 Base 
Program Preparation Facilities (5719-PA 1) macro assembler is used to 
process application source modules and generate a tailored supervisor. 
BPPF can also be used to assemble Series/1 assembly language code, 
which is not possible with the online assembler provided in 5798-N RP. 

Introduction to This Course 1-5 



SER I ES/1 Base Program preparation Facilities (hereafter referred to 
as BPPF) consists of three programs, a text editor, a Macro 
Assembler, and a link editor. A separate program, Series/1 Stand­
alone Utilities (5719-SC2) is installed and used with the BPPF 
programs. Al I of these programs will be installed on the same system 
used to develop applications and generate a tailored Supervisor. 

Series/1 Standalone Utilities (5719-SC2) 

BPPF Text Editor 

BPPF Macro Assembler 

BPPF Link Editor 

Minimal use for an Event Driven Executive system. The RI 
utility is required to prepare diskettes for further processing by 
the $1 N ITDSK Event Driven Executive utility. All other utility 
functions required are supported by the Event Driven Executive 
Utilities (5798-NNC). 

Not required. The text editor function, used to prepare source modules 
for assembly, is performed by the $EDIT1 N or $FSEDIT Event Driven 
Executive utilities. 

May be used to assemble application source modules, Series/1 assembler 
language code, and to assemble the Supervisor during system generation. 

Used to link edit the object module resulting from the assembly of 
the tailored Supervisor. This is the only time the link editor is 
required. Event Driven Executive object modules are processed 
by the $UPDATE formatting utility, rather than the BPPF 
link editor. 

EVENT DRIVEN EXECUTIVE COMPONENTS - VERSION 2 

1-6 SR30-0220 

The Version 2 Event Driven Executive software offering consists 
of four Field Developed Programs ( FDPs); 

1. Basic Supervisor and Emulator - Version 2 (5798-N RR.) 

2. Event Driven Executive Utilities - Version 2 (5798-N RO) 

3. Event Driven Executive Macro Library/Host (5798-N R K) 

4. Event Driven Executive Program Preparation 
Facility (5798-N RP) 



Basic Supervisor and Emulator - Version 2 (5798-NRR) 

Version 2 of the Supervisor/Emulator supports a high-level instruction 
set, implemented using the online preparation capabilities of the 
Event Driven Executive Program Preparation Facility (5798-N RP), 
or through preparation on a host system with the Event Driven Execu­
tive Macro Library /Host (5798-N R K) installed. At execution time, 
the assembled output of these instructions is passed to the Emulator 
portion of the Supervisor/Emulator, and the Emulator links to the 
appropriate routine in the supervisor to perform the desired operation. 
The Supervisor portion of the Supervisor/Emulator manages system 
and 1/0 resources for the application programs currently in execution. 

Version 2 of the Supervisor/Emulator supports all the functions pro­
vided under Version 1, plus the additional functions and devices 
exclusive to Version 2 (buffer management, BSC support, etc). 

Event Driven Executive Utilities - Version 2 (5798-NRQ) 

The system utilities also operate under the control of the supervisor. 
They provide online, interactive support for a tailored supervisor 
generation, source module preparation, disk initialization, data set/ 
volume maintenance, etc. Version 2 Utilities include enhancements 
to the functions available with Version 1, as well as several new 
utilities exclusive to Version 2. 

Event Driven Executive Macro Library/Host (5798-NRK) 

This FOP consists of a set of libraries and procedures to be installed 
on a host System/370, so that Event Driven Executive or Series/1 
assembler programs can be assembled on the host machine. The 
macros supplied in this FOP support all of the Event Driven Executive 
functions supported by the online Event Driven Executive Program 
Preparation Facility (5798-N RP). 

Prerequisites for host program preparation include: 

• A binary synchronous communications line between the Series/1 
and the host 

• Use of either the S/370 Event Driven Executive Host Communi­
cations Facility I UP (5796-PGH) or the RJE utility supplied 
with Event Driven Executive Utilities - Version 2 (5798-N RQ), 
for transfer of data sets between the two systems 

• On the host, installation of the S/370 Program Preparation 
Facilities for Series/1 FOP (5798-NNQ) 

Introduction to This Course 1-7 



Event Driven Executive Program Preparation Facility (5798-NRP) 

The Event Driven Executive Program Preparation Facility consists 
of programs which allow the user to assemble and link edit appli­
cation programs concurrently with the execution of other pro­
grams (including other program preparation programs). The user 
can also reconfigure, assemble, and link edit custom supervisors 
on line. 

As long as the user codes only in Event Driven Executive instructions, 
all application development can be performed online. The Basic 
Program Preparation Facility (5719-PA 1) is not required nor is the 
Event Driven Executive Macro Library FOP (5798-NNB) needed, 
unless USER exits and Series/1 assembler code are included in the 
application program. 

The Event Driven Executive assembler provides significant pro­
ductivity improvements through the availability of all Event 
Driven Executive supervisor functions, symbolic file addressing, 
selection of any terminal device for listing output, and significantly 
greater assembly speeds over the Basic Program Preparation 
Facility (5719-PA 1) assembler. The assembler can o.perate on a 
disk(ette)-based system. 

EVENT DRIVEN EXECUTIVE - AN OPERATIONAL OVERVIEW 

1-8 SR30-0220 

The Event Driven Executive component that controls execution 
of user-written applications is the Supervisor/Emulator. It is a multi­
programming supervisor, capable of control! ing concurrent program 
execution. 

The basic unit of work for the supervisor is an instruction. Instructions 
are combined to form tasks, each of which has an assigned priority, 
used by the supervisor to allocate system resources. 

An application program may have more than one task (multitasking). 
Each task competes for system resources with every other task in the 
system, based on task priority. Each task runs independently of all 
other tasks. 

Programs/tasks are made up of Event Driven Executive instructions 
that have been processed by an assembler and prepared for execution 
by the link/formatting system utilities. At execution time, the 
Supervisor/Emulator analyzes an instruction's assembled format, and 
links to the appropriate supervisor routine to perform the operation. 
Following the completion of each instruction, the supervisor processes 
the next sequential instruction in the highest priority task that is 
ready. 



The Supervisor/Emulator occupies the lowest 10 to 30+ K bytes 
of Series/1 storage, depending on what support is included. The rest 
of storage is available for user application programs. Programs may be 
loaded by a terminal operator request, or by execution of a LOAD 
instruction in a currently executing program. Programs are loaded 
dynamically, using a relocating loader, into the smallest available 
area of storage of sufficient size to contain them. 

Other functions/services performed by the supervisor include task 
dispatching (starting/ending tasks), 1/0 interrupt handling, program/ 
task synchronization, and provision for inter-program communication 
via a global common area. 

Introduction to This Course 1-9 



This page intentionally left blank. 

1-10 SR30-0220 



Section 2. Instruction Format 

EVENT DRIVEN EXECUTIVE BASIC INSTRUCTION FORMAT 

OBJECTIVES: After completing this topic, the student should be 
able to describe the basic format used in coding Event Driven 
Executive instructions. 

READING REFERENCE: Program Description and Operations 
Manual (SB30-1053), pages 2-3 and 2-4; or Program Description and 
Operations Manual Version 2 (5830-1213), pages 2-4 and 2-5. 

LANGUAGE SYNTAX/CODING CONVENTIONS 

The Event Driven Executive instruction set was originally imple­
mented as a macro library, using a macro assembler on the native or 
a host machine to process application source modules. Version 1 
still employs this method, as does Version 2 if program preparation 
is performed on a 370 host. 

The Event Driven Executive Program Preparation Facility (5798-NRP), 
released under Version 2, is an online Event Driven Executive language 
assembler, not a macro assembler, and does not utilize a macro 
library to process application source modules. Although macros are 
not used, macro assembler language syntax and coding conventions 
are still followed, thereby retaining compatibility with previous 
releases. 

If required, Series/1 macro assembler language syntax/coding con­
ventions may be reviewed in Chapter 2 of IBM Series/1 Base Program 
Preparation Facilities Macro Assembler Programmer's Guide 
( SC34-007 4) . 

Instruction Format 2-1 



INSTRUCTION FORMAT 

2-2 SR30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-3 and 2-4; or 
5830-1213 (Version 2 PDOM) pages 2-4 and 2-5. 

The basic Event Driven Executive instruction format is: 

label op parml,parm2, ... parmn,KEYWORD=,Pl=,P2 =, ... Pn= 

where 

label identifies the location of a particular instruction and 
can be referenced by other instructions. 

op is the operation to be performed by the Series/1 (MOVE, 
ADD, etc.) 

pa rml, pa rm2, ..... pa rmn are positional operands. The 
meaning of each parameter or operand is defined by its 
position in the operand field of the instruction. The number 
of positional operands varies with each instruction type. 

parml 

parm2 

KEYWORD= 

Pl=,etc 

is normally the "to" or target location. 

is normally the "from" or source loaction. 

are keyword operands. The keyword (PREC, RESULT, 
EVENT, etc.) specifies a particular parameter to be 
used in that instruction's execution. 

are keyword operands that allow positional operand 
modification at execution time. 



Figure 2-1 shows the relationship of the various parts of a source 
statement to the general instruction format. (The ADD instruction 
is discussed in detail in "Section 5. Data Manipulation", and 
is used here only to illustrate the basic instruction format.) In this 
example, three positional operands are used. FIELD is the name of the 
"to" or "target" location, DAT A is the "from" or "source" location, 
and the third positional operand is the integer value "1 ",the "count" 
operand. A keyword operand, PR EC= is also coded; in this case, the 
"S" indicates "single precision." 

ADD IT ADD 7LD,DATA,~~ I \ 
LABEL OP PARM1 PARM3 KEYWORD 

(operation (to or (count) OPERAND 
to be target (specifying single 

performed location) PARM2 precision) 

by (from or 
computer) source location) 

Figure 2-1. Source statement/general instruction format relationship 

For the ADD instruction, the count and PREC =operands are not 
required; they have values to which they will default if not coded 
(the values coded in the illustration are, in fact, the default values 
for these operands). In the ADD, the "count" operand applies to the 
first positional operand only (the number of consecutive values, 
beginning at location FIELD, to which the value in DATA is to be 
added), and the "PREC ="operand, as coded, applies only to the 
first position.al operand and the result (which is also the first 
operand, in this example). 

Other instructions may not have a count or PREC= operand or, if 
they do, they may apply to other than the first positional operand. 
The general syntax of an Event Driven Executive instruction adheres 
to the basic format just discussed; the meaning of the operands, 
and the number of operands allowed differs depending on the 
instruction type. 

Instruction Format 2-3 



This page intentionally left blank. 

2-4 SR30-0220 



INSTRUCTION FORMAT REVIEW EXERCISE - QUESTIONS 

1. In the study guide, and in the reading assignment, the terms 
"operand" and "parameter" are both used. These terms 
are interchangeable, and both refer to labels/names/values 
in the operand field of an instruction. 

True __ _ 

False __ _ 

2. In the operand field of an instruction, all positional operands 
used must precede (from left to right) any keyword operands 
used. 

True __ _ 

False __ _ 

3. All instructions have the same number of positional operands, 
but the number of keyword operands varies from instruction 
to instruction. 

True __ _ 

False __ _ 

4. In the. operand field of an instruction, positional operands are 
separated by commas, but keyword operands may be separated 
by blanks or by commas. 

True 

False __ _ 

5. The meaning of a positional operand, in a given instruction, 
is determined by its position (first, second, etc.), while the 
meaning of a keyword operand is determined by the keyword 
used. 

True 

False __ _ 

6. Labels beginning with "$" have a special meaning to the system, 
and are reserved for system use. 

True 

False __ _ 

Instruction Format 2-5 



INSTRUCTION FORMAT REVIEW EXERCISE - ANSWERS 

2-6 SR30-0220 

1. True. Both terms are used interchangeably, throughout the 
study guide and the PDOMs. For example, 

parameter one 
parameter 1 
first parameter 
parm1 
operand one 
operand 1 
first operand 
opnd1 

are all used at one time or other to refer to the first positional 
operand in an operand field being discussed. 

A possible area of confusion might be an instance when "parameter" 
is used to describe information passed to another program or a 
subroutine, rather than to reference an element of an operand 
field. Normal attention to the context in which the term is used 
wil I usually prevent any misunderstanding. 

2. True. Al I positional operands must be coded before (to the left 
of) the first keyword operand. After all positional operands have 
been coded, multiple keyword operands may be coded in any 
sequence desired; all keywords are analyzed in light of the meaning 
of the keyword itself, rather than its position within the operand 
field. 

3. False. Different instructions vary in the number of required 
positional operands (must be coded, no default), optional 
positional operands (will default to predetermined value if 
not coded), and required/optional keyword operands. 

4. False. All operands, keyword or positional, are separated 
by commas, with no imbedded blanks allowed. When the first 
blank is detected, all further information is considered a comment. 

In the situation where two or more optional positional operands 
are allowed, and you skip one and code the other, the skipped 
(defaulted) operand must be indicated by a comma if the coded 
operand follows it in position. 



label 

Example: 

op /~pnd~__,.nd4 
REQUIRED OPTIONAL 

VALID OPERAND STRUCTURES 

opndl,opnd2 
REQUIRED OPERANDS ONLY - OPTIONAL OPERANDS 
(opnd3, opnd4) TAKE DEFAULT 

opndl,opnd2,opnd3 
REQUIRED OPERANDS PLUS FIRST OPTIONAL OPERAND 
(opnd3) CODED - opnd4 TAKES DEFAULT VALUE 

opndl,opnd2,opnd3,opnd4 
REQUIRED AND OPTIONAL OPERANDS CODED 

opndl,opnd2,,opnd4 
REQUIRED AND LAST OPTIONAL OPERAND (opnd4) 
CODED, SKIPPED OPERAND (opnd3) INDICATED BY A 
COMMA 

INVALID OPERAND STRUCTURES 

opndl,opnd2,opnd4 
THE VALUE YOU THOUGHT YOU CODED FOR opnd4 
WI LL BE ASSIGNED TO opnd3, AND opnd4 WI LL TAKE 
THE DEFAULT 

5. True. Self explanatory. 

6. True. There is no system enforced discipline preventing a user 
from defining storage locations with labels beginning with the"$" 
character. However, because system defined functions/locations/ 
resources have labels beginning with this character that may be 
referenced by operands in user-written instructions, confusion can 
be avoided if users restrict their own definitions to labels not 
beginning with "$". 

Instruction Format 2-7 



This page intentionally left blank. 

2·8 SR30-0220 



Section 3. Program/Tasks 

OBJECTIVES: Upon successful completion of this topic, the student 
should be able to: 

1. Describe programs and tasks as used in an Event Driven Executive 
System 

2. Define an application program structure that fits system and 
application requirements 

3. Use the Event Driven Executive program and task definition 
statements 

4. Understand and use the task synchronization statements 

5. Include operator attention routines in a program 

READING REFERENCE: Program Description and Operations 
Manual (S830-1053), pages 2-9 through 2-34, "Task Definition 
and Control Functions"; or Program Description and Operations 
Manual Version 2 (SB30-1213), pages 2-9 through 2-35. 

PROGRAM/TASK CONCEPTS AND STRUCTURE 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-9; or 
S830-1213 (Version 2 PDOM) page 2-9. 

System resources in an Event Driven Executive system are allocated 
to tasks according to the priorities of the tasks. A task is a unit of work, 
defined by the application programmer. A program is a disk- or 
diskette-resident collection of one or more tasks, that can be loaded into 
storage for execution. Although ''program" and "task" are sometimes 
used synonymously, the basic executable unit for the supervisor is 
the task. 

Task priority is assigned by the application programmer when the task 
is coded. Valid priorities range between 0 and 511, with 0 being the 
highest possible priority, and 511 the lowest. Tasks with priorities 
between 0 and 255 execute on hardware level 2, and those between 
256 and 511 on level 3. 

Program/Tasks 3-1 



Single Task Program 

3-2 SR 30-0220 

For most applications, an elaborate program structure is not 
required, and programs will consist of a single task, as shown in 
Figure 3-1. 

PROGA PROGRAM AS SINGLE TASK 
• NO EXECUTION OVERLAP WITHIN PROGRAM 
• PROGRAM COMPETES FOR SYSTEM RESOURCES 

WITH OTHER TASKS CURRENTLY IN SYSTEM 

Figure 3-1. Single task program structure 

Figure 3-2 is an example of the type of application that lends itself 
to the single task program structure. The job is sequential in nature, 
and will be waiting for operator input most of the time. There is no 
requirement for asynchronous execution of multiple functions or 
1/0 overlap with processing, and nothing to be gained by a more 
complex structure. 

UPDATE 

OPERATOR REQUEST LOADS 
"CUSTOMER FILE UPDATE" 
PROGRAM 

1. GET CUSTOMER NAME FROM TERMINAL 
(OPERATOR INPUT) 

2. SEARCH CUSTOMER FILE FOR NAME 

3. READ CUSTOMER RECORD 

4. DISPLAY CUSTOMER RECORD ON TERMINAL 

5. ACCEPT UPDATE FROM TERMINAL (OPERATOR 
INPUT) 

6. WRITE UPDATED RECORD TO CUSTOMER FILE 

7. GO BACK TO STEP 1 IF MORE RECORDS TO 
UPDATE 

8. ELSE, END UPDATE PROGRAM 

Figure 3-2. Single task application example 



Multiple Task Programs 

Figure 3-3 illustrates a multitasking program structure. PROGA is 
started up by the system when the program is loaded, and is called the 
INITIAL TASK. The other tasks shown will not start up until a user­
coded command is executed that tells them to begin. INITIAL TASKS 
go into execution as a result of the program's being loaded into stor­
age, while initiation of SECONDARY TASKS is a user responsibility. 
Once in execution, all tasks within a program compete for system re­
sources with one another, and with all other tasks active in the system. 
The supervisor considers each task as a discrete unit of work, and 
assigns resources based on task priority, regardless of which tasks are 
INITIAL or SECONDARY. 

PROGA 

TASKX 

TASKY 

TASKZ 

PROGRAM MADE UP OF MULTIPLE TASKS 
• CONCURRENT(ASYNCHRONOUS)EXECUTION 

OF TASKS WITHIN PROGRAM 
• TASKS COMPETE FOR SYSTEM RESOURCES 

WITH ALL OTHER TASKS CURRENTLY IN SYSTEM 

Figure 3-3. Multitasking program structure 

Figure 3-4 is an example of an application that makes use of multi­
tasking. The program repetitively reads a group of Analog Input 
points, performs calculations on the data and stores the results in an 
output area on disk. 

Program/Tasks 3-3 



3-4 SR30-0220 

[OJ 
@ 

AIRDUCE 

1. START "AlSCAN" TASK 

OPERATOR REQUEST 
LOADS "A/I DATA 
REDUCTION" PROGRAM 

2. WAIT FOR "AISCAN" TASK TO COMPLETE 

3. READ A/f VALUES FROM DISK INTO WORK AREA 

START "AISCAN" TASK 

PERFORM DATA REDUCTION ON DATA JN WORK 
AREA 

WRITE RESULTS TO OUTPUT AREA ON DISK 

GO BACK TO STEP 2 

Al SCAN 

1. READ A/I POINTS INTO STORAGE 

2. WRITE A/I VALUES TO DISK 

3. TASK "AISCAN" COMPLETED 

Figure 3-4. Multitasking application example 

To take advantage of multitasking, the reading of the Anaiog tnput 
points has been defined as a separate task, which a.tso buffers the coHec­
ted data to disk. When the program is toaded into storage, the supervisor 
starts up the initial task, AIR DUCE. The first step in A1RDUCE is 
to start up the secondary task AISCAN. AIRDUCE then waits for 
completion of the reading and buffering of the first set of Analog 
Input values. 

When AISCAN completes, Al RDUCE starts up again, and retrieves 
the buffered data from disk. At SCAN is restarted and, whHe the 
first set of values is being processed, the second set is being col­
lected; the two functions are overlapping. 



Multiple Program Structure 

As already mentioned, an application program consists of a user­
written collection of one or more tasks that has been prepared 
for execution and stored under a unique name on disk/diskette. 
A terminal operator can request that a program be loaded into 
storage and placed in execution by entering a request for the super­
visor load utility $Land supplying the program name. 

Programs may also be loaded by executing a LOAD instruction in 
another program that is already in execution (use of the LOAD 
statement is discussed later in this section). When the supervisor 
receives a request to load a program, either from a terminal or a task 
already in execution, it finds the program on disk/diskette, finds a 
section of unused storage large enough to accommodate the program, 
loads the program from disk/diskette, relocates it into the storage 
area, and starts up the program's initial task. When a program com­
pletes execution, the supervisor releases the storage it occupied so 
that the area can be used to load other programs. 

Because programs are dynamically relocated into storage as load 
requests are received, the size and structure of the programs can have 
an effect on system throughput. To illustrate this, assume there is 
a payroll application consisting of the following functions: 

Function 

SORT 

PART-TIME 
WAGES 

FULL-TIME 
WAGES 

SALARIED 
WAGES 

WRITE 
CHECKS 

Description 

Separate part-time hourly, full-time hourly, 
and salaried employee data into three 
separate files. 

Process all records in part-time employee 
file 

Process all records in full-time employee 
file 

Process all records in salaried employee file 

Print checks for all employees 

Program/Tasks 3-5 



3-6 SR30-0220 

Although the payroll job just described is a fairly straightforward 
application, which could be coded as a single program, there may 
be valid reasons for breaking it up into multiple programs. One con­
sideration is the size of a program, in relation to the storage available 
on the system and the number and size of other programs that may 
need to run concurrently. If the size of PAYROLL in relation to the 
total storage available for user programs is as depicted in Figure 3-5, 
you can see that, once PAY RO LL is loaded, little storage will be left 
for loading other programs. 

SERIES/1 
STORAGE 

SUPERVISOR 

(AVAILABLE 

STORAGE) 

PAYROLL 

Figure 3-5. Program structure 

Conversly, if other programs are already in execution when the load 
of PAYROLL is requested, there may be some delay before enough 
contiguous storage to accommodate so large a program becomes 
available and the load can again be attempted. 

Below is a redefinition of the payroll application with each function 
coded as a separate program. 

Program Name 

SORTIME 

PARTIME 

FULL TIME 

SAL TIME 

CHECKS 

Description 

Separate part-time hourly, full-time hourly, 
and salaried employee data into three 
separate files 

Process all records in part-time employee file 

Process all records in full-time employee file 

Process all records in salaried employee file 

Print checks for all employees 



Overlay Program Structure 

As can be seen in Figure 3-6, each of the programs is now much 
smaller than the entire PAYROLL program. As each program 
completes execution, it would request the load of the succeeding 
program. The probability of there being enough storage to load 
other applications is greatly increased, and chances of having to wait 
for storage to become available so that you can again attempt to 
load a program there was previously no room for, are reduced. 

SERI ES/1 
STORAGE 

SUPERVISOR 

(AVAILABLE 
STORAGE) 

SORTIME 

PARTIME 

FULL TIME 

SAL TIME 

CHECKS 

Figure 3-6. Program structure 

If system activity were very high (several other applications in 
concurrent execution), a lack of contiguous storage availability 
could still cause some difficulty in the loading of the next se­
quential program. In a payroll application, this is acceptable, 
because it is not "time-critical"; a delay in execution of a succeeding 
step will not invalidate the final result. 

Some applications are time constrained; for example, those involving 
the processing of data acquired in realtime, where a delay in execution 
might result in data being lost or overwritten. This type of application 
must have a reasonable expectation of being loaded quickly when 
requested and, once loaded, of running to completion with minimal 
delay. 

Program/Tasks 3-7 



3-8 SR30-0220 

Coding a time-critical applic n as a single program ensures rapid 
execution, once it is loaded t, if the program is large, the same 
problems exist as in the sin irogram payroll application (possible 
delay in load due to large a, Jnt of storage required; tying up system 
once loaded). Breaking up t J program into separate programs takes 
care of the problem of size, ut the requirement for nearly continuous 
execution once in operatior, is still not met. Again, the level of activity 
within the system could result in a delay in loading the next in a se­
quence of programs, a condition that cannot be tolerated in this type 
of application. 

Using the OVER LAY PROGRAM technique, both the requirement 
for a reasonable sized program and minimum execution delay can 
be met. In Figure 3-7, the application is split into separate programs. 

PHASE1 

APPLICATION 
PROGRAM 

---------~I PHASE1 
----

~~~~~~~-~~] PHASE2 I 

~~~~~~~~~EJ 
--~~~~------~~~~-! PHASE4 I 

Figure 3-7. Program overlays 

PHASE 1 is the initial program, and will load PHASE2, PHASE3, 
and PHASE4, as required. PHASE2, PHASE3, and PHASE4 are 
defined as OVERLAY PROGRAMS. When PHASE1 is loaded, the 
loader recognizes that overlay programs are referenced. The loader 
looks at each program that is designated as an overlay, and then 
reserves enough storage to hold PHASE 1 plus the largest overlay 
program. 



SPACE FOR 

PHASE1 PLUS { 
OVERLAY AREA 

RESERVED 
WHEN PHASE1 
IS LOADED 

SERIES/1 
STORAGE 

SUPERVISOR 

PHASE1 
t-----------

(OVERLAY 
AREA) 

(AVAILABLE 
STORAGE) 

Figure 3-8. Program overlays 

} 

OVERLAY AREA LARGE 
ENOUGH FOR 'PHASE3' 
THE LARGEST OVERLAY 

PROGRAM 

When PHASE 1 is loaded and in execution, and requests that 
PHASE2 be loaded, the system immediately loads PHASE2 into the 
overlay area already reserved and starts it into execution. There is no 
contention for the storage in the overlay area with other applications 
waiting to be loaded, because the overlay area is reserved for the 
exclusive use of PHASE 1 overlay programs. 

As each overlay program completes, PHASE 1 loads the next, until 
all required programs have run. When PHASE 1 terminates execu­
tion, the storage reserved for both PHASE 1 and the overlay area 
is released. 

To summarize, application program structure (single program/multiple 
programs/overlays) and task structure within programs (single task/ 
multitasking) is determined by 

1. type of application (time/non-time critical) 

2. size of application 

3. system storage size 

4. operating environment (system activity/loading) 

In general, a user should choose the simplest structure that will 
support the application's requirements. 

Program/Tasks 3-9 



PROGRAM/TASK DEFINITION 

3-10 SR30-0220 

READING ASSIGNMENT: S830-1053 (PDOM) pages 2-17, 2-19, 
2-25 through 2-28, 2-32, 2-33; S830-1213 (Version 2 PDOM) 
pages 2-16, 2-17, 2-19, 2-26 through 2-29, 2-33, 2-34. 

Every Event Driven Executive application main program must have a 
PROGRAM statement as the first statement in the program. The 
PROGRAM statement defines the basic operating environment of the 
program, including any data sets that the program will be using, the 
names of overlay programs to be loaded, the priority of the program, 
etc. 

LOCATION OF FIRST EXECUTABLE 

INSTRUCTION IN INITIAL T\ 
EXECUTION 
PRIORITY 

I 
INITASK PROGRAM BEGIN,200,DS=MASTER,PGMS=OVLAYl 

' NAME OF 
INITIAL 
TASK 

~ENDPROG 
~.END 

LAST TWO STATEMENTS 
IN EVERY PROGRAM 

Figure 3-9. Program definition 

I t 
NAME OF A 
DISK DAT A SET 

NAME OF AN 
OVERLAY 
PROGRAM 

The label of the PROGRAM statement is the name of the initial task 
(the only task, if multitasking is not used). The Event Driven Executive 
system generates a control block for the initial task (and for every other 
task defined), and assigns the first word of that control block to the 
symbolic task name. As 1/0 and other operations are performed during 
execution of the task, return codes and status indicators are placed in 
this word, and may be examined by instructions referencing the 
symbolic task name. 



All Event Driven Executive main programs must end with an EN DP ROG 
statement, followed by an END. These two statements must be the 
last two statements in the program. 

Tasks within programs (other than the initial task) are defined by the 
TASK statement, and must end with the ENDTASK statement. The 
TASK statement performs the same functions for a task that the 
PROGRAM statement did for a program except that the data files 
and overlay programs defined in the PROGRAM statement apply for 
all tasks defined in that program, and are not specified in the TASK 
statement. 

INITASK PROGRAM 

TASK2 TASK 

I 
NAME OF 
SE CON DARY TASK 

/

ENDTASK 
EN DP ROG 
END 

LAST STATEMENT 
IN EVERY SECONDARY TASK 

Figure 3-10. Task definition 

BEGIN,200,DS=MASTER,PGMS=OVLAYl 

START "' 

\ 

NO PRIORITY SPECIFIED 
DEFAULT= PRIORITY 150 

LABEL OF FIRST 
EXECUTABLE 
INSTRUCTION 

Program/Tasks 3-11 



PROGRAM/TASK EXECUTION 

Program Loading 

3-1 2 SR 30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-10, 2-14, 
2-20 through 2-23, and 2-29; SB30-1213 (Version 2 PDOM) pages 
2-10, 2-14, 2-20 through 2-24, 2-30. 

Event Driven Executive programs are readied for execution at the 
time they are loaded into storage from disk or diskette (a given program 
will not immediately go into execution unless its initial task has a 
higher priority than other currently executing tasks). Programs are 
loaded by a terminal operator, using the $L supervisor command, 
or by execution of a LOAD statement in a task already in execution. 
In both cases, the program to be loaded is referenced by the name 
under which it is stored on disk/diskette, and is either entered by 
a terminal operator, or specified as a LOAD statement operand. 
Note: The name of a program on disk has no relationship to the 
name of that program's initial task. Illustrations in this study 
guide frequently show both names the same, but this is not a 
requirement of the system. 

PROGA PROGRAM STARTA 

PROGSTOP 
ENDPROG 
END 

PROGB PROGRAM STARTS 

PROGSTOP 
ENDPROG 
END 

STORAGE 

SUPERVISOR 

)~J~ '"°'" 
/RI PROGB 

~--_.~------< 
PROGA 

IRI~ 
~ r====:J 

PROGRAMS 
LOADED BY $L 

SUPERVISOR 
UTILITY FUNCTION 

Figure 3-11. Program loading from terminal 

As shown in Figure 3-11, copies of the same program may be in storage 
and active at the same time. The single copy of a program on disk/ 
diskette may be loaded as a separate program from one or more 
terminals (as shown) as a separate program from one or more programs 
already executing, or as an overlay by a currently executing program 
or programs. 



Figure 3-12 is a simple example of one program loading another. The 
program consists of the single task IN IT ASK, which will start execution 
at location BEGIN. No priority is coded on the PROGRAM statement, 
so this program will run at the default priority of 150. 

INITASK 

BEGIN 

END 

PROGRAM 

LOAD 

PROGSTOP 
ENDPROG 
END 

Figure 3-12. LOAD statement 

BEGIN 

PTHREE 

User disk/diskette 1/0 will not be performed in this program (OS= 
not coded in PROGRAM statement), and no overlay programs will 
be loaded by this program (PGMS= not coded). 

Execution of the LOAD statement at location BEGIN requests that 
a program named PTHREE be loaded into storage and readied for 
execution. The loading program will wait for the completion of the 
attempt to load PTRHEE before continuing execution. 

The last statement to be executed in the loading program is the 
PROGSTOP at location END. The PROGSTOP statement must be 
the last executable statement in all programs. When PROGSTOP 
is executed, the supervisor is notified that this program's initial task 
is to be detached (made not active), various system resources that 
were assigned to this program can now be made available to other 
tasks, and the storage occupied by this program can be released for 
the loading of other programs. 

In the oversimplified example shown in Figure 3-12, the loading task 
does not check to make sure the load operation was successful. In 
actual practice, the user wou Id want to know if the operation failed, 
and if it did, the reason for the failure. 

Program/Tasks 3-13 



3-14 SR 30-0220 

In Figure 3-13, the program location ABO RT is specified in the 
ERROR= keyword operand. If the load is successful, execution con­
tinues with the statement following the LOAD. If the load operation 
fails, control is transferred to the location specified by the ERROR= 
keyword operand. In this example, ABORT is the label on a 
PROGSTOP statement and failure of the load operation would 
result in termination of the loading task. (In actual application pro­
grams, error routines are likely, to be much more complex.) 

INITASK 

BEGIN 

ABORT 

PROGRAM 

LOAD 

PROGSTOP 
EN DP ROG 
END 

Figure 3-13. LOAD statement 

BEGIN 

PTHREE,ERROR=ABORT 

Every task has a Task Control Block (TCB) associated with it. A task's 
TCB is automatically generated during the program preparation process 
when a task definition statement is encountered. A TCB consists of 
those pointers, save areas, work areas, and indicators required by the 
supervisor for controlling execution of the task in storage. 

The first word of a task's TCB is used by the supervisor to pass 
information from the system to the task, regarding the outcome of 
various operations the task has initiated. Depending on what operation 
was attempted, the value set in the first word of the TCB by the super­
visor could indicate an arithmetic exception condition, the result of 
an attempted 1/0 operation, or, as in Figure 3-13, a load operation 
comp let ion code. 

When a TCB is generated, the location of the first word is assigned 
the label on the task definition statement: the "name" of the task. 
In this study guide, and in Event Driven Executive reference docu­
mentation, this label is referred to as the "taskname," and the first 
word of the TCB is called the "task code word." In Figure 3-13, 
the task code word would be referenced by the taskname IN IT ASK. 
If ABORT (specified in ERROR= keyword operand of LOAD 
statement) were the label of a user-written error routine, instructions 
in that routine could get the load operation completion code by 
using IN IT ASK to locate the task code word. Appropriate operator 
messages could then be printed out or alternative actions taken, 
based on the precise meaning of the completion code. 



Program Synchronization 

At this point, the instructions required to examine the task code word 
have not been discussed; however there will be examples illustrating 
this technique in later sections of this course. 

Assuming the LOAD operation was successful, and PTHREE does 
go into execution, the loading program illustrated in Figure 3-13 
has no way of telling when PTH REE finishes execution. For some 
applications, there is no need for a loading program to be notified 
of a loaded program's completion, but there are cases where syn­
chronizing the execution of programs or tasks is required. This can 
be accomplished by defining an event, and waiting for that event to 
happen. 

The "wait on event" facility is a signalling mechanism whereby a 
task or program can be notified when a certain event has occurred, 
and can wait or suspend execution until it does occur. Events in­
clude such things as the expiration of a time delay, completion of 
an 1/0 operation, or termination of a task or program. Events may 
be user defined or, for some frequently required functions, may 
be predefined by the system. 

Completion of program execution is a predefined event, invoked by 
coding the EVENT= keyword operand in the LOAD statement. In 
Figure 3-14, the event has been named DONE3, which is also the 
label of an Event Control Block (ECB) that is used by the supervisor 
to keep track of whether the event has or has not occurred. 

INITASK PROGRAM BEGIN 

BEGIN LOAD PTHREE,EVENT=DONE3,ERROR=ABORT 

WAIT DONE3 

ABORT 
DONE3 

PROGSTOP 
ECB 
EN DP ROG 
END 

Figure 3-14. LOAD statement 

Program/Tasks 3-15 



3-16 SR30-0220 

Note: If preparing programs using BPPF, coding the EVENT= keyword 
operand in a LOAD statement causes an ECB with the proper label to 
be automatically generated. When preparing programs using the on line 
assembler ($EDXASM), the ECB must be coded, as shown in Figure 
3-14. 

When the LOAD statement is executed, the supervisor recognizes 
that an event has been defined in the EVENT= keyword operand. 
The supervisor finds the ECB named DON E3, and sets it to indicate 
that the event has not occurred. 

After PTH REE has been loaded, both PTH REE and the loading program 
are in execution concurrently. Eventually PTH REE will complete 
execution (execute a PROGSTOP) and, at that time, the supervisor 
will set the ECB at location DONE3 to indicate that the event has 
occurred. 

When the WAIT statement in the loading program is executed, the 
supervisor will see that the waited-on event is DONE3. The supervisor 
checks the ECB at location DONE3 to see if the event has occurred. 
If it has, execution continues with the next statement following the 
WAIT. If it has not, the loading program is placed in a wait state, 
and execution will not resume until PTHREE completes. When an 
event occurs, and the associated ECB is set to indicate that it has 
occurred, the supervisor also checks to see if there are any tasks in 
wait state, waiting on that event. If there are, the supervisor changes 
them to the ready state, and they resume normal execution, based on 
priority. 

For examples of how user-written events are defined and used, see 
the discussion titled "WAIT/POST" later in this section. 

One instance where waiting on a "completion of execution" event 
such as was just described must be done is when a program loads an 
overlay. It is a user responsibility to ensure that a program that loads 
an overlay program does not execute a PROGSTOP until the overlay 
program has completed execution. 

If a program has loaded an overlay program that is now executing, 
and the loading program issues a PROGSTOP, the storage occupied 
by the loading program and the overlay area is released to the system, 
and made available for loading other programs. Although the overlay 
area contains a program still in execution, the loader believes the 
storage is available, and may, in response to a load request, load 
another program into the same area, with completely unpredictable 
resu Its. 



In Figure 3-15, PTHREE is defined as an overlay program in the 
PGMS= operand of the PROGRAM statement. Up to nine overlay 
programs may be defined in a PGMS= list. 

INITASK 

BEGIN 

ABORT 
DONE3 

PROGRAM 

LOAD 

WAIT 
PROGSTOP 
ECB 
EN DP ROG 
END 

Figure 3-15. LOAD statement 

BEGIN,PGMS=PTHREE 

PGM1,EVENT=DONE3,ERROR=ABORT 

DONE3 

The LOAD statement requests the load of PGM 1. This is a positional 
keyword reference to the PGMS= list in the PROGRAM statement. If 
multiple overlay programs were defined in the PGMS= operand, and 
you wished to load the second program in the list, the LOAD state­
ment would be coded to load PGM2; for the third program, PGM3, 
and so on up to the maximum of PGM9. 

Note that the EVENT= keyword operand in the load statement is 
coded, and that the loading program waits for completion of the 
overlay program before issuing a PROGSTOP. 

A program's initial task is started into execution (placed in a ready 
state) by the system at the time the program is loaded. Secondary 
tasks within a program are readied for execution by an ATTACH 
instruction, issued from the initial task or another secondary task 
previously attached and running. 

In Figure 3-16, a secondary task called TASK 1 is defined. TASK 1 
will be started up by the ATTACH in the initial task, at location 
BEGIN. Once TASK1 has been attached, TASK1 and IN IT ASK, the 
initial task, execute concurrently and independently. 

Program/Tasks 3-17 



Task Synchronization 

3-18 SR 30-0220 

INITASK 

BEGIN 

TASKDONE 

TASKl 

PROGRAM 

ATTACH 

WAIT 
PROGSTOP 
ECB 

TASK 

ENDTASK 
EN DP ROG 
END 

Figure 3-16. TASK statement 

BEGIN 

TASKLllO 

TASKDONE 

START,EVENT=TASKDONE 

In this example, TASK 1 actually runs at a higher priority than the 
initial task, and would receive preference in the allocation of system 
resources. The PROGRAM statement has no priority coded, so the 
initial task runs at the default priority of 150. There is no priority 
coded in the TASK statement, so TASK 1 also defaults to 150, but the 
ATTACH instruction specifies priority 110, which overrides any 
coded or defaulted priority in the TASK statement. 

It is just as undesirable for an initial task to release storage (execute 
PROGSTOP) containing an executing secondary task, as it is for a 
program to release storage containing an overlay program still in 
execution. The TASK statement therefore has an EVE NT= operand 
that is used by the attaching task in the same manner as the loading 
program used the LOAD statement's EVE NT= operand. 

The example in Figure 3-17 uses many of the concepts you have just 
studied. Beginning with the PROGRAM statement at location 
IN IT ASK, the starting address of the initial task is BEGIN; the initial 
task will run at priority 100; and two overlay programs are defined in 
the PGMS= list, PTHREE and PFIVE. At the time the program in 
Figure 3-17 is loaded into storage, enough storage will be reserved 
to hold the program plus the largest of the two overlay programs. 



Now assume that the program has been loaded, and the system has 
attached the initial task, I NIT ASK. Execution starts at location 
BEGIN. This statement requests the load of overlay program PFIVE, 
because PF I VE is the second program in the PGMS= list of the 
PROGRAM statement, and the LOAD statement specifies PGM2. 
If the load of this first overlay fails, the ERROR= operand of the 
LOAD statement will cause a transfer of control to location 
OUT5BAD, the label of the PROGSTOP, and execution will 
terminate. 

INITASK 

BEGIN 
L4 

Al 

W5 
L3 

W3 
OUT3BAD 
OUT5BAD 

DONE5 
DONE3 

TASKl 

PROGRAM 

LOAD 
LOAD 

ATTACH 

WAIT 
LOAD 

WAIT 
WAIT 
PROGSTOP 

ECB 
ECB 

TASK 

ENDTASK 
EN DP ROG 
END 

Figure 3-17. Task/program synchronization 

BEGIN,100,PGMS=(PTHREE,PFIVE) 

PGM2,EVENT=DONE5,ERROR=OUT5BAD 
PFOUR 

TASKl 

DONE5 
PGM1,EVENT=DONE3,ERROR=OUT3BAD 

DONE3 
TASKDONE 

START,EVENT=TASKDONE 

Program/Tasks 3-19 



3-20 SR30-0220 

If PFIVE loads properly, the next statement executed would be the 
LOAD instruction at location L4. This statement requests that pro­
gram PFOU R be loaded into whatever storage is available (not in 
overlay area). As it is coded here, any errors encountered in attempt­
ing to load PFOU R will be ignored, and execution will continue with 
the statement following the LOAD. 

At location A 1, the initial task attaches the task defined at location 
TASK 1, at a priority of 150 (default taken, and no override coded in 
the ATTACH). At this point, the initial task INITASK is executing, 
the secondary task TASK 1 is executing, the initial task of PF I VE, and 
any secondary tasks it attached are running in the overlay area, and if 
PFOU R loaded successfully, it is also in execution. 

Before attempting to load overlay program PTH REE (LOAD statement 
at location L3), a WAIT at location W5 is executed, waiting on the 
completion of execution event defined in the LOAD statement which 
previously loaded PFIVE (EVENT=DONE5). If PFIVE has not 
finished, the execution of INITASK is suspended at this point. When 
PFIVE completes, or if PFIVE were already through when the WAIT 
at W5 was issued, the LOAD at location L3 is attempted. 

This is a load of PTHREE, the first (PGM1) overlay program defined 
in the PGMS= list of the PROGRAM statement. Notice that if the 
load operation fails, the ERROR= operand of the LOAD statement 
would cause a transfer of control to location OUT3BAD, which is a 
WAIT for the completion of TASK1, rather than to OUT5BAD, the 
PROGSTOP. If the load of PTHREE were unsuccessful, the initial 
task is assured that no program is executing in the overlay area, but 
the secondary task TASK 1 could still be in operation. Any overlay 
program in execution, and all attached tasks, must run to completion. 
before PROGSTOP is executed by the initial task. 

Note: In the figures in the study guide, no user-coded ECBs are shown 
for event control blocks named in the EVENT= operands of TASK state­
ments. When programs are prepared using the on line assembler 
($E DXASM), the system will automatically generate the required ECB 
with the TCB created by the TASK statement, and a user-coded ECB is 
not allowed (will cause assembly errors). Users preparing programs 
under the BPPF macro assembler may also allow the system to assign 
the ECB, or may code an ECB of that name, and the system will use 
the explicitly coded ECB instead of assigning one. 

If disk or diskette 1/0 is used in a program, the data sets to be accessed 
must be defined in the PROGRAM statement's DS= operand, in much 
the same manner as overlay programs are specified using PGMS=. This 
topic will be discussed in the DISK 1/0 section of this study guide. 



QUEUABLE RESOURCES 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-13, 2-18, 
2-30; or SB30-1213 (Version 2 PDOM) pages 2-13, 2-19, 2-31. 

A resource is a physical or logical entity within the system. Examples 
of resources include a subroutine or data area existing within a parti­
cular program, or perhaps a data set or 1/0 device known broadly 
across the system. 

A shared resource is one that may be required by multiple tasks at 
the same time. For instance, a table of constants might be referenced 
from two or more asynchronously executing tasks within a program. 
Since, by definition, the values in the table are "constant" (not being 
altered by the tasks using them), access to the table (resource) is 
unrestricted. 

Unrestricted access to some shared resources may have undesirable 
results. As an example, if a program were printing a report on a 
printer, and other programs had free access to the printer resource, 
the report could end up with printed output from the other programs 
interspersed with report lines. In this case, the printer is a shared 
resource, but is also what is called a serially reusable resource; one 
that should be used by only one task at a time. 

The ENQ/DEQ instructions provide a mechanism by which user tasks 
may gain exclusive use of a serially reusable shared resource, and retain 
control over that resource until explicitly releasing it for use by other 
tasks. 

Figure 3-18 is an example of how queuable resources are defined 
and used. The program consists of the initial task IN IT ASK, and two 
secondary tasks, TASKA and TASKB. Assume that both TASKA and 
TASKB have a requirement for a 500-word work area. 

Instead of putting a 500-word work area in both TASKA and TASKB, 
the programmer has chosen to save some storage, and define only 
one work area. This single work area is designated as a queuable 
resource, and will be shared by TASKA and TASKB, using the ENO 
and DEQ instructions. 

The 500-word work area is defined in the DAT A statement at location 
CALCTABL (DATA statements are discussed fully in a later section). 
The Queue Control Block for this resource is defined in the OCB 
statement at location CALCO. 

Note: If preparing programs using BPPF, coding an ENO statement 
causes the automatic generation of a OCB with the same label as speci­
fied in the operand of the ENO. When preparing programs using the 
online assembler ($EDXASM), users must code the OCB; it is not auto­
matically generated. 

Program/Tasks 3-21 



3-22 SR30-0220 

INITASK 

STARTUP 

Wl 
W2 

CALCTABL 

PROGRAM 

ATTACH 
ATTACH 

WAIT 
WAIT 
PROGSTOP 

DATA 

CALCQ QCB 

TASKA 
AS TART 

TASK 
ENQ 

STARTUP 

TASKA 
TASKB 

AFINISH 
BF IN I SH 

500F'O' 

ASTART,EVENT=AFINISH 
CALCQ 

DEQ CALCQ 

TASKB 
BSTART 

ENDTASK 

TASK 
ENQ 

BSTART,EVENT=BFINISH 
CALCQ 

DEQ CALCQ 
ENDTASK 
ENDPROG 
END 

Figure 3·18. ENQ/DEQ/QCB 



When the program begins execution, the initial task attaches both 
T ASKA and T ASKB. T ASKA and T ASKB have agreed to the con­
vention that any time either of them needs to use the work area 
CALCTABL, they will enqueue that resource by issuing an ENO 
instruction referencing the OCB called CALCO. Assuming that 
T ASKA issues the ENO first, the supervisor checks the OCB at 
CALCO, finds that no other task is currently enqueued, and gives 
exclusive control of the work area to T ASKA. T ASKA can now use 
CALCTABL without fear of TASKB altering its contents in mid­
execution. 

While TASKA has the work area enqueued, TASKB, which is also in 
execution, attempts to gain control of the work area by issuing its own 
ENO of CALCO. The supervisor checks the OCB, finds that TASKA 
is already using the resource represented by CALCO, and therefore 
places T ASKB in the wait state, waiting upon availability of the 
requested resource. 

When TASKA is finished with the work area, it issues a DEO of 
CALCO. The supervisor checks the OCB, and finds that T ASKB 
is waiting on that resource. T ASKB is placed back in the ready state, 
and the OCB is changed to indicate T ASKB 's "ownership" of the 
resource represented by CALCO. 

An additional operand, not shown in the example, may be coded on 
the ENO statement. This is the keyword operand BUSY=. It would be 
coded if, when attempting to ENO a resource and the resource was 
busy (enqueued by another task), you did not want to suspend, waiting 
for the resource to be dequeued. You may code the label o·f an instruc­
tion in the BUSY= operand (BUSY=label), and control will be 
transferred to that location if the resource is already enqueued when 
your task tries to ENO it. 

Note that ENO/DEO provides protection from simultaneous access 
of a serially reusable resource only if all users requiring the resource 
agree to employ it. In the example in Figure 3-18, if one of the two 
tasks were to use the CALCT AB L work area without first enqueuing 
for it, neither the supervisor nor the other task has any way of 
detecting or preventing it. 

Program/Tasks 3-23 



WAIT/POST OPERATION 

3-24 SR30-0220 

READING ASSIGNMENT: S830-1053 (PDOM) pages 2-15, 2-24, 
2-31, 2-34; or S830-1213 (Version 2 PDOM) pages 2-15, 2-25, 2-32, 
2-35. 

Figures 3-14 through 3-17 illustrated how a program or task can 
synchronize execution with a loaded program or attached task by using 
a WAIT on the EC8 named in the associated LOAD or TASK statement's 
EVENT= operand. The EVENT= operand is a convenient means of 
synchronizing the execution termination sequence of loading and 
loaded programs or attaching and attached tasks, but programs and 
tasks often require synchronization at other points in their execution. 
This can be accomplished through user-defined events, and the 
WAIT/POST mechanism. 

In the example in Figure 3-19, assume that the initial task, WAITPOST, 
at some point in its execution, requires a certain set of numeric values 
in order to continue. These values are the result of the execution of 
a calculation routine in XTASK, an attached secondary task. The initial 
task must therefore make sure that the calculation routine in XT ASK 
has been executed, before proceeding with its own execution. 

The initial task could wait on the EVENT= operand in the TASK 
statement XTASK (EVENT=TASKDONE), and be assured that the 
required values had been calculated. This method would work, but 
the entire secondary task would have to run to completion before 
WAITPOST could resume execution. Depending on what else 
XT ASK has to do in addition to the calculation routine, there 
could be a considerable amount of time in which the required values 
were ready for use, but WAITPOST is still in a wait state. 

Defining the completion of the calculation routine in XTASK as a user 
event allows XTASK to signal the initial task as soon as the required 
values have been generated. The event is called CALCDONE, and an 
EC8 of that name is coded. EC8s for user-defined events are initially 
set up to indicate "event occurred." A WAIT issued against such an 
EC8 will act as though the event has happened (fall through). There­
fore, a RESET of the ECB must be executed before a WAIT is 
issued against it. The RESET instruction sets the ECB to indicate 
"event has not occurred." 



WAITPOST 
INITGO 
Al 

Wl 

W2 

XTASK 

Pl 

CAL COONE 

PROGRAM 
RESET 
ATTACH 

WAIT 

WAIT 
PROGSTOP 

TASK 

[Ca/cu/~tion] 
Routme 

POST 

EN OT ASK 
ECB 
ENDPROG 
END 

Figure 3-19. WAIT/POST 

INITGO 
CAL COONE 
XTASK 

CAL COONE 

TASKDONE 

TASKGO,EVENT=TASKDONE 

CAL COONE 

In the example, execution begins with the RESET command at 
location INITGO, which changes the ECB at CALCDONE from 
its initial indication of "event occurred" to "event has not occurred." 
At location A 1, the secondary task XT ASK is attached. 
WAITPOST and XT ASK are now in concurrent but asynchronous 
execution. •1\ihen XTASK finishes calculating the values required by 
the initial task, the POST instruction at location P1 is executed, 
and the ECB at location CALCDONE is set to indicate "event 
occurred." 

Program/Tasks 3-25 



ATTENTION LISTS 

3-26 SR30-0220 

At the time the POST is issued, the supervisor checks to see if there 
are any tasks waiting on this event. If the WAIT at W1 had already 
executed, the initial task would now be in a wait state, and the super­
visor would place WAITPOST back in a ready state. If the WAIT had 
not yet occurred, WAITPOST would continue executing until it was 
encountered. When the WAIT was issued, the supervisor would check 
CALCDONE, and, finding the event already complete, would allow 
WAITPOST to continue execution. 

The instructions following the WAIT at W1 in the initial task, and the 
instructions following the POST at P1 in the secondary task can now 
continue executing concurrently; the initial task did not have to wait 
until the secondary task terminated before using the required values. 
(Notice that the proper termination sequence for an attaching and 
an attached task is sti II necessary, and is provided for in the example 
by the WAIT on EVENT=TASKDONE at location W2.) 

The RESET instruction is used with user-defined events. System-defined 
events, such as those declared in the EVENT= operand of LOAD or 
TASK statements, are automatically initialized by the system. The use 
of RESET with a system-defined event may result in improper or un­
predictable operation. 

Note: When preparing programs using 8PPF, declaring an event name 
in the operand of a POST statement results in the automatic generation 
of an EC8 of the same name. Users of the online assembler 
($EDXASM) must code an EC8 with a label matching the name in the 
POST operand; EC8 generation is not automatic. 

READING ASSIGNMENT: S830-1053 (PDOM) pages 2-10, 2-16; 
or S830-1213 (Version 2 PDOM) pages 2-11, 2-16. 

The ATTN LIST capability provides a means for an operator to 
communicate with a program using a terminal. The ATTN LIST state­
ment is used to specify operand pairs, each pair consisting of a 
1- to 8-character operator command, and a label in the user program, 
which will receive control when that operator command is entered. 

In the example in Figure 3-20, the ATTN LIST statement defines a 
single operand pair, STOP, XTH REE. (Note that ATTN LIST, like 
EC8 and QC8, is not an executable statement, and must not be coded 
within an executable code sequence.) The first "name" in the operand 
pair defines an operator command to be entered from a terminal, and 
the second is the label of the instruction in the user program that will 
be executed when that command is entered. 



EXMPATTN 

QUIT 

XTHREE 

Figure 3-20. Attention list 

PROGRAM 
ATTN LIST 

PROGSTOP 

ENDATTN 

EN DP ROG 
END 

BEGIN 
(STOP,XTHREE) 

Assume the program in the example has been loaded and is in execu­
tion. An operator can now press the ATTENTION key on the 
terminal (the terminal used to load the program), enter the command 
STOP (defined in the ATTN LIST statement), press the ENTER key, 
and the attention routine at location XTH REE will be executed. The 
attention routine in this example, and every attention routine defined, 
must end with an ENDATTN statement. 

Attention routines do not execute on the level and priority of the user 
task within which they reside, but as part of the supervisor keyboard 
task, on hardware level 1. Attention routine execution, therefore, 
preempts al I other user tasks on levels 2 and 3, and should be kept very 
short. Since attention routines execute as part of a task running under 
supervisor rather than user control, there are restrictions on the types 
of instructions that may be used (see the reading assignment for specific 
instructions that are excluded). 

Program/Tasks 3-27 



3-28 SR30-0220 

Attention routines usually set a program indicator that can be checked 
by the user task; execution4ime decisions (end execution, restart the 
program, load another program) can then be made, based upon the 
value in the indicator. The instructions necessary to set storage 
locations (program indicators) or check them for specific values have 
not yet been discussed, and are therefore not shown in Figure 3-20. 
For further discussion and complete examples, see the topic 
"Operator Control of Program Execution" in "Section 11. Terminal 
1/0." 



PROGRAMS/TASKS -REVIEW EXERCISE -QUESTIONS 

1. Most applications can be programmed as a single task. What 
type of application would justify the use of the more complex 
multitasking structure illustrated in Figure 3-3? 

Answer: _____________________ _ 

2. What are the advantages of loading a program as an overlay, 
rather than just loading it into available storage? 

Answer: _____________________ _ 

3. What disadvantages are there to the overlay program structure? 

Answer:-----------------~----

4. How does a program's initial or main task get started up? 
Answer: _____________________ _ 

5. What statement must be executed to release the storage occupied 
by a program? 

Answer:----------~-------~----

Program/Tasks 3-29 



This page intentionally left blank. 

3-30 SR30-0220 



6. Fill in the blanks in the following paragraph, using words or 
phrases from the list below. (Some items in the list may be used 
more than once, and some not at all.) 

a. ENDTASK f. PROGRAM 
b. ATTACH g. ENDPROG 
c. entry point h. PROGSTOP 
d. TASK i. END 
e. shared resource j. initial task 

"The first statement in al I programs is the statement. 
The label of this statement establishes the name of the program's 
----· The last two statements in every program must be 
____ and . The statement 
must be the last statement in an initial task to be executed. The first 
statement in a secondary task is the statement. The 
statement which defines the end of a secondary task, and which is also 
the last to execute, is " 

7. What is the purpose of ENQ/DEQ and the OCB? 

Answer: _______________________ _ 

8. The proper execution termination sequence of loading/loaded 
programs and attaching/attached tasks is an automatic function 
of the Event Driven Execution supervisor. 

True 

False __ _ 

9. In Figure 3-20, assuming the program is in storage and executing, 
and the operator enters QUIT after pressing the Attention key 
on the terminal, which of the following would be true? 

a. The program would immediately execute the PROGSTOP 
instruction, terminating execution. 

b. The program would execute the attention routine at 
location XTH REE. 

c. The entry wou Id not affect program execution. 

d. The program would be placed in a wait state, waiting 
for the operator to enter XTH REE. 

e. None of the above. 

Programs/Tasks 3-31 



PROGRAMS/TASKS REVIEW EXERCISES - ANSWERS 

3-32 SR30-0220 

1. A user might consider multitasking where speed of execution is of 
primary importance, and the nature of the job is such that certain 
functions may be overlapped (i.e., 1/0 and processing). 

2. When loading an overlay program, the loading program is assured 
that space is available, because it is reserved at the time the 
loading program itself is loaded. Also, the load of an overlay 
program is faster than the load of the same program into available 
storage would be. This is because information about the overlay 
program which the loader requires in order to load it is looked up 
at the time the loading program is loaded, and not at the time the 
LOAD command is executed, as is the case when loading a non­
overlay program. 

3. The storage occupied by a program that loads overlays is always 
equal to the size of the loading program plus the size of the largest 
overlay. If the loading program executes without requiring any 
overlays, the overlay area, although unused, is still unavailable 
to the rest of the system. 

4. The initial task is "attached" (made ready for execution) by 
the system (actually the loader) at the time a program is loaded 
to storage. Activation of secondary tasks is a user responsibility, 
accomplished by execution of ATTACH instructions in already 
running initial or secondary tasks. 

5. Execution of PROGSTOP makes the storage now occupied by 
a program available to the system, and terminates (detaches) 
the program's initial task. 

6. The first statement in all programs is the f) PROGRAM state­
ment. The label of this statement establishes the name of the 
program's j) initial task. The last two statements in every pro­
gram must beg) ENDPROG and i) END. The h) PROGSTOP 
statement must be the last statement in an initial task to be 
executed. The first statement in a secondary task is the d) TASK 
statement. The statement which defines the end of a secondary 
task, and which is also the last to execute, is a) EN DT ASK. 

7. ENO and DEQ are used to protect against the concurrent use of 
a serially reusable shared resource by asynchronously executing 
tasks. 

8. FALSE. This is a user responsibility. The system provides the 
WAIT/EVENT=/ECB to accomplish it (and WAIT/POST for 
user events), but the user must code the required statements. 

9. Choice c. is correct. The ATTN LIST in Figure 3-20 defines 
the character string STOP as the operator input required to 
execute the attention routine at location XTH REE. Any other 
entry is ignored. 



DATA STATEMENT 

Section 4. Data Definition 

OBJECTIVES: After completing this section, the student should 
be able to: 

1. Define data constants for the following data types: 

a. EBCDIC d. Fixed Point 

b. Hexadecimal e. Floating Point 

c. Binary f. Address Constant 

2. Define symbolic data areas using the TEXT and BUFFER 
statements 

3. Define a text message using the TEXT statement 

READING REFERENCE: Program Description and Operations 
Manual (SB30-1053), pages 2-44 through 2-49; or Program 
Description and Operations Manual, Version 2 (SB30-1213), 
pages 2-45 through 2-47, 2-51. 

Data definition statements are used to define arithmetic values or 
character strings (constants and messages) and to reserve areas of 
storage for use during program execution (1/0 buffers, work areas). 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-45, 2-46; or 
SB30-1213 (Version 2 PDOM) pages 2-48, 2-49. 

The DATA statement is the Event Driven Executive equivalent of the 
Series/1 assembler language Define Constant (DC) statement. Although 
all of the examples in this study guide use DATA statements, DC state­
ments could be coded in their place, with the same results. 

Note: This is the only instance where a Series/1 assembler language 
statement may be coded in an Event Driven Executive program without 
employing the USER statement. See "Section 7. Program Control" 
of this study guide for discussion and examples of the USER instruction. 

Data Definition 4-1 



4-2 SR30-0220 

The format for the DATA statement is shown in Figure 4-1. 

OPTIONAL REQUIRED 

/~ 
label DATA duptypelength'value' 
t y~ + ~ 

name of duplication number of 
first data factor bytes reserved 
constant for each data 
defined item defined 

type of 
data being 
defined 

nominal value 
of data item(s) 

Figure 4-1. Data statement 

The DATA statement is made up of at least two ("type" and "value") 
or as many as four parts. The first three parts ( "dup," "type," and 
"length") are data descriptors or modifiers. The last part, "value," 
is coded with the actual data being defined. All parts of the DAT A 
statement are coded contiguously; no separators, such as blanks or 
commas, are al lowed. 

dup 

type 

length 

duplication factor. This optional operand modifier is coded 
as an integer value, indicating how many repetitions of the 
data item defined by the rest of the operand should be 
generated. If not coded, dup defaults to 1 (one) . 

. data type. This defines the type of data being defined, and 
must be coded in every DAT A statement. Nine data types 
are supported by the system, each one represented by a 
different alpha character. The type of data desired is indi­
cated by coding the appropriate character in the type 
portion of the operand. 

number of bytes to be used for each data item. The length 
modifier is supported for only hexadecimal (data type X) 
and EBCDIC (data type C) data, and is optional for those. 
Every data type (including hexadecimal and ECBDIC) 
has an implicit length associated with it. This length is the 
number of bytes required to hold the assembled output of 
the data constant defined. For example, every EBCDIC 
character is represented by an 8-bit (one byte) binary code. 
Therefore, when EBCDIC character strings are defined in 
DATA statements, the assembled output requires one 
storage location (one byte) for each character in the string. 
The length modifier overrides this implicit length of one 
byte per character. The assembled output of the character 
string is placed in the number of bytes specified in the 
length modifier, with truncation or padding of the charac­
ter string if required. 



value 

EBCDATA DATA C'ABC' 

EBCDATA ~1 
ASSEMBLED ______...,, C 

3

2 

OUTPUT ~ C 

WITH IMPLICIT 
LENGTH 

EBCDATA DATA 

~--

LENGTH /IFIER 
CL5 'ABC' 

EBCDATA C 1 ---
ASSEMBLED ~ C 2 

OUTPUT WITH C 3 
LENGTH MODI Fl ER 4 0 ---40 

Figure 4-2. Length modifier 

The length modifier is coded as Ln, where n =the number 
of bytes. In the lower example in Figure 4-2, a three-byte 
character string is placed in a five-byte field (length = L5), 
and the two extra bytes are padded with EBCDIC blanks 
(hex 40). 

nominal value of constant. The last part of the DATA 
statement operand is 'value'. When the DAT A statement is 
assembled, the assembler initializes the number of data 
elements indicated (dup) of the desired type (type code) 
to the value coded in the 'value' part of the operand. 
Note that 'value' must always be coded, and for all data 
types other than address data (type code A), the value 
is enclosed in apostrophes. 

The following examples illustrate the interaction of three parts of the 
DAT A statement operand. (Length, since it is used with only two data 
types, will be ignored for the remainder of this discussion.) 

OCON DATA FIOI 

The example shown will define a one-word integer value, initialized 
to zero. The optional dup is not coded, so the length will default to 
the implicit length of the data type, which is one word for F type data. 

Data Definition 4-3 



4-4 SR30-0220 

CCON DATA 5C' A I 

The example shows a data type of C (EBCDIC), and the duplication 
factor is 5. This statement would generate a five byte field of the 
EBCDIC representation of the character A (in hex, C1C1C1C1C1). 
The duplication factor applies to the data defined within the enclosing 
apostrophes of the value portion of the operand. If the DAT A 
statement is written as fol lows; 

CCON DATA 5C 1 ABC 1 

a fifteen-byte field would be defined, containing five repetitions of the 
ABC EBCDIC character string. Although the implicit length of an 
EBCDIC character is 1 byte, three characters are defined, so the duplica­
tion factor applies to the three-byte field. 

The operand formats described do not apply when coding address (A­
type) data constant. An A-type data constant is a single word in length, 
because it contains a Series/1 storage address. 

ACON DATA A(FLCl) 

The statement shown above will define a one-word constant at location 
ACON, containing the address of location FLC1. Note that the name 
of the location whose address you want in ACON is enclosed in paren­
theses, rather than apostrophes. 

The DATA statement conforms to the rules for the Define Constant (DC) 
instructions in the BPPF Assembler. If you are not familiar with 
defining constants, it is recommended that you review pages 5-5 through 
5-26 in the BPPF Macro Assembler Programmer's Guide, 
SC34-0074. 



Here is a summary of the supported data types. The implicit 
length generated by the assembly of each different type code is 
indicated under Length. 

1. Fixed Point Arithmetic Data 

Type Code 

H 

F 

D 

Length 

1 BYTE 

2 BYTES ( 1 word) 

4 BYTES (doubleword) 

H, F, or D type codes define signed, fixed point values of the 
indicated length and are used in integer arithmetic operations. 

2. Floating Point Arithmetic Data 

Type Code 

E 

L 

Length 

4 BYTES 

8 BYTES 

E and L type codes generate standard or extended precision float­
ing point constants, respectively. Floating point data is used in 
floating point arithmetic operations (Series/1 Floating Point 
hardware feature required). 

3. Address Data Definition 

Type Code 

A 

Length 

2 BYTES ( 1 word) 

The contents of the location defined will contain the address of a 
symbolic program location. 

4. Hexadecimal/Binary 

Type Code 

x 
B 

Length 

4 BITS 

1 BIT 

These allow definition of binary bit strings in storage, which are 
commonly used in logical operations and when using digital sensor 
1/0 (DI/DO/Pl). Note: Binary constants (type code B) cannot 
be defined if program preparation is being done using the on line 
Program Preparation Facility, $EDXASM. 

5. Character Data 

Type Code 

c 
Length 

1 BYTE/CHARACTER 

Defines EBCDIC characters in storage, for use with EBCDIC 1/0 
devices (displays, printers). 

Data Definition 4-5 



BUFFER STATEMENT 

4-6 SR30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-44; 
SB30-1213 (Version 2 PDOM) pages 2-46, 2-47. 

The BUFFER statement provides a convenient way to define 
contiguous, named, storage areas in a program, for use in 1/0 operations, 
as work areas, etc. The BUFFER statement reserves space in 
storage, but does not initialize storage to a user-specified value. When 
the statement is assembled, the storage reserved is set to binary zeros, 
and wi II be zeros when the program containing the statement is 
initially loaded. 

TYPE OF ITEMS 
IN THE BUFFER 
(MAY CODE "BYTES", 
OR IF NOT CODED, 

DEFAULTS TO "WORDS") OPTIONAL 

\~OPERANDS 
label BUFFER count, item, INDEX=name 

II ~ // 
SIZE OF 
BUFFER 

NAME ASSIGNED 
TO FIRST DATA 
ITEM 

NAME ASSIGNED 
TO INDEX VARIABLE 
IF CODED 

~ 0 0 0 0 
COUNT 
0 0 0 0 
0 0 0 0 --
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

- THE NUMBER 
OF WORDS 
(OR BYTES 
IF SPECIFIED) 
EQUAL TO 
"COUNT." 

Figure 4-3. BUFFER statement 

Figure 4-3 illustrates the format for the BUFFER statement, and shows 
what is generated in storage as a result. The label of the BUFFER 
statement is the symbolic name of the first data item. In storage this 
is preceded by two words of control information. The first word is 
called the INDEX, and may be symbolically referenced by the name 
you code in the INDEX= keyword operand of the BUFFER statement. 
The second word is the count, containing the buffer length you 
specified in the count operand. This count will be the number of words 
or bytes defined, depending on whether you coded BYTES for the item 
operand. 



INDEX is used with SBIO and INTIME instructions to place data in 
sequential buffer positions automatically, and would not be coded 
unless the buffer being defined were intended for that purpose. 
See "Section 9. Timers" in this study guide for an example of the use 
of the INDEX operand. 

Data Definition 4-7 



TEXT STATEMENT 

4-8 SR30-0220 

READING ASSIGNMENT: S830-1053 (PDOM) pages 2A8, 2-49; 
S830-1213 (Version 2 PDOM) pages 2-51, 2-52. 

The TEXT statement is used to generate character buffers, and operates 
in conjunction with the terminal instructions READTEXT_, PR I NTEXT, 
GETEDIT, and PUTEDIT. Figure 4-4 shows the format for the TEXT 
statement, and what is generated in storage. 

D label TEXT 1 message 1 ,LENGTH=,CODE= 

fJ ENDMSG TEXT 'RUN ENDED 1 ,LENGTH=l2,CODE=EBCDIC 

}• 
R 
u 

05 N 
40 
C5 E 0 05 N e C4 0 
C5 E 
C4 0 

40 n· 
Figure 4-4. TEXT statement 



In Figure 4-4, the TEXT statement format at II is shown coded 
at fJ . The message operand is the text 'RUN ENDED' in this 
example, but may be any character string you wish, up to 254 
characters. The LENGTH= operand is coded as 12, indicating the total 
length of the text buffer. The CODE= operand is EBCDIC, which is 
also the default. The standard internal representation for character data 
is always EBCDIC. The system automatically converts the EBCDIC 
character strings to the code required by a particular terminal. 

The CODE= operand could be coded ASCII. This is for special cases 
where you do not want the system to do any conversion from and to 
EBCDIC, but wish to transmit the exact code pattern in the buffer. 
An example is the graphics support, which drives a device employing 
an ASCII interface where certain ASCII characters perform graphics 
control functions. 

The TEXT statement at fl would generate the storage configuration 
shown just below it. The total storage utilized would be the 14 bytes 
shown by the brackets at Q . The actual text buffer is defined within 
the brackets labeled Q, encompassing 12 bytes (LENGTH=12). The 
data buffer is preceded by two bytes of control information, labeled e. The first byte defined the total length of the buffer (hex OC), 
12 bytes. The second byte is the length of this message, nine bytes, 
the total number of characters (including blank characters) in the 
'message' operand. Unused character positions at the end of the 
buffer E) are padded with blanks (EBCDIC for blank= hex '40'). 
The label of the TEXT statement points to the first byte of 
character data 0 . 
For both input and output operations, the count (second byte at 
location e ) cannot exceed the text buffer length (first byte ate ) . 
If you attempt to output a message that is larger than the buffer, or 
read a character string from a device that is longer than the buffer, the 
message will be truncated to fit within the defined buffer length. 

The contents of the character buffer defined by a TEXT statement 
is not confined to the character string that was coded when it was 
assembled. Different messages may be moved into the buffer at dif­
ferent times during execution of a program. If data is moved into a 
TEXT buffer using the PUTEDIT command, the count byte is auto­
matically adjusted to reflect the message length. When data is read 
from a terminal with a GETEDIT or a READTEXT command, the 
count reflects the number of input characters read. If a character 
string is moved into a TEXT buffer by any instructions other than 
these (i.e., MOVE), the count must be adjusted by the user before 
issuing a PR I NTEXT referencing that TEXT buffer. 

Data Definition 4-9 



This page intentionally left blank. 

4-10 SA30-0220 



DATA DEFINITION REVIEW EXERCISE - QUESTIONS 

1. Match the type with the data representation 

a. Extended precision floating point 1. c 

b. Address 2. x 
c. Character 3. B 

d. Double word fixed point 4. F 

e. Half word fixed point 5. H 

f. Full word fixed point 6. D 

g, Binary 7. E 

h. Hexadecimal 8. L 

i. Standard precision floating point 9. A 

2. Using the following instruction 

MSG2 TEXT LENGTH=20 

answer the following questions: 

a. How many characters could be stored in the text buffer 
defined? 

b. How many words wou Id be reserved? 

c. How could you address the first character in the buffer? 

3. How many words are reserved by the following instruction? 

BUF3 BUFFER 16,BYTES 

4. When coding a TEXT statement, if no 'message' is defined 
(LENGTH= only coded), the text buffer will be initialized 
to binary zeros. 

True __ 

False __ _ 

Data Definition 4-11 



DATA DEFINITION REVIEW EXERCISE - ANSWERS 

4-12 SR 30-0220 

1. a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

i. 

8 

9 

6 

5 

4 

3 

2 

7 

2. a. 20 characters 

b. 11 (20 bytes, one for each character, plus 2 bytes (one for 
length, one for count). 

c. By referencing the label MSG2 

3. 10 words are reserved; 8 for the 16 data positions, and the two 
control words which precede the data. 

4. False. Undefined text buffer locations are initialized to 
EBCDIC blanks (hex 40). 



INTEGER ARITHMETIC 

Section 5. Data Manipulation 

OBJECTIVES: After successful completion of this topic, the student 
should be able to: 

1. Understand the Event Driven Executive arithmetic instructions 
which operate on signed integer variables 

2. List the Event Driven Executive arithmetic instructions which 
operate on floating point data 

3. Use the Event Driven Executive data movement instructions to: 

a. Replace the contents of one variable with that of another 

b. Replace the contents of a variable with the address of another 

c. Replace the contents of a data field with the contents of 
another data field 

4. Determine the result of executing any of the Event Driven Execu­
tive logical instructions, given the values represented by operand 1 
and operand2 

READING REFERENCE: Program Description and Operations 
Manual (SB30-1053) pages 2-51 through 2-60; or Program Description 
and Operations Manual Version 2 (SB30-1213) pages 2-53 through 
2-65. 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-51 through 
2-56; SB30-1213 (Version 2 PDOM) pages 2-53 through 2-58. 

Figure 5-1 shows the basic format of instructions that operate on 
integer arithmetic variables. 

I 
I 
I 
I 

I 
I 
I 
I 
I 

1abe1 l 
I 

ADD 
SUBTRACT 
ADDV 
MULTIPLY 
DIVIDE 

opndl ,opnd2
1

,count,RESULT= ,PREC= 
I 
I -..--1 

OPTIONAL! 
I -----.-----' I OPTIONAL 

MUST BE CODED 

Figure 5-1. Integer arithmetic instruction format 

Data flow is from opnd2, to opnd1; in the ADD or SUBTRACT 
instructions, the data represented by opnd2 is added to or subtracted 
from the data represented by opnd 1, and the resu It of the 
operation replaces the contents of the location specified by opnd 1. 

Data Manipulation 5-1 



Optional Operands 

5-2 SR30-0220 

In the MULTIPLY or DIVIDE instructions, the data in opnd1 is 
multiplied or divided by the data in opnd2, and the product or 
quotient replaces the contents of opnd1 (for DIVIDE; the remainder 
is stored in the task code word, and will be overlaid by the next 
DIVIDE, 1/0 or floating point operation). 

The optional operands (count, RESULT=, and PREC=) allow the appli­
cation programmer to control the number of variables involved in the 
operation, where the result of the operation should be placed, and to 
specify the size of the variables (word, doubleword) used. The following 
examples illustrate how the optional operands affect instruction 
execution. An ADD operation is used as an example, but the principles 
also apply for SUBTRACT, MULTIPLY, and DIVIDE. 

EXAMPLE I ADD VALl,CONWORD 

This first example uses no optional operands, and is the most basic 
form. The word at location CONWO RD will be added to the word at 
location VAL 1. The results of the operation will replace the contents 
of VAL 1. Both VAL 1 and CONWORD are assumed to be single pre­
cision (word-length) signed integer variables, because word-length is the 
default when no other precision is specified. 

EXAMPLEl ADD VALl,CONWORD,5 

The count operand is coded as a 5. The count operand references 
opnd1, a.nd specifies how many variables, beginning at the location 
specified in opnd1, the contents of opnd2 should be added to. In the 
example shown, the word at location CONWORD would be added to 
the word -(stil I the default precision) at location VAL 1, to the word at 
location VAL 1+2 (two bytes= one word), at VAL 1+4, and so on 
through location VAL 1 +8. Each of the words in the five word field 
beginning at location VAL 1 would be increased by the value of the 
contents of location CONWORD. 

EXAMPLEl ADD VALl,CONWORD,5,RESULT=RFIELD 

Without changing anything else, the keyword operand RESULT= 
has now been added. This statement will execute the same way as did 
the previous example except that the results of the operation will be 
placed in a five-word field beginning at location RF IE LD. The five 
words beginning at location VAL 1 will remain unchanged. 

The only remaining optional operand is the keyword PREC=, which 
allows the programmer to specify the precision of the opnd1 and opnd2 
variables. Again using our example, if the field of da:ta beginning at 
location VAL 1 were double precision integers, and we wanted to add a 
single precision integer at location CONWORD to each of them, 
PREC=D would be coded. 

EXAMPLE I ADD VALl,CONWORD,5,RESULT=RFIELD,PREC=D 



The results (double precision integers) would be placed in a ten word 
field beginning at location RF IE LD, leaving the original contents of 
VAL 1 undisturbed. 

The D in PREC=D signifies that opnd1 is double-precision. DD would 
have indicated that both opnd1 and opnd2 were double precision. 
See page 2-55 in 5830-1053 or page 2-57 in 5830-1213 for 
opnd 1 /opnd2 precision combinations. 

Thus far, the count optional operand referred to opnd1 only. The 
vector addition capability is an exception to that rule. The ADDV 
statement adds the corresponding components of two vectors 
together, and therefore the count operand specifies the number of 
components in both vectors (opnd1 and opnd2). 

FLOATING POINT ARITHMETIC 

The format for Floating Point instructions is similar to that for the 
arithmetic instructions handling integer variables, except that the 
optional count operand is not allowed. Floating point operations 
involve the two discrete values represented by opnd1 and 
opnd2 only; neither may be vectors. 

I 
I 
I 

1abe1 l 
I 

'-.t-11 
OPTIONAL: 

FADD 
FSUB 
FMULT 
FD I VD 

I 
I 
I 

opndl,opnd2~RESULT=,PREC= 
I 1 _____ _ 

I OPTIONAL 

MUST BE CODED 

Figure 5-2. Floating point arithmetic instruction format 

The floating point instructions are not software simulations of floating 
point hardware; the Series/1 Floating Point hardware feature must 
be installed to utilize the floating point capability. 

Support for both standard and extended precision variables 
(PREC= operand), and all precision combinations are allowed. 

For an example of the use of floating point instructions, see Appendix 
8, Example 11 in either 5830-1053 or 5830-1213. 

Data Manipulatio11 5-3 



DATA MOVEMENT INSTRUCTIONS 

5-4 SR30-0220 

READING ASSIGNMENT: SB30-l053 (PDOM) page 2-59; or 
SB30-1213 (Version 2 PDOM) page 2-61. 

The MOVE statement has the following format: 

label 

~ 

OPTIONAL 

MOVE opndl,opnd2, 

MUST BE CODED 

Figure 5-3. MOVE instruction format 

count 
-or-

precision 
-or-

(count,precision) 

OPTIONAL 

Uni ike the integer and floating point arithmetic instructions, the 
RESULT= optional keyword operand is not used; the data specified 
by opnd 1 is always replaced by that represented by opnd2. The 
fol lowing statement, 

MOVE OLDATA,NEWDATA 

would replace the word (default precision) at location OLDATA with 
the word at NEWDATA. 

The same operation, coded with the count operand=3, 

MOVE OLDATA,NEWDATA,3 

would move the three words starting at location NEWDATA into the 
three words starting at location 0 LDAT A. 

For MOVE statements, precision is indicated by the keywords BYTE, 
WORD (default) or DWORD (doubleword). If count is not coded 
(default count= 1), then precision is coded by itself. If count is 
coded, precision is included as a sublist element in the count operand. 



Neither count nor precision 
coded;.count default=1; 
precision default=WORD 

MOVE OLDATA,NEWDATA 

MOVE OLDATA,NEWDATA,5 

count alone 
coded; precision 

. default=WORD 

precision alone coded; 
count default=1 

MOVE OLDATA,NEWDATA,DWORD----===------__. 

MOVE OLDATA,NEWDATA,(5,DWORD) 

count and precision 
both coded; precision 
included as a sublist 
element in count operand 

Figure 5-4. MOVE optional operands 

Move operations move data from a field of specified length, to a field 
of equal length, so count applies to both opnd1 and opnd2. 

The following examples illustrate the MOVE instruction optional 
operand variations. Each of the instructions is logically equivalent, 
moving four bytes of data from opnd2 to opnd l. 

MOVE OLDATA,NEWDATA, ( 4 ,BYTE) 

MOVE OLDATA,NEWDATA,2 

MOVE OLDATA,NEWDATA,(2,WORD) 

MOVE OLDATA,NEWDATA,DWORD 

MOVE OLDATA,NEWDATA,(l,DWORD) 

The MOVEA instruction moves the address of the location specified in 
opnd2 into the location specified by opnd1. 

MO VEA DATADRS,DATA 

Data Manipulation 5-5 



In the example shown, the address of location DAT A replaces the 
contents of location DAT AD RS. No optional operands are allowed 
with the MOVEA statement, because: 

a. opnd 1 is always the target of the move, so RESULT= is 
not valid 

b. the data being moved is a Series/1 storage address, which is, 
by definition, word-length; precision is therefore always WO RD 
(no PREC= coded) 

c. only a single address at a time is moved, so count is always 
= 1, and is therefore not coded. 

LOGICAL INSTRUCTIONS 

5-6 SR30=0220 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-58; 
or SB30-1213 (Version 2 PDOM) page 2-60. 

The logical instructions AND (AND), OR (IOR), and exclusive OR 
(EOR) operate upon selected bits within a bit field. Opnd2 operates on 
opnd1 in the manner summarized in Figure 5-5. 

AND (AND) 

w(1 a a 1 
I 

OPERAND 2 

RESULTS 

[]]~ 
[Qj~ 

OPERAND 1 

QR (IOR) 

OPERAND 2 [Qj(1 0 0 
I I 
I I 

OPERAND 1 [Qj~ 1 0 1 0 

t i i 
RESULTS [Qj~ 1 0 1 1 

Exclusive OR (EOR) 

OPERAND 2 @3i1 0 

OPERAND 1 @3~ 1 0 

RESULTS @)~o 0 

IF A BIT IS A 1 IN THE SECOND 

OPERAND, AND THE CORRES­

PONDING BIT IS A 1 IN THE 

FIRST OPERAND, THAT BIT WI LL 

BE A 1 IN THE RESULT. 

0 

1 

IF A BIT IS A 1 IN EITHER THE 

SECOND OR THE Fl RST OPERAND, 
THE CORRESPONDING BIT IN 

THE RESULT WILL BE A 1. 

1 I IF A BIT IS A 1 IN ONE OF THE 
I TWO OPERANDS, BUT NOT IN I 
01 THE OTHER, THE CORRESPOND-

i t ING BIT IN THE RESULT WILL 

1 I 1 BE A 1. 

NOTE: RESULTS OF AND, IOR, EOR OPERATIONS WI LL REPLACE THE 

CONTENTS OF OPERAND 1, OR WILL BE PLACED IN THE LOCATION 

SPECIFIED IN THE RESULTS= OPERAND, IF IT IS CODED. 

Figure 5-5. AND/OR/exclusive OR 



The instruction format for AND, IOR, and EOR is shown in Figure 5-6. 
As with MOVE operations, precision may be BYTE, WORD (default), or 
DWORD. The precision applies to opnd1, opnd2, and to RESULT=, 
if coded. The count optional operand applies to opnd1 and 
RESULT= only; count for opnd2 is always =1. 

I 
I 

: AND 
label : IOR 

1 EOR 
I 

~! 

opndl ,opnd2, 

OPTIONAL __________ _,, __________ _ 

MUST BE CODED 

Figure 5-6. Logical instruction format 

count 
-or-

precision , RESULT= 
-or-

(count,precisi on) 

OPTIONAL 

If RESULT= is coded, the contents of opnd 1 are unchanged by the 
operation. The following illustrates the use of the optional operands. 

AND XDATA,ZDATA 

Since count, precision, and RESULT= are not coded, count defaults 
to 1, precision defaults to WORD, and the contents of XDATA will 
be replaced by the word-length bit-field resulting from the AND 
of the 16 bits in the word at ZDAT A with the 16 bits in the word at 
XDATA. 

AND XDATA,ZDATA,3 

The contents of XDAT A, XDAT A+2, and XDAT A+4 will be replaced 
by the results of the AND of the 16 bits in the word at ZDATA with 
each of the 16 bits beginning at XDAT A. Note that the same word at 
ZDAT A is consecutively AN Ded with the three-word bit field beginning 
at location XDATA. The precision (default=WORD) determined 
how many bits at a time to AND (opnd2 size), and the count operand 
how many consecutive groups of bits of that size to perform the 
operation against. 

AND XDATA,ZDATA,(3,BYTE) 

The above is the same as the operation shown before, except that the 
8 bits specified in opnd2 (BYTE precision) are successively ANDed 
against the three 8-bit groups in opnd1, beginning with the byte at 
location XDAT A. 

Data Manipulation 5-7 



5-8 SRJ-0-0220 

I 
I 
I 

label I 
I 
I 
I 

AND XDATA,ZDATA,(3,BYTE),RESULT=YDATA 

When the statement above is executed, the three bytes, beginning at 
location YDATA, will be replaced by the results of the AND of the 
byte at location ZDATA with the three bytes in XDAT A, XDATA+1, 
and XDAT A+2. 

Event Driven Executive logical instruction capability also includes 
logical shift operations, for both shift left (SH I FT L) and shift right 
(SHIFTR). (See Figure 5-7.) Logical shifts, like the other logical 
instructions, operate on bit-fields (bit-strings). 

SHIFTR 
SHIFTL opndl,opnd2, 

count 
-or-

precision ,RESULT= 
-or-

(count,precision) 
'-v--1 I 

OPTIONAL'.__ _____ _,.. ______ _, 

MUST BE CODED OPTIONAL 

Figure 5-7. Shift instruction format 

In shjft operations, opnd2 is coded as an absolute value or as a variable 
name. The absolute value, or the contents of the variable, contains the 
shift count (the number of bit positions, to the right or left, that the 
contents of the bit field which begins at location opnd 1, shou Id be 
shi·fted). 

The optional operands have the same meaning, and are coded in the 
same way, as for AND, IOR, and EOR (note that if opnd2 is a variable 
name, that variable has the same precision (BYTE,WORD,DWORD) 
as the variable opndl}. 



A SHIFTL instruction shifts bits out of the high-order (most significant) 
position of a bit field, and fills vacated low-order (least significant) bit 
positions with zeroes. Similarly, SH I FTR shifts bits out of the low­
order position, and zero-fills vacated high-order positions. Figure 5-8 
illustrates the operation of both SHIFTL and SHIFTR. 

~FIRSTOP SHIFTL 
/COUNT=5 BIT POSITIONS 

FI ELDA, 5 ............... WORD PRECISION (default) 

EJ-------~ MOVE SCNT,1 
~SECONDOP SHIFTR FIELD8,SCNT 

~Word at SCNT used 
for shift count 

SCNT 
.,.__.....FI ELDA 
....--..FIELD8 

DATA 
DATA 
DATA 

F1 0 1 

81 1111000011110000 1 

8 1 0000000000000000 1 

D Before execution of the Shift Left at Fl RSTOP, the contents of 
Fl ELDA and FIELDS are exactly as coded 

zeros filled in 
fJ After execution of the Shift Left~ vacated bit positions 

FIELDA :/0001 1110 0000 0000 

l ll l ~ S~ifted out of .. 
high order pos1t1on 

IJ After execution of the MOVE operation, location SCNT=1 

IJ After execution of Shift Right at SECONDOP, 

FIELDA = 0001 1110 0000 0000, unchanged, 

and FIELD8 = DOOO 1111 0000 0000-... ..._n h"f d f 1'- -v s r te out o 
/ 

zero fills" low order bit 

vacated position position 

Figure 5-8. Shift operation 

Data Manipulation 5-9 



DATA MANIPULATION REVIEW EXERCISE - QUESTIONS 

5-10 SR30-0220 

1. Fill in the value for X, Y, and Z after execution of each of the 
instructions below. In each case, assume that before execution, 
X=20, Y=30, and Z=O. 

a. ADD X,Y 

Answers: X= ___ _ Y= __ _ Z= __ _ 

b. ADD X,Y,RESULT=Z 

Answers: X= ___ _ Y= __ _ Z=---

c. ADD X,50 

Answers: X= ___ _ Y= __ _ Z= __ _ 

2. Analyze the two arithmetic operations below, and explain how 
they would differ when executed. 

a. ADD X,Y,Z b. ADDV X,Y,Z 

ANSWER: ____________________ ~ 



XDATA 
ZDATA 

3. Analyze the two data movement operations below, and explain 
how they would differ when executed. 

b. MOVEA a. MOVE X,Y 

ANSWER:~~~~~~~~~~~~~~~~~~ 

X,Y 

4. Below is a coding example using all five logical instructions. Each 
instruction uses the "RESULT=" optional keyword operand to place 
the result in a different location (opnd1 is undisturbed). Fill in 
(in binary) what the "RESULT=" locations would be after execution 
of the coding example. 

AND 
IOR 
EOR 
SHIFTR 
SH I FTL 

DATA 
DATA 

ANSWERS: 
After execution, 

a. ANDRSLT= 

b. IORRSL T= 

c. EORRSLT= 

B' 

B' 

B' 

d. RITERSL T=B I 

e. LEFTRSL T=B I 

XDATA,ZDATA,BYTE,RESULT=ANDRSLT 
XDATA,ZDATA,BYTE,RESULT=IORRSLT 
XDATA,ZDATA,BYTE,RESULT=EORRSLT 
SDATA,7,BYTE,RESULT=RITERSLT 
XDATA,3,BYTE,RESULT=LEFTRSLT 

BI 11010010 I 

BI 10011001' 

Data Manipulation 5-11 



DATA MANIPULATION REVIEW EXERCISE - ANSWERS 

5-12 SR30-0220 

1. a. X50 

b. X20 

c. X70 

Y30 

Y30 

Y30 

ZQ 

Z50 

ZQ. 

2. Example a. (ADD operation) would add the contents of storage 
location "Y" to storage location "X" and to storage location 
"X+2". The "count" operand (2) applies to opnd1 only. 
Example b. (ADDV operation) would add the contents of storage 
location "Y" to storage location "X", and the contents of storage 
location "Y+2" to the contents of storage location "X+2". The 
"count" operand of the ADDV instruction applies to both opnd1 
and opnd2 (also for MOVE). 

3. Example a. (MOVE operation) would replace the contents of 
storage location "X" with the contents of storage location "Y" 
(move Y to X). Example b. (MCVEA operation) would replace 
the contents of storage location "X" with the address of the 
storage location "Y" (move the address of Y to X). 

4. a. ANDRSLT=B 1 10010000 1 

b. IORRSLT=B 1 11011011 1 

c. EORRSL T=B I 01001011 1 

d. RITERSLT=B I 00000001 1 

e. LEFTRSL T=B 1 10010000 1 



Section 6. Queue Processing (Version 2 Only) 

OBJECTIVE: After completing this topic, the student should be 
able to: 

1. Define an empty or a fu II queue 

2. Add entries to a queue 

3. Retrieve the oldest entry from a queue 

4. Retrieve the newest entry from a queue 

READING REFERENCE: Program Description and Operations 
Manual Version 2 (5830-1213) pages 2-149 through 2-156. 

The queuing instructions discussed in this section are used to define 
queues and access entries in queues. The size of a queue (the number 
of entries it can hold) is specified by the user. A queue entry is one 
word in length. The contents of this word may comprise the queue 
entry in its entirety, or as in the examples used in this section, may 
be the address of a larger data area (buffer). 

A useful example of queue definition and processing is buffer pool 
management. If several tasks within an application program have the 
possibility of performing 1/0 operations, a queue of 1/0 buffers 
(buffer pool) can be established. Using the queue processing 
instructions, a task requiring an 1/0 buffer obtains it from the 
pool, and, when the 1/0 has completed, returns it to the pool. No 
physical movement of the buffer is involved; the queue entry that is 
acquired and returned is actually the address of the buffer in storage. 

Another example of the use of queue processing is a "data spooling" 
operation, where multiple units of data are placed in a direct access 
data set, with the record numbers of the first record of each unit stored 
as a data element (entry) in a queue for later processing. In this 
instance, the single-word queue entry is the queued data item itself, 
rather than a pointer to a storage location or buffer. 

Queue Processing (Version 2 Only) 6-1 



DEFINEQ 

6-2 SR 30-0220 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) 
page 2-151. 

For this discussion, a queue is the system mechanism and control 
blocks necessary to logically connect and manage a chain of queue 
entries. Figure 6-1 shows the format of the DEFINEQ statement, 
which is used to establish a queue. 

I 

COUNT=isrZE= 
:~ 

------------OPTIONAL 

1abe1 DEFINEQ 

MUST BE CODED 

Figure 6-1. DEFINEQ format 

The label of the DEFINEO statement is a required field. It is the 
symbolic name of the queue, and will be used by queue processing 
instructions to access the queue. The COUNT= keyword operand 
(coded as an integer value) determines the number of Queue Control 
Elements (OCEs) and therefore, the possible number of associated 
buffer pool elements the queue may reference. QCEs are three-word 
system control blocks, which are logically (contain address pointers) 
chained together in active or free OCE chains. OCEs in the active 
chain include data entries; free chain QCEs contain no data entries, 
and are connected to other free OCEs. 

In addition to QCEs, the DEFINEQ statement also generates a single 
Queue Control Block (QCB). The OCB is three words long, and the 
first word is assigned the label of the DEFINEQ statement. The 
OCB contains address pointers to the active and free chains of 
OCEs. When an entry is added to a queue, the QCB address pointers 
are adjusted to remove a QCE from the free chain and attach it to 
the active chain. 

SIZE= is an optional keyword operand. It may be coded to cause 
the generation of a pool of data buffers associated with the queue 
being defined. The number of such buffers will equal that specified 
in the COUNT= operand. The size of each buffer (in bytes) is 
specified by the integer value coded in the SIZE= operand. If 
SIZE= is not coded, no buffer pool will be generated, and all QCEs 
will initially be defined to be in the free chain (empty queue). If 
SIZE= is coded, all OCEs will be in the active chain (full queue), 
and the entry in each active QCE will point to one of the buffers in 
the buffer pool. 



In Figure 6-2, the SIZE= operand is not coded, so an empty queue 
is defined (all QCEs in free chain). In figure 6-2, and in the rest of the 
illustrations in this section, QCEs in the free chain are shown as shaded. 

QTHREE DEFINEQ COUNT=3 I 

OCB 

OTHREE 

OCEs 

Figure 6-2. Empty queue 

No entries are in the queue, but there is space (free QCEs) available 
for the addition of three entries. 

In Figure 6-3, a full queue (all QCEs in active chain, with queue 
entries pointing to buffer pool elements) is defined. Each buffer pool 
element is four bytes in length (SIZE=4). No more entries may be 
added to this queue, as all QCEs are already active. 

Queue Processing (Version 2 Only) 6-3 



QTHREE DEFIN~W COUNT=3,SIZE=4 I 

l OCB 

OTHREE~,--~~~~r---i 

OCEs 
~ ~ 

~ QCB POINTER 1 --
ENTRY I---:---' 

L.., 

r--i---------1~ i-
ENTRY D 

~ OCB POINTER 
---~--~~~~~~~· 

ENTRY 

Figure 6-3. Full queue 

OPTIONAL 
BUFFER 
POOL 

LASTQ/FI RSTQ/NEXTQ 

6-4 SR30-0220 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages 
2-152 through 2-154. 

The queue processing instructions allow the user to add (NEXTQ) or 
retrieve ( LASTQ, FI RSTQ) entries in a queue defined by the 
DEFINEQ statement. The format for all three queue processing 
instructions is similar: 

I I 
I FIRSTQ I 
I I 

label l NEXTQ qname,loc,FULL= 
i LASTQ 1EMPTY= 
I • 

~ -------.------- ---
OPTIONAL MUST BE CODED OPTIONAL 

Figure 6-4. Queue processing instruction format 

FIRSTQ and LASTQ are used to retrieve entries from a queue; NEXTQ 
places an entry in a queue. The label of a DEF IN EQ statement is 
coded as qname, specifying which queue is being accessed. 



The loc operand is the label of a one-word storage location. This word 
will be set to the contents of the entry being retrieved from the queue 
by a Fl RSTQ or LASTQ instruction. Before executing a NEXTQ 
instruction, the user must ensure that this word contains the entry 
(data item, such as a record number; or address of a buffer pool 
element) being added to the queue. 

The EMPTY= keyword operand is coded as the label of the instruction 
that will receive control if the queue referenced by a FI RSTQ or 
LASTQ instruction has no active entries. FULL= performs the same 
function for the NEXTQ instruction in the event there is no room in 
the queue to add an entry. If EMPTY= or FULL= is not coded, and 
the queue is erroneously empty or full, execution will continue with 
the instruction following the FI RSTQ/LASTQ or N EXTQ. A +1 
will be returned in the task code word (taskname), and may be 
checked by the user. 

Entries are placed in a queue one at a ti me. Therefore, queue entries 
differ in their relative age, as some are queued before others. Both 
FI RSTQ and LASTQ retrieve entries from a queue, but they differ 
in the age of the entries they retrieve. 

LASTQ retrieves the last, and therefore the most recently entered, 
entry in a queue. This is often called "Last In, First Out", or 
LIFO queue processing. It is also referred to as stack processing. 

Queue Processing (Version 2 Only) 6·5 



6-6 SR 30-0220 

OTHREE 

Refer back to the "full queue" illustrated in Figure 6-3. The oldest 
entry is the first QCE in the chain (the top QCE of the three pictured), 
and the most recent entry is the last (bottom) QCE. (Although this 
queue is actually created in its entirety during program preparation, 
it is chained together as though the entries had been made in sequence.) 
Figure 6-5 illustrates how the full queue in Figure 6-3 would be 
changed by execution of a LASTQ instruction. 

OUTl LASTQ QTHREE,LASTADRS,EMPTY=DONE/ 

OCB 

LAST ADRS 

OPTIONAL 
BUFFER 
POOL 

Figure 6-5. LASTO 

1. The most recent entry in the queue has been removed from the 
active chain, forming a free chain one QCE in length. The free 
QCE no longer has the address of the third buffer pool element, 
but rather contains a pointer to the QCB. 

2. The active chain is two QCEs in length, and the most recent entry 
is the second QCE. 

3. The location of the third buffer pool element is placed in 
storage location LAST AD RS (loc operand). 

Again, assuming the full queue depicted in Figure 6-3 as a starting 
point, the results of a FI RSTQ operation are shown in Figure 6-6. 



I OUT2 

OTHREE 

FIRSTQ QTHREE,FIRSTADR,EMPTY=DONE I 
FIRSTADR 

OCB 

QC Es 

ENTRY 

OCB POINTER 

ENTRY 

OPTIONAL 
BUFFER 
POOL 

Figure 6-6. FIRSTQ 

This time, the first or oldest active QCE is removed from the active 
OCE chain, placed in the free chain, and the location of the oldest 
buffer pool element is placed in storage location FI RSTADR. This 
is called "First In, First Out", or FIFO queue processing. 

Queue Processing (Version 2 Only) 6-7 



6-8 SR30-0220 

OTHREE 

NEXTQ adds an entry to a queue, as illustrated in Figure 6-7. For 
this example, the starting point is the queue shown in Figure 6-6, 
after execution of the FI RSTQ instruction. 

1 INl NEXTQ QTHREE,FIRSTADR,FULL=NOROOM I 
FIRSTADR 

OCB 

QC Es 

QCB POINTER 

ENTRY 

OCB POINTER 

ENTRY 

ENTRY 

OPTIONAL 
BUFFER 
POOL 

Figure 6-7. NEXTO 

The queue is again full. The newest entry is represented by the QCE 
at the top, and the oldest entryis the second (middle) OCE. 



QUEUE PROCESSING REVIEW EXERCISE-QUESTIONS 

1. Including all control blocks, how many bytes of storage will be 
reserved by the DEFINEQ statement below? 

QEXAMP DEFINEQ COUNT=5,SIZE=256 

Answer: bytes 

2. Below is a program consisting of a series of queue processing 
instructions. Analyze the program, and answer the questions 
that follow. 

QEXAMPLE 
START 
F2 
Nl 
L1 
L2 
N2 
L3 
F3 
F4 
N3 
N4 
N5 
N6 
OUT 
Q3 
LOCI 
LOC2 
LOC3 

PROGRAM 
FI RSTQ 
FIRSTQ 
NEXTQ 
LASTQ 
LASTQ 
NEXTQ 
LASTQ 
FIRSTQ 
FIRSTQ 
NEXTQ 
NEXTQ 
NEXTQ 
NEXTQ 
PROGSTOP 
DEFINEQ 
DATA 
DATA 
DATA 
EN DP ROG 
END 

START 
Q3,LOC1,EMPTY=OUT 
Q3,LOC2,EMPTY=OUT 
Q3,LOC1,FULL=OUT 
Q3,LOC1,EMPTY=OUT 
Q3,LOC3,EMPTY=OUT 
Q3,LOC2,FULL=OUT 
Q3,LOC2,EMPTY=NG 
Q3,LOC2,EMPTY=N3 
Q 3, LOC l, EMPTY=OUT 
Q3, LOC 1, FULL=OUT 
Q3,LOC2,FULL=OUT 
Q3,LOC3,FULL=OUT 
Q3,LOCI,FULL=Nl 

COUNT= 3,SI ZE=6 
F 1 0' 1 

F 1 0 1 

F''U' 

Queue Processing (Ver.sion 2 Only) 5:.9 



This page intentionally left blank. 

6-10 SR30-0220 



Note: The queue defined by the DEF IN EQ statement at 03 is exactly 
like that shown in Figure 6-3. In answering the following questions, 
assume that the first (oldest) entry is the address of buffer pool 
element A, the second is the address of buffer pool element B, and 
the last (most recent) that of C. 

a. After execution of the instruction at START, storage 
location LOC1 contains the address of buffer pool 
element _____ _ 

b. After execution of the instruction at location F2, how many 
active entries are in the queue? 

Answer: ____ _ 

c. After execution of the instruction at location ____ _ 
LOC3 contains the address of buffer pool element C. 

d. After execution of the instruction at location L 1, the oldest 
buffer pool element pointed to by an active QCE is 
element , and the most recent element pointed 
to by an active QCE is element ____ _ 

e. As this program is coded, execution of the instruction at 
location will never be attempted. 

f. Execution of the instruction at location will 
be attempted twice; the first time successfully, the second 
time unsuccessfully. 

g. At the time the PROGSTOP is executed, how many entries 
are in the active QCE chain? 

Answer: ____ _ 

Queue Processing (Version 2 Only) 6-11 



QUEUE PROCESSING REVIEW EXERCISE-ANSWERS 

1. 

2. 

6· 1'2 SR.30-0220 

6 QCB 3 words, 2 bytes/word 
30 

1280 
QCEs 5 QCEs, 3 words, 2 bytes/word 
BUFFERS 5 of 256 bytes each 

1316 bytes 

a. A 

b. 

c. L2 

d. C,C 

e. F4 

f. N1 

g. 3 

In ana~yzing the execution of this program the format shown 
below witr be used. The initial example shows the status before 
execution begins; aB other examples are after execution 
of each instruction. 

BEFORE PROGRAM EXECUTION BEGINS: 

Active entries in queue: A, B, C 
First (oldest) active entry: A 
Last (newest) active entry: C 
LOC 1 contains address of element 0 
LOC2 contains address of element 0 
LOC3 contains address of element 0 

AFTER EXECUTION OF: 

label 

START FI RSTQ 

Active entries in queue: B, C 
First (otdest) active entry: B 
Last (newest) active entry: C 

Q3,LOC1,EMPTY=OUT 

LOG1 contains address of element A 
LOC2 contains address of element 0 
LOC3 contains address of element 0 

Answer to question 2a. LOC1 contains the address of element A 



AFTER EXECUTION OF: 

label 

F2 FIRSTQ Q3,LOC2,EMPTY=OUT 

Active entries in queue: C 
First (oldest) active entry: C 
Last (newest) active entry: C 
LOC 1 contains address of element A 
LOC2 contains address of element 8 
LOC3 contains address of element 0 

Answer to question 2b. 1 active element remains in queue. 

AFTER EXECUTION OF: 

label 

Nl NEXTQ Q3,LOC1,FULL=OUT 

Active entries in queue: A, C 
First (oldest) active entry: C 
Last (newest) active entry: A 
LOC1 contains address of element A 
LOC2 contains address of element 8 
LOC3 contains address of element 0 

AFTER EXECUTION OF: 

label 

Ll LASTQ Q3,LOC1,EMPTY=OUT 
Active entries in queue: C 
First (oldest) active entry: C 
Last (newest) active entry: C 
LOC1 contains address of element A 
LOC2 contains address of element 8 
LOC3 contains address of element 0 

Answer to question 2d. C is the only element in the queue, and 
is therefore the oldest and the most recent. 

AFTER EXECUTION OF: 

label 

L2 LASTQ Q3,LOC3,EMPTY=OUT 

Active entries in queue: none 
First (oldest) active entry: n/a 
Last (newest) active entry: n/a 
LOC1 contains address of element A 
LOC2 contains address of element 8 
LOC3 contains address of element C 

Answer to 2c. After executing the instruction at L3, LOC3 will 
contain the address of element C. ( LOC1, LOC2, and LOC3 will 
remain unchanged throughout remainder of program) 

Queue Processing (Version 2 Only) 6-13 



6-14 SR30-0220 

AFTER EXECUTION OF: 

label 

N2 NEXTQ 

Active entries in queue: B 
First (oldest) active entry: B 
Last (newest) active entry: B 

Q3,LOC2,FULL=OUT 

LOC1 contains address of element A } 
LOC2 contains address of element B 
LOC3 contains address of element C 

unchanged 

AFTER EXECUTION OF: 

label 

L3 LASTQ 

Active entries in queue: none 
First (oldest) active entry: n/a 
Last (newest) active entry: n/a 

LOC1} 
LOC2 (unchanged) 
LOC3 

AFTER EXECUTION OF: 

label 

F3 FIRSTQ 

Active entries in queue: none 
First (oldest) active entry: n/a 
Last (newest) active entry: n/a 

LOC1} 
LOC2 (unchanged) 
LOC3 

Q3,LOC2,EMPTY=NG 

Q3,LOC2,EMPTY=N3 

This instruction does not execute successfully. The queue is 
empty, so control is transferred to location N3. 

AFTER EXECUTION OF: 

label 

N3 NEXTQ 

Active entries in queue: A 
First (oldest) active entry: A 
Last (newest) active entry: A 

LOC1} 
LOC2 (unchanged) 
LOC3 

Q3,LOC1,FULL=OUT 



AFTER EXECUTION 0 F: 

label 

N4 NEXTQ 

Active entries in queue: A, B 
First (oldest) active entry: A 
Last (newest) active entry: B 

LOC1} 
LOC2 (unchanged) 
LOC3 

AFTER EXECUTION OF: 

label 

N5 NEXTQ 

Active entries in queue: A, 8, C 
First (oldest) active entry: A 
Last (newest) active entry: C 

LOC1} 
LOC2 (unchanged) 
LOC3 

AFTER EXECUTION OF: 

label 

N6 NEXTQ 

Active entries in queue: A, B, C 
First (oldest) active entry: A 
Last (newest) active entry: C 

LOC1} 
LOC2 (unchanged) 
LOC3 

Q3,LOC2,FULL=OUT 

Q3,LOC3,FULL=OUT 

Q3,LOC1,FULL=Nl 

This instruction does not execute successfully because the queue 
is fu II. Control is transferred to location N 1. 

AFTER EXECUTION OF: 

label 

Nl NEXTQ 

Active entries in queue: A, B, C 
First (oldest) active entry: A 
Last (newest) active entry: C 

LOC1} 
LOC2 (unchanged) 
LOC3 

Q3,LOC1,FULL=OUT 

Queue Processing (Version 2 Only) 6-15 



6-16 SR30-0220 

This instruction does not execute successfully for the same 
reason as above. Control is transferred to location OUT, and 
the program terminates. 

Answer to 2e. The instruction at location F4 was skipped­
execution was never attempted. 

Answer to 2f. The instruction at location N 1 was executed 
twice, once successfully and once unsuccessfully. 

Answer to 2g. There are 3 active entries. 



SUB:ROUTIN,ES 

SUBROUT STATEMENT 

Section 7. Pr.ogram C~ntr~ol 

OBJECTIVES: Upon successful completion of this topic, the student 
should be able to: 

1. Explain the use and execution of subroutines in an application 
program 

2. Incorporate Assembler language routines jn an :Event :[)riv.en 
Executive program 

READ ING REFERENCE: Program Description and Operations 
Manual ($830-1:053) pages 2-35 through 2-39; or Program 
Description and Operations Manual Version 2 (5830-1213) 
pages 2-37 thr:ough .2-43. 

READING ASSIGNMENT: ·$830-1053 (PDOM) pages 2-36 through 
2-38; or SB30-1213 (Version 2 PDOM) pages 2-38 through 2-44. 

In many programs, there are certain functions that are required 
repeatedly at different points in the program's execution. Examples 
might include conversion of data from one code to another or a 
particular sequence of arithmetic calculations. 

Rather than code the sequence of instructions that perform the desired 
function .each time the program needs that function, the function is 
coded once, and defined as a subroutine. The.subroutine can then be 
entered and '.executed from as many different points in the application 
program as required. 

Subroutines are defined using the SUBHOUT statement whose format 
is shown in Figure 7-1. 

I 
I 

1abe1 \ SUBROUT 
I 
I name, 1 parl, ..... par5 

OPTIONAL MUST BE CODED OPTIONAL 

Figure 7·1. SUBROUT format 

The name operand is coded with the symbolic name of the subroutine 
and willbe referenced by other instructions. The /abelfield is 
optional, and should not be.confused with .the subroutine name 
specified in the name operand. 

Program Control 7 -1 



CALL STATEMENT 

Par1 through par5 are names of parameters that may be passed to 
the subroutine when it is entered. 

The format of the CALL statement is shown in Figure 7-2. The 
CALL is used to enter a subroutine defined in a SUB ROUT 
statement. 

I 
I 

1abe1 I CALL 
I 

name , I par 1 , . . . . par 5 

OPTIONAL MUST BE CODED OPTIONAL 

Figure 7-2. CALL format 

The name operand is coded with the symbolic name specified in the 
name operand of the SUB ROUT statement defining the subroutine 
you wish to execute. Par1 through par5 may be coded as single 
precision integer values, as the symbolic names (labels) of single 
precision integer values, or as the addresses of program variables or 
data areas. 

PASSING SUBROUTINE PARAMETERS 

7-2 SR30-0220 

Figure 7-3 illustrates basic subroutine operation. Note that the 
CALL at location START is a call to CALC, not to SUB1, the label 
on the ~UB ROUT statement. The last executable statement in 
this and every subroutine is a RETURN. The RETURN instruction 
provides the linkage back to the calling task, where execution resumes 
at the instruction following the CALL. Subroutines execute as part 
of, and at the same priority as, the calling task. Subroutines are not 
re-entrant, so if a subroutine is called from multiple tasks, ENO and 
DEQ should be used to ensure serial execution. 



SUBEXAMP 
START 

INTEGERA 
INTEGERS 
SUM 
SUBl 

END IT 

PROGRAM 
CALL 

PROGSTOP 
DATA 
DATA 
DATA 
SUBROUT 
ADD 

RETURN 
EN DP ROG 
END 

Figure 7-3. Subroutine operation 

START 
CALC 

F 1 l0 1 

F1 15 1 

F 1 0 1 

CALC 
INTEGERA,INTERGERB,RESULT=SUM 

The subroutine CALC in Figure 7-3 adds two integer values together 
and stores the result at location SUM. Since CALC is part of 
program SUBEXAMP, all labels within the program are known to 
the subroutine, and may be referenced by instructions within the 
subroutine. In this example, location SUM would contain 25 after 
the subroutine has been executed. 

When a subroutine uses specific labels in the program, the data that 
the subroutine will operate on must be moved into the storage 
addresses represented by those labels before the subroutine is called. 
The same result can be achieved more easily by using the parameter 
passing capability. Parameters may be actual values (integer numbers), 
or may take the form of pointers to data that the subroutine will 
be using. 

In figure 7-4, the SUB ROUT statement at location SUB1 specifies two 
parameters, XVAL and YVAL. The names used to define parameters 
in SUB ROUT statements must be unique throughout the program 
(cannot appear in the label field of any statement). They are 
positional symbolic references to parameters that are passed in the 
CALL statement. 

Program Control 7-3 



7 ·4 SR30·0220 

SUBEXAMP 
START 

C2 

INTEGERA 
INTEGERB 
SUMI 
SUM2 
SU Bl 
Al 

PROGRAM 
CALL 

CALL 

PROGSTOP 
DATA 
DATA 
DATA 
DATA 
SUB ROUT 
ADD 
RETURN 
EN DP ROG 
END 

Figure 7·4 .. Integer parameters 

START 
CALC,50,SUMl 

CALC,SUM1,SUM2 

F' 10' 
F' 15' 
F'O' 
F'O' 
CALC,XVAL,YVAL 
INTEGERA,XVAL,RESULT=YVAL 

In the first CALL (location START), the first parameter is the single 
precision integer value 50. This corresponds to the first parameter 
defined in the SUB ROUT statement, XVAL, as does program location 
SUM 1 to the second parameter definition YV AL. When the ADD 
instruction at location A 1 executes as a result of this call, the value 
50 will be substituted when XVAL is referenced~ and location SUM1 
will be used in place of YVAL. Location SUM 1 will be set to 60, 
the. sum of INTEGERA and 50. 

The second CALL at C2 will result in 70 being put in location SUM2, 
the sum of SUMl and JNTEGERA. Notice that although 
INTEGERA is used by the subroutine, it need not be passed as a 
p.arameter, since it does not change from CALL to CALL. 

Up to this point, the parameters ilJustrated have been restricted to 
single precision integer values._ By pass.ing an address of a data area 
as a parameter, and utilizing the software registers (#1, #2) within 
the subroutine, any data area or data array may be accessed. 

In Figure 7·5, the address of the data area SUMA REA is passed as the 
first parameter of the CALL OabeJ is enclosed in parentheses to 
specify address rather than content of address). When the· subroutine 
executes the address is loaded into software- register #L The results 
of the ADD operations are moved into SUMAR.EA using the contents 
of #las a base address. After execution, SUMAREA wilt contain 50~ 
and SUMAREA+2 will contain 25. 



USER STATEMENT 

SUBEXAMP 
START 

SUMAREA 

INTEGERA 
INTEGERB 

Sl 

PROGRAM 
CALL 

PROGSTOP 
EQU 
DATA 
DATA 
DATA 
SUBROUT 
MOVE 
ADD 
MOVE 
ADD 
MOVE 
RETURN 
DATA 
EN DP ROG 
END 

Figure 7-5. Address parameter 

START 
CALC,(SUMAREA),40,INTERGERB 

* 
2F 1 0 1 

F' 10 1 

F1 15 1 

CALC,ADDRSLT,XVAL,YVAL 
#1,ADDRSLT 
INTEGERA,XVAL,RESULT=Sl 
(0,#1),Sl 
INTEGERA,YVAL,RESULT=Sl 
(2,#1),Sl 

F 1 0 1 

When employing this technique, you should keep in mind that 
the software registers used by subroutines are those associated 
with the calling task, and therefore, the subroutine may be 
reouired to save them on entry and restore them to their original 
values before returning. 

Note: If a subroutine is assembled as a separate module for later 
link editing (Version 2 Program Preparation Facility), the subroutine 
name must be declared in an ENTRY statement. 

READING ASSIGNMENT: 5830-1053 (PDOM) pages 2-39 
through 2-42; or 5830-1213 (Version 2 PDOM) pages 2-42 through 
2-44. 

At some time you may require a function not provided by the Event 
Driven Executive. Such functions can be coded in Series/1 assembler 
language (assuming that you have the appropriate assembler language 
background) and included in an Event Driven Executive program 
as a user exit routine. The USER statement provides the linkage 
between the Event Driven Executive code and the Series/1 assembler 
language routine. 

Program Control 7-5 



7-6 SR30-0220 

I I 
I I 

label lUSER name, I PARM=(parml, ... parmn) 
~ '----------__.;·----------...----------

OPTl ONAL MUST BE CODED OPTIONAL 

Figure 7·6. USER format 

The name operand is coded as the label of the entry point (label of 
first executable instruction) of the assembler language routine. The 
PARM= keyword operand is coded as a list of parameters, with each 
parameter as a sublist element. 

When executing Event Driven Executive code, the user is limited to the 
two software registers, #1 and #2. In Series/1 assembler language, the 
hardware registers are available. Since the Event Driven Executive 
system uses these hardware registers also, certain conventions must be 
observed when execution switches from Event Driven Executive code 
to Series/1 assembler language and back again. First, hardware 
register 2 ( R2) is always pointing to the Task Control Block of the 
task currently in execution, and must not be disturbed. Second, hard­
ware register 1 ( R 1) is used by the system to provide linkage to and 
from Event Driven Executive instructions. When a user exit routine 
is entered (branched to by a USER instruction), R 1 is pointing to the 
next instruction following the USER statement, where Event Driven 
Executive language execution will resume when the assembler 
language routine completes. If parameters are passed by the USER 
statement (PARM= coded), R 1 will be pointing to the location con­
taining the first parameter. Before exiting from the assembler 
language code, the user must increment R 1 past all parameters so 
that it points to the Event Driven Executive instruction following the 
USER state.ment. 

The program in Figure 7-7 includes the user exit routine S1CODE. 
When the USER statement at location START is executed, a branch 
to label S1CODE is performed. 

Two parameters are coded in the PARM= parameter list of the USER 
statement. As with the CALL statement, each parameter is one word 
in length, consisting of an integer value or the address of a program 
location. Upon entry to S1CODE, R 1 is pointing to the first para­
meter, which contains the integer value 9. The MVW at location 
S1CODE moves the integer value to location FRSTPARM. 

The second parameter is the address of program location XVAL. 
Using the indirect addressing capability, R 1 is again used to move 
the parameter into the subroutine. 



USERXAMP 
START 
Al 

XVAL 
P3 
FIVEB 

SlCODE 
GET2 

UPDATE 
OUT 
FRSTPARM 
SECDPARM 

PROGRAM 
USER 
ADD 

PROGSTOP 
DATA 
DATA 
DATA 

MVW 
MVW 

ABI 
B 
DC 
DC 
EN DP ROG 
END 

Figure 7-7. User exit routine 

START 
S1CODE,PARM=(9,XVAL) 
P3,FIVEB 

F 1 0 1 

F 1 0 1 

F1 0 1 

(Rl,O) ,FRSTPARM 
(Rl,2)* ,SECDPARM 

4,Rl 
RETURN 
F1 0 1 

F 1 0 1 

To go back to Event Driven Executive code from a user exit routine, 
you must branch to label RETURN ( B RETURN), as shown at location 
OUT. The system routine RETURN expects to find R 1 pointing to the 
next Event Driven Executive instruction following the USER statement. 
The AB I instruction, at location UPDATE, increments R 1 past the 
two words in the parameter list, so that it points to the ADD 
instruction at location A 1. 

Program Control 7-7 



User exit routines can only be assembled by BPPF or host macro 
assemblers. To incorporate a user exit routine into a program pre­
pared using the Version 2 Program Preparation Facility, the routine 
must be first assembled using BPPF or the host assembler, and the 
resulting object module linked to the Event Driven Executive mairt 
program using $LINK. The user exit routine entry point shou Id 
be defined in an ENTRY statement, and the same entry point must 
be coded in an EXTRN statement in the main program with which 
the routine witl be linked, 



PROGRAM CONTROL REVIEW EXERCISE - QUESTIONS 

1. What statement is coded to transfer control to a subroutine 
written in Event Driven Executive language? 
Answer: ___________________ _ 

2. Event Driven Executive subroutines begin with a ____ _ 
statement, and the last statement to be executed must be a 
---------statement. 

3. Why can't user exit routines be assembled using the Version 2 
Program Preparation Facility? 
Answer: ___________________ _ 

4. How does executing a subroutine differ from executing a 
secondary task? 
Answer: ___________________ _ 

5. What statement is used to transfer control to a user exit 
routine? 
Answer: ___________________ _ 

6. How can you pass more than five parameters to an Event 
Driven Executive subroutine? 

Answer: ___________________ _ 

Program Control 7 -9 



PROGRAM CONTROL REVIEW EXERCISE - ANSWERS 

7-10 SR30-0220 

1. CALL 

2. SUBROUT, RETURN 

3. User exit routines are written in Series/1 assembler language, 
and the Version 2 assembler can assemble Event Driven 
Executive language only. 

4. A secondary task executes concurrently with the attaching 
task, and may be run at a different priority. A subroutine 
executes on the priority of the calling task, and "in-line" with 
the execution of the calling task. 

5. USER 

6. Use one of the five parameters to pass the address of a data 
area to the subroutine. The data area can contain as many 
additional parameters as required. 



GOTO STATEMENT 

Section 8. Program Sequencing 

OBJECTIVES: Upon successful completion of this topic, the student 
should be able to: 

1. explain the operation and use of 

a. unconditional GOTO 

b. indirect GOTO 

c. computed GOTO 

2. define an IF/THEN/ELSE/ENDIF structure 

3. define a DO/ENDDO structure 

4. explain the use of relational statements with IF and DO statements 

5. combine IF, DO, and GOTO statements in logical code sequences 

READING REFERENCE: Program Description and Operations 
Manual (5830-1053) pages 2-93 through 2-106; or Program Description 
and Operations Manual Version 2 pages 2-97 through 2-110. 

READING ASSIGNMENT: S830-1053 (PDOM) page 2-106; or 
S830-1215 (Version 2 PDOM) page 2-110. 

Almost all programs have multiple execution paths. A different 
sequence of execution may be necessary because of the characteristics 
of the input data, the results of a calculation, or the occurrence 
of an exception or error condition. One of the Event Driven 
Executive instructions providing the means to transfer control to an 
alternate section of code is the GOTO statement. 

Figure 8-1 is an example of the most basic form of the GOTO state­
ment. This is an unconditional GOTO, used to branch around a 
section of non-executable code (e.g., data definitions) that are 
imbedded within the executable code. 

Program Sequencing 8-1 



8-2 SR30-0220 

PROGl 
START 

EXECUTION 

11 
PROGRAM 

_______ GOTO 
TABLEl 

Nf XTSTEP 

O.ATA 
DATA 

--AOOV 

:u 
EN DP ROG 
END 

Figure 8-1. Unconditional GOTO 

START, 100 

NEXTSTEP 
5F~256' 

c 1 0002s6~ 
TABll, Vl,5 

Control is transferred from the GOTO statement to the statement at 
location NEXTSTEP, skipping over the two DATA statements which 
start at TABLE 1. 

Figure 8-2 iUustrates another form of GOTO. In this example, the 
operand is enclosed in parentheses, indicating an indirect GOTO. 
During PROG 1 program execution, but prior to executing the 
GOTO instruction, the address of the desired ""branch to11 location 
{Address of NEXTSTEP) is moved 0 into tocation BRNCHAOR fl . 
B RN CHAO R is the name defined within parentheses in the operand 
of the GOTO statement IJ. When the GOTO is executed, control 
is transferred to the instruction at NEXTSTEP II, indirectly 
through the contents of BRNCHADR. 

The indirect GOTO can serve as an unconditionaf branch to any 
tabel in a program, as long as the address of the desired destination 
is first moved into the indirect address focation coded as the operand 
of the GOTO. 



PROGl 
START 

PROGRAM 

0~0VEA 

a, 
NEXTSTEP 

Figure 8·2. Indirect GOTO 

ADD 

EN DP ROG 
END 

START" 100 

BRNCHADR,NEXTSTEP 

(BRNCHADR) 
Fto• 

ZVALU,BVALU 

A third form of GOTO statement is the computed GOTO, whose format 
is shown in Figure 8-3. 

label GOTO (locO,locl, .... locn),index 
~ --------------~----------------0 P Tl ON AL MUST BE CODED 

Figure 8-3. Computed GOTO format 

In the first operand, locO through locn are the symbolic addresses of 
instructions to which control may be transferred. The second 
operand is an index variable. The address to which control is trans­
ferred is determined by the value of the index variable. 

The first address (locO) in the list of addresses which form the first 
operand is the address to which you want control transferred if the 
index variable exceeds the extents of list loc1-locn. 

The next address in the list, loc1, wilt get control if the index variable 
is equal to 1, loc2 if the index variable is equal to 2, etc. 

Figure 8-4 illustrates the operation of a computed GOTO with an 
index variable outside the range of the list. The index variable is VAL 1 
and is set to zero by the MOVE statement at location "START". 
Zero is outside the range of loc1-locn (NDX1, NDX2 in this case), 
and the computed GOTO transfers control to the address at locO 
(ERROR). 

Program Sequencing 8-3 
Iii 



IF STATEMENT 

8-4 SR30-0220 

PROGl 

START 

VALl 

NDXl 

NDX2 

Figure 8-4. Computed GOTO 

PROGRAM 

MOVE 

GOTO 
DATA 

PROGSTOP 
EN DP ROG 
END 

START 

VALl,0 

(ERROR, NDX1,NDX2),VAL1 
F10• 

The same thing would happen if the index variable were greater 
than 2. In this example, the only valid values for the index variable 
are 1 or 2, which would result in a transfer of control to location 
NDX1 or NDX2. 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-98; or 
SB30-1213 (Version 2 PDOM) page 2-102. 

The GOTO statement gives you the ability to transfer control to 
another part of a program; IF statements provide a means of deter­
mining when a transfer or branch is required. 

The format for an IF statement is shown in Figure 8-5. 



I 
I 

label 
'-.,,_-! 

IF (relational statement) , : GOTO, l oc 
I 
I 

OPTIONAL MUST BE CODED OPTIONAL 

Figure 8-5. IF Format 

The first operand is a relational statement, and all IF statements must 
have at least one relational statement. A relational statement expresses 
a comparative relationship between two variables, or between a 
variable and an explicit value. An IF may be coded to include a GOTO 
(second operand) and a specified location (third operand). For 
instance, (Figure 8-6); 

TESTl IF (A,EQ,B),GOTO,STEP3 

Figure 8-6. IF/GOTO example 

This statement may be interpreted as "Transfer control to location 
STEP3 if the value in location A is equal to the value in location B." 
If A is not equal to B, execution will continue with the instruction 
following the IF. The "IF with GOTO" is the simplest form of IF 
that can be coded. IF statements may also take the form of 
structures, in which entire code sequences may be executed or 
skipped, depending on whether the relationship expre~sed in 
the relational statement is true or not. The basic IF structure is 
illustrated in Figure 8-7. 

IF 

:} 
ENDI F 

END OF "IF" 
STRUCTURE 

-~.a==.-~• RELATIONAL 
STATEMENT 

EXECUTED IF THE 
RELATIONSHIP 
EXPRESSED IN THE 
RELATIONAL STATE-

RELATIONAL 
MNEMONIC 
CAN BE: 

EQ EQUAL 
NE NOT EQUAL 
GT GREATER THAN 
LT LESS THAN 
GE GREATER OR EQUAL 
LE LESS OR EQUAL 

IF RELATIONSHIP EXPRESSED 
IN THE RELATIONAL STATEMENT 
IS NOT TRUE, "TRUE" CODE 
WITHIN "IF" STRUCTURE IS 
SKIPPED, AND EXECUTION 
CONTINUES WITH Fl RST 
INSTRUCTION FOLLOWING 
"ENDI F" STATEMENT 

Figure 8-7. IF structure 

Program Sequencing 8-5 



Relational Conjunctions 

8-6 SR30-0220 

All IF structures must end with an END IF statement, except when 
using GOTO. In the example, the code between the IF statement 
and the ENDI F will be executed if the relationship expressed in the 
statement is true (A is equal to 8). If the relationship is not true, 
the true code will be bypassed, and execution will continue with the 
statement following the END IF. 

In Figure 8-8, one more statement is added to the IF structure. The 
ELSE statement starts the false code; these instructions wit I be 
executed if the relationship expressed in the statement is not true, 
bypassing the "true" code. True code begins following the IF in an 
IF structure, and ends with the END IF if no ELSE statement is coded 
(Figure 8-7), or ends with an ELSE statement if one is used (Figure 
8-8). 

NOT REOUI RED, BUT MAY BE 
CODED FOR DOCUMENTATION 

~ 
IF (A,EQ,B),THEN 

~6~~E" }-i EXECUTED IF A= BI 
ELSE 

"FALSE" }-iEXECUTED IF A# BI 
CODE 

END IF 
..... ,....._-----tEXECUTION CONTINUES HERE 

AFTER EITHER "TRUE" OR 
"FALSE" CODE WITHIN "IF" 
STRUCTURE HAS EXECUTED 

Figure 8-8. IF/THEN/ELSE 

False code begins with an ELSE statement, and ends with the 
END IF, which defines the .end of that l:F structure. 

READING ASSIGNMENT: '8830-1053 .(PDOM) pages 2-95 through 
2-97; or 5830-1213 (Version 2 PDOM) pages2-99 through 2-101. 

As you found in the reading assignment, IF structures can be very 
complex. Figure 8-9 is an example of a structure using logical :con­
junctions and nesting. A logical conjunction fo.rms a ·logical link 
between two or more refational statements. A.nested IF 
structure is one that app.ears within the true or false code of a 
previous IF structure. 



DO STATEMENT 

LOGICAL CONJUNCTION OF 
RELATIONAL STATEMENTS 

IF (A, EQ, B) , AN , ( C, EQ, D) , TH EN 

GOTO ALLEQUAL 

ELSE 

IF (A,EQ,B) 

MOVE C,D 

ELSE 

MOVE A,B 

END IF 

ENDI F 

Figure 8-9. Complex IF structure 

NESTED "IF" 
STRUCTURE 

A transfer to ALLEQUAL will take place only if both 1) A=B and 
2) C=D. The false code is another IF structure, nested within the 
first, with its own true and false sections. Notice that each IF 
structure is ended with its own ENDI F statement, 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-101 through 
2-103; or 5830-1213 (Version 2 PDOM) pages 2-104 through 2-106. 

The DO instruction alters the sequence of program execution by 
causing repetitive execution of the same section of code. The DO 
statement establishes the start of a DO loop, and the end of the loop 
is defined by an ENDDO statement. The code that is repeatedly 
executed is the instruction or instructions that are coded between the 
DO and ENDDO statements. 

One form of the DO statement is illustrated in Figure 8-10. The 
count operand is an integer val.ue, or the label of a storage location 
containing an integer value, indicating the number of times you want 
to execute the loop. 

Program Sequencing 8-7 



8-8 SR30-0220 

I 
I 

label DO count~ TIMES,INDEX= 
~ 

OPTIONAL MUST BE CODED OPTIONAL 

Figure 8-10. 

TIMES has no function other than documentation, and does not 
have to be coded. The INDEX= keyword operand may be coded as 
the label of a word of storage. Before the DO loop is executed for 
the first time, the storage location is reset to zero. Then, before 
execution of the first instruction following the DO statement, and 
with every succeeding pass, 1 is added to the storage location. In the 
event that a branch out of the loop is done before the count has 
gone to zero, the location specified in the INDEX= operand can be 
checked to see how many executions occurred. 

Figure 8-11 is a flowchart representing the execution sequence of the 
DO count,TIMES form of DO loop. (If the INDEX= operand is 
not coded, the top two blocks would not apply.) 

DO COUNT 

SET INDEX 
LOCATION 
TO ZERO 

ADD+1 
TO INDEX 
LOCATION 

EXECU E CODE 

SUBTRACT 
1 FROM 
COUNT 

CONTINUE EXECUTION 
WITH INSTRUCTION 
FOLLOWING "ENDDO" 

Figure 8-11. "DO count" operation 



Notice that a post-execution escape mechanism is used (trailing 
decision loop). The count is not checked for zero until the loop 
has completed the first execution. Therefore, if count is initially 
zero, one execution would still occur. 

There are two other forms of the DO statement, both employing 
relational statements. DO WHILE will repetitively execute the 
instructions within the loop while the relationship expressed remains 
true. DO UNTIL will keep on executing the loop until the relation­
ship expressed in the relational statement becomes true. The 
format for these two instructions is illustrated in Figure 8-12. 

label 
'--...--' 

I 

I 

: DO 
I 

WHILE 
UNTIL' 

I 

I 
relational statement 1 

I 

OPTIONAL MUST BE CODED 
Figure 8-12. WHILE/UNTIL format 

The relational statements are coded the same way as those used with 
the IF statement, and like the IF, two or more relational statements 
may be formed into a statement string, using the logical conjunctions 
AND and OR. 

DO WHILE 

BETWEEN "DO" 
AND "ENDDO" 

CONTINUE EXECUTION 
WITH INSTRUCTION 
FOLLOWING "ENDDO" 

Figure 8-13. WHILE/UNTIL operation 

DO UNTIL 

EXECUTE CODE 
BETWEEN "DO" 
AND "ENDDO" 

CONTINUE EXECUTION 
WITH INSTRUCTION 
FOLLOWING "ENDDO" 

Figure 8-13 illustrates the execution sequence of DO WHILE and 
DO UNTIL. DO WHILE has a pre-execution (leading decision loop) 
escape mechanism. The relational condition is checked before the 
first execution and, if not true, no execution takes place. DO UNTIL, 
like DO count, does not check until completing the first execution 
of the loop. Even if the relational condition is true, one execution 
will occur. 

Program Sequencin_g 8-9 



8-10 SR30-0220 

In combination, the GOTO, IF, and DO statements provide the 
application programmer with the tools necessary to make execution 
time decisions, and to alter program execution flow if required. 

Figure 8-14 is an example of all three statements used together. In the 
course of program execution, the variable DI FF is set to zero D . 
When the IF statement is executed fl , a transfer of control to loca-
tion DONE will occur if variable A is equal to variable B. If the transfer 
to DONE takes place and DI FF (difference between A and B) is checked, 
the difference will be zero. 

MOVE DIFF,o~-0 

IF (A,EQ,B),GOTO,DONE 
IF (A,GT,B),THEN 

}-a DO UNTIL,(A,EQ,B) 
ADD DIFF,1 
ADD B,l 

END DO 
IJ ELSE 

DO UNTIL,(A,EQ,B) }-a ADD DIFF,1 
ADO A, 1 

ENDDO 
END IF 11 

DONE 

Figure 8-14. IF/GOTO/DO 

If A is not equal to B, execution continues with the IF structure IJ . 
The true code of the IF is a nested DO loop II which will repetitively 
execute, accumulating the difference between A and B in DI FF until 
the two variables are equal. This code will execute only if the variable 
A were greater than B when the IF statement was executed. 

If B were greater than A, the false code of the IF structure II , 
another nested DO loop, would repeatedly execute, and again, the differ­
ence between A and B is accumulated in DI FF. 

In all cases, when execution continues at location DONE, A will be 
equal to B, and DI FF will contain the absolute difference that existed 
between A and 8 at the outset. Notice that the IF structure must end 
with an ENDIF mJ. 



PROGRAM SEQUENCING REVIEW EXERCISE - QUESTIONS 

IFlST 
I F2ND 

ELSE2ND 

END2ND 
ELS El ST 

ENDlST 
COMP GO 

Using the coding example below, answer the questions which follow. 

IF (A,NE,B) 
IF (A,GT,B),THEN 

SUB A,B 
MOVE VALl ,A 

ELSE 
SUB B,A 
MOVE VALl ,B 

ENDI F 
ELSE 

GOTO EXIT4 
END IF 
GOTO (ERR,EXIT1,EXIT2,EXIT3),VAL1 

1. Assuming that A=5, and 8=3, the next statement to be executed 
after execution of the code in the example is at location 

a. ERR 

b. EXIT1 

c. EXIT2 

d. EXIT3 

e. EXIT4 

2. Assuming that A=22, and 8=23, the next statement to be exe­
cuted after execution of the code in the example is at location 

a. ERR 

b. EXIT1 

c. EXIT2 

d. EXIT3 

e. EXIT4 

3. Assuming A=O, and 8=-5, the next statement to be executed 
after execution of the code in the example is at location 

a. ERR 

b. EXIT1 

c. EXIT2 

d. EXIT3 

e. EXIT4 

Program Sequencing 8-11 



8-12 SR30-0220 

4. The "true" code for the IF structure beginning at location IF 1 ST 
consists of 

a. the code starting at IF2ND and ending at ELSE2ND 

b. the code starting at I F2ND and ending at END2ND 

c. the code starting at IF2ND and ending at END1ST 

d. none of the above 

5. If control is transferred to location EXIT4, then the following is 
true; 

a. VAL 1=4 

b. A is greater than B 

c. B is greater than A 

d. A and B are equal 

e. none of the above 

6. How many times will the DO loop below execute? 

DO 17,TIMES,INDEX=TWO 

END DO 



7. Using the coding example below, pick the correct statement from 
the list of statements which follow 

DOl 
002 
003 

ENDD03 
ENDD02 
ENDDOl 

DO UNTIL,(X,EQ,Y),OR,(Y,GT,X) 
DO WHILE,(X,EQ,Y) 

DO UNTIL,(X,NE,Y) 
ADD Y,1 

END DO 
ENDDO 

END DO 

Assume when execution begins, X=Y. 

a. All three DO loops will execute one time. 

b. The first two DO loops will execute once, but the innermost 
DO loop (D03 to ENDD03) will not be executed. 

c. None of the DO loops will execute, because X is equal to Y 
when the first DO statement is encountered (DO 1). 

d. Question is not valid, because DO loops cannot be nested. 

Program Sequencing 8-13 



PROGRAM SEQUENCING REVIEW EXERCISE ..... ANSWERS 

1. The correct answer is choice c. A is not equal to 8, so the "true'' 
code following the IF at location IF1ST will be executed. A is 
greater than B, so the "true" code of the nested IF at I F2N D is 
executed. VAL 1 is set to 2, the result of the SUBTRACT oper­
ation. Execution continues at location COMPGO, skipping the 
"false" code of the nested IF and the first IF. VAL 1, the index 
variable of the computed GOTO at location COMPGO was set to 
2 by the statements in the preceding IF structure, so control is 
transferred to location EXIT2. 

2. The correct answer is choice b. A is not equal to 8, so the "true" 
code of IF 1 ST is executed. A is not greater than 8, so the "false" 
code of the nested IF (ELSE2ND to END2ND) is executed, and 
the difference between A and 8 is placed in VAL 1 (VAL l=l). 
The computed GOTO at COMPGO will transfer control to loca­
tion EXIT1. 

3. The correct answer is ehoice a. Execution proceeds exactly 
as in the answer to question 2 above (A#8,A<8), but the difference 
between A and 8 is 5. When the computed GOTO at COMPGO 
is executed, the index variable, VAL 1, contains a value which 
exceeds the range of the list, and therefore control is transferred 
to location ERR. 

4. Choice b is the correct answer. "True" code is everything between 
the IF and the ELSE statement/or the IF and the ENDIF if ELSE 
is not coded. 

5. Choice d is correct. If A and 8 are equal, the relational statement 
in the IF at location IF 1 ST is. false, and the "false" code is 
executed. The "false" code is the unconditional GOTO at loca­
tion EXIT4. 

6. The DO loop will exec.ute 17 times. The index variable, TWO, will 
be set to zero before the first execution of the DO loop, and 
assuming that the code within the DO loop does not contain any 
GOTO statements, the loop will execute 17 times, andthe index 
variable TWO will contain 17 after the DO loop is exited. 

7. The correct answer is choice a. Although X and Y are equal at the 
time the first DO statement is executed (DO 1), the relational con­
dition associated with a DO UNTIL statement is not checked unti I 
after the first execution of the DO loop. 

The second DO loop ( D02) starts with a DO WHILE statement. 
The DO WHILE chec_ks for the relational condition before execut'" 
ing for the first time, but since the condition is true, execution 
drops to the second nested DO loop at D03. 



The innermost DO loop is another DO UNTIL, this time with a 
"NOT EQUAL" relational mnemonic. The ADD operation 
within the loop makes the two variables, X and Y not equal, 
thereby satisfying the exit condition for D03, the innermost 
loop. 

The exit condition for the second loop, 002 (first nested loop) 
is also satisfied, because it is supposed to execute only as long as 
Xis equal to Y, which is no longer true. 

The first loop wi 11 also exit, because although X is not equal to Y, 
which is the relational condition specified in the first part of the 
relational statement, Y is greater than X, which is specified in 
the second part of the relational statement, and the two parts 
are joined by the 0 R conjunction. All three loops will therefore 
exit after a singte execution. 

Note: The relational statement used with the DO at location DO 1 
could have been coded as: 

001 DO UNTIL,(Y ,GE,X) 

and wou Id have executed with the same effect as the form used in 
the example. 

Program Sequencing 8-15 



This page intentionally left blank. 

8-16 SR30-0220 



GETTIME INSTRUCTION 

Section 9. Timers 

OBJECTIVES: After completing this topic, the student should be 
able to: 

1. Use the GETTI ME instruction to access the time-of-day and 
date from an application program 

2. Use the INTIME instruction to measure time intervals 

3. Cause user-defined delays in task execution by using the 
STIMER instruction along with the "WAIT on timer" 
capability 

READING REFERENCE: Program Description and Operations 
Manual (SB30-1053) pages 2-107 through 2-11 O; or Program Description 
and Operations Manual, Version 2 (SB30-1213) pages 2-111 through 
2-115. 

If you have the hardware timer feature installed on your Series/1, 
you can include support in your Event Driven Executive supervisor, 
which provides several time/timing functions that may be used by 
application programs. In addition to maintaining a time-of-day clock, 
the system also provides a time interval (elapsed'time) clock, and has 
the capability to suspend task execution (go into wait state) for 
specified lengths of time. 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-108; or 
SB30-1213 (Version 2 PDOM) page 2-112. 

The time-of-day (TOD) clock is maintained in hours, minutes, and 
seconds. At initial program load (IPL), the clock is all zeros and begins 
running. It may be set to actual clock time using the $T supervisor 
utility function, and will maintain clock time from that point on. 

The GETTIME instruction is used to move the TOD values into a 
user program. The GETTIME format is; 

label 
~ 

OPTIONAL 

I 
I 

I 
I 

lGETTIME loc;DATE= 
------------~ 
MUST BE CODED OPTIONAL 

Figure 9-1. GETTIME format 

Timers 9-1 



INTIME INSTRUCTION 

9-2 SR30-0220 

The hours, minutes, and seconds are maintained by the system in three 
storage words in the supervisor. The user must define a three word 
storage area in the application program issuing the GETTIME, into 
which the hours, minutes, and seconds can be moved. The loc 
operand is coded as the label of the first position of the three word user­
defi ned area. 

The $T supervisor utility function also allows you to enter the date in 
the form of month-day-year. If the DATE= keyword operand is coded 
DATE=YES, the GETTIME instruction will transfer the date as well 
as the time into the application program. Three words are also required 
for the date, and these must be contiguous with and following the 
three word area defined to hold the time. 

Each of the six words in the TOD and date locations are direct binary 
equivalents of the information they represent. For instance, the third 
word of TOD information (loc+4) is seconds, and when it reaches 59, 
the next increment resets it to zero, and the minutes word is increased 
by 1 (loc+2). Hours is increased by 1 when 60 minutes have elapsed, 
days by 1 at midnight, etc. By using GETTIME, an application pro­
gram can time stamp reports, transactions, or any system event in 
which information as to the actual time of occurrence is useful. 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-109; or 
SB30-1213 (Version 2 PDOM) page 2-113. 

Some applications need to measure elapsed time: how long it takes 
for a certain code sequence, task or program to execute, or how much 
time has passed between the occurrences of events. These time intervals 
may be very short, and therefore, cannot be accurately measured using 
TOD values, whose resolution is only to the nearest second. 

In addition to the TOD clock, the system maintains a relative time 
clock. It consists of a double precision (two-word) integer, which is 
initiaUzed to zero at system IPL. Every millisecond thereafter, this 
value is incremented by 1, and at any given instant, therefore, con­
tains the elapsed time in milliseconds since the system IPL. (A double­
precision integer will contain a count of milliseconds comprising 
approximately 49 days elapsed time, before rolling over to zero and 
starting again.) 

The INTIME instruction is used to read the relative time clock 
value into a user program. The format for the INTI ME statement 
is shown in Figure 9-2. 

label ,,_,,_, 
OPTIONAL 

I i 
: INTIME reltime, loc,: INDEX 
-----------.,,---------~ ,,_,,_, 

MUST BE CODED OPTIONAL 

Figure 9-2. INTIME format 



STIMER INSTRUCTION 

The reltime operand is coded as the label of a user-defined double­
precision integer variable into which the relative time value will be 
moved. The loc operand is coded as the label of a user-defined single 
precision integer, which will be set to the number of milliseconds 
that have passed since an INTIME instruction, referencing this reltime 
location, was executed in this program. (A single-precision integer will 
hold approximately 65 seconds elapsed time in milliseconds, before 
rolling over to zero and starting again.) 

The INDEX keyword, if coded, indicates that automatic indexing 
is to be used in conjunction with a BUFFER statement. If INDEX 
is coded, the loc operand must be the label of a BUFFER statement, 
instead of a single-word integer. When automatic indexing is used, 
repetitive executions of an INTIME instruction result in the storing 
of successive elapsed time values in successive buffer positions. The 
use of INTIME with automatic indexing is illustrated at the end of 
this section, along with the other timer instructions. 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-110; or 
SB30-1213 (Version 2 PDOM) page 2-115. 

Every task has a software timer associated with it. This timer will 
time out after a user-specified number of milliseconds has elapsed 
(60 seconds or 60,000 milliseconds maximum). The desired time 
interval is set and the timer started by the STIMER instruction, 
whose format is illustrated in Figure 9-3. 

1abe1 
~ 

OPTIONAL 

I 
I I 

:snMER 
I 

count,: WAIT 
-------~ 

MUST BE CODED OPTIONAL 

Figure 9-3. STIMER format 

The count operand is coded either as the number of milliseconds you 
want to elapse before the timer expires, or as the label of a word of 
storage containing the desired number of milliseconds. If the WAIT 
keyword is coded, the task will go into the wait state until the specified 
time interval has passed. Execution will resume with the instruction 
following the STIMER. 

The WAIT does not have to be coded as part of the STIMER instruction, 
but may appear later as an explicit WAIT on the keyword operand 
TIMER. This acts in the same manner as a wait on an event, the event 
being expiration of the time delay. Using this method, the timer is 
started, and execution continues with the instruction fol lowing 
STIMER. When the WAIT on TIMER is encountered, the WAIT 
will fall through if the time interval has already passed, or the task 
will go into a wait state for the amount of time remaining. 

Timers 9-3 



TIMING FUNCTIONS - CODING EXAMPLE 

9-4 SR30-0220 

Figure 9-4 is a program that exercises all of the timing functions 
previously discussed in this section. The first instruction in the pro­
gram is GETTIME at location STARTIME. It will place the TOD 
values for hours, minutes, and seconds into the three words defined 
at location STARTED. 

The DO loop starting at DOSTART and ending at DOEND will 
execute three times. Each time, the INTIME instruction at location 
11 will place the time elapsed since IPL in the double precision 
integer at SINCE IPL, and will put the time that has elapsed since the 
last INTIME execution in the next successive buffer location of the 
buffer defined at TIMEBUF. Both values are in milliseconds. 

The STIMER instruction at location S1 causes a 5 second delay 
(5000 milliseconds= 5 seconds) in each execution of the DO loop. 
After the third delay, the DO loop exits, and the STIMER at location 
S2 executes. This starts a 10 second timer running but, since the 
WAIT operand is not coded, execution continues. 

TIME TEST 
STARTIME 
DOST ART 
I1 
Sl 
DOE ND 
52 
I2 
ENDWAIT 
G2 

STARTED 
SINCE IPL 
TIMEBUF 
LASTIME 
STOPPED 

PROGRAM 
GETTIME 
DO 
INTI ME 
STIMER 
ENDDO 
STIMER 
INTI ME 
WAIT 
GETTIME 
PROGSTOP 
DATA 
DATA 
BUFFER 
DATA 
DATA 
EN DP ROG 
END 

Figure 9-4. Timing functions 

STARTIME 
STARTED 
3, TIMES 
SINCEIPL,TIMEBUF,INDEX 
5000 ,WAIT 

10000 
SINCEIPL,LASTIME 
TIMER 
STOPPED,DATE=YES 

3F'O' 
2F'O' 
3 
F'O' 
6F'O' 

The INTIME instruction at 12 places the elapsed time since IPL 
into SINCE IPL again, and puts the elapsed time since a previous 
INTIME instruction referencing SINCEIPL was executed into the 
single precision integer at LASTIME (INDEX not coded). The WAIT 
at ENDWAIT puts the program in a wait state, until the expiration 
of the 10 second time delay that was started by the STIMER at S2. 



When the 10 seconds are up, the GETTIME at G2 executes, and the 
program ends. This time DATE=YES is coded, so a six-word area 
is defined at location STOPPED. Hours, minutes, and seconds will 
be placed in the first three words, and month, day, and year in 
the next three. 

When using INTIME to time events where a few milliseconds 
difference is critical, keep in mind that the time values retrieved by 
your program represent the time that the INTIME instruction is 
executed. If the task issuing the INTIME is of a lower priority than 
other tasks active in the system at the same time, a delay in execution 
of the INTIME may result, and will be reflected in the clock value 
retrieved. 

Timers 9-5 



This page intentionally left blank. 

9-6 SR30-0220 



TIMERS REVIEW EXERCISE - QUESTIONS 

All of the questions in this Review Exercise refer to the program in 
Figure 9-4. For simplicity, assume that no time is used to execute 
instructions, no other tasks are running in the system, and system 
overhead is zero. 

At the time that the program begins execution, the date has been set 
at January 1st, 1979, and it is exactly 5 p.m. (1700 hours). The system 
IPL was at exactly 4 p.m. 

1. What will be in the three words beginning at location STARTED 
after execution of the GETTIME at location STARTIME? 

Answer: STARTED 
STARTED+2 ----
STARTED+4 ____ _ 

2. What will be the values in the double precision integer at 
SINCE IPL and the buffer at TIMEBUF after the first 
execution of the INTIME instruction at 11? 

Answer: SINCE IPL 
TIMEBUF 
TIMEBUF+2 ------­
TIMEBUF+4 -----

3. After the second execution? 

Answer: SINCE IPL 
TIMEBUF 
TIMEBUF+2 ----­
TIMEBUF+4 -----

4. After the third execution? 

Answer: SINCE IPL 
TIMEBUF 
TIMEBUF+2 ----­
TIMEBUF+4 -----

5. What will be in SINCEIPL and in LASTIME after execution 
of the INTIME instruction at location 12? 

Answer: SINCEIPL ----­
LASTIME 

6. What will be in the six words beginning at location STOPPED 
after execution of the GETTIME at location G2? 

Answer: STOPPED 
STOPPED+2 
STOPPED+4 
STOPPED+6 
STOPPED+S 
STOPPED+10 ----

Timers 9-7 



TIMERS REVIEW EXERCISE - ANSWERS 

9-8 SR30-0220 

1 . ST ARTE D 17 -----
STARTED+2 0 -----
STARTED+4 0 -----
The TOD clock is kept using military time, on a 24 hour-a-day 
basis. Five p.m. is therefore 17 hours, 0 minutes, and 0 seconds. 

2. SINCEIPL 
TIMEBUF 
TIMEBUF+2 
TIMEBUF+4 

3,600,000 
0 
0 
0 

If the system IPL was at 4 o'clock, and it is now 5 o'clock, the 
relative time clock has been running for one hour, or 3,600,000 
milliseconds. (1 hr x 60 minutes x 60 seconds x 100 milliseconds/ 
second). The first word in TIMEBUF is zero, because the elapsed 
time from the last time an INTI ME instruction referencing 
SINCE IPL was executed is zero; this is the first time the 
I NT IM E has executed. 

3. SINCEIPL 
TIMEBUF 
TIMEBUF+2 
TIMEBUF+4 

3,605,000 
0 
5,000 
0 

The second time through, the 5 second delay at S1 has occurred. 
Total elapsed time since IPL has increased by 5,000 milliseconds 
(SINCE IPL), and the time elapsed since the first INTIME execution, 
also 5000 milliseconds, is automatically indexed into TIMEBUF+2. 

4.. SINCEIPL 
TIMEBUF 
TIMEBUF+2 
TIMEBUF+4 

3,610,000 
0 
5,000 
5,000 

A second 5 second delay has occurred, increasing SINCE I PL 
by another 5000 milliseconds, and placing 5000 milliseconds 
in the third buffer position, TIMEBUF+4. 

5. SINCEIPL 
LAST I ME 

3,615,000 
5,000 

Before exiting the DO loop, an additional 5 second delay occurred, 
adding another 5000 milliseconds to SINCE IPL. Because the 
INTIME instruction references the same "reltime" operand as the 
last INTIME execution (SINCE IPL), LASTIME is set to 5000 
milliseconds. If the INTIME at 12 had a different "reltime" 
operand, it would be treated as a first execution, and LASTI ME 
would indicate zero elapsed time. 



6. STOPPED 17 
STOPPED+2 0 
STOPPE D+4 25 
STOPPED+6 _1_ 
STOPPED+8 _1_ 
STOPPED+10 79 

5p.m. 
0 minutes 
25 seconds 
January 
1st 
1979 

Fifteen seconds in the DO loop, plus the 10 second delay at 
S2 have elapsed. 

Timers 9-9 



This page intentionally left blank. 

9-10 SR30-0220 



Section 10. Disk/Diskette I /0 

OBJECTIVES: Upon successful completion of this topic the student 
should be able to: 

1. Understand the physical and logical layout of both disk and 
diskette 

2. Define data sets in a PROGRAM statement 

3. Read records using the READ statement 

4. Write records using the WRITE statement 

5. Use NOTE and POINT to access and set the next record 
indicator 

6. Pass data set definitions to programs loaded from a terminal 
or from another program 

7. Pass data set definitions to an overlay program from the program 
loading the overlay 

READING REFERENCE: Program Description and Operations 
Manual (SB30-1053) pages 2-129 through 2-141; or Program 
Description and Operations Manual Version 2 (SB30-1213) 
pages 2-135 through 2-147. 

PHYSICAL LAYOUT - DISKETTE 

The Series/1 4964 Diskette Storage Unit will accept both one-and two­
sided diskettes. Diskette surfaces are divided into 77 tracks, each track 
containing 26 sectors of 128 bytes each. Three of the tracks are 
reserved for use as alternate tracks, in the event other tracks are found 
to be defective, so 74 tracks are available for use by system or 
application programs. 

Disk/Diskette Input/Output 10-1 



,------------ ---1 

I 
I 
I 
I 
I 
I 
I 

••' I I 
I 
I 
I 
I 

L---------------~ 
Figure 10-1. Diskette physical layout 

DISKETTE FORMATTED FOR 
26 SECTORS PER TRACK; 
128 BYTES PER SECTOR 

SECTOR 

TRACK 

Total capacity of a one-sided diskette is 246,272 bytes (492,544 
bytes for two-sided diskette). 

The Event Driven Executive uses the same addressing conventions 
for both disk and diskette direct access devices. The physical addresses 
for both devices are expressed as three-digit cylinder number.(referred 
to as tracks in the above discussion), a single-digit track number 
(actually a read/write head on the device), and a two-digit Sector 
number. This Cylinder/Track/Sector addressing format will here-
after be referred to as CTS. 

CTS ADDRESS RANGES - DISKETTE 

CYLINDER (ccc) TRACK (t) SECTOR (ss) 

DOUBLE SIDED 001-074 0-1 01-26 

SINGLE SIDED 001-074 0 01-26 

Figure 10-2. Diskette CTS 

PHYSICAL LAYOUT - DISK 

10-2 SR30-0220 

The Series/1 4962 Disk Storage Unit is a nonremovable direct access 
storage device. Models 1 and 2 have two movable read/write heads, 
both on the same side of the disk. Models 1 F and 2F have 8 fixed 
heads on the opposite side of the disk, in addition to the two movable 
heads. Although the Event Driven Executive supports Models 1 F and 
2F, this discussion wi II be limited to the nonfixed head devices. 



I 

J 

I 
I 

I 
/ 

DATA TRACKS FOR HEAD 0 

DATA TRACKS FOR HEAD 1 

60 SECTORS ON EACH TRACK 

00 30 01 31 02 32 03 33 04 34 05 35 06 36 07 37 { 24 54 25 55 26 56 27 57 28 58 29 591 

Figure 10-3. Disk physical layout 

Data is formatted in 256-byte sectors, 60 sectors per track. The combi­
nation of the track under head zero and the track under head one 
forms a cylinder. There are 303 cylinders on a disk. Cylinder 001 is 
reserved for alternate sector assignment, and cylinder 302 is reserved 
for maintenance use. The total physical capacity available for use by 
system and user programs is therefore 9,246,720 bytes. 

As with the diskette, physical address references are in the CTS format 
in the ranges shown below. 

CYLINDER (ccc) 

000 

001 

002-301 

0302 

Figure 10-4. Disk CTS 

CTS ADDRESS RANGES - DISK 

TRACK (t) 

0-1 

FOR ALTERNATE SECTOR 

0-1 

FOR MAINTENANCE USE 
ONLY 

SECTOR (ss) 

00-59 

ASSIGNMENT ONLY 

00-59 

For further details, refer to "IBM Series/1 4962 Disk Storage Unit and 
4964 Diskette Unit Description" GA34-0024. 

Disk/Diskette Input/Output 10-3 



DISK AND DISKETTE LOGICAL LAYOUT 

10_.4 SR30•0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-129 through 
2;.136; or 5830-1213 (Version 2 PDOM) pages 2-135 through 2-142. 

Event Driven Executive direct access storage has a hierarchical struc­
ture. The smallest logical unit that can be accessed is a record. Each 
record is 256 bytes in length (the diskette routine makes the 128-byte 
sector divisions on diskette transparent to the user). A group of con­
tiguous records make up a data set. Data sets are contained in a volume, 
which also contains a directory (information about, and the location 
of the data sets in the volume). 

Volumes on disk are defined during system generation, using the 
"DISK" statement. Each 4962 Disk Storage Unit to be used must have 
a primary volume defined. By designating one of the volumes on a 
4962 as a primary volume, control fields within the Supervisor are 
generated, which are used to perform 1/0 on that physical device. 

PRIMARY 
AND 
SECONDARY 
VOLUMES 
(DEFIN.ED BY "DISK" 
SYSTEM CONFIGURATION 
STATEMENTS) 

VOLUME -{DIRECTORY 
CONTAINS . + 

(LIBRARY) DATA SETS 

EACH 
RECORD 
256 BYTES 

TWO 128 BYTE 
SECTORS ON 
DISKETTE 
(TRANSPARENT 
TO USER) 

~ w 
Figure 10-5. DASO logical organization 

EDXV1 

ONE SECTOR 
ON DISK 



In addition to the single primary volume required for each 4962, as 
many secondary volumes as required may be defined (within the 
physical limits of the device). As with primary volumes, secondary 
volumes are created at system generation using DISK statements. 

Volumes may also exist on diskette. Each diskette is a separate volume 
occupying the entire diskette. Diskette volumes are created using the 
utility $1 N ITDSK, rather than during system generation. 

After a volume has been initialized, data sets within the volume can be 
defined using the utility program $DISKUT1. Data sets may be defined 
with program organization or data organization, depending on what 
is to be stored. Program organization is used for data sets that will con­
tain executable (loadable) Event Driven Executive programs. Data 
organization is used for work files ($EDIT1N, $FSEDIT, $LINK, 
$EDXASM work files), source modules, $J08UTI L control files, user 
application data sets, etc. 

PROGRAM STATEMENT OS= OPERAND 

READING ASSIGNMENT: 5830-1053 (PDOM) page 2-26; or 
5830-1213 (Version 2 PDOM) pages 2-27, 2-28. 

Data sets accessed from user programs must be preallocated on disk or 
diskette ($DISKUT1 utility), and must be named in the DS= keyword 
operand of the using program's PROGRAM statement. Figure 10-6 
shows how the DS= operand is coded for data sets residing on the lPL 
or other logical volumes. 

Disk/Diskette Input/Output 1 Q.5 



"FILEA" IS ONLY DATA SET 
USED, AND IS ON THE IPL 
VOLUME - NO PARENTHESES 
REQUIRED, NO VOLUME RE­
QUIRED (DEFAULTS TO IPL) 

DSEXAMPl PROGRAM GO,DS=FILEA 

MULTIPLE DATA SETS, ALL 
ON IPL VOLUME-ENCLOSE 
LIST IN PARENTHESES, VOLUME 
DEFAULTS TO IPL 

DSEXAMP2 PROGRAM GO,DS=(FILEA,FILEB) 

"FILEA" AND "FILEB" HAVE NO 
VOLUME SPECIFIED-DEFAULT 
TO IPL VOLUME 

DSEXAMP3 PROGRAM 

Figure 10-6. OS= operand 

"FILEX" ON DIFFERENT 
VOLUME-VOLUME MUST 
BE SPECIFIED 

ENTIRE LIST 
ENCLOSED IN 
ADDITIONAL 
PARENTHESES 

The IPL volume is the volume where the currently loaded (IPL) 
supervisor resides. The system will assume that data sets specified 
in the DS= operand list also reside on the IPL volume, unless a different 
volume is explicitly coded. Up to nine data sets may be coded in a 
DS= operand list. 

At the time a program is loaded, the loader ($LOADER) looks up all 
the data sets named in the PROGRAM statement's DS= operand list, 
and logically opens them for use by the program. If a named data set 
does not exist (was never allocated by $DISKUT1 ), resides on a volume 
other than that specified in the DS= operand entry, or is program 
rather than data organization, the load operation is terminated and an 
error message resu Its. 

READ/WRITE STATEMENTS 

10-6 SR30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-138 
through 2-142; or SB30-1213 (Version 2 PDOM) pages 2-144 through 
2-147. 



The 256-byte records in data sets are transferred from disk/diskette 
to storage or storage to disk/diskette by READ and WRITE instructions. 
The format for READ and WRITE statements is illustrated in Figure 10-7. 

DSx is the operand specifying which data set to use. The x in DSx is 
coded as an integer value between 1 and 9, and is a positional reference 
to one of the 9 possible data sets named in the DS= list of the PROGRAM 
statement. 

I 
I 

I 
I 
I 

label 
: READ 
: WRITE DSx,loc,:count,relrecno,END=,ERROR=,WAIT= 

OPTIONAL-------- OPTIONAL 
MUST BE CODED 

Figure 10-7. READ/WRITE format 

DS1 would refer to the first data set in the list, DS2 to the second, 
continuing through DS9, referencing the ninth data set defined. 

The loc operand is coded as the label of the first byte of the (one or 
more contiguous) 256 byte storage area(s), into or from which the 
disk/diskette record(s) wil I be read/written. 

MUST BE CODED 

Figure 10-8. READ/WRITE count operand 

The optional count operand is coded as an integer value (or as the 
label of a program location containing an integer value) indicating 
the number of 256-byte records to be read or written. The user 
must ensure that adequate storage is reserved (beginning at location loc) 
to accommodate the number of records specified in count. If count 
is not coded, the system will default the count operand to 1, indicating 
that a single record will be read or written. If count is set to 0, the 
READ or WRITE will not be performed (execute as a no-op), and 
execution will continue with the next sequential instruction following 
the READ/WRITE. 

MUST BE CODED 

Figure 10-9. READ/WRITE relrecno operand 

Disk/Diskette Input/Output 10-7 



10-8 SR30-0220 

The relrecno operand is the relative record number (relative to the 
origin of the data set) to be read or written. It is coded as an integer, 
or as the label of a program location containing an integer, which is 
the relative record number you want to access. The relrecno operand 
will default to 1 (indicating the first record in the data set) if it is left 
uncoded. 

For each data set used by a program (DS1, DS2, etc.), the system 
maintains a next-record pointer. This pointer is an indicator of the 
next sequential record in the data set and, at the time a program is 
loaded (before disk/diskette 1/0 has been performed), has an initial 
value of 1. It is updated by +1 after each READ or WRITE in which; 

a. relrecno is not coded 

b. relrecno is coded as 0 

c. the location specified by the label in relrecno is equal to 0 

Successive executions of READ/WRITE instructions in which 
relrecno has a value of 0 or is not coded will therefore result in 
sequential access of the data set; i.e., the relative record number of 
the next record read/written will automatically be 1 greater than the 
last record read/written. A READ or WRITE with relrecno coded 
as an integer greater than 0, or with the contents of the location 
specified by the label in relrecno greater than 0 does not disturb 
(increment) the next-record pointer. 

MUST BE CODED 

Figure 10-10. READ/WRITE END= operand 

The END= keyword operand is coded with the label of the instruction 
that you wish control transferred to when an attempt to READ or 
WRITE a record outside the physical boundaries of the data set is 
detected. This condition may occur because of a normal end-of-data 
set condition (attempting to READ or WRITE the next sequential 
record in a data set, when the last record read or written was the last 
physical record in the data set), or may be caused by a program logic 
error (for example, a READ or WRITE with relrecno erroneously 
set to a negative value). 



MUST BE CODED 

Figure 10-11. READ/WRITE ERROR= operand 

The ERROR= keyword operand is coded with the label of the instruction 
that you wish to get control if an error is detected while executing a 
disk/diskette READ or WRITE operation. If END= is not coded and 
ERROR is coded, an end-of-data set condition will result in a transfer 
to the ERROR= location. If END= is coded and ERROR= is not, all 
abnormal conditions other than end-of-data set will result in contin­
uation of execution with the next sequential instruction following the 
READ or WRITE. If neither is coded, execution continues with the 
next sequential instruction in all cases. 

After each disk/diskette READ or WRITE operation, a completion 
code is returned to the user program (see Reading Assignment for a 
description of completion codes). The completion code is placed in 
the task code word (taskname) of the task issuing the READ or WRITE, 
and is also placed in a system control block that may be referenced 
by the symbolic· positional data set name (DS1, DS2, etc.). This 
completion code can be accessed and analyzed by the user program 
to determine if the operation was successful and, if not, why it failed. 

MUST BE CODED 

Figure 10-12. READ/WRITE WAIT= operand 

While a disk/diskette 1/0 operation is executing, there is an implied 
wait for the issuing task. Task execution is suspended (the task is 
placed in a wait state) until the 1/0 is complete. If the WAIT= 
operand is coded as WAIT=NO, the wait does not occur; while the 
1/0 operation is in progress, task execution proceeds with the next 
sequential instruction following the READ or WRITE, overlapping 
1/0 with processing. Also, if WAIT=NO is coded, the END;::: and 
ERROR= keyword operands are not allowed. Checking for errors 

T= 

is entirely a user responsibility (completion code in taskname or DSx). 
In addition, the user must issue an explicit WAIT instruction, waiting 
on the completion of 1/0 event. This is a predefined system event, and 
the associated ECB is referenced (in the operand of the WAIT state­
ment) by the symbolic positional data set name (DS1, DS2, etc.) 
for the data set used. When the waited on ECB is posted complete, 
the 1/0 operation has finished, and the completion code is available 
for inspection. 

Disk/Diskette Input/Output 10-9 



NOTE/POINT STATEMENTS 

READING ASSIGNMENT: 5830-1053 (PDOM) page 2-137; or 
SB30-1213 (Version 2 PDOM) page 2-143. 

The system-maintained next record pointer changes value (increments) 
each time a READ or WRITE (without a user-specified relrecno 
greater than 0) is executed. Using the NOTE instruction, a user 
program can find out the current value of the next record pointer. 
The next record pointer may be set to a user-specified new value 
using the POI NT instruction. 

label 

OPTIONAL 

NOTE 
POINT 

OS l oc 
x,relrecno 

MUST BE CODED 

Figure 10-13. NOTE/POINT format 

In Figure 10-13, the DSx operand is the symbolic positional reference 
to the data set whose associated next record pointer is to be retrieved 
(NOTE) or set (POINT). The second operand is coded as the label 
of a one-word storage location that the NOTE instruction will move 
the current value of the next record pointer into, or that contains 
the new value which the POINT instruction will use to set the next 
record pointer. (When using the POINT instruction, the second 
operand may be coded as an integer value rather than the label of a 
storage location.) 

DISK/DISKETTE 1/0 CODING EXAMPLES 

10-10 SR30-0220 

The programs depicted in the next four figures (Figure 10-14 through 
10-17) are not meant to be practical examples of how to code disk/ 
diskette 1/0 operations in a user program. They are intended only to 
illustrate some of the concepts already discussed. 

In Figure 10-14, the READ instruction at location GO will execute 
as a no-operation. Execution will continue with the instruction 
following the READ, and no 1/0 is performed. The count operand 
is coded as storage location CTR. When the program is first loaded, 
location CTR contains zero, and a zero count indicates no records 
are to be read (or written, for a WRITE instruction). 



DISKPGM 
GO 

Rl 

SET? 

R2 

ENDOUT 

El 

BUFF 
CTR 

PROGRAM 
READ 

READ 

POINT 
MOVE 
READ 
PROGSTOP 

GO,DS=WORKFILE 
DSl,BUFF,CTR,END=ENDOUT,ERROR=El 

DSl,BUFF,END=ENDOUT,ERROR=El 

DSl, 7 
CTR,3 
DSl,BUFF,CTR,END=ENDOUT,ERROR=El 

r-- --------------::i 
:END-OF-DATA SETI 
l ROUTINE I ·------ ---- ______ J 

f £"R"ff6RROtTfffJE1 
,_ ----- ------ _J 

BUFFER 
DATA 
EN DP ROG 
END 

768,BYTES 
F1 0 1 

Figure 10-14. Count operand use 

The READ at location R1 has no count operand coded, so count 
defaults to 1, indicating a single record wi II be read. Since relrecno 
is not coded, the relative record number defaults'to the current value 
of the next record pointer. The next record pointer has not yet been 
altered, and is therefore at its initial value of 1, indicating the first 
relative record in the data set. The READ at R 1 wil I read the first 
record in WORK FI LE into the first 256 bytes of the 768 byte area 
BUFF. After the 1/0 operation, the next record pointer is incre­
mented to 2 (automatic system function). 

The PO I NT instruction at location SET7 changes the next record 
pointer to point to the seventh relative record in the data set. The 
MOVE which follows sets location CTR to a value of 3. When the 
READ at R2 is executed, three 256 byte records (count= CTR = 3), 
beginning with relative record number 7 ( relrecno defaults to next 
record pointer which was set to 7) will be read into storage, beginning 
at location BUFF. After the operation, the next record pointer will 
have a value of 10. 

In Figure 10-15, all count operands are left uncoded, so all READ 
operations will be single record reads (default count= 1 ). In the first 
READ (location GO), relrecno is coded as location RECNBR, which 
has an initial value of 2. The second relative record in WORKFI LE 
will be read into BUFF. The ADD instruction following the READ 
updates the user-maintained relative record number in R ECN BR by 
adding 3. When the READ at R2 is executed, relative record number 
5 will be read into BUFF. 

The MOVE operation preceding the READ at R3 sets the relrecno 
location R ECNB R to zero. A zero relrecno value causes a defau It 
to the next record pointer maintained by the system. 

Disk/Diskette Input/Output 10-11 



10-12 SR30-0220 

DIS KPGM 
GO 

R2 

R3 

R4 

PROGRAM 
READ 
ADO 

READ 

MOVE 
READ 

READ 

Pl PROGSTOP 

GO,DS=WORKFILE 
DSl,BUFF,,RECNBR,ERROR=ERROUTN,END=OUT 
RECNBR,3 

DSl,BUFF,,RECNBR,ERROR=ERROUTN,END=OUT 

RECNBR,0 
DSl,BUFF,,RECNBR,ERROR=ERROUTN,E~D=OUT 

DSl,BUFF,ERROR=ERROUTN,END=OUT 

OUT jf !VD-oF-DAYA-s£f! 
L __ fl_QUJJfjJ~. - - - - J 

ERROUTN [fj{{ft_~B_Q_f[[[_IY_Ej 

BUFF BUFFER 256,BYTES 
RECNBR DATA F'2' 

EN DP ROG 
END 

Figure 10-15. "relrecno" operand use 

The two previous READ operations (at GO and R2) both used a user­
defined relrecno value greater than zero, so the next record pointer was 
not affected, and is still at its initial value of 1. The READ at R3 
will therefore read the first relative record in WORKFILE, because 
the MOVE operation preceding sets RE CN BR to zero. 

The READ at R4 has no relrecno coded, and will also default to 
the next record pointer for a relative record number. This READ 
will read relative record number 2, since the next record pointer 
was incremented by 1 after the preceding READ at R3. 

In Figure 10-16, al I count and relrecno operands are left uncoded, so 
all READ commands will read a single record, and the next record 
pointer will be used for the relative record number. 

The READ statement at GO has both END= and ERROR= operands 
coded. An end-of-data set condition will cause a transfer to location 
ENDA, and an error condition will result in execution of the instructions 
beginning at E RTN. If the operation is successful, relative record 
number 1 will be read into BUFF. 



In the READ statement at R2, only the END= operand is used. Error 
checking is therefore a user responsibility, and is performed in this 
example by the IF statement immediately following the READ. The 
symbolic positional data set name, DS1, is checked for a completion 
code of -1. A -1 indicates a successful or normal operation. If the 
completion code is other than -1, control is transferred to the error 
routine at E RTN. If the operation was successful, relative record 
number 2 would be read. 

DISKPGM PROGRAM GO,DS=WORKFILE 
051,BUFF,END=ENDR,ERROR=ERTN GO READ 

R2 

R3 

R4 

DONE 
ENDR 

EO 
ERTN 

BUFF 

READ 
IF 

READ 

READ 
IF 

PROGSTOP 

DSl;BUFF,END=ENDR 
(DSl,NE,-1),GOTO,ERTN 

DSl,BUFF,ERROR=EO 

OS 1, BUFF 
(DSl,NE,-1),GOTO,EO 

r----- ---------, 
IPRINTOUT"END l 
LQF_Q1I:1~~r:~§§J 

GOTO DONE 
IF (DSl,EQ,10),GOTO,ENDR 

~--------------, l PRINT OUT "DISK l 
·ERROR" MSG I 
l -- - - - - - - - -- -- _J 

GOTO 
BUFFER 
EN DP ROG 
END 

DONE 
256,BYTES 

Figure 10-16. END= and ERROR= use 

Disk/Diskette Input/Output 10-13 



1 0-14 SR 30-0220 

The ERROR= operand is coded in the READ statement at R3, but the 
END= is not. An end-of-data set condition will therefore be considered 
an error, and will cause a transfer to the label coded in the ERROR= 
operand, location EO. When END= is not coded, but you do not wish 
to treat end-of-data set as an error, the specific condition code that 
indicates end-of-data set must be checked for in the error routine. The 
IF statement at location EO checks for a completion code of 10, which 
is the completion code signifying an end-of-data set (relative record 
number outside range of data set) condition. If the code is 10, control 
transfers to the end-of-data set routine at END R, rather than 
continuing execution of E RTN. Relative record number 3 is read 
if normal operation occurs. 

The READ at R4 has neither END= nor ERROR= coded. Operation 
is the same as the previous READ at R3, except that the user must check 
for abnormal completion; there is no automatic transfer to an error 
routine, as is provided by the ERROR= operand. The completion 
code is checked by the IF statement following the READ, and transfers 
to EO (as did the ERROR=EO in the READ at R3) if other than normal 
completion is detected. Normal completion results in a read of relative 
record number 4. 

Figure 10-17 illustrates the use of the WAIT= operand. The READ 
at location ST ART is the same as the READ statements you are 
already familiar with. It will read a single record (count defaults to 1), 
the first relative record in data set WORKFI LE (relrecno defaults to 
next record pointer= initial value of 1), into BUF1. If an error occurs, 
the ERROR= operand wi II transfer control to E 1, the start of the 
error routine. (END= is not required because, by definition, if 
WORK FI LE exists, it has at least one record in it. Since this is a 
read of the first record in WORK FI LE, end-of-data set wi II not occur.) 

While the READ at START is in progress, task DISKPGM is in a 
wait state (WAIT= operand not coded - default is WAIT= YES). 
After successful completion of the READ, the MOVE at location 
SETUP is executed, moving the 256 byte record in BU F 1 into 
WR KAR EA ( 128 words = 256 bytes). 

Now a second READ is issued (location R2), with the WAIT= operand 
coded as WAIT=NO. Since the READ at START used the next record 
pointer for a relative record number, it now has a value of 2. The 
READ at R2 will therefore read relative record number 2 into BUF1, 
updating the next record pointer to 3 upon successful completion .. 

While the READ operation at R2 is in progress, execution of task 
DISKPGM continues, because the WAIT=NO operand prevents 
the implied wait for 1/0 completion from taking effect. While the 
next sequential record (relative record 2) is being read into BU F 1, 
the program is operating on the data in the previous record, which is 
now in WR KAR EA. Program execution is overlapping with the 1/0. 



DISKPGM 
BUFl 

PROGRAM 
BUFFER 
DATA 
READ 
MOVE 
READ 

START,DS=WORKFILE 
256;BYTES 

WR KAR EA 
START 
SETUP 
R2 

128F 1 01 

DSl,BUFFl,ERROR=El 
WRKAREA,BUFFl,128 
DSl,BUFFl,WAIT=NO 

Wl 
IFl 
IF2 

El 

STOP 
OUT 

r----- -------- -------, 
:PROCESS THE DATA INl 
I 'WORK AREA" I [ _________________ ~ 

WAIT 
IF 
IF 

DSl 
(DSl,EQ,-1),GOTO,SETUP 
(DSl,EQ,10),GOTO,OUT 

r----- -- -- ---- - ., 
:PRINT DISK ERROR l 
l MESSAGE : 
·------ --------- __ J 

PROGSTOP 
r----- - - -- -- - -----., 
: PRINT END OF DATA: 
: SET MESSAGE : 
L-----------------• 

GOTO STOP 
EN DP ROG 
END 

Figure 10-17. WAIT=NO 

When WAIT=NO is coded, as illustrated in the READ at R2, the 
ERROR= and END= operands cannot be used. Error checking is 
therefore entirely a user responsibility. The 1/0 operation com­
pletion code is not available until the 1/0 operation is finished. To 
find out when the 1/0 is complete and the completion code is avail· 
able, and also to resynchronize processing with 1/0, the user must 
issue a WAIT on the completion of 1/0 event. 

The WAIT at location W1 uses the symbolic positional data set name 
DS1 as the event name. The ECB is not coded, because it already 
exists in the TCB established by the PROGRAM statement. When the 
READ operation at R2 completes, the completion code is posted in 
location DS1. DS1 is the symbolic address of the first word of the 
associated ECB, and therefore the completion of 1/0 event is marked 
as having occurred. 

Disk/Diskette Input/Output 10-15 



After the WAIT, execution continues with the IF statement at 
location IF 1. If the 1/0 completed normally (condition code= -1 ), 
control is transferred to SETUP, which moves the new record into the 
work area. The READ at R2 starts the read of the next sequential 
record into BUF1, and the entire process continues to repeat until 
all records have been processed (end-of-data set) or an error occurs. 

If other than a normal completion is detected at IF 1, the IF at I F2 
executes. An end-of-data set condition (completion code= 1 O) will 
cause a transfer to location OUT, the end-of-data set routine. Any 
other completion code is an error, and execution will continue with 
the error routine E 1, immediately fol lowing the IF. 

LOAD-TIME DATA SET DEFINITION 

10-16 SR30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-20 through 
2-22 and 2-25, 2-26; or 5830-1213 (Version 2 PDOM} pages 2-20 
through 2-22 and 2-26 through 2-28. 

In all of the disk/diskette I /0 examples thus far, data sets to be used 
by a program are named in the DS== list of the PROGRAM statement. 
Th is is adequate for very stable applications, where the program 
always uses the same data sets, and the names of those data sets are 
known at the time the program is written. 

A stable situation is not always possible. At the time a particular 
program is being coded, data set naming conventions may not yet 
have been established, and data set names therefore would not be 
known. Also, the program could be a generalized file routine, de­
signed to perform certain updating or maintenance functions on any 
of several similar data sets, a different data set (and data set name) 
each time the program is executed. 

By coding ?? in place of a data set name (in the DS= list of the 
PROGRAM statement), data set names can be specified at the time 
a program is loaded for execution, rather than when it is coded. In 
Figure 10-18, the first entry in the DS== list is coded as ?? , and the 
second entry as the data set name FI LEA. 



PRO GA 
AS TART 
RD2 

PROGRAM 
READ 
READ 

PROGSTOP 

EN DP ROG 
END 

ASTART,DS=(??,FILEA) 
DS1,BUF1,END=El,ERROR=E2 
DS2,BUF2,END=El,ERROR=E2 

Figure 10-18. Terminal load - data set passing 

Assuming this program is stored on disk/diskette under the name 
PROGA (same as initial task name}, a terminal operator would re­
quest that the program be loaded by hitting the ATTENTION key, 
and entering "$L PROGA". The system loader, recognizing that the 
first entry in the requested program's DS= .list specifies a file to be 
defined at load time, will query the terminal operator with the 
prompt DS1=(NAME,VOLUME):. The operator would then respond 
with the name of the data set to be used as DSl in the format 
NAME, VOLUME, if the data set resides on other than the IPL volume, 
or with just NAME if the data set is IPL volume resident. For example, 
if the operator enters FILEX in response to the prompt (FILEX is 
on the IPL volume), PROGA, when loaded, will execute as though 
the DS= list in the PROGRAM statement were coded DS=(FI LEX, 
FILEA). The READ at location ASTART will read from FILEX, 
and the READ at R D2 from FI LEA. 

Load time file definition is also possible when programs are loaded by 
other programs, rather than from a terminal. In Figure 10-19, 
PROGA and PROGB both have a data set to be defined at load time 
(??entry in DS= lists). Assuming PROGA is loaded from a terminal, 
the terminal operator will supply the missing data set name for PROGA. 
PROGB, however, is loaded by PROGA, and therefore PROGA must 
pass PROGB's missing data set name. 

At location LD1 .in PROGA, Fl LEZ is defined in the DS= list of the 
LOAD statement. When the LOAD is executed, FI LEZ will be sub­
stituted for the ?? entry in the PROGRAM statement's DS= list for 
PROGB. 

Disk/Diskette Input/Output 10-17 



1 0-18 SR 30-0220 

PROGA PROGRAM ASTART,DS=(??,FILEA) 
AST ART 

LDl LOAD PROGB,DS=(FILEZ),ERROR=E3 
LD2 LOAD PROGB,DS=(DS1),ERROR=E3 

PROGSTOP 

EN DP ROG 
END 

PROGB PROGRAM BSTART,DS=(FILEB,??) 
BSTART READ DSl,BUF,END=ENDB,ERROR=ERRB 

WRITE 

PROGSTOP 

EN DP ROG 
END 

DS2,BUF,END=ENDB,ERROR=ERRB 

Figure 10-19. Program load - data set passing 

PROGB will READ from Fl LEB, and WRITE to Fl LEZ. Note that 
data set names defined in the DS= list of a LOAD statement do not 
have to exist in the loading program's PROGRAM statement DS= 
list. 



Data set names that are in the DS= list of the loading program's 
PROGRAM statement can be passed using the actual name, or by using 
the symbolic positional reference DSx. At LD2 in PROGA (Figure 
10-19), PROGB is again loaded, passing the data set DS1. This refers 
to the first entry in the DS= list in PROGA's PROGRAM statement, 
which is coded as??. Again assuming this data set name was supplied 
by a terminal operator when PROGA was loaded, that same name will 
be passed through to PROGB, becoming the data set used by PROGB 
for the WRITE operation. If DS2 instead of DS1 were coded, Fl LEA 
would have been passed. 

When programs using disk/diskette 1/0 are loaded as overlays, all 
names of data sets used by the overlay program must be passed by the 
loading program, and the data set names that are passed must be 
entries in the DS= list of the loading program's PROGRAM statement. 
In Figure 10-20, the PROGRAM statement for PROGA defines 
PROGB as an overlay program (PGMS=PROGB). The LOAD state­
ment at LD3 will load PROGB as an overlay, because the program 
name specified is PGM 1, a positional reference to the PGMS= list. 
PROGB uses two data sets, so two data set names are passed to 
PROGB in the LOAD statement's OS= list: DS2 and DS1, which 
reference FI LEA and ?? in the DS= list for P ROGA. When passing 
data set names to an overlay program, the LOAD statement must 
use the DSx positional references. 

All data sets used by an overlay program must be passed to the 
overlay by the loading program, and therefore all data set names 
in the DS= list of the PROGRAM statement of .a program loaded 
as an overlay are treated as though they were ?? entries. For 
example, if PROGB is loaded as an overlay, Fl LEB will not be 
used, unless it is passed by the LOAD statement in the loading 
program. 

Disk/Diskette Input/Output 10-19 



10-20 SR30-0220 

PROGA PROGRAM ASTART,DS=(??,FILEA),PGMS=PROGB 
AS TART 

LD3 LOAD PGM1,DS=(DS2,DS1),ERROR=E3,EVENT=BDONE 
WTl WAIT BOONE 

PROGSTOP 
BOONE ECB 

ENDPROG 
END 

PROGB PROGRAM BSTART,DS=(FILEB,??) 
BSTART READ DSl,BUF,END=ENDB,ERROR=ERRB 

WRITE 052,BUF,END=ENDB,ERROR=ERRB 

PROGSTOP 

ENDPROG 
END 

Figure 10-20. Overlay load - data set passing 



In Figure 10-20, if the terminal operator loading PROGA ($L PROGA) 
responds to the DS1=(NAME,VOLUME): prompt by entering 
FI LEC, PROGA wi If execute as though the DS= list in the 
PROGRAM statement were coded DS=(FI LEC,FI LEA). In the 
OS= list of the LOAD at LD3, the first entry is DS2. This first 
position in the LOAD statement's DS= list corresponds to the first 
position in the OS= list for PROGB. The DS2 references the second 
entry in the OS= list of PROGA's PROGRAM statement, which is 
coded as FI LEA. The data set name FI LEA is therefore passed to 
PROGB as the first entry of the OS= list in the PROGRAM statement 
for PROGB. Similarly, the second entry in the LOAD statement's 
OS= list will pass Fl LEC, the DS1 data set name entered by the 
operator, to the second entry in the DS= list for PROGB. PROGB 
will execute as though the OS= list in the PROGRAM statement 
were coded as "DS=(FILEA,FILEC)". The READ will be from 
FI LEA, and the WRITE to FI LEC. 

Disk/Diskette Input/Output 10-21 



DISK/DISKETTE 1/0 REVIEW EXERCISE-QUESTIONS 

10-22 SR30-0220 

1. How many primary volumes may be defined on a 4962 Disk 
Storage Unit? How many secondary? 

2. Which of the following choices, when used to complete the 
statement below, makes the statement not true? 

"The DS= list in a PROGRAM statement ... 

a. . .. must contain an entry for each data set used by the 
program." 

b. . .. may contain up to nine entries." 

c. . .. may specify data sets resident on other than the IPL 
volume." 

d. . .. is used to define the names of any overlay programs that 
may be loaded by the program." 

e. . .. may have entries for data sets that will not be defined 
until load time." 

All of the remaining "Questions for Review" refer to the coding 
example in Figure 10-21. 



PROGl 
GO 
RD2 

PROGRAM 
READ 
READ 

GO,DS=(DSET1,DSET2,DSET4,DSET9),PGMS=P2 
DS3,BUFA,NBR,RCRD,END=El,ERROR=E2 

IF ( , , ) , GOTO, E 1 
IF (--- ,-- ,--),GOTO,E2 

DS3~DS3VA[ 

I Fl 
IF2 
Nl 
LDl 
LD2 

NOTE 
LOAD 
LOAD 
PROGSTOP 
BUFFER 
DATA 
DATA 
DATA 

P2,DS=( , ),ERROR=LDERR 
,DS;~=-=:===, ___ ),ERROR=LDERR 

BUFA 
DS3VAL 
NBR 
RCRD 

EN DP ROG 
END 

, BYTES 
Po' 
F'2' 
F'5' 

P2 PROGRAM PGO,DS=(??,DSET3,??) 
PGO READ DS3,BUFF 

PR2 READ DSl,BUFF 

PR3 READ DS2,BUFF 

PROGSTOP 
BUFF BUFFER 128 

EN DP ROG 
END 

· Figure 10-21. Review problem 

Disk/Diskette Input/Output 10-23 



10-24 SR30-0220 

3. a. How many records will be read by the READ at location GO? 

b. What is the name of the data set used? 

c. What is the relative record number of the first record that will 
be read? 

d. What should be coded as the first operand of the BUFFER 
statement at location BUFA? 

Answers: a.------
b. _____ _ 

c. _____ _ 

d. _____ _ 

4. Code the READ at RD2 to read a single record (let count take 
default) into BUFA. The record should be the first relative 
record (let relrecno take default) in data set DSET4. Do not 
code the END= or ERROR= operands. Code the tF at IF1 
to check for end-of-data set condition, and the IF at I F2 to 
check for other errors. 

Answer: 

GO 
IF1 
IF2 

READ 
IF 
IF 

( ___ , __ , __ ),GOTO IE 1 
( ___ , __ , __ ),GOTO,E2 

5. After executing the NOTE instruction at N 1, what will be the 
value of location DS3VAL? 

Answer:-------

6. Code the LOAD instruction at location LD 1 so that when program 
P2 executes, the READ at PGO will use data set DSET5, the 
READ at PR2 will use DSET9, and the READ at PR3 will read 
from DSET3. 

Answer: 

LD1 LOAD P2,DS=( ___ , _____ ),ERROR=LDERR 



7. Code the LOAD at location LD2 to load P2 as an overlay 
program. In program P2, the READ at PGO shou Id use 
DSET1, the READ at PR2 data set DSET2, and the READ 
at P R3, data set DSET 4. 

Answer: 

LD2 LOAD ____ ,DS=( ___ , ___ , ___ ),ERROR=LDERR 

8. The LOAD at LD2 is a load of an overlay program. What 
must be added to PROG 1 to ensure the proper termination­
of-execution sequence between P2, the overlay program, 
and PROG1, the loading program? 

Disk/Diskette Input/Output 10-25 



DISK/DISKETTE 1/0 REVIEW EXERCISE-ANSWERS 

1 0-26 SR 30-0220 

1. Each 4962 may have one ( 1) primary volume defined. As 
many secondary volumes as required may be defined, within 
the physical size limitations of the device. 

2. All choices except choice "d" will complete the statement 
truthfully. The "PGMS=" keyword operand is used to 
define the overlay programs. 

3. a. 2 records will be read (count=NBR=2) 

b. DSET4 will be used. DSET4 is the third entry in the DS= 
list, and is referenced by DS3 in the READ at GO. 

c. relative record number 5 (relrecno=RCRD=5) 

d. 512 or more, because two 256 byte records are being read 
(NBR=2). 

4. RD2 READ 
IF1 IF 
IF2 IF 

DS3,BUFA 
(DS3,NE, 10),GOTO,E1 
(DS3,NE,-1 ),GOTO,E2 

5. DS3VAL will contain 2, because the next record pointer is 
updated by +1 following the READ at R2. 

6. LD1 LOAD P2,DS=(DS4,DSET5),ERROR=LDERR 

7. LD2 LOAD PGM1,DS=(DS2,DS3,DS1),ERROR=LDERR 

8. The LOAD at LD2 should have the EVENT= operand coded, 
declaring an event name. An ECB with that event name should 
also be coded, and a WAIT on that event name should occur 
prior to the PROGSTOP. 



TERMINAL STATEMENT 

Section 11. Terminal 1/0 

OBJECTIVES: After completing this section, the student should be 
able to: 

1. Describe roll screen and static screen operation 

2. Use PRINTEXT, PRINTIME, PRINDATE, and PRINTNUM 
instructions to display data on a terminal 

3. Use READTEXT and GETVALUE instructions to read data 
from a terminal 

4. Understand the purpose of specialized terminal instructions 
such as QUESTION, TERMCTRL, etc. 

READING REFERENCE: Program Description and Operations 
Manual (SB30-1053) pages 2-214 through 2-219 and 2-143 through 
2-168; or Program Description and Operations Manual Version 2 
(SB30-1213) pages 2-157 through 2-192 and 2-275 through 2-284. 

The Event Driven Executive terminal support is designed to be as 
device independent as possible. With few exceptions, the user need 
not be concerned with what type of device is being driven by terminal 
functions coded in the program. The same sequence of terminal 
output instructions, for instance, may be used to print data on a 
matrix or line printer, on a locally attached TTY device or a remote 
ACCA terminal, or to display the data on an electronic display 
screen device. 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-214 
through 2-219; or SB30-1213 (Version 2 PDOM) pages 2-275 
through 2-284. 

Terminals are defined to the system using the TERMINAL system 
configuration statement. This statement generates system control 
blocks and tables containing the logical and physical variables 
necessary to operate the terminal. Among the physical variables 
described in the TERMINAL statement operands are the type of 
terminal (TTY, printer, display, etc.), its hardware address, the type 
of transmission code used, and other hardware related parameters 
unique to the device being defined. 

The high degree of device independence is achieved in part by treating 
all terminals as though they were line printers, differing only in their 
page sizes (forms length) and margin settings, also defined by 
TERMINAL statement operands. 

Terminall/0 11-1 



ROLL Screens 

NHIST= Operand 

11-2 SR30-0220 

The page size for an I BM 4978/4979 terminal is 24, the maximum 
number of lines that can be displayed on the screen. The 
4978/4979 Displays can be operated as roll screen or static screen 
devices (SCREEN= operand in TERMINAL statement). A roll 
screen device operates in much the same way as a typewriter. 
Assuming a blank screen (clean page in typewriter) to start, data 
is displayed line by line, beginning with line 0 at the top of the 
screen and continuing through line 23 at the bottom of the screen, 
just as a typewritten page is filled from top to bottom. When a 
page being typed is full, the completed page is removed, a clean 
page is inserted, and typing continues at the top of the new page. 
When a roll screen device's screen is full (all 24 lines used), an 
attempt to display the next line results in removal of the old screen 
(screen is erased) and display of the new line on line 0, at the 
top of the screen. 

Unlike a typewriter, the display is not a hardcopy device, and therefore 
the information on the old screen (previous page) cannot be referred 
to after it has been erased. If an operator entry is expected and the 
operator prompts describing that entry were displayed on a now-erased 
previous screen, time could be wasted in looking up the input request 
in a reference book, or in requesting that the program repeat the 
display of the prompt. 

This potential problem is avoided by coding the NHIST= operand of 
the TE RM INAL statement to reserve part of the screen as a history 
area. NH IST= is the number of history lines you wish to reserve. 
For example, if NHIST=12 is coded, the top twelve lines of the 
screen are reserved for a history area (physical lines 0 through 11), and 
the bottom twelve lines (physical lines 12 through 23) as a work area, 
operating in the normal roll screen fashion. (The 4979 Display 
supported by the starter system is defined with NHIST=12, and 
NHIST=12 will be the default for user defined 4978/4979 displays 
if NHIST= is left uncoded.) 

Since all terminals, including electronic display screens, are treated 
logically as printers, forms control commands are used to position 
displayed output on a screen, just as lines and spaces may be skipped 
on a printout to position a print line on a page. Although physically 
(with NHIST=12) the work area occupies lines 12 through 23, logically, 
for purposes of forms control interpretation, they are treated as 
lines 0 through eleven. Display information directed to line 0 will be 
displayed on physical line 12, the top of the work area. 



Static Screens 

Again beginning with a blank screen, successive lines are displayed 
starting at the top of the work area, and continuing to the bottom 
of the screen. With the work area fu II, an attempt to display the 
next line will cause: 

1. the information displayed in the "work area" to be moved up 
into the "history area", (physical lines 0 through 11). 

2. the "work area (lines 12-23) to be erased 

3. display of the new line on physical line 12, the top of the 
work area. 

Each time the work area is exceeded, the information displayed there 
is moved up into the history area, thereby retaining some past history 
for viewing. The work area and history area do not have to be of 
equal size; you may code NH IST= to retain as few as 0 lines of 
previous data, or as many as 23 lines. 

Terminals operated as roll screen devices are usually used in an 
interactive mode, to communicate between a program and an 
operator. Operator prompts and their associated responses are ex­
changed on a line by line basis. The display of a new line, or the read 
of an operator entry is usually initiated by the operator pressing a 
terminal control key such as ENTER or one of the program function 
keys, indicating that the operation can proceed. A common example 
is the series of prompts and replies that are exchanged between 
program and operator when using the Event Driven Executive 
utilities. 

When a 4978/4979 Display is defined as a static screen device 
(SCREEN= operand in TERMINAL statement), the screen is treated 
as a page of information. The screen may be formatted with pre­
determined operator prompts (input field names), and these areas 
may be designated as "protected", preventing accidental overlay 
by input data. The input fields of a static screen are usually 
filled in by the operator without interaction with the program. 
Terminal operation keys such as TAB, BACKSPACE, or the cursor 
positioning keys are used to move the cursor to the required input 
field positions. 

When all required input fields have been entered, the operator 
presses the ENTER key (or a designated Program Function key) 
to signal the program that the page is complete. The program then 
reads all the information on the screen, erases the screen, and dis­
plays a new page (screen with prompts, but blank input fields) for 
the operator to fi 11. 

Terminals operated as static screen devices must be either IBM 
4978 or 4979 Displays, as some of the specialized instructions used 
with static screens can be interpreted only by the 4978/4979 
hardware. Other electronic display screen devices and, of course, 
all hardcopy terminals, are operated as roll screens. 

Terminal 1/0 11-3 



ENQT/DEQT INSTRUCTIONS 

11-4 SR30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-151 and 
2-154; or SB30-1213 (Version 2 PDOM) pages 2-166 and 2-169. 

When a program is loaded from a terminal, that terminal is dynami­
cally designated by the system as the terminal to be used by terminal 
1/0 instructions in the program. Each terminal 1/0 instruction auto­
matically has exclusive use of the terminal during the execution of 
that individual operation; only one task at a time is allowed to per­
form 1/0 on the terminal. 

If more than one task is using the terminal, terminal operations 
from different tasks cou Id become interspersed. In cases where this 
is undesirable, the ENQT (enqueue terminal) facility may be used to 
reserve the terminal for the exclusive use of a task, thereby pre­
venting other tasks from using the terminal until the task issuing 
the ENQT releases it (DEQT). 

label 
~ 

I 
I 
I 

ENQT l 

OPTIONAL MUST BE CODED 

Figure 11-1. ENQT format 

name,BUSY= 

OPTIONAL 

If ENQT is coded without the optional name operand, the default 
is to the terminal that loaded the program. The task issuing the 
ENQT will acquire exclusive control of the loading terminal, and will 
retain control until executing a DEQT instruction. If the terminal is 
busy (enqueued by another task) when the ENQT is executed, the 
task issuing the ENQT is placed in a wait state, queued up waiting for 
the terminal to become available. If you do not wish to be queued 
if the terminal is busy, the BUSY= operand should be coded with the 
label of the instruction to which you wish control transferred. 

The ENOT may also be used to gain exclusive control of a terminal 
other than the loading terminal. The symbolic name assigned to a 
terminal is the name coded as the label of the TERMINAL statement 
defining the device. Coding a name in the label field automatically 
defines the terminal to the system as a global resource that may be 
enqueued by user programs ( ENQT). There are three symbolic ter­
minal names that have special significance, as they are used by the 
supervisor or system utility programs: 

1. $SYSLOG this is the name of the system logging device or 
operator station, and must be defined in every system. In the 
system configuration statements used to generate the supplied 
supervisor, $SYS LOG is the label of a TERMINAL statement 
defining a 4979 Display. 



2. $SYSLOGA This is the name of the alternate system logging 
device. In the event that unrecoverable errors prevent use of 
$SYS LOG, the system will use the $SYSLOGA terminal as the 
system logging device/operator station. If defined ($SYSLOGA 
is optional), this device should be a terminal with keyboard 
capability, not just a printer. The supplied supervisor 
$SYSLOGA terminal is a TTY device. 

3. $SYSPRTR This is the name of the system printer, and is also 
optional. If defined, the output from some system programs will 
be directed to this device. In the supplied supervisor, 
$SYSPRTR is defined as a 4974 matrix printer. 

In addition to being used by the system, these devices may also be 
enqueued (ENQT) by user programs. In Figure 11-2, the ENQT/DEQT 
coding example refers to the terminals defined in the TERMINAL 
configuration statements shown at the top of the illustration. For 
simplicity, only the required TE RM I NAL statement operands are 
coded; all other operands are default values. 

$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04 
$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=Ol 
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO 
DSPLYl TERMINAL DEVICE=TTY,ADDRESS=lO,END=YES 

TERMTASK PROGRAM START 
START ENQT 

01 
E2 
E3 

DEQT 
ENQT 
ENQT 

02 DEQT 
PROGSTOP 
EN DP ROG 
END 

$SYSPRTR,BUSY=E3 
$SYS LOG 

Figure 11·2. ENQT/DEOT operation 

Assuming that the loading terminal is the TTY device DSPL Y1, the 
ENQT instruction at location START will acquire exclusive control 
and retain control until execution of the DEQT at D 1. No name 
operand is coded for the ENQT, so the loading terminal DSPL Y1 
is enqueued, thereby preventing other tasks from using DSP LY 1. 

Terminal 1/0 11-5 



IOCB STATEMENT 

11-6 SR30-0220 

The ENQT at E2 is directed at the 4974 matrix printer, $SYSPRTR. 
If the matrix printer is already in use (enqueued), control is trans­
ferred to the next instruction at location E3 (BUSY=E3). This is an 
attempt to enqueue the 4979 display terminal $SYS LOG. If 
$SYS LOG is already enqueued, TE RMTASK will be placed in a wait 
state, waiting until the terminal becomes available. In effect, the two 
ENQT statements at E2 and E3 may be interpreted as "try to get the 
system printer; if it is in use, get $SYSLOG instead and use it." 

If the ENQT at E2 executes successfully, acquiring control of $SYSPRTR, 
the ENQT at E3 will execute as a no-op. When an ENQT for a given 
terminal has successfully executed and enqueued that terminal, 
ensuing ENOTs issued by the same task directed to terminals other than 
the terminal already enqueued are ignored. The system allows any one 
task to enqueue only a single terminal at a time. To switch from an 
already enqueued terminal to a different terminal, a DEQT must be 
issued before the ENQT for the new device is executed. DEQT 
commands are non-specific (no "name" operand), acting upon 
whatever terminal is currently enqueued by the issuing task. 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-155; or 
SB30-1213 (Version 2 PDOM) page 2-170. 

One of the system control blocks generated by assembly of the 
TERMINAL system configuration statement is called an Input 
Output Control Block ( IOCB). A terminal IOCB contains infor­
mation such as the terminal's forms configuration (page size, margins), 
operating mode (static, roll), and history area size (NHIST= operand). 
A terminal is not restricted to the values coded for these parameters 
in the TERMINAL statement; they can be dynamically changed by a 
user program. 

In Figure 11-3, a 4979 Display called DSPL Y1 is defined in the 
TERMINAL statement at the top of the illustration. As you know from 
the previous discussion of roll screen operation, the NH IST= 
default value (for 4978/4979 Displays) is 12, dividing the screen 
into a history area and a work area of twelve lines each. 

In TERMPROG (Figure 11-3), assume the user wants a screen that 
operates so that each new line is displayed on the last (bottom) line of 
the screen, forcing the previously displayed 24 lines up one for each 
new line displayed. This will cause the screen to act as a continuous 
scroll, with each new line forcing the oldest previous line off the· 
screen at the top. 



DSPL Y1 TERMINAL DEVICE=4979,ADDRESS=20 

TERMPROG 
NEWHIST 
SCROLL 

PROGRAM 
IOCB 
ENQT 

DONE DEQT 
PROGSTOP 
EN DP ROG 
END 

Figure 11 ·3. IOCB/ENQT 

SCROLL 
DSPLY1,NHIST=23 
NEWHIST 

To operate in this way, a history area of 23 lines is required, leaving 
a one line work area for new entries. At location NEWHIST is a 
user-coded IOCB, which references terminal DSPL Y1, and defines 
NHIST= as 23. The ENOT at SCROLL references the IOCB label 
NEWH IST. Execution of the ENQT acquires exclusive control of, 
and puts the user-coded IOCB in effect for, the named terminal, 
DSPLY1. (If no terminal name is coded, the system will default to 
the loading terminal.) Until execution of the DEOT at DONE, DSPL Y1 
will operate with NHIST=23. The DEQT will cause DSPL Y1 to revert 
back to the IOCB values generated by the TERMINAL system 
configuration statement. 

In the same manner, 4978/4979 Displays that are defined in 
TERMINAL statements as roll screen devices (SCREEN= default is 
ROLL) may be dynamically enqueued for static screen operation by 
a user program. Because Event Driven Executive system and utility 
programs expect a roll screen configuration on terminals they commu­
nicate with, you should define the terminals as roll screen devices 
in the TERMINAL statements, and enqueue them for static screen 
operation (ENQT/IOCB) when required. The exception is where a 
terminal is never used to communicate with the supervisor or system 
utilities (always used exclusively as a user static screen application 
terminal). 

The only terminals that may be enqueued directly, by coding the 
label of the TERMINAL statement in the name operand of an ENOT 
statement, are the two special system terminals, $SYS LOG 
and $SYSPRTR. User-defined terminals and $SYSLOGA are enqueued 
by coding the label of the TERMINAL statement in the name operand 
of an IOCB statement, and referencing the IOCB label in the ENOT 
name operand. 

Terminal 1/0 11-7 



DATA REPRESENTATION 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-145; or 
SB30-1213 (Version 2 PDOM) page 2-159. 

In general, alphameric (text) data to be written to a terminal is 
represented in storage as an EBCDIC character string. The system 
automatically converts this character string into the code required 
by a specific terminal, when an output operation directed to that 
terminal is executed. (For some specialized terminals employing 
unique control characters imbedded within the text, translation can 
be inhibited.) 

In a similar manner, input from a terminal is translated into an 
EBCDIC character string by terminal read operations. For both input 
and output operations involving text data, a user-defined storage area 
is used to hold the EBCDIC character string. This storage area may 
be implicit, as when an output message (prompt) is coded as an 
integral part of an output or input command, or explicit, when an 
output or input operation specifies the label of a user-defined 
TEXT statement. 

PRINTEXT INSTRUCTION 

11-8 SR30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-159, 2-160; 
or SB30-1213 (Version 2 PDOM) pages 2-174, 2-175. 

The PR I NTEXT instruction is used to print (display) messages on a 
terminal, and/or to control forms movement (position display/ 
cursor on screen). 

label PRINTEXT 
'-.-I 

OPTIONAL MUST BE CODED 

Figure 11-4. PRINTEXT format 

msg,SKIP=,LINE=,SPACES=,MODE=,PROTECT= 

AT LEAST ONE 
OPERAND 
MUST BE CODED 

At least one of the PR I NT EXT operands must be coded. The msg 
operand may be coded as the actual data (enclosed in apostrophes), 
or may be the label of a TEXT statement containing the message. 

In Figure 11-5, both PRINTEXT instructions will execute the same; 
the message "READY FOR INPUT" will be written to the loading 
terminal (ENQT with no terminal name or IOCB label specified). 



TERMPROG 

START 
Pl 

P2 

Tl 

PROGRAM 

ENQT 
PRINTEXT 

PRINTEXT 
DEQT 
PROGSTOP 
TEXT 
EN DP ROG 
END 

Figure 11-5. "msg" operand 

START 

'READY FOR INPUT' 

Tl 

'READY FOR INPUT' 

In the PRINTEXT at P1 the storage area containing the EBCDIC 
character string READY FOR INPUT is implicitly generated (assembled) 
as part of the PR I NTEXT instruction; the PR I NTEXT at P2 references 
the user-defined (explicit) string at location T1. 

Terminals are buffered devices. Data to be displayed on a terminal 
is transmitted to the terminal's buffer, and remains in the buffer until 
some condition occurs that forces the contents of the buffer to be 
displayed. Among the several buffer forcing conditions that can cause 
the contents of a buffer to be displayed or printed is the execution 
of a PRINTEXT with the LINE= or SKIP= forms control operands 
coded. · 

SKIP=,LINE=,SPACES= 

Figure 11-6. Forms control operands 

The SPACES= forms control operand positions the message or cursor 
within a line, but does not force the device buffer. SKIP=, LINE=, 
and SPACES= may be coded as the only operand(s), or may be used 
with other operands, including msg. When coded with msg, the forms 
control operation is executed before the msg text is transmitted to 
the buffer. 

In Figure 11-7, assume the loading terminal is $SYS LOG, a 4979 
Display. To better illustrate the effect of the forms control operands, 
the ENOT at START references an IOCB which sets NHIST= to 0. 
The entire screen wi 11 now operate as a rol I screen work area. 

Terminal 1/0 11-9 



11-10 SR30-0220 

TERMTEST PROGRAM 
START ENQT 
Pl PRINTEXT 
P2 PR IN TEXT 
P3 PRINTEXT 
P4 PRINTEXT 
P5 PRINTEXT 
P6 PRINTEXT 
P7 PRINTEXT 
PS PRINTEXT 
P9 PRINTEXT 

Tl 
T2 
IOCBl 

DEQT 
PROGSTOP 
TEXT 
TEXT 
IOCB 
EN DP ROG 
END 

START 
IOCBl 
LINE=O 
'MESSAGE 1 I ,SPACES=l0,LINE=5 
'MESSAGE 2 I ,SPACES=20,SKIP=2 
'MESSAGE 3 I ,SPACES=70 

MESSAGE 4 I ,SKIP=l 
'MESSAGE 5 I ,SPACES=5 
Tl 
T2 
'TEST ENDED' ,SKIP=l 

'MESSAGE 6 ',LENGTH=l5 
'MESSAGE 7 I 

$SYSLOG,NHIST=O 

Figure 11-7. PRINTEXT example 

The PRINTEXT at P1 illustrates a forms control operand coded 
without the msg command. Since the example is using a 4979 
Display, this command readies the screen for display on line 0. If 
directed to a hardcopy device, this would be the equivalent of a 
page eject command. 

The PRINTEXT at P2 has both msg operand (text) and forms control 
operands coded. The forms control operation wi II be executed first. 
The LINE=5 forces the contents of the buffer onto line 0, and clears 
the buffer . (Because no msg operand was coded in the previous 
PRINTEXT (P1), the buffer is empty, and nothing is displayed on 
line 0.) Next, the terminal is readied for display on line 5. 

The SPACES=10 skips over the first ten buffer positions, and 
MESSAGE 1 goes in the next ten buffer positions ( 11 through 20). 
The text MESSAGE 1 is still in the buffer; no data has yet been 
displayed. 

The PR I NTEXT at P3 performs the following functions: 

1. The SKIP=2 forms control operand forces the buffer, displaying 
MESSAGE 1 on line 5. 

2. The cursor is positioned for I ine 7 (SK I P=2), and the text 
MESSAGE 2 is placed in buffer positions 21 through 30, 
skipping over the first 20 buffer positions (SPACES=20). 

After execution of the PRINTEXT at P3, the display screen is as 
shown in Figure 11-8. 



LINES 

0 
1 
2 
3 
4 
5 
6 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

MESSAGE 1 

CHARACTER 11111111112222222222333333333344444444445555 66677777777778 
POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890 

Figure 11-8. After P3 execution 

The PRINTEXT at P4 (Figure 11-7) has no LINE= or SKIP= 
operands coded, so the buffer is not forced out. The text MESSAGE 3 
is concatenated to the current contents of the buffer, MESSAGE 2. 
MESSAGE 2 is in buffer positions 21 through 30. The SPACES=70 
operand in the PRINTEXT at P4 skips over 70 buffer positions, 
beginning with position 31. The text MESSAGE 3 will therefore 
occupy buffer positions 101 through 110. 

The display screen is only 80 positions wide. Text data positioned 
outside the line length of a terminal is truncated, and therefore 
MESSAGE 3 will not be displayed. (OVF LI NE=YES must be coded 
in the TERMINAL statement to allow display of text positioned 
outside the right margin.) 

The PRINTEXT at P5 (Figure 11-7) performs the following functions. 

1. displays MESSAGE 2 in positions 21 through 30 on line 7 
(SKIP=1 forces the buffer). 

2. specifies line 8 for the next output line (SKI P=1) and places 
MESSAGE 4 in the first fifteen buffer positions. Figure 11-9 
shows the screen after execution of the PR I NTEXT at P5. 

Terminal 1/0 11-11 



11-12 SR30-0220 

LINES 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

MESSAGE 1 

MESSAGE 2 

CHARACTER 11111111112222222222333333333344444444445555 66677777777778 
POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890 

Figure 11-9. After PS execution 

The PRINTEXT at P6 (Figure 11-7) skips buffer positions 16 through 
20 (SPACES=5) and concatenates the text MESSAGE 5 into positions 
21 through 30. 

Explicitly defined text is also concatenated. The PRINTEXT at 
P7 references the TEXT statement at T1. MESSAGE 6 is added to 
the buffer in positions 31 through 40. Although the text buffer at T 1 
is 15 characters long ( LENGTH=15), only the data between the 
apostrophes is moved into the buffer. The PRINTEXT at PB adds 
MESSAGE 7 in positions 41 through 50. 

When the PR I NTEXT at P9 executes, the buffer contents are dis­
played on line 8, and the cursor is moved to line 9 (SKIP=1). 
TEXT ENDED is placed in the first ten buffer positions. The screen 
now looks like Figure 11-10. 



LINES 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

MESSAGE 1 

MESSAGE 4 
MESSAGE 2 
MESSAGE 5 MESSAGE 6 MESSAGE 7 

CHARACTER 11111111112222222222333333333344444444445555 66677777777778 
POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890 

Figure 11-10. After P9 execution 

There is no PRINTEXT with a forms control operand following the 
PRINTEXT at P9, but the TEST ENDED message will still be trans­
ferred from the buffer and displayed. Execution of a DEQT, like 
a LINE= or SK IP= forms operation, is a buffer-forcing condition. 

In the example in Figure 11-7, the program would still execute 
correctly if the DEQT were not coded. The PROGSTOP statement 
will dequeue the terminal (implicit DEQT) and force the buffer. You 
should still get in the habit of coding explicit DEQTs, because the system 
cannot be relied upon to perform such housekeeping chores in all cases. 
For example, if the terminal instructions in Figure 11-7 were part of 
a secondary task and the DEQT were left out, the terminal would 
remain enqueued and unavailable to the rest of the system after the 
secondary task completed execution. Unlike the PROGSTOP, 
execution of an ENDTASK instruction does not automatically 
issue a DEQT. 

Terminal 1/0 11-13 



11-14 SR30-0220 

Tl 
Sl 
Pl 
P2 
D 

LINES 

0 
1 
2 
3 
4 
5 
6 
7 

MESSAGE 1 

8 MESSAGE 4 
9 TEST ENDED 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

MESSAGE 2 
MESSAGE 5 MESSAGE 6 MESSAGE 7 

CHARACTER 11111111112222222222333333333344444444445555 66677777777778 
POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890 

Figure 11-11. After P1 through DEQT 

Figure 11-11 shows the screen after all PRINTEXT instructions and the 
DEQT have been executed. 

When writing to roll screen devices, an at sign (@) imbedded in the 
text will be interpreted as a new line or "carriage return" control 
character. In Figure 11-12, the programs T1 and T2 are logically 
equivalent. · 

PROGRAM Sl T2 PROGRAM 52 
ENQT 52 ENQT 
PRINTEXT I FIRST MSG I Xl PRINTEXT I FIRST MSG I 

PRINTEXT 1 2ND MSG' ,SKIP=l X2 PRINTEXT '@2ND MSG' 
DEQT x DEQT 
PROGSTOP PROGSTOP 
EN DP ROG EN DP ROG 
END END 

Figure 11-12. @ operation 

The PRINTEXT statements at P1 and X1 are identical, and will put 
the text Fl RST MSG in the buffer. In program T1, the SKIP=1 
operand in the PRINTEXT at P2 will force the buffer, displaying 
FIRST MSG on the current line, and move the display position to the 
next line. 2ND MSG will be placed in the buffer. 



The@ imbedded in the msg operand of the PRINTEXT at X2 (program 
T2) has the same effect as SK I P=1, forcing the buffer contents onto 
the current line, and moving the display position to the next line. Unlike 
the SK IP= and LINE= operands, the @or new line operation is executed 
at the time it is encountered in the character buffer. The SKIP=1 
operand in task T1 executes before 2ND MSG is transferred to the 
buffer, because SK IP= and LINE= operations always execute before 
the buffer transfer. The new line operation in task T2 is also 
executed before 2N D MSG is transferred to the buffer because the 
@precedes the 2ND MSG text. Were the@ imbedded further along 
in the text string, characters to the left of the@ would be con-
catenated to the Fl RST MSG text and displayed on the same line as 
FIRST MSG, while characters to the right of@ (as shown in Figure 
11-12) would be displayed on the next line. 

In both T 1 and T2, the 2N D MSG text is moved out of the buffer 
and displayed by execution of the DEQT (Dor X). 

MODE=, 

Figure 11-13. MODE= operand 

When you want the @character to act as a normal text character 
(not to be interpreted as a new line character), the MODE= keyword 
operand should be coded as MODE=LINE. 

The MODE= operand has a special function when used with 
PR I NT EXT instructions directed to static screen devices (4978s or 
4979s) with protected data areas. 

,PROTECT= 

Figure 11-14. PROTECT= operand 

Protected data is written to a static screen by coding the PROTECT= 
keyword operand as PROTECT=YES. If MODE=LINE is coded in a 
subsequent PR I NT EXT that is writing to a line containing protected 
data, the protected areas are automatically skipped over when the 
buffer is transferred to the screen. 

Terminall/0 11-15 



READTEXT INSTRUCTION 

11-16 SR30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-165, 
2-166; or SB30-1213 (Version 2 PDOM) pages 2-180 through 2-183. 

The READTEXT instruction is used to read an alphameric text 
string, entered by a terminal operator, into a user-defined text buffer 
in storage. 

I 
I 

I 
I 

label : READTE XT locJpmsg,PROMPT=,MODE=,SKIP=,LINE=,SPACES= 
"-..,-' 

OPTIONAL MUST BE CODED OPTIONAL 

Figure 11-16. READTEXT format 

The loc operand is the label of the first location of the storage area 
that will receive the EBCDIC character string from the terminal. 
The READTEXT instruction (also PRINTEXT) operates with TEXT 
statements, using the length and count control bytes that precede a 
character buffer generated by a TEXT statement assembly. The loc 
operand is, therefore, usually the label of a TEXT statement; if it 
is coded as the label of a character buffer not generated by a TEXT 
statement, the user must set up the control bytes preceding the 
buffer to meet TEXT statement conventions. 

pmsg,PROMPT= 

Figure 11-17. pmsg and PROMPT= operands 

The pmsg operand is the prompt message (enclosed in apostrophes) 
or the label of a TEXT statement containing the prompt message 
you wish displayed before pausing to accept the operator input. The 
pmsg operand works in conjunction with the PROMPT= keyword 
operand. If PROMPT= is coded as PROMPT=UNCOND (which is the 
default if it is not coded), the prompt message specified by the pmsg 
operand will always be written. If PROMPT= is coded as 
PROMPT=COND, advance input is allowed, and the prompt message 
may or may not be written. Advance input allows an operator to 
enter more information on a line than is suggested by the prompt 
message for that line. An operator familiar with a certain prompt/ 
response sequence can enter all items in response to the first prompt, 
thereby skipping succeeding prompt messages. The use of 
PROMPT=COND will be illustrated in an example later in this section. 

Figure 11-18. MODE= operand 



The MODE= operand may be coded MODE=WORD (the default, 
if not coded) or MODE=LINE. If MODE=WORD is coded, transfer 
of data from a terminal buffer to a user text buffer is terminated by: 

1. a blank (space) character in the input field 

2. exhaustion of the character count in the user text buffer (input 
exceeding input buffer length - truncation of input occurs) 

3. if directed to a static screen, the beginning of a protected field. 

If MODE= LINE is coded, the input data may contain imbedded 
blanks without terminating the transfer. If a R EADTEXT with 
MODE= LINE is directed to a static screen, protected areas do not 
occupy user TEXT buffer positions; only the unprotected areas are 
read. 

SKIP=,LINE=,SPACES= 

Figure 11-19. Forms control operands 

The SKIP=, LINE=, and SPACES= operands perform the same function 
as with the PR I NT EXT instruction, specifying the line and position 
within the line where the next operation will take place. 

READTEXT operation, including some of the operand variations 
just discussed, is illustrated in Figure 11-20. Assuming the program 
is loaded from a 4979 Display, the ENQT at START changes the 
(defaulted) history area from 12 lines to none, and enqueues the 
terminal. The LINE=3 operand in the READTEXT at R1 readies 
the terminal for display on line 3, and the loc operand specifies a 
20-character text buffer at location T 1 as the storage area that wi 11 
receive the input data. 

The R EADTEXT at R2 specifies T2 as the input buffer. The pmsg 
operand is the label of the TEXT statement T3, containing the 
prompt message ENTER PART NBR:. 

When the R EADTEXT at R 1 executes, the prompt message ENTER 
PART NAME will be displayed on line 3, the cursor will be positioned 
just following the colon in the prompt message, and task TE RM will 
be suspended, waiting for operator input. 

As an operator keys an entry onto the screen, there is no program 
involvement. The actual input operation (transfer of terminal buffer 
information to storage) does not begin until the program is signalled 
that the input is complete. When the operator is satisfied that the 
input is correct, he/she will press the ENTER key, initiating the 
actual transfer. (The Program Function keys are also interrupt 
generating, and are frequently used in operator/terminal communica­
tion. They will be covered later in this section.) 

Terminal 1/0 11-17 



11-18 SR30-0220 

Assume that the operator, in response to the ENTER PART NAME: 
prompt, enters BRACKETS, and then presses the ENTER key. The 
READTEXT at R1 will transfer the contents of the terminal buffer to 
the text buffer at T1. The READTEXT at R2 will then display the 
prompt message ENTER PART NBR: on the next line, and TERM 
will again be suspended, waiting for operator input. 

The operator then enters 105636, and presses ENTER again. The 
READTEXT at R2 transfers 105636 to the text buffer at T2, and the 
program runs to completion. 

TERM 
IOCBl 
START 
Rl 
R2 

Tl 
T2 
T3 

PROGRAM 
IOCB 
ENQT 
READTEXT 
READTEXT 
DEQT 
PROGSTOP 
TEXT 
TEXT 
TEXT 
EN DP ROG 
END 

START 
NHIST=O 
IOCBl 
Tl,'ENTER PART NAME: I ,LINE=3 
T2,T3,PROMPT=COND 

LENGTH=20 
LENGTH=6 
'ENTER PART NBR: I 

Figure 11-20. READTEXT operation 

If the operator knows that the prompt ENTER PART NBR: will 
follow the first prompt of ENTER PART NAME:, he may make both 
the part name and part number entries on the same line (line 3), in 
response to the first prompt. The READTEXT at R2 has PROMPT= 
COND coded, meaning that the prompt message ENTER PART NBR: 
will be issued conditional on the absence of advance input in the 
previous operation. 

If the operator entered BRACKETS 105636 when the first prompt 
ENTER PART NAME: was displayed, the READTEXT at R2 would 

. detect advance input, and would transfer the second part of the entr~ 
(the advance input, 105636) into the text buffer at T2, without 
issuing the prompt message ENTER PART NBA:, and without 
suspending TE RM to wait for the ENTER key. 

The presence of advance input is indicated by an imbedded blank 
within an input character string. PROMPT=COND will, therefore, 
not work if the previous operation (the operation where advance 
input is expected) has MODE=LINE in effect, allowing imbedded 
blanks. In this case, the operation would not terminate when a 
blank in the input is found. 



Since advance input (PROMPT=COND) can only be used when 
MODE=WORD is also used, care must be taken that no blanks, 
other than those separating entries, appear in the input string. 
For example, if the operator wished to use advance input, but 
mistakenly entered WALL BRACKETS 105636, the first input 
operation (READTEXT at R1) would terminate with the blank 
between WALL and BRACKETS, and WALL would be transferred 
to the text buffer T1. The READTEXT at R2, operating with ad­
vance input because of the imbedded blank, would transfer BRACKE 
into text buffer T2, would not issue the prompt at T3, and would 
terminate due to exhaustion of the character count of 6 in the input 
buffer. The actual part number 105636 wou Id never be read. 

OPERATOR CONTROL OF PROGRAM EXECUTION 

'PF' and Attention Key Handling 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-11, 2-12, 
2-16, and 2-147; or SB30-1213 (Version 2 PDOM) pages 2-11, 2-12, 
2-16, and 2-161. 

Attention routines are user routines that service interrupts generated 
by pressing the ATTENTION key on a terminal (review Attention 
Lists in Section 3). The ATTN LIST statement is used to define oper­
ator entries and corresponding program locations that will receive 
control when the defined entries are made. 

The Program Function keys on 4978/4979 Displays generate interrupts 
similar to those generated by the ATTENTION key and the entry 
points of routines to service these PF interrupts may also be defined 
using the ATTN LI ST statement. 

The ATTN LIST statement in Figure 11-21 defines three attention 
routine entry points. SET1, the first entry point, operates with the 
ATTENTION key. If an operator presses ATTENTION, enters 
the characters ONE, and then presses the ENTER key, location SET1 
receives control. 

Terminal 1/0 11-19 



11-20 SR30-0220 

PROG 

START 

BACK 
PRINT 

PFPRINT 

SETI 

Pl 

END 

OUT 
SWITCH 

PROGRAM 
ATTN LIST 
IF 
IF 
IF 

GOTO 
MOVE 
PRINTEXT 
PRINTEXT 
GOTO 
MOVE 
PRINTEXT 
PRINTEXT 
GOTO 
MOVE 
ENDATTN 
MOVE 
ENDATTN 
MOVE 
ENDATTN 
PROGSTOP 
DATA 
ENDPROG 
END 

Figure 11-21. Attention routines 

START 
(ONE,SET1,$PF1,Pl,$PF,END) 
(SWITCH,EQ,l),GOTO,PRINT 
(SWITCH,EQ,2),GOTO,PFPRINT 
(SWITCH,EQ,3),GOTO,OUT 

START 
SWITCH, 0 
'ATTENTION INTERRUPT' 
SKIP= 1 
START 
SWITCH, 0 
'PROGRAM FUNCTION KEY #1 1 

SKIP= 1 
START 
SWITCH, 1 

SWITCH, 2 

SWITCH,3 

F1 0 1 

Program Function keys are identified in an ATTN LIST statement by 
the system convention "$PFx", where xis an integer between 1 and 
6, corresponding to Program Function keys PF 1 through PF6. In this 
example, location P1 will get control when PF1 is pressed. (The 
x = integer between 1 and 6 applies to the 4979 Display. When using 
the 4978 Display, many more interrupting keys are available, and the 
PFx in an ATTN LIST statement may range between PF 1 and PF254.) 

When $PF is used without a specific number, it is interpreted as all 
PF keys not previously defined (to the left of this entry) in this 
ATTN LIST statement. In Figure 11-21, Program Function key 1 is 
previously defined (middle operand pair $PF 1,P1), so location END 
will get control if PF2 through PF6 is pressed, and P1 will get control 
if PF1 is pressed. If the second and third operand pairs in the 
ATTN LIST statement were coded in reverse order, END would get 
control when any PF key was pressed, including PF 1; control would 
never be transferred to P 1. 

Attention routines execute as part of the system keyboard task, not 
as part of the user task within which they appear. Since user inter­
ference with system keyboard task execution is clearly undesirable, 
certain 1/0 and task control instructions are not allowed within 
attention routines. See the reading assignment for a list of excluded 
instructions. 



QUESTION Instruction 

When the keyboard task detects an ATTENTION or PF key interrupt 
for a task with the appropriate entry points defined in an ATTN LIST 
statement, part of the response process is to briefly enqueue the 
interrupting terminal (ENQT). If the user task has an ENQT already 
in effect, the keyboard task is prevented from getting in. For an interrupt 
resulting from the operator's pressing the ATTN key, the system cannot 
present the> prompt character until the user program issues a DEQT, 
at which time the> will be displayed. For interrupts generated by 
depression of PF keys or the ENTER key (while the terminal is 
enqueued by the user), the system returns an identifying code to the user 
program. This code can be examined by user instructions to determine 
which key was pressed. All PF keys and the ENTER key will present 
identifying codes; the user is not restricted to those PF keys defined 
in an ATTN LIST statement whose function has been temporarily 
inhibited by a user ENQT. Examples later in this section will illustrate 
how to retrieve and use the identification codes resulting from PF 
key or ENTER key interrupts. 

Attention routines execute on hardware level 1, thereby automatically 
preempting execution of all user tasks on levels 2 and 3. They should, 
therefore, be kept very short and are usually limited to the setting 
of a program switch (or posting an ECB) which is checked during 
normal program execution. The example in Figure 11-21 illustrates 
this. 

This program checks a program indicator for a value, and branches 
to different program locations, depending on what value is found. 
In this case, the indicator is the word at location SWITCH, which 
has an initial value of zero. As long as SWITCH remains zero, the 
program will loop between START and BACK. 

Pressing the ATTENTION key and entering ONE results in execution 
of the attention routine at SET1, altering the value of SWITCH to= 1. 
When the IF statement at START is next executed, control will be 
transferred to PRINT, and the message ATTENTION INTERRUPT 
will be displayed. Pressing PF1 will set SWITCH=2 (attention 
routine at P1), and result in a transfer to PFPRINT, which will display 
PROGRAM FUNCTION KEY #1. Pressing any Program Function key 
other than PF 1 will end the program (SWITCH=3, transfer to location 
OUT). Note that the attention routine at location END (PF2 through 
PF6) only sets location SWITCH to cause a later transfer to the 
PROGSTOP; PROGSTOP is one of the instructions excluded from 
attention routines, and cannot be issued from within the attention 
routine itself. 

READING ASSIGNMENT: 5830-1053 (PDOM) page 2-168; or 
S830-1213 (Version 2 PDOM) page 2-184. 

The QUESTION statement provides another way of altering program 
execution through terminal input. QUESTION displays a prompt 
message, usually in the form of a question, and branches to a specified 
location based on the response entered on the terminal. 

Terminal 1/0 11-21 



WAIT KEY Instruction 

11-22 SR30-0222 

I I 
I I 

label 
'-..,.-I 

1 QUESTION pmsg!YES=,NO=,SKIP=,LINE=,SPACES= 

OPTIONAL MUST BE CODED AT LEAST 
ONE MUST 
BE CODED 

Figure 11-22. QUESTION format 

OPTIONAL 

The pmsg operand is coded as the prompt message, contained within 
apostrophes, or as the label of a TEXT statement containing the 
prompt message. 

The YES= and NO= operands are coded with the labels of the program 
locations which are to get control if a YES or a NO response is 
entered. The only valid responses to a QUESTION prompt are Y and 
N (or any character string beginning with Y or N). Either YES= or 
NO= may be left uncoded, but not both. Entering the uncoded 
response will result in transfer to the instruction following the 
QUESTION statement. 

READING ASSIGNMENT: S830-1053 (PDOM) pages 2-34, 
2-149; or S830-1213 (Version 2 PDOM) pages 2-35, 2-164. 

In addition to the implied wait for operator input that is provided 
by the READTEXT and QUESTION instructions, the user can wait 
for the ENTER key or PF keys at any time, using a special variation 
of the WAIT statement, WAIT KEY. This instruction suspends the 
issuing task until the ENTER key or one of the PF keys is pressed, 
at which time the WAIT terminates, and execution continues with the 
instruction following the WAIT KEY. There is no automatic transfer 
to an attention routine; execution of a WAIT KEY instruction enqueues 
the terminal and temporarily inhibits the ATTN LIST capability during 
the time the task is suspended due to that WAIT instruction, just as the 
ATTN LIST function is inhibited while an ENQT is in effect. 

WAIT KEY is most often used by tasks operating terminals as static 
screen devices. In the roll screen examples shown before, issuing a 
READTEXT command caused a suspension of the issuing task, waiting 
on operator input. Execution resumed, and the input operation com­
pleted only when the operator signalled the program that the input data 
was available by pressing the ENTER key. 

When operating with static screens, the ENTER key signals that an 
entire page (screen) of input data is available. READTEXT instructions 
directed to a static screen terminal therefore do not cause the issuing 
task to wait; the input data is expected to be present, and is transferred 
immediately. 

WAIT KEY allows a task with a terminal enqueued as a static screen 
device to wait on the ENTER key (or PF keys), even though the implied 
wait with READTEXT is not operative. 



HARDCOPY PF Key 

Note: When operating with static screen devices, the implied wait with 
READTEXT is inoperative only when the READTEXT has no prompt 
message coded. Terminal input operations that are obviously intended 
for operator dialogue, such as a R EADTEXT with the pmsg operand 
coded, or a QUESTION instruction, still work the same as with roll 
screens, automatically suspending the issuing task. 

As already noted, the ATTN LIST capability is inhibited when a 
terminal is enqueued by a task as either a roll screen or static screen 
device, and/or when the task is suspended by a WAIT KEY instruction. 
Although automatic transfer to individual attention routine entry 
points associated with specific PF keys is no longer possible, the user 
can find out which key was pressed, and do the routing personally. 
An integer value equal to the numeric designation of the PF key is 
passed back to the user task in the second word of the task's TCB 
(taskname+2), and may be examined by the user program. The code 
passed back for the ENTER key is zero. For PF 1, taskname+2 
will contain a 1, for PF2 a 2, and so on through 6 for PF6. The code 
can be checked, and a transfer decision made, using IF statements or 
a computed GOTO. 

(Note: When using the 4978 Display, many more interrupting keys and 
corresponding identification codes are available than with the 4979 
terminal discussed above. See the topic "$PF MAP" in Section 14. 
Utility Programs for an aid in determining the identification codes 
associated with particular 4978 interrupting keys.) 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-217; or 
SB30-1213 (Version 2 PDOM) pages 2-280, 2-281. 

One of the operands in the TERMINAL statement defining 4978/4979 
Displays is HDCOPY=. This is coded with the symbolic name of a 
hardcopy terminal and a PF key number, in the format HDCOPY= 
(termname,keynbr). The termname must be coded. If keynbr is not 
coded, it defaults to 6, indicating Program Function key PF6. 

Whenever the PF key specified in the HDCOPY= operand is depressed, 
the present screen contents are printed out on the designated hardcopy 
device. The default for the 4979 supported by the supplied supervisor 
is HDCOPY=($SYSPRTR,6), causing the screen contents to be printed 
on the 4974 Matrix Printer whenever PF6 is depressed. 

Not knowing which PF key you may designate to activate the 
hardcopy system function, all examples in this section address Program 
Function keys PF1 through PF6 (as though HDCOPY= were coded 
HDCOPY=($SYSPRTR,O) ). 

In coding your own programs, you should be aware that the key you 
specify in the HDCOPY= operand is not available to you for other 
purposes. If specified in an ATTN LIST statement, the associated 
entry point will never receive control nor will pressing the hardcopy 
PF key terminate a WAIT KEY operation, or present its code in 
taskname+2. 

Terminal 1/0 11-23 



STATIC SCREEN CODING EXAMPLE 

11-24 SR30-0220 

In the following several illustrations (Figures 11-23 through 11-43), 
a simple static screen program is developed, using most of the terminal 
instructions already discussed, and introducing some new instructions 
applicable only to static screen operation. 

The initial portion of this program operates the terminal as a rol I 
screen device, with NH IST=O. The rest of the program uses the 
terminal in the static screen mode. An IOCB will be required for 
each of the two modes. 

Operator instructions are displayed requiring the operator to ( 1) end 
the program, or (2) bring up the entry screen (static screen) and proceed. 
The operator's decision is communicated to the program using the 
ATTN LIST facility, so an ATTN LIST statement will also be required. 

Figure 11-23 shows the two IOCBs, the ATTN LIST statement, and 
the associated attention routines. 

XMPLSTAT 
IOCBl 
IOCB2 

OUT 

STATIC 

ATTNECB 

PROGRAM 
IOCB 
IOCB 
ATTN LIST 

POST 
ENDATTN 
POST 
ENDATTN 
ECB 

EN DP ROG 
END 

Figure 11-23. IOCB/ATTNLIST 

START 
NHIST=O 
SCREEN=STATI C 
(END,OUT,$PF,STATIC) 

ATTNECB,l 

ATTNECB,-1 

Figure 11-24 is the entire roll screen portion of the program. Execution 
begins at location ST ART, with the ENQT directed to IOCB 1. The 
IOCB changes NHIST=12 to NHIST=O for the loading terminal (no 
terminal name specified in the IOCB, default to loading terminal, and 
assuming loading terminal is a 4979 with NH IST=12 normally in 
effect). 

Now that the loading terminal is enqueued, the five PRI NTEXT 
statements following the ENQT display the program title and 
operator directions on the screen. Since operator control has been 
defined through an ATTN LIST, and ATTN LIST is inhibited while 
the terminal is enqueued, the last PRINTEXT is followed by a DEOT, 
placing the ATTN LIST in effect. 



XMPLSTAT 
IOCBl 
IOCB2 

PROGRAM 
IOCB 
IOCB 
ATTN LIST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
DEQT 
WAIT 

START 
NHIST=O 
SCREEN=STATI C 
(END,OUT,$PF,STATIC) 
IOCBl START 

CHECK 
IF 

ENTRY ENQT 

END IT PROGSTOP 

'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
'HIT 11 ATTN 11 AND ENTER 11 END 11 TO END' ,SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY T0 1 ,SKIP=2 
1 BRING UP THE ENTRY SCREEN' 

ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
IOCB2 

OUT POST ATTNECB,l 
END ATTN 

STATIC POST 
ENDATTN 

ATTNECB ECB 

ENDPROG 
END 

Figure 11-24. Roll screen portion 

ATTNECB ,-1 

The ECB at location ATTNECB assembles with an initial value in the 
first word of -1 indicating "event complete". The WAIT at location 
CHECK is coded with a RESET operand, which resets the first word 
of the ECB at ATTNECB to zero before the WAIT is executed. A zero 
in the first word of an ECB indicates "event not occurred," so the 
WAIT at CHECK will suspend task XMPLSTAT, waiting on event 
ATTNECB. If the WAIT has been coded without the RESET operand, 
the WAIT would have executed as a no-op. 

If the operator presses ATTENTION, enters END and presses 
RETURN, the attention routine at OUT will execute, posting the 
ECB at ATTN ECB with a +1 (first word= 1 ). A value other than 
zero in the first word of the ECB indicates "event complete," and 
the WAIT operation terminates. Execution continues with the IF 
statement following the WAIT, which will transfer control to location 
ENDIT. 

Terminal 1/0 11-25 



ERASE Instruction 

11-26 SR 30-0220 

If the operator wants to proceed with the CLASS ROSTER PROGRAM 
and presses a PF key, ATTN EC8 will be posted with a value of -1 by 
the attention routine at STATIC. The WAIT will terminate, the IF 
that follows will not transfer control to ENDIT (ATTNE8C NOT= +1), 
and execution will continue with the ENQT at location ENTRY, which 
is the beginning of the static screen portion of the program. 

After the program title and operator instructions have been written 
to the terminal (while the program is waiting at CHECK for the 
operator response), the screen looks like Figure 11-25. 

LINES 

t 
0 

CLASS ROSTER PROGRAM 

HIT 'ATTN' AND ENTER 'END' TO END THE PROGRAM 

HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890 

Figure 11-25. Initial operator instructions 

Assuming the operator pressed a PF key, execution now continues 
at location ENTRY (Figure 11-26). The ENQT enqueues the terminal 
as a static screen device. 

READING ASSIGNMENT: S830-1053 (PDOM) page 2-152; or 
S830-1213 (Version 2 PDOM) pages 2-167, 2-168. 

An automatic erase of a roll screen is performed by the system each 
time the page size of the screen is exceeded. Erasure of a static screen 
device is a user responsibility, and the ERASE instruction is, 
therefore, valid only for static screens. 

You can select how much you want to erase, from as little as a single 
character position to the entire screen. In Figure 11-26, the ERASE 
following the ENOT will erase the entire screen. The MODE= operand 
defines the ending point of the erase operation; in this case, the end of 
the screen. The starting point of the erase is determined by SKIP=, 
LINE=, and SPACES= forms operands, in this example defaulting to 
LINE=O, SPACES=O. TYPE= specifies whether only unprotected 
data shou Id be erased (TYPE=DAT A) or if the eras.e applies to 
protected data also (TYPE=ALL). 

..) 



TERMCTRL Instruction 

XMPLSTAT PROGRAM 
IOCBl IOCB 
IOCB2 IOCB 

ENTRY 

ATTN LIST 
ENOT 

IF 
ENQT 
ERASE 
TERMCTRL 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 

EN DP ROG 
END 

START 
NHIST=O 
SCREEN=STATIC uNCTION KEY 
(END' OUT (!-r- ..... i:NTRY SCREEN I 

Al NECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
IOCB2 
MODE=SCREEN,TYPE=ALL 
BLANK 
'ENTER KEY = PAGE COMPLETE' ,LINE=l 

PFl = DELETE ENTRY l' 
PF2 = DELETE ENTRY 2' 

'PF3 =DELETE ENTRY 3 1 ,SKIP=l 
'PF4 = DELETE ENTRY 4' 

Figure 11-26. Operator directions 

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-168.1; or 
SB30-1213 (Version 2 PDOM) pages 2-185 through 2-191. 

TE RMCTR L is used for several specialized functions, most of which 
are device/hardware feature dependent control operations. In Figure 
11-26, the TE RM CTR L BLANK instruction blanks the 4979 display 
screen. 

The remainder of this portion of the program is going to format the 
display screen by executing a series of PRINTEXT instructions. 
When several operations are performed sequentially, the 4979 screen 
exhibits a flickering that some people find annoying. Issuing the 
TERMCTRL BLANK turns off the display capability of the screen, 
allowing the series of output operations to take place without 
visible flicker. After the formatting has been completed, another 
TE RMCTR L function will be used to display the finished screen. 

The five PRINTEXT instructions following the TERMCTRL will 
write some operator guides at the top of the screen. When these 
instructions have executed, the screen would look like Figure 11-27 
(assuming an unblanked screen). 

Terminal 1/0 11-27 



11-28 SR30-0220 

LINES 
t ~--~~~~~~~~~~~~~~~~~~~~~~~~-
0 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

PF2 = DELETE ENTRY 2 

...) 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS -12345678901234567890123456789012345678901234567890123456789012345678901234567 890 

Figure 11-27. Operator directions/screen 

In Figure 11-28, execution continues with the PR I NTEXT at location 
HDR. This instruction writes a screen-wide (80 character) line of 
hyphens, separating the operator guide area just written from the 
rest of the screen. The text buffer referenced by this instruction 
(location DASHES) is not the label of a TEXT statement, but is a 
user-defined text buffer. Since PR I NTEXT uses the control bytes 
that precede text buffers generated by TEXT statements, the user 
must code the control bytes when defining non-TEXT statement 
text buffers. 

The DATA statement preceding location DASHES is coded as 
X'5050', establishing a length byte of 80 and a count byte of 80 
(hex 50=decimal 80). This tells the PRINTEXT at HDR that the 
buffer is 80 character positions long, and that all 80 positions 
contain data. 



XMPLSTAT PROGRAM 
IOCBl IOCB 
TOCB2 IOCB 

ATTNLIST 

PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 

HOR PRINTEXT 
MOVE 

DATA 
DASHES DATA 

EN DP ROG 
END 

~AGE COMPLETE' ,LINE=l 
DELETE ENTRY 1' 

PF2 = DELETE ENTRY 2' 
'PF3 = DELETE ENTRY 3 I ,SKIP=l 
'PF4 = DELETE ENTRY 4' 
DASHES,PROTECT=YES,LINE=3 
'CLASS NAME: ',LINE=4,PROTECT=YES 
'INSTRUCTOR NAME: ',LINE=4,PROTECT=YES,SPACES=32 
DASHES,PROTECT=YES,LINE=5 
LINENBR,6 

X'5050' 
BOC' - I 

Figure 11 -28. Non-standard text buffer 

The PROTECT= YES operand specifies that the line of hyphens be 
written as protected data. Protected data cannot be altered by 
operator input. 

The next PRINTEXT places CLASS NAME: in the first eleven 
positions of line 4, and the following one puts INSTRUCTOR NAME: 
on the same line, with both messages protected. 

The last PR I NT EXT in Figure 11 -28 writes another separator line 
of hyphens, again using the user-defined text buffer at DASHES. 
Figure 11-29 shows how the screen would look if it were displayed 
at this point. 

Terminal 1/0 11-29 



11-30 SR30-0220 

LINES 
' r--~~~~~~~~~~~~~~~~~~~~~~~~--..~ 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

CLASS NAME: 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

INSTRUCTOR NAME: 

P F2 = DELETE ENTRY 2 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901 234567890 

Figure 11 ·29. Header 

The rest of the screen formatting section of the program is shown in 
Figure 11-30. This portion will format the remainder of the screen 
into four data entry areas. 

First, the variable LINENBR is set to 6. Next, a DO loop is defined, 
specifying four executions of the loop, corresponding to the four 
data entry areas to be formatted. 

All PRINTEXT instructions within the loop have the LINE= operand 
coded, with the variable name LINENBR, rather than as an integer 
constant. Before this first executi:on of the DO loop, LINENBR 
was initialized to 6. The first PR I NT EXT writes the protected 
characters NAME: into the first 5 positions of line 6, and the second 
PRINTEXT leaves 25 unprotected spaces following NAME:, and 
writes STREET: to the same line. 



XMPLSTAT PROGRAM 
IOCBl IOCB 

IOCB 
ATTN LI ST 

START 
NHIST=O 
SCREEN='-r· 
(pin 

---~ 
;--::----~_,,.:>RES, PROTECT=YES, LINE=3 

PRINTEXT 
PRINTEXT 
PRINTEXT 
MOVE 
DO 
PRINTEXT 
PRINTEXT 

Al ADD 
PRINTEXT 

A2 ADD 
PRINTEXT 
ADD 
END DO 
PRINTEXT 
TERMCTRL 

WA ITON E WA IT 

LINENBR DATA 
EN DP ROG 
END 

'CLASS NAME: 1 ,LINE=4,PROTECT=YES 
'INSTRUCTOR NAME: 1 ,LINE=4,PROTECT=YES,SPACES=32 
DASHES,PROTECT=YES,LINE=5 
LINENBR,6 
4, TIMES 
'NAME: I ,LINE=LINENBR,PROTECT=YES 
'STREET: 1 ,LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR,1 
'CITY : 1 ,LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR,1 
'STATE : I ,LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR, 3 

LI NE=4, SPACES= 11 
DISPLAY 
KEY 

F'O' 

Figure 11-30. Finish formatting the screen 

Next, the ADD at A1 increases LINENBR by 1, and the PRINTEXT 
that follows is directed to line 7, LINENBR is again incremented 
(ADD at A2), and the last PRINTEXT is directed to line 8. The 
ADD just preceding the ENDDO increases LINENBR by 3, skipping 
down to the next data entry area to be formatted. 

After four executions of the DO loop, the PR I NT EXT immediately 
following the ENDDO statement is executed. This PRINTEXT 
positions the cursor just to the right of the CLASS NAME: message 
in the screen header, above the four data entry areas just formatted 
in the DO loop. The TERMCTRL DISPLAY command removes 
the blanking from the screen, and displays the cursor at the position 
determined by the previous PRI NTEXT. Figure 11-31 shows the 
fully formatted screen that is now displayed. 

Terminal 1/0 11-31 



11-32 SR30-0220 

LINES 

9 
10 

r 
ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

CLASS NAME: 

NAME: 

11 NAME: 
12 
13 
14 
15 
16 NAME: 
17 
18 
19 
20 
21 NAME: 
22 
23 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

INSTRUCTOR NAME: 

STREET: 
CITY 
STATE : 

STREET: 
CITY : 
STATE : 

STREET: 
CITY : 
STATE : 

STREET: 
CITY : 
STATE : 

PF2 = DELETE ENTRY 2 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS 12345678901234567890123456789012345678901234567890123456789012345678901234567890 

Figure 11 ·31. Completed format 

The program is in a wait state, suspended by execution of the 
WAIT KEY at location WAITONE. The program will not be 
activated again unti I the operator presses the ENTER key or one of 
the PF keys. 

The screen is now completely formatted, and ready for data entry. 
Figure 11-32 shows the complete screen formatting portion of the 
program. 



XMPLSTAT PROGRAM START 
IOCB 1 IOCB NHIST=O 

SCREEN=STA TIC IOCB2 IOCB 

ENTRY 

HOR 

Al 

A2 

WAITONE 

DASHES 

ENQT 
ERASE 
TERMCTRL 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
MOVE 
DO 
PRINTEXT 
PRINTEXT 
ADD 
PRINTEXT 
ADD 
PRINTEXT 
ADD 
END DO 
PRINTEXT 
TERMCTRL 
WAIT 

DATA 
DATA 

IOCB2 
MODE=SCREEN,TYPE=ALL 
BLANK 
'ENTER KEY = PAGE COMPLETE' ,LINE=l 
' PFl =DELETE ENTRY 1' 

PF2 = DELETE ENTRY 2' 
'PF3 = DELETE ENTRY 3 I ,SKIP=l 
'PF4 = DELETE ENTRY 4' 
DASHES,PROTECT=YES,LINE=3 
'CLASS NAME: ',LINE=4,PROTECT=YES 
'INSTRUCTOR NAME: ',LINE=4,PROTECT=YES,SPACES=32 
DASHES,PROTECT=YES,LINE=5 
LINENBR,6 
4, TIMES 
'NAME: I ,LINE=LINENBR,PROTECT=YES 
'STREET: I ,LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR,1 
'CITY : ',LINE=LINENBR,SPACES=30,PROTECT=YES 
LI NENBR, 1 
'STATE :' ,LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR,3 

LINE=4,SPACES=ll 
DISPLAY 
KEY 

X'5050' 
80C 1

-
1 

LINENBR DATA F1 0 1 

EN DP ROG 
END 

Figure 11·32. Screen formatting section 

The operator may position the cursor at will, and enter data in any 
unprotected area of the screen. Positioning the cursor at LIN E=4, 
SPACES=11, is a convenience to the operator, not a required function 
- the operator could have used the cursor positioning keys to move 
the cursor to the same position. 

Terminall/0 11-33 



11-34 SR30-0220 

Some cursor-positioning functions are automaticalty provided by the 
hardware. Assume that the operator enters SERIES/1 HARDWARE 
in the space immediately following the protected CLASS NAME: 

message, and then presses the tab right key (( ~1)). The cursor 

will automatically skip over the protected INSTRUCTOR NAME: 
field, and position itself at the beginning of the unprotected area 
which follows, as shown in Figure 11-33. 

LINES 

t 
0 

10 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

CLASS NAME:SERIES/1 HARDWARE 

NAME: 

11 NAME: 
12 
13 
14 
15 
16 NAME: 
17 
18 
19 
20 
21 NAME: 
22 
23 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

INSTRUCTOR NAME:_ 

STREET: 
CITY 
STATE : 

STREET: 
CITY 
STATE : 

STREET: 
CITY : 
STATE : 

STREET: 
CITY : 
STATE : 

PF2 = DELETE ENTRY 2 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS - 123456789012345678901234567890123456789012345678901234567890123456789012345678i!O 

Figure 11-33. Cursor movement ( 1 ) 

After entering the instructor name, the next tab right key depression 
results in the cursor position shown in Figure 11-34, ready for the 
first student name entry. 

LINES 

t 
0 

10 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

CLASS NAME:SERIES/1 HARDWARE 

NAME:_ 

11 NAME: 
12 
13 
14 
15 
16 NAME: 
17 
18 
19 
20 
21 NAME: 
22 
23 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

PF2 = DELETE ENTRY 2 

INSTRUCTOR NAME:JOHN JONES 

STREET: 
CITY 
STATE : 

STREET: 
CITY 
STATE : 

STREET: 
CITY : 
STATE : 

STREET: 
CITY : 
STATE : 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS - 12345678901234567890123456789012345678901234567890123456789012345678901234567890 

Figure 11-34. Cursor movement (2) 



Each successive tab key depression resu Its in an automatic skip 
of the cursor to the beginning of the next unprotected area on the 
screen. In this example, the cursor will successively tab to NAME:, 
STREET:, CITY:, and STATE:, and then down to the NAME: in 
the next data entry area, as shown in Figure 11-35. 

LINES 

t 

7 
8 
9 
10 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

CLASS NAME:SERIES/l HARDWARE 

NAME:JOHN JAMES 

11 NAME:_ 
12 
13 
14 
15 
16 NAME: 
17 
18 
19 
20 
21 NAME: 
22 
23 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

PF2 = DELETE ENTRY 2 

INSTRUCTOR NAME: JOHN JON ES 

STREET: 111 GRANT AVENUE 
CITY :ENDICOTT 
STATE :NEW YORK 13760 

STREET: 
CITY : 
STATE : 

STREET: 
CITY : 
STATE : 

STREET: 
CITY : 
STATE : 

CHARACTER 1111111111222222222233333333334444444444555555555566666666667777777777 8 
POSITIONS_. 123456789012345678901234567·89012345678901234567890123456789012345678901234567890 

Figure 11-35. Cursor movement (3) 

With no interaction with the program, an entire screen of information 
can be prepared for input, and transferred at one ti me. Th is is what 
is meant by static screen operation, in contrast to the transactional 
prompt/reply dialogue typical of roll screen operation. 

Figure 11-36 shows a completed input screen. The operator is 
now at the point where the program must be signalled to proceed. 

LINES 
t 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

CLASS NAME:SERIES/1 HARDWARE 

NAME: JOHN JAMES 

NAME: JAMES JONES 

NAME:JIM JOHNS 

NAME : JOAN JI MSON 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

PF2 = DELETE ENTRY 2 

INSTRUCTOR NAME:JOHN JONES 

STREET:lll GRANT AVENUE 
CITY :ENDICOTT 
STATE :NEW YORK 13760 

STREET: 255 ALHAMBRA CIRCLE 
CITY : CORAL GABLES 
STATE :FLORIDA 33135 

STREET:140 EAST TOWN STREET 
CITY : COLUMBUS 
STATE :OHIO 43215 

STREET:6216 WASHINGTON AVENUE 
CITY : RACINE 
STATE :WISCONSIN 53406 _ ..I 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS - 123456789012345678901234567890123456789012345678901234567 89012345678901234567890 

Figure 11-36. Full screen 

Terminal 1/0 11-35 



11-36 SR30=0220 

In Figure 11-37, the WAIT KEY at WAITONE will be terminated 
by pressing the ENTER key or a PF key. The computed GOTO 
following the WAIT KEY will transfer control to various entry 
points, depending on the return code in "taskname+2." A return 
code of zero, from the ENTER key, will cause a transfer to location 
READ. PF 1 through PF4 will return codes of 1 through 4, and result 
in transfers to E 1 through E4, respectively. (With the GOTO coded 
as shown, a PF key higher than PF4 will cause a transfer to READ, 
as the return code would be outside the valid range of Index values 
1-4, just as the zero returned by the ENTER key is outside that range, 
and also results in a transfer to READ.) 

For now, assume the operator presses the ENTER key, signalling 
the program that the page is complete, and transferring control to 
READ. 

START 
NHIST=O 
SCREEN-' 

~--~ rc:~·-_-=4,SPACES=ll 
I l:..l\1'11.1 I "L DI SPLAY 

WAITONE WAIT KEY 
GOTO (READ,El,E2,E3,E4),XMPLSTAT+2 

READ 

CLEANUP 

QUESTION 
ERASE 
ERASE 
PRINTEXT 
TERMCTRL 
GOTO 
ERASE 
DEQT 
GOTO START 

EN DP ROG 
END 

Figure 11-37. ENTER key 

1 MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP 
MODE=LINE,LINE=2,SPACES=55,TYPE=DATA 
MODE=SCREEN,LINE=6 
LINE=6,SPACES=5 
DISPLAY 
WAIT ONE 
MODE=SCREEN,TYPE=ALL 

In a real program, the routine at location READ would contain the 
READTEXT instructions necessary to read all the data entered on 
the screen. In the application illustrated here, that data would 
presumably be collected and used to print a class roster for the 
SERIES/1 HARDWARE course taught by JOHN JONES. 

Assuming that the contents of the screen has been transferred, the 
QUESTION instruction at READ displays the prompt message 
MORE ENTRIES? in the operator guide area at the upper right of 
the screen, as shown in Figure 11-38. 



LINES 
+ r--~~~~~~~~~~~~~~~~~~~~~~~~--
o 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

PF2 = DEl.ETE ENTRY 2 
MORE ENTRIES ? _ 

CLASS NAME: SERIES/ 1 HARDWARE INSTRUCTOR NAME: JOHN JON ES 

NAME: JOHN JAMES STREET:lll GRANT AVENUE 
CITY :ENDICOTT 
STATE :NcW YORK 13760 

10 
11 NAME:JAMES JONES STREET: 255 ALHAMBRA CIRCLE 
12 CITY : CORAL GABLES 
13 STATE :FLORIDA 33135 
14 
15 
16 NAME:JIM JOHNS STREET:140 EAST TOWN STREET 
17 CITY : COLUMBUS 
18 STATE :OHIO 43215 
19 
20 
21 NAME :JOAN JIMSON STREET: 6216 WASHINGTON AVENUE 
22 CITY : RACINE 
23 STATE :WISCONSIN 53406 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890 

Figure 11-38. After ENTER key 

The MORE ENTRIES? query is asking the operator, "Are there 
more students to add to this roster, or are the students just read from 
the current screen the last ones at this time?" 

The QUESTION statement is coded with NO=CLEANUP. YES= 
is not coded, and therefore a YES response will result in execution of 
the ERASE instruction following the QUESTION. Assume there are 
more students, and YES is the response. The first E RASE·following 
the QUESTION clears the prompt and reply from the operator guide 
area, and the second ERASE clears all unprotected data from the 
four data entry areas in lines 6 through 23. The SER I ES/1 
HARDWARE and JOHN JONES entries in the header area are left 
undisturbed, since the student names and addresses to be entered are 
still for the same class. 

.I 

The PRINTEXT following the second ERASE (Figure 11-37) positions 
the cursor at the first unprotected entry field for the first data entry 
area. The TE RMCTR L DISPLAY that follows displays the cursor, 
resulting in the screen shown in Figure 11-39. 

Terminal 1/0 11-37 



11-38 SR 30-0220 

LINES 

t 
0 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

PF2 = DELETE ENTRY 2 

CLASS NAME:SERIES/l HARDWARE INSTRUCTOR NAME: JOHN JON ES 

NAME:_ STREET: 
CITY 
STATE : 

10 
11 NAME: STREET: 
12 CITY 
13 STATE : 
14 
15 
16 NAME: STREET: 
17 CITY 
18 STATE : 
19 
20 
21 NAME: STREET: 
22 CITY : 
23 \,,, STATE : 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
P·OSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567 890 

Figure 11-39. Reply YES to QUESTION 

If there were no more students to enter for this roster, and the 
response to the MORE ENTRIES? prompt were NO, the 
QUESTION statement (Figure 11-37) would transfer control to 
location CLEANUP, which erases both protected and unprotected 
areas of the entire screen, dequeues the terminal, and goes back to 
the beginning of the program (START), bringing up the roll screen 
with the initial operator directions, as shown in Figure 11-40. 

LINES 

t 
0 

6 
7 
8 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

CLASS ROSTER PROGRAM 

HIT 'ATTN' AND ENTER 'END' TO END THE PROGRAM 

HIT ANY PROGRAM FUN CT ION KEY TO BRING UP THE ENTRY SCREEN 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901 234567890 

Figure 11-40. Reply NO to QUESTION 



In Figure 11-41, assume the program is again suspended by the WAIT 
KEY at WAITONE, with the completed screen depicted in Figure 11-36. 
The transfer to location READ and the MORE ENTRIES? prompt from 
the QUESTION statement resulted from the operator's pressing the 
ENTER key. The WAIT KEY may also be terminated by a PF key. 

There are no pre-assigned functions for PF keys, other than the 
hardcopy facility already discussed. Therefore, the purpose of a 
particular PF key in any program is defined by the instructions coded 
in the routine to which control is transferred when that PF key is 
depressed. 

In the example in Figure 11-41, PF1 through PF4 have been assigned 
as delete functions for the four data entry areas, as shown by the 
operator guides at the top of the screen (Figure 11-36). 

XMPLSTAT PROGRAM 
IOCBl IOCB 
IOCB2 IOCB 

ATTN LIST 

TE.KIYIL I KL 

WAITONE WAIT 
GOTO 

El MOVE 
GOTO 

E2 MOVE 
GOTO 

E3 MOVE 
GOTO 

E4 MOVE 
DELETE ERASE 

ADD 
ERASE 
ADD 
ERASE 
SUBTRACT 
PRINTEXT 
TERMCTRL 
GOTO 

LINENBR DATA 
EN DP ROG 
END 

Figure 11-41. PF keys 

START 
NHIST=O 
SCREEN=STATT'"' 
(END o-

-4, SPACES=ll 
DISPLAY 
KEY 
(READ,El,E2,E3,E4),XMPLSTAT+2 
LINENBR,6 
DELETE 
LINENBR, 11 
DELETE 
LINEN BR, 16 
DELETE 
LINENBR,21 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LINENBR, 1 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LINENBR,l 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LINENBR,2 
LINE=LINENBR,SPACES=5 
DISPLAY 
WAITONE 

F1 0 1 

Terminal 1/0 11-39 



11-40 SR30-0220 

Assume that for some reason, the student JIM JOHNS, the third entry 
on the screen, is not supposed to be on the class roster; the operator, 
therefore, presses PF3. 

In Figure 11-41, the PF key terminates the WAIT KEY, and the 
computed GOTO transfers control to E3. The MOVE at E3 initializes 
the LINENBR variable to 16, which is the top line of the third data 
entry area. Control is then transferred to DELETE, where successive 
ERASE operations and adjustments of the LIN EN 8 R variable resu It 
in erasure of the unprotected portions of the third data entry area. 
Before returning to the WAIT KEY, the cursor is positioned and dis­
played at the first entry field of the erased data area, as shown in 
Figure 11-42. 

LINES 

+ r----------------------~~~~~~~~~----------~-
o 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

PF2 = DELETE ENTRY 2 

CLASS NAME:SERIES/1 HARDWARE INSTRUCTOR NAME:JOHN JONES 
5 
6 
7 
8 
9 
10 

NAME:JOHN JAMES 

11 NAME: JAMES JONES 
12 
13 
14 
15 
16 NAME:_ 
17 
18 
19 
20 

STREET: 111 GRANT AVENUE 
CITY :ENDICOTT 
STATE :NEW YORK 13760 

STREET: 255 ALHAMBRA CIRCLE 
CITY :CORAL GABLES 
STATE :FLORIDA 33135 

STREET: 
CITY : 
STATE : 

21 NAME:JOAN JIMSON STREET:6216 WASHINGTON AVENUE 
22 CITY :RACINE 
23 , ____________________ s_T_AT_E_:_w_rs_co_N_SI_N_5_3_40_6 ________________ ___ 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890 

Figure 11-42. After PF3 

For your reference, the program example used in the foregoing dis­
cussion is shown in its entirety in Figure 11-43. 



XMPLSTAT PROGRAM START 
IOCB 1 IOCB NHIST=O 

SCREEN=STATIC 
(END,OUT,$PF,STATIC) 
IOCBl 

IOCB2 IOCB 

START 

CHECK 

ENTRY 

HOR 

Al 

A2 

ATTN LIST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
DEQT 

'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
I HIT "ATTN" AND ENTER 11 END 11 TO END' ,SKIP=2 
I THE PROGRAM I 

'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

WAIT ATTNECB,RESET 
IF (ATTNECB,EQ,l),GOTO,ENDIT 
ENQT IOCB2 
ERASE MODE=SCREEN,TYPE=ALL 
TERMCTRL BLANK 
PRINTEXT 'ENTER KEY= PAGE COMPLETE' ,LINE=l 
PRINTEXT ' PFl =DELETE ENTRY l' 
PRINTEXT ' PF2 = DELETE ENTRY 2' 
PRINTEXT 'PF3 = DELETE ENTRY 3 
PRINTEXT 'PF4 = DELETE ENTRY 4' 
PRINTEXT DASHES,PROTECT=YES,LINE=3 

I ,SKIP=l 

PRINTEXT 'CLASS NAME: I ,LINE=4,PROTECT=YES 
PRINTEXT 'INSTRUCTOR NAME: I ,LINE=4,PROTECT=YES,SPACES=32 
PRINTEXT DASHES,PROTECT=YES,LINE=5 
MOVE LINENBR,6 
DO 4,TIMES 
PRINTEXT 'NAME: I ,LINE=LINENBR,PROTECT=YES 
PRINTEXT 'STREET: I ,LINE=LINENBR,SPACES=30,PROTECT=YES 
ADD LINENBR,l 
PRINTEXT 'CITY : ',LINE=LINENBR,SPACES=30,PROTECT=YES 
ADD LINENBR,l 
PRINTEXT 'STATE : I ,LINE=LINENBR,SPACES=30,PROTECT=YES 
ADD LINENBR,3 
ENDDO 
PRINTEXT LINE=4,SPACES=ll 
TERMCTRL DISPLAY 

WAITONE WAIT KEY 
GOTO (READ,El,E2,E3,E4),XMPLSTAT+2 

Figure 11-43. Complete program ( 1 of 2) 

Terminal 1/0 11-41 



El MOVE LINENBR,6 
GOTO DELETE 

E2 MOVE LI NENBR, 11 
GOTO DELETE 

E3 MOVE LINEN BR, 16 
GOTO DELETE 

E4 MOVE LINENBR,21 
DELETE ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR 

ADD LINENBR,l 
ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR 
ADD LINENBR, 1 
ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR 
SUBTRACT LINENBR, 2 
PRINTEXT LINE=LINENBR,SPACES=5 
TERMCTRL DISPLAY 
GOTO WAITONE 

READ QUESTION 'MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP 
ERASE MODE=LINE,LINE=2,SPACES=55,TYPE=DATA 
ERASE MODE=SCREEN,LINE=6 
PRINTEXT LINE=6 ,SPACES=5 
TERMCTRL DISPLAY 
GOTO WAIT ONE 

CLEANUP ERASE MODE=SCREEN,TYPE=ALL 
DEQT 
GOTO START 

END IT PROGSTOP 
DATA X'5050' 

DASHES DATA SOC'-' 
OUT POST ATTNECB,l 

ENDATTN 
STATIC POST ATTNECB,--1 

ENDATTN 
ATTNECB ECB 
LINEN BR DATA F'O' 

EN DP ROG 
END 

Figure 11-43. Complete program (2 of 2) 

11-42 SR30-0220 



RDCU:RSOR INSTRUCTION 

READING ASSIGNMENT: 5830-1053 (PDOM) page 2-167; or 
SB30-1213 (Version 2 POOM) page 2-183. 

Another instruction applying only to static screens, but not used in 
the foregoing programming example, is RDCURSOR. This instruction 
will store the line number and indent from the left margin (SPACES) 
corresponding to the current cursor position, in user program variables. 
It can be used as an additional means of communication between 
program and operator. For example, if a prompt displayed on a 
particular screen is unusually cryptic, an operator unfamiliar with the 
application might not know what data should be entered in the associ­
ated data entry field. If a particular PF key is designated as the 
help function, and results in a transfer to a routine which executes 
a RDCURSOR instruction, the operator can position the cursor in 
the data entry field whose purpose is in doubt, and press the help 
P.F key. The RDCURSOR command could then sense the cursor 
position, find out which field is causing the confusion by comparing 
the sensed position to the known data entry field locations, and 
display explicit instructions for the field in G')uestion. 

PRlNTNUM/GETVALUE INSTRUCTIONS 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-1'57, 
2-158 and pages 2-162 through 2-164; or SB30-1213 (Version 2 
PDOM) pages 2-172, ·2-173 and pages 2-177 through 2-179. 

The PRINTEXT and READTEXT instructions,are used to transfer 
EBCDIC character .strings to and from terminals. PRINTNUM 
and GETVALUE instructions perform the same functi,cms for 
numeric values. PR I NTN UM takes a numeric value in sto·rage, 
automatically performs the conversion from internal (binary) 
representation, and transfers it to a terminal for display or 
printing. 

Terminal 1/0 11-43 



PR I NTN UM can display a single value, 

[rRINTNUM 1oc] 

Pl PROGRAM START 
START PRINTEXT 'VALUE = I 

PRINTNUM IVAL 
PRINTEXT SKIP= 1 
PROGSTOP 

IVAL DATA F1 31416 1 

ENDPROG 
END 

11-44 SR30-0220 



- or a single PR I NTN UM statement can be used to display multiple 
values. When more than one value is displayed by the same 
PR I NTN UM, the values can be displayed on separate lines, 

I PRINTNUM loc,count,nline j 

Pl PROGRAM START 
START PR IN TEXT 'VALUES' 

PRINTNUM IVALS,3, l,SKIP=l 
PRINTEXT SKIP= 1 
PROGSTOP 

IVALS DATA F1 31416 1 

DATA F1 500 1 

DATA F1 17 1 

EN DP ROG 
END 

Terminal 1/0 11-45 



11 -46 SR 30-0220 

- or can be displayed on the same line. 

j PRINTNUM loc,count,nline I 

Pl 
START 

IVALS 

PROGRAM 
PRINTEXT 
PRINTNUM 
PR IN TEXT 
PROGSTOP 
DATA 
DATA 
DATA 
EN DP ROG 
END 

START 
'VALUES' 
IVALS,3,3,SKIP=l 
SKIP=l 

F'31416' 
F'500' 
F' 17' 



When multiple values appear on the same line, you can control the 
spacing between values. 

I PRINTNUM loc,count,nline,nspace I 

Pl PROGRAM START 
START PRINTEXT 'VALUES = I 

PR I NTN UM IVALS,3,3,10 
PRINTEXT SKIP= 1 
PROGSTOP 

IVALS DATA F'31416' 
DATA F1 500 1 

DATA F'17' 
EN DP ROG 
END 

VALUES= 31416 500 17 

\\ 

Terminal 1/0 11-47 



11-48 SR30-0220 

If desired, values may be displayed in hexadecimal rather than 
decimal form. 

PRINTNUM loc,count,nline,space,MODE= 

Pl 
START 

IVALS 

PROGRAM 
PR IN TEXT 
PRINTNUM 
PRINTEXT 
PROGSTOP 
DATA 
DATA 
DATA 
ENDPROG 
END 

START 
'VALUES = I 

IVALS,3,3,10,MODE=HEX 
SKIP=l 

F1 31416 1 

F1 500 1 

F1 17 1 



GETVALUE transfers a numeric text string, input by an operator, 
into storage, automatically converting to internal (binary) representation. 

I GETVALUE l oc] 

Pl PROGRAM START 
START GETVALUE IVAL 

PROGSTOP 
IVAL DATA F1 01 

EN DP ROG 
END 

Terminall/O 11-49 



11-50 SR30-0220 

As with READTEXT, a prompt message may be issued prior to the 
input operation. 

I GETVALUE 1 oc, pmsg l 

Pl PROGRAM START 
START GETVALUE IVAL,'ENTER VALUE: 1 

PROGSTOP 
IVAL DATA F 1 0 1 

EN DP ROG 
END 

r 
ENTER VALUE: 31416 



Multiple values can be read by a single GETVALUE instruction, 

I GETVALUE 1 oc, pmsg, count I 

Pl PROGRAM START 
START GETVALUE IVALS,'ENTER VALUES: ',3 

PROGSTOP 
IVALS DATA 3F'O' 

EN DP ROG 
END 

Terminal 1/0 11-51 



- and hexadecimal input can be accepted. 

I GETVALUE loc,pmsg,count,MODE= I 

Pl PROGRAM 
START GETVALUE 

PROGSTOP 
IVALS DATA 

EN DP ROG 
END 

START 
IVALS,'ENTER VALUES: I ,3,MODE=HEX 

3F 1 0 1 

Forms control operands (SKIP=, LINE=, and SPACES=) serve the 
same purpose and are used the same way with PR I NTN UM and 
GETVALUE as for PRINTEXT and READTEXT. See the reading 
assignment for how to use PRINTNUM and GETVALUE with 
double precision integers, standard and extended precision floating 
point values, and the external data formatting option. 

PRINTIME/PRINDATE INSTRUCTIONS 

11-52 SR30-0220 

READING ASSIGNMENT: S830-1053 (PDOM) page 2-161. 
S830-1213 (Version 2 PDOM) page 2-176. 

PRINTIME and PRINDATE are pre-defined terminal output 
operations. PRINTIME will display the current value of the system 
24 hour clock in the format HH:MM:SS. PRINDATE displays the 
date as MM/DD/YY. 



TERMINAL 1/0 REVIEW EXERCISE - QUESTIONS 

1. Describe the program states or conditions which, while in 
effect, inhibit the ATTN LIST capability. 

a. 

b. 

2. List three buffer forcing conditions. 

a. 

b. 

c. 

3. Assume the following two instructions are executed, directed at 
a static screen. 

PR IN TEXT 
PR IN TEXT 

'ENTER: ',LINE=3,PROTECT=YES 
'NEXT ENTRY: I ,SPACES=lO,PROTECT=YES 

What character position will the N in NEXT occupy? 

Answer: ___________________ _ 

4. On the left are listed the interrupt generating terminal keys. 
In the space following each key, list the letter(s) designating 
the statement(s) on the right that apply to each key. More 
than one statement may be true for each key, and each state­
ment may apply to more than one key. 

PF keys __ _ 

ATTN key __ 

ENTER key __ 

a. will terminate a WAIT KEY operation 

b. used with ATTN LIST, not with WAIT 
KEY 

c. used with WAIT KEY, never with 
ATTN LIST 

d. will not terminate a WAIT KEY operation 

e. can be used with ATTN LIST, and will 
also terminate a WAIT KEY 

5. List the special system terminals that may be enqueued by 
coding their names as the operand of an ENQT instruction. 

Answer: ___________________ _ 

Terminal I /0 11-53 



This page intentionally left blank. 

11-54 SR30-0220 



6. Below on the left is a list of five operator entries. Each entry is in 
response to the GETVALUE prompt in the program given. 

On the right are spaces for the values that would be displayed 
by execution of the PRINTNUM immediately following the 
GETVALUE in the program. Fill in what the PRINTNUM 
would display after each of the entries on the left (each operator 
entry/PRINTNUM display pair should be considered a new load/ 
execution of the program). 

Pl 
START 

VAL 

PROGRAM 
GETVALUE 
PR I NTN UM 
PRINTEXT 
PROGSTOP 
DATA 
ENOPROG 
END 

OPERATOR 
ENTRY 

a. 1492 

b. -3 

c. 39000 

d. NO ENTRY 

START 
VAL, I ENTER NBR: I 

VAL 
SKIP=l 

F'O' 

PR I NTN UM 
DISPLAY 

(ENTER KEY ONLY) 

e. 1BA3 

Terminal 1/0 11-55 



TERMINAL 1/0 REVIEW QUIZ - ANSWERS 

11-56 SR 30-0220 

1. a. program has the terminal enqueued 

b. program is suspended by a WAIT KEY operation 

2. Any three of the following: 

a. "LINE=" in a succeeding operation 

b. "SK IP=" in a succeeding operation 

c. DEQT execution 

d. an "@" character imbedded in the text of this or of a 
succeeding operation, with MODE=WORD in effect 

e. TERMCTRL DISPLAY execution 

f. "change of operation direction", such as a PR I NTEXT 
followed by a GETVALUE or READTEXT 

3. Character position 21, line 3. The "SPACES=10" 
leaves 10 unprotected spaces between the end of the pre­
ceding protected field, and the beginning of the 
"NEXT ENTRY" text. 

4. PF keys a, e PF keys (a) will terminate a WAIT KEY 
operation, and, when a program is not suspended by a WAIT KEY, 
and the terminal is not enqueued, may also be used in an 
ATTN LIST (e). 

ATTN key b, d The ATTN key will not terminate a WAIT 
KEY operation (d). When the program is not in a WAIT KEY, 
and the terminal is not enqueued, the ATTN key may be used 
by the ATTN LIST function (b). 

ENTER key a, c The ENTER key terminates a WAIT KEY (a) 
(as well as the implied wait of a READTEXT/GETVALUE/ 
QUESTION), and cannot be used with ATTN LIST (c). 

5. Answer: $SYSPRTR, $SYS LOG The third "special 
system terminal", $SYSLOGA may be enqueued by user 
programs, but only by using the "ENQT /label of IOCB" 
convention, or by an ENOT with no IOCB label reference, 
when $SYSLOGA is the "loading" terminal. 



6. OPERATOR PRINTNUM 
ENTRY DISPLAY 

a. 1492 1492 

b. -3 -3 

c. 39000 0 

d. NO ENTRY 
(ENTER KEY ONLY) 0 

e. 1BA3 

Entries a. and b. operate normally. Entry c. is too large to be 
contained in a single word integer, so VAL is left undisturbed, 
as it is ford., when no entry is made. Entry e. is an attempt to 
enter a hexadecimal value, when "MODE=HEX" is not coded 
in the GETVALUE operand field. The input operation 
terminates when the first non-numeric character is encountered 
in the input field. 

Terminal 1/0 11-57 



This. page intentionaHy left blank, 

11-58 SR30-0220 



DATA CONVERSION 

Section 12. Data Formatting 

OBJECTIVES: After completing this topic, the student should 

1. Understand when to use the data formatting/conversion 
instructions 

2. Be able to convert numeric character strings to binary values using 
CONVTD 

3. Be able to convert binary values to EBCDIC character strings using 
CON VTB 

4. Understand the operation of GETEDIT/PUTEDIT instructions, and 
their relationship to FORMAT and TEXT statements 

READING REFERENCE: 1) Program Description/Operations Manual 
(SB30-1053) Chapter 2, pages 2-65 through 2-92. 2) Program 
Description/Operations Manual Version 2 (SB30-1213), Chapter 2, 
pages 2-67 through 2-96. 

For purposes of this discussion, data conversion refers to the process of 
converting arithmetic values from internal representation (binary) into 
external representation (EBCDIC character strings), or the reverse. 

You are already familiar with some forms of data converston. As illus­
trated in Figure 12-1, the assembler performs data conversion when 
assembling arithmetic constants, defined in DATA statements. The 
binary values generated during the assembly are the internal equivalents 
of the externaJly represented values coded in the source statements. 

INTEGER VALUE I 31,4161 

DEFINED IN DATA STATEMENT ... 

FLOATING POINT VALUE~ 
DEFINED IN DATA STATEMENT ... 

I 1vAL DATA F'31416' I 
CONVERTED BY 11HE ASSEMBLER INTO 
A 1-WORD BINARY NUMBER, HEX 7AB8 

0111 1010 1011 1000 

Figure 12•1:. Assembler data conversion 

I FVAL DATA E'3.1416' I 
CONVERTED BY THE ASSEMBLER INTO A 
2-WORD (STANDARD PHECISlON) BINARY 
FLOATING POINT NUMBER, HEX 4132 43FE 

0100 0001 0011 0010 0100 0011 1111 1110 

Data Formatting 12-1 



CONVTD INSTRUCTION 

12-2 SR30-0220 

While the DATA statement can only be used to convert constants 
known at assembly time, GETVALUE converts data entered at a 
terminal, in "realtime." GETVALUE, and in the reverse direction, 
PR I NTN UM, not only convert arithmetic values, but carry 
the operation one step further by performing the 1/0 as well (see 
"Section 11. Terminal 1/0"). 

These instructions, while useful, do not meet all data conversion 
requirements. For example, a numeric value read into a text buffer by 
a READTEXT instruction rather than by a GETVALUE, will be in the 
form of an EBCDIC character string, which must be converted to 
internal representation before the program can operate on it. 

Similarly, it may not always be desirable to convert an internally 
represented constant or variable and immediately display or print it, 
as occurs with PR I NTN UM. You may instead want to convert it to an 
EBCDIC character string, and hold it for later output by a PR I NTEXT. 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-66 through 
2-68. SB30-1213 (Version 2 PDOM) pages 2-68 through 2-70. 

CONVTD converts an EBCDIC character string into a binary arithmetic 
value. Single and double precision integers, and standard and extended 
floating point internal formats are supported. 

I I 

1abe1 l CONVTD opnd 1, opnd2 l PREC= 
I 
I 

~ FORMAT= 
~: _________________ _.,. ----------·..._ ________ __ 
OPTIONAL MUST BE CODED 

Figure 12-2. CONVTD format 

REQUIRED IF 
opnd1 IS 
OTHER THAN 
SINGLE PRE-
CISION 
INTEGER 

The first operand (opnd 1) is the label of the first byte of the storage 
area that will contain the binary equivalent of the EBCDIC string after 
it has been converted. The user must reserve enough space to hold the 
results of the conversion. This may be two bytes, for a single precision 
integer variable, four bytes, for double precision integer or standard 
precision floating point values, or eight bytes for extended precision 
floating point variables. 

The second operand (opnd2) is the label of the first character of the 
EBCDIC character string to be converted. Leading blanks or zeros are 
allowed. 



=( 

The PREC= operand describes opnd1 (Figure 12-3). 

PR EC= Operand 

PREC=S 

PREC=D 

PREC=F 

PREC=L 

opnd1 Description 

Single Precision Integer (default) 

Double Precision Integer 

Standard Precision Floating Point 

Extended Precision Floating Point 

Figure 12-3. PREC= operand 

Storage Required 

1 Word (2 Bytes) 

2 Words (4 Bytes) 

2 Words (4 Bytes) 

4 Words (8 Bytes) 

The FORMAT= operand is coded as a list containing three sublist 
elements, all enclosed in parentheses. The three elements describe the 
EBCDIC character string pointed to by the label in opnd2, as shown 
in Figure 12-4. 

FORMAT=(W,D,T) where; 

... Width of the D ... Number of T 
EBCDIC character positions to the right 
string in bytes of the decimal point. 

Code "O" if integer. 

... Code "I" if integer ) 

... Code "F" if real 
number 
. .. Code "E" if real 
number in "E" notation 

Figure 12-4. FORMAT= operand 

CONVTB INSTRUCTION 

If not coded, FORMAT= defaults to FORMAT=(6,0,I), indicating a 
six-byte EBCDIC field containing an integer number. 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-69 through 
2-71. SB30-1213 (Version 2 PDOM) pages 2-71 through 2-73. 

CONVTB converts values in internal representation (binary) form to an 
EBCDIC character string. 

I I 
I 

I 

] abe 1 J CON VTB opndl,opnd2~PREC= i FORMAT= 
• I 

OPTIONAL MUST BE CODED 

Figure 12-5. CON VTB format 

REQUIRED IF REQUIRED IF opnd1 
opnd1 IS IS OTHER THAN A 
OTHER THAN 6-BYTE FIELD 
SINGLE PRE-
CISION 
INTEGER 

Data Formatting 12-3 



Since the direction of the operation is the reverse of CONVTD, the 
meaning of opnd1 and opnd2 is also reversed. The label of the left­
most byte of the storage area, which will receive the EBCDIC string 
resulting from the conversion, is opnd1 and opnd2 is the label of the 
storage location containing the variable. 

The PREC= and FORMAT= operands are coded the same way for 
CONVTB as for CONVTD; because opnd1 and opnd2 are reversed, 
PREC= now applies to opnd2 and FORMAT= to opnd1. 

CONVTD/CONVTB CODING EXAMPLES 

12-4 SR30-0220 

In Figure 12-6, the CONVTB at C1 is converting the constant at loca­
tion CON1 into an EBCDIC character string, which will be stored in the 
text buffer EBC1. 

CC ODE 
Cl 

Pl 

END 
CNVTERR 

EBCl 
CONl 
CODE 

PROGRAM 
CON VTB 
IF 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PROGSTOP 
MOVE 
PRINTEXT 
PRINTNUM 
PRINTEXT 
GOTO 
TEXT 
DATA 
DATA 
ENDPROG 
END 

Figure 12-6. Return code= -1 

Cl 
EBCl,CONl 
(CCODE,NE,-1),GOTO,CNVTERR 
'TEXT=' 
EBCl 
SKIP=l 

CODE,CCODE 
'CONVERT ERROR,CODE=' 
CODE 
SKIP= 1 
END 
LENGTH=6 
F'l4398' 
F'O' 

Completion codes for CONVTB and CONVTD operations are returned 
in the task code word (taskname). The IF statement immediately 
following the CON VTB is checking the return code for Normal Comple­
tion (-1). In this example, the operation will be successful, and the 
PRINTEXT instructions beginning at P1 will display TEXT=14398. 

In Figure 12-7, the CON VTB is attempting to convert a value of 
21,000,000, in location CON2, and store the resulting text string in the 
text buffer at EBC2. The text buffer is not large enough to hold the 
character string generated by the conversion, and will be set to zeros. 
The completion code will be a 3, indicating Conversion Error, and the 
IF statement following the CON VTB will transfer control to location 
CNVTERR. 

The error routine beginning at CNVTE RR will display an error message 
and the completion code resulting from the operation. The first instruc­
tion moves the completion code from taskname into the user-defined 
program variable CODE. 



CCODE PROGRAM C2 
CON VTB EBC2,CON2,PREC=DWORD 
IF (CCODE,NE,-1),GOTO,CNVTERR 

Pl PRINTEXT 'TEXT=' 
PRINTEXT EBC2 
PRINTEXT SKIP= 1 

END PROGSTOP 
CNVTERR MOVE CODE,CCODE 

PRINTEXT I CONVERT ERRROR' CODE=' 
PRINTNUM CODE 
PRINTEXT SKIP=l 
GOTO END 

EBC2 TEXT LENGTH=6 
CON2 DATA DI 21000000 I 
CODE DATA F1 01 

EN DP ROG 
END 

Figure 12-7. Return code= 3. 

This is a standard convention, and is necessary because other operations, 
such as 1/0, also post completion codes in taskname, and will overlay 
the code you want to display. For instance, were the IF statement 
following the CONVTB replaced by the statement 

I 

f RINTNUM CCODE 

in an attempt to display the return code from the conversion operation, 
the code displayed would be the completion code resulting from execu­
tion of the PR I NTN UM itself, not the code returned by the CON VTB. 

When the error routine at CNVTE RR completes execution, the message 
CONVERT ERROR, CODE=3 will be displayed. A -1, for Normal 
Completion, or a -3, indicating Conversion Error, are the only comple­
tion codes generated by CONVTB operations. 

In Figure 12-8, a CONVTD operation is attempting to convert the 
EBCDIC string in EBC3 to a binary value to be stored in location CON3. 
The EBCDIC string consists of blanks and the delimiter", ". This 
results in no conversion, and a completion code of 2, indicating Field 
Omitted. Commas and slashes (/) are considered arithmetic delimiters 
and, if found in a text string during CONVTD execution, will terminate 
the conversion. In this example, since the delimiter (comma) was pre­
ceded only by blanks, the Field Omitted completion code is generated 
and the program will complete execution with CONVERT ERROR, 
CODE=2 displayed. 

Data Formatting 12-5 



12-6 SR30-0220 

CCODE 
C3 

Pl 

END 
CNVTERR 

EBC3 
CON3 
CODE 

PROGRAM 
CONVTD 
IF 
PRINTEXT 
PRINTNUM 
PRINTEXT 
PROGSTOP 
MOVE 
PRINTEXT 
PRINTNUM 
PRINTEXT 
GOTO 
TEXT 
DATA 
DATA 
EN DP ROG 
END 

Figure 12-8. Return code = 2 

C3 
CON3,EBC3 
(CCODE,NE,-1),GOTO,CNVTERR 
'VARIABLE=' 
CON3 
SKIP=l 

CODE,CCODE 
'CONVERT ERROR, CODE=' 
CODE 
SKIP= 1 
END 

' , LENGTH=6 
F'O' 
F'O' 

If the text buffer at EBC3 had contained numbers (in EBCDIC code), 
all numbers to the left of the delimiter would have been converted, 
and a completion code of -1 returned. For instance, 12,391 in the text 
buffer would convert to the binary equivalent of 12. Any non-numeric 
character imbedded within the text field will end the conversion. 

In Figure 12-9, the CONVTD at C4 is attempting to convert the blank 
text field at EBC4. This will result in a return code of +1, which 
indicates No Data In Field. The example will complete with the message 
CONVERT ERROR, CODE=1 displayed. 

CCODE PROGRAM C4 
C4 CONVTD CON4,EBC4 

IF (CCODE,NE,-1),GOTO,CNVTERR 
Pl PRINTEXT 'VARIABLE=' 

PRINTNUM CON4 
PRINTEXT SKIP=l 

END PROGSTOP 
CNVTERR MOVE CODE,CCODE 

PRINTEXT I CONVERT ERROR' CODE=' 
PR IN TN UM CODE 
PR IN TEXT SKIP=l 
GOTO END 

EBC4 TEXT LENGTH=6 
CON4 DATA F'O' 
CODE DATA F'O' 

ENDPROG 
END 

Figure 12-9. Return code= 1 



GETEDIT/PUTEDIT INTRODUCTION 

GETEDIT and PUTEDIT instructions combine several of the 1/0 and 
conversion operations already discussed. For review, Figure 12-10 
summarizes the instructions used to move data from a terminal into 
storage (READTEXT, GETVALUE) and convert it to internal 
representation (CONVTD, or implicit with GETVALUE). 

,( JI GETVALUE ----~ 110011101100\ 
0 !>)) 

\ 
READTEXT LENGTH CONVTD 

'------. i---------1 __,/ 

PERFORMS 
1/0 OPERATION 

READTEXT 
GETVALUE 

CONVERTS TO 
INTERNAL FORMAT 

GETVALUE 
CONVTD 

Figure 12-10. External to internal summary 

USES TEXT 
BUFFER 

CONVTD 
READTEXT 

Data Formatting 12-7 



12-8 SR30-0220 

In Figure 12-11, the reverse operations are shown, converting and 
moving data directly to a terminal (PRI NTN UM), or first converting it 
to external format (CONVTB), and then displaying it (PRINTEXT). 

110111007 PRINTNUM ----....jJ1D 

CONVTB PRINTEXT 
~ .,_______..... ~ 

PERFORMS 
1/0 OPERATION 

PRINTEXT 

PRINTNUM 

CONVERTS TO 
EXTERNAL FORMAT 

PRINTNUM 

CON VTB 

Figure 12-11. Internal to external summary 

USES TEXT 
BUFFER 

CON VTB 

PRINTEXT 

PUTEDIT and GETEDIT perform all of the functions shown in 
Figures 12-10 and 12-11. The 1/0 plus conversion provided by 
GETVALUE and PRINTNUM is supported, but with the addition of 
the use of a text buffer. The value is therefore displayed/read (1/0), 
and is available both in external format (as EBCDIC string in text 
buffer) and in internal format. 



IJll 
0 ~ / 

110110117------.... 

GETEDIT 
LENGTH 
COUNT -----~--~110011101100 \ 

~d 
0 ~ 

1 I 

~ 
PUTEDIT 

1. Performs 1/0 operation (optional) 

2. Performs conversion 

3. Uses text buffer 

Figure 12-12. PUTEDIT/GETEDIT summary 

Viewed another way, the transfer of an EBCDIC string to or from a 
terminal as provided by PRINTEXT and READTEXT is supported, 
but with the addition of conversion to or from internal representation 
(CONVTD/CONVTB functions). 

Data Formatting 12-9 



PUTEDIT/GETEDIT INSTRUCTIONS 

1 abel GETEDIT 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-87 through 
2-92. SB30-1213 (Version 2 PDOM) pages 2-89 through 2-95. 

To perform a conversion, four items of information are required: 

1. Direction of conversion (from internal representation to external, 
or the reverse). This is implicit when GETEDIT (external to 
internal) or PUTEDIT (internal to external) is coded. 

2. Conversion specification. Length of character string and type of 
data item to be converted to or from. This information is coded 
in a FORMAT statement, and the location (label) of the FORMAT 
statement is the first operand of the GETEDIT or PUTEDIT. 

3. Character buffer location. The second operand is the name of the 
character buffer (usually the label of a TEXT statement) that 
contains the character string to be converted (GETEDIT) or will 
hold the results of the conversion (PUTEDIT). 

4. Storage variable location. The named program storage location(s) 
containing the internally represented data item(s) that are the 
input to (PUTEDIT) or results of (GETEDIT) the conversion. 
Figure 12-13 summarizes the operand format just discussed, using 
GETEDIT as an example. (GETEDIT is used in most of the 
following illustrations, but the concepts demonstrated are equally 
valid for PUTEDIT operations, if the direction of conversion is 
taken into account.) 

name of 
FORMAT 
statement 

name of TEXT 
statement 
(location of 
character buffer) 

(variable name) 
-or-

((~:~eble ,type)) 

-or-

( (~:~aeble ,count)) 

-or-

((~:~a:le ,count, type)) 

LABEL OF THE FORMAT 
STATEMENT THAT DESCRIBES 
THE EBCDIC DATA IN THE 
CHARACTER BUFFER TO BE 
CONVERTED (ALPHA? AR ITH­
METIC? "E" NOTATION? etc.) 

LOCATION (LABEL 
ON TEXT STATEMENT) 
OF THE BUFFER 
CONTAINING THE 
CHARACTER STRING 
TO BE CONVERTED 

1 
LOCATION(S) IN 
STORAGE WHERE 
CONVERTED VALUE(S) 
WI LL BE PLACED, 
AND THE TYPE 
(PRECISION) OF THE 
VALUES, IF ARITH­
METIC 

Figure 12-13. GETEDIT format 

1 2-10 SR 30-0220 



FORMAT STATEMENT 

1abe1 

CGET 

GE TED IT 

READING ASSIGNMENT: SR30-1053 (PDOM) pages 2-72 through 
2-86. SR30-1213 (Version 2 PDOM) pages 2-74 through 2-88. 

Figure 12-14 illustrates the basic layout of the FORMAT statement, 
and shows how it is referenced by a GETEDIT. 

name of 
FORMAT 
statement 

name of TEXT 
statement 
(location of 
character buffer) 

(variable name) 
-or-

( ( ~~~aeble, type)) 

-or-

( (~~~aeble,count)) 
-or-

( (~~~:le,count,type)) 

GETEDIT FL TFORM , 

FLTFORM FORMAT (1 ist) ,gen 

DATA 
CONVERSION 
SPECIFICATION 
MAY BE: "I" INTEGER NUMERIC 

"F II FLOATING POINT 
NUMERIC 

"E" FLOATING POINT 
NUMERIC - "E" 
NOTATION 

"H" LITERAL ALPHA-
MERIC DATA 

"X" BLANKS 
"A" VARIABLE ALPHA-

MERIC DATA 

Figure 12-14. FORMAT statement 

~ 
MAY BE: "PUT" -THIS FORMAT STATE­

MENT USED WITH PUTEDIT 
COMMANDS ONLY 
"GET" - THIS FORMAT STATE­
MENT USED WITH GETEDIT 
COMMANDS ONLY 
"BOTH" - MAY BE USED WITH 
BOTH PUTEDIT AND GETEDIT 
(DEFAULT) 

Data Formatting 12-11 



Note that among the various types of data items that are allowed in the 
data conversion specification list are type F and type E. The type F 
indicates floating point numeric. Do not confuse this with the fixed 
point binary designated by the F that is used in DAT A statements. 
Similarly, the E means £-type notation, and not standard precision 
floating point, as did the E used with DAT A statements. By specifying 
E-type notation in the FORMAT list, the variable being described is 
implicitly considered to be a floating point value. 

Figure 12-15 is an example of a FORMAT statement, whose list 
describes a single variable, with data conversion specification type E. 
Detailed explanations of all the available data specification types, and 
examples of their use, may be found in the reading assignment. 

FORMAT 
- SPECIFIES THE TYPE OF CONVERSION TO BE PERFORMED 

WHEN DATA IS TRANSFERRED FROM STORAGE TO A TEXT 
BUFFER BY A PUTEDIT COMMAND, OR FROM A TEXT 
BUFFER TO STORAGE BY A GETEDIT COMMAND. 

EXAMPLE: WRITE A FORMAT STATEMENT THAT WILL ALLOW 
CONVERSION TO AND FROM FLOATING POINT NUMBERS 
WITHIN THE RANGE OF -9.9999 TO +9.9999, USING "E" TYPE 
NOTATION. 

FLOATING POINT, E 
NOTATION 

LARGEST POSSIBLE VALUE 
SMALLEST POSSIBLE VALUE 

+9.9999 
-9.9999 ..._,,_. 
1234567 

...--"--
7 CHARACTER 

BOTH PUTEDIT AND 
GETEDIT 

NUMBER OF POSITIONS 
TO RIGHT OF 
DECIMAL POINT 

E NOTATION TAKES UP 4 :~:::C~:R (E l ~ ~) 
POSITIONS N I I _ TT 

11 POSITIONS REQUIRED-----

Figure 12-15. FORMAT statement E type 

12-12 SR30-0220 



label 

CGET 

FLOATEXT 

The second operand in the GETEDIT statement (Figure 12-16) is the 
location of the character buffer. The length of this buffer must be 
large enough to accommodate the largest character string anticipated, 
or truncation will result (254 characters maximum). 

GETEDIT 
name of 
FORMAT 
statement 

name of TEXT 
statement 
(location of 
character buffer) 

~ 

(variable name) 
-or-

( ( ~:~aeble ,type)) 

-or-

( (~~~:le ,count)) 

-or-

( ( ~:~aeble ,count,type)) 

GETEDIT FL TFORM,FLOATEXT , ___ _ 

TEXT LENGTH=18 

2 

0 

LENGTH OF 
BUFFER (HEX 12= DEC 18) 

COUNT OF NUMBER OF 
INPUT CHARACTERS 
RECEIVED OR OUTPUT 
CHARACTERS TO TRANSMIT 

FLOATEXT 

FLOATEXT + 1 

FLOATEXT + 2 

~ 4 0 

4 0 

FLOATEXT + 17 4 0 

Figure 12-16. Character buffer location 

SPACE FOR 18 
CHARACTERS 
RESERVED 
(18 BYTES) 
INITIALIZED TO 
EBCDIC BLANKS 
(HEX 40) 

Data Formatting 12-13 



label GETEDIT 

CGET 

Figure 12-17 summarizes the third operand, the variable list. The 
variable names used must previously have been defined in the program 
(DATA statements). 

name of 
FORMAT 
statement 

GE TED IT 

name of TEXT 
statement 
(location of 
character buffer) 

(variable name) 
-or-

((~:~aeble,type )) 

-or-

( (~:~eble ,count)) 

-or-

((~:~eble,count,type)) 

FLTFORM,FLOATEXT,((name, count, type)) 

/ ---
STORAGE LOCATION 
TO PUT VALUE 
CONVERTED FROM 
CHARACTER STRING 
IN BUFFER 

MULTIPLE LOCATIONS IF 
MULTIPLE CONVERSIONS 

TYPE/PRECISION 
OF VARIABLE 
"S" OR "D" INDICATES 
SINGLE OR DOUBLE 
WORD INTEGER 
(DEFAULT=SINGLE) 
"F" OR "L" INDICATES 
STANDARD OR EXTENDED 
PRECISION FLOATING POINT 
(DEFAUL T=STANDARD) 

Figure 12-17. Third operand summary 

12-14 SR30-0220 



If arithmetic variables are being converted, the data type specified must 
agree with the data conversion specification in the FORMAT statement 
(For Lin GETEDIT must have either For E in FORMAT statement, 
and Sor Din GETEDIT corresponds with I in FORMAT statement). 

The completed GETEDIT statement is shown in Figure 12-18, with all 
three operands coded. To illustrate the optional 1/0 capability, a 
fourth operand, ACTION= is also coded. The more common usage 
(and the default) is ACTION=l/0, meaning a GETEDIT or PUTEDIT 
would implicitly issue a READTE=XT or PRINTEXT. With 
ACTION=STG, the GETEDIT or PUTEDIT assumes the user will take 
care of transferring the EBCDIC character string from or to the 
terminal by issuing explicit READTEXT or PRINTEXT commands as 
required. 

GETEDIT 

- GETS EBCDIC CHARACTER STRING FROM A CHARACTER 
BUFFER SET UP BY A TEXT STATEMENT 

- CONVERTS EBCDIC CHARACTER STRING ACCORDING TO 
SPECIFICATIONS IN FORMAT STATEMENT, AND PLACES 
RESULT OF CONVERSION IN STORAGE 

- MAY OPTIONALLY ISSUE A READTEXT COMMAND TO 
TRANSFER EBCDIC CHARACTERS FROM A TERMINAL 
INTO THE CHARACTER BUFFER, BEFORE BEGINNING 
CONVERSION 

EXAMPLE: CONVERT THE EBCDIC CHARACTER STRING IN THE 
CHARACTER BUFFER DEFINED BY THE TEXT STATEMENT AT 
LOCATION "FLOATEXT" INTO A STANDARD PRECISION 
FLOATING POINT NUMBER, ACCORDING TO THE SPECIFICA­
TIONS OF THE FORMAT STATEMENT AT LOCATION "FLTFORM". 
STORE THE RESULT AT LOCATION "FVAL". 

CGET GETEDIT FLTFORM,FLOATEXT,((FVAL,F)),ACTION=STG 

---------~ 7 \ ""' LOCATION OF LOCATION OF OUTPUT OUTPUT CONVERT ONLY-
FORMAT CHARACTER DATA DATA 
STATEMENT BUFFER (TEXT LOCATION TYPE 

STATEMENT) (FLOATING 
POINT) 

Figure 12-18. Completed GETEDIT 

DO NOT ISSUE 
READ TEXT 
COMMAND 
BEFORE 
CONVERSION 
STARTS 

Data Formatting 12-15 



12-16 SR 30-0220 

As a comparison, the same operation in reverse is illustrated in 
Figure 12-19. 

PUTEDIT 

- CONVERTS DATA IN STORAGE INTO EBCDIC CHARACTER 
STRING, ACCORDING TO SPECIFICATIONS IN FORMAT 
STATEMENT 

- PLACES EBCDIC CHARACTER STRING IN CHARACTER 
BUFFER SET UP BY TEXT STATEMENT 

- MAY OPTIONALLY ISSUE A PRINTEXT COMMAND TO 
TRANSFER CONTENTS OF THE CHARACTER BUFFER TO 
A TERMINAL DEVICE AFTER CONVERSION 

EXAMPLE: CONVERT THE STANDARD PRECISION FLOATING 
POINT VARIABLE AT STORAGE LOCATION "FVAL" INTO AN 
EBCDIC CHARACTER STRING, ACCORDING TO THE SPECIFICA­
TIONS IN THE FORMAT STATEMENT AT LOCATION "FLTFORM". 
PLACE THE EBCDIC STRING IN THE CHARACTER BUFFER DE­
FINED BY THE TEXT STATEMENT AT LOCATION "FLOATEXT". 

CPUT PUTEDIT FLTFORM,FLOATEXT((FVAL,F))ACTION=STG 

----------~ I \ "" LOCATION OF LOCATION OF LOCATION OF INPUT CONVERT 
FORMAT CHARACTER INPUT DATA DATA ONLY-DO 
STATEMENT BUFFER (TEXT TYPE NOT ISSUE 

STATEMENT) (FLOATING PRINTEXT 

Figure 12-19. Completed PUTEDIT 

POINT) COMMAND 
AFTER 
CONVERSION 

All operands are in the same position, and have the same meanings for 
PUTEDIT as for GETEDIT; only the operation direction is reversed. 

Figure 12-20 is an overview of a complete GETEDIT operation using 
the same examples of GETEDIT, TEXT, and FORMAT as you have 
seen in the previous figures. Following the numbers on the illustration, 
the characters entered at the terminal D , are transferred to the text 
buffer by the READTEXT instruction fl . In this example, the 
READTEXT is issued by the user sometime prior to execution of the 
GETEDIT. If ACTION=l/O were coded in the GETEDIT (or not 
coded, and allowed to default), the READTEXT would be automatically 
issued by the GETEDIT. 



D OPERATOR ENTERS 
CHARACTERS II. 31416E 0 l 11 

FLOATEXT 
TRANSFERS EBCDIC STRING 

11 48F3F 1F4F 1F6C540FQF l 11 

FROM TERMINAL INTO TEXT BUFFER 

Ill FLOATEXT TEXT LENGTH=18] 

LENGTH 

COUNT 

FLOATE XT 

1 2 

0 A 

4 B 

F 3 

F 1 

F 4 

F 1 

F 6 

c 5 

4 0 

F 0 

F 1 

4 0 
,,.,--.. 

FLOATEXT+ 17~ 
Figure 12-20. GETEDIT overview 

IJ!CGET GETEDIT FLTFORM,FLOATEXT,((FVAL,F)),ACTION=STG I 
CONVERTS EBCDIC CHARACTER STRING INTO 
BINARY FLOATING POINT NUMBER-STORES 
AT LOCATION "FVAL" 

Ill FLTFORM FORMAT 

mFVAL~ 
~ 

(Ell.4),BOTH I 

Data Formatting 12-17 



12-18 SR30-0220 

The GETEDIT IJ, using the FORMAT statement FLTFORM II , 
converts the EBCDIC character string in the text buffer at F LOATEXT 
El into a standard precision floating point value, which is stored at 
FVAL II. 
Note: Version 2 support for GETEDIT/PUTEDIT/FORMAT instruc­
tions is supplied in the form of object modules, residing in volume 
SUPLIB. When a user program containing GETEDIT/PUTEDIT/ 
FORMAT statements is assembled, $EDXASM automatically generates 
corresponding EXT RN records for use by the link edit utility $LINK. 

After an object module has been produced by $EDXASM, it must be 
processed by $LINK to include the data-formatting object modules. 
The user must code the AUTO= parameter in the link edit OUTPUT 
control statement as AUTO=$AUTO,ASMLIB. $AUTO is the name of 
a system-supplied data set on ASM LIB, which contains an autocall 
list, including entries for the GETEDIT/PUTEDIT/FORMAT 
support modules. 



DATA FORMATTING REVIEW EXERCISE-QUESTIONS 

Match the instructions on the left with the statements on the right. The 
instructions may apply to more than one statement, an.d the same 
statement may be true for more than one instruction, or not true for 
any. 

a. CONVTD 1. -- always requires a text buffer. 

b. PR I NTN UM 2. __ used to read numeric values from 

c. GETEDIT a terminal and convert them to 
internal (binary) representation. 

d. CON VTB 3. __ may optionally perform 1/0. 
e. PRINTEXT 4. __ cannot be used for internal/external 
f. GETVALUE or external/internal conversion. 

g. PUTEDIT 5, __ never performs 1/0. 

h. READTEXT 6.-- used to convert an EBCDIC string 
in a text buffer to a binary value. 

7, __ never requires a text buffer. 

8, __ always performs 1/0. 

9. __ may be used to convert both float-
ing point or integer values. 

Data Formatting 12-19 



DATA FORMATTING REVIEW EXERCISE-ANSWERS 

12-20 SR 30-0220 

1. CONVTD (a), GETEDlT (c), CONVTB (d), PUTEDIT (g), and 
READTEXT (h) always require a text buffer. PRINTEXT (e) 
usually uses a text buffer, but may be used to issue forms control 
commands without any transfer of text. GETVALUE usually 
uses a text buffer, either implicit, as the pmsg operand, enctosed 
in apostrophes, or as an explicitly coded TEXT statement but 
may be coded without a prompt message, and therefore no text 
buffer. 

2. GETEDIT (c) and GETVALUE (f) may be used to read numeric 
values from a terminal and convert them to internal (binary) 
representation. GETEDIT can read and convert multiple values, 
integer and floating point or mixed integer and floating point, of 
varying external format. GETVALUE can read multiple single 
precision integers. If the external format of the input value is 
other than single precision integer (double precision integer, 
standard or extended precision floating point in either F or E 
format), then the format of the input variable must be specified 
in the FORMAT= operand, the internal format must be specified 
in the TYPE= operand, and only one value can be read and 
converted by execution of a single GETVALUE instruction. 

3. GETEDIT (c) and PUTEDIT (g) may optionally perform 1/0. If 
the ACTION= operand is coded as ACTION=STG conversion wm 
be performed between the internally represented variables and 
the text buffer specified, but no data transfer to or from a terminal 
will take place. 

4. PRtNTEXT (e) and READTEXT (h) cannot be used for internal/ 
external or external/internal conversion of numeric values. These 
two instructions deal in the transfer of text strings between storage 
and terminals exclusively. There may be code conversion per­
formed, from the E BCDJC representation in a text buffer to or 
from whatever unique code a particular termina~ requires, but this 
is an automatic function of the system, is transparent to the user, 
and is not the conversion of arithmetic values which was defined 
as data conversion in this section. 

5. CONVTD (a) and CONVTB (d) never perform t/0. These instruc­
tions always operate between variables and text buffers in storage. 
All other instructions listed either always, or optionatty may 
perform 1/0. 

6. CONVTD (a) and GETEDJT (c) are used to convert an EBCDIC 
string in a text buffer to a binary value. The GETEDlT may also 
have read the value into the text buffer from a terminal 
(ACTION=l/O). 



7. PR I NTN UM (b) never requires a text buffer. The conversion 
is from the binary value to the code required by the terminal, with 
no user defined text buffer employed. GETVALUE (f) does not 
require a text buffer for the conversion, but may use one for the 
prompt message if the pmsg operand is coded. 

8. PRINTNUM (b), PRINTEXT (e), GETVALUE (f), and 
READTEXT (h) always perform 1/0. 1/0 is optional with 
GETEDIT (c) and PUTEDIT (g). 

9. CONVTD (a), PRINTNUM (b), GETEDIT (c), CONVTB (d), 
GETVALUE (f), and PUTEDIT (g), all handle single and double 
precision integers, and standard or extended precision floating 
point numbers in F or E notation external formats. PR I NT EXT 
(e) and READTEXT (h) do not perform any conversion, and 
therefore do not apply. 

Data Formatting 12-21 



This page intentionally left blank. 

12-22 SR30-0220 



SENSOR BASED 1/0 

Section 13: Sensor 1/0 

OBJECTIVES: Upon successful completion of this topic, the student 
should be able to: 

1. Define the sensor 1/0 requirements in an application program. 

2. Understand how to obtain digital and analog data from external 
devices. 

3. Understand how to send digital and analog output signals from the 
Series/1 to external devices. 

4. Use the facilities provided to service process interrupts on a 
Series/1. 

READING REFERENCE: Program Description and Operations 
Manual (S830-1053) pages 2-112 through 2-127; or Program 
Description and Operations Manual Version 2 (S830-1213) pages 
2-117 through 2-134. 

READING ASSIGNMENT: S830-1053 (PDOM) pages 2-112 through 
2-124. S830-1213 (Version 2 PDOM) pages 2-121 through 2-130. 

"Data Processing Input/Output" refers to the exchange of information 
between a computer and a data processing 1/0 device. An example of 
this is shown in Figure 13-1 in the form of an operator entry at a 
terminal, which the program in the computer then transfers into stor­
age, and acts upon. 

SERIES/1 
STORAGE 

SUPERVISOR 

APPLICATION 
PROGRAM 

Figure 13-1. Data processing 1/0 

Sensor Input/Output 13-1 



13-2 SR30-0220 

Depending on what the inpt.c means to the program, an information 
message or guidance prompt may be sent back to the terminal operator 
in response. 

In Figure 13-2, the same example has been put into an applications 
context. Assume that the program is a "flow monitoring" application, 
related to some industrial process. A gauge is connected to a pipe, 
indicating the rate of flow through the pipe. The rate of flow can be 
adjusted using the valve. 

SERIES/1 
STORAGE 

SUPERVISOR 

APPLICATION 
PROGRAM 

Figure 13-2. Flow monitoring 

In response to a prompt from the program, the operatoi reads the 
gauge, and enters the rate of flow at the terminal. The program trans­
fers the information into storage and checks the entered flow rate 
against predetermined limits or targets. If the flow rate is too high or 
too low, the program sends a message to the terminal instructing the 
operator to adjust the valve down or up. 

In the example just discussed, a computer program is used to analyze 
a measurement of some physical property (in this case, rate of flow in 
pipe), and based on that analysis, request that a mechanical action take 
place (turn the valve up or down). The human operator, using the 
terminal, provided the flow rate information to the program, and as a 
result of a message on the terminal, provides the power to turn the 
valve. 



SERIES/1 

STORAGE 

SUPERVISOR 

APPLICATION 
PROGRAM 

Using the "Sensor Based Input/Output" features of the Series/1, the 
same application can be performed without using an operator or a 
terminal. In Figure 13-3, the gauge has been replaced by another flow­
monitoring device, which translates flow rate into a voltage propor­
tional to the rate of flow, rather than into movement of a needle 
around a dialface. The voltage produced is therefore an analog of the 
rate of flow within the pipe. 

SENSOR 

BASED 
INPUT/ 

OUTPUT 

Figure 13-3. Sensor based 1/0 flow monitoring 

The voltage is sensed by the Series/1 Analog Input (A/I) feature, and 
converted to a digital value (binary). This value can then be arithmeti­
cally compared with known limits or targets, and a decision can be 
made whether to decrease or increase the valve opening. 

The manually operated valve has been replaced by a motorized unit. 
The direction and amount of rotation of the motor drive can be con­
trolled by the Digital Output (D/0) sensor 1/0 feature. 

The entire "flow-monitoring" application can now be directly con­
trolled by the program, from acquisition of the flow-rate information 
(A/I), through the performance of the corrective mechanical adjust­
ment (D/O). The delays and errors inherent in operator participation in 
the process no longer exist. 

Sensor Input/Output 13-3 



Digital Input/Output 

Analog Input/Output 

1 3-4 SR 30-0220 

Sensor 1/0 is used in a variety of application areas, including process 
control, laboratory automation, and plant automation. Sensor 1/0 
devices available on the Series/1 are as follows; 

A digital unit of sensor 1/0 is a physical group of 16 contiguous points. 
The entire group of sixteen points is accessed as a unit at the 1/0 in­
struction level; Event Driven Executive programming support allows 
logical access down to the single point level. Each point of Digital Input 
(D/I) or Digital Output (D/O) may be operated (turned on/off) inde­
pendently. D/I is usually used to acquire information from instruments 
which present binary-encoded output, or to monitor contact/switch 
status (open/closed). D/0 is used to control electrically operated de­
vices through closing relay contacts, pulsing stepping motors, etc. 

Process Interrupt (P/I) is a special form of D/I. If a point of D/I 
changes state, and then changes state again, without an intervening 
READ operation from the program, the status change will be undetected. 
With P/I, a point changing from the off state to on generates a hardware 
interrupt, which is then routed, through software support, to an inter­
rupt servicing user program which can respond to the external event 
which caused the interrupt. P/I is often used for monitoring critical or 
alarm conditions, which must be serviced quickly, and whose occur­
rence must not go undetected. 

A physical unit of Analog Input (A/I) may be a group of 8 points or 16 
points, depending on the type. Analog Output is installed in groups of 
2 points. Each point of A/I and A/0 is accessed separately, at both the 
1/0 instruction and Event Driven Executive support level. 

Analog Input is used to monitor devices that produce output voltages 
proportional to the physical variable or process being measured. Ex­
amples include laboratory instruments, strain gauges, temperature sen­
sors, or other "non-digitizing" instruments. Digital Input was des­
cribed as monitoring an on/off status; only one of two conditions were 
possible. With A/I, the intelligence is carried in the amplitude of the 
voltage sensed rather than in its presence or absence. 



SER I ES/1 

SUPERVISOR 

APPLICATION 
PROGRAM 

Analog input voltages are converted to corresponding binary equiva­
lents for use by the system, by the use of an Analog to Digital (A to D) 
converter. Figure 13-4 is a schematic of the analog input conversion 
mechanism. 

II 

\ 
ANALOG TO 
DIGITAL 
CONVERTER 

D 

Figure 13-4. Analog to digital conversion 

The address of the point to be "read" (sensed) D is sent to a multi­
plexor D which selects the requested point. The voltage at the select­
ed point is routed through the multiplexor to the Analog to Digital 
Converter II . The A to D converter changes the voltage into an 
equivalent binary value, which can then be used in the Series/1 D. 

With Analog Output, this process is reversed. In Figure 13-5, a binary 
value D which is the equivalent of a desired voltage, is converted to 
that voltage by a Digital to Analog Converter D, and transferred to 
the specified output point IJ . 
For more detailed information about Series/1 Senso; 1/0 Features, see 
"I BM Series/1 4982 Sensor 1/0 Unit Description" (GA34-0027). 

SERI ES/1 

SUPERVISOR 

APPLICATION 
PROGRAM 

1010011 D 

DIGITAL TO 
ANALOG 
CONVERTER 

Figure 13-5. Digital to analog conversion Sensor Input/Output. 13-5 



EVENT DRIVEN EXECUTIVE SENSOR 1/0 SUPPORT 

SERIES/1 

SUPPLIED 
SUPERVISOR 

READING ASSIGNMENT: SR30-1053 (PDOM) pages 2-112 through 
2-114; SR30-1213 (Version 2 PDOM) pages 2-118 through 2-120. 

The Event Driven Executive supplied supervisor as sent from Pl D con­
tains no support for sensor 1/0. If you wish to use these devices, you 
must do a "tailored system generation" to include the required support 
modules in your own supervisor. (See the "System Generation" section 
of this study guide for more information on generating a "tailored 
supervisor".) 

Figure 13-6 is a graphic depiction of how sensor devices are connected 
to a Series/1. The devices themselves (D/I, D/0, P/I, A/0, A/I) attach 
to a controller, which in turn attaches to the Series/1. The sensor 1/0 
attachment (controller), and each of the devices attaching to it, have 
unique hardware addresses. In this illustration, the physical connec­
tions are there, and the hardware addresses are assigned (wired in), but 
the supplied supervisor in storage lacks the support necessary to operate 
the devices. 

SENSOR 1/0 
ATTACHMENT 

ADDRESS 48 

DIO GROUP 

ADDRESS 50 

ADDRESS 51 

ADDRESS 52 

Figure 13-6. Sensor device connections 

13-6 SR30-0220 



SERIES/1 

TAILORED 
SUPERVISOR 

SENSOR 1/0 
DEVICE 
TABLES 

SYSTEM 
CONTROL 
BLOCKS 

SENSOR 1/0 
CONTROL 
ROUTINES 

Figure 13·7. SENSORIO 

Building a "tailored supervisor" involves the assembly of a series of sys­
tem configuration statements that reflect the 1/0 configuration and 
application requirements you wish to support. The system configura­
tion statement which allows you to define sensor 1/0 devices is 
SENSORIO. Figure 13-7 illustrates the results of a tailored sysgen, 
using the SENSORIO system configuration statement to generate the 
necessary control blocks, and with sensor 1/0 supervisor support mod­
ules included. 

TAILORED SYSGEN 

SENSORIO ADDRESS=48,DEVICE=4982,D0=50,DI=(51,52) 

SENSOR 1/0 
ATTACHMENT 
(4982) 

ADDRESS 48 

D/O GROUP 
ADDRESS 50 

ADDRESS 51 

ADDRESS 52 

Sensor Input/Output 13-7 



IODEF STATEMENT 

13-8 SR30-0220 

The SENSOR I 0 statement defined the hardware device addresses for 
the supervisor. When programs reference 1/0 devices, they use sym­
bolic references, rather than actual addresses. The IODEF statement 
( 1/0 Definition) establishes the logical link between the addresses de­
fined in the supervisor, and the symbols used to read from and write to 
the devices at those addresses from within an application program. 

Figure 13-8 illustrates an IODEF statement. Each different logical 
sensor device that may be used by a program must be defined in an 
IODEF statement. In the example, the first operand is the symbolic 
name of the device, "D01 ". The "DO" portion of "D01" is required, 
if you are defining a Digital Output device. The numeric portion may 
be any number you wish, from 1 through 99 (the "1" in "D01" does 
not mean "1st DO device on the adapter". It is simply a symbolic 
reference number, used to differentiate between multiple logical 
devices of the same type.) 

Each kind of sensor 1/0 is designated in the same manner; the alpha 
portion of the symbolic reference indicates the type of device (D/0, 
D/I, A/0, A/I, P/I), and the numeric portion differentiates between 
logical devices of the same type, and is user assigned. 

The second operand in the example is coded as "TYPE=GROUP". This 
means that the logical digital output device, whose symbolic name is 
"DO 1" consists of an entire group of D/0 points ( 16 points in a group). 
The third operand specifies that the hardware address of this group is 
50, which ties back to the hardware address for this group defined in 
the supervisor, during system generation. 

You do not have to define a logical D/0 or D/I device as consisting of 
all sixteen points of a hardware group. The second operand may be 
coded as "TYPE=SU BG ROUP", in which case a fourth operand must 
be coded (BITS=), indicating which bit, or group of bits, within the 
hardware group of 16 at this address, constitutes the logical device de­
fined by operand 1. You can therefore have multiple logical devices 
defined in the IODEF statement, all referencing the same physical ad­
dress (group of points). 



SERIES/1 

TAILORED 
SUPERVISOR 

SENSOR 1/0 
DEVICE 
TABLES 

SYSTEM 
CONTROL 
BLOCKS 

SENSOR 1/0 
CONTROL 
ROUTINES 

APPLICATION 
PROGRAM 

IODEF DO 
IODEF DI 
IODEF DI 
IODEF DI 

SENSOR 1/0 
ATTACHMENT 
(4982) 

ADDRESS 48 

D/0 GROUP 
ADDRESS 50 

ADDRESS 51 

ADDRESS 52 

SENSORIO ADDRESS=48,DEVICE=4982,D0=50,DI=(51,52) 
~ 

"ADDRESS=50" IN 
IODEF CORRESPONDS 
TO THE D/0 GROUP AT 
ADDRESS 50 THAT 
WAS DEFINED IN THE 
SUPERVISOR BY THE 
"SENSOR 10" 

~ IODE:ll~~=·O 

Figure 13-8. IODEF statement 

THE KIND OF SENSOR 1/0 SYMBOLIC "GROUP" INDICATES THAT 
BEING DEFINED (DO IS REFERENCE A REFERENCE TO "D01" 
DIGITAL OUTPUT, DI IS NUMBER INCLUDES ALL 16 POINTS 
DIGITAL INPUT, ETC.) OF THE D/0 GROUP AT 

ADDRESS 50 

"D01" USED FOR SYMBOLIC 
REFERENCES IN PROGRAM 

Sensor Input/Output 13-9 



SBIO STATEMENT 

13-10 SR30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-115 through 
2-124; SB30-1213 (Version 2 PDOM) pages 2-121 through 2-130. 

Now that the supervisor can access the hardware (SENSOR 10, system 
generation), and you have defined the logical sensor 1/0 devices that 
will be symbolically referenced in your application program (IODEF), 
you are ready to do sensor I /0 operations. 

All sensor-based input/output operations are performed by execution 
of an SBIO statement. The type of operation is determined by the 
type of device referenced in the SBIO (READ=DI, Al, WRITE=DO, 
AO). In the example in Figure 2-47, the contents of location "ACON" 
will be written to the symbolic device "001 ",turning on the first eight 
digital output points of the D/0 group at address 50, and turning off 
the second eight bits. The symbolic reference to logical device "001" 
in the SBIO statement is linked to the definition of "001" in the 
I 0 DEF statement, which relates that device to the sixteen digital out­
put points of hardware address 50, through the supervisor support set 
up at sysgen. 



SER I ES/1 

TAILORED 
SUPERVISOR 

SENSOR 1/0 
CONTROL 
ROUTINES 

SENSOR 1/0 
DEVICE 
TABLES 

SYSTEM 
CONTROL 
BLOCKS 

APPLICATION 
PROGRAM 

IODEF DO 
IODEF DI 
IODEF DI 
IODEF DI 

~ 
SBIO D01,ACON 

DOW RITE 

ACON 

Figure 13-9. SBIO statement 

SENSOR 1/0 
ATTACHMENT 
(4982) 

ADDRESS 48 

D/O GROUP 
ADDRESS 50 

ADDRESS 51 

ADDRESS 52 "' 

SENSORIO ADDRESS=48,DEVICE=4982,D0=50,DI=(51,52) 
~ 

IODEF 

SBIO 

~ 
DATA 

~ 

"ADDRESS=50" IN 
IODEF CORRESPONDS 
TO THE D/0 GROUP AT 
ADDRESS 50 THAT 
WAS DEFINED IN THE 
SUPERVISOR BY THE 
"SENSORIO" 

001,TYPE=GROUP,ADDRESS=SO 

)

"D01" IN SBIO 
CORRESPONDS TO 
"D01" IN IODEF 

001,ACON 

X1 FF00 1 

Sensor Input/Output 13-11 



Sensor 1/0 Coding Examples 

Digital Input 

13-12 SR 30-0220 

Following are a few IODEF/SBIO coding examples using various sensor 
1/0 features. In all cases, assume that a tailored sysgen has been accom­
plished using a SENSOR IQ statement which supports the addresses 
referenced in the IODE F statements in the examples. 

IODEF DI1,TYPE=SUBROUP,ADDRESS=66,BITS=(0,8) 

SBIO Dil,DIGINl 

DIGINl DATA FI 0 I 

Figure 13-10. 0/1 example 

The IODEF defines "DI 1" as being the first 8 bits of the D/I group at 
hardware address 66. The SBIO instruction will read these 8 bits, right 
justified into location "DIGIN1". 



Process Interrupt 

The interrupting digital input (process interrupt) provides a hardware 
interrupt to the Series/1 when a contact closure is detected. These 
interrupts are serviced by your supervisor by POSTing that the event 
(interrupt) has occurred. You must interrogate in your program for 
event completion. When you define a process interrupt (IODEF) the 
symbolic reference (Pix) is the label on the event control block (ECB) 
for that process interrupt point(s). You can check to see if the event 
has occurred by either checking the ECB (it will be a non-zero value if 
the interrupt has occurred) or by WAI Ting on the process interrupt. 
The following shows how you can check the ECB. 

IODEF PI1,ADDRESS=68,BIT=10 

RESET Pil 
INTPTIM STIMER 1000,WAIT 

CHECK IF 

GOTO 

(PI1:NE,O),GOTO,INTSERV 

INTPTIM 

INTSERV RESET Pil 

INTERRUPT 

SERVICING 

ROUTINE 

GOTO INTPTIM 

Figure 13-11. P/I example 1 

- LABEL ON ECB 

Sensor Input/Output 13-13 



13-14 SR30-0220 

In the previous example we are checking every second to see if an inter­
rupt has occurred. The program must be invoked and remain resident 
for the duration of checking for interrupts. The following shows a 
more efficient way of accomplishing the same thing. 

IO DEF PI1,ADDRESS=68,BIT=l5 

INTROUT WAIT P I1, RESET 

ECB LABEL 
SERVICING 

ROUTINE 

GOTO INTROUT 

Figure 13-12. P/I example 2 

In this example, the WAIT is issued against the ECB itself, rather than 
checking after a time delay. 

In both cases the process interrupt is handled by the supervisor and the 
user services the interrupt in a resident application program. 

For some applications, the overhead involved in allowing the supervisor 
to service and route the interrupt is not acceptable. Using the SPECPI 
statement, the user can direct that the interrupt bypass the supervisor 
and be handled by a user written assembler language routine within the 
application program. This approach provides minimum delay from the 
time the interrupt occurs until the user program is entered, but also 
requires the user to issue the 1/0 instructions which read and reset the 
P/I group, and to interface properly with the supervisor at the assembly 
language level. Review pages 2-125 and 2-126 of 5830-1053, or pages 
2-131, 2-132 of 5830-1213 for additional information. 



Digital Output 

Digital Output is similar to D/I in terms of coding the IODEF and SBIO 
instructions with one exception. D/0 has the capability to send pulses, 
turn a D/0 point on or off for a period of time, then reverse its state. 
This is useful in driving pulse-operated devices such as stepping motors. 

IO DEF D01,TYPE=SUBGROUP,ADDRESS=67,BITS=(l5,l) 

SBIO 001,(PULSE,UP) 

Figure 13-13. 0/0 example 

The above example would send a pulse to the device attached to bit 15 
of the digital output group at hardware address 67. As shown, bit 15 is 
assumed to be off, or in the "DOWN" state when the operation begins. 
The "UP" says "turn bit 15 on, and then back off". "ON" may be sub­
stituted for "UP", and if going in the other direction, "OFF" may be 
used instead of "DOWN" when coding D/0 pulse operations. 

Sensor Input/Output 13-15 



External Sync 

13-16 SR 30-0220 

Both D/I and D/0 may be used with external synchronization. The 
hardware has the capability of being "triggered" by a signal generated 
by a user device external to the Series/1. 

IODEF DI1,TYPE=EXTSYNC,ADDRESS=66 

SBIO Dil,DIWORD,1 

DI WORD DATA F1 0' 

Figure 13-14. External synchronization 

In the example shown above, the group at hardware address 66 will be 
read into location "DIWORD" only when the external synchronization 
signal is received. 

The third operand in the SBIO statement is the number of times 
(count) you wish the D/I group read (how many external sync signals 
are to be waited for) before the supervisor posts the ECB, and execution 
continues. 



Analog Input 

IO DEF All,ADDRESS=62,POINT=2,RANGE=5V 

SBIO All,AIVAL 

AI VAL DATA F'O' 

Figure 13-15. Analog input (A/I) example 

The example above shows the reading and conversion of A/I point 2, 
defined in the IODE F as symbolic A/I device "Al 1 ". When the conver­
sion is complete, an 1/0 interrupt is generated, and the supervisor posts 
an ECB so that execution may continue. 

The electrical value is between ±5 volts (range). To further carry out 
the example, let's say the point had a value of 2.5 volts. The converted 
digital value in the word "AIVAL" is shown below. 

SIGN BIT 
O=POSITIVE 
1=NEGATIVE 

1 0 0 0 0 0 0 0 0 0 0 

BINARY REPRESENTATION 
OF CONVERTED VOLTAGE 
(+2.5V SHOWN) 

Figure 13-16. A/I conversion 

RANGE 
{±5V RANGE SHOWN) 

NOT 
USED 

For a more detailed description of A/I voltage conversion values refer to 
"I BM Series/1 4982 Sensor 1/0 Unit Description" (GA34-0027). 

Sensor Input/Output 13-17 



Analog Output 

13-18 SR30-0220 

Analog Output sends a voltage to an external user device. The program 
provides the binary (digital) equivalent of the desired output voltage to 
the A/0 device, which then converts it to voltage and puts it out to the 
specified point. 

IODEF A01,ADDRESS=64,POINT=O 

SBIO AOl,VOLTOUT 

VOL TOUT DATA X1 7Fco· 

Figure 13-17. Analog output (A/0) example 

The above illustrates the "writing" of +5.0 volts to analog output point 
zero. A/0 does not generate an interrupt upon completion or employ 
external synchronization. 

The format of the output word at location "VOL TOUT" is shown be­
low. 

USED Fo:)o 11 1 1 1 1 1 1 1 1 I o o o o a a I 
SIGN IF 
BIPOLAR BINARY EQUIVALENT UNUSED 
A/0 IS OF OUTPUT VOLTAGE BITS 
INSTALLED (+5V SHOWN) 

Figure 13-18. A/0 conversion 

For a more detailed description of A/0 voltage conversion values refer 
to "IBM Series/1 4982Sensor1/0 Unit Description" (GA34-0027). 

Review the use of the Sensor 1/0 instructions in Examples 2, 3 and 9 
in Appendix B of the PDOM. 



SENSOR 1/0 REVIEW EXERCISE - QUESTIONS 

1. Can a user access Sensor 1/0 devices executing under the Starter 
Supervisor? (Yes or No) 

2. Using 

IODEF Al 1,ADDRESS=70,POINT=2 

what will the following instruction accomplish? 

a. SBIO Al 1,TABLE,2 

b. SBIO Al 1,TABLE,2,SEO=YES 

3. Using 

IODEF DI 10,ADDRESS=71,TYPE=SUBGROUP,BITS=(8,2) 

what will the following instruction do? 

SBIO Dl10,DATA1 

4. Using 

IODEF D09,ADDRESS=72,TYPE=EXTSYNC 

what will the following instruction do? 

SBIO 009,DATA 

Sensor Input/Output 13-19 



SENSOR 1/0 REVIEW EXERCISE - ANSWERS 

13-20 SR30-0220 

1. No (you must generate a tailored supervisor to access Sensor 1/0). 

2. a. Will read Al point 2 at address 70 two times and store the 
converted values at the two locations at TAB LE. 

b. Will read Al points 2 and 3 once each and store the converted 
values at the two locations at TABLE. 

3. Will read bits 8 and 9 of DI group at address 71 into storage 
location DAT A 1 (right justified) 

4. Will write out the contents of storage location DATA to DO 
group at address 72 upon receipt of an external signal (pulse). 



Section 14: Utility Programs 

OBJECTIVES: Upon successful completion of this topic, the student 
should be able to: 

1. Describe the purpose of each of the supervisor function utilities 
and system utility programs 

2. Use the most often required utilities 

READING REFERENCE: Program Description and Operations Manual 
(SB30-1053) Chapters 3 and 4; or Program Description and Operations 
Manual, Version 2 (SB30-1213) Chapters 3 and 4. 

SUPERVISOR UTILITY FUNCTIONS 

$A 

READING ASSIGNMENT: SB30-1053 (PDOM) Chapter 4; or 
SB30-1213 (Version 2 PDOM) Chapter 4. 

When the ATTN key on a terminal is pressed, the system responds with 
the prompt character">". An operator may then enter a character 
string defined in an application program's ATTN LIST statement, 
thereby executing a user attention routine. 

There are also several system commands that may be entered in 
response to the> prompt, which will cause execution of supervisor 
utility functions. The $L entry is one example with which you are 
already familiar. $L enqueues the system loader in preparation for 
loading a user or system program to storage. 

Other system commands that may be entered in response to the">" 
ATTN key prompt are: 

Terminals are logically assigned or linked to particular partitions in 
storage, by the PART= operand of the TERMINAL system configura­
tion statement. (For systems with ~ 64K of storage, all terminals 
are assigned to partition 1 by default.) When $A is entered in response 
to the">" prompt, the system will display the names and load points 
of all programs that are active within the partition to which the request­
ing terminal is currently assigned (see "$CP" discussion below for how 
to dynamically change the partition assignment for a terminal). 

Utility Programs 14-1 



$8 

$C 

$0 and $P 

$CP 

14-2 SR30-0220 

During normal system operation, there may be occasions when a 
4978/4979 Display screen becomes cluttered with residual displays 
from previous program executions. An example might be some pro­
tected data areas left by an application program that terminated with­
out issuing an ERASE command. The $8 supervisor utility function 
will completely erase (blank) all protected and unprotected areas of 
the screen of the requesting terminal. 

This system command is the cancel program function, and is provided 
as a last resort to force a program to end execution and release the 
storage it occupies. It is not a normal means of terminating program 
execution, and, depending on what the cancelled program is doing 
when the cancel is issued, may result in unpredictable errors. It 
is designed as a debug aid, and should be used with discretion. 

$C is effective only within the partition assigned to the requesting 
terminal. The operator will be prompted for the name of the program 
to be cancelled, and also for the load point, if multiple copies of the 
program are in execution at the same time. 

These two commands are on-line debug aids, which allow an operator 
to display ($D) the contents of storage in hex, or to patch ($P) storage 
locations from the terminal. These commands will prompt the 
terminal operator for starting addresses, number of words, etc., and like 
$A and $C, are effective only within the assigned partition. 

The $L, $A, $C, $D, and $P functions are all restricted to the assigned 
partition, as specified in the PART= operand of the TERMINAL 
system configuration statement defining a particular terminal. The $CP 
entry is the "change partition" command, allowing dynamic reassign­
ment of a terminal to a partition. When $CP is entered, the operator is 
prompted for the number of the partition to be assigned to the terminal 
requesting the partition change. When the reassignment is made, all 
of the assigned partition only functions are effective for the new 
partition. See the topic "Supervisor Utility Function Example" later 
in this section for an illustration of how the $CP function, along with 
$A and $C, may be used. 



$E 

$T and $W 

When system utility or application program output is directed to 
$SYSPRTR, the forms are usually not advanced far enough, when 
the output is finished, to allow the operator to tear off the complete 
report. The $E function advances $SYSPRTR to the top of form 
(page eject), allowing the operator to adjust the forms position until 
the complete output may be removed. 

The $T entry is the set date and time command for the 24 hour system 
clock/calendar. This command may only be issued from the terminals 
designated as $SYS LOG or $SYSLOGA. The date and time may be set 
anytime, but are usually set in response to the SET DATE AND TIME 
USING COMMAND $T message issued after IPL, as illustrated below. 

SET DATE AND TIME USING COMMAND $T 
>[BJ 

DATE {M. D. Y)rrtif 6. 78 I 
TI ME ( H. M) : 13. 6 

DATE = 10/06/78 TIME 
Figure 14-1. $T command 

13:06:36 

Note: In Figure 14-1, and in all illustrations in this section, depicting 
operator/utility prompt/response sequences, operator entries wi II be 
shown enclosed in boxes. 

The $W command displays the 24 hour clock and the date, and may 
be entered from any terminal. 

>~ 

DATE = 10/06/78 TIME 13:06:53 

Figure 14-2. $W command 

Utility Programs 14-3 



$VARYON~d$VARYOFF 

The $VARYON and $VARYOFF commands allow a terminal operator 
to place disk or diskette devices in an online ($VA RYON) or offline 
($VARYOFF) status. $VARYOFF might be useful in a situation where 
program testing and development are going on, and the operator wishes 
to make certain that production data residing on a disk is inaccessible 
to the test programs. 

$VARYON is frequently used to place diskette volumes online. At 
system IPL, if a diskette is not mounted in the diskette drive, the 
diskette device is placed offline. When a diskette is mounted, or when 
a mounted diskette volume is removed and another volume mounted, 
the operator must issue a $VA RYON to place the device and volume 
on line. 

> $VARYON 
IODA = 02 
ASMVOL ONLINE 

Figure 14-3. $VARYON command 

In Figure 14-3, the diskette volume ASMVOL has been mounted, and 
placed online with a $VARYON command. 

Notice that $VARYOF F and $VA RYON prompt the operator for an 
1/0 Device Address (IODA=). These commands are effective at a device 
level, and across the entire system. If the IODA entered in response to 
a $VARYOF F prompt is the address of a disk device, all volumes 
defined on that device are placed offline and are not accessible by any 
program in any partition. 

SUPERVISOR UTILITY FUNCTION EXAMPLE 

14-4 SR30-0220 

The following is a hypothetical situation designed to illustrate the use of 
the $A, $C, and $CP supervisor utility functions. 

We have made two assumptions: 

1. A three partition Event Driven Executive system with partition 1 
assigned to a 4979 ($SYS LOG), partition 2 assigned to a 4978, 
and partition 3 assigned to a TTY device 

2. Program debug and testing is going on in partition 1, a production 
job is running in partition 2, and partition 3 is currently not in use. 

The application programmer using partition 1 has just produced a load 
module named TESTPROG, which he now wishes to test. The 
TESTPROG load module just produced is stored on volume EDX002. 
An earlier version of TESTPROG resides on volume EDX003. The 
programmer inadvertently loads the old version of TESTPROG, which 
goes into execution. 



> l$L TESTPROG,EDX003J 
TESTPROG lOP,13:10:27, LP 5FOO 
Figure 14-4. 1st load 

The programmer soon realizes the wrong TESTPROG has been loaded, 
and without terminating the program, presses the ATTN key and 
requests the load of the new version of TESTPROG, this time using the 
proper volume. 

> l$L TESTPROG,EDX002l 
TESTPROG 12P,13:12:00, LP= 6900 
Figure 14-5. 2nd load 

The new version of TESTPROG begins execution. The program 
enqueues for the loading terminal, and before a DEOT is issued, a pro­
gram logic error causes an execution loop. The ATTN key produces 
no response, because the requesting terminal is enqueued. The pro­
grammer cannot, therefore, cancel ($C) either TESTPROG from this 
terminal. If the system were re-IP Led to recover, the production job 
running in partition 2 would have to be terminated, a possibility that 
may or may not be practical. 

Since the TTY device assigned to partition 3 is not in use, the pro­
grammer moves to the TTY, and wanting to know what partition it is 
assigned to, enters the following; 

> [!Kl 
PROGRAMS AT 13:13:14 
IN PARTITION #3 NONE 
Figure 14-6. P3 $A 

The TTY is still assigned to partition 3, the I PL configuration specified 
in the TERMINAL statement defining the TTY terminal. No programs 
are presently active in partition 3. 

The programmer now switches the TTY to partition 1, and displays 
the programs there. 

> l$cPI 
PARTITION # ? [] 

> [1K] 
PROGRAMS AT 13:14:46 
IN PARTITION #1 
TESTPROG 5FOO 
TESTPROG 6900 
Figure 14-7. P1 $A 

Utility Programs 14-5 



Both versions of TESTPROG are displayed, along with their load points 
in partition 1. The next step is to cancel the looping program, freeing 
up the enqueued $SYS LOG. 

> [ill 
PGM NAME: ITESTPROG I 
LOAD POINT = 169001 

TESTPROG CANCELLED AT 13:15:12 

> rru 
PGM NAME: ITESTPROG I 
TESTPROG CANCELLED AT 13:15:59 

>l$cPI 
PARTITION # ? l}] 
Figure 14-8. "$C" 

The system prompts for load point on the first cancel, because two 
programs of the same name are in the partition. If the first program 
cancelled were the one which had the 4979 enqueued, the operator 
could then go back to the 4979, which would now respond to the ATTN 
key, and terminate the remaining version of TESTPROG normally, or 
cancel it, if necessary. In this example, he continues with a cancel of 
the other TESTPROG from the TTY. Note that no load point is 
required when only one program of that name is active. 

The TTY is then switched back to partition 3. IF this is not done, 
future supervisor utility functions including $L issued from the TTY 
would still apply to partition 1. 

SYSTEM UTILITY PROGRAMS 

14-6 SR30-0220 

With the release of Version 2 of the Event Driven Executive, more than 
thirty system utility programs are available. These utilities will be 
discussed in the following manner; 

1. Discussion of utility programs supporting features/functions not 
covered in this study guide will be limited to a brief description 
of the utility, and a reading reference. 

2. Terminal output examples from actual utility sessions are used to 
illustrate the operation of the most frequently required utility 
programs. 

3. Those utilities required for source program preparation are 
covered separately in "Section 18. Program Preparation (Version 
2)" of this study guide. 

Event Driven Executive system utility programs are invoked by an 
operator pressing a terminal ATTN key, and entering the system com­
mand $L. The operator is then prompted for the name of the utility 
program to be loaded, and for data set names, if required. Some of the 



utilities used in program preparation may also be loaded from job 
utility control statements in a job utility procedure data set, under 
control of the $JOB UT IL program. (See "$JOBUTI L" in Section 17 
for details). 

BSC UTILITIES (VERSION 2 ONLY) 

$BSCTRCE 

$BSCUT1 

$BSCUT2· 

READING REFERENCE: SB30-1213 (Version 2 PDOM) pages 3-5 
through 3-16. 

This utility traces 1/0 on a specified BSC line, and stores the trace data 
in a data set on disk or diskette. The data set must be preallocated by 
the user, and the name supplied to the $BSCTRCE utility at the time 
the utility is loaded. Trace information includes condition codes, status 
words, data transferred, and other indicators/information associated 
with BSC 1/0 operation. 

Trace information written by $BSCTRCE is retrieved and formatted 
into an easily understood report by $BSCUT1, and then directed to a 
specified terminal or print device. 

This utility is a BSC exerc.iser, used to test the BSC hardware adapter, 
and the match between the actual hardware configuration and what 
has been specified in the BSC LINE system configuration statement. 
Several BSC access method commands may be invoked to exercise 
various hardware/system software combinations. 

DISPLAY PROCESSOR (GRAPHICS) UTILITIES 

READING REFERENCE: SB30-1053 (PDOM) pages 3-35 through 
3-71; or SB30-1213 (Version 2 PDOM) pages 3-57 through 3-102· and 
pages 8-2 through 8-18. 

The Display Processor facility allows the user to generate, store, and 
display information in graphic or report format. The information is 
contained in a data base created expressly for, and utiHzi.ng, data 
organization and data formatting conventions unique to the Display 
Processor. Display Processor support consists of three utility programs, 
which are used to create/maintain the data base, create or alter data 
members, or display a graphic or report data member. 

Utility Programs 14-7 



$DIUTIL 

$DI COMP 

$DllNTR 

This utility provides all data base maintenance functions for the Display 
Processor data base, including initialization, member deletion/allocation, 
data base compression, and member/data base copy. 

A member within the Display Processor data base is called a display 
profile. This utility allows the operator to compose a display profile, or 
to alter (maintain) existing display profiles. 

A completed display profile (data base member) is made up of coded 
information representing an image or report. The $DI I NTR utility 
retrieves a specified display profile, interprets the coded commands/ 
data it contains, and displays the resulting image. 

Note: Terminals used as graphics devices must have ASCII point-to­
point vector graphics capability. 

HOST PROGRAM PREPARATION UTILITIES 

$HCFUT1 

14-8 SR30-0220 

READING REFERENCE: S830-1053 (PDOM) pages 3-99 through 
3-103, pages 3-73 through 3-79, and pages 3-121, 3-122; or S830-1213 
(Version 2 PDOM) pages 3-103 through 3-109, pages 3-155 through 
3-160, pages 3-201 through 3-210, and pages 6-57, 6-58. 

When program preparation is performed on a host System/370, the Host 
Communications Facility IUP (5796-PGH) must be installed on the 
host system. On the Series/1 side the $HCFUT1 utility program is used. 

$HCFUT1 is the basic Event Driven Executive utility program used to 
transfer data sets associated with program preparation between the 
Series/1 and a host system. The four functions available are; 

1. READ a source/object data set from a host into a Series/1 data set 

2. WRITE a Series/1 source/object data set to a host data set 

3. SUBMIT a program preparation job to the host job stream 

4. SET /FETCH/RE LEASE a record in the host System Status data 
set 



$EDIT1/$UPDATEH 

These are the host preparation equivalents of the native preparation 
text editing and object module formatting utilities $EDIT1 N and 
$UPDATE. They differ from the native versions only in the commands 
used to store and retrieve source and object module data sets. For the 
native versions, any operation involving a data set transfer (READ/ 
SAVE/RP) requires that both the from and to data sets be resident on 
the Series/1. With the "host prep" versions, both will be resident on 
the host. 

$EDIT1 and $UPDATEH invoke the READ and WRITE (also SUBMIT 
for $EDIT1) functions of $HCFUT1 without the operator's having to 
load $HCFUT1 explicitly. If the operator does load $HCFUT1 and uses 
it for the necessary data set transfers, then the editing/formatting 
operations would be done with $EDIT1 N and $UPDATE. 

Note: $FSEDIT, the Version 2 full screen text edit utility, includes host 
prep data set transfer functions in its normal command menu; no 
separate version for host program preparation is required. 

$RJE2780/$RJE3780 (Version 2 Only) 

READING REFERENCE: SB30-1213 (Version 2 PDOM) pages 
3-202 through 3-210. 

These utilities provide an alternative method of transferring data sets 
between a Series/1 and a host program preparation system. The 
$RJE2780 and $RJE3780 simulate the I BM 2780 and I BM 3780 
Remote Job Entry stations. Using the Series/1 BSC capability, 
$RJE2780 and $RJE3780 interface to System/360 or System/370 
systems with the Remote Job Entry facility installed (5796-PG H not 
required). 

$PRT2780/$PRT3780 (Version 2 Only) 

READING REFERENCE: SB30-1213 (Version 2 PDOM) page 3-201. 

These utilities print the RJE printer output spool files created when 
$RJE2780/$RJE3780 is used with the spooling option invoked. 

Utility Programs 14-9 



DASO MANAGEMENT/MAINTENANCE UTILITIES 

$DISKUT1 

14-1 0 SR 30-0220 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 3-27 through 
3-30; or 5830-1213 (Version 2 PDOM) pages 3-49 through 3-52. 

$DISKUT1 provides many of the most frequently required DASD stor­
age management functions. As with most system utilities, entering a 
"?" in response to the "COMMAND (?) :" prompt will result in a 
display of available functions. 

COMMAND: ? 

FUNCTION: Provides a list of valid commands for this utitity program. 

EXAMPLE: > l$L $DISKUT1 I 
$DISKUT1 24P,00:00:19, LP= 5100 

USING VOLUME EDX002 

COMMAND (?): [l] 
AL ALLOCATE SPACE 
CV ---- CHANGE VGLUME 
DE ---- DELETE MEMBER 
EN ---- END THE PROGRAM 
LA *--- LIST ALL (DS/PGM) 
LACTS * LIST ALL (CTS MODE) 
LO *--- LIST DATA SETS 
LDCTS * LIST DATA SETS (CTS MODE) 
LM ---- LIST 1 MEMBER 
LP *--- LIST PROGRAMS 
LPCTS * LIST PROGRAMS (CTS MODE) 
LS ---- LIST SPACE 
LISTP - DIRECT LISTING TO $SYSPTR 
LISTT - DIRECT LISTING TO TERMINAL 
RE ---- RENAME A MEMBER 

*--- PREFIX (OPTIONAL) 
COMMAND (?): 

Figure 14-9. $DISKUT1 ? 

COMMENTS: The list functions annotated as PREFIX (OPTIONAL) 
indicate that if a 1 to 8 character text string is entered with the list 
command, only those data sets beginning with that text string will be 
listed. 



EXAMPLE: COMMAND (?): I LO AREC I 
USING VOLUME EDX002 

NAME 

ARECPGMl 
ARECPGM5 
ARECPGM3 

FREC SIZE 

3369 300 
3669 100 
3769 50 

4764 FREE RECORDS IN LIBRARY 

COMMAND (?): 

Figure 14-10. Prefix 

COMMAND: AL 

FUNCTION: Allocate space in a disk or diskette volume for a program 
or data member. 

EXAMPLE: >l$L $DISKUT1 I 
$DISKUT1 24P,00:00:29, LP= 5100 

USING VOLUME EDX002 

COMMAND (? ) : "'-A'--=L __ 
MEMBER NAME: OBJECT 
HOW MANY RECORDS? 50 
DEFAULT TYPE = DATA - OK? INOI 
TYPE = PROGRAM? IYESI 
OBJECT CREATED 

Figure 14-11. Allocate 

COMMENTS: The above example shows the creation of a program 
member OBJECT (50 records) in volume EDX002. For more examples 
of the $DISKUT1 allocate function, see "Section 16. System Installa­
tion, Version 2." 

COMMAND: CV 

FUNCTION: Changes the volume to be used with additional 
$DISKUT1 commands. 

EXAMPLE: >l$L $DISKUT1l 
$DISKUT1 24P,00:28:17, LP= 6900 

USING VOLUME EDX002 

COMMAND (?): (rn 
NEW VOLUME LABEL =IEDX0031 

Figure 14·12. Change volume 
Utility Programs 14-11 



14-12 SR30-0220 

COMMENTS: The example shows how to change the volume to be used 
for commands entered in this $DISKUT1 utility session. EDX003 will 
be used until another CV command is entered or until $DISKUT1 is 
loaded again. 

COMMAND: DE 

FUNCTION: Delete a data or program member from a volume on disk 
or diskette. 

EXAMPLE: 

Figure 14-13. Delete 

COMMENTS: In the example PROG3 is deleted. The user is asked if 
PROG3 is to be deleted. If NO was entered for the PROG3 DELETE? 
prompt the utility would respond with the COMMAND(?); prompt. 

COMMAND: LA 

FUNCTION: List all data and program members in the volume being 
used. 

EXAMPLE: COMMAND (?):WU 

USING VOLUME EDXOOl 

NAME FREC SIZE 

SRCEl DATA 11 200 
SRCE3 DATA 211 200 
PROG2 PGM 411 2 
OVLYl PGM 413 2 
DOIF DATA 415 30 
DSKSRCE DATA 445 30 
DEMO DATA 475 40 
DAVE DATA 515 20 
FMTSRC DATA 535 20 
OBJECT PGM 555 50 

345 FREE RECORDS IN LIBRARY 

Figure 14-14. List all 

COMMENTS: The example shows a report of all members allocated on 
volume EDX001 giving the relative location in the volume and size 
of each member. It also indicates the space available in the volume 
(345 FREE RECORDS) that could be used to allocate additional 
members. 



COMMAND: LACTS 

FUNCTION: List all data and program members in the volume being 
used giving the cylinder, track, sector (CTS) extents for each member. 

EXAMPLE: COMMAND (?): ILACTS I 
USING VOLUME EDXOOl 

NAME ORG(CTS) END(CTS) 

SRCEl DATA 001021 017004 
SRCE3 DATA 017005 032014 
PROG2 PGM 032015 032018 
OVLYl PGM 032019 032022 
DOIF DATA 032023 035004 
OS KSRCE DATA 035005 037012 
DEMO DATA 037013 040014 
OBJECT PGM 043017 047012 
FMTSRC DATA 042003 043016 

365 FREE RECORDS IN LIBRARY 

Figure 14-15. List all CTS 

COMMENTS: The example lists all the members in volume EDX001 
giving the CTS extents for each. 

COMMAND: LO 

FUNCTION: List all the data members in the volume being used. 

EXAMPLE: COMMAND(?): ILDI 

USING VOLUME EDXOOl 

NAME FREC SIZE 

SRCEl 11 200 
SRCE3 211 200 
DOIF 415 30 
DSKSRCE 445 30 
DEMO 475 40 
DAVE 515 20 
FMTSRC 535 20 

345 FREE RECORDS IN LIBRARY 
Figure 14-16. List data members 

COMMENTS: The example shows a report of all data members on 
volume EDX001 giving the relative location in the volume and size 
of each member. 

Utility Programs 14-13 



14-14 SR30-0220 

COMMAND: LDCTS 

FUNCTION: List all data members in the volume being used giving 
the cylinder, track, sector extents of each. 

EXAMPLE: COMMAND (?): I LDCTS I 
USING VOLUME EDXOOl 

NAME ORG(CTS) END(CTS) 

SRCEl 
SRCE3 
DOIF 
DSKSRCE 
DEMO 
DAVE 
FMTSRC 

001021 
017005 
032023 
035005 
037013 
040015 
042003 

017004 
032014 
035004 
037012 
040014 
042002 
043016 

345 FREE RECORDS IN LIBRARY 

Figure 14-17. LDCTS 

COMMENTS: The example shows a report of all data members on 
volume EDX001 giving the CTS extents for each. 

COMMAND: LP 

FUNCTION: List all the program members in the volume being used. 

EXAMPLE: COMMAND (?): [EJ 

USING VOLUME EDXOOl 

NAME FREC SIZE 

PROG2 
OVLYl 
OBJECT 

411 2 
413 2 
555 50 

345 FREE RECORDS IN LIBRARY 

Figure 14-18. List program members 

COMMENTS: The example shows a report of all program members on 
volume EDX001 giving the relative location in the volume and size of 
each member. 



COMMAND: LPCTS 

FUNCTlON: List all program members in the volume being used giving 
cylinder, track, sector extents of each. 

EXAMPLE: COMMAND (?) : lLP CTS I 

USING VOLUME EDXOOl 

NAME ORG(CTS) END(CTS) 

PROG2 
OVLYl 
OBJECT 

032015 
032019 
043017 

032018 
032022 
047012 

345 FREE RECORDS IN LIBRARY 

Figure 14-19. LPCTS 

COMMENTS: The example shows a report of all program members on 
volume EDX001 giving the CTS extents. 

COMMAND: LM 

FUNCTION: List the relative location in a volume and the CTS extents 
of a specific member (data or program). 

EXAMPLE: COMMAND (?): lLMl 
MEMBER NAME: DEMO 

USING VOLUME EDXOOl 

NAME 

DEMO 

FREC SIZE 

DATA 475 40 

IODA,CTS= 002,037013,040014 
Figure 14-20. List member 

COMMENTS: The example shows the relative location and CTS extents 
of a data member, DEMO, in volume EDX001. 

Utility Programs 14-15 



14-16 SR 30-0220 

COMMAND: LS 

FUNCTION: List the available space in a volume indicating the size and 
location of each unused area. 

EXAMPLE: COMMAND (?): Il3J 
USING VOLUME EDX003 

LIBRARY 
AT REC. 
SIZE 
UNUSED 

DIRECTORY 
SIZE 
UNUSED 

14 
949 RECORDS 
593 RECORDS 

10 RECORDS 
2392 BYTES 

NO. MEMBERS - 4 

NO. FREE SPACE ENTRIES - 2 

LIST FREE SPACE CHAIN? IYESI 
FREC SIZE 
457 493 
207 100 

Figure 14-21. List space 

COMMENTS: This example lists the space available in the volume 
EDX003. There are 593 unallocated records. There are 4 members 
defined in the volume with 2 areas of unused space (FREE SPACE 
ENTRIES= 2). Those areas are at relative location 207 (100 records) 
and at relative location 457 (493 records). 

COMMAND: RE 

FUNCTION: Rename a member in the using volume. 

EXAMPLE: COMMAND (?): RE _ .............. 

MEMBER NAME: PGM3 
NEW NAME: PROG3 
RENAME COMPLETED 

Figure 14-22. Rename 

COMMENTS: The example shows changing the name of member 
PGM3 to PROG3. 



$1NITDSK 

COMMAND: EN 

FUNCTION: Terminate the $DISKUT1 utility session and free up the 
area used by the program. 

EXAMPLE: COMMAND (?): WD 
$DISKUT1 ENDED AT 00:10:54 

Figure 14-23. End utility $DISKUT1 

READING ASSIGNMENT: S830-1053 (PDOM) page 3-105; or 
S830-1213 (Version 2 PDOM) pages 3-167 through 3-169. 

The $IN ITDSK utility is used to initialize Event Driven Executive disk 
and diskette volumes. 

Note: Before $IN ITDSK can be used to initialize a diskette as an Event 
Driven Executive volume, the diskette must already be in the Basic 
Exchange Format (128-byte sectors, HDR1 record). See the example in 
this section for $DASDI for information on how to format a diskette. 

Uti I ity Programs 14-17 



14-18 SR 30-0220 

> l$L $INITDSK I 
$INITDSK 13P,0 12:44, LP= 6900 

LIBRARY INITIALIZAli2~ PROGRAM 

l=ENTER VOLUME LABEL 
2=ENTER DEVICE ADDRESS 
3=STOP PROGRAM 

SELECT OPTION: W 
ENTER DEVICE ADDRESS IN HEX: l002l 

WRITE VOLUME LABEL? lYESI 
ENTER DESIRED VOLUME LABEL ( 1-6 CHARACTERS) IEDX003I 
ENTER OWNER ID (1-14 CHARACTERS): lD870I 

CREATE A DIRECTORY? IYESI 
HOW MANY RECORDS IN DIRECTORY? (2- 13): __ITQ] 
DO YOU WISH TO RESERVE SPACE FOR A NUCLEUS?~ 
ENTER MAXIMUM SIZE IN K-BYTES (16-64): ~ 
DIRECTORY INITIALIZED 

WRITE I PL TEXT? I YES! 
IPL TEXT WRITTEN 

l=ENTER VOLUME LABEL 
2=ENTER DEVICE ADDRESS 
3=STOP PROGRAM 

SELECT OPTION: QJ 
$INITDSK ENDED AT 00:16:36 
Figure 14-24. $1NITDSK 

In Figure 14-24, a diskette is being initialized as an Event Driven Execu­
tive volume labeled EDX003. A diskette is considered one Event Driven 
Executive volume. A directory would be created if you intend to 
atlocate data and/or program members. The directory contains informa­
tion about each member in the volume. A directory of 'n' records can 
accommodate information for (Bn-2) members. The volume initialized 
in the example could accommodate 78 members (8X10-2). If you wish 
to store an Event Driven Executive Supervisor you can reserve space for 
it by entering the maximum size of the nucleus. The utility will allocate 
a program member ($EDXNUC) but it will be up to you to copy your 
supervisor to it. If you expect to IPL that supervisor from the diskette 
you would have the utility write the IPL text. 

For other examples of $1 N ITDSK operation, see "Section 15. System 
I nstal lat ion." 



$COMPRES 

$COPY 

READING ASSIGNMENT: S830-1053 (PDOM) pages 3-3, 3-4; or 
S830-1213 (Version 2 PDOM) page 3-17. 

During normal system usage, data sets in Event Driven Executive 
volumes will be deleted, leaving "holes" (free space) between members. 
The $COMPRES utility consolidates all available free space within an 
Event Driven Executive volume into one contiguous area. 

EXAMPLE: :--. l$L $COMPRES! 
$COMPRES 13P,00:32:48, LP= 6900 

COMPRESS SYSTEM LIBRARY 
WARNING! SHOULD BE RUN ONLY WHEN 
NO OTHER PROGRAMS ARE ACTIVE 

VOLUME LABEL = [DXQQ3J 

COMPRESS LIBRARY ON EDX003? IYESI 

DIRECTORY HAS BEEN SORTED BY MEMBER IN ASCENDING ORDER. 
$EDXNUC COPIED 
DATAl COPIED 
PROGl COPIED 
PROG2 COP I ED 
THE LIBRARY IS COMPRESSED. 

ANOTHER VOLUME? IB:Q) 

$COMPRES ENDED AT 00:34:39 
F~ure14~5. $COMPRES 

The example shows compressing the members in volume EDX003. 
Never compress a volume when any other program is active. You can 
determine what programs are active by using the $A supervisor utility 
function. If the compress was performed on the volume that contained 
the supervisor you IPLed from or if the $LOADER program's location 
was moved you must re-IPL. 

READING ASSIGNMENT: S830-1053 (PDOM) pages 3-5, 3-6; or 
S830-1213 (Version 2 PDOM) pages 3-19, 3-20. 

The $COPY utility allows the user to copy the contents of one data 
set to another. The target data set must be preallocated and have the 
same size and organization as the source data set. Partial copies of only 
data members is allowed. Error messages will be printed if proper copy 
parameters are not provided. 

Utility Programs 14-19 



14-20 SR30-0220 

COMMAND: CD 

FUNCTION: Copy contents of a program or data member to another. 

EXAMPLE 1: COMMAND (?): [Q) 
SOURCE(NAME,VOLUME): DATA,EDXOOl 
COPY ENTIRE DATA SET? N 
FIRST RECORD:JI] 
LAST RECORD: [j]] 
TARGET (NAME, VOLUME) : lDATAl, EDXOO ll 
FIRST RECORD: [I) 
ARE ALL PARAMETERS CORRECT?[Y) 
COPY COMPLETE 

10 RECORDS COPIED 

Figure 14-26. $COPY CD partial 

COMMENTS: This example shows the copying of the first ten records 
of data member (DATA) on volume EDX001 to data member (DATA1) 
also on EDX001. If volume parameter was not provided the IPL volume 
would be assumed. 

EXAMPLE2: COMMAND (?):ICDI 
SOURCE(NAME,VOLUME): DATA EDXOOl 
COPY ENTIRE DATA SET? Y .........__. ___ _____, 

TARGET(NAME,VOLUME): DATAl,EDXOOl 
ARE ALL PARAMETERS CORRECT? Y 
COPY COMPLETE 

25 RECORDS COPIED 
Figure 14-27. $COPY CD full 

COMMENTS: This example shows the copying of the entire data 
member DATA to DATA1. 

EXAMPLE 3: COMMAND (?): lcDI 
SOURCE(NAME,VOLUME): COPYl,EDXOOl 
TARGET(NAME,VOLUME): PGMl EDXOOl 
ARE ALL PARAMETERS CORRECT? Y 
COPY COMPLETE 

25 RECORDS COPIED 
Figure 14-28. $COPY CD program 

COMMENTS: This example shows the copying of program member 
(COPY1) to program member PGM 1. 



$COPYUT1 (Version 2 Only) 

$DISKUT2 

READING ASSIGNMENT: S830-1213 (Version 2 PDOM) pages 3-21 
through 3-23. 

This copy utility will copy data or program members from a source 
volume to a target volume, and: 

1. Will delete a member from a target volume, if a member exists 
with the same name as the member being copied from the source 
volume 

2. Will allocate a member on the target volume of the same size and 
data organization as the source member 

3. Will copy multiple members with a single command (all, all data, 
all program, generic, non-generic), with or without a prompting 
pause 

>l$L $COPYUT11 
$COPYUT1 35P,00:00:14, LP= 6000 

***WARNING MEMBERS ON TARGET VOLUME WILL BE OVERWRITTEN*** 

THE DEFINED SOURCE VOLUME IS EDX002, OK? INOl 
ENTER NEW SOURCE VOLUME: WX003j 
THE DEFINED TARGET VOLUME IS EDX002, OK? IYESI 
MEMBER WILL BE COPIED FROM EDX003 TO EDX002 OK?IYESI 

COMMAND (?): CG 

ENTER GENERIC TEXT: AREC 
ARECPGMl COPY COMPLETE 
ARECPGM5 COPY COMPLETE 
ARECPGM3 COPY COMPLETE 

COMMAND (?): 

Figure 14-29. Generic copy 

300 RECORDS COPIED 
100 RECORDS COPIED 

50 RECORDS COPIED 

Figure 14-29 is an example of a generic copy without a prompting 
pause. The warning message indicates that existing members of the 
same name as any of those being copied will be deleted. 

READING ASSIGNMENT: S830-1053 (PDOM) pages 3-31 through 
3-33; or S830-1213 (Version 2 PDOM) pages 3-53 through 3-56. 

$DISKUT2 allows a terminal operator to patch data or program 
members on disk, dump data or program members to the terminal or 
to $SYSPRTR (in decimal or hex), clear data sets or selected records 
within data sets to zeros, or to list source data sets created by $EDIT1, 
$EDIT1 N, or $FSEDIT (listing of source data sets available with 
Version 2 $DISKUT2 only). 

Utility Programs 14-21 



14-22 SR30-0220 

> $L J$DISKUT2 I 
$DISKUT2 24P,00:53:49, LP= 5FOO 

USING VOLUME EDX002 

COMMAND (?): [I) 

CD - CLEAR DATA SET 
CV - CHANGE VOLUME 
DP - DUMP OS OR PGM ON PRINTER 
DU - DUMP OS OR PGM ON CONSOLE 

(-CA- WILL CANCEL) 
PA - PATCH OS OR PGM 
LP - LIST OS ON PRINTER 
LU - LIST OS ON CONSOLE 
EN - END PROGRAM 

COMMAND(?): 
Figure 14-30. $DISKUT2 options 

COMMAND: CD 

FUNCTION: Set to zero all or part of a specified data or program 
member. 

EXAMPLE: COMMAND(?): (Q2] 
DATA SET NAME? lDKll 
CLEAR ENTIRE DATA SET? [Y] 

ARE ALL PARAMETERS CORRE CT? [Y) 
CLEAR COMPLETED 

Figure 14-31. Clear 

COMMENTS: This example shows zeroing out data set (DK1) in its 
entirety. 



COMMAND: DU 

FUNCTION: Dump to the terminal invoking the utility the data in the 
areas specified by the parameters provided by the user. 

EXAMPLE: COMMAND(?): (lliJ] 
PGM OR OS NAME: lsuPPREPSI 
SUPPREPS IS A DATA SET 
FIRST RECORD: ' LAST RECORD: 2 
FIRST WORD: 1 
WORDS I RECORD: 16 
(D)EC OR HE(X): X 

DUMP OF DATA SET SUPPREPS ON EDX002 

RECORD 
1 
9 

RECORD 
1 
9 

1 

2 

0306 C740 4040 4040 405B E2E8 E207 09E3 ILOG 
D940 4040 4040 4040 4040 4040 4040 4040 IR 

$SYSPRTI 
I 

D7D9 D6C7 D9Cl D440 405B C5C4 E7Cl E2D4 IPROGRAM $EDXASMI 
6BC1 E2D4 D3C9 C240 4040 4040 4040 4040 I,ASMLIB I 

DUMP COMPLETE 
ANOTHER AREA? lli] 

COMMAND(?): 
Figure 14-32. Hex dump 

COMMAND: LU 

FUNCTION: List on the terminal invoking the utility the source data 
in the areas specified by the parameters specified by the operator. 

EXAMPLE: COMMAND(?): [ill 
DATA SET NAME? l$EDXDEFSl 
LIST ALL OF THE DATA SET? INOl 
FIRST RECORD : f1l 
LAST RECORD : I] 

$EDXDEF CSECT 
SYSTEM STORAGE=l28,MAXPROG=(l0,10,10),PARTS=(l6,16,17) 
TIMER ADDRESS=40 

LIST COMPLETE 

COMMAND(?): 
Figure 14-33. List source data set 

Utility Programs 14-23 



$DASDI (Version 2 Only) 

14-24 SR30-0220 

COMMAND: PA 

FUNCTION: Patch the area specified by the parameters provided by 
the user. 

EXAMPLE: COMMAND (?):I PA) 
PGM OR OS NAME: IDKll 
DKl IS A DATA SET 
FIRST RECORD: ; 
FIRST WORD: 1 
HOW MANY WORDS? 4 
(H)EX OR (D)EC: H 

NOW IS: 
1 0000 0000 0000 0000 

ENTER DATA: IE3C8 C9E2 C9E2 D4C5I 

NEW DATA: 
1 

OK? [YJ 

E3C8 C9E2 C9E2 D4C5 

PATCH COMPLETE 
ANOTHER PATCH? [NJ 

Figure 14-34. Patch 

COMMENTS: The example shows patching the first four words in data 
set (DK1) with the hexadecimal data supplied by the user. The user 
verifies the patch data by specifying Y to the OK? prompt. 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages 3-24.1 
through 3-24.3. 

The $DASDI utility is used to prepare diskettes for initialization as 
Event Driven Executive volumes (using $1NITDSK). 



$MOVEVOL 

>l$L $DASDI! 
$DASDI 15P,00:00:56, LP= 5FOO 
********************************************** 
* DISKETTE FORMATTING PROGRAM * 
* IF FORMATTING IS IN PROGRESS, DO NOT * 
* CANCEL ($C) THIS PROGRAM. INSTEAD, * 
* ENTER ATTN/$DASDI TO FORCE TERMINATION. * 
********************************************* 

ENTER DISKETTE ADDRESS IN HEX [QQ@ 

INITIALIZE FOR USAGE WITH THE IBM EVENT DRIVEN EXECUTIVE?IYESI 

IBMIRD VARIED OFFLINE 
** WARNING ** 

FORMATTING WILL DESTROY ALL DATA. CONTINUE? IYESI 

IBMEDX VARIED ONLINE 

FORMATTING COMPLETE 

LOAD $IN ITDSK? lNOl 

ANOTHER DISKETTE? INOI 

$DASDI ENDED AT 00:04:04 
Figure 14-35. Initialize diskette 

This utility formats each track in 128-byte sectors, writes sector 
addresses, analyzes each track for defective sectors and assigns alternates 
if required, and writes the volume label IBMEDX. 

Users of Version 1, who do not have $DASDI available can perform the 
same functions using the Stand Alone Diskette Initialization (RI) 
Utility, which is part of the Series/1 Standalone Utilities (5719-SC2). 
See the I BM Series/1 Stand-Alone Utilities Users' Guide (GC34-0070), 
pages 4-1 through 4-4 for operating instructions. 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 3-113 through 
3-116; or SB30-1213 (Version 2 PDOM) pages 3-195 through 3-199. 

$MOVEVOL is a dump/restore utility, used to dump entire volumes to 
diskette or restore volumes from diskette, where the volumes may span 
several diskettes. 

A dumped volume consists of a control diskette, containing the volume 
directory and control information, and as many data diskettes as are 
required to hold the rest of the information in the volume. See the 
reading assignment for information on creating the control and data 
diskettes, and for examples of $MOVE VOL operation. 

Utility Programs 14-25 



TERMINAL 1/0 UTILITIES (VERSION 2 ONLY) 

$TERMUT1 

14-26 SR30-0220 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages 3-211 
through 3-213. 

This is a general purpose terminal utility, used to perform several 
terminal-related functions. 

> l$L $TERMUT11 
$TERMUT1 lOP,01:12:29, LP= 5FOO 

*** TERMINAL CONFIGURATOR *** 

COMMAND(?): [f] 

LA -- LIST TERMINAL ASSIG NvlENTS 
RE RENAME 
RA REASSIGN ADDRESS 
RH REASSIGN HARDCOPY 
CT CONFIGURE TERMINAL 
EN END PROGRAM 

COMMAND(?): 

Figure 14-36. $TERMUT1 options 

The current terminal name, hardware address, and terminal type may 
be displayed using the LA (list assignment) function. 

COMMAND (?): [Ai 

NAME ADDRESS TYPE 

$SYSLOG 04 4979 
$SYSLOGA 00 TTY 
LINEPRTR 21 4973 
DSPLYl 06 4978 
$SYSPRTR 01 4974 

COMMAND (?): 
Figure 14-37. LA 

Terminals may be renamed, using the RE function. For instance, if 
the 4973 printer in Figure 14-37 were mistakenly referenced (EN OT) in 
a program as LI NPRNTR the name could be temporarily changed from 
LINEPRTR to LINPRNTR to test the program, and then changed back. 



$TERMUT2 

COMMAND ( ? ) : IBil 
OLD, NEW TERMINAL NAMES: ILINEPRTR LINPRNTRI 

COMMAND (?) : 

Figure 14-38. RE 

Terminal hardware addresses (RA), hardcopy device/hardcopy PF key 
designations (RH), and page format configuration parameters (CT) 
may al I be reassigned using $TE RMUT1. Reassignments remain in 
effect until reassigned again, or until the next I PL, which will cause all 
terminals to revert to the assignments in the TERMINAL system 
configuration statements. 

4978 Displays have a control store and an image store, which are 
loaded from disk or diskette data sets. At IPL, the system auto­
matically loads all 4978s with the control store data set $4978CSO 
and the image store data set $49781SO. These may be the standard 
system-supplied data sets, or may be user-created control/image 
store data sets that have been renamed $4978CSO or $49781SO. 

> l$L $TERMUT2 I 
$TERMUT2 29P,04:48:42, LP= 6000 

COMMAND (?): l1J 
AD - ASSIGN DEFINE KEY 
C CHANGE KEY DEFINITION 
E END PROGRAM 
LC LOAD CONTROL STORE 
LI LOAD IMAGE STORE 
SC SAVE CONTROL STORE 
SI SAVE IMAGE STORE 

COMMAND (?): 

Figure 14-39. $TERMUT2 options 

After IPL, $TERMUT2 can be used to load a control or image store 
from user-defined control/image data sets (LC and LI commands), 
or to read the control or image store in a display, and write it to a 
user-allocated data set (SC and SI commands). Control store data 
sets require 16 records, and image store data sets, 8 records. 

The 4978 hardware supports the DEFINE function, which allows keys 
to be defined with special character strings that have meaning to a 
particular application or job. In order to define a key with special 
characters, DEFINE mode must be entered. This is accomplished by 
pressing the DEFINE key on the 4978 keyboard. 

Utility Programs 14-27 



Assuming a standard 4978 keyboard is installed, the $4978CSO control 
store supports the keyboard shown in Figure 14-40. (The unshaded 
keys are those that will produce hardware interrupts.) 

D~DDDDDDDD 
DDDDDDDDDD 

Figure 14-40. 4978 keyboard, RPO 002056 

14-28 SR30-0220 

As can be seen, there is no key permanently designated as the 
DEFINE key. However, using the AD command of $TERMUT2, 
you may assign a key of your choice as the DEFINE key. 



Figures 14-41 and 14-42 are taken from the General Information 
manual for the 4978 keyboard (RPO 002056). Similar charts are 
in the General Information manuals for whichever keyboard you 
have installed. 

In Figure 14-41, each key position is assigned a reference number. 
Figure 14-42 is the first page of several which list the hex scan 
code, function ID code, local function code, and interrupt code 
which comprises the control store information for each key. The 
identifying numbers on the keys in Figure -14-41 correspond to the 
key position numbers on the chart in Figure 14-42. 

Figure 14-41. Keyboard reference assignments 

Utility Programs 14-29 



Control Store Data 

Downshift - Unshifted Upsh1ft - Shifted 

K Scan code K Scan code 
e e 
y Function ID code y Function ID code 

p Character/local function code p Character/local function code 

0 Key top 0 Interrupt code 
Key top 

s Interrupt code symbol s symbol 
i Character image table i Character image table 
t t 
i Row i Row 
0 0 

n 0 1 2 3 4 5 6 7 n 0 1 2 3 4 5 6 7 

01 20 00 1 81 20 00 01 ---r-1 01 A " 3 02 20 00 02 3 82 20 00 02 
4 03 20 00 03 4 83 20 00 03 
6 04 20 00 04 6 84 20 00 04 
7 OS 20 00 OS 7 8S 20 00 05 
9 06 20 00 06 9 86 20 00 06 
IO 07 20 00 07 10 87 20 00 07 
12 08 20 00 OB 12 88 20 00 OB 
13 09 20 00 oc 13 89 20 00 oc 
IS OA 20 00 OD 15 8A 20 00 OD 
17 OB 20 00 OE 17 8B 20 00 OE 
19 oc 20 00 OF 19 8C 20 00 OF 
20 OD 20 00 10 20 8D 20 00 10 
22 OE 20 00 11 22 8E 20 00 II 
23 OF 20 00 12 23 8F 20 00 I2 
2S IO 20 00 I3 Note 1 25 90 20 00 I3 Note l 
26 11 20 00 14 26 91 20 00 14 
28 12 20 00 IS 28 92 20 00 IS 
29 13 20 00 16 29 93 20 00 16 
31 14 20 00 17 3I 94 20 00 17 
32 IS 20 00 18 32 9S 20 00 I8 
34 16 20 00 19 34 96 20 00 I9 
35 17 20 00 IA 35 97 20 00 IA 
37 I8 20 00 lB 37 98 20 00 IB 
39 19 20 00 IC 39 99 20 00 IC 
41 IA 20 00 lD 4I 9A 20 00 lD 
42 IB 20 00 IE 42 9B 20 00 lE 
44 IC 20 00 IF 44 9C 20 00 IF 
61 lD 20 00 20 6I 9D 20 00 20 

~ 
63 IE 20 00 21 63 9E 20 00 21 
64 IF 20 00 22 64 9F 20 00 22 

t'66 20 20 00 23 t 66 AO 20 00 23 
, 

--'----67 21 70 00 00 00 00 00 00 00 00 00 00 (Blank) 67 Al 70 00 00 00 00 00 00 00 00 00 00 (Blank) 
68 22 00 Fl 00 02 06 02 02 02 02 07 00 1 68 A2 00 SA 00 07 30 30 02 02 00 02 00 ! 
69 23 00 F2 00 07 48 01 30 04 40 78 00 2 69 A3 00 7C 00 07 48 S8 S8 40 40 3C 00 @ 

70 24 00 F3 00 78 01 IO 31 08 48 07 00 3 70 A4 00 7B 00 05 78 05 05 78 05 00 00 # 
71 2S 00 F4 00 28 28 oc 48 78 08 08 00 4 7I AS 00 SB 00 08 3C so 07 28 71 40 00 $ 
72 26 00 FS 00 78 40 7I 08 08 48 07 00 s 72 A6 00 6C 00 4C 45 10 02 20 OD 49 00 % 
73 27 00 F6 00 02 20 04 47 48 48 07 00 6 73 A7 00 4A 00 10 3C 50 50 so 3C 10 00 t 
74 28 00 F7 00 78 01 10 02 20 04 40 00 7 74 AB 00 so 00 30 05 30 06 so 41 78 00 & 
7S 29 00 F8 00 30 05 30 OS 48 48 07 00 8 7S A9 00 SC 00 00 05 30 78 30 OS 00 00 * 
76 2A 00 F9 00 07 48 48 OF 01 10 02 00 9 76 AA 00 4D 00 10 02 20 20 20 02 10 00 ( 
77 2B 00 FO 00 30 05 48 4A 48 05 30 00 0 771 AB 00 50 00 20 02 10 10 10 02 20 00 ) 

Figure 14·42. Control store data 

14-30 SR30-0220 



In Figure 14-40, assume you want to make the key at rJi1 the 
DEFINE key. In Figure 14-41, that key position has a reference 
number of 66. In Figure 14-43, the operator is prompted for the scan 
code of the key to be assigned as the DEFINE key. On Figure 14-42, 
the scan code for key position 66 is hex 20. After the scan code and 
terminal name have been entered (Figure 14-43), $TERMUT2 reloads 
the control store of the display, with key position 66 assigned as the 
DEFINE key. 

COMMAND (?) : [Alli 
ENTER SCAN CODE OF THE KEY TO BE ASSIGNED 

AS THE DEFINE KEY (HEX): [2ill 
ENTER TERMINAL NAME (CR OR*= THIS ONE): IDSPLYll 

Figure 14-43. AD command 

Back on Figure 14-40, the operator presses the DEFINE key at m 
to enter DEFINE mode. The next key depressed after the DEFINE 
key is the key which will be redefined. Assume the operator wishes 
to redefine Program Function Key 1, and presses it ( liJ on Figure 
14-40). Now all key depressions, until the DEFINE key is again 
depressed, wil I be assigned to PF 1. 

The operator enters the character string $L $EDIT1 N EDITWORK, 
and then presses one of the two ENTER keys. He or she then presses 
the DEFINE key again, ending the redefinition of PF1, and taking the 
4978 out of DEFINE mode. 

The character string entered is a request to load the text editing utility 
program $ED IT1 N, along with the name of a text edit work data set, 
EDITWORK. 

Counting the depression of the ATTN key required to get the> prompt, 
and the ENTER key depression following the load request, this line of 
text normally takes 21 keystrokes to enter into the system. Now that 
PF 1 has been redefined as this line of text, only two keystrokes are 
required; the ATTN key, resulting in the> prompt, followed by PF1, 
which enters $L $EDIT1N EDITWORK and the ENTER key, which 
was also part of the redefinition string. 

For normal terminal usage, an active DEFINE key is not desirable. 
If it is depressed inadvertently, altering of the control store will result. 
In Figure 14-44, the C command is used to change key position 66 
back to its original control store configuration, using the chart in 
Figure 14-42 to supply the codes. 

COMMAND (?) : [I] 
ENTER TERMINAL NAME (CR OR * = TH IS ONE): IDSPL Y 11 
ENTER SCAN CODE OF THE KEY TO BE REDEFINED (HEX): (2DJ 
ENTER FUNCTION ID (HEX): rg:Q) 
ENTER CHARACTER/FUNCTION CODE (HEX): [QQ) 
ENTER INTERRUPT CODE (HEX): IZ] 
ANOTHER KEY? ill] 

Figure 14-44. C command 

Utility Programs 14-31 



$TERMUT3 

$PF MAP 

14-32 SR30-0220 

At the conclusion of the C operation, the control store of 4978 
DSP LY 1 still has PF 1 defined with the text editor load request 
character string, but with no DEFINE key designated. The SC 
operation in Figure 14-45 reads the control store, and stores it in a 
16 record data set named 4978EDIT, which must be preallocated. 
Any time a user desires a keyboard with PF 1 redesignated as a text 
editor load request, the LC command of $TERMUT2 can be used to 
load the control store from 4978EDIT. 

COMMAND (?): ~ 
SAVE DATA SET (NAME, VOLUME): l4978ASMI 
ENTER TERMINAL NAME (CR OR * = THIS ONE): IDSPLYll 

COMMAND (?): IENDl 

$TERMUT2 ENDED AT 01:27:44 

Figure 14-45. SC command 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages 3-215 
through 3-217. 

$TERM UT3 is used to enter a text message and send it to another 
named terminal. See the reading assignment for examples and operatin.g 
instructions. 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) page 3-200. 

When a WAIT KEY operation is terminated by pressing a Program 
Function key, an identifying code for the key is placed in taskname+2, 
which may be examined by user instructions (see the topic ".STATIC 
SCREEN CODING EXAMPLE" in "Section 11. Terminal 1/0"). For 
a 4979 terminal, PF keys PF 1 through PF6 return identifying codes of 
1 through 6. Since only the ENTER key and the six PF keys present 
identifying codes, determining what code to check for is a simple matter. 

The 4978 keyboard has a great many more interrupting keys than does 
the 4979, and determining which key is associated with a particular 
identifying code is, therefore, more difficult. In fact, by using the 
DEFINE feature, even the normal alphameric data entry keys and 
cursor positioning keys may be redefined as interrupting keys. 

When $PFMAP is loaded, it displays, in both decimal and hexadecimal 
form, the identifying code returned by any interrupting key pressed 
while $PFMAP is in execution (with the exception of the ENTER key, 
which ends the utility). Using this utility, an application programmer 
can easily find out what code is associated with a particular key and, 
therefore, what to check for in taskname+2. 



PROGRAM PREPARATION UTILITIES 

$EDIT1N 

READING ASSIGNMENT: S830-1053 (PDOM) pages 3-73 through 
3-98; or S830-1213 (Version 2 PDOM) pages 3-103 through 3-130. 

The $EDIT1 N text editing utility is used to create and edit source 
programs and other text data records such as the procedure files used 
with $JOBUTIL, or the control record files for $LINK. $EDIT1 N 
(and also $EDIT1 and $FSEDIT) uses a data member as an edit work 
area. This work file must be preallocated by the user ($DISKUT1 ), 
and must be of sufficient size to contain the largest source program 
anticipated. The required size can be calculated as follows: number 
of text lines (n) divided by 30 times 11 plus 1 (n/30 x 11 + 1 ). The 
four primary text editor commands are: 

1. READ - get the contents of a data set on a specified logical 
volume and store it in the work area data set. 

2. LIST - list the contents of the work area on the system printer 
(for the starter system on the matrix printer). 

3. END - terminate the text editor. 

4. EDIT - go into edit mode allowing the user to use any of the 
edit subcommands. 

Utility Programs 14-33 



14-34 SR30-0220 

Figure 14-46 is an example of a text edit session, demonstrating several 
of the EDIT mode subcommands. $EDIT1 N is also used to edit the 
system configuration statements and link editor INCLUDE statements 
during system generation. See the topic "USER SYSTEM 
GENERATION" in "Section 15. System Installation." 

EXAMPLE: > $L $EDIT1N 
DSl NAME,VOLUME): ~ 

$EDIT1N 43P,00:08:01, LP= 5100 
READY 
~ 
EDIT 
~ 
TOP OF DATASET 
ITRMHI 
INPUT .....--------------. 00010 %PRINT%NOGEN 
00020 PGM1%PROGRAM4%START,100 
00030 START%PRINTEXT%TXT1,SKIP=2 
00040 %ATTACH%TASK1 
00050 %WAIT%El,RESET 
00060 %PROGSTOP 

.00070 TXT1%TEXT%'PROGRAM STARTED' 
00080 TXT 11 %TEXT% 1 TASKl RUNNING' 
00090 TASK1%TASK%GO,EVENT=El 
00100 TASK1%TASK%GO,EVENT=El 
00110 GO%PRINTEXT%TXT2 
00120 %ENDPROG 
00130 %END 

~------------00l401 

EDIT 
CHANGE 80 
DELETE 100~---..... 
INPUT 115~-----•l 
INPUT 
00115 1.....--%-EN_D_T A-S--.K I 
INPUT TERMINATED 

Figure 14·46. $EXIT1N (1 of 2) 



EDIT 
[IT}+ill 
00010 
00020 PGMl 
00030 START 
00040 
00050 
00060 
00070 TXTl 
00080 TXT2 
00090 TASKl 
00110 GO 
00115 
00120 
00130 
END OF DATA 
~ 

PRINT 
PROGRAM4 
PRINTEXT 
ATTACH 
WAIT 
PROGSTOP 
TEXT 
TEXT 
TASK 
PRINTEXT 
ENDTASK 
EN DP ROG 
END 

NO GEN 
START, 100 
TXT1,SKIP=2 
TASKl 
E 1, RESET 

'PROGRAM STARTED 1 

'TASKl RUNNING' 
GO,EVENT=El 
TXT2 

ENTER VOLUME LABEL: EDXOOl 
ENTER MEMBER NAME: COPY 
END AFTER 13 

IODA,CTS= 002,047013,049010 

READY~ 
~ 

$EDIT1N ENDED AT 00:23:11 
Figure 14-46. $EXIT1 N (2 of 2) 

COMMENTS: 

D The Text Editor is loaded. 

D A preallocated data set to be used as a work area is specified. 

IJ If you were updating a source module you would issue a READ 
indicating the data set name and volume that contain the file. In 
this example a new source module is being created, so EDIT 
mode is invoked without a preceding READ. 

II This DELETE removes text lines remaining from a previous editing 
session (clears the work area) and positions the editor at the 
beginning (TOP) of the work area. 

El To enter source statements you must issue the INPUT subcommand. 

II The source statements entered are shown. The% in the text is used 
as the default TAB character. 

II To end the INPUT subcommand depress the ENTER key or 
carriage return without entering any data. 

mJ An error was made in the original entry on line 80. The slash is 
the delimiter between the change fields. Any non-numeric 
(except blank, TAB character or *) can be used as the delimiter. 
Here T2 replaces "T" in line 80. 

Utility Programs 14-35 



$UPDATE 

14-36 SR30-0220 

D Another error was made in the original input. Line 90 and 100 are 
the same. Line 100 is deleted. 

im The user forgot to end the task with an ENDTASK instruction. 
It is now entered as line 115. 

m Using the EDIT subcommand LIST, the contents of the work area 
are listed on the terminal. A LIST subcommand issued when not 
in EDIT mode will list the work area on the system printer. 

ifJ The data in the work area is now saved in a preallocated user data 
set. The SAVE operation translates the source statements from 
the text editor format, in which they exist in the work area, into 
the normal source statement format which can be accepted by 
the assembler. The save is not destructive; the data is retained in 
the work area. 

ilJ When the SAVE is complete, EDIT mode terminates. 

ID To terminate the text editor, key in END. 

READING ASSIGNMENT: S830-1053 (PDOM) pages 3-117 through 
3-120; or S830-1213 (Version 2 PDOM) pages 6-49 through 6-53. 

$UPDATE is the utility used to format object modules into relocatable 
load modules, which can be loaded to storage and executed. 

COMMAND: RP 

FUNCTION: Read a program and convert it to a relocatable load 
module. 

EXAMPLE: >I $L $UPDATE I 
$UPDATEN 22P,00:00:20, LP= 5100 

THE DEFINED INPUT VOLUME IS EDX002, OK?[YJ 
THE DEFINED OUTPUT VOLUME IS EDX002, OK?[YJ 

COMMAND ( ? ) : lliE] 

OBJECT MODULE NAME: IDEMOI 

OUTPUT PGM NAME: IFMTI 
FMT REPLACE? [YJ 
FMT STORED 

Figure 14-47. $UPDATE 



COMMENTS: This example shows the formatting of an object module, 
DEMO. The executable output program, FMT, is stored. If a program 
member with the same name exists, you will be asked if it is to be 
replaced. If it does not exist, the utility will allocate the space for the 
executable program. The program, FMT, in the example can now be 
executed by the $L supervisory utility function or by a LOAD instruc­
tion in a program. 

Note: The Version 1 formatting utility is called $UPDATEN rather 
than $UPDATE, but operation is identical. 

See "Section 17. Online Program Preparation" for another example 
of the use of $UPDATE. 

$FSEDIT /$EDXASM/$EDXLIST /$LIN K/$JOBUTI L 

These program preparation utilities are discussed and illustrated in 
"Section 17. Online Program Preparation." 

MISCELLANEOUS UTILITIES 

$DEBUG 

$IMAGE (Version 2 Only) 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 3-9 through 
3-26; or SB30-1213 (Version 2 PDOM) pages 3-25 through 3-48. 

$DEBUG is the Event Driven Executive online debugging uti.lity. 
$DEBUG may be used to debug any program instructions that execute 
as a task, including instructions written in Series/1 assembler language. 
$DEBUG capabilities include setting/resetting of breakpoints and trace 
ranges; display and modification of storage locations, Series/1 hardware 
registers, and task software registers; and alteration of task execution 
sequence. 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages 3-161 
through 3-165. 

$IMAGE is used to create formatted screen images for use with 
terminals that support static screen functions. The images (formatted 
screens) are stored in disk or diskette data sets for later retrieval by 
application programs. Stored images may also be retrieved by $1 MAGE 
for modification/maintenance. 

In "Section 17. Online Program Preparation", the application pro-
gram used as a program preparation example is the same program used 
in "Section 11. Terminal 1/0" under the topic "STATIC SCREEN 
CODING EXAMPLE" (see Figure 11-43). In Section 17, the program 
is modified to retrieve a stored screen image, rather than formatting the 
screen by executing instructions within the program. The following 
is a $IMAGE utility session in which the image that will be used by the 
modified program is created and stored. 

Utility Programs 14-37 



14-38 SR 30-0220 

A formatted screen created by MAGE is stored in a disk or diskette 
data set that must first be alloc, :d by the user. The formatting 
information and text are stored in a special packed format to conserve 
space. A logical screen may be of any size from one character position 
up to an entire physical screen, and therefore the amount of space on 
disk or diskette required to store a given screen image will vary. For 
most logical screens, a data set two records in length will be adequate. 

The screen image that will be created in this utility session is shown in 
Figure 14A8 (same as that shown in Figure 11-31). Since it encom­
passes an entire physical screen and contains several lines of text, a 
data set three records in length will be required to store it. 

LINES 

t 
0 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

CLASS NAME:_ 

NAME: 

NAME: 

NAME: 

NAME: 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

INSTRUCTOR NAME: 

STREET: 
CITY 
STATE : 

STREET: 
CITY 
STATE 

STREET: 
CITY : 
STATE 

STREET: 
CITY 
STATE : 

PFZ = DELETE ENTRY 2 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890 

Figure 14-48. Screen image 

Before beginning the $IMAGE utility session, a data set 3 records long, 
named VI DE01 is created using $DISKUT1. 

>j$L $DISKUTlj 
$DISKUT1 26P,00:32:06, LP= 5FOO 

USING VOLUME EDX002 

COMMAND (?): IAL VIDEOl 3l 
DEFAULT TYPE = DATA - OK? lvEsl 
VIDEO 1 CREATED 

COMMAND (?) : I END I 
$DISKUT1 ENDED AT 00:32:33 

Figure 14-49. Allocate image data set 



Now the $IMAGE utility can be loaded, and the utility session began. 
Entering a "?" in response to the COMMAND (?): prompt results in a 
list of the $IMAGE commands. 

> I $ L $ I MAGE I 
$IMAGE 37P,00;32:57, LP= 5FOO 

COMMAND (?): [I) 

DIMS DEFINE IMAGE DIMENSIONS 
HTAB DEFINE HORIZONTAL TAB SETTINGS 
VTAB DEFINE VERTICAL TAB SETTINGS 
NULL DEFINE NULL REPRESENTATION 
EDIT ENTER EDIT MODE 
KEYS PROGRAM FUNCTION KEYS 
SAVE SAVE IMAGE ON DISK 
END END PROGRAM 

COMMAND(?): IDIMS 24 sol 

COMMAND (?) : I HTAB 31 l 

c 0 MMAN D ( ? ) : I N u LL I I 
COMMAND(?): IEDITI 
Figure 14-50. $IMAGE commands 

The DIMS command allows you to define the dimens.ions of the logical 
screen you are creating. The example shows a logical screen of 24 lines 
and 80 characters specified, which is equal to the entire physical screen. 

HT AB is the horizontal tab settings you wish to have in effect while you 
are creating the screen. If not entered, HT AB defaults to 10, 20, 30 etc, 
through 80. The example defines a single HT AB setting of 31. 

VT AB defines vertical tabs. The default is one vertical line for each 
vertical tab key depression. Since VT AB is not entered in this example, 
one-line vertical tabs will be in effect. 

The NULL command allows you to define the null character. When in 
EDIT mode, a null character is entered in each character position you 
want to display unprotected data in, or in which operator-entered data 
is to be accepted, when the completed screen is used by an application 
program. 

The KEYS command lists the functions of PF1, PF2, and PF3 (func­
tions valid when EDIT mode is entered). 

PF 1-define protected fields 
PF2-define data fields (unprotected) 
PF3-return to COMMAND mode 

Figure 14~51. KEYS 

Utility Programs 14-39 



14-40 SR30-0220 

Al I of the commands listed in Figure 14-50 may only be entered in the 
COMMAND mode. The last command entered (Figure 14-50) is EDIT, 
which places the $IMAGE utility in EDIT mode. If an existing screen 
image were to be edited, the data set name and volume of that image 
would be entered with the EDIT command. Since this session is creat­
ing a new screen, EDIT is entered without reference to a data set. 

When EDIT mode is entered, PF1, PF2, and PF3 have the functions 
listed in Figure 14-51. Before pressing any of the PF keys, the screen 
is entirely blank, and the cursor is in the lower left corner. 

The logical screen being created in this example contains both protected 
and unprotected data. The operator prompts on lines 1 and 2 are unpro­
tected, and the rest of the prompts are protected (see Figure 14-48). 
When the completed screen is displayed, the unprotected areas will 
appear brighter than those that are protected, highlighting the prompts 
at the top of the image. 

When both protected and unprotected text is to appear on a screen 
created by $IMAGE, the protected data must be entered first. There­
fore PF1 is depressed, signalling to the utility that protected fields are 
to be defined. The cursor now moves to the first available character 
position, which is line 0, space 0, in this example. 

As soon as either PF1 or PF2 is pressed, after entering EDIT mode, the 
function of PF 1 and PF2 is redefined. PF 1 is now used as the horizontal 
tab key, and PF2 as the vertical tab key. Since no text appears on line 
0, the vertical tab key PF2 is pressed, moving the cursor down to the 
first position of line 1. 

When defining the protected areas of a screen image, all characters 
entered, other than the null character, will be protected data. The 
operator prompts on lines 1 and 2 are supposed to be unprotected. 
Therefore, the actual text of the prompts cannot be entered until the 
data definition portion of this utility session, after all protected fields 
have been defined. However, since these areas of the screen will contain 
unprotected text, null fields must be established, so that when the 
unprotected data definition is done, the text entered will be accepted. 
Figure 14-52 shows the screen after the null characters for the unpro­
tected operator prompts at the top of the screen have been entered. 



LINES 
t r--~~~~~~~~~~~~~~~~~~~~~~~~~---
o 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

///II/I/II/II/I/Ill/Ill// 
l/l/ll//llllll///lll 

ll!/l/!////ll/////// ////ll///////ll///// 
ll!l//llll/lll//ll/I l//l/ll//lllllllll/I 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS-.12345678901234567890123456789012345678901234567890123456789012345678901234567890 

Figure 14-52. NULL entries 

Now the rest of the screen can be formatted. All areas of the screen not 
containing null characters will be protected when the screen is com­
pleted. Note that any field meant to receive operator input when the 
screen is used must be defined using the null character. 

Figure 14-53 is the screen after all protected data has been defined. 

LINES 

+ 0 

10 

l/lll///lllll/ll/lllllll/ 
l//lll//ll!ll//l/ll/ 

/l/llllll!/llll/llll l///llll///l/ll//lll 
///llll/l//lllll///I llll/ll/lll//ll/llll 

CLASS NAME: //////////////// INSTRUCTOR NAME: //!!!l!//!!lll/!!!!l!/I/!! 

NAME://///////////////////// STREET:////////////////////////////////////// 
CITY :////////////////////////////////////// 
STATE :////////////////////////////////////// 

11 NAME://///////////////////// STREET:////////////////////////////////////// 
12 CITY :////////////////////////////////////// 
13 STATE :////////////////////////////////////// 
14 
15 
16 NAME://///////////////////// STREET:////////////////////////////////////// 
17 CITY :////////////////////////////////////// 
18 STATE :////////////////////////////////////// 
19 
20 
21 NAME://///////////////////// STREET:////////////////////////////////////// 
22 c ITY · //I I I I I I I// I I I I/ I I I I I// I I I I I 111I11I111 
23 STATE :////////////////////////////////////// 

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778 
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890 

Figure 14-53. Protected entries 

.) 

Pressing the ENTER key takes the utility out of protected field defini­
tion, back to EDIT mode (the situation as it was before a define pro­
tected field or define data field decision was made). PF 1 and PF2 again 
have the meanings printed out by the KEYS command (Figure 14-51). 
The ENTER key also causes the screen, as defined up to this point, to 
be displayed as pictured in Figure 14-54. 

Utility Programs 14-41 



14-42 SRJ0-0220 

LINES 

t 
0 

CLASS NAME: INSTRUCTOR NAME: 

NAME: STREET: 
CITY 
STATE : 

9 
10 
11 NAME: STREET: 
12 CITY 
13 STATE 
14 
15 
16 NAME: STREET: 
17 CITY 
18 STATE 
19 
20 
21 NA.ME: STREET: 
22 CITY : 
23 STATE : 

CHARACTER 111111111122222222223333333333444444444455fr5555555666666666677 777777778 
POSITIONS-12345678901.23456789012345678901234567 8901234567890123456789012345678901234567 890 

Figure 14-54. Partially completed image 

If the desired screen image were now compJete, PF3 would be press.ed 
to get back into COMMAND mode, so that it couJd be saved. In this 
example, however, there is stiH unprot1ected data to be defined, so 
PF2 is pressed. PF2 brings back the same screen image as in Figure 
14-53, with the unprotected fields defined as null characters. 

The unprotected null fields in the operator prompt area at the top of 
the screen are now filled in. The other null fields are input fieJds that 
will be used when the screen is used by an application program, so are 
left undisturbed during sere.en creation. 

AfteJ all unprotected text is defined, the screen .Jooks like that shown 
in Figure 14-55. 

LINES 

t 
0 

10 

ENTER KEY = PAGE COMPLETE 
PF3 = DELETE ENTRY 3 

CLASS NAME: I I I I I I I I I I I I I I I I 

PFl = DELETE ENTRY 1 
PF4 = DELETE ENTRY 4 

PF2 = DELETE ENTRY 2 
II/!////////!/////// 

INSTRUCTOR NAME: ////////////////////////// 

NAME : I I I I I I I I I I I I I I I I I I I I I I I STREET: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I/ I I I 
CITY : I I/ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
STATE :///////////////////////1////////////// 

11 NAME:/// I 11111111 I I I I I I I I I 11 STREET: I I I 11II11II11 I I I I I I I I I I I I 11II1111I1111 
12 CITY :ll!!!l!!!!!!!!!!!!!!!!!!!!!!!!!!!!ll!! 
13 STATE:////////////////////////////////////// 
14 
15 

16 NAME://///////////// I/!/ I I II STREET://///////////// I/////// I I/ I I/!!!! I!/// 
17 CI TY : I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I/ I I I 
18 STATE:////////////////////////////////////// 
19 
20 
21 NAME: I I I I I I I I I I I I I I I I I I I I I I I STREET: I I I I 11 I I I I I I I I I I I I I I I I I I// Ill I I I I II I I I 
22 CI TY : I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I! I 
23 STATE:////////////////////////////////////// 

CHARACTER 1111111111222222222233333333334444444444555'55555556666666666777'77777778 
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890 

·Figure 14•55. Complete image 



$10TEST 

When ENTER is pressed, the completed screen is displayed (Figure 
14-48). Any desired changes can be made by again pressing PF 1, for 
protected fields, or PF2, for unprotected ones. Assuming that the 
image is correct, the operator will press PF3 to return to COMMAND 
mode. 

PF3 will blank the screen, and prompt for a command entry. 

COMMAND (?): jSAVE VIDEOl J 

COMMAND (?): IEND I 
Figure 14-56. Save image 

The operator enters the SAVE command, followed by the name of the 
data set that was allocated for this purpose. The $tMAGE utility 
session is then ended. 

READING ASSIGNMENT: SB30-1053 (PDOM) pages 3-106 through 
3-112; or SB30-1213 (Version 2 PDOM) pages 3-171 through 3-177. 

$10TEST is primarily an exerciser program for the digital and analog 
sensor 1/0 features of the Series/1. The operator is prompted for 
various operating parameters, and the $10TEST utility then repetitively 
executes the requested exercising operations. See the reading assign­
ment for examples of the use of this program. 

The LD and LS functions of $10TEST are not related to sensor 1/0, 
but are very useful, particularly during system generation. LD will 
list the hardware addresses and device types attached to a Series/1 
system. LS lists the devices and the associated addresses supported by 
the supervisor that is currently loaded. By comparing the two lists, 
devices attached but not supported, supported and not attached, or 
attached, but assigned the wrong hardware address can easily be spotted. 
See "Section 15. System Installation" for examples of the use of 
the LD and LS $10TEST options. 

Utility Programs 14-43 



This page intentionally left blank. 

14-44 SR30-0220 



Section 15: System Installation 

OBJECTIVES: After completing this section, the student should be 
able to: 

1. Install the supplied supervisor (either Version 1 or Version 2) on a 
9.3 megabyte disk 

2. Generate a tailored supervisor for a given sample configuration, 
using the program/utilities provided in the Event Driven Executive 
Program Preparation Facility (5798-N RP). 

READING REFERENCE: SB30-1213 (Version 2 PDOM) Chapter 5. 

MACHINE READABLE MATERIAL 

Seven Field Developed Programs comprise the Event Driven Executive 
program offering. Program number 5798-N R K, the Event Driven 
Executive Macro Library/Host is distributed on 9-track magnetic tape, 
and is applicable only to host program preparation systems. This section 
deals only with system installation on a Series/1 that will be used for 
program preparation, so program 5798-N R K wi 11 not be discussed. 

The other six FDPs are distributed on diskette. Figures 15-1 through 
15-4 summarize their contents as received from Pl D. 

5798-NNC 
Version 1 

DI 
• 

0 
I 

NNC001 

_l 

l 

DI . 
0 
I 

NNC002 
through 
NNCOnn 

-or-

I 
or-

"""" 
"""" 

SYSTEM UTILITY PROGRAMS 

5798-NRO 
Version 2 

DI 
• 

0 
I 

NRQ001 

l 
_J_ 

DI . 
0 
I 

NRQ002 
through 
NRQOnn 

I 

I-
I-

• SUPPLIED SUPERVISOR 

• SYSTEM UTILITY PROGRAMS 
(LOAD MODULES) 

• UTILITY PROGRAM 
SOURCE MODULES 

Figure 15-1. Machine readable material-utilities 

System Installation 15-1 



15-2 SR30-0220 

NNC001 or N RQ001 contains the system utility programs in executable 
(load module) form; they will be transferred to disk during system 
installation. The remaining diskettes in the 5798-NNC or 5798-N RQ 
FDPs contain the source code for the utilities, and are used for refer­
ence/documentation. The number of diskettes required for the source 
may vary with system modification level changes. 

5798-NND 

Version 1 

DI 

0 
I 

NND001 

_I 

1 

DI 
• 

0 
I 

NND002 
through 
NNDOnn 

-or-

I 
-or-

.... 
I-' 

SUPERVISOR/EMU LA TOR 

5798-NRR 

Version 2 

DI 
• 

0 
I 

NRR001 

J 
_j 

DI . 
0 
I 

NRR002 
through 
NRROnn 

I 

~ 
I-

SUPERVISOR 
OBJECT MODULES 

SUPERVISOR 
SOURCE MODULES 

Figure 15-2. Machine readable material-supervisor 

NN 0001 or N R R001 contains supervisor support modules in object 
form. These object modules are transferred to disk during system 
installation, where they are available for generating a supervisor tailored 
to fit a particular user system configuration. The remaining diskettes 
in the 5798-NND and 5798 NRR FDPs contain source code for the 
supervisor object modules. 



PROGRAM PREPARATION FACILITY 

579'8-NRP 

D ..._I ___ 

.l 
l 

0 
I 

NRP001 

DI 
• 

0 
I 

NRP002 
through 
NRPOnn 

I 

I-' 
1-1 

PROGRAM 
PREPARATION 

PROGRAMS 

PROGRAM 

PREPARATION 

SOURCE 

Figure 15-3. Machine readable material-PPF 

N R P001 contains executable programs for onl ine program preparation 
and system generation. The assembler ($EDXASM) and relocating link 
editor ($LINK) can be used to prepare programs for execution under 
either Version 1 or Version 2 of the Event Driven Executive supervisor. 

.I 
J_ 

MACRO LIBRARY 

5798-NNB 

DI I 
• 

0 
I 

NNB001 
through 
NNBOnn 

I-' 
I-' 

• EVENT DRIVEN EXECUTIVE 
MACRO LIBRARY 

Figure 15-4. Machine readable material-mac.ro library 

This optional FOP contains source macro definitions for the Event 
Driven Executive instruction set (including the new Version 2 instruc­
tions) and system configuration statements. This FOP is not required 
unless programs will be prepared using the Base Program Preparation 
Facilities (5719-PA1) rather than 5798-NRP. 

System installation 15-3 



INSTALLATION OVERVIEW 

Installation is supported for: 

• Event Driven Executive on 9.3 MB 4962 

• Event Driven Executive on 13.9 MB 4962 

• Event Driven Executive, Base Program Preparation Facilities 
(5719-PA1) and Series/1 Standalone Utilities (5719-SC2) co-resident 
on 9.3 MB 4962 

This section will review the procedures required to install the Event 
Driven Executive system, as received from Pl D, on a 9.3 megabyte 4962 
disk, without BPPF coresidence. For information on installing on a 
13.9 megabyte disk or with BPPF, see Chapter 5 of the PDOM. 

An Event Driven Executive supervisor, to IPL, must reside in a data 
set named $EDXNUC. As shipped from PIO, diskette NR0001 (or 
NNC001) contains a supplied supervisor for installation on a 9.3 MB 
4962 (without BPPF coresidence) in a data set named $E DXN UC. 

The supplied supervisor assumes certain 1/0 device availability and hard­
ware address assignments. To install the supplied supervisor, the Series/1 
on which it is to be installed 

MUST HAVE 

MUST HAVE 
EITHER A 

OR A 

AND MAY 
HAVE A 

4964 Diskette Drive at hardware address X'002' 
and 

4962 Disk Drive at hardware address X'003' 

TTY device at hardware address X'OOO' 

4978/4979 Display at hardware address X'004' 

4974 Printer at hardware address X'001' 

INSTALLING THE STARTER SYSTEM 

15-4 SR30-0220 

The following figures (Figures 15-5 through 15-11) and accompanying 
discussion take you through the steps necessary to install the Event 
Driven Executive Utilities and supplied supervisor (N R0001 or 
NNC001), the supervisor object modules to be used later for generating 
a system tailored to a particular configuration (NRR001 or NND001), 
and the program preparation programs required for online program 
preparation (N RP001 ). 

Some of the steps shown in this study guide are optional, and do not 
appear in the installation instructions in the reading assignment, but 
may prove helpful in understanding the installation process. 



NR0001/NNC001 

In Figure 15-5, diskette NR0001 (or NNC001) is mounted, the IPL 
SOURCE switch set to IPL from diskette, and the supplied supervisor 
is loaded by pressing the LOAD key (IPL). 

The supplied supervisor assumes that the $SYS LOG device is a 4978 
Display at address X'04'. When the supervisor is loaded, an attempt is 
made to load the 4978 control store with the contents of a control 
store data set named $4978CSO. This is an automatic function of the 
supervisor IPL. There is no data set named $4978CSO yet defined, so 
the user is prompted for the name of a control store data set with the 
message "$4978CSO NOT FOUND. ANOTHER NAME?" If a 4978 
were installed at address X'04', the operator would respond with 
"D02056", if the 4978 had a normal keyboard, or with "D02057", 
if the 4978 were equipped with the data entry keyboard. These are 
the names of control store data sets for the respective keyboards, and 
the 4978 control store would be loaded with the one specified at this 
time. Later, the appropriate control store data set can be renamed 
$4978CSO, so that the control store load wi II be performed auto­
matically at IPL. 

In this system installation example, a 4979 is installed at address 
X'04', and the response to the prompt is therefore N for NO. Although 
the supplied supervisor is configured for a 4978 at this address, the 
4979 Display may be used instead (4979 Program Function key opera­
tion will not be normal-see Chapter 5 for details). 

System Installation 15-5 



fl 

~RR IPL ~ PRIMARY 

~~~SOURCE 
AL TERN 

MODE~ AUTO 
NORMAL 

DIAG 

El 

*** EVENT DRIVEN EXECUTIVE *** 

VOLSER TYPE IODA STATUS 
NRQOOl PRI. 0002 ONLINE (IPL) 

PRI. 0012 UNUSABLE 
EDX002 PRI. 0003 ONLINE 
ASMLIB SEC. 0003 
SUP LIB SEC. 0003 
EDX003 SEC. 0003 

$4978CSO ~OT FOUND. ANOTHER NAME? 

STORAGE MAP 
PART# START SIZE 

1 21504 44032 

Figure 15-5. NR0001 

15-6 SR30-0220 

D I.________, 
• 

0 
I 

NR0001 
(or NNC001) 

OPERATION 

D MOUNT DISKETTE NR0001 (OR NNC001) 

lfl SET THE CONSOLE IPL SWITCH TO IPL 
FROM DISKETTE (MAY BE PRIMARY 
OR AL TERN, DEPENDING ON HOW 
SYSTEM IS CONFIGURED) 

IJ PRESS THE LOAD KEY 

El ENTER N OR NO lN RESPONSE TO PROMPT 
(IF 4979 AT ADDRESS X'04', INSTEAD OF 

4978) 



Before the utility programs on N RQ001 (or NNC001) can be stored on 
disk, Event Driven Executive logical volumes must be established. 
Logical volumes are defined using the Event Driven Executive utility 
program $1NITDSK. The utility programs on NRQ001 (or NNC001) 
will be stored on a logical volume named EDX002. This volume has 
already been defined to the supplied supervisor by one of the DISK 
system configuration statements used to build the supplied supervisor 
(see Figure 5.4 in the PDOM for the supplied supervisor system 
configuration statements). In Figure 15-6, $1NITDSK is used to 
define volume EDX002 on the 4962. 

> l$L $INITDSKl 
$INITDSK 16P, LP= 5700 

COMMAND (?): [Ji.•-------------11· 

LIBRARY INITIALIZATION 
l=ENTER VOLUME LABEL 
2=ENTER DEVICE ADDRESS 

SELECT OPTION: [1]1......,------------a 

ENTER VOLUME LABEL: lrnxoo2 ..... 1 .. ~--------IJ 

EDX002 at 0003 IS A PRIMARY DISK 
CREATE A DIRECTORY?IYESj 

HOW MANY RECORDS IN DIRECTORY? (2 - 121): 1101 • II 
MAXIMUM NO. OF MEMBERS = 478, OK? YES 

DO YOU WISH TO RESERVE SPACE FOR A NUCLEUS?~ 
ENTER MAXIMUM SIZE IN K-BYTES ( 16-64): ~,.~II 

WRITE IPL TEXT? IYEsl~-----------m 
IPL TEXT WRITTEN 

COMMAN D ( ? ) : 

Figure 15-6. Initialize EDX002 

D The options are "I" for initialize, or "V" for verify. 

fl A 1 response indicates the operation will be performed on a di'sk-~ 
resident volume. If a 2 were entered, the utility would prompt 
the operator for the hardware address of a diskette drive, assuming 
a diskette volume is to be initialized. EDX002 is disk resident, so 
the 1 response is appropriate. 

II The ENTER VOLUME LABEL: prompt is requesting the name of 
a disk volume already known to the system (al·ready defined in the 
DISK system configuration statements used to generate the 
supplied supervisor). This volume label, and the extents of the 
volume are known to the supervisor, but are not written on the 
disk volume itself. If 2 had been entered in response to the 
previous prompt, meaning a diskette volume were being initialized, 
the operator would be prompted for a volume label to be written 
on the diskette volume, as diskette volumes are removable. 

System Installation 15-7 



15-8 SR30-0220 

II 60 records, allowing 478 program/data member names, is more 
than adequate for almost all application environments. 

The size of the NUCLEUS or supervisor entered here determines 
the size of the program member reserved for $EDXNUC, the IPL 
supervisor. An entry of 64K reserves 256 records. Although this 
is almost three times the size required to accommodate the 
supplied supervisor, it has the advantage of being large enough to 
hold any tailored supervisor built in the future. 

IPL text must be written if you intend to IPL the supervisor that 
will be stored in $EDXNUC. Only primary disk volumes can be 
I PL volumes (all diskette volumes are primary, and so may con­
tain IPL text and $EDXNUC). 

In addition to the primary volume E DX002, three secondary logical 
volumes are used by the supplied supervisor, and must also be initialized. 
ASM LIB is used for the on line program preparation programs (N RP001), 
and SUP LIB is for the supervisor object modules. The third volume is 
EDX003, which is for user programs (no system programs are installed 
on EDX003). 

Figure 15-7 shows the prompt/response sequence to initialize ASMLIB, 
SUPLIB, and EDX003. All three volumes are secondary volumes (non­
IPL sources), so IPL text is not written, and space for a nucleus (super­
visor) is not reserved. The minimum number of records for the ASM LIB 
and SUPLIB directories is 12; this will accommodate the system pro­
grams stored in these volumes. As shown in the example, more 
directory records may be specified if desired. The number of records 
reserved for directory use on EDX003 is 60, as EDX003 is a large 
volume, and a high number of directory entries (data sets) may be 
anticipated. 

COMMAND (?): (] 

LIBRARY INITIALIZATION 

l=ENTER VOLUME LABEL 
2=ENTER DEVICE ADDRESS 

SELECT OPTION: [1J 

ENTER VOLUME LABEL: IASMLIBI 

ASMLIB AT 0003 IS A SECONDARY DISK 
CREATE A DIRECTORY? (Y] 

HOW MANY RECORDS IN DIRECTORY? (2 - 1201_: 1201 
MAXIMUM NO. OF MEMBERS= 158, OK?~ 

DO YOU WISH TO RESERVE SPACE FOR A NUCLEUS? ill] 
DIRECTORY INITIALIZED 
Figure 15-7. Secondary volume initialization (1 of 2) 



COMMAND (?): [] 

LIBRARY INITIALIZATION 

l=ENTER VOLUME LABEL 
2=ENTER DEVICE ADDRESS 

SELECT OPTION: OJ 
ENTER VOLUME LABEL: ISUPLIBI 

SUPLIB AT 0003 IS A SECONDARY DISK 
CREATE A DIRECTORY? IYJ 

HOW MANY RECORDS IN DIRECTORY? (2 - 120): ~ 
MAXIMUM NO. OF MEMBERS= 158, OK?[YJ 

DO YOU WISH TO RESERVE SPACE FOR A NUCLEUS?(ill 
DIRECTORY INITIALIZED 

COMMAND (?) : DJ 
LIBRARY INITIALIZATION 

l=ENTER VOLUME LABEL 
2=ENTER DEVICE ADDRESS 

SELECT OPTION: OJ 

ENTER VOLUME LABEL: I EDX003l 

EDX003 AT 0003 IS A SECONDARY DISK 
CREATE A DI RECTORY? [I) 

Hm~ MANY RECORDS IN DI RECTORY? ( 2 - 120): [§Q) 
MAXIMUM NO. OF MEMBERS = 478, OK? [Y] 

DO YOU WISH TO RESERVE SPACE FOR A NUCLEUS? (ill 
DIRECTORY INITIALIZED 

COMMAND (?): IEND I 
$IN ITDS K ENDED 
Figure 15-7. Secondary volume initialization (2 of 2) 

After volume initialization, the disk is as shown in Figure 15-8. 

System Installation 15-9 



15-10 SR30-0220 

CYL 0, 1 RESERVED~ 
EDX002 DIRECTORY 

SUPLIB DIRECTORY 

Figure 15-8. Initialization complete 

--- - CYLINDER 0 

E 
D 
x 
0 
0 
2 

--- CYLINDER 130 

ASMLIB 

·---CYLINDER 146 

SUPLIB 

·---·CYLINDER 162 

E 
D 
x 
0 
0 
3 

- - - ·CYLINDER 302 

All necessary volumes have been initialized, and the transfer of pro­
grams from diskette to disk can now proceed. The Event Driven Execu­
tive utility program $COPYUT1 is used to copy the system programs 
to disk. 

In Figure 15·9, $COPYUT1 is loaded from NHQ001 (or NNC001 ). This 
utility assumes that the IPL volume contains both the "from" and "to" 
data sets. Since the supervisor was loaded from N R0001, the prompt 
"THE DEFINED SOURCE VOLUME IS NR0001, OK?" is issued. 
The response is Y, because the utility programs are to be transferred 
from N R0001 (or NNC001) to volume E DX002. The target volume 
prompt is answered N for NO, and EDX002 is entered for the new 
target volume. 



>I $L $COPYUT1 I 
$COPYUT1 35P, LP= 5400 

***WARNING MEMBERS ON TARGET VOLUME WILL BE OVERWRITTEN*** 

THE DEFINED SOURCE VOLUME IS NRQOOl, OK? f]J 
THE DEFINED TARGET VOLUME IS NRQOOl, OK?~ 
ENTER NEW TARGET VOLUME: I EDX002 I 
MEMBER WI LL BE COP I ED FROM NRQOOl TO EDX002 OK? [i) 

COMMAND (?):!CALLI 

$EDXNUC NOT COPIED 
$BSCTRCE COPY COMPLETE 
$BSCUT1 COPY COMPLETE 
$BSCUT2 COPY COMPLETE 
$COMPRES COPY COMPLETE 
$COPY COPY COMPLETE 

8 RECORDS COPIED 
22 RECORDS COPIED 
91 RECORDS C 
16 REC 
2 

OPYUTl COPY COMPLET 

$D 
$PREFIND COPY COMPLETE 
$EDXDEF COPY COMPLETE 

PIED 
COP I ED 
COP I ED 

18 RECORDS COPIED 
28 RECORDS COPIED 
20 RECORDS COPIED 

COMMAND (?): W1) 
ENTER FROM (SOURCE) MEMBER: I $EDXNUC I 
ENTER TO (TARGET) MEMBER OR * FOR SAME NAME AS SOURCE:~ 
COPY COMPLETE 128 RECORDS COPIED . 

COMMAND (?):I ENDI 

$COPYUT1 ENDED 
Figure 15-9. Copy utilities 

The CALL command is the "Copy All" function, which copies all data 
sets in·the source volume (NHQ001) to the target volume (EDX002). 
$COPYUT1 allocates data sets on EDX002 as required (and will delete 
data sets of the same name and replace them, which is the reason for the 
warning message). As each data set is copied, a COPY COMPL.ETE 
message is displayed. When the 4978/4979 screen is filled, the utility 
will stop until ENTER is pressed. 

The CALL command will not copy the supplied supervisor in 
$EDXN UC. The supervisor can be copied using the CM (Copy Member) 
command, as shown at the bottom of Figure 15-9. 

The supplied supervisor and the system utility programs have now 
been installed on disk volume EDX002. In Figure 15-10, the IPL 
SOURCE switch has been setto IPL from disk, NRQ001 (or NNC001) 
has been removed from the diskette drive and replaced with NRP001, 
and the supervisor has been loaded from disk. 

System Installation 15-11 



RR R IPL ~PRIMARY 
@=:]@=:]@=:]SOURCE 

AL TERN 

IJ 

MODE ~ AUTO 
NORMAL 

DIAG 

N 

~ 

*** EVENT DRIVEN EXECUTIVE *** 

VOLSER TYPE IODA STATUS 
NRPOOl PRI. 0002 ONLINE 

PRI. 0012 UNUSABLE 
EDX002 PRI. 0003 ONLINE (IPL) 
ASMLI B SEC. 0003 
SUPLIB SEC. 0003 
EDX003 SEC. 0003 

D _I _______. 

• 
0 
I 

NRP001 

$4978CSO NOT FOUND. ANOTHER NAME? ([] 

STORAGE MAP 
PART# START SIZE 

1 21504 44032 

Figure 15-10. NRP001 installation 

15-12 SR 30-0220 

OPERATION 

D MOUNT DISKETTE NRP001 

fJ SET IPL SOURCE TO IPL FROM DISK 

IJ PRESS THE LOAD KEY 



The prompt/response sequence required to install the remaining system 
programs is shown in Figure 15-11 . 

>l$L $COPYUT11 
$COPYUT1 35P, LP= 5400 

***WARNING MEMBERS ON TARGET VOLUME WILL BE OVERWRITTEN*** 

THE DEFINED SOURCE VOLUME IS EDX002, OK?~ 
ENTER NEvJ SOURCE VOLUME: INRPOOll D 
THE DEFINED TARGET VOLUME IS EDX002, OK? N 
ENTER NEW TARGET VOLUME: IASMLIBI 
MEMBER WILL BE COPIED FROM NRPOOl TO ASMLIB OK? CT) 

COMMAND (?):ICALLl 
$ASMACCA COPY COMPLETE 
$ASMGPIB COPY COMPLETE 
$ASMOPCD COPY COMPLETE 
$ASMPAS2 COPY COMPLETE 

ASMPAS3 COPY COMPLETE 
ROC COPY COMPLETE 

COPY COMPLETE 
COPY COMPLETE 

14 RECORDS COPIED 
9 RECORDS COPIED 

22 RECORDS COPIED 
23 RECORDS 

5 RE 
IED 

RDS COPIED 
15 RECORDS COPIED 
30 RECORDS COPIED 
85 RECORDS COPIED 

COMMAND ? : .._-------------6 
> $VARYON 02 
NRROOl ONLINE 

COMMAND (?) : (£2]_.•-----------IJ 

THE DEFINED SOURCE VOLUME IS NRPOOl, OK? ill] 
ENTER NEW SOURCE VOLUME: lNRROOll 
THE DEFINED TARGET VOLUME IS ASMLIB, OK?[[) 
ENTER NEW TARGET VOLUME: ISUPLIBI 
MEMBER WILL BE COPIED FROM NRROOl TO SUPLIB OK?(Y] 

COMMAND(?): lcALLl 
$$CONCAT COPY COMPLETE 

$GIN COPY COMPLETE 
N COPY COMPLETE 

TRC 
TREBASC CO MPLETE 
TREBCD COPY COMPLETE 
TERMINIT COPY COMPLETE 

COMMAND (?): I ENDI 

$COPYUT1 ENDED 
Figure 15-11. NRP/NRR installation 

IED 
RDS COPIED 

2 RECORDS COPIED 
0 RECORDS COPIED 
0 RECORDS COPIED 
9 RECORDS COPIED 

System Installation 15-13 



D Both SOURCE and TARGET volumes must be specified 
($COPYUT1 defaulted to EDX002, the IPL volume). 

B When N RP001 has been copied, remove it from the diskette drive 
and replace it with N R R001 (or NND001 ). Press ATTN, followed 
by the ENTER key. The system will respond with the">" prompt 
character. Use the supervisor utility function $VARYON to put 
volume N R R001 (or NNDOOl) online (diskette device address 
X'02'). 

1J When NH HOOl has been varied on line, the $COPYUTl utility will 
again issue the "COMMAND(?):" prompt. Enter CV for 
"Change Volumes". This aHows you to redefine the source 
(NRR001 or NND001) and target (SUPLIB) volumes. 

This completes installation of the supplied supervisor and system 
programs. 

USER: SYSTEM GENERATION 

SYSGEN Overview 

Allocate Req~ired Data Sets 

15-14 SR 30-0220 

HEADING ASSIGNMENT: SB30-1213 (Version 2 PDOM) Chapter 5. 

Creating a supervisor tailored to a specific user configuration is a 
process consisting of the following tasks: 

1. Create a set of system configuration statements reflecting the 
configuration of the system that the supervisor being generated is 
to run on. 

2. Select the supervisor object modules in SUPLI B required to 
support the desired 1/0 devices and system features. 

3. Assemble the system configuration statements created in Step 1 
above. 

4. Link edit the object module produced by the assembly in Step 3 
with the supervisor object moduJes selected in Step 2 to produce 
a tailored supervisor. 

In order to demonstrate how these tasks may be accomplished, the 
remainder of this section will go through each step of an actual system 
generation. 

If a tailored SYSGEN is the first thing you do after installing the sup­
plied supervisor, the4962 disk is laid out as pictured in Figure 15-8. 
All the system programs are installed, but no user-allocated data sets 
have yet been defined. The system generation process. requires the use 
of several system utility/program preparation programs that require data 
sets for use as work areas or input/output files. These data sets must be 
allocated by the user before SYSGEN can proceed. Data set allocation 
is done with the $DISKUTl utility program. See the reading assignment 
for a list of the names and sizes of the required data sets. 



>I $L $DI SKUTl I 
$DISKUT1 26P, LP= 5700 

USING VOLUME EDX002 

COMMAND (?): AL EDITWORK 100•.._--------D 
DEFAULT TYPE = DATA - OK? YES 
EDITWORK CREATED 

COMMAND (?) : AL $EDXDEFS 80 •~-------­
DEFAULT TYPE = DATA - OK? YES 
$EDXDEFS CREA TED 

COMMAND (?): AL ASMOBJ 250 
DEFAULT TYPE = DATA - OK? YES 
ASMOBJ CREATED 

COMMAND (?): AL ASMWORK 250 
DEFAULT TYPE = DATA - OK? YES 
ASMWORK CREATED 

EJ 

COMMAND (?): AL SUPVLINK 450•-4---------0 
DEFAULT TYPE = DATA - OK? YES 
SUPVLI N K CREATED 

COMMAND (?): AL LEWORKl 400 
DEFAULT TYPE = DATA - OK? YES 
LEWORKl CREATED 

COMMAND (?): AL LEWORK2 150 
DEFAULT TYPE = DATA - OK? YES 
LEWORK2 CREATED 

COMMAND (?): I AL LINKCNTL 35}+i.....i------------ll 
DEFAULT TYPE =DATA - OK?~ 
LIN KC NTL CREATED 

COMMAND (?): AL SUPPREPS 15•-4---------­
DEFAULT TYPE = DATA - OK? YES 
SUPPREPS CREATED 

COMMAND (?): I END I 
$DISKUT1 ENDED 
Figure 15-12. Allocate data sets 

System Installation 15-15 



D EDITWORK is the name of a work file that will be required by 
$EDIT1 Nor $FSEDIT text editing utilities. 

fJ $EDXDEFS is the data set that will be used to hold the system 
configuration statements. 

IJ These data sets are used by the assembler program $EDXASM. 
ASMOBJ is the data set in which the object module output of the 
assembler will be stored, and ASMWOR K is an assembler work 
file. 

IJ SUPVLINK is the data set where the link editor, $LINK, will store 
the linked object module output. 

II LEWORK1 and LEWORK2 are $LINK work data sets. 

II LIN KCNTL is the data set to be used for a file of $LINK control 
records (INCLUDE statements) that tell the link editor which 
modules in SUPLIB to use when linking the supervisor. 

II SUPPREPS is a $JOBUTI L control record file. $JOBUTI L will 
use the records in this file to direct the assembly and link edit of 
the supervisor. 

Edit System Configuration Statements 

$/OTEST 

15-16 SR30-0220 

Before proceeding, you must know the configuration of the system you 
intend to run the supervisor on, and what features you want to support. 
You can generate a supervisor for a system other than the one used for 
SYSGEN, but for this discussion, assume the tailored supervisor being 
built is for the system you are now running on. 

One of the operands you must specify in all of the system configuration 
statements defining 1/0 devices is the device hardware address. The 
system utility program $10TEST can be used to find out which devices 
are installed on your system and what their addresses are. 



>l$L $IOTESTj 
$IOTEST 28P, LP= 5700 

ATTLIST (ALTER) TO STOP LOOPING FUNCTIONS 

COMMAND (?):(J;E] 

ACTUAL SERIES/I HARDWARE CONFIGURATION 

ADDRESS DEVICE TYPE 

00 = TELETYPEWRITER ADAPTER 
01 = 4974 PRINTER 
02 = 4964 DISKETTE UNIT 
03 = 4962 DISK MDL 1 OR 2 WITHOUT FIXED HEADS 
04 = 4979 DISPLAY STATION 
06 = 4978 DISPLAY STATION 
21 = 4973 PRINTER 
40 = TIMER FEATURE 
41 = TIMER FEATURE 

Figure 15-13. $10TEST LO 

The LO command lists all hardware devices. There is a similar command 
for listing the hardware devices supported by the supervisor that is 
currently loaded. In Figure 15-14, the LS command, for list supervisor 
configuration, is used to list the hardware devices supported by the 
supplied supervisor that is currently in use. 

COMMAND (?):~ 

HARDWARE DEVICES SUPPORTED BY THIS SUPERVISOR 

ADDRESS DEVICE TYPE 

00 TELETYPEWRITER ADAPTER 
01 = 4974 PRINTER 
02 = 4964 DISKETTE UNIT 
03 = 4962 DISK MDL 1 OR 2 WITHOUT FIXED HEADS 
04 = 4978 DISPLAY STATION 
12 = 4964 DISKETTE UNIT 

COMMAND(?): IENDI 

$IOTEST ENDED 
Figure 15-14. $10TEST LS 

System Installation 15-17 



15-18 SR 30-0220 

The supplied supervisor does not support the 4978 Display at address 
06, the 4973 Printer at address 21, or the Timers at addresses 40 and 41. 
The supervisor has a 4964 Diskette Unit defined at address 12, which is 
not installed on this system, and has a 4978 defined at address X'04', 
instead of the 4979 which is installed. After the tailored SYSGEN is 
complete and the new supervisor is loaded, the LS function of $10TEST 
should display a list of supervisor supported 1/0 devices that matches 
the list of actual hardware devices installed (Figure 15-13). 

Now you are ready to build a system configuration statement source 
file that reflects the 1/0 and system features you wish to support. This 
file can be created using either $EDIT1 Nor $FSEDIT. For this 
example, $EDIT1 N will be used. 

>($L $EDIT1.N EDITWORKl,~-----------------11 
$EDIT1N 44P, LP= 5700 

DSl HAS NOT PREVIOUSLY BEEN USED 
AS AN EDIT WORK DATA SET. 

IS IT OK TO USE IT NOW? ~~ ... --------------fl 
READY 

IBQQJ• II 
ENTER VOLUME LABEL: IASMLI B $EDXDEF,... II 
END AFTER 23 

IODA,CTS= 003,138111,139000 

READY 
IEDITl~--~-----~------------~------~---

EDIT 
Figure 15-15. $EDIT1 N (1) 

II The name of the text editor work data set is entered on the same 
line the load request is on. This is called advance input, and is 
allowed on many of the utilities. If you did not know that the 
name of the work data set was the next thing the utility required, 
you could just enter the load request by itself, and the utility 
would prompt you for the work data set name. 

D Data in a text editor work file is in a special format. Since 
EDI TWO R K was just allocated, a text editor has not previously 
used the file for a work area. The data is not in a format the text 
editor recognizes, and therefore $EDIT1N prompts to make sure 
it is alright to use the file. If you had inadvertently supplied the 
wrong data set name, this gives you a chance to abort the operation 
without destroying the data. In this case, the response is Y or YES, 
because from now on, you do want EDITWOR K to serve as the 
text editor work file. After once being used for this purpose, this 
prompt will not be issued again for EDITWORK, because residual 
data from previous text editing sessions will be in the text editor 
format. 



II When $EDIT1 N responds as READY, the operator has a choice of 
several primary commands. If LIST or LI is entered, the current 
contents of the text editor work file will be listed on the system 
printer in source statement format. A $E entry will cause a page 
eject on the system printer. EDIT will put the utility into EDIT 
mode, and END will terminate $EDIT1 N. 

The other command available in primary mode is READ, as shown 
in the example. A READ command will read a source data file 
into the text editor work data set, translating it into the text edit 
format as the transfer is made. 

At the beginning of this SYSGEN, you allocated several data sets 
on volume EDX002, one of which was $EDXDEFS. This data set 
will hold the system configuration statements for the taifored 
supervisor you are building. Instead of entering all the required 
system configuration statements from scratch, you can use the 
existing system configuration statement file, which was used to 
build the supplied supervisor (under which you are now running) 
as a base, and add/delete/modify that file as required for the 
tailored configuration you want. 

D The supplied supervisor system configuration statement file was 
loaded to volume ASM LI 8 during the installation of diskette 
NRP001, when you installed the starter system. It is in a data set 
named $EDXDEF. The ENTER VOLUME LABEL: prompt in 
response to your READ command will accept the data set name 
as well as the volume label, as shown (advance input); if you 
enter the volume label only, you will be prompted for the data set 
name. After reading data set $E DXDE F from volume ASM LI 8, 
the utility again indicates it is READY to accept another primary 
command. 

D Entering EDIT puts $EDIT1 N in EDIT mode. If LI or LIST had 
been entered, a listing of $EDXDEF would have been printed 
on the system printer. Since EDIT was entered instead, an LI 
command while in EDIT mode lists the contents of the edit work 
data set on the terminal you are using. 

System Installation 15-19 



[ill 
00010 $EDXDEF CSECT 
00020 SYSTEM STORAGE=64,MAXPROG=l0 
00030 DISK DEVICE=4964,ADDRESS=02 
00040 DISK DEVICE=4964,ADDRESS=12 
00050 DISK DEVICE=4962-2,ADDRESS=03,VOLSER=EDX002, 
00060 VOLORG=O,VOLSIZE=130,LIBORG=241 
00070 DISK DEVICE=4962-2,VOLSER=ASMLIB,BASEVOL=EDX002, 
00080 VOLORG=l30,VOLSIZE=l6,LIBORG=l 
00090 DISK DEVICE=4962-2,VOLSER=SUPLIB,BASEVOL=EDX002, 
00100 VOLORG=146,VOLSIZE=16,LIBORG=l 
00110 DISK DEVICE=4962-2,VOLSER=EDX003,BASEVOL=EDX002, 
00120 VOLORG=162,VOLSIZE=141,LIBORG=l,END=YES 
00130 $SYSLOG TERMINAL DEVICE=4978,ADDRESS=04,HDCOPY=$SYSPRTR 
00140 $SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAY=4,PAGSIZE=24, 
00150 BOTM=23,SCREEN=YES 
00160 TERMINAL DEVICE=4974,ADDRESS=Ol,END=YES 
00170 CSECT 
00180 QCB 
00190 QCB 
00200 ECB 
00210 ECB 
00220 STOREMAP 
00230 END 
END OF DATA 

Figure 15-16. $EDIT1N (2) 

c 

c 

c 

c 

c 

Now, using the EDIT mode text editor subcommands, this data set can 
be modified to match the desired configuration. As a starting point, 
one of the devices to be supported with the tailored supervisor is 
Timers. (See Figure 15-13.) The supplied supervisor system configura­
tion statement file in Figure 15-16 has no TIMER statement, so one 
must be added. To add a statement, the subcommand INPUT or IN 

15-20 SR30-0220 

is used. 

I IN 21 I 
INPUT ______ __ 
0002ll%TIMER%ADDRESS=40I 
INPUT TERMINATED 

EDIT 
Figure 15-17. $EDIT1N (3) 

Statements added to a source file are positioned by entering a line 
number not already occupied by an existing statement. By entering 
line number 21, the TIMER statement is entered between the SYSTEM 
statement, line 20, and the first DISK statement, line 30. (Figure 15-16). 



Notice that the statements in the file are numbered in increments of 10. 
Input automatically terminated after the TIMER statement was entered 
because input is also incrementing by 10, and if 21 is incremented by 10, 
the next input statement would be 31, skipping over the next existing 
statement at line 30, which is not allowed. 

Although both timers will be supported, only one Tl MER statement is 
entered. The system knows that the two timers have sequential 
addresses, so a single Tl MER statement specifying the address of the 
first timer is all that is required. 

The"%" characters in the TIMER statement entry are default tab 
characters. You can set tabs and specify your own tab characters using 
the TABSET command, but the defaults will be used throughout this 
example. 

The LI command can be used to selectively list portions of a data set. 

lu 10 301 
00010 $EDXDEF 
00020 
00021 
00030 

CSE CT 
SYSTEM 
TIMER 
DISK 

Figure 15-18. $EDIT1N (4) 

STORAGE=64,MAXPROG=l0 
ADDRESS=40 
DEVICE=4964,ADDRESS=02 

In Figure 15-18, lines 10 through 30 are listed, verifying the insertion 
of the TIMER statement. Notice that the tabs are expanded when an 
added statement is listed. 

The SYSTEM statement (statement 20) defines a 64K system 
(STORAGE=64), with a maximum of 10 programs executing con­
currently (MAXPROG=10). Now, assume that the system this super­
visor is being generated for has 128K of storage. 

When a system has storage greater than 64K, multiple partitions must 
be defined, due to the way the software utilizes the hardware feature 
that addresses storage above 64K. Each partition defined is a separate 
relocatable program area, just as the space between the end of the 
supervisor and the end of storage is a relocatable area in systems with 
64K or less. 

The STORAGE= operand in the SYSTEM statement must be changed 
to STORAGE=128. Up to 8 partitions may be defined, and for this 
example, assume that 3 partitions are desired. The MAXPROG= 
operand will now be changed to MAXPROG=(10, 10, 10), with each 
sublist element in the operand list corresponding to the maximum 
number of programs allowed to execute in partition 1, partition 2, 
and partition 3, respectively. 10 programs in concurrent execution in 
any one partition is enough to exceed most application requirements, 
but this can be coded to meet your own application needs. (Note: 
All partitions do not have to have the same MAXPROG= value; 
MAXPROG=(6,3, 10), for example, is valid.) 

System Installation 15-21 



Estimating Supervisor Size 

15-22 SR30-0220 

When using multiple partitions, a third operand, PARTS= must be 
coded. PARTS= is used to specify the size of each partition. The 
largest partition allowed can be no larger than 64K minus the size of 
the supervisor. To find out how large the largest partition can be, 
you must therefore estimate the size of the supervisor you are 
generating. 

Turn to Appendix D in S830-1213. This is a storage estimating guide, 
which will now be used to estimate the size of the supervisor you are 
in the process of building. In the following discussion, numbers to be 
included in the estimate are enclosed with in boxes. 

Basic System 
Without address translator 
With address translator 

5294 
ls1sol 

With address translator refers to the hardware feature that al lows 
addressing above 64K. Since the system is 128K, the larger number 
applies. 

Debugging 382 

Will you be using the $DEBUG utility to debug programs? Assume 
you will not, and leave this out of the estimate. 

Timers 

Yes, you want timers, and have, in fact, already added a TIMER 
system configuration statement (Figure 15-17). 

Previous total 5780 
Timers 898 
Current total 6678 

Program Loader (Multiprogramming) 
+add for cross partitioning loading 
+MAXPROG multiplied by 4 

3170 
574 

( 1Z0) 

Assume cross-partition loading is desired. The MAXPROG= you are 
using is MAXPROG=( 10, 10, 10), so MAXPROG multiplied by 4 is 
(40,40,40), for 120 bytes. The total is 3170+574+120 = 3864. 

Previous to ta I 
Loader support 
Current to ta I 

6678 
3864 

10542 



4013 type devices 
+410 per device 

Virtual Terminals 
+390 per terminal 

454 
) 

414 
) 

Note: The above numbers include 114 bytes 
per terminal for the optional 
Keyboard Task (ATTN=YES). 

Floating Point Arithmetic 
and Conversion 1928 

No 4013 terminals will be supported. 4013 terminals attach through 
digital 1/0, which is not installed on this system (Figure 15-13). Also 
assume that Virtual Terminal support and F.loating Point Arithmetic 
are not required, so none of the above will be included in the estimate. 

Terminals (basic) 
4979/4978 

+434 per 4979 or 4978 
Teletypewriter 

+410 per teletypewriter 
4973/4974 

+494 per 4973 or 4974· 

4916 
1756 

( f!>b8) 
846 

( Lf l~) 
598 

( CJ88) 

This system has a 4979 and a 4978 (Figure 15-13), so 434 x 2 = 868. 
A TTY device is installed, adding another 410. Both a 4973 and 4974 
are installed, which requires an additional 988 bytes (2 x 494). The 
total for terminals is 10,382. 

Previous tota I 
Terminal support 
Current total 

2741/ 1 PROC 1 

+538 per 2741 

10542 
10382 
20924 

+512 if Correspondence code 
+512 if EBCD code 

ACCA ASCII Terminals 
+462 per terminal 

1016 
( ) 
( ) 
( ) 
1560 

( ) 

2741 and ACCA terminals are not attached, and therefore are not 
included in the estimate. 

Disk(ette) 2196 
+146 per 4962 or 4964 ( i~i) 
+ 32 per additional logical volume ( ~b) 

System Installation 15-23 



15-24 SR30-0220 

Both a 4962 and a 4964 are installed, for an additional 292 bytes. In 
addition to the primary volume EDX002, three additional logical 
volumes are defined on the 4962, ASMLIB, SUPLIB, and EDX003 (see 
the DISK system configuration statements in Figure 15-16). At 32 
bytes for each additional volume, the estimate is increased by another 
96 bytes (3 x 32). The total for disk and diskette support is 2584. 

Previous total 
DASO support 
Current total 

20924 
2584 

23,508 

Host Communication Facility 

Binary Synchronous Access Method 
+136 per line of any type 
+ 22 per multi-line controller 
+ 4 per line of multi-controller 

Sensor Based Input/Output Basic 
Analog Input 

+50 for first AI group 
+16 for each additional group 

Analog Output 
+16 per AO 

Digital Input/Output 
+40 per DI group 
+16 per DO group in 4982 
+40 per DO group in IDIO 

Process Interrupt 
+136 per PI group 

1428 

3102 
( ) 
( ) 
( ) 

874 
528 

) 
) 

68 
) 

872 

138 

) 
) 
) 

) 

None of the above features/devices will be supported by this supervisor. 

Queue Processing Instructions 

$SYS COM 

242 

3?) 

Assume that Queue Processing support will be included. For $SYSCOM, 
the systems communications area, 32 bytes is the default amount taken 
up by the two ECBs and two QCBs defined in the supplied supervisor 
(Figure 15-16). You can make $SYSCOM larger or smaller, as your 
application requirements dictate, but for this SYSGEN example, the 
default will be used. 

Previous total 
Queue Processing/$SYSCOM 
Current total 

23508 
274 

23,782 



The size of the supervisor is calculated in 256 byte increments. The 
estimate arrived at is 23, 782 bytes. 

Current total 
Round up to next multiple 
of 256 bytes 

Estimated Supervisor Size = 

23,782 

+ 26 

23,808 

Partitions are defined in increments of complete 2K blocks (2048 bytes 
each). The first 64K of storage is represented by 32-2K blocks. 2048 
goes into our estimated supervisor size of 23808 approximately 11.6 
times. Rounding up to the next increment of 2048, the number of 
blocks taken up by the supervisor is 12. Out of the 32 blocks making 
up the first 64K of storage, 20 blocks remain for partitions, and the 
largest partition defined in the system can be no larger than 20 blocks 
(40K) in size. 

Looking at the total storage, there are 64 blocks of 2K each available 
(128K). 

With 12 blocks used for the supervisor, 52 blocks are available for the 
three partitions to be defined. The partitions may be any desired size, 
as long as their total size uses 52 blocks or less, and no one partition 
is larger than 20 blocks. 

Now back to the text editing session that was in progress. Assuming that 
you want to make the three partitions approximately equal in size, the 
PARTS= operand of the SYSTEM statement can be coded 
PARTS=(18,17,17), indicating partition 1 will be 36K, and partitions 
2 and 3, 34K each. Note that none of the partitions violate the 
maximum partition size of 20 blocks (40K). 

C 20 /64,MAXPROG=l0/128,MAXPROG=(l0,10,10),PARTS=(l8,17,17)/ 
LI 20 
00020 SYSTEM STORAGE=l28,MAXPROG=(l0,10,10),PARTS=(l8,17,17) 

Figure 15-19. $EDIT1N (5) 

The C editor subcommand is the change command. 20 is the line 
number of the line to be changed. The next character entered after the 
blank following the line number is taken as the delimiter. The command 
line may be interpreted as in line 20, replace (change) the text string 
'64,MAXPROG=10' with the text string '128,MAXPROG=(10, 10, 10), 
PARTS=( 18, 17, 17)'. The LI command following displays line 20, 
verifying that the change was made. 

Statement number 40 (Figure 15-16) is a DISK statement defining a 
4964 Diskette Unit at hardware address 12. This device does not exist 
on the system this supervisor is being generated for, and the statement 
should therefore be deleted. 

System I nstal lat ion 15-25 



DE 40 
LI 10 50 
00010 $EDXDEF 
00020 
00021 
00030 
00050 

CSE CT 
SYSTEM 
TIMER 
DISK 
DISK 

STORAGE=128,MAXPROG=(l0,10,10),PARTS=l8,17,17) 
ADDRESS=40 
DEVICE=4964,ADDRESS=02 
DEVICE=4962-2,ADDRESS=03,VOLSER=EDX002, C 

Figure 15-20. $EDIT1N (6) 

lu 130 1601 

The DE command deletes statement 40. The LI that follows lists the 
portion of the data set that contains the changes made thus far. 

Statements 30 through 120 define the disk and diskette volumes used 
for the starter system (Figure 15-16). If you wanted to add disk 
devices, or change the sizes or names of logical volumes, you would 
make the insertions/changes at this point. For this SYSGEN, the 
vol.umes already defined will be used (with the exception of the 
uninstalled diskette device, which has already been deleted). 

In Figure 15-21, the LI command is used to list the TERMINAL system 
configuration statements. 

00130 $SYSLOG TERMINAL DEVICE=4978,ADDRESS=04,HDCOPY=$SYSPRTR 
00140 $SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAY=4,PAGSIZE=24, C 
00150 BOTM=23,SCREEN=YES 
00160 $SYSPRTR TERMINAL DEVICE=4974,ADDRESS=Ol,END=YES 

Figure 15-21. $EDIT1N (7) 

15-26 SR 30-0220 

In a multiple partition system, terminals are assigned to partitions. 
When a terminal is assigned to a partition, supervisor utility functions 
invoked from that terminal are directed to the assigned partition. See 
the "SUPERVISOR UTILITY FUNCTIONS" topic in "Section 14. 
System Utilities" for a discussion on how terminal/partition assign­
ments may be changed online. For this SYSGEN, $SYSLOG (statement 
130) will be assigned to partition 1, and the TTY device (statements 
140, 150) will be assigned to partition 2. In statement 150 (the con­
tinuation of statement 140), the SCREEN:;:: operand is coded as 
SCREEN:;::YES. This indicates that the supplied supervisor assumes 
that the TTY is an electronic display screen device. SCREEN=YES 
causes a pause after every 24 lines of output, so that the data on the 
screen can be read by the operator. To display the next 24 lines, the 
operator must press the ENTER key. 

Assume the TTY device on this system is not an electronic display 
screen device, but is a hardcopy TTY with continuous forms. The 
pause after every 24 lines is not required, and is in fact an annoyance, 
so SCREEN=YES should be changed to SCREEN=NO. 



v 

In Figure 15-22, the $SYS LOG device is changed from a 4978 to a 4979 
to match the installed device. The second change to the $SYS LOG 
definition (line 130) assigns $SYSLOG to partition 1 (PART=1). Line 
150 is changed to make $SYSLOGA, the TTY device, continue past the 
24 line page size without pausing. Supervisor utility functions invoked 
from the TTY will be directed to partition 2 (PART=2). 

le 130 /78/79/ I 
00130 $SYSLOG TERMINAL DEVICE=4979,ADDRESS=04,HDCOPY=$SYSPRTR 

le 130 /R /R,PART=l/I 
00130 $SYSLOG TERMINAL DEVICE=4979,ADDRESS=04,HDCOPY=$SYSPRTR,PART=l 

IC 150 /YES/NO,PART=2/I 
00150 BOTM=23,SCREEN=NO,PART=2 

Figure 15-22. $EDIT1N (8) 

The "V" editor subcommand entered before the changes invokes the 
VER I FY function. Now each "C" command automatically displays 
the changed line after the change is made. 

The 4973 Printer and the 4978 Display, which are not supported by 
the supplied supervisor, must be added. The 4973 is named LINEPRTR. 

IIN 151 ii 
INPUT,__~~~~~~~~~~~~~~~~~ 
00151 LINEPRTR%TERMINAL%DEVICE=4973 ADDRESS=21 
00152 DSPLY1%TERMINAL%DEVICE=4978,ADDRESS=06,HDCOPY=$SYSPRTR,PART=3 
00153 

EDIT 

Figure 15-23. $EDIT1N (9) 

The 4978 is named DSPL Y1, and is assigned to partition 3. The names 
used are not predefined; you may call the devices anything you wish. 

Note that the IN PUT command (JN) specified an increment ( 1) as well 
as a line number ( 151 ). The editor uses the supplied increment instead 
of the default increment of 10, allowing successive insertion in incre-· 
ments of 1. The INPUT operation is terminated by pressing the 
ENTER key without entering anything on that line (line 153). 

Since the supplied supervisor values for $SYSCOM are to be used, this 
completes the changes to be made to the system configuration source 
file. In Figure 15-24, a REN UM command is issued, which renumbers 
the data set with statement numbers in increments of 10. The com­
pleted file is displayed by the LI. 

System Installation 15-27 



r 
00010 $EDXDEF CSECT 
00020 SYSTEM STORAGE=128,MAXPROG=(l0,10,10),PARTS=(l8,17,17) 
00030 TIMER ADDRESS=40 
00040 DISK DEVICE=4964,ADDRESS=02 
00050 DISK DEVICE=4962-2,ADDRESS=03,VOLSER=EDX002, C 
00060 VOLORG=O,VOLSIZE=130,LIBORG=241 
00070 DISK DEVICE=4962-2,VOLSER-ASMLIB,BASEVOL=EDX002, 
00080 VOLORG=130,VOLSIZE=l6,LIBORG=l 
00090 DISK DEVICE=4962-2,VOLSER-SUPLIB,BASEVOL=EDX002, C 
00100 VOLORG=146,VOLSIZE=l6,LIBORG=l 
00110 DISK DEVICE=4962-2,VOLSER=EDX003,BASEVOL=EDX002, C 
00120 VOLORG=162,VOLSIZE=141,LIBORG=l,END=YES 
00130 $SYSLOG TERMINAL DEVICE=4979,ADDRESS=04,HDCOPY=$SYSPRTR,PART=l 
00140 $SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAY=4,PAGSIZE=24, C 
00150 BOTM=23,SCREEN=NO,PART=2 
00160 LINEPRTR TERMINAL DEVICE=4973,ADDRESS=21 
00170 DSPLYl TERMINAL DEVICE=4978,ADDRESS=06,HDCOPY=$SYSPRTR,PART=3 
00180 $SYSPRTR TERMINAL DEVICE=4974,ADDRESS=Ol,END=YES 
00190 $SYSCOM CSECT 
00200 QCB 
00210 QCB 
00220 ECB 
00230 ECB 
00240 STOREMAP 
00250 END 
END OF DATA 

Figure 15-24. $EDIT1N (10) 

15-28 SR30-0220 

The completed data set must now be stored in the data set you allocated 
for this purpose. When the READ was issued at the beginning of this 
text edit utility session, the supplied supervisor system configuration 
statements were read from a data set named $EDXDEF on volume 
ASM LIB. The data set you allocated to hold your system configuration 
statements is $EDXDEFS on volume EDX002. 

~ 
ENTER VOLUME LABEL: EDX002 
ENTER MEMBER NAME: $EDXDEFS 
END AFTER 25 

IODA,CTS= 003,015039,015158 

READY 

Figure 15-25. $EDIT1 N (11) 



EDX002 

E3 
EDITWORK 

The SAVE subcommand (SA) translates the data set in the text editor 
work data set EDITWORK from text edit format into source statement 
format, and stores it in $EDXDEFS. At the end of a SAVE operation, 
the text editor goes back to primary command mode (EDIT mode 
ends). The operations performed and the data files used up to th is 
point are summarized in Figure 15-26. 

$EDIT1N 

ASMLIB 

~ 
$EDXDEF 

EDX002 

~ 
$EDXDEFS 

Figure 15-26. $EDIT1N (12) 

Select Supervisor Support Modules 

The next step is to choose the supervisor support object modules in 
volume SUPLIB required to support your configuration. These object 
modules are specified in link editor INCLUDE statements, which 
reside in a link edit control statement file. When you allocated data 
sets at the beginning of the SYSGEN, data set LINKCNTL was created 
to hold the INCLUDE statements for the system you are creating. 

As with the system configuration statements, you do not have to enter 
each INCLUDE record you need. Data set $LNKCNTL on volume 
ASMLIB contains all possible supervisor INCLUDE statements. All 
you must do is choose those required for your configuration. 

In Figure 15-27, the $EDIT1 N utility is already in primary command 
mode, so a READ isissued for data set $LINKCNTL on ASMLIB. 
EDIT mode is then entered, and the data set listed. 

System Installation 15-29 



I READ I 
ENTER VOLUME LABEL: I ASMLIB $LNKCNTLI 
END AFTER 54 

IODA,CTS= 003,139001,139035 

READY 
I EDIT I 

EDIT 
[I] 
00010 ************************************************* 
00020 * COMMENTS MAY BE INCLUDED BY AN * IN COLUMN 1 * 
00030 * USE THIS TECHNIQUE TO OMIT INCLUDES * 
00040 ************************************************* 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 

OUTPUT 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 

SUPVLINK,EDX002 NOMAP ENTRY=$START 
EDXSVC,SUPLIB *l* TASK SUPERVISOR-UP TO 64KB 
EDXSVCXL,SUPLIB *l* TASK SUPERVISOR-OVER 64KB 
$DBUGNUC,SUPLIB *2* RESIDENT $DEBUG SUPPORT 
EDXALU,SUPLIB INSTRUCTION EMULATOR/LIBRARY 
$EDXDEFO,SUPLIB SYSTEM CONTROL BLOCKS 
DISKIO,SUPLIB *** DISK(ETTE) SUPPORT MODULE 
PLOADER,SUPLIB *3* MULTIPROGRAMMING SUPPORT 
LPGMXP,SUPLIB *E* CROSS-PARTITION PROGRAM LOAD 
IOLOADER,SUPLIB *4* SENSOR I/0 LOADER 
EDXTIO,SUPLIB *5* TERMINAL I/0 SUPPORT 
EDXTERMO,SUPLIB *5* TERMINAL ENQ/DEQ 
EDXFLOAT,SUPLIB *6* FLOATING POINT ARITHMETIC 
NOFLOAT,SUPLIB *6* NO FLOATING POINT ARITHMETIC 
EBFLOVT,SUPLIB *7* EBCDIC/FLOATING POINT CONVERSION 
IOSTTY,SUPLIB *A* TTY TERMINAL SUPPORT 
IOS4979,SUPLIB *** 4978/4979 DISPLAY SUPPORT 
IOS4974,SUPLIB *** 4973/4974 PRINTER SUPPORT 
IOSVIRT,SUPLIB *** 'VIRTUAL TERMINAL' SUPPORT 
IOS4013,SUPLIB *A* DIGITAL I/0 TERMINAL SUPPORT 
IOS2741,SUPLIB *A* 2741 TERMINAL SUPPORT 
IOSTERM,SUPLIB *8* COMMON TERMINAL SUPPORT 
TRASCII,SUPLIB *D* TTY ASCII/EBCDIC TRANSLATION 
TREBASC,SUPLIB *G* TRANSLATE ASCII ACCA TERMINALS 
TREBCD,SUPLIB *B* TRANSLATE 2741 EBCD TERMINALS 
TRCRSP,SUPLIB *B* TRANSLATE 2741 CORRESP. 
EDXTIMER,SUPLIB *** TIMER SUPPORT 
BSCAM,SUPLIB *H* BINARY SYNC ACCESS SUPPORT 
IOSACCA,SUPLIB *G* ASCII ACCA TERMINAL SUPPORT 
SBAI,SUPLIB ***ANALOG INPUT SUPPORT 
SBAO,SUPLIB *** ANALOG OUTPUT SUPPORT 
SBDIDO,SUPLIB *** DIGITAL INPUT/OUTPUT SUPPORT 
SBPI,SUPLIB ***PROCESS INTERRUPT SUPPORT 
SBCOM,SUPLIB *4* COMMON SENSOR I/0 SUPPORT 
QUEUEIO,SUPLIB *K* QUEUE PROCESSING INSTRUCTIONS 
TPCOM,SUPLIB *J* 'HCF' INTERFACE SUPPORT 

Figure 15-27. $EDIT1N (13) (1 of 2) 

15-30 SR30-0220 



00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 

INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
END 

IOSEXIO,SUPLIB *** EXIO DEVICE SUPPORT 
EDXSTART,SUPLIB IPL MODULE AND ERROR HANDLER 
EDXINIT,SUPLIB *9* SUPERVISOR INITIALIZATION 
DISKINIT,SUPLIB *** DISK(ETTE) INITIALIZATION 
TERMINIT,SUPLIB *5* TERMINAL INITIALIZATION 
INIT4978,SUPLIB *** 4978 INITIALIZATION 
BSCINIT,SUPLIB *H* BSCAM INITIALIZATION 
$BSCARAM,SUPLIB *H* BSC MLA RAM LOAD 
$ACCARAM,SUPLIB *G* ACCA MLA RAM LOAD 
INIT4013,SUPLIB *C* DIGITAL I/0 TERMINAL INITIALIZE 
LOADINIT,SUPLIB *3* PROGRAM LOADER INITIALIZATION 
SBIOINIT,SUPLIB ***SENSOR I/0 INITIALIZATION 
TPINIT,SUPLIB *J* 1 HCF 1 INTERFACE INITIALIZATION 
TIMRINIT,SUPLIB ***TIMER INITIALIZATION 
EXIOINIT,SUPLIB *** EXIO INITIALIZATION 

Figure 15-27. $EDIT1N (13) (2 of 2) 

Instead of deleting undesired INCLUDE statements, it is preferable to 
insert an asterisk in column 1. The asterisk causes the link editor to 
treat the statement as a comment statement rather than a control 
record. This gives you a record of what support you have decided to 
leave out, which can be helpful if problems develop with the generated 
supervisor. 

fr 60 I I/* I/ I 
00060 * INCLUDE EDXSVC,SUPLIB *1* TASK SUPERVISOR-UP TO 64KB 

I c 80 I I/* I/ I 
00080 * INCLUDE $DBUGNUC,SUPLIB *2* RESIDENT $DEBUG SUPPORT 

I c 140 I II* I/ I 
00140 * INCLUDE IOLOADER,SUPLIB *4* SENSOR I/0 LOADER 

lC170/ I/* Ill 
~* INCLUDE EDXFLOAT,SUPLIB *6* FLOATING POINT ARITHMETIC 

;-====:C~5o~o;i~I/*~I/~l======---------~--~ 
00500 * INCLUDE INIT4013,SUPLIB *C* DIGITAL I/0 TERMINAL INITIALIZE 
I c 520 I I/* I/ I 
00520 * INCLUDE SBIOINIT,SUPLIB ***SENSOR I/0 INITIALIZATION 

I c 530 I II* I/ I 
00530 * INCLUDE TPINIT,SUPLIB *J* 1 HCF 1 INTERFACE INITIALIZATION 

I c 550 I I/* I/ I 
00550 * INCLUDE EXIOINIT,SUPLIB *** EXIO INITIALIZATION 

Figure 15-28. $EDIT1 N (14) 

The completed INCLUDE file is shown in Figure 15-29. Those state­
ments with asterisks in column 1 are for features that are not desired 
or for 1/0 devices not installed. 

System Installation 15-31 



00010 ************************************************* 
00020 1<· COMMENT~:) MP.1Y BE INCLUDED BY (~N ->(· IN CDl...l..IMN :1. ·)f 

0 0 0 3 0 1(· l.J ~:> E TH I ~;) TECH N I C~ U E T 0 D M I T I NC I ... U fl E ~::; ·°JI:· 

00040 
()() () ~7j () 

************************************************* 
OUTPUT 

0001-.>0 ·°JI:· I NCl...UDE 
00070 INCL.UDE 
OOOBO ·* I NCl...UDE 
OOO<?O I NCI... UDE 
00:1.00 INCLUDE 
001:I.0 I NCl...UDE 
00:1.20 INCL.UDE 
00 :I. 30 I NCl...U:OE 
00140 ·)f I NCl...UDE 
00 :I. ~.=:.iO I NCl...UDE 
00:1.60 
00170 
OOlBO 
00l9\) 
00200 
002 :I.() 
00220 
00230 

INCL.UDE 
->r:· I NCl...l.JDE 

JNCl ... UDE 
·)(· I NCl...UDE 

I NCl...U:OE 
I NCl...UDE 
INCL.UDE 

·:•r:· I NCl...UDE 
()()240 -)(· 

() 0 2 ~:.i () -)(· 
00260 
00270 
() () ;;!, 8 0 1(· 

0 0 ::.:.~ 9 () ·)(· 
00300 ·)f 

00~3:1.0 
00::320 ~· 

003~50 ·:n:· 

00340 ·)(-
00::5~50 1(· 

oo:.360 ~<· 

00370 :µ,. 

oo:.3BO ~· 

00390 
00400 \If 

()04:1. 0 ·)(· 
00420 
004~·30 

00440 
004~50 

00460 
00470 ¥.· 

00480 1f 

00490 1(· 

INCL.UDE 
I NCI ... UDE 
INCl ... UDE 
I NCI... UDE 
INCL.UDE 
INCL.UDE 
INCL.UDE 
I NCl...U:OE 
INCL.UDE 
I NCl...UDE 
INCL.UDE 
INCL.UDE 
INCL.UDE 
INCl ... U:OE 
INCLUDE 
I NCI... UDE 
INCL.UDE 
INCL.UDE 
I NCl...UDE 
I NCl ... UDE 
INCL.UDE 
INCLUDE 
INCL.UDE 
INCL.UDE 
INCL.UDE 
INCL.UDE 

00~7.iOO 1<· I NCl...UDE 
OO~:i:l.O INCL.UDE 
00~520 ·)(· INCL.UDE 
00~530 ·)(· INCLUDE 
00540 INCL.UDE 
OO~i~.iO 1<· INCLUDE 
OO~i60 END 

Figure 15-29. $EDIT1N (15) 

15-32 SR30-0220 

~:>UF'VI... I NI\: Y EDXOO:? 
EDX~:)l)C,.. ~:::UPI... I B 
ED::<~:>l~-'CXL..,.. ~:>UPI... I B 
·:~DBUGNUC v SUF'l.. I B 
EDX:1::lLU Y fl UPI... I B 
~liED:x:DEFO? SUP!... I B 
DI ~:>I< ID Y !::>UPI... I B 
Pl...0(.:1DFF'. v bl..IPI... I B 
l...PGMXP !' bUPI... IP 
I Dl...Ot·1DFF'. !-' !31...!F'I... JD 
EDXT ID!' ~:>UPI... I B 
EDXTEPMtJ !-':::>UPI... I B 
ED x FI... n f.1 T !I ~;:; u i::· I... I n 
N 0 FL.. D (.:·, T !I ~>UP I... J B 
E:OFl...Ct..)T? :;:)UPI... I B 
IO~:>TTY v ~::>UPl...IB 
ID'.:>497?,.. ~:>ui::-1...I:o 
I 0!::>4<.»/ 4 v ~:;UPL I B 
I 0 ~::; I.) I 1:;.: T }' ~:::: u p I... I D 
I 0~:>40 :I. 3 }'!;;)UPI ... ID 
:i:o:32/4l !' ::::;up1...1r: 
I o:::>TEl:~M ?-'~'.>UPI... I B 
Tf::r.~·1!:)CI I>' ~:::UPl...IB 
Tf:.:EBf."1f::;c ll !:)UPI... I B 
Tl:\:EBCD v ~::>UPI... I B 
TF~CF;:~:>P >' SUPL. I B 
ED:x:T I MEF;: ll !:)UPI... I B 
BSC1~M v ~:>UPI ... I B 
I O!::>f.lCCt1 !'!::>UPI... I B 
SBi~IvSUPl...IB 

~:>Bf.)D v ~:)UPI... I B 
!3DD I DO v ~3UF'I... I B 
!'.>BP l, ~'.)UPL.. I B 
!:'.>BCOM !' SUPL. I B 
OUEUE I 0? :::>UPI... I B 
TPCOM !'!:>UPI... I B 
IO::>E><IO,.. SUPl...IB 
EDXST(.:lf\:T v ~:>UPl...IB 
ED>< IN IT? ~:>UPl...IB 
:0 I t)t{ IN IT v SUPL.. I B 
TEl:~M IN IT v ~:>UPI... I B 
IN IT 4(.;>"?B,.. SUPI... I B 
B~>CINIT v SUPLIB 
~:;nscr~1:~f~M,.. ~~>UPL.. I B 
~;f.4CCr~1F~{.1M., Sl.JPI... I B 
IN I l 40 l. 3 v ~:>UPI... I B 
l...Df.~DINI T ll f>UPl ... IB 
f:)BIDINIT ~ SUPl...IB 
TF'INIT,SIJF'LIB 
TIMF;:INIT !' EUPl...IB 
E:X: ID IN IT v ~:>UPL.. I B 

NCJMf.~P 

:,.:. :I. ->(· T ,-::·, ~:> I·{ ~:> UP E F;: '.) I ~;; 0 h'. ···· U P T 0 .::) 41< B 
*1* TASK SUPEF'.VISDR-OVEF'. 64KB 
:•':2·:i<· F\:E!::: I DENT -~:-DEE:UD !:>UPPDl:;:T 

·)(·[·:•(· 
·)(·l}:i(· 

-)i: ~5 ·)(· 
·:•(· ~.:.=_j :•(· 

·)•:/)-)(· 

·)(·(;-)(· 

·)~/-)~ 

·)1;,::1·)(· 

-)(- ·)~ ~(· 

·)(·-)(·-)(· 

·)(··)(··)(· 

INSTRUCTION EMULATOR/l...IBRAF'.Y 
SYSTEM CONTROi... BLOCKS 
D I ~3 r< ( E l TE ) !:>UPP 01::: T M 0 :0 U I... E 
MUl...TIPROGAMMING SUPPORT 
CRObS-PAF'.TITION PROGRAM LOAD 
:3EN:;;)CJF'. I /D l...Df."1DEF: 
TEf::M I Nt1I... I /Cl !:>UPPClh:T 
TERMINAi... ENQ/DEQ 
Fl...CJi::,TING POINT t"1F'.ITHMETIC 
ND FL..Dt1Tii .... lC'.i POINT t1F:ITHMETIC 
EBCDIC/FLOATING POINT CONVERSION 
TTY TERMINAi... SUPPORT 
4978/4979 DISPLAY SUPPOF'.T 
4973/4974 PF'.INTER SUPPOF'.T 
~ .. I..) I RT U (.~i I... TE i::: M I N f.°~ I... ~· SUPP D F: T 

*A* DIGITAi... 1/0 TERMINAi... SUPPORT 
*A* 2741 TERMINAi... SUPPORT 
·:n.-8~1: COMMON TEF;~M I Nt1I ... ~:::UPPOF'.T 

*D* TTY ASCII/EBCDIC TRANSLATION 
*G* TRANSL.ATE ASCII ACCA TERMINALS 
*B* TRANS(ATE 274:1. EBCD TEF'.riINAl...S 
*B* TRANSL.ATE 274:1. CORRESP. 
*** TIMER SUPPORT 
*H* BINARY SYNC ACCESS SUPPORT 
->~G->c· f.)SC I I f.)CCf.) TEl:(M I Ntil... ~::;UPPOF'.T 

*** ANALOG INPUT SUPPOF'.T 
*** ANALOG OUTPUT SUPPOF'.T 
·:n:·:rc··:r~ DI (3 I l(ll... I NPUT/OUTF:·uT :::>UPPDHT 
*** PF'.DCESS INTEF'.F'.UPT SUPPORT 
*4* COMMON SENSOR I/O SUPPORT 
*K* QUEUE PROCESSIND INSTRUCTIONS 
*J* 'HCFv INTERFACE SUPPORT 
*** EXIO DEVICC SUPPORT 

IPL. MODULE AND ERRCJR HANDLER 
*9* SUPERVISOR INITIALIZATION 
·)t·>f·X· DISl"<<ETTE) INITif.il...IZf.1TION 
*5* TERMINAi... INITIALIZATION 
*** 49/8 INITIALIZATION 
*H* BSCAM INITIALIZATION 
*H* BSC ML.A RAM l...OA:O 
*G~ ACCA ML.A RAM LOAD 
*C* DIGITAi... I/O TERMINAi... INITIALIZE 
·:rf:?;1c· Pl:(IJGF;.'.f.lM LIJi:~,DEF: INITic:ll...IZATION 
*** SENSOR I/O INITIALIZATION 
*J* YHCF., INTERFACE INITIALIZATION 
*** TIMER INITIALIZATION 
*** EXIO INITIALIZATION 



EDX002 

E::::Y 
EDITWORK 

The completed file is now saved to the LIN KCNT L data set you allo­
cated on volume E DX002. 

~ 
WRITE TO $LNKCNTL ON ASMLIB ? NO 
ENTER VOLUME LABEL: EDX002 LINKCNTL 
END AFTER 54 

IODA,CTS= 003,009145,010019 

READY 
Figure 15-30. $EDIT1N (16) 

Figure 15-31 summarizes operations up to this point. 

ASMLIB 

$EDIT1N 

EDX002 

Figure 15-31. $EDIT1N (17) 

Edit $JOBUTI L Procedure File 

Now that $EDXDE FS contains your system configuration statements, 
and LINKCNTL contains the edited INCLUDE file, you are ready to 
assemble the configuration statements, and link edit the resulting object 
module with the supervisor support object modules specified in 
LINKCNTL. The linked object module will then be formatted by the 
$UPDATE utility to form an executable supervisor. 

The assemble, link, and formatting steps will be performed under 
control of the job stream processing utility $JOBUTI L. You could 
load the assembler $EDXASM, provide the data set names required 
yourself, and do the assembly, then in turn do the same for $LINK and 
$UPDATE, but using $JOBUTI L, all three steps may be accomplished 
with a single entry. 

System Installation 15-33 



15-34 SR 30-0220 

$JOBUTI L operation is controlled by a procedure file of job control 
statements. For SYSGEN, a procedure file named $SUPP REP is 
supplied on volume ASM LI 8. In Figure 15-32, the editor is used to 
READ $SUPP REP, EDIT mode is entered, and the LI subcommand 
used to display the file contents. Statements 10 through 90 control 
operation of the assembler, $EDXASM; statements 110 through 160, 
$LINK; and 180 through 210, the formatting utility, $UPDATE. 

If, when you allocated data sets at the beginning of SYSGEN, you had 
used other than the names/volumes recommended, you would now have 
to edit this procedure file to reflect the names/volumes you used. 



I READ I 
ENTER VOLUME LABEL:tASMLIB $SUPPREPl 
END AFTER 24 

IODA,CTS= 003,130034,130048 

READY 
I E.OIT I 

EDIT 
ITO 
00010 LOG $SYSPRTR 
00020 JOB $SUPPREP 
00030 PROGRAM $EDXASM,ASMLIB 
00040 NOMSG 
00050 PARM 
00060 OS 
00070 OS 
00080 OS 
00090 EXEC 

$EDXOEFS, EDX002 
ASMWORK,EDX002 
$EDXDEFO, SUPL IB 

00100 JUMP ENDJOB,GT,4 
00110 PROGRAM $LINK,ASMLIB 
00120 NOMSG 
00130 PARM 
00140 OS 
00150 OS 
00160 OS 
00170 EXEC 

$SYSPRTR 
LIN KCNTL, EDX002 
LEWORK1,EDX002 
LEWORK2,EDX002 

00180 JUMP ENDJOB,GT,4 
00190 PROGRAM $UPOATE,EOX002 
00200 NOMSG 
00210 PARM 
00220 EXEC 
00230 LABEL 
00240 EOJ 

$SYSPRTR SUPVLINK,EDX002 $EDXNUCT,EDX002 YES 

EN DJ OB 

END OF DATA 
~ 
WRITE TO $SUPPREP ON ASMLIB ? NO 
ENTER VOLUME LABEL: jEDX002 SUPPREPS) 
END AFTER 24 

IODA,CTS= 003,028155,029009 

READY 
IT@] 

$EDIT1N ENDED 
Figure 15-32. $EDIT1N (18) 

System Installation 15-35 



EDX002 

E:::Y 
EDITWORK 

For example, if you had called the assembler work file ASMWR K 1 
instead of ASMWO R K, you would have to change the name in the OS 
statement number 70. 

All files allocated for this SYSGEN used the recommended names and 
volumes, so the editor work data set is saved in the data set you allocated 
for this purpose on EDX002, SUPPREPS. The editing portion of 
SYSGEN is complete, and is summarized in Figure 15-33. 

ASMLIB 

EDX002 

$EDIT1N 

Figure 15-33. $EDIT1N summary 

Assemble/Link/Format 

15-36 SR30-0220 

Note: Because there were no changes required in the $JO BUT IL pro­
cedure file, the transfer of $SUPPREP on ASMLIB to SUPPREPS on 
EDX002 could have been accomplished using $COPY or $COPYUT1, 
rather than with the READ and SAVE text editor commands. 

To assemble, link edit, and format the tailored supervisor, load 
$JOB UT IL, and supply the name of your procedure file, as illustrated 
in Figure 15-34. 

>l$L $JOBUTILI 
$JOBUTIL 3P, LP = 6000 
ENTER PROCEDURE (NAME, VOLUME): -is-UP_P_R-EP_S_,_ED_X_00-2-.I 

$JOBUTI L ENDED 

Figure 15-34. $JO BU Tl L 



$JOBUTI L 
(EDX002) 

EDX002 

F~u~1~3~ $EDXASM 

The procedure file has specified $SYSPRTR as the log device, so the 
first thing that happens is that the procedure file statements controlling 
the assembly operation print out on the system printer (see Appendix 
A, Figure A-1 ). $JOBUTI L loads the assembler, $EDXASM, which 
assembles your system configuration source file, $EDXDEFS. 

$EDXASM 
(ASMLIB) 

EDX002 

E:Y 
ASMOBJ 

The resulting object module is stored in ASMOBJ, which you allocated 
for this purpose. The listing produced as a result of the assembly prints 
out on the system printer, preceded by assembler statistics (see Appen­
dix A, Figure A-2). 

Next, $JOBUTI L loads the link editor, $LINK. (Appendix A, Figure 
A-3). Using the object module from the assembly (ASMOBJ) and the 
file of link control records (INCLUDE statements) you stored in 
LINKCNTL, the $LINK program brings in the supervisor object modules 
specified in LINKCNTL and link edits them with the system control 
blocks generated by the assembly (ASMOBJ object module). 

System I nsta II at ion 15-37 



$JOBUTIL 
(EDX002) 

EDX002 

Figure 15-36. $LINK 

15-38 SR30-0220 

$LINK 
(ASMLIB) 

EDX002 

~ 
SUPVLINK 

The data set SUPV LINK, which you allocated for link edit output, is 
used to store the resulting linked module. The link editor prints out 
the LINKCNTL file (Appendix A, Figure A-4) and any unresolved 
references resulting from the link edit on the system printer. There 
will be several unresolved weak external references (WXTRN) for 
supervisor support modules you did not want to include, but no 
unresolved EXT RN messages should appear. 

$JOBUTI L now loads $UPDATE to format the linked supervisor into 
a loadable module (Appendix A, bottom of Figure A-4). 



$JOBUTIL 
(EDX002) 

Figure 15-37. $UPDATE 

$UPDATE 
($EDX002) 

EDX002 

EDX002 

«::;> 
$EDXNUCT 

The formatted load module is placed in $EDXNUCT, a temporary 
supervisor data set allocated automatically by $UPDATE. You cannot 
IPL this data set. $UPDATE ends (Appendix A, Figure A-5) and 
$JOB UT I L terminates. 

System Installation 15-39 



Copy Tailored Supervisor 

15-40 SR30-0220 

The only data set that you can IPL from is $EDXNUC. Before you can 
test the new supervisor, it must therefore be copied into $EDXNUC. 
Note: The supplied supervisor under which you are running was also 
IPLed from $EDXNUC. If you want to save it, back it up to another 
data set prior to th is copy. 

>l$L $COPY! 
$COPY 22P, LP = 6000 

COMMAND (?): [[) 
SOURCE(NAME,VOLUME): $EDXNUCT,EDX002 
TARGET(NAME,VOLUME): EDXNUC,EDX002 
ARE ALL PARAMETERS CORRECT? YES 
COPY COMPLETE 

117 RECORDS COPIED 

COMMAND (?): ~ 

$COPY ENDED 
Figure 15-38. $COPY 

Figure 15-39 summarizes the tailored system generation process. 



$JOBUTIL 
(EDX002) 

,, ,,,, 
\\ ' EDX002 ,, ' 

E3 
EDITWORK 

' \ '\ ' \ \ ' \ \ ' \ ' ' \ \ 

rn0002\ 

EY 
ASMWORK 

EDX002 

Figure 15-39. SYSGEN overview 

' ' ' ~ 

' \ 
\ 

\ 

\ 

\ 
\ 

\ 

\ 

$EDIT1N 
($EDX002) 

$EDXASM 
(ASMLIB) 

$LINK 
(ASMLIB) 

$UPDATE 
($EDX002) 

$COPY 
($EDX002) 

ASMLIB 

EDX002 

EDX002 

~ 
SUPVLINK 

EDX002 

~ 
$EDXNUCT 

EDX002 

~ 
$EDXNUC 

System Installation 15-41 



IPL TailoredSupervisor 

15-42 SRJ0-0220 

When you IPL the tailored supervi.sor, the IPL message shown in Figure 
15-40 is displayed. 

*** EVENT DRIVEN EXECUTIVE *** 

VOLSER TYPE IODA STATUS 
PRI. 0002 UNUSABLE 

EDX002 PRI. 0003 ONLINE (IPL) 
ASMLIB SEC. 0003 
SUP LIB SEC. 0003 
EDX003 SEC. 0003 

STORAGE MAP 
PART# START SIZE 

1 24576 36864 
2 61440 34816 
3 96256 34816 

SET DATE AND TIME USING COMMAND $T 

Fig~re 15-40. IPL me.ssage 

NotiGe that the supervisor size: i~ 2.41576 l?vtes. The esJirnated super­
visor size w.as 23;808, 768.byt~s less than actua,L This discrepC;lnGY is. 
due to thefact that the.superv,isor used,.in thisSYSGEN·exqmple ha~ 
had a .. ma.intenance release installed that is not yet reflected in.the.stor­
age estimating section of SB30'" 1213. When using the stprage estime1ting 
section, be sure you have the most rece.nt update to the docurnente1tion; · 
and use the estimate you generate as a guide, not as a figure to: be 
counted on for accuracy to the last byte. Do not use the .exce.rpts from 
the storage estimating section that are reproduced in this study guide 
to generate your estimates, as. this s~udy guidewill be revised with 
much less frequency than will SB30~1213. · 

The size of partition 1 (Figure 15AO) is listed as 36864 bytes. In th~ 
PARTS= operand of the SYSTEM st~tement, partition 1 was.spedfied 
as 18 2048-byte blocks; or 36864 bytes. If the supervisor were less 
than 24,576, which is an even multiple of 2048 bytes, the system 
would automatically add the storage between the supervisor end point 
and the next even multiple of 2048 to partitio.n 1. 



LP= 6000 

ATTUST (ALTER) TO STOP LOOPING FUNCTIONS 
COMMAND ( ? } : (TI] 

HARDWARE DEVICES SUPPORTED BY TH.IS S-UPERV1SOR 

ADDRESS DEVICE TYPE 

00 = TELETYPEWRITER ADAPTER 
01 = 4974 PRINTER 
02 = 4964 DISKETTE UNIT 
03 = 4962 DISK MDL 1 OR 2 WITHOUT FIXED HEADS 
04 = 4979 DISPLAY STATION 
06 = 4978 DISPLAY STATION 
21 = 4973 PRINTER 
40 = TIMER FEATURE 
41 = TIMER FEATURE 

COMMAND (?):I END I 

$IOTEST E~DED AT 00:01:18 

Figure 15•41. $10TEST LS 

In Fig.ure 15-4 l, the list supervisor (LS} f;unctio~ of $lOTEST tS:; used 
todisplaythe·devices,supported by the supervisor yetJ. hav,eg~nerated. 
This I ist now matches the I ist display.ed b¥' the: LO' functi0n itl 
F igL1re 15-13. 

System Installation Hh43. 



This page intentionally left blank. 

15-44 SR30-0220 



Section 16. Program Preparation Using BPPF 

APPLICATION PROGRAM PREPARATION 

OBJECTIVES: Upon successful completion of this topic, the student 
should be able to describe the steps necessary to prepare an Event 
Driven Executive application program for execution, using the 
Base Program Preparation F aci I ities ( 5719-PA 1). 

READING REFERENCE: 1) Program Description and Operations 
Manual (PDOM), SB30-1213, Chapter 6, "Program Preparation 
Using BPPF"; 2) Base Program Preparation Facilities User's Guide, 
SC34-0072; 3) Series/1 Standalone Utilities User's Guide, GC34-0070. 

PROGRAM PREPARATION OVERVIEW 

Figure 16-1 summarizes the steps necessary to prepare an Event Driven 
Executive application program for execution. Before discussing each 
step in detail, let's look at the overall process. 

Step 1 is optional and is there as a reminder that any disk or diskette 
files that are used in the program preparation process must be pre­
defined. If you have not defined them previously, you must do so 
before beginning program preparation. 

Step 2 is the creation of a source module on diskette, using the 
$EDIT1 N utility program. Source statements are entered via a terminal. 
If you are using the Starter System, the terminal must be either an I BM 
4979 Display, at device address 004, or a TTY type device at address 
000. If you have generated your own supervisor, the terminal may be 
any terminal your system supports. 

Step 3 is the assembly of the source module created during step 2. 
Using the source module on diskette (together with MAC LIB on disk), 
the BPPF Macro Assembler converts your source statements into an 
object module and stores it on disk in the object data set specified. 

Step 4 utility $UPDATEN uses the object module output as input. 
Event Driven Executive programs are relocated, when they are loaded, 
to whatever storage area is available. The $UPDATEN utility converts 
the object module into relocatable format, forming an executable load 
module that can be relocated by the relocating loader. 

Step 5 is not part of program preparation but is there to illustrate 
the loading of the relocatable load module into Series/1 storage. (The 
load could also result from execution of a LOAD statement in an Event 
Driven Executive application program.) 

Program Preparation Using BPPF 16-1 



16·2. SR30•0~0 

CREATE VOL/DATA SETS 

DEVICE 

ADDRESS 
002 

UTIUTY 
$DISKUT1 
$1NITDSK 

SOURCE 
MODULE 

D .___I ___.... 

• 
0 
I 

ASSEMBLE 

BPPF 
MACRO 
ASSEMBLER 

FORMAT 

UTIUTY 
$UPO.ATEN 

LOADER 

$L 
SUPERVlSOR 

COMMAND 

TEXT 

EDITOR 

UTILITY 

$EDIT1N 

OBJECT 

DJ 
0 ~ 

& 

SUPERVISOR 

EXECUTING 
LOAD 
MODULE 



PREPARING THE DISK/DISKETTE - STEP 1 

In Figure 16-1, several of the steps made use of data sets. The $EDIT1N 
text editor utility (step 2) required a work data set, and a diskette data 
set to store the source module. Since step 4, the $UPDA TEN format­
ting utility is an Event Driven Executive program, the input to this 
utility (assembler object module) must reside on an Event Driven Exe­
cutive volume. All three of these data sets ($EDIT1 N WORK DATA 
SET, SOURCE MODULE DISKETTE DATASET, and OBJECT 
MODULE DAT A SET) must be defined before program preparation 
can begin. 

Figures 16-2, 16-3, and 16-4 show the steps necessary to set up the disk­
ette to store a source module. Operator responses to system prompts 
are enclosed in boxes. 

Program Preparation Using BPPF 16-3 



IPL SYSTEM 

l 
IP100A EXEC= 

LOAD SER I ES/1 
STANDALONE ~~--..~ 
UTILITY 

YES 

YES 

NO 
Figure 16-4 

Figure 16-3 

DISKETTE DRIVE RIOOOI DISKETTE INITIALIZATION STARTED 
MUST BE DEVICE RTl lOA DEV I CE ADDRESS= 
ADDRESS 002 -~I002f 
(BPPF RI125I CURRENT VOLID = IBMIRD 
REQUIREMENT) RI127A DO YOU WANT TO INITIALIZE THIS DISKETTE? 

IYESI 
RI120A NEW VOLID= 

MAY BE 1-6 --......... 1rnxoo1I 
CHARACTERS RIOOlI DISKETTE INITIALIZATION COMPLETED 

RillOA DEVICE ADDRESS= 

IPL SYSTEM 

Figure 16-3 

Figure 16-2. Diskette preparation (1 of 3) 

16-4 SR30-0220 



Figure 16-2 

PRESS ATTN KEY 

> $L $IN ITDSK 
$INITDSK 13P,, LP= 5100 

LIBRARY INITIALIZATION PROGRAM 

l=ENTER VOLUME LABEL 
2=ENTER DEVICE ADDRESS 
3=STOP PROGRAM 

SELECT OPTION: (g] 

INITIALIZE 
VOLUME 

NOT REQUIRED IF YOU 
HAVE VOLID ALREADY 
AND DO NOT WANT TO 
CHANGE IT 

ENTER DEVICE ADDRESS 

WRITE VOLUME LABEL? (rl 
ENTER DESIRED VOLUME LABEL (1-6 CHARACTERS) lrnxoo1I 
ENTER OWNER ID ( 1-14 CHARACTERS): lDEPT870l 
LABEL WRITTEN 

CREATE A DI RECTORY? (TI 
HOW MANY RECORDS IN DIRECTORY (2 - 13): [fQJ 
DO YOU WISH TO RESERVE SPACE FOR A NUCLEUS?~ 
DIRECTORY INTIALIZED 

l=ENTER VOLUME LABEL 
2=ENTER DEVICE ADDRESS 

3=STOP PROGRAM 
SELECT OPTION: QJ 
$INITDSK ENDED AT 00:00:00 

8 
Figure 16-4 

Figure 16-3. Diskette preparation (2 of 3) 

Program Preparation Using BPPF 16-5 



Figure 16<2 

ALLOCATE 
DATA SET FOR 
SOURCE MODULE 

> $L $DISKUTf] D SUPERV~SOH ISPOINT1NG 

$DISKUT1 23P,,L~~g;O~;IPLllOLUME, 

US ING VOLUME EDX002 fl "CHANGE VOLUME"'(CV) 

-------------COMMAND MAKES IT POINT 
COMMAND (?): (TI] TO VOLUME EDX001, THE 
NEW VOLUME LABEL + EDXOOl DtSKETTE 

COOMAND (?): AL -4-----------"ALLOCATE D-ATA SET" COMMAND 

MEMBER NAME: SOURCE 
HOW MANY RECORDS? 200 
DEFAULT TYPE = DATA - OK?(Y] 
SOURCE CREATED 

COMMAND (?): LMCTS ,..,._ _______ "LIST MEMBER CTS ADDRESS" CMD 

MEMBER NAME: SOURCE 

USING VOLUME EDXOOl 

NAME FREC SIZE 

SOURCE DATA 104 200 

IODA,CTS= 002,008025,024008 

~ 
DISKETTE 
READY 
FOR USE 

Figure 16-4. Diskette preparation (3 of 3) 

16-6 SR30·0220 



$DISKUT1 STILL IN 
STORAGE FROM DISKETTE 
DATA SET ALLOCATION 

ALLOCATE TEXT 
EDITOR WORK 
DATA SET 

Figure 16-5. $DISKUT1 utility 

If you have not previously allocated a work data set for the Text Editor, 
you must do so. How big should it be? A good rule of thumb is the 
number of text lines (n) divided by 30 times 11 plus 1 (n/30 x 11 + 1 ). 
A data set of 200 records will accommodate about 550 text statements. 
Figure 16-5 gives an example of using the $DISKUT1 utility to allocate 
a work area for the Text Editor. 

CHANGE VOLUME BACK 
-------- FROM DISKETTE (EDX001) 
~ _/"' TO VOLUME ON DISK 

COMMAND (?): [Y) ~ ~ 
NEW VOLUME LABEL=~ 
COMMAND (?): IAL I 

MEMBER NAME: JEDITWORKJ 

HOW MANY RECORDS: }2001 

DEFAULT TYPE = DATA - OK? (Y] 

EDITWORK CREATED 

Program Preparation Using BPPF 16-7 



16-8 SR30-0220 

The object module output of the assumbly (Figure 16-1, step 3) must 
also be stored in a data set. Figure 16-6 is an example of allocating a 
data set for that purpose. 

When running the BPPF assembler, you will be asked for the location 
of the object module data set. Notice, in the example (Figure 16-6), 
the use of the LMCTS command to obtain the CTS address of the 
object module data set. 

ALLOCATE OBJECT 
MODULE DATA SET 

SAVE CTS FOR 
USE IN ASSEMBLY 

Figure 16-6. Object module 

COMMAND ( ? ) : [filJ 

MEMBER NAME: loBJECT I 

HOW MANY RECORDS?~ 

DEFAULT TYPE = DATA - OK?~ 
~ ~ NOTE: PGM 

TYPE = PROGRAM?~~ ~ORGANIZATION, 

OBJECT CREATED 

COMMAND(?):ILMCTsl 

MEMBER NAME: IOBJECTj 

USING VOLUME EDX002 

NAME 

OBJECT 

FREC 

PGM 912 

SIZE 

200 

IODA,CTS=003,028011,028130 

NOT DATA 

END 
$DISKUT1 



CREATE A SOURCE MODULE - STEP 2 

SOURCE 
MODULE 

0_1 _ 
• 

0 
I 

Figure 16-7. Text editor 

TEXT 
EDITOR 

UTILITY 
$EOIT1 N STEPfJ 

Now that all the required data sets have been allocated (SOURCE, 
EDITWORK,OBJECT) program preparation can begin. First, a source 
module will be created.' Statements are entered at a terminal, using the 
Text Editor utility $EDIT1 N, and when the module is complete, it is 
saved on diskette. Figure 16-8 is an example of a text editing session. 
(The utility $ED IT1 N is discussed in greater detail in Section 3 of this 
study guide.) 

Program Preparation Using BPPF 16-9 



PRESS ATTN 

> L EDITlN 

LOAD TEXT 
EDITOR UTILITY 

OSI NAME,VOLUME): EDITWORK 
$EDITIN 43P,, LP= 5100 
READY 

I EDIT MODE SELECTED I 
INPUT ----------
00010 PGM1%PROGRAM%START 
00020 START%MOVE%DATA1,TABLE1 
00040 %GOTO%NEXTSTEP 
00050 DATAl%DATA%F'0 1 

00060 nnTA?%DATA%F 1 0 1 

.A.J120 
00130 
00140 

%PROGSTOP 
%EN OP ROG 
%END 

WORK DATA SET 
ALLOCATED IN STEP 1 

UTILITY ASSUMES IPL 
VOLUME (EDX002) IF 
"EDITWORK" WERE 
DEFINED ON A 
DIFFERENT VOLUME, 
ENTRY OF VOLID 
WOULD BE REQUIRED 

EDX SOURCE 
STATEMENTS 
(%SIGNS ARE 
DEFAULT TAB 
CHARACTERS) 

"LIST 00150 
STATEMENTS I !;====================------"ENTER" KEY HIT 
10 THROUGH 50", EDIT~ WITH NO CHARACTER 

~1 LI 10 50 I ENTERED -

00010 PGMl PROGRAM START ·RESPONDS"STILLIN 
00020 START MOVE DATl, TABLEl EDIT MODE" 
00030 MOVE DAT2,TABLE2 
00040 GOTO NEXT STEP 

"ENTER"--....___ 00050 DATl DATA F'O' 
~c=J 

EDIT MODE• -EDIT 
!SAVE I 

~ENTER VOLUME LABEL: EDXOOl 
SAVE SOURCE ENTER MEMBER NAME: SOURCE 
MODULE ON 
DISKETTE 

END AFTER 15 ~---------

SOURCE MODULE DATA SET 
DEFINED IN STEP 1 
(Figures 16-2, 16-3, 16-4) 

.SAVED 15 SOURCE 
IODA,CTS= 002,008025,024008 STATEMENTS 

END EDIT, 
SESSION ~ READY 
~ 

$EDIT1N ENDED AT 00:00:00 

Figure 16-8. Source module creation 

16-1 0 SR 30-0220 

SAVE THESE SOURCE 
MODULE CTS EXTENTS 
FOR USE IN ASSEMBLY 
(STEP 3) 



ASSEMBLE THE SOURCE MODULE - STEP 3 

STEP ID 

SOURCE 

DI~-
• 

0 
I 

ASSEMBLE 

BPPF 

MACRO 

ASSEMBLER 

Figure 16-9. Source module assembly 

OBJECT 

MODULE 

The assembly is the only program preparation step (other than initial­
ization of new diskettes, if required) that cannot be done under control 
of the Supervisor, while other programs are concurrently executing. 
The BPPF Macro Assembler runs by itself, in an offline mode, so the 
system must be re-IP Led before beginning. Figure 16-10 illustrates the 
assembly of the source module just created, using the source and object 
data sets defined in STEP1. 

Program Preparation Using BPPF 16-11 



IPL SYSTEM 

LOAD 

BPPF MACRO..........____. ~OOA EXEC= 
ASSEMBLER ~ CTS ADDRESS OF 

ASOOOI ASSEMBLER STARTED DATA SET "SOURCE" 
ASlOlA SOURCE= (Figures 16-4, 16-8) 

CTS ADDRESS OF 002, 008025, 024008 
EDX MACLIB, IF AS102A MACRO= 
INSTALLATION 003, 140100,203159 CTS ADDRESS OF 
PROCEDURES IN AS103A BJECT= DATA SET "OBJECT" 

CHAPTER 5 OF I 003, 0280 ll, 0281301 (Figure 16-6) 

PDOMWERE AS018A DEFAULT WORKSPACE (204000,301159)? 
FOLLOWED YES 

AS107A OPTIONS= 
I NORLD ,NOESD ,NOXREFI BPPF ASSEMBLER 

DEFAULT OK IF AS099I LAST SECTOR WRITTEN= 13ll01 LISTING OPTIONS 

BPPF INSTALLED ASOOlI ASSEMBLER COMPLETED 
BY PROCEDURES IN 
PDOM CHAPTER 5 

Figure 16-10. Assemble source module 

16-12 SR30-0220 



FORMAT THE OBJECT MODULE - STEP 4 

FORMAT 

UTILITY 
$UPDATEN 

STEP II 
Figure 16-11. Format object module 

OBJECT 
MODULE 

RELOCATABLE 
LOAD MODULE 

Before the object module can be converted into an executable load 
module, the system must be re-IP Led, to bring the Supervisor back into 
storage. Figure 16-12 illustrates use of the formatting utility 
$UPDATEN. Notice that $UPDATEN assumes that the operation to be 
performed is on the IPL volume, EDX002. If the object module is on 
a volume other than the I PL volume, or if you want to place the execu­
table relocatable load module on a volume other than the IPL volume, 
you must supply the volume identification (VOLi D). 

Program Preparation Using BPPF 16-13 



IPL SYSTEM 

IP lOOA EXEC= 
LOAD SUPERVISOR 

lo21000Lr------

l 
.PRESS ATTN 

KEY 

..._ ______ LOAD FORMATTING UTILITY 

$UPDATEN • 

$UPDATEN 22,LP=5100 

THE DEFINED INPUT VOLUME IS EDX002,0K? 

THE DEFINED OUTPUT VOLUME IS EDX002,0K? 

ASSUMES IPL 
VOLUME EDX002 
(ASSUMPTION OK FOR 
THIS EXAMPLE) 

COMMAND(?): (RPl......------------
"READ PROGRAM" CMD 

OBJECT MODULE NAME: joBJECTj 

OUTPUT PGM NAME: I PPEXAMPL I 
PPEXAMPL STORED . ....______NAME WHICH WILL BE USED 

WHEN LOADING PROGRAM 

COMMAND (?): ~ ($LOR FROM LOAD 
STATEMENT IN ANOTHER 

$UPDATEN ENDED AT 00:00:00 PROGRAM) 

Figure 16-12. Formatting utility $UPOATEN 

16-14 SR30-0220 

If you have already allocated a data set on volume EDX002 with the 
name "PPEXAMPL", $UPDATEN will use it to store the· load module. 
If you have not allocated a "PPEXAMPL" data set, $UPDATEN will 
create it for you, and store the load module in it. If a program already 
exists on EDX002 with the name "PPEXAMPL", $UPDATEN will give 
you the option of replacing it, or of changing the name of the load 
module you are storing to something else. 



PROGRAM PREPARATION REVIEW EXERCISE - QUESTIONS 

1. In STEP1, "Disk/Diskette Preparation" you had to pre-allocate 
data sets for the source module, for the text edit work area, and 
for the object module output from the assembler. Why wasn't it 
required to also create a data set for the load module which is the 
output of the $UPDATEN utility in STEP4? 

Answer~~~~~~~~~~~~~~~~~~~~~ 

2. In STEP1, Figure 16-3, the utility $1NITDSK was used to initialize 
a library, before going on to allocate the data set "SOURCE" on 
the diskette (Figure 16-4). In Figures 16-5 and 16-6, the 
EDITWORK and OBJECT data sets were allocated on disk, but 
without first initializing a library. Why wasn't it necessary to 
initialize a library before allocating these disk data sets? 

Answer~~~~~~~~~~~~~~~~~~~~~ 

3. In Figure 16-10, the object module output of the assembly was 
stored in data set "OBJECT", a pre-allocated program member in 
EDX volume EDX002. The BPPF Macro Assembler will put the 
output module anywhere on the disk you want to put it, because 
it operates with CTS addresses. If the object module were stored 
in an unused portion of the BPPF work space or perhaps in an 
unallocated portion of E DX002, what would happen when you 
attempted to format that object module in STEP4 (utility 
$UPDATEN)? 

Program Preparation Using BPPF 16-15 



This page intentionally left blank. 

16-16 SR30-0220 



4. Indicate whether the following statements are true or false. 

a. While you are running $1 N ITDSK to initialize a library, other 
utilities and/or Event Driven Executive application programs 
can be executing concurrently. 

True --

False __ 

b. The Text Editor utility, $EDIT1 N, uses the BPPF default 
work spaces for a text edit work area. 

True __ 

False __ 

c. When the $DISKUT1 utility is loaded into storage ($L com­
mand), it points to the volume which contains the Supervisor 
which was last IP Led (is currently executing). 

True __ 

False __ 

5. On Figure 16-10 if, in response to the "AS103A OBJECT=" 
prompt, I mistakenly enter "003,021011,028130" instead of 
entering "003,028011,028130", what would be the probable 
result? 

6. Which of the choices below makes the fol lowing statement about 
the BPPF Macro Assembler true? 

"When using the BPPF Macro Assembler, ... 

a. the source module must be on diskette, at device address 002, 
and the object module must be placed on disk, at device 
address 003." 

b. both the source and the object module data sets may be on 
diskette, as long as the diskette drive has device address 002." 

c. the source module must be on diskette, and the object module 
data set must be on disk, but the device addresses of the disk­
ette and disk drives are optional." 

d. there are no limitations as to what module resides on what 
device type, or what device addresses are used." 

Program Preparation Using BPPF 16-17 



PROGRAM PREPARATION REVIEW EXERCISE - ANSWERS 

16-18 SR30-0220 

1. If you wish, you can allocate a data set before running 
$UPDATEN. If you do not, the utility will create one for you at 
the time it stores the executable relocatable load module. 

2. "E DITWOR K" and "OBJECT" data sets were allocated on volume 
EDX002. The library for EDX002 is automatically initialized 
during the System Generation process, and therefore $1 NI TDSK 
does not have to be run. 

If the system you were running under were a "tailored" system 
(not the Starter System sent from Pl D), and, during System 
Generation you had defined your own secondary volumes, then 
$1 N ITDSK would have to be run against those volumes to initial­
ize their directories, before you could allocate data sets within 
them. 

3. $UPDATEN expects to find an object module in a named program 
member of an Event Driven Executive volume. In both of the 
cases mentioned in the question, the object module would be 
stored where $UPDATEN couldn't find it. The utility would 
abort after not finding a directory entry for "OBJECT", if one 
had not been allocated, or after finding "OBJECT" empty if the 
data set had been allocated. 

4. a. True. The RI diskette initialization function in STEP1, and 
the BPPF Assembly, STEP3, are the only program preparation 
operations that run in standalone mode. 

b. False. $EDIT1 N is a utility program, and uses a work area you 
define. 

c. True. If a volume other than the IPL volume is to be operated 
on, a Change Volume (CV) command must be executed. 

5. $UPDATEN would fail (see answer to Question 3), but also, you 
would be writing over the Supervisor. 

You would very likely not be able to IPL again, and would have to 
re-sysgen. Great care should be exercised when entering the 
absolute CTS addresses employed by the BPPF Macro 
Assembler! 

6. "When using the BPPF Macro Assembler a) the source module 
must be on diskette, at device address 002, and the object module 
must be placed on disk, at device address 003." 

These data set type/device type and device/device address rela­
tionships are fixed BPPF restrictions. 



Section 17. Online Program Preparation 

OBJECTIVES: After completing this section, the student should be 
able to; 

1. Describe the steps required for application program preparation 

2. Understand the operation of the online utilities/programs used 
for program preparation (5798-NRP) 

READING REFERENCE: SB30-1213 (Version 2 PDOM) pages 3-133 
through 3-154, and Chapter 6. 

PROGRAM PREPARATION OVERVIEW 

The steps required to prepare an Event Driven Executive application 
program for execution are outlined in Figure 17-1. 

STEP 1: CREATE SOURCE MODULE 
Source program modules are created using either $EDIT1 Nor 
$FSEDIT, the text editing utilities. The operation of $EDIT1 N 
has been illustrated in other sections of this study guide (Section 
14, Section 15), so this section will concentrate on $FSEDIT, the 
full-screen text editor. 

STEP 2: ASSEMBLE SOURCE MODULE 
$EDXASM, the on line assembler program, produces object 
modules from source modules. An object module may be input 
to the link edit program $LINK or, if no references to external 
modules are made, it may be input to the formatting utility 
$UPDATE. 

STEP 3: PRODUCE ASSEMBLY LISTING 
This is a subfunction of the assembly, STEP 2. The listing can be 
suppressed entirely, or errors only printed. The listing may be 
directed to a device other than the system printer, if desired. The 
listing is produced by $EDXLIST, a separate program loaded by 
$EDXASM as required. 

STEP 4: LINK EDIT OBJECT MODULES 
The $LINK program is used to combine object modules to form a 
complete program. This step is not required if the object module 
produced by an assembly is already a complete program in itself 
(no references to external modules included in the assembly). 

STEP 5: FORMAT OBJECT MODULE 
Program object modules produced by $EDXASM or $LINK are 
not in executable form. They must first be processed into relo­
catable load modules by the utility program $UPDATE. 

Online Program Preparation 17-1 



$EDIT1N 
$FSEDIT STEP 1: CREATE/MODIFY SOURCE MODULE 

---t------------------ ----------

$EDXASM 

I 

STEP 2: ASSEMBLE SOURCE 
MODULE (PRODUCE OBJECT 
MODULE) 

- - - -- - - -- --t-- - r- -- -- - - -- - ------- ---
$EDXLIST 
(OPTIONAL) 

STEP 3: PRODUCE 
ASSEMBLY LISTING 
(OPTIONAL) 

---- ----~- ~---------- ---- --- -------

STEP 4: LINK EDIT 
OBJECT MODULES 
(IF REQUIRED) 

$LINK 
(AS REQUIRED) 

----·----~ ---------------+------- -------
... 

..... ... 

STEP 5: FORMAT OBJECT MODULE INTO 
RELOCATABLE LOAD MODULE 
(EXECUTABLE PROGRAM) 

$UPDATE 

$JOBUTIL 
RUN STEP 2, STEP 3, STEP 4, AND 
STEP 5 AS BATCH JOB STREAM 

Figure 17-1. Program preparation overview 

17-2 SR30-0220 

$JOBUTIL: BATCH JOB STREAM PROCESSOR 
At the bottom of Figure 17-1 is a reference to $JOBUTI L, the 
batch job stream processor. Th is is a program preparation produc­
tivity aid which allows the assembly, link edit, and formatting 
steps to be run as a continuous sequence of job steps, without 
operator intervention. 

In this section, the features and operating characteristics of each of the 
programs/utilities required for program preparation is discussed 
separately. Following the discussion is a comprehensive example, using 
each utility in preparing a program for execution. 



$FSEDIT 

$FSEDIT Primary Options 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages 3-133 
through 3-154. 

This utility provides full-screen text editing capability for the Event 
Driven Executive. $FSEDIT operates the terminal as a static screen 
device, and therefore must be run from a terminal with static-screen 
capability (4978/4979). 

Data Set Requirements. $FSEDIT requires a preallocated work data 
set for use as a text edit work area. Text data (source statements) 
within this work data set are in a special text editor format, identical 
to that used by the $EDIT1 N text editor; data within a text edit work 
data set may be edited by either $EDIT1 N or $FSEDIT. 

At the conclusion of a text edit utility session, it is normal practice to 
save the contents of the edit work data set in a source data set on disk 
or diskette (automatic translation from text editor format to source 
statement format is performed). The data set that is to receive the 
contents of the work area must be preallocated; $FSEDIT does not 
allocate space as part of the save (WRITE) operation. 

$FSEDIT is loaded using the $L supervisor utility function (the oper­
ator must provide the name of a text edit data set when the load request 
is entered). The operator wi II be prompted for the names of input/out­
put source data sets during the utility session, at the time a READ or 
WRITE option is selected. 

When $FSEDIT is first loaded, the screen shown in Figure 17-2 will 
be displayed, with the cursor positioned just to the right of the SELECT 
OPTION arrow. An option is selected by entering a number correspond­
ing to the desired option, and pressing the ENTER key. 

Online Program Preparation 17-3 



------------------------ $FSEDIT PRIMARY OPTION tlENU 
SELECT OPTION ===> _ 

1 BROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHANGE DATASET 
3 READ - READ DATASET FROM HOST/NATIVE 
4 WRITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

Figure 17-2. $FSEDIT (1) 

Option 5: SUBMIT is used to submit a job to a host program prepara­
tion system, and will therefore not be discussed in this section. The 
rest of the options will be illustrated in the order in which they would 
normally be required, not in the numerical sequence in which they 
appear in Figure 17-2. 

Creating A Source Statement File 

17 4 SR30-0220 

When the Primary Option Menu is displayed (Figure 17-2), entering a 
2 places the utility in EDIT mode. EDIT mode is used to modify an 
existing source data set, or to create a new one. When modifying an 
existing data set, a READ (option 3) of the file to be modified, into 
the edit work data set, must first be performed. This will be illustrated 
later. At this point, assume a new source statement file will be created. 

Invoking EDIT mode with an empty edit work data set will result in 
display of the screen in Figure 17-3. Because the work data set is 
empty, the editor assumes insertion (creation) of lines is desired, and 
the INSERT function is therefore active. The five dots to the left of 
the cursor will contain the statement number of the new line once it 
has been entered. The cursor is positioned at character position 1 of 
the insert line. 



EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

0( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 

Figure 17-3. $FSEDIT (2) 

The top line of the screen, from left to right, displays the mode the 
utility is in (EDIT), the name and volume of the work data set 
(EDITWORK,EDX002), the number of source statements in the work 
data set, and in pQrentheses, the total number of statements the data 
set wi II hold. 

In Figure 17-4, a line of asterisks and spaces has been entered on the 
insert line, and the ENTER key pressed. The utility numbers the 
entered line and sets up for the next insert line. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

1( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010!* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **I 

***** 

Figure 17-4. $FSEDIT (3) 

Online Program Preparation 17-5 



Option 4: WRITE 

17-6 SR30-0220 

Notice that the "number of source statements in work data set" value 
on the top line has incremented. 

Continuing in this manner, with a new insert line readied each time the 
preceding line has been entered (ENTER key), the 18 comment state­
ments (asterisk in position 1) shown in Figure 17-5 are created. The 
insert operation is terminated by pressing the ENTER key without 
entering anything on the new insert line. 

EDIT --- EDmJORK, EDXOOZ 18( 270)---------------------- COLUrm 001 072 
COMMAilD Ii~PUT ===)!MENU I SCROLL ===>HALF 
***** ***** TOP OF DATA ****************************************************** 
00010 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00020 * 
00030 * THIS SET OF C0Mr1ENT STATEr1ENTS DEMONSTRATES THE ABILITY TO CREATE 
00040 * A SOURCE FILE, BEGINNING WITH AN EMPTY HORK DATA SET. WHEN 
00050 * COMPLETE, THIS SET OF STATEMENTS WILL BE WRITTEN TO THE PRE-
00060 * ALLOCATED DATA SET "MGRDATA" ON VOLUME EDX002. A PORTION OF DATA 
00070 * SET "MGRDATA" l>/ILL BE USED LATER TO ILLUSTRATE THE "MERGE" 
00080 * PRIMARY OPTION OF $FSEDIT. 
00090 * 
00100 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00110 * 
00120 * MERGE DATA 
00130 * MERGE DAT A 
00140 * MERGE DATA 
00150 * MERGE DATA 
00160 * ~1ERGE DATA 
00170 * 
00180 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
***** **** BOTTOtl OF DATA **************************************************** 

Figure 17-5. $FSEDIT (4) 

The cursor is automatically positioned to the right of the COMMAND 
INPUT arrow on the second line from the top of the screen. To return 
to the Primary Option Menu, the command "MENU" is entered, and the 
ENTER key pressed. This brings back the screen shown in Figure 17-2. 

The source statements just created will now be saved as a source data 
set. The WRITE primary option is selected, and the operator is 
prompted for the target data set/volume on the bottom half of the 
screen, as shown in Figure 17-6. 



Option 3: READ 

-------------------4--- $FSEDIT PRH1ARY OPTION t1ENU --------------------------
SELECT OPTION ===> 

1 BROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHANGE DATASET 
3 READ - READ DATASET FROM HOST/NATIVE 
4 ~RITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBt1IT BATCH JOB TO HOST SYSTEt1 
6 LIST - PRINT DATASET ON A SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

\~RITE TO NATIVE? (@ 

ENTER VOLUME LABEL :JBiXllii2) 
ENTER MEMBER NAME: ~ 

Figure 17-6. $FSEDIT (5) 

The WRITE TO NATIVE prompt would be answered NO, if you were 
connected to a host program preparation system, and wished to save 
the source file in a host data set. 

After the contents of the work data set have been written, the ENTER 
VOLUME LABEL: and ENTER MEMBER NAME: prompts will be 
replaced by an ending message indicating how many statements had 
been written; in this example END AFTER 18. The cursor is returned 
to the SELECT OPTION input area. 

To edit an existing source file, it must first be transferred to the edit 
work data set. A diskette volume called ASMVO L is mounted, which 
contains a data set named SOU ACE. By entering 3 and responding 
to the resulting prompts as shown in Figure 17-7, this file is read into 
the edit work data set. 

Online Program Preparation 17-7 



Option 6: LIST 

Option 1: BROWSE 

17 -8 SR 30-0220 

--------------------3--- $FSEDIT PRIMARY OPTION MENU --------------------------
SELECT OPTION ===> 

1 BROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHA~GE DATASET 
3 READ - READ DATASET FROM HOST/NATIVE 
4 WRITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

READ FROM NATIVE? fil:D 

Figure 17-7. $FSEDIT (6) 

Entering primary option 6 will list the contents of the work data set on 
the system printer. The data set SOURCE on ASMVOL contains the 
source file for the program used as an example in "Section 11. Terminal 
1/0". Listing the contents of the edit work area will produce the same 
listing as that shown in Figure 11-43, but with statement numbers 
printed to the left of each statement. 

The BROWSE option is used to examine a source file in the edit work 
data set, while precluding the possibility of changing it. Paging response 
will generally qe faster in this mode. If option 1 is entered with the 
work data set containing the file from data set SOURCE, the screen in 
Figure 17-8 will be displayed. Note again the top line of the screen, 
indicating the operating mode (BROWSE) and the size of the file 
being examined (75 statements). 



BROWSE - EDITWORK, EDX002 75( 270)---------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCROLL ===>PAGE 
***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM 
00020 IOCBl 
00030 IOCBZ 
00040 
00050 START 
00060 
00070 
00080 
00090 
00100 
00110 
00120 CHECK 
00121 
00140 ENTRY 
00150 
00160 
00170 
00180 
00190 
00200 
00210 

IOCB 
IOCB 
ATTN LIST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
DEQT 
WAIT 
IF 
ENQT 
ERASE 
TERMCTRL 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 

Figure 17-8. $FSEDIT (7) 

START 
NHIST=O 
SCREEN=STA TIC 
(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
I HIT "ATTN" AND ENTER "END" TO END I ,SKIP=2 
'THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2 
'BRING UP THE ENTRY SCREEN' 

ATTNECB ,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
IOCB2 
MODE=SCREEN, TYPE=ALL 
BLANK 
'ENTER KEY= PAGE COMPLETE',LINE=l 
' PFl =DELETE ENTRY l' 
I PF2 = DELETE ENTRY 2' 
I PF3 = DELETE ENTRY 3 I ,SKIP=l 
'PF4 = DELETE ENTRY 4' 

This file, as with most source files, is too large to be displayed in its 
entirety on the screen. In Figure 17-8, only the first 21 of the 75 state­
ments which make up the file are in view. 

To allow viewing of all parts of a file, both BROWSE (option 1) and 
EDIT (option 2) modes have a "scrolling" function, invoked by pressing 
PF keys. PF3 is used to scroll down in the data set, from top to 
bottom, and PF2 to scroll up, from bottom to top. 

In Figure 17-8, the scroll size is displayed at the extreme right of the 
second line. In BROWSE mode, the normal scroll size is PAGE; 22 
lines of data. In Figure 17-9, PF3 has been pressed, displaying the next 
22 lines in the work area (statements 220 through 430). 

On I ine Program Preparation 17 -9 



17-10 SR30-0220 

BROWSE - EDITWORK, EDX002 
COMMAND INPUT ===> 
00220 PRINTEXT 
00230 PRINTEXT 
00240 PRINTEXT 
00250 HDR PRINTEXT 
00260 MOVE 
00270 DO 
00280 PRINTEXT 
00290 PRINTEXT 
00300 Al ADD 
00310 PRINTEXT 
00320 A2 ADD 
00330 PRINTEXT 
00340 ADD 
00350 END DO 
00360 PRINTEXT 
00370 TERMCTRL 
00380 WAITONE WAIT 
00390 GOTO 
00400 El MOVE 
00410 GOTO 
00420 E2 MOVE 
00430 GOTO 

Figure 17-9. $FSEDIT (8) 

75( 270)---------------------- COLUt1NS 001 072 
SCROLL ===>PAGE 

DASHES,PROTECT=YES,LINE=3 
'CLASS NAME: I ,LINE=4,PROTECT=YES 
'INSTRUCTOR NAME: I ,LINE=4,PROTECT=YES,SPACES=32 
DASHES,PROTECT=YES,LINE=5 
LINENBR,6 
4, TIMES 
I NAME: I ,LINE=LINENBR ,PROTECT=YES 
'STREET:,LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR,l 
'CITY : ',LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR,l 
'STATE :' ,LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR,3 

LI NE=4, SPACES= 11 
DISPLAY 
KEY 
(READ,El,E2,E3,E4),XMPLSTAT+2 
LINENBR,6 
DELETE 
LINENBR, 11 
DELETE 

The scroll size may be defined as HALF by moving the cursor to the 
scroll size area and entering HALF where PAGE now is. HALF indicates 
half a page, or 11 lines. In Figure 17-10, scroll size has been defined as 
HALF, and PF3 has been pressed, displaying 11 new lines of data. 

BROWSE - EDITWORK, EDX002 
COMMAND INPUT ===> 
00330 PRINTEXT 
00340 ADD 
00350 ENDDO 
00360 PRINTEXT 
00370 TERMCTRL 
00380 WAITONE WAIT 
00390 GOTO 
00400 El MOVE 
00410 GOTO 
00420 E2 MOVE 
00430 GOTO 
00440 E3 MOVE 
00450 GOTO 
00460 E4 MOVE 
00470 DELETE ERASE 
00480 ADD 
00490 ERASE 
00500 ADD 
00510 ERASE 
00520 SUBTRACT 
00530 PRINTEXT 
00540 TERMCTRL 

Figure 17-10. $FSEDIT (9) 

75( 270)---------------------- COLUMNS 001 072 
SCROLL ===iBfilIJ 

'STATE : ',LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR,3 

LI NE=4, SPACES= 11 
DISPLAY 
KEY 
(READ,El,E2,E3,E4),XMPLSTAT+2 
LINENBR,6 
DELETE 
LINEN BR, 11 
DELETE 
LINENBR, 16 
DELETE 
LINENBR,21 
MODE=LINE,TYPE=DATA,LINE=LINEBR 
LINENBR, 1 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LINEN BR, 1 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LINENBR,2 
LINE=LINEBR ,SPACES=5 
DISPLAY 

The third and last scrol I size option is MAX. With MAX, the scroll wi 11 

be all the way to the top (PF2) or bottom (PF3) of the data set. After 
the MAX scroll operation, scroll size reverts to the normal scroll size 
for the mode in effect (normal scrol I size for BROWSE mode is 
PAGE, and for EDIT mode is HALF). 



While in BROWSE mode, the primary command LOCATE can be 
used to position the displayed data beginning at a specific statement 
number. In Figure 17-11, the primary command LOCATE 450 is 
entered into the command input area on the second line. 

BROWSE - EDITWORK, EDX002 75( 270)---------------------- COLUMNS 001 072 
COMMAND INPUT ===>!LOCATE 450l SCROLL ===>PAGE 
***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM 
00020 IOCBl 
00030 IOCB2 
00040 
00050 START 
00060 
00070 
00080 
00090 
00100 
00110 
00120 CHECK 
00121 
00140 ENTRY 
00150 
00160 
00170 
00180 
00190 
00200 
00210 

IOCB 
IOCB 
ATTN LI ST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
DEQT 
WAIT 
IF 
ENQT 
ERASE 
TERMCTRL 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 

Figure 17-11. $FSEDIT (10) 

START 
NHIST=O 
SCREEN=STATI C 
(END,OUT,SPF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
I HIT "ATTN" AND ENTER "END" TO END I ,SKIP=2 
'THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
'BRING UP THE ENTRY SCREEN' 

ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,EMDIT 
IOCB2 
MODE=SCREEN,TYPE=ALL 
BLANK 
'ENTER KEY = PAGE COMPLETE' ,LINE=l 
' PFl =DELETE ENTRY l' 

PF2 = DELETE ENTRY 2' 
'PF3 = DELETE ENTRY 3 
'PF4 = DELETE ENTRY 4' 

I ,SKIP=l 

When the enter key is pressed, the screen in Figure 17-12 will be dis­
played starting with statement 450. 

BROWSE - EDITWORK, EDX002 
COMMAND INPUT ===> 
00450 GOTO 
00460 E4 MOVE 
00470 DELETE ERASE 
00480 ADD 
00490 ERASE 
00500 ADD 
00510 ERASE 
00520 SUBTRACT 
00530 PRINTEXT 
00540 TERMCTRL 
00550 GOTO 
00560 READ QUESTION 
00570 ERASE 
00580 ERASE 
00590 PRINTEXT 
00600 TERMCTRL 
00610 GOTO 
00620 CLEANUP ERASE 
00630 DEQT 
00640 GOTO START 
00650 ENDIT PROGSTOP 
00660 DATA 

Figure 17-12. $FSEDIT (11) 

75( 270)--------------------- COLUMNS 001 072 
SCROLL ===>PAGE 

DELETE 
LINENBR,21 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LINENBR, 1 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LI NENBR, 1 
MODE=LINE,TYPE=DATA,LJNE=LINENBR 
LINENBR,2 
LINE=LINENBR,SPACES=5 
DISPLAY 
\~AITONE 
'MORE ENTRIES ?' ,LINE=2,SPACES=55,NO=CLEANUP 
MODE=LINE,LINE=2,SPACES=55,TYPE=DATA 
MODE=SCRW~, LINE=6 
LINE=6, SPACES=5 
DISPLAY 
WAITONE 
MODE=SCREEN,TYPE=ALL 

X'5050' 

Online Program Preparation 17-11 



17-12 SR30-0220 

The "FIND" primary command performs the same type of positioning 
function using a text string instead of a statement number. In Figure 
17-13 the command, FIND /ENDIT P/FIRST, is entered in the 
command input area. 

The FIRST option means look for the text string beginning with the 
first statement in the data set. If Fl RST is not specified, the search will 
begin with the first statement of the currently displayed screen. In this 
example, because the current screen is also the top of the data set, both 
options have the same effect. 

BROWSE - EDITWORK, EDX002 75 270 --------------------- COLUMNS 001 072 
COMMAND INPUT ===> FIND ENDIT P FIRST SCROLL ===>PAGE 
***** ***** TOP OF DATA *************************·*-*************************** 
00010 XMPLSTAT PROGRAM 
00020 IOCBl 
00030 IOCB2 
00040 
00050 START 
00060 
00070 
00080 
00090 
00100 
00110 
00120 CHECK 
00121 
00140 ENTRY 
00150 
00160 
00170 
00180 
00190 
00200 
00210 

IOCB 
IOCB 
ATTNLIST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
DEQT 
WAIT 
IF 
ENQT 
ERASE 
TERMCTRL 
PRINTEXT 
PR IN TEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 

Figure 17-13. $FSEDIT (12) 

START 
NHIST=O 
SCREEN=STA TIC 
(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
IOCB2 
MODE=SCREEN,TYPE=ALL 
BLANK 
'ENTER KEY= PAGE COMPLETE',LINE=l 
' PFl =DELETE ENTRY l' 

PF2 = DELETE ENTRY 2' 
'PF3 = DELETE ENTRY 3 
'PF4 = DELETE ENTRY $' 

I ,SKIP=l 

When the ENTER key is pressed, the screen in Figure 17-14 will be 
displayed. The first statement is the statement containing the text 
string defined in.the FIND command. The cursor will be positioned 
under the first character of the target string. 



Option 7: MERGE 

BROWSE - EDITWORK, EDX002 
COtlMAND INPUT ===> 
00650 E~DIT PROGSTOP 
00660 DATA 
00670 DASHES DATA 
00680 OUT POST 
00690 ENDATT~ 
00700 STATIC POST 
00710 ENDATTN 
00720 ATTNECB ECB 
00730 LINENBR DATA 
00740 EN DP ROG 
00750 END 

75( 270)---------------------- CHARACTERS FOUND 
SCROLL ===>PAGE 

X'5050' 
80C ,_I 
ATTNECB,l 

ATTNECB,-1 

F' O' 

***** ***** BOTTOM OF DATA **************************************************** 

Figure 17-14. $FSEDIT (13) 

If you want to find more than one occurrence of the same text string, 
the FIND command does not have to be reentered for each search. The 
first occurrence of the text string will be displayed as already illus­
trated. If PF4 is pressed, the search will continue. Each time the string 
is found, the statement containing the string will be displayed at the 
top of a new screen. Each time PF4 is pressed the search will continue, 
until the end of the data set is reached. 

LOCATE, FIND, and MENU are the only primary commands recognized 
by BROWSE mode. MENU brings up the Primary Option Menu, shown 
in Figure 17-2. 

Option 7 allows you to combine (merge) two or more source data sets 
in the same edit work area. To demonstrate this option, a portion of 
the set of source statements created earlier (Figure 17-5) and. stored 
in data set MRGDATA (Figure 17-6) will be merged with the current 
contents of the work area. 

When option 7 is entered, you will be prompted on the lower half of 
the screen, as shown in Figure 17-15. With the responses shown, state­
ments 100 through 180 of data set MRGDATA will be merged into the 
present contents of the work data set following statement 30; 

Online Program Preparation 17-13 



Option 2: EDIT 

17-14 SR30·0220 

--------------------?--- $FSEDIT PRIMARY OPTION MENU -------------------------­
SELECT OPTION ===> 

1 BROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHANGE DATASET 
3 READ - READ DATASET FROM HOST/NATIVE 
4 WRITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

MERGE DATA FROM (NAME,VOLUME):IMRGDATA,EDX0021 LINES- lST LASTI±& 1801 
ADD AFTER LINE #: 30 

Figure 17-15. $FSEDIT (14) 

When option 2 is entered, the screen in Figure 17-16 is displayed. 
Notice that the merged statements have been inserted, and the entire 
data set renumbered. 

EDIT --- EDITWORK,EDX002 
COMMA;JD INPUT ===>""C,;.:.HA.;;.;'.11;,.;;:G=E-=~~~,.;;..t,..,=~ 
***** ***** TOP OF DATA ***************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * 
00060 * MERGE DATA 
00070 * ~1ERGE DA TA 
00080 * MERGE DATA 
00090 * MERGE DATA 
00100 * MERGE DATA 
00110 * 
00120 * * * * 
00130 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

00140 START 
00150 
00160 
00170 
00180 
00190 
00200 
00210 CHECK 

ATTN LIST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
DEQT 
!IAIT 

Figure 17-16. $FSEDIT (15) 

(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRA~l' 
I HIT ANY PROGRAM FUNCTION KEY TO I ,SKIP=Z 
I BRING UP THE ENTRY SCREEN I 

ATT~JECB,RESET 



In addition to LOCATE, FIND, and MENU, EDIT mode recognizes the 
CHANGE, RENUM, and RESET primary commands. In Figure 17-16, 
the primary command "CHANGE /END/QUIT/FIRST" is entered in 
the command input field. This command will look for the first occur­
rence of the text string END, starting with the first statement in the data 
set (FIRST). If NEXT is entered, the search would begin with the first 
statement on the current screen (the two statements have the same 
results in this example). When the text string END is found, it will be 
replaced with the text string QUIT. The first occurrence of END is in 
the ATTN LIST statement, at statement number 130 (Figure 17-16). 
In Figure 17-17, the ENTER key has been pressed, END has been 
changed to QUIT, and the first line displayed is the line the change 
occurred in. By pressing PF5, the CHANGE command can be repeated, 
with the search beginning with statement 130. 

EDIT --- EDITWORK,EDX002 
COMMAND INPUT ===> 
00130 ATTNLIST 
00140 START ENQT 
00150 PRINTEXT 
00160 PRINTEXT 
00170 PRINTEXT 
00180 PRINTEXT 
00190 PRINTEXT 
00200 DEQT 

84( 270 )--------------------------- TEXT CHANGED 
SCROLL ===>HALF 

{QUIT,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

00210 CHECK WAIT ATTNECB,RESET 
00220 IF (ATTNECB,EQ,l},GOTO,ENDIT 
00230 ENTRY ENQT IOCB2 
00240 ERASE MODE=SCREEN,TYPE=ALL 
00250 TERMCTRL BLANK 
00260 PRINTEXT 'ENTER KEY= PAGE COMPLETE',LINE=l 
00270 PRINTEXT ' PFl =DELETE ENTRY l' 
00280 PRINTEXT ' PF2 = DELETE ENTRY 2' 
00290 PRINTEXT 'PF3 = DELETE ENTRY 3 I ,SKIP=l 
00300 PRINTEXT 'PF4 = DELETE ENTRY 4' 
00310 PRINTEXT DASHES ,PROTECT=YES ,LINE=3 
00320 PRINTEXT 'CLASS NAME: ',LINE=4,PROTECT=YES 
00330 PRINTEXT 'INSTRUCTOR NAME: 'LINE=4,PROTECT=YES,SPACES=32 
00340 HOR PRINTEXT DASHES,PROTECT=YES,LINE=5 

Figure 17-17. $FSEDIT (16) 

If you want to change every occurrence of a text string in the entire 
work area, ALL should be entered in place of Fl RST or NEXT. 

When in EDIT mode, changes to the displayed data may be entered 
directly onto the screen. In Figure 17-18, the QUIT in statement 130 
has been changed back to END by overtyping. 

Online Program Preparation 17-15 



17·-16 SR30-0220 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

84 ( 270)------------------------ TEXT CHANGED 
SCROLL :o==>HALF 

00130 ATTN LIST 
00140 START ENQT 
00150 PRJNTEXT 
00160 PRINTEXT 
00170 PRINTEXT 
00180 PRINTEXT 
00190 PRINTEXT 
00200 DEQT 

(END.OUT ,$PF ,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

00210 CHECK WAIT ATTNECB,RESET 
00220 IF (ATTNECB,EQ,l),GOTO,ENDIT 
00230 ENTRY ENQT IOCB2 
00240 ERASE MODE=SCREEN,TYPE=ALL 
00250 TERMCTRL BLANK 
00260 PRINTEXT 'ENTER KEY = PAGE COMPLETE' ,LINE=l 
00270 PRINTEXT ' PFl = DELETE ENTRY l' 
00280 PRINTEXT ' PF2 = DELETE ENTRY 2' 
00290 PRINTEXT 'PF3 = DELETE ENTRY 3 ',SKW=l 
00300 PRINTEXT 'PF4 = DELETE ENTRY 4' 
00310 PRINTEXT DASHES,PROTECT=YES,LINE=3 
00320 PRINTEXT 'CLASS NAME: ',LINE"'4,PROTECT=YES 
00330 PRINTEXT 'INSTRUCTOR NAME:' ,LHJE=4,PROTECT=YES,SPACES=32 
00340 HOR PRINTEXT DASHES,PROTECT=YES,LINE=5 

Figure 17-18. $FSEDIT (17) 

The statements in the work data set may be renumbered using the 
RENUM primary command. In Figure 17-19, the RENUM command 
is used to renumber the data set in increments of 5, with the first state­
ment assigned a statement number of 1. 

EDIT --- EDITWORK, EDX002 84( 270)---------------------- COLUMNS 001 072 
COMMAND INPUT ===>I RENUM 1 5 I SCROLL ===>HALF 
***** ***** TOP OF DATA ***;************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * 
00060 * t1ERGE DATA 
00070 * MERGE DATA 
00080 * MERGE DATA 
00090 * t1ERGE· DATA 
00100 * MERGE DATA 
00110 * 
00120 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00130 ATTNLIST (END,OUT,$PF,STATIC) 
00140 START ENQT IOCBl 
00150 PRINTEXT 'CLASS ROSTER PROGRAM' ,SPACES=l3,LINE=l 
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
00170 PRINTEXT ' THE PROGRAM' 
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2 
00190 PRINTEXT ' BRING UP THE ENTRY SCREEN' 
00200 DEQT 
00210 CHECK WAIT ATTNECB,RESET 

Figure 17-19. $FSEDIT (18) 

Figure 17-20 is the resulting display, after the ENTER key has been 
pressed. 



Edit Mode Line Commands 

EDIT --- EDITWORK, EDX002 
C0t1MAND INPUT ===> 

84( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00001 XMPLSTAT PROGRAM START 
00006 IOCBl IOCB NHIST=O 
00011 IOCB2 IOCB SCREEN=STATIC 
00016 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00021 * 
00026 * MERGE DATA 
00031 * MERGE DATA 
00036 * MERGE DATA 
00041 * MERGE DATA 
00046 * MERGE DATA 
00051 * 
00056 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00061 ATTNLIST (END,OUT,$PF,STATIC) 
00066 START ENQT IOCBl 
00071 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=l 
00076 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
00081 PRINTEXT ' THE PROGRAM' 
00086 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
00091 PRINTEXT ' BRING UP THE ENTRY SCREEN' 
00096 DEQT 
00101 CHECK WAIT ATTNECB,RESET 

Figure 17-20. $FSEDIT (19) 

The RESET primary command is used in conjunction with the EDIT 
mode line commands, and will be illustrated later. 

In addition to modification of text strings using the CHANGE primary 
command, and the modification of any displayed data on the screen 
by overtyping, EDIT mode also allows whole lines, or blocks of lines to 
be manipulated, using the EDIT mode line commands. For example, 
the INSERT (I) command al lows a new line to be inserted between 
existing I in es. In Figure 17-21, an "I" is entered to the left of statement 
40, indicating that the operator wishes to insert between statement 40 
and 50. 

Online Program Preparation 17-17 



17-18 SR30-0220 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

84( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 

III 00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * 
00060 * r~ERGE DA TA 
000 70 * MERGE DAT A 
00080 * MERGE DATA 
00090 * MERGE DATA 
00100 * MERGE DATA 
00110 * 
00120 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00130 ATTNLIST (END,OUT,$PF,STATIC) 
00140 START rnQT IOCBl 
00150 PRINTEXT 'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
00170 PRINTEXT ' THE PROGRAM' 
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
00190 PRINTEXT ' BRING UP THE ENTRY SCREEN' 
00200 DEQT 
00210 CHECK llAIT ATTrJECB,RESET 

Figure 17-21. $FSEDIT (20) 

When ENTER is pressed, the screen comes back as pictured in Figure 
17-22, with the insert line displayed, and the cursor in the first charac­
ter position, ready for entry. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

84( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

00050 * 
00060 * MERGE DATA 
00070 * MERGE DATA 
00080 * MERGE DATA 
00090 * MERGE DATA 
00100 * MERGE DATA 
00110 * 
00120 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00130 ATTNLIST (Ei'JD,OUT ,$PF ,STATIC) 
00140 START E~QT IOCBl 
00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
00170 PRINTEXT ' THE PROGRAM' 
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
00190 PRINTEXT ' BRING UP THE ENTRY SCREEN' 
00200 DEQT 

Figure 17-22. $FSEDIT (21) 

When the insert line is complete, the operator presses the ENTER key, 
the new line is assigned a statement number, and another insert line is 
readied (Figure 17-23). 



EDIT --- EDITWORK, EDX002 85( 270)---------------------- COLUMNS 001 072 
COMMA~D INPUT ===> SCROLL ===>HALF 
***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00041 * !INSERT SINGLE LINE! 

00050 * 
00060 * MERGE DATA 
00070 * MERGE DATA 
00080 * MERGE DATA 
00090 * MERGE DATA 
00100 * MERGE DATA 
00110 * 
00120 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00130 ATTNLIST (E~D,OUT,$PF,STATIC) 
00140 START E~QT IOCBl 
00150 PRINTEXT 'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
00160 PRINTEXT 'HIT "ATTN" AND ENTER "EMO" TO E~m· ,SKIP=2 
00170 PRINTEXT " THE PROGRAM' 
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2 
00190 PRINTEXT ' BRING UP THE ENTRY SCREEN' 

Figure 17-23. $FSEDIT (22) 

The operation terminates when ENTER is pressed with no characters 
entered on the insert line. 

The INSERT BLOCK (11) command generates a block of 21 insert 
lines. In Figure 17-24 the "II" to the left of statement 50 indicates 
the operator wants to generate the insert block following statement 
50. 

EDIT --- EDITWORK, EEX002 
COMMAND INPUT ===> 

85( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

IT] 00050 * 
00060 * MERGE DATA 
00070 * MERGE DATA 
00080 * MERGE DATA 
00090 * ~ERGE DATA 
00100 * MERGE DATA 
00110 * 
00120 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00130 ATTNLIST (END,OUT,$PF,STATIC) 
00140 START ENQT IOCBl 
00150 PRINTEXT 'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
00170 PRINTEXT ' THE PROGRAM' 
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
00190 PRINTEXT II BRING UP THE ENTRY SCREEN I 

00200 DEQT 

Figure 17-24. $FSEDIT (23) 

When ENTER is pressed, the screen in Figure 17-25 is displayed. 

Online Program Preparation 17-19 



17-20 SR30-0220 

EDIT --- EDITWORK, EDX002 
COMMA~ID INPUT ===> 
00050 * 

Figure 17-25. $FSEDIT (24) 

8! 70)---------------------- COLUt1NS 001 072 
SCROLL ===>HALF 

The operator may now fill in the screen as required, without pressing 
ENTER for each line (Figure 17-26). 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 
00050 ,_*--..,,..,~-----. 

* INSERT 
* MULTIPLE 
* LINES 

Figure 17-26. $FSEDIT (25) 

85( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

When as much data as desired has been entered, the ENTER key is 
pressed. 

Unused insert lines are removed, the insert lines used are assigned 
statement numbers, and the screen appears as shown in Figure 17-27. 



EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

88( 270)---------------------- COLUMrlS 001 072 
SCROLL ===>HALF 

00050 * 
00051 * 
00052 * 
00053 * 
00060 * 
00070 * 
00080 * 
00090 * 
00100 * 
00110 * 

INSERT 
MULTIPLE 

LINES 
MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 

00120 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00130 ATTNLIST (END,OUT,$PF,STATIC) 
00140 START ENQT IOCBl 
00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
00170 PRINTEXT ' THE PROGRAM' 
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
00190 PRINTEXT ' BRING UP THE ENTRY SCREEN' 
00200 DEQT 
00210 CHECK WAIT 
00220 IF 
00230 ENTRY ENQT 

Figure 17-27. $FSEDIT (26) 

ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
IOCB2 

The MOVE (M) line command will move a line from one location in 
the work data set to another. In Figure 17-28, an "M" is entered to 
the left of the line to be moved, statement 50. The "A" at statement 
140 specifies the destination of the MOVE as after I ine 140. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

88( 270)------------------------ DATA RE~lUnBERED 
SCROLL ===>HALF 

***** ***** "'."OP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRM1 START 
00020 IOCBl NHIST=O 
00030 IOCB2 SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

[illoooso * I."lSERI Sl:'lliLE LINE 
00060 * 
00070 * 
00080 * 
00090 * 
00100 * 
00110 * 
00120 * 
00130 * 

l!)oo140 * 
00150 * 

I:-.JSERT 
MULTIPLE 

LINES 
MERGE DATA 
~1ERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 

00160 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00170 ATTNLIST (END,OUT,$PF,STATIC) 
00180 START ENQT IOCBl 
00190 PRINTEXT 'CLASS ROSTER PROGRAM' ,SPACES=l5,Lli1E=l 
00200 PRHHEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
00210 PRINTEXT ' THE PROGRAM' 

Figure 17-28. $FSEOIT (27) 

Figure 17-29 is the screen displayed after ENTER is pressed. The line 
is moved, and the data set renumbered. 

Online Program Preparation 17-21 



17-22 SR30-0220 

EDIT --- EDITWORK, EDX002 88( 270)------------------------ DATA RENUMBERED 
COMMMD PJPUT ===> SCROLL ===>HALF 
00130 * MERGE DATA 
00140 * INSERT SINGLE LINE 
00150 * 
00160 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00170 ATTNLIST (END,OUT,$PF,STATIC) 
00180 START E~QT IOCBl 
00190 PRINTEXT 'CLASS ROSTER PROGRAM' ,SPACES=l5,LiflE=l 
00200 PRIIHEXT 'HIT "ATTN" AND ENTER "END" TO ErW' ,SKIP-=2 
00210 PRINTEXT ' THE PROGRAM' 
00220 PRINTEXT 'HIT MY PROGRM1 FUNCTION KEY TO' ,SKIP=2 
00230 PRINTEXT ' BRING UP THE ENTRY SCREEN' 
00240 DEQT 
00250 CHECK WAIT ATTNECB,RESET 
00260 IF (ATTNECB,EQ,l),GOTO,ENDIT 
00270 ENTRY ENQT IOCB2 
00280 NOT DEFINEDSE MODE=SCREEN,TYPE=ALL 
00290 TERMCTRL BLA~iK 
00300 PRINTEXT 'ENTER KEY= PAGE COMPLETE' ,LINE=l 
00310 PRINTEXT ' PFl = DELETE ENTRY l' 
00320 PRINTEXT ' PF2 = DELETE ENTRY 2' 
00330 PRINTEXT 'PF3 =DELETE ENTRY 3 ',SKIP=l 
00340 PRINTEXT 'PF4 = DELETE ENTRY 4' 

Figure 17-29. $FSEDIT (28) 

The MOVE BLOCK line command (MM) is illustrated in Figure 17-30. 
The MM to the left of statements 60 and 80 define the inclusive start 
and end points of a block of statements to be moved. The B defines 
the destination of the block as before statement 150. (Either A or B 
can be used with Mand MM.) 

EDIT --- EDITWORK,EDX002 88( 270)----------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCROLL ===>HALF 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * 

MM 00060 * INSERT 
00070 * MULTIPLE 

MM 00080 * LINES 
00090 * MERGE DATA 
00100 * MERGE DATA 
00110 * MERGE DATA 
00120 * MERGE DATA 
00130 * MERGE DATA 
00140 * INSERT SINGLE LINE 

[[] 00150 * 
00160 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00170 
00180 START 
00190 
00200 
00210 
00220 
00230 

ATTN LIST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PR IN TEXT 

Figure 17-30. $FSEDIT (29) 

(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRAM' 
I HIT ANY PROGRAM FUNCTION KEY TO I ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

After ENTER is pressed, the screen in Figure 17-31 is displayed. 



EDIT --- EDITWORK, EDX002 88( 270)--------------- BLOCK -- DATA RENUMBERED 
COMMAND INPUT ===> SCROLL ===>HALF 
00110 * INSERT SINGLE LINE 
00120 * INSERT 
00130 * MULTIPLE 
00140 * LINES 
00150 * 
00160 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00170 ATTNLIST 
00180 START ENQT 

(END,OUT,$PF,STATIC) 
IOCBl 

00190 PRINTEXT 
00200 PRINTEXT 
00210 PRINTEXT 

'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRAM' 

00220 PRINTEXT 
00230 PRINTEXT 

'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

00240 DEQT 
00250 CHECK WAIT 
00260 IF 
00270 ENTRY ENQT 
00280 NOT DEFINEDSE 

ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 

IOBC2 

00290 TERMCTRL 
MODE=SCREEN,TYPE=ALL 
BLANK 

00300 PRINTEXT 'ENTER KEY= PAGE COMPLETE' ,LINE=l 
00310 PRINTEXT 
00320 PRINTEXT 

' PFl = DELETE ENTRY l' 
PF2 = DELETE ENTRY 2' 

Figure 17-31. $FSEDIT (30) 

The MOVE and MOVE BLOCK commands removed statements from 
one part of the work data set and placed them in another. The COPY 
(C) and COPY BLOCK (CC) line commands reproduce an exact copy 
of the designated statement(s) at another location in the data set with­
out disturbing the original. In Figure 17-32, statement number 110 is 
to be copied after statement 40. 

EDIT --- EDITWORK, EDX002 88( 270)---------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCROLL ===>HALF 
***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 

A00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * 
00060 * 
00070 * 
00080 * 
00090 * 
00100 * 

COOllO * 
00120 * 
00130 * 
00140 * 
00150 * 

MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
INSERT SINGLE LINE 
INSERT 

MULTIPLE 
LINES 

00160 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00170 ATTNLIST (END,OUT,$PF,STATIC) 
00180 START ENQT IOCBl 
00190 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
00200 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END" ,SKIP=2 
00210 PRINTEXT ' THE PROGRAM' 

Figure 17-32. $FSEDIT (31) 

In Figure 17-33, the operation is complete (ENTER key has been 
pressed). 

Online Program Preparation 17 -23 



17-24 SR30-0220 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

89( 270)------------------------ DATA RENUMBERED 
SCROLL ===>HALF 

00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * INSERT SINGLE LINE 
00060 * 
00070 * 
00080 * 
00090 * 
00100 * 
00110 * 
00120 * 
00130 * 
00140 * 
00150 * 
00160 * 

MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
INSERT SINGLE 
INSERT 
MULTIPLE 

LINES 

LINE 

00170 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00180 
00190 START 
00200 
00210 
00220 
00230 
00240 
00250 

ATTN LI ST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PEINTEXT 
PRINTEXT 
DEQT 

Figure 17-33. $FSEDIT (32) 

(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

In Figures 17-34 and 17-35, the same operation is performed with the 
COPY BLOCK (CC) line command, copying statements 130 through 
150. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

89( 270)----------------------- DATA RENUMBERED 
SCROLL ===>HALF 

00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
l8:J 00050 * INSERT SINGLE LINE 

00060 * 
00070 * 
00080 * 
00090 * 
00100 * 
00110 * 
00120 * 

[OJ0130 * 
00140 * 

[g'.J0150 * 
00160 * 

MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
INSERT SINGLE 
INSERT 

MULTIPLE 
LINES 

LINE 

00170 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00180 ATTNLIST (END,OUT,$PF,STATIC) 
00190 START ENQT IOCBl 

Figure 17-34. $FSEDIT (33) 



EDIT --- EDITWORK, EDX002 92( 270)--------------- BLOCK -- DATA RENUMBERED 
COMMAND INPUT ===> SCROLL ===>HALF 
00050 * INSERT SINGLE LINE 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LINES 
00090 * 
00100 * MERGE DATA 
00110 * MERGE DATA 
00120 * MERGE DATA 
00130 * MERGE DATA 
00140 * MERGE DATA 
00150 * INSERT SINGLE LINE 
00160 * INSERT 
00170 * MULTIPLE 
00180 * LINES 
00190 * 
00200 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00210 ATTNLIST {END,OUT,$PF,STATIC) 
00220 START ENQT IOCBl 
00230 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
00240 PRINTEXT I HIT "ATTN" AND ENTER "END" TO END I ,SKIP=2 
00250 PRINTEXT ' THE PROGRAM' 
00260 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 

Figure 17-35. $FSEDIT (34) 

When the INSERT LINE (I) and INSERT BLOCK (II) line commands 
were discussed (Figures 17-21through17-26), the I command resulted 
in the display of a blank insert line. This insert line is actually an insert 
mask, initialized to blanks. The insert mask may be displayed using the 
MASK line command. In Figure 17-36, the MASK command is typed 
in over the first four digits of the sequence number of statement 40. 
It does not matter what statement's sequence number is overtyped; 
the data on that line is not destroyed. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

92( 270)-------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA **************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl !DCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 

IMASKD * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * INSERT SINGLE LINE 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LIN ES 
00090 * 
00100 * 
00110 * 
00120 * 
00130 * 
00140 * 
00150 * 
00160 * 
00170 * 
00180 * 
00190 * 

MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
INSERT SINGLE LINE 
INSERT 
MULTIPLE 

LINES 

00200 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00210 ATTNLIST (END,OUT,$PF,STATIS) 

Figure 17-36. $FSEDIT (35) 

Online Program Preparation 17-25 



17-26 SR30-0220 

When the ENTER key is pressed, the insert mask is displayed. As you 
can see in Figure 17-37, the insert mask is the line of blanks that was 
inserted every time you entered the I command. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

92( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB 
00030 IOCB2 IOCB 

NHIST=O 
SCREEN= STATIC 

00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
MASK 
00050 * INSERT SINGLE LINE 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LINES 
00090 * 
00100 * MERGE DATA 
00110 * MERGE DATA 
00120 * MERGE DATA 
00130 * MERGE DATA 
00140 * MERGE DATA 
00150 * INSERT SINGLE LINE 
00160 * INSERT 
00170 * MULTIPLE 
00180 * LINES 
00190 * 
00200 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Figure 17-37. $FSEDIT (36) 

(Notice that statement 40, whose sequence number was used for the 
MASK command input field, is intact.) 

You can redefine the insert mask to be any character string you wish. 
In Figure 17-38, the mask has asterisks entered in the leading and 
ending character positions. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

92( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
MASK l**********l l**********l 
00050 * INSERT SINGLE LINE 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LINES 
00090 * 
00100 * MERGE DATA 
00110 * MERGE DATA 
00120 * MERGE DATA 
00130 * MERGE DATA 
00140 * MERGE DATA 
00150 * INSERT SINGLE LINE 
00160 * INSERT 
00170 * MULTIPLE 
00180 * LINES 
00190 * 
00200 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Figure 17-38. $FSEDIT (37) 



To get out of this insert mask display/definition mode, move the cursor 
to the primary command input area on the second line of the screen, 
type in the primary command RESET, and press ENTER. 

The RESET primary command is also used to reset undesired but 
already entered line commands, and to reset error conditions resulting 
from improper use of line commands. 

Now that the insert mask display has been RESET, a Line Insert com­
mand is entered (Figure 17-39). 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

92( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * INSERT SINGLE LINE 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LINES 

ill 00090 * 
00100 * 
00110 * 
00120 * 
00130 * 
00140 * 
00150 * 
00160 * 
00170 * 
00180 * 
00190 * 

MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
INSERT SINGLE LINE 
INSERT 
MULTIPLE 

LINES 

00200 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00210 ATTNLIST (END,OUT,$PF,STATIC) 

Figure 17-39. $FSEDIT (38) 

When the insert line appears, the line contains the redefined mask 
characters (Figure 17-40). 

Online Program Preparation 17-27 



17-28 SR30-0220 

EDIT --- EDITWORK, EDX002 92( 270)---------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCROLL ===>HALF 
***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * INSERT SINGLE LINE 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LINES 
00090 * 

********** 
00100 * 
00120 * 
00130 * 
00140 * 
00150 * 
00160 * 
00170 * 
00180 * 
00190 * 

MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
INSERT SINGLE 
INSERT 
MULTIPLE 

LINES 

********** 

LINE 

00200 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Figure 17-40. $FSEDIT (39) 

Each time another insert line appears, the mask characters are displayed. 
You can enter data on top of them if desired, or in the blank areas 
between them, as in Figure 17-41. 

EDIT --- EDITWORK, EDX002 95{ 270)---------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCROLL ===>HALF 
***** ***** TOP OF CAT A ****************************************************** 
00010 XMPLSTA~ PROGRAM START 
00020 IOCBl !DCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00050 * INSERT SINGLE LINE 
00060 * INSERT 4 l 
00070 * MULTIPLE 
00080 * LINES 
00090 * 
00091 ********** WITH THE INSERT MASK DEFINED, EACH TIME AN ********** 
00092 ********** INSERT LINE IS DISPLAYED, THE MASK CHARACTERS ********** 
00093 ********** ARE DISPLAYED ON THE SAME LINE. ********** 

********** 
00100 * 
00110 * 
00120 * 
00130 * 
00140 * 
00150 * 
00160 * 
00170 * 
00180 * 

MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE DATA 
MERGE 
INSERT SINGLE LINE 
INSERT 
MULTIPLE 

LINES 

Figure 17-41. $FSEDIT (40) 

********** 

The DELETE Line (D) and DELETE Block (DD) line commands 
remove statement(s) from the work data set. In Figure 17-42, the 
D command is entered to the left of line 50. 



EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

95( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

fill 00050 * INSERT SINGLE LINE 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LINES 
00090 * 
00091 ********** WITH THE INSERT MASK DEFINED, EACH TIME AN ********** 
00092 ********** INSERT LINE IS DISPLAYED, THE MASK CHARACTERS ********** 
00093 ********** ARE DISPLAYED ON THE SAME LINE. ********** 
00100 * MERGE DATA 
00110 * MERGE DATA 
00120 * MERGE DATA 
00130 * MERGE DATA 
00140 * MERGE DATA 
00150 * INSERT SINGLE LINE 
00160 * INSERT 
00170 * MULTIPLE 
00180 * LINES 

Figure 17-42. $FSEDIT (41) 

After the ENTER key is pressed, the screen in Figure 17-43 appears 
with line 50 deleted. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

94( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 
00040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LIN ES 
00090 * 
00091 ********** WITH THE INSERT MASK DEFINED, EACH TIME AN ********** 
00092 ********** INSERT LINE IS DISPLAYED, THE MASK CHARACTERS ********** 
00093 ********** ARE DISPLAYED ON THE SAME LINE. ********** 
00100 * MERGE DATA 
00110 * MERGE DATA 
00120 * MERGE DATA 
00130 * MERGE DATA 
00140 * MERGE DATA 
00150 * INSERT SINGLE LINE 
00160 * INSERT 
00170 * MULTIPLE 
00180 * LINES 
00190 * 

Figure 17-43. $FSEDIT (42) 

In Figure 17-44, the first statement of a block delete is defined with 
the DD command. 

Online Program Preparation 17-29 



17-30 SR30-0220 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

94( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM START 
00020 IOCBl IOCB NHIST=O 
00030 IOCB2 IOCB SCREEN=STATIC 

WDl:i0040 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00060 * INSERT 
00070 * MULTIPLE 
00080 * LINES 
00090 * 
00091 ********** WITH THE INSERT MASK DEFINED, EACH TIME AN 
00092 ********** INSERT LINE IS DISPLAYED, THE MASK CHARACTERS 
00093 ********** ARE DISPLAYED ON THE SAME LINE. 
00100 * MERGE DATA 
00110 * MERGE DATA 
00120 * MERGE DATA 
00130 * MERGE DATA 
00140 * MERGE DATA 
00150 * INSERT SINGLE LINE 
00160 * INSERT 
00170 * MULTIPLE 
00180 * LINES 
00190 * 

Figure 17-44. $FSEDIT (43) 

********** 
********** 
********** 

The ending statement to be deleted is not displayed on this screen, so 
PF3 is pressed, scrolling down a half-page, to the screen displayed in 
Figure 17-45. 

.EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

94( 270)--------------- BLOCK COMMAND INCOMPLETE 
SCROLL ===>HALF 

00093 ********** ARE DISPLAYED ON THE SAME LINE. ********** 
00100 * MERGE DATA 
00110 * MERGE DATA 
00120 * MERGE DATA 
00130 * MERGE DATA 
00140 * MERGE DATA 
00150 * INSERT SINGLE LINE 
00160 * INSERT 
00170 * MULTIPLE 
00180 * LINES 
00190 * 

rn::DI00200 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
00210 ATTNLIST (END,OUT,$PF,STATIC) 
00220 START ENQT IOCBl 
00230 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
00240 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
00250 PRINTEXT ' THE PROGRAM' 
00260 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
00270 PRINTEXT ' BRING UP THE ENTRY SCREEN' 
00280 DEQT 
00290 CHECK WAIT ATTNECB,RESET 
00300 IF (ATTNECB,EQ,l),GOTO,ENDIT 

Figure 17-45. $FSEDIT (44) 

(The scope of the C, CC, M, MM, D, and DD line commands extends 
from the beginning to the end of the data in the work area, not just the 
data on the current screen.) 

The end of the Delete Block is entered at statement 200 (Figure 17-45). 



Option 8 

After the command is entered, the screen in Figure 17-46 is displayed. 
All statements merged, inserted, copied or moved during the course of 
this exercise have been deleted, and the data set is in the same state it 
was in when it was first read from SOURCE. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

75( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

00210 ATTN LIST 
00220 START ENQT 
00230 PRINTEXT 
00240 PRINTEXT 
00250 PRINTEXT 
00260 PRINTEXT 
00270 PRINTEXT 
00280 DEQT 

(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

00290 CHECK WAIT ATTNECB,RESET 
00300 IF (ATTNECB,EQ,l),GOTO,ENDIT 
00310 ENTRY ENQT IOCB2 
00320 NOT DEFINEDSE MODE=SCREEN,TYPE=ALL 
00330 TERMCTRL BLANK 
00340 PRINTEXT 'ENTER KEY= PAGE COMPLETE' ,LINE=l 
00350 PRINTEXT ' PFl =DELETE ENTRY 1' 
00360 PRINTEXT ' PF2 = DELETE ENTRY 2' 
00370 PRINTEXT 'PF3 = DELETE ENTRY 3 ',SKIP=l 
00380 PRINTEXT 'PF4 = DELETE ENTRY 4' 
00390 PRINTEXT DASHES,PROTECT=YES,LINE=3 
00400 PRINTEXT 'CLASS NAME:' ,LINE=4,PROTECT=YES,SPACES=32 
00410 PRINTEXT I INSTRUCTOR NAME: I ,LINE=4,PROTECT=YES ,SPACES=32 
00420 HOR PRINTEXT DASHES,PROTECT=YES,LINE=5 

Figure 17-46. $FSEDIT (45) 

The MENU primary command is entered in the command input field, 
and ENTER pressed. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> IMENUI 
00210 ATTNLIST 
00220 START ENQT 
00230 PRINTEXT 
00240 PRINTEXT 
00250 PRINTEXT 
00260 PRINTEXT 
00270 PRINTEXT 
00280 DEQT 

75( 270)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
' THE PROGRAM I 

'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
I BR I NG UP THE ENTRY SCREEN I 

00290 CHECK WAIT ATTNECB,RESET 
00300 IF (ATTNECB,EQ,l),GOTO,ENDIT 
00310 ENTRY ENQT IOCB2 
00320 NOT DEFINEDSE MODE=SCREEN,TYPE=ALL 
00330 TERMCTRL BLANK 
00340 PRINTEXT 'ENTER KEY = PAGE COMPLETE' ,LINE=l 
00350 PRINTEXT ' PFl =DELETE ENTRY l' 
00360 PRINTEXT ' PF2 =DELETE ENTRY 2' 
00370 PRINTEXT 'PF3 = DELETE ENTRY 3 I ,SKIP=l 
00380 PRINTEXT 'PF4 = DELETE ENTRY 4' 
00390 PRINTEXT DASHES,PROTECT=YES,LINE=3 
00400 PRINTEXT 'CLASS NAME:',LINE=4,PROTECT=YES 
00410 PRINTEXT 'INSTRUCTOR NAME: ',LINE=4,PROTECT=YES,SPACES=32 
00420 HOR PRINTEXT DASHES,PROTECT=YES,LINE=5 

Figure 17-47. $FSEDIT (46) 

The only Primary Option remaining to be discussed is option 8. 

Online Program Preparation 17-31 



$EDXASM 

17 -32 SR30-0220 

SELECT OPTION ===> 1§) 
$FSEDIT PRIMARY OPTION MENU 

1 BROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHANGE DATASET 
3 READ - READ DATASET FROM HOST /NA TI VE 
4 WRITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

Figure 17-48. $FSEDIT (47) 

$FSEDIT ENDED 

Figure 17-49. $FSEDIT (48) 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages 6-5 
through 6-13. 

$EDXASM is the system program used for online assembly of source 
programs written in the Event Driven Executive language. $EDXASM, 
along with other program preparation programs, resides on volume 
ASMLIB. 



Data Set Requirements. $EDXASM is loaded using the "$L" supervisor 
utility function. The operator will be prompted for required data set 
names, as shown in Figure 17-50. 

>l$L $EDXASM,ASMLIBl 

SOURCE (NAME,VOLUME): SRCINPUT 
WORKFILE(NAME,VOLUME): WORKSET 
OBJECT (NAME,VOLUME): OBJOUT 
Figure 17-50. $EDXASM (1) 

The SOURCE data set is the input source module to be assembled. The 
statements in this file are created using $EDIT1 Nor $FSEDIT. 

For WORKFILE, enter the name of a data set to be used as an 
assembler work area. This file must already be allocated, and usually 
ranges between 100 and 500 records in size, with 250 about average. 

The OBJECT data set is the preallocated data set in which the object 
module resulting from the assembly will be stored. This object module 
will be input either to $LINK, if it is to be combined with other object 
modules, or to $UPDATE, if it is a complete program (no references 
to external modules). 

In Figure 17-50, all three data sets reside on the IPL volume, as no 
volume names are supplied. Were the data sets resident on other 
volumes, each data set name would be followed by the volume, separ­
ated by a com ma. 

The loader ($L function) is a serially reusable resource. In Figure 
17-50, the loader is enqueued, and therefore unavailable to other users 
and to the system, as soon as the ENTER key is pressed to enter the 
first line, $L $EDXASM,ASM LIB. It remains enqueued throughout 
the prompt/response sequence that follows, a length of time which 
may be considerable, depending on how familiar the operator is with 
the data set names requested, and how fast they can be entered. 

>l$L $EDXASM,ASMLIB SRCINPUT WORKSET OBJOUTI 

Figure 17-51. $EDXASM (2) 

Figure 17-51 illustrates an alternate way of entering the same load 
request. When the ENTER key is pressed, all required data set names 
are available on the same line, and enqueue time for the loader is 
greatly reduced. For $EDXASM, and all other utilities accepting 
advance input, the advance input form should be used where possible. 
Note: Utilities accepting advance input have no way of "knowing" 
the purpose of a data set, other than by the position of the data set 
name on the advance input line. The data set names must be supplied 
on the advance input line in the same sequence as the utility would 
prompt for them were advance input not employed. 

Online Program Preparation 17 -33 



17-34 SR30-0220 

In addition to source, work, and object data sets, whose names must 
be supplied at load time, $EDXASM also uses a language control data 
set. The language control data set supplied with the system is called 
$EDXL and contains the assembler error messages and an "op code 
to processing module" specification for each of the standard Event 
Driven Executive instructions. If users wish to modify the instruction 
set or add error messages, $EDXL may be changed, or a new language 
control data set produced (the language control data set is in source 
statement format, and can be modified using $EDIT1 Nor $FSEDIT). 

$EDXASM supports the copycode function, which allows source code 
residing in data sets to be included in an assembly by coding a 
COPY statement in the source program. The language control data 
set is used to define disk or diskette volumes containing copycode 
data sets to the assembler. 

$EDXL, the system-supplied language control data set, already con­
tains *COPY COD statements which define disk volumes ASM LIB 
and EDX002 as volumes containing copycode data sets. If a user­
written copycode data set resides on either of these volumes, no 
change to $EDXL is required to use the COPY statement in a user 
source program assembly. However, if a user copycode data set 
resides on a volume other than ASMLIB or EDX002, $EDIT1 Nor 
$FSEDIT must be used to add a *COPYCOD statement to $EDXL 
which defines the new volume as one which may contain copycode 
data sets. 

After $EDXASM has been loaded the SELECT OPTIONS(?): prompt 
will appear. A"?" response will list the available options, as shown in 
Figure 17-52. 

SELECT OPTIONS (?) : l1J 
LIST - SPECIFY LIST DEVICE 
NOLIST - DO NOT PRINT LISTING 
ERRORS - LIST ERRORS ONLY 
CONTROL - SPECIFY CONTROL LANGUAGE 
END - END OPTION SELECTION 

('ATTN - CA' TO CANCEL ASSEMBLY) 

Figure 17·52. $EDXASM (3) 

LIST You can specify the name of the device that will be used 
for the assembly listing (name= label in TERMINAL system 
configuration statement). If the LIST option is not 
entered, the list device will default to $SYSPRTR. 

NOLIST This option suppresses the listing entirely, but assembly 
statistics will be displayed on the loading terminal. 

ERRORS Only statements causing assembly errors, along with their 
error messages, will be listed. The operator will also be 
prompted for the name of the error list device. 

CONTROL You can specify the name of your own language control 
data set. If it is not entered, this option defaults to 
$EDXL on volume ASMLIB. 



$EDXLIST 

$LINK 

END Once any option is entered in response to the SELECT 
OPTIONS (?): prompt, the operator will continue to be 
prompted until END is entered. If no response is made to 
the first SELECT OPTIONS(?): prompt (ENTER key 
with nothing entered), the assembly will start without 
EN D's being entered, $EDXL on ASMLl8 will be used as 
the language control data set, and the full listing will 
appear on the system printer ($SYSPRTR). 

READING ASSIGNMENT: S830-1213 (Version 2 PDOM) page 6-16. 

The assembly listing is produced by the assembly list processing program 
$EDXLIST. Though usually run as part of the assembly process, 
$EDXLIST may be loaded directly ($L) and run after the assembly is 
finished, as long as the assembler work data set has not been disturbed 
(used in another assembly). See the reading assignment for operating 
instructions. 

READING ASSIGNMENT: S830-1213 (Version 2 PDOM) pages 6-35 
through 6-43. 

$LINK is used to combine two or more object modules into a single 
output object module. Input object modules may be produced by 
$EDXASM, by the 8PPF macro assembler, or by the Host Assembler 
(FOP 5798-NNO). The output object module produced by $LINK 
must be processed by $UPDATE before it can be loaded and executed. 

Data Set Requirements. When $LINK is loaded, the operator is 
prompted for the names of three data sets. The first is the link control 
data set, which will contain control records specifying the object 
modules (names of object module data sets) that will be linked together. 
The other two data set names are the names of link edit work data sets, 
used as work areas during the linkedit process. 

> $L $LINK,ASMLIB 
LINKCNTL NAME,VOLUME): LINKCNTRL 
LEWORKl (NAME,VOLUME): LINKWRKl 
LEWORK2 (NAME,VOLUME): LINKWRK2 

$LINK 63P,00:40:39, LP= 5FOO 

ENTER DEVICE NAME FOR PRINTED OUTPUT 
l$SYSPRTRI 

Figure 17-53. $LINK (1) 

Online Prograrn Preparation 17-35 



17-36 SR30-0220 

See the reading assignment for recommended work data set sizes. 

The link control data set (LIN KCNTL) controls overall link edit opera­
tion. The control records are produced using $EDIT1 Nor $FSEDIT. 
The first control record in all LIN KC NTL data sets is an OUTPUT 
statement, specifying the data set that will be used to store the output 
object module resulting from the link edit. This data set (as well as 
the work data sets) must be allocated before the link operation is 
attempted. In Figure 17-54, the output statement specifies data set 
LINKOUT on the IPL volume (if no volume is specified, default= I PL) 
as the output data set for the linked object module. 

OUTPUT LINKOUT 
INCLUDE ASMOUT1,EDX003 
INCLUDE ASMOUT5 
END 

Figure 17-54. $LINK (2) 

The output object module will be produced by linking the input object 
module in ASMOUT1 on volume EDX003 with the object module in 
ASMOUT5 on the IPL volume, as specified by the two INCLUDE 
statements following the OUTPUT record. The first INCLUDE record 
must specify an object module that contains an initial task, produced 
by an assembly of a source module beginning with a PROGRAM state­
ment with the MAIN= operand coded as (or defaulted to) MAIN=YES. 
Subsequent INCLUDE records cannot specify object modules con­
taining initial tasks. 

In addition to those object modules explicitly named in INCLUDE 
statements, $LINK can also include object modules through the 
AUTOCALL option. Using the AUTO= operand of the OUTPUT 
control record, an autocall definition data set may be named. This data 
set contains the names (and volumes, if not IPL resident) of autocall 
object modules, along with their entry points. 

OUTPUT LINKOUT AUTO=MYAUTO,EDX003 
INCLUDE ASMOUTA ~ 
INCLUDE ASMOUTB 
END 

RENBR,EDXOOl RENUMl RENUM2 
ABTERM AB ENT **END 

Figure 17-55. $LINK (3) 

In Figure 17-55, a reference to RENUM1, RENUM2, or AB ENT from 
within object module ASMOUTA or ASMOUTB cannot be resolved 
by linking ASMOUT A with ASMOUTB. Because AUTO= is coded, 
$LINK goes to the autocall data set MY AUTO, and tries to find the 
referenced name in the list of entry points specified in the autocall 
definition records. If a match is found, $LINK will link the associated 
autocall object module with ASMOUT A and ASMOUTB. 



$JOBUTIL 

The **END in the last autocall definition record performs the same 
function for the autocall definition data set as does the END record 
for the link control data set. 

In addition to the link control and work data set names, the operator 
is also prompted for the name (label of TERMINAL system configura­
tion statement) of the terminal which is to receive the $LINK output 
messages (see Figure 17-53). $LINK prints out the link control state­
ment file, and a map of the linked object module (see the reading 
assignment for an example). 

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages 3-179 
through 3-192 and pages 6-14, 6-44, 6-54 and 6-55. 

$JOBUTI L is the batch job stream processor utility. $JOBUTI L uses a 
user-created ($EDIT1 N, $FSEDIT) job processor procedure file to 
sequentially execute a series of programs. To illustrate basic $JOBUTI L 
operation, a procedure file to invoke the online assembler, $EDXASM 
will be created. 

The data set that is to contain the procedure file must first be allocated, 
using $DISKUT1. Procedure command statements are stored two state­
ments per record, so a data set size of 15 or 20 records is usually ade­
quate. For this discussion, assume a data set called MYPROC is allo­
cated on the I PL volume. 

Using $EDIT1 Nor $FSEDIT, the procedure command file can now be 
created. An asterisk in column 1 defines an internal comment command. 

~ 
* $JOBUTIL I $EDXASM EXAMPLE 
f 
Figure 17-56. $JOBUTIL (1) 

The entire statement is treated as a comment, and may appear anywhere 
within the procedure command file. The internal comment statements 
are for procedure file documentation only; they are not printed out or 
displayed during $JOBUTI L operation. 

All the other procedure commands have a defined positional format. 
The commands must appear in character positions 1 through 8, starting 
in 1; operands in 10 through 17, starting in 1 O; and comments in 18 
through 71. 

* $JOBUTIL / $EDXASM EXAMPLE 
* 'LOG' COMMAND - $JOBUTIL LOG DEFINITION 
LOG ON 
~ 
Figure 17-57. $JOBUTIL (2) 

Online Program Preparation 17-37 



17-38 SR30-0220 

The LOG command controls the printing of $JOBUTI L procedure com­
mands. With LOG coded as shown in Figure 17-57, procedure com­
mands will be displayed on the terminal used to load $JOB UT IL, as 
they are read from the procedure file. Other operand options are either 
OFF, for no logging of procedure commands, or terminalname specify­
ing the name of a terminal to which you wish the $JOBUTI L procedure 
commands directed. 

7 
* $JOBUTIL I $EDXASM EXAMPLE 
* 'LOG' COMMAND - $JOBUTIL LOG DEFINITION 
LOG ON 
* 'REMARK' COMMAND - DISPLAYS MESSAGE 
* ON LOADING TERMINAL 
REMARK OPERATOR MESSAGE 
~ 
Figure 17-58. $JOBUTIL (3) 

The REMARK command will display on the terminal used to load 
$JOB UT IL. REMARK commands may be placed anywhere within a 
procedure file. The JOB command, like the REMARK command, is 
optional. In Figure 17-59, the JOB command is the first command in 
the procedure data set, but could follow the LOG or the REMARK. 
The JOB command displays a "job started" message on the loading 
terminal, with the time and date. Both JOB and REMARK operate 
without regard to LOG (LOG OFF has no effect). 

JOB ASMPLE 
* $JOBUTIL I $EDXASM EXAMPLE 
* 'LOG' COMMAND - $JOBUTIL LOG DEFINITION 
LOG ON 
* 'REMARK' COMMAND - DISPLAYS MESSAGE 
* ON LOADING TERMINAL 
REMARK OPERATOR MESSAGE 
* 'PROGRAM' COMMAND DEFINES THE PROGRAM 
* TO BE LOADED 
PROGRAM $EDXASM,ASMLIB 

~ 
Figure 17-59. $JOBUTIL (4) 

The PROGRAM command defines the program name/volume that 
$JOBUTI L is to load (if the JOB command is used, it must appear 
before PROGRAM). 



JOB ASMPLE 
* $JOBUTIL I $EDXASM EXAMPLE 
* 1 LOG 1 COMMAND - $JOBUTIL LOG DEFINITION 
LOG ON 
* 'REMARK' COMMAND - DISPLAYS MESSAGE 
* ON LOADING TERMINAL 
REMARK OPERATOR MESSAGE 
* 'PROGRAM' COMMAND DEFINES THE PROGRAM 
* TO BE LOADED 
PROGRAM $EDXASM,ASMLIB 
* 'OS' COMMANDS DEFINE DATA SETS THE 
* LOADED PROGRAM REQUIRES 
OS SCRMAT 
OS ASMWORK 
OS ASMOUT2 

1 
Figure 17-60. $JOBUTIL (5) 

"OS" commands define data sets to the program being loaded. Only 
one data set may be defined with each OS statement, and the defini­
tions must appear in the same order as the responses to load-ti me data 
set definition prompts would be entered, were the program loaded 
using the "$L" supervisor utility function. 

Following the OS commands, any additional information required by 
the program being loaded is passed using the PARM command. In 
Figure 17-61, PARM is coded with no operand. This is equivalent to 
responding to the SELECT OPTIONS: prompt by pressing the ENTER 
key without entering an option, when $EOXASM is loaded using $L. 

JOB ASMPLE 
* $JOBUTIL I $EDXASM EXAMPLE 
* 1 LOG 1 COMMAND - $JOBUTIL LOG DEFINITION 
LOG ON 
* 'REMARK' COMMAND - DISPLAYS MESSAGE 
* ON LOADING TERMINAL 
REMARK OPERATOR MESSAGE 
* 'PROGRAM' COMMAND DEFINES THE PROGRAM 
* TO BE LOADED 
PROGRAM $EDXASM,ASMLIB 
* 1 DS 1 COMMANDS DEFINE DATA SETS THE 
* LOADED PROGRAM REQUIRES 
OS SCRMAT 
OS ASMWORK 
OS ASMOUT2 
* 'PARM' COMMAND PASSES PARAMETERS TO 
* THE LOADED PROGRAM 
PARM 
~ 
Figure 17-61. $JOBUTIL (6) 

Online Program Preparation 17-39 



17-40 SR30-0220 

The program to be loaded now has all the information required to load 
and execute. In Figure 17-62, the "EXEC" command issues the load 
request for the program defined in the preceding PROGRAM command. 

JOB ASMPLE 
* $JOBUTIL I $EDXASM EXAMPLE 
* 'LOG' COMMAND - $JOBUTIL LOG DEFINITION 
LOG ON 
* 'REMARK 1 COMMAND - DISPLAYS MESSAGE 
* ON LOADING TERMINAL 
REMARK OPERATOR MESSAGE 
* 'PROGRAM' COMMAND DEFINES THE PROGRAM 
* TO BE LOADED 
PROGRAM $EDXASM,ASMLIB 
* 'OS' COMMANDS DEFINE DATA SETS THE 
* LOADED PROGRAM REQUIRES 
OS SCRMAT 
OS ASMWORK 
OS ASMOUT2 
* 1 PARM' COMMAND PASSES PARAMETERS TO 
* THE LOADED PROGRAM 
PARM 
* 'EXEC' COMMAND ISSUES LOAD REQUEST FOR 
* THE PROGRAM 
EXEC 
* 'EOJ' ENDS THE PROCEDURE COMMAND FILE 
EOJ 

Figure 17-62. $JOBUTIL (7) 

The "EOJ" command following the EXEC indicates end of job, and 
terminates the job stream processor utility. H another job were to be 
run before ending this procedure, appropriate PROGRAM, OS, PARM 
and EXEC statements would precede the EOJ. 

When the text editing session that created the procedure is complete, 
the procedure is stored (SAVE, WRITE) in the data set MYPROC, 
allocated at the beginning of this discussion. The job can be run by 
loading $JOBUTI L, and specifying procedure file MYPROC, as shown 
in Figure 17-63. 

> l$L $JOBUTI LI 
$JOBUTIL 3P,00:00:17, LP= 5FOO 
ENTER PROCEDURE (NAME' VOLUME): IMYPROCI 

Figure 17-63. $JOBUTIL \8) 

In Figure 17-64, each of the procedure command statements in pro­
cedure file MYPROC (without the internal comments) is related to the 
equivalent operator responses for a $L load of the assembler. 



JOB 
LOG 
REMARK 

ASMPLE 
ON 

L ($EDXASM,ASMLIBI-: --------------•PROGRAM 
OPERATOR MESSAGE 
$EDXASM,ASMLIB 
SCRMAT SOURCE (NAME, VOLUME): SCRMAT} ~OS 

WORKF I LE (NAME, VOLUME): ASMWORK} ~ OS ASMWORK 
OBJECT (NAME,VOLUME): ASMOUT2} ~OS ASMOUT2 

$EDXASM 68P,00:46:58, LP= 5FOO PARM 

Figure 17-64. $JOBUTI L (9) 

-----i~E XE C 
EOJ 

Other $JOBUTI L commands allow job steps to be skipped/executed 
based on the completion code returned from a previous step, the 
invoking of nested procedures in other procedure data sets, and the 
entering of procedure commands from the loading terminal. For a 
comprehensive example of $JOBUTI L capabilities, see the Program 
Preparation Example topic that follows. 

PROGRAM PREPARATION EXAMPLE 

PROBLEM DESCRIPTION 

In the remainder of this section, a source module will be assembled, 
link edited, and formatted. Each step will first be treated separately, 
and then all steps wi II be combined under control of the batch job 
stream processor utility $JOBUTI L. 

In "Section 11. Terminal 1/0", a program was developed, which, using 
a series of PRINTEXT instructions, formatted a data entry screen (see 
the topic Static Screen Coding Example in Section 11 ). In "Section 
14. System Utilities", the $IMAGE screen formatting utility was used 
to create the same screen, and to save it in a screen image data set 
named VI DE01. 

Supplied with the Event Driven Executive system are a group of super­
visor subroutines which allow user programs to access stored screen 
images produced by $IMAGE. The goal of this exercise is to replace 
the user-written formatting instructions (PRI NTEXTs) in the program 
developed in Section 11, with the appropriate subroutine calls to access 
the stored screen image in data set VI DE01. 

Online Program Preparation 17-41 



Create/Modify Source Module 

17-42 SR30-0220 

$EDIT1N 
$FSEDIT STEP 1: CREATE/MODIFY SOURCE MODULE 

Figure 17-65. Step 1. Create source module 

Data Set Requirements. 

I UTILITY! 

$FSEDIT INPUT OUTPUT WORK 
DATA DATA DATA 

VOLUME fill_ SET SET 

EDX002 STATSRC EDITWORK 
ASMVOL SOURCE 

Figure 17-66. Data set requirements (1) 

CONTROL 
DATA 
SET 

The source module to be modified is SOURCE on volume ASMVOL. 
Using $FSEDIT, the program is read into the text edit work data set 
(Figure 17-67). 



--------------------3--- $FSEDIT PRIMARY OPTION MENU -------------------------
SELECT OPTION ===> 

1 BROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHANGE DATASET 
3 READ - READ DATASET FROM HOST/NATIVE 
4 WRITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

READ FROM NATIVE? IYJ 

ENTER VOLUME LABEL: IASMVOL SOURCE I 

Figure 17-67. Program preparation (1) 

The screen formatting code begins at statement 140. In Figure 17-68, 
DD is entered to the left of statement 140, defining the start of a 
block delete. 

EDIT --- EDITWORK, EDX002 75( 543)---------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCROLL ~==>HALF 
***** ***** TOP OF DATA ******************************************************* 
00010 XMPLSTAT PROGRAM 
00020 IOCBl 
00030 IOCB2 
00040 
00050 START 
00060 
00070 
00080 
00090 
00100 
00110 
00120 CHECK 
00130 

(fillO 140 ENTRY 
00150 
00160 
00170 
00180 
00190 
00200 
00210 

IOCB 
IOCB 
ATTN LIST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
DEQT 
WAIT 
IF 
ENQT 
ERASE 
TERMCTRL 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 

START 
NHIST=O 
SCREEN=STATI C 
(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END',SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2 
' BRING UP THE ENTRY SCREEN' 

ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
IOCB2 
MODE=SCREENTYPE=ALL 
BLANK 
'ENTER KEY= PAGE COMPLETE' ,LINE=l 
' PFl = DELETE ENTRY l' 
' PF2 = DELETE ENTRY 2' 
'PF3 = DELETE ENTRY 3 I ,SKIP=l 
'PF4 = DELETE ENTRY 4' 

Figure 17-68. Program preparation (2) 

Scrolling down through the work area, the end of the formatting code 
is statement 370 where DD defines end of block delete. 

Online Program Preparation 17-43 



17-44 SR30-0220 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 
00220 PRINTEXT 
00230 PRINTEXT 
00240 PRINTEXT 
00250 HDR PRINTEXT 
00260 MOVE 
00270 DO 
00280 PRINTEXT 
00290 PRINTEXT 
00300 Al ADD 
00310 PRINTEXT 
00320 A2 ADD 
00330 PRINTEXT 
00340 ADD 
00350 END DO 
00360 PRINTEXT 

[Qij)0370 TERMCTRL 
00380 WAITONE WAIT 
00390 GOTO 
00400 El MOVE 
00410 GOTO 
00420 E2 MOVE 
00430 GOTO 

75( 543)--------------- BLOCK COMMAND INCOMPLETE 
SCROLL ===>HALF 

DASHES,PROTECT=YES,LINE=3 
'CLASS NAME: ',LINE=4,PROTECT=YES 
I INSTRUCTOR NAME: I ,LINE=4, PROTECT= YES ,SPACES=32 
DASHES,PROTECT=YES,LINE=5 
LINENBR,6 
4, TIMES 
I NAME: I ,LINE=LINENBR,PROTECT=YES 
I STREET: I 'LI NE=LI NENBR, SPACES= 30 ,PROTECT=YE s 
LINENBR,l 
'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR, 1 
'STATE : I ,LINE=LINENBR,SPACES=30,PROTECT=YES 
LINENBR, 3 

LINE=4,SPACES=ll 
D !SPLAY 
KEY 
(READ,El,E2,E3,E4),XMPLSTAT+2 
LINENBR,6 
DELETE 
LINENBR, 11 
DELETE 

Figure 1,7-69. Program preparation (3) 

After ENTER has been pressed and after you have scrolled back to the 
top of the data set, you wi II see the screen in Figure 17 -70 with state­
ments 140 through 370 deleted. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

51( 543)------------.---------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ******************************************************* 
00010 XMPLSTAT PROGRAM 
00020 IOCBl IOCB 
00030 IOCB2 IOCB 
00040 ATTN LIST 
00050 START ENQT 
00060 PRINTEXT 
00070 PRINTEXT 
00080 PRINTEXT 
00090 PRINT EXT 
00100 PRINTEXT 
00110 DEQT 
00120 CHECK WAIT 
00130 IF 
00380 WAITONE WAIT 
00390 GOTO 
00400 El MOVE 
00410 GOTO 
00420 E2 MOVE 
00430 GOTO 
00440 E3 MOVE 
00450 GOTO 

START 
NHIST=O 
SCREEN=STATI C 
(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM',SPACES~l5,LINE=l 
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
KEY 
(READ,El,E2,E3,E4),XMPLSTAT+2 
LINENBR,6 
DELETE 
LINENBR,11 
DELETE 
LINENBR, 16 
DELETE 

Figure 17-70. Program preparation (4) 

By using the insert function of EDIT mode, the statements required to 
access the screen image in data set VIDE01 can now be added. 



$/MOPEN 

READING ASSIGNMENT: 5830-1213 (Version 2 PDOM) pages 8-35 
through 8-42. 

The first step in using a stored screen image is to read the image data 
set into the user program. 

~ 
IMAGEBUF BUFFER 768,BYTES 
DSETNAME TEXT Iv IDEOl, EDX002 I 
~ 
GETIMAGE CALL $IMOPEN,(DSETNAME),(IMAGEBUF) 

~ 
Figure 17-71. Program preparation (5) 

Using subroutine $tMOPEN, the data set is read into a user buffer. The 
name of the data set is specified in a TEXT statement, and the label of 
the TEXT statement is passed to $1MOPEN as the first parameter in the 
CALL. The second parameter is the label of the buffer which will 
receive the image. Both parameters must be enclosed in parentheses. 

The buffer is defined by a BUFFER statement, in bytes. Data set 
VIDE01 is three records in length, so IMAGEBUF is defined as 768 
bytes. 

$1MOPEN returns a completion code in "taskname+2", and it is a 
user responsibility to check for proper completion (-1 completion 
code). In Figure 17-72, the completion code check and error routine 
have been added. 

IMAGEBUF BUFFER 
DSETNAME TEXT 

GETI MAGE CALL 
IF 

MOVE 
PRINTEXT 
PR I NTN UM 
GOTO 

END IF 

ERRCODE DATA 
ERRQUERY QUESTION 

768,BYTES 
1 VIDE01,EDX002 1 

$IMOPEN,(DSETNAME},(IMAGEBUF) 
(XMPLSTAT+2,NE,-1) 

ERRCODE ,XMPLSTAT+2 
'@IMAGE OPEN ERROR, CODE =1 

ER RC ODE 
ERRQUERY 

F1 0 1 

'@RETRY OPEN ? ~, YES:;GETIMAGE ,NO=EN.DH 

FiWJre 17-72. Pi;og.r.am: preparation (6) 

Online Program Preparation 17-45 



$/MDEFN 

$/MPROT/$/MDA TA 

17-46 SR30-0220 

Before the screen can be displayed, the terminal must be enqueued as a 
static screen device. In Figure 17-73, the ENOT IOCB2 is preceded by 
a CALL to subroutine $1MDEFN. This subroutine fills in the user-coded 
IOCB with the screen dimensions of the screen image in the buffer. 
The CALL to $1MDEFN is not a required function; the IOCB may be 
enqueued without first calling the subroutine. By calling $1 MDE FN, 
you are assured that the IOCB will have the proper screen dimensions 
for the screen in the buffer. If $IMAGE is used to change the dimen­
sions of the stored screen image, the new dimensions will be placed in 
the IOCB by $1MDEFN when the program next accesses that screen, 
with no change in the user program code required. 

IMAGEBUF BUFFER 
DSETNAME TEXT 

IOCB2 

GETIMAGE 

IOCB 

CALL 
IF 

MOVE 
PRINTEXT 
PR I NTN UM 
GOTO 

END IF 
CALL 
ENQT 

ERRCODE DATA 
ERRQUERY QUESTION 

768,BYTES 
1 VIDE01,EDX002 1 

SCREEN=STATIC 

$IMOPEN,(DSETNAME),(IMAGEBUF) 
(XMPLSTAT+2,NE,-l) 

ERRCODE,XMPLSTAT+2 
'@IMAGE OPEN ERROR, CODE-' 
ERRCODE 
ERRQUERY 

$IMDEFN,(IOCB2),(IMAGEBUF) 
IOCB2 

F 1 0 1 

'@RETRY OPEN ? I ,YES=GETIMAGE,NO=ENDIT 

Figure 17-73. Program preparation (7) 

Now that the terminal is enqueued, the screen image in the buffer can 
be displayed. In Figure 17-74, the TERMCTRL BLANK following 
the ENQT blanks the screen, preventing flicker while the image is 
written. The CALL of subroutine $1MPROT transfers all the protected 
data from the image buffer to the screen, and the call to $1 MOAT A 
transfers the unprotected data. (If a screen image consists of all pro­
tected or all unprotected data, only the appropriate subroutine need 
be called.) 



IMAGEBUF BUFFER 
DSETNAME TEXT 

IOCB2 IOCB 

GETI MAGE CALL 
IF 

MOVE 
PRINTEXT 
PRINTNUM 
GOTO 

END IF 
CALL 
ENQT 
TERMCTRL 
CALL 
-CALL 
PRINTEXT 
TERMCTRL 

ERRCODE DATA 
ERRQUERY QUESTION 

768,BYTES 
Iv I DEOl, EDX002 I 

SCREEN=STATIC 

$IMOPEN,(DSETNAME),(IMAGEBUF) 
(XMPLSTAT+2,NE,-l) 

ERRCODE,XMPLSTAT+2 
'@IMAGE OPEN ERROR, CODE -• 
ERRCODE 
ERRQUERY 

$IMDEFN,(IOCB2),(IMAGEBUF) 
IOCB2 
BLANK 
$IMPROT,(IMAGEBUF),O 
$IMDATA,(IMAGEBUF) 
LIN E=4, SPACES= 11 
DISPLAY 

F 1 0 1 

'@RETRY OPEN ? I ,YES=GETIMAGE,NO=ENDIT 
Figure 17-74. Program preparation (8) 

The PRINTEXT following the last CALL positions the cursor at the 
first data entry field, and TE RM CTR L DI SPLAY unblanks the 
screen. 

The second parameter of the CALL $1MPROT statement (Figure 17-74) 
is coded as 0. This could be coded as the label of a BUFFER statement, 
in which case the $1MPROT subroutine will build a table of the location 
and sizes of all unprotected (data entry) fields on the screen. Each table 
entry is three words in length. The first word will contain the line 
number and the second, the starting position of the field within the 
line (spaces from left margin of screen). The third word will contain 
the length of the field. These entries can be used to read/write data 
entry fields on the screen. 

Online Program Preparation 17-4 7 



17-48 SR30-0220 

FIELDS 

CALL 
PRINTEXT 
TERMCTRL 

BUFFER 

$IMPROT,(IMAGEBUF),(FIELDS) 
LINE=FIELDS,SPACES=FIELDS+2 
DISPLAY 

3 

Figure 17-75. Program preparation (9) 

For example, in Figure 17-75, FIELDS will contain the line/spaces/size 
of the first data entry field. PR INTEXT will position the cursor, and 
TE RMCTR L will display it at the first field, just as did the 
PRINTEXT/TERMCTHL pair in Figure 17-74. If the starting point of 
the first data entry field is changed ($tMAGE used to redefine the 
screen image), the program shown in Figure 17-74 would have to be 
changed, or the cursor would not be positioned properly. The program 
in Figure 17-75 would pick up the new starting field location without 
any modification required. 

The "$1M" subroutines are supplied as object modules resident on 
SUPLIB. Because they are object modules, they are combined with the 
user program in the Hnk edit step, not during assembly. They must 
therefore be declared as external references in an EXTHN statement. 

Figure 17-76 is a listing of the edit work data set after the edit session is 
complete. The EXTRN statement is statement 20, with the image 
buffer and screen image data set name definition following at 30 and 
40. Other added statements include the "$1 M" code from 170 to 
300, and the two statements at 670 and 680. The source module 
modification is complete. The work data set is written to STATS RC 
on volume EDX002 ($FSEDIT Primary Option 4), completing Step 1 
of the program preparation process. 



00010 XMPLSTAT 
00020 
00030 IMAGEBUF 
00040 DSETNAME 
00050 IOCB 1 
00060 IOCB2 
00070 
00080 START 
00090 
00100 
00110 
00120 
00130 
00140 
00150 CHECK 
00160 
00170 GETI MAGE 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 WAITONE 
00320 
00330 El 
00340 
00350 E2 
00360 
00370 E3 
00380 
00390 E4 
00400 DELETE 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 READ 

PROGRAM 
EXTRN 
BUFFER 
TEXT 
IOCB 
IOCB 
ATTN LIST 
ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
DEQT 
WAIT 
IF 
CALL 
IF 

MOVE 
PRINTEXT 
PRINTNUM 
GOTO 

ENDIF 
CALL 
ENQT 
TERMCTRL 
CALL 
CALL 
PRINTEXT 
TERMCTRL 
WAIT 
GOTO 
MOVE 
GOTO 
MOVE 
GOTO 
MOVE 
GOTO 
MOVE 
ERASE 
ADD 
ERASE 
ADD 
ERASE 
SUBTRACT 
PRINTEXT 
TERMCTRL 
GOTO 
QUESTION 

Figure 17-76. Program preparation (10) (1 of 2) 

START 
$IMOPEN,$IMDEFN,$IMPROT,$IMDATA 
768,BYTES 
Iv I DEOl 'EDX002 I 
NHIST=O 
SCREEN=STA TIC 
(END,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM' ,SPACES=l5,LINE=l 
I HIT "ATTN" AND ENTER "END" TO END I ,SKIP=2 
I THE PROGRAM' 
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
$IMOPEN,(DSETNAME),(IMAGEBUF) 
(XMPLSTAT+2,NE,-l) 

ERRCODE,XMPLSTAT+2 
'@IMAGE OPEN ERROR,CODE =' 
ERRCODE 
ERRQUERY 

$IMDEFN,(IOCB2),(IMAGEBUF) 
IOCB2 
BLANK 
$IMPROT,(IMAGEBUF),O 
$IMDATA,(IMAGEBUF) 
LINE=4, SPACES= 11 
DISPLAY 
KEY 
(READ,El,E2,E3,E4),XMPLSTAT+2 
LINENBR,6 
DELETE 
LINENBR, 11 
DELETE 
LINENBR,16 
DELETE 
LINENBR,21 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LINENBR, 1 
MODE=LINE,TYPE=DATA,LINE=LINENBR 
LINENBR, 1 
MODE=LINE,TYPE=DATA,LINE=LINENR 
LINENBR,2 
LINE=LINENBR,SPACES=5 
DISPLAY 
WAITONE 
'MORE ENTRIES ?' ,LINE=2,SPACES=55,NO=CLEANUP 

Online Program Preparation 17-49 



17-50 SR30-0220 

00500 
00510 
00520 
00530 
00540 
00550 CLEANUP 
00560 
00570 
00580 ENDIT 
00590 
00600 DASHES 
00610 OUT 
00620 
00630 STATIC 
00640 
00650 ATTNECB 
00660 LINENBR 
00670 ERRCODE 
00680 ERRQUERY 
00690 
00700 

ERASE 
ERASE 
PRINTEXT 
TERMCTRL 
GOTO 
ERASE 
DEQT 
GOTO START 
PROGSTOP 
DATA 
DATA 
POST 
ENDATTN 
POST 
ENDATTN 
ECB 
DATA 
DATA 
QUESTION 
EN DP ROG 
END 

MODE=LINE,LINE=2,SPACES=55,TYPE=DATA 
MODE=SCREEN,LINE=6 
LINE=6,SPACES=5 
DISPLAY 
WAITONE 
MODE=SCREEN,TYPE=ALL 

X1 5050 1 

80C 1
-

1 

ATTNECB,l 

ATTNECB,-1 

F 1 0 1 

F 1 0 1 

'@RETRY OPEN ? I ,YES=GETIMAGE,NO=ENDIT 

Figure 17-76. Program preparation (10) (2 of 2) 

--------------------4-- $FSEDIT PRIMARY OPTION MENU ---------------------------
SELECT OPTION ===> 

1 BROWSE - DISPLAY DATASET 
2 EDJT - CREATE OR CHANGE DATASET 
3 READ - READ DATASET FROM HOST /NATIVE 
4 WRITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

WRITE TO NATIVE?[YJ 

ENTER VOLUME LABEL: lrnxoo2 STATS RC I 

Figure 17-77. Program preparation (11) 



Assemble Source Module 

Data Set Requirements 

$EDXASM 

STEP2: ASSEMBLE SOURCE 
MODULE (PRODUCE OBJECT 
MODULE) 

Figure 17-78. Step 2. Assemble source module 

luTILITYl 

INPUT OUTPUT WORK CONTROL 
$EDXASM DATA DATA DATA DATA 

SET SET SET SET 
VOLUME ---

EDX002 STATS RC ASMOUT ASMWORK 
ASMLIB $EDXL 
ASMVOL 
SUPLIB 

Figure 17-79. Data set requirements (12) 

Online Program Preparation 17-51 



17-52 SR30-0220 

In Figure 17-80, the load request for the assembler is entered. Since 
the prompting sequence for the data sets required by the assembler is 
known, these data set names are entered as advance input on the 
same line as the input request. 

>l$L $EOXASM,ASMLIB STATSRC ASMWORK ASMOUTI 
$EDXASM 68P,03:14:35, LP= 7FOO 

SELECT OPTIONS (?): lENDI 

Figure 17-80. Program preparation (12) 

Because no options are selected, a full listing will be produced on the 
system printer, and the language control data set used for this 
assembly will be $EDXL. When the assembler finishes, the resulting 
object module will be stored in ASMOUT on volume EDX002. 
$EDXASM will then load $EDXLIST to produce the assembly listing. 



Produce Assembly Listing 

Data Set Requirements 

$EDXLIST 
(OPTIONAL) 

Figure 17-81. Step 3: Produce assembly listing 

jUTILITYl 

$EDXLIST 
INPUT OUTPUT 
DATA DATA 

VOLUME SET SET 

EDX002 ASMWORK 
STATS RC 

ASMLIB 

figure 17-82. Data set requirements (3) 

STEP 3: PRODUCE 
ASSEMBLY LISTING 
(OPTIONAL) 

WORK 
DATA 
SET 

CONTROL 
DATA 
SET 

$EDXL 

Online Program Preparation 17-53 



Link Edit Object Modules 

17-54 SR30-0220 

In this example, $EDXLIST is loaded by $EDXASM. If the response 
to the SELECT OPTIONS(?): prompt had been NOLIST, $EDXLIST 
would not have been invoked by $EDXASM, but can still be loaded as 
a separate program by the operator. For example, if NOLIST were 
selected, and the assembly statistics displayed on the loading terminal 
at the end of the assembly indicated that there were assembly errors, 
$EDXLIST can then be loaded to print a listing. $EDXLIST will 
prompt for the source data set and the assembler work data set, and 
will get the name of the language control data set from the work data 
set, in which it is stored, at the end of the assembly. As long as an 
intervening assembly has not altered the contents of the assembler 
work data set, and you have not modified the source or language 
control data sets, $EDXLIST will produce the same listing when loaded 
by the terminal operator after an assembly as it would were it loaded 
by $EDXASM as part of the assembly step. 

The assembly listing produced by the assembly requested in Figure 
17-80 is shown in Appendix B, Figure B-1. 

STEP 4: LINK EDIT 
OBJECT MODULES 
(IF REQUIRED) 

Figure 17-83. Step 4: link edit object modules 



Data Set Requirements 

IUTILITYI 

$LINK INPUT OUTPUT WORK CONTROL 

DATA DATA DATA DATA 
VOLUME SET SET SET _SE_T __ _ 

EDX002 ASMOUT LINKOUT LINKWRK1 LINKSTAT 
LINKWR K2 

ASMLIB $AUTO 
$LEMSG 

SUPLIB $1MGEN 
$1MOPEN 

Figure 17-84. Data set requirements (4) 

The screen formatting subroutines ($1MOPEN, $1MDEFN, $1MDATA, 
$1MPROT) used by the source program are distributed in the form of 
object modules, resident in SUP LIB. To include these subroutines in 
the program, the object module output of the assembly (data set 
ASMOUT) must be linked with the screen formatting support object 
modules. 

Instead of requiring that INCLUDE control records for the screen 
formatting object modules be user-defined, they are system-defined in 
the system-supplied autocall data set $AUTO, and may be included 
using the autocall option. 

00010 $GPLIST,SUPLIB 
00020 $PUHC,SUPLIB 
00030 $GEPM,SUPLIB 
00040 $GEAC,SUPLIB 
00050 $$GIN,SUPLIB 
00060 $PUFC,SUPLIB 
00070 $PUXC,SUPLIB 
00080 $GEER,SUPLIB 
00090 $GEXC,SUPLIB 
00100 $$SCREEN,SUPLIB 
00110 $PUIC,SUPLIB 
00120 $PUSC,SUPLIB 
00130 $GESC,SUPLIB 
00140 $GEFC,SUPLIB 
00150 $PUAC,SUPLIB 
00160 $PUEC,SUPLIB 
00170 $GEIC,SUPLIB 
00180 $$PGIN,SUPLIB 
00190 $$CONCAT,SUPLIB 
00200 $$XYPLOT,SUPLIB 
00210 $MFSL,SUPLIB 
00220 $IMGEN,SUPLIB 
00230 $IMOPEN,SUPLIB 
Figure 17-85. Program preparation (13) 

$GP LIST 
$PUHC 
$GEPM 
$GEAC 
$$GIN 
$PUFC 
$PUXC 
$GEER 
$GEXC 
$$SCREEN 
$PUIC 
$PUSC 
$GESC 
$GEFC 
$PUAC 
$PUEC 
$GEIC 
$$PGIN 
$$CONCAT 
$$XYPLOT 
$MFSL 
$IMDEFN $IMPROT $IMDATA $PACK 
$IMOPEN DSOPEN **END 

$UNPACK 

Online Program Preparation 17-55 



17-56 SR30-0220 

Figure 17-85 is a listing of $AUTO, the system-supplied autocall data 
set. The screen formatting support modules are specified in autocall 
definition statements 220 and 230. 

If you wished to have your own' autocall definitions, you could add 
them to this data set, and continue to use the system-supplied autocall 
data set $AUTO, or bui Id your own autocall data set. In either case, 
the last statement in the data set must contain the "**END" text, 
indicating the end of the autocall data set. 

The output object module data set, the autocall data set (if required), 
and the object modules to be linked are passed to the link editor in the 
link control data set. The link control data set used for this example 
is named LIN KSTAT. In Figure 17-86, the link control statements 
required for this link edit are listed, along with some preceding comment 
lines explaining their function. 

00010 * THIS 
00020 * 
00030 * 
00040 * 
00050 * 
00060 * 
00070 * 
00080 * 

LINK EDIT CONTROL DATA SET SPECIFIES: 
1) THE LINKED OUTPUT OBJECT MODULE WILL 

BE STORED IN 1 LINKOUT 1 ON EDX002 
2) THE AUTOCALL DATA SET IS 1 $AUT0 1 ON 

VOLUME ASMLIB (SYSTEM SUPPLIED) 
3) 1 ASMOUT 1 ON EDX002 IS THE ONLY INPUT 

OBJECT MODULE TO BE INCLUDED 

00090 OUTPUT LINKOUT AUTO=$AUTO,ASMLIB 
00100 INCLUDE ASMOUT 
00110 END 

Figure 17-86. Program preparation (14) 

This control statement file is created using $EDIT1 Nor $FSEDIT, and 
stored in LIN KSTAT using the SAVE/WRITE function at the end of 
the text edit session. 

>l$L $LINK,ASMLIB LINKSTAT LINKWRKl LINKWRK2l 
$LINK 63P,03:31:45, LP= 7FOO 

ENTER DEVICE NAME FOR PRINTED OUTPUT 
l$SYSPRTR I 
Figure 17-87. Program preparation (15) 



Format Object Module 

At $LINK load time, the operator supplies the name of the link control 
data set and the two link edit work data sets, along with the name of 
the device to which link editor messages will be directed. The link 
editor, using the LIN KST AT link control data set, links the assembled 
object module in ASMOUT (INCLUDE control statement) with screen 
formatting object modules in SUPLIB, found through autocall defini­
tions in $AUTO; the linked object module is stored in LIN KOUT 
(OUTPUT control statement). Required error or information messages 
are read from the system-supplied link message data set, $LEMSG. 

See Appendix B, Figure B-2 for the $SYSPRTR output resulting from 
this link edit. 

STEP 5: FORMAT OBJECT MODULE INTO 
RELOCATABLE LOAD MODULE 
(EXECUTABLE PROGRAM) 

Figure 17-88. Step 5. Format object module 

$UPDATE 

Online Program Preparation 17-57 



Data Set Requirements 

17-58 SR30-0220 

!UTILITY! 

$UPDATE INPUT OUTPUT 
DATA DATA 

VOLUME SET SET 

EDX002 LINKOUT STATPROG 

Figure 17-89. Data set requirements (5) 

WORK 
DATA 
SET 

CONTROL 
DATA 
SET 

Before a linked (or assembled) object module can be executed, it must 
first be processed by $UPDATE. This utility formats the object 
module into a relocatable load module, acceptable to the system loader. 

> l$L $UPDATE I 
$UPDATE 29P,03:33:10, LP= ?FOO 

THE DEFINED INPUT VOLUME IS EDX002, OK?[YJ 
THE DEFINED OUTPUT VOLUME IS EDX002, OK?l1] 

COMMAND (?):IRP LINKOUT STATPROGI 

Figure 17-90. Program preparation (16) 

The "RP" command means "Read Program", and is followed by the 
name of the object module to be formatted, and the name of the 
resulting executable program. If data set STATPROG is not already 
allocated, $UPDATE will create it. The program ST ATP ROG can be 
loaded and executed when this step is completed. 



$EDXASM Copy Code Function 

In the discussion of the link edit step, object modules were auto­
matically included in the link edit, using the autocall feature of $LINK. 
In a somewhat similar manner, source statements may be merged into 
a source module at assembly time, using the "copycode" capability of 
$EDXASM. 

During the assembly operation, $EDXASM uses a language control data 
set. Figure 8-3 in Appendix 8 is a listing of the system-supplied lan­
guage control data set $EDXL. This data set consists of three main parts. 
Statements 1 through 239 are error messages that may be required 
during assembly. Statements 240 through 275 are *OVERLAY defini­
tions. These are special control statements, used by the system loader 
to find the appropriate assembler overlay for each source instruction 
encountered during an assembly. 

The third section consists of the two *COPYCOD definitions, statements 
276 and 277. $COPYCOD statements define logical volumes which may 
contain source data sets used as "copycode" source modules. The 
logical end of the language control data set is the **STOP**, statement 
278. 

The system-supplied language control data set, $EDXL, has volumes 
ASMLIB and EDX002 defined as copycode volumes. When a COPY 
statement specifying the name of a source data set is encountered during 
the assembly of a source module, $EDXASM will search ASMLIB and 
EDX002 for a data set of that name, and will include the source state­
ments in that data set in the assembly, if found. User source data sets 
stored on ASMLIB or EDX002 may be used as copycode modules in 
assemblies using $EDXL for a language control data set. If copycode 
data sets reside on other logical volumes, $EDXL must be modified 
(*COPYCOD statements added) to define those volumes to $EDXASM 
as copycode volumes, or a user-defined language control data set con­
taining the new *COPYCOD definitions must be used for the assembly. 
A user-defined language control data set might be preferred to avoid 
altering $EDXL. 

Figures 17-91 through 17-98 will illustrate how to set up a user-defined 
language control data set, and how to code the COPY function in a user 
program. 

In Figures 17-91through17-93, the system-supplied language control 
data set, $EDXL, is modified to establish volume EDX003 as a copycode 
volume. The modified version is stored in the user-defined language 
control data set STATEDXL, leaving $EDXL undisturbed. Using 
$FSEDIT, the system-supplied language control data set $EDXL is read 
into the edit work data set, and EDIT mode (Primary Option 2) is 
entered. After scrolling to the bottom of the data set, the screen in 
Figure 17-91 is displayed. 

Online Program Preparation 17-59 



17-60 SR30-0220 

EDIT --- EDITWORK, EDX002 278 ( 543)---------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCROLL ===>HALF 

00264 CONVTD 
00265 *OVERLAY SASMOOOG ASt1L I B PLOTGIN GIN SCREEN XYPLOT YT PLOT 
00266 CONCAT TP STATUS 
00267 *OVERLAY SASMOOOH ASMLIB BSCRE!\D BSC\IR I TE GSCOPE~I BSCCLOSE BSC IOCG 
00268 BSCLINE 
00269 *OVERLAY SASMOOOI l\SMLIB f'ORMAT 
00270 *OVERLAY SASMOOOQ ASMLIB FIRSTQ LAS TC) t~EXT0 DEFINEQ 
00271 *OVERLAY SASMEXIO ASMLIB EX!flDEV !DCB DCG EXOPEN EXIO 
002 72 *OVERLAY SASMOOOS ASMLIG SYSTEM STORE MAP DISK TIMER 
00273 *OVERLAY SASMOOOT ASMLIB TERMHIAL 
00274 *OVERLAY SASMOOOU ASMLIB HOSTCOMM SENSOR IO DOGS IO GETMAIN FREEMAIN 
00275 *OVERLAY SASMOOOF ASMLIB ASMERROR S !DEF DTE SLE 
00276 *COPYCOD ASMLIB 
00277 *COPYCOJ EDX002 
00278 **STOP** 
***** **** BOTTOM OF DATA *************************************************** 

Figure 17-91. Program preparation (17) 

Using the insert line command, a copycode definition is placed in front 
of the **STOP** statement. 

EDIT --- EDITWORK, EDX002 278( 543)---------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCRCLL ===>HALF 
00264 CONVTD 
00265 *OVERLAY $ASMOOOG ASMLIB PLOTGIN GIN SCREEN XYPLOT YPLOT 
00266 CONCAT TP STATUS 
002 6 7 *OVERLAY $ASMOOOH ASMLIB BSCREAD BSCWR ITE BSCOPEN BSCCLOSE BSC IOCB 
00268 BSCLINE 
00269 *OVERLAY SASMOOO I A9~L I B FORMAT 
00270 *OVERLAY SASMOOOQ ASMLIB FIRSTQ LASTQ NE:XTQ DEFINEQ 
00271 *OVERLAY SASMEXIO ASMLIB EXIODEV IDCB DCB EXOPEN EXIO 
00272 *OVERLAY $ASMOOOS ASMLIB SYSTEM STOREMAP DISK TIMER 
00273 *OVERLAY $ASMOOOT ASMLIB TERMINAL 
00274 *OVERLAY SASMOOOU ASMLIB HOSTCOMM SENSORIO DDBSIO GETMAIN FREEMA IN 
00275 *OVERLAY SASMOOOF ASMLIB ASMERROR $!DEF OTE SLE 
00276 *COPYCOD ASMLIB 
00277 *COPYCOD EDX002 
..... *COPYCOD EDX003 
00278 **STOP** 
***** **** BOTTOM OF DATA *************************************************** 

Figure 17-92. Program preparation (18) 



EDX003 is now defined as a copycode volume. The edit work data set 
is now written into data set STATEDXL, which was previously allocated 
for this purpose. 

--------------------4--- $FSEDIT PRIMARY OPTION MENU -------------------------­
SELECT OPTION ===> 

1 BROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHANGE DATASET 
3 READ - ~EAD DATASET FROM HOST/NATIVE 
4 WRITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

WRITE TO NATIVE? [I] 

ENTER VOLUME LABEL: lrnxooz STATEDXLI 

Figure 17-93. Program preparation (191 

Online Program Preparation 17-61 



17-62 SR30-0220 

In Figures 17-94 and 17-95, a portion of code is extracted from the 
source data set STATSRC and stored on volume EDX003 in a data set 
named ROLL. This data set will be used as a copycode module. 

Again using $FSEDIT, the roll screen instructions from STATSRC 
are read into the work area, and identifying comments inserted at the 
beginning and end of the data set. This is accomplished by: 

1. READ (Primary Option 3) STATSRC into work data set, 

2. EDIT (Primary Option 2) and block delete statements 10 through 
70, then statements 150 through 700 (see Figure 17-78) leaving 
only the "roll screen" statements 

3. Insert comments at top and bottom, resulting in the screen shown 
in Figure 17-94. 

EDIT --- EDITWORK, EDX002 13( 243)----------------------- COLUMNS 001 072 
COMMAND INPUT ===> SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 * 
00020 * START OF "COPYCODE" MODULE 
00030 * 
00040 START 
00050 
00060 
00070 
00080 
00090 
00100 
00110 * 

ENQT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PRINTEXT 
PR IN TC:XT 
DEQT 

IOCBl 
'CLASS ROSTER PROGRAM' ,SPACES=15,LINE=l 
I HIT "ATTN" AND ENTER "END" TO END I ,SKIP=2 
I THE PROGRAM I 

'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2 
' BRING UP THE ENTRY SCREEN' 

00120 * END OF "COPYCODE" MODULE 
00130 * 
***** **** BOTTOM OF DATA **************************************************** 

Figure 17-94. Program preparation (20) 



Now the COPY CODE module is written to data set ROLL (Figure 
17-95). 

--------------------4--- $FSEDIT PRIMARY OPTION MENU ------------------------­
SELECT OPTION ===> 

1 BROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHANGE DATASET 
3 READ - READ DATASET FROM HOST/NATIVE 
4 WRITE - WRITE DATASET TO HOST/NATIVE 
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEM PRINTER 
7 MERGE - MERGE DATA FROM A SOURCE DATASET 
8 END - TERMINATE $FSEDIT 

WRITE TO NA TI VE? 11] 

ENTER VOLUME LABEL: IEDX003 ROLL I 

Figure 17-95. Program preparation (21) 

In Figures 17-96 through 17-98, STATSRC is again read into the edit 
work area, and modified to use the COPY function. 

In Figure 17-96, STATSRC has been read into the work data set, and 
EDIT mode has been entered. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

70( 243)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM 
00020 EXTRN 
00030 IMAGEBUF BUFFER 
00040 DSETNAME TEXT 
00050 IOCBl IOCB 
00060 IOCB2 IOCB 
00070 ATTNLIST 

[ill})0080 START ENQT 
00090 PRINTEXT 
00100 PRINTEXT 
00110 PRINTEXT 
00120 PR IN TEXT 
00130 PRINTEXT 

[@Jo 140 DEQT 
00150 CHECK WAIT 
00160 IF 
00170 GETIMAGE CALL 
00180 IF 
00190 MOVE 
00200 PRINTEXT 
00210 PRINTNUM 

START 
$IMOPEN,$IMDEFN,$IMPROT,$IMDATA 
768,BYTES 
I VIDE01,EDX002 I 

NHIST=O 
SCREEN=STATI C 
(ENO,OUT,$PF,STATIC) 
IOCBl 
'CLASS ROSTER PROGRAM',SPACES=l5,LINE=l 
I HIT "ATTN" ANO ENTER "END" TO END I ,SKIP=2 
I THE PROGRAM I 

'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2 
I BRING UP THE ENTRY SCREEN I 

ATTNECB, RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
$IMOPEN,(DSETNAME),(IMAGEBUF) 
(XMPLSTAT+Z,NE,-1) 
ERR CODE, XMP LST AT +2 
'@IMAGE OPEN ERROR, CODE =' 
ERRCODE 

Figure 17-96. Program preparation (22) 

Online Program Preparation 17-63 



1 7-64 SR30-0220 

The "DD" to the left of statement 80 and 140 will perform a block 
delete of the statements that wi II be brought in as copy code. In 
Figure 17-97, the ENTER key has been depressed, and the delete is 
done. 

EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

63( 243)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM 
00020 EXT RN 
00030 IMAGEBUF BUFFER 
00040 DSETNAME TEXT 
00050 IOCBl !DCB 
00060 IOCB2 IOCB 
00070 ATTN LIST 
00150 CHECK WAIT 
00160 IF 
00170 GETIMAGE CALL 
00180 IF 
00190 MOVE 
00200 PRINTEXT 
00210 PRINTNUM 
00220 GOTO 
00230 ENDIF 
00240 CALL 
00250 ENQT 
00260 TERMCTRL 
00270 CALL 
00280 CALL 

START 
$1MOPEN,$IMDEFN,$IMPROT,$IMDATA 
768,BYTES 
'VIDEOl,ASMVOL I 

NHIST=O 
SCREEN=STATIC 
(END,OUT,$PF,STATIC) 
ATTNECB,RESET 
(ATTNECB,EQ,l),GOTO,ENDIT 
$1MOPEN,(DSETNAME),(IMAGEBUF) 
(XMPLSTAT+Z,NE,-1) 
ERRCODE,XMPLSTAT+2 
'@IMAGE OPEN ERROR, CODE=' 
ERRCODE 
ERRQUERY 

$IMDEFN,(IOCB2),(IMAGEBUF) 
IOCB2 
BLANK 
$IMPROT,(IMAGEBUF),0 
$IMDATA,(IMAGEBUF) 

Figure 17-97. Program preparation (23) 

In Figure 17-98, a COPY command is inserted, naming the copy code 
module ROLL. When the assembler encounters the COPY statement, 
it will go to the language control data set to find the copy code volume 
definitions and locate the data set containing the copy code module. 
The source statements in ROLL will be inserted at this point in the 
source module, and assembled as part of ST ATS RC. 



EDIT --- EDITWORK, EDX002 
COMMAND INPUT ===> 

66( 243)---------------------- COLUMNS 001 072 
SCROLL ===>HALF 

***** ***** TOP OF DATA ****************************************************** 
00010 XMPLSTAT PROGRAM 
00020 EXT RN 
00030 IMAGEBUF BUFFER 
00040 DSETNAME TEXT 
00050 IOCBl IOCB 
00060 IOCB2 IOCB 
00070 ATTN LIST 
00071 * 
00072 COPY 
00073 * 
00150 CHECK WAIT 
00160 IF 
00170 GETIMAGE CALL 
00180 IF 
00190 MOVE 
00200 PRINTEXT 
00210 PRINTNUM 
00220 GOTO 
00230 ENDIF 
00240 CALL 
00250 ENQT 

START 
$IMOPEN,$IMDEFN,$IMPROT,$IMDATA 
768 ,BYTES 
'VIDE01,EDX002' 
NHIST=O 
SCREEN=STAT IC 
(END,OU1 ,$PF,STAT1C) 

ROLL 

ATTNECB,RESET 
(ATTNECB,EQ, 1) ,GOTO,ENDIT 
$1MOPEN,(DSETNAME),(IMAGEBUF) 
(XMPLSTAT+2,NE,-l) 
ERRCODE,XMPLSTAT+2 
'@IMAGE OPEN ERROR, CODE=' 
ERR CODE 
ERRQUERY 

$IMDEFN,(IOCB2),(IMAGEBUF) 
IOCB2 

Figure 17-98. Program preparation (24) 

The edit work data set is saved back into STATSRC using the WRITE 
function (Primary Option 4), and the source module is ready for 
assembly. 

Online Program Preparation 17-65 



Job Stream Procedure 

17-66 SR30-0220 

~ RUN STEP 2, STEP 3, STEP 4, AND 

~ STEP5ASBATCHJOBSTREAM 

Figure 17-99. Job stream procedure 

Appendix B, Figure B-4, is a listing of a batch job stream processor 
($JOBUTI L) procedure file. The statements in a procedure file are 
created using $EDIT1 Nor $FSEDIT, and saved in a preallocated data 
set. In this example, the procedure data set is STATPROC on EDX002. 

When $JOBUTI Lis loaded, the operator is prompted for the name of 
a procedure file. 

> l$L $JOBUTILI 
$JOBUTIL 3P,00:05:32, LP= 5FOO 
ENTER PROCEDURE (NAME, VOLUME): 1.--ST_A_T-PR_O__,C I 

Figure 17-100. Program preparation (25) 



In Appendix 8, Figure 8-4, the JOB command at statement 10 causes 
the display of a "job started" message on the loading terminal. 

> l$L $JOBUTI LI 
$JOBUTIL 3P,00:05:32, LP= 5FOO 
ENTER PROCEDURE (NAME,VOLUME):I -ST-A-TP_R_O __ CI 
*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 *** 

JOB STATIC 

Figure 17-101. Program preparation (26) 

The LOG command (statement 20, Figure 84) will cause the procedure 
file statements (other than internal comments) to print on the system 
printer. Statements 120 through 190 wi II load and execute the 
assembler. The source, work, and.output data sets are specified in the 
OS commands. The PARM command at statement 170 directs the 
assembly listing to the system printer, and specifies STATEDXL as the 
language control data set for this assembly (STATEDXL contains the 
*COPYCOD statement for volume EDX003, where ROLL is stored). 
The NOMSG command following the PARM prevents the $EDXASM 
load message from being displayed on the loading terminal, but the 
REMARK at statement 130 will appear. 

> l$L $JOBUTI LI 
$JOBUTIL 3P,00:05:32, LP= 5FOO 
ENTER PROCEDURE (NAME,VOLUME): ISTATPROCI 
***JOB - STATIC - STARTED AT 00:05:55 00/00/00 *** 

JOB STATIC 
REMARK ASSEMBLY OF 1 STATSRC 1 STARTED 

Figure 17-102. Program preparation (27) 

The normal completion code for an error-free assembly is -1. The 
JUMP command (statement 200) tests the assembler completion code. 
If it is not equal to minus 1, the JUMP will transfer control to the 
label BADASM, which is defined by the LABEL command at state­
ment 410. The REMARK at 420 would be displayed on the loading 
terminal, and the JUMP at 430 would transfer to label END, ending 
the job. 

Online Program Preparation 17-67 



17-68 SR30-0220 

Assuming norma·I assembler operation, $JOB UT IL would continue 
with statements through 350, the link edit step. 

Through the PAUSE command, $JOBUTI L allows input of job control 
commands by an operator. To illustrate this capability, the link control 
data set is not specified in a DS command. Instead, the PAUSE at state­
ment 300 will allow entry of the link control data set name. When the 
link procedure is entered, the two REMARK statements preceding the 
PAUSE will be displayed, along with the PAUSE operator instructions, 
and $JOB UT IL will wait for the operator to press ATTENTION and 
enter a command. 

> l$L $JOB UT I LI 
$JOBUTIL 3P,00:05:32, LP= 5FOO 
ENTER PROCEDURE (NAME,VOLUME): l.-ST_A_T-PR-0--.Cl 
***JOB - STATIC - STARTED AT 00:05:55 00/00/00 *** 

JOB 
REMARK 
REMARK 
REMARK 

STATIC 
ASSEMBLY OF 'STATSRC' STARTED 
LINK EDIT OF 'ASMOUT' OBJECT MODULE STARTED 
NAME OF LINK CONTROL DATA SET ? 

PAUSE-*-ATTN:GO/ENTER/ABORT 

PAUSE 
Figure 17-103. Program preparation (28) 

The operator can continue (GO), enter a job control command 
(ENTER), or abort the job stream processor and end the job (ABORT). 
In this example, the operator wants to enter a command, so ENTER is 
requested. The operator is prompted for the command and the com­
mand operand. When GO is entered in response to the COMMAND 
prompt, $JOBUTI L continues. 



> l$L $JOBUTILl 
$JOBUTIL 3P,00:47:17, LP= 5FOO 
ENTER PROCEDURE (NAME, VOLUME): ....... IST__..A_T-PR_O__,C I 
***JOB-· STATIC - STAR.TED AT 00:47:26 00/00/00 *** 

JOB 
REMARK 
REMARK 
REMARK 

STATIC 
ASSEMBLY OF 1 STATSRC 1 STARTED 
LINK EDIT OF 'ASMOUT' OBJECT MODULE STARTED 
NAME OF LINK CONTROL DATA SET ? 

PAUSE-*-ATTN:GO/ENTER/ABORT 

PAUSE 
> lENTERl 

EN.TER COMMAND lliS) 

ENTER OPERAND ILINKSTATI 

ENTER COMMAND lli:Q) 

Figure 17-104. Program preparation (29) 

$JOB UT IL allows secondary or nested procecjures to be invoked from 
a primary procedure. To illustrate, the formatting job control state­
ments have been defined as a nested procedure, stored in data set 
FORMPROC. 

00010 ************************************************************************** 
00020 * THIS IS A 11 NESTED 11 PROCEDURE, H!VOKED FROM 
00030 * 1 $TATPROC 1 BY THE 1 PROC 1 COMMAND. $JOBUTIL 
00040 * SUPPORTS ONE LEVEL OF NESTING. 
00050 * 
00060 REMARK FORMATTING OF 'LINKOUT' STARTED 
00070 PROGRAM $UPDATE 
00080 PARM $SYSPRTR LINKOUT STATPROG YES 
00090 NOMSG 
00100 EXEC 
00110 EOP 

Figure 17-105. Program preparation (30) 

Online Program Preparation 17-69 



17-70 SR30-0220 

The primary procedure (Appendix B, Figure B-4), after testing for a 
successful link edit (JUMP command at statement 360), invokes the 
nested procedure FORMPROC by the PROC command at statement 
370. At the conclusion of the formatting step, control is returned to 
the primary procedure at statement 380. If $UPDATE executed 
properly, the job is ended without displaying the error message 
(REMARK at 390). 

> l$L $JOBUTI LI 
ENTER PROCEDURE (NAME, VOLUME) : !ST ATP ROC I 
*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 *** 

JOB 
REMARK 
REMARK 
REMARK 

STATIC 
ASSEMBLY OF 1 STATSRC 1 STARTED 
LINK EDIT OF 1 ASMOUT 1 OBJECT MODULE STARTED 
NAME OF LINK CONTROL DATA SET ? 

PAUSE-*-ATTN:GO/ENTER/ABORT 

PAUSE 
>I ENTER I 

ENTER COMMAND~ 

ENTER OPERAND ILINKSTATI 

ENTER COMMAND lliQ] 
REMARK FORMATTING OF 1 LINKOUT 1 STARTED 

$JOBUTIL ENDED AT 00:10:18 

Figure 17-106. Program preparation (31) 

Figure B-5 in Appendix B is the $SYSPRTR output resulting from exe­
cution of the $JOB UT IL procedure file STATPROC, including the 
assembly listing with the ROLL copy code statements successfully 
merged. 



LOG SSYSPRTR 
*** JOB - SSUPPREP - STARTED *** 
JOB SSUPPREP 
PROGRAM SEDXASMrASMLIB 
NOMSG 
PARM 
DS SEDXDEFS,EDX002 
DS ASMWORKrEDX002 
DS SEDXDEFOrSUPLIB 
EXEC 

Figure A-1. Procedure file statements controlling assembly 

0000 
OOOA 
0014 
OOH: 
0()28 
0032 
oo:3c 
0046 
0050 
005A 
0064 
006E 
0078 
0082 
008C 
0096 
OOAO 
OOAA 
0084 
OOBE 
OOC8 
00[12 
OODC 
OOE6 
OOFO 
OOFA 
0104 
010E 
0118 
Ol.22 
012C 
0136 
0140 
014A 
0154 
015E 
0162 
016C 
0176 
0180 
OHIA 
0194 
Ol9E 
01A8 
01AC 
0186 
01CO 

EDX ASSEMBLER STATISTICS 

SOURCE INPUT - $EDXDEFS,EDX002 
WORK DATA SET - ASMWORK rEDX002 
OBJECT MODULE - SEDXDEFOrSUPLIB 
STATEMENTS PROCESSED - 26 

NO STATEMENTS FLAGGED 

SE DX DEF 
OOOA OOOA OOOA 0000 0000 
0000 0000 0000 0020 001.2 
0011 001.l 0000 0000 0000 
0000 0000 0044 009A OOFO 
01.46 014C 0152 01.58 01.:':iE 
0090 OOE6 01.3C OJ.4:~ 0148 
014E 0154 015A FFFF FFFF 
0100 FFFF 0100 FFFF 0100 
FFFF 0100 FFFF 0100 FFFF 
01.00 FFFF 0100 FFFF 0100 
FFFF 0100 FFFF 0100 FFFF 
Ol.00 FFFF 0100 FFFF ()100 
FFFF 0100 FFFF 0100 FFFF 
Ol.00 FFFF 01.00 FFFF 0100 
FFFF 0100 FFFF 0100 0000 
01.00 FFFF FFFF 0100 FFFF 
0100 FFFF 0100 FFFF 0100 
FFFF 0100 FFFF Ol.00 FFFF 
0100 FFFF 0100 FFFF 0100 
FFFF 0100 FFFF 0100 FFFF 
0100 FFFF 0100 FFFF 0100 
FFFF 0100 FFFF ()100 FFFF 
01.00 FFFF 01.00 FFFF Ol.00 
FFFF 0100 0000 0100 FFFF 
FFFF 0100 FFFF 0100 FFFF 
0100 FFFF ()100 FFFF 010() 
FFFF 0100 FFFF 0100 FFFF 
0100 FFFF 0100 FFFF ()100 
FFFF 010() FFFF 0100 FFFF 
Ol.00 FFFF 0100 FFFF 0100 
FFFF 0100 FFFF 0100 FFFF 
0100 FFFF 0100 FFFF 0100 
0000 0100 FFFF 0000 0100 
FFFF 0000 Ol.00 FFFF 0000 
0100 FFFF 0000 OlOO FFFF 
0000 0100 
0000 0028 2440 0000 0000 
0000 0000 0000 0000 0000 
0000 0000 0000 03E8 4E1F 
lFl.C 1F1E 1F1E 1F1F l.E:LF 
1E1F 0000 0028 2441 0000 
6E41 0000 6441 0000 6741 
00()0 015C 0000 0()()0 0000 
OBBB EA60 
0()00 0106 4040 4040 4040 
0000 004[1 OOOE 01AC FFFF 
0000 0000 0000 0000 0000 

Figure A-2. Assembly statistics and listing (1 of 4) 

CSE CT 
SYSTEM 

TIMER 

DISK 

Appendix A. SYSGEN Listings 

00000010 
STORAGE~12e,MAXPROG=<10r10rlO>rPARTS=C18r17,17) 00000020 

ADDRESS=40 00000030 

DEVICE=4964,ADDRESS=02 00000040 

SYSGEN Listings A-1 



OlCA 023E 0332 0000 OHIO 0000 
01D4 0001 000[1 0000 7002 0001 
01DE 8007 0000 0000 0000 0000 
Ol.E8 Ol.EE 0000 0000 800~j 0000 
01F2 0000 0000 0000 OJ.FE 0000 
OlFC 0000 2009 0000 0000 0000 
0206 0000 0000 0000 0000 ?F02 
0210 0212 2000 0000 0000 0000 
021A 0000 0000 0008 on2 0000 
0224 0000 0000 0000 0000 0000 
0238 0000 0000 0000 
023E 0000 OOAA C~)C4 E7FO FOF2 DISK DEVICE=4962-2,ADDRESS=03,VOLSER=EDX002, CCCC00000050 
0248 0000 0082 OOFl 023E FFFF VOLORG=O,VOLSIZE=130,LIBORG=241 00000060 
0252 0000 0000 0000 0000 0000 
025C 02DO 033;! 0000 0262 0000 
0266 0002 003C 0000 7003 0001 
0270 8007 0000 0000 00()0 0000 
027A 0280 0000 0000 8005 0000 
0284 0000 0000 0000 0290 0000 
02EIE 0000 2009 0000 0000 0000 
0298 0000 0000 0000 0000 lF03 
02A2 02A4 2000 0000 0000 0000 
02AC 0000 0000 0008 02B4 0000 
02B6 0000 0000 0000 0000 0000 
02CA 0000 0000 0000 
owo 0000 OOAA C1E2 [141)3 C9C2 DISK DEVICE=4962-2.voLSER=ASMLIB.BASEVOL=EDX002. CCCCCCOOOOOO?O 
02DA 0082 0010 0001 023[ FFFF VOLORG=130,VOLSIZE=16•LIBORG=1 00000080 
02E4 0000 0000 0000 0000 0000 
02EE 02FO 
02FO 0000 OOAA E2E4 [17[13 C9C2 DHlK DEVICE=4962-2,VOLSER~SUPLIB,BASEVOL=EDX002, CCCCC00000090 
02FA 0092 0010 0001 02:5E FFFF VOLORG=l.46•VOLSIZE=16•LIBORG=1 00000100 
0304 0000 0000 0000 0000 0000 
030E 0310 
03l.O 0000 OOAA C5C4 E7FO FOF3 DISK DEVICE=4962-2.voLSER=EDX003,BASEVOL=EDX002· ccccccooooo110 
031A OOA2 008[1 ()001 023E FFFF VOLORG=162vVOLSIZE=141,LIBORG=1,ENT.l=YES 00000120 
0324 0000 0000 0000 0000 0000 
032E 0330 FFFF 0000 0000 0000 
0338 0000 0000 00[10 0000 0000 
0342 0332 0000 0000 0000 0000 
034C 0000 0000 0001 0096 0000 
0356 0000 FFFF 0000 0000 0000 
0360 0000 0000 0000 0000 000() 
0388 0332 0000 0000 0000 0000 
0392 0000 0000 0000 0000 0000 
039C 0000 000() 0000 0000 
03A4 0400 0000 0000 0000 0000 $SYSLDG TERMINAL. DEVICE=4979,ADDRESBm04,HT.ICOPY=$8YSPRTR,PART=1 OOOOOl.30 
03AE OOM 0000 0000 0000 0000 
03B8 0000 0000 6004 000:5 6F04 
03C2 0000 2004 0406 ?004 03AC 
0:5CC 7F04 03AC 0000 0000 0006 
03[16 0400 0000 oooc OOl.7 oorn 
03[() 00~)0 ocoo oooc 0017 0018 
03EA 0050 ocoo 1850 5BE2 E8E2 
03F4 [13[16 C740 0000 FFFF 000() 
03FE 059A 0000 0406 0000 0000 
0408 FFFF 0000 A6CF 6F03 0000 
0412 0000 044:~ FFFF 4:524 0400 
04l.C 6B02 041C 6F03 0000 0000 
0426 0442 5600 A6DE 6F03 0000 
0430 0000 04£4 0000 4324 0400 
043A 680;~ 043A 04E4 OAF2 0000 
0444 0000 0000 FFFF 0000 0000 
044E 0000 0000 0000 0000 0000 
04~i8 0101 0000 0000 0000 0000 
0462 0000 0000 0000 0000 0000 
04BA 0000 0494 0494 0000 0000 
0494 0000 0000 0000 0000 0000 
04EE oono 0000 0000 04E4 000() 
04F8 0000 0000 0000 0000 00()() 
0502 0001 OOOA 0000 0000 FFFF 
050C 0000 0000 0::;10 0000 0000 
O~il.6 0512 D2C2 E3C1 En12 0065 
0520 0000 0000 00()0 0000 0000 
052A 0000 0000 FFFF 0000 0000 
0534 0400 0000 0000 04E4 0000 
O~i3E 0000 0000 0000 0000 0000 
0552 0000 0000 
o::i56 6000 0003 6FOO 0000 2000 $SYSLOGA TERMINAL. DEVICE=TTY.ADDREss~oo,cRDELAY=4.PAGSIZE=24v CCCCCOOOOO:l.40 
0560 0000 5000 0000 1000 0000 BOTM=23,SCREEN=NO•PART=2 00000150 
056A 7F08 ODOA 0600 0000 0000 
0574 0000 001? 0018 0050 0000 
0588 4250 5BE2 E8E2 03[16 C7C1. 
0592 0000 FFFF 0000 07::i4 0000 
059C 0010 0000 0000 FFFF 0000 
05A6 A6CF 6F03 0000 0000 05DC 
05BO FFFF 4324 059A 6B02 05B6 
05BA 6F03 0000 0000 05DC 5600 
O:':iC4 A6DE 6F03 0000 0000 067E 
05CE 0000 4324 059A 6802 05[14 

Figure A-2. Assembly statistics and listing (2 of 4) 

A-2 SR30-0220 



o:-:in8 067E 0000 0000 0000 0000 
05E2 FFFF 0000 0000 0000 0000 
05EC 0000 0000 0000 1H01 0000 
05F6 0000 0000 0000 0000 0000 
061E 0000 0000 0000 0000 062E 
0628 062E 0000 0000 0000 0000 
0632 0000 0000 0000 0000 0000 
0682 0000 0000 0111 OO[IO 0000 
068C 0000 067E 0000 0000 0000 
0696 0000 0000 0000 0001 OOOA 
06AO 0000 0000 FFFF 0000 0000 
06AA 06AA 0000 0000 06AC D2C2 
06B4 E3C1 E2D2 0066 0000 0000 
06BE 0000 0000 0000 0000 0000 
06C8 FFFF 0000 0000 059A 0000 
06[12 0000 067E 0000 0000 0000 
06DC 0000 0000 0000 0000 0000 
06FO 0000 0000 0000 0000 0000 LINEPRTR TERMINAL DEVICE=4973,ADDRESS=21 00000160· 
06FA 0000 0000 0000 0080 0000 
0704 0000 0000 0000 0000 0000 
070E 0000 6021 0003 6F21 0000 
071.8 2021 0206 7021 0700 7F21 
0722 0700 0000 0000 0000 0000 
072C 0000 0003 033E 0042 0084 
0736 0300 0003 033E 0042 0084 
0740 0300 FFB4 D3C9 D5C5 D7D9 
074A E3D9 0000 FFFF 0000 0938 
0754 0000 0306 0000 0000 FFFF 
075E 0000 A6CF 6F03 0000 0000 
0768 0796 FFFF 4324 0754 6802 
0772 0770 6F03 0000 0000 0796 
one 5600 A6DE 6F03 OMO 0000 
0786 086C 0000 4324 0754 6802 
079() 078E 086C 0000 0000 0000 
079A 0000 FFFF 0000 0000 0000 
07A4 0000 0000 0000 0000 0101 
07AE 0000 0000 0000 0000 0000 
07EO 07E8 07E8 0000 0000 0000 
07EA 0000 0000 0000 0000 0000 
0876 OODO 0000 0000 086C 0000 
0880 0000 0000 0000 0000 0000 
088A 0001 OOOA 0000 0000 FFFF 
0894 0000 0000 0898 0000 0000 
089E 089A D2C2 E3C1 E2D2 0067 
OBAS 0000 0000 0000 0000 0000 
08B2 0000 0000 FFFF 0000 0000 
08BC 0754 0000 0()00 086C 0000 
08C6 0000 0000 0000 0000 0000 
OBDA 0000 0000 
08DE 0000 0000 0000 0000 0000 DSPLYl TERMINAL DEVICE;4978,ADDRESS=06,HDCOPY=SSYSPRTR,PART=3 00000170 
08F2 0000 6006 0003 6F06 0000 
08FC ~~006 0406 7006 08E4 7F06 
0906 OBE4 0000 0000 0006 0400 
0910 0000 oooc 0017 0018 0050 
091A OGOO oooc 0017 0018 0050 
0924 ocoo 1850 C4E2 D7D3 E8F1 
092E 4040 0000 FFFF 0000 OAF2 
0938 0000 040E 0000 0000 FFFF 
0942 0000 A6CF 6F03 0000 0000 
094C 097A FFFF 4324 0938 6802 
0956 0954 6F03 0000 0000 097A 
0960 5600 A6[1E 6F03 0000 0000 
096A OA1G 0000 4324 0938 6802 
0974 0972 OAlC OAF2 0000 0000 
097E 0000 FFFF 0000 0000 0000 
0988 0000 0000 0000 0000 0101 
0992 0000 0000 0000 0000 0000 
09G4 09CC 09CC 0000 0000 0000 
09CE 0000 0000 0000 0000 0000 
OAl.E 0000 0000 0000 0222 OODO 
OA28 0000 0000 OA1C 0000 0000 
OA32 0000 0000 0000 0000 0001 
OA3C OOOA 0000 0000 FFFF 0000 
OA46 0000 OA48 0000 0000 OA4A 
OA50 D2C2 E3C1 E2I12 0068 0000 
OA5A 0000 0000 0000 0000 0000 
OA64 0000 FFFF 0000 0000 0938 
OA6E 0000 0000 OAlC 0000 0000 
OA78 0000 0000 0000 0000 0000 
OA8C 0000 
OABE 0000 0000 0000 0000 0000 SSYSPRTR TERMINAL DEVICE=4974,A[IDRESS=01,END=YES 00000180 
OA98 0000 0000 0000 0080 0000 
OAA2 0000 0000 0000 0000 0000 
OAAC 0000 6001 0003 6F01 0000 
OAB6 2001 0206 7001 OA9E 7F01 
OACO OA9E 0000 0000 0000 0000 
OACA 0000 0003 033E 0042 0084 
0A[l4 0300 0003 033E 0042 0084 
OADE 0300 FF84 5I!E2 E8E2 1)7[19 

Figure A-2. Assembly statistics and listing (3 of 4) 

SYSGEN Listings A-3 



OAE8 E3D9 0000 FFFF ()000 0000 
OAF2 0000 0206 0000 0000 FFFF 
OAFC 0000 A6CF 6F03 0000 0000 
OB06 OB34 FFFF 4324 OAF2 6802 
OB10 OBOE 6F03 0000 0000 OB34 
OBJ.A 5600 A6DE 6F03 0000 0000 
OB24 OCOA 0000 4324 OAF2 6802 
OB2E OB2C OCOA 0000 0000 000() 
OB38 0000 FFFF 0000 0000 0000 
OB42 0000 0000 0000 0000 0101 
OB4C 0000 0000 0000 0000 0000 
OB7E OB86 OBf.-!6 0000 0000 0000 
OB88 0000 0000 0000 0000 0000 
OCJ.4 00[10 0000 0000 OCOA 0000 
OC1E 0000 0000 0000 0000 0000 
OC28 0001 OOOA 0000 0000 FFFF 
OC32 0000 0000 OC36 0000 0000 
OC3C OC38 n2c2 E3C1 E2D2 ()069 
OC46 0000 0000 0000 ()00() 00()() 
OC50 0000 0000 FFFF 0000 0000 
OC5A OAF2 0000 0000 OCOA 0000 
OC64 0000 0000 0000 0000 0000 
OC78 0000 0000 

$SYSCOM 
OC7C FFFF 0000 0000 0000 0000 
OC86 FFFF 0000 0000 0000 0000 
OC90 FFFF 0000 0000 
OC96 FFFF 0000 0000 

$EDXDEF ENTRY 0000 
SVCI WXTF~N 
F'DST WXTRN 
$STORAGE ENTRY 0000 
STOREMAF' ENTRY 0022 
$BLOCKCT ENTRY 0000 
MAF'EN[I ENTRY 003;! 
$MEMSIZE ENTRY 001.0 
$F'ARTSZE ENTRY 0012 
TIMERDDB ENTRY 0162 
T'.CMERO ENTRY 0162 
TIMERl. ENTRY OHlC 
TI MERO IA EXTRN 
TIMEFUIA EXTRN 
DISKDIIBS ENTRY OlAC 
DISKIOOO EXTRN 
TERMDEFS ENTli:Y 03A4 
FIRSTCCB ENTRY 03A4 
SVC EXTRN 
WAIT E:XTRN 
ATTACH EXTRN 
KBTASK EXTRN 
$SYSLOG ENTRY 0400 
IA4979 EXT RN 
I04979 EXTRN 
$SYSPFnR ENTRY OAF2 
TRASCII EXTRN 
$SYSLOGA ENTRY 059A 
I ATTY EXTRN 
IO TERM EXTRN 
LINEPRTR ENTRY 07~j4 

IA497~~ EXTRN 
104974 EXTRN 
DBPL Y1. ENTRY 0938 
IA4<f78 EXTRN 
IA4974 EXTRN 
$SYSCOM ENTRY OC7C 

Figure A-2. Assembly statistics and listing (4 of 4) 

COMF'LETION CODE - -l 

$E[IXASM 
,JUMP 
F'ROGRAM 
NO MSG 
PARM 
DS 
DS 
DS 
EXEC 

ENDED 
END.JOB, GT, 4 
$LINK, ASML.IB 

$SYSPRTR 
1...INKCNTL~EDX002 
LEWORK1,EDX002 
L..EWDF~K2, EDX002 

SL.INK EXECUTION STARTED 

Figure A-3. Loading link editor 

A-4 SR30-0222 

CSECT 
Cl CB 
ClCB 
ECB 
ECB 
STDREMAP 
END 

00000190 
00000200 
00000210 
0000022(} 
00000230 
00000240 
00000250 



$LINK EXECUTION CONTROL RECORDS 
FROM LINKCNTL,EDX002 

••••••••••••••••••••••••••••••••••••••••••••••••• 
• COMMENTS MAY BE INCLUDED BY AN • IN COLUMN 1 * 
* USE THIS TECHNIQUE TO OMIT INCLUDES • 
••••••••••••••••••••••••••••••••••••••••••••••••• 

OUTPUT SUPVLINKvEDX002 NOMAP ENTRY=$START 
* INCLUDE EDXSVC,SUPLIB •1• TASK SUPERVISOR-UP TO 64KB 

INCLUDE EDXSVCXL,SUPLID •1• TASK SUPERVISOR-OVER 64KB 
• INCLUDE $DDUGNUCvSUPLIB •2• RESIDENT $DEBUG SUPPORT 

INCLUDE EDXALUvSUPLIB INSTRUCTION EMULATOR/LIBRARY 
INCLUDE SEDXDEFOrSUPLIB SYSTEM CONTROL BLOCKS 
lNCLUDE DISKIO,SUPLIB *** DISK<ETTEJSUPPORT MODULE 
INCLUDE RLOADER,SUPLIB •3• MULTIPROGAMMING SUPPORT 
INCLUDE LPGMXPvSUPLIB •E• CROSS-PARTITION PROGRAM LOAD 

• INCLUDE IOLOADERrSUF~IB •4• SENSOR I/O LOADER 
INCLUDf EDXTID1SUPLIB •5• TERMINAL 1/0 SUPPORT 
INCLUDE EDXTERMQrSUPLIB •5• TERMINAL ENQ/DEQ 

• INCLUDE EDXFLDAT,SUPLIB •6• FLOATING POINT ARITHMETIC 
INCLUDE NOFLOAT,SUPLIB •6• NO FLOATING POINT ARITHMETIC 

* lNCLUDE EBFLCVT•SUPLID •7• EBCDIC/FLOATING POINT CONVERSION 
INCLUDE IOSTTYrSUPLIB *A* TTY TERMINAL SUPPORT 
INCLUDE IOS4979,SUPLIB *** 4978/4979 DISPLAY SUPPORT 
INCLUDE IOS4974rSUPLIB *** 4973/4974 PRINTER SUPPORT 

* INCLUDE IOSVIRTvSUPLIB *** 'VIRTUAL TERMINAL' SUPPORT 
* INCLUDE 1084013,SUPLIB •A• DIGITAL I/O TERMINAL SUPPORT 
* INCLUDE IOS2741,SUPLIB •A• 2741 TERMINAL SUPPORT 

INCLUDE IOSTERMvSUPLIB •B• COMMON TERMINAL SUPPORT 
INCLUDE TRASCII,SUPLIB •D• fTY ASCII/EBCDIC TRANSLATION 

• INCLUDE TREBASCvSUPLIB •G• TRANSLATE ASCII ACCA TERMINALS 
• INCLUDE fREBCD1SUPLIB •B• TRANSLATE 2741 EBCD TERMINALS 
• INCLUDE TRCRSP,SUPLIB •B• TRANSLATE 2741 CORRESP. 

INCLUDE EDXTIMER1SUPLIB *** TIMER SUPPORT 
* INCLUDE BSCAM,SUPLIB •H• BINARY SYNC ACCESS SUPPORT 
* INCLUDE IOSACCAvSUPLIB •G• ASCII ACCA TERMINAL SUPPORT 
• INCLUDE SBAI,SUPLIB *** ANALOG INPUT SUPPORT 
• INCLUDE SBAO.SUPLIB *** ANALOG OUTPUT SUPPORT 
* INCLUDE SBDIDOvSUPLIB *** DIGITAL INPUT/OUTPUT SUPPORT 
* INCLUDE SBPI1SUPLIB *** PROCESS INTERRUPT SUPPORT 
• INCLUDE SBCOM,SUPLIB *4* COMMON SENSOR I/O SUPPORl 

INCLUDE QUEUEIOvSUPLIB •K• QUEUE PROCESSING INSTRUCTIONS 
* INCLUDE fPCOMvSUPLIB •J• 'HCF' INTERFACE SUPPORT 
* INCLUDE IOSEXIOvSUPLIB *** EXIO DEVICE SUPPORT 

INCLUDE EDXSTART1SUPLIB IPL MODULE AND ERROR HANDLER 
INCLUDE EDXINIT,SUPLIB •9* SUPERVISOR INITIALIZATION 
INCLUDE DISKINIT,SUPLIB ••• DISK<ETTEl INITIALIZATION 
INCLUDE TERMINIT1SUPLIB •5• TERMINAL INITIALIZATION 
INCLUDE INIT4978.SUPLIB *** 4978 INITIALIZATION 

* INCLUDE BSCINITvSUPLIB •H• BSCAM INITIALIZATION 
• INCLUDE SBSCARAMvSUPLIB •H* BSC MLA RAM LOAD 
* INCLUDE SACCARAM1SUPLIB •G• ACCA MLA RAM LOAD 
* INCLUDE INIT40131SUPLIB •C• DIGITAL I/O TERMINAL INITIALIZE 

INCLUDE LOADINIT1SUPLIB •3• ~~OGRAM LOADER INITIALIZATION 
• INCLUDE SBIOINIT1SUPLIB *** SENSOR I/O INITIALIZATION 
* INCLUDE TPINIT1SUPLIB •J• 'HCF' INTERFACE INITIALIZATION 

INCLUDE TIMRINIT1SUPLIB *** TIMER INITIALIZATION 
• INCLUDE EXIOINIT,SUPLIB *** EXIO INITIALIZATION 

END 
***** UNRESOLVED EXTERNAL REFERENCES 

WXTRN $BSCFDDB 
wxrnN ~iTESTCOM 

lJXTRN IOV IRT 
WXTf(N ~.;TF'DVAltf( 

WXTRN EXOF'EN 
WXTf\N SADA 
WXTRN BSCENTRY 
WXTRN SDIX 
lJXTRN SDH3 
WXTRN SDOX 
WXTRN SAIX 
wxrnN ~mos 
lJXH\N SAIS 
WXTRN SDI 
WXTRN SAOX 
WXTF\N SDOP 
WXTRN SDO 
WXTRN SAI 
wxrnN STESTIN 
wx·rnN EXID 
WXTRN SH' 
lJXTf(N SAO 
WXTRN SDIA 
WXTRN ST ES TOUT 
WXTRN SDOA 
WXTRN SAIA 
WXTRN IOLOAD 
WXTF~N EXIOCLEN 
WXTRN DEQBSC 

Figure A-4. Link control file (1 of 2) 

SYSGEN Listings A-5 



WXTRN IOUNLOAD 
wxn(N EBFLDBL 
WXH<N EBFL.STD 
WXTRN FLEBDBL 
WXTF~N FLEBSTD 
WXTF<N WRACCA 
wxrnN RD2741 
WXTRN RD4013 
WXTF~N RDACCA 
WXTRN Wt<2'741 
WXTF~N WF~4013 
WXTF<N $FMYSEF 
WXTRN 1'·F'FWCi :L 
WXTRN EDXFLOAT 
WXTF~N EDXFLEND 
WXHO:N TPINIT 
WXTRN INIT4013 
WX.TRN BSCINIT 
WXTRN $TRCL.SB 
WXTRN SBIIHNIT 
WXTRN EXIOINIT 
WXTRN CSXINIT 
WXTRN $TRC~HA 

WXTRN ACCALS 
WXTRN SAC CARAM 

MODULE TEXT LENGTH= '75Bff, RLD COUNT= 2263 
SUPVLINK ADDEb TO EDX002 

SLINK COMPLETION CODEm -1 

~?L.I NK ENDED 
JUMP ENDJQB,GT,4 
PROGRAM $UF'DATE,EDX002 
NOMSG 
PARM SSYSPRTR SUPVLINK,EDX002 9EDXNLJCT,EDX002 YES 
EXEC 
%EDXNUCT SHJRED 

Figure A-4. Link control file ·(2 of 2) 

$UPDATE ENDED 
LABEL END JOB 

Figure A-5. End of SYSGEN 

A-6 SR30-0220 



0000 
OOOA 
0014 
001E 

0026 
0030 
0:528 
032A 
0334 
033A 
0344 
034E 
0358 
0362 
036C 
0374 
0378 
0382 
038C 
0396 
03AO 
03AA 
03B4 
03BE 
03C2 
03CC 
03D2 
03DC 
03E6 
03FO 
03FA 
03FC 
0406 
0410 
04l.A 
041C 
0420 
0428 
0430 
0438 
043E 
0448 
0452 
045C 
0462 

0466 
046E 
0472 
0474 
047C 
0482 
0488 
04SA 
048C 
0496 
049C 
04A2 
04A6 
04AC 
04BO 
04!~6 

04F.lA 

Appendix '8. Program Preparation Listings 

EDX ASSEMBLER STATISTICS 

SOURCE INPUT - STATSRCr~DX002 
WORK DATA SET - ASMWORKiEDX002 
OBJECT MODULE - ASMOUTrEDX002 
DATE: 00/00/00 AT 00:10:47 
ASSEMBLY TIME: 24 SECONDS 
StATEMENTS PROCESSED - 71 

NO STATEMENTS FLAGGED 

0808 D7D9 D6C7 D9C1 D440 XMPLSTAT PROGRAM 
0000 05D8 0362 0000 0000 

STAFH 

064C 0000 0000 0000 0100 
064A 0000 0000 0000 

0000 0300 0000 0000 0000 
0000 0000 0000 0000 0000 
0000 
OEOD E5C9 C4C5 tl6F1 6BC5 
C4E7 FOFO F240 
4040 4040 4040 4040 8000 
OOFF OOFF 7FFF 0000 0000 
4040 4040 4040 4040 8800 
OOFF OOFF 7FFF 0000 0000 
0002 0403 C5D5 C440 05A6 
0403 5BD7 C640 05AE 
1025 033A 
B02A 0001 OOOF 8026 1414 
C3D3 C1E2 E240 D9D6 E2E3 
C5D9 40D7 D9D6 C7D9 C1D4 
902A 0002 0000 8026 2221 
C8C9 E340 7DC1 E3E3 D57D 
40C1 D5C4 40C5 D5E3 C5D9 
407D C5D5 C47D 40E3 0640 
C5D5 C440 
8026 OCOC 40E3 C8C5 40D7 
[19[16 C7D9 C1D4 
902A 0002 0000 8026 201F 
C8C9 E340 C1D5 E840 D7D9 
D6C7 D9C1 0440 C6E4 D5C3 
E3C9 D6D5 40D2 C5EB 40E3 
[1640 
8026 1A1A 40C2 D9C9 D5C7 
40E4 0740 E3C8 C540 C5D5 
E3D9 E840 E2C3 D9C5 C5D5 
8025 
0018 05B6 
AOA2 0586 0001 0550 
C29E 0000 032C 002A 
AOA2 05DA FFFF 0466 
005C 05BE 05[1A 
8026 1A19 7CC9 D4C1 C7C5 
4006 D7C5 0540 C5D9 D9D6 
D96B 40C3 D6C4 C540 7E40 
0028 05IcE 0001 
OOAO 05CO 

C29E 0000 034E 002A 
1025 034E 
1430 
C29E 0000 002A 0000 
819E 0000 002A 
B02A ()004 OOOB 
1C30 
2030 
OOA1 05DA 0004 0502 049C 
04A6 04BO 04BA 
80~iC 05BC 0001.> 
OOAO 04CO 
805C o:=rnc OOOB 
OOAO 04CO 
BO~iC 05BC 0010 
OOAO 04CO 
oo~;c o~rnc oo 15 

EXT RN 
IMAGEUUF BUFFER 

SIMOPENr$IMDEFN,SIMPRQT,SIMDATA 
768rBYTES 

DSETNAME TEXT 'VIDE01rEtlX002' 

IOCB1 

IOC:B2 

STAFn 

CHECK 

GE TI MAGE 

WAIT ONE 

El 

E2 

E3 

[4 

IOCF.i NHIST==O 

IOCB SCREEN,,,,~iTATIC 

ATTNLIST <ENDrOUT,SPF,STATIC> 

ENCH HlCBl. 
PRINTEXT 'CLASS ROSTER PROGRAM', SF'f-1CES=1~5, L.lNE:::l 

PRINTEXT 'HIT ''ATTN'' AND ENTER ''END'' TO END'rSKIP=2 

PRINTEXT ' THE PROGRAM' 

PRINTEXT 'HIT ANY PFWGl:;:AM FUNCTION KEY lCJ' rSKIP=2 

PRINTEXT ' BRING UP THE ENTRY SCREEN' 

DECH 
WAIT 
IF 
CALL.. 
IF 

MOVE 
PRINTEXT 

F'FHNTNUM 
GOTO 

END IF 
CALL 
ENCH 
TERMCTRL 
CALL .. 
CALL 
PRINTEXT 
TERMCTRL. 
WAIT 
GOTO 

MOVE 
GOTO 
MOVE 
GOTO 
MOVE 
GOTO 
MOVE 

ATTNECBrRESET 
< ATTNECB, ECh t > rGOTO rENDIT 
SIMOf'ENr<DBETNAME>r<IMAGEUUF> 
<XMF~STAT+2rNE,-:J.) 

ERRCODErXMPLSTAT+2 
'@IMAGE OPEN ERRORr CODE =' 

ERF~CODE 
ERRQLJi:.RY 

SIMDEFN,(IOCB2lr<IMAGEBUFl 
ICJCEQ 
BLANK 
SIMPROT,CIMAGEBUFl~O 
$IMDATAr<IMAGEBUFl 
LINE=4, SPACES==l :l 
DISPLAY 
KEY 
(READ r E:L, E2• E3' E4), XMPLSTAT+:;~ 

LINENBF~r6 
DELETE 
LINENF.lfh l1 
DELETE 
LINE:NBRr 16 
DELETE 
LINENBF~,21 

00000010 

00000020 
00000030 

00000040 

00000050 

00000060 

00000070 

00000080 
00000090 

00000:1.0·0 

ooooouo 

00000120 

00000130 

00000140 
00000:1.50 
00000160 
00000170 
00000180 
00000190 
00000200 

00000210 
00000220 
00000230 
0000024() 
00000250 
00000260 
00000270 
·0-0000280 
00000290 
00000300 
00000310 
00000320 

00000330 
00000340 
00000~~50 
0()000360 
00000370 
0000038() 
00000390 

Figure B-1. Assembler -statistics and· listing (1 of .2) 

Program Preparation Listings 8-1 



04CO E02A 05BC 0000 F030 0004 DELETE EF<ASE MODE=LINErTYPE=DATA,LINE=LINENBR 000004M 
04CA 2000 
04CC 8032 05BC 0001 A[l[I L..INENim,1 00000410 
04[12 E02A 05BC 0000 FO~rn 0004 ERASE MODE=LINE,TYPE=DATA,LINE=L..INENBR 00000420 
04DC 2000 
04DE 8032 05BC ()()()l. ADD l..INENBR, 1 00000430 
04E4 E02A 05BC 0000 F030 0004 ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR 0000044(~ 
04EE 2000 
04FO 8035 05BC 0002 SUBTRACT LINENBR, 2 00000450 
04F6 A02A 05BC 0005 PRINT EXT LINE=LINENBRrSF'ACES=5 00000460 
04FC 1C30 TERMCTF~L DISPLAY 00000470 
04FE OOAO 048A GOTO WAIT ONE 00000480 
O::.'i02 F02A 0002 0037 C026 l.OOF F~EAD t~UESTION 'MORE ENTRIES ,., 

'rLINE=2rSPACES=55,NO=CLEANUP 00000490 
050C [14[16 D9C5 40C5 D5E3 D9C9 
0516 C::'iE2 406F 4040 802E 0544 
0520 F02A 0002 0037 F030 0004 ERASE MODE=LINE•LINE=2•SPACES=55,TYPE=DATA 00000500 
052A 2000 
052C F02A 0006 0000 F030 0000 EF<ASE MODE=SCREENvLINE=6 00000510 
0536 2000 
05~-lS B02A 0006 0005 PRINTEXT L.. I NE=6, SPACES::::5 00000520 
053E 1C30 TERMCH.;:L DISPLAY 00000530 
0540 OOAO 04ElA GOTO WAITONE 00000540 
0544 F030 0001 2000 CLEANUP EF<ASE MODE=SCREEN,TYPE=AL..l 000005~50 
O::.'i4A 8025 DEClT 00000560 
054C OOAO 0~374 GOTO START OOOOO::.'i70 
O~i50 oon FFFF END IT PROGSTOP 00000580 
05~j4 ~)()50 DATA X '!'iO!SO' OOOOO!:i90 
0556 6060 6060 6060 6060 bOl10 DASHES DATA ElOC'··-' 00000600 
05Ab 0019 05B6 0001 OUT POST ATTNECBrl 000006H> 
O~iAC 001[1 ENDATTN 00000620 
05AE 0019 05B6 FFFF STATIC F'OST ATTNECBr-1 00000630 
05B4 001[1 ENDATTN 00000640 
05B6 FFFF 0000 0000 ATTNECE! ECB 00000650 
O!:iBC 0000 LINENEiR DATA F" 0' 00000660 
05ElE 0000 ERRCODE DATA F" 0' 000006'70 
05CO C026 OEOE 7CD9 C!:iE3 D9E8 rnRQUERY QUESTION •@r~ETRY OPEN '') '•YES•GETIMAGE,NO=ENDIT 00000680 
05CA 40[16 [17C5 [154() bF40 C02E 
05[14 0428 05~i0 
05[18 0000 0000 0000 0234 0000 ENDPROG 00000690 
05E2 00[10 0000 0374 05!18 000() 
05EC 0000 0000 0000 0000 ()000 
05F6 0002 0096 0000 0()0() FFFF 
0600 0000 0000 0604 0000 0000 
060A 0606 E7[14 [17[13 E2E3 C1E3 
0614 0000 0000 0000 0000 0000 
061.E 0000 0000 FFFF 0000 0000 
Ob2El 0000 0000 0000 05[18 0000 
0632 0000 0000 0000 0000 0000 
06!:iA 0000 000() 0000 

END 00000700 

$IMOF'EN EXTRN 
$J:M[IEFN EXT RN 
$IMPROT EXT RN 
$IM[IATA EXTRN 

Figure B-1. Assembler statistics and listing (2 of 2) 

8-2 SR30-0220 



~LINK EXECUTION CONTROL RECORDS 
FROM LINKSTAT,EDX002 

• THIS LINK EDIT CONTROL DATA SET SPECIFIES: 
* 1) rHE LINKED OUTPUT OBJECT MODULE WILL 
* BE STORED IN 'LINKOUT' ON EDX002 
* 2) THE AUTOCALL DATA SET IS 'SAUTO' ON 
• VOLUME ASMLIB <SYSTEM SUPPLIED> 
* 3) 'ASMOUT' ON EDX002 IS THE ONLY INPUT 
* OBJECT MODULE TO BE INCLUDED 
* OUTPUT LINKOUT AUTO=$AUTO,ASMLIB 
INCLUDE ASMOUT 

INCLUDE $IMOPENrSUPLIB VIA AUTOCALL 
INCLUDE $lMGEN,SUPLIB VIA AUTOCALL 
END 

OUTPUT NAME=: UNKOUT 
ES[I TYPE LABEL ADDR LENGTH 

CSE CT 0000 0660 
CSE CT 0660 05[10 

ENTRY $IMOPEN 0662 
ENTRY DSOPEN 0966 

CSE CT OC30 0494 
ENTRY $IMDEFN OC32 
ENTRY SI MF'ROT OCDO 
ENTRY $IMDATA OE06 
ENTRY ~·PACK OEBA 
ENTRY $UNPACK OFBE 

MODULE TEXT LENGTH= 1oc4, f(LD COUNT=: 424 
LINK OUT ADDED TO EDX002 

SLINK COMPLETION CODE= -1 
AT 00:15:17 ON 00/00/00 

Figure B-2. Link edit listing 

00001. 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011. 
00012 
00013 
00014 
00015 
00016 
0001.7 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00()27 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 
00041 
00042 
00043 
00044 
0004~i 

00046 
00047 
00048 

08 *** TOO MANY POSITIONAL OPERANDS WERE SPECIFIED 
08 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED 
08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED 
08 *** INVALID NO. OF ELEMENTS IN OPERAND - SHOULD BE 1 OR ~ 

08 *** INVALID INDEX REGISTER SPECIFICATION - NOT ~1 OR 02 
08 *** RESULT= OPERAND MUST BE SPECIFIED 
08 *** INVALID PRECISION FOR REGISTER OPERATION 
08 *** OPERAND 1 IS MISSING 
08 *** OPERAND ~ IS MISSING 
08 *** 'COUNT' IS NOT ALLOWED WITH INDEX REGISTERS 
08 *** INVALID OR UNDEFINED OPERATION CODE 
08 *** TASK NAME NOT SPECIFIED 
08 *** TOO MANY DATA SETS SPECIFIED 
08 *** TOO MANY OVERLAY PROGRAMS SPECIFIED 
08 *** INVALID PARAMETER COUNT 
08 *** START= OPERAND MUST BE SPECIFIED 
08 *** DSO= OPERAND MUST BE SPECIFIED 
08 *** DSNAME= OPERAND MUST BE SPECIFIED 
08 *** DSLEN= OPERAND IS INVALID 
08 *** INVALID PRIORITY SPECIFICATION 
08 *** INVALID LEVEL SPECIFICATION 
08 *** OPERAND FIELD IS TOO LARGE 
08 *** INVALID F~EC= SPECIFICATION 
08 *** UNBALANCED PARENT~~SIS IN OPERAND 
08 *** SYMBOL IS MULTIPLY DEFINED 
08 *** SYMBOL EXCEEDS 8 CHARACTERS IN LENGTH 
08 *** INVALID SELF~DEFINING TERM 
08 *** I/O BUFFER ADDRESS NOT SPECIFIED 
08 *** QUERY MESSAGE MUST BE SPECIFIED 
08 *** INVALID DS= SPECIFICATION 
08 *** INVALID PGM= SPECIFICATION 
08 *** INVALID PARM= SPECIFICATION 
08 *** INVALID LENGTH= SPECIFICATION 
08 *** TEXT MESSAGE IS NOT A VALID CHARACTER STRING 
08 *** INVALID SYNTAX IN OPERAND FIELD 
08 *** NULL OR INVALID BRANCH TABLE ENTRY 
08 *** EVENT NAME NOT SPECIFIED 
08 *** COPY CODE MODULE NOT DEFINED 
08 *** A COPY STATEMENT IS NOT ALLOWED WITHIN COPY CODE 
08 *** EITHER YES= OR NO= MUST BE CODED 
08 *** INVALID PROMPT= SPECIFICATION 
08 *** INVALID MODE SPECIFICATION 
08 *** LABEL MUST BE SPECIFIED 
08 *** INVALID MODE SPECIFICATION 
08 *** MORE THAN ONE LOCAL 'ATTNLIST' HAS BEEN CODED 
08 *** MORE THAN ONE GLOBAL 'ATTNLIST' HAS BEEN CODED 
OB *** ATTNLIST: SCOPE= MUST BE 'LOCAL' OR 'GLOBAL' 
08 *** ILLEGAL NUMBER OF OPERANDS - MUST BE EVEN 

Figure B-3. $EDXL listing (1 of 4) 

Program Preparation Listings B-3 



00049 08 *** 
00050 08 *** 
00051 08 *•** 
00052 08 *** 
00053 08 *** 
00054 08 **•)! 
00055 08 *** 
00056 08 *** 
00057 08 *** 
00058 08 *** 
00059 08 *** 
00060 08 *** 
00061 OB *** 
00062 08 *'** 
00063 08 *** 
00064 08 *** 
00065 08 *** 
00066 OB *** 
00067 08 l<·lH<-

00068 08 *** 
00-069 08 *** 
00070 08 *** 
00071 OB *** 
00072 08 *** 
00073 08 *** 
00074 08 *** 
00075 08 *** 
00076 08 *** 
00077 08 ***• 
00078 OB **•* 
00079 08 **'* 
00080 08 *** 
00081 08 ·l<l<·* 
00082 08 *** 
00083 08 ***' 
00084 08 *** 
OOOB~i 08 *** 
000!36 08 *.** 
00087 08 *l<•* 
00088 08 *•>!* 
00089 08 *** 
00090 08 *•lH! 
00091 08 ·X·** 
00092 08 *'** 
00093 08 *** 
00094 08 *** 
0009~'i OB *'** 
00096 08 *** 
00097 08 ***' 
00098 08 *•>!* 
00099 08 *** 
00100 08 **l<• 
00101 08 *** 
00102 08 *.** 
001.03 08 .*** 
00104 08 ***• 
00105 08 'l!** 
00106 OS *** 
00107 08. *ll•* 
00108 OB *** 
00109 08 ***' 
00110 08 *** 
00111 OB *** 
0011.2 08 *** 
0011.3 08 **'* 
00114 08 *** 
00115 08 *** 
0011.6 OB *** 
OOU.7 OH *** 
()0118 08 *'** 
00119 08 *** 
00120 08 *** 
00121 08 **ll· 
00122 OB *** 
00123 08 *** 
00124 08 *** 
00125 OB .**l<• 
00126 08 *•>!* 
00127 08 ***• 
00128 08 l!·l!* 
00129 08 ***• 
00130 08 *** 
00131 08 **'*' 
00132 08 *** 
OOL33 08 .**'* 
00134 08 *** 
00135 08 lH!l<· 

00136 08 *** 
001:5'7 08 ***· 

ATTNLIST COMMAND STRING MUST BE 1-B CHARACTERS IN LENGTH 
NO ACTIVE 'IF' OR 'DO' STRUCTURE 
OPERAND IS NOT 'GOTO' OR 'THEN' 
IF/DO NESTING LIMIT EXCEEDED 
INVALID CONJUNCTION SPECIFED <MUST BE 'AND' OR 'OR'> 
INVALID RELATIONAL OPERATOR SPECIFIED 
CONDITION MUST BE 'EQ' OR 'NE' FOR 'STRING COMPARE' 
ACTIVE STRUCTURE IS NOT 'IF' 
'DO WHILE' OR 'DO UNTIL' MUST HAVE EVEN NUMBER OF OPERANDS 
ACTIVE STRUCTURE IS NOT 'DO' 
AN 'IF/ELSE/ENDIF' OR 'DO/ENDDO' CLAUSE HAS NOT BEEN TERMINATED 
ERROR 60 <RESERVED FOR 'DO'> 
SPECIFY 'WAIT=YES' OR 'WAIT=NO' FOR DISK OPERATIONS 
IF 'WAIT=NQ•, 'ERROR=' AND 'END=' MAY NOT BE SPECIFIED 
UNBALANCED QUOTES IN OPERAND 
INVALID PROMPT MESSAGE 
'COUNT' MUST BE A POSITVE SELF-DEFINING TERM 
INVALID DATA TYPE SPECIFIED 
'COUNT' MAY NOT BE MORE THAN 2 WITH REGISTER OPERANDS 
DATA TYPE MUST BE 'WORD' WITH REGISTER OPERANDS 
'RESULT=' MAY NOT BE SPECIFIED WITH 'MOVE' OR 'MOVEA' 
INVALID 'BUSY' SPECIFICATION 
SECOND OPERAND NOT 'RESET' OR 'CLEAR' 
NO OTHER OPERANDS ALLOWED WITH 'TIMER' OR 'ENTER' WAIT 
REGISTER SPECIFICATION INVALID 
INVALID RESOURCE SPECIFICATION 
'CODE' MUST BE SELF-DEFINING TERM 
'NLINES' MUST BE POS., SELF-DEFINING TERM 
'NLINES' REQUIRED WITH 'NSPACES' SPECIFICATION 
'NSPACES' MUST BE POS., SELI~-DEFINING TERM 
INVALID OPERAND SPECIFIED ON 'TERMCTRL' 
INVALID 'TYPE='• MUST BE 'DATA' OR 'ALL' 
I NVAL rn , MODE>' ' MUST BE 'FIELD' , 'l.. INE. , cm , ~3Cf(EEN, 
INVALID FORMAT IN OPERAND 1 
NO CHARACTER STRING SPECIFIED 
OPERAND 3 IS MISSING 
INCOMPATIBLE MARGINS 
INVALID SPECIFICATION FOR '~'iCREEN' 
INVALID SPECIFICATION FOR 'OVFLINE' 
NO STORAGE ADDRESS SPECIFIED 
NO BRANCH ADDRESS SPECIFIED 
~NVALID SENSOR INF~T/OUTPUT TYPE 
INVALID 'ERROR=' SPECIFIED 
'BITS:::' INVALID FOR 'AI' AND 'AO' 
INVALID 'SEQ:::' F!m 'AI' 
INVALID 'BITS•'• MUST HAVE THE FORM 'BITS=<U,Vl' 
INVALID 'L.SEP SPECIFIED 
INVALID 'PULSE' SPECIFICATION 
INVALID 'EOl)' SPECIFIED 
INVALID 'TERMINAL.. NAME'• MUST BE 1-8 CHARACTERS 
INVALID HEXADECIMAL CONSTANT SPECIFIED 
NEITHEli: POSITIONAL NOf( KEYWORD PAl\AMETEl\S WERE SPECIFIED 
A DATA ADDRESS MUST BE SPECIF1ED 
INVALID OR UNSPECIFIED LENGTH OPERAND 
OTE TYPE MUST BE SPECIFIED 
!NVALI[I rrUPUCATION FACTOR 
INVALID 'FORMATm' SPECIFICATION 
DATA TYPE MUST BE 'WORD' OR 'BYTE' 
IL.LEGAL CONTINUATION -- DATA MUST START IN COL.LIMN 16 
•stTS=' MUST !E SPECIFIED WITH 'TYPE=SUBGROUP' 
PCEl NOT SPECIFIED 
INVALID 'A[1[1f(ESS='' MUST BE Bl:.TWEEN '00' AND 'FF' 
INVALID 'TYF'E:::' SPECIFIED 
tNVALID 'BIT='• MUST BE BETWEEN '0' AND '15' 
'SPECPI=' MUST BE SPECIFIED FOR 'TYPE=GROlW' AND 'TYPE=BIT' 
INVALID 'POINT='• MUST BE '0-15' FOR AI OR '0-1' FOR AO 
'ADC' ADDRESS SPECIFIED INSTEAD OF 'MULTIPLEXER' ADDRESS 
INVALID 'RANGE='• MUST BE 5V,500MV,200MV•100MV.50MV,20MV,OR,10MV 
INVALID •zcoR~•, MUST BE 'YES' OR 'NO' 
INVALID OR MISSING COUNT= SPECIFICATION 
INVALID OR MISSING SIZE= SPECIFICATION 
INVALID 'LOGMSG='t MUST BE 'YES' OR 'NO' 
INVALID 'DS=' ON LOAD 
INVALID 'DS=' ON OVERLAY LOAD, MUST HAVE THE FORM 'DSX' 
ND OPEN 'TASK' SlATEMENT FOf( THH> 'ENDTAf:>K' 
TYPE COUNT MUST BE BETWEEN 0 AND 25'.5 
INVALID GPIB OPERATION 
INDEX REGISTER IS AN INVALID OPERAND 
INVALID FIF\1:>T CHAf(ACTEF< IN Pm':(> 
INVALID SECOND CHARACTER IN PREC= 
INVALID THIRD CHARACTER IN PREC= 
MAXIMUM OF 3 PREC= SF~CIFICATIONS 
I NVAL. ID COUNT"' f'ARAMETER 
INVALID PRECISION FOR IMMEDIATE OPERAND 2 
INVAL.In DATA TYPE COMBINATION 
TO() FEW PREC"' SF'ECIFIC?1TION!3 
INVALID FORMAT= SPECIFICATION 
MAXIMUM OF 8 HEXADECIMAL.. DIGITS (4 BYTES> PER OPERAND 
DATA TYPE SPECl:FICATIClN J:S NOT F<ECOGNIZED 

Figure 8-3. $EDXL Hsting (2 of 4) 

B-4 SR30-0220 



00138 08 *** 
001.39 08 *** 
00140 OB *** 
00141 08 **!(• 
00142 08 *** 
00143 08 **!(• 
00144 OB ii·** 
00l.4::'i 08 *lH(· 
00146 08 '.oHH<-
00147 08 *I(·!(· 
00148 08 *** 
00149 08 *ll:·ii· 
001::;0 00 ii· ii•* 
00151 08 !(·!(·* 
001~)2 08 *** 
001'.53 08 *** 
00l~'i4 08 *** 
OOl.'.:i~i 08 *** 
001~)6 08 *** 
001'."i7 08 **l<• 
00l.5B 08 *** 
00159 08 *** 
00160 08 l<-** 
OOl.61 08 *** 
00162 08 *** 
00163 08 **!(• 
00164 08 *** 
0016~) 08 **l<• 
00166 08 *** 
00167 08 *** 
OM68 08 *** 
00169 OB *** 
00170 08 *** 
00171. 08 **!(• 
00172 OB *** 
00173 08 **•* 
OOl."74 08 *** 
00175 08 ·l'i*•l'i 

OOl."76 08 *** 
00177 08 *** 
00178 08 ·ll:** 
001.79 08 *** 
00180 08 *•ll:* 
OOlf.ll. 08 *I(•* 
00182 08 *** 
0018:-1 08 *** 
00184 08 *** 
00l8!'.'i 08 •ll:** 
00186 08 *** 
00187 08 *ii•* 
00188 08 ii•** 
00189 08 **II:· 
00190 08 ii·*·ll: 
001.91 08 *** 
00192 08 *** 
OOl.93 08 *** 
00194 08 *•ll:* 
0019!'.'i 08 *** 
00196 08 *** 
00197 08 *** 
00198 08 *** 
001.99 08 *** 
00200 08 *** 
00201 08 *** 
00202 08 *** 
00203 08 *** 
00204 08 *** 
00205 08 *"** 
00206 08 *** 
00207 08 •*** 
00208 08 **!(• 
00209 08 *** 
00210 08 *** 
00211 08 *** 
00212 08 *** 
00213 08 *** 
00214 08 *** 
0021.5 08 *** 
00216 08 *** 
00217 08 *** 
00218 08 *** 
00219 08 *** 
00220 08 *** 
00221 08 *** 
00222 08 *** 
00223 08 *** 
00224 08 *** 
00225 08 *** 
00226 OB *** 

FLOATING POINT CONVERSION ERROR OR EBFLCVT NOT IN SUPERVISOR 
INVALID KEYWORD COMBINATION 
STORAGE SIZE MUST BE SPECIFIED C16K 256Kl 
MAX. NUMBER OF PROGRAMS NOT BETWEEN AND 100 
INVALID TP= SPECIFICATION 
MAXPROG= AND PARTS= DO NOT MATCH 
PARTITION SIZE EXCEEDS 27 BLOCKS 
INVALID DISK= OPERAND 
OUT OF SEQUENCE, DDB LIST ALREADY GENERATED 
TYPE=DSECT IS NOT SUPPORTED 
INVALID OR MISSING DEVICE TYPE SPECIFIED 
A DEVICE ADDRESS MUST BE SPECIFIED 
DEVICE ADDRESS MUST BE FROM x•oo• TO X'7F' 
VOLUME LABEL MUST BE SPECIFIED 
VOLUME LABEL IS MORE THAN 6 CHARACTERS 
INVALID LIBRARY ORIGIN SPECIFICATION 
CNVALID OR MISSING VOLUME ORIGIN SPECIFICATION 
INVALID OR MISSING VOLUME SIZE SPECIFICATION 
INVALID OR MISSING FIXED HEAD VOLUME SPECIFICATION 
SECONDARY VOLUMES NOT ALLOWED FOR 4964 
RECORDS PER VOLUME EXCEEDS 32760 
Efff\01;: l '."i9 
ONLY 1 HOSTCOMM STATEMENT IS ALLOWED 
INCONSISTENT TOP MARGIN 
INCONSISTENT BOTTOM MARGIN 
INVALID LEVEL SPECIFICATION 
TOO MANY PI= ENTRIES 
INVALID SPECIFICATION FOR ECHO 
STATIC SCREENS ARE NOT SUPPORTED FOR THIS TERMINAL TYPE 
THE SECOND PI ENTRY IS INVALID 
THE TWO PI ENTRIES ARE EQUAL 
THE FIRST PI ENTRY IS INVALID 
THIS ADDRESS HAS BEEN PREVIOUSLY DEFINED 
INVALID AITYPE= 
INVALID 4982 FEATURE ADDRESS 
INVALID 4982 BASE ADDRESS 
REQUIRED PARAMETER IS MISSING 
SCAN• PARAMETER IS INCORRECT 
ACTION= PARAMETER IS INCORRECT 
INVALID PARAMETER IN DATA LIST 
FORMAT SPECIFICATION IS INVALID 
FORMAT - CONVERT SPECIFICATION IS INVALID 
FORMAT - PARENS SPECIFICATION IS INVALID 
FORMAT - DELIMITER SPECIFICATION IS INVALID 
FORMAT X-TYPE SPECIFICATION IS INVALID 
FORMAT - F-TYPE SPECIFICATION IS INVALID 
FORMAT - I-TYPE SPECIFICATION IS INVALID 
FORMAT A-TYPE SPECIFICATION IS INVALID 
FORMAT - NUMERIC SPECIFICATION IS INVALID 
FORMAT - H-TYPE SPECIFICATION IS INVALID 
FORMAT - /-TYPE SPECIFICATION IS INVALID 
FORMAT - LIST SPECIFICATION IS INVALID 
FORMAT - EXCEEDS MAXIMUM NUMBER OF SPECIFICATIONS C40l 
FORMAT - MAXIMUM CHARACTER STRING IS 254 
INVALID BSCREAD/BSCWRITE TYPE SPECIFICATION 
INVALID TIMEOUT OPERAND 
INVALID ADDRESS OPERAND 
INVALID RETRIES OPERAND 
INVALID MC OPERAND 
INVALID TYPE OPERAND 
INVALID BSCIOCB ADDRESS SPECIFICATION 
ERROR 199 
INSUFFICIENT STORAGE AVAILABLE FOR TERMINAL PROCESSING 
LOADER ERROR WHILE PROCESSING TERMINAL STATEMENT 
COUNT NOT BETWEEN 0 AND 32767 
FORMAT SPECIFICATION NOT ALLOWED WITHIN GET/PUTEDIT 
INVALID BIT RATE/RANGE SPECIFICATION 
MUST HAVE LINEDEL OR CR OR ATTN OR COD SPECIFIED 
CRDELAY SPECIFIED INCORRECTLY 
NAME SUBLIST .GT. PARM SUBLIST 
PART NOT ALLOWED WITH PARAMETERS, EVENT= OR OVLY PROGRAMS 
PART NOT ALLOWED WITH START= OR LOADPT= 
PART NOT ALLOWED WITH DSX SPECIFICATIONS 
INVALID IMMEDIATE OPERAND IN STRING COMPARE 
INVALID COPYCODE LIBRARY NAME 
DISK I/O ERROR DURING OPEN OF COPYCODE DATA SET 
DATA SET NAME $$--- NOT PERMITTED FOR COPYCODE 
SPECIFIED COPYCODE MODULE IS NOT A DATA SET 
'COMMAND=' MUST BE SPECIFIED 
'ADDRESS=' MUST BE SPECIFIED 
INVALID 'COMMAND=' 
'LEVEL' MUST BE EITHER o, 1, 2, OR 3 
'!BIT' MUST BE EITHER 0 OR 1 
INVALID HEXADECIMAL ENTRY 
'DCB' ADDRESS MUST BE SPECIFIED 
'MOD4' MUST BE SPECIFIED 
'DEVMOD=' MUST BE SF~CIFIED 
'IOTYPE=' MUST BE 'INPUT' OR 'OUTPUT' 
'DATADDR=' MUST BE SPECIFIED 

Figure B-3. $EDXL listing (3 of 4) 

Program Preparation Listings 8-5 



00227 
0022B 
00229 
00230 
00231 
00232 
00233 
00234 
00235 
00236 
00237 
00238 

08 *** 'CHAINAD=' MUST BE SPECIFIED 
08 *** INVALID 'END=' MUST BE 'YES' OR 'NO' 
08 *** 'MAXDCB=' OUT OF LIMITS 
08 *** 'RSB=' MUST BE EVEN 
08 *** 'RSB=' OUT OF LIMITS 
08 *** 'PCI=' MUST BE 'YES' OR 'NO' 
08 *** 'XD=' MUST BE 'YES' OR 'NO' 
08 *** 'SE=' MUST BE 'YES' OR 'NO' 
08 *** 'DEVADDR ' POSITIONAL PARAMETER MISSING 
08 *** 'ECBADDR ' POSITIONAL PARAMETER MISSING 
08 *** 'IDCBADDR ' POSITIONAL PARAMETER MISSING 
08 *** INVALID NUMERIC OPERAND 

00239 08 *** INVALID VOLUME LABEL ON *COPYCOD RECORD IN SEDXL 
00240 *OVERLAY SASM0008 ASMLIB MOVE MOVEA AND IOR EOR 
00241 SHIFTL SHIFTR 
00242 *OVERLAY $ASM0001 ASMLIB ENQT DEQT COPY USER SQRT 
00243 *COMMENT 
00244 *OVERLAY 
00245 SUB 
00246 *COMMENT 
00247 *DVERLJ.1Y 
00248 l<·COMMENT 
00249 ·XOVERLAY 
00250 RDCLJl~SOR 

00251 *OVEF(LJ.1Y 
00252 DETACH 
00253 *OVERLAY 
002'.':i4 *OVERLAY 
00255 BUFFER 
00256 *OVERLAY 
002::i7 l<·OVERLAY 
oo:~::i8 SUBFWUT 
002~59 *OVERLAY 
00260 *OVERLAY 
00261 *DVEm.AY 

$ASM0002 ASML.II< 
GOTO RESET 

SASM0003 A fol MU B 

$A~lM0004 ASMLIB 
TERMCTRL 
$ASMOOO~i MIMLIB 
ATTNLIST ENDATTN 
SASM0006 ASML.TB 
SASM0007 ASMLIB 
[I~; IOCB 
SASM0008 ASMLIB 
~.;ASMooor; A~IML.. I El 
CALL.FORT 
~?M!MOOOA A~iML.. I B 
$ASMOOOB fiBMLIB 
$f.1SMOOOC ASMLIB 

ADD DIVIDE 
STIMER RETURN 

PFWGRAM LCJA[1 

MUL..TIPL.Y MULT 
INTI ME GETTIME 

DSCB 

PRINDATE PRINTIME QUESTION TEXT 

ENDPROG ENDTASK PROGSTOP TASK 

IF 
DC 
EXrnN 
READ 
WAIT 

GETEDIT 
Sft:[Q 
FIND 

DU 
mu 
WXTRN 
WRITE 
POST 

PUTEDIT 
IO DEF 
FINDNOT 

ELSE 
DATA 
ENTRY 
NOTE 
EN Cl 

END IF 
ECB 
Cf:iECT 
POINT 
DECl 

Sl.JBTRACT 
ADDV 

ATTACH 

ENDDCJ 
OCB 

CALL. 

00262 *OVERLAY SASMOOOD ASMLIB 
00263 *OVERLAY $ASMOOOE ASML.ID 
oo:~64 CONVT[I 

FPCONV FADD FSUB FMUL..l FD I VD 
PRINTNUM GETVALUE READTEXT PRINTEXT CONVTB 

PLOTGIN GIN SCf(EEN XYPL..OT YTPL.CJT 00265 *OVERLAY SASMOOOG ASHL..IB 
00266 CONCAT f P STATUS 
00267 *OVERLAY $ASMOOOH ASMLIB 
0026B BSCLINE 

BSCREAD BSCWRITE BSCOPEN BSCCL..OSE BSCIOCB 

00269 *OVERLAY SASMOOOI ASML..IB 
00270 •OVERLAY SASMOOOQ ASML..IB 
00271 •OVERLAY SASMEXIO ASMLIB 
00272 •OVERLAY $ASMOOOS ASML..IB 
00273 *OVERLAY SASMOOOT ASMLIB 
00274 *OVERLAY $ASMOOOU ASMLIB 
00275 •OVERLAY tASMOOOF ASML..IB 
00276 *COPYCOD ASMLIB 
00277 •COPYCOD EDX002 
0027!3 oSTOPn 

Figure B-3. $EDXL listing (4 of 4) 

00010 JOB 
00020 LOG 
00030 * 

STATIC 
SSYSF'RTR 

FORMAT 
FIRST() 
EXIODEV 
f.>YSTEM 
TEnMINAL 

LM3TCl NEXTQ 
IDCB DCB 
STCJF<EMAP DISK 

HOSTCOMM SENSORIO DDBSIO 
ASMERROR SIDEF OTE 

00040 * THIS ASSEMBLY USES A COPY CODE MODULE NAMED 'ROLL' 
00050 * ON VOLUME EDX003. THE •COPYCODE DEFINITION STATE-
00060 * MENT DEFINING EDX003 AS A COPYCOI~ VOLUME IS IN A 

DEFINE(} 
EXOPEN EXIO 
TIMER 

GETMAIN FREEMAIN 
SLE 

00070 *USER DEFINED LANGUAGE CONTROL DATA SET NAMED 'STATEDXL'. 
00080 * 'STATEDXL' IS A COPY OF THE SYSTEM SUPPLIED LANGUAGE 
00090 *CONTROL DATA SET '9EDXL'• WITH THE •COPYCOD STATEMENT 
00100 * FOR VOLUME EDX003 ADDED. 
00110 * 
00120 Pf(OGRAM 
00130 REMARK 
00140 DS 
00150 DS 
00160 DS 
00170 PARM 
00180 NOMSG 
00190 EXEC 
00200 ,JUMP 
00210 * 

$EDXASMrASML:CB 
ASSEMBLY OF 'STATSRC' 
STATSF~C 

ASMIJORK 
ASMOUT 
LIST 

BADASM, NE, .... 1 

STARTED 

STATED XL 

00220 * THIS LINK INCLUDES THE 'SIM' SUBROUTINE SUPPORT BY 
00230 * USE OF THE AUTOCALL OPTION. THE AUTOCALL DEFINITION 
00240 * STATEMENTS FOR THE 'SIM' SUPPORT ARE IN THE SYSTEM 
00250 * SUPPLIED AUTOCALL DATA SET 'SAUTO' ON ASMLIB. 
00260 * 
00270 PROGRAM 
00280 REMARK 
00290 REMARK 
oo:rno PAUSE 
oo:no Ds 

SLINK,ASML..IB 
LINK EDIT OF 'ASMOUT' OBJECT MODULE STARTED 
NAME OF LINK CONTROL.. DATA SET ? 

l..INKWRKl 

Figure B-4. $JOBUTIL listing (1 of 2) 

B-6 SR30-0220 



00320 DS 
00330 PAF~M 

00340 NOMSG 
oo:~50 EXEC 
00360 JUMP 
00370 F'ROC 
00380 JUMF' 
00390 REMARK 
00400 JUMP 
00410 LABEL 
00420 REMARK 
00430 .JUMP 
00440 LABEL 
00450 REMARK 
00460 LABEL 
00470 EOJ 

LINKWRK2 
$SYSPRTR 

BADLINK1NE1-1 
FORMPROC1EDX002 
END1EQ1-1 
FORMAT STEP FAIL.ED 
END 
I!ADASM 
ASSEMI!LY STEP FAILED 
END 
BADLINK 
LINK EDIT STEP FAIL.ED 
END 

Figure B-4. $JOBUTI L listing (2 of 2) 

LOG SSYSF'RTR 
PROGRAM SEDXASM1ASMLIB 
Im 
DS 
DS 
PARM 
NO MSG 
EXEC 

STATSF\C 
ASMWDri:I\ 
ASMDLJT 
LIST 

EDX ASSEMBLER STATISTICS 

SOURCE INPUT - STATSRC rEDX002 
WORK DATA SET - ASMWORK rEDX002 
OBJECT MODULE - ASMOUT 1EDX002 
DATE: 00/00/00 AT 00:29:21 
ASSEMBLY TIME: 25 SECONDS 
STATEMENTS PROCESSED - 80 

ND STATEMENTS FLAGGED 

~lTATEDXL 

0000 0808 [17[19 D6C7 D9C1 D440 XMPLSTAT f'ROGRAM 
OOOA 
OOj.4 
001E 

0026 
0030 
0328 
032A 
0334 
033A 
0344 
034E 
0358 
0362 
036C 

0000 05D8 0362 0000 0000 
064C 0000 0000 0000 0100 
064A 0000 0000 0000 

0000 0300 0000 0000 0000 
0000 0000 0000 0000 0000 
0000 
OEOD E5C9 C4C5 D6F1 6BC5 
C4E'7 FOFO F240 
4040 4040 4040 4040 8000 
OOFF OOFF '7FFF 0000 0000 
4040 4040 4040 4040 8800 
OOFF OOFF 7FFF 0000 0000 
0002 0403 C5D5 C440 05A6 
0403 5BD'7 C640 05AE 

EXTRN 
IMAGEBUF BUFFEF~ 

DSETNAME TEXT 

IOCBl IOC:Ei 

IDC:B2 IOCB 

ATTNU:ST 

* 

START 

$IMOPENrSIMDEFNrSIMPROT1$IMDATA 
768,BYTES 

'VIDE01 rEDX002' 

NHIST==O 

SCF~EEN=STATIC 

<ENDrOUT,SPFrSTATICl 

COPY ROLL 

0374 
0378 
0382 
o:rnc 
0396 
03AO 
o:~AA 
03B4 
03BE 
0:5c2 
03CC 
03[12 
03DC 
03E6 
0:5FO 
O:ffA 
03FC 
0406 
0410 
041.A 

041C 

1025 0:53A 
B02A 0001 OOOF 8026 1414 
C3D3 C1E2 E240 D9D6 E2E3 
C5D9 40D7 D9D6 C7D9 C1D4 
902A 0002 0000 8026 2221 
C8C9 E340 7DC1 E3E3 D57D 
40C1 D5C4 40C5 D5E3 C5D9 
4070 C5D5 C47D 40E3 D640 
C5[1~5 C440 
8026 OCOC 40E3 C8C5 40[17 
D9D6 C7D9 C1D4 
902A 0002 0000 8026 201F 
CBC9 E340 C1D5 E840 D7D9 
D6C7 D9C1 D440 C6E4 D5C3 
E3C9 D6D5 40D2 C5E8 40E3 
[1640 
8026 1A1A 40C2 D9C9 D5C7 
40E4 D740 E3C8 C540 C5D5 
E3D9 E840 E2C3 D9C5 C5D5 
8025 

0018 0~5B6 

* * START OF "COPYCDDE" MODULE 

* START ENQT IOCB1 
F'RINTEXT 'CLASS ROSTER PROGRAM'1SPACES=15,LINE=1 

PRINTEXT 'HIT ''ATTN'' AND ENTER ''END'' TO END',SKIF'~2 

PRINTEXT ' THE PROGRAM' 

PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO'rSKIP=2 

PRINTEXT ' BRING UP THE ENTRY SCREEN' 

DEClT 

* * END OF "COPYCODE" MODULE 

* 
CHECK WAIT ATTNECB1RESET 

Figure B-5. STATPROC execution output (1 of 3) 

00000010 

00000020 
000000:30 

00000040 

00000050 

00000060 

00000070 

00000080 
00000090 
00000010 
00000020 
00000030 
00000040 
00000050 

00000060 

00000070 

00000080 

00000090 

ooooorno 
00000110 
00000120 
00000130 
00000].00 
00000110 

Program Preparation Listings B-7 



0420 AOA2 05It6 0001 05~!0 IF CATTNECB,EQ,1),GOTOrENDIT 000001.20 
04~~8 C29E 000() 032C 002A GET IMAGE CALL. SIMOPEN,CDSETNAME),CIMAGEBUF> ()0000130 
0430 AOA2 <>SM FFFF 0466 IF CXMPLSTAT+2,NE,-1) 000001.40 
0438 005C 05BE 05flA MOVE ERRCODErXMPLSTAT+2 000001:;0 
043E 8026 1Al.9 7CC9 D4Cl C7C5 F'RINTEXT '<~~I M/".1GE OPEN ERFWf(, CODE =' 00000160 
0448 40[16 D7C5 [l~i40 C5D9 [19[16 
0452 [196B 40C3 Di1C4 C540 7E40 
045C 0028 05ItE 0001 PFnNTNLIM EF\l~CDDE 00000170 
0462 OOAO O~!CO GOTO ERRCH.JEf(Y 000001EIO 

END IF 00000190 
0466 C29E 00()0 034E 002A CALL SIMDEFN,IIOCB2),(1MAGEBUF> 0000020() 
046f-: 1025 034E ENCH IOCB2 00000210 
0472 1430 TERMCTRL BLANK 00000220 
0474 C29E 0000 002A 0000 CALL.. SIMPROT,CIMAGEBUFlrO 00000230 
047C 819E 0000 002A CALL SIMDATArCIMAGEBUFl 00000240 
048:! l~O(!A 0004 OOOB F'RINTEXT U:NE"'4, SPACEi5=::1 l 00000250 
0488 1C30 TERMCTRL DISPLAY 00000260 
04EIA 2030 WAITDNE WAIT KEY 00000270 
048C OOAl 05DA 0004 0502 049C GOTO (READ 1 E1, E~~, E3 ,. E4), XMPLSTA.T+2 00000280 
0496 04A6 04BO 04BA 
049C aosc O~BC 0006 El MOVE LINENBf\,6 00000290 
04A2 00.AO 04CO GDTO DELETE 0()000300 
04A6 805C 05.BC OOOB E2 MOVE LINENI1R, 11 00000310 
04AC OOAO 04CO GOTO DELETE 0000032() 
04BO 805C 05F.IC 0010 E3 MOVE LINENBR, 16 00000330 
04B6 OOAO 04CO GOTO DELETE 00000340 
04EIA 805C 05BC 0015 [4 MOVE LINENBR,21 00000350 
04CO E02A OSBC 0000 F030 0004 DELETE ERASE MODE=LINE.TYPE=DATA,LINE=LINENBR 00000;360 
04CA 2000 
04CC 8032 05BC 0001 ADD L.INENBRrl 00000370 
04[12 E02A O~iBC 0000 F030 0004 H\ASE MODE=LINE,TYF'E=DATA,LINE•LINENBR 00000380 
04[1C 2000 
04[tE 8032 OSBC 0001 ADD L ): NEN~rn, l. 00000390 
04E4 E02A OSBC 0000 F030 0004 ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR 00000400 
04EE 2000 
04FO 8035 OSBC 0002 SUBTRACT U:NENBFh2 00000410 
04F6 A02A 05BC 0005 PRINTEXT LINE=LINENBR,SPACES=5 00000420 
04FC 1C30 TERMCTRL DISPLAY 00000430 
04FE OOAO 04BA GOTO WAIT ONE 00000440 
0502 F02A 0002 0037 C026 lOOF READ QUESTION 'MORE ENTRIES ? '•LlNE=2,SPACES=55,NO=CLEANUP 00000450 
osoc Il4[•6 It9C5 40C5 Il5E3 [t9C9 
0516 C5E2 406F 4040 802E 0544 
0520 F02A 0002 0037 F030 0004 ERASE MODEaLINE,LINE=2,SF'ACES=55,TYF'E=DATA 00000460 
052A 2000 
052C F02A 0006 0000 F030 0000 Er\ASE MDDE=SCREEN,LINE=6 00000470 
0536 2000 
0538 BO=~A 0006 0005 F'RINTEXT L.INE:::6, SPACES==5. 00000480 
053E 1C3<> TERMCTRL DISPLAY 0000049() 
0540 OOAO 048A GOTO WAI TONE 00000500 
0544 F030 0001 2000 CLEANUP ERASE MODE=SCREENrTYPE•ALL 0000051() 
054A 8025 DE!:lT 00000520 
054C OOAO 03'74 GOTO START 0000053() 
0550 0022 FFFF EN[IIT PROGSTOP 00000540 
0554 5050 DATA X'5050' 00000550 
O!:i56 6060 6060 6060 6060 6060 DASHES DATA BOC'--' 00000560 
05A6 0019 O:'.iB6 0001 OUT F'OBT ATTNECF.t,1 000005"70 
O~iAC oorn ENDATTN 00000580 
05AE 0019 05B6 FFFF STATIC F'OST ATTNECF.t,-l 0000059() 
05B4 001[1 EN:OATTN 00000600 
05B6 FFFF 0000 0000 ATTNECB ECI:t 00000610 
05EtC 0000 LINENBR DATA F'O' 00000!!120 
05EIE 0000 Ef\RC0[1E DATA F'O' 00000630 
O~iC:O C026 OE<>E: lC[l9 C~IE3 D<ff.cB ERRCllJEFn QUESTION '(ilf(ETF~Y OPEN ? '•YES=GETIMAGE.NCl=ENDIT 00000640 
05CA 40D6 D'7C5 D:'.i40 l.1F40 C02E 
()~)[14 0428 0550 
05[18 0000 0000 0000 0234 0000 ENDPFWO 00000650 
0~5E2 00[10 0000 0;·574 05[18 0000 
O~!EC 0000 0000 0000 0000 0000 
05F6 0002 0096 0000 0000 FFFF 
0600 0000 0000 0604 0000 0000 
060A 0606 E7D4 [17[1~~ E2E~~ C1E3 
0614 0000 0000 0000 0000 0000 
061E 0000 000() FFFF 0000 000() 
06:.:!8 0000 0000 0000 O:'HIB 0000 
0632 0000 0000 0000 0000 0000 
065A 0000 0000 0000 

EN[I 00000660 

$IMOF'EN EXTRN 
UMDEFN EXT RN 
$'.CMF'ROT EXTRN 
$IMDATA EXT RN 

Figure B-5. ST ATPROC execution output (2 of 3) 

B-8 SR30-0220 



COMPLETION CODE • -1 

1;;EDXASM 
.JUMP 
PROGF<AM 
D!3 
[IS 

DS 
PAF(M 
NO MSG 
EXEC 

ENDED AT 00:30:19 
BADASM, NE, ··-1 
SLINK, A!3ML I B ' 
I... INKS TAT 
1...INKWRK1 
LINKWRK2 

$LINK EXECUTION STARTED 
GLINK EXECUTION CONTROL RECORDS 

FROM LINKSTAT,EDX002 
* THIS LINK EDIT CONTROL DATA SET SPECIFIES: 
* ll THE LINKED OUTPUT OBJECT MODULE WILL 
·)( 

* 
BE STORED IN 'LINKOUT' ON EDX002 

·)! 

2l THE AUTOCALL DATA SET IS '$AUTO' ON 
VOLUME ASMLIB <SYSTEM SUPPLIED> 

·l! 

* 
·)! 

3) 'ASMOUT' ON EDX002 IS THE ONLY INPUT 
OBJECT MODULE TO BE INCLUDED 

OUTPUT LINKOUT AUTO=SAUTO,ASMLIB 
INCLUDE ASMOUT 

INCLUDE SIMOPEN,SUPl...IB 
INCLUDE SIMGEN,SUPl...IB 
END 

OUTPUT NAME= LINKOUT 
ESD TYPE LABEL ADDR 

VIA AUTOCALL. 
VIA AUTCJCALL 

LENGTH 

CSECT 0000 0660 
CSE CT 0660 05[10 

ENTRY SIMOPEN 0662 
ENTRY DSOPEN 0966 

CSE CT OC30 0494 
ENTRY SIMDEFN OC32 
ENTRY SIMPROT OCDO 
ENTRY SIMDATA OE06 
ENTRY $PACK OEBA 
ENTRY $UNPACK OFBE 

MODULE TEXT LENGTH= 1oc4, RLD COUNT= 424 
LINKDLJT ADDED TO EDX002 

SLINK COMPLETION CODE= -1 
AT 00:31:05 ON 00/00/00 

1l"LINK 
JUMP 
PF<OGRAM 
PARM 
NOMSG 
EXEC 
STATPROG 

ENDED AT 00:31:05 
BADL.. INK, NE' -.,1 
HJF"DATE 
SSYSPRTR l..INKOUT 

STORED 

SUPDATE ENDED AT 00:31:14 
JUMP END,[Q,-1 
LABEL END 

STATPFWG YES 

Figure B-5. STATPROC execution output (3 of 3) 

Program Preparation Listings 8-9 



This page intentional,ly ·1eft blank. 

1:3-10 SR30-0220 



I BM Series/1 
Event Driven Executive 
Study Guide 

READER'S COMMENT FORM 
SR30-0220-1 

This form may be used to comment on the usefulness and readability of this publtcation, suggest additions 
and deletions, and list specific errors and omissions {give page numbers). 

I BM may use and distribute any of the information you supply in any way 1t believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use the information you supply. 

If you wish a reply, be sure to include your name and address. 

COMMENTS 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 
FOLD ON TWO LINES, SEAL AND MAIL 



Fold Fold 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

Business Reply Mail 

No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Technical Publications, Dept. 796 
P. 0. Box 2150 
Atlanta, Georgia 30301 

First Class 
Permit 40 
Armonk 
New York 

a a a a a a a a a a a a a a a e a a a a a a a a a a a a a a a a a • a e a a a a • a e I I I I I I I I I I I t I I t I I I I I I I I I I I I I I I I I I I I 1 

Fold Fold 



--- ------ ----- ---- - ----- -- -----------·-
® 

International Business Machines Corporation 

General Systems Division 
4111 Northside Parkway N.W. 
P. 0. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
(International) 

SRJ0-0220-1 
Printed in U.S.A. 


	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	17-42
	17-43
	17-44
	17-45
	17-46
	17-47
	17-48
	17-49
	17-50
	17-51
	17-52
	17-53
	17-54
	17-55
	17-56
	17-57
	17-58
	17-59
	17-60
	17-61
	17-62
	17-63
	17-64
	17-65
	17-66
	17-67
	17-68
	17-69
	17-70
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	replyA
	replyB
	xBack

