E=5E Series/

SR30-0220-1 GENERAL
SYSTEMS
DIVISION
EDUCATION

IBM Series/1
Event Driven Executive
Study Guide

5 goog o
A
o

@ I

o O]

- —
° °
: .

I
0 |

IlHIINliIII||IIlllIlIIIlIIIHHIIIII|||||IIHI /
J
—

Second Edition (January 1979)

This edition applies to the IBM Series/1 Event Driven Executive, Versions 1 and 2, and to
all subsequent versions and modifications until otherwise indicated in new editions.

Use this publication only for purposes stated in Section 1. Introduction to This Course.
This publication could contain technical inaccuracies or typographical errors.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, General Systems Division,
Technical Publications, Department 796, P.O. Box 2150, Atlanta, Georgia 30301.
Comments become the property of IBM. IBM may use and distribute any of the infor-
mation you supply in any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1978, 1979

Section 1. Introduction to This Course
Course Overview
Material Requirements
Study Tips
Course Objectives
Event Driven Executive Components — Version 1 .
Basic Supervisor and Emulator (5798-NND)
Event Driven Executive Utilities (5798-NNC) . .
Event Driven Executive Macro Library
(6798-NNB)
Event Driven Executive/Base Program Preparation

BPPF Link Editor
Event Driven Executive Components — Version 2 .
Basic Supervisor and Emulator — Version 2
(6798-NRR)
Event Driven Executive Utilities — Version 2
(6798-NRQ)
Event Driven Executive Macro Library/Host
(5798-NRK),
Event Driven Executive Program Preparation
Facility {6798-NRQ)
Event Driven Executive—An Operational Overview

Section 2. Instruction Format
Language Syntax/Coding Conventions
Instruction Format
Instruction Format Review Exercise — Questions .
Instruction Format Review Exercise — Answers . .

Section 3. Programs/Tasks
Program/Task Concepts and Structure
Single Task Program
Muitiple Task Programs
Multiple Program Structure
Overlay Program Structure .,
Program/Task Definition
Program/Task Execution
Program Loading
Program Synchronization
Task Synchronization
Queuable Resources
WAIT/POST Operation

.................

2-6

Contents

Attention Lists 3-26
Programs/Tasks Review Exercise — Questions 3-29
Programs/Tasks Review Exercise — Answers 3-32
Section 4. Data Definition 441
DATA Statement 41
BUFFER Statement 4-6
TEXT Statement 4-8
Data Definition Review Exercise — Questions 4-11
Data Definition Review Exercise — Answers 4-12
Section 5. Data Manipulation 5-1
Integer Arithmetic 5-1

Optional Operands 5-2
Floating Point Arithmetic 5-3
Data Movement Instructions 54
Logical Instructions 5-6
Data Manipulation Review Exercise — Questions . 5-10
Data Manipulation Review Exercise — Answers .. 5-12
Section 6. Queue Processing (Version 2Only) ... 6-1
DEFINEQ i iiiiin.. 6-2
LASTQ/FIRSTQ/NEXTQ 6-4

Queue Processing Review Exercise — Questions .. 6-9

Queue Processing Review Exercise — Answers ... 6-12
Section 7. ProgramControl 7-1
Subroutines e e 7-1
SUBROUT Statement 7-1
CALL Statementcvvunu.. 7-2
Passing Subroutine Parameters 7-2
USER Statementcvvuvu.. 7-5
Program Control Review Exercise — Questions . . . 7-9
Program Control Review Exercise — Answers , . .. 7-10
Section 8. Program Sequencing 8-1
GOTOStatementc.cciiiernnn 8-1
IFStatement 84

Relational Conjunctions 8-6
DOStatementcuovvvinvnn.. 8-7
Program Sequencing Review Exercise — Questions 8-11

Program Sequencing Review Exercise — Answers . 8-14

Section9. Timers 9-1
GETTIME Instruction 9-1
INTIME Instructioncovv... 9-2

Contents iii

STIMER Instructionc.ouuuu...
Timing Functions — Coding Example
Timers Review Exercise — Questions
Timers Review Exercise — Answers

..........

Section 10. Disk/Diskette 1/0
Physical Layout — Diskette
Physical Layout —Disk
Disk and Diskette Logical Layout
PROGRAM Statement DS=QOperand
READ/WRITE Statements
NOTE/POINT Statements
Disk/Diskette 1/0 Coding Examples
Load-Time Data Set Definition
Disk/Diskette 1/0O Review Exercise —

QUESTIONS . o ot et e e e
Disk/Diskette |/O Review Exercise —

Answers

Section 11. Terminal 1/0
TERMINAL Statement
RollScreensccvtiienn
NHIST=Operand,
StaticScreens
ENQT/DEQT Instructions
IOCB Statement,
Data Representation
PRINTEXT Instruction
READTEXT Instruction
Operator Control of Program Execution
PF and Attention Key Handling
QUESTION Instruction
WAIT KEY Instruction
HARDCOPYPFKey................ -
Static Screen Coding Example
ERASE Instruction
TERMCTRL Instruction
RDCURSOR Instruction
PRINTNUM/GETVALUE Instructions
PRINTIME/PRINDATE Instructions
Terminal |/O Review Exercise — Questions
Terminal 1/0 Review Exercise — Answers

...............

Section 12. Data Formatting
DataConversionc.cuvunnr..
CONVTB Instruction
CONVTD/CONVTB Coding Examples
GETEDIT/PUTEDIT Introduction
PUTEDIT/GETEDIT Instructions
FORMAT Statement
Data Formatting Review Exercise — Questions . . .
Data Formatting Review Exercise — Answers

iv. SR30-0220

Section 13. Sensor 1/O 13-1
SensorBased I/0 13-1
Digital Input/Output 134
Analog Input/Qutput 134
Event Driven Executive Sensor 1/0O Support 13-6
IODEF Statement. 13-8
SBIOStatementcuviitnean 13-10
Sensor 1/0 Coding Examples 13-12
Sensor |/O Review Exercise — Questions 13-19
Sensor |/O Review Exercise — Answers 13-20
Section 14. Utility Programs 14-1
Supervisor Utility Functions 14-1
A e e e 14-1
BB e e e 14-2
BC e 14-2
$Dand P e 14-2
BCOP i e 14-2
Y 14-3
$Tand$W 14-3
SVARYON and $VARYOFF 144
Supervisor Utility Function Example 14-4
System Utility Programs 14-6
BSC Utilities (Version20nly) 14-7
SBSCTRCE ittt 14-7
SBSCUTT .. i e 14-7
SBSCUT2 e 14-7
Display Processor {Graphics) Utilities 14-7
SDIUTIL ... e e 14-8
$DICOMP e e 14-8
SDIINTR ... e i e e 14-8
Host Program Preparation Utilities 14-8
SHCFUTT i i 14-8
SEDIT1/$UPDATEH 14-9
$RJE2780/8RJE3780 (Version 2 0nly) 14-9
$PRT2780/$PRT3780 (Version2O0nly) 14-9
DASD Management/Maintenance Utilities 14-10
SDISKUTT . oottt e e 14-10
SINITDSK i i e 14-17
SCOMPRES 14-19
SCOPY . . . e 14-19
$COPYUT1 (Version2Only) 14-21
SDISKUTZ ... e e 14-21
$DASDI (Version2Only) 14-24
SMOVEVOL 14-25
Terminal 1/0 Utilities (Version20nly) 14-26
STERMUTT i 14-26
STERMUT2 i 14-27
STERMUTS i, 14-32
SPFMAP . . . e s 14-32
Program Preparation Utilities 14-33
SEDITIN ... e 14-33

SUPDATEo, 14-36
$FSEDIT/SEDXASM/EDXLIST/$LINK/

$JOBUTIL i, 14-37
Miscellaneous Utilities 14-37
S$DEBUG 14-37
$IMAGE (Version20Only) 14-37
SIOTEST 14-43
Section 15. System Installation 15-1
Machine Readable Material 15-1
Installation Overview 154
Installing the Starter System 154
NRQOO1/NNCO01 15-5
User System Generation 15-14
SYSGEN Overview 15-14
Allocate Required DataSets 15-14
Edit System Configuration Statements 15-16
Estimating Supervisor Size 16-22
Select Supervisor Support Modules 156-29
Edit $JOBUTIL Procedure File 15-33
Assemble/Link/Format 15-36
Copy Tailored Supervisor 15-40
IPL Tailored Supervisor 15-42
Section 16. Program Preparation Using BPPF . .. 16-1
Application Program Preparation 16-1
Program Preparation Overview 16-1
Preparing the Disk/Diskette —Step 1 16-3
Create a Source Module —Step 2. 16-9
Assemble the Source Module — Step3 16-11
Format the Object Module — Step4 16-13

Program Preparation Review Exercise — Questions 16-15
Program Preparation Review Exercise — Answers 16-18

Section 17. Online Program Preparation 171
Program Preparation Overview 171
SFSEDIT .o i e e 17-3
$FSEDIT Primary Options 17-3
Creating a New Source Statement File 17-4
Option4: Writecco... 17-6
Option3:Read 17-7
Option6: List 17-8
Option1:Browse 17-8
Option7:Mergec..... 17-13
Option2: Edit 17-14

Edit Mode Line Commands 17-17
SEDXASM 17-32
SEDXLIST 17-35
SLINK ..o e 17-35
SJOBUTIL it 17-37
Program Preparation Example 17-41
Problem Description 17-41
Create/Modify Source Module 17-42
SIMOPENcoiiiiiia 17-45
SIMDEFN i 17-46
S$IMPROT/$IMDATA 17-46
Assemble Source Module 17-51
Produce Assembly Listing 17-63
Link Edit Object Modules 17-54
Format ObjectModule 17-57
$EDXASM Copy Code Function 17-59
Job Stream Procedure 17-66
Appendix A. SYSGEN Listings A-1
Appendix B. Program Preparation Listings B-1

Contents Vv

This page intentionally left blank.

vi SR30-0220

COURSE OVERVIEW

Section 1. Introduction to This Course

This course is intended to give Series/1 personnel a general knowledge
of the concepts and theory incorporated in the Event Driven Execu-
tive system. Upon completion of this course, the student should be
able to install, generate and maintain an Event Driven Executive
system as well as write and execute basic application programs.

The Event Driven Executive software offering is available in two forms:
Version 1 and Version 2. This study guide applies to both versions,
Functions exclusive to a particular version are treated as separate
topics or sections; slight differences in functions available in both
versions are pointed out in the text.

Reading References/Reading assignments will be given for both the
Version 1 (SB30-1053) and Version 2 (SB30-1213) Program
Description and Operations Manuals, as appropriate for the topic
presented. Where both manuals are referenced, either will suffice.

The prerequisite for this course is successful completion of /ntroduction
to Smaller Systems Student Text (SR30-0185) or equivalent experience.
Programming experience using high level languages is also strongly
recommended.

The Event Driven Executive instruction set and system support
programs have been divided into several broad functional groups,
each group constituting a section of this study guide. An attempt
has been made to organize the sections in a logical sequence for
study. Each section, however, is also as modular as possible, and
can be studied as a separate unit, or in a sequence other than
presented, if desired.

Section 1. Introduction to This Course
Contains introductory material, as well as a brief operational
overview of the Event Driven Executive system.

Section 2. [Instruction Format
Coding conventions/syntax rules for coding Event Driven
Executive instructions.

Section 3. Programs/Tasks

This section covers program/task structure, application program
design considerations, and all of the Event Driven Executive
instructions used for task control and synchronization.

introduction to This Course 1-1

1-2

SR30-0220

Section 4. Data Definition

Section 5. Data Manipulation

These two sections cover all of the basic instructions required to
define, move, or perform logical or arithmetic operations on data
in storage.

Section 6. Queue Processing (Version 2 Only)
Discussion and illustration of the queue definition and processing
instructions available in Version 2,

Section 7. Program Control
How to define and use both Event Driven Executive subroutines,
and subroutines written in Series/1 Assembler Language.

Section 8. Program Sequencing
Discussion and illustration of IF and DO structures, and the
relational statements used with them.

Section 9. Timers
Instructions to access the system’s 24 hour clock and the elapsed
time clock, and to wait for a time delay are discussed.

Section 10. Disk/Diskette 1/0
Discussion and examples of defining and accessing data sets from
an application program.

Section 11. Terminal 1/0

Section 12. Data Formatting

The comprehensive terminal |/O support provided by the Event
Driven Executive is discussed in detail, with several coding
examples. Data Formatting support is used with terminals, and
therefore immediately follows.

Section 13. Sensor Input/Output

This section includes some basic sensor 1/0 concepts, as well as
how to incorporate the sensor |/O support in a supervisor and to
access sensor 1/0 devices from a user program.

Section 14. System Ultilities
All of the system utilities are described. Those utilities required
most often are discussed in detail.

Section 15. System Installation

This section covers installation of the supplied supervisor and system
programs as received from PID, and generation of a tailored supervisor,
using the online Program Preparation Facility (5798-NRP).

Section 16. Program Preparation Using BPPF

This optional topic is for those users who will be using the Series/1
Base Program Preparation Facilities (5719-PA1) to prepare application
programs for execution.

Section 17. Online Program Preparation

SEDXASM (online assembler), $LINK (link editor), and $JOBUTIL
(job stream processor) are used to prepare a program for execution.

The example includes use of the COPY CODE assembler feature and
the AUTOCALL link editor option.

MATERIAL REQUIREMENTS
Course Materials Form No.

*|BM Series/1 Event Driven Executive
**Study Guide SR30-0220

Additional Materials

*|BM Series/1 Event Driven Executive Program
Description/Operations Manual (PDOM) SB30-1053

**IBM Series/1 Event Driven Executive Program
Description/Operations Manual — Version 2
(PDOM) SB30-1213

***|BM Series/1 Stand-Alone Utilities User's Guide GC34-0070

***|BM Series/1 Base Program Preparation
Facilities User's Guide SC34-0072

***|BM Series/1 Base Program Preparation
Facilities Macro Assembler Programmer’s Guide SC34-0074

*Required for students who will be using Version 1 of
the Event Driven Executive

**Required for students who will be using Version 2 of
the Event Driven Executive

***Required for all users of Version 1, and for Version 2
users who intend to incorporate Series/1 Assembler
Language Code in their Event Driven Executive
application programs

STUDY TIPS

Each section has a set of objectives. Read the objectives carefully so
that you understand what you should be learning in that section. In
each section you will find a READING REFERENCE and for each
topic you will find a READING ASSIGNMENT. Read the referenced
reading assignment in the PDOM and then continue in the Self Study
Guide. At the end of most sections you will find a Review Exercise.
Try to complete it prior to looking at the correct answers and be sure
you understand your mistakes before proceeding to the next topic or
section.

The total amount of study time you will need is estimated at 50 to
60 hours. This may extend over a period of two or three weeks if
your study periods are brief and somewhat separated because of
other duties.

Introduction to This Course 1-3

COURSE OBJECTIVES

1-4

SR30-0220

For best results, set a short time goal rather than a long one and then
make every effort to meet that goal. Study sessions should be about
2 hours long but use whatever time you wish. You may find that
several short sessions are more productive than one longer session.

Finally:

When you begin a new topic, SCAN THE ENTIRE TOPIC
RAPIDLY. You will get the “’big picture’” of the topic. Look
for definitions, coding rules and descriptive examples. NEXT,
REREAD THE TOPIC SLOWLY TO GRASP DETAILS.

The second time through, concentrate on points that seem unclear
to you. Check for more information about the topic in the table of
contents of the PDOM. You may find an expanded definition or
more meaningful example.

After examining an illustration or coding example, EXPLAIN IT
ALOUD TO YOURSELF. As you hear the words of explanation, the
descriptive printed statements often take on new or more complete
meanings.

The student upon completion of this seif-study course should be able
to:

1. Describe the major components and facilities of the Series/1
Event Driven Executive system

Install an Event Driven Executive system on a Series/1
Use the utility programs to maintain a system

Invoke Supervisor utility functions from a terminal

o ~ w D

Use most of the Event Driven Executive instructions
necessary to code application programs

6. Load application programs from a terminal, or from other
programs

7. Understand the use of overlay programs, multitasking, and
task/program synchronization

EVENT DRIVEN EXECUTIVE COMPONENTS — VERSION 1

The Version 1 Event Driven Executive software offering consists
of three Field Developed Programs (FDPs);

1. Basic Supervisor and Emulator (5798-NND),
2. Event Driven Executive Utilities (5798-NNC).
3. Event Driven Executive Macro Library (5798-NNB).

These programs are distributed on diskette, and are available from the
IBM Program Information Department.

Basic Supervisor and Emulator (5798-NND)

The Event Driven Executive system supports a high-level instruction
set. These instructions may be assembled from macros, utilizing the
Base Program Preparation Facilities on a Series/1, a host macro
assembler on a 370 host system, or may be assembled directly {no macro
library used) on a Series/1 using the online Program Preparation Facility
FDP, 5798-NRP. At execution time, the assembled output of these
instructions is passed to the Emulator portion of the Supervisor/Emu-
lator, and the Emulator links to the appropriate routine in the super-
visor to perform the desired operation. The Supervisor portion of the
Supervisor/Emulator manages the various system and 1/0 resources for
the application programs currently in execution.

Event Driven Executive Utilities (5798-NNC)

The system utilities also operate under the control of the Supervisor.
They provide online, interactive support for a tailored supervisor
generation, source module preparation, disk initialization, data set/
volume maintenance, etc.

Event Driven Executive Macro Library (5798-NNB)

The Event Driven Executive Macro Library contains the macro proto-
types for the instruction set, and all of the macros necessary to build
a Supervisor that is tailored to a user’s unique system configuration.

EVENT DRIVEN EXECUTIVE/BASE PROGRAM PREPARATION FACILITIES

1T a user chooses to do program preparation on a Series/1 using the
Event Driven Executive Macro Library (6798-NNB), the Series/1 Base
Program Preparation Facilities (5719-PA1) macro assembler is used to
process application source modules and generate a tailored supervisor.
BPPF can also be used to assemble Series/1 assembly language code,
which is not possible with the online assembler provided in 5798-NRP.

Introduction to This Course 1-5

SERIES/1 Base Program preparation Facilities (hereafter referred to
as BPPF) consists of three programs, a text editor, a Macro
Assembler, and a link editor. A separate program, Series/1 Stand-
alone Utilities (5719-SC2) is installed and used with the BPPF
programs. All of these programs will be installed on the same system
used to develop applications and generate a tailored Supervisor.

Series/1 Standalone Utilities (6719-SC2)

BPPF Text Editor

BPPF Macro Assembler

BPPF Link Editor

Minimal use for an Event Driven Executive system. The Rl
utility is required to prepare diskettes for further processing by
the $INITDSK Event Driven Executive utility. All other utility
functions required are supported by the Event Driven Executive
Utilities (5798-NNC).

Not required. The text editor function, used to prepare source modules
for assembly, is performed by the SEDIT1N or $FSEDIT Event Driven
Executive utilities.

May be used to assemble application source modules, Series/1 assembler
language code, and to assemble the Supervisor during system generation.

Used to link edit the object module resulting from the assembly of
the tailored Supervisor. This is the only time the link editor is
required. Event Driven Executive object modules are processed
by the SUPDATE formatting utility, rather than the BPPF

link editor.

EVENT DRIVEN EXECUTIVE COMPONENTS — VERSION 2

1-6 SR30-0220

The Version 2 Event Driven Executive software offering consists
of four Field Developed Programs (FDPs);

1. Basic Supervisor and Emulator — Version 2 (6798-NRR)

2. Event Driven Executive Utilities — Version 2 (5798-NRQ)
3. Event Driven Executive Macro Library/Host (5798-NRK)
4

Event Driven Executive Program Preparation
Facility (5798-NRP)

Basic Supervisor and Emulator — Version 2 (5798-NRR)

Version 2 of the Supervisor/Emulator supports a high-level instruction
set, implemented using the online preparation capabilities of the
Event Driven Executive Program Preparation Facility (5798-NRP),

or through preparation on a host system with the Event Driven Execu-
tive Macro Library/Host (5798-NRK) installed. At execution time,
the assembled output of these instructions is passed to the Emulator
portion of the Supervisor/Emulator, and the Emulator links to the
appropriate routine in the supervisor to perform the desired operation.
The Supervisor portion of the Supervisor/Emulator manages system
and |/0 resources for the application programs currently in execution.

Version 2 of the Supervisor/Emulator supports all the functions pro-
vided under Version 1, plus the additional functions and devices
exclusive to Version 2 (buffer management, BSC support, etc).

Event Driven Executive Utilities — Version 2 (5798-NRQ)

The system utilities also operate under the control of the supervisor.
They provide online, interactive support for a tailored supervisor
generation, source module preparation, disk initialization, data set/
volume maintenance, etc. Version 2 Utilities include enhancements
to the functions available with Version 1, as well as several new
utilities exclusive to Version 2,

Event Driven Executive Macro Library/Host (5798-NRK)

This FDP consists of a set of libraries and procedures to be installed
on a host System/370, so that Event Driven Executive or Series/1
assembler programs can be assembled on the host machine. The
macros supplied in this FDP support all of the Event Driven Executive
functions supported by the online Event Driven Executive Program
Preparation Facility (5798-NRP).

Prerequisites for host program preparation include:

e A binary synchronous communications line between the Series/1
and the host

e Use of either the S/370 Event Driven Executive Host Communi-
cations Facility IUP (5796-PGH) or the RJE utility supplied
with Event Driven Executive Utilities — Version 2 (6798-NRQ),
for transfer of data sets between the two systems

e On the host, installation of the S/370 Program Preparation
Facilities for Series/1 FDP (5798-NNQ)

Introduction to This Course 1-7

Event Driven Executive Program Preparation Facility (5798-NRP)

The Event Driven Executive Program Preparation Facility consists
of programs which allow the user to assemble and link edit appli-
cation programs concurrently with the execution of other pro-
grams (including other program preparation programs). The user
can also reconfigure, assemble, and link edit custom supervisors
online.

As long as the user codes only in Event Driven Executive instructions,
all application development can be performed online. The Basic
Program Preparation Facility (6719-PA1) is not required nor is the
Event Driven Executive Macro Library FDP (5798-NNB) needed,
unless USER exits and Series/1 assembler code are included in the
application program.

The Event Driven Executive assembler provides significant pro-
ductivity improvements through the availability of all Event

Driven Executive supervisor functions, symbolic file addressing,
selection of any terminal device for listing output, and significantly
greater assembly speeds over the Basic Program Preparation
Facility (6719-PA1) assembler. The assembler can operate on a
disk(ette)-based system.

EVENT DRIVEN EXECUTIVE — AN OPERATIONAL OVERVIEW

The Event Driven Executive component that controls execution

of user-written applications is the Supervisor/Emulator. It is a multi-
programming supervisor, capable of controlling concurrent program
execution,

The basic unit of work for the supervisor is an instruction. Instructions
are combined to form tasks, each of which has an assigned priority,
used by the supervisor to allocate system resources.

An application program may have more than one task (muititasking).
Each task competes for system resources with every other task in the
system, based on task priority. Each task runs independently of all
other tasks.

Programs/tasks are made up of Event Driven Executive instructions
that have been processed by an assembler and prepared for execution
by the link/formatting system utilities. At execution time, the
Supervisor/Emulator analyzes an instruction’s assembied format, and
links to the appropriate supervisor routine to perforg the operation.
Following the completion of each instruction, the supervisor processes
the next sequential instruction in the highest priority task that is
ready.

1-8 SR30-0220

The Supervisor/Emulator occupies the lowest 10 to 30+ K bytes

of Series/1 storage, depending on what support is included. The rest
of storage is available for user application programs. Programs may be
loaded by a terminal operator request, or by execution of a LOAD
instruction in a currently executing program. Programs are loaded
dynamically, using a relocating loader, into the smallest available

area of storage of sufficient size to contain them,

Other functions/services performed by the supervisor include task
dispatching (starting/ending tasks), 1/0 interrupt handling, program/
task synchronization, and provision for inter-program communication
via a global common area.

Introduction to This Course 1-9

This page intentionally left blank.

1-10 SR30-0220

Section 2. Instruction Format

EVENT DRIVEN EXECUTIVE BASIC INSTRUCTION FORMAT

OBJECTIVES: After completing this topic, the student should be
able to describe the basic format used in coding Event Driven
Executive instructions.

READING REFERENCE: Program Description and Operations
Manual (SB30-1053), pages 2-3 and 2-4; or Program Description and
Operations Manual Version 2 (SB30-1213), pages 2-4 and 2-5.

LANGUAGE SYNTAX/CODING CONVENTIONS

The Event Driven Executive instruction set was originally imple-
mented as a macro library, using a macro assembler on the native or
a host machine to process application source modules. Version 1
still employs this method, as does Version 2 if program preparation
is performed on a 370 host.

The Event Driven Executive Program Preparation Facility (5798-NRP),
released under Version 2, is an online Event Driven Executive language
assembler, not a macro assembler, and does not utilize a macro

library to process application source modules. Although macros are
not used, macro assembler language syntax and coding conventions

are still followed, thereby retaining compatibility with previous
releases.

If required, Series/1 macro assembler language syntax/coding con-
ventions may be reviewed in Chapter 2 of /BM Series/1 Base Program
Preparation Facilities Macro Assembler Programmer’s Guide
(SC34-0074).

Instruction Format 2-1

INSTRUCTION FORMAT

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-3 and 2-4; or
SB30-1213 (Version 2 PDOM) pages 2-4 and 2-5.

The basic Event Driven Executive instruction format is:
label op parml,parmZ,...parmn,KEYWORD=,P1=,P2 =,...Pn=
where

Tabel identifies the location of a particular instruction and
can be referenced by other instructions.

op is the operation to be performed by the Series/1 (MOVE,
ADD, etc.)

parml,parmZ,..... parmn are positional operands. The
meaning of each parameter or operand is defined by its
position in the operand field of the instruction. The number
of positional operands varies with each instruction type.

parml is normally the ““to” or target location.
parm? is normally the ““from” or source loaction.

KEYWORD= are keyword operands. The keyword (PREC, RESULT,
EVENT, etc.) specifies a particular parameter to be
used in that instruction’s execution.

Pl=,etc are keyword operands that allow positional operand
modification at execution time.

2-2 SR30-0220

Figure 2-1 shows the relationship of the various parts of a source
statement to the general instruction format. (The ADD instruction

is discussed in detail in ‘’Section 5. Data Manipulation”’, and

is used here only to illustrate the basic instruction format.)} In this
example, three positional operands are used. FIELD is the name of the
“to’’ or “‘target’’ location, DATA is the “from” or ““source’’ location,
and the third positional operand is the integer value ‘1", the “‘count”
operand. A keyword operand, PREC= is also coded; in this case, the
“S" indicates “‘single precision.”’

ADDIT ADD FIELD,DATA,l‘,P<C‘S

LABEL OP PARM1 ;}KEYWORD
(operation (to or (count) OPERAND
to be target (specifying single
performed location) PARM2 precision)
by (from or
computer) source location)

Figure 2-1. Source statement/general instruction format relationship

For the ADD instruction, the count and PREC = operands are not
required; they have values to which they will default if not coded
(the values coded in the illustration are, in fact, the default values

for these operands). In the ADD, the ‘‘count” operand applies to the
first positional operand only (the number of consecutive values,
beginning at location FIELD, to which the value in DATA is to be
added), and the “PREC =" operand, as coded, applies only to the
first positional operand and the result (which is also the first
operand, in this example).

Other instructions may not have a count or PREC= operand or, if
they do, they may apply to other than the first positional operand.
The general syntax of an Event Driven Executive instruction adheres
to the basic format just discussed; the meaning of the operands,

and the number of operands allowed differs depending on the
instruction type.

{nstruction Format 2-3

This page intentionally left biank.

2-4 SR30-0220

INSTRUCTION FORMAT REVIEW EXERCISE — QUESTIONS

1. In the study guide, and in the reading assignment, the terms
““operand’’ and ‘‘parameter’’ are both used. These terms
are interchangeable, and both refer to labels/names/values
in the operand field of an instruction.

True
False

2. In the operand field of an instruction, all positional operands
used must precede (from left to right) any keyword operands
used,

True
False

3. Allinstructions have the same number of positional operands,
but the number of keyword operands varies from instruction
to instruction.

True

False

4. In the operand field of an instruction, positional operands are
separated by commas, but keyword operands may be separated
by blanks or by commas.

True

False

5. The meaning of a positional operand, in a given instruction,
is determined by its position (first, second, etc.), while the
meaning of a keyword operand is determined by the keyword
used.

True
False

6. Labels beginning with "“$'" have a special meaning to the system,
and are reserved for system use.

True

False

Instruction Format 2-5

INSTRUCTION FORMAT REVIEW EXERCISE — ANSWERS

2-6

SR30-0220

True. Both terms are used interchangeably, throughout the
study guide and the PDOMs. For example,

parameter one
parameter 1
first parameter
parm1
operand one
operand 1

first operand
opnd1

are all used at one time or other to refer to the first positional
operand in an operand field being discussed.

A possible area of confusion might be an instance when ‘‘parameter’’
is used to describe information passed to another program or a
subroutine, rather than to reference an element of an operand

field. Normal attention to the context in which the term is used
will usually prevent any misunderstanding.

True. All positional operands must be coded before (to the left
of) the first keyword operand. After all positional operands have
been coded, multiple keyword operands may be coded in any
sequence desired; all keywords are analyzed in light of the meaning
of the keyword itself, rather than its position within the operand
field.

False. Different instructions vary in the number of required
positional operands (must be coded, no default), optional
positional operands (will default to predetermined value if
not coded), and required/optional keyword operands.

False. A/l operands, keyword or positional, are separated
by commas, with no imbedded blanks allowed. When the first
blank is detected, all further information is considered a comment.

In the situation where two or more optional positional operands
are allowed, and you skip one and code the other, the skipped
(defaulted) operand must be indicated by a comma if the coded
operand follows it in position.

Example:

label op opndl,gpnd2,opnd3,opndd

REQUIRED OPTIONAL

VALID OPERAND STRUCTURES
opndl,opnd?2
REQUIRED OPERANDS ONLY — OPTIONAL OPERANDS
(opnd3, opnd4) TAKE DEFAULT
opndl,opnd2,opnd3
REQUIRED OPERANDS PLUS FIRST OPTIONAL OPERAND
(opnd3) CODED — opnd4 TAKES DEFAULT VALUE
opndl,opnd2,o0pnd3,opndd
REQUIRED AND OPTIONAL OPERANDS CODED
opndl,opnd2,,opnd4

REQUIRED AND LAST OPTIONAL OPERAND (opnd4)

CODED, SKIPPED OPERAND (opnd3) INDICATED BY A
COMMA

INVALID OPERAND STRUCTURES
opndl,opnd2,opndd

THE VALUE YOU THOUGHT YOU CODED FOR opnd4
WILL BE ASSIGNED TO opnd3, AND opnd4 WILL TAKE
THE DEFAULT

True. Self explanatory.

6. True. There is no system enforced discipline preventing a user
from defining storage locations with labels beginning with the “$"
character. However, because system defined functions/locations/
resources have labels beginning with this character that may be
referenced by operands in user-written instructions, confusion can
be avoided if users restrict their own definitions to labels not
beginning with “‘$"".

{nstruction Format 2-7

This page intentionally left blank.

28 8SR30-0220

Section 3. Program/Tasks

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. Describe programs and tasks as used in an Event Driven Executive
System

2. Define an application program structure that fits system and
application requirements

3. Use the Event Driven Executive program and task definition
statements

4., Understand and use the task synchronization statements
5. Include operator attention routines in a program

READING REFERENCE: Program Description and Operations
Manual (SB30-1053), pages 2-9 through 2-34, ‘“Task Definition
and Control Functions’’; or Program Description and Operations
Manual Version 2 (SB30-1213), pages 2-9 through 2-35.

PROGRAM/TASK CONCEPTS AND STRUCTURE

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-9; or
SB30-1213 (Version 2 PDOM) page 2-9.

System resources in an Event Driven Executive system are allocated

to tasks according to the priorities of the tasks. A task is a unit of work,
defined by the application programmer. A program is a disk- or
diskette-resident collection of one or more tasks, that can be loaded into
storage for execution. Although “program’” and "“task’’ are sometimes
used synonymously, the basic executable unit for the supervisor is

the task.

Task priority is assigned by the application programmer when the task
is coded. Valid priorities range between 0 and 511, with 0 being the
highest possible priority, and 511 the lowest. Tasks with priorities
between 0 and 255 execute on hardware level 2, and those between
256 and 511 on level 3.

Program/Tasks 3-1

Single Task Program

3-2 SR30-0220

For most applications, an elaborate program structure is not
required, and programs will consist of a single task, as shown in
Figure 3-1.

PROGRAM AS SINGLE TASK

® NO EXECUTION OVERLAP WITHIN PROGRAM

® PROGRAM COMPETES FOR SYSTEM RESOURCES
WITH OTHER TASKS CURRENTLY IN SYSTEM

PROGA

Figure 3-1. Single task program structure

Figure 3-2 is an example of the type of application that lends itself
to the single task program structure. The job is sequential in nature,
and will be waiting for operator input most of the time. There is no
requirement for asynchronous execution of multiple functions or
I/O overlap with processing, and nothing to be gained by a more

complex structure.
(_“ﬁ
\JL]

5)

OPERATOR REQUEST LOADS
“CUSTOMER FILE UPDATE"”
PROGRAM "

=

UPDATE

1. GET CUSTOMER NAME FROM TERMINAL
(OPERATOR INPUT)

SEARCH CUSTOMER FILE FOR NAME
READ CUSTOMER RECORD
DISPLAY CUSTOMER RECORD ON TERMINAL

ACCEPT UPDATE FROM TERMINAL (OPERATOR
INPUT)

WRITE UPDATED RECORD TO CUSTOMER FILE

7. GO BACK TO STEP 1 IF MORE RECORDS TO
UPDATE

8. ELSE, END UPDATE PROGRAM

e

Figure 3-2. Single task application example

o e

o

Multiple Task Programs

Figure 3-3 illustrates a multitasking program structure. PROGA is
started up by the system when the program is loaded, and is called the
INITIAL TASK. The other tasks shown will not start up until a user-
coded command is executed that tells them to begin. /N/TIAL TASKS
go into execution as a result of the program’s being loaded into stor-
age, while initiation of SECONDARY TASKS is a user responsibility.
Once in execution, all tasks within a program compete for system re-
sources with one another, and with all other tasks active in the system.
The supervisor considers each task as a discrete unit of work, and
assigns resources based on task priority, regardless of which tasks are
INITIAL or SECONDARY.

PROGA PROGRAM MADE UP OF MULTIPLE TASKS
e CONCURRENT (ASYNCHRONOUS) EXECUTION
OF TASKS WITHIN PROGRAM
® TASKS COMPETE FOR SYSTEM RESOURCES
TASKX WITH ALL OTHER TASKS CURRENTLY IN SYSTEM
TASKY
TASKZ

Figure 3-3. Multitasking program structure

Figure 3-4 is an example of an application that makes use of multi-
tasking. The program repetitively reads a group of Analog Input
points, performs calculations on the data and stores the resuits in an

output area on disk.

Program/Tasks 3-3

3-4

SR30-0220

OPERATOR REQUEST
LOADS “A/I DATA
REDUCTION” PROGRAM

AIRDUCE

START “AISCAN" TASK

WAIT FOR “AISCAN" TASK TO COMPLETE

READ A/t VALUES FROM DISK INTO WORK AREA
START “AISCAN" TASK

PERFORM DATA REDUCTION ON DATA IN WORK
AREA

6. WRITE RESULTS TO OUTPUT AREA ON DISK
X/. GO BACK TOSTEP 2

U e

AISCAN

1. READ A/I POINTS INTO STORAGE
2. WRITE A/l VALUES TO DiSK

3. TASK “AISCAN COMPLETED

V’\’/

Figure 3-4. Multitasking application example

To take advantage of multitasking, the reading of the Analog Input
points has been defined as a separate task, which also buffers the collec-
ted data to disk. When the program is loaded into storage, the supervisor
starts up the initial task, AIRDUCE. The first step in AIRDUCE is

to start up the secondary task AISCAN. AIRDUCE then waits for
completion of the reading and buffering of the first set of Analog

Input values.

When AISCAN completes, AIRDUCE starts up again, and retrieves
the buffered data from disk. AISCAN is restarted and, while the
first set of values is being processed, the second set is being col-
lected; the two functions are overlapping.

Multiple Program Structure

As already mentioned, an application program consists of a user-
written collection of one or more tasks that has been prepared

for execution and stored under a unique name on disk/diskette.

A terminal operator can request that a program be loaded into
storage and placed in execution by entering a request for the super-
visor load utility $L and supplying the program name.

Programs may also be loaded by executing a LOAD instruction in
another program that is already in execution {use of the LOAD
statement is discussed later in this section). When the supervisor
receives a request to load a program, either from a terminal or a task
already in execution, it finds the program on disk/diskette, finds a
section of unused storage large enough to accommodate the program,
loads the program from disk/diskette, relocates it into the storage
area, and starts up the program’s initial task. When a program com-
pletes execution, the supervisor releases the storage it occupied so
that the area can be used to load other programs.

Because programs are dynamically relocated into storage as load
requests are received, the size and structure of the programs can have
an effect on system throughput. To illustrate this, assume there is

a payroll application consisting of the following functions:

Function
SORT

PART-TIME
WAGES

FULL-TIME
WAGES

SALARIED
WAGES

WRITE
CHECKS

Description

Separate part-time hourly, full-time hourly,
and salaried employee data into three
separate files.

Process all records in part-time employee
file

Process all records in full-time employee
file
Process all records in salaried employee file

Print checks for all employees

Program/Tasks

3-5

3-6

SR30-0220

Although the payroll job just described is a fairly straightforward
application, which could be coded as a single program, there may

be valid reasons for breaking it up into multiple programs. One con-
sideration is the size of a program, in relation to the storage available
on the system and the number and size of other programs that may
need to run concurrently. If the size of PAYROLL in relation to the
total storage available for user programs is as depicted in Figure 3-5,
you can see that, once PAYROLL is loaded, little storage will be left
for loading other programs.

SERIES/1
STORAGE

SUPERVISOR

PAYROLL

(AVAILABLE
STORAGE)

Figure 3-5. Program structure

Conversly, if other programs are already in execution when the load
of PAYROLL is requested, there may be some delay before enough
contiguous storage to accommodate so large a program becomes
available and the load can again be attempted.

Below is a redefinition of the payroll application with each function
coded as a separate program.

Program Name Description

SORTIME Separate part-time hourly, full-time hourly,
and salaried employee data into three
separate files

PARTIME Process all records in part-time employee file
FULLTIME Process all records in full-time employee file
SALTIME Process all records in salaried employee file
CHECKS Print checks for all employees

Overlay Program Structure

As can be seen in Figure 3-6, each of the programs is now much
smaller than the entire PAYROLL program. As each program
completes execution, it would request the load of the succeeding
program. The probability of there being enough storage to load
other applications is greatly increased, and chances of having to wait
for storage to become available so that you can again attempt to
load a program there was previously no room for, are reduced.

SERIES/1
STORAGE
SUPERVISOR
SORTIME
PARTIME
FULLTIME
(AVAILABLE
STORAGE) SALTIME
CHECKS

Figure 3-6. Program structure

If system activity were very high (several other applications in
concurrent execution), a lack of contiguous storage availability
could still cause some difficulty in the loading of the next se-
quential program. In a payroll application, this is acceptable,
because it is not ““time-critical’’; a delay in execution of a succeeding
step will not invalidate the final result.

Some applications are time constrained; for example, those involving
the processing of data acquired in realtime, where a delay in execution
might result in data being lost or overwritten. This type of application
must have a reasonable expectation of being loaded quickly when
requested and, once loaded, of running to completion with minimal
delay.

Program/Tasks 3-7

3-8 SR30-0220

Coding a time-critical applic n as a single program ensures rapid
execution, once it is loaded t, if the program is large, the same
problems exist as in the sin srogram payroll application (possible
delay in load due to large 2.. int of storage required; tying up system
once loaded). Breaking up ¢ :program into separate programs takes
care of the problem of size, ut the requirement for nearly continuous
execution once in operatior. is still not met. Again, the level of activity
within the system could result in a delay in loading the next in a se-
quence of programs, a condition that cannot be tolerated in this type
of application.

Using the OVERLAY PROGRAM technique, both the requirement
for a reasonable sized program and minimum execution delay can
be met. In Figure 3-7, the application is split into separate programs.

PHASET
APPLICATION
PROGRAM
-7 PHASET
PHASE2
PHASE3
~~~~~ PHASE4

Figure 3-7. Program overlays

PHASE1 is the initial program, and will load PHASE2, PHASES3,
and PHASE4, as required. PHASE2, PHASE3, and PHASE4 are
defined as OVERLAY PROGRAMS. When PHASE1 is loaded, the
loader recognizes that overlay programs are referenced. The loader
looks at each program that is designated as an overlay, and then
reserves enough storage to hold PHASE 1 plus the largest overlay
program.



SERIES/1

STORAGE

SUPERVISOR
SPACE FOR
PHASE1 PLUS PHASE1
OVERLAY AREA | [~~~ OVERLAY AREA LARGE
RESERVED (OVERLAY ENOUGH FOR ‘PHASE3’
WHEN PHASE1 AREA) THE LARGEST OVERLAY
IS LOADED PROGRAM

(AVAILABLE

STORAGE)

Figure 3-8. Program overlays

When PHASE1 is loaded and in execution, and requests that
PHASE2 be loaded, the system immediately loads PHASEZ2 into the
overlay area already reserved and starts it into execution. There is no
contention for the storage in the overlay area with other applications
waiting to be loaded, because the overlay area is reserved for the
exclusive use of PHASE 1 overlay programs.

As each overlay program completes, PHASE 1 loads the next, until
all required programs have run. When PHASE1 terminates execu-

tion, the storage reserved for both PHASE 1 and the overlay area
is released.

To summarize, application program structure (single program/multiple
programs/overlays) and task structure within programs (single task/
multitasking) is determined by

1. type of application (time/non-time critical)

2. size of application

3. system storage size

4, operating environment (system activity/loading)

In general, a user should choose the simplest structure that will
support the application’s requirements.

Program/Tasks 3-9



PROGRAM/TASK DEFINITION

3-10  SR30-0220

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-17, 2-19,
2-25 through 2-28, 2-32, 2-33; SB30-1213 (Version 2 PDOM)
pages 2-16, 2-17, 2-19, 2-26 through 2-29, 2-33, 2-34.

Every Event Driven Executive application main program must have a
PROGRAM statement as the first statement in the program. The
PROGRAM statement defines the basic operating environment of the
program, including any data sets that the program will be using, the
names of overlay programs to be loaded, the priority of the program,
etc.

LOCATION OF FIRST EXECUTABLE EXECUTION
INSTRUCTION IN INITIAL TASK PRIORITY

INITASK PROGRAM BEGIN,200,DS=MASTER,PGMS=0VLAY1

NAME OF : NAME OF A NAME OF AN
INITIAL . DISK DATA SET OVERLAY
TASK . PROGRAM
ENDPROG
END

LAST TWO STATEMENTS
IN EVERY PROGRAM

Figure 3-9. Program definition

The label of the PROGRAM statement is the name of the initial task
(the only task, if multitasking is not used). The Event Driven Executive
system generates a control block for the initial task (and for every other
task defined), and assigns the first word of that control biock to the
symbolic task name. As 1/O and other operations are performed during
execution of the task, return codes and status indicators are placed in
this word, and may be examined by instructions referencing the
symbolic task name.



All Event Driven Executive main programs must end with an ENDPROG
statement, followed by an END. These two statements must be the
last two statements in the program.

Tasks within programs (other than the initial task) are defined by the
TASK statement, and must end with the ENDTASK statement. The
TASK statement performs the same functions for a task that the
PROGRAM statement did for a program except that the data files
and overlay programs defined in the PROGRAM statement apply for
all tasks defined in that program, and are not specified in the TASK
statement,

INITASK PROGRAM BEGIN,200,DS=MASTER,PGMS=0VLAY1

TASK? TASK START \

‘ NO PRIORITY SPECIFIED
. DEFAULT =PRIORITY 150

NAME OF ) LABEL OF FIRST

SECONDARY TASK ° EXECUTABLE
. INSTRUCTION
ENDTASK
ENDPROG
END

LAST STATEMENT

IN EVERY SECONDARY TASK

Figure 3-10. Task definition

Program/Tasks  3-11



PROGRAM/TASK EXECUTION

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-10, 2-14,
2-20 through 2-23, and 2-29; SB30-1213 (Version 2 PDOM) pages

2-10, 2-14, 2-20 through 2-24, 2-30.

Program Loading
Event Driven Executive programs are readied for execution at the
time they are loaded into storage from disk or diskette (a given program
will not immediately go into execution unless its initial task has a
higher priority than other currently executing tasks). Programs are
loaded by a terminal operator, using the $L. supervisor command,
or by execution of a LOAD statement in a task already in execution.
In both cases, the program to be loaded is referenced by the name
under which it is stored on disk/diskette, and is either entered by
a terminal operator, or specified as a LOAD statement operand.
Note: The name of a program on disk has no relationship to the
name of that program’s initial task. lllustrations in this study
guide frequently show both names the same, but this is not a

requirement of the system.

PROGA PROGRAM STARTA

PROGSTOP

ENDPROG
END
PROGA
|
| I
. 1 I
PROGB | | i
PROGB PROGRAM STARTB ! ]
. \ I
N 1

PROGSTOP
ENDPROG
END

STORAGE
SUPERVISOR

PROGB

PROGB [0

i
17
//  PROGRAMS
PROGA // LOADED BY $L
ﬁ SUPERVISOR

UTILITY FUNCTION

Figure 3-11. Program loading from terminal

As shown in Figure 3-11, copies of the same program may be in storage
and active at the same time. The single copy of a program on disk/
diskette may be loaded as a separate program from one or more
terminals (as shown) as a separate program from one or more programs
already executing, or as an overlay by a currently executing program
or programs.

3-12  SR30-0220



Figure 3-12 is a simple example of one program loading another. The
program consists of the single task INITASK, which will start execution
at location BEGIN. No priority is coded on the PROGRAM statement,
so this program will run at the default priority of 150.

INITASK PROGRAM BEGIN

BEGIN LOAD PTHREE
END PROGSTOP

ENDPROG

END

Figure 3-12. LOAD statement

User disk/diskette I/O will not be performed in this program (DS=
not coded in PROGRAM statement), and no overlay programs will
be loaded by this program (PGMS= not coded).

Execution of the LOAD statement at location BEGIN requests that
a program named PTHREE be loaded into storage and readied for
execution. The loading program will wait for the completion of the
attempt to load PTRHEE before continuing execution.

The last statement to be executed in the loading program is the
PROGSTOP at location END. The PROGSTOP statement must be
the last executable statement in all programs. When PROGSTOP

is executed, the supervisor is notified that this program’s initial task
is to be detached (made not active), various system resources that
were assigned to this program can now be made available to other
tasks, and the storage occupied by this program can be released for
the loading of other programs.

In the oversimplified example shown in Figure 3-12, the loading task
does not check to make sure the load operation was successful. In
actual practice, the user would want to know if the operation failed,
and if it did, the reason for the failure.

Program/Tasks 3-13



3-14  SR30-0220

In Figure 3-13, the program location ABORT is specified in the
ERROR= keyword operand. If the load is successful, execution con-
tinues with the statement following the LOAD. If the load operation
fails, control is transferred to the location specified by the ERROR=
keyword operand. In this example, ABORT is the label on a
PROGSTOP statement and failure of the load operation would

result in termination of the loading task. (In actual application pro-
grams, error routines are likely-to be much more complex.)

INITASK PROGRAM BEGIN

BEGIN LOAD PTHREE ,ERROR=ABORT
ABORT PROGSTOP

ENDPROG

END

Figure 3-13. LOAD statement

Every task has a Task Control Block (TCB) associated with it. A task’s
TCB is automatically generated during the program preparation process
when a task definition statement is encountered. A TCB consists of
those pointers, save areas, work areas, and indicators required by the
supervisor for controlling execution of the task in storage.

The first word of a task’s TCB is used by the supervisor to pass
information from the system to the task, regarding the outcome of
various operations the task has initiated. Depending on what operation
was attempted, the value set in the first word of the TCB by the super-
visor could indicate an arithmetic exception condition, the result of

an attempted 1/O operation, or, as in Figure 3-13, a load operation
completion code.

When a TCB is generated, the iocation of the first word is assigned
the label on the task definition statement: the ‘‘name’’ of the task.
In this study guide, and in Event Driven Executive reference docu-
mentation, this label is referred to as the ‘‘taskname,’” and the first
word of the TCB is called the ““task code word.” In Figure 3-13,
the task code word would be referenced by the taskname INITASK,
If ABORT (specified in ERROR= keyword operand of LOAD
statement) were the label of a user-written error routine, instructions
in that routine could get the load operation completion code by
using INITASK to locate the task code word. Appropriate operator
messages could then be printed out or alternative actions taken,
based on the precise meaning of the completion code.



Program Synchronization

At this point, the instructions required to examine the task code word
have not been discussed; however there will be examples illustrating
this technique in later sections of this course.

Assuming the LOAD operation was successful, and PTHREE does
go into execution, the loading program illustrated in Figure 3-13
has no way of telling when PTHREE finishes execution. For some
applications, there is no need for a loading program to be notified
of a loaded program’s completion, but there are cases where syn-
chronizing the execution of programs or tasks is required. This can
be accomplished by defining an event, and waiting for that event to
happen.

The ““wait on event”” facility is a signalling mechanism whereby a
task or program can be notified when a certain event has occurred,
and can wait or suspend execution until it does occur. Events in-
clude such things as the expiration of a time delay, completion of
an 1/O operation, or termination of a task or program. Events may
be user defined or, for some frequently required functions, may

be predefined by the system.

Completion of program execution is a predefined event, invoked by
coding the EVENT= keyword operand in the LOAD statement. In
Figure 3-14, the event has been named DONE3, which is also the
label of an Event Control Block (ECB) that is used by the supervisor
to keep track of whether the event has or has not occurred,

INITASK PROGRAM BEGIN

BEGIN LOAD PTHREE ,EVENT=DONE3, ERROR=ABORT
WAIT DONE3

ABORT PROGSTOP

DONE3 ECB
ENDPROG
END

Figure 3-14. LOAD statement

Program/Tasks 3-15



3-16

SR30-0220

Note: |f preparing programs using BPPF, coding the EVENT= keyword
operand in a LOAD statement causes an ECB with the proper label to
be automatically generated. When preparing programs using the online
assembler (SEDXASM), the ECB must be coded, as shown in Figure
3-14,

When the LOAD statement is executed, the supervisor recognizes
that an event has been defined in the EVENT= keyword operand.
The supervisor finds the ECB named DONES3, and sets it to indicate
that the event has not occurred.

After PTHREE has been loaded, both PTHREE and the loading program
are in execution concurrently. Eventually PTHREE will complete
execution {execute a PROGSTOP) and, at that time, the supervisor

will set the ECB at location DONES3 to indicate that the event has
occurred,

When the WAIT statement in the loading program is executed, the
supervisor will see that the waited-on event is DONE3. The supervisor
checks the ECB at location DONES3 to see if the event has occurred.
If it has, execution continues with the next statement following the
WAIT. If it has not, the loading program is placed in a wait state,
and execution will not resume until PTHREE completes. When an
event occurs, and the associated ECB is set to indicate that it has
occurred, the supervisor also checks to see if there are any tasks in
wait state, waiting on that event. If there are, the supervisor changes
them to the ready state, and they resume normal execution, based on
priority.

For examples of how user-written events are defined and used, see
the discussion titled “WAIT/POST" later in this section.

One instance where waiting on a “‘completion of execution’’ event
such as was just described must be done is when a program loads an
overlay. It is a user responsibility to ensure that a program that loads
an overlay program does not execute a PROGSTOP until the overlay
program has completed execution.

If a program has loaded an overlay program that is now executing,
and the loading program issues a PROGSTOP, the storage occupied
by the loading program and the overlay area is released to the system,
and made available for loading other programs. Aithough the overlay
area contains a program still in execution, the loader believes the
storage is available, and may, in response to a load request, load
another program into the same area, with completely unpredictable
results.



In Figure 3-15, PTHREE is defined as an overlay program in the
PGMS= operand of the PROGRAM statement. Up to nine overlay
programs may be defined in a PGMS= list.

INITASK PROGRAM BEGIN,PGMS=PTHREE

BEGIN LOAD PGM1,EVENT=DONE3,ERROR=ABORT
WAIT ~ DONE3

ABORT PROGSTOP

DONE3 ECB
ENDPROG
END

Figure 3-15. LOAD statement

The LOAD statement requests the load of PGM1. This is a positional
keyword reference to the PGMS= list in the PROGRAM statement. |f
multiple overlay programs were defined in the PGMS= operand, and
you wished to load the second program in the list, the LOAD state-
ment would be coded to load PGM2; for the third program, PGMS3,
and so on up to the maximum of PGMO9.

Note that the EVENT= keyword operand in the load statement is
coded, and that the loading program waits for completion of the
overlay program before issuinga PROGSTOP,

A program’s initial task is started into execution (placed in a ready
state) by the system at the time the program is loaded. Secondary
tasks within a program are readied for execution by an ATTACH
instruction, issued from the initial task or another secondary task
previously attached and running.

In Figure 3-16, a secondary task called TASK1 is defined. TASK1
will be started up by the ATTACH in the initial task, at location
BEGIN. Once TASK1 has been attached, TASK1 and INITASK, the
initial task, execute concurrently and independently.

Program/Tasks 3-17



Task Synchronization

3-18  SR30-0220

INITASK PROGRAM BEGIN

BEGIN ATTACH TASK1,110
WAIT TASKDONE
PROGSTOP

TASKDONE ECB

TASK1 TASK START,EVENT=TASKDONE

ENDTASK
ENDPROG
END

Figure 3-16. TASK statement

In this example, TASK1 actually runs at a higher priority than the
initial task, and would receive preference in the allocation of system
resources. The PROGRAM statement has no priority coded, so the
initial task runs at the default priority of 150. There is no priority
coded in the TASK statement, so TASK1 also defauits to 150, but the
ATTACH instruction specifies priority 110, which overrides any
coded or defaulted priority in the TASK statement.

It is just as undesirable for an initial task to release storage (execute
PROGSTOP) containing an executing secondary task, as it is for a
program to release storage containing an overlay program still in
execution. The TASK statement therefore has an EVENT= operand
that is used by the attaching task in the same manner as the loading
program used the LOAD statement’s EVENT= operand.

The example in Figure 3-17 uses many of the concepts you have just
studied. Beginning with the PROGRAM statement at location
INITASK, the starting address of the initial task is BEGIN; the initial
task will run at priority 100; and two overlay programs are defined in
the PGMS= list, PTHREE and PFIVE. At the time the program in
Figure 3-17 is loaded into storage, enough storage will be reserved

to hold the program plus the largest of the two overlay programs.



Now assume that the program has been loaded, and the system has
attached the initial task, INITASK. Execution starts at location
BEGIN. This statement requests the load of overlay program PFIVE,
because PFIVE is the second program in the PGMS= list of the
PROGRAM statement, and the LOAD statement specifies PGM2.

If the load of this first overlay fails, the ERROR= operand of the
LOAD statement will cause a transfer of control to location
OUTSBAD, the label of the PROGSTOP, and execution will
terminate.

INITASK PROGRAM BEGIN,100,PGMS=(PTHREE ,PFIVE)
BEGIN LOAD PGM2 ,EVENT=DONE5 ,ERROR=0UT5BAD
L4 LOAD PFOUR
Al ATTACH TASK1
W5 WAIT DONE5
13 LOAD PGM1 ,EVENT=DONE3 ,ERROR=0UT 3BAD
W3 WAIT DONE3
OUT3BAD WAIT TASKDONE
OUT5BAD PROGSTOP
DONE5 ECB
DONE3 ECB
TASK1 TASK START,EVENT=TASKDONE
ENDTASK
ENDPROG
END

Figure 3-17. Task/program synchronization

Program/Tasks 3-19



3-20

SR30-0220

If PFIVE loads properly, the next statement executed would be the
LOAD instruction at location L4. This statement requests that pro-
gram PFOUR be loaded into whatever storage is available (not in
overlay area). As it is coded here, any errors encountered in attempt-
ing to load PFOUR will be ignored, and execution will continue with
the statement following the LOAD.

At location AT, the initial task attaches the task defined at location
TASK1, at a priority of 150 (default taken, and no override coded in
the ATTACH). At this point, the initial task INITASK is executing,
the secondary task TASK1 is executing, the initial task of PFIVE, and
any secondary tasks it attached are running in the overlay area, and if
PFOUR loaded successfully, it is also in execution,

Before attempting to load overlay program PTHREE (LOAD statement
at location L3), a WAIT at location W5 is executed, waiting on the
completion of execution event defined in the LOAD statement which
previously loaded PFIVE (EVENT=DONES5). If PFIVE has not
finished, the execution of INITASK is suspended at this point. When
PFIVE completes, or if PFIVE were already through when the WAIT
at W5 was issued, the LOAD at location L3 is attempted.

This is a load of PTHREE, the first (PGM1) overlay program defined
in the PGMS= list of the PROGRAM statement. Notice that if the
load operation fails, the ERROR= operand of the LOAD statement
would cause a transfer of control to location OUT3BAD, which isa
WAIT for the completion of TASK1, rather than to OUT5BAD, the
PROGSTOP. If the load of PTHREE were unsuccessful, the initial
task is assured that no program is executing in the overlay area, but
the secondary task TASK1 could still be in operation. Any overlay
program in execution, and all attached tasks, must run to completion.
before PROGSTOP is executed by the initial task.

Note: In the figures in the study guide, no user-coded ECBs are shown
for event control blocks named in the EVENT= operands of TASK state-
ments. When programs are prepared using the online assembler
(BEDXASM), the system will automatically generate the required ECB
with the TCB created by the TASK statement, and a user-coded ECB is
not allowed (will cause assembly errors). Users preparing programs
under the BPPF macro assembler may also allow the system to assign
the ECB, or may code an ECB of that name, and the system will use

the explicitly coded ECB instead of assigning one.

If disk or diskette /O is used in a program, the data sets to be accessed
must be defined in the PROGRAM statement’s DS= operand, in much

the same manner as overlay programs are specified using PGMS=. This
topic will be discussed in the DISK 1/0 section of this study guide.



QUEUABLE RESOURCES

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-13, 2-18,
2-30; or SB30-1213 (Version 2 PDOM) pages 2-13, 2-19, 2-31.

A resource is a physical or logical entity within the system. Examples
of resources include a subroutine or data area existing within a parti-
cular program, or perhaps a data set or 1/0 device known broadly
across the system.

A shared resource is one that may be required by multiple tasks at
the same time. For instance, a table of constants might be referenced
from two or more asynchronously executing tasks within a program.
Since, by definition, the values in the table are “constant’’ (not being
altered by the tasks using them), access to the table (resource) is
unrestricted.

Unrestricted access to some shared resources may have undesirable
results. As an example, if a program were printing a report on a
printer, and other programs had free access to the printer resource,
the report could end up with printed output from the other programs
interspersed with report lines. In this case, the printer is a shared
resource, but is also what is called a serially reusable resource; one
that should be used by only one task at a time.

The ENQ/DEQ instructions provide a mechanism by which user tasks
may gain exclusive use of a serially reusable shared resource, and retain
control over that resource until explicitly releasing it for use by other
tasks.

Figure 3-18 is an example of how queuable resources are defined

and used. The program consists of the initial task INITASK, and two
secondary tasks, TASKA and TASKB. Assume that both TASKA and
TASKB have a requirement for a 500-word work area.

Instead of putting a 500-word work area in both TASKA and TASKB,
the programmer has chosen to save some storage, and define only

one work area. This single work area is designated as a queuable
resource, and wiil be shared by TASKA and TASKB, using the ENQ
and DEQ instructions.

The 500-word work area is defined in the DATA statement at location
CALCTABL (DATA statements are discussed fully in a later section).
The Queue Control Block for this resource is defined in the OQCB
statement at location CALCQ.

Note: |f preparing programs using BPPF, coding an ENQ statement
causes the automatic generation of a QCB with the same label as speci-
fied in the operand of the ENQ. When preparing programs using the
online assembler (SEDXASM), users must code the QCB; it is not auto-
matically generated.

Program/Tasks 3-21



INITASK

STARTUP

W1
W2

CALCTABL

CALCQ

TASKA
ASTART

TASKB
BSTART

PROGRAM

ATTACH
ATTACH

WAIT
WAIT
PROGSTOP

DATA

QCB
TASK
ENQ

DEQ
ENDTASK

TASK
ENQ

DEQ
ENDTASK
ENDPRQG
END

Figure 3-18. ENQ/DEQ/QCB

3-22  SR30-0220

STARTUP

TASKA
TASKB

AFINISH
BFINISH

500F'0"

ASTART,EVENT=AFINISH
CALCQ

CALCQ

BSTART,EVENT=BFINISH
CALCQ

CALCQ



When the program begins execution, the initial task attaches both
TASKA and TASKB. TASKA and TASKB have agreed to the con-
vention that any time either of them needs to use the work area
CALCTABL, they will enqueue that resource by issuing an ENQ
instruction referencing the QCB called CALCQ. Assuming that
TASKA issues the ENQ first, the supervisor checks the QCB at
CALCAQ, finds that no other task is currently enqueued, and gives
exclusive control of the work area to TASKA. TASKA can now use
CALCTABL without fear of TASKB altering its contents in mid-
execution,

While TASKA has the work area enqueued, TASKB, which is also in
execution, attempts to gain control of the work area by issuing its own
ENQ of CALCQ. The supervisor checks the QCB, finds that TASKA
is already using the resource represented by CALCQ, and therefore
places TASKB in the wait state, waiting upon availability of the
requested resource.

When TASKA is finished with the work area, it issues a DEQ of
CALCQ. The supervisor checks the QCB, and finds that TASKB

is waiting on that resource. TASKB is placed back in the ready state,
and the QCB is changed to indicate TASKB's ““ownership’’ of the
resource represented by CALCQ.

An additional operand, not shown in the example, may be coded on
the ENQ statement. This is the keyword operand BUSY=, It would be
coded if, when attempting to ENQ a resource and the resource was
busy (enqueued by another task), you did not want to suspend, waiting
for the resource to be dequeued. You may code the label of an instruc-
tion in the BUSY= operand (BUSY=label), and control will be
transferred to that location if the resource is already enqueued when
your task tries to ENQ it.

Note that ENQ/DEQ provides protection from simultaneous access
of a serially reusable resource only if all users requiring the resource
agree to employ it. In the example in Figure 3-18, if one of the two
tasks were to use the CALCTABL work area without first enqueuing
for it, neither the supervisor nor the other task has any way of
detecting or preventing it.

Program/Tasks 3-23



WAIT/POST OPERATION

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-15, 2-24,
2-31, 2-34; or SB30-1213 (Version 2 PDOM) pages 2-15, 2-25, 2-32,
2-35.

Figures 3-14 through 3-17 illustrated how a program or task can
synchronize execution with a loaded program or attached task by using

a WAIT on the ECB named in the associated LOAD or TASK statement’s
EVENT= operand. The EVENT= operand is a convenient means of
synchronizing the execution termination sequence of loading and

loaded programs or attaching and attached tasks, but programs and

tasks often require synchronization at other points in their execution,
This can be accomplished through user-defined events, and the
WAIT/POST mechanism.

In the example in Figure 3-19, assume that the initial task, WAITPOST,
at some point in its execution, requires a certain set of numeric values
in order to continue. These values are the resuit of the execution of

a calculation routine in XTASK, an attached secondary task. The initial
task must therefore make sure that the calculation routine in XTASK
has been executed, before proceeding with its own execution.

The initial task could wait on the EVENT= operand in the TASK
statement XTASK (EVENT=TASKDONE), and be assured that the
required values had been calculated. This method would work, but
the entire secondary task would have to run to completion before
WAITPOST could resume execution. Depending on what else
XTASK has to do in addition to the calculation routine, there

could be a considerable amount of time in which the required values
were ready for use, but WAITPOST is still in a wait state.

Defining the completion of the calculation routine in XTASK as a user
event allows XTASK to signal the initial task as soon as the required
values have been generated. The event is called CALLCDONE, and an
ECB of that name is coded. ECBs for user-defined events are initially
set up to indicate ‘‘event occurred.” A WAIT issued against such an
ECB will act as though the event has happened (fall through). There-
fore, a RESET of the ECB must be executed before a WAIT is

issued against it. The RESET instruction sets the ECB to indicate
“event has not occurred.”’

3-24 SR30-0220



WAITPOST PROGRAM INITGO

INITGO RESET CALCDONE
Al ATTACH XTASK
W1 WAIT CALCDONE
W2 WAIT TASKDONE
PROGSTOP
XTASK TASK TASKGO,EVENT=TASKDONE
Calculation
Routine
P1 POST CALCDONE
ENDTASK
CALCDONE ECB
ENDPROG
END

Figure 3-19. WAIT/POST

In the example, execution begins with the RESET command at
location INITGO, which changes the ECB at CALCDONE from

its initial indication of “‘event occurred’’ to “‘event has not occurred.”’
At location A1, the secondary task XTASK is attached.

WAITPOST and XTASK are now in concurrent but asynchronous
execution, when XTASK finishes calculating the values required by
the initial task, the POST instruction at location P1 is executed,

and the ECB at location CALCDONE is set to indicate “‘event
occurred.”

Program/Tasks 3-25



At the time the POST is issued, the supervisor checks to see if there
are any tasks waiting on this event. If the WAIT at W1 had already
executed, the initial task would now be in a wait state, and the super-
visor would place WAITPOST back in a ready state. If the WAIT had
not yet occurred, WAITPOST would continue executing until it was
encountered. When the WAIT was issued, the supervisor would check
CALCDONE, and, finding the event already complete, would allow
WAITPOST to continue execution.

The instructions following the WAIT at W1 in the initial task, and the
instructions following the POST at P1 in the secondary task can now
continue executing concurrently; the initial task did not have to wait
until the secondary task terminated before using the required values.
(Notice that the proper termination sequence for an attaching and

an attached task is still necessary, and is provided for in the example
by the WAIT on EVENT=TASKDONE at location W2,)

The RESET instruction is used with user-defined events. System-defined
events, such as those declared in the EVENT= operand of LOAD or
TASK statements, are automatically initialized by the system. The use
of RESET with a system-defined event may result in improper or un-
predictable operation.

Note: When preparing programs using BPPF, declaring an event name
in the operand of a POST statement results in the automatic generation
of an ECB of the same name. Users of the online assembler
($EDXASM) must code an ECB with a label matching the name in the
POST operand; ECB generation is not automatic.

ATTENTION LISTS

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-10, 2-16;
or SB30-1213 (Version 2 PDOM) pages 2-11, 2-16.

The ATTNLIST capability provides a means for an operator to
communicate with a program using a terminal. The ATTNLIST state-
ment is used to specify operand pairs, each pair consisting of a

1- to 8-character operator command, and a label in the user program,
which will receive control when that operator command is entered.

In the example in Figure 3-20, the ATTNLIST statement defines a
single operand pair, STOP, XTHREE. (Note that ATTNLIST, like
ECB and QCB, is not an executable statement, and must not be coded
within an executable code sequence.) The first “‘name’’ in the operand
pair defines an operator command to be entered from a terminal, and
the second is the label of the instruction in the user program that will
be executed when that command is entered.

3-26 SR30-0220



EXMPATTN PROGRAM BEGIN

ATTNLIST (STOP , XTHREE)
QUIT PROGSTOP
XTHREE
ENDATTN
ENDPROG
END

Figure 3-20. Attention list

Assume the program in the example has been ioaded and is in execu-
tion. An operator can now press the ATTENTION key on the
terminal (the terminal used to load the program), enter the command
STOP (defined in the ATTNLIST statement), press the ENTER key,
and the attention routine at location XTHREE will be executed. The
attention routine in this example, and every attention routine defined,
must end with an ENDATTN statement.

Attention routines do not execute on the level and priority of the user
task within which they reside, but as part of the supervisor keyboard
task, on hardware level 1. Attention routine execution, therefore,
preempts all other user tasks on levels 2 and 3, and should be kept very
short. Since attention routines execute as part of a task running under
supervisor rather than user control, there are restrictions on the types
of instructions that may be used (see the reading assignment for specific
instructions that are excluded).

Program/Tasks  3-27



3-28

SR30-0220

Attention routines usually set a program indicator that can be checked
by the user task; execution-time decisions (end execution, restart the
program, load another program) can then be made, based upon the
value in the indicator. The instructions necessary to set storage
locations (program indicators) or check them for specific values have
not yet been discussed, and are therefore not shown in Figure 3-20.
For further discussion and complete examples, see the topic
"“Operator Control of Program Execution” in ““Section 11. Terminal
1/0."” :



PROGRAMS/TASKS —REVIEW EXERCISE —QUESTIONS

1.  Most applications can be programmed as a single task. What
type of application would justify the use of the more complex
multitasking structure illustrated in Figure 3-3?

Answer:

2. What are the advantages of loading a program as an overlay,
rather than just loading it into available storage?

Answer:

3. What disadvantages are there to the overlay program structure?

Answer:

4. How does a program’s initial or main task get started up?

Answer:

5. What statement must be executed to release the storage occupied
by a program?

Answer:

Program/Tasks  3-29



This page intentionally left blank.

3-30 SR30-0220



6. Fill in the blanks in the following paragraph, using words or
phrases from the list below. (Some items in the list may be used
more than once, and some not at all.)

a. ENDTASK f. PROGRAM
b. ATTACH g. ENDPROG
c. entry point h. PROGSTOP
d. TASK i. END
e. shared resource j. initial task
““The first statement in all programs is the statement.

The label of this statement establishes the name of the program’s
. The last two statements in every program must be

and . The statement
must be the last statement in an initial task to be executed. The first
statement in a secondary task is the statement. The

statement which defines the end of a secondary task, and which is also
the last to execute, is "

7.  What is the purpose of ENQ/DEQ and the QCB?

Answer:

8. The proper execution termination sequence of loading/loaded
programs and attaching/attached tasks is an automatic function
of the Event Driven Execution supervisor.

True
False

9. In Figure 3-20, assuming the program is in storage and executing,
and the operator enters QUIT after pressing the Attention key
on the terminal, which of the following would be true?

a. The program would immediately execute the PROGSTOP
instruction, terminating execution.

b. The program would execute the attention routine at
location XTHREE.

c. The entry would not affect program execution.

d. The program would be placed in a wait state, waiting
for the operator to enter XTHREE.

e. None of the above.

Programs/Tasks 3-31



PROGRAMS/TASKS REVIEW EXERCISES — ANSWERS

3-32

SR30-0220

1.

A user might consider multitasking where speed of execution is of
primary importance, and the nature of the job is such that certain
functions may be overlapped (i.e., 1/0 and processing).

When loading an overlay program, the loading program is assured
that space is available, because it is reserved at the time the
loading program itself is loaded. Also, the load of an overlay
program is faster than the load of the same program into available
storage would be. This is because information about the overlay
program which the loader requires in order to load it is looked up
at the time the loading program is loaded, and not at the time the
LOAD command is executed, as is the case when loading a non-
overlay program.

The storage occupied by a program that loads overlays is always
equal to the size of the loading program plus the size of the largest
overlay. If the loading program executes without requiring any
overlays, the overlay area, although unused, is still unavailable

to the rest of the system.

The initial task is ““attached” (made ready for execution) by

the system (actually the loader) at the time a program is loaded
to storage. Activation of secondary tasks is a user responsibility,
accomplished by execution of ATTACH instructions in already
running initial or secondary tasks.

Execution of PROGSTOP makes the storage now occupied by
a program available to the system, and terminates (detaches)
the program’s initial task,

The first statement in all programs is the f}f PROGRAM state-
ment. The label of this statement establishes the name of the
program’s j) initial task. The last two statements in every pro-
gram must be g) ENDPROG and i) END. The h}) PROGSTOP
statement must be the last statement in an initial task to be
executed. The first statement in a secondary task is the d) TASK
statement. The statement which defines the end of a secondary
task, and which is also the last to execute, is a) ENDTASK.

ENQ and DEQ are used to protect against the concurrent use of
a serially reusable shared resource by asynchronously executing
tasks.

FALSE. This is a user responsibility. The system provides the
WAIT/EVENT=/ECB to accomplish it (and WAIT/POST for
user events), but the user must code the required statements.

Choice c. is correct. The ATTNLIST in Figure 3-20 defines
the character string STOP as the operator input required to
execute the attention routine at location XTHREE. Any other
entry is ignored.



DATA STATEMENT

Section 4. Data Definition

OBJECTIVES: After completing this section, the student should
be able to:

1. Define data constants for the following data types:

a. EBCDIC d. Fixed Point
b. Hexadecimal e. Floating Point
c. Binary f. Address Constant
2. Define symbolic data areas using the TEXT and BUFFER
statements

3. Define a text message using the TEXT statement

READING REFERENCE: Program Description and Operations
Manual (SB30-1053), pages 2-44 through 2-49; or Program
Description and Operations Manual, Version 2 (SB30-1213),
pages 2-45 through 2-47, 2-51.

Data definition statements are used to define arithmetic values or
character strings (constants and messages) and to reserve areas of
storage for use during program execution (/0O buffers, work areas).

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-45, 2-46; or
SB30-1213 (Version 2 PDOM) pages 2-48, 2-49.

The DATA statement is the Event Driven Executive equivalent of the
Series/1 assembler language Define Constant (DC) statement. Although
all of the examples in this study guide use DAT A statements, DC state-
ments could be coded in their place, with the same results.

Note: This is the only instance where a Series/1 assembler language
statement may be coded in an Event Driven Executive program without
employing the USER statement. See “Section 7. Program Control"’

of this study guide for discussion and examples of the USER instruction.

Data Definition  4-1



4-2 SR30-0220

The format for the DATA statement is shown in Figure 4-1.

OPTIONAL REQUIRED

}

label  DATA  duptypelength'value'
Ny N e e e g’

4 A

name of duplication number of

first data factor bytes reserved

constant for each data

defined item defined
type of nominal value
data being of data item(s)
defined

Figure 4-1. Data statement

The DATA statement is made up of at least two ("‘type’’ and “‘value’’)

or as many as four parts. The first three parts (““dup,

0 4

type,”’ and

“length’’) are data descriptors or modifiers. The last part, ‘‘value,”
is coded with the actual data being defined. All parts of the DATA
statement are coded contiguously; no separators, such as blanks or
commas, are allowed.,

dup

type

length

duplication factor. This optional operand modifier is coded
as an integer value, indicating how many repetitions of the
data item defined by the rest of the operand should be
generated. If not coded, dup defaults to 1 (one).

_data type. This defines the type of data being defined, and

must be coded in every DATA statement. Nine data types
are supported by the system, each one represented by a
different alpha character. The type of data desired is indi-
cated by coding the appropriate character in the type
portion of the operand.

number of bytes to be used for each data item. The length
modifier is supported for only hexadecimal (data type X)
and EBCDIC (data type C) data, and is optional for those.
Every data type (including hexadecimal and ECBDIC)

has an implicit length associated with it. This length is the
number of bytes required to hold the assembled output of
the data constant defined. For example, every EBCDIC
character is represented by an 8-bit (one byte) binary code.
Therefore, when EBCDIC character strings are defined in
DATA statements, the assembled output requires one
storage location (one byte) for each character in the string.
The length modifier overrides this implicit length of one
byte per character. The assembled output of the character
string is placed in the number of bytes specified in the
length modifier, with truncation or padding of the charac-
ter string if required.



value

EBCDATA DATA C'ABC’

EBCDATA | C1

OUTPUT

WITH IMPLICIT
LENGTH LENGTH
MODIFIER
EBCDATA DATA CL5 ‘ABC’
EBCDATA [ C 1
C2
ASSEMBLED
OUTPUT WITH — c3
LENGTH MODIFIER 40
40

Figure 4-2. Length modifier

The length modifier is coded as Ln, where n = the number
of bytes. In the lower example in Figure 4-2, a three-byte
character string is placed in a five-byte field (length = L5},
and the two extra bytes are padded with EBCDIC blanks
(hex 40).

nominal value of constant. The last part of the DATA
statement operand is ‘value’. When the DATA statement is
assembled, the assembler initializes the number of data
elements indicated (dup) of the desired type (type code)
to the value coded in the ‘value’ part of the operand.

Note that ‘value’ must always be coded, and for all data
types other than address data (type code A), the value

is enclosed in apostrophes,

The following examples illustrate the interaction of three parts of the
DATA statement operand. (Length, since it is used with only two data
types, will be ignored for the remainder of this discussion.)

DCON

DATA F'0'

The example shown will define a one-word integer value, initialized
to zero. The optional dup is not coded, so the length will default to
the implicit length of the data type, which is one word for F type data.

Data Definition 4-3



4-4 SR30-0220

CCON DATA 5C'A!

The example shows a data type of C (EBCDIC), and the duplication
factor is 5. This statement would generate a five byte field of the
EBCDIC representation of the character A (in hex, C1IC1C1C1C1).
The duplication factor applies to the data defined within the enclosing
apostrophes of the value portion of the operand. |f the DATA
statement is written as follows;

CCON DATA 5C'ABC'

a fifteen-byte field would be defined, containing five repetitions of the
ABC EBCDIC character string. Although the implicit length of an
EBCDIC character is 1 byte, three characters are defined, so the duplica-
tion factor applies to the three-byte field.

The operand formats described do not apply when coding address (A-
type) data constant. An A-type data constant is a single word in length,
because it contains a Series/1 storage address.

ACON DATA A(FLC1)

The statement shown above will define a one-word constant at location
ACON, containing the address of location FLC1. Note that the name
of the location whose address you want in ACON is enclosed in paren-
theses, rather than apostrophes.

The DATA statement conforms to the rules for the Define Constant (DC)
instructions in the BPPF Assembler. If you are not familiar with
defining constants, it is recommended that you review pages 5-5 through
5-26 in the BPPF Macro Assembler Programmer’s Guide,

SC34-0074.



Here is a summary of the supported data types. The implicit
length generated by the assembly of each different type code is
indicated under Length.

1. Fixed Point Arithmetic Data

Type Code Length
H 1BYTE
F 2BYTES (1 word)
D 4 BYTES (doubleword)

H, F, or D type codes define signed, fixed point values of the
indicated length and are used in integer arithmetic operations.

2. Floating Point Arithmetic Data

Type Code Length
E 4BYTES
L 8 BYTES

E and L type codes generate standard or extended precision float-
ing point constants, respectively. Floating point data is used in
floating point arithmetic operations (Series/1 Floating Point
hardware feature required).

3. Address Data Definition
Type Code Length
A 2 BYTES (1 word)

The contents of the location defined will contain the address of a
symbolic program location,

4. Hexadecimal/Binary

Type Code Length
X 4 BITS
B 1BIT

These allow definition of binary bit strings in storage, which are
commonly used in logical operations and when using digital sensor
I/0 (DI/DO/PI). Note: Binary constants (type code B) cannot

be defined if program preparation is being done using the online
Program Preparation Facility, SEDXASM.

5. Character Data
Type Code Length
C 1 BYTE/CHARACTER

Defines EBCDIC characters in storage, for use with EBCDIC 1/0
devices (displays, printers).

Data Definition 4-6



BUFFER STATEMENT

4.6

SR30-0220

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-44;
SB30-1213 (Version 2 PDOM) pages 2-46, 2-47.

The BUFFER statement provides a convenient way to define
contiguous, named, storage areas in a program, for use in |/O operations,
as work areas, etc. The BUFFER statement reserves space in

storage, but does not initialize storage to a user-specified value. When
the statement is assembled, the storage reserved is set to binary zeros,
and will be zeros when the program containing the statement is

initially loaded.

TYPE OF ITEMS

IN THE BUFFER

(MAY CODE “BYTES",

OR IF NOT CODED,

DEFAULTS TO “WORDS") OPTIONAL

\ OPERANDS

label BUFFER count item, INDEX name

SIZE OF
BUFFER

NAME ASSIGNED NAME ASSIGNED
TO FIRST DATA TO INDEX VARIABLE
ITEM IF CODED

0000

> COUNT

N N
0000
0000
———— 1 | THE NUMBER

OF WORDS

0000
000 o] | (ORBYTES
0000 IF SPECIFIED)
5000 EQUAL TO
0000 “COUNT.
0000

Figure 4-3. BUFFER statement

Figure 4-3 illustrates the format for the BUFFER statement, and shows
what is generated in storage as a result. The label of the BUFFER
statement is the symbolic name of the first data item. In storage this

is preceded by two words of control information. The first word is
called the INDEX, and may be symbolically referenced by the name
you code in the INDEX= keyword operand of the BUFFER statement,
The second word is the count, containing the buffer length you
specified in the count operand. This count will be the number of words
or bytes defined, depending on whether you coded BYTES for the item
operand.



INDEX is used with SBIO and INTIME instructions to place data in
sequential buffer positions automatically, and would not be coded
unless the buffer being defined were intended for that purpose.

See ““Section 9. Timers” in this study guide for an example of the use
of the INDEX operand.

Data Definition 4-7



TEXT STATEMENT

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-48, 2-49;
SB30-1213 (Version 2 PDOM) pages 2-51, 2-52.

The TEXT statement is used to generate character buffers, and operates
in conjunction with the terminal instructions READTEXT, PRINTEXT,
GETEDIT, and PUTEDIT. Figure 4-4 shows the format for the TEXT
statement, and what is generated in storage.

K 1abel TEXT 'message',LENGTH=,CODE=

ENDMSG  TEXT "RUN ENDED',LENGTH=12,CODE=EBCDIC

oc
09 } e

E4
D5
40
Cb
D5
C4
C6
C4
40
40
40

2C ™

cforcfgmoQ 2 m

o

Figure 4-4, TEXT statement

4.8 SR30-0220



In Figure 4-4, the TEXT statement format at BB is shown coded

at [l . The message operand is the text ‘RUN ENDED’ in this
example, but may be any character string you wish, up to 254
characters. The LENGTH= operand is coded as 12, indicating the total
length of the text buffer. The CODE= operand is EBCDIC, which is
also the default. The standard internal representation for character data
is always EBCDIC. The system automatically converts the EBCDIC
character strings to the code required by a particular terminal.

The CODE= operand could be coded ASCII. This is for special cases
where you do not want the system to do any conversion from and to
EBCDIC, but wish to transmit the exact code pattern in the buffer.
An example is the graphics support, which drives a device employing
an ASCII interface where certain ASCII characters perform graphics
control functions,

The TEXT statement at would generate the storage configuration
shown just below it. The total storage utilized would be the 14 bytes
shown by the brackets at . The actual text buffer is defined within
the brackets labeled Q encompassing 12 bytes (LENGTH=12). The
data buffer is preceded by two bytes of control information, labeled
O. The first byte defined the total length of the buffer (hex 0C),
12 bytes. The second byte is the length of this message, nine bytes,
the total number of characters (including blank characters) in the
‘message’ operand. Unused character positions at the end of the
buffer Qare padded with blanks (EBCDIC for blank = hex '40’).
The label of the TEXT statement points to the first byte of
character data @) .

For both input and output operations, the count (second byte at
location G ) cannot exceed the text buffer length (first byte at Q ).
If you attempt to output a message that is larger than the buffer, or
read a character string from a device that is longer than the buffer, the
message will be truncated to fit within the defined buffer length.

The contents of the character buffer defined by a TEXT statement
is not confined to the character string that was coded when it was
assembled. Different messages may be moved into the buffer at dif-
ferent times during execution of a program. |f data is moved into a
TEXT buffer using the PUTEDIT command, the count byte is auto-
matically adjusted to reflect the message length. When data is read
from a terminal with a GETEDIT or a READTEXT command, the
count reflects the number of input characters read. |f a character
string is moved into a TEXT buffer by any instructions other than
these (i.e., MOVE), the count must be adjusted by the user before
issuing a PRINTEXT referencing that TEXT buffer,

Data Definition 4-9



This page intentionally left blank.

410 SR30-0220



DATA DEFINITION REVIEW EXERCISE — QUESTIONS

1.

Match the type with the data representation

a. Extended precision floating point
b. Address

C. Character

d. Double word fixed point

e. Half word fixed point

f. Full word fixed point

g. Binary

h. Hexadecimal

i Standard precision floating point

Using the following instruction
MSG2 TEXT LENGTH=20

answer the following questions:

1. C
2. X
3. B
4. F
5. H
6. D
7. E
8. L
9. A

a. How many characters could be stored in the text buffer

defined?

b. How many words would be reserved?

c. How could you address the first character in the buffer?

How many words are reserved by the following instruction?

BUF3 BUFFER 16,BYTES

When coding a TEXT statement, if no ‘message’ is defined
(LENGTH-= only coded), the text buffer will be initialized

to binary zeros.

True

False

Data Definition

4-11



DATA DEFINITION REVIEW EXERCISE — ANSWERS

4-12

SR30-0220

1.

=

a2 0

@

C.

- O

NN W OO

20 characters

11 (20 bytes, one for each character, plus 2 bytes (one for
length, one for count).

By referencing the label MSG2

10 words are reserved; 8 for the 16 data positions, and the two
control words which precede the data.

False. Undefined text buffer locations are initialized to
EBCDIC blanks (hex 40).



INTEGER ARITHMETIC

Section 5. Data Manipulation

OBJECTIVES: After successful completion of this topic, the student
should be able to:

1. Understand the Event Driven Executive arithmetic instructions
which operate on signed integer variables

2. List the Event Driven Executive arithmetic instructions which
operate on floating point data

3.  Use the Event Driven Executive data movement instructions to:
a. Replace the contents of one variable with that of another
b. Replace the contents of a variable with the address of another

c. Replace the contents of a data field with the contents of
another data field

4, Determine the result of executing any of the Event Driven Execu-
tive logical instructions, given the values represented by operand1
and operand?2

READING REFERENCE: Program Description and Operations
Manual (SB30-1053) pages 2-51 through 2-60; or Program Description
and Operations Manual Version 2 (SB30-1213) pages 2-53 through
2-65.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-51 through
2-56; SB30-1213 (Version 2 PDOM) pages 2-53 through 2-58,

Figure 5-1 shows the basic format of instructions that operate on
integer arithmetic variables.

| ADD i
| SUBTRACT !
label i ADDV opndl,opndzﬁcount,RESULT=,PREC=
MULTIPLY i
N e’ (B v J
opTIONAL! DIVIDE i OPTIONAL

MUST BE CODED

Figure 5-1. Integer arithmetic instruction format

Data flow is from opnd2, to opnd1; in the ADD or SUBTRACT
instructions, the data represented by opnd2 is added to or subtracted
from the data represented by opnd1, and the result of the

operation replaces the contents of the location specified by opnd1.

Data Manipulation  5-1



Optional Operands

5-2

SR30-0220

In the MULTIPLY or DIVIDE instructions, the data in opnd1 is
multiplied or divided by the data in opnd2, and the product or
quotient replaces the contents of opnd1 (for DIVIDE; the remainder
is stored in the task code word, and will be overlaid by the next
DIVIDE, 1/0 or floating point operation).

The optional operands (count, RESULT=, and PREC=) allow the appli-
cation programmer to control the number of variables involved in the
operation, where the result of the operation should be placed, and to
specify the size of the variables (word, doubleword) used. The following
examples illustrate how the optional operands affect instruction
execution. An ADD operation is used as an example, but the principles
also apply for SUBTRACT, MULTIPLY, and DIVIDE.

EXAMPLE1 ADD VAL1,CONWORD

This first example uses no optional operands, and is the most basic
form. The word at location CONWORD will be added to the word at
focation VAL1. The results of the operation will replace the contents
of VAL1. Both VAL1 and CONWORD are assumed to be single pre-
cision (word-length) signed integer variables, because word-length is the
default when no other precision is specified.

EXAMPLE1 ADD VAL1,CONWORD,5

The count operand is coded as a 5. The count operand references
opnd1, and specifies how many variables, beginning at the location
specified in opnd1, the contents of opnd2 should be added to. In the
example shown, the word at location CONWORD would be added to
the word {still the default precision) at location VAL1, to the word at
location VAL 1+2 (two bytes = one word), at VAL1+4, and so on
through location VAL1+8. Each of the words in the five word field
beginning at location VAL1 would be increased by the value of the
contents of location CONWORD.

EXAMPLE1 ADD VAL1,CONWORD,5,RESULT=RFIELD

Without changing anything else, the keyword operand RESULT=

has now been added. This statement will execute the same way as did
the previous example except that the results of the operation will be
placed in a five-word field beginning at location RFIELD. The five
words beginning at location VAL1 will remain unchanged.

The only remaining optional operand is the keyword PREC=, which
allows the programmer to specify the precision of the opnd1 and opnd?2
variables. Again using our example, if the field of data beginning at
location VAL1 were double precision integers, and we wanted to add a
single precision integer at location CONWORD to each of them,
PREC=D would be coded.

EXAMPLE1 ADD VAL1,CONWORD,5,RESULT=RFIELD,PREC=D



The results (double precision integers) would be placed in a ten word
field beginning at location RFIELD, leaving the original contents of
VAL1 undisturbed.

The D in PREC=D signifies that opnd1 is double-precision. DD would
have indicated that both opnd1 and opnd2 were double precision.

See page 2-55 in SB30-1053 or page 2-57 in SB30-1213 for
opnd1/opnd2 precision combinations.

Thus far, the count optional operand referred to opnd1 only. The
vector addition capability is an exception to that rule. The ADDV
statement adds the corresponding components of two vectors
together, and therefore the count operand specifies the number of
components in both vectors (opnd1 and opnd?2).

FLOATING POINT ARITHMETIC

The format for Floating Point instructions is similar to that for the
arithmetic instructions handling integer variables, except that the
optional count operand is not allowed. Floating point operations
involve the two discrete values represented by opnd1 and

opnd2 only; neither may be vectors.

|
FADD !

|
EFSUB !
1abe1l FMULT opndl,opnerRESULT=,PREC=
1 FDIVD I\ o
OPTIONAL! | oPTIONAL

MUST BE CODED

Figure 5-2. Floating point arithmetic instruction format

The floating point instructions are not software simulations of floating
point hardware; the Series/1 Floating Point hardware feature must
be installed to utilize the floating point capability.

Support for both standard and extended precision variables
(PREC= operand), and all precision combinations are allowed.

For an example of the use of floating point instructions, see Appendix
B, Example 11 in either SB30-1053 or SB30-1213.

Data Manipulation  5-3



DATA MOVEMENT INSTRUCTIONS

5-4

SR30-0220

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-59; or
SB30-1213 (Version 2 PDOM) page 2-61.

The MOVE statement has the following format:

| | count
} | —Or—
label : MOVE opndl,opnd2, : precision
| I —or=
| |  (count,precision)
N | I~ — ”
OPTIONAL ; ! OPTIONAL

MUST BE CODED

Figure 5-3. MOVE instruction format

Unlike the integer and floating point arithmetic instructions, the
RESULT= optional keyword operand is not used; the data specified
by opnd1 is always replaced by that represented by opnd2. The
following statement,

MOVE OLDATA,NEWDATA

would replace the word (default precision) at location OLDATA with
the word at NEWDATA.

The same operation, coded with the count operand=3,

MOVE OLDATA,NEWDATA, 3

would move the three words starting at location NEWDATA into the
three words starting at location OLDATA.

For MOVE statements, precision is indicated by the keywords BYTE,
WORD (default) or DWORD (doubleword). If count is not coded
(default count = 1), then precision is coded by itself. |f count is
coded, precision is included as a sublist element in the count operand.



MOVE
MOVE
MOVE
MOVE

Neither count nor precision
coded;.count default=1;
precision default=WORD count alone

coded; precision
"default=WORD

OLDATA,NEWDATA\‘ /
OLDATA.NEWDATA, 5 precision alone coded;

count defauit=1-

OLDATA ,NEWDATA ,DWORD =
OLDATA,NEWDATA, (5,DWORD)

count and precision

both coded; precision
included as a sublist
element in count operand

Figure 5-4. MOVE optional operands

Move operations move data from a field of specified length, to a field

of equal length, so count applies to both opnd1 and opnd2.

The following examples illustrate the MOVE instruction optional
operand variations. Each of the instructions is logically equivalent,
moving four bytes of data from opnd2 to opnd1.

MOVE
MOVE
MOVE
MOVE
MOVE

OLDATA ,NEWDATA, (4,BYTE)
OLDATA ,NEWDATA,?2
OLDATA,NEWDATA, (2 ,WORD)
OLDATA ,NEWDATA ,DWORD
OLDATA ,NEWDATA, (1,DWORD)

The MOVEA instruction moves the address of the location specified in
opnd2 into the location specified by opnd1.

MOVEA

DATADRS ,DATA

Data Manipulation

5-5



In the example shown, the address of location DATA replaces the
contents of location DATADRS. No optional operands are allowed
with the MOVEA statement, because:

a. opnd1 is always the target of the move, so RESULT= is
not valid

b. the data being moved is a Series/1 storage address, which is,
by definition, word-length; precision is therefore always WORD
(no PREC= coded)

c. only asingle address at a time is moved, so count is always
=1, and is therefore not coded.

LOGICAL INSTRUCTIONS

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-58;
or SB30-1213 (Version 2 PDOM) page 2-60.

The logical instructions AND (AND), OR (I0R), and exclusive OR
(EOR) operate upon selected bits within a bit field. Opnd2 operates on
opnd1 in the manner summarized in Figure 5-5.

AND (AND)

OPERAND 2 @ 1001 IFABITISA1INTHE SECOND

OPERAND, AND THE CORRES-

oPERAND 1 [0{(1 0 1 0] PONDINGBITISA 1IN THE

FIRST OPERAND, THAT BIT WILL

RESULTS [0{{1 0 0 0 BE A 1IN THE RESULT.
OR (IOR)

OPERAND 2 [0{(1 0 0 1 IFABITISA1INEITHER THE

SECOND OR THE FIRST OPERAND,

OPERAND 1 @ THE CORRESPONDING BIT IN
THE RESULT WILL BE A 1.
RESULTS  [0{{1 0 1 1

Exclusive OR (EOR)

OPERAND 2 @1 00 1 IFABITISA 1IN ONE OF THE

TWO OPERANDS, BUT NOT IN

OPERAND 1 @ THE OTHER, THE CORRESPOND-

ING BIT IN THE RESULT WILL

RESULTS @ BEA .

NOTE: RESULTS OF AND, IOR, EOR OPERATIONS WILL REPLACE THE
CONTENTS OF OPERAND 1, OR WILL BE PLACED IN THE LOCATION
SPECIFIED IN THE RESULTS= OPERAND, IF IT IS CODED.

Figure 5-5. AND/OR/exclusive OR

5-6 SR30-0220



The instruction format for AND, I0R, and EOR is shown in Figure 5-6.
As with MOVE operations, precision may be BYTE, WORD (default), or
DWORD. The precision applies to opnd1, opnd2, and to RESULT=,

if coded. The count optional operand applies to opnd1 and

RESULT= only; count for opnd2 is always =1,

: { count
| AND | —or-
1abe1: I0R opndl,opnd2, 1 precision ,RESULT=
| EOR : —or—
| I (count,precision)
—— | !
OPTIONALN —_— /N -
MUST BE CODED OPTIONAL

Figure 5-6. Logical instruction format

If RESULT= is coded, the contents of opnd1 are unchanged by the
operation. The following illustrates the use of the optional operands,

AND XDATA, ZDATA

Since count, precision, and RESULT= are not coded, count defaults
to 1, precision defaults to WORD, and the contents of XDATA will
be replaced by the word-length bit-field resulting from the AND

of the 16 bits in the word at ZDATA with the 16 bits in the word at
XDATA.

AND XDATA,ZDATA,3

The contents of XDATA, XDATA+2, and XDATA+4 will be replaced
by the results of the AND of the 16 bits in the word at ZDATA with
each of the 16 bits beginning at XDATA. Note that the same word at
ZDATA is consecutively ANDed with the three-word bit field beginning
at location XDATA. The precision (default=WORD) determined

how many bits at a time to AND (opnd2 size), and the count operand
how many consecutive groups of bits of that size to perform the
operation against.

AND XDATA,ZDATA, (3,BYTE)
The above is the same as the operation shown before, except that the

8 bits specified in opnd2 (BYTE precision) are successively ANDed

against the three 8-bit groups in opnd1, beginning with the byte at
location XDATA.

Data Manipulation 5-7



5-8 SR30-0220

Tabel

L
OPTIONAL

AND XDATA,ZDATA, (3,BYTE) ,RESULT=YDATA

When the statement above is executed, the three bytes, beginning at
location YDATA, will be replaced by the results of the AND of the
byte at location ZDATA with the three bytes in XDATA, XDATA+1,
and XDATA+2.

Event Driven Executive logical instruction capability also includes
logical shift operations, for both shift left (SHIFTL) and shift right
(SHIFTR). (See Figure 5-7.) Logical shifts, like the other logical
instructions, operate on bit-fields (bit-strings).

: | count

! SHIFTR I -—or-- . ~

| =

| SHIFTL opndl,opnd2, | pfii1s1on ,RESULT

: l (count,precision)

: J! \ .,
MUST BE CODED OPTIONAL

Figure 5-7. Shift instruction format

In shift operations, opnd2 is coded as an absolute value or as a variable
name. The absolute value, or the contents of the variable, contains the
shift count (the number of bit positions, to the right or left, that the
contents of the bit field which begins at location opnd1, should be
shifted).

The optional operands have the same meaning, and are coded in the
same way, as for AND, IOR, and EQR (note that if opnd2 is a variable
name, that variable has the same precision (BYTE,WORD,DWORD)

as the variable opnd1).



FIRSTOP

A SHIFTL instruction shifts bits out of the high-order (most significant)
position of a bit field, and fills vacated low-order (least significant) bit
positions with zeroes. Similarly, SHIFTR shifts bits out of the low-
order position, and zero-fills vacated high-order positions. Figure 5-8
illustrates the operation of both SHIFTL and SHIFTR.

COUNT=5 BIT POSITIONS

SECONDOP

T/

SCNT

FIELDA
B<lrir:

>~

and

Figure 5-8. Shift operation

éHIFTL FIELDA,S5 /WORD PRECISION (default)
»MOVE SCNT,1

SHIFTR FIELDB,SCNT

) Word at SCNT used

for shift count

DATA Fro"
DATA B'1111000011110000"
DATA B'0000000000000000"

Before execution of the Shift Left at FIRSTOP, the contents of
FIELDA and FIELDB are exactly as coded

zeros filled in
After execution of the Shift Left at FI RSTOP,’ vacated bit positions

FIELDA =/0001 1110 0000 0000
1111 O'/Shifted out of

high order position

After execution of the MOVE operation, location SCNT=1
After execution of Shift Right at SECONDOP,
FIELDA = 0001 1110 0000 0000, unchanged,

FIELDB =/OOOO 1111 0000 OOOO\‘OSh”ted out of

zero fills” low order bit
vacated position position

Data Manipulation 5-9



DATA MANIPULATION REVIEW EXERCISE — QUESTIONS

1. Fill in the value for X, Y, and Z after execution of each of the
instructions below. In each case, assume that before execution,
X=20, Y=30, and Z=0.

a. ADD  X,Y

Answers: X= _____ = Y= _____ Z=

b. ADD  X,Y,RESULT=Z

Answers: X= Y= ___ z=___
c. ADD  X,50

Answers: X=___ = Y= ___ Z=

2. Analyze the two arithmetic operations below, and explain how
they would differ when executed.

a. ADD  X,Y.Z b.  ADDV X,Y,Z

ANSWER:

5-10 SR30-0220



XDATA
ZDATA

Analyze the two data movement operations below, and explain
how they would differ when executed.

a. MOVE X.,Y b. MOVEA X,Y
ANSWER:

Below is a coding example using all five logical instructions. Each
instruction uses the “RESULT="" optional keyword operand to place
the result in a different location (opnd1 is undisturbed). Fill in

(in binary) what the “RESULT="" locations would be after execution
of the coding example.

AND XDATA,ZDATA,BYTE ,RESULT=ANDRSLT
IOR XDATA ,ZDATA,BYTE ,RESULT=IORRSLT
EOR XDATA, ZDATA,BYTE ,RESULT=EORRSLT
SHIFTR SDATA,7,BYTE,RESULT=RITERSLT
SHIFTL XDATA,3,BYTE,RESULT=LEFTRSLT
DATA B'11010010'
DATA B'10011001"

ANSWERS:
After execution,
a. ANDRSLT= B'
b. IORRSLT= B'
c. EORRSLT= B'

d. RITERSLT=B'
e. LEFTRSLT=B'

Data Manipulation  5-11



DATA MANIPULATION REVIEW EXERCISE — ANSWERS

5-12

SR30-0220

1.

a. X50 Y30 20
b. X20 Y30  Z50
c. X7 Y30 20

Example a. (ADD operation) would add the contents of storage
location Y’ to storage location ‘X'’ and to storage location
“X+2". The "count” operand (2) applies to opnd1 only.
Example b. (ADDV operation) would add the contents of storage
location ““Y" to storage location ’X’’, and the contents of storage
location “Y+2" to the contents of storage location “X+2"'. The
"count”’ operand of the ADDV instruction applies to both opnd1
and opnd?2 {also for MOVE).

Example a. (MOVE operation) would replace the contents of
storage location X" with the contents of storage location *’Y"’
(move Y to X). Example b. (MOVEA operation) would replace
the contents of storage location ‘X" with the address of the
storage location "Y'’ (move the address of Y to X).

a. ANDRSLT=B'10010000'
b. IORRSLT=B'11011011'
EORRSLT=B'01001011"
RITERSLT=B'00000001"
e. LEFTRSLT=B'10010000'

e



Section 6. Queue Processing (Version 2 Only)

OBJECTIVE: After completing this topic, the student should be
able to:

1. Define an empty or a full queue

2. Add entries to a queue

3. Retrieve the oldest entry from a queue
4. Retrieve the newest entry from a queue

READING REFERENCE: Program Description and Operations
Manual Version 2 (SB30-1213) pages 2-149 through 2-156.

The queuing instructions discussed in this section are used to define
queues and access entries in queues. The size of a queue (the number
of entries it can hold) is specified by the user. A queue entry is one
word in length. The contents of this word may comprise the queue
entry in its entirety, or as in the examples used in this section, may
be the address of a larger data area (buffer).

A useful example of queue definition and processing is buffer pool
management. |f several tasks within an application program have the
possibility of performing 1/O operations, a queue of I/O buffers
(buffer pool) can be established. Using the queue processing
instructions, a task requiring an 1/0 buffer obtains it from the

pool, and, when the 1/O has completed, returns it to the pool. No
physical movement of the buffer is involved; the queue entry that is
acquired and returned is actually the address of the buffer in storage.

Another example of the use of queue processing is a “‘data spooling”
operation, where multiple units of data are placed in a direct access
data set, with the record numbers of the first record of each unit stored
as a data element (entry) in a queue for later processing. In this
instance, the single-word queue entry is the queued data item itself,
rather than a pointer to a storage location or buffer,

Queue Processing (Version 2 Only)  6-1



DEFINEQ

6-2

SR30-0220

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM)
page 2-151.

For this discussion, a gqueue is the system mechanism and control
blocks necessary to logically connect and manage a chain of queue
entries. Figure 6-1 shows the format of the DEFINEQ statement,
which is used to establish a queue.

label  DEFINEQ  COUNT=1SIZE=
[
" OPTIONAL

o

MUST BE CODED

Figure 6-1. DEFINEQ format

The label of the DEFINEQ statement is a required field. It is the
symbolic name of the queue, and will be used by queue processing
instructions to access the queue. The COUNT= keyword operand
(coded as an integer value) determines the number of Queue Control
Elements (QCEs) and therefore, the possible number of associated
buffer pool elements the queue may reference. QCEs are three-word
system control blocks, which are logically (contain address pointers)
chained together in active or free QCE chains. QCEs in the active
chain include data entries; free chain QCEs contain no data entries,
and are connected to other free QCEs.

In addition to QCEs, the DEFINEQ statement also generates a single
Queue Control Block (QCB). The QCB is three words long, and the
first word is assigned the label of the DEFINEQ statement. The
QCB contains address pointers to the active and free chains of
QCEs. When an entry is added to a queue, the QCB address pointers
are adjusted to remove a QCE from the free chain and attach it to
the active chain.

SIZE= is an optional keyword operand. It may be coded to cause
the generation of a pool of data buffers associated with the queue
being defined. The number of such buffers will equal that specified
in the COUNT= operand. The size of each buffer (in bytes) is
specified by the integer value coded in the SIZE= operand. If
SIZE= is not coded, no buffer pool will be generated, and all QCEs
will initially be defined to be in the free chain (empty queue). If
SIZE= is coded, all QCEs will be in the active chain (full queue),
and the entry in each active QCE will point to one of the buffers in
the buffer pool.



In Figure 6-2, the SIZE= operand is not coded, so an empty queue
is defined (all QCEs in free chain). In figure 6-2, and in the rest of the
illustrations in this section, QCEs in the free chain are shown as shaded.

QTHREE ~ DEFINEQ  COUNT=3

Qcs

o

QTHREE
-

QCEs

FREE POINTER

FREE POINTER

— Qcs POINTER

Figure 6-2. Empty queue

No entries are in the queue, but there is space (free QCEs) available
for the addition of three entries.

In Figure 6-3, a full queue (all QCEs in active chain, with queue
entries pointing to buffer pool elements) is defined. Each buffer pool
element is four bytes in length (SIZE=4). No more entries may be
added to this queue, as all QCEs are aiready active.

Queue Processing (Version 2 Only)  6-3



QTHREE

Figure 6-3.

LASTQ/FIRSTQ/NEXTQ

6-4 SR30-0220

[QTHREE  DEFINZy  COUNT=3,SIZE=4

QcB
)
— 31
- QCEs 1
_l QCB POINTER 4}
ENTRY
- )
| OPTIONAL
ENTRY * BUFFER
POOL
3 QCB POINTER
ENTRY ™
Full queue

READING ASSIGNMENT: SB30-1213 (Version 2 PDOM) pages
2-152 through 2-154.

The queue processing instructions allow the user to add (NEXTQ) or
retrieve (LASTQ, FIRSTQ) entries in a queue defined by the
DEFINEQ statement. The format for all three queue processing
instructions is similar:

i FIRSTQ .
label | NEXTQ gname, Toc, FULL=
! LASTQ LEMPTY=
(AN v /e o’
OPTIONAL MUST BE CODED OPTIONAL

Figure 6-4. Queue processing instruction format

FIRSTQ and LASTQ are used to retrieve entries from a queue; NEXTQ
places an entry in a queue. The label of a DEFINEQ statement is
coded as gname, specifying which queue is being accessed.



The loc operand is the label of a one-word storage location. This word
will be set to the contents of the entry being retrieved from the queue
by a FIRSTQ or LASTQ instruction. Before executinga NEXTQ
instruction, the user must ensure that this word contains the entry
(data item, such as a record number; or address of a buffer pool
element) being added to the queue.

The EMPTY= keyword operand is coded as the label of the instruction
that will receive control if the queue referenced by a FIRSTQ or
LASTQ instruction has no active entries. FULL= performs the same
function for the NEXTQ instruction in the event there is no room in
the queue to add an entry. If EMPTY= or FULL= is not coded, and
the queue is erroneously empty or full, execution will continue with
the instruction following the FIRSTQ/LASTQ or NEXTQ. A +1

will be returned in the task code word (taskname), and may be
checked by the user,

Entries are placed in a queue one at a time. Therefore, queue entries
differ in their relative age, as some are queued before others. Both
FIRSTQ and LASTAQ retrieve entries from a queue, but they differ
in the age of the entries they retrieve.

LASTQ retrieves the last, and therefore the most recently entered,

entry in a queue. This is often called ““Last In, First Out”, or
LIFO queue processing. It is also referred to as stack processing.

Queue Processing (Version 2 Only}  6-56



Refer back to the ““full queue” illustrated in Figure 6-3. The oldest
entry is the first QCE in the chain (the top QCE of the three pictured),
and the most recent entry is the last (bottom) QCE. (Although this
queue is actually created in its entirety during program preparation,

it is chained together as though the entries had been made in sequence.)
Figure 6-5 illustrates how the full queue in Figure 6-3 would be
changed by execution of a LASTQ instruction.

OUT1  LASTQ  QTHREE,LASTADRS,EMPTY=DONE

QcB
QTHREE r—l'-:
FF
- QCEs \
L. =
—
ENTRY |}
31 QCB POINTER

-
‘ OPTIONAL
ENTRY \BUFFER

POOL

LAST ADRS —

Figure 6-5. LASTQ

1. The most recent entry in the queue has been removed from the
active chain, forming a free chain one QCE in length. The free
QCE no longer has the address of the third buffer pool element,
but rather contains a pointer to the QCB.

2.  The active chain is two QCEs in length, and the most recent entry
is the second QCE.

3. The location of the third buffer pool element is placed in
storage location LASTADRS (loc operand).

Again, assuming the full queue depicted in Figure 6-3 as a starting
point, the results of a FIRSTQ operation are shown in Figure 6-6.

6-6 SR30-0220



0UT2  FIRSTQ  QTHREE,FIRSTADR,EMPTY=DONE

FIRSTADR
Qacs
aTHReE 2
—" QCE
QCB POINTER
e g
T r OPTIONAL
ENTRY > BUFFER
POOL
" 0CE POINTER
|
ENTRY  — |

Figure 6-6. FIRSTQ

This time, the first or oldest active QCE is removed from the active
QCE chain, placed in the free chain, and the location of the oldest
buffer pool element is placed in storage location FIRSTADR. This
is called “First In, First Out”, or FIFO queue processing.

Queue Processing {Version 2 Only)  6-7



6-8

SR30-0220

NEXTQ adds an entry to. a queue, as illustrated in Figure 6-7. For
this example, the starting point is the queue shown in Figure 6-6,
after execution of the FIRSTQ instruction.

IN1

NEXTQ

QTHREE ,FIRSTADR, FULL=NOROOM

FIRSTADR

acs

QTHREE 3]

QCEs

— |

Figure 6-7. NEXTQ

QCB POINTER

Yy

ENTRY

l

' QCB POINTER

ENTRY

l_____iA
R

ENTRY

'l—v{_A

 OPTIONAL
 BUFFER
POOL

The queue is again full. The newest entry is represented by the QCE

at the top, and the oldest entryis the second (middle) QCE.



QUEUE PROCESSING REVIEW EXERCISE—QUESTIONS
1. Including all control blocks, how many bytes of storage will be

reserved by the DEFINEQ statement below?

QEXAMP DEFINEQ

Answer:

bytes

COUNT=5,STZE=256

2. Below is a program consisting of a series of queue processing
instructions. Analyze the program, and answer the questions

that follow.

QEXAMPLE
START
F2

N1

L1

L2

N2

L3

F3

Fd4

N3

N4

N5

N6
ouT
Q3
LOC1
LoCz
LOC3

PROGRAM
FIRSTQ
FIRSTQ
NEXTQ
LASTQ
LASTQ
NEXTQ
LASTQ
FIRSTQ
FIRSTQ
NEXTQ
NEXTQ
NEXTQ
NEXTQ
PROGSTOP
DEFINEQ
DATA
DATA
DATA
ENDPROG
END

START
Q3,L0CL,EMPTY=0UT
Q3,L0C2,EMPTY=0UT
Q3,L0C1,FULL=0UT
Q3,L0C1,EMPTY=0UT
Q3,L0C3,EMPTY=0UT
Q3,L0C2,FULL=0UT
Q3,L0C2,EMPTY=NG
Q3,L0C2,EMPTY=N3
Q3,L0CL,EMPTY=0UT
Q3,L0C1,FULL=0UT
Q3,L0C2,FULL=0UT
Q3,L0C3,FULL=0UT
Q3,L0CI,FULL=N1

COUNT=3,SIZE=6
Fro!
F 1 09'
F"’O.I

Queue Processing (Version 2 Only):

6-9



This page intentionally left blank.

6-10 SR30-0220



Note: The queue defined by the DEFINEQ statement at Q3 is exactly
like that shown in Figure 6-3. In answering the following questions,
assume that the first (oldest) entry is the address of buffer pool
element A, the second is the address of buffer pool element B, and

the last (most recent) that of C.

a.  After execution of the instruction at START, storage
location LOC1 contains the address of buffer pool
element

b.  After execution of the instruction at location F2, how many
active entries are in the queue?

Answer:

c.  After execution of the instruction at location_______,
LOC3 contains the address of buffer pool element C.

d. After execution of the instruction at location L1, the oldest
buffer pool element pointed to by an active QCE is
element________ and the most recent element pointed
to by an active QCE is element

e. As this program is coded, execution of the instruction at
location______ will never be attempted.

f.  Execution of the instruction at location will
be attempted twice; the first time successfully, the second
time unsuccessfully.

g. At the time the PROGSTOP is executed, how many entries
are in the active QCE chain?

Answer:

Queue Processing {Version 2 Only) 6-11



QUEUE PROCESSING REVIEW EXERCISE—ANSWERS

1. 6 QCB 3 words, 2 bytes/word
30 QCEs 5 QCEs, 3 words, 2 bytes/word
1280 BUFFERS b5 of 256 bytes each
1316 bytes
2. a A
b. 1
c. L2
d. C,C
F4
f. N1
g 3

In analyzing the execution of this program the format shown
below will be used. The initial example shows the status before
execution begins; all other examples are after execution

of each instruction.

BEFORE PROGRAM EXECUTION BEGINS:

Active entries in queue: A, B, C
First (oldest) active entry: A

Last (newest) active entry: C

LOC?1 contains address of element O
LOC2 contains address of element 0
L.OC3 contains address of element 0

AFTER EXECUTION OF:

label
START FIRSTQ Q3,L0C1,EMPTY=0UT

Active entries in queue: B, C
First (oldest) active entry: B
Last (newest) active entry: C
LOC1 contains address of element A
LOC2 contains address of element O
LOC3 contains address of element O

Answer to question 2a. LOC1 contains the address of element A

6-12 SR30-0220



AFTER EXECUTION OF:
label
F? FIRSTQ Q3,L0C2,EMPTY=0UT

Active entries in queue: C

First (oldest) active entry: C

Last (newest) active entry: C

LOC1 contains address of element A
LOC2 contains address of element B
LOC3 contains address of element 0

Answer to question 2b. 1 active element remains in queue.
AFTER EXECUTION OF:

label
N1 NEXTQ Q3,L0C1,FULL=0UT

Active entries in queue: A, C
First (oldest) active entry: C
Last (newest) active entry: A
LOC1 contains address of element A
LOC2 contains address of element B
LOC3 contains address of element O

AFTER EXECUTION OF:
label
L1 LASTQ Q3,L0C1,EMPTY=0UT

Active entries in queue: C

First (oldest) active entry: C

Last (newest) active entry: C

LOC1 contains address of element A
LOC2 contains address of element B
LOC3 contains address of element O

Answer to question 2d. C is the only element in the queue, and
is therefore the oldest and the most recent.

AFTER EXECUTION OF:
label
L2 LASTQ Q3,L0C3,EMPTY=0UT

Active entries in queue: none

First (oldest) active entry: n/a

Last (newest) active entry: n/a
LOC1 contains address of element A
LOC2 contains address of element B
LLOC3 contains address of element C

Answer to 2c.  After executing the instruction at L3, LOC3 will
contain the address of element C. (LOC1, LOC2, and LOC3 will
remain unchanged throughout remainder of program)

Queue Processing (Version 2 Only)

6-13



AFTER EXECUTION OF:
label
N2 NEXTQ Q3,L0C2,FULL=0UT

Active entries in queue: B

First (oldest) active entry: B

Last (newest) active entry: B

LOC1 contains address of element A

LOC2 contains address of element B unchanged
LOC3 contains address of element C

AFTER EXECUTION OF:
label

L3 LASTQ Q3,L0C2,EMPTY=NG

Active entries in queue: none
First (oldest) active entry: n/a
Last (newest) active entry: n/a
LOC1

LOCZ} (unchanged)
LOC3

AFTER EXECUTION OF:

label
F3 FIRSTQ Q3,L0C2,EMPTY=N3

Active entries in queue: none
First (oldest) active entry: n/a
Last (newest) active entry: n/a
LOC1

LOC2} {unchanged)
LOC3

This instruction does not execute successfully. The queue is
empty, so control is transferred to location N3.

AFTER EXECUTION OF:
label

N3 NEXTQ Q3,L0CI,FULL=0UT

Active entries in queue: A
First (oldest) active entry: A
Last (newest) active entry: A
LOC1

LOC2} (unchanged)
LOC3

6-14 SR30-0220



AFTER EXECUTION OF:
label
N4 NEXTQ Q3,L0C2,FuLL=0UT

Active entries in queue: A, B
First (oldest) active entry: A
Last (newest) active entry: B
LOC1

LOCZ} (unchanged)
LOC3

AFTER EXECUTION OF:
label
N5 NEXTQ Q3,L0C3,FULL=0UT

Active entries in queue: A,B,C
First (oldest) active entry: A
Last (newest) active entry: C
LOC1

LOCZ} {unchanged)

LOC3

AFTER EXECUTION OF:
label
N6 NEXTQ Q3,L0C1,FULL=N1

Active entries in queue: A, B, C
First (oldest) active entry: A
Last (newest) active entry: C
LOC1

LOCZ} (unchanged)

LOC3

This instruction does not execute successfully because the queue
is full. Control is transferred to location N1,

AFTER EXECUTION OF:
label
N1 NEXTQ Q3,LO0C1,FULL=0UT

Active entries in queue: A, B,C
First (oldest) active entry: A
Last (newest) active entry: C
LOC1

LOC2} (unchanged)

LOC3

Queue Processing {Version 2 Only)

6-15



6-16 SR30-0220

This instruction does not execute successfully for the same
reason as above. Control is transferred to location OUT, and
the program terminates. ’

Answer to 2e. The instruction at location F4 was skipped—
execution was never attempted.

Answer to 2f. The instruction at location N1 was executed
twice, once successfully and once unsuccessfully.,

Answer to 29. There are 3 active entries.



SUBROUTINES

SUBROUT STATEMENT

Section 7. Program Control

OBJECTIVES: Upon successful completlon of this topic, the student
should be able to:

1. Explain the use and execution of subroutines in an application
program

2. Incorporate Assembler language routines in an Event Driven
Executive program

READING REFERENCE: Program Description and Operations
Manual (SB30-1053) pages 2-35 through 2-39; or Program
Description and Operations Manual Version 2 (SB30-1213)
pages 2-37 through 2-43.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-36 through
2-38; or SB30-1213 (Version 2 PDOM) pages 2-38 through 2-44.

In many programs, there are certain functions that are required
repeatedly at different points in the program’s execution. Examples
might include conversion .of data from one code to another .or a
particular sequence of arithmetic calculations.

‘Rather than code the sequence of instructions that perform the desired
function .each time the program needs that function, the function is
coded once, and defined as a subroutine. The.subroutine can then be
entered and executed from as many different points in the application
program as required.

Subroutines are defined using the SUBROUT statement whose format

is shown in Figure 7-1.

label 1SUBROUT  name,iparl, ..... par5
N / e . v J O\ v V)
OPTIONAL MUST BE CODED OPTIONAL

Figure 7-1. . SUBROUT format

The name operand is coded with the symbolic name.of the subroutine

.and will:be referenced by other instructions. The /abe/ field is

optional, and should not be confused with the subroutine name

specified in the name operand.

Program Contro!  7-1



Par1 through parb are names of parameters that may be passed to
the subroutine when it is entered.

CALL STATEMENT

The format of the CALL statement is shown in Figure 7-2. The
CALL is used to enter a subroutine defined in a SUBROUT
statement,

| |
label {CALL name,}{parl,....parb
\_- N AL —

g

OPTIONAL MUST BE CODED OPTIONAL

Figure 7-2. CALL format

The name operand is coded with the symbolic name specified in the
name operand of the SUBROUT statement defining the subroutine
you wish to execute. Par1 through par5 may be coded as single
precision integer values, as the symbolic names (labels) of single
precision integer values, or as the addresses of program variables or
data areas.

PASSING SUBROUTINE PARAMETERS

Figure 7-3 illustrates basic subroutine operation. Note that the

CALL at location START is a call to CALC, not to SUB1, the label
on the SUBROUT statement. The last executable statement in

this and every subroutine isa RETURN. The RETURN instruction
provides the linkage back to the calling task, where execution resumes
at the instruction following the CALL. Subroutines execute as part
of, and at the same priority as, the calling task. Subroutines are not
re-entrant, so if a subroutine is called from multiple tasks, ENQ and
DEQ should be used to ensure serial execution.

7-2 SR30-0220



SUBEXAMP PROGRAM START

START CALL CALC
PROGSTOP
INTEGERA DATA F'10"
INTEGERB DATA F'15'
SUM DATA F'o!
SUB1 SUBROUT CALC
ADD INTEGERA,INTERGERB,RESULT=SUM
ENDIT RETURN
ENDPROG
END

Figure 7-3. Subroutine operation

The subroutine CALC in Figure 7-3 adds two integer values together
and stores the result at location SUM. Since CALC is part of
program SUBEXAMP, all labels within the program are known to
the subroutine, and may be referenced by instructions within the
subroutine. In this example, location SUM would contain 25 after
the subroutine has been executed.

When a subroutine uses specific labels in the program, the data that
the subroutine will operate on must be moved into the storage
addresses represented by those labels before the subroutine is called.
The same result can be achieved more easily by using the parameter
passing capability. Parameters may be actual values (integer numbers),
or may take the form of pointers to data that the subroutine will

be using.

In figure 7-4, the SUBROUT statement at location SUB1 specifies two
parameters, XVAL and YVAL. The names used to define parameters
in SUBROUT statements must be unique throughout the program
(cannot appear in the label field of any statement). They are
positional symbolic references to parameters that are passed in the
CALL statement.

Program Control  7-3



7-4  8R30-0220

SUBEXAMP PROGRAM START

START CALL CALC,50,SUMl
c2 CALL CALC,SUM1,SuM2
PROGSTOP
INTEGERA DATA F'10°
INTEGERB DATA F'15'
SUM1 DATA F'o'
SUM2 DATA F'o!
SUB1 SUBROUT CALC,XVAL,YVAL
Al ADD INTEGERA, XVAL ,RESULT=YVAL
RETURN
ENDPRQOG
END

Figure 7-4. Integer parameters

In the first CALL (location START), the first parameter is the single
precision integer value 50. This corresponds to the first parameter
defined in the SUBROUT statement, XVVAL, as does program location
SUM/1 to the second parameter definition YVAL. When the ADD
instruction at location A1 executes as a result of this call, the value
50 will be substituted when XV AL is referenced, and location SUM1
will be used in place of YVAL. Location SUM1 will be set ta 60,

the sum of INTEGERA and 50.

The second CALL at C2 will result in 70 being put in location SUM2,
the sum of SUM1 and INTEGERA. Notice that although
INTEGERA is used by the subroutine, it need not be passed as a
parameter, since it does not change from CALL to CALL.

Up to this point, the parameters illustrated have been restricted to
single precision integer values. By passing an address of a data area
as a parameter, and utilizing the software registers (#1, #2) within
the subroutine, any data area or data array may be accessed.

In Figure 7-5, the address of the data area SUMAREA is passed as the
first parameter of the CALL (label is enclosed in parentheses to
specify address rather than content of address). When the subroutine
executes the address.is loaded into software register #1. The results
of the ADD operations are moved into SUMAREA using the contents
of #1 as a base address. After execution, SUMAREA will contain 50,
and SUMAREA+2 will contain 25.



SUBEXAMP PROGRAM START

START CALL CALC, (SUMAREA),40, INTERGERB
PROGSTOP

SUMAREA EQU *
DATA 2F'0!

INTEGERA DATA F'10'

INTEGERB DATA F'is!
SUBROUT CALC ,ADDRSLT,XVAL,YVAL
MOVE #1,ADDRSLT
ADD INTEGERA, XVAL ,RESULT=S1
MOVE (0,#1),S1
ADD INTEGERA,YVAL ,RESULT=S1
MOVE (2,#1),S1
RETURN

S1 DATA Fro
ENDPROG
END

Figure 7-5. Address parameter

When employing this technique, you should keep in mind that
the software registers used by subroutines are those associated
with the calling task, and therefore, the subroutine may be
reguired to save them on entry and restore them to their original
values before returning.

Note: If asubroutine is assembled as a separate module for later
link editing (Version 2 Program Preparation Facility), the subroutine
name must be declared in an ENTRY statement,

USER STATEMENT

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-39
through 2-42; or SB30-1213 (Version 2 PDOM) pages 2-42 through
2-44,

At some time you may require a function not provided by the Event
Driven Executive. Such functions can be coded in Series/1 assembler
language (assuming that you have the appropriate assembler language
background) and included in an Event Driven Executive program

as a user exit routine. The USER statement provides the linkage
between the Event Driven Executive code and the Series/1 assembler
language routine,

Program Control  7-5



7-6

SR30-0220

Tabel USER name,iPARM=(parm1,...parmn)
N —’ 2\ ,

N

OPTIONAL MUST BE CODED OPTIONAL

Figure 7-6. USER format

The name operand is coded as the label of the entry point (label of
first executable instruction) of the assembler language routine. The
PARM= keyword operand is coded as a list of parameters, with each
parameter as a sublist element.

When executing Event Driven Executive code, the user is limited to the
two software registers, #1 and #2. In Series/1 assembler language, the
hardware registers are available. Since the Event Driven Executive
system uses these hardware registers also, certain conventions must be
observed when execution switches from Event Driven Executive code
to Series/1 assembler language and back again. First, hardware
register 2 (R2) is always pointing to the Task Control Block of the
task currently in execution, and must not be disturbed. Second, hard-
ware register 1 (R1) is used by the system to provide linkage to and
from Event Driven Executive instructions. When a user exit routine

is entered (branched to by a USER instruction), R1 is pointing to the
next instruction following the USER statement, where Event Driven
Executive language execution will resume when the assembler
language routine completes. |f parameters are passed by the USER
statement (PARM= coded), R1 will be pointing to the location con-
taining the first parameter. Before exiting from the assembler
language code, the user must increment R1 past all parameters so

that it points to the Event Driven Executive instruction following the
USER statement.

The program in Figure 7-7 includes the user exit routine STCODE.
When the USER statement at location START is executed, a branch
to label SICODE is performed.

Two parameters are coded in the PARM= parameter list of the USER
statement. As with the CALL statement, each parameter is one word
in length, consisting of an integer value or the address of a program
location. Upon entry to STICODE, R1 is pointing to the first para-
meter, which contains the integer value 9. The MVW at location
S1CODE moves the integer value to location FRSTPARM.

The second parameter is the address of program location XVAL.
Using the indirect addressing capability, R1 is again used to move
the parameter into the subroutine.



USERXAMP PROGRAM START

START USER S1CODE ,PARM=(9,XVAL)
Al ADD P3,FIVEB
PROGSTOP
XVAL DATA F'o!
P3 DATA F'o'
FIVEB DATA F'o!
S1CODE MVW (R1,0),FRSTPARM
GET2 MVW (R1,2)*,SECDPARM
UPDATE ABI 4,R1
ouT B RETURN
FRSTPARM DC F'o'
SECDPARM DC F'o'
ENDPROG
END

Figure 7-7. User exit routine

To go back to Event Driven Executive code from a user exit routine,
you must branch to label RETURN (B RETURN), as shown at location
OUT. The system routine RETURN expects to find R1 pointing to the
next Event Driven Executive instruction foliowing the USER statement.
The ABI instruction, at location UPDATE, increments R1 past the

two words in the parameter list, so that it points to the ADD

instruction at location A1,

Program Control  7-7



78 SR30:0220

User exit routines can only be assembled by BPPF or host macro
assemblers. To incorporate a user exit routine into a program pre-
pared using the Version 2 Program Preparation Facility, the routine
must be first assembled using BPPF or the host assembler, and the
resulting object module linked to the Event Driven Executive main
program using $LINK. The user exit routine entry point should

be defined in an ENTRY statement, and the same entry point must
be coded in an EXTRN statement in the main program with which
the routine will be linked.



PROGRAM CONTROL REVIEW EXERCISE — QUESTIONS

1.

What statement is coded to transfer control to a subroutine
written in Event Driven Executive language?

Answer:

Event Driven Executive subroutines begin with a
statement, and the last statement to be executed must be a
statement.

Why can’t user exit routines be assembled using the Version 2
Program Preparation Facility?

Answer:

How does executing a subroutine differ from executing a
secondary task?

Answer:

What statement is used to transfer control to a user exit
routine?

Answer:

How can you pass more than five parameters to an Event
Driven Executive subroutine?

Answer:

Program Control

79



PROGRAM CONTROL REVIEW EXERCISE — ANSWERS
1. CALL
2. SUBROUT, RETURN

3.  User exit routines are written in Series/1 assembler language,
and the Version 2 assembler can assemble Event Driven
Executive language only.

4, A secondary task executes concurrently with the attaching
task, and may be run at a different priority. A subroutine
executes on the priority of the calling task, and “in-line’” with
the execution of the calling task.

5. USER

6. Use one of the five parameters to pass the address of a data
area to the subroutine. The data area can contain as many
additional parameters as required.

7-10  SR30-0220



GOTO STATEMENT

Section 8. Program Sequencing

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1.  explain the operation and use of
a. unconditional GOTO
b. indirect GOTO
¢. computed GOTO
2. define an IF/THEN/ELSE/ENDIF structure
3. define a DO/ENDDO structure
4. explain the use of relational statements with IF and DO statements

5. combine IF, DO, and GOTO statements in logical code sequences

READING REFERENCE: Program Description and Operations
Manual (SB30-1053) pages 2-93 through 2-106; or Program Description
and Operations Manual Version 2 pages 2-97 through 2-110.

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-106; or
SB30-1215 (Version 2 PDOM) page 2-110.

Almost all programs have multiple execution paths. A different
sequence of execution may be necessary because of the characteristics
of the input data, the results of a calculation, or the occurrence

of an exception or error condition. One of the Event Driven
Executive instructions providing the means to transfer control to an
alternate section of code is the GOTO statement.

Figure 8-1 is an example of the most basic form of the GOTO state-
ment. This is an unconditional GOTO, used to branch around a
section of non-executable code (e.g., data definitions) that are
imbedded within the executable code.

Program Sequencing  8-1



8-2

SR30-0220

EXECUTION

PROG1 PROGRAM START, 100
START
GOTO NEXTSTEP
TABLE1 DATA 5F'25%°
DATA C'000256"
NEXTSTEP ——— ADDV TABL1,V1,5

ENDPROG
END

Figure 8-1. Unconditional GOTO

Control is transferred from the GOTO statement to the statement at
location NEXTSTEP, skipping over the two DATA statements which
start at TABLE1.

Figure 8-2 illustrates another form of GOTO. in this example, the
operand is enclosed in parentheses, indicating an indirect GOTO.
During PROG 1 program execution, but prior to executing the
GOTO instruction, the address of the desired “branch to"’ location
{Address of NEXTSTEP) is moved into location BRNCHADR .

BRNCHADR is the name defined within parentheses in the operand
of the GOTO statement [EJ. When the GOTO is executed, control
is transferred to the instruction at NEXTSTEP [, indirectly
through the contents of BRNCHADR.

The indirect GOTO can serve as an unconditional branch to any
label in a program, as long as the address of the desired destination

is first moved into the indirect address location coded as the operand
of the GOTO.



PROG1 PROGRAM START, 100

START
1 .
l.“‘*MOVEA BRNCHADR ,NE XTSTEP
\B B0 (BRNCHADR)
RNCHADR DATA Fro
B. )
NEXTSTEP ADD ZVALU,BVALU
ENDPROG
END

Figure 8-2. Indirect GOTO

A third form of GOTO statement is the computed GOTO, whose format
is shown in Figure 8-3.

label i GOTO  (locO0,locl,....Tocn),index
Nt | v r/
OPTIONAL MUST BE CODED

Figure 8-3. Computed GOTO format

In the first operand, locO through locn are the symbolic addresses of
instructions to which control may be transferred. The second
operand is an index variable. The address to which control is trans-
ferred is determined by the value of the index variable.

The first address (loc0) in the list of addresses which form the first
operand is the address to which you want control transferred if the
index variable exceeds the extents of list loc1—locn.

The next address in the list, loc1, will get control if the index variable
is equal to 1, loc2 if the index variable is equal to 2, etc.

Figure 8-4 illustrates the operation of a computed GOTO with an
index variable outside the range of the list. The index variable is VAL1
and is set to zero by the MOVE statement at location “START",

Zero is outside the range of loc1—locn (NDX1, NDX2 in this case),
and the computed GOTO transfers control to the address at locO
(ERROR).

Program Sequencing 8-3



PROG1 PROGRAM START

START MOVE VAL1,0
GOTO (ERROR, NDX1,NDX2),VAL1
Flol

DATA

NDX1

NDX2
PROGSTOP
ENDPROG
END

Figure 8-4. Computed GOTO

The same thing would happen if the index variable were greater
than 2. In this example, the only valid values for the index variable
are 1 or 2, which would result in a transfer of control to location
NDX1 or NDX2.

IF STATEMENT

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-98; or
SB30-1213 (Version 2 PDOM) page 2-102.

The GOTO statement gives you the ability to transfer control to
another part of a program; |IF statements provide a means of deter-
mining when a transfer or branch is required.

The format for an IF statement is shown in Figure 8-5.

8-4 SR30-0220



label
e Vv v
OPTIONAL MUST BE CODED OPTIONAL

Figure 8-5. IF Format

IF (relational statement) , ! GOTO ,1o¢C

\ s N -l

The first operand is a relational statement, and all |F statements must
have at least one relational statement. A relational statement expresses
a comparative relationship between two variables, or between a
variable and an explicit value. An IF may be coded to include a GOTO
(second operand) and a specified location (third operand). For
instance, (Figure 8-6);

TESTI  IF  (A,EQ,B),GOTO,STEP3

Figure 8-6. lF/'GOTO example

This statement may be interpreted as ‘‘Transfer control to location
STEP3 if the value in location A is equal to the value in location B."
If A is not equal to B, execution will continue with the instruction
following the IF. The “IF with GOTQO" is the simplest form of IF
that can be coded. IF statements may also take the form of
structures, in which entire code sequences may be executed or
skipped, depending on whether the relationship expressed in

the relational statement is true or not. The basic |F structure is
illustrated in Figure 8-7.

IF ——a—"— |RELATIONAL

ALEQ, STATEMENT
(A.EQ,B)

I

" " \
ENDIF TRUE CODE RELATIONAL
4 EXECUTED IF THE MNEMONIC
RELATIONSHIP CAN BE:
EXPRESSED IN THE
RELATIONAL STATE- EQ  EQUAL
MENT IS TRUE NE NOT EQUAL
GT GREATER THAN
LT LESS THAN
GE GREATER OR EQUAL
END OF “|F" LE LESS OR EQUAL
STRUCTURE

IF RELATIONSHIP EXPRESSED

IN THE RELATIONAL STATEMENT
IS NOT TRUE, “TRUE"” CODE
WITHIN “IF"” STRUCTURE IS
SKIPPED, AND EXECUTION
CONTINUES WITH FIRST
INSTRUCTION FOLLOWING
“ENDIF STATEMENT

Figure 8-7. IF structure

Program Sequencing 8-5



Relational Conjunctions

8-6 SR30-0220

All IF structures must end with an ENDIF statement, except when
using GOTO. In the example, the code between the |F statement
and the ENDIF will be executed if the relationship expressed in the
statement is true (A is equal to B). If the relationship is not true,
the true code will be bypassed, and execution will continue with the
statement following the ENDIF.

In Figure 8-8, one more statement is added to the IF structure. The
ELSE statement starts the false code; these instructions will be
executed if the relationship expressed in the statement is not true,
bypassing the ‘‘true” code. True code begins following the IF in an
IF structure, and ends with the ENDIF if no ELSE statement is coded
(Figure 8-7), or ends with an ELSE statement if one is used (Figure
8-8).

NOT REQUIRED, BUT MAY BE
CODED FOR DOCUMENTATION

. ot
IF (A,EQ,B),THEN

TRUE }—-lExECUTED IFA=B]|

. CODE
ELSE

“FALSE"
CODE }—-LEXECUTED IFA#B|

ENDIF

. EXECUTION CONTINUES HERE
. AFTER EITHER “TRUE” OR
“FALSE"” CODE WITHIN “IF”
STRUCTURE HAS EXECUTED

Figure 8-8. IF/THEN/ELSE

False code begins with an ELSE statement, and ends with the
ENDIF, which defines the end of that |F structure.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-95 through
2-97; or SB30-1213 (Version 2 PDOM) pages 2-99 through 2-101.

As you found in the reading assignment, IF structures can be very
complex. Figure 8-9 is an example of a structure using logical con-
junctions and nesting. A logical conjunction forms a logical link
between two or more relational statements. A nested |F

structure is one that appears within the true or false code of a
previous |F structure.



DO STATEMENT

LOGICAL CONJUNCTION OF
RELATIONAL STATEMENTS

IF (A,EQ,B),ANL,(C,EQ,D),THEN
GOTO ALLEQUAL

ELSE
IF (A,EQ,B)
MOVE C,D
e
MOVE A,B
ENDIF J

ENDIF

Figure 8-9. Complex IF structure

A transfer to ALLEQUAL will take place only if both 1) A=B and
2) C=D. The false code is another [F structure, nested within the
first, with its own true and false sections. Notice that each |F
structure is ended with its own ENDIF statement.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-101 through
2-103; or SB30-1213 (Version 2 PDOM) pages 2-104 through 2-106.

The DO instruction alters the sequence of program execution by
causing repetitive execution of the same section of code. The DO
statement establishes the start of a DO loop, and the end of the loop
is defined by an ENDDO statement. The code that is repeatedly
executed is the instruction or instructions that are coded between the
DO and ENDDO statements.

One form of the DO statement is illustrated in Figure 8-10. The
count operand is an integer value, or the label of a storage location
containing an integer value, indicating the number of times you want
to execute the loop.

Program Sequencing 8-7



8-8

label | DO countj TIMES,INDEX=

A s
OPTIONAL MUST BE CODED OPTIONAL
Figure 8-10.

TIMES has no function other than documentation, and does not
have to be coded. The INDEX= keyword operand may be coded as
the label of a word of storage. Before the DO loop is executed for
the first time, the storage location is reset to zero. Then, before
execution of the first instruction following the DO statement, and
with every succeeding pass, 1 is added to the storage location. In the
event that a branch out of the loop is done before the count has
gone to zero, the location specified in the INDE X= operand can be
checked to see how many executions occurred.

Figure 8-11 is a flowchart representing the execution sequence of the
DO count, TIMES form of DO loop. (If the INDEX= operand is
not coded, the top two blocks would not apply.)

DO COUNT

SET INDEX
LOCATION
TO ZERO

—]

ADD +1
TO INDEX
LOCATION

EXECU'FE CODE
BETWEEN “DO"”

AND “ENDDO”

SUBTRACT
1 FROM
COUNT

1

CONTINUE EXECUTION
WITH INSTRUCTION
FOLLOWING “ENDDO"

Figure 8-11. “DO count’’ operation

SR30-0220



Notice that a post-execution escape mechanism is used (trailing
decision loop). The count is not checked for zero until the loop
has completed the first execution. Therefore, if count is initially
zero, one execution would still occur.

There are two other forms of the DO statement, both employing
relational statements. DO WHILE will repetitively execute the
instructions within the loop while the relationship expressed remains
true. DO UNTIL will keep on executing the loop until the relation-
ship expressed in the relational statement becomes true. The

format for these two instructions is illustrated in Figure 8-12.

label 3\ DO ‘GR-II-IEE, relational statementj
OPTIONAL MUST BE CODED

Figure 8-12, WHILE/UNTIL format

The relational statements are coded the same way as those used with
the IF statement, and like the |F, two or more relational statements
may be formed into a statement string, using the logical conjunctions
AND and OR.

DO WHILE DO UNTIL

EXECUTE CODE
NO BETWEEN “D0O"
AND “ENDDO"

IS RELA-
TIONAL CON-
DITION TRUE?,

IS RELA-
TIONAL CON-

EXECUTE CODE

BETWEEN “DO"

AND “ENDDO" DITION TRUE?
CONTINUE EXECUTION CONTINUE EXECUTION
WITH INSTRUCTION WITH INSTRUCTION
FOLLOWING “ENDDO" FOLLOWING “ENDDO"

Figure 8-13. WHILE/UNTIL operation

Figure 8-13 illustrates the execution sequence of DO WHILE and

DO UNTIL. DO WHILE has a pre-execution (leading decision loop)
escape mechanism. The relational condition is checked before the
first execution and, if not true, no execution takes place. DO UNTIL,
like DO count, does not check until completing the first execution
of the loop. Even if the relational condition is true, one execution
will occur.

Program Sequencing 8-9



8-10 SR30-0220

In combination, the GOTO, IF, and DO statements provide the
application programmer with the tools necessary to make execution
time decisions, and to alter program execution flow if required.

Figure 8-14 is an example of all three statements used together. In the
course of program execution, the variable DIFF is set to zero [E}} .

When the |F statement is executed , a transfer of control to loca-
tion DONE will occur if variable A is equal to variable B. If the transfer
to DONE takes place and DIFF (difference between A and B) is checked,
the difference will be zero.

MOVE DIFF ,0~——Ii
——>iF (A,EQ,B),GOTO,DONE
(1F (A,GT,B),THEN W
DO UNTIL,(A,EQ,B)
ADD DIFF,1
ADD B,1 —O
ENDDO )
JJELSE
B8 DO UNTIL,(A,EQ,B) )
ADD DIFF,1
ADD AL ~—B
ENDDO J
| ENDIF = 6|

DONE

Figure 8-14. IF/GOTO/DO

If A is not equal to B, execution continues with the IF structure [E} .
The true code of the IF is a nested DO loop [ which will repetitively
execute, accumulating the difference between A and B in DIFF until
the two variables are equal. This code will execute only if the variable
A were greater than B when the |F statement was executed.

If B were greater than A, the false code of the IF structure ,
another nested DO loop, would repeatedly execute, and again, the differ-
ence between A and B is accumulated in DIFF.

In all cases, when execution continues at location DONE, A will be
equal to B, and DIFF will contain the absolute difference that existed
between A and B at the outset. Notice that the |F structure must end
with an ENDIF [ .



PROGRAM SEQUENCING REVIEW EXERCISE — QUESTIONS

IF1ST
IF2ND

ELSEZND

END2ND
ELSELIST

ENDIST
COMPGO

Using the coding example below, answer the questions which follow.

IF (A,NE,B)
IF (A,GT,B),THEN
SUB A,B
MOVE VAL1,A
ELSE
SUB B,A
MOVE VAL1,B
ENDIF
ELSE
GOTO EXIT4
ENDIF

GOTO (ERR,EXIT1,EXIT2,EXIT3),VALL

1. Assuming that A=b, and B=3, the next statement to be executed

after execution of the code in the example is at location
a. ERR

b. EXIT1

c. EXIT2

d. EXIT3

e. EXIT4

2. Assuming that A=22, and B=23, the next statement to be exe-

cuted after execution of the code in the example is at location
a. ERR

b. EXIT1

c. EXIT2

d. EXIT3

e. EXIT4

3. Assuming A=0, and B=-5, the next statement to be executed

after execution of the code in the example is at location
a. ERR
b. EXIT1
EXIT2
d. EXIT3
e. EXIT4

Program Sequencing 8-11



4. The "“true’” code for the IF structure beginning at location |F1ST
consists of

a. the code starting at IF2ND and ending at ELSE2ND
b. the code starting at IF2ND and ending at END2ND
c. the code starting at IF2ND and ending at END1ST

d. none of the above

5. If control is transferred to location EXIT4, then the following is
true;

a. VAL1=4

b. A isgreater than B
c. B isgreater than A
d. A and B are equal

e. none of the above

6. How many times will the DO loop below execute?

DO 17, TIMES , INDEX=TWO

ENDDO

Answer:

8-12 SR30-0220



7. Using the coding example below, pick the correct statement from
the list of statements which follow

D01 DO UNTIL,(X,EQ,Y),0R,(Y,GT,X)
D02 DO WHILE,(X,EQ Y)
DO3 DO UNTIL,(X,NE,Y)
ADD  Y,1
ENDDO3 ENDDO
ENDDO2 ENDDO
ENDDO1 ENDDO

Assume when execution begins, X=Y.
a. All three DO loops will execute one time.

b. The first two DO loops will execute once, but the innermost
DO loop (DO3 to ENDDO3) will not be executed.

¢. None of the DO loops will execute, because X is equal to Y
when the first DO statement is encountered (DO1).

d. Question is not valid, because DO loops cannot be nested.

Program Sequencing 8-13



PROGRAM SEQUENCING REVIEW EXERCISE — ANSWERS

8-14 SR30:0220

1.

The correct answer is choice c. A is not equal to B, so the ““true”
code following the IF at location IF1ST will be executed. A is
greater than B, so the ““true’’ code of the nested IF at IF2ND is
executed. VAL isset to 2, the result of the SUBTRACT oper-
ation. Execution continues at location COMPGO, skipping the
“false’’ code of the nested IF and the first IF. VAL1, the index
variable of the computed GOTO at location COMPGO was set to
2 by the statements in the preceding IF structure, so control is
transferred to location EXIT2.

The correct answer is choice b. A is not equal to B, so the ““true”
code of IF1ST is executed. A is not greater than B, so the “‘false”
code of the nested IF (ELSE2ND to END2ND) is executed, and
the difference between A and B is placed in VAL1 (VAL1=1).
The computed GOTO at COMPGO wili transfer control to loca-
tion EXIT1.

The correct answer is choice a. Execution proceeds exactly

as in the answer to question 2 above (A#B,A<B), but the difference
between A and B is 5. When the computed GOTO at COMPGO

is executed, the index variable, VAL, contains a value which
exceeds the range of the list, and therefore control is transferred

to location ERR.

Choice b is the correct answer. “True’’ code is everything between
the IF and the ELSE statement/or the |F and the ENDIF if ELSE
is not coded.

Choice d is correct. If A and B are equal, the relational statement
in the IF at location IF1ST is false, and the ‘‘false’” code is
executed. The ““false’”’ code is the unconditional GOTO at loca-
tion EXIT4.

The DO loop will execute 17 times. The index variable, TWO, will
be set to zero before the first execution of the DO loop, and
assuming that the code within the DO loop does not contain any
GOTO statements, the loop will execute 17 times, and the index
variable TWO will contain 17 after the DO loop is exited:

The correct answer is choice a. Although X and Y are equal at the
time the first DO statement is executed (DO1), the relational con-
dition associated with a DO UNTIL statement is not checked:until
after the first execution of the DO loop.

The second DO loop (DO2) starts with a DO WHILE statement.
The DO WHILE checks for the relational condition before execut-
ing-for the first time, but since the condition is true, execution
drops to the second nested DO loop at DO3.



The innermost DO loop: is another DO UNTIL, this time with a
“NOT EQUAL" relational mnemonic. The ADD operation
within the loop makes the two variables, X and Y net equal,
thereby satisfying the exit condition for DO3, the innermost
loop.

The exit condition for the second loop, DO2 (first nested loop)
is also satisfied, because it is supposed to execute only as long. as
X is equal to Y, which is no longer true.

The first loop will also exit, because although X is not equal to Y,
which is the relational condition specified in the first part of the
relational statement, Y is greater than X, which is specified in

the second part of the relational statement, and the two parts

are joined by the OR conjunction. All three loops will therefore
exit after a single execution.

Note: The relational statement used with the DO at location DO1
could have been coded as:

D01 DO UNTIL,(Y,GE,X)

and would have executed with the same effect as the form used in
the example.

Program Sequencing 8-15.



This page intentionally left blank,

8-16 SR30-0220



GETTIME INSTRUCTION

Section 9. Timers

OBJECTIVES: After completing this topic, the student should be
able to:

1. Use the GETTIME instruction to access the time-of-day and
date from an application program

2. Use the INTIME instruction to measure time intervals

3. Cause user-defined delays in task execution by using the
STIMER instruction along with the “WAIT on timer"’
capability

READING REFERENCE: Program Description and Operations

Manual (SB30-1053) pages 2-107 through 2-110; or Program Description
and Operations Manual, Version 2 (SB30-1213) pages 2-111 through
2-115.

If you have the hardware timer feature installed on your Series/1,
you can include support in your Event Driven Executive supervisor,
which provides several time/timing functions that may be used by
application programs. In addition to maintaining a time-of-day clock,
the system also provides a time interval (elapsed time) clock, and has
the capability to suspend task execution (go into wait state) for
specified lengths of time.

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-108; or
SB30-1213 (Version 2 PDOM) page 2-112.

The time-of-day (TOD) clock is maintained in hours, minutes, and
seconds. At initial program load (IPL), the clock is all zeros and begins
running. It may be set to actual clock time using the $T supervisor
utility function, and will maintain clock time from that point on.

The GETTIME instruction is used to move the TOD values into a
user program. The GETTIME format is;

]
label !GETTIME  TociDATE=
N’ \ 7\ !

OPTIONAL MUST BE CODED OPTIONAL

Figure 9-1. GETTIME format

Timers 9-1



INTIME INSTRUCTION

9:2

SR30-0220

The hours, minutes, and seconds are maintained by the system in three
storage words in the supervisor. The user must define a three word
storage area in the application program issuing the GETTIME, into
which the hours, minutes, and seconds can be moved. The loc

operand is coded as the label of the first position of the three word user-
defined area.

The $T supervisor utility function also allows you to enter the date in
the form of month-day-year. |f the DATE= keyword operand is coded
DATE=YES, the GETTIME instruction will transfer the date as well

as the time into the application program. Three words are also required
for the date, and these must be contiguous with and following the
three word area defined to hold the time.

Each of the six words in the TOD and date locations are direct binary
equivalents of the information they represent. For instance, the third
word of TOD information {loc+4) is seconds, and when it reaches 59,
the next increment resets it to zero, and the minutes word is increased
by 1 (loct2). Hours is increased by 1 when 60 minutes have elapsed,
days by 1 at midnight, etc. By using GETTIME, an application pro-
gram can time stamp reports, transactions, or any system event in
which information as to the actual time of occurrence is useful.

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-109; or
SB30-1213 (Version 2 PDOM) page 2-113.

Some applications need to measure elapsed time: how long it takes

for a certain code sequence, task or program to execute, or how much
time has passed between the occurrences of events. These time intervals
may be very short, and therefore, cannot be accurately measured using
TOD values, whose resolution is only to the nearest second.

In addition to the TOD clock, the system maintains a relative time
clock. It consists of a double precision (two-word) integer, which is
initialized to zero at system IPL. Every millisecond thereafter, this
value is incremented by 1, and at any given instant, therefore, con-
tains the elapsed time in milliseconds since the system IPL. (A double-
precision integer will contain a count of milliseconds comprising
approximately 49 days elapsed time, before rolling over to zero and
starting again.)

The INTIME instruction is used to read the relative time clock
value into a user program. The format for the INTIME statement
is shown in Figure 9-2.

: ’
label INTIME  reltime,loc.i INDEX
| S - e
OPTIONAL MUST BE CODED OPTIONAL

Figure 9-2. INTIME format



STIMER INSTRUCTION

The reltime operand is coded as the label of a user-defined double-
precision integer variable into which the relative time value will be
moved. The loc operand is coded as the label of a user-defined single
precision integer, which will be set to the number of milliseconds

that have passed since an INTIME instruction, referencing this reltime
location, was executed in this program. (A single-precision integer will
hold approximately 65 seconds elapsed time in milliseconds, before
rolling over to zero and starting again.)

The INDEX keyword, if coded, indicates that automatic indexing

is to be used in conjunction with a BUFFER statement. If INDEX
is coded, the loc operand must be the label of a BUFFER statement,
instead of a single-word integer. When automatic indexing is used,
repetitive executions of an INTIME instruction result in the storing
of successive elapsed time values in successive buffer positions. The
use of INTIME with automatic indexing is illustrated at the end of
this section, along with the other timer instructions.

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-110; or
SB30-1213 (Version 2 PDOM) page 2-116.

Every task has a software timer associated with it. This timer will
time out after a user-specified number of milliseconds has elapsed
(60 seconds or 60,000 milliseconds maximum). The desired time
interval is set and the timer started by the STIMER instruction,
whose format is illustrated in Figure 9-3.

i !
label ISTIMER  count,i WAIT
N e’ — v AN
OPTIONAL MUST BE CODED OPTIONAL

Figure 9-3. STIMER format

The count operand is coded either as the number of milliseconds you
want to elapse before the timer expires, or as the label of a word of
storage containing the desired number of milliseconds. If the WAIT
keyword is coded, the task will go into the wait state until the specified
time interval has passed. Execution will resume with the instruction
following the STIMER.

The WAIT does not have to be coded as part of the STIMER instruction,
but may appear later as an explicit WAIT on the keyword operand
TIMER. This acts in the same manner as a wait on an event, the event
being expiration of the time delay. Using this method, the timer is
started, and execution continues with the instruction following
STIMER. When the WAIT on TIMER is encountered, the WAIT

will fall through if the time interval has already passed, or the task

will go into a wait state for the amount of time remaining.

Timers 9-3



TIMING FUNCTIONS — CODING EXAMPLE

9-4 SR30-0220

Figure 9-4 is a program that exercises all of the timing functions
previously discussed in this section. The first instruction in the pro-
gram is GETTIME at location STARTIME. It will place the TOD
values for hours, minutes, and seconds into the three words defined
at location STARTED.

The DO loop starting at DOSTART and ending at DOEND will
execute three times. Each time, the INTIME instruction at location
11 will place the time elapsed since IPL in the double precision
integer at SINCEIPL, and will put the time that has elapsed since the
last INTIME execution in the next successive buffer location of the
buffer defined at TIMEBUF. Both values are in milliseconds.

The STIMER instruction at location S1 causes a 5 second delay
(5000 milliseconds = 5 seconds) in each execution of the DO loop.
After the third delay, the DO loop exits, and the STIMER at location
S2 executes, This starts a 10 second timer running but, since the
WAIT operand is not coded, execution continues.

TIMETEST PROGRAM STARTIME
STARTIME GETTIME STARTED
DOSTART DO 3,TIMES
I1 INTIME SINCEIPL,TIMEBUF,INDEX
S1 STIMER 5000,WAIT
DOEND ENDDO
S2 STIMER 10000
I2 INTIME SINCEIPL,LASTIME
ENDWAIT WAIT TIMER
G2 GETTIME STOPPED,DATE=YES
PROGSTOP
STARTED DATA 3F'0!
SINCEIPL DATA 2F'0'
TIMEBUF BUFFER 3
LASTIME DATA F'o'
STOPPED DATA 6F'0’
ENDPROG
END

Figure 9-4, Timing functions

The INTIME instruction at 12 places the elapsed time since IPL

into SINCEIPL again, and puts the elapsed time since a previous
INTIME instruction referencing SINCEIPL was executed into the
single precision integer at LASTIME (INDEX not coded). The WAIT
at ENDWAIT puts the program in a wait state, until the expiration
of the 10 second time delay that was started by the STIMER at S2.



When the 10 seconds are up, the GETTIME at G2 executes, and the
program ends. This time DATE=YES is coded, so a six-word area
is defined at location STOPPED. Hours, minutes, and seconds will
be placed in the first three words, and month, day, and year in

the next three,

When using INTIME to time events where a few milliseconds
difference is critical, keep in mind that the time values retrieved by
your program represent the time that the INTIME instruction is
executed. If the task issuing the INTIME is of a lower priority than

other tasks active in the system at the same time, a delay in execution

of the INTIME may result, and will be reflected in the clock value
retrieved.

Timers

9-5



This page intentionally left blank.,

96 SR30-0220



TIMERS REVIEW EXERCISE — QUESTIONS

All of the questions in this Review Exercise refer to the program in
Figure 9-4. For simplicity, assume that no time is used to execute
instructions, no other tasks are running in the system, and system
overhead is zero.

At the time that the program begins execution, the date has been set
at January 1st, 1979, and it is exactly 5 p.m. (1700 hours). The system
IPL was at exactly 4 p.m.

1.

What will be in the three words beginning at location STARTED
after execution of the GETTIME at location STARTIME?

Answer: STARTED
STARTED+2
STARTED+4

What will be the values in the double precision integer at
SINCEIPL and the buffer at TIMEBUF after the first
execution of the INTIME instruction at 11?

Answer: SINCEIPL
TIMEBUF
TIMEBUF+2
TIMEBUF+4

After the second execution?

Answer: SINCEIPL o
TIMEBUF
TIMEBUF+2
TIMEBUF+4

After the third execution?

Answer: SINCEIPL
TIMEBUF
TIMEBUF+2
TIMEBUF+4

What will be in SINCEIPL and in LASTIME after execution
of the INTIME instruction at location 12?

Answer: SINCEIPL
LASTIME

What will be in the six words beginning at location STOPPED
after execution of the GETTIME at iocation G2?

Answer: STOPPED
STOPPED+2
STOPPED+4
STOPPED+6
STOPPED+8
STOPPED+10

Timers 9-7



TIMERS REVIEW EXERCISE — ANSWERS

9-8 SR30-0220

1.

STARTED 17
STARTED+2 0
STARTED+4 0

The TOD clock is kept using military time, on a 24 hour-a-day
basis. Five p.m. is therefore 17 hours, 0 minutes, and 0 seconds.

SINCEIPL 3,600,000
TIMEBUF 0
TIMEBUF+2 0
TIMEBUF+4 0

If the system IPL was at 4 o’clock, and it is now 5 o’clock, the
relative time clock has been running for one hour, or 3,600,000
milliseconds. (1 hr x 60 minutes x 60 seconds x 100 milliseconds/
second). The first word in TIMEBUF is zero, because the elapsed
time from the last time an INTIME instruction referencing
SINCEIPL was executed is zero; this is the first time the

INTIME has executed.

SINCEIPL 3,605,000
TIMEBUF 0
TIMEBUF+2 5,000
TIMEBUF+4 0

The second time through, the 5 second delay at S1 has occurred.
Total elapsed time since IPL has increased by 5,000 milliseconds
(SINCEIPL), and the time elapsed since the first INTIME execution,
also 5000 milliseconds, is automatically indexed into TIMEBUF+2.

SINCEIPL 3,610,000
TIMEBUF 0
TIMEBUF+2 5,000
TIMEBUF+4 5,000

A second 5 second delay has occurred, increasing SINCEIPL
by another 5000 milliseconds, and placing 5000 milliseconds
in the third buffer position, TIMEBUF+4.

SINCEIPL 3,615,000
LASTIME 5,000

Before exiting the DO loop, an additional 5 second delay occurred,
adding another 5000 milliseconds to SINCEIPL. Because the
INTIME instruction references the same “‘reltime’’ operand as the
last INTIME execution (SINCEIPL), LASTIME is set to 5000
milliseconds. If the INTIME at 12 had a different “reltime"’
operand, it would be treated as a first execution, and LASTIME
would indicate zero elapsed time.



STOPPED
STOPPED+2
STOPPED+4
STOPPED+6
STOPPED+8
STOPPED+10

17

o

25

-

—

79

5 p.m.

0 minutes
25 seconds
January
1st

1979

Fifteen seconds in the DO loop, plus the 10 second delay at
S2 have elapsed.

Timers

9-9



This page intentionally left blank.

9-10 SR30-0220



Section 10. Disk/Diskette 1/0

OBJECTIVES: Upon successful completion of this topic the student
should be able to:

1. Understand the physical and logical layout of both disk and
diskette

Define data sets in a PROGRAM statement
Read records using the READ statement

Write records using the WRITE statement

o > BN

Use NOTE and POINT to access and set the next record
indicator

6. Pass data set definitions to programs loaded from a terminal
or from another program

7. Pass data set definitions to an overlay program from the program
loading the overlay

READING REFERENCE: Program Description and Operations
Manual (SB30-1053) pages 2-129 through 2-141; or Program
Description and Operations Manual Version 2 (SB30-1213)
pages 2-135 through 2-147.

PHYSICAL LAYOUT — DISKETTE

The Series/1 4964 Diskette Storage Unit will accept both one-and two-
sided diskettes. Diskette surfaces are divided into 77 tracks, each track
containing 26 sectors of 128 bytes each. Three of the tracks are
reserved for use as alternate tracks, in the event other tracks are found
to be defective, so 74 tracks are available for use by system or
application programs,

Disk/Diskette Input/Output  10-1



DISKETTE FORMATTED FOR
26 SECTORS PER TRACK;
128 BYTES PER SECTOR

I SECTOR

TRACK

Figure 10-1. Diskette physical layout

Total capacity of a one-sided diskette is 246,272 bytes (492,544
bytes for two-sided diskette).

The Event Driven Executive uses the same addressing conventions

for both disk and diskette direct access devices. The physical addresses
for both devices are expressed as three-digit cylinder number (referred
to as tracks in the above discussion), a single-digit track number
(actually a read/write head on the device), and a two-digit Sector
number. This Cylinder/Track/Sector addressing format will here-

after be referred to as CTS.

CTS ADDRESS RANGES — DISKETTE

CYLINDER (ccc) TRACK (t) SECTOR (ss)
DOUBLE SIDED 001-074 0-1 01-26
SINGLE SIDED 001-074 0 01-26

Figure 10-2. Diskette CTS

PHYSICAL LAYOUT — DISK

The Series/1 4962 Disk Storage Unit is a nonremovable direct access
storage device. Models 1 and 2 have two movable read/write heads,
both on the same side of the disk. Models 1F and 2F have 8 fixed
heads on the opposite side of the disk, in addition to the two movable
heads. Although the Event Driven Executive supports Models 1F and
2F, this discussion will be limited to the nonfixed head devices.

10-2 SR30-0220



— \
==,
===
- N
72— 00\ \
/ .\ DATA TRACKS FOR HEAD 0
7 =SS NN
W, === NN\
W7 s ss o NN
/ dmi e\ Illl//,é“g\\\\\\:\:‘“\“\\\w}}\\\\\\ DATA TRACKS FOR HEAD 1
3 Z
it~ i
i~
T = i
' “‘“’ i U Lo i }
| I i
R NSttt
NNS=E=E= ),
R
XXX = /
NNSSsSE=E=E=== 7 7
AN \§§§§§§ g%%f%’%/; 7 60 SECTORS ON EACH TRACK
N SS===S=22 s
N, - — \
~~____ 00300131023203330434 053506360737 7/ 24 54 25 55 26 56 27 57 28 58 29 59 |
1 I

Figure 10-3. Disk physical layout

Data is formatted in 256-byte sectors, 60 sectors per track. The combi-
nation of the track under head zero and the track under head one
forms a cylinder. There are 303 cylinders on a disk. Cylinder 001 is
reserved for alternate sector assignment, and cylinder 302 is reserved
for maintenance use. The total physical capacity available for use by
system and user programs is therefore 9,246,720 bytes.

As with the diskette, physical address references are in the CTS format
in the ranges shown below.

CTS ADDRESS RANGES — DISK

CYLINDER (ccc) TRACK (t) SECTOR (ss)
000 0-1 00-59
001 FOR ALTERNATE SECTOR ASSIGNMENT ONLY
002-301 0-1 00-59
0302 FOR MAINTENANCE USE
ONLY

Figure 10-4. Disk CTS

For further details, refer to IBM Series/1 4962 Disk Storage Unit and
4964 Diskette Unit Description” GA34-0024.

Disk/Diskette Input/Output  10-3



DISK AND DISKETTE LOGICAL LAYOUT

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-129 through
2:136; or SB30-1213 (Version 2 PDOM) pages 2-135 through 2-142,

Event Driven Executive direct access storage has a hierarchical struc-
ture. The smallest logical unit that can be accessed is a record. Each
record is 256 bytes in length (the diskette routine makes the 128-byte
sector divisions on diskette transparent to the user). A group of con-
tiguous records make up a data set. Data sets are contained in a volume,
which also contains a directory (information about, and the location

of the data sets in the volume).

Volumes on disk are defined during system generation, using the
“DISK" statement. Each 4962 Disk Storage Unit to be used must have
a primary volume defined. By designating one of the volumes on a
4962 as a primary volume, control fields within the Supervisor are
generated, which are used to perform 1/0 on that physical device.

r ~
oo
PRIMARY !
AND |
SECONDARY
VOLUMES

(DEFINED BY “DISK”
SYSTEM CONFIGURATION
STATEMENTS)

DIRECTORY| DS1

VOLUME DIRECTORY/
CONTAINS = +

(LIBRARY) DATA SETS

EACH
RECORD-
256 BYTES
TWO 128 BYTE I )
SECTORS ON .
DISKETTE O ° ‘
(TRANSPARENT ' v
TO USER) :

— ONE SECTOR

ON DISK

Figure 10-5. DASD logical organization

104 SR30:0220



In addition to the single primary volume required for each 4962, as
many secondary volumes as required may be defined (within the
physical limits of the device). As with primary volumes, secondary
volumes are created at system generation using DISK statements.

Volumes may also exist on diskette. Each diskette is a separate volume
occupying the entire diskette. Diskette volumes are created using the
utility $INITDSK, rather than during system generation.

After a volume has been initialized, data sets within the volume can be
defined using the utility program $DISKUT1. Data sets may be defined
with program organization or data organization, depending on what

is to be stored. Program organization is used for data sets that will con-
tain executable (loadable) Event Driven Executive programs. Data
organization is used for work files (SEDIT1N, $FSEDIT, $LINK,
SEDXASM work files), source modules, $JOBUTIL control files, user
application data sets, etc.

PROGRAM STATEMENT DS= OPERAND

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-26; or
SB30-1213 (Version 2 PDOM) pages 2-27, 2-28.

Data sets accessed from user programs must be preallocated on disk or
diskette ($DISKUT1 utility), and must be named in the DS= keyword
operand of the using program’s PROGRAM statement. Figure 10-6
shows how the DS= operand is coded for data sets residing on the [PL
or other logical volumes.

Disk/Diskette Input/Output 10-5



“FILEA” IS ONLY DATA SET
USED, AND IS ON THE IPL
VOLUME — NO PARENTHESES
REQUIRED, NO VOLUME RE-
QUIRED (DEFAULTS TO IPL)

/
DSEXAMP1  PROGRAM  GO,DS=FILEA

MULTIPLE DATA SETS, ALL

ON IPL VOLUME—-ENCLOSE

LIST IN PARENTHESES, VOLUME
DEFAULTS TO IPL

DSEXAMP2  PROGRAM  GO,DS=(FILEA,FILEB)

“FILEA” AND “FILEB"" HAVE NO “FILEX” ON DIFFERENT
VOLUME SPECIFIED-DEFAULT VOLUME—-VOLUME MUST
TO IPL VOLUME BE SPECIFIED

\\> \
DSEXAMP3 ~ PROGRAM  GO,DS=((FILEA),(FILEB),(FILEX,EDX003))

EACH ENTRY ENCLOSED ENTIRE LIST

IN PARENTHESES ENCLOSED IN
ADDITIONAL
PARENTHESES

Figure 10-6. DS= operand

The IPL volume is the volume where the currently loaded (I1PL)
supervisor resides. The system will assume that data sets specified

in the DS= operand list also reside on the IPL volume, unless a different
volume is explicitly coded. Up to nine data sets may be coded in a

DS= operand list.

At the time a program is loaded, the loader (SLOADER) looks up all
the data sets named in the PROGRAM statement’s DS= operand list,
and logically opens them for use by the program. |If a named data set
does not exist (was never allocated by $DISKUT1), resides on a volume
other than that specified in the DS= operand entry, or is program
rather than data organization, the load operation is terminated and an
error message results.

READ/WRITE STATEMENTS
READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-138

through 2-142; or SB30-1213 (Version 2 PDOM) pages 2-144 through
2-147.

106 SR30-0220



The 256-byte records in data sets are transferred from disk/diskette
to storage or storage to disk/diskette by READ and WRITE instructions.
The format for READ and WRITE statements is illustrated in Figure 10-7.

DSx is the operand specifying which data set to use. The x in DSx is
coded as an integer value between 1 and 9, and is a positional reference
to one of the 9 possible data sets named in the DS= list of the PROGRAM
statement.

READ |
label | WRITE DSx,]oc,: count,relrecno,END=,ERROR=,WAIT=
N K v J
OPTIONAL == v 4 OPTIONAL
MUST BE CODED

Figure 10-7. READ/WRITE format

DS1 would refer to the first data set in the list, DS2 to the second,
continuing through DS9, referencing the ninth data set defined.

The loc operand is coded as the label of the first byte of the (one or
more contiguous) 256 byte storage area(s), into or from which the
disk/diskette record(s) will be read/written.

1

]

1
1count
1

L
v

! v
OPTIONAL ™ OPTIONAL

MUST BE CODED

Figure 10-8. READ/WRITE count operand

The optional count operand is coded as an integer value (or as the

label of a program location containing an integer value) indicating

the number of 256-byte records to be read or written. The user

must ensure that adequate storage is reserved (beginning at location loc)
to accommodate the number of records specified in count. If count

is not coded, the system will default the count operand to 1, indicating
that a single record will be read or written. If count is set to 0, the
READ or WRITE will not be performed (execute as a no-op), and
execution will continue with the next sequential instruction following
the READ/WRITE.

srelrecno

l B
OPTIONAL ™ v OPTIONAL
MUST BE CODED

Figure 10-9. READ/WRITE relrecno operand

Disk/Diskette Input/Qutput  10-7



10-8 SR30-0220

, —
OPTIONAL ™=

The relrecno operand is the relative record number (relative to the
origin of the data set) to be read or written. It is coded as an integer,
or as the label of a program location containing an integer, which is
the relative record number you want to access. The relrecno operand
will default to 1 (indicating the first record in the data set) if it is left
uncoded.

For each data set used by a program (DS1, DS2, etc.), the system
maintains a next-record pointer. This pointer is an indicator of the
next sequential record in the data set and, at the time a program is
loaded (before disk/diskette 1/0 has been performed), has an initial
value of 1. It is updated by +1 after each READ or WRITE in which;

a. relrecno is not coded
b. relrecno is coded as 0

c. the location specified by the label in relrecno is equal to 0

Successive executions of READ/WRITE instructions in which
relrecno has a value of 0 or is not coded will therefore result in
sequential access of the data set; i.e., the relative record number of
the next record read/written will automatically be 1 greater than the
last record read/written. A READ or WRITE with relrecno coded
as an integer greater than 0, or with the contents of the location
specified by the label in relrecno greater than O does not disturb
(increment) the next-record pointer,

o/

M OPTIONAL
MUST BE CODED

Figure 10-10. READ/WRITE END= operand

The END= keyword operand is coded with the label of the instruction
that you wish control transferred to when an attempt to READ or
WRITE a record outside the physical boundaries of the data set is
detected. This condition may occur because of a normal end-of-data
set condition (attempting to READ or WRITE the next sequential
record in a data set, when the last record read or written was the last
physical record in the data set), or may be caused by a program logic
error (for example, a READ or WRITE with relrecno erroneously

set to a negative value).



OPTIONAL v OPTIE)NAL

MUST BE CODED

Figure 10-11. READ/WRITE ERROR= operand

OPTIONAL ™

The ERROR= keyword operand is coded with the label of the instruction
that you wish to get control if an error is detected while executing a
disk/diskette READ or WRITE operation. If END= is not coded and
ERROR is coded, an end-of-data set condition will result in a transfer

to the ERROR= location. If END= is coded and ERROR= is not, all
abnormal conditions other than end-of-data set will result in contin-
uation of execution with the next sequential instruction following the
READ or WRITE. If neither is coded, execution continues with the

next sequential instruction in all cases.

After each disk/diskette READ or WRITE operation, a completion
code is returned to the user program (see Reading Assignment for a
description of completion codes). The completion code is placed in

the task code word (taskname) of the task issuing the READ or WRITE,
and is also placed in a system control block that may be referenced

by the symbolic positional data set name (DS1, DS2, etc.). This
completion code can be accessed and analyzed by the user program

to determine if the operation was successful and, if not, why it failed.

M OPTIONAL
MUST BE CODED

Figure 10-12. READ/WRITE WAIT= operand

While a disk/diskette 1/0 operation is executing, there is an implied
wait for the issuing task. Task execution is suspended (the task is
placed in a wait state) until the 1/O is complete. If the WAIT=
operand is coded as WAIT=NO, the wait does not occur; while the

1/0 operation is in progress, task execution proceeds with the next
sequential instruction following the READ or WRITE, overlapping
I/0 with processing. Also, if WAIT=NO is coded, the END= and
ERROR= keyword operands are not allowed. Checking for errors

is entirely a user responsibility (completion code in taskname or DSx).
In addition, the user must issue an explicit WAIT instruction, waiting
on the completion of 1/0 event. This is a predefined system event, and
the associated ECB is referenced (in the operand of the WAIT state-
ment) by the symbolic positional data set name (DS1, DS2, etc.)

for the data set used. When the waited on ECB is posted complete,
the 1/0 operation has finished, and the completion code is available
for inspection.

Disk/Diskette Input/Output  10-9



NOTE/POINT STATEMENTS

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-137; or
SB30-1213 (Version 2 PDOM) page 2-143.

The system-maintained next record pointer changes value {(increments)
each time a READ or WRITE (without a user-specified relrecno
greater than 0) is executed. Using the NOTE instruction, a user
program can find out the current value of the next record pointer.
The next record pointer may be set to a user-specified new value

using the POINT instruction.

' NOTE Toc
label ! pOINT  DS%spelrecno
\—v—JL -,
OPTIONAL M

MUST BE CODED

Figure 10-13. NOTE/POINT format

In Figure 10-13, the DSx operand is the symbolic positional reference
to the data set whose associated next record pointer is to be retrieved
(NOTE) or set (POINT). The second operand is coded as the label

of a one-word storage location that the NOTE instruction will move
the current value of the next record pointer into, or that contains

the new value which the POINT instruction will use to set the next
record pointer. (When using the POINT instruction, the second
operand may be coded as an integer value rather than the label of a
storage location.)

DISK/DISKETTE I/O CODING EXAMPLES

10-10  SR30-0220

The programs depicted in the next four figures (Figure 10-14 through
10-17) are not meant to be practical examples of how to code disk/
diskette 1/0 operations in a user program. They are intended only to
illustrate some of the concepts already discussed.

In Figure 10-14, the READ instruction at location GO will execute
as a no-operation. Execution will continue with the instruction
following the READ, and no 1/0 is performed. The count operand
is coded as storage location CTR. When the program is first loaded,
location CTR contains zero, and a zero count indicates no records
are to be read (or written, for a WRITE instruction).



DISKPGM PROGRAM  GO,DS=WORKFILE
GO READ DS1,BUFF,CTR,END=ENDOUT,ERROR=E1

R1 I.QEAD DS1,BUFF,END=ENDOUT,ERROR=E1

SET7 POINT DS1,7

MOVE CTR,3
R2 READ DS1,BUFF,CTR,END=ENDOUT,ERROR=E1
PROGSTOP
ENDOUT {END-OF-DATA SET)
\__ROUTINE ____ ]

El e o e
{ERROR ROUTINE]

BUFF BUFFER 768,BYTES
CTR DATA F'o'
ENDPROG
END

Figure 10-14. Count operand use

The READ at location R1 has no count operand coded, so count
defaults to 1, indicating a single record will be read. Since relrecno
is not coded, the relative record number defaults'to the current value
of the next record pointer. The next record pointer has not yet been
altered, and is therefore at its initial value of 1, indicating the first
relative record in the data set. The READ at R1 will read the first
record in WORKFILE into the first 256 bytes of the 768 byte area
BUFF. After the 1/0 operation, the next record pointer is incre-
mented to 2 (automatic system function).

The POINT instruction at location SET7 changes the next record
pointer to point to the seventh relative record in the data set. The
MOVE which follows sets location CTR to a value of 3. When the
READ at R2 is executed, three 256 byte records {(count = CTR = 3),
beginning with relative record number 7 (relrecno defaults to next
record pointer which was set to 7) will be read into storage, beginning
at location BUFF. After the operation, the next record pointer will
have a value of 10.

In Figure 10-15, all count operands are left uncoded, so all READ
operations will be single record reads (default count = 1). In the first
READ (location GO), relrecno is coded as location RECNBR, which
has an initial value of 2. The second relative record in WORKFILE
will be read into BUFF. The ADD instruction following the READ
updates the user-maintained relative record number in RECNBR by
adding 3. When the READ at R2 is executed, relative record number
5 will be read into BUFF.

The MOVE operation preceding the READ at R3 sets the relrecno
location RECNBR to zero. A zero relrecno value causes a default
to the next record pointer maintained by the system.

Disk/Diskette Input/Output  10-11



10-12

SR30-0220

DISKPGM PROGRAM  GO,DS=WORKFILE

60 READ DS1.BUFF, ,RECNBR,ERROR=ERROUTN, END=0UT
ADD RECNBR, 3
R? READ DS1,BUFF, ,RECNBR,ERROR=ERROUTN ,END=0UT
MOVE RECNBR,0
R3 READ DS1,BUFF,,RECNBR.ERROR=ERROUTN ,END=0UT
R4 READ DS1,BUFF,ERROR=ERROUTN , END=0UT
P1 PROGSTOP
ouT i_é'/\'/'ﬁ-(—)/? -DATA SET|
L__ROUTINE ____}]
ERROUTN {ERROR ROUTINE]
BUFF BUFFER 256,BYTES
RECNBR  DATA Fio
ENDPROG
END

Figure 10-15. “relrecno’’ operand use

The two previous READ operations (at GO and R2) both used a user-
defined relrecno value greater than zero, so the next record pointer was
not affected, and is still at its initial value of 1. The READ at R3

will therefore read the first relative record in WORKFILE, because

the MOVE operation preceding sets RECNBR to zero.

The READ at R4 has no relrecno coded, and will also default to
the next record pointer for a relative record number. This READ
will read relative record number 2, since the next record pointer
was incremented by 1 after the preceding READ at R3.

In Figure 10-186, all count and relrecno operands are left uncoded, so
all READ commands will read a single record, and the next record
pointer will be used for the relative record number.

The READ statement at GO has both END= and ERROR= operands
coded. An end-of-data set condition will cause a transfer to location
ENDR, and an error condition will result in execution of the instructions
beginning at ERTN. If the operation is successful, relative record
number 1 will be read into BUFF.



In the READ statement at R2, only the END= operand is used. Error

checking is therefore a user responsibility, and is performed in this

example by the IF statement immediately following the READ. The
symbolic positional data set name, DS1, is checked for a completion

code of -1. A -1 indicates a successful or normal operation. If the
completion code is other than-1, control is transferred to the error

routine at ERTN. If the operation was successful, relative record
number 2 would be read.

DISKPGM PROGRAM  GO,DS=WORKFILE

GO

R2

R3

R4

DONE
ENDR

EO
ERTN

BUFF

READ DS1,BUFF,END=ENDR,ERROR=ERTN
READ DS1;BUFF,END=ENDR
IF (DS1,NE,-1),GOTO, ERTN
READ DS1,BUFF,ERROR=EQ
READ DS1,BUFF
IF (DS1,NE,-1),G0TO,E0
PROGSTOP
IBRINT OUF “END ™

.

GOTO DONE
IF (DS1,EQ,10),G0TO,ENDR
TBRINT OUT DISK]

'\ERROR” MSG___ |

GOTO DONE
BUFFER 256,BYTES
ENDPROG

END

Figure 10-16. END=and ERROR= use

Disk/Diskette Input/Qutput

10-13



The ERROR= operand is coded in the READ statement at R3, but the
END= is not. An end-of-data set condition will therefore be considered
an error, and will cause a transfer to the label coded in the ERROR=
operand, location EO. When END= is not coded, but you do not wish
to treat end-of-data set as an error, the specific condition code that
indicates end-of-data set must be checked for in the error routine. The
IF statement at location EQ checks for a completion code of 10, which
is the completion code signifying an end-of-data set (relative record
number outside range of data set) condition. If the code is 10, control
transfers to the end-of-data set routine at ENDR, rather than
continuing execution of ERTN. Relative record number 3 is read

if normal operation occurs.

The READ at R4 has neither END= nor ERROR= coded. Operation

is the same as the previous READ at R3, except that the user must check
for abnormal completion; there is no automatic transfer to an error
routine, as is provided by the ERROR= operand. The completion

code is checked by the IF statement foliowing the READ, and transfers
to EO (as did the ERROR=EOQ in the READ at R3) if other than normal
completion is detected. Normal completion results in a read of relative
record number 4.

Figure 10-17 illustrates the use of the WAIT= operand. The READ

at location START is the same as the READ statements you are
already familiar with. It will read a single record (count defaults to 1),
the first relative record in data set WORKFILE (relrecno defaults to
next record pointer = initial value of 1), into BUF1. If an error occurs,
the ERROR= operand will transfer control to E1, the start of the

error routine. (END= is not required because, by definition, if
WORKFILE exists, it has at least one record in it. Since this is a

read of the first record in WORKFILE, end-of-data set will not occur.)

While the READ at START is in progress, task DISKPGM is in a
wait state (WAIT= operand not coded — default is WAIT=YES).
After successful completion of the READ, the MOVE at location
SETUP is executed, moving the 256 byte record in BUF1 into
WRKAREA (128 words = 256 bytes).

Now a second READ is issued (location R2), with the WAIT= operand
coded as WAIT=NO. Since the READ at START used the next record
pointer for a relative record number, it now has a value of 2, The
READ at R2 will therefore read relative record number 2 into BUF1,
updating the next record pointer to 3 upon successful completion.

While the READ operation at R2 is in progress, execution of task
DISKPGM continues, because the WAIT=NO operand prevents

the implied wait for 1/0 completion from taking effect. While the
next sequential record (relative record 2) is being read into BUF1,
the program is operating on the data in the previous record, which is
now in WRKAREA. Program execution is overlapping with the /0.

10-14  SR30-0220



DISKPGM PROGRAM  START,DS=WORKFILE
BUF1 BUFFER 256,BYTES

WRKAREA DATA 128F'0"
START READ DS1,BUFF1,ERROR=E1
SETUP MOVE WRKAREA,BUFF1,128

R2 READ DS1,BUFF1,WAIT=NO

:’Pﬁocsss THE DATA IN}
|_“WORK AREA” |

W1 WAIT DS1
IF1 IF (DS1,EQ,-1),GOTO,SETUP

IF2 IF (DS1,EQ,10),G0TO,0UT

EL  [PRINT DISK ERROR]
| MESSAGE i

STOP __ PROGSTOP

OUT  [PRINT END OF DATA;
| SET MESSAGE I

GOTO STOP
ENDPROG
END

Figure 10-17. WAIT=NO

When WAIT=NO is coded, as illustrated in the READ at R2, the
ERROR= and END= operands cannot be used. Error checking is
therefore entirely a user responsibility. The 1/0 operation com-
pletion code is not available until the 1/O operation is finished. To
find out when the 1/0 is complete and the completion code is avail-
able, and also to resynchronize processing with 1/0, the user must
issue a WAIT on the completion of /0O event.

The WAIT at location W1 uses the symbolic positional data set name
DS1 as the event name. The ECB is not coded, because it already
exists in the TCB established by the PROGRAM statement. When the
READ operation at R2 completes, the completion code is posted in
location DS1. DS1 is the symbolic address of the first word of the
associated ECB, and therefore the completion of 1/0 event is marked
as having occurred.

Disk/Diskette Input/Qutput  10-15



After the WAIT, execution continues with the |F statement at
location IF1. If the |/O completed normally {condition code = -1),
control is transferred to SETUP, which moves the new record into the
work area. The READ at R2 starts the read of the next sequential
record into BUF 1, and the entire process continues to repeat until

all records have been processed (end-of-data set) or an error occurs.

If other than a normal completion is detected at 1F 1, the |F at I[F2

executes. An end-of-data set condition (completion code = 10) will
cause a transfer to location OUT, the end-of-data set routine. Any

other completion code is an error, and execution will continue with
the error routine E1, immediately following the IF.

LOAD-TIME DATA SET DEFINITION

10-16

SR30-0220

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-20 through
2-22 and 2-25, 2-26; or SB30-1213 (Version 2 PDOM) pages 2-20
through 2-22 and 2-26 through 2-28.

In all of the disk/diskette /O examples thus far, data sets to be used
by a program are named in the DS= list of the PROGRAM statement.
This is adequate for very stable applications, where the program
always uses the same data sets, and the names of those data sets are
known at the time the program is written.

A stable situation is not always possible. At the time a particular
program is being coded, data set naming conventions may not yet
have been established, and data set names therefore would not be
known, Also, the program could be a generalized file routine, de-
signed to perform certain updating or maintenance functions on any
of several similar data sets, a different data set (and data set name)
each time the program is executed.

By coding ?? in place of a data set name (in the DS= list of the
PROGRAM statement), data set names can be specified at the time
a program is loaded for execution, rather than when it is coded. In
Figure 10-18, the first entry in the DS= list is coded as ??, and the
second entry as the data set name FILEA.



PROGA  PROGRAM  ASTART,DS=(??,FILEA)
ASTART  READ DS1,BUF1,END=E1, ERROR=E?
RD? READ DS2,BUF2.END=E1,ERROR=E2

PROGSTOP

ENDPROG

END

Figure 10-18. Terminal load — data set passing

Assuming this program is stored on disk/diskette under the name
PROGA (same as initial task name), a terminal operator would re-
guest that the program be loaded by hitting the ATTENTION key,
and entering ““$L. PROGA"’. The system loader, recognizing that the
first entry in the requested program’s DS= list specifies a file to be
defined at load time, will query the terminal operator with the

prompt DS1=(NAME,VOLUME):. The operator would then respond
with the name of the data set to be used as DS1 in the format
NAME,VOLUME, if the data set resides on other than the IPL volume,
or with just NAME if the data set is IPL volume resident. For example,
if the operator enters FILEX in response to the prompt (FILEX is

on the IPL volume), PROGA, when loaded, will execute as though

the DS= list in the PROGRAM statement were coded DS=(FILEX,
FILEA). The READ at location ASTART will read from FILEX,

and the READ at RD2 from FILEA.

Load time file definition is also possible when programs are loaded by
other programs, rather than from a terminal. In Figure 10-19,

PROGA and PROGB both have a data set to be defined at load time

(?? entry in DS= lists). Assuming PROGA is loaded from a terminal,
the terminal operator will supply the missing data set name for PROGA.
PROGB, however, is loaded by PROGA, and therefore PROGA must
pass PROGB's missing data set name.

At location LD 1 in PROGA, FILEZ is defined in the DS= list of the
LOAD statement. When the LOAD is executed, FILEZ will be sub-
stituted for the ?? entry in the PROGRAM statement’s DS= list for
PROGB.

Disk/Diskette Input/Output  10-17



PROGA PROGRAM  ASTART,DS=(??,FILEA)

ASTART
LD1 LOAD PROGB,DS=(FILEZ),ERROR=E3
LD2 LOAD PROGB.DS=(DS1), ERROR=E3
PROGSTOP
ENDPROG
END

PROGB PROGRAM  BSTART,DS=(FILEB,??)
BSTART  READ DS1,BUF,END=ENDB,ERROR=ERRB

WRITE DS2,BUF,END=ENDB, ERROR=ERRB
PROGSTOP

w

ENDPROG
END

Figure 10-19. Program load — data set passing

PROGB will READ from FILEB, and WRITE to FILEZ. Note that
data set names defined in the DS= list of a LOAD statement do not
have to exist in the loading program’s PROGRAM statement DS=
list.

10-18 SR30-0220



Data set names that are in the DS= list of the loading program’s
PROGRAM statement can be passed using the actual name, or by using
the symbolic positional reference DSx. At LD2 in PROGA (Figure
10-19), PROGB is again loaded, passing the data set DS1. This refers
to the first entry in the DS= list in PROGA’s PROGRAM statement,
which is coded as ??. Again assuming this data set name was supplied
by a terminal operator when PROGA was loaded, that same name will
be passed through to PROGB, becoming the data set used by PROGB
for the WRITE operation. If DS2 instead of DS1 were coded, FILEA
would have been passed.

When programs using disk/diskette |/O are loaded as overlays, a//
names of data sets used by the overlay program must be passed by the
loading program, and the data set names that are passed must be
entries in the DS= list of the loading program’s PROGRAM statement.
In Figure 10-20, the PROGRAM statement for PROGA defines
PROGB as an overlay program (PGMS=PROGB). The LOAD state-
ment at LD3 will load PROGB as an overlay, because the program
name specified is PGM1, a positional reference to the PGMS= list.
PROGB uses two data sets, so two data set names are passed to
PROGB in the LOAD statement’s DS= list: DS2 and DS1, which
reference FILEA and ?? in the DS= list for PROGA. When passing
data set names to an overlay program, the LOAD statement must

use the DSx positional references.

All data sets used by an overlay program must be passed to the
overlay by the loading program, and therefore all data set names
in the DS= list of the PROGRAM statement of.a program loaded
as an overlay are treated as though they were ?? entries. For
example, if PROGB is loaded as an overlay, FILEB will not be
used, unless it is passed by the LOAD statement in the loading
program.

Disk/Diskette Input/Output  10-19



10-20  SR30-0220

PROGA PROGRAM  ASTART,DS=(??,FILEA),PGMS=PROGB
ASTART

LD3 LOAD PGM1,DS=(DS2,DS1),ERROR=E3,EVENT=BDONE
WT1 WAIT BDONE
PROGSTOP
U\
ENDPROG
END

PROGB PROGRAM ~ BSTART,DS=(FILEB,??)
BSTART  READ DS1,BUF,END=ENDB,ERROR=ERRB

WRITE DS2,BUF ,END=ENDB , ERROR=ERRB

PROGSTOP

ENDPROG
END

Figure 10-20. Qverlay load — data set passing



In Figure 10-20, if the terminal operator loading PROGA ($L PROGA)
responds to the DS1=(NAME,VOLUME): prompt by entering
FILEC, PROGA will execute as though the DS= list in the
PROGRAM statement were coded DS=(FILEC,FILEA). In the

DS= list of the LOAD at LD3, the first entry is DS2. This first
position in the LOAD statement’s DS= list corresponds to the first
position in the DS= list for PROGB. The DS2 references the second
entry in the DS= list of PROGA’s PROGRAM statement, which is
coded as FILEA. The data set name FILEA is therefore passed to
PROGS as the first entry of the DS= list in the PROGRAM statement
for PROGB. Similarly, the second entry in the LOAD statement’s
DS= list will pass FILEC, the DS1 data set name entered by the
operator, to the second entry in the DS= list for PROGB. PROGB
will execute as though the DS= list in the PROGRAM statement

were coded as ‘‘DS=(FILEA,FILEC)’. The READ will be from
FILEA, and the WRITE to FILEC.

Disk/Diskette Input/Qutput  10-21



DISK/DISKETTE 1/0 REVIEW EXERCISE—~QUESTIONS

10-22

SR30-0220

1.

How many primary volumes may be defined on a 4962 Disk
Storage Unit? How many secondary?

Which of the following choices, when used to complete the
statement below, makes the statement not true?

““The DS= list in a PROGRAM statement . . .

a. ...must contain an entry for each data set used by the
program.”’

b. ... may contain up to nine entries.”

c. ... may specify data sets resident on other than the IPL
volume.”

d. ... isused to define the names of any overlay programs that

may be loaded by the program.”’

e. ... may have entries for data sets that will not be defined
until load time.”’

All of the remaining "“Questions for Review"’ refer to the coding
example in Figure 10-21.



PROGI  PROGRAM  GO,DS=(DSET1,DSET2,DSET4,DSET9),PGMS=P2
GO READ DS3,BUFA,NBR,RCRD,END=E1,ERROR=E2
RD2 READ
IF1 IF (. . ),G0TO,E1
IF2 IF (777,77,77),60T0,E2
N1 NOTE D33,D53VAL
LD1 LOAD P2,DS=( ) ,ERROR=LDERR
LD2 LOAD ,DS=1” 77777, ),ERROR=LDERR
PROGSTOP ~~°° T Tt
BUFA BUFFER »BYTES
DS3VAL  DATA FTO
NBR DATA Fro
RCRD DATA F's!
" ENDPROG
END
P2 PROGRAM  PGO,DS=(??,DSET3,??)
PGO READ DS3,BUFF
PR2 READ DS1,BUFF
PR3 READ DS2,BUFF
PROGSTOP
BUFF BUFFER 128
ENDPROG
END

-Figure 10-21. Review problem

Disk/Diskette Input/Output

10-23




10-24

SR30-0220

a. How many records will be read by the READ at location GO?
b. What is the name of the data set used?

c. What is the relative record number of the first record that will
be read?

d. What should be coded as the first operand of the BUFFER
statement at location BUFA?

Answers:

a
b.

C.
d.

Code the READ at RD2 to read a single record (let count take
default) into BUFA. The record should be the first relative
record (let relrecno take default) in data set DSET4. Do not
code the END= or ERROR= operands. Cade the IF at IF1

to check for end-of-data set condition, and the IF at IF2 to
check for other errors.

Answer:

GO READ

IF1 IF (———+__,__),GOTO,E1
——e+s__),GOTO,E2

IF2 IF (

After executing the NOTE instruction at N1, what will be the
value of location DS3VAL?

Answer:

Code the LOAD instruction at location LD 1 so that when program
P2 executes, the READ at PGO will use data set DSET5, the
READ at PR2 will use DSET9, and the READ at PR3 will read
from DSETS3.

Answer:

LD1 LOAD P2DS=(__ . ), ERROR=LDERR



Code the LOAD at location LD2 to load P2 as an overlay
program. In program P2, the READ at PGO should use
DSET1, the READ at PR2 data set DSET2, and the READ
at PR3, data set DSET4.

Answer:

LD2 LOAD DS=(___.______)ERROR=LDERR

————

The LOAD at LD2 is a load of an overlay program. What
must be added to PROG1 to ensure the proper termination-
of-execution sequence between P2, the overlay program,
and PROGH1, the loading program?

Answer:

Disk/Diskette Input/Output  10-25



DISK/DISKETTE 1/0 REVIEW EXERCISE—ANSWERS

10-26 SR30-0220

1.

Each 4962 may have one (1) primary volume defined. As
many secondary volumes as required may be defined, within
the physical size limitations of the device.

All choices except choice “‘d”’ will complete the statement
truthfully. The “PGMS="" keyword operand is used to
define the overlay programs.

a. 2records will be read (count=NBR=2)

b. DSET4 will be used. DSET4 is the third entry in the DS=
list, and is referenced by DS3 in the READ at GO.

c. relative record number 5 (relrecno=RCRD=5)

d. 512o0r more, because two 256 byte records are being read
(NBR=2).

RD2 READ DS3,BUFA
IF1 IF (DS3,NE,10),GOTO,E1
IF2 IF (DS3,NE,-1),GOTO,E2

DS3VAL will contain 2, because the next record pointer is
updated by +1 following the READ at R2.

LD1 LOAD P2,DS=(DS4,DSET5),ERROR=LDERR
LD2 LOAD PGM1,DS=(DS2,DS3,0S1),ERROR=LDERR

The LOAD at LD2 should have the EVENT= operand coded,
declaring an event name. An ECB with that event name should
also be coded, and a WAIT on that event name should occur
prior to the PROGSTOQP.



TERMINAL STATEMENT

Section 11. Terminal 1/0

OBJECTIVES: After completing this section, the student should be
able to:

1. Describe roll screen and static screen operation

2. Use PRINTEXT, PRINTIME, PRINDATE, and PRINTNUM
instructions to display data on a terminal

3. Use READTEXT and GETVALUE instructions to read data
from a terminal

4, Understand the purpose of specialized terminal instructions
such as QUESTION, TERMCTRL, etc.

READING REFERENCE: Program Description and Operations
Manual (SB30-1053) pages 2-214 through 2-219 and 2-143 through
2-168; or Program Description and Operations Manual Version 2
(SB30-1213) pages 2-157 through 2-192 and 2-275 through 2-284.

The Event Driven Executive terminal support is designed to be as
device independent as possible. With few exceptions, the user need
not be concerned with what type of device is being driven by terminal
functions coded in the program. The same sequence of terminal
output instructions, for instance, may be used to print data on a
matrix or line printer, on a locally attached TTY device or a remote
ACCA terminal, or to display the data on an electronic display

screen device.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-214
through 2-219; or SB30-1213 (Version 2 PDOM) pages 2-275
through 2-284.

Terminals are defined to the system using the TERMINAL system
configuration statement. This statement generates system control
blocks and tables containing the logical and physical variables
necessary to operate the terminal. Among the physical variables
described in the TERMINAL statement operands are the type of
terminal (TTY, printer, display, etc.), its hardware address, the type
of transmission code used, and other hardware related parameters
unique to the device being defined.

The high degree of device independence is achieved in part by treating
all terminals as though they were line printers, differing only in their
page sizes (forms length) and margin settings, also defined by
TERMINAL statement operands.

Terminal 1/O 111



ROLL Screens

NHIST= Operand

11-2

SR30-0220

The page size for an IBM 4978/4979 terminal is 24, the maximum
number of lines that can be displayed on the screen. The
4978/4979 Displays can be operated as roll screen or static screen
devices (SCREEN= operand in TERMINAL statement). A roll
screen device operates in much the same way as a typewriter,
Assuming a blank screen (clean page in typewriter) to start, data

is displayed line by line, beginning with line 0 at the top of the
screen and continuing through line 23 at the bottom of the screen,
just as a typewritten page is filled from top to bottom. When a
page being typed is full, the completed page is removed, a clean
page is inserted, and typing continues at the top of the new page.
When a roll screen device’s screen is full (all 24 lines used), an
attempt to display the next line results in removal of the old screen
(screen is erased) and display of the new line on line O, at the

top of the screen.

Unlike a typewriter, the display is not a hardcopy device, and therefore
the information on the old screen (previous page) cannot be referred
to after it has been erased. |f an operator entry is expected and the
operator prompts describing that entry were displayed on a now-erased
previous screen, time could be wasted in looking up the input request
in a reference book, or in requesting that the program repeat the
display of the prompt.

This potential problem is avoided by coding the NHIST= operand of
the TERMINAL statement to reserve part of the screen as a history
area. NHIST= is the number of history lines you wish to reserve.

For example, if NHIST=12 is coded, the top twelve lines of the

screen are reserved for a history area (physical lines 0 through 11), and
the bottom twelve lines (physical lines 12 through 23) as a work area,
operating in the normal roli screen fashion. (The 4979 Display
supported by the starter system is defined with NHIST=12, and
NHIST=12 will be the default for user defined 4978/4979 displays

if NHIST= is left uncoded.)

Since all terminals, including electronic display screens, are treated
logically as printers, forms control commands are used to position
displayed output on a screen, just as lines and spaces may be skipped
on a printout to position a print line on a page. Although physically
(with NHIST=12) the work area occupies lines 12 through 23, logically,
for purposes of forms control interpretation, they are treated as

lines O through eleven. Display information directed to line O will be
displayed on physical line 12, the top of the work area.



Again beginning with a blank screen, successive lines are displayed
starting at the top of the work area, and continuing to the bottom
of the screen. With the work area full, an attempt to display the
next line will cause:

1. the information displayed in the ‘‘work area’’ to be moved up
into the “history area’’, (physical lines 0 through 11).

2. the "work area (lines 12-23) to be erased

3. display of the new line on physical line 12, the top of the
work area.

Each time the work area is exceeded, the information displayed there
is moved up into the history area, thereby retaining some past history
for viewing. The work area and history area do not have to be of
equal size; you may code NHIST= to retain as few as O lines of
previous data, or as many as 23 lines.

Static Screens

Terminals operated as roll screen devices are usually used in an
interactive mode, to communicate between a program and an
operator. Operator prompts and their associated responses are ex-
changed on a line by line basis. The display of a new line, or the read
of an operator entry is usually initiated by the operator pressing a
terminal control key such as ENTER or one of the program function
keys, indicating that the operation can proceed. A common example
is the series of prompts and replies that are exchanged between
program and operator when using the Event Driven Executive
utilities.

When a 4978/4979 Display is defined as a static screen device
(SCREEN= operand in TERMINAL statement), the screen is treated
as a page of information. The screen may be formatted with pre-
determined operator prompts (input field names), and these areas
may be designated as “protected’’, preventing accidental overlay

by input data. The input fields of a static screen are usually

filled in by the operator without interaction with the program.
Terminal operation keys such as TAB, BACKSPACE, or the cursor
positioning keys are used to move the cursor to the required input
field positions.

When all required input fields have been entered, the operator
presses the ENTER key (or a designated Program Function key)
to signal the program that the page is complete. The program then
reads all the information on the screen, erases the screen, and dis-
plays a new page (screen with prompts, but blank input fields) for
the operator to fill.

Terminals operated as static screen devices must be either IBM
4978 or 4979 Displays, as some of the specialized instructions used
with static screens can be interpreted only by the 4978/4979
hardware. Other electronic display screen devices and, of course,
all hardcopy terminals, are operated as roll screens,

Terminal 1/O  11-3



ENQT/DEQT INSTRUCTIONS

11-4 SR30-0220

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-151 and
2-154; or SB30-1213 (Version 2 PDOM) pages 2-166 and 2-169.

When a program is loaded from a terminal, that terminal is dynami-
cally designated by the system as the terminal to be used by terminal
I/0 instructions in the program. Each terminal 1/0 instruction auto-
matically has exclusive use of the terminal during the execution of
that individual operation; only one task at a time is allowed to per-
form 1/0 on the terminal,

If more than one task is using the terminal, terminal operations
from different tasks could become interspersed. In cases where this
is undesirable, the ENQT (enqueue terminal) facility may be used to
reserve the terminal for the exclusive use of a task, thereby pre-
venting other tasks from using the terminal until the task issuing

the ENQT releases it (DEQT).

label ENQT name ,BUSY=
e N’ s s/

OPTIONAL MUST BE CODED OPTIONAL

Figure 11-1. ENQT format

If ENQT is coded without the optional name operand, the default

is to the terminal that loaded the program. The task issuing the
ENQT will acquire exclusive control of the loading terminal, and will
retain control until executing a DEQT instruction. If the terminal is
busy (enqueued by another task} when the ENQT is executed, the
task issuing the ENQT is placed in a wait state, queued up waiting for
the terminal to become available. If you do not wish to be queued

if the terminal is busy, the BUSY= operand should be coded with the
label of the instruction to which you wish control transferred.

The ENQT may also be used to gain exclusive control of a terminal
other than the loading terminal. The symbolic name assigned to a
terminal is the name coded as the label of the TERMINAL statement
defining the device. Coding a name in the label field automatically
defines the terminal to the system as a global resource that may be
enqueued by user programs (ENQT). There are three symbolic ter-
minal names that have special significance, as they are used by the
supervisor or system utility programs:

1. $SYSLOG this is the name of the system logging device or
operator station, and must be defined in every system. In the
system configuration statements used to generate the supplied
supervisor, $SYSLOG is the label of a TERMINAL statement
defining a 4979 Display.



2. $SYSLOGA This is the name of the alternate system logging

device. In the event that unrecoverable errors prevent use of

$SYSLOG, the system will use the $SYSLOGA terminal as the

system logging device/operator station. If defined ($SYSLOGA

is optional), this device should be a terminal with keyboard
capability, not just a printer. The supplied supervisor
$SYSLOGA terminal isa TTY device.

3. $SYSPRTR This is the name of the system printer, and is also
optional. If defined, the output from some system programs will

be directed to this device. In the supplied supervisor,
$SYSPRTR is defined as a 4974 matrix printer.

In addition to being used by the system, these devices may also be

enqueued (ENQT) by user programs. In Figure 11-2, the ENQT/DEQT

coding example refers to the terminals defined in the TERMINAL
configuration statements shown at the top of the illustration. For
simplicity, only the required TERMINAL statement operands are

coded; all other operands are default values.

$SYSLOG ~ TERMINAL DEVICE=4979,ADDRESS=04
$SYSPRTR  TERMINAL DEVICE=4974 ,ADDRESS=01
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00
DSPLY1 TERMINAL DEVICE=TTY,ADDRESS=10,END=YES

TERMTASK PROGRAM START
START ENQT
D1 DEQT
E2 ENQT $SYSPRTR,BUSY=E3
£3 ENQT $SYSLOG
D2 DEQT

PROGSTOP

ENDPROG

END

Figure 11-2. ENQT/DEQT operation

Assuming that the loading terminal is the TTY device DSPLY1, the
ENQT instruction at location START will acquire exclusive control
and retain control until execution of the DEQT at D1. No name
operand is coded for the ENQT, so the loading terminal DSPLY'1
is enqueued, thereby preventing other tasks from using DSPLY 1.

Terminal 1/O

116



The ENQT at E2 is directed at the 4974 matrix printer, $SYSPRTR.
If the matrix printer is already in use (enqueued), control is trans-
ferred to the next instruction at location E3 (BUSY=E3). Thisis an
attempt to enqueue the 4979 display terminal $SYSLOG. If
$SYSLOG is already enqueued, TERMTASK will be placed in a wait
state, waiting until the terminal becomes available. In effect, the two
ENQT statements at E2 and E3 may be interpreted as “‘try to get the
system printer; if it is in use, get $SYSLOG instead and use it.”

If the ENQT at E2 executes successfully, acquiring control of $SYSPRTR,
the ENQT at E3 will execute as a no-op. When an ENQT for a given
terminal has successfully executed and enqueued that terminal,

ensuing ENQTs issued by the same task directed to terminals other than
the terminal already enqueued are ignored. The system allows any one
task to enqueue only a single terminal at a time. To switch from an
already enqueued terminal to a different terminal, a DEQT must be

issued before the ENQT for the new device is executed. DEQT
commands are non-specific (no ‘name’’ operand), acting upon

whatever terminal is currently enqueued by the issuing task.

I0CB STATEMENT

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-155; or
SB30-1213 (Version 2 PDOM) page 2-170.

One of the system control blocks generated by assembly of the
TERMINAL system configuration statement is called an input

Output Control Block (IOCB). A terminal I0CB contains infor-
mation such as the terminal’s forms configuration (page size, margins),
operating mode (static, roll), and history area size (NHIST= operand).
A terminal is not restricted to the values coded for these parameters

in the TERMINAL statement; they can be dynamically changed by a
user program.

In Figure 11-3, a 4979 Display called DSPLY 1 is defined in the
TERMINAL statement at the top of the illustration. As you know from
the previous discussion of roll screen operation, the NHIST=

default value (for 4978/4979 Displays) is 12, dividing the screen

into a history area and a work area of twelve lines each.

in TERMPROG (Figure 11-3), assume the user wants a screen that
operates so that each new line is displayed on the last (bottom) line of
the screen, forcing the previously displayed 24 lines up one for each
new line displayed. This will cause the screen to act as a continuous
scroll, with each new line forcing the oldest previous line off the:
screen at the top.

116 SR30-0220



bSPLYl TERMINAL DEVICE=4979,ADDRESS=20

TERMPROG PROGRAM  SCROLL
NEWHIST  10CB DSPLY1,NHIST=23
SCROLL  ENQT NEWHIST
DONE DEQT
PROGSTOP
ENDPROG
END

Figure 11-3. IOCB/ENQT

To operate in this way, a history area of 23 lines is required, leaving

a one line work area for new entries. At location NEWHIST is a
user-coded 10CB, which references terminal DSPLY 1, and defines
NHIST=as 23. The ENQT at SCROLL references the IOCB label
NEWHIST. Execution of the ENQT acquires exclusive control of,
and puts the user-coded I0QCB in effect for, the named terminal,
DSPLY1. (If no terminal name is coded, the system will default to
the loading terminal.) Until execution of the DEQT at DONE, DSPLY'1
will operate with NHIST=23. The DEQT will cause DSPLY'1 to revert
back to the |IOCB values generated by the TERMINAL system
configuration statement.

In the same manner, 4978/4979 Displays that are defined in
TERMINAL statements as roll screen devices (SCREEN= default is
ROLL) may be dynamically enqueued for static screen operation by
a user program. Because Event Driven Executive system and utility
programs expect a roll screen configuration on terminals they commu-
nicate with, you should define the terminals as roli screen devices

in the TERMINAL statements, and enqueue them for static screen
operation (ENQT/IOCB) when required. The exception is where a
terminal is never used to communicate with the supervisor or system
utilities (always used exclusively as a user static screen application
terminal).

The only terminals that may be enqueued directly, by coding the

label of the TERMINAL statement in the name operand of an ENQT
statement, are the two special system terminals, $SYSLOG

and $SYSPRTR. User-defined terminals and $SYSLOGA are enqueued
by coding the label of the TERMINAL statement in the name operand
of an IQCB statement, and referencing the |OCB label in the ENQT
name operand.

Terminal /O 11-7



DATA REPRESENTATION

PRINTEXT INSTRUCTION

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-145; or
SB30-1213 (Version 2 PDOM) page 2-159.

In general, alphameric (text) data to be written to a terminal is
represented in storage as an EBCDIC character string. The system
automatically converts this character string into the code required
by a specific terminal, when an output operation directed to that
terminal is executed. (For some specialized terminals employing
unique control characters imbedded within the text, translation can
be inhibited.)

In a similar manner, input from a terminal is translated into an
EBCDIC character string by terminal read operations. For both input
and output operations involving text data, a user-defined storage area
is used to hold the EBCDIC character string. This storage area may
be implicit, as when an output message (prompt) is coded as an
integral part of an output or input command, or explicit, when an
output or input operation specifies the label of a user-defined

TEXT statement.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-159, 2-160;
or SB30-1213 (Version 2 PDOM) pages 2-174, 2-175.

The PRINTEXT instruction is used to print (display) messages on a
terminal, and/or to control forms movement (position display/
cursor on screen).

: |
label | PRINTEXT | msg,SKIP=,LINE=,SPACES=,MODE=,PROTECT=

N’ v N -
OPTIONAL MUST BE CODED AT LEAST ONE
OPERAND

MUST BE CODED

Figure 11-4, PRINTEXT format

11-8 SR30-0220

At least one of the PRINTEXT operands must be coded. The msg
operand may be coded as the actual data (enclosed in apostrophes),
or may be the label of a TEXT statement containing the message.

In Figure 11-5, both PRINTEXT instructions will execute the same;
the message “READY FOR INPUT" will be written to the loading
terminal (ENQT with no terminal name or IOCB label specified).



TERMPROG  PROGRAM START

START ENQT
P1 PRINTEXT  'READY FOR INPUT'

P2 PRINTEXT Tl
DEQT
PROGSTOP
T1 TEXT "READY FOR INPUT'
ENDPROG
END

Figure 11-6. “msg’’ operand

in the PRINTEXT at P1 the storage area containing the EBCDIC
character string READY FOR INPUT is implicitly generated (assembled)
as part of the PRINTEXT instruction; the PRINTEXT at P2 references
the user-defined (explicit) string at location T1.

Terminals are buffered devices. Data to be displayed on a terminal

is transmitted to the terminal’s buffer, and remains in the buffer until
some condition occurs that forces the contents of the buffer to be
displayed. Among the several buffer forcing conditions that can cause
the contents of a buffer to be displayed or printed is the execution

of a PRINTEXT with the LINE= or SKIP= forms control operands
coded.

KIP=,LINE=,SPACES=

Figure 11-6. Forms control operands

The SPACES= forms control operand positions the message or cursor
within a line, but does not force the device buffer. SKIP=, LINE=,
and SPACES= may be coded as the only operand(s), or may be used
with other operands, including msg. When coded with msg, the forms
control operation is executed before the msg text is transmitted to
the buffer.

In Figure 11-7, assume the loading terminal is $SYSLOG, a 4979
Display. To better illustrate the effect of the forms control operands,
the ENQT at START references an IOCB which sets NHIST= to 0.
The entire screen will now operate as a roll screen work area.

Terminal 1/O 119



11-10

SR30-0220

TERMTEST PROGRAM  START

START  ENQT 10CB1
P1 PRINTEXT LINE=0
P2 PRINTEXT 'MESSAGE 1 ',SPACES=10,LINE=5
P3 PRINTEXT 'MESSAGE 2 ',SPACES=20,SKIP=2
P4 PRINTEXT 'MESSAGE 3 ',SPACES=70
P5 PRINTEXT MESSAGE 4 ',SKIP=1
P6 PRINTEXT 'MESSAGE 5 ',SPACES=5
p7 PRINTEXT T1
P8 PRINTEXT T2
P9 PRINTEXT 'TEST ENDED',SKIP=1
DEQT
PROGSTOP
T1 TEXT 'MESSAGE 6 ',LENGTH=15
T2 TEXT '"MESSAGE 7
I0CB1  I0CB $SYSLOG,NHIST=0
ENDPROG
END

Figure 11-7. PRINTEXT example

The PRINTEXT at P1 illustrates a forms control operand coded
without the msg command. Since the example is using a 4979
Display, this command readies the screen for display on line 0. If
directed to a hardcopy device, this would be the equivalent of a
page eject command.

The PRINTEXT at P2 has both msg operand (text) and forms control
operands coded. The forms control operation will be executed first.
The LINE=5 forces the contents of the buffer onto line 0, and clears
the buffer . (Because no msg operand was coded in the previous
PRINTEXT (P1), the buffer is empty, and nothing is displayed on
line 0.) Next, the terminal is readied for display on line 5.

The SPACES=10 skips over the first ten buffer positions, and
MESSAGE 1 goes in the next ten buffer positions (11 through 20).
The text MESSAGE 1 is still in the buffer; no data has yet been
displayed.

The PRINTEXT at P3 performs the following functions:

1. The SKIP=2 forms control operand forces the buffer, displaying
MESSAGE 1 on line 5.

2. Thecursor is positioned for line 7 (SKIP=2), and the text
MESSAGE 2 is placed in buffer positions 21 through 30,
skipping over the first 20 buffer positions (SPACES=20).

After execution of the PRINTEXT at P3, the display screen is as
shown in Figure 11-8,



LINES

o (

1

2

3

4

5 MESSAGE 1

[}

7

8

0

10

¥

12

13

14

15

16

17

18

19

20

21

22

AN J
CHARACTER 11111111112222222222333333333344444444445555 6667777777778
POSITIONS  12345678901234567890123456789012345678901234567890123 78901234567890

Figure 11-8. After P3 execution

The PRINTEXT at P4 (Figure 11-7) has no LINE= or SKIP=

operands coded, so the buffer is not forced out. The text MESSAGE 3
is concatenated to the current contents of the buffer, MESSAGE 2.
MESSAGE 2 is in buffer positions 21 through 30. The SPACES=70
operand in the PRINTEXT at P4 skips over 70 buffer positions,
beginning with position 31. The text MESSAGE 3 will therefore
occupy buffer positions 101 through 110.

The display screen is only 80 positions wide. Text data positioned
outside the line length of a terminal is truncated, and therefore
MESSAGE 3 will not be displayed. (OVFLINE=YES must be coded
in the TERMINAL statement to allow display of text positioned
outside the right margin.)

The PRINTEXT at P5 (Figure 11-7) performs the following functions.

1. displays MESSAGE 2 in positions 21 through 30 on line 7
(SK1P=1 forces the buffer).

2. specifies line 8 for the next output line (SKIP=1) and places
MESSAGE 4 in the first fifteen buffer positions. Figure 11-9
shows the screen after execution of the PRINTEXT at P5.

Terminal 1/O0  11-11



11-12

SR30-0220

LINES

MESSAGE 1

MESSAGE 2

©ONOUOIHWN=O

= )

CHARACTER 11111111112222222222333333333344444444445555 66677777777778
POSITIONS 123456789012345678901234567890123456789012345678980123 78901234567890

Figure 11-9. After P5 execution

The PRINTEXT at P6 (Figure 11-7) skips buffer positions 16 through
20 (SPACES=b) and concatenates the text MESSAGE 5 into positions
21 through 30.

Explicitly defined text is also concatenated. The PRINTEXT at

P7 references the TEXT statement at T1. MESSAGE 6 is added to
the buffer in positions 31 through 40. Although the text buffer at T1
is 15 characters long (LENGTH=15), only the data between the
apostrophes is moved into the buffer. The PRINTEXT at P8 adds
MESSAGE 7 in positions 41 through 50.

When the PRINTEXT at P9 executes, the buffer contents are dis-
played on line 8, and the cursor is moved to line 9 (SKIP=1).

TEXT ENDED is placed in the first ten buffer positions. The screen
now looks like Figure 11-10.



LINES

o [

1

2

3

4

5 MESSAGE 1

6

7 MESSAGE 2

8 MESSAGE 4 MESSAGE 5 MESSAGE 6 MESSAGE 7

9

10

1

12

13

14

15

16

17

18

19

20

21

22

23 J
CHARACTER 11111111112222222222333333333344444444445555 66677777777778

POSITIONS 123456789012345678901234656789012345678901234567890123 78901234567890

Figure 11-10. After P9 execution

There is no PRINTEXT with a forms control operand following the
PRINTEXT at P9, but the TEST ENDED message will still be trans-
ferred from the buffer and displayed. Execution of a DEQT, like
a LINE= or SKIP= forms operation, is a buffer-forcing condition.

In the example in Figure 11-7, the program would still execute
correctly if the DEQT were not coded. The PROGSTOP statement
will dequeue the terminal (implicit DEQT) and force the buffer. You
should still get in the habit of coding explicit DEQTSs, because the system
cannot be relied upon to perform such housekeeping chores in all cases.
For example, if the terminal instructions in Figure 11-7 were part of

a secondary task and the DEQT were left out, the terminal would
remain enqueued and unavailable to the rest of the system after the
secondary task completed execution. Unlike the PROGSTOP,
execution of an ENDTASK instruction does not automatically

issue a DEQT.

Terminal 1/O 1113



11-14  SR30-0220

LINES

0 4

1

2

3

4

5 MESSAGE 1

6

7 MESSAGE 2

8 MESSAGE 4 MESSAGE 5 MESSAGE 6 MESSAGE 7

9 TEST ENDED

- y,

CHARACTER 11111111112222222222333333333344444444445555 66677777777778
POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890

Figure 11-11. After P1 through DEQT

Figure 11-11 shows the screen after all PRINTEXT instructions and the
DEQT have been executed.

When writing to roll screen devices, an at sign (@) imbedded in the
text will be interpreted as a new line or ““carriage return’’ control
character. in Figure 11-12, the programs T1 and T2 are logically

equivalent. -

Tl PROGRAM  S1 T2 PROGRAM  S?
S1 ENQT SZ2  ENQT
P1 PRINTEXT 'FIRST MSG' X1 PRINTEXT 'FIRST MSG'
P2 PRINTEXT '2ND MSG',SKIP=1 X2 PRINTEXT '@2ND MSG'
D DEQT X DEQT

PROGSTOP PROGSTOP

ENDPROG ENDPROG

END END

Figure 11-12. @ operation

The PRINTEXT statements at P1 and X1 are identical, and will put
the text FIRST MSG in the buffer. In program T1, the SKIP=1
operand in the PRINTEXT at P2 will force the buffer, displaying
FIRST MSG on the current line, and move the display position to the
next line. 2ND MSG will be placed in the buffer.



The @ imbedded in the msg operand of the PRINTEXT at X2 (program
T2) has the same effect as SKIP=1, forcing the buffer contents onto

the current line, and moving the display position to the next line. Unlike
the SKIP= and LINE= operands, the @ or new line operation is executed
at the time it is encountered in the character buffer. The SKiP=1
operand in task T1 executes before 2ND MSG is transferred to the
buffer, because SKIP= and LINE= operations always execute before

the buffer transfer. The new line operation in task T2 is also

executed before 2ND MSG is transferred to the buffer because the

@ precedes the 2ND MSG text. Were the @ imbedded further along

in the text string, characters to the left of the @ would be con-
catenated to the FIRST MSG text and displayed on the same line as
FIRST MSG, while characters to the right of @ (as shown in Figure
11-12) would be displayed on the next line.

In both T1 and T2, the 2ND MSG text is moved out of the buffer
and displayed by execution of the DEQT (D or X).

Figure 11-13. MODE= operand

When you want the @ character to act as a normal text character
(not to be interpreted as a new line character), the MODE= keyword
operand should be coded as MODE=LINE.

The MODE-= operand has a special function when used with
PRINTEXT instructions directed to static screen devices (4978s or
4979s) with protected data areas.

,PROTECT=

Figure 11-14. PROTECT= operand

Protected data is written to a static screen by coding the PROTECT=
keyword operand as PROTECT=YES. |f MODE=LINE iscoded in a
subsequent PRINTEXT that is writing to a line containing protected
data, the protected areas are automatically skipped over when the
buffer is transferred to the screen.

Terminal 1/O  11-16



READTEXT INSTRUCTION

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-165,
2-166; or SB30-1213 (Version 2 PDOM) pages 2-180 through 2-183.

The READTEXT instruction is used to read an alphameric text
string, entered by a terminal operator, into a user-defined text buffer
in storage.

t }
label |READTEXT loc !pmsg,PROMPT=,MODE=,SKIP=,LINE=,SPACES=
[ . v o ——”
OPTIONAL  MUST BE CODED OPTIONAL

Figure 11-16. READTEXT format

The loc operand is the label of the first location of the storage area
that will receive the EBCDIC character string from the terminal.

The READTEXT instruction (also PRINTEXT) operates with TEXT
statements, using the length and count control bytes that precede a
character buffer generated by a TEXT statement assembly. The loc
operand is, therefore, usually the label of a TEXT statement; if it

is coded as the label of a character buffer not generated by a TEXT
statement, the user must set up the control bytes preceding the
buffer to meet TEXT statement conventions.

pmsg,PROMPT

Figure 11-17. pmsg and PROMPT= operands

The pmsg operand is the prompt message (enclosed in apostrophes)
or the label of a TEXT statement containing the prompt message

you wish displayed before pausing to accept the operator input. The
pmsg operand works in conjunction with the PROMPT= keyword
operand. If PROMPT= is coded as PROMPT=UNCOND (which is the
default if it is not coded), the prompt message specified by the pmsg
operand will always be written. If PROMPT= is coded as
PROMPT=COND, advance input is allowed, and the prompt message
may or may not be written. Advance input allows an operator to
enter more information on a line than is suggested by the prompt
message for that line. An operator familiar with a certain prompt/
response sequence can enter all items in response to the first prompt,
thereby skipping succeeding prompt messages. The use of
PROMPT=COND will be illustrated in an example later in this section.

Figure 11-18. MODE= operand

11-16  SR30-0220



The MODE= operand may be coded MODE=WORD (the default,
if not coded) or MODE=LINE. If MODE=WORD is coded, transfer
of data from a terminal buffer to a user text buffer is terminated by:

1. ablank (space) character in the input field

2. exhaustion of the character count in the user text buffer (input
exceeding input buffer length — truncation of input occurs)

3. if directed to a static screen, the beginning of a protected field.

If MODE=LINE is coded, the input data may contain imbedded
blanks without terminating the transfer. If a READTEXT with
MODE=LINE is directed to a static screen, protected areas do not
occupy user TEXT buffer positions; only the unprotected areas are
read.

= SKIP=,LINE=,SPACES=

Figure 11-19. Forms control operands

The SKIP=, LINE=, and SPACES= operands perform the same function
as with the PRINTEXT instruction, specifying the line and position
within the line where the next operation will take place.

READTEXT operation, including some of the operand variations
just discussed, is illustrated in Figure 11-20. Assuming the program
is loaded from a 4979 Display, the ENQT at START changes the
(defaulted) history area from 12 lines to none, and enqueues the
terminal. The LINE=3 operand in the READTEXT at R1 readies
the terminal for display on line 3, and the loc operand specifies a
20-character text buffer at location T1 as the storage area that will
receive the input data.

The READTEXT at R2 specifies T2 as the input buffer. The pmsg
operand is the label of the TEXT statement T3, containing the
prompt message ENTER PART NBR:.

When the READTEXT at R1 executes, the prompt message ENTER
PART NAME will be displayed on line 3, the cursor will be positioned
just following the colon in the prompt message, and task TERM will
be suspended, waiting for operator input.

As an operator keys an entry onto the screen, there is no program
involvement. The actual input operation (transfer of terminal buffer
information to storage) does not begin until the program is signalled
that the input is complete. When the operator is satisfied that the
input is correct, he/she will press the ENTER key, initiating the
actual transfer. (The Program Function keys are also interrupt
generating, and are frequently used in operator/terminal communica-
tion. They will be covered later in this section.)

Terminal 1/O  11-17



11-18  SR30-0220

Assume that the operator, in response to the ENTER PART NAME:
prompt, enters BRACKETS, and then presses the ENTER key. The
READTEXT at R1 will transfer the contents of the terminal buffer to
the text buffer at T1. The READTEXT at R2 will then display the
prompt message ENTER PART NBR: on the next line, and TERM
will again be suspended, waiting for operator input.

The operator then enters 105636, and presses ENTER again. The
READTEXT at R2 transfers 105636 to the text buffer at T2, and the
program runs to completion.

TERM PROGRAM START

I0CB1  10CB NHIST=0

START  ENQT I0CB1

R1 READTEXT  T1,'ENTER PART NAME:',LINE=3

R2 READTEXT  T2,T3,PROMPT=COND
DEQT
PROGSTOP

Tl TEXT LENGTH=20

T2 TEXT LENGTH=6

T3 TEXT "ENTER PART NBR:'
ENDPROG
END

Figure 11-20. READTEXT operation

If the operator knows that the prompt ENTER PART NBR: will
follow the first prompt of ENTER PART NAME:, he may make both
the part name and part number entries on the same line (line 3), in
response to the first prompt. The READTEXT at R2 has PROMPT=
COND coded, meaning that the prompt message ENTER PART NBR:
will be issued conditional on the absence of advance input in the
previous operation.

If the operator entered BRACKETS 105636 when the first prompt
ENTER PART NAME: was displayed, the READTEXT at R2 would

.detect advance input, and would transfer the second part of the entry

(the advance input, 105636) into the text buffer at T2, without
issuing the prompt message ENTER PART NBR:, and without
suspending TERM to wait for the ENTER key.

The presence of advance input is indicated by an imbedded blank
within an input character string. PROMPT=COND will, therefore,
not work if the previous operation (the operation where advance
input is expected) has MODE=LINE in effect, allowing imbedded
blanks. In this case, the operation would not terminate when a
blank in the input is found.



Since advance input (PROMPT=COND) can only be used when
MODE=WORD is also used, care must be taken that no blanks,
other than those separating entries, appear in the input string.

For example, if the operator wished to use advance input, but
mistakenly entered WALL BRACKETS 105636, the first input
operation (READTEXT at R1) would terminate with the blank
between WALL and BRACKETS, and WALL would be transferred
to the text buffer T1. The READTEXT at R2, operating with ad-
vance input because of the imbedded blank, would transfer BRACKE
into text buffer T2, would not issue the prompt at T3, and would
terminate due to exhaustion of the character count of 6 in the input
buffer. The actual part number 105636 would never be read.

OPERATOR CONTROL OF PROGRAM EXECUTION

‘PF’ and Attention Key Handling

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-11, 2-12,
2-16, and 2-147; or SB30-1213 (Version 2 PDOM) pages 2-11, 2-12,
2-16, and 2-161.

Attention routines are user routines that service interrupts generated
by pressing the ATTENTION key on a terminal (review Attention
Lists in Section 3). The ATTNLIST statement is used to define oper-
ator entries and corresponding program locations that will receive
control when the defined entries are made.

The Program Function keys on 4978/4979 Displays generate interrupts
similar to those generated by the ATTENTION key and the entry
points of routines to service these PF interrupts may also be defined
using the ATTNLIST statement.

The ATTNLIST statement in Figure 11-21 defines three attention
routine entry points. SET1, the first entry point, operates with the
ATTENTION key. If an operator presses ATTENTION, enters

the characters ONE, and then presses the ENTER key, location SET1
receives control.

Terminal 1/O  11-19



11-20 SR30-0220

PROG PROGRAM START
ATTNLIST  (ONE,SET1,$PF1,P1,$PF,END)
START IF (SWITCH,EQ,1),GOTO,PRINT
IF (SWITCH,EQ,2),G0TO,PFPRINT
IF (SWITCH,EQ,3),G0T0,0UT

BACK GOTO START

PRINT MOVE SWITCH,O
PRINTEXT ~ 'ATTENTION INTERRUPT'
PRINTEXT  SKIP=1
GOTO START

PFPRINT ~ MOVE SWITCH,O0
PRINTEXT  'PROGRAM FUNCTION KEY #1'
PRINTEXT  SKIP=1

GOTO START

SET1 MOVE SWITCH,1
ENDATTN

P1 MOVE SWITCH,?2
ENDATTN

END MOVE SWITCH, 3
ENDATTN

ouT PROGSTOP

SWITCH DATA F'o!
ENDPROG
END

Figure 11-21. Attention routines

Program Function keys are identified in an ATTNLIST statement by
the system convention “$PFx’’, where x is an integer between 1 and
6, corresponding to Program Function keys PF1 through PF6. In this
example, location P1 will get control when PF1 is pressed. (The

x = integer between 1 and 6 applies to the 4979 Display. When using
the 4978 Display, many more interrupting keys are available, and the
PFx in an ATTNLIST statement may range between PF1 and PF254.)

When $PF is used without a specific number, it is interpreted as all
PF keys not previously defined (to the left of this entry) in this
ATTNLIST statement. In Figure 11-21, Program Function key 1 is
previously defined (middle operand pair $PF1,P1), so location END
will get control if PF2 through PF6 is pressed, and P1 will get control
if PF1 is pressed. If the second and third operand pairs in the
ATTNLIST statement were coded in reverse order, END would get
control when any PF key was pressed, including PF1; control would
never be transferred to P1.

Attention routines execute as part of the system keyboard task, not
as part of the user task within which they appear. Since user inter-
ference with system keyboard task execution is clearly undesirable,
certain 1/0 and task control instructions are not allowed within
attention routines. See the reading assignment for a list of excluded
instructions.



When the keyboard task detects an ATTENTION or PF key interrupt

for a task with the appropriate entry points defined in an ATTNLIST
statement, part of the response process is to briefly enqueue the
interrupting terminal (ENQT). If the user task has an ENQT already

in effect, the keyboard task is prevented from getting in. For an interrupt
resulting from the operator’s pressing the ATTN key, the system cannot
present the > prompt character until the user program issues a DEQT,

at which time the > will be displayed. For interrupts generated by
depression of PF keys or the ENTER key (while the terminal is
enqueued by the user), the system returns an identifying code to the user
program. This code can be examined by user instructions to determine
which key was pressed. All PF keys and the ENTER key will present
identifying codes; the user is not restricted to those PF keys defined

in an ATTNLIST statement whose function has been temporarily
inhibited by a user ENQT. Examples later in this section will illustrate
how to retrieve and use the identification codes resulting from PF

key or ENTER key interrupts.

Attention routines execute on hardware level 1, thereby automatically
preempting execution of all user tasks on levels 2 and 3. They should,
therefore, be kept very short and are usually limited to the setting

of a program switch (or posting an ECB) which is checked during
normal program execution. The example in Figure 11-21 illustrates
this.

This program checks a program indicator for a value, and branches
to different program locations, depending on what value is found.
In this case, the indicator is the word at location SWITCH, which
has an initial value of zero. As long as SWITCH remains zero, the
program will loop between START and BACK.

Pressing the ATTENTION key and entering ONE results in execution
of the attention routine at SET1, altering the value of SWITCH to = 1.
When the IF statement at START is next executed, control will be
transferred to PRINT, and the message ATTENTION INTERRUPT
will be displayed. Pressing PF1 will set SWITCH=2 (attention

routine at P1), and result in a transfer to PFPRINT, which will display
PROGRAM FUNCTION KEY #1. Pressing any Program Function key
other than PF1 will end the program (SWITCH=3, transfer to location
OUT). Note that the attention routine at location END (PF2 through
PF6) only sets location SWITCH to cause a later transfer to the
PROGSTOP; PROGSTORP is one of the instructions excluded from
attention routines, and cannot be issued from within the attention
routine itself.

QUESTION Instruction

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-168; or
SB30-1213 (Version 2 PDOM) page 2-184.

The QUESTION statement provides another way of altering program
‘execution through terminal input. QUESTION displays a prompt
message, usually in the form of a question, and branches to a specified
location based on the response entered on the terminal.

Terminal 1/0  11-21



WAIT KEY Instruction

11-22

SR30-0222

i |
label | QUESTION pmsg)YES=,NO=,SKIP=,LINE=,SPACES=
H_J \ s N\ — N J/

OPTIONAL MUST BE CODED AT LEAST OPTIONAL
ONE MUST
BE CODED

Figure 11-22. QUESTION format

The pmsg operand is coded as the prompt message, contained within
apostrophes, or as the label of a TEXT statement containing the
prompt message.

The YES= and NO= operands are coded with the labels of the program
locations which are to get control if a YES or a NO response is
entered. The only valid responses to a QUESTION prompt are Y and
N (or any character string beginning with Y or N). Either YES= or
NO= may be left uncoded, but not both. Entering the uncoded
response will result in transfer to the instruction following the
QUESTION statement,

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-34,
2-149; or SB30-1213 (Version 2 PDOM) pages 2-35, 2-164.

In addition to the implied wait for operator input that is provided

by the READTEXT and QUESTION instructions, the user can wait
for the ENTER key or PF keys at any time, using a special variation

of the WAIT statement, WAIT KEY. This instruction suspends the
issuing task until the ENTER key or one of the PF keys is pressed,

at which time the WAIT terminates, and execution continues with the
instruction following the WAIT KEY. There is no automatic transfer
to an attention routine; execution of a WAIT KEY instruction enqueues
the terminal and temporarily inhibits the ATTNLIST capability during
the time the task is suspended due to that WAIT instruction, just as the
ATTNLIST function is inhibited while an ENQT is in effect.

WAIT KEY is most often used by tasks operating terminals as static
screen devices. In the roll screen examples shown before, issuing a
READTEXT command caused a suspension of the issuing task, waiting
on operator input. Execution resumed, and the input operation com-
pleted only when the operator signalled the program that the input data
was available by pressing the ENTER key.

When operating with static screens, the ENTER key signals that an
entire page (screen) of input data is available. READTEXT instructions
directed to a static screen terminal therefore do not cause the issuing
task to wait; the input data is expected to be present, and is transferred
immediately.

WAIT KEY allows a task with a terminal enqueued as a static screen
device to wait on the ENTER key (or PF keys), even though the implied
wait with READTEXT is not operative.



HARDCOPY PF Key

Note: When operating with static screen devices, the implied wait with
READTEXT is inoperative only when the READTEXT has no prompt
message coded. Terminal input operations that are obviously intended
for operator dialogue, such as a READTEXT with the pmsg operand
coded, or a QUESTION instruction, still work the same as with roll
screens, automatically suspending the issuing task.

As already noted, the ATTNLIST capability is inhibited when a
terminal is enqueued by a task as either a roll screen or static screen
device, and/or when the task is suspended by a WAIT KEY instruction.
Although automatic transfer to individual attention routine entry
points associated with specific PF keys is no longer possible, the user
can find out which key was pressed, and do the routing personally.
An integer value equal to the numeric designation of the PF key is
passed back to the user task in the second word of the task’s TCB
(taskname+2), and may be examined by the user program. The code
passed back for the ENTER key is zero. For PF1, taskname+2

will contain a 1, for PF2 a 2, and so on through 6 for PF6. The code
can be checked, and a transfer decision made, using IF statements or
a computed GOTO.

(Note: When using the 4978 Display, many more interrupting keys and
corresponding identification codes are available than with the 4979
terminal discussed above. See the topic “$PFMAP’’ in Section 14.
Utility Programs for an aid in determining the identification codes
associated with particular 4978 interrupting keys.)

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-217; or
SB30-1213 (Version 2 PDOM) pages 2-280, 2-281.

One of the operands in the TERMINAL statement defining 4978/4979
Displays is HDCOPY=. This is coded with the symbolic name of a
hardcopy terminal and a PF key number, in the format HDCOPY=
(termname,keynbr). The termname must be coded. If keynbr is not
coded, it defaults to 6, indicating Program Function key PF6.

Whenever the PF key specified in the HDCOPY= operand is depressed,
the present screen contents are printed out on the designated hardcopy
device. The default for the 4979 supported by the supplied supervisor
is HDCOPY=($SYSPRTR,6), causing the screen contents to be printed
on the 4974 Matrix Printer whenever PF6 is depressed.

Not knowing which PF key you may designate to activate the
hardcopy system function, all examples in this section address Program
Function keys PF1 through PF6 (as though HDCOPY= were coded
HDCOPY=($SYSPRTR,0)).

In coding your own programs, you should be aware that the key you
specify in the HDCOPY= operand is not available to you for other
purposes. If specified in an ATTNLIST statement, the associated
entry point will never receive control nor will pressing the hardcopy
PF key terminate a WAIT KEY operation, or present its code in
taskname+2,

Terminal 1/0  11-23



STATIC SCREEN CODING EXAMPLE

11-24

SR30-0220

In the following several illustrations (Figures 11-23 through 11-43),

a simple static screen program is developed, using most of the terminal
instructions already discussed, and introducing some new instructions
applicable only to static screen operation,

The initial portion of this program operates the terminal as a roll
screen device, with NHIST=0. The rest of the program uses the
terminal in the static screen mode. An IOCB will be required for
each of the two modes.

Operator instructions are displayed requiring the operator to (1) end

the program, or (2) bring up the entry screen (static screen) and proceed.
The operator’s decision is communicated to the program using the
ATTNLIST facility, so an ATTNLIST statement will also be required.

Figure 11-23 shows the two IOCBs, the ATTNLIST statement, and
the associated attention routines.

XMPLSTAT PROGRAM START

I0CB1 I0CB NHIST=0

10CB2 I0CB SCREEN=STATIC
ATTNLIST  (END,OUT,$PF,STATIC)

ouT POST ATTNECB,1
ENDATTN

STATIC POST ATTNECB,-1
ENDATTN

ATTNECB  ECB

ENDPROG
END

Figure 11-23. IOCB/ATTNLIST

Figure 11-24 is the entire roll screen portion of the program. Execution
begins at location START, with the ENQT directed to IOCB1. The
I0CB changes NHIST=12 to NHIST=0 for the loading terminal (no
terminal name specified in the IOCB, default to loading terminal, and
assuming loading terminal is a 4979 with NHIST=12 normally in
effect).

Now that the loading terminal is enqueued, the five PRINTEXT
statements following the ENQT display the program title and
operator directions on the screen. Since operator control has been
defined through an ATTNLIST, and ATTNLIST is inhibited while
the terminal is enqueued, the last PRINTEXT is followed by a DEQT,
placing the ATTNLIST in effect.



XMPLSTAT PROGRAM START

I0CB1 10CB NHIST=0

10CB2 10CB SCREEN=STATIC
ATTNLIST  (END,OUT,$PF,STATIC)

START ENQT I0CB1

PRINTEXT  'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
PRINTEXT  'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
PRINTEXT ' THE PROGRAM'

PRINTEXT  'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
PRINTEXT ' BRING UP THE ENTRY SCREEN'

DEQT
CHECK WAIT ATTNECB,RESET
IF (ATTNECB,EQ,1),GOTO,ENDIT

ENTRY ENQT 10CB2

ENDIT PROGSTOP

ouT POST ATTNECB,1
ENDATTN

STATIC POST ATTNECB,-1
ENDATTN

ATTNECB  ECB

ENDPROG
END

Figure 11-24. Roll screen portion

The ECB at location ATTNECB assembles with an initial value in the
first word of -1 indicating ‘“event complete’”’. The WAIT at location
CHECK is coded with a RESET operand, which resets the first word
of the ECB at ATTNECB to zero before the WAIT is executed. A zero
in the first word of an ECB indicates ‘‘event not occurred,’”” so the
WAIT at CHECK will suspend task XMPLSTAT, waiting on event
ATTNECB. If the WAIT has been coded without the RESET operand,
the WAIT would have executed as a no-op.

If the operator presses ATTENTION, enters END and presses
RETURN, the attention routine at OUT will execute, posting the
ECB at ATTNECB with a +1 (first word = 1). A value other than
zero in the first word of the ECB indicates “‘event complete,” and

the WAIT operation terminates. Execution continues with the |F
statement following the WAIT, which will transfer control to location
ENDIT.

Terminal 1/0  11-25



ERASE Instruction

11-26

SR30-0220

If the operator wants to proceed with the CLASS ROSTER PROGRAM
and presses a PF key, ATTNECB will be posted with a value of -1 by
the attention routine at STATIC. The WAIT will terminate, the |F

that follows will not transfer control to ENDIT (ATTNEBC NOT = +1),
and execution will continue with the ENQT at location ENTRY, which
is the beginning of the static screen portion of the program.

After the program title and operator instructions have been written
to the terminal {while the program is waiting at CHECK for the
operator response), the screen looks like Figure 11-25,

LINES
- w
1 CLASS ROSTER PROGRAM
2
3 HIT "ATTN' AND ENTER 'END' TO END THE PROGRAM
4
5 HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN
[
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
8 _J
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS=——+=12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-25. Initial operator instructions

Assuming the operator pressed a PF key, execution now continues
at location ENTRY (Figure 11-26). The ENQT enqueues the terminal
as a static screen device.

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-152; or
SB30-1213 (Version 2 PDOM) pages 2-167, 2-168.

An automatic erase of a roll screen is performed by the system each
time the page size of the screen is exceeded. Erasure of a static screen
device is a user responsibility, and the ERASE instruction is,
therefore, valid only for static screens.

You can select how much you want to erase, from as little as a single
character position to the entire screen. In Figure 11-26, the ERASE
following the ENQT will erase the entire screen. The MODE= operand
defines the ending point of the erase operation; in this case, the end of
the screen. The starting point of the erase is determined by SKIP=,
LINE=, and SPACES= forms operands, in this example defaulting to
LINE=0, SPACES=0. TYPE= specifies whether only unprotected

data should be erased (TYPE=DATA) or if the erase applies to
protected data also (TYPE=ALL).



TERMCTRL Instruction

XMPLSTAT PROGRAM  START

10CB1 10CB NHIST=0

I0CB2 10CB SCREEN=STATIC GNCTION KEY TO',SKIP=z
ATTNLIST < ENTRY SCREEN'

(END,QUT £=
TNee

~TART
ARTTNECB,RESET

IF (ATTNECB,EQ,1),GOTO,ENDIT

ENTRY ENQT I0CB2
ERASE MODE=SCREEN,TYPE=ALL
TERMCTRL  BLANK
PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1
PRINTEXT PF1 = DELETE ENTRY 1'
PRINTEXT PF2 = DELETE ENTRY 2'
PRINTEXT 'PF3 = DELETE ENTRY 3 ', SKIP=1
PRINTEXT 'PF4 = DELETE ENTRY 4'
ENDPROG
END

Figure 11-26. Operator directions

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-168.1; or
SB30-1213 (Version 2 PDOM) pages 2-185 through 2-191.

TERMCTRL is used for several specialized functions, most of which

are device/hardware feature dependent control operations. In Figure
11-26, the TERMCTRL BLANK instruction blanks the 4979 display
screen,

The remainder of this portion of the program is going to format the
display screen by executing a series of PRINTEXT instructions.
When several operations are performed sequentially, the 4979 screen
exhibits a flickering that some people find annoying. Issuing the
TERMCTRL BLANK turns off the display capability of the screen,
allowing the series of output operations to take place without
visible flicker. After the formatting has been completed, another
TERMCTRL function will be used to display the finished sereen.

The five PRINTEXT instructions following the TERMCTRL will
write some operator guides at the top of the screen. When these
instructions have executed, the screen would look like Figure 11-27
(assuming an unblanked screen).

Terminal 1/0  11-27



11-28 SR30-0220

LINES

v )

1 | ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2

2 | PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4

3

4

5

6

7

8

9

10

11

12

13

14

156

16

17

18

19

20

21

22

2 J
CHARACTER 11111111112222222222333333333344444444445555556555666666666677777777778

POSITIONS —+-123456789012345678901234567890123456789012345678980123456789012345678901234567890

Figure 11-27. Operator directions/screen

In Figure 11-28, execution continues with the PRINTEXT at location
HDR. This instruction writes a screen-wide (80 character) line of
hyphens, separating the operator guide area just written from the

rest of the screen. The text buffer referenced by this instruction
(location DASHES) is not the label of a TEXT statement, but is a
user-defined text buffer. Since PRINTEXT uses the control bytes
that precede text buffers generated by TEXT statements, the user
must code the control bytes when defining non-TEXT statement

text buffers,

The DATA statement preceding location DASHES is coded as
X’'56050’, establishing a length byte of 80 and a count byte of 80
(hex 50=decimal 80). This tells the PRINTEXT at HDR that the
buffer is 80 character positions long, and that all 80 positions
contain data.



XMPLSTAT PROGRAM  START
I0CB1 I0CB NHIST=0
10CB2 I0CB SCREEN=*"_—PAGE COMPLETE',LINE=1
ATTNLIST #F1 = DELETE ENTRY 1'

— : PF2 = DELETE ENTRY 2'
PRINTEXT 'PF3 = DELETE ENTRY 3 ', SKIP=1
PRINTEXT 'PF4 = DELETE ENTRY 4'

PRINTEXT DASHES,PROTECT=YES,LINE=3

PRINTEXT 'CLASS NAME:',LINE=4,PROTECT=YES

PRINTEXT 'INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32

HDR PRINTEXT DASHES,PROTECT=YES,LINE=5
MOVE LINENBR, 6
DATA X'5050"
DASHES  DATA 80C'-"
ENDPROG
END

Figure 11-28. Non-standard text buffer

The PROTECT=YES operand specifies that the line of hyphens be
written as protected data. Protected data cannot be altered by
operator input.

The next PRINTEXT places CLASS NAME: in the first eleven
positions of line 4, and the following one puts INSTRUCTOR NAME:
on the same line, with both messages protected.

The last PRINTEXT in Figure 11-28 writes another separator line
of hyphens, again using the user-defined text buffer at DASHES.
Figure 11-29 shows how the screen would look if it were displayed
at this point.

Terminal 1/O0  11-29



11-30 SR30-0220

LINES
\]

. \

0

1 | ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2

2 | PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4

J | e e e e e m e e e e e m e ——————

4 | CLASS NAME: INSTRUCTOR NAME:

I B e e e e e T e e T ey

6

7

8

0

10

1

12

13

14

15

16

17

18

19

20

21

22

23 J
CHARACTER 11111111112222222222333333333344444444445555556555666666666677777777778

POSITIONS —*-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-29. Header

The rest of the screen formatting section of the program is shown in
Figure 11-30. This portion will format the remainder of the screen
into four data entry areas.

First, the variable LINENBR is set to 6. Next, a DO loop is defined,
specifying four executions of the loop, corresponding to the four
data entry areas to be formatted.

All PRINTEXT instructions within the loop have the LINE= operand
coded, with the variable name LINENBR, rather than as an integer
constant. Before this first execution of the DO loop, LINENBR

was initialized to 6. The first PRINTEXT writes the protected
characters NAME: into the first 5 positions of line 6, and the second
PRINTEXT leaves 25 unprotected spaces following NAME:, and
writes STREET: to the same line.



XMPLSTAT PROGRAM  START
1I0CB1 I0CB NHIST=0
I0CB SCREEN=S8=~
ATTNLIST (EMD
e —35HES,PROTECT=YES,LINE=3
PRINTEXT 'CLASS NAME:',LINE=4,PROTECT=YES
PRINTEXT "INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
PRINTEXT DASHES,PROTECT=YES,LINE=5

MOVE LINENBR,6

DO 4,TIMES

PRINTEXT 'NAME:',LINE=LINENBR,PROTECT=YES

PRINTEXT 'STREET:',LINE=LINENBR,SPACES=30,PROTECT=YES

Al ADD LINENBR,1
PRINTEXT 'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES
A2 ADD LINENBR,1
PRINTEXT 'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
ADD LINENBR, 3
ENDDO

PRINTEXT LINE=4,SPACES=11
TERMCTRL DISPLAY

WAITONE WAIT KEY
LINENBR DATA F'o!
ENDPROG
END

Figure 11-30. Finish formatting the screen

Next, the ADD at A1 increases LINENBR by 1, and the PRINTEXT
that follows is directed to line 7, LINENBR is again incremented
(ADD at A2}, and the last PRINTEXT is directed to line 8. The
ADD just preceding the ENDDO increases LINENBR by 3, skipping
down to the next data entry area to be formatted.

After four executions of the DO loop, the PRINTEXT immediately
following the ENDDO statement is executed. This PRINTEXT
positions the cursor just to the right of the CLASS NAME: message
in the screen header, above the four data entry areas just formatted
in the DO loop. The TERMCTRL DISPLAY command removes
the blanking from the screen, and displays the cursor at the position
determined by the previous PRINTEXT. Figure 11-31 shows the
fully formatted screen that is now displayed.

Terminal 1/O  11-31



11-32

SR30-0220

LINES

( )

0

1 ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2

2 PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4

T T T T T T

4 | CLASS NAME: _ INSTRUCTOR NAME:

B | mm e e e e

6 | NAME STREET:

7 CITY

8 STATE :

9

10

11 | NAME: STREET:

12 CITY

13 STATE :

14

15

16 | NAME: STREET:

17 CITY

18 STATE :

19

20

21 | NAME: STREET:

22 CITY

23 {_ STATE : )
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-31. Completed format

The program is in a wait state, suspended by execution of the
WAIT KEY at location WAITONE. The program will not be
activated again until the operator presses the ENTER key or one of

the PF keys.

The screen is now completely formatted, and ready for data entry.
Figure 11-32 shows the complete screen formatting portion of the

program.



XMPLSTAT PROGRAM
I0CB1 I0CB
10CB2 I0CB

ENTRY ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
HDR PRINTEXT
MOVE
DO
PRINTEXT
PRINTEXT
Al ADD
PRINTEXT
A2 ADD
PRINTEXT
ADD
ENDDO
PRINTEXT
TERMCTRL
WAITONE WAIT

DATA
DASHES ~ DATA

LINENBR DATA
ENDPROG
END

START
NHIST=0
SCREEN=STATIC

10CB2

MODE=SCREEN,TYPE=ALL

BLANK

"ENTER KEY = PAGE COMPLETE',LINE=1

: PF1 = DELETE ENTRY 1'

' PF2 = DELETE ENTRY 2!

"PF3 = DELETE ENTRY 3 ', SKIP=1

'"PF4 = DELETE ENTRY 4'
DASHES,PROTECT=YES,LINE=3

"CLASS NAME:',LINE=4,PROTECT=YES

"INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5

LINENBR,6

4,TIMES

"NAME:',LINE=LINENBR,PROTECT=YES
'STREET:',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,3

LINE=4,SPACES=11
DISPLAY
KEY

X'5050'
8oc'-!

FIOI

Figure 11-32. Screen formatting section

The operator may position the cursor at will, and enter data in any
unprotected area of the screen. Positioning the cursor at LINE=4,
SPACES=11, is a convenience to the operator, not a required function
— the operator could have used the cursor positioning keys to move
the cursor to the same position.

Terminal 1/O  11-33



11-34

SR30-0220

Some cursor-positioning functions are automatically provided by the
hardware. Assume that the operator enters SERIES/1 HARDWARE
in the space immediately following the protected CLASS NAME:

message, and then presses the tab right key (). The cursor

will automatically skip over the protected INSTRUCTOR NAME:
field, and position itself at the beginning of the unprotected area
which follows, as shown in Figure 11-33.

LINES

o N = O -

© o~

10
1
12
13
14
15
16
17
18
19
20
21
22
23

CHARACTER

f ™)
ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4
CLASS NAME:SERIES/1 HARDWARE INSTRUCTOR NAME: _
NAME STREET:
CITY
STATE :
NAME : STREET:
CITY
STATE :
NAME : STREET:
CITY
STATE :
NAME : STREET:
CITY
\_ STATE : Y
11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS == 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-33. Cursor movement (1)

After entering the instructor name, the next tab right key depression
results in the cursor position shown in Figure 11-34, ready for the
first student name entry.

LINES

CHARACTER

- N
ENTER KEY = PAGE COMPLETE ~ PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4
CLASS NAME:SERIES/1 HARDWARE ~ INSTRUCTOR NAME:JOHN JONES
NAME: _ STREET:
CITY
STATE :
NAME : STREET:
CITY
STATE :
NAME : STREET:
CITY -
STATE :
NAME : STREET:
CITY :
L STATE : y
1111111111222222222233333333334444444444555655665665666666666677777777778

POSITIONS = 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-34. Cursor movement (2)



Each successive tab key depression results in an automatic skip
of the cursor to the beginning of the next unprotected area on the
screen. In this example, the cursor will successively tab to NAME:,

STREET:, CITY:, and STATE:,

and then down to the NAME: in

the next data entry area, as shown in Figure 11-35,

J

LINES
0 d
1 ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 [PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4
T U U P
4. | CLASS NAME:SERIES/1 HARDWARE INSTRUCTOR NAME:JOHN JONES
B | m o mm e e e e e e
6 | NAME:JOHN JAMES STREET:111 GRANT AVENUE
7 CITY :ENDICOTT
8 STATE :NEW YORK 13760
9
10
11 | NAME: STREET:
12 CITY
13 STATE
14
15
16 | NAME: STREET:
17 CITY
18 STATE
19
20
21 | NAME: STREET:
22 CITY
23 STATE :

CHARACTER 111111111 l222222222233333333334444444‘44455555555556666646666677777777778,

POSITIONS =+ 123456789012345678901234567.80012345678901234567890123456789012345678901234567890

Figure 11-35. Cursor movement (3)

With no interaction with the program, an entire screen of information

can be prepared for input, and transferred at one time. This is what

is meant by static screen operation, in contrast to the transactional
prompt/reply dialogue typical of roll screen operation.

Figure 11-36 shows a completed input screen. The operator is
now. at the point where the program must be signalled to proceed.

LINES
0 ( B
1 JENTER KEY = PAGE COMPLETE ~ PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4
N g U
4 | CLASS NAME:SERIES/1 HARDWARE  INSTRUCTOR NAME:JOHN JONES
B | mr e e e mm e
6 [ NAME:JOHN JAMES STREET:111 GRANT AVENUE
7 CITY :ENDICOTT
8 STATE :NEW YORK 13760
9
10
11 | NAME:JAMES JONES STREET:255 ALHAMBRA CIRCLE
12 CITY :CORAL GABLES
13 STATE :FLORIDA 33135
14
16
16 | NAME: JIM JOHNS STREET:140 EAST TOWN STREET
17 CITY  :COLUMBUS
18 STATE :0HIO 43215
19
20
21 [ NAME :JOAN JIMSON STREET:6216 WASHINGTON AVENUE
22 CITY :RACINE
23 [ STATE :WISCONSIN 53406 _ )
CHARACTER 11111111112222222222333333333344444444445555555565666666666677777777778

POSITIONS - 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-36. Full screen

Terminal 1/O

11-35



11-36

SR30=0220

In Figure 11-37, the WAIT KEY at WAITONE will be terminated

by pressing the ENTER key or a PF key. The computed GOTO
following the WAIT KEY will transfer control to various entry
points, depending on the return code in ““taskname+2.” A return
code of zero, from the ENTER key, will cause a transfer to location
READ. PF1 through PF4 will return codes of 1 through 4, and result
in transfers to E1 through E4, respectively. (With the GOTO coded
as shown, a PF key higher than PF4 will cause a transfer to READ,

as the return code would be outside the valid range of index values
1-4, just as the zero returned by the ENTER key is outside that range,
and also results in a transfer to READ.)

For now, assume the operator presses the ENTER key, signalling
the program that the page is complete, and transferring control to
READ.

XMPLSTAT PROGRAM  START
I0CB1 I0CB
10CB2 10CB
ATTNLIST

I YRV DISPLAY
WAITONE WAIT KEY
GOTO (READ,E1,E2,E3,E4),XMPLSTAT+2

READ QUESTION 'MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP
ERASE MODE=LINE,LINE=2,SPACES=55,TYPE=DATA
ERASE MODE=SCREEN,LINE=6
PRINTEXT LINE=6,SPACES=5
TERMCTRL DISPLAY
GOTO WAITONE
CLEANUP ERASE MODE=SCREEN,TYPE=ALL
DEQT
GOTO START

ENDPROG
END

Figure 11-37. ENTER key

In a real program, the routine at location READ would contain the
READTEXT instructions necessary to read all the data entered on
the screen. In the application illustrated here, that data would
presumably be collected and used to print a class roster for the
SERIES/1 HARDWARE course taught by JOHN JONES.

Assuming that the contents of the screen has been transferred, the
QUESTION instruction at READ displays the prompt message
MORE ENTRIES? in the operator guide area at the upper right of
the screen, as shown in Figure 11-38.



N

b D
1 ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2

3

4

5

"o

PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4 MORE ENTRIES ? _

6 | NAME:JOHN JAMES STREET: 111 GRANT AVENUE

7 CITY :ENDICOTT

8 STATE :NEW YORK 13760

9

10

11 | NAME:JAMES JONES STREET:255 ALHAMBRA CIRCLE

12 CITY :CORAL GABLES

13 STATE :FLORIDA 33135

14

15

16 | NAME:JIM JOHNS STREET:140 EAST TOWN STREET

17 CITY :COLUMBUS

18 STATE :0HIO 43215

19

20

21 | NAME: JOAN JIMSON STREET:6216 WASHINGTON AVENUE

2 CITY :RACINE

23 STATE :WISCONSIN 53406 y
CHARACTER 1111111111222222222233333333334444444444555555656555666666666677777777778

POSITIONS —»12345678801234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-38. After ENTER key

The MORE ENTRIES? query is asking the operator, ‘’Are there
more students to add to this roster, or are the students just read from
the current screen the last ones at this time?’’

The QUESTION statement is coded with NO=CLEANUP. YES=

is not coded, and therefore a YES response will result in execution of
the ERASE instruction following the QUESTION. Assume there are
more students, and YES is the response. The first ERASE following
the QUESTION clears the prompt and reply from the operator guide
area, and the second ERASE clears all unprotected data from the
four data entry areas in lines 6 through 23. The SERIES/1
HARDWARE and JOHN JONES entries in the header area are left
undisturbed, since the student names and addresses to be entered are
still for the same class.

The PRINTEXT following the second ERASE (Figure 11-37) positions
the cursor at the first unprotected entry field for the first data entry
area. The TERMCTRL DISPLAY that follows displays the cursor,
resulting in the screen shown in Figure 11-39.

Terminal 1/0  11-37



11-38 SR30-0220

LINES

( )

0

1 ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2

2 PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4

T U U S U P U,

4 | CLASS NAME:SERIES/1 HARDWARE INSTRUCTOR NAME:JOHN JONES

B | s oo e

6 | NAME: _ STREET:

7 cITy

8 STATE :

9

10

11 | NAME: STREET:

12 CITY

13 STATE

14

16

16 | NAME: STREET:

17 CITY

18 STATE :

19

20

21 | NAME: STREET:

22 CITY

23 STATE : Y,
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS—+12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-39. Reply YES to QUESTION

If there were no more students to enter for this roster, and the
response to the MORE ENTRIES? prompt were NO, the
QUESTION statement (Figure 11-37) would transfer control to
location CLEANUP, which erases both protected and unprotected
areas of the entire screen, dequeues the terminal, and goes back to
the beginning of the program (START), bringing up the roll screen
with the initial operator directions, as shown in Figure 11-40.

LINES

OCWNOUHWN = O -

22
2 _

CLASS ROSTER PROGRAM
HIT 'ATTN' AND ENTER 'END' TO END THE PROGRAM
HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN

J

CHARACTER 11111111112222222222333333333344444444445555555556666666666677777777778
POSITIONS ~-12345678901234667890123456789012345678901234567890123456789012345678901234567890

Figure 11-40. Reply NO to QUESTION



In Figure 11-41, assume the program is again suspended by the WAIT
KEY at WAITONE, with the completed screen depicted in Figure 11-36.
The transfer to location READ and the MORE ENTRIES? prompt from
the QUESTION statement resulted from the operator’s pressing the
ENTER key. The WAIT KEY may also be terminated by a PF key.

There are no pre-assigned functions for PF keys, other than the
hardcopy facility already discussed. Therefore, the purpose of a
particular PF key in any program is defined by the instructions coded
in the routine to which control is transferred when that PF key is
depressed.

In the example in Figure 11-41, PF1 through PF4 have been assigned
as delete functions for the four data entry areas, as shown by the
operator guides at the top of the screen (Figure 11-36).

XMPLSTAT PROGRAM  START
10CB1 I0CB NHIST=0
10CB2 10CB SCREEN=STATL=

ATTNLIST (END#
AT ~ =4 ,SPACES=11

TERMCTRLC DISPLAY

WAITONE WAIT KEY
GOTO (READ,E1,E2,E3,E4),XMPLSTAT+2
El MOVE LINENBR,6
GOTO DELETE
E2 MOVE LINENBR,11
GOTO DELETE
E3 MOVE LINENBR,16
GOTO DELETE
E4 MOVE LINENBR,21
DELETE  ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
ADD LINENBR,1
ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
ADD LINENBR,1

ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
SUBTRACT LINENBR,2

PRINTEXT LINE=LINENBR,SPACES=5

TERMCTRL  DISPLAY

GOTO WAITONE
LINENBR DATA Fio

ENDPROG

END

Figure 11-41. PF keys

Terminal 1/O  11-39



11-40

SR30-0220

Assume that for some reason, the student JIM JOHNS, the third entry
on the screen, is not supposed to be on the class roster; the operator,
therefore, presses PF3.

In Figure 11-41, the PF key terminates the WAIT KEY, and the
computed GOTO transfers control to E3. The MOVE at E3 initializes
the LINENBR variable to 16, which is the top line of the third data
entry area. Control is then transferred to DELETE, where successive
ERASE operations and adjustments of the LINENBR variable result
in erasure of the unprotected portions of the third data entry area.
Before returning to the WAIT KEY, the cursor is positioned and dis-
played at the first entry field of the erased data area, as shown in
Figure 11-42.

Lll\;ES
o [ T
1 | ENTER KEY = PAGE COMPLETE PF1 = DELETE ENTRY 1 PF2 = DELETE ENTRY 2
2 | PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4
3 _______________________________________________________________________________
4 | CLASS NAME:SERIES/1 HARDWARE ~ INSTRUCTOR NAME:JOHN JONES
5 _______________________________________________________________________________
6 | NAME:JOHN JAMES STREET:111 GRANT AVENUE
7 CITY :ENDICOTT
8 STATE :NEW YORK 13760
9
10
11 | NAME: JAMES JONES STREET:255 ALHAMBRA CIRCLE
12 CITY :CORAL GABLES
13 STATE :FLORIDA 33135
14
15
16 | NAME: _ STREET:
17 Ty
18 STATE :
19
20
21 | NAME:JOAN JIMSON STREET:6216 WASHINGTON AVENUE
2 CITY :RACINE
23 STATE :WISCONSIN 53406 )
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778

POSITIONS=—12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-42. After PF3

For your reference, the program example used in the foregoing dis-
cussion is shown in its entirety in Figure 11-43.



XMPLSTAT PROGRAM

I0CB1
10CB2

START

CHECK
ENTRY

HDR

Al
A2

WAITONE

I0CB
I0CB
ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT

IF

ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
MOVE

DO
PRINTEXT
PRINTEXT
ADD
PRINTEXT
ADD
PRINTEXT
ADD
ENDDO
PRINTEXT
TERMCTRL
WAIT
GOTO

START

NHIST=0

SCREEN=STATIC

(END,OUT, $PF,STATIC)

I0CB1

"CLASS ROSTER PROGRAM',SPACES=15,LINE=1
"HIT "ATTN" AND ENTER "END" TO END',SKIP=2
' THE PROGRAM'

"HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2

" BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTNECB,EQ,1),GOTO,ENDIT

I0CB2

MODE=SCREEN,TYPE=ALL

BLANK

"ENTER KEY = PAGE COMPLETE',LINE=1
' PF1 = DELETE ENTRY 1'
' PF2 = DELETE ENTRY 2'
"PF3 = DELETE ENTRY 3

'"PF4 = DELETE ENTRY 4'
DASHES,PROTECT=YES,LINE=3
'"CLASS NAME:',LINE=4,PROTECT=YES

"INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES
DASHES,PROTECT=YES,LINE=5

LINENBR, 6

4,TIMES

'"NAME:',LINE=LINENBR,PROTECT=YES
"STREET:',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'CITY :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1

'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR, 3

', SKIP=1

non

LINE=4,SPACES=11

DISPLAY

KEY

(READ,E1,E2,E3,E4) ,XMPLSTAT+2

Figure 11-43. Complete program (1 of 2)

Terminal 1/0

=32

11-41



El MOVE LINENBR,6

GOTO DELETE

E2 MOVE LINENBR, 11
GOTO DELETE

E3 MOVE LINENBR, 16
GOTO DELETE

E4 MOVE LINENBR,21

DELETE  ERASE MODE=LINE,TYPE=DATA,L INE=L INENBR
ADD LINENBR, 1
ERASE MODE=LINE ,TYPE=DATA,LINE=LINENBR
ADD LINENBR, 1

ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
SUBTRACT LINENBR,?2
PRINTEXT LINE=LINENBR,SPACES=5
TERMCTRL  DISPLAY
GOTO WAITONE
READ QUESTION 'MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP
ERASE MODE=LINE,LINE=2,SPACES=55,TYPE=DATA
ERASE MODE=SCREEN,LINE=6
PRINTEXT LINE=6,SPACES=5
TERMCTRL DISPLAY

GOTO WAITONE
CLEANUP  ERASE MODE=SCREEN,TYPE=ALL
DEQT
GOTO START
ENDIT PROGSTOP
DATA X'5050'
DASHES ~ DATA 80C'-"'
ouT POST ATTNECB,1
ENDATTN
STATIC  POST ATTNECB,-1
ENDATTN
ATTNECB ECB
LINENBR DATA F'o!
ENDPROG
END

Figure 11-43. Complete program (2 of 2)

11-42 SR30-0220



RDCURSOR INSTRUCTION

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-167; or
SB30-1213 (Version 2 PDOM) page 2-183.

Another instruction applying only to static screens, but not used in
the foregoing programming example, is RDCURSOR. This instruction
will store the line number and indent from the left margin (SPACES)
corresponding to the current cursor position, in user program variables.
It can be used as an additional means of communication between
program and operator. For example, if a prompt displayed on a
particular screen is unusually cryptic, an operator unfamiliar with the
application might not know what data should be entered in the associ-
ated data entry field. If a particular PF key is designated as the

help function, and results in a transfer to a routine which executes

a RDCURSOR instruction, the operator can position the cursor in

the data entry field whose purpose is in doubt, and press the help

PF key. The RDCURSOR command could then sense the cursor
position, find out which field is causing the confusion by comparing
the sensed position to the known data entry field locations, and
display explicit instructions for the field in question.

PRINTNUM/GETVALUE INSTRUCTIONS

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-157,
2-158 and pages 2-162 through 2-164; or SB30-1213 (Version 2
PDOM) pages 2-172, 2-173 and pages 2-177 through 2-179.

The PRINTEXT and READTEXT instructions are used to transfer
EBCDIC character strings to and from terminals. PRINTNUM
and GETVALUE instructions perform the same functions for
numeric values. PRINTNUM takes a numeric value in storage,
automatically performs the conversion from internal (binary)
representation, and transfers it to a terminal for display or
printing.

Terminal 1/O0 11443



11-44 SR30-0220

PRINTNUM can display a single value,

Pl PROGRAM  START
START PRINTEXT 'WALUE = '
PRINTNUM IVAL

PRINTEXT SKIP=1
PROGSTOP

TVAL  DATA F'31416°
ENDPROG
END

VALUE = 31416




— or a single PRINTNUM statement can be used to display multiple
values. When more than one value is displayed by the same
PRINTNUM, the values can be displayed on separate lines,

PRINTNUM loc,count,nline

P1 PROGRAM

START PRINTEXT
PRINTNUM
PRINTEXT
PROGSTOP

IVALS DATA
DATA
DATA
ENDPROG
END

START

"VALUES'
IVALS,3,1,SKIP=1
SKIP=1

F'31416"
F'500°
F'17"

f

VALUES
31416

AR LTI S

LY Y XV vs .,
AR R
LI X X7 XX

Terminal 1/0

11-45



— or can be displayed on the same line.

PRINTNUM loc,count,nline

P1 PROGRAM  START

START PRINTEXT 'VALUES'
PRINTNUM IVALS,3,3,SKIP=1
PRINTEXT SKIP=1

PROGSTOP

IVALS DATA F'31416"
DATA F'500"
DATA F17'
ENDPROG
END

{ VALUES = 31416 500 17 ’

11-46 SR30-0220



When multiple values appear on the same line, you can control the

spacing between values.

PRINTNUM  loc,count,nline,nspace

P1 PROGRAM

START PRINTEXT
PRINTNUM
PRINTEXT
PROGSTOP

IVALS DATA
DATA
DATA
ENDPROG
END

START
‘VALUES = '
IVALS,3,3,10
SKIP=1

F'31416'
F'500"
F'17'

f tVALUES 31416 500 17 ’

™

Terminal 1/0

11-47



If desired, values may be displayed in hexadecimal rather than
decimal form.

PRINTNUM Tloc,count,nline,space,MODE=

P1 PROGRAM  START

START PRINTEXT 'VALUES = '
PRINTNUM IVALS,3,3,10,MODE=HEX
PRINTEXT SKIP=1

PROGSTOP

IVALS DATA F'31416'
DATA F'500'
DATA F'17!
ENDPROG
END

VALUES= 7888 (01F4

11-48 SR30-0220



GETVALUE transfers a numeric text string, input by an operator,
into storage, automatically converting to internal (binary) representation.

GETVALUE Toc

P1 PROGRAM  START

START GETVALUE IVAL
PROGSTOP

IVAL  DATA F'o!
ENDPROG
END

( ]

Terminal /O 11-49



As with READTEXT, a prompt message may be issued prior to the
input operation.

GETVALUE 10ck,pmsg ;

P1 PROGRAM  START

START GETVALUE TIVAL,"ENTER VALUE:'
PROGSTOP

IVAL  DATA F'o!
ENDPROG
END

ENTER VALUE: 31416 '

[,

11-50 SR30-0220



Multiple values can be read by a single GETVALUE instruction,

GETVALUE Toc,pmsg,count

P1 PROGRAM  START

START GETVALUE IVALS,'ENTER VALUES:',3

PROGSTOP

IVALS DATA 3F'0’
ENDPROG
END

{ENTER VALUES: 31416 1430 19 '

L4
AAARRALL T Y T T T

LY X Y -,
CXYS © &
""".'.'".’.‘"':/. "

Terminal t/O

11-61



— and hexadecimal input can be accepted.

GETVALUE 1loc,pmsg,count,MODE=

P1 PROGRAM  START
START GETVALUE TIVALS,'ENTER VALUES:',3,MODE=HEX

PROGSTOP
IVALS DATA 3F'0!
ENDPROG
END
fi i ]ﬁ’\
ENTER VALUES: 3B8A 2IF0 3B8D
©®

Forms control operands (SKIP=, LINE=, and SPACES=) serve the
same purpose and are used the same way with PRINTNUM and
GETVALUE as for PRINTEXT and READTEXT. See the reading
assignment for how to use PRINTNUM and GETVALUE with
double precision integers, standard and extended precision floating
point values, and the external data formatting option.

PRINTIME/PRINDATE INSTRUCTIONS

11-62

SR30-0220

READING ASSIGNMENT: SB30-1053 (PDOM) page 2-161.
SB30-1213 (Version 2 PDOM) page 2-176.

PRINTIME and PRINDATE are pre-defined terminal output
operations. PRINTIME will display the current value of the system
24 hour clock in the format HH:MM:SS. PRINDATE displays the
date as MM/DD/YY.



TERMINAL 1/0 REVIEW EXERCISE — QUESTIONS

1.

Describe the program states or conditions which, while in
effect, inhibit the ATTNLIST capability.

a.

List three buffer forcing conditions.
a.
b.

C.

Assume the following two instructions are executed, directed at
a static screen,

PRINTEXT 'ENTER: ", LINE=3,PROTECT=YES
PRINTEXT 'NEXT ENTRY:',SPACES=10,PROTECT=YES

What character position will the N in NEXT occupy?

Answer:

On the left are listed the interrupt generating terminal keys.
In the space following each key, list the letter(s) designating
the statement(s) on the right that apply to each key. More
than one statement may be true for each key, and each state-
ment may apply to more than one key.

a. will terminate a WAIT KEY operation

PF keys b. used with ATTNLIST, not with WAIT
KEY -
ATTN key . .
c. used with WAIT KEY, never with
ENTER key ATTNLIST

d. will not terminate a WAIT KEY operation

e. can be used with ATTNLIST, and will
also terminate a WAIT KEY

List the special system terminals that may be enqueued by
coding their names as the operand of an ENQT instruction.

Answer:

Terminal /O 1183



This page intentionally left blank.,

1164 SR30-0220



Below on the left is a list of five operator entries. Each entry isin
response to the GETVALUE prompt in the program given.

On the right are spaces for the values that would be displayed

by execution of the PRINTNUM immediately following the
GETVALUE in the program. Fill in what the PRINTNUM

would display after each of the entries on the left (each operator
entry/PRINTNUM display pair should be considered a new load/
execution of the program).

P1 PROGRAM

START GETVALUE
PRINTNUM
PRINTEXT
PROGSTOP

VAL DATA
ENDPROG
END

OPERATOR

ENTRY

a. 1492

b. -3

39000
d. NO ENTRY

START

VAL, "ENTER NBR:'
VAL

SKIP=1

FIOI

PRINTNUM
DISPLAY

(ENTER KEY ONLY)

e. 1BA3

Terminal 1/0

11.65



TERMINAL 1/0 REVIEW QUIZ — ANSWERS

1156 SR30-0220

1.

a. program has the terminal enqueued

b. program is suspended by a WAIT KEY operation
Any three of the following:

a. “LINE=" in a succeeding operation

b. ““SKIP="in a succeeding operation

c. DEQT execution

d. an ""@" character imbedded in the text of this or of a
succeeding operation, with MODE=WORD in effect

e. TERMCTRL DISPLAY execution

f.  ""change of operation direction”, such as a PRINTEXT
followed by a GETVALUE or READTEXT

Character position 21, line 3. The “SPACES=10"

leaves 10 unprotected spaces between the end of the pre-
ceding protected field, and the beginning of the

“NEXT ENTRY" text.

PF keys a,e PF keys (a) will terminate a WAIT KEY
operation, and, when a program is not suspended by a WAIT KEY,
and the terminal is not enqueued, may also be used in an
ATTNLIST (e).

ATTN key b, d The ATTN key will not terminate a WAIT
KEY operation (d). When the program is not in a WAIT KEY,
and the terminal is not enqueued, the ATTN key may be used

by the ATTNLIST function (b).

ENTER key a,c  The ENTER key terminates a WAIT KEY (a)
(as well as the implied wait of a READTEXT/GETVALUE/
QUESTION), and cannot be used with ATTNLIST (c).

Answer: $SYSPRTR, $SYSLOG The third ‘“special
system terminal’’, $SYSLOGA may be enqueued by user
programs, but only by using the “ENQT/label of IOCB”’
convention, or by an ENQT with no IOCB label reference,
when $SYSLOGA is the “loading’’ terminal,




OPERATOR PRINTNUM

ENTRY DISPLAY
a. 1492 1492
b. -3 3
39000 0
d. NO ENTRY
(ENTER KEY ONLY) N
e. 1BA3 1

Entries a. and b. operate normally. Entry c. is too large to be
contained in a single word integer, so VAL is left undisturbed,
as it is for d., when no entry is made. Entry e. is an attempt to
enter a hexadecimal value, when “MODE=HEX'’ is not coded
in the GETVALUE operand field. The input operation
terminates when the first non-numeric character is encountered
in the input field.

Terminal /0 11-567



This page intentionally left blank,

11-68  SR30-0220



DATA CONVERSION

INTEGER VALUE| 31,416

Section 12. Data Formatting

OBJECTIVES: After completing this topic, the student should

1. Understand when to use the data formatting/conversion
instructions

2. Be able to convert numeric character strings to binary values using
CONVTD

3. Be able to convert binary values to EBCDIC character strings using
CONVTB

4. Understand the operation of GETEDIT/PUTEDIT instructions, and
their relationship to FORMAT and TEXT statements

READING REFERENCE: 1) Program Description/Operations Manual
(SB30-1053) Chapter 2, pages 2-65 through 2-92. 2) Program
Description/Operations Manual Version 2 (SB30-1213), Chapter 2,
pages 2-67 through 2-96.

For purposes of this discussion, data conversion refers to the process of
converting arithmetic values from internal representation (binary) into
external representation (EBCDIC character strings), or the reverse.

You are already familiar with some forms of data conversion. As illus-
trated in Figure 12-1, the assembler performs data conversion when
assembling arithmetic constants, defined in DATA statements. The
binary values generated during the assembly are the internal equivalents
of the externally represented values coded in the source statements.

FLOATING POINT VALUE| 3.1416

DEFINED IN DATA STATEMENT ... DEFINED IN DATA STATEMENT . ..

IVAL DATA F‘31416’

FVAL DATA E‘3.1416’

CONVERTED BY THE ASSEMBLER INTO CONVERTED BY THE ASSEMBLER INTO A
A 1-WORD BINARY NUMBER, HEX 7AB8 ’ 2-WORD (STANDARD PRECISION) BINARY

0111 1010 1011 1000 ¢

FLOATING POINT NUMBER, HEX 4132 43FE

0100 0001 0011 0010 0100 0011 1111 1110

Figure 12:1. Assembler data conversion:

Data Formatting 12-1



CONVTD INSTRUCTION

12-2  SR30-0220

While the DATA statement can only be used to convert constants
known at assembly time, GETVALUE converts data entered at a
terminal, in “realtime.” GETVALUE, and in the reverse direction,
PRINTNUM, not only convert arithmetic values, but carry

the operation one step further by performing the 1/0 as well (see
“Section 11. Terminal 1/0").

These instructions, while useful, do not meet all data conversion
requirements. For example, a numeric value read into a text buffer by
a READTEXT instruction rather than by a GETVALUE, will be in the
form of an EBCDIC character string, which must be converted to
internal representation before the program can operate on it.

Similarly, it may not always be desirable to convert an internally
represented constant or variable and immediately display or print it,

as occurs with PRINTNUM. You may instead want to convert it to an
EBCDIC character string, and hold it for later output by a PRINTEXT.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-66 through
2-68. SB30-1213 (Version 2 PDOM) pages 2-68 through 2-70.

CONVTD converts an EBCDIC character string into a binary arithmetic
value. Single and double precision integers, and standard and extended
floating point internal formats are supported.

! i !

label{ CONVTD opndl,opnd2s PREC= § FORMAT=

\_v__/: — " J - y VRN . J

OPTIONAL MUST BE CODED REQUIRED IF
opnd1 IS
OTHER THAN
SINGLE PRE-
CISION
INTEGER

Figure 12-2, CONVTD format

The first operand (opnd1) is the label of the first byte of the storage
area that will contain the binary equivalent of the EBCDIC string after
it has been converted. The user must reserve enough space to hold the
results of the conversion. This may be two bytes, for a single precision
integer variable, four bytes, for double precision integer or standard
precision floating point values, or eight bytes for extended precision
floating point variables.

The second operand (opnd2) is the label of the first character of the
EBCDIC character string to be converted. Leading blanks or zeros are
allowed.



The PREC= operand describes opnd1 (Figure 12-3).

PREC= Operand opnd1 Description Storage Required
PREC=S Single Precision Integer (default) 1 Word (2 Bytes)
PREC=D Double Precision Integer 2 Words (4 Bytes)
PREC=F Standard Precision Floating Point 2 Words (4 Bytes)
PREC=L Extended Precision Floating Point 4 Words (8 Bytes)

Figure 12-3. PREC= operand

The FORMAT= operand is coded as a list containing three sublist
elements, all enclosed in parentheses. The three elements describe the
EBCDIC character string pointed to by the label in opnd2, as shown
in Figure 12-4.

FORMAT=(W,D,T) where;

... Width of the ... Number of ... Code “I"" if integer
EBCDIC character positions to the right ...Code “F" if real
: string in bytes of the decimal point. number
Code “0" if integer. ...Code “E" if real

Figure 12-4. FORMAT= operand

CONVTB INSTRUCTION

number in “E’’ notation

If not coded, FORMAT= defaults to FORMAT=(6,0,!), indicating a
six-byte EBCDIC field containing an integer number.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-69 through
2-71. SB30-1213 (Version 2 PDOM) pages 2-71 through 2-73.

CONVTB converts values in internal representation (binary) form to an
EBCDIC character string.

label | CONVTB opndl,opndszREc= 4 FORMAT=

\—f—-ﬁ v v v )
OPTIONAL MUST BE CODED REQUIRED IF REQUIRED IF opnd1
opnd1 18 1S OTHER THAN A
OTHER THAN 6-BYTE FIELD
SINGLE PRE-
CISION
INTEGER

Figure 12-5. CONVTB format

Data Formatting 12-3



CONVTD/CONVTB CODING

12-4

SR30-0220

Since the direction of the operation is the reverse of CONVTD, the
meaning of opnd1 and opnd?2 is also reversed. The label of the left-
most byte of the storage area, which will receive the EBCDIC string
resulting from the conversion, is opnd1 and opnd2 is the label of the
storage location containing the variable.

The PREC= and FORMAT= operands are coded the same way for
CONVTB as for CONVTD; because opnd1 and opnd2 are reversed,
PREC= now applies to opnd2 and FORMAT= to opnd1.

EXAMPLES

In Figure 12-6, the CONVTB at C1 is converting the constant at loca-
tion CON1 into an EBCDIC character string, which will be stored in the
text buffer EBC1.

CCODE PROGRAM C1

Cl CONVTB EBC1,CON1
IF (CCODE,NE,-1),G0TO,CNVTERR
P1 PRINTEXT 'TEXT='

PRINTEXT EBC1
PRINTEXT SKIP=1
END PROGSTOP
CNVTERR MOVE CODE, CCODE
PRINTEXT 'CONVERT ERROR,CODE="
PRINTNUM CODE
PRINTEXT SKIP=1

GOTO END
EBC1 TEXT LENGTH=6
CON1 DATA F'14398'
CODE DATA F'o'

ENDPROG

END

Figure 12-6. Return code = -1

Completion codes for CONVTB and CONVTD operations are returned
in the task code word (taskname). The |F statement immediately
following the CONVTB is checking the return code for Normal Comple-
tion (-1}). In this example, the operation will be successful, and the
PRINTEXT instructions beginning at P1 will display TEXT=14398.

In Figure 12-7, the CONVTB is attempting to convert a value of
21,000,000, in location CON2, and store the resulting text string in the
text buffer at EBC2. The text buffer is not large enough to hold the
character string generated by the conversion, and will be set to zeros.
The completion code will be a 3, indicating Conversion Error, and the
|F statement following the CONVTB will transfer control to location
CNVTERR.

The error routine beginning at CNVTERR will display an error message
and the completion code resulting from the operation. The first instruc-
tion moves the completion code from taskname into the user-defined
program variable CODE.



CCODE PROGRAM C2

CONVTB EBC2,CON2 ,PREC=DWORD
IF (CCODE,NE,-1) ,GOTO,CNVTERR
P1 PRINTEXT 'TEXT='

PRINTEXT EBC2
PRINTEXT SKIP=1
END PROGSTOP
CNVTERR MOVE CODE,CCODE
PRINTEXT "CONVERT ERRROR, CODE='
PRINTNUM CODE
PRINTEXT SKIP=1

GOTO END
EBCZ TEXT LENGTH=6
CON2 DATA D'21000000"
CODE DATA F'O'

ENDPROG

END

Figure 12-7. Return code = 3.

This is a standard convention, and is necessary because other operations,
such as 1/0, also post completion codes in taskname, and will overlay
the code you want to display. For instance, were the |F statement
following the CONVTB replaced by the statement

PRINTNUM  CCODE

in an attempt to display the return code from the conversion operation,
the code displayed would be the completion code resulting from execu-
tion of the PRINTNUM itself, not the code returned by the CONVTB.

When the error routine at CNVTERR completes execution, the message
CONVERT ERROR, CODE=3 will be displayed. A -1, for Normal
Completion, or a -3, indicating Conversion Error, are the only comple-
tion codes generated by CONVTB operations.

In Figure 12-8, a CONVTD operation is attempting to convert the
EBCDIC string in EBC3 to a binary value to be stored in location CON3.
The EBCDIC string consists of blanks and the delimiter **, '*. This
results in no conversion, and a completion code of 2, indicating Field
Omitted. Commas and slashes (/) are considered arithmetic delimiters
and, if found in a text string during CONVTD execution, will terminate
the conversion. In this example, since the delimiter (comma) was pre-
ceded only by blanks, the Field Omitted completion code is generated
and the program will complete execution with CONVERT ERROR,
CODE=2 displayed.

Data Formatting 12-5



12-6 SR30-0220

CCODE PROGRAM C3
C3 CONVTD CON3,EBC3
IF (CCODE,NE,-1),G0TO,CNVTERR
P1 PRINTEXT '"VARIABLE='
PRINTNUM CON3
PRINTEXT SKIP=1
END PROGSTOP
CNVTERR MOVE CODE,CCODE
PRINTEXT "CONVERT ERROR, CODE='
PRINTNUM CODE
PRINTEXT SKIP=1
GOTO END
EBC3 TEXT ', ' , LENGTH=6
CON3 DATA F'o'
CODE DATA F'o'
ENDPROG
END

Figure 12-8. Return code = 2

If the text buffer at EBC3 had contained numbers (in EBCDIC code),
all numbers to the left of the delimiter would have been converted,

and a completion code of -1 returned. For instance, 12,391 in the text
buffer would convert to the binary equivalent of 12. Any non-numeric
character imbedded within the text field will end the conversion.

In Figure 12-9, the CONVTD at C4 is attempting to convert the blank
text field at EBC4. This will result in a return code of +1, which
indicates No Data In Field. The example will complete with the message

CONVERT ERROR, CODE=1 displayed.

CCODE PROGRAM C4
C4 CONVTD CON4 ,EBC4
IF (CCODE,NE,-1),G0TO,CNVTERR
P1 PRINTEXT '"VARIABLE='
PRINTNUM CON4
PRINTEXT SKIP=1
END PROGSTOP
CNVTERR MOVE CODE ,CCODE
PRINTEXT "CONVERT ERROR, CODE='
PRINTNUM CODE
PRINTEXT SKIP=1
GOTO END
EBC4 TEXT LENGTH=6
CON4 DATA F'o
CODE DATA F'o'
ENDPROG
END

Figure 12-9. Return code = 1



GETEDIT/PUTEDIT INTRODUCTION

GETEDIT and PUTEDIT instructions combine several of the 1/0 and
conversion operations already discussed. For review, Figure 12-10
summarizes the instructions used to move data from a terminal into
storage (READTEXT, GETVALUE) and convert it to internal
representation (CONVTD, or implicit with GETVALUE).

> GETVALUE ————

READTEXT LENGTH CONVTD
COUNT
\ ‘E /
B

— C

T, D ——

S —

;_/C’-

/
PERFORMS CONVERTS TO USES TEXT
1/0 OPERATION INTERNAL FORMAT BUFFER
READTEXT GETVALUE CONVTD
GETVALUE CONVTD READTEXT

Figure 12-10. External to internal summary

Data Formatting 12-7



In Figure 12-11, the reverse operations are shown, converting and
moving data directly to a terminal (PRINTNUM), or first converting it
to external format (CONVTB), and then displaying it (PRINTEXT).

> PRINTNUM >

CONVTB LENGTH PRINTEXT
CONT | _~
\ _E ]
[ C
N D—-—-—-.
| SN [—
C
N
/
PERFORMS CONVERTS TO USES TEXT
1/0 OPERATION EXTERNAL FORMAT BUFFER
PRINTEXT PRINTNUM CONVTB
PRINTNUM CONVTB PRINTEXT

Figure 12-11. Internal to external summary

PUTEDIT and GETEDIT perform all of the functions shown in
Figures 12-10 and 12-11. The 1/O plus conversion provided by
GETVALUE and PRINTNUM is supported, but with the addition of
the use of a text buffer. The value is therefore displayed/read (1/0)},
and is available both in external format (as EBCDIC string in text
buffer) and in internal format.

12-8 SR30-0220



GETEDIT

LENGTH
- | COUNT . »-[10011101100
E
-—B —
C
e D——
.——-l —
‘———'IC
/

LENGTH
COUNT
E

[ B
— ¢

s ) v

Y

]

n——/C‘-J

PUTEDIT

1. Performs 1/0 operation (optional)
2. Performs conversion

3. Uses text buffer

Figure 12-12. PUTEDIT/GETEDIT summary

Viewed another way, the transfer of an EBCDIC string to or from a
terminal as provided by PRINTEXT and READTEXT is supported,
but with the addition of conversion to or from internal representation
(CONVTD/CONVTB functions).

Data Formatting 12-9



PUTEDIT/GETEDIT INSTRUCTIONS

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-87 through
2-92. SB30-1213 (Version 2 PDOM) pages 2-89 through 2-95.

To perform a conversion, four items of information are required:

1. Direction of conversion (from internal representation to external,
or the reverse). This is implicit when GETEDIT (external to
internal) or PUTEDIT (internal to external) is coded.

2. Conversion specification. Length of character string and type of
data item to be converted to or from. This information is coded
in a FORMAT statement, and the location (label) of the FORMAT
statement is the first operand of the GETEDIT or PUTEDIT.

3. Character buffer location. The second operand is the name of the
character buffer (usually the label of a TEXT statement) that
contains the character string to be converted (GETEDIT) or will
hold the results of the conversion (PUTEDIT).

4. Storage variable location. The named program storage location(s)
containing the internally represented data item(s) that are the
input to (PUTEDIT) or results of (GETEDIT) the conversion.
Figure 12-13 summarizes the operand format just discussed, using
GETEDIT as an example. (GETEDIT is used in most of the
following illustrations, but the concepts demonstrated are equally
valid for PUTEDIT operations, if the direction of conversion is
taken into account.)

(variable name)
variable
‘ name of TEXT ((name ,type))
name o
statement —Oor—
label GETEDIT FORMAT ! {location of ! ((variable count))
statement character buffer) name '
variable
«name ,count,type))
LABEL OF THE FORMAT LOCATION (LABEL LOCATION(S) IN
STATEMENT THAT DESCRIBES ON TEXT STATEMENT) STORAGE WHERE
THE EBCDIC DATA IN THE OF THE BUFFER CONVERTED VALUE(S)
CHARACTER BUFFER TO BE CONTAINING THE WILL BE PLACED,
CONVERTED (ALPHA? ARITH- CHARACTER STRING AND THE TYPE
METIC? “E” NOTATION? etc.) TO BE CONVERTED (PRECISION) OF THE
VALUES, IF ARITH-
METIC

Figure 12-13. GETEDIT format

1210  SR30-0220



FORMAT STATEMENT

Tabel

CGET

FLTFORM

READING ASSIGNMENT: SR30-1053 (PDOM) pages 2-72 through
2-86. SR30-1213 (Version 2 PDOM) pages 2-74 through 2-88.

Figure 12-14 illustrates the basic layout of the FORMAT statement,
and shows how it is referenced by a GETEDIT.

name of
FORMAT
statement

GETEDIT

‘name of TEXT
statement
{location of
character buffer)

GETEDIT

FORMAT

FLTFORM ,

(variable
variable
name
variable
name

variable
name

name)

,type))

,count))

,count,type >)

(Tist),gen

DATA

CONVERSION
SPECIFICATION

MAY BE:

ulu

uFu

tlEn

llHll

uxn
NAII

INTEGER NUMERIC
FLOATING POINT
NUMERIC
FLOATING POINT
NUMERIC — “E"
NOTATION
LITERAL ALPHA-
MERIC DATA
BLANKS
VARIABLE ALPHA-
MERIC DATA

Figure 12-14. FORMAT statement

MAY BE:

"PUT" — THIS FORMAT STATE-
MENT USED WITH PUTEDIT
COMMANDS ONLY

“GET"” — THIS FORMAT STATE-
MENT USED WITH GETEDIT
COMMANDS ONLY

“BOTH" — MAY BE USED WITH
BOTH PUTEDIT AND GETEDIT
(DEFAULT)

Data Formatting 12-11



12-12

Note that among the various types of data items that are allowed in the
data conversion specification list are type F and type E. The type F
indicates floating point numeric. Do not confuse this with the fixed
point binary designated by the F that is used in DATA statements.
Similarly, the E means E-type notation, and not standard precision
floating point, as did the E used with DATA statements. By specifying
E-type notation in the FORMAT list, the variable being described is
implicitly considered to be a floating point value.

Figure 12-15 is an example of a FORMAT statement, whose list
describes a single variable, with data conversion specification type E.
Detailed explanations of all the available data specification types, and
examples of their use, may be found in the reading assignment.

FORMAT

— SPECIFIES THE TYPE OF CONVERSION TO BE PERFORMED
WHEN DATA IS TRANSFERRED FROM STORAGE TO A TEXT
BUFFER BY A PUTEDIT COMMAND, OR FROM A TEXT
BUFFER TO STORAGE BY A GETEDIT COMMAND.

NOTATION.

EXAMPLE: WRITE A FORMAT STATEMENT THAT WILL ALLOW
CONVERSION TO AND FROM FLOATING POINT NUMBERS
WITHIN THE RANGE OF —9.9999 TO +9.9999, USING ““E” TYPE

FLTFORM  FORMAT

CONVERSION TYPE
FLOATING POINT, E

NOTATION

LARGEST POSSIBLE VALUE =
SMALLEST POSSIBLE VALUE =

E NOTATION TAKES UP

Figure 12-15. FORMAT statement E type

SR30-0220

(E11.4),BOTH

\ MAY BE USED BY

BOTH PUTEDIT AND
GETEDIT

NUMBER OF POSITIONS

TO RIGHT OF

+9.9999 DECIMAL POINT

—9.9999

N—— cm—

1234567

o\ m———
7 CHARACTER

POSITIONS

4 CHARACTER (¢ ¢
__POSITIONS N

11 POSITIONS REQUIRED



The second operand in the GETEDIT statement (Figure 12-16) is the
location of the character buffer. The length of this buffer must be
large enough to accommodate the largest character string anticipated,
or truncation will result (254 characters maximum).

(variable name)

variable
(e =v02))

—or—

variable
(( name ,count ))

variable
(( name ,count,type ))

COUNT OF NUMBER OF
INPUT CHARACTERS
RECEIVED OR OUTPUT

CHARACTERS TO TRANSMIT

name of TEXT
name of statement
label  GETEDIT FORMAT |+ |\ tion of
statement character buffer)
,—f‘
CGET GETEDIT FLTFORM,FLOATEXT ,
FLOATEXT  TEXT LENGTH=18
LENGTH OF
BUFFER (HEX 12= DEC 18)
— /
00
FLOATEXT =———»1 4 0
40 SPACE FOR 18
FLOATEXT + 1 CHARACTERS
FLOATEXT + 2 RESERVED
\4/0-\ r (18 BYTES)
4 0 INITIALIZED TO
4 0 EBCDIC BLANKS
FLOATEXT +17 40 (HEX 40)

Figure 12-16. Character buffer location

Data Formatting 12-13




label  GETEDIT

CGET

Figure 12-17 summarizes the third operand, the variable list. The
variable names used must previously have been defined in the program
(DATA statements).

(variable name)
—or—

((variable ; e))

name of name of TEXT name ‘P

FORMAT , statement ’ —Oor—

P {location of ((va”able,count))
character buffer) name

((variable count tvoe )
name ' 1yp

—

GETEDIT FLTFORM,FLOATEXT,((name, count, type))
— e’

STORAGE LOCATION
TO PUT VALUE
CONVERTED FROM
CHARACTER STRING
IN BUFFER

MULTIPLE LOCATIONS IF
MULTIPLE CONVERSIONS

TYPE/PRECISION

OF VARIABLE

“S" OR D" INDICATES
SINGLE OR DOUBLE

WORD INTEGER
(DEFAULT=SINGLE)

“F'"OR “L" INDICATES
STANDARD OR EXTENDED
PRECISION FLOATING POINT
(DEFAULT=STANDARD)

Figure 12-17. Third operand summary

12-14

SR30-0220



If arithmetic variables are being converted, the data type specified must
agree with the data conversion specification in the FORMAT statement
(F or L in GETEDIT must have either F or E in FORMAT statement,
and S or D in GETEDIT corresponds with | in FORMAT statement).

The completed GETEDIT statement is shown in Figure 12-18, with all
three operands coded. To illustrate the optional 1/O capability, a
fourth operand, ACTION= is also coded. The more common usage
(and the default) is ACTION=1/0, meaninga GETEDIT or PUTEDIT
would implicitly issue a READTEXT or PRINTEXT. With
ACTION=STG, the GETEDIT or PUTEDIT assumes the user will take
care of transferring the EBCDIC character string from or to the
terminal by issuing explicit READTEXT or PRINTEXT commands as
required.

GETEDIT

— GETS EBCDIC CHARACTER STRING FROM A CHARACTER
BUFFER SET UP BY A TEXT STATEMENT

— CONVERTS EBCDIC CHARACTER STRING ACCORDING TO
SPECIFICATIONS IN FORMAT STATEMENT, AND PLACES
RESULT OF CONVERSION IN STORAGE

— MAY OPTIONALLY ISSUE A READTEXT COMMAND TO
TRANSFER EBCDIC CHARACTERS FROM A TERMINAL
INTO THE CHARACTER BUFFER, BEFORE BEGINNING
CONVERSION

EXAMPLE: CONVERT THE EBCDIC CHARACTER STRING IN THE
CHARACTER BUFFER DEFINED BY THE TEXT STATEMENT AT
LOCATION "“FLOATEXT"” INTO A STANDARD PRECISION
FLOATING POINT NUMBER, ACCORDING TO THE SPECIFICA-
TIONS OF THE FORMAT STATEMENT AT LOCATION “FLTFORM".
STORE THE RESULT AT LOCATION “FVAL".

CGET GETEDIT FLTFORM,FLOATEXT, ((FVAL,F)),ACTION=STG

LOCATION OF LOCATION OF OuUTPUT OUTPUT CONVERT ONLY—
FORMAT CHARACTER DATA DATA DO NOT ISSUE
STATEMENT BUFFER (TEXT  LOCATION  TYPE READTEXT
STATEMENT) (FLOATING COMMAND
POINT) BEFORE
CONVERSION
STARTS

Figure 12-18. Completed GETEDIT

Data Formatting 12-15



As a comparison, the same operation in reverse is illustrated in
Figure 12-19.

PUTEDIT

— CONVERTS DATA IN STORAGE INTO EBCDIC CHARACTER
STRING, ACCORDING TO SPECIFICATIONS IN FORMAT
STATEMENT

— PLACES EBCDIC CHARACTER STRING IN CHARACTER
BUFFER SET UP BY TEXT STATEMENT

— MAY OPTIONALLY ISSUE A PRINTEXT COMMAND TO
TRANSFER CONTENTS OF THE CHARACTER BUFFER TO
A TERMINAL DEVICE AFTER CONVERSION

EXAMPLE: CONVERT THE STANDARD PRECISION FLOATING
POINT VARIABLE AT STORAGE LOCATION “FVAL"” INTO AN
EBCDIC CHARACTER STRING, ACCORDING TO THE SPECIFICA-
TIONS IN THE FORMAT STATEMENT AT LOCATION “FLTFORM".
PLACE THE EBCDIC STRING IN THE CHARACTER BUFFER DE-
FINED BY THE TEXT STATEMENT AT LOCATION “FLOATEXT".

CPUT  PUTEDIT  FLTFORM,FLOATEXT((FVAL,F))ACTION=STG

LOCATION OF  LOCATION OF LOCATION OF  INPUT CONVERT
FORMAT CHARACTER INPUT DATA DATA ONLY-DO
STATEMENT BUFFER (TEXT TYPE NOT ISSUE
STATEMENT) (FLOATING PRINTEXT
POINT) COMMAND
AFTER
CONVERSION

Figure 12-19. Completed PUTEDIT

All operands are in the same position, and have the same meanings for
PUTEDIT as for GETEDIT; only the operation direction is reversed.

Figure 12-20 is an overview of a complete GETEDIT operation using

the same examples of GETEDIT, TEXT, and FORMAT as you have

seen in the previous figures. Following the numbers on the illustration,
the characters entered at the terminal n , are transferred to the text
buffer by the READTEXT instruction . In this example, the
READTEXT is issued by the user sometime prior to execution of the
GETEDIT. If ACTION=1/0 were coded in the GETEDIT (or not

coded, and allowed to default), the READTEXT would be automatically
issued by the GETEDIT.

12-16  SR30-0220



[EB OPERATOR ENTERS
CHARACTERs ".31416E 01"

| READTEXT  FLOATEXT |

TRANSFERS EBCDIC STRING "4BF3F1F4F1F6C540F0F 1"
FROM TERMINAL INTO TEXT BUFFER

| FLOATEXT TEXT LENGTH=18 |
[——

|

LENGTH =———————{ 1 2
COUNT =t 0 A
FLOATEXT—» 4 B
| EB[CGET GETEDIT FLTFORM,FLOATEXT, ((FVAL,F)),ACTION=5TG ]
F 4 CONVERTS EBCDIC CHARACTER STRING INTO
F BINARY FLOATING POINT NUMBER—-STORES
AT LOCATION “FVAL"
F 6
cC5
— BB | FLTFORM FORMAT  (E11.4),BOTH]
F 1
FVAL | 4 1 3 2
20 B 4 3 FE
N0 |
FLOATEXT +17=»{ 4 0

Figure 12-20. GETEDIT overview

Data Formatting 12-17



12-18

SR30-0220

The GETEDIT [E], using the FORMAT statement FLTFORM a.
converts the EBCDIC character string in the text buffer at FLOATEXT
into a standard precision floating point value, which is stored at
FVAL R .

Note: Version 2 support for GETEDIT/PUTEDIT/FORMAT instruc-
tions is supplied in the form of object modules, residing in volume
SUPLIB. When a user program containing GETEDIT/PUTEDIT/
FORMAT statements is assembled, SEDXASM automatically generates
corresponding EXTRN records for use by the link edit utility $LINK.

After an object module has been produced by $SEDXASM, it must be
processed by $LINK to include the data-formatting object modules.
The user must code the AUTO= parameter in the link edit OUTPUT
control statement as AUTO=$AUTO,ASMLIB. $AUTO is the name of
a system-supplied data set on ASMLIB, which contains an autocall

list, including entries for the GETEDIT/PUTEDIT/FORMAT

support modules.



DATA FORMATTING REVIEW EXERCISE—QUESTIONS

Match the instructions on the left with the statements on the right. The
instructions may apply to more than one statement, and the same
statement may be true for more than one instruction, or not true for

any.
a. CONVTD 1. — always requires a text buffer.
b.  PRINTNUM 2. _ ___ used to read numeric values from
c. GETEDIT a terminal and convert them to
internal (binary) representation.
d. CONVTB .
3. —___ may optionally perform 1/0.
e. PRINTEXT .
4, _____ cannot be used for internal/external
f. GETVALUE or external/internal conversion.
g. PUTEDIT 5. —— never performs |/0.
h. READTEXT 6. — . used to convert an EBCDIC string
in a text buffer to a binary value.
7. —_ never requires a text buffer.
8. ____ always performs 1/0.
9. _____ may be used to convert both float-

ing point or integer values.

Data Formatting 12-19



DATA FORMATTING REVIEW EXERCISE—ANSWERS

1. CONVTD (a), GETEDIT (c), CONVTB (d), PUTEDIT (g), and
READTEXT (h) always require a text buffer. PRINTEXT (e)
usually uses a text buffer, but may be used to issue forms cantrol
commands without any transfer of text. GETVALUE usually
uses a text buffer, either implicit, as the pmsg operand, enclosed
in apostrophes, or as an explicitly coded TEXT statement but
may be coded without a prompt message, and therefore no text
buffer.

2. GETEDIT (c) and GETVALUE (f) may be used to read numeric
values from a terminal and convert them to interna! (binary)
representation. GETEDIT can read and convert multiple values,
integer and floating point or mixed integer and floating point, of
varying external format. GETVALUE can read multiple single
precision integers. f the external format of the input value is
other than single precision integer (double precision integer,
standard or extended precision floating point in either F or E
format), then the format of the input variable must be specified
in the FORMAT= operand, the internal format must be specified
in the TYPE= operand, and only one value can be read and
converted by execution of a single GETVALUE instruction.

3. GETEDIT (c) and PUTEDIT (g) may optionally perform 1/0. If
the ACTION= operand is coded as ACTION=STG conversion will
be performed between the internally represented variables and
the text buffer specified, but no data transfer to or from a terminal
will take place.

4, PRINTEXT (e) and READTEXT (h) cannot be used for internal/
external or external/internal conversion of numeric values. These
two instructions deal in the transfer of text strings between storage
and terminals exclusively. There may be code conversion per-
formed, from the EBCDIC representation in a text buffer to or
from whatever unique code a particular terminal requires, but this
is an automatic function of the system, is transparent to the user,
and is not the conversion of arithmetic values which was defined
as data conversion in this section.

5. CONVTD (a) and CONVTB (d) never perform /0. These instruc-
tions always operate between variables and text buffers in starage.
All other instructions listed either always, or optionatly may
perform 1/0.

6. CONVTD (a) and GETEDIT (c) are used to convert an EBCDIC
string in a text buffer to a binary value. The GETEDIT may also

have read the value into the text buffer from a terminal
(ACTION=1/0).

12-20 SR30-0220



PRINTNUM (b) never requires a text buffer. The conversion

is from the binary value to the code required by the terminal, with
no user defined text buffer employed. GETVALUE (f) does not
require a text buffer for the conversion, but may use one for the
prompt message if the pmsg operand is coded.

PRINTNUM (b), PRINTEXT (e), GETVALUE (f), and
READTEXT (h) always perform 1/0. 1/0 is optional with
GETEDIT (c) and PUTEDIT (g).

CONVTD (a}), PRINTNUM (b), GETEDIT (c), CONVTB (d),
GETVALUE (f), and PUTEDIT (g), all handle single and double
precision integers, and standard or extended precision floating
point numbers in F or E notation external formats. PRINTEXT
(e) and READTEXT (h) do not perform any conversion, and
therefore do not apply.

Data Formatting 12-21



This page intentionally left blank.

12-22  SR30-0220



SENSOR BASED 1/0

Section 13: Sensor I/0

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. Define the sensor |/O requirements in an application program.

2. Understand how to obtain digital and analog data from external
devices.

3. Understand how to send digital and analog output signals from the
Series/1 to external devices.

4.  Use the facilities provided to service process interrupts on a
Series/1.

READING REFERENCE: Program Description and Operations
Manual (SB30-1053) pages 2-112 through 2-127; or Program
Description and Operations Manual Version 2 (SB30-1213) pages
2-117 through 2-134.

READING ASSIGNMENT: SB30-1053 (PDOM) pages 2-112 through
2-124. SB30-1213 (Version 2 PDOM) pages 2-121 through 2-130.

“Data Processing Input/Output’’ refers to the exchange of information
between a computer and a data processing 1/O device. An example of
this is shown in Figure 13-1 in the form of an operator entry at a
terminal, which the program in the computer then transfers into stor-
age, and acts upon.

SERIES/1
STORAGE

SUPERVISOR

APPLICATION
PROGRAM

—

Figure 13-1. Data processing 1/0

Sensor Input/Qutput  13-1



13-2 SR30-0220

SERIES/1
STORAGE

Depending on what the inpt.t means to the program, an information
message or guidance prompt may be sent back to the terminal operator
in response.

In Figure 13-2, the same example has been put into an applications
context. Assume that the program is a ““flow monitoring’* application,
related to some industrial process. A gauge is connected to a pipe,
indicating the rate of flow through the pipe. The rate of flow can be
adjusted using the valve.

SUPERVISOR

~—" |

APPLICATION 6
PROGRAM ~_—

Figure 13-2. Flow monitoring

In response to a prompt from the program, the operato: reads the
gauge, and enters the rate of flow at the terminal. The program trans-
fers the information into storage and checks the entered flow rate
against predetermined limits or targets. If the flow rate is too high or
too low, the program sends a message to the terminal instructing the
operator to adjust the valve down or up.

In the example just discussed, a computer program is used to analyze

a measurement of some physical property (in this case, rate of flow in
pipe}, and based on that analysis, request that a mechanical action take
place (turn the valve up or down). The human operator, using the
terminal, provided the flow rate information to the program, and as a
result of a message on the terminal, provides the power to turn the
valve.



SERIES/N
STORAGE

SUPERVISOR

Using the ‘‘Sensor Based Input/Output’’ features of the Series/1, the
same application can be performed without using an operator or a
terminal. In Figure 13-3, the gauge has been replaced by another flow-
monitoring device, which translates flow rate into a voltage propor-
tional to the rate of flow, rather than into movement of a needie
around a dialface. The voltage produced is therefore an analog of the
rate of flow within the pipe.

APPLICATION
PROGRAM

%

SENSOR
BASED
INPUT/
OUTPUT 8

Figure 13-3. Sensor based 1/0 flow monitoring

The voltage is sensed by the Series/1 Analog Input (A/l) feature, and
converted to a digital value (binary). This value can then be arithmeti-
cally compared with known limits or targets, and a decision can be
made whether to decrease or increase the valve opening.

The manually operated valve has been replaced by a motorized unit.
The direction and amount of rotation of the motor drive can be con-
trolled by the Digital Output (D/O) sensor |/0O feature.

The entire “"flow-monitoring’’ application can now be directly con-
trolled by the program, from acquisition of the flow-rate information
(A/1), through the performance of the corrective mechanical adjust-
ment (D/0). The delays and errors inherent in operator participation in
the process no longer exist.

Sensor input/Output  13-3



Digital Input/Output

Analog Input/Output

13-4 SR30-0220

Sensor 1/0 is used in a variety of application areas, including process
control, laboratory automation, and plant automation. Sensor |/0
devices available on the Series/1 are as follows;

A digital unit of sensor 1/0 is a physical group of 16 contiguous points.
The entire group of sixteen points is accessed as a unit at the 1/0 in-
struction level; Event Driven Executive programming support allows
logical access down to the single point level. Each point of Digital Input
(D/1) or Digital Output (D/O) may be operated (turned on/off) inde-
pendently. D/l is usually used to acquire information from instruments
which present binary-encoded output, or to monitor contact/switch
status (open/closed). D/O is used to control electrically operated de-
vices through closing relay contacts, pulsing stepping motors, etc.

Process Interrupt (P/l) is a special form of D/I. If a point of D/I

changes state, and then changes state again, without an intervening
READ operation from the program, the status change will be undetected.
With P/I, a point changing from the off state to on generates a hardware
interrupt, which is then routed, through software support, to an inter-
rupt servicing user program which can respond to the external event
which caused the interrupt. P/l is often used for monitoring critical or
alarm conditions, which must be serviced quickly, and whose occur-
rence must not go undetected.

A physical unit of Analog Input (A/l) may be a group of 8 points or 16
points, depending on the type. Analog Output is installed in groups of
2 points. Each point of A/l and A/O is accessed separately, at both the
1/0 instruction and Event Driven Executive support level,

Analog Input is used to monitor devices that produce output voltages
proportional to the physical variable or process being measured. Ex-
amples include laboratory instruments, strain gauges, temperature sen-
sors, or other “‘non-digitizing’’ instruments. Digital Input was des-
cribed as monitoring an on/off status; only one of two conditions were
possible. With A/l, the intelligence is carried in the amplitude of the
voltage sensed rather than in its presence or absence.



Analog input voltages are converted to corresponding binary equiva-

lents for use by th
converter. Figure
mechanism.

e system, by the use of an Analog to Digital (A to D)
13-4 is a schematic of the analog input conversion

SERIES/1
SUPERVISOR \ /\
ANALOG TO M
- DIGITAL P
CONVERTER )é
APPLICATION
PROGRAM
0110110 S
~a

=~ ]

Figure 13-4. Analog to digital conversion

The address of the point to be ““read” (sensed) [l is sent to a multi-

plexor which
ed point is routed

selects the requested point. The voltage at the select-
through the multiplexor to the Analog to Digital

Converter [E] . The A to D converter changes the voltage into an

equivalent binary

value, which can then be used in the Series/1 [} .

With Analog Output, this process is reversed. In Figure 13-5, a binary

value [fJ] which is

the equivalent of a desired voltage, is converted to

that voltage by a Digital to Analog Converter , and transferred to

the specified outp

For more detailed

ut point [EJ .

information about Series/1 Senso. |/O Features, see

“IBM Series/1 4982 Sensor 1/0O Unit Description’’ (GA34-0027).

SERIES/1 B
SUPERVISOR \
DIGITAL TO
> ANALOG
CONVERTER
APPLICATION
PROGRAM
1010011 ;., LB

= |

Figure 13-5. Digital to analog conversion

Sensor Input/Qutput. 13-5



EVENT