
SC23-2197 -00

First Edition (March 1990)

This edition of the Assembler Language Reference for IBM AIX Version 3 for RISe
System/6000 applies to Version 3 of IBM AIX RISC System/6000 Licensed Program and to
all subsequent releases of these products until otherwise indicated in new releases or
technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country. Any
reference to an IBM licensed program in this publication is not intended to state or imply that
you can use only IBM's licensed program. You can use any functionally equivalent program
instead.

Requests for copies of this publication and for technical information about IBM products
should be made to your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been
removed, address comments to IBM Corporation, Department 997, 11400 Burnet Road,
Austin, Texas 78758-3493. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

@ Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

@ Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

@ Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract
with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this book:

AIX is a trademark of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

RISC System/SOOO is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

Trademarks and Acknowledgements iii

iv Assembler Language Reference

About This Book

This book provides information on application programming interfaces to the Advanced
Interactive Executive Operating System (referred to in this text as AIX) for use on the
RiSe System/6000.

Who Should Use This Book
This book is intended for experienced assembler language programmers. To use this
book effectively, you should be familiar with AIX or UNIX System V commands,
assembler instructions and pseudo-ops, and processor register usage.

How to Use This Book

Overview of Contents
This book contains the following sections consisting of processor information, syntax and
semantics, addressing information, the instruction set, information on running a program,
and pseudo-ops.

• Overview of Processing and Storage on the RiSe System/6000 Microprocessor

• Syntax and Semantics Overview

• Addressing Overview

• Instruction Set in alphabetical order

• Assembling, Linking, and Running a Program Overview

• Pseudo-ops Overview and alphabetical listing of Pseudo-ops

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies instructions, pseudo-ops, commands, and other items whose
names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied
by the user.

Monospace Identifies examples of specific data values, examples of text similar to
what you might see displayed, examples of portions of program code
similar to what you might write as a programmer, messages from the
system, or information you should actually type.

What is Not in This Book
This book does not teach readers how to program or operate their IBM RiSe
System/6000. Furthermore, this book contains little or no information about:

• Any commands, system calls, subroutines, or programming aids that are part of the
AIX Operating System, except for limited information on the as, Id, and cc commands.

About This Book V

• Error messages generated by the as command. These messages are shown in Task
Index and Glossary for IBM RISe System/6000.

• Any hardware features. This book does give brief explanations about some processor
registers and their use.

• Details about privileged instructions.

Related Publications
The following books contain information about or related to assembler language
programming:

• IBM RISe System/6000 in POWERstation and POWERserver Hardware Technical
Reference - General Information, SA23-2643.

• AIX Files Reference for IBM RISe System/6000, SC23-2200.

• AIX Commands Reference for IBM RISe System/6000, SC23-2199.

• Task Index and Glossary for IBM RISe System/6000, SC23-2201.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2197.

vi Assembler Language Reference

Contents

Chapter 1. Processing and Storage 1-1
Overview of Processing and Storage on the RISC System/6000 Microprocessor. 1-2
Branch Processor Overview . 1-3
Fixed Point Processor Overview . 1-6
Floating Point Processor Overview. 1-12

Chaper 2. Syntax and Semantics 2-1
Syntax and Semantics Overview 2-2
Understanding The Character Set 0 0 •• 0 ••• 0 •••• 0 •• 0 0 • 0 • • • • 2-2
Understanding Reserved Words 0 •• 0 ••• 0 •• 0 ••••••••• 0 •••• 0 •• 0 •• 0 •• 0 • • • • 2-3
Understanding Line Format 0 ••• 0 ••••••••••••••• 0 ••••• 0 •••••••• 0 • • • • • • 2-3
Understanding Statements 0 ••• 0 ••• 0 ••• 0 •••••••••••••• 0 •• 0 • • • • • • • • • • • • 2-3
Understanding Symbols 0 ••••• 0 0 ••••• 0 •••••••• o •••••••• 0 • • • • 2-5
Understanding Constants . 0 0 •• 0 0 ••••••• 0 • 0 ••• 0 • 0 0 •• 0 •• 0 •• 0 ••••• 0 • • • • • 2-9
Understanding Operators 0 •••• 0 • 2-11
Understanding Expressions 0" 0 ••• 0 ••• 0 ••• 0 •• 0 •• 0 ••••••••••• 0 • • • • • • • • 2-12

Chapter 3. Addressing. 3-1
Addressing Overview 0 ••• 0 0 •• 0 •• 0 0 •• 0 •• 0 ••••• 0 • • • • • • • • • 3-2
Understanding the Location Counter 0 •• 0 • 3-4

Chapter 4. Assembling, Linking, and Running 4-1
Assembling, Linking, and Running A Program Overview 0 • 0 0 •• 0 •••• 0 ••••• 0 • • 4-2
Understanding Assembler Passes .. 0 0 •• 0 ••• 0 •• 0 •••••• 0 ••••••• 0 •• 0 • • • • • 4-2
Assembling and Linking with the cc Command 0" 0 •••••••••••• 0 •• 0 •• 0 • • • • 4-3
Interpreting an Assembler Listing 0 •• 0 • 4-3
Subroutine Linkage Convention 0 0 •• 0 •• 0 ••• 0 • 0 0 • 0 ••• 0 ••••••• 0 ••• 0 • 0 4-6
Understanding the TOC 0 ••• 0 •••• 0 • 0 ••• 0 ••••• 0 ••• 0 0 0 0 0 •••• 00 •• 0 • • • • • • 4-14
Running the Program 0 •••••• 0 • 0 0 0 • 0 0 0 0 • 0 • 0 0 0 0 ••• 0 •• 0 •• 0 • • • • 4-17

Chapter 5. Instruction Set .. 5-1
a (Add) Instruction '" 0 ••••••••••• 0 ••• 0 •••••••• 0 • 5-2
abs (Absolute) Instruction .. 0 •••• 0 ••••• 0 0 •••••• 0 •• 0 ••••• 0 • • • • • • • • • • • • • 5-4
ae (Add Extended) Instruction 0 • • 5-6
ai (Add Immediate) Instruction 0 •••••• 0 • 5-8
ai. (Add Immediate and Record) Instruction. • . 5-9
ame (Add to Minus One Extended) Instruction. 5-10
and (AND) Instruction 0 ••• 0 •••••••• 0 ••• 0 •• 0 •• 0 • • • • • • • • • 5-12
andc (AND With Complement) Instruction . 0 ••• 0 •••••••••• 0 • 0 • • • • • • • • • • • • 5-14
andil. (AND Immediate Lower) Instruction 0 •• 0 • • • • • • • • • • • • • • • • • • 5-16
andiu. (AND Immediate Upper) Instruction . 0 ••••• 0 0 •• 0 ••••• 0 ••••• 0 • • • • • • • 5-17
aze (Add To Zero Extended) Instruction o ••• 0 •••••• 0 • 5-18
b (Branch) Instruction 0 •••••••••••••••••••• 0 • • • • • • • • • • • • • • • • • 5-20
bb (Branch on Condition Register Bit) Instruction 0 • • • • • • • • • • • • • • 5-22
bc (Branch Conditional) Instruction 0 • 5-25
bcc (Branch Conditional to Count Register) Instruction 5-28

Contents vii

bcr (Branch Conditional Register) Instruction
cal (Compute Address Lower) Instruction
cau (Compute Address Upper) Instruction
cax (Compute Address) Instruction
cmp (Compare) Instruction .. .
cmpi (Compare Immediate) Instruction
cmpl (Compare Logical) Instruction
cmpli (Compare Logical Immediate) Instruction
cntlz (Count Leading Zeros) Instruction
crand (Condition Register AND) Instruction
crandc (Condition Register AND with Complement) Instruction
creqv (Condition Register Equivalent) Instruction
crnand (Condition Register NAND) Instruction
crnor (Condition Register NOR) Instruction ~
cror (Condition Register OR) Instruction
crorc (Condition Register OR with Complement) Instruction
crxor (Condition Register XOR) Instruction
div (Divide) Instruction
divs (Divide Short) Instruction .. .
doz (Difference or zero) Instruction
dozi (Difference or Zero Immediate) Instruction
eqv (Equivalent) Instruction
exts (Extend Sign) Instruction .. .
fa (Floating Add) Instruction
fabs (Floating Absolute Value) Instruction
fcmpo (Floating Compare Ordered) Instruction
fcmpu (Floating Compare Unordered) Instruction
fd (Floating Divide) Instruction
fm (Floating Multiply) Instruction
fma (Floating Multiply Add) Instruction
fmr (Floating Move Register) Instruction
fms (Floating Multiply Subtract) Instruction
fnabs (Floating Negative Absolute Value) Instruction
fneg (Floating Negate) Instruction
fnma (Floating Negative Multiply Add) Instruction
fnms (Floating Negative Multiply Subtract) Instruction
frsp (Floating Round to Single Precision) Instruction
fs (Floating Subtract) Instruction
I (Load) Instruction .. .
Ibrx (Load Byte Reverse Indexed) Instruction
Ibz (Load Byte And Zero) Instruction
Ibzu (Load Byte And Zero With Update) Instruction
Ibzux (Load Byte And Zero With Update Indexed) Instruction :
Ibzx (Load Byte And Zero Indexed) Instruction
Ifd (Load Floating Point Double) Instruction
Ifdu (Load Floating Point Double With Update) Instruction
Ifdux (Load Floating Point Double With Update Indexed) Instruction
Ifdx (Load Floating Point Double Indexed) Instruction
Ifs (Load Floating Point Single) Instruction
Ifsu (Load Floating Point Single With Update) Instruction
Ifsux (Load Floating Point Single With Update Indexed) Instruction

viii Assembler Language Reference

5-30
5-32
5-33
5-34
5-36
5-38
5-40
5-42
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-56
5-58
5-60
5-61
5-63
5-65
5-67
5-69
5-71
5-73
5-75
5-77
5-79
5-81
5-83
5-85
5-87
5-89
5-92
5-95
5-97
5-99

5-101
5-102
5-104
5-106
5-107
5-109
5-111
5-113
5-115
5-117
5-119

Ifsx (Load Floating Point Single Indexed) Instruction 5-121
Iha (Load Half Algebraic) Instruction , 5-123
Ihau (Load Half Algebraic With Update) Instruction 5-125
Ihaux (Load Half Algebraic With Update Indexed) Instruction 5-127
Ihax (Load Half Algebraic Indexed) Instruction. .. 5-129
Ihbrx (Load Half Byte Reverse Indexed) Instruction 5-131
1hz (Load Half And Zero) Instruction. 5-133
Ihzu (Load Half And Zero With Update) Instruction 5-135
Ihzux (Load Half And Zero With Update Indexed) Instruction. 5-137
Ihzx (Load Half And Zero Indexed) Instruction 5-139
Iii (Load Immediate Lower) Instruction 5-141
liu (Load Immediate Upper) Instruction , 5-142
1m (Load Multiple) Instruction ... 5-143
Iscbx (Load String And Compare Byte Indexed) Instruction 5-145
lsi (Load String Immediate) Instruction , 5-148
Isx (Load String Indexed) Instruction 5-150
lu (Load With Update) Instruction .. 5-152
lux (Load With Update Indexed) Instruction 5-154
Ix (Load Indexed) Instruction ... 5-156
maskg (Mask Generate) Instruction 5-158
maskir (Mask Insert From Register) Instruction 5-160
mcrf (Move Condition Register Field) Instruction 5-162
mcrfs (Move To Condition Register From FPSCR) Instruction 5-163
mcrxr (Move To Condition Register From XER) Instruction 5-165
mfcr (Move From Condition Register) Instruction , 5-166
mffs (Move From FPSCR) Instruction , 5-167
mfmsr (Move From Machine State Register) Instruction 5-169
mfspr (Move From Special Purpose Register) Instruction 5-170
mtcrf (Move To Condition Register Fields) Instruction 5-172
mtfsf (Move To FPSCR Fields) Instruction 5-174
mtfsfi (Move To FPSCR Field Immediate) Instruction. .. 5-176
mtfsb1 (Move To FPSCR Bit 1) Instruction. .. 5-178
mtfsbO (Move To FPSCR Bit 0) Instruction. .. 5-180
mtspr (Move To Special Purpose Register) Instruction. .. 5-182
mul (Multiply) Instruction. .. 5-184
muli (Multiply Immediate) Instruction 5-186
muls (Multiply Short) Instruction .. 5-187
nabs (Negative Absolute) Instruction 5-189
nand (NAND) Instruction. .. 5-191
neg (Negate) Instruction .. , 5-193
nor (NOR) Instruction ... 5-195
or (OR) Instruction ... 5-197
orc (OR With Complement) Instruction. .. 5-199
oril (OR Immediate Lower) Instruction 5-201
oriu (OR Immediate Upper) Instruction , 5-202
rlimi (Rotate Left Immediate Then Mask Insert) Instruction 5-203
rlinm (Rotate Left Immediate Then AND With Mask) Instruction 5-205
rlmi (Rotate Left Then Mask Insert) Instruction. .. 5-207
rlnm (Rotate Left Then AND With Mask) Instruction. .. 5-209
rrib (Rotate Right And Insert Bit) Instruction. .. 5-211
sf (Subtract From) Instruction .. 5-213

Contents ix

sfe (Subtract From Extended) Instruction. .. 5-215
sfi (Subtract From Immediate) Instruction. .. 5-217
sfme (Subtract From Minus One Extended) Instruction 5-218
sfze (Subtract From Zero Extended) Instruction. .. 5-220
si (Subtract Immediate) Instruction .. 5-222
si. (Subtract Immediate and Record) Instruction. .. 5-223
sl (Shift Left) Instruction ... 5-225
sle (Shift Left Extended) Instruction 5-227
sleq (Shift Left Extended with MQ) Instruction 5-229
sliq (Shift Left Immediate with MQ) Instruction .. 5-231
slliq (Shift Left Long Immediate With MQ) Instruction. .. 5-233
sllq (Shift Left Long with MQ) Instruction 5-235
slq (Shift Left with MQ) Instruction 5-237
sr (Shift Right) Instruction .. 5-239
sra (Shift Right Algebraic) Instruction .. 5-241
srai (Shift Right Algebraic Immediate) Instruction. .. 5-243
sraiq (Shift Right Algebraic Immediate With MQ) Instruction 5-245
sraq (Shift Right Algebraic With MQ) Instruction 5-247
sre (Shift Right Extended) Instruction. .. 5-249
srea (Shift Right Extended Algebraic) Instruction .. 5-251
sreq (Shift Right Extended With MQ) Instruction 5-253
sriq (Shift Right Immediate With MQ) Instruction 5-255
srliq (Shift Right Long Immediate With MQ) Instruction .. 5-257
srlq (Shift Right Long With MQ) Instruction 5-259
srq (Shift Right with MQ) Instruction. .. 5-261
st (Store) Instruction 5-263
stb (Store Byte) Instruction .. 5-265
stbrx (Store Byte Reverse Indexed) Instruction 5-266
stbu (Store Byte With Update) Instruction 5-268
stbux (Store Byte With Update Indexed) Instruction. .. 5-270
stbx (Store Byte Indexed) Instruction 5-272
stfd (Store Floating Point Double) Instruction. .. 5-273
stfdu (Store Floating Point Double With Update) Instruction 5-275
stfdux (Store Floating Point Double With Update Indexed) Instruction. 5-277
stfdx (Store Floating Point Double Indexed) Instruction 5-279
stfs (Store Floating Point Single) Instruction. .. 5-281
stfsu (Store Floating Point Single With Update) Instruction 5-283
stfsux (Store Floating Point Single With Update Indexed) Instruction 5-285
stfsx (Store Floating Point Single Indexed) Instruction .. 5-287
sth (Store Half) Instruction ... 5-289
sthbrx (Store Half Byte Reverse Indexed) Instruction. .. 5-291
sthu (Store Half With Update) Instruction .. 5-293
sthux (Store Half With Update Indexed) Instruction 5-295
sthx (Store Half Indexed) Instruction 5-297
stm (Store Multiple) Instruction. .. 5-299
stsi (Store String Immediate) Instruction. .. 5-301
stsx (Store String Indexed) Instruction 5-303
stu (Store With Update) Instruction. .. 5-305
stux (Store with Update Indexed) Instruction 5-307
stx (Store Indexed) Instruction .. 5-309
svc (Supervisor Call) Instruction. .. 5-311

-It

X Assembler Language Reference

t (Trap) Instruction
ti (Trap Immediate) Instruction
xor (XOR) Instruction .. .
xoril (XOR Immediate Lower) Instruction
xoriu (XOR Immediate Upper) Instruction

Chapter 6. Pseudo-ops
Pseudo-ops Overview .. .
Notational Conventions
.align Pseudo-op
.bb Pseudo-op
.bc Pseudo-op
.bf Pseudo-op .. .
.bi Pseudo-op .. .
.bs Pseudo-op
.byte Pseudo-op .. .
.comm Pseudo-op .. .
.csect Pseudo-op
.double Pseudo-op .. .
.drop Pseudo-op
.dsect Pseudo-op
.eb Pseudo-op
.ec Pseudo-op
.ef Pseudo-op .. .
.ei Pseudo-op .. .
.es Pseudo-op
.extern Pseudo-op .. .
.file Pseudo-op
.float Pseudo-op .. .
.function Pseudo-op
.globl Pseudo-op
.hash Pseudo-op
.lcomm Pseudo-op .. .
.line Pseudo-op .. .
.Iong Pseudo-op .. .
.org Pseudo-op .. .
· rename Pseudo-op
.set Pseudo-op
.short Pseudo-op
.space Pseudo-op .. .
.stabx Pseudo-op
.string Pseudo-op
· tbtag Pseudo-op
· tc Pseudo-op .. .
.toc Pseudo-op
.tocof Pseudo-op
.using Pseudo-op
· vbyte Pseudo-op
.xline Pseudo-op

Appendix A. Opcode and Mnemonic Tables

5-313
5-315
5-317
5-319
5-320

6-1
6-2
6-4
6-7
6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-17
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-47
6-49
6-50
6-52
6-54
6-55

A-1

Contents xi

Instruction Set, Indexed by Primary Opcode A-2
Instruction Set, Indexed by Mnemonic. A-7

xii Assembler Language Reference

Chapter 1. Processing and Storage

Chapter 1. Processing and Storage 1-1

Overview of Processing and Storage on the RiSe System/60aO
Microprocessor

The characteristics of the RiSe System/SOOO Microprocessor's processor and storage
influence its assembler language. The capabilities of the processor and the nature of
available storage determine what the assembler can do.

This chapter gives an overview of the RiSe System/SOOO Microprocessor and tells you how
data is stored both in main memory and in registers. This information will give you some of
the conceptual background necessary to understanding the function of the RiSe
System/SOOO Microprocessor's instruction set and pseudo-ops.

The processor unit contains the sequencing and processing controls for instruction fetch,
instruction execution and interrupt action. The following figure shows the logical partitioning
of the RiSe System/SOOO Microprocessor.

Programmed

I/O
Fixed
Point

- - Processor - -
Branch I. - -- -Processor GPRs Data

C
LR CR XER I MQ

A

CTR MSR C

Floating H
Instruction ~ .. • Point E

Cache Processor

~~
FPRs ~ ~

FPSCR

" "

MAIN MEMORY

H

"
Direct Memory Access

The processing unit is a word oriented fixed point processor functioning in tandem with a
doubleword oriented Floating Point processor. The microprocessor uses 32-bit word-aligned
instructions and provides for byte, halfword, word, and doubleword operand fetches and
stores between storage and a set of 32 General Purpose Registers, and between storage
and a set of 32 Floating Point Registers.

1-2 Assembler Language Reference

Branch Processor Overview
The Branch Processor has four 32-bit registers.

• The Condition Register

• The Link Register

• The Count Register

• The Machine State Register

Branch, Supervisor Linkage, Trap, Return From Interrupt, and Condition Register
instructions effect the various registers of the Branch Processor.

Understanding Branch Instructions
Use branch instructions to change the sequence of instruction execution.

Since all branch instructions are on word boundaries, the processor performing the branch
ignores bits 30 and 31 of the generated branch target address. All branch instructions can
be used in unprivileged state.

A branch instruction computes the target address in one of four ways:

• The target address is the sum of a constant and the address of the branch instruction
itself.

• The target address is the absolute address given as argument to the instruction.

• The target address is the address found in the Link Register.

• The target address is the address found in the Count Register.

Using the first two of these methods, the target address can be computed sufficiently ahead
of the branch instructions to prefetch instructions along the target path.

Using the third and fourth methods, prefetching instructions along the branch path is also
possible provided the Link Register or the Count Register is loaded sufficiently ahead of the
branch instruction.

In the case of conditional branch instructions, instruction prefetching is done on each path of
the branch.

In the various target forms, branches generally either branch only, branch and provide a
return address, branch conditionally, or branch conditionally and provide a return address. If
the particular branch instruction has the I in the syntax form, then it sets the link bit to 1 and
the Link Register stores the return address from an invoked subroutine. The return address
is the address of the instruction immediately following the branch instruction.

b (Branch) Instruction

ba (Branch Absolute) Instruction

bb (Branch on Condition Register Bit) Instruction

be (Branch Conditional) Instruction

bea (Branch Conditional Absolute) Instruction

bee (Branch Conditional to Count Register) Instruction

ber (Branch Conditional Register) Instruction

Chapter 1. Processing and Storage 1-3

Conditional branch instructions require the specification of branch option bits and condition
type and may use an optional link flag.

Extended Mnemonics
These extended instructions are based on branch instructions and facilitate setting specified
bits. The branch condition is specified by a Branch Code which replaces the XX in each
Extended Mnemonic instruction.

bXX, bXXI (Branch on Condition Extended) Instruction

bXXa, bXXla (Branch on Condition Extended Absolute) Instruction

bXXc, bXXcl (Branch Count Register on Condition) Instruction

bXXr, bXXrl (Branch Register on Condition) Instruction

bbta, bbfa, bbtla, bbfla (Branch on Condition Register Bit) Instruction

bbtc, bbfc, bbtcl, bbfcl (Branch on Condition Register Bit) Instruction

bbtr, bbfr, bbfrl, bbtrl (Branch on Condition Register Bit) Instruction

bctr (Branch to Count Register) Instruction

bdz, bdn, bdzl, bdnl (Branch and Decrement CTR) Instruction

bdzXX, bdnXX (Branch and Decrement CTR on Condition) Instruction

bdza, bdna, bdzla, bdnla (Branch Absolute and Decrement CTR) Instruction

bdzr, bdnr, bdzrl, bdnrl (Branch Register and Decrement CTR) Instruction

Branch Code Meaning
It less than*
gt greater than*
eq equal to*
so summary overflow*
ge greater than or equal to*
Ie less than or equal to*
ne notequ~to*
ns not summary overflow*
nl not less than
ng not greater than
z zero
nz not zero

Note: The bdzXX and bdnXX instructions use only the first eight Branch Codes (marked
by *) in place of XX.

Understanding Supervisor Linkage Instructions
There are two Branch Processor instructions for system control.

svc (Supervisor Call) Instruction

svca (Supervisor Call Absolute) Instruction

Understanding Trap Instructions
You can use the trap instructions to test for a specified set of conditions during the execution
of your program. You can define traps for events that should not occur during program
execution, such as an index out or range, or the use of an invalid character. If any of the
defined trap conditions are met, a Program Interrupt occurs. If the tested conditions are not
met, instruction execution continues normally.

1-4 Assembler Language Reference

These instructions compare the contents of a General Purpose Register with a 32-bit value.
This comparison results in five test conditions. These are ANDed with five condition bits
provided in the instruction TO field. If the result is not zero, then a Program interrupt occurs.

The five test conditions are:

TO bit
6
7
8
9
10

ANDed with Condition
Compares Less Than
Compares Greater Than
Compares Equal
Compares Logically Less Than
Compares Logically Greater Than

The available Trap Instructions are:

t (Trap) Instruction

ti (Trap Immediate) Instruction

Understanding Condition Register Instructions
Condition Register Field Instructions

The following instruction copies one Condition Register field to another.

merf (Move Condition Register Field) Instruction

Condition Register Logical Instructions
The following instructions perform logical operations with the Condition Register fields.

erand (Condition Register AND) Instruction

erande (Condition Register AND with Complement) Instruction

ereqv (Condition Register Equivalent) Instruction

ernand (Condition Register NAND) Instruction

ernor (Condition Register NOR) Instruction

eror (Condition Register OR) Instruction

erore (Condition Register OR with Complement) Instruction

erxor (Condition Register XOR) Instruction

Related Information
Fixed Point Processor Overview on page 1-6, Floating Point Processor Overview on page
1-12.

See the following articles in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register, Link Register, Count Register,
Machine State Register.

Chapter 1. Processing and Storage 1-5

Fixed Point Processor Overview
The Fixed Point Processor uses a set of 32-bit Registers that includes:

• Thirty-two 32-bit General Purpose Registers

• One 32-bit Fixed Point Exception Register

• One 32-bit Multiply Quotient Register

Understanding General Purpose Registers
The thiry-two 32-bit General Purpose Registers constitute the principal internal storage
mechanism in the Fixed Point Processor.

Each General Purpose Register is 32 bits wide.

Understanding Fixed Point Load Instructions
The Fixed Point Load Instructions move information from a location in memory into one of
the General Purpose Registers.

The Load instructions compute the effective address when moving data. If the storage
access does not cause an Alignment Interrupt or a Data Storage Interrupt, the byte,
halfword, or word in storage addressed by the effective address is loaded into a target
General Purpose Register.

The following Load instructions are available.

I (Load) Instruction

Ibrx (Load Byte Reverse Indexed) Instruction

Ibz (Load Byte and Zero) Instruction

Ibzx (Load Byte and Zero Indexed) Instruction

Iha (Load Half Algebraic) Instruction

Ihax (Load Half Algebraic Indexed) Instruction

Ihbrx (Load Half Byte Reverse Indexed) Instruction

1hz (Load Half and Zero) Instruction

Ihzx (Load Half and Zero Indexed) Instruction

iii (Load Immediate Lower) Instruction

liu (Load Immediate Upper) Instruction

1m (Load Multiple) Instruction

Ix (Load Indexed) Instruction

Understanding Fixed Point Load with Update Instructions
The Fixed Point Load with Update Instructions move information from a location in memory
into one of the General Purpose Registers.

The Load With Update instructions compute an 6.iective address when moving data. This
address can replace the contents of the Base General Purpose Register. If the storage

1-6 Assembler Language Reference

access does not cause an Alignment Interrupt or Data Storage Interrupt, the instruction then
copies the byte, halfword, or word contents of the specified location in memory into a second
target General Purpose Register.

There are four conditions under which a newly calculated effective address is not saved.

• The General Purpose Register to be updated is the same as the target General Purpose
Register. Under this circumstance the updated Register contains data loaded from
memory.

• The General Purpose Register to be updated is GPR O .

• The storage access causes an Alignment Interrupt.

• The storage access causes a Data Storage Interrupt.

The following Load with Update Instruction are available:

Ibzu (Load Byte And Zero With Update) Instruction

Ibzux (Load Byte And Zero With Update Indexed) Instruction

Ihau (Load Half Algebraic With Update) Instruction

Ihaux (Load Half Algebraic With Update Indexed) Instruction

Ihzu (Load Half And Zero With Update) Instruction

Ihzux (Load Half And Zero With Update Indexed) Instruction

lu (Load With Update) Instruction

lux (Load With Update Indexed) Instruction

Understanding Fixed Point Store Instructions
If the storage access does not cause an Alignment Interrupt or a Data Storage Interrupt, the
contents of a source General Purpose Register are stored into the byte, halfword, or word in
storage addressed by the effective address.

st (Store) Instruction

stb (Store Byte) Instruction

stbrx (Store Byte Reverse Indexed) Instruction

stbx (Store Byte Indexed) Instruction

sth (Store Half) Instruction

sthbrx (Store Half Byte Reverse Indexed) Instruction

sthx (Store Half Indexed) Instruction

stm (Store Multiple) Instruction

stx (Store Indexed) Instruction

Understanding Fixed Point Store with Update Instructions
If the storage access does not cause an Alignment Interrupt or a Data Storage Interrupt, the
contents of a source General Purpose Register are stored into the byte, halfword, or word in
storage addressed by the effective address. If the General Purpose Register does not

Chapter 1 . Processing and Storage 1-7

contain the address to be updated and is not General Purpose Register 0 and no interrupt
occurs, then the effective address is placed into the Base General Purpose Register.

stbu (Store Byte With Update) Instruction

stbux (Store Byte With Update Indexed) Instruction

sthu (Store Half With Update) Instruction

sthux (Store Half with Update Indexed) Instruction

stu (Store With Update) Instruction

stux (Store With Update Indexed) Instruction

Understanding Fixed Point String Instructions
The Fixed Point String Instructions allow the movement of data from storage to registers or
from registers to storage without concern for alignment. These instructions can be used for a
short move between arbitrary storage locations or to initiate a long move between unaligned
storage fields. Load String Indexed and Store String Indexed Instructions of zero length do
not alter the target register.

Iscbx (Load String And Compare Byte Indexed) Instruction

lsi (Load String Immediate) Instruction

Isx (Load String Indexed) Instruction

stsi (Store String Immediate) Instruction

stsx (Store String Indexed) Instruction

Understanding Fixed Point Address Computation Instructions
There are three fixed point instructions for address computation.

cal (Compute Address Lower) Instruction

cau (Compute Address Upper) Instruction

cax (Compute Address) Instruction

Understanding Fixed Point Arithmetic Instructions
The Fixed Point Arithmetic Instructions treat the contents of registers as 32-bit signed
integers.

a (Add) Instruction

abs (Absolute) Instruction

ae (Add Extended) Instruction

ai (Add Immediate) Instruction

ai. (Add Immediate and Record) Instruction

arne (Add To Minus One Extended) Instruction

aze (Add To Zero Extended) Instruction

div (Divide) Instruction

divs (Divide Short) Instruction

1-8 Assembler Language Reference

doz (Difference or Zero) Instruction

dozi (Difference or Zero Immediate) Instruction

mul (Multiply) Instruction

muli (Multiply Immediate) Instruction

muls (Multiply Short) Instruction

nabs (Negative Absolute) Instruction

neg (Negate) Instruction

sf (Subtract From) Instruction

sfe (Subtract From Extended) Instruction

sfi (Subtract From Immediate) Instruction

sfme (Subtract From Minus One Extended) Instruction

sfze (Subtract From Zero Extended) Instruction

si (Subtract Immediate) Instruction

si. (Subtract Immediate and Record) Instruction

Understanding Fixed Point Logical Instructions
The Logical Instructions perform the indicated operations in a bit-wise fashion.

and (AND) Instruction

ande (AND With Complement) Instruction

andil. (AND Immediate Lower) Instruction

andiu. (AND Immediate Upper) Instruction

entlz (Count Leading Zeros) Instruction

eqv (Equivalent) Instruction

exts (Extend Sign) Instruction

nand (NAND) Instruction

nor (NOR) Instruction

or (OR) Instruction

ore (OR With Complement) Instruction

oril (OR Immediate Lower) Instruction

oriu (OR Immediate Upper) Instruction

xor (XOR) Instruction

xoril (XOR Immediate Lower) Instruction

xoriu (XOR Immediate Upper) Instruction

Understanding Fixed Point Rotate Instructions
The Fixed Point Processor performs rotate operations on data from a General Purpose
Register. The result of the rotate with mask instructions is either inserted into the register
under control of the provided mask or ANDed with the mask before the result is placed in the

Chapter 1. Processing and Storage 1-9

register. The rotate operations move a specified number of bits to the left. The bits that exist
from bits position 0 enter at bit position 31 .

When the rotate with insert is used, the result of the rotate operation is placed into the target
General Purpose Register under control of the provided mask. If a mask bit is 1, then the
associated bit of the rotated data (0 or 1) is placed into the target General Purpose Register.
If the mask bit is 0, the associated data bit (0 or 1) from the register remains unchanged.

The rotate left instructions allow rotate right instructions to be performed (in concept) by a
rotate left of 32-N bits, where N is the number of positions to rotate right.

Fixed Point Bit Mask Instructions
maskg (Mask Generate) Instruction

maskir (Mask Insert From Register) Instruction

rrib (Rotate Right And Insert Bit) Instruction

Fixed Point Rotate With Mask Instructions
rlimi (Rotate Left Immediate Then Mask Insert) Instruction

rlinm (Rotate Left Immediate Then AND With Mask) Instruction

rlmi (Rotate Left Then Mask Insert) Instruction

rlnm (Rotate Left Then AND With Mask) Instruction

Understanding Fixed Point Shift Instructions
The Fixed Point Shift Instructions logically perform left and right shifts. The result of a shift
instruction is placed in a General Purpose Register under control of a generated mask.

When the result of a shift instruction is placed into register RA, the target register, under the
control of a generated mask, one of the following occurs:

• If the mask bit is a 1, the respective bit from either the rotated word or a word of zeroes is
placed into the target General Purpose Register.

• If the mask bit is a 0, the corresponding bit from either the Multiply Quotient Register or a
word of 32 sign bits from the source General Purpose Register is placed into the target
General Purpose Register.

Setting the instruction's Record bit to 1 sets bits in the Condition Register according to the
value of the contents of the target General Purpose Register at the completion of the
instruction. The Condition Register is a set as if a compare between the contents of the
target General Purpose Register and the value zero had been performed.

sl (Shift Left) Instruction

sle (Shift Left Extended) Instruction

sleq (Shift Left Extended With MQ) Instruction

sliq (Shift Left Immediate With MQ) Instruction

slliq (Shift Left Long Immediate with MQ) Instruction

sllq (Shift Left Long With MQ) Instruction

slq (Shift Left With MQ) Instruction

sr (Shift Right) Instruction

1-1 0 Assembler Lanauaae Reference

sra (Shift Right Algebraic) Instruction

srai (Shift Right Algebraic Immediate) Instruction

sraiq (Shift Right Algebraic Immediate With MQ) Instruction

sraq (Shift Right Algebraic With MQ) Instruction

sre (Shift Right Extended) Instruction

srea (Shift Right Extended Algebraic) Instruction

sreq (Shift Right Extended With MQ) Instruction

sriq (Shift Right Immediate With MQ) Instruction

srliq (Shift Right Long Immediate With MQ) Instruction

srlq (Shift Right Long With MQ) Instruction

srq (Shift Right With MQ) Instruction

Understanding Fixed Point Move To/From System Registers
Instructions

Several instructions move the contents of one system register into another system register
or into a General Purpose Register.

mcrxr (Move To Condition Register From XER) Instruction

mfcr (Move From Condition Register) Instruction

mfmsr (Move From Machine State Register) Instruction

mfspr (Move From Special Purpose Register) Instruction

mtcrf (Move To Condition Register Fields) Instruction

mtspr (Move To Special Purpose Register) Instruction

Related Information
See the following articles in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register, Machine State Register, General
Purpose Registers, Fixed Point Exception Register, Multiply Quotient Register.

Branch Processor Overview on page 1-3.

r.h~ntAr 1 Prnr.p.~~ina and Storaae 1-11

Floating Point Processor Overview
The Floating Point Processor instructions are provided to perform arithmetic operations in
floating point registers and move floating point data between storage and these registers.

Understanding Floating Point Numbers
A floating point number consists of a signed exponent and a signed significand, and
expresses a quantity that is the. product of the significand and the number 2**exponent.
Encodings are provided in the data format to represent:

• Finite numeric values

• +- Infinity

• Values which are "Not a Number" (NaN)

Operations involving infinities produce results obeying traditional mathematical conventions.
NaNs have no mathematical interpretation. Their encoding permits a variable diagnostic
information field. They may be used to indicate uninitialized variables and can be produced
by certain invalid operations.

Understanding Floating Point Processor Registers
Floating Point Registers

There are thiry-two 64-bit Floating Point Registers, numbered from Floating Point Register
0-31. All Floating Point instructions provide a 5-bit field that is used to specify which Floating
Point Registers are to be used in the execution of the instruction. Every instruction that
interprets the contents of a Floating Point Register as a floating point value uses the double
precision floating point format for this interpretation.

All floating point instructions other than loads and stores are performed on operands located
in Floating Point Registers and place the results in a Floating Point Register. The Floating
Point Status and Control Register and the Condition Register maintain status information
about the outcome of some floating point operations.

Double and Single Format Conversions on Load and Store
Load and store double instructions transfer 64 bits of data without conversion between
storage and a Floating Point Register in the Floating Point Processor. Load single
instructions convert a stored single floating format value to the same value in double floating
format and transfer that value into a Floating Point Register. Store single instruction, do the
opposite, converting a double floating format value in a Floating Point Register into a single
floating format v·alue, prior to storage.

Understanding The Floating Point Status and Control Register
The Floating Point Status and Control Register is a 32-bit register that contains control flags
which govern the handling of Floating Point Exceptions (bits 20-31) and record information
about the results of floating point operations (bits 0-19).

1_1 " " I ... ~ I r] ... ' ... ~ __

Understanding Floating Point Load Instructions
There are load instructions for single precision and double precision. Double precision data
is loaded directly into a Floating Point Register. Since Floating Point Registers only support
floating point double precision operands, the processor converts single precision data to
double precision prior to loading.

Ifd (Load Floating Point Double) Instruction

Ifdu (Load Floating Point Double with Update) Instruction

Ifdux (Load Floating Point Double with Update Indexed) Instruction

Ifdx (Load Floating Point Double Indexed) Instruction

Ifs (Load Floating Point Single) Instruction

Ifsu (Load Floating Point Single with Update) Instruction

Ifsux (Load Floating Point Single with Update Indexed) Instruction

Ifsx (Load Floating Point Single Indexed) Instruction

Understanding Floating Point Store Instructions
There are store instructions for single precision and double precision. Single precision stores
convert Floating Point Register contents to single precision proir to storage.

stfd (Store Floating Point Double) Instruction

stfdu (Store Floating Point Double With Update) Instruction

stfdux (Store Floating Point Double With Update Indexed) Instruction

stfdx (Store Floating Point Double Indexed) Instruction

stfs (Store Floating Point Single) Instruction

stfsu (Store Floating Point Single With Update) Instruction

stfsux (Store Floating Point Single With Update Indexed) Instruction

stfsx (Store Floating Point Single Indexed) Instruction

Understanding Floating Point Move Instructions
The Floating Point Move Instructions copy data from one Floating Point Register to another.
Data may be modified depending upon the instruction.

fabs (Floating Absolute Value) Instruction

fmr (Floating Move Register) Instruction

fnabs (Floating Negative Absolute Value) Instruction

fneg (Floating Negate) Instruction

Chapter 1. Processing and Storage 1-13

Understanding Floating Point Arithmetic Instructions
The Floating Point Arithmetic Instructions perform arithmetic functions using floating point
data.

fa (Floating Add) Instruction

fd (Floating Divide) Instruction

fm (Floating Multiply) Instruction

frsp (Floating Round to Single Precision) Instruction

fs (Floating Subtract) Instruction

Understanding Floating Point Accumulate Instructions
The Floating Point Accumulate Instructions combine a multiply and an add operation without
an intermediate rounding operation.

fma (Floating Multiply Add) Instruction

fms (Floating Multiply Subtract) Instruction

fnma (Floating Negative Multiply Subtract) Instruction

fnms (Floating Negative Multiply Subtract) Instruction

Understanding Floating Point Compare Instructions
There are two instructions for performing ordered and unordered compares of the contents
of two Floating Point Registers. You specify which field in the Condition Register receives
the result of the compare.

fcmpo (Floating Compare Ordered) Instruction

fcmpu (Floating Compare Unordered) Instruction

These instructions set one bit in the field to one, and the others to zero. The compare result
bits have the following interpretations:

Bit 0

Bit 1

Bit 2

Bit 3

(FRA) < (FRB)

(FRA) > (FRB)

(FRA) = (FRB)

(FRA) ? (FRB)

Less Than

Greater Than

Equal

Unordered

Understanding Floating Point Status and Control Register Instructions
These instructions manipulate data in the Floating Point Status and Control Register.

mcrfs (Move to Condition Register from FPSCR) Instruction

mffs (Move from FPSCR) Instruction

mtfsf (Move to FPSCR Fields) Instruction

mtfsfi (Move to FPSCR Fields Immediate) Instruction

mtfsb1 (Move to FPSCR Bit 1) Instruction

mtfsbO (Move to FPSCR Bit 0) Instruction

1-14 Assembler Language Reference

Related Information
The frsp (Floating Round to Single Precision) instruction, mtcrf (Move to Condition Register
Fields) instruction, mtfsf (Move to FPSCR Fields) instruction, mtfsfi (Move to FPSCR Fields
Immediate) instruction, mtfsb1 (Move to FPSCR Bit 1) instruction, mtfsbO (Move to FPSCR
Bit 0) instruction.

See the following articles in POWERstation and POWERserver Hardware Technical
Reference - General Information: Floating Point Data Representation, Floating Point
Resource Management, Floating Point Exceptions, Machine State Register.

Chapter 1. Processing and Storage 1-15

1-16 Assembler Language Reference

Chaper 2. Syntax and Semantics

Chaper 2. Syntax and Semantics 2-1

Syntax and Semantics Overview
This overview explains the syntax and semantics of assembler language, including The
Character Set, Reserved Words, Line Format, Statements, Symbols, Constants, Operators,
and Expressions.

Understanding The Character Set

, (co,mma)

All letters and numbers are allowed. The assembler discriminates between uppercase and
lowercase letters. To the assembler, the symbols Name and name identify distinct symbols.

Some blank spaces are required, while others are optional. The assembler allows you to
substitute tabs for spaces.

The following characters have special meaning in RISC System/6000 assembler language.

Operand separator. Commas are allowed in statements only between operands.

Example:

a 3,4,5

(pound sign)

: (colon)

Comments. Anything after the # to the end of the line is ignored by the assembler. A # can
be the first character in a line, or it can be preceded by any number of characters, blank
spaces, or both.

Example:

a 3,4,5 # Puts the sum of GPR4 and GPR5 into GPR3.

Defines a label. The: always appears immediately after the last character of the label name
and defines a label equal to the value contained in the location counter at the time the
assembler encounters the label.

Example:

add: a 3,4,5 # Puts add equal to the address where the a
instruction is found.

; (semicolon)
Instruction separator. A semicolon separates two instructions that appear on the same line.
Spaces around the semicolon are optional.
A single instruction on one line does not have to end with a semicolon.

Example:

a 3,4,5 # These two lines have

a 4,3,5 # the same effect as ...

a 3,4,5; a 4,3,5 # ••• this line.

2-2 Assembler Language Reference

$ (dollar sign)
Refers to the current value in the assembler's current location counter.

Example:

dina:

size:

.long 1,2,3

.long $ - dina

Understanding Reserved Words
There are no reserved words in the RISC System/6000 Microprocessor assembler
language. The mnemonics for instructions and pseudo-ops are not reserved and can be
used in the same way as any other symbols.

There may be restrictions on the names of symbols that are passed to programs written in
other languages.

Understanding Line Format
The RISC System/6000 Microprocessor assembler language is written in free format. There
are no requirements for certain things to be in any particular column position.

The assembler language puts no limit on the number of characters that can appear on a
single input line. If a code line is longer than one line on a terminal, line wrapping will depend
on the editor used. However, the listing wiil only display 100 ASCII characters per line.

Blank lines are allowed; the assembler ignores them.

Understanding Statements
The RISC System/6000 Microprocessor assembler language has three kinds of statements:
instruction statements, pseudo-operation statements, and null statements. The Assembler
also uses Separator Characters, Labels, Mnemonics, Operands, and Comments.

Instruction Statements and Pseudo-operation Statements
An instruction or pseudo-op statement has the following syntax:

[label:] mnemonic [operand1[,operand2 ...]] [# comment]

The assembler recognizes the end of a statement when one of the following appears:

• An ASCII new-line character

• A comment character (#)

• A semicolon(;).

Null Statements
A null statement does not have a mnemonic or any operands. It can contain a label, a
comment, or both. Processing a null statement does not change the value of the location
counter.

Null statements are useful mainly to make assembler source code easier for people to read.

A null statement has the following syntax:

[label:] [# comment]

The spaces between the label and the comment are optional.

Chapter 2. Syntax and Semantics 2-3

If the null statement has a label, the label receives the value of the next statement, even
though that state is on a different line. The assembler gives the label the value contained in
the current location counter. For example,

here:
a 3,4,5

is synonymous with

here: a 3, 4 , 5

Note: Certain pseudo-ops may prevent a null statement's label from receiving the value of
the address of the next statement.

Separator Character

Labels

The separator characters are spaces, tabs, and commas. Commas separate operands.
Spaces or tabs separate the other parts of a statement. A tab can be used wherever a space
is shown in this book.

The spaces shown are required. You can optionally put one or more spaces after a comma,
before a pound sign (#), and after a #.

The label entry is optional. A line may have zero, one, or more labels. A line may have a
label but no other contents.

To define a label, follow a symbol with a colon (:). The assembler gives the label the value
contained in the assembler's current location counter. This value represents a relocatable
address.

Example:

subtr: sf 3,4,5

The label subtr: receives the value
of the address of the sf instruction.
You can now use subtr in subsequent statements
to refer to this address.

If the label is in a statement with an instruction that causes data alignment, the label
receives its value before the alignment occurs.

Example:

Assume that the location counter now
contains the value of 98.

place: .long expr

When the assembler processes this statement, it
sets place to address 98. But the .long is a pseudo-op that
aligns expr on a fullword. Thus, the assembler puts
expr at the next available fullword boundary, which is
address 100. In this case, place is not actually the address
at which expr is stored; referring to place will not put you
at the location of expr.

2-4 Assembler Language Reference

Mnemonics

Operands

Comments

The mnemonic field identifies whether a statement is an instruction statement or a
pseudo-op statement. Each mnemonic requires a certain number of operands in a certain
format.

For an instruction statement, the mnemonic field contains an abbreviation like ai (Add
Immediate) or sf (Subtract From). This mnemonic describes an operation where the RISC
System/6000 Microprocessor processes a single machine instruction that is associated with
a numerical operation code (opcode). All instructions are 4 bytes long. When the assembler
encounters an instruction, the assembler increments the location counter by the required
number of bytes.

For a pseudo-op statement, the mnemonic represents an instruction to the assembler
program itself. There is no associated opcode, and the mnemonic does not describe an
operation to the processor. Some pseudo-ops increment the location counter; others do not.

The existence and meaning of the operands depends on the mnemonic used. Some
mnemonics do not require any operands. Other mnemonics require one or more operands.

The assembler interprets each operand in context with the operand's mnemonic. Many
operands are expressions that refer to registers or symbols. For instruction statements,
operands can be immediate data that is to be directly assembled into the instruction.

Comments are optional and are ignored by the assembler. Every line of a comment must be
preceded by a pound sign (#); there is no other way to designate comments.

Understanding Symbols
A symbol is a single character or combination of characters used as a label or operand.
Symbols may consist of numeric digits, underscores, periods, uppercase or lowercase
letters, or any combination of these. The symbol cannot contain any blanks or special
characters, and cannot begin with a digit. Uppercase and lowercase letters are distinct.

From the assembler and loader's perspective, the length of a symbol name is limited only by
the amount of storage you have. Also note that other routines linked to the assembler
language files may have their own constraints on symbol length.

With the exception of .csect or TOC entry names, symbols may be used to represent
storage locations or arbitrary data. The value of a symbol is always a 32-bit quantity.

The following are valid symbol names:

READER

XC2345

result.a

resultA

balance old

_label9

.myspot

Chapter 2. Syntax and Semantics 2-5

The following are not possible symbol names:

7 sum (begins with a digit)

#ofcredits

aa*l

(the # makes this a comment)

(contains *, a special character)

IN AREA (contains a blank)

You can define a symbol by using it in one of two ways:

• As a label for an instruction or pseudo-op

• As the name operand of ,a .set, .comm, .Icomm, .dsect, or .csect pseudo-op.

Defining a symbol with a Label
You can define a symbol by using it as a label.

Example:

loop:

cant:

.using

bgt

bdz
1

a

.csect dataval[RW]
dataval: .short 10

dataval [RW] ,5

cant

loop
3,dataval

4,3,4

The assembler gives the value of the location counter at the instruction or pseudo-op's
leftmost byte. In the example above, the object code for the I instruction contains the
location counter value for dataval.

At runtime, an address is calculated from dataval, the offset, and GPR 5, which needs to
contain the address of csect dataval[RW]. In the example above, the I instruction uses the
16 bits of data stored at datavals address.

Note that the value referred to by the symbol actually occupies a memory location. A symbol
defined by a label is a relocatable value.

The symbol itself does not exist at runtime. However, you can change the value at the
address represented by a symbol at runtime, if some code changes the contents of the
location represented by data val.

2-6 Assembler Language Reference

Defining a Symbol with a Pseudo-op
Use a symbol as the name operand of a .set pseudo-op to define the symbol. This
pseudo-op has the format:

.set name,exp

The assembler evaluates the exp operand, then assigns the value and type of exp to the
symbol name. When the assembler encounters that symbol in an instruction, the assembler
puts the symbol's value into the instruction's object code.

For example:

.set number, 10

ai 4,4,number

In the example above, the object code for the ai instruction contains the value assigned to
number, that is, 10.

Note that the value of the symbol is assembled directly into the instruction, and does not
occupy any storage space. A symbol defined with a .set can have an absolute or relocatable
type, depending on the type of the exp operand. Also, because the symbol occupies no
storage, you cannot change the value of the symbol at runtime; reassembling the file will
give the symbol a new value.

A symbol can also be defined by using it as the name operand of a .comm, .lcomm, .csect
or, .dsect pseudo-op. Except for .dsect, the value assigned to the symbol does describe
storage space.

CSECT and TOC Entry Names
A symbol can also be defined when used as the qua/name operand of the .csect or .tc
pseudo-op. When used in this context, the symbol is defined as the name of a csect or a
TOC entry with the specified storage class. Therefore, the storage class qualifier is required
when naming csects or TOC entries. Once defined, the symbol takes on a storage class that
corresponds to the name qualifier.

For csects, different csects can have the same name but different storage classes; therefore,
the storage class identifier must be used when referring to a csect name as an operand of
other pseudo-ops. However, this is not the case with the binder. If csect names are
externalized, establish unique names for the externalized csects. A csect operand name
takes the form of :

symbol [XX]

or

symbol{XX}

where the required square brackets([]]) or curly ({ }) brackets both produce the same results
and surround a two-character storage class identifier which can be one of the following:

PR
DB
XO
RW
DS
TB
TC

RO
GL
SV
UA
TI
LC
TCO

Chapter 2. Syntax and Semantics 2-7

in uppercase or lowercase. The following example illustrates the definition and a possible
use of a csect:

.csect progldata[rw]
Defines a csect called "progldata"
of storage class 'RW' .

. long progldata[RW]

For TOe entries, different TOe entries can have the same name but will be considered the
same TOe entry. The storage class identifier must be used when using the TOe entry name
as an operand. A TOe entry operand name takes the form of:

symbol[TC]

where TC stands for TOe entry. The following example illustrates the definition and a
possible use of a TOe entry name:

.tc p1data[TC],p1data[RW]

.long p1data[TC]

The Special Symbol TOe
Provisions have been made for the special symbol TOe. In XeOFF format modules, this
symbol is reserved for the TOe anchor, or the first entry in the TOe. The symbol TOe has
been predefined in the assembler so that the symbol TOe can be referred to if its use is
required. The .toe pseudo-op creates the TOe anchor entry. For example, the following
data declaration declares a word that contains the address of the beginning of the TOe .

. long TOC[TCO]

This symbol is undefined unless a .toe pseudo-op is contained within the assembler file.

Using a Symbol Before Defining It
It is possible to use a symbol before you define it. Using a symbol, and then defining it later
in the same file, is called forward referencing. In other words, the following is acceptable.

Assume that GPR 6 contains the address of .csect data[RW].
1 5,ten(6)

.csect data[RW]
ten: .long 10

If the symbol is not defined in the file in which it occurs, it is called an external symbol. When
the assembler finds undefined symbols, it gives an error message. External symbols may be
declared in an .extern statement.

Declaring an External Symbol
If a local symbol is used that is defined in another module, the .extern pseudo-op is used to
declare that symbol in the local file as an external symbol. Any undefined symbols that do
not appear in an .extern or .globl statement will be flagged with an error.

2-8 Assembler Language Reference

Understanding Constants
The RISC System/6000 Microprocessor assembler language provides four kinds of
constants:

• Arithmetic constants

• Character constants

• Symbolic constants

• String constants

When the assembler encounters an arithmetic or character constant that is being used as an
instruction's operand, the value of that constant is assembled into the instruction. When the
assembler encounters a symbol being used as a constant, the value of the symbol is
assembled into the instruction.

Arithmetic Constants
There are four kinds of arithmetic constants:

• Decimal

• Octal

• Hexadecimal

• Floating Point

The largest signed positive integer number that can be represented is the decimal value
2**31-1. The largest negative value is -231. Regardless of the base (e.g., decimal,
hexadecimal or octal), the as assembler regards integers as 32-bit constants.

Decimal Constants
Base 10 is the default base for arithmetic constants. If you want to specify a decimal
number, just type the number in the appropriate place.

ai 5,4,10
Add the decimal value 10 to the contents
of GPR 4 and put the result in GPR 5.

Do not prefix decimal numbers with a zero. A leading zero indicates that the number is octal.

Octal Constants
To specify that a number is octal, prefix the number with the numeralO.

ai 5,4,0377
Add the octal value 0377 to the contents
of GPR 4 and put the result in GPR 5.

Hexadecimal Constants
To specify a hexadecimal number, prefix the number with OX or Ox. You can use either
uppercase or lowercase for the hexadecimal numerals A through F.

ai 5,4,OxF
Add the hexadecimal value OxF to the
contents of GPR 4 and put the result
in GPR 5.

Chapter 2. Syntax and Semantics 2-9

Floating Point Constants
A floating point constant has the following components in order.

Integer Part

Decimal Part

Fraction Part

Exponent Part

Must be one or more digits.

Optional

Must be one or more digits.

Optional. Consists of an e or E, possibly followed by a + or -, followed
by one or more digits.

For assembler input, you may omit the fraction part. For example, the following are valid
floating point constants.

0.45
1e+5
4E-11
0.99E6
357.22e12

Floating point constants are only allowed wherever fcon expressions are found.

There is no bounds checking for the operand.

Note: The atof subroutine is called to get the floating point number from input. Check
current documentation for restrictions and return values.

Character Constants
To specify an ASCII character constant, prefix the constant with a ' (single quote mark).
Character constants can appear anywhere an arithmetic constant is allowed, but you can
only specify one character constant at a time. For example' A represents the ASCII code for
the character A.

Character constants are convenient when you want to use the code for some character as a
constant.

cal3,'X(0)
Loads GPR 3 with the ASCII code for
the character X (that is, Ox58).

After the cal instruction executes, GPR 3 will
contain binary
OxOOOO 0000 0000 0000 0000 0000 0101 1000.

Symbolic Constants
A symbol can be used as a constant. A symbol can be given a value so that the value can
be referred to by name, instead of using the value itself.

Using a symbol as a constant is convenient if a value occurs frequently in a program. Define
the symbolic constant once by giving the value a name. To change its value, simply change
the definition, not every reference to it in the program. The changed file must be
reassembled before the symbol constant is valid.

A symbolic constant can be defined by using it as a label or by using it in a .set statement.

2-1 0 Assembler Language Reference

Strings
String constants are different than other types of constants in that they can only be used as
operands to certain pseudo-ops, such as .rename, .byte, or .string pseudo-ops.

The syntax of string constants are any number of characters enclosed in double quotes (").

" any number of characters"

The double quote character is obtained with two double quotes.

"a double quote character is specified like this

Understanding Operators
The RiSe System/SOOO Microprocessor assembler language provides the following
operators.

All of these operators evaluate from left to right except for the unary operators which
evaluate from right to left.

Operator Precedence
Operator precedence for 32-bit expressions is shown in the following figure.

Highest
Priority ()

Lowest
Priority

unary -, unary + , -
* / < >
I A &

+ -

All the operators perform 32-bit signed integer operations.

The division operator produces an integer result; the remainder has the same sign as the
dividend. For example:

Operation Result Remainder

8/3 2 2

8/-3 -2 2

(-8)/3 -2 -2

(-8)/(-3) 2 -2

The left shift «) and right shift (» operators take an integer bit value for the right-hand
operand. For example:

.set mydata,l

.set newdata,mydata<2
Shifts 1 left 2 bits.
Assigns the result to newdata.

Chapter 2. Syntax and Semantics 2-11

Understanding Expressions
An expression is a constant, a symbol, or a combination of constants, symbols, and
operators. The assembler evaluates each expression into a single value, and then uses that
value as an operand. Expressions have a type as well as a value.

There are five types of expressions.

• Absolute Expressions

• Relocatable Expressions

• External Expressions

• Restricted External Expressions

• TOe Relative Expressions

The type of an expression depends on the type of its operands. Expression types are
important for two reasons. First, some pseudo-ops and instructions require expressions of a
particular type. Second, only certain operators are allowed in certain types of expressions,
as described below.

Absolute Expressions
The value of an absolute expression is independent of any possible code relocation. The
value of an absolute expression stays the same, no matter where the runtime segment
containing the expression is loaded.

An absolute expression is one of the following:

• A integer or character constant

• A symbol set to an absolute

• absolute<operator>absolute, where <operator> is any arithmetic binary operator

• -absolute

• +absolute

• relocatable - relocatable, where the two "relocatable's" refer to or are contained within the
same assembler csect.

The definitions of "absolute" and "relocatable" given above are recursive. For example,

absolute<operator>absolute<operator>relocatable, - relocatable

is a valid expression.

Any expression not covered by the above rules is invalid. An example of an invalid
expression is relocatable+relocatable.

Relocatable Expressions
The value of a relocatable expression depends on the location of the csect containing the
relocatable expression. If the csect moves to a different storage location, the value of the
relocatable expression changes accordingly.

Since the csects can be relocated independently, ~he type of a relocatable expression
includes the csect that contains it.

2-12 Assembler Language Reference

A relocatable expression is one of the following:

• A label

• A symbol set to a relocatable expression

• relocatable + absolute

• relocatable - absolute

• absolute + relocatable

• absolute - relocatable

The definitions of "absolute" and "relocatable" above are recursive. For example,

absolute+(relocatable+absolute)

is a valid relocatable expression.

Any expression not covered by the above rules is invalid. Examples of invalid relocatable
expressions are:

relocatable*absolute
absolute / relocatable

All expressions that are based on the location counter are relocatable.

The final resolution of the value represented by a relocatable expression is performed at
load time.

External Expressions
External expressio~s refer to external symbols (symbols not defined, but declared in the
current file).

If the external expression is used as a label, the expression is relocatable. An external
expression cannot be used as the subject of a .set.

An external expression is one of the following:

• A symbol declared with .comm

• A symbol declared with .extern

• An undefined symbol declared with .globl

• external + absolute

• external - absolute

• absolute + external

• absolute - external

The definitions of "absolute" and "external" are recursive. For example,

absolute+(external+absolute)

is a valid external expression.

Any expression not covered by the above rules is invalid. Examples of invalid external
expression are:

external+relocatable
external+external

Chapter 2. Syntax and Semantics 2-13

Restricted External Expressions
A restricted form of external expression allows external expressions to be combined in a
non-recursive fashion. The following expressions are allowed and produce restricted
external (rext) expression:

• external-external

• external-relocatable

• relocatable-external

Restricted expressions can be formed recursively when used with absolute expressions as
follows:

• rext-abs

• rext+abs

Invalid restricted expressions are:

• rext-rext

• rext-external

• relocatable-rext

• trel- trel

Toe Relative Expressions
One other class of expressions has been provided that allows "toc" relative expressions.
Expressions of this type are always relative to the beginning of the table of contents or "toc"
of a file. Valid TOe relative (trel) expressions are:

• Labels on .tc entries

• trel + abs

• trel- abs

Related Information
The atof subroutine in General Programming Concepts.

The .comm pseudo-op, .csect pseudo-op, .double pseudo-op, .dsect pseudo-op, .float
pseudo-op, .lcomm pseudo-op, .tc pseudo-op, .toc pseudo-op, .tocof pseudo-op.

2-14 Assembler Language Reference

Chapter 3. Addressing

Chapter 3. Addressing 3-1

Addressing Overview
Discusses Addressing modes including absolute addressing, absolute immediate
addressing, relative immediate addressing, explicit based addressing, and implicit Based
addressing.

Understanding Absolute Addressing
An absolute address is represented by the contents of a register. This addressing mode is
absolute in the sense that it is not specified relative to the current instruction address.

Both the branch conditional register (ber) instruction and the branch conditional to count
register (bee) instruction use an absolute addressing mode. However, the register is not an
operand but a specific register, namely the link register (for the ber instruction) or the count
register (for the bee instruction). These registers must be loaded prior to instruction
execution.

Understanding Absolute Immediate Addressing
An absolute immediate address is designated by immediate data. This addressing mode is
absolute in the sense that it is not specified relative to the current instruction address.

Both the branch absolute (ba) instruction and the branch conditional absolute (bea)
instruction use an absolute immediate addressing mode. These instructions assemble a
26-bit immediate operand which is divided by four to become the branch target address.
The immediate operand can be an absolute, a relocatable, or an external expression.

Understanding Relative Immediate Addressing
Relative immediate addresses are specified as immediate data within the object code and
are calculated relative to the current instruction location. All the instructions that use relative
immediate addressing are branch instructions. These instructions have immediate data that
is the displacement in fullwords from the current instruction location. At execution, the
immediate data is sign extended, logically shifted to the left two bits, and added to the
address of the branch instruction to calculate the branch target address.

Understanding Explicit Based Addressing
Programmers can write an explicit based address by specifying a base register number, RA,
and a displacement, D. The base register holds a base address. At runtime, the processor
adds the displacement to the contents of the base register to obtain the effective address. If
an instruction does not have an operand form of D(RA), then the instruction cannot have an
explicit based address.

Although programmers must use an absolute expression to specify the base register itself,
the contents of the base register can be specified by an absolute, a relocatable, or an
external expression. If the base register holds a relocatable value, the effective address is
relocatable. If the base register holds an absolute value, the effective address is absolute. If
the base register holds a value specified by an external expression, the type of the effective
address is absolute if the expression is eventually defined as absolute and relocatable if the
expression is eventually defined as relocatable.

3-2 Assembler Language Reference

When using explicit based addressing, remember that:

1. GPR 0 cannot be used as a base register. Specifying 0 tells the assembler not to use a
base register at all.

2. Since D occupies 16 bits at most, the maximum, positive displacement is 2**15 - 1 , and
the maximum negative displacement is 2**15. Therefore, the difference between the
base address and the address of the item to which reference is made must be less than
2**15 bytes.

Understanding Implicit Based Addressing
To specify an implicit based address as an operand for an instruction, omit the RA operand
and write the .using pseudo-op at some point before the instruction. After assembling the
appropriate .using and .drop pseudo-ops, the assembler knows the register to use as the
base register. At runtime, the processor computes the effective address just as if the base
were explicitly specified in the instruction.

Implicit based addresses can be relocatable or absolute, depending on the type of
expression used to specify the contents of RA at runtime. Usually, programmers specify the
contents of RA with a relocatable expression, thus making a relocatable implicit based
address. In this case, when the object module produced by the assembler is relocated, only
the contents of the base register will change. The displacement remains the same, so D(RA)
still points to the correct address after relocation.

Programmers can make an absolute implicit based address by specifying the contents of RA
with an absolute expression. In this case, RA will not change when the object module is
relocated.

When using implicit based addressing:

1. Write a .using statement to tell the assembler that one or more GPRs will now be used
as base registers.

2. In this .using statement, tell the assembler the value each base register will contain at
execution. Until it encounters a .drop pseudo-op, the assembler will use this base
register value to process all instructions that require a based address.

3. Load each base register with the previously specified value.

When the (RA) operand is omitted, the D operand remains. D is a label, an absolute
expression, or an expression containing a label.

Note: The .using and .drop pseudo-ops affect only based addresses .

. toc
T.data: .tc data[tc],data[rw]
.csect data[rw]

foo: .long 2,3,4,5,6
bar: .long 777

.csect text[pr]

.align 2
1 10,T.data(2) # Loads the address of

csect data[rw] into GPR 10 .
• using data[rw], 10 # Specify displacement.
1 3,foo # The assembler generates 1 3,0(10)
1 4,foo+4 # The assembler generates 1 4,4(10)
1 5,bar # The assembler generates 1 5,20(10)

Chapter 3. Addressing 3-3

Understanding the Location Counter
Each section of an assembler language program has a location counter that is used to
assign storage addresses to your program's statements. As the instructions of a source
module are being assembled, the location counter keeps track of the current location in
storage. You can use a dollar sign ($) as an operand to an instruction to refer to the current
value of the location counter.

Related Information
The bee (Branch Conditional to Count Register) instruction, ber (Branch Conditional
Register) instruction, ba (Branch Absolute) instruction, bea (Branch Conditional Absolute)
instruction.

The .using pseudo-op, .drop pseudo-op.

Understanding Branch Instructions on page 1-3.

Branch Processor Overview on page 1-3.

3-4 Assembler Language Reference

Chapter 4. Assembling, Linking, and Running

Chapter 4. Assembling, Linking, and Running 4-1

Assembling, Linking, and Running A Program Overview

Understanding Assembler Passes
When you enter the as command, the assembler makes two passes over the source
program.

The First Pass
On the first pass, the assembler performs the following tasks:

• Allocates space for instructions and storage areas you request

• Fills in the values of constants, where possible

• Builds a symbol table, also called a cross reference table, and makes an entry in this
table for every symbol it encounters in the label field of a statement.

The assembler reads one line of the source file at a time. If this source statement has a valid
symbol in the label field, the assembler checks to make sure that the symbol has not already
been used as a label. If this is the first time the symbol has been used as a label, the
assembler adds the label to the symbol table and assigns the value of the current location
counter to the symbol. If the symbol has already been used as a label, the assembler gives
the error message "Redefinition of symbol' and reassigns the symbol value.

Next, the assembler examines the instruction'S mnemonic. If the mnemonic is for a machine
instruction, the assembler determines the format of the instruction (for example, XO format).
The assembler then allocates the number of bytes necessary to hold the machine code for
the instruction. The contents of the location counter are incremented by this number of
bytes.

When the assembler encounters a comment (preceded by #) or an end-of-line character, the
assembler starts scanning the next instruction statement. The assembler keeps scanning
statements and building its symbol table until there are no more statements to read.

At the end of the first pass, all the necessary space has been allocated and each symbol
defined in the program has been associated with a location counter value in the symbol
table. When there are no more source statements to read, the second pass starts at the
beginning of the program again.

The Second Pass
On the second pass the assembler:

• Examines the operands for symbolic references to storage locations, and resolves these
symbolic references using information in the symbol table.

• Translates source statements into machine code and constants, thus filling the allocated
space with object code.

• Produces a file containing error messages, should any have occurred.

At the beginning of the second pass, the assembler scans each source statement a second
time. As the assembler translates each instruction, it increments the value contained in the
location counter.

If a particular symbol appears in the source code, but is not found in the symbol table, then
the symbol was never defined. That is, the assembler did not encounter the symbol in the
label field of any of the statements scanned during the first pass, or the symbol was never
the subject of a .comm, .csect, .Icomm, .sect, or .set pseudo-op.

4-2 Assembler Language Reference

This could be either a deliberate external reference or an accidental programmer error, such
as misspelling a symbol name. The assembler indicates an error. All external references
must appear in a .extern or .globl statement.

The assembler logs errors such as incorrect data alignment. However, many possible
alignment problems are indicated with warning statements that will not halt assembly. The
-w flag must be used to display these warning messages.

After the programmer corrects assembly errors, the program is ready to be linked.

Assembling and Linking with the cc Command
A simpler way to assemble and link a program is to use the cc command to link the files as
follows:

cc pgm.o subsl.o subs2.o

Since the cc command automatically uses the link options and necessary support libraries,
you do not need to specify them on the command line (the configur'ation file cc.cfg provides
this information). For this reason, use the cc command to link files when producing
programs that run under the AIX operating system. If already assembled, the object file must
have a .0 extension as indicated in the previous example. The cc command will invoke the
assembler on files that have a.s extension. Flags used with the as command can also be
directed to the assembler through the cc command. To produce a listing and object file:

cc -c -Wa,-l fi1es.s

Warning: The cc command invokes the assembler and then continues processing normally.
Therefore,

cc -Wa,-1,-oXfi1e.o fi1e.s

will produce an object file Xfile.o and a listing fl1e.lst from the assembler, but then will
continue processing by calling the Id command with file.o. This will fail because the
assembler produced Xfile.o.

Interpreting an Assembler Listing
The -I flag on the as command produces a listing of an assembler language file.

Assume that a programmer wants to display the words "hello, world." The C program would
appear like the following example:

main ()
{

printf ("hello, world\n");
}

Assembling hello.s with the following command produces the assembler program listing.

as -1 he110.s

Chapter 4. Assembling, Linking, and Running. 4-3

This produces an output file named hello.lst. The complete listing for hello.lst is given
below.

hello.s 03/28/90

File# Line# Name Loc Ctr Object Code Source

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16
17
18
19
20
21
22
23

data 00000000 00000040

main
main

00000000 00000000
00000004 00000050

o 24 main 00000008 00000000
o 25
o 26
o 27

o 28 .main 00000000 00000034
o 29
o 30/

#############################
C sou rce code
#############################
helloO
{
printf("hello,world\n");
}
#############################
Compile as follows:
cc -0 helloworld hello.s

#############################
.file "hello.s"

#Static data entry in
#T(able)O(f)C(ontents)
.toc

T.data: .tc data[tc],data[rw]
.globl main[ds]

#main[ds] contains definitions for
#runtime linkage of function main
.csect main[ds]

.Iong .main[PR]

.Iong TOC[tcO]

.long 0
#Function entry in
#T(able)O(f)C(ontents)
.toc

T.hello: .tc .main[tc],main[ds]
.globl .main[PR]

o 31 / #Set routine stack variables
o 32 / #Values are specific to
o 33 / #the current routine and can
o 34 / #vary from routine to routine
o 35 / 00000020 .set argarea, 32
o 36 / 00000018 .set linkarea, 24
o 37 / 00000000 .set locstckarea, 0
o 38 / 00000001 .set ngprs, 1
o 39 / 00000000 .set nfprs, 0
o 40 / 0000003c .set szdsa,
8*nfprs+4 *ngprs+linkarea+argarea+locstckarea
o 41 /
o 42/
o 43/
o 44/
o 45/
o 46/

4-4 Assembler Language Reference

#Main routine
.csect .main[PR]

#PROLOG: Called Routines

0 471 # Responsibilities
0 481 #Get link reg.
0 491 .main 00000000 7c0802a6 mflr 0
0 50 I #Not required to Get/Save CR
0 51 I #because current routine does
0 521 #not alter it.
0 531
0 541 #Not required to Save FPR's
0 551 #14-31 because current routine
0 561 #does not alter them.
0 571
0 581 #Save GPR 31.
0 591 .main 00000004 bfe1 fffc stm 31, -8*nfprs-4*ngprs(1)
0 60 I #Save LR if non-leaf routine.
0 61 I .main 00000008 90010008 st 0, 8(1)
0 621 #Decrement stack ptr and save
0 631 #back chain.
0 641 .main OOOOOOOc 9421 ffc4 stu 1 , -szdsa(1)
0 651
0 66

0 67 #Program body
0 68 #Load static data address
0 69 .main 00000010 81c20000 I 14, T.data(2)
0 70 #Line 3, file hello.c
0 71 #Load address of data string
0 72 #from data addr.
0 73 #This is a parameter to printfO
0 74 .main 00000014 386eOOOO cal 3,_helloworld(14)
0 75 #Call printf function
0 76 .main 00000018 4bffffe9 bl .printf[PR]
0 77 .main 0000001 c 4def7b82 cror 15, 15, 15
0 781
0 79
0 80 #EPILOG: Return Sequence
0 81 #Get saved LR.
0 82 .main 00000020 80010044 I 0, szdsa+8(1)
0 83
0 84 #Routine did not save CR.
0 85 #Restore of CR not necessary.
0 86
0 87 #Restore stack ptr
0 88 .main 00000024 3021003c ai 1, 1, szdsa
0 89 #Restore GPR 31.
0 90 .main 00000028 bbe1fffc 1m 31, -8*nfprs-4*ngprs(1)
0 91 I
0 921 #Routine did not save FPR's.
0 931 #Restore of FPR's not necessary.
0 941
0 951 #Move return address
0 961 #to Link Register.
0 971 .main 0000002c 7c0803a6 mtlr 0
0 981 #Return to address
0 991 #held in Link Register.
0 100 I .main 00000030 4e800021 brl

Chapter 4. Assembling, Linking, and Running 4-5

0 101
0 102

0 103 #External variables
0 104 .extern .printf[PR]
0 105
0 106 ##############################

0 107 # Data
0 108 ##############################
0 109 #String data placed in
0 110 #static csect data[rw]

0 111 .csect data[rw]
0 112 .align 2
0 113 helloworld: -
0 114 data 00000000 68656c6c .byte Ox68,Ox65,Ox6c,Ox6c

0 115 data 00000004 6f2c 776f .byte Ox6f,Ox2c,Ox77,Ox6f
0 116 data 00000008 726c640a .byte Ox72,Ox6c,Ox64,Oxa,OxO

data OOOOOOOc 00

Assembler Listing Headings
The first line of the assembler listing gives two peices of information.

1. The name of the source file - in this case, hello.s.

2. The date the listing file was created - in this case, 03/28/90.

The assembler listing is·given in six columns. The column headings are as follows.

1. File# - Source file number. Files included with the M4 macro processor (-I option) will
display by number the file in which the statement was found.

2. Line# - Refers to the line number of the assembler source code.

3. Name - The name of the csect where this line of source code originates

4. Loc Ctr - The value contained in the assembler's location counter. The listing only shows
a location counter value for those assembler language instructions that generate object
code.

5. Object Code - Shows the hexadecimal representation of the object code generated by
each line of the assembler program. Since each instruction is 32 bits, each line in the
assembler listing shows a maximum of 4 bytes. Any remaining bytes in a line of
assembler source code are shown on the following line(s).

6. Source - The assembler source code for the program. A limit of 100 ASCII characters
will be displayed per line.

Subroutine Linkage Convention
The subroutine linkage convention describes the machine state at subroutine entry and exit.
When followed, this scheme allows routines that are compiled separately in the same or
different languages to be linked and executed when called.

The linkage convention allows for parameter passing and return values to be in FPRs,
GPRs, or both. (GPRs are also referred to as registers.)

4-6 Assembler Language Reference

Register Usage
To be compatible with other programming languages, called and calling routines must
observe certain conventions on registers usage. There are two types of registers of
importance in this regard:

• A volatile register - holds a value on entry that need not be preserved when the called
routine returns.

• A non-volatile register - holds a value on entry that must be preserved on exit from the
calling routine.

If the value of a non-volatile register changes across the call, then the called routine must:

• Save the value of the register before the register is change

• Restore the original value of the register before returning to the calling routine.

If a register is not designated as saved during the call, its contents may be changed during
the call. Conversely, if a register is saved, its contents must be preserved across the call.

Note: The assembler generates a program adhering to the XCOFF format. Using certain
general purpose registers indiscriminately can lead to unpredictable results. For
reference, note the General Purpose Register usage conventions specified in the
following table.

General Purpose Preserved Status Convention
Register Across Calls

0 no Scratch Used in prologs

1 yes Saved Stack Pointer

2 yes Saved TOC

3 no Scratch 1 st word of argument
list; return value

4 no Scratch 2nd word of argument
list; return value

5 no Scratch 3rd word of argument
list; return value

6 no Scratch 4th word of argument
list; return value

7 no Scratch 5th word of argument
list; return value

8 no Scratch 6th word of argument
list; return value

9 no Scratch 7th word of argument
list; return value

10 no Scratch 8th word of argument
list; return value

11 no Scratch Scratch; Pointer to
FCN; DSA pointerto int
proc (Env)

12 no Scratch PL8 exception return

13-31 yes Saved Non-volatile

Chapter 4. Assembling, Linking, and Running 4-7

Stack

The following table lists floating-point registers and their functions. The floating-point
registers are double precision (64 bits).

Floating Point Preserved Use
Register Across Calls

0 no

1 no FP parameter 1, func-
tion return 1.

2 no FP parameter 2, func-
tion return 2.

13 no FP parameter 13, func-
tion return 13.

14-31 yes

The following table lists special purpose register conventions.

Special Purpose Preserved

Register Across Calls

Condition Register
Bits 0-7 (CRO,CR1) no
Bits 8-19 (CRO,CR1) yes
Bits 20-23 (CRO,CR1) yes

Reserved for system
use. Never set
or changed.

Bits 24-31 (CRO,CR1) no

Link Register no

Count Register no

MQ Register no

XER Register no

FPSCR Register no

The stack is a portion of storage that is used to hold local storage, register save areas,
parameter lists, and call chain data. The stack grows from higher addresses to lower
addresses. A stack pointer register (register 1) is used to mark the current "top" of the stack.

A stack frame is the portion of the stack used by a single procedure. You can consider the
input parameters as being part of the current stack frame. In a sense, each output argument
belongs to both the caller's and the callee's stack frames. In either case, the stack frame
size is best defined as the difference between the caller's stack pOinter and the callee's.

4-8 Assembler Language Reference

The storage map of a typical stack frame is shown below. In the diagram, the current routine
has acquired a stack frame which allows it to call other functions. If no calls are made, and
there are no local variables or temps, then the function need not allocate a stack frame. It
can still use the register save area at the top of the caller's stack frame, if needed.

The stack frame is double word aligned. The FPR save area and the parameter area (Pt,
P2, ... , Pn) are also double word aligned. Other areas require word alignment only.

Low
Addresses

Callee's stack --> 0
pointer 4

8
12-16

20

Space for PI-P8
is always reserved

-8*nfprs-4*ngprs -->
save

-8*nfprs -->

Caller's stack --> 0
pointer 4

8
12-16

20

Space for PI-P8 24
is always reserved

High
Addresses

RUN-TIME STACK

Back chain
Saved CR
Saved LR
Reserved
SAVED TOC

PI

Pn

Callee's
stack
area

Caller's GPR
save area

max 19 words

Caller's FPR
save area

max 18 dblwds

Back chain
Saved CR
Saved LR
Reserved
Saved TOC

PI

Pn

Caller's
stack
area

Stack grows at
this end.

<--- LINK AREA
(callee)

OUTPUT ARGUMENT AREA
<---(Used by cal lee

to construct
argument list)

<--- LOCAL STACK AREA

(Possible word wasted
for alignment.)

Rfirst R13 for full
save

R31

Ffirst

F31

F14 for a
full save

<-- LINK AREA
(caller)

INPUT PARAMETER AREA
<--(Callee's input

parameters found
here. Is also

caller's arg area.)

Chapter 4. Assembling, Linking, and Running 4-9

Link area
This area consists of six words, and is at offset zero from the caller's stack pointer on entry
to a procedure. The first word contains the caller's back chain (stack pointer). The second
word is where the callee saves the Condition Register (CR) if needed. The third word is
where the callee saves the Link Register if necessary. The fourth word is reserved for the
SET JMP, LONGJMP processing, and the fifth word is reserved for future use. The last word
(word 6) is reserved for use by the Global Linkage routines which are used when calling
out-of-module routines (for example, in shared libraries).

Input Parameter Area
This is a contiguous piece of storage reserved by the calling program to represent the
register image of the input parameters of the callee. The input parameter area is double
word aligned, and is located on the stack directly following the caller's link area. This area is
at least 8 words in size. If more than 8 words of parameters are expected, they would have
been stored as register images starting at positive offset 56 from the incoming stack pointer.

Register Save area
This area is double word aligned, and provides the space needed to save all non-volatile
FPRs and GPRs used by the callee program. The FPRs are saved next to the link area. The
GPRs are saved above the FPRs (in lower addresses). The called function may save the
registers here even if it does not need to allocate a new stack frame. Locations at a
numerically lower address than stack floor should not be accessed.

A callee needs only to save the non-volatile registers that it actually uses. Register 31 is
always saved in the highest addressed word of the particular save area.

Local stack area
This is the space allocated by the callee procedure for local variables, and temporaries.

Output Parameter Area
The parameter area (P1 ... Pn) must be large enough to hold the largest parameter list of all
procedures called from the procedure that owns this stack frame.

This area is at least 8 words long regardless of the length or existence of any argument list.

The Calling Routine's Responsibilities
When an assembler language program calls another program, the caller should not use the
names of the called program's commands, functions, or procedures as global assembler
language symbols. To avoid confusion, you may want to remember, you may want to
remember the following naming conventions when you create symbol names.

A called routine has two symbols associated with it: a function descriptor (Name) and an
entry point (.Name). When a call is made to a routine, the compiler branches to the name
pOint directly. Excluding the loading of parameters (if any) in the proper registers, calls to
functions are expanded by compilers to the following two instruction sequences:

bI .foo
cror 15,15,15

4-1 0 Assembler Language Reference

Branch to faa.
Special NOP.

The linkage editor will do one of two things when it sees the bl instruction:

1. If foo is imported (not in the same module), then the linkage editor will change the bl to
.foo to a bl to .glink (global linkage routine) of too, and insert the .glink into the module.
Also, if a NOP instruction (cror 15,15,15) immediately follows the bl instruction, the
linkage editor will replace the NOP instruction with the I (Load) instruction

1 2,20(1).

2. If foo is bound in the same module as its caller, and a 1 2, 20 (1) instruction
immediately follows the bl instruction, then it will replace the I instruction with a NOP
(cror 15,15,15).

Note: For any export, the linkage editor will insert the procedure's descriptor into the
module.

The Called Routine's Responsibilities
On entry to a routine, some or all of the following steps may have to be done:

1. Save the link register at offset 8 from the stack pointer if necessary.

2. If any of the CR bits 8-19 (CR2, CR3, CR4) are used then save the CR at displacement
4 from the current stack pointer.

3. Save any non-volatile FPRs used by this procedure in the caller's FPR save area. There
is a set of routines named ,_savef14, ,_savef15, ... ,_savef31 which may be used.

4. Save all non-volatile GPRs used by this procedure in the caller's GPR save area.

5. Store back chain and decrement stack pointer by the size of the stack frame. Note that if
a stack overflow occurs, it will be known immediately when the store of the back chain is
done.

This sequence of statements is sometimes referred to as the prolog.

On exit from a procedure, some or all of the following steps may have to be performed:

1. Restore all GPRs saved.

2. Restore stack pointer to the value it had on entry.

3. Restore link register if necessary.

4. Restore bits 8-19 of the CR if necessary.

5. If any FPRs were saved then restore them using ,_restfn where n is the first FPR to be
restored.

6. Return to caller.

This sequence of statements is sometimes referred to as the epilog.

Chapter 4. Assembling, Linking, and Running 4-11

Example
The following is an example of assembler code which is called by a C routine:

Call this assembly
callfile.c:
main()
{
examlinkage () ;
}

routine from C routine:

Compile as follows:
cc -0 callfile callfile.c examlinkage.s

On entry to a procedure(callee), all or some of the
following steps should be done:
1. Save the link register at offset 8 from the
stack pointer for non-leaf procedures.
2. If any of the CR bits 8-19(CR2,CR3,CR4) is used
then save the CR at displacement 4 of the current
stack pointer.
3. Save all non-volatile FPRs used by this routine.
If more that three non-volatile FPR are saved,
a call to . savefn can be used to
save them (n is the number of the first FPR to be
saved).
4. Save all non-volatile GPRs used by this routine
in the caller's GPR SAVE area (negative displacement
from the current stack pointer rl).
5. Store back chain and decrement stack pointer by the
size of the stack frame.

On exit from a procedure (callee), all or some of the
following steps should be done:
1. Restore all GPRs saved.
2. Restore stack pointer to value it had on entry.
3. Restore Link Register if this is a non-leaf procedure.
4. Restore bits 20-31 of the CR is it was saved.
5. Restore all FPRs saved. If any FPRs were saved then
a call to . savefn can be used to restore them
(n is the first FPR to be restored).
6. Return to caller.

The following routine calls printf() to print a string.
The routine performs entry steps 1-5 and exit steps 1-6.
The prolog/epilog code is for small stack frame size.
DSA + 8 < 32k

.file "examlinkage.s"
#Static data entry in T(able)O(f)C(ontents)

.toc
T.examlinkage.c: .tc examlinkage.c[tc],examlinkage.c[rw]

.globl examlinkage[ds]
#examlinkage[ds] contains definitions needed for
#runtime linkage of function examlinkage

.csect examlinkage[ds]

.long .examlinkage[PR]

4-12 Assembler Language Reference

.long TOC[tcO]

.long 0
#Function entry in T(able)O(f)C(ontents)

.toc
T.examlinkage:
#Main routine

.globl

.csect

.tc .examlinkage[tc],examlinkage[ds]

.examlinkage[PR]

.examlinkage[PR]
Set current routine stack variables
These values are specific to the current routine and
can vary from routine to routine

.set argarea, 32

.set linkarea, 24

.set locstckarea, 0

.set ngprs, 19

.set szdsa,
8*nfprs+4*ngprs+linkarea+argarea+locstckarea
#PROLOG: Called Routines Responsibilities

Get link reg.
mflr 0
Get CR if current routine alters it.
mfcr 12
Save FPR's 14-31.
bl . savef14
cror Oxf, Oxf, Oxf
Save GPR's 13-31.
stm 13, -8*nfprs-4*ngprs(l)
Save LR if non-leaf routine.
st 0, 8 (1)
Save CR if current routine alters it.
st 12, 4(1)
Decrement stack ptr and save back chain.
stu 1, -szdsa(l)

################################
#load static data address
#################################

I 14,T.examlinkage.c(2)
Load string address which is an argument to printf.

#EPILOG:

cal 3, printing(14)
Call to printf routine
bl .printf[PR]
cror Oxf, Oxf, Oxf

Return Sequence
Restore stack ptr #

ai

1, 1, szdsa
Restore GPR's 13-31.

1m 13, -8*nfprs-4*ngprs(l)
Restore FPR's 14-31.
bl . restf14
cror Oxf, Oxf, Oxf

Chapter 4. Assembling, Linking, and Running 4-13

Get saved LR.
1 0, 8(1)
Get saved CR if this routine saved it.
1 12, 4(1)
Move return address to link register.
mtlr 0
Restore CR2, CR3, & CR4 of the CR.
mtcrf Ox38,12
Return to address held in Link Register.
brl
External variables
.extern . savef14
.extern . restf14
.extern .printf[PR]

#################################
Data
#################################

.csect

.align
printing:

.byte

Understanding the TOe

examlinkage.c[rw]
2
.byte
.byte
Oxa,OxO

'E, 'x, 'a, 'm, 'p, '1, 'e,' , 'f, '0, 'r,'
'P, 'R, 'I, 'N, 'T, 'I, 'N, 'G

The TOe, or Table of Contents, of an XeOFF file is analogous to the table of contents of a
book. The TOe is used to find objects in an XeOFF file. An XeOFF file is composed of
sections that contain different types of data to be used for specific purposes. Some sections
can be further subdivided into subsections or csects. A csect is the smallest replaceable unit
of an XeOFF file. At runtime, the TOe can contain the csect locations (and the locations of
labels inside of csects).

The three sections that contain csects are:

1 .. text - Indicates that this csect contains code or read-only data.

2 .. data - Indicates that this csect contains read-write data.

3 .. bss -Indicates that this csect contains unitialized mapped data.

The storage class of the csect determines the section in which the csect is grouped.

The TOe itself is located in the .data section of an XeOFF object file, and is composed of
TOe entries. A TOe entry is just a csect that happens to contain the address of another
csect. When an XeOFF module is loaded, TOe entries are "relocated": the real addresses
where the csects will reside in memory are filled into each TOe entry. Therefore, to access a
csect in the module, two pieces of information are required:

• The location of the beginning of the TOe

• The offset from the beginning of the TOe of the specific TOe entry that points to the
csect.

Using the TOe
To use the TOe, you must follow certain conventions.

• General Purpose Register 2 always contains a pointer to the TOe.

• All references from the .text section of an assembler program to the .data or the .bss
sections must occur via the TOe.

4-14 Assembler Language Reference

The TOC register (General Purpose Register 2) is set up by the system when a program is
invoked. It must be maintained by any code written. The TOC Register provides module
"context" so that any routines in the module can access data items.

The second of these conventions allows the .text and .data section to be loaded into
different locations in memory easily. By following this convention, you can assure that the
only part of the module that will need relocating are the TOC entries.

Accessing Data through the TOC
An external data item is easily accessed by first getting that item's address out of the TOC,
and then using that address to get the data. In order to do this, proper relocation information
must be provided to access the correct TOC entry. Specific assembly language pseudo-ops
have been provided that generate the correct information to access a TOC entry. The code
in Figure 1 shows how to access an item a using its TOC entry.

TCA:

define(RTOC,2)
.csect progl[pr] #progl is a csect

#containing instrs.

1 5,TCA(RTOC) #Now GPR5 contains the
#address of a[rw] .

. toc

.tc a[tc],a[rw]

. extern a[rw]

#Ist parameter is TOC entry
#name, 2nd is contents of
#TOC entry.

#a[rw] is an external symbol .

This same method is used to access a program's "static internal" data. This is all the data
that retains its value over a call, but can only be accessed by the procedures in the file
where the data items are declared. In C, this is data with the static attribute,

static int XyZi

This data is given a name that is determined by convention, and in XCOFF it is the name of
the data with an underscore in front of it.

.csect progl[pr]

1 1,STprogl(RTOC)

• csect _progl[rw]

.long 0

.toe

#Load rl with the address
#progl's static data.

#progl's static data .

STprogl: .tc.progl[tc],_progl[rw] #TOC entry with address of
#progl's static data.

Inter-module Calls Using the TOC
Since all the access from the text to the data section are via the TOC, then another feature
of the TOC can be used that allows inter-module calls. This allows routines to be linked
together without resolving all the addresses or symbols at linkedit time. In other words, a call
can be made to a common utility routine without actually having that routine linked into the
same module as the calling routine. In this way groups of routines can be made into

Chapter 4. Assembling, Linking, and Running 4-15

modules, and the routines in the different groups can call each other with the bind time being
delayed until load time. However, in order to use this feature, certain conventions must be
followed when calling a routine that is in another module.

To call a routine in another module, an interface routine (or g/oba/linkage routine) is called
that will switch context from the current module to the new module. This context switch is
easily performed by saving the T{ :; pointer to the current module, loading the TOe pointer
of the new module, and then branching to the new routine in the other module. The other
routine then returns to the original, where the original TOe address is loaded into the TOe
register.

In order to make global linkage as transparent as possible, a call can be made to an external
routine without any knowledge of what module that routine will go into. Figure 3 has an
example of a simple call to a routine that mayor may not go through global linkage. During
bind time, the binder will determine whether to call global linkage code or not, and will
"insert" the proper global linkage routine to perform the inter-module call. This is controlled
by an IMPORT list. The following example shows calling a routine that may go through
global linkage .

• csect progl[pr]

.extern progl[pr] #progl is an external symbol.
bl .prog2[pr] #Restore TOC address.
cror 15,15,15 #Call the routine the binder may insert.

#prog2[gl] and have
#this call go to global
#linkage code.

The following example shows an example of a call through a global linkage routine .

. csect .progl[pr]
bl .prog2[GL] #glue for global linkage
1 2,stktoc(l) #Restore TOC address .
. toe

prog2: .tc prog2[TC],out_of_module[DS] #toc entry - address of
descriptor

.extern out_of_module[DS] #for OUT-OF-MODULE routine.

#RS linkage register conventions:
R2 TOC
Rl stack pointer
LR return address

.set stktoc 20

.csect .prog2[GL]

.globl .prog2
.prog2:

st 2,stktoc(l)
1 12,prog2(2)
1 2,4(12)
1 12,0(12)
mtctr 12
bctr

Register).

4-16 Assembler· Language Reference

#saves callers toc.
#get address of OUT-OF-MODULE descriptor.
#get his toc.
#get his entry address.
#put in Count Register.
#return to entry address (in Count

Running the Program
Your program is ready to run when it has been assembled and linked without producing any
error messages. To run a program, first be sure you have AIX operating system permission
to execute the file. Then, simply type the program's name at the AIX operating system
prompt:

$ progname

By default, any program output goes to standard output. To direct output to a place other
than the standard output, use the AIX operating system shell> operator.

You can diagnose runtime errors by invoking the symbolic debugger with the AIX operating
system dbx command. This command invokes a symbolic debugger that works with any
code that adheres to XCOFF format conventions. You can use dbx to debug all compiler
and assembler generated code.

Related Information
The as Command article in Commands Reference explains assembling a program with
the as command.
The Id Command article in Commands Reference explains linking the modules of a
program with the Id command.
The .csect pseudo-op, .toc pseudo-op, .tocof pseudo-op.
The dbx command in General Programming Concepts.

Chapter 4. Assembling, Linking, and Running 4-17

4-18 Assembler Language Reference

Chapter 5. Instruction Set

Chapter 5. Instruction Set 5-1

a (Add) Instruction

Purpose

Syntax

Adds the contents of two general purpose registers and places the result in a general
purpose register.

a RT,RA,RB

a. RT,RA,RB

ao RT,RA,RB

ao. RT,RA,RB

31 RT RA RB I OEI 10 Rc

0 6 11 16 21 22 31

Description
The a instruction places the sum of the contents of General Purpose Register RA and
General Purpose Register RB into the target General Purpose Register RT.

The a instruction has four syntax forms. Each syntax form has a different effect on Condition
Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Re) Register Field 0

a 0 CA 0 None

a. 0 CA 1 LT,GT,EQ,SO

ao SO,OV,CA 0 None

ao. SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the a instruction always affect the Carry bit (CA) in the Fixed Point
Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

5-2 Assembler Language Reference

Examples
1. To add the contents of GPR 4 to the contents of GPR 10 and store the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 10 contains Ox8000 7000.
a 6,4,10

a

GPR 6 now contains Ox1000 AOOO.

2. To add the contents of GPR 4 to the contents of GPR 10, store the result in GPR 6, and
set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox7000 3000.
Assume GPR 10 contains OxFFFF FFFF.
a. 6,4,10
GPR 6 now contains Ox7000 2FFF.

3. To add the contents of GPR 4 to the contents of GPR 10, store the result in GPR 6, and
set the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception
Register to reflect the result of the op~ration:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 10 contains Ox7B41 92CO.
ao 6,4,10
GPR 6 now contains OxOB41 C2CO.

4. To add the contents of GPR 4 to the contents of GPR 10, store the result in GPR 6, and
set the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception
Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox8000 0000.
Assume GPR 10 contains Ox8000 7000.
ao. 6,4,10
GPR 6 now contains OxOOOO 7000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-3

abs

abs (Absolute) Instruction

Purpose

Syntax

Takes the absolute value of the contents of a general purpose register and places the result
in a general purpose register.

abs RT,RA

abs. RT,RA

abso RT,RA

abso. RT,RA

31 RT RA III I OEI 360 IRe I
0 6 11 16 21 22 31

Description
The abs instruction places the absolute value of the contents of General Purpose Register
RA into the target General Purpose Register RT.

If General Purpose Register RA contains the most negative number ('8000 0000'), the result
of the instruction is the most negative number, and the instruction will set the Overflow bit in
the Fixed Point Exception Register to 1 if the OE bit is set to 1 .

The abs instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

abs 0 None 0 None

abs. 0 None 1 LT,GT,EQ,SO

abso SO,OV 0 None

abso. SO,OV LT,GT,EQ,SO

The four syntax forms of the abs instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Re) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT

RA

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

5-4 Assembler Language Reference

Examples
1. To take the absolute value of the contents of GPR 4 and store the result in GPR 6:

Assume GPR 4 contains Ox7000 3000.
abs 6,4
GPR 6 now contains Ox7000 3000.

abs

2. To take the absolute value of the contents of GPR 4, store the result in GPR 6, and set
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFFF FFFF.
abs. 6,4
GPR 6 now contains OxOOOO 0001.

3. To take the absolute value of the contents of GPR 4, store the result in GPR 6, and set
the Summary Overflow and Overflow bits in the Fixed Point Exception Register to reflect
the result of the operation:

Assume GPR 4 contains OxB004 3000.
abso 6,4
GPR 6 now contains Ox4FFB 0000.

4. To take the absolute value of the contents of GPR 4, store the result in GPR 6, and set
the Summary Overflow and Overflow bits in the Fixed Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox8000 0000.
abso. 6,4
GPR 6 now contains Ox8000 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-5

ae

ae (Add Extended) Instruction

Purpose

Syntax

Adds the contents of two general purpose registers to the value of the Carry bit in the Fixed
Point Exception Register and places the result in a general purpose register.

ae RT,RA,RB

ae. RT,RA,RB

aeo RT,RA,RB

aeo. RT,RA,RB

31 RT RA RB I OE I 138 Rc

0 6 11 16 21 22 31

Description
The ae instruction places sum of the contents of General Purpose Register RA, General
Purpose Register RB, and the Carry bit into the target General Purpose Register RT.

The ae instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

ae 0 CA 0 None

ae. 0 CA 1 LT,GT,EQ,SO

aeo 1 SO,OV,CA 0 None

aeo. 1 SO,OV,CA LT,GT,EQ,SO

The four syntax forms of the ae instruction always affect the Carry bit (CA) in the Fixed Point
Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1 , the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

5-6 Assembler Language Reference

Examples

ae

1. To add the contents of GPR 4, the contents of GPR 10, and the Fixed Point Exception
Register Carry bit and store the result in GPR 6:

Assume GPR 4 contains Oxl000 0400.
Assume GPR 10 contains Oxl000 0400.
Assume the Carry bit is one.
ae 6,4,10
GPR 6 now contains Ox2000 0801.

2. To add the contents of GPR 4, the contents of GPR 10, and the Fixed Point Exception
Register Carry bit, store the result in GPR 6, and to set Condition Register Field ° to
reflect the result of the operation:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 10 contains Ox7B41 92CO.
Assume the Carry bit is zero.
ae. 6,4,10
GPR 6 now contains OxOB41 C2CO.

3. To add the contents of GPR 4, the contents of GPR 10, and the Fixed Point Exception
Register Carry bit, store the result in GPR 6, and to set the Summary Overflow, Overflow,
and Carry bits in the Fixed Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains Oxl000 0400.
Assume GPR 10 contains OxEFFF FFFF.
Assume the Carry bit is one.
aeo 6,4,10
GPR 6 now contains OxOOOO 0400.

4. To add the contents of GPR 4, the contents of GPR 10, and the Fixed Point Exception
Register Carry bit, store the result in GPR 6, and set the Summary Overflow, Overflow,
and Carry bits in the Fixed Point Exception Register and Condition Register Field ° to
reflect the result of the operation:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 10 contains Ox8000 7000.
Assume the Carry bit is zero.
aeo. 6,4,10
GPR 6 now contains Oxl000 AOOO.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-7

ai

ai (Add Immediate) Instruction

Purpose

Syntax

Adds the contents of a general purpose register and a 16-bit signed integer, places the result
in a general purpose register, and effects the Carry bit of the Fixed Point Exception Register.

ai RT,RA,51

12 RT RA 81

o 6 11 16 31

Description
The ai instruction places the sum of the contents of General Purpose Register RA and a
16-bit signed integer 51 into target General Purpose Register RT.

The 16-bit integer provided as immediate data is sign-extended to 32 bits prior to carrying
out the addition operation.

The ai instruction has one syntax form and can set the Carry bit of the Fixed Point Exception
Register; it never affects Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA Specifies source general purpose register for operation.

51 Specifies 16-bit signed integer for operation.

1. To add OxFFFF FFFF to the contents of GPR 4, store the result in GPR 6, and set the
Carry bit to reflect the result of the operation:

Assume GPR 4 contains OxOOOO 2346.
ai 6,4,OxFFFFFFFF
GPR 6 now contains OxOOOO 2345.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-8 Assembler Language Reference

ai.

ai. (Add Immediate and Record) Instruction

Purpose

Syntax

Adds the contents of a general purpose register and a 16-bit signed integer, places the result
in another general purpose register, and affects the Carry bit of the Fixed Point Exception
Register and Condition Register Field o.

ai. RT,RA,51

13 RT RA 81

o 6 11 16 31

Description
The ai. instruction places the sum of the contents of General Purpose Register RA and a
16-bit signed integer 51 into the target General Purpose Register RT.

The 16-bit integer 51 provided as immediate data is sign-extended to 32 bits prior to carrying
out the addition operation.

The ai. instruction has one syntax form and can set the Carry Bit of the Fixed Point
Exception Register. This instruction also affects Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RA

51 Specifies 16-bit signed integer for operation.

1. To add a 16-bit signed integer to the contents of GPR 4 , store the result in GPR 6, and
set the Fixed Point Exception Register Carry bit and Condition Register Field 0 to reflect
the result of the operation:

Assume GPR 4 contains OxEFFF FFFF.
ai. 6,4,OxlOOO
GPR 6 now contains OxFOOO OFFF.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-9

ame

arne (Add to Minus One Extended) Instruction

Purpose

Syntax

Adds the contents of a general purpose register, the Carry bit in the Fixed Point Exception
Register, and -1 and places the result in a general purpose register.

arne RT,RA

arne. RT,RA

ameo RT,RA

ameo. RT,RA

31 RT RA III I OEI 234 I Rc I
0 6 11 16 21 22 31

Description
The arne instruction places the sum of the contents of General Purpose Register RA, the
Carry bit of the Fixed Point Exception Register, and -1 (OxFFFF FFFF) into the target
General Purpose Register RT.

The arne instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

arne 0 CA 0 None

arne. 0 CA 1 LT,GT,EQ,SO

ameo SO,OV,CA 0 None

ameo. SO,OV,CA LT,GT,EQ,SO

The four syntax forms of the arne instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1 , the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (L T) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field o.

Parameters
RT

RA

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

5-1 0 Assembler Language Reference

Examples

ame

1. To add the contents of GPR 4, the Carry bit in the Fixed Point Exception Register, and-1
and store the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume the Carry bit is zero.
arne 6,4
GPR 6 now contains Ox9000 2FFF.

2. To add the contents of GPR 4, the Carry bit in the Fixed Point Exception Register, and
-1, store the result in GPR 6, and set Condition Register Field 0 to reflect the result of
the operation:

Assume GPR 4 contains OxBOOO 42FF.
Assume the Carry bit is zero.
arne. 6,4
GPR 6 now contains OxBOOO 42FE.

3. To add the contents of GPR 4, the Carry bit in the Fixed Point Exception Register, and
-1, store the result in GPR 6, and set the the Summary Overflow, Overflow, and Carry
bits in the Fixed Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains Ox8000 0000.
Assume the Carry bit is zero.
ameo 6,4
GPR 6 now contains Ox7FFF FFFF.

4. To add the contents of GPR 4, the Carry bit in the Fixed Point Exception Register, and
-1, store the result in GPR 6, and set the Summary Overflow, Overflow, and Carry bits in
the Fixed Point Exception Register and Condition Register Field 0 to reflect the result of
the operation:

Assume GPR 4 contains Ox8000 0000.
Assume the Carry bit is one.
ameo. 6,4
GPR 6 now contains Ox8000 000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-11

and

and (AND) Instruction

Purpose

Syntax

Logically ANDs the contents of two general purpose registers and places the result in a
general purpose register.

and

and.

o

31

6

RA,RS,RB

RA,RS,RB

RS

11

RA RS 28 Rc

16 21 31

Description
The and instruction logically ANDs the contents of General Purpose Register RS with the
contents of General Purpose Register RB and places the result into the target General
Purpose Register RA.

The and instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

and

and.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the and instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies source general purpose register for operation.

1. To logically AND the contents of GPR 4 with the contents of GPR 7 and store the result in
GPR6:

Assume GPR 4 contains OxFFF2 5730.
Assume GPR 7 contains Ox7B41 92CO.
and 6,4,7
GPR 6 now contains Ox7B40 1200.

5-12 Assembler Language Reference

and

2. To logically AND the contents of GPR 4 with the contents of GPR 7, store the result in
GPR 6, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFF2 5730.

Assume GPR 7 contains OxFFFF EFFF.
and. 6,4,7
GPR 6 now contains OxFFF2 4730.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

Chapter 5. Instruction Set 5-13

andc

andc (AND With Complement) Instruction

Purpose

Syntax

ANDs the contents of a general purpose register with the complement of the contents of a
general purpose register.

andc RA,RS,RB

andc. RA,RS,RB

31 RS RA RS 60 Rc

o 6 11 16 21 31

Description
The andc instruction ANDs the contents of General Purpose Register RS with the
complement of the contents of General Purpose Register RB and places the result into
General Purpose Register RA.

The andc instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

andc

andc.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EO,SO

The two syntax forms of the andc instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less
Than (LT) zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO)
bits in Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies source general purpose register for operation.

1. To AND the contents of GPR 4 with the complement of the contents of GPR 5 and store
the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxFFFF FFFF.
The complement of OxFFFF FFFF becomes OxOOOO 0000.
andc 6,4,5
GPR 6 now contains OxOOOO 0000.

5-14 Assembler Language Reference

andc

2. To AND the contents of GPR 4 with the complement of the contents of GPR 5, store the
result in GPR 6, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains Ox7676 7676.
The complement of Ox7676 7676 is Ox8989 8989.
andc. 6,4,5
GPR 6 now contains Ox8000 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

Chapter 5. Instruction Set 5-15

andil.

andil. (AND Immediate Lower) Instruction

Purpose

Syntax

AND's the least significant 16 bits of the contents of a general purpose register with a 16-bit
unsigned integer and stores the result in a general purpose register ..

andil. RA,RS, UI

28 RS RA UI

o 6 11 16 31

Description
The andil. instruction ANDs the contents of General Purpose Register RS with the
concatenation of x'OOOO' and a 16-bit unsigned integer UI and places the result in General
Purpose Register RA.

The andil. instruction has one syntax form and never affects the Fixed Point Exception
Register. This instruction sets the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, or Summary Overflow (SO) bit in Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Examples

RS

UI

Specifies source general purpose register for operation.

Specifies 16-bit unsigned integer for operation.

1. To AND the contents of GPR 4 with OxOOOO 5730, store the result in GPR 6, and set
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox7B41 92CO.
andil. 6,4,Ox5730
GPR 6 now contains OxOOOO 1200.
CRF 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-16 Assembler Language Reference

andiu.

andiu. (AND Immediate Upper) Instruction

Purpose

Syntax

AND's the most significant 16 bits of the contents of a general purpose register with a 16-bit
unsigned integer and stores the result in a general purpose register.

andiu. RA,RS,UI

29 RS RA UI

o 6 11 16 31

Description
The andiu. instruction ANDs the contents of General Purpose Register RS with the
concatenation of a 16-bit unsigned integer UI and x'OOOO' and places the result into the
target General Purpose Register RA.

The andiu. instruction has one syntax form and never affects the Fixed Point Exception
Register. This instruction sets the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EO) zero, or Summary Overflow (SO) bit in Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

UI Specifies 16-bit unsigned integer for operation.

1. To AND the contents of GPR 4 with Ox5730 0000, store the result in GPR 6, and set
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox7B41 92CO.
andiu. 6,4,Ox5730
GPR 6 now contains Ox5300 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

Chapter 5. Instruction Set 5-17

aze

aze (Add To Zero Extended) Instruction

Purpose

Syntax

Adds the contents of a general purpose register, zero, and the value of the Carry bit in the
Fixed Point Exception Register and places the result in a general purpose register.

aze RT,RA

aze. RT,RA

azeo RT,RA

azeo. RT,RA

31 . RT RA III I OEI 202 I Rc I
0 6 11 16 21 22 31

Description
The aze instruction adds the contents of General Purpose Register RA, the Carry bit, and
OxOOOO 0000 and places the result into the target General Purpose Register RT.

The aze instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

aze 0 CA 0 None

aze. 0 CA 1 LT,GT,EQ,SO

azeo SO,OV,CA 0 None

azeo. SO,OV,CA LT,GT,EQ,SO

The four syntax forms of the aze instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (L T) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT

RA

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

5-18 Assembler Language Reference

Examples
1. To add the contents of GPR 4, zero, and the Carry bit and store the result in GPR 6:

Assume GPR 4 contains Ox7B41 92CO.
Assume the Carry bit is zero.
aze 6,4
GPR 6 now contains Ox7B41 92CO.

aze

2. To add the contents of GPR 4, zero, and the Carry bit, store the result in GPR 6, and set
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxEFFF FFFF.
Assume the Carry bit is one.
aze. 6,4
GPR 6 now contains OxFOOO 0000.

3. To add the contents of GPR 4, zero, and the Carry bit, store the result in GPR 6, and set
the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception Register to
reflect the result of the operation:

Assume GPR 4 contains Ox9000 3000.
Assume the Carry bit is one.
azeo 6,4
GPR 6 now contains Ox9000 3001.

4. To add the contents of GPR 4, zero, and the Carry bit, store the result in GPR 6, and set
the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception Register
and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxEFFF FFFF.
Assume the Carry bit is zero.
azeo. 6,4
GPR 6 now contains OxEFFF FFFF.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-19

b

b (Branch) Instruction

Purpose

Syntax

Branches to a specified target address.

b

ba

bl
bla

o

18

6

tar geL address

targeLaddress

tar geL address
tar geL address

LI

30 31

Description
The b instruction branches to an instruction specified by the branch target address. The
branch target address is computed one of two ways.

• If the absolute address bit (AA) is 0, then the branch target address is computed by
concatenating the 24-bit LI field, which is calculated by subtracting the address of the
instruction from the target address and dividing the result by four, and b' 00' ,
sign-extending the result to 32 bits, and adding this to the address of this branch
instruction.

• If the Absolute Address is 1 , then the branch target address is LI concatenated with
b ' 00' sign-extended to 32 bits. The LI field is the low-order 26 bits of the target address
divided by four.

The b instruction has four syntax forms. Each syntax form has a different effect on the Link
bit and Link Register.

Syntax Absolute Fixed Point Link bit Condition
form Address bit Exception Register (lK) Register Field 0

(AA)

b 0 None 0 None

ba 1 None 0 None

bl 0 None None

bla None None

The four syntax forms of the b instruction never affect the Fixed Point Exception Register or
Condition Register Field O. The syntax forms set the absolute address (AA) bit and the Link
bit (LK) and determine which method of calculating the branch target address is used. If the
Link Bit (LK) is set to 1, then the effective address of the instruction is placed in the Link
Register.

5-20 Assembler Language Reference

Parameters

Examples

targeLaddress Specifies the target address.

1. To transfer the execution of the program to there:

here: b there
cror 15,15,15

The execution of the program continues at there.
there:

2. To transfer the execution of the program to and set the Link Register:

bl here
return: cror 15,15,15
The Link Register now contains the address of return.
The execution of the program continues at here.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Branch Instructions on page 1-3.

b

Chapter 5. Instruction Set 5-21

bb

bb (Branch on Condition Register Bit) Instruction

Purpose

Syntax

Branches to a specified address depending on the value of a specified Condition Register
bit.

bbt 11,A2
bbtl 11,A2
bbf 11,A2
bbfl 11,A2

16 BO BI BO I AA I LK

0 6 11 16 30 31

Description
The bb instruction branches to an instruction specified by the branch target address
depending on the value of a specified Condition Register bit.

• Use the bbt instruction to branch if the specified Condition Register bit is true (BD=OxC).

• Use the bbf instruction to branch if the specified Condition Register bit is false (BD=Ox4).

For the bb extended mnemonic forms, the assembler subtracts the address of the branch
instruction from the address A2. It then divides the result by 4 to get the branch
displacement (BD) in full words. At runtime, bit 11 of the Condition Register is checked. 11
must be greater than or equal to 0 and less than or equal to 31. If the condition is satisfied,
the concatenation of the branch displacement and b'OO' is sign-extended and the result is
added to the address of the branch instruction. The result is the branch target address.

Syntax Branches if CR Fixed Point Link bit (LK) Condition
form bit is: Exception Register Register

Field 0

bbt True None 0 None

bbtl True None 1 None

bbf Flase None 0 None

bbfl False None None

The four syntax forms of the bb instruction never affect the Fixed Point Exception Register
or Condition Register Field O. If the Link Bit (LK) is set to 1, then the effective address of the
instruction is placed in the Link Register.

Parameters
11

A2

Specifies bit in Condition Register for condition comparison.

Specifies address used in calculation of branch displacement.

5-22 Assembler Language Reference

bb

Extended Mnemonics

Examples

Three extended mnemonic branch instructions are based on the various branch instructions.
The extended mnemonic a form is based on the bb (Branch on Condition Register bit)
instruction. The extended mnemonic c form is based on the bcc (Branch Conditional to
Count Register) instruction. The extended mnemonic r form is based on the bcr (Branch
Conditional Register) instruction. These instructions check bit 11 of the Condition Register for
condition evaluation.

• The extended mnemonic a defines the branch target address as BDII'00'.

• The extended mnemonic c form defines the branch target address as the contents of the
Count Register.

• The extended mnemonic r form defines the branch target address as the contents of the
Link Register.

• The t and f in the mnemonic instructions represent TRUE and FALSE for the branch
conditions.

Use the I form to place the instruction following the Branch Instruction in the Link Register.

Syntax Parameters Description

bbta, bbfa, 11,A2 Branch on CR bit
bbtla, bbfla 11,12

bbtc, bbfc, 11 Branch Count Register
bbtcl, bbfcl 11 on CR Bit

bbtr, bbfr, 11 Branch Register on CR Bit
bbtrl, bbfrl 11

1. To branch to a new address dependant on the third bit of the Condition Register:

here: si 6,5,Oxl
Assume GPR 5 equals 1.
One is subtracted from GPR 5 and the result is stored
in GPR 6.
cmpi O,6,OxO
GPR 6 is compared to zero and the result is recorded
in the first four bits of the Condition Register.
bbt 2,here
The branch to here occurs if the comparison is equal.

2. To branch to a new address dependant on the third bit of the Condition Register and
place the address following the branch in the Link Register.

there: ai 6,5,-1
Assume GPR 5 equals 5.
-1 is added to GPR 5 and the result is stored
in GPR 6.
cmpi O,6,OxO
GPR 1 is compared to zero and the result is recorded
in the first four bits of the Condition Register.
bbfl 2,there
The branch to there occurS if the comparison
is not equal.

Chapter 5. Instruction Set 5-23

bb

Implementation Specifics
This instruction is part of Application Development Toolkit inAIX Base.

Related Information
Understanding Branch Instructions on page 1-3.

5-24 Assembler Language Reference

bc

bc (Branch Conditional) Instruction

Purpose
Conditionally branches to a specified target address.

Syntax
be BO,BI,targeLaddress
bea BO,BI,targeLaddress
bel BO,BI,targeLaddress
bela BO,BI,targeLaddress

Extended mnemonics are also provided.

16 BO BI BO

o 6 11 16 30 31

Description
The be instruction branches to an instruction specified by the branch target address. The
branch target address is computed one of two ways.

• If the absolute address bit (AA) is 0, then the branch target address is computed by
concatenating the 24-bit Branch Displacement (BD) and b'OO', sign-extending this to 32
bits, and adding the result to the address of this branch instruction.

• If the Absolute Address is 1, then the branch target address is BD concatenated with
b ' 00' sign-extended to 32 bits.

The be instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Absolute Fixed Point Link bit Condition
form Address bit Exception Register (LK) Register Field 0

(AA)

be 0 None 0 None

bea 1 None 0 None

bel 0 None None

bela None None

The four syntax forms of the be instruction never affect the Fixed Point Exception Register
or Condition Register Field O. The syntax forms set the absolute address (AA) bit and the
Link bit (LK) and determine which method of calculating the branch target address is used. If
the Link Bit (LK) is set to 1, then the effective address of the instruction is placed in the Link
Register.

The Branch Option field (BO) is used to combine different types of branches into a single
instruction. Extended mnemonics are provided to set the Branch Option field automatically.
The Branch Option field has one of the following specifications, where x stands for either a 0
or a 1:

Chapter 5. Instruction Set 5-25

be

80

OOOOx

0001x

001xx

0100x

0101x

011xx

1xOOx

1x01x

1x1xx

Description

Decrement the Count Register, then branch if the decremented CTR is not 0
and condition FALSE.

Decrement the Count Register, then branch if the decremented CTR is 0
and condition FALSE.

Branch if condition FALSE.

Decrement the Count Register, then branch if the decremented CTR is not 0
and condition TRUE.

Decrement the Count Register, then branch if the decremented CTR is 0
and condition TRUE.

Branch if condition TRUE.

Decrement the Count Register, then branch if the decremented CTR is not
O.

Decrement the Count Register, then branch if the decremented CTR is O.

Branch always.

Parameters
targeLaddress Specifies the target address. For absolute branches such as bca and

bela, the target address can be immediate data containable in 16 bits.

BI Specifies bit in Condition Register for condition comparison.

BO Specifies Branch Option field used in instruction.

BIF Specifies the Condition Register f~eld that specifies the Condition
Register bit (LT, GT, EO, SO) to be used for condition comparison.

Extended Mnemonics
Six extended mnemonic branch commands are based on the bc command. In the branch
and decrement commands that begin with bd, use the bdz form to branch if CTR equals 0
and the bdn form to branch if CTR does not equal zero. Use the I form to place the
instruction that follows the Branch Instruction in the Link Register, and use the 12 Branch
Codes to replace XX in each Extended Mnemonic command.

Syntax Parameters Description

bXX, bXXI [BIFj,targeLaddress Branch on Condition Extended

bXXa, bXXla [BIFj,targeLaddress Branch on Condition Extended
Absolute

bdz, bdn, targeLaddress Branch and Decrement CTR
bdzl, bdnl

bdza, bdna, targeLaddress Branch Absolute and Decrement CTR
bdzla, bdnla

5-26 Assembler Language Reference

bc

bdzr, bdnr,
bdzrl, bdnrl

None Branch Register and Decrement CTR

Examples

bdzXX,bdnXX targeLaddress Branch and Decrement CTR on
Condition*

* This command uses only the first eight Branch Codes (also marked by *) in place of xx.

1. To branch to a target address dependent on the value in the Count Register:

lil 8,Ox3
Loads GPR 2 with Ox3.
mtctr 8
The Count Register equals Ox3.
ai.9,8,Oxl
Adds one to GPR 8 and places the result in GPR 9.
The Condition Register records a comparison against zero
with the result.
bc OxC,O,there
Branch is taken if condition is true. ° indicates that
the ° bit in the Condition Register is checked to
determine if it is set (the LT bit is on). If it is set,
back occurs.
bcl Ox8,2,there
Count Register is decremented by one, and CTR becomes 2.
The branch occurs if CTR is not equal to ° and Condition
Register bit 2 is set (the EQ bit is on).
The Link Register contains address of next instruction.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Branch Instructions on page 1-3.

Chapter 5. Instruction Set 5-27

bee

bcc (Branch Conditional to Count Register) Instruction

Purpose
Conditionally branches to the address contained within the Count Hegister.

Syntax
bee BO,BI

bee I BO,BI

Extended mnemonics are also provided.

19 80 81 /II 528 LK

o 6 11 16 21 31

Description
The bee instruction conditionally branches to an instruction specified by the branch target
address contained within the Count Register. The branch target address is the
concatenation of Count Register bits 0-29 and b'OO'.

The Branch Option (BO) field has one of the following specifications:

80

OOOOx

0001x

001xx

0100x

0101x

011xx

1xOOx

1x01x

1x1xx

Description

Decrement the Count Register, then branch if the decremented CTR is not 0
and condition FALSE.

Decrement the Count Register, then branch if the decremented CTR is 0
and condition FALSE.

Branch if condition FALSE.

Decrement the Count Register, then branch if the decremented CTR is not 0
and condition TRUE.

Decrement the Count Register, then branch if the decremented CTR is 0
and condition TRUE.

Branch if condition TRUE.

Decrement the Count Register, then branch if the decremented CTR is not
O.

Decrement the Count Register, then branch if the decremented CTR is O.

Branch always.

The bee instruction has two syntax forms. Each syntax form has a different effect on the
Link bit and Link Register.

5-28 Assembler Language Reference

bee

Syntax Absolute Fixed Point Link bit Condition
form Address bit Exception Register (lK) Register Field 0

(AA)

bee None None 0 None

beel None None None

The two syntax forms of the bee instruction never affect the Fixed Point Exception Register
or Condition Register Field o. If the Link bit is 1, then the effective address of the instruction
following the branch instruction is placed into the Link Register.

Parameters
BO Specifies Branch Option field.

BI

BIF

Specifies bit in Condition Register for condition comparison.

Specifies the Condition Register field that specifies the Condition Register
bit (L T, GT, EO, SO) to be used for condition comparison.

Extended Mnemonics

Examples

Two extended mnemonic branch commands are based on the bee command. Use the I form
to place the instruction that follows the Branch Instruction in the Link Register, and use the
12 Branch Codes to replace XX in each Extended Mnemonic command.

Syntax

betr

bXXe, bXXel

Parameters

None

[BIF]

Description

Branch to Count Register

Branch Count Register on XX Condition

1. To branch from a specific address, dependant on a bit in the Condition Register, to the
address contained in the Count Register:

bcc Ox4,O
cror 15,15,15
Branch occurs if LT bit in the Condition Register is o.
The branch will be to the address contained in
the Count Register.
bccl OxC,l
return: cror 15,15,15
Branch occurs if GT bit in the Condition Register is 1.
The branch will be to the address contained in
the Count Register.
The Link register now contains the address of return.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Count Register.

Understanding Branch Instructions on page 1-3.

Chapter 5. Instruction Set 5-29

bcr

bcr (Branch Conditional Register) Instruction

Purpose

Syntax

Conditionally branches to an address contained in the Link Register.

bcr

bcrl

BO,BI

BO,BI

Extended mnemonics are also provided.

19 80 81

o 6 11 16

III 16

21

LK

31

Description
The bcr instruction branches to an instruction specified by the branch target address. The
branch target address is the concatenation of bits 0-29 of the Link Register and b'OO'.

The Branch Option (BO) field has one of the following specifications:

80

OOOOx

0001x

001xx

0100x

0101x

011xx

1xOOx

1x01x

1x1xx

Description

Decrement the Count Register, then branch if the decremented CTR is not 0
and condition FALSE.

Decrement the Count Register, then branch if the decremented CTR is 0
and condition FALSE.

Branch if condition FALSE.

Decrement the Count Register, then branch if the decremented CTR is not 0
and condition TRUE.

Decrement the Count Register, then branch if the decremented CTR is 0
and condition TRUE.

Branch if condition TRUE.

Decrement the Count Register, then branch if the decremented CTR is not
O.

Decrement the Count Register, then branch if the decremented CTR is O.

Branch always.

The bcr instruction has two syntax forms. Each syntax form has a different effect on the Link
bit and Link Register.

5-30 Assembler Language Reference

bcr

Syntax Absolute Fixed Point Link bit Condition
form Address bit Exception Register (lK) Register Field 0

(AA)

bcr None None 0 None

bcrl None None None

The two syntax forms of the bcr instruction never affect the Fixed Point Exception Register
or Condition Register Field o. If the Link bit (LK) is 1, then the effective address of the
instruction following the branch instruction is placed into the Link Register.

Parameters
BO Specifies Branch Option field.

BI

BIF

Specifies bit in Condition Register for condition comparison.

Specifies the Condition Register field that specifies the Condition
Register bit (L T, GT, EQ, SO) to be used for condition comparison.

Extended Mnemonics

Examples

One extended mnemonic branch command is based on the bcr command. Use the I form to
place the instruction that follows the Branch Instruction in the Link Register, and use the 12
Branch Codes to replace XX in the command.

Syntax

bXXr, bXXrl

Parameters

[BIF]

Description

Branch Register on Condition

1. To branch to the calculated branch target address dependant on bit 0 of the Condition
Register:

bcr OxO,O
The Count Register is decremented.
A branch occurs if the LT bit is set to zero in the
Condition Register and if the Count Register
does not equal zero.
If the conditions are met, the instruction branches to
the concatination of bits 0-29 of the Link Register and b'OO'.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Count Register.

Understanding Branch Instructions on page 1-3.

Chapter 5. Instruction Set 5-31

cal

cal (Compute Address Lower) Instruction

Purpose

Syntax

Calculates an address from an offset and a base address and places the result in a general
purpose register.

cal RT,O(RA)

14 RT RA D

o 6 11 16 31

Description
The cal instruction places the sum of the contents of General Purpose Register RA and the
16-bit two's complement integer 0, sign extended to 32 bits, into the target General Purpose
Register RT. If General Purpose Register RA is GPR 0, then 0 is stored into the target
General Purpose Register RT.

The cal instruction has one syntax form and does not affect Condition Register Field 0 or the
Fixed Point Exception Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA Specifies source general purpose register for operation.

o Specifies 16-bit two's complement integer sign extended to 32 bits.

1. To calculate an address or contents with an offset of OxFFFF 8FFO from the contents of
GPR 5 and store the result in GPR 4:

Assume GPR 5 contains OxOOOO 0900.
cal 4,OxFFFF8FFO(5)
GPR 4 now contains OxFFFF 98FO.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Address Computation Instructions on page 1-8.

5-32 Assembler Language Reference

cau

cau (Compute Address Upper) Instruction

Purpose
Calculates an address from a concatenated offset and a base address and loads the result
in a general purpose register.

Syntax
cau RT,RA,UI

15 RT RA UI

o 6 11 16 31

Description
The cau instruction places the sum of the contents of General Purpose Register RA and the
concatenation of a 16-bit unsigned integer UI and x'OOOO' into the target General Purpose
Register RT. If General Purpose Register RA is GPR 0, then the sum of the concatenation of
UI and x'OOOO' and zero is stored into the target General Purpose Register RT.

The cau instruction has one syntax form and does not affect Condition Register Field 0 or
the Fixed Point Exception Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Specifies first source general purpose register for operation.

Examples

RA

UI Specifies concatenation of 16-bit unsigned integer for operation.

1. To add an offset of Ox0011 0000 to the address or contents contained in GPR 6 and load
the result into GPR 7:

Assume GPR 6 contains OxOOOO 4000.
cau 7,6,OxOOll
GPR 7 now contains OxOOll 4000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Address Computation Instructions on page 1-8.

Chapter 5. Instruction Set 5-33

cax

cax (Compute Address) Instruction

Purpose

Syntax

Calculates an address by adding the contents of two general purpose regist0rs and places
the result in a general purpose register.

cax

cax.

caxo

caxo.

31

o 6

RT,RA,RB

RT,RA,RB

RT,RA,RB

RT,RA,RB

RT RA

11

RS I OEI 266 Rc

16 21 22 31

Description
The cax instruction places the sum of the contents of General Purpose Register RA and
General Purpose Register RB into the target General Purpose Register RT.

The cax instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

cax 0 None 0 None

cax. 0 None 1 LT,GT,EQ,SO

caxo SO,OV 0 None

caxo. SO,OV LT,GT,EQ,SO

The four syntax forms of the cax instruction never affect the Carry bit (CA) in the Fixed Point
Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (L T) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

5-34 Assembler Language Reference

Examples

cax

1. To add the address or contents in GPR 6 to the address or contents in GPR 3 and store
the result in GPR 4:

Assume GPR 6 contains Ox0004 0000.
Assume GPR 3 contains OxOOOO 4000.
cax 4,6,3
GPR 4 now contains Ox0004 4000.

2. To add the address or contents in GPR 6 to the address or contents in GPR 3, store the
result in GPR 4, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 6 contains Ox8000 7000.
Assume GPR 3 contains Ox7000 8000.

cax. 4,6,3
GPR 4 now contains OxFOOO FOOO.

3. To add the address or contents in GPR 6 to the address or contents in GPR 3, store the
result in GPR 4, and set the Summary Overflow, Overflow, and Carry bits in the Fixed
Point Exception Register to reflect the result of the operation:

Assume GPR 6 contains OxEFFF FFFF.
Assume GPR 3 contains Ox8000 0000.
caxo 4,6,3
GPR 4 now contains Ox6FFF FFFF.

4. To add the address or contents in GPR 6 to the address or contents in GPR 3, store the
result in GPR 4, and set the Summary Overflow, Overflow, and Carry bits in the Fixed
Point Exception Register and Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 6 contains OxEFFF FFFF.
Assume GPR 3 contains OxEFFF FFFF.
caxo. 4,6,3
GPR 4 now contains OxDFFF FFFE.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Address Computation Instructions on page 1-8.

Chapter 5. Instruction Set 5-35

cmp

cmp (Compare) Instruction

Purpose
Compares the contents of two general purpose registers algebraically.

Syntax
cmp BF,RA,RB

31 BF I II I RA RB o Rc

o 6 9 11 16 21 31

Description
The cmp instruction compares the contents of General Purpose Register RA with the
contents of General Purpose Register RB as signed integers and sets one of the Condition
Register Field BF bits.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register
Field will indicate the result of the operation.

The Condition Register Field BFbits are interpreted as follows:

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EO (RA) = SI

3 SO SO,OV

The cmp instruction has one syntax form and does not affect the Fixed Point Exception
Register. Condition Register Field 0 is unaffected unless it is specified as BF by the
programmer.

Parameters
BF Specifies Condition Register Field 0-7 that indicates result of compare.

Examples

RA

RB

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

1. To compare the the contents of GPR 4 and GPR 6 as signed integers and set Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFFF FFE7.
Assume GPR 5 contains OxOOOO 0011.
Assume 0 is Condition Register Field O.
cmp 0,4,6
The LT bit of Condition Register Field 0 is set.

5-36 Assembler Language Reference

cmp

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The cmpi (Compare Immediate) instruction, cmpl (Compare Logical) instruction, cmpli
(Compare Logical Immediate) instruction.

Chapter 5. Instruction Set 5-37

cmpi

cmpi (Compare Immediate) Instruction

Purpose
Compares the contents of a general purpose register and a given value algebraically.

Syntax
cmpi SF,RA,51

11 BF I II I RA 81

o 6 9 11 16 31

Description
The cmpi instruction compares the contents of General Purpose Register RA and a sixteen
bit signed integer 51 as signed integers and sets one of the Condition Register Field SF bits.

SF can be Condition Register Field 0-7; programmers can specify which Condition Register
Field will indicate the result of the operation.

The Condition Register Field SF bits are interpreted· as follows.

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmp instruction has one syntax form and does not affect the Fixed Point Exception
Register. Condition Register Field 0 is unaffected unless it is specified as BFby the
programmer.

Parameters
BF Specifies Condition Register Field 0-7 that indicates result of compare.

RA Specifies first source .general purpose register for operation.

51 Specifies 16-bit signed integer for operation.

Examples
1. To compare the the contents of GPR 4 and the signed integer Ox11 and set Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFFF FFE7.
cmpi O,4,Oxll
The LT bit of Condition Register Field 0 is set.

5-38 Assembler Language Reference

cmpi

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The cmp (Compare) instruction, cmpl (Compare Logical) instruction, cmpli (Compare
Logical Immediate) instruction.

Chapter 5. Instruction Set 5-39

cmpl

cmpl (Compare Logical) Instruction

Purpose
Compares the contents of two general purpose registers logically.

Syntax
cmpl BF,RA,RB

31 BF I II I RA RB 32 Rc

o 6 9 11 16 21 31

Description
The cmpl instruction compares the contents of General Purpose Register RA with the
contents of General Purpose Register RB as unsigned integers and sets one of the
Condition Register Field BF bits.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register
Field will indicate the result of the operation.

The Condition Register Field BF bits are interpreted as follows:

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EO (RA) = 81

3 SO SO,OV

The cmpl instruction has one syntax form and does not affect the Fixed Point Exception
Register. Condition Register Field 0 is unaffected unless it is specified as BFby the
programmer.

Parameters
BF Specifies Condition Register Field 0-7 indicates result of compare.

Examples

RA

RB

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

1. To compare the the contents of GPR 4 and GPR 5 as unsigned integers and set
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFFF 0000.
Assume GPR 5 contains Ox7FFF 0000.
Assume 0 is Condition Register Field O.
cmpl 0,4,5
The GT bit of Condition Register Field 0 is set .

. 5-40 Assembler Language Reference

cmpl

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The cmp (Compare) instruction, cmpi (Compare Immediate) instruction, cmpli (Compare
Logical Immediate) instruction.

Chapter 5. Instruction Set 5-41

cmpli

cmpli (Compare Logical Immediate) Instruction

Purpose
Compares the contents of a general purpose register and a given value logically.

Syntax
cmpli BF,RA,UI

10 BF I II I RA UI

o 6 9 11 16 31

Description
The cmpli instruction compares the contents of General Purpose Register RA with the
concatenation of xIOOOO' and a 16-bit unsigned integer UI as unsigned integers and sets one
of the Condition Register Field BF bits.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register
Field will indicate the result of the operation.

The Condition Register Field BF bits are interpreted as follows:

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EO (RA) = SI

3 SO SO,OV

The cmpli instruction has one syntax form and does not affect the Fixed Point Exception
Register. Condition Register Field 0 is unaffected unless it is specified as BF by the
programmer.

Parameters
BF Specifies Condition Register Field 0-7 that indicates result of compare.

Examples

RA

UI

Specifies source general purpose register for operation.

Specifies 16-bit unsigned integer for operation.

1. To compare the contents of GPR 4 and the unsigned integer Oxff and set Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxOOOO OOff.
cmpli 0,4,Oxff
The EQ bit of Condition Register Field 0 is set.

5-42 Assembler Language Reference

cmpli

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The cmp (Compare) instruction, cmpi (Compare Immediate) instruction, cmpl (Compare
Logical) instruction.

Chapter 5. Instruction Set 5-43

cntlz

cntlz (Count Leading Zeros) Instruction

Purpose

Syntax

Places the number of leading zeros from a source general purpose register in a general
purpose register.

cntlz RA,RS

cntlz. RA,RS

31 RS RA /II 26 IRe I
0 6 11 16 21 31

Description
The cntlz instruction counts the number (between 0 and 32 inclusive) of consecutive zero
bits starting at bit zero of General Purpose Register RS and stores the result in the target
General Purpose Register RA.

Syntax
form

cntlz

cntlz.

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the cntlz instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less
Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO)
bits in Condition Register Field o.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Examples

RS Specifies source general purpose register for operation.

1. To count the number of leading zeros in the value contained in GPR 3 and place the
result back in GPR 3:

Assume GPR 3 contains Ox0061 9920.
cntlz 3,3
GPR 3 now holds OxOOOO 0009.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-44 Assembler Language Reference

crand

crand (Condition Register AND) Instruction

Purpose
Places the result of ANDing two Condition Register bits in a Condition-Register bit.

Syntax
crand BT,BA,BB

19 ST SA BS 257 LK

o 6 11 16 21 31

Description
The crand instruction ANDs the Condition Register bit specified by BA and the Condition
Register bit specified by BB and places the result in the target Condition Register bit
specified by BT.

The crand instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
BT Specifies target Condition Register bit where result of operation is stored.

Specifies source Condition Register bit for operation.

Examples

BA

BB Specifies source Condition Register bit for operation.

1. To AN D Condition Register bits 0 and 5 and store the result in Condition Register bit 31 :

Assume Condition Register bit ° is 1.
Assume Condition Register bit 5 is 0.
crand 31,0,5
Condition Register bit 31 is now 0.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Condition Register Instructions on page 1-5.

Chapter 5. Instruction Set 5-45

crandc

crandc (Condition Register AND with Complement) Instruction

Purpose

Syntax

Places the result of ANDing one Condition Register bit and the complement of a Condition
Register bit in a Condition Register bit.

crandc BT,BA,BB

19 BT BA BB 129 LK

o 6 11 16 21 31

Description
The crandc instruction ANDs the Condition Register bit specified in BA and the complement
of the Condition Register bit specified by BB and places the result in the target Condition
Register bit specified by BT.

The crand instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
BT Specifies target Condition Register bit where result of operation is stored.

Examples

BA

BB

Specifies source Condition Register bit for operation.

Specifies source Condition Register bit for operation.

1. To AND Condition Register bit 0 and the complement of Condition Register bit 5 and put
the result in bit 31:

Assume Condition Register bit ° is 1.
Assume Condition Register bit 5 is 0.
crandc 31,0,5
Condition Register bit 31 is now 1.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Condition Register Instructions on page 1-5.

5-46 Assembler Language Reference

creqv

creqv (Condition Register Equivalent) Instruction

Purpose

Syntax

Places the complemented result of XORing two Condition Register bits in a Condition
Register bit.

creqv BT, BA,BB

19 8T 8A 88 289

o 6 11 16 21 31

Description
The creqv instruction XORs the Condition Register bit specified in BA and the Condition
Register bit specified by BB and places the complemented result in the target Condition
Register bit specified by BT.

The creqv instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
BT Specifies target Condition Register bit where result of operation is stored.

Specifies source Condition Register bit for operation.

Examples

BA

BB Specifies source Condition Register bit for operation.

1. To place the complemented result of XORing Condition Register bits 8 and 4 into
Condition Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is o.
creqv 4,8,4
Condition Register bit 4 is now O.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in PQWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Condition Register Instructions on page 1-5.

Chapter 5. Instruction Set 5-47

crnand

'''",,", .,

crnand (Condition Register NAND) Instruction

Purpose

Syntax

Places the complemented result of ANDing two Condition Register bits in a Condition
Register bit.

crnand BT,BA,BB

19 8T 8A 88 225

o 6 11 16 21 31

Description
The crnand instruction ANDs the Condition Register bit specified by BA and the Condition
Register bit specified by BB and places the complemented result in the target Condition
Register bit specified by BT.

The crnand instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
BT Specifies target Condition Register bit where result of operation is stored.

Specifies source Condition Register bit for operation.

Examples

BA

BB Specifies source Condition Register bit for operation.

1. To ANDing Condition Register bits 8 and 4 and place the complemented result into
Condition Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is o.
crnand 4,8,4
Condition Register bit 4 is now 1.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation andPOWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Condition Register Instructions on page 1-5.

5-48 Assembler Language Reference

crnor

crnor (Condition Register NOR) Instruction

Purpose

Syntax

Places the complemented result of ORing two Condition Register bits in a Condition
Register bit.

crnor BT, BA, BB

19 BT BA BB 33 LK

o 6 11 16 21 31

Description
The crnor instruction ORs the Condition Register bit specified in BA and the Condition
Register bit specified by BB and places the complemented result in the target Condition
Register bit specified by BT.

The crnor instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
BT Specifies target Condition Register bit where result of operation is stored.

Specifies source Condition Register bit for operation.

Examples

BA

BB Specifies source Condition Register bit for operation.

1. To OR Condition Register bits 8 and 4 and store the complemented result into Condition
Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is o.
crnor 4,8,4
Condition Register bit 4 is now O.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Condition Register Instructions on page 1-5.

Chapter 5. Instruction Set 5-49

cror

cror (Condition Register OR) Instruction

Purpose
Places the result of DRing two Condition Register bits in a Condition Register bit.

Syntax
cror BT,BA,BB

19 BT BA BB 449

o 6 11 16 21 31

Description
The cror instruction DRs the Condition Register bit specified by BA and the Condition
Register bit specified by BB and places the result in the target Condition Register bit
specified by BT.

The cror instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
BT Specifies target Condition Register bit where result of operation is stored.

Examples

BA

BB

Specifies source Condition Register bit for operation.

Specifies source Condition Register bit for operation.

1. To place the result of DRing Condition Register bits 8 and 4 into Condition
Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is o.
cror 4,8,4
Condition Register bit 4 is now 1.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Condition Register Instructions on page 1-5.

5-50 Assembler Language Reference

crorc

crorc (Condition Register OR with Complement) Instruction

Purpose

Syntax

Places the result of ~Ring a Condition Register bit and the complement of a Condition
Register bit in a Condition Register bit.

crorc BT,BA,BB

19 BT BA BB 417 LK

o 6 11 16 21 31

Description
The crorc instruction ORs the Condition Register bit specified by BA and the complement of
the Condition Register bit specified by BB and places the result in the target Condition
Register bit specified by BT.

The crorc instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
BT Specifies target Condition Register bit where result of operation is stored.

Examples

BA Specifies source Condition Register bit for operation.

BB Specifies source Condition Register bit for operation.

1. To place the result of ~Ring Condition Register bit 8 and the complement of Condition
Register bit 4 into Condition Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is o.
crorc 4,8,4
Condition Register bit 4 is now 1.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Condition Register Instructions on page 1-5.

Chapter 5. Instruction Set 5-51

crxor

crxor (Condition Register XOR) Instruction

Purpose
Places the result of XORing two Condition Register bits in a Condition Register bit.

Syntax
crxor BT,BA,BB

19 BT BA BB 193 LK

o 6 11 16 21 31

Description
The crxor instruction XORs the Condition Register bit specified by BA and the Condition
Register bit specified by BB and places the result in the target Condition Register bit
specified by BT.

The crxor instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
BT Specifies target Condition Register bit where result of operation is stored.

Examples

BA

BB

Specifies source Condition Register bit for operation.

Specifies source Condition Register bit for operation.

1. To place the result of XORing Condition Register bits 8 and 4 into Condition
Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 1.
crxor 4,8,4
Condition Register bit 4 is now O.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Condition Register Instructions on page 1-5.

5-52 Assembler Language Reference

div

div (Divide), Instruction

Purpose

Syntax

Divides the contents of a general purpose register concatenated with the MQ Register by the
contents of a general purpose register and stores the result in a general purpose register.

div RT,RA,RB

div. RT,RA,RB

divo RT,RA,RB

divo. RT,RA,RB

31 RT RA RB IOEI 331 Rc

0 6 11 16 21 22 31

Description
The div instruction concatenates the contents of General Purpose Register RA and the
contents of Multiply Quotient (MQ) Register, divides the result by the contents of General
Purpose Register RB, and stores the result in the target General Purpose Register RT. The
remainder has the same sign as the dividend, except a zero quotient or a zero remainder is
always positive. The results obey the equation

dividend = (divisor x quotient) + remainder

where a dividend is the original (RA) II (MQ), divisor is the original (RB), quotient is the final
(RT), and remainder is the final (MQ).

For the case of -2**31 + -1, the MQ Register is set to zero and -2**31 is placed in General
Purpose Register RT. For all other overflows, the contents of MQ, the target General
Purpose Register RT, and the Condition Register Field a (if the Record Bit (Rc) is 1) are
undefined.

The div instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field a and the Fixed Point Exception Register.

Syntax Fixed Point Record Condition
form Exception Register bit (Rc) Register Field 0

div a None a None

div. a None 1 LT,GT,EQ,SO

divo 1 SO,OV a None

divo. SO,OV LT,GT,EQ,SO

Chapter 5. Instruction Set 5-53

div

The four syntax forms of the div instruction never affect the Carry bit (CA) in the Fixed Point
Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (L T) zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA

RB

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

1. To divide the contents of GPR 4, concatenated with the MO register, by the contents of
GPR 6 and store the result in GPR 4:

Assume the MQ Register contains OxOOOO 0001.
Assume GPR 4 contains OxOOOO 0000.
Assume GPR 6 contains OxOOOO 0002.
div 4,4,6
GPR 4 now contains OxOOOO 0000.
The MQ register now contains OxOOOO 0001.

2. To divide the contents of GPR 4, concatenated with the MO register, by the contents of
GPR 6, store the result in GPR 4 and set Condition Register Field 0 to reflect the result of
the operation:

Assume the MQ Register contains OxOOOO 0002.
Assume GPR 4 contains OxOOOO 0002.
Assume GPR 6 contains OxOOOO 0002.
di v. 4,4,6
GPR 4 now contains OxOOOO 0001.
MQ contains OxOOOO 0000.

3. To divide the contents of GPR 4, concatenated with the MO register, by the contents of
GPR 6, place the result in GPR 4, and set the Summary Overflow and Overflow bits in
the Fixed Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains OxOOOO 0001.
Assume GPR 6 contains OxOOOO 0000.
Assume the MQ Register contains OxOOOO 0000.
divo 4,4,6
GPR 4 now contains an undefined quantity.
The MQ register is undefined.

4. To divide the contents of GPR 4, concatenated with the MO register, by the contents of
GPR 6, place the result in GPR 4, and set the Summary Overflow and Overflow bits in
the Fixed Point Exception Register and Condition Register Field 0 to reflect the result of
the operation:

Assume GPR 4 contains Ox-1.
Assume GPR 6 contains Ox2.
Assume the MQ Register contains OxFFFFFFFF.
divo. 4,4,6
GPR 4 now contains OxOOOO 0000.
The MQ register contains Ox-1.

5-54 Assembler Language Reference

div

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-55

divs

divs (Divide Short) Instruction

Purpose

Syntax

Divides the contents of a general purpose register by the contents of a general purpose
register and stores the result in a general purpose register.

divs

divs.

divso

divso.

31

o 6

RT,RA,RB

RT,RA,RB

RT,RA,RB

RT,RA,RB

RT RA

11

RS I OEI 363 Rc

16 21 22 31

Description
The divs instruction divides the contents of General Purpose Register RA by the contents of
General Purpose Register RB and stores the result in the target General Purpose Register
RT. The remainder has the same sign as the dividend, except a zero quotient or a zero
remainder is always positive. The results obey the equation

dividend = (divisor x quotient) + remainder

where a dividend is the original (RA), divisor is the original (RB), quotient is the final (R7),
and remainder is the final (MQ).

For the case of -2**31 + -1, the MQ Register is set to zero and -2**31 is placed in General
Purpose Register RT. For all other overflows, the contents of MQ, the target General
Purpose Register RT and the Condition Register Field 0 (if the Record Bit (Rc) is 1) are
undefined.

The divs instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

divs 0 None 0 None

divs. 0 None 1 LT,GT,EQ,SO

divso SO,OV 0 None

divso. SO,OV LT,GT,EQ,SO

The four syntax forms of the divs instruction never affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1 , the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field o.

5-56 Assembler Language Reference

divs

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA Specifies source general purpose register for operation.

RB Specifies source general purpose register for operation.

1. To divide the contents of GPR 4 by the contents of GPR 6 and store the result in GPR 4:

Assume GPR 4 contains OxOOOO 0001.
Assume GPR 6 contains OxOOOO 0002.
divs 4,4,6
GPR 4 now contains OxO.
The MQ register now contains Ox1.

2. To divide the contents of GPR 4 by the contents of GPR 6, store the result in GPR 4 and
set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxOOOO 0002.
Assume GPR 6 contains OxOOOO 0002.
divs. 4,4,6
GPR 4 now contains OxOOOO 0001.
The MQ register now contains OxOOOO 0000.

3. To divide the contents of GPR 4 by the contents of GPR 6, store the result in GPR 4, and
set the Summary Overflow and Overflow bits in the Fixed Point Exception Register to
reflect the result of the operation:

Assume GPR 4 contains OxOOOO 0001.
Assume GPR 6 contains OxOOOO 0000.
divso 4,4,6
GPR 4 now contains an undefined quantity.

4. To divide the contents of GPR 4 by the contents of GPR 6, store the result in GPR 4, and
set the Summary Overflow and Overflow bits in the Fixed Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox-1.
Assume GPR 6 contains OxOOOO 00002.
Assume the MQ Register contains OxOOOO 0000.
di vso. 4, 4 , 6
GPR 4 now contains OxOOOO 0000.
The MQ register contains Ox-1.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-57

doz

doz (Difference or zero) Instruction

Purpose

Syntax

Computes the difference between the contents of two general purpose registers and stores
the result or the value zero in a general purpose register.

doz RT,RA,RB

doz. RT,RA,RB

dozo RT,RA,RB

dozo. RT,RA,RB

31 RT RA RB I OEI 264 Rc

0 6 11 16 21 22 31

Description
The doz instruction adds the complement of the contents of General Purpose Register RA,
1, and the contents of General Purpose Register RB and stores the result in the target
General Purpose Register RT.

If the value in General Purpose Register RA is algebraically greater than the value in
General Purpose Register RB, then General Purpose Register RT is set to zero.

The doz instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Reg ister Field 0

doz 0 None 0 None

doz. 0 None 1 LT,GT,EQ,SO

dozo SO,OV 0 None

dozo. SO,OV LT,GT,EQ,SO

The four syntax forms of the doz instruction never affect the Carry bit (CA) in the Fixed Point
Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1 , the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register; the Overflow (OV) bit can only be set on positive overflows. If the syntax
form sets the Record (Rc) bit to 1, the instruction effects the Less Than (LT) zero, Greater
Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register
Field O.

5-58 Assembler Language Reference

doz

Parameters
RT Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RA

RB Specifies source general purpose register for operation.

1. To determine the difference between the contents of GPR 4 and GPR 6 and store the
result in GPR 4:

Assume GPR 4 holds OxOOOO 0001.
Assume GPR 6 holds OxOOOO 0002.
doz 4,4,6
GPR 4 now holds OxOOOO 0001.

2. To determine the difference between the contents of GPR 4 and GPR 6, store the result
in GPR 4, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OxOOOO 0001.
Assume GPR 6 holds OxOOOO 0000.
doz. 4,4,6
GPR 4 now holds OxOOOO 0000.

3. To determine the difference between the contents of GPR 4 and GPR 6, store the result
in GPR 4, and set set the Summary Overflow and Overflow bits in the Fixed Point
Exception Register to reflect the result of the operation:

Assume GPR 4 holds OxOOOO 0002.
Assume GPR 6 holds OxOOOO 0008.
dozo 4,4,6
GPR 4 now holds OxOOOO 0006.

4. To determine the difference between the contents of GPR 4 and GPR 6, store the result
in GPR 4, and set the the Summary Overflow and Overflow bits in the Fixed Point
Exception Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OxEFFF FFFF.
Assume GPR 6 holds OxOOOO 0000.
dozo.4,4,6
GPR 4 now holds Ox1000 0001.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-59

dozi, ...

dozi (Difference or Zero Immediate) Instruction

Purpose

Syntax

Computes the difference between the contents of a general purpose register and a signed
16-bit integer and stores the result or the value zero in a general purpose register.

dozi RT,RA,SI

09 RT RA 81

o 6 11 16 31

Description
The dozi instruction adds the complement of the contents of General Purpose Register RA,
the 16-bit signed integer 51, and 1 and stores the result in the target General Purpose
Register RT.

If the value in General Purpose Register RA is algebraically greater than the 16-bit signed
value in the Slfield, then General Purpose Register RTis set to zero.

The dozi instruction has one syntax form and does not effect Condition Register Field 0 or
the Fixed Point Exception Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RA

51 Specifies signed 16-bit integer for operation.

1. To determine the difference between GPR 4 and OxO and store the result in GPR 4:

Assume GPR 4 holds OxOOOO 0001.
dozi 4,4,OxO
GPR 4 now holds OxOOOO 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-60 Assembler Language Reference

eqv

eqv (Equivalent) Instruction

Purpose

Syntax

XORs the contents of two general purpose registers and places the complemented result in
a general purpose register.

eqv RA,RS,RB

eqv. RA,RS,RB

31 RS RA RB I OEI 284 Rc

0 6 11 16 21 22 31

Description
The eqv instruction XORs the contents of General Purpose Register RS with the contents of
General Purpose Register RB and stores the complemented result in the target General
Purpose Register RA.

The eqv instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

eqv None None 0 None

eqv. None None LT,GT, EO,SO

The two syntax forms of the eqv instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (L T)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA

RB

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

1. To XOR the contents of GPR 4 and GPR 6 and store the complemented result in GPR 4:

Assume GPR 4 holds OxFFF2 5730.
Assume GPR 6 holds Ox7B41 92CO.
eqv 4,4,6
GPR 4 now holds Ox7B4C 3AOF.

Chapter 5. Instruction Set 5-61

eqv

2. To XOR the contents of GPR 4 and GPR 6, store the complemented result in GPR 4, and
set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OxOOOO OOFD.
Assume GPR 6 holds Ox7B41 92CO.
eqv. 4,4,6
GPR 4 now holds Ox84BE 6DC2.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-62 Assembler Language Reference

exts

exts (Extend Sign) Instruction

Purpose
Extends the lower 16-bit contents of a general purpose register.

Syntax
exts RA,RS

exts. RA,RS

31 RS RA III I OEI 922 Rc

0 6 11 16 21 22 31

Description
The exts instruction places bits 16-31 of General Purpose Register RS in bits 16-31 of
General Purpose Register RA and copies bit 16 of register RS in bits 0-15 of register RA.

The exts instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

exts None None 0 None

exts. None None LT,GT, EO,SO

The two syntax forms of the exts instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA Specifies general purpose register receives extended integer.

Examples

RS Specifies source general purpose register for operation.

1. To place bits 16-31 of GPR 6 into bits 16-31 of GPR 4 and copy bit 16 of GPR 6 into bits
0-15 of GPR 4:

Assume GPR 6 holds OxOOOO FFFF.
exts 4,6
GPR 6 now holds OxFFFF FFFF.

2. To place bits 16-31 of GPR 6 into bits 16-31 of GPR 4, copy bit 16 of GPR 6 into bits
0-15 of GPR 4, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OxOOOO 2FFF.
exts. 6,4
GPR 6 now holds OxOOOO 2FFF.

Chapter 5. Instruction Set 5-63

exts

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-64 Assembler Language Reference

fa

fa (Floating Add) Instruction

Purpose

Syntax

Adds two 64-bit double precision floating point operands and places the result in a Floating
Point register.

fa
fa.

o

63

FRT,FRA,FRB
FRT,FRA,FRB

FRT FRA FRB m

6 11 16 21

21 Rc

26 31

Description
The fa instruction adds the 64-bit double precision floating pOint operand in Floating Point
Register FRA to the 64-bit double precision floating point operand in Floating Point Register
FRB. The result is rounded under control of the Floating Point Rounding Control Field RN of
the Floating Point Status and Control Register and is placed in Floating Point register FRT.

Addition of two floating point numbers is based on exponent comparison and addition of the
two significands. The exponents of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal. The two significands are then added
algebraically to form the intermediate sum. All 53 bits in the significand as well as all three
guard bits (G,R and X) enter into the computation.

Tininess is checked before rounding. The unrounded result is then rounded using the mode
specified by the RM field of the Floating Point Status and Control Register. The rounded
result is then checked for overflow and inexact exceptions.

• If the sum of two operands with opposite signs is exactly zero, then the sign of that sum is
positive in all rounding modes except Round Toward -Infinity, in which mode that sign is
negative. The sum of operands with the same sign retains the sign of the operands, even
if the operands are zeros.

The Floating Point Result Field of the Floating Point Status and Control Register is set to the
class and sign of the result except for Invalid Operation Exceptions when the Floating Point
Invalid Operation Exception Enable (VE) bit of the Floating Point Status and Control Register
is set to 1.

The fa instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 1.

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Register Field 1

fa C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXISI

fa. C,FL,FG,FE,FU,FR,FI,OX,UX, FX,FEX,VX,OX
XX,VXSNAN,VXISI

Chapter 5. Instruction Set 5-65

fa

The two syntax forms of the fa instruction always affect the Floating Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating
Point Exception Summary (FX), Floating Point Enabled Exception Summary (FEX), Floating
Point Invalid Operation Exception Summary (VX), and Floating Point Overflow Exception
(OX) bits in Condition Register Field 1.

Parameters

Examples

FRT Specifies target Floating Point register for operation.

FRA Specifies source Floating Point register for operation.

FRB Specifies source Floating Point register for operation.

1. To add the contents of FPR 4 and FPR 5, place the result in FPR 6, and set the Floating
Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume RM = O.
fa 6,4,5
FPR 6 now contains OxC052 6000 0000 0000.

2. To add the contents of FPR 4 and FPR 25, place the result in FPR 6, and set Condition
Register Field 1 and the Floating Point Status and Control Register to reflect the result of
the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 25 contains OxFFFF FFFF FFFF FFFF.
Assume RM = O.
fa. 6,4,25
GPR 6 now contains OxFFFF FFFF FFFF FFFF.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Arithmetic Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

5-66 Assembler Language Reference

fabs

fabs (Floating Absolute Value) Instruction

Purpose

Syntax

Stores the absolute value of the contents of a Floating Point register in a Floating Point
register.

fabs FRT,FRB
fabs. FRT,FRB

63 FRT III FRS 264 Rc

o 6 11 16 21 31

Description
The fabs instruction sets bit 0 of Floating Point Register FRB to zero and places the result
into Floating Point Register FRT.

The fabs instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax
form

fabs

fabs.

Floating Point Status and
Control Register

None

None

Record
bit (Rc)

o

Condition
Register Field 1

None

FX,FEX,VX,OX

The two syntax forms of the fabs instruction never affectthe Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception Summary (FX), Floating Point Enabled Exception Summary (FEX),
Floating Point Invalid Operation Exception Summary (VX), and Floating Point Overflow
Exception (OX) bits in Condition Register Field 1.

Parameters

Examples

FRT Specifies target Floating Point register for operation.

FRB Specifies source Floating Point register for operation.

1. To set bit 0 of FPR 4 to zero and place the result in FPR 6:

Assume FPR 4 holds Oxe053 4000 0000 0000.
fabs 6,4
GPR 6 now holds Ox4053 4000 0000 0000.

Chapter 5. Instruction Set 5-67

fabs

2. To set bit 0 of FPR 25 to zero, place the result in FPR 6, and set Condition Register Field
1 to reflect the result of the operation:

Assume FPR 25 holds OxFFFF FFFF FFFF FFFF.
fabs. 6,25
GPR 6 now holds Ox7FFF FFFF FFFF FFFF.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Move Instructions on page 1-13.

Understanding The Floating Point Status and Control Register on page 1-12.

5-68 Assembler Language Reference

fcmpo

fcmpo (Floating Compare Ordered) Instruction

Purpose
Compares the contents of two Floating Point registers.

Syntax
fempo BF,FRA,FRB

63 BF I "I FRA FRS 32 Rc

o 6 9 11 16 21 31

Description
The fempo instruction compares the 64-bit double precision floating point operand in
Floating Point Register FRA to the 64-bit double precision floating point operand in Floating
Point Register FRB. The Floating Point Condition Code Field (FPCC) of the Floating Point
Status and Control Register (FPSCR) is set to reflect the value of the operand FRA with
respect to operand FRB. The value BF determines which field in the Condition Register
receives the four FPCC bits.

• If one of the operands is either a Quiet Nan or a Signaling NaN, the Floating Point
Condition Code is set to reflect unordered (FU).

• If one of the operands is a Signaling NaN, then the Floating Point Invalid Operation
Exception bit VXSNAN of the Floating Point Status and Control Register is set. Also:

- If Invalid Operation is disabled (Le., the Floating Point Invalid Operation Exception
Enable bit of the Floating Point Status and Control Register is 0), then the Floating
Point Invalid Operation Exception bit VXVC is set (signaling an an Invalid compare).

- If one of the operands is a Quiet NaN, then the Floating Point Invalid Operation
Exception bit VXVC is set.

The fempo instruction has one syntax form and always affects the FT, FG, FE and FU
VXSNAN, and VXVC bits in the Floating Point Status and Control Register (FPSCR).

Parameters
BF Specifies field in the Condition Register that receives the four FPCC bits.

FRA Specifies source Floating Point register.

FRB Specifies source Floating Point register.

Chapter 5. Instruction Set 5-69

fempo

Examples
1. To compare the contents of FPR 4 and FPR 6 and and set Condition Register Field 1 and

the Floating Point Status and Control Register to reflect the result of the operation:

Assume CR = 0 and FPSCR = o.
Assume FPR 5 contains OxC053 4000 0000 0000.
Assume FPR 4 contains Ox400C 0000 0000 0000.
fcmpo 6,4,5
CR now contains OxOOOO 0040.
FPSCR now contains OxOOOO 4000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Compare Instructions on page 1-14.

5-70 Assembler Language Reference

fcmpu

fcmpu (Floating Compare Unordered) Instruction

Purpose
Compares the contents of two Floating Point registers.

Syntax
fcmpu BF,FRA,FRB

63 BF I II I FRA FRB o

o 6 9 11 16 21 31

Description
The fcmpu instruction compares the 64-bit double precision floating point operand in
Floating Point Register FRA to the 64-bit double precision floating point operand in Floating
Point Register FRB. The Floating Point Condition Code Field (FPCC) of the Floating Point
Status and Control Register (FPSCR) is set to reflect the value of the operand FRA with
respect to operand FRB. The value BF determines which field in the Condition Register
receives the four FPCC bits.

• If one of the operands is either a Quiet NaN or a Signaling NaN, the Floating Point
Condition Code is set to reflect unordered (FU).

• If one of the operands is a Signaling NaN, then the Floating Point Invalid Operation
Exception bit VXSNAN of the Floating Point Status and Control Register is set.

The fcmpu instruction has one syntax form and always affects the FT, FG, FE and FU and
VXSNAN bits in the Floating Point Status and Control Register (FPSCR).

Parameters

Examples

BF Specifies field in the Condition Register that receives the four FPCC bits.

FRA Specifies source Floating Point register.

FRB Specifies source Floating Point register.

1. To compare the contents of FPR 5 and FPR 4:

Assume FPR 5 holds OxC053 4000 0000 0000.
Assume FPR 4 holds Ox400C 0000 0000 0000.
Assume CR = 0 and FPSCR = O.
fcmpu 6,4,5
CR now contains OxOOOO 0040.
FPSCR now contains OxOOOO 4000.

Chapter 5. Instruction Set 5-71

fcmpu

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Compare Instructions on page 1-14.

5-72 Assembler Language Reference

fd

fd (Floating Divide) Instruction

Purpose

Syntax

Divides one 64-bit double precision floating point operand by another.

fd
fd.

o

63

FRT, FRA, FRB
FRT,FRA,FRB

FRT FRA FRB m

6 11 16 21

18 Rc

26 31

Description
The fd instruction divides the 64-bit double precision floating point operand in Floating Point
Register FRA by the 64-bit double precision floating point operand in Floating Point Register
FRB. No remainder is preserved. The result is rounded under control of the Floating Point
Rounding Control Field RN of the Floating Point Status and Control Register (FPSCR) and
is placed in the target Floating Point register FRT.

The floating point division operation is based on exponent subtraction and division of the two
sig n ificands.

• If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating Point Result Flags field of the Floating Point Status and Control Register is set
to the class and sign of the result except for Invalid Operation Exceptions when the Floating
Point Invalid Operation Exception Enable bit is 1.

The fd instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 1.

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Register Field 1

fd C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
ZX,XX,VXSNAN,VXIDI,VXZDZ

fd. C,FL,FG,FE,FU,FR,FI,OX,UX, FX,FEX,VX,OX
ZX,XX,VXSNAN,VXIDI,VXZDZ

The two syntax forms of the fd instruction always affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Chapter 5. Instruction Set 5-73

fd

Parameters

Examples

FRT Specifies target Floating Point register for operation.

FRA Specifies source Floating Point register containing the dividend.

FRB Specifies source Floating Point register containing the divisor.

1. To divide the contents of FPR 4 by the contents of FPR 5, place the result in FPR 6, and
set the Floating Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume RM = 0 and FPSCR = O.
£d 6,4,5
FPR 6 now contains OxC036 0000 0000 0000.
FPSCR now contains OxOOOO 8000.

2. To divide the contents of FPR 4 by the contents of FPR 5, place the result in FPR 6, and
set Condition Register Field 1 and the Floating Point Status and Control Register to
reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume RM = 0 and FPSCR = O.
£d. 6,4,5
FPR 6 now contains OxC036 0000 0000 0000.
FPSCR now contains OxOOOO 8000.
CR contains OxOOOO 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Arithmetic Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

5-74 Assembler Language Reference

fm

fm (Floating Multiply) Instruction

Purpose

Syntax

Multiplies two 64-bit double precision floating point operands.

fm
fm.

o

63

FRT, FRA, FRC
FRT, FRA, FRC

FRT FRA III

6 11 16

FRC 25 Rc

21 26 31

Description
The fm instruction multiplies the 64-bit double precision floating point operand in Floating
Point Register FRA by the 64-bit double precision floating point operand in Floating Point
Register FRC. The result is rounded under control of the Floating Point Rounding Control
Field RN of the Floating Point Status and Control Register and is placed in the target
Floating Point Register FRT.

Multiplication of two floating point numbers is based on exponent addition and multiplication
of the two significands.

• If an operand is a denormalized number then it is prenormalized before the operation is
begun.

The Floating Point Result Flags field of the Floating Point Status and Control Register is set
to the class and sign of the result except for Invalid Operation Exceptions when the Floating
Point Invalid Operation Exception Enable bit is 1.

The fm instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Reg ister Field 1

fm C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXIMZ

fm. C,FL,FG,FE,FU,FR,FI,QX,UX, FX,FEX,VX,OX
XX,VXSNAN,VXIMZ

The two syntax forms of the fm instruction always affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Chapter 5. Instruction Set 5-75

fm

Parameters

Examples

FRT Specifies target Floating Point register for operation.

FRA Specifies source Floating Point register for operation.

FRC Specifies source Floating Point register for operation.

1. To multiply the contents of FPR 4 and FPR 5, place the result in FPR 6, and set the
Floating Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume RM = 0 and FPSCR = O.
fm 6,4,5
FPR 6 now contains OxC070 D800 0000 0000.
FPSCR now contains OxOOOO 8000.

2. To multiply the contents of FPR 4 and FPR 25, place the result in FPR 6, and set
Condition Register Field 1 and the Floating Point Status and Control Register to reflect
the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 25 contains OxFFFF FFFF FFFF FFFF.
Assume RM = 0, FPSCR = 0, and CR = O.
fm. 6,4,25
FPR 6 now contains OxFFFF FFFF FFFF FFFF.
FPSCR now contains Ox0001 1000.
CR now contains OxOOOO 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Arithmetic Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

5-76 Assembler Language Reference

frna

fma (Floating Multiply Add) Instruction

Purpose

Syntax

Adds one 64-bit double precision floating point operand to the result of multiplying two 64-bit
double precision floating point operands without an intermediate rounding operation.

fma FRT,FRA, FRC, FRB
fma. FRT, FRA,FRC, FRB

63 FRT FRA FRS FRC 29 I Rc I
0 6 11 16 21 26 31

Description
The fma instruction multiplies the 64-bit double precision floating point operand in Floating
Point Register FRA by the 64-bit double precision floating point operand in Floating Point
Register FRC and adds result of this operation to the 64-bit double precision floating point
operand in Floating Point Register FRB.

The result is rounded under control of the Floating Point Rounding Control Field RN of the
Floating Point Status and Control Register and is placed in the target Floating· Point register
FRT.

• If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating Point Result Flags field of the Floating Point Status and Control Register is set
to the class and sign of the result except for Invalid Operation Exceptions when the Floating
Point Invalid Operation Exception Enable bit is 1 .

The fma instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Register Field 1

fma C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXISI,VXIMZ

fma. C,FL,FG,FE,FU,FR,FI,OX,UX, FX,FEX,VX,OX
XX,VXSNAN,VXISI,VXIMZ

The two syntax forms of the fma instruction always affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Chapter 5. Instruction Set 5-77

fma

Parameters
FRT Specifies target Floating Point register for operation.

Examples

FRA

FRB

FRC

Specifies source Floating Point register containing a multiplier.

Specifies source Floating Point register containing the addend.

Specifies source Floating Point register containing a multiplier.

1. To multiply the contents of FPR 4 and FPR 5, add the contents of FPR 7, place the result
in FPR 6, and set the Floating Point Status and Control Register to reflect the result of
the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33C 110A.
Assume RM = 0 and FPSCR = o.
fma 6,4,5,7
FPR 6 now contains OxC070 D7FF FFFF F6CB.
FPSCR now contains Ox8206 8000.

2. To multiply the contents of FPR 4 and FPR 5, add the contents of FPR 7, place the result
in FPR 6, and set the Floating Point Status and Control Register and Condition Register
Field 1 to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33C 110A.
Assume RM = 0, FPSCR = 0, and CR = o.
fma. 6,4,5,7
FPR 6 now contains OxC070 D7FF FFFF F6CB.
FPSCR now contains Ox8206 8000.
CR now contains Ox0800 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Accumulate Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

5-78 Assembler Language Reference

fmr

fmr (Floating Move Register) Instruction

Purpose

. Syntax

Copies the contents of one Floating Point register into another Floating Point register .

fmr
fmr.

o

63

FRT,FRB
FRT,FRB

FRT /II

6 11

FRB 72

16 21 31

Description
The fmr instruction places the contents of Floating Point Register FRB into the target
Floating Point Register FRT.

The fmr instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax
form

fmr

fmr.

Floating Point Status and
Control Register

None

None

Record
bit (Rc)

o

Condition
Register Field 1

None

FX,FEX,VX,OX

The two syntax forms of the fmr instruction never affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Parameters

Examples

FRT Specifies target Floating Point register for operation.

FRB Specifies source Floating Point register for operation.

1. To copy the contents of FPR 4 into FPR 6 and set the Floating Point Status and Control
Register to reflect the result of the operation:

Assume FPR 4 contains OxCOS3 4000 0000 0000.
Assume FPSCR = O.
fmr 6,4
FPR 6 now contains OxCOS3 4000 0000 0000.
FPSCR now contains OxOOOO 0000.

Chapter 5. Instruction Set 5-79

fmr

2. To copy the contents of FPR 25 into FPR 6 and set the Floating Point Status and Control
Register and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 25 contains OxFFFF FFFF FFFF FFFF.
Assume FPSCR = 0 and CR = o.
fmr. 6,25
FPR 6 now contains OxFFFF FFFF FFFF FFFF.
FPSCR now contains OxOOOO 0000.
CR now contains OxOOOO 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Move Instructions on page 1-13.

Understanding The Floating Point Status and Control Register on page 1-12.

5-80 Assembler Language Reference

fms

fms (Floating Multiply Subtract) Instruction

Purpose

Syntax

Subtracts one 64-bit double precision floating point operand from the result of m'ultiplying
two 64-bit double precision floating point operands without an intermediate rounding
operation.

fms FRT, FRA, FRC, FRB
fms. FRT, FRA,FRC, FRB

63 FRT FRA FRS FRC 28 Rc

o 6 11 16 21 26 31

Description
The fms instruction multiplies the 64-bit double precision floating point operand in Floating
Point Register FRA by the 64-bit double precision floating point operand in Floating Point
Register FRC and subtracts the 64-bit double precision floating point operand in Floating
Point Register FRB from the result of the multiplication.

The result is rounded under control of the Floating Point Rounding Control Field RN of the
Floating Point Status and Control Register and is placed in the target Floating Point Register
FRT.

• If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating Point Result Flags field of the Floating Point Status and Control Register is set
to the class and sign of the result except for Invalid Operation Exceptions when the Floating
Point Invalid Operation Exception Enable bit is 1.

The fms instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Register Field 1

fms C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX, VXSNAN, VXSI, VXIMZ

fms. C,FL,FG,FE,FU,FR,FI,OX,UX, FX,FEX,VX,OX
XX,VXSNAN,VXSI,VXIMZ

The two syntax forms of the fms instruction always affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Chapter 5. Instruction Set 5-81

fms

Parameters
FRT Specifies target Floating Point register for operation.

Examples

FRA

FRB

FRC

Specifies source Floating Point register containing a multiplier.

Specifies source Floating Point register containing the quantity to be
subtracted.

Specifies source Floating Point register containing a multiplier.

1. To multiply the contents of FPR 4 and FPR 5, subtract the the contents of FPR 7 from the
product of the multiplication, place the result in FPR 6, and set the Floating Point Status
and Control Register to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume RM = 0 and FPSCR = o.
fms 6,4,5,7
FPR 6 now contains OxC070 0800 0000 0935.
FPSCR now contains Ox8202 8000.

2. To multiply the contents of FPR 4 and FPR 5, subtract the the contents of FPR 7 from the
product of the multiplication, place the result in FPR 6, and set the Floating Point Status
and Control Register and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume RM = 0, FPSCR = 0, and CR = o.
fms. 6,4,5,7
FPR 6 now contains OxC070 0800 0000 0935.
FPSCR now contains Ox8202 8000.
CR now contains Ox0800 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Accumulate Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

5-82 Assembler Language Reference

fnabs

fnabs (Floating Negative Absolute Value) Instruction

Purpose

Syntax

Negates the absolute contents of a Floating Point register and places the result in a Floating
Point register.

fnabs
fnabs.

63

o

FRT,FRB
FRT,FRB

FRT III

6 11

FRS 136 Rc

16 21 31

Description
The fnabs instruction places the negative absolute of the contents of Floating Point Register
FRB with bit 0 set to 1 into the target Floating Point Register FRT.

The fnabs instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax
form

fnabs

fnabs.

Floating Point Status and
Control Register

None

None

Record
bit (Rc)

o

Condition
Register Field 1

None

FX,FEX,VX,OX

The two syntax forms of the fnabs instruction never affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1 .

Parameters

Examples

FRT Specifies target Floating Point register for operation.

FRB Specifies source Floating Point register for operation.

1. To negate the absolute contents of FPR 5 and place the result into FPR 6:

Assume FPR 5 contains Ox400C 0000 0000 0000.
fnabs 6,5
FPR 6 now contains OxCOOC 0000 0000 0000.

Chapter 5. Instruction Set 5-83

fnabs

2. To negate the absolute contents of FPR 4, place the result into FPR 6, and set Condition
Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume CR = O.
fnabs. 6,4
FPR 6 now contains OxC053 4000 0000 0000.
CR now contains OxO.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Move Instructions on page 1-13.

Understanding The Floating Point Status and Control Register on page 1-12.

5-84 Assembler Language Reference

fneg

fneg (Floating Negate) Instruction

Purpose

Syntax

Negates the contents of a Floating Point register and places the result into a Floating Point
register.

fneg FRT, FRB
fneg. FRT,FRB

63 FRT III FRS 40 Rc

o 6 11 16 21 31

Description
The fneg instruction places the negated contents of Floating Point Register FRB into the
target Floating Point Register FRT.

The fneg instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax
form

fneg

fneg.

Floating Point Status and
Control Register

None

None

Record
bit (Rc)

o

Condition
Register Field 1

None

FX,FEX,VX,OX

The two syntax forms of the fneg instruction never affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1 , the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Parameters

Examples

FRT Specifies target Floating Point register for operation.

FRB Specifies source Floating Point register for operation.

1. To negate the contents of FPR 5 and place the result into FPR 6:

Assume FPR 5 contains Ox400C 0000 0000 0000.
fneg 6,5
FPR 6 now contains OxCOOC 0000 0000 0000.

Chapter 5. Instruction Set 5-85

fneg

2. To negate the contents of FPR 4, place the result into FPR 6, and set Condition Register
Field 1 to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
fneg. 6,4
FPR 6 now contains Ox4053 4000 0000 0000.
CR now contains OxOOOO 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Move Instructions on page 1-13.

Understanding The Floating Point Status and Control Register on page 1-12.

5-86 Assembler Language Reference

fnma

fnma (Floating Negative Multiply Add) Instruction

Purpose

Syntax

Multiplies two 64-bit double precision floating point operands, adds the result to one 64-bit
double precision floating point operand, and places the negative of the result in a Floating
Point register.

fnma FRT,FRA,FRC,FRB
fnma. FRT,FRA,FRC,FRB

63 FRT FRA FRS FRC 31 Rc

o 6 11 16 21 26 31

Description
The fnma instruction multiplies the 64-blt double precision floating point operand in Floating
Point Register FRA by the 64-bit double precision floating point operand in Floating Point
Register FRC, and adds the 64-bit double precision floating point operand in Floating Point
Register FRB to the result of the multiplication.

The result of the addition is rounded under control of the Floating Point Rounding Control
Field RN of the Floating Point Status and Control Register.

• If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

This instruction is identical to the fma (Floating Multiply Add) with the final result negated,
but with the following exceptions:

• QNaNs propagate with no effect on their "sign" bit.

• QNaNs that are generated as the result of a disabled Invalid Operation Exception have a
"sign" bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled Invalid Operation
Exception have no effect on their "sign" bit.

The Floating Point Result Flags field of the Floating Point Status and Control Register is set
to the class and sign of the result except for Invalid Operation Exceptions when the Floating
Point Invalid Operation Exception Enable bit is 1.

The fnma instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Register Field 1

fnma C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX, VXSNAN, VXISI, VXIMZ

fnma. C,FL,FG,FE,FU,FR,FI,OX,UX, FX,FEX,VX,OX
XX, VXSNAN, VXISI, VXIMZ

Chapter 5. Instruction Set 5-87

fnma

The two syntax forms of the fnma instruction always affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Note: Rounding occurs before the result of the addition is negated. Depending on RN, an
inexact value may result.

Parameters

Examples

FRT Specifies target Floating Point register for operation.

FRA Specifies source Floating Point register for operation.

FRB Specifies source Floating Point register for operation.

FRC Specifies source Floating Point register for operation.

1. To multiply the contents of FPR 4 and FPR 5, add the result to the contents of FPR 7,
store the negated result in FPR 6, and set the Floating Point Status and Control Register
to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c II0A.
Assume RM = 0 and FPSCR = O.
fnma 6,4,5,7
FPR 6 now contains Ox4070 D7FF FFFF F6CB.
FPSCR now contains Ox8206 4000.

2. To multiply the contents of FPR 4 and FPR 5, add the result to the contents of FPR 7,
store the negated result in FPR 6, and set the Floating Point Status and Control Register
and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c II0A.
Assume RM = 0, FPSCR = 0, and CR = o.
fnma. 6,4,5,7
FPR 6 now contains Ox4070 D7FF FFFF F6CB.
FPSCR now contains Ox8206 4000.
CR now contains Ox0800 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Accumulate Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

5-88 Assembler Language Reference

fnms

fnms (Floating Negative Multiply Subtract) Instruction

Purpose

Syntax

Multiplies two 64-bit double precision floating point operands, subtracts one 64-bit double
precision floating point operand from the result, and places the negative of the result in a
Floating Point register.

fnms FRT,FRA,FRC,FRB
fnms. FRT,FRA,FRC,FRB

63 FRT FRA FRS FRC 30 Rc

o 6 11 16 21 26 31

Description
The fnms instruction multiplies the 64-bit double precision floating point operand in Floating
Point Register FRA by the 64-bit double precision floating point operand in Floating Point
Register FRC, subtracts the 64-bit double precision floating point operand in Floating Point
Register FRB from the result of the multiplication, and places the negated result in the target
Floating Point Register FRT.

The subtraction result is rounded under control of the Floating Point Rounding Control Field
RN of the Floating Point Status and Control Register.

• If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

This instruction is identical to the fms (Floating Multiply Subtract) with the final result
negated, but with the following exceptions:

• QNaNs propagate with no effect on their "sign" bit.

• QNaNs that are generated as the result of a disabled Invalid Operation Exception have a
"sign" bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled Invalid Operation
Exception have no effect on their "sign" bit.

The Floating Point Result Flags field of the Floating Point Status and Control Register is set
to the class and sign of the result except for Invalid Operation Exceptions when the Floating
Point Invalid Operation Exception Enable bit is 1.

The fnms instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Chapter 5. Instruction Set 5-89

fnms

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Register Field 1

fnms C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXISI,VXIMZ

fnms. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,OX
XX, VXSNAN, VXISI, VXIMZ

The two syntax forms of the fnms instruction always affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Note: Rounding occurs before the result of the addition is negated. Depending on RN, an
inexact value may result.

Parameters
FRT Specifies target Floating Point register for operation.

Examples

FRA

FRB

FRC

Specifies first source Floating Point register for operation.

Specifies second source Floating Point register for operation.

Specifies third source Floating Point register for operation.

1. To multiply the contents of FPR 4 and FPR 5, subtract the contents of FPR 7 from the
result, store the negated result in FPR 6, and set the Floating Point Status and Control
Register and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume RM = a and FPSCR = O.
fnms 6,4,5,7
FPR 6 now contains Ox4070 D800 0000 0935.
FPSCR now contains Ox8202 4000.

2. To multiply the contents of FPR 4 and FPR 5, subtract the contents of FPR 7 from the
result, store the negated result in FPR 6, and set the Floating Point Status and Control
Register and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume RM = 0, FPSCR = 0, and CR = o.
f nms. 6, 4 , 5 , 7
FPR 6 now contains Ox4070 D800 0000 0935.
FPSCR now contains Ox8202 4000.
CR now contains Ox0800 0000.

5-90 Assembler Language Reference

fnms

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Accumulate Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

Chapter 5. Instruction Set 5-91

frsp

frsp (Floating Round to Single Precision) Instruction

Purpose

Syntax

Rounds a 64-bit double precision floating point operand to single precision and places the
result in a Floating Point register.

frsp FRT, FRB
frsp. FRT, FRB

63 FRT /II FRB 12 Rc

o 6 11 16 21 31

Description
The frsp instruction rounds the 64-bit double precision floating point operand in Floating
Point Register FRB to single precision using the rounding mode specified by the Floating
Rounding Control field of the Floating Point Status and Control Register and places the
result in the target Floating Point Register FRT.

The Floating Point Result Flags field of the Floating Point Status and Control Register is set
to the class and sign of the result except for Invalid Operation (SNaN) when Floating Point
Status and Control Register Floating Point Invalid Operation Exception Enable bit is 1.

The frsp instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1 .

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Register Field 1

frsp C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN

frsp. C,FL,FG,FE,FU,FR,FI,OX,UX, FX,FEX,VX,OX
XX,VXSNAN

The two syntax forms of the frsp instruction always affect the Floating Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1 , the instruction affects the
Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point
Invalid Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in
Condition Register Field 1.

Note: The frsp instruction may produce incorrect results when all of the following
conditions are met.

5-92 Assembler Language Reference

Error Result

frsp

1. The frsp instruction uses the target register of a previous floating point arithmetic
operation as its source register (FRB). The frsp instruction is said to be dependent on
the preceding floating point arithmetic operation when it uses this register for source.

2. Less than two nondependent floating point arithmetic operations occur between the frsp
instruction and the operation on which it is dependent.

3. The magnitude of the double precision result of the arithmetic operation is less than
2**128 before rounding.

4. The magnitude of the double precision result after rounding is exactly 2**128.

If the error occurs, the magnitude of the result placed in the target register FRT is 2**128:

X' 47FOOOOOOOOOOOOO' or X'C7FOOOOOOOOOOOOO'

This is not a valid single precision value. The setting of the Floating Point Status and Control
Register and Condition Register will be the same as if the result does not overflow.

Avoiding Errors
If the above error will cause significant problems in an application, either of the following two
methods can be used to avoid the error.

1. Place two nondependent floating point operations between a floating point arithmetic
operation and the dependent frsp instruction.The target registers for these
nondependent floating point operations should not be the same register that the frsp
instruction uses as source register FRB.

2. Insert two frsp operations when the frsp instruction may be dependent on an arithmetic
operation that precedes it by less than three floating point instructions.

Either solution will degrade performance by an amount dependent on the particular
application.

Parameters
FRT Specifies target Floating Point register for operation.

Examples

FRB Specifies source Floating Point register for operation.

1. To round the contents of FPR 4 to single precision, place the result in a FPR 6, and set
the Floating Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPSCR = O.
frsp 6,4
FPR 6 now contains OxC053 4000 0000 0000.
FPSCR now contains OxOOOO 8000.

Chapter 5. Instruction Set 5-93

frsp

2. To round the contents of FPR 4 to single precision, place the result in a FPR 6, and set
the Floating Point Status and Control Register and Condition Register Field 1 to reflect
the result of the operation:

Assume FPR 4 contains OxFFFF FFFF FFFF FFFF.
Assume FPSCR = O.
frsp. 6,4
FPR 6 now contains OxFFFF FFFF ECOO 0000.
FPSCR now contains Ox0001 1000.
CR now contains OxOOOO 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Arithmetic Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

5-94 Assembler Language Reference

fs

fs (Floating Subtract) Instruction

Purpose

Syntax

Subtracts one 64-bit double precision floating point operand from another and places the
result in a Floating Point register.

fs
fs.

o

63

FRT, FRA, FRB
FRT, FRA, FRB

FRT FRA FRS III

6 11 16 21

20 Rc

26 31

Description
The fs instruction subtracts the 64-bit double precision floating point operand in Floating
Point Register FRB from the 64-bit double precision floating point operand in Floating Point
Register FRA. The result is rounded under control of the Floating Point Rounding Control
Field RN of the Floating Point Status and Control Register and is placed in the target
Floating Point register FRT.

The execution of the fs instruction is identical to that of fa, except that the contents of
Floating Point Register FRB participate in the operation with bit 0 inverted.

The Floating Point Result Flags field of the Floating Point Status and Control Register is set
to the class and sign of the result except for Invalid Operation Exceptions when the Floating
Point Invalid Operation Exception Enable bit is 1.

The fs instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 1 .

Syntax Floating Point Status and Record Condition
form Control Register bit (Rc) Register Field 1

fs C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXISI

fs. C,FL,FG,FE,FU,FR,FI,OX,UX, FX,FEX,VX,OX
XX,VXSNAN,VXISI

The two syntax forms of the fs instruction always affect the Floating Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating
Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Point Invalid
Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in Condition
Register Field 1.

Chapter 5. Instruction Set 5-95

fs

Parameters
FRT Specifies target Floating Point register for operation.

Examples

FRA

FRB

Specifies source Floating Point register for operation.

Specifies source Floating Point register for operation.

1. To subtract the contents of FPR 5 from the contents of FPR 4, place the result in FPR 6,
and set the Floating Point Status and Control Register to reflect the result of the
operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume RM = 0 and FPSCR = o.
fs 6,4,5
FPR 6 now contains OxC054 2000 0000 0000.
FPSCR now contains OxOOOO 8000.

2. To subtract the contents of FPR 5 from the contents of FPR 4, place the result in FPR 6,
and set the Floating Point Status and Control Register and Condition Register Field 1 to
reflect the result of the operation:

Assume FPR 4 contains OxC053 4000 0000 0000.
Assume FPR 5 contains Ox400C 0000 0000 0000.
Assume RM = 0, FPSCR = 0, and CR = o.
fs. 6,5,4
FPR 6 now contains Ox4054 2000 0000 0000.
FPSCR now contains OxOOOO 4000.
CR now contains OxOOOO 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Arithmetic Instructions on page 1-14.

Understanding The Floating Point Status and Control Register on page 1-12.

5-96 Assembler Language Reference

I (Load) Instruction

Purpose
Loads a word of data from a specified location in memory into a general purpose register.

Syntax
RT,O(RA)

32 RT RA D

o 6 11 16 31

Description
The I instruction loads a word in storage from a specified location in memory addressed by
the effective address (EA) into the target General Purpose Register RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and

0, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is O.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The I instruction has one syntax form and does not affect the Fixed Point Exception Register
or Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

o 16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation.

1. To load a word from memory into GPR 6:

.csect data[rw]
Assume GPR 5 contains address of csect data[rw].
storage: .long Ox4
.csect text[pr]
1 6,storage(5)
GPR 6 now contains OxOOOO 0004.

Chapter 5. Instruction Set 5-97

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-98 Assembler Language Reference

Ibrx

Ibrx (Load Byte Reverse Indexed) Instruction

Purpose

Syntax

Loads a byte-reversed word of data from a specified location in memory into a general
purpose register.

Ibrx RT,RA,RB

31 RT RA RS 534

o 6 11 16 21 31

Description
The Ibrx instruction loads a byte-reversed word in storage from a specified location in
memory addressed by the effective address (EA) into the target General Purpose Register
RT.

• Bits 00-07 of the word in storage addressed by EA are stored into bits 24-31 of GPR RT.

• Bits 08-15 of the word in storage addressed by EA are stored into bits 16-23 of GPR RT.

• Bits 16-23 of the word in storage addressed by EA are stored into bits 08-15 of GPR RT.

• Bits 24-31 of the word in storage addressed by EA are stored into bits 00-07 of GPR RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The Ibrx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for EA calculation.

Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-99

Ibrx

Examples
1. To load a byte-reversed word from memory into GPR 6:

storage: .long OxOOOO ffff

Assume GPR 4 contains OxOOOO 0000.
Assume GPR 5 contains address of storage.
lbrx 6,4,5
GPR 6 now contains Oxffff 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-100 Assembler Language Reference

Ibz

Ibz (Load Byte And Zero) Instruction

Purpose

Syntax

Loads a byte of data from a specified location in memory into a general purpose register and
sets the remaining 24 bits to o.

Ibz RT,D(RA)

34 RT RA o

o 6 11 16 31

Description
The Ibz instruction loads a byte in storage addressed by EA into bits 24-31 of the target
General Purpose Register RTand sets bits 0-23 of General Purpose Register RTto O.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

The Ibz instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RT Specifies target general purpose register where result of operation is stored.

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Examples

D

RA Specifies source general purpose register for EA calculation.

1. To load a byte of data from a specified location in memory into GPR 6 and set the
remaining 24 bits to 0:

.csect data[rw]
storage: .byte'a
Assume GPR 5 contains the address of csect data[rw] .
• csect text[pr]
1bz 6,storage(5)
GPR 6 now contains OxOOOO 0061.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

Chapter 5. Instruction Set 5-101

Ibzu

Ibzu (Load Byte And Zero With Update) Instruction

Purpose

Syntax

Loads a byte of data from a specified location in memory into a general purpose register,
sets the remaining 24 bits to 0, and possibly places the address in the a second general
purpose register.

Ibzu RT,D(RA)

35 RT RA D

o 6 11 16 31

Description
The Ibzu instruction loads a byte in storage addressed by EA into bits 24-31 of the target
General Purpose Register RTand sets bits 0-23 of General Purpose Register RTto O.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If RA does not equal RT and RA does not equal 0 and the storage access does not cause
Alignment Interrupt or a Data Storage Interrupt, then the effective address is stored in
General Purpose Register RA.

The Ibzu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Examples

D

RA Specifies source general purpose register for EA calculation and possible
address update.

1. To load a byte of data from a specified location in memory into GPR 6, set the remaining
24 bits to 0, and place the address in GPR 5:

.csect data[rw]
storage: .byte Ox61
Assume GPR 5 contains the address of csect data[rw] .
• csect text[pr]
Ibzu 6,storage(5)
GPR 6 now contains OxOOOO 0061.
GPR 5 now contains the storage address.

5-1 02 Assembler Language Reference

Ibzu

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load with Update Instructions on page 1-6.

Chapter 5. Instruction Set 5-103

Ibzux

Ibzux (Load Byte And Zero With Update Indexed) Instruction

Purpose

Syntax

Loads a byte of data from a specified location in memory into a general purpose register,
setting the remaining 24 bits to 0, and places the address in the a second general purpose
register.

Ibzux RT,RA,RB

31 RT RA RB 119 Rc

o 6 11 16 21 31

Description
The Ibzux instruction loads a byte in storage addressed by the effective address (EA) into
bits 24-31 of the target General Purpose Register RT and sets bits 0-23 of General
Purpose Register RTto 0:

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If RA does not equal RT and RA does not equal 0 and the storage access does not cause
Alignment Interrupt or a Data Storage Interrupt, then the effective address is stored in
General Purpose Register RA.

The Ibzux instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA

RB

Specifies source general purpose register for EA calculation and possible
address update.

Specifies source general purpose register for EA calculation.

1. To load the value located at storage into GPR 6 and load the address of storage into
GPR5:

storage: .byte Ox40

Assume GPR 5 contains OxOOOO 0000.
Assume GPR 4 is the storage address.
lbzux 6,5,4
GPR 6 now contains OxOOOO 0040.
GPR 5 now contains the storage address.

5-1 04 Assembler Language Reference

Ibzux

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load with Update Instructions on page 1-6.

Chapter 5. Instruction Set 5-105

Ibzx

Ibzx (Load Byte And Zero Indexed) Instruction

Purpose

Syntax

Loads a byte of data from a specified location in memory into a general purpose register and
sets the remaining 24 bits to o.

Ibzx RT,RA,RB

31 RT RA RB 87

o 6 11 16 21 31

Description
The Ibzx instruction loads a byte in storage addressed by the effective address (EA) into bits
24-31 of the target General Purpose Register RTand sets bits 0-23 of General Purpose
Register RTto O.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is D.

The Ibzx instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for EA calculation.

Examples

RA

RB Specifies source general purpose register for EA calculation.

1. To load the value located at storage into GPR 6:

storage: .byte Ox61

Assume GPR 5 contains OxOOOO 0000.
Assume GPR 4 is the storage address.
Ibzx 6,5,4
GPR 6 now contains OxOOOO 0061.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-1 06 Assembler Language Reference

Ifd

Ifd (Load Floating Point Double) Instruction

Purpose
Loads a doubleword of data from a specified location in memory into a floating point register.

Syntax
ltd FRT,D(RA)

50 FRT RA D

o 6 11 16 31

Description
The ltd instruction loads a doubleword in storage from a specified location in memory
addressed by the effective address (EA) into the target Floating Point Register FRT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not o. If RA is
0, then the effective address (EA) is D.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the three low order bits of the effective address are ignored.

• If alignment checking is enabled, and the three low order bits are not b'OOO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The ltd instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters

Examples

FRT Specifies target general purpose register where result of operation is stored.

D 16-bit Signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation.

1. To load a doubleword from memory into FPR 6:

.csect data[rw]
storage: .double Oxl
Assume GPR 5 contains the address of csect data[rw] .
. csect text[pr]
lfd 6,storage(5)
FPR 6 now contains Ox3FFO 0000 0000 0000.

Chapter 5. Instruction Set 5-107

Ifd

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Load Instructions on page 1-13.

5-108 Assembler Language Reference

Ifdu

Ifdu (Load Floating Point Double With Update) Instruction

Purpose

Syntax

Loads a doubleword of data from a specified location in memory into a floating point register
and possibly places the specified address in a general purpose register.

Ifdu FRT,D(RA)

51 FRT RA o

o 6 11 16 31

Description
The Ifdu instruction loads a doubleword in storage from a specified location in memory
addressed by the effective address (EA) into the target Floating Point Register FRT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If RA does not equal 0 and the storage access does not cause Alignment Interrupt or a
Data Storage Interrupt, then the effective address is stored in General Purpose Register
RA.

• If alignment checking is disabled, Le., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the three low order bits of the effective address are ignored.

• If alignment checking is enabled, and the three low order bits are not b'OOO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The Ifdu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
FRT Specifies target general purpose register where result of operation is stored.

D 16-bit signed two's complement integer sign extended to 32 bits for EA
calcu lation.

RA Specifies source general purpose register for EA calculation and possible
address update.

Chapter 5. Instruction Set 5-109

Ifdu

Examples
1. To load a doubleword from memory into FPR 6 and store the address in GPR 5:

.csect data[rw]
storage: .double Oxl
Assume GPR 5 contains the address of csect data[rw] •
. csect text[pr]
lfdu 6,storage(S)
FPR 6 now contains Ox3FFO 0000 0000 0000.
GPR 5 now contains the storage address.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Load Instructions on page 1-13.

5-11 0 Assembler Language Reference

Ifdux

Ifdux (Load Floating Point Double With Update Indexed)
Instruction

Purpose

Syntax

Loads a doubleword of data from a specified location in memory into a floating point register
and possibly places the specified address in a general purpose register.

Ifdux FRT, RA, RB

31 FRT RA RS 631 Rc

o 6 11 16 21 31

Description
The Ifdux instruction loads a doubleword in storage from a specified location in memory
addressed by the effective address (EA) into the target Floating Point Register FRT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is D.

• If RA does not equal a and the storage access does not cause Alignment Interrupt or a
Data Storage Interrupt, then the effective address is stored in General Purpose Register
RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the three low order bits of the effective address are ignored.

• If alignment checking is enabled, and the three low order bits are not b'OOO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The Ifdux instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
FRT Specifies target general purpose register where result of operation is stored.

RA Specifies source general purpose register for EA calculation.

RB Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-111

Ifdux

Examples
1. To load a doubleword from memory into FPR 6 and store the address in GPR 5:

.csect data[rw]
storage: .double Ox!
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of storage relative
to .csect data[rw] .
• csect text[pr]
lfdux 6,5,4
FPR 6 now contains Ox3FFO 0000 0000 0000.
GPR 5 now contains the storage address.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Load Instructions on page 1-13.

5-112 Assembler Language Reference

Ifdx

Ifdx (Load Floating Point Double Indexed) Instruction

Purpose
Loads a doubleword of data from a specified location in memory into a floating point register.

Syntax
Ifdx FRT,RA,RB

31 FRT RA RS 599 Rc

o 6 11 16 21 31

Description
The Ifdx instruction loads a doubleword in storage from a specified location in memory
addressed by the effective address (EA) into the target Floating Point Register FRT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is '0, then the three low order bits of the effective address are ignored.

• If alignment checking is enabled, and the three low order bits are not b'OOO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The Ifdx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters

Examples

FRT Specifies target floating point register where data is stored.

RA Specifies source general purpose register for EA calculation.

RB Specifies source general purpose register for EA calculation.

1. To load a doubleword from memory into FPR 6:

storage: .double Ox!

Assume GPR 4 contains the storage address.
lfdx 6,0,4
FPR 6 now contains Ox3FFO 0000 0000 0000.

Chapter 5. Instruction Set 5-113

Ifdx

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Load Instructions on page 1-13.

5-114 Assembler Language Reference

Ifs

Ifs (Load Floating Point Single) Instruction

Purpose

Syntax

Loads a floating point single precision number which is converted into a floating point double
precision number into a floating point register.

11s FRT,D(RA)

48 FRT RA D

o 6 11 16 31

Description
The 11s instruction converts a floating point single precision word in storage addressed by
the effective address (EA) to floating point double precision and loads the result into Floating
Point Register FRT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The 11s instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters

Examples

FRT Specifies target floating point register where data is stored.

D 16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation.

1. To load the single precision contents of storage into FPR 6:

.csect data[rw]
storage: .float Ox!
Assume GPR 5 contains the address csect data[rw] .
• csect text[pr]
lfs 6,storage(5)
FPR 6 now contains Ox3FFO 0000 0000 0000.

Chapter 5. Instruction Set 5-115

Ifs

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Load Instructions on page 1-13.

5-116 Assembler Language Reference

Ifsu

Ifsu (Load Floating Point Single With Update) Instruction

Purpose

Syntax

Loads a floating point single precision number which is converted into a floating point double
precision number into a floating point register and possibly places the effective address in a
general purpose register.

Ifsu FRT,D(RA)

49 FRT RA D

o 6 11 16 31

Description
The Ifsu instruction converts a floating point single precision word in storage addressed by
the effective address (EA) to floating point double precision and loads the result into Floating
Point Register FRT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If RA does not equal 0 and the storage access does not cause an Alignment Interrupt or a
Data Storage Interrupt, then the effective address is stored in General Purpose Register
RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The Ifsu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
FRT Specifies target floating point register where data is stored.

D 16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation and possible
address update.

Chapter 5. Instruction Set 5-117

Ifsu

Examples
1. To load the single precision contents of storage, which is converted to double precision,

into FPR 6 and store the effective address in GPR 5:

.csect data[rw]
storage: .float Oxl
.csect text[pr]
Assume GPR 5 contains the storage address.
lfsu 6,0(5)
FPR 6 now contains Ox3FFO 0000 0000 0000.
GPR 5 now contains the storage address.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Load Instructions on page 1-13.

5-118 Assembler Language Reference

Ifsux

Ifsux (Load Floating Point Single With Update Indexed)
Instruction

Purpose

Syntax

Loads a floating point single precision number which is converted into a floating point double
precision number into a floating point register and possibly places the effective address in a
general purpose register.

Ifsux FRT, RA, RB

31 FRT RA RS 567 Rc

o 6 11 16 21 31

Description
The Ifsux instruction converts a floating point single precision word in storage addressed by
the effective address (EA) to floating pOint double precision and loads the result into Floating
Point Register FRT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If RA does not equal 0 and the storage access does not cause an Alignment Interrupt or a
Data Storage Interrupt, then the effective address is stored in General Purpose Register
RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The Ifsux instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
FRT Specifies target floating point register where data is stored.

RA Specifies source general purpose register for EA calculation and possible
address update.

RB Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-119

Ifsux

Examples
1. To load the single precision contents of storage into FPR 6 and store the effective

address in GPR 5: -

.csect data[rw]
storage: .float Oxl
Assume GPR 4 contains the address of csect data[rw].
Assume GPR 5 contains the displacement of storage
relative to .csect data[rw] .
• csect text[pr]
lfsux 6,5,4
FPR 6 now contains Ox3FFO 0000 0000 0000.
GPR 5 now contains the storage address.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Load Instructions on page 1-13.

5-120 Assembler Language Reference

Ifsx

Ifsx (Load Floating Point Single Indexed) Instruction

Purpose

Syntax

Loads a floating point single precision number which is converted into a floating point double
precision number into a floating point register.

Ifsx FRT,RA,RB

31 FRT RA RB 535 Rc

o 6 11 16 21 31

Description
The Ifsx instruction converts a floating point single precision word in storage addressed by
the effective address (EA) to floating point double precision and loads the result into Floating
Point Register FRT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored .

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The Ifsx instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters

Examples

FRT Specifies target floating point register where data is stored.

RA Specifies source general purpose register for EA calculation.

RB Specifies source general purpose register for EA calculation.

1. To load the single precision contents of storage into FPR 6:

storage: .float Oxl.
Assume GPR 4 contains the address of storage.
lfsx 6,0,4
FPR 6 now contains Ox3FFO 0000 0000 0000.

Chapter 5. Instruction Set 5-121

Ifsx

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Load Instructions on page 1-13.

5-122 Assembler Language Reference

Iha

Iha (Load Half Algebraic) Instruction

Purpose

Syntax

Loads a halfword of data from a specified location in memory into a general purpose register
and copies bit 0 of the halfword into the remaining 16 bits of the general purpose register.

Iha RT,D(RA)

42 RT RA D

o 6 11 16 31

Description
The Iha instruction loads a halfword in storage from a specified location in memory
addressed by the effective address (EA) into bits 16-31 of the target General Purpose
Register RTand copies bit 0 of the halfword into bits 0-15 of General Purpose Register RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The Iha instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Examples

D

RA Specifies source general purpose register for EA calculation.

1. To load a halfword of data into bits 16-31 of GPR 6 and copy bit 0 of the halfword into
bits 0-15 of GPR 6:

.csect data[rw]
storage: .short Oxffff
Assume GPR 5 contains the address of csect data[rw] .
. csect text[pr]
Iha 6,storage(5)
GPR 6 now contains Oxffff ffff.

Chapter 5. Instruction Set 5-123

Iha

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-124 Assembler Language Reference

Ihau

Ihau (Load Half Algebraic With Update) Instruction

Purpose

Syntax

Loads a halfword of data from a specified location in memory into a general purpose
register, copies bit 0 of the halfword into the remaining 16 bits of the general purpose
register, and possibly places the address in another general purpose register.

Ihau RT,O(RA)

43 RT RA D

o 6 11 16 31

Description
The Ihau instruction loads a halfword in storage from a specified location in memory
addressed by the effective address (EA) into bits 16-31 of the target General Purpose
Register RTand copies bit 0 of the halfword into bits 0-15 of General Purpose Register RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
0, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is O.

• If RA does not equal RTand RA does not equal 0, and the storage acces does not cause
an Alignment Interrupt or a Data Storage Interrupt, then the effective address (EA) is
placed into General Purpose Register RA .

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The Ihau instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RT

o

RA

Specifies target general purpose register where result of operation is stored.

16-bit Signed two's complement integer sign extended to 32 bits for EA
calculation.

Specifies source general purpose register for EA calculation and possible
address update.

Chapter 5. Instruction Set 5-125

Ihau

Examples
1. To load a halfword of data into bits 16-31 of GPR 6, copy bit 0 of the halfword into bits

0-15 of GPR 6, and store the effective address in GPR 5:

.csect data[rw]
storage: .short Oxffff
Assume GPR 5 contains the address of csect data[rw] .
• csect text[pr]
Ihau 6,storage(5)
GPR 6 now contains Oxffff ffff.
GPR 5 now contains the address of storage.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load with Update Instructions on page 1-6.

5-126 Assembler Language Reference

Ihaux

Ihaux (Load Half Algebraic With Update Indexed) Instruction

Purpose

Syntax

Loads a halfword of data from a specified location in memory into a general purpose
register, copies bit 0 of the halfword into the remaining 16 bits of the general purpose
register, and possibly places the address in another general purpose register.

Ihaux RT,RA,RB

31 RT RA RS 375 Rc

o 6 11 16 21 31

Description
The Ihaux instruction loads a halfword in storage from a specified location in memory
addressed by the effective address (EA) into bits 16-31 of the target General Purpose
Register RT and copies bit 0 of the halfword into bits 0-15 of General Purpose Register RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If RA does not equal RT and RA does not equal 0, and the storage access does not
cause an Alignment Interrupt or a Data Storage Interrupt, then the effective address (EA)
is placed into General Purpose Register RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The Ihaux instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies first source general purpose register for EA calculation and
possible address update.

Specifies second source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-127

Ihaux

Examples
1. To load a halfword of data into bits 16-31 of GPR 6, copy bit 0 of the halfword into bits

0-15 of GPR 6, and store the effective address in GPR 5:

.csect data[rw]
storage: .short Oxffff
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of storage relative
to datal rw] .
• csect text[pr]
lhaux 6,5,4
GPR 6 now contains Oxffff ffff.
GPR 5 now contains the storage address.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load with Update Instructions on page 1-6.

5-128 Assembler Language Reference
- - -

Ihax

Ihax (Load Half Algebraic Indexed) Instruction

Purpose

Syntax

Loads a halfword of data from a specified location in memory into a general purpose register
and copies bit 0 of the halfword into the remaining 16 bits of the general purpose register.

Ihax RT,RA,RB

31 RT RA RB 343 Rc

o 6 11 16 21 31

Description
The Ihax instruction loads a halfword in storage from a specified location in memory
addressed by the effective address (EA) into bits 16-31 of the target General Purpose
Register RTand copies bit 0 of the halfword into bits 0-15 of General Purpose Register RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled (the alignment bit (AL) in the Machine Status Register
(MSR) is 0) then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The Ihax instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for EA calculation.

Examples

RA

RB Specifies source general purpose register for EA calculation.

1. To load a halfword of data into bits 16-31 of GPR 6 and copy bit 0 of the halfword into
bits 0-15 of GPR 6:

.csect data[rw]

.short Oxl
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of the halfword
relative to data[rw] •
• csect text[pr]
lhax 6,5,4
GPR 6 now contains OxOOOO 0001.

Chapter 5. Instruction Set 5-129

Ihax /

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-130 Assembler Language Reference

Ihbrx

Ihbrx (Load Half Byte Reverse Indexed) Instruction

Purpose

Syntax

Loads a byte-reversed halfword of data from a specified location in memory into a general
purpose register and sets the remaining 16 bits of the general purpose register to zero.

Ihbrx RT,RA,RB

31 RT RA RB 790 Rc

o 6 11 16 21 31

Description
. The Ihbrx instruction loads bits 00-07 and bits 08-15 of the halfword in storage addressed

by the effective address (EA) into bits 24-31 and bits 16-23 of General Purpose Register RT
and sets bits 00-15 of General Purpose Register RTto O.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The Iha instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Refister Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for EA calculation.

Examples

RA

RB Specifies source general purpose register for EA calculation.

1. To load bits 00-07 and bits 08-15 of the halfword in storage into bits 24-31 and bits
16-23 of GPR 6 and set bits 00-15 of GPR 6 to 0:

.csect data[rw)

.short Ox7654
Assume GPR 4 contains the address of csect data[rw).
Assume GPR 5 contains the displacement relative
to data[rw) .
• csect text[pr]
lhbrx 6,5,4
GPR 6 now contains OxOOOO 5476.

Chapter 5. Instruction Set 5-131

Ihbrx

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-132 Assembler Language Reference

1hz

1hz (Load Half And Zero) Instruction

Purpose

Syntax

Loads a halfword of data from a specified location in memory into a general purpose register
and sets the remaining 16 bits to O.

1hz RT,D(RA)

40 RT RA D

o 6 11 16 31

Description
The 1hz instruction loads a halfword in storage from a specified location in memory
addressed by the effective address (EA) into bits 16-31 of the target General Purpose
Register RTand sets bits 0-15 of General Purpose Register RTto zero.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The 1hz instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Examples

o

RA Specifies source general purpose register for EA calculation.

1. To load a halfword of data into bits 16-31 of GPR 6 and set bits 0-15 of GPR 6 to 0:

.csect data[rw]
storage: .short Oxffff
Assume GPR 4 holds the address of csect data[rw] •
• csect text[pr]
1hz 6,storage(4)
GPR 6 now holds OxOOOO ffff.

Chapter 5. Instruction Set 5-133

1hz

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-134 Assembler Language Reference

Ihzu

Ihzu (Load Half And Zero With Update) Instruction

Purpose

Syntax

Loads a halfword of data from a specified location in memory into a general purpose
register, sets the remaining 16 bits of the general purpose register to zero, and possibly
places the address in another general purpose register.

Ihzu RT,D(RA)

41 RT RA o

o 6 11 16 31

Description
The Ihzu instruction loads a halfword in storage from a specified location in memory
addressed by the effective address (EA) into bits 16-31 of the target General Purpose
Register RT and sets bits 0-15 of General Purpose Register RT to zero.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If RA does not equal RT and RA does not equal 0, and the storage access does not
cause an Alignment Interrupt or a Data Storage Interrupt, then the effective address (EA)
is placed into General Purpose Register RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The Ihzu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RT

D

RA

Specifies target general purpose register where result of operation is stored.

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Specifies source general purpose register for EA calculation and possible
address update.

Chapter 5. Instruction Set 5-135

Ihzu

Examples
1. To load a halfword of data into bits 16-31 of GPR 6, set bits 0-15 of GPR 6 to zero, and

store the effective address in GPR 4:

.csect data[rw]

.short Oxffff
Assume GPR 4 contains the address of csect data[rw] .
• csect text[pr]
Ihzu 6,0(4)
GPR 6 now contains OxOOOO ffff.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load with Update Instructions on page 1-6.

5-136 Assembler Language Reference

Ihzux

Ihzux (Load Half And Zero With Update Indexed) Instruction

Purpose

Syntax

Loads a halfword of data from a specified location in memory into a general purpose
register, sets the remaining 16 bits of the general purpose register to zero, and possibly
places the address in another general purpose register.

Ihzux RT, RA, RB

31 RT RA RB 311 Rc

o 6 11 16 21 31

Descri ption
The Ihzux instruction loads a halfword in storage from a specified location in memory
addressed by the effective address (EA) into bits 16-31 of the target General Purpose
Register RTand sets bits 0-15 of General Purpose Register RTto zero.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If RA does not equal RTand RA does not equal 0, and the storage access does not
cause an Alignment Interrupt or a Data Storage Interrupt, then the effective address (EA)
is placed into General Purpose Register RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The Ihzux instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for EA calculation and possible
address update.

Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-137

Ihzux

Examples
1. To load a halfword of data into bits 16-31 of GPR 6, set bits 0-15 of GPR 6 to zero, and

store the effective address in GPR 5:

.csect data[rw]
storage: .short Oxffff
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of storage
relative to data[rw] •
• csect text[pr]
lhzux 6,5,4
GPR 6 now contains OxOOOO ffff.
GPR 5 now contains the storage address.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load with Update Instructions on page 1-6.

5-138 Assembler Language Reference

Ihzx

Ihzx (Load Half And Zero Indexed) Instruction

Purpose

Syntax

Loads a halfword of data from a specified location in memory into a general purpose register
and sets the remaining 16 bits of the general purpose register to zero.

Ihzx RT,RA,RB

31 RT RA RS 279

o 6 11 16 21 31

Description
The Ihzx instruction loads a halfword in storage from a specified location in memory
addressed by the effective address (EA) into bits 16-31 of the target General Purpose
Register RTand sets bits 0-15 of General Purpose Register RTto zero.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The Ihzx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA

RB

Specifies source general purpose register for EA calculation.

Specifies source general purpose register for EA calculation.

1. To load a halfword of data into bits 16-31 of GPR 6 and set bits 0-15 of GPR 6 to zero:

.csect data[rw]

.short Oxffff

.csect text[pr]
Assume GPR 5 contains the address of csect data[rw].
Assume Oxffff is the halfword located at displacement O.
Assume GPR 4 contains OxOOOO 0000.
lhzx 6,5,4
GPR 6 now contains OxOOOO ffff.

Chapter 5. Instruction Set 5-139

Ihzx

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-140 Assembler Language Reference

iii (Load Immediate Lower) Instruction

Purpose
Loads a 16-bit signed integer into a general purpose register.

Syntax
iii RT,51

I 14 RT 0 81

o ,6 11 16

Descritpion

iii

31

The iii instruction loads the 16-bit two's complement (sign extended to 32 bits) signed
integer 51 into the target General Purpose Register RT. This instruction has the same effect
as the cal instruction used with the General Purpose Register RA parameter equal to zero.

The iii instruction has one syntax form and does not affect Condition Register Field 0 or the
Fixed Point Exception Register.

Parameters
RT Specifies target general purpose register for operation.

51 Specifies 16-bit signed immediate integer for operation.

Examples
1. To load OxFFFF FFFF into GPR 6:

IiI 6,OxFFFFFFFF
GPR 6 now contains OxFFFF FFFF
This instruction has the same effect as
caI6,OxFFFFFFFF(O).

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The cal (Compute Address Lower) Instruction.

Understanding Fixed Point Load Instructions on page 1-6.

Chapter 5. Instruction Set 5-141

liu

liu (Load Immediate Upper) Instruction

Purpose
Loads a 16-bit unsigned integer into the upper half of a general purpose register.

Syntax
liu RT,UI

15 RT o UI

o 6 11 16 31

Descritpion
The liu instruction loads the concatenation of the 16-bit unsigned integer UI and 'xOOOO' into
the target General Purpose Register RT. This instruction has the same effect as the cau
instruction used with the General Purpose Register RA parameter equal to zero.

The liu instruction has one syntax form and does not affect Condition Register Field 0 or the
Fixed Point Exception Register.

Parameters
RT Specifies target general purpose register for operation.

Specifies 16-bit unsigned immediate integer for operation. UI

Examples
1. To load OxFFFF 0000 into GPR 6:

liu 6, OxFFFF
GPR 6 now contains OxFFFF 0000.
This instruction has the same effect as
cau 6,0,OxFFFF.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The cau (Compute Address Upper) Instruction.

Understanding Fixed Point Load Instructions on page 1-6.

5-142 Assembler Language Reference

1m

1m (Load Multiple) Instruction

Purpose

Syntax

Loads consecutive words at a specified location into more than one general purpose
register.

1m RT,D(RA)

46 RT RA o

o 6 11 16 31

Description
The 1m instruction loads N consecutive words starting at the calculated effective address
(EA) into a number of General Purpose Registers, starting at General Purpose Register RT
and filling all GPRs through General Purpose Register 31. N is equal to 32-RTfield, the total
number of consecutive words that will be placed in consecutive registers.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
o if RA is not O. If RA is 0, then EA is D .

• If RA is not equal to 0, it is not written into if it is in the range to be loaded. The data that
would have normally been written into it is discarded. The operation continues normally.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order two bits of the EA are ignored.

• If Alignment checking is enabled (MSR(AL) = 1), and the low order two bits are not b'OO',
then an Alignment Interrupt is generated.

The 1m instruction has one syntax and does not affect the Fixed Point Exception Register or
Condition Register Field o.
Note: This instruction is interruptible due to a data storage interrupt. When such an

interrupt occurs, the instruction should be restarted from the beginning.

Parameters
RT

D

RA

Specifies starting target general purpose register for operation.

Specifies a 16-bit signed two's complement integer sign extended to 32 bits
for EA calculation

Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-143

1m

Examples
1. To load data into GPR29 and GPR 31:

.csect data[rw]

.long Ox8971

.long -1

.long Ox7ffe cl00
Assume GPR 30 contains the address of csect data[rw] .
• csect text[pr]
1m 29,0(30)
GPR 29 now contains OxOOOO 8971.
GPR 30 now contains the address of csect data[rw].
GPR 31 now contains Ox7ffe cl00.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

5-144 Assembler Language Reference

Iscbx

Iscbx (Load String And Compare Byte Indexed) Instruction

Purpose

Syntax

Loads consecutive bytes in storage into consecutive registers.

Iscbx

Iscbx.

31

o 6

RT,RA,RB

RT,RA,RB

RT RA RS 277

11 16 21

Rc

31

Description
The Iscbx instruction loads N consecutive bytes addressed by EA into General Purpose
Register RT, starting with the leftmost byte in register RT, through RT + NR - 1,
wrapping around back through GPR 0 if required, until either a byte match is found with
XER16-23 or N bytes have been loaded. If a byte match is found, then that byte is also
loaded.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
the address stored in General Purpose Register RB if RA is not O. If RA is 0, then EA is the
contents of .RB.

• XER(16-23) contains the byte to be compared.

• XER(25-31) contains the byte count before the instruction is invoked and the number of
bytes loaded after the instruction has completed.

• If XER(25-31) = 0, General Purpose Register RT is not altered.

• N is XER(25-31), which is the number of bytes to load.

• NR is ceil(NI4), which is the total number of registers required to contain the consecutive
bytes.

Bytes are always loaded left to right in the register. In the case when a match was found
before N bytes were loaded, the contents of the rightmost bytes not loaded of that register
and the contents of all succeeding registers up to and including register RT + NR - 1 are
undefined. Also, no reference is made to storage after the matched byte is found. In the
case when a match was not found, the contents of the rightmost byte(s) not loaded of
register RT + NR - 1 is undefined.

General Purpose Registers RA (if RA is not 0) and RB, if in the range to be loaded, are not
written into. The data that would have been written into them is discarded, and the operation
continues normally. If the byte in XER(16-23) compares with any of the four bytes that would
have been loaded into General Purpose Register RA or RB, but are being discarded for
restartability, the EO bit in the Condition Register and the count returned in XER(25-31) are
undefined. The MO Register is not affected by this operation.

The Iscbx instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Chapter 5. Instruction Set 5-145

ISCDX

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

Iscbx None XER{25-31) = # of ° None
bytes loaded

Iscbx. None XER{25-31) = # of LT,GT,EO,SO
bytes loaded

The two syntax forms of the Iscbx instruction places the number of bytes loaded into Fixed
Point Exception Register (XER) bits 25-31. If the syntax form sets the Record (Rc) bit to 1,
the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EO) zero,
and Summary Overflow (SO) bits in Condition Register Field 0. If Rc = 1 and XER(25-31) =
0, then Condition Register Field 0 is undefined. If Rc = 1 and XER(25-31) <> 0, then CR
field 0 is set as follows:

LT, GT, EO, SO = b'OQ'IImatchIlXER(SO)

Note: This instruction is interruptible due to a data storage interrupt. When such an
interrupt occurs, the instruction is restarted from the beginning.

Parameters
RT Specifies the starting target general purpose register.

Examples

RA

RB

Specifies source general purpose register for EA calculation.

Specifies source general purpose register for EA calculation.

1. To load consecutive bytes into GPRs 6,7, and 8:

.csect ~ata[rw]
string: "Hello, world"
Assume XER16-23 = 'a.
Assume XER25-31 = 9.
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of string relative
to csect data[rw] .
. csect text[pr]
lscbx 6,5,4
GPR 6 now contains Ox4865 6c6c.
GPR 7 now contains Ox6f2c 2077.
GPR 8 now contains Ox6fXX XXXX.

5-146 Assembler Language Reference

2. To load consecutive bytes into GPRs 6, 7, and 8:

Assume XER16-23 = 'e.
Assume XER25-31 = 9.
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of string relative
to csect data[rw] •
. csect text[pr]
lscbx. 6,5,4
GPR 6 now contains Ox4865 XXXX.
GPR 7 now contains OxXXXX XXXX.
GPR 8 now contains OxXXXX XXXX.
XER25-31 = 2.
CRF 0 now contains Ox2.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point String Instructions on page 1-8.

Iscbx

Chapter 5. Instruction Set 5-147

lsi

lsi (Load String Immediate) Instruction

Purpose

Syntax

Loads consecutive bytes in storage from a specified location in memory into consecutive
general purpose registers.

lsi RT,RA,NB

31 RT RA NB 597 Rc

o 6 11 16 21 31

Description
The lsi instruction loads N consecutive bytes in storage addressed by the effective address
(EA) into General Purpose Register RT, starting with the leftmost byte, through General
Purpose Register RT+NR-1 , wrapping around back through General Purpose Register 0 if
required.

The effective address (EA) is the contents of General Purpose Register RA if RA is not O. If
RA is 0, then the effective address (EA) is O.

• NB is the byte count.

• RTis the starting General Purpose Register.

• N is NB, which is the number of bytes to load. If NB is 0, then N is 32.

• NR is ceiling(N/4), which is the number of General Purpose Registers to receive data.

• If General Purpose Register RT + NR - 1 is only partially filled on the left, the rightmost
byte(s) of that General Purpose Register are set to zero.

• If RA is in the range to be loaded, and if RA is not equal to 0, then General Purpose
Register RA is not written into by this instruction. The data that would have been written
into it is discarded, and the operation continues normally.

• The contents of the MQ Register are not effected by this operation.

The lsi instruction has one syntax form and does not affect the Fixed Point Exception
General Purpose Register or Condition Register Field O.

Note: This instruction is interruptible due to a data storage interrupt. When such an
interrupt occurs, the instruction is restarted from the beginning.

Parameters
RT

RA

NB

Specifies starting General Purpose Register of stored data.

Specifies General Purpose Register for EA calculation.

Specifies byte count.

5-148 Assembler Language Reference

Examples
1. To load the bytes contained in a location in memory addressed by GPR 7 into GPR 6:

.csect data[rw]

.string "Hello, World"
Assume GPR 7 contains the address of csect data[rw] •
. csect text[pr]
lsi 6,7,Ox6
GPR 6 now contains Ox4865 6c6c.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point String Instructions on page 1-8.

lsi

Chapter 5. Instruction Set 5-149

Isx

Isx (Load String Indexed) Instruction

Purpose

Syntax

Loads consecutive bytes in storage from a specified location in memory into consecutive
general purpose registers.

Isx RT,RA,RB

31 RT RA RB 533 Rc

o 6 11 16 21 31

Description
The Isx instruction loads N consecutive bytes in storage addressed by the effective address
(EA) into General Purpose Register RT, starting with the leftmost byte, through General
Purpose Register RT + NR - 1, wrapping around back through General Purpose Register 0
if required.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
the address stored in General Purpose Register RB if RA is not O. If RA is 0, then effective
address (EA) is the contents of RB.

• XER(25-31) contain the byte count.

• RTis the starting General Purpose Register.

• N is XER(25-31), which is the number of bytes to load.

• NR is ceiling(N/4), which is the number of registers to receive data.

• The contents of the MQ Register are not effected by this operation.

• If XER(25-31) = 0, General Purpose Register RTis not altered.

• If General Purpose Register RT + NR - 1 is only partially filled on the left, the rightmost
byte(s) of that General Purpose Register are set to zero.

• If they are in the range to be loaded, and if RA is not equal to 0, then General Purpose
Registers RA and RB is not written into by this instruction. The data that would have been
written into them is discarded, and the operation continues normally.

The Isx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.
Note: This instruction is interruptible due to a data storage interrupt. When such an

interrupt occurs, the instruction is restarted from the beginning.

Parameters
RT

RA

RB

Specifies starting General Purpose Register of stored data.

Specifies General Purpose Register for EA calculation.

Specifies General Purpose Register for EA calculation.

5-150 Assembler Language Reference

Examples

Isx

1. To load the bytes contained in a location in memory addressed by GPR 5 into GPR 6:

Assume XER25-31 = 4.
csect data[rw]
storage: .string uHello, world"
Assume GPR 4 contains the displacement of storage
relative to data[rw].
Assume GPR 5 contains the address of csect data[rw] .
. csect text[pr]
lsx 6,5,4
GPR 6 now contains Ox4865 6c6c.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point String Instructions on page 1-8.

Chapter 5. Instruction Set 5-151

lu

lu (Load With Update) Instruction

Purpose

Syntax

Loads a word of data from a specified location in memory into a general purpose register
and possibly places the effective address in a second general purpose register.

lu RT,D(RA)

33 RT RA D

o 6 11 16 31

Description
The lu instruction loads a word in storage from a specified location in memory addressed by
the effective address (EA) into the target General Purpose Register RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and

D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If RA does not equal RT and RA does not equal 0, and the storage access does not
cause an Alignment Interrupt or a Data Storage Interrupt, then the effective address (EA)
is placed into General Purpose Register RA

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The lu instruction has one syntax form· and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RT

D

RA

Specifies target general purpose register where result of operation is stored.

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Specifies source general purpose register for EA calculation and possible
address update.

5-152 Assembler Language Reference

Examples
1. To load a word from memory into GPR 6 and place the effective address in GPR 4:

.csect data[rw]
storage: .long Oxffdd 75ce
.csect text[pr]
Assume GPR 4 contains address of csect data[rw].
lu 6,storage(4)
GPR 6 now contains Oxffdd 75ce.
GPR 4 now contains the storage address.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load with Update Instructions on page 1-6.

lu

Chapter 5. Instruction Set 5-153

lux

lux (Load With Update Indexed) Instruction

Purpose

Syntax

Loads a word of data from a specified location in memory into a general purpose register
and possibly places the effective address in a second general purpose register.

lux RT,RA,RB

31 RT RA RB 55 Rc

o 6 11 16 21 31

Descri ption
The lux instruction loads a word in storage from a specified location in memory addressed
by the effective address (EA) into the target General Purpose Register RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If RA does not equal RT and RA does not equal 0, and the storage access does not
cause an Alignment Interrupt or a Data Storage Interrupt, then the effective address (EA)
is placed into General Purpose Register RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The lux instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for EA calculation and possible
address update.

Specifies source general purpose register for EA calculation.

5-154 Assembler Language Reference

Examples
1. To load a word from memory into GPR 6 and place the effective address in GPR 5:

.csect data[rw]
storage: .long Oxffdd 75ce
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of storage
relative to csect data[rw] .
. csect text[pr]
lux 6,5,4
GPR 6 now contains Oxffdd 75ce.
GPR 5 now contains the storage address.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load with Update Instructions on page 1-6.

lux

Chapter 5. Instruction Set 5-155

Ix

Ix (Load Indexed) Instruction

Purpose
Loads a word of data from a specified location in memory into a general purpose register.

Syntax
Ix RT,RA,RB

31 RT RA RS 23 Rc

o 6 11 16 21 31

Description
The Ix instruction loads a word in storage from a specified location in memory addressed by
the effective address (EA) into the target General Purpose Register RT.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not o. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware ?ttempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The Ix instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA

RB

Specifies source general purpose register for EA calculation.

Specifies source general purpose register for EA calculation.

1. To load a word from memory into GPR 6:

.csect data[rw]

.long Oxffdd 75ce
Assume GPR 4 contains the displacement relative to
csect data[rw].
Assume GPR 5 contains the address of csect data[rw] •
• csect text[pr]
Ix 6,5,4
GPR 6 now contains Oxffdd 75ce.

5-156 Assembler Language Reference

Ix

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Load Instructions on page 1-6.

Chapter 5. Instruction Set 5-157

maskg

maskg (Mask Generate) Instruction

Purpose

Syntax

Generates a mask of ones and zeros and loads it into a general purpose register.

maskg

maskg.

31

o 6

RA,RS,RB

RA,RS,RB

RS

11

RA RB 29 Rc

16 21 31

Description
The maskg instruction generates a mask from a starting point defined by bits 27-31 of
General Purpose Register RS to an end point defined by bits 27-31 of General Purpose
Register RB and stores the mask in General Purpose Register RA.

• If the starting point bit is less than the end point bit + 1, then the bits between and
including the starting point and the end point are set to ones. All other bits are set to
zeros.

• If the starting point bit is the same as the end point bit + 1, then all 32 bits are set to ones.

• If the starting point bit is greater than the end point bit + 1, then all of the bits between and
including the end point bit + 1 and the starting point bit -1 are set to zeros. All other bits
are set to ones.

The maskg instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

maskg

maskg.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Reg ister Field 0

None

LT,GT, EO,SO

The two syntax forms of the maskg instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less
Than (LT) zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO)
bits in Condition Register Field O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for start of mask.

Specifies source general purpose register for end of mask.

5-158 Assembler Language Reference

Examples
1. To generate a mask of 5 ones and store the result in GPR 6:

Assume GPR 4 contains OxOOOO 0014.
Assume GPR 5 contains OxOOOO 0010.
maskg 6,5,4
GPR 6 now contains OxOOOO F800.

maskg

2. To generate a mask of 6 zeros with the remaining bits set to one, store the result in
General Purpose Register 6, and set Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxOOOO 0010.
Assume GPR 5 contains OxOOOO 0017.
Assume CR = O.
maskg. 6,5,4
GPR 6 now contains OxFFFF 81FF.
CR now contains Ox8000 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Rotate Instructions on page 1-9.

Chapter 5. Instruction Set 5-159

maskir

maskir (Mask Insert From Register) Instruction

Purpose

Syntax

Inserts the contents of one general purpose register into another general purpose register
under control of a bit mask.

maskir

maskir.

31

o 6

RA,RS,RB

RA,RS,RB

RS

11

RA RS 541 Rc

16 21 31

Description
The maskir stores the contents of General Purpose Register RS in General Purpose
Register RA under control of the bit mask in General Purpose Register RB.

The maskir instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

maskir None None 0 None

maskir. None None LT,GT,EO,SO

The two syntax forms of the maskir instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less
Than (LT) zero, Greater Than (GT) zel'O-, Equal To (EO) zero, and Summary Overflow (SO)
bits in Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies source general purpose register for bit mask.

1. To insert the contents of GPR 5 into GPR 6 under control of the bit mask in GPR 4:

Assume GPR 4 contains Ox8000 0000.
Assume GPR 5 contains Ox7654 EF13.
maskir 6,5,4
GPR 6 now contains OxOOOO 0000.

5-160 Assembler Language Reference

maskir

2. To insert the contents of GPR 5 into GPR 6 under control of the bit mask in GPR 4 and
set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox7FFF FFFF.
Assume GPR 5 contains OxB004 3000.
Assume CR = O.
maskir.6,5,4
GPR 6 now contains Ox3004 3000.
CR now contains Ox4000 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Rotate Instructions on page 1-9.

Chapter 5. Instruction Set 5-161

mcrf

mcrf (Move Condition Register Field) Instruction

Purpose
Copies the contents of one Condition Register Field into another.

Syntax
merf BF,BFA

19 III o

o 6 9 11 14 16 21 31

Description
The merf instruction copies the contents of the Condition Register Field specified by BFA
into the Condition Register Field specified by BF. All other fields remain unaffected.

The merf instruction has one syntax form and does not affect Condition Register Field 0 or
the Fixed Point Exception Register.

Parameters

Examples

BF Specifies target Condition Register Field for operation.

BFA Specifies source Condition Register Field for operation.

1. To copy the contents of Condition Register Field 3 into Condition Register Field 2:

Assume Condition Register Field 3 holds b'Ol10'.
mcrf 2,3
Condition Register Field 2 now holds b'Ol10'.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

, 5-162 Assembler Language Reference

mcrfs

mcrfs (Move To Condition Register From FPSCR) Instruction

Purpose

Syntax

Copies the bits from one field of the Floating Point Status and Control Register into the
Condition Register.

mcrfs BF, BFA

63 III 64

o 6 9 11 14 16 21 31

Description
The mcrfs instruction copies four bits of the Floating Point Status and Control Register
(FPSCR) specified by BFA into Condition Register field BF. All other Condition Register bits
are unchanged.

If the field specified by BFA contains reserved or undefined bits, then bits of zero value are
supplied for the copy.

The mcrfs instruction has one syntax form and can set the bits of the Floating Point Status
and Control Register.

BFA FPSCR bits set

o FX,OX

1 UX,ZX,XX,VXSNAN

2 VXISI, VXIDI, VXZDZ, VXIMZ

3 VXVC

Parameters

Examples

BF Specifies target Condition Register field where result of operation is stored.

BFA Specifies one of the FPSCR fields (0-7).

1. To copy bits from Floating Point Status and Control Register Field 4 into Condition
Register Field 3:

Assume FPSCR 4 contains b'OIII'.
mcrfs 3,4
Condition Register Field 3 contains b'OIII'.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Chapter 5. Instruction Set 5-163

mcrfs

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding The Floating Point Status and Control Register on page 1-12.

5-164 Assembler Language Reference

mcrxr

mcrxr (Move To Condition Register From XER) Instruction

Purpose

Syntax

Copies the Summary Overflow bit, Overflow bit, Carry bit, and bit 3 from the Fixed Point
Exception Register into a specified field of the Condtion Register.

mcrxr BF

31 /II /II 512

o 6 9 11 16 21 31

Description
The mcrxr copies the contents of Fixed Point Exception Register Field 0 bits 0-3 into
Condition Register Field BF and resets Fixed Point Exception Register Field 0 to zeros.

The mcrxr instruction has one syntax form and resets Fixed Point Exception Register bits
0-3 to zero.

Parameters
BF Specifies target Condition Register field where result of operation is stored.

Examples
1. To copy the Summary Overflow bit, Overflow bit, Carry bit, and bit 3 from the Fixed Point

Exception Register into field 4 of the Condition Register.

Assume bits 0-3 of the Fixed Point Exception
Register are set to b'1110'.
mcrxr 4
Condition Register Field 4 now holds b'1110'.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Fixed Point Move To/From System Registers Instructions on page 1-11.

Chapter 5. Instruction Set 5-165

mfcr

mfcr (Move From ·Condition Register) Instruction

Purpose
Copies the contents of the Condition Register into a general purpose register.

Syntax
mfcr RT

31 RT III /II 19

o 6 11 16 21 31

Description
The mfcr instruction copies the contents of the Condition Register into the target General
Purpose Register RT.

The mfcr instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples
1. To copy the Condition Register into GPR 6:

Assume the Condition Register contains Ox4055 F605.
mfcr 6
GPR 6 now contains Ox4055 F605.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

Understanding Fixed Point Move To/From System Registers Instructions on page 1-11 .

5-166 Assembler Language Reference

mffs

mffs (Move From FPSCR) Instruction

Purpose

Syntax

Loads the contents of the Floating Point Status and Control Register into a Floating Point
Register and fills the upper 32 bits with ones.

mffs FRT

mffs. FRT

63 FRT III III 583 Rc

a 6 11 16 21 31

Description
The mffs instruction places the contents of the Floating Point Status and Control Register
into bits 32-63 of Floating Point Register FRTand places OxFFFF FFFF into bits 0-31 of
Floating Point Register FRT.

The mffs instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax
form

mffs

mffs.

FPSCR bits

None

None

Record
bit (Rc)

o

Condition
Register Field 1

None

FX,FEX,VX,OX

The two syntax forms of the mffs instruction never affect the Floating Point Status and
Control Register fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects
the Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Invalid
Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in Condition
Register Field 1.

Note: This instruction loads the contents of the Floating Point Status and Control Register
into a Floating Point Register, loading ones into the upper 32 bits. The contents of
the Floating Point Register then look like a Quiet NaN.

Parameters
FRT Specifies target floating point register where result of operation is stored.

Examples
1. To load the contents of the Floating Point Status and Control Register into Floating Point

Register 14, and fill the upper 32 bits of that register with ones:

Assume FPSCR contains OxOOOO 0000.
mffs 14
FPR 14 now contains OxFFFF FFFF 0000 0000.

Chapter 5. Instruction Set 5-167

mffs

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding The Floating Point Status and Control Register on page 1-12.

Understanding Floating Point Status and Control Register Instructions on page 1-14.

5-168 Assembler Language Reference

mfmsr (Move From Machine State Register) Instruction

Purpose
Copies the contents of the Machine State Register into a general purpose register.

Syntax
mfmsr RT

31 RT III III 83

o 6 11 16 21 31

Description

mfmsr

The mfmsr instruction copies the contents of the Machine State Register into the target
General Purpose Register RT.

The mfmsr instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples
1. To copy the contents of the Machine State Register into GPR 4:

rnfrnsr 4
GPR 4 now holds a copy of the bit
settings of the Machine State Register.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Move To/From System Registers Instructions on page 1-11.

Chapter 5. Instruction Set 5-169

mfspr

mfspr (Move From Special Purpose Register) Instruction

Purpose
Copies the contents of a special purpose register into a general purpose register.

Syntax
mfspr RT,SPR

31 RT SPR III 339 Rc

o 6 11 16 21 31

Description
The mfspr instruction copies the contents of the Special Purpose Register SPR into the
target Genera!" Purpose Register RT.

The Special Purpose Register identifier SPR can have any of the values specified in the
following table.

SPR
00000
00001
00100
00101
00110
01000
01001

Register
MQ
XER
RTCU
RTCL
DEC
LR
CTR

All other combinations are reserved.

The mfspr instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RT Specifies target general purpose register where result of operation is stored.

SPR Specifies source special purpose register for operation.

Extended Mnemonics
Seven extended mnemonic move from special purpose register instructions are based on
the mfspr (Move from Special Purpose Register) instruction. The second parameter is
encoded in the instruction, and the RTfield is moved to the encoded special purpose
register. The programmer explicitly specifies RT, and the extended mnemonic specifies the
special purpose register.

5-170 Assembler Language Reference

Examples

Syntax Parameters Description

mfmq RT Move from MQ

mfxer RT Move from XER

mfrtcu RT Move from RTCU

mfrtcl RT Move from RTCL

mfdec RT Move from DEC

mflr RT Move from LR

mfctr RT Move from CTR

1. To copy the contents of the Fixed Point Exception Register into GPR 6:

mfspr 6,1
GPR 6 now contains the bit settings of the Fixed
Point Exception Register.

mfspr

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Move To/From System Registers Instructions on page 1-11.

Chapter 5. Instruction Set 5-171

mtcrf

mtcrf (Move To Condition Register Fields) Instruction

Purpose

Syntax

Copies the contents of a general purpose register into the Condition Register under control
of a field mask.

mtcrf FXM,RS

31 FXM 144

o 6 11 12 20 21 31

Description
The mtcrf instruction copies the contents of the source General Purpose Register RS into
the Condition Register under the control of the field mask FXM.

The field mask FXMis defined as follows:

Bit

12

13

14

15

16

17

18

19

Description

CR 00-03 is updated with the contents of RS 00-03.

CR 04-07 is updated with the contents of RS 04-07.

CR 08-11 is updated with the contents of RS 08-11.

CR 12-15 is updated with the contents of RS 12-15.

CR 16-19 is updated with the contents of RS 16-19.

CR 20-23 is updated with the contents of RS 20-23.

CR 24-27 is updated with the contents of RS 24-27.

CR 28-31 is updated with the contents of RS 28-31.

The mtcrf instruction has one syntax form and does not affect the Fixed Point Exception
Register.

Parameters
FXM Specifies field mask.

RS Specifies source general purpose register for operation.

Extended Mnemonics
One extended mnemonic move instruction is based on the mtcrf (Move to Condition
Register Fields) instruction. It has the same effect as coding the following example.

mtcrf Oxff,RS

5-172 Assembler Language Reference

Examples

Syntax Parameters

mtcf RS

Description

Moves the contents of RS
into the Condition Register.

1. To copy bits 00-03 of GPR 5 into Condition Register Field 0:

Assume GPR S contains Ox7S42 FFEE.
Use the mask for Condition Register
Field 0 (Ox80 = b'1000 0000').
mtcrf Ox80,S
Condition Register Field 0 now contains b'Olll'.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
See the following article in POWERstation and POWERserver Hardware Technical
Reference - General Information: Condition Register.

mtcrf

Understanding Fixed Point Move To/From System Registers Instructions on page 1-11.

Chapter 5. Instruction Set 5-173

mtfsf

mtfsf (Move To FPSCR Fields) Instruction

Purpose

Syntax

Copies the contents of a Floating Point Register into the Floating Point Status and Control
Register under the control of a field mask.

mtfsf FLM,FRB

mtfsf. FLM,FRB

63 I / I FLM II I FRB 711 I Rc I
0 6 7 15 16 21 31

Description
The mtfsf instruction copies bits 32-63 of the contents of the Floating Point Register FRB
into the Floating Point Status and Control Register under the control of the field mask
specified by FLM.

The field mask FLM is defined as follows:

Bit Description

7 FPSCR 00-03 is updated with the contents of FRB 32-35.

8 FPSCR 04-07 is updated with the contents of FRB 36-39.

9 FPSCR 08-11 is updated with the contents of FRB 40-43.

10 FPSCR 12-15 is updated with the contents of FRB 44-47.

11 FPSC R 16-19 is updated with the contents of FRB 48-51.

12 FPSCR 20-23 is updated with the contents of FRB 52-55.

13 FPSCR 24-27 is updated with the contents of FRB 56-59.

14 FPSCR 28-31 is updated with the contents of FRB 60-63.

The mtfsf instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax
form

mtfsf

mtfsf.

FPSCR bits

None

None

5-174 Assembler Language Reference

Record Condition
bit (Rc) Register Field 1

o None

FX, FEX, VX, OX

mtfsf

The two syntax forms of the mUsf instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating
Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Invalid Operation
Exception (VX), and Floating Point Overflow Exception (OX) bits in Condition Register Field
1.

Note: When specifying FPSCR 0-3, some bits cannot be explicitly set or reset.

Parameters
FLM Specifies field mask.

FRB Specifies source floating pOint register for operation.

Extended Mnemonics

Examples

Two extended mnemonic move instructions are based on the mUsf (Move to FPSCR Fields)
instruction. They have the same effect as coding the following example.

mtfsf
mtfsf.

Syntax

mUs

mUse

Oxff,FRB
Oxff,FRB

Parameters

FRB

FRB

Description

Moves the contents of FRB
into the FPSCR.

Moves the contents of FRB
into the FPSCR.

1. To copy the contents of Floating Point Register 5 bits 32-35 into Floating Point Status
and Control Register Field 0:

Assume bits 32-63 of Floating Point Register 5
contain Ox3000 3000.
mtfsf Ox80,S
Floating Point Status and Control Register
Field 0 is set to b'OOOl'.

2. To copy the contents of Floating Point Register 5 bits 32-43 into Floating Point Status
and Control Register Fields 0-2 and set Condition Register Field 1 to reflect the result of
the operation:

Assume bits 32-63 of Floating Point Register 5
contains Ox2320 0000.
mtfsf. OxEO,S
Floating Point Status and Control Register Fields 0-2
now contain b'0010 0011 0010'.
Condition Register Field 1 now contains Ox2.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding The Floating Point Status and Control Register on page 1-12.

Chapter 5. Instruction Set 5-175

mtfsfi

mtfsfi (Move To FPSCR Field Immediate) Instruction

Purpose
Copies an immediate value into a specified Floating Point Status and Control Register field.

Syntax
mtfsfi BF,I

mtfsfi. BF,I

63 SF I" I //I I / I 134 Rc

o 6 9 11 16 20 21 31

Description
The mtfsfi instruction copies the specified immediate value I into the Floating Point Status
and Control Register field specified by BF. None of the other fields of the Floating Point
Status and Control Register are affected.

The mtfsfi instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax
form

mtfsfi

mtfsfi.

FPSCR bits

None

None

Record Condition
bit (Rc) Register Field 1

o None

FX, FEX, VX, OX

The two syntax forms of the mtfsfi instruction never affect the Floating Point Status and
Control Register fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects
the Floating Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Invalid
Operation Exception (VX), and Floating Point Overflow Exception (OX) bits in Condition
Register Field 1.

Note: When specifying FPSCR 0-3, some bits cannot be explicitly set or reset.

Parameters
BF Specifies target Floating Point Status and Control Register field for

operation.

Examples

Specifies source immediate value for operation.

1. To set Floating Point Status and Control Register Field 6 to b'01 00':

mtfsfi 6,4
Floating Point Status and Control Register Field 6
is now b'OlOO'.

5-176 Assembler Language Reference

mtfsfi

2. To set Floating Point Status and Control Register field 0 to b'01 00' and set Condition
Register Field 1 to reflect the result of the operation:

mtfsfi. 0,1
Floating Point status and Control Register Field 0
is now b'OOOl'.
Condition Register Field 1 now contains Ox1.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding The Floating Point Status and Control Register on page 1-12.

Chapter 5. Instruction Set 5-177

mtfsb1

mtfsb1 (Move To FPSCR Bit 1) Instruction

Purpose
Sets a specified Floating Point Status and Control Register bit to one.

Syntax
mtfsb1 BT

mtfsb1. BT

63 BT III III 38

o 6 11 16 21 31

Description
The mtfsb1 instruction sets the Floating Point Status and Control Register (FPSCR) bit
specified by BTto one.

The mtfsb1 instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

mtfsb1

mtfsb1.

FPSCR bits

None

None

Record
bit (Rc)

o

Condition
Register Field 1

None

FX,FEX,VX,OX

The two syntax forms of the mtfsb1 instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating
Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Invalid Operation
Exception (VX), and Floating Point Overflow Exception (OX) bits in Condition Register Field
1.

Note: Bits 1-2 cannot be explicitly set or reset.

Parameters
BT Specifies FPSCR bit set to one by instruction.

Examples
1. To set the Floating Point Status and Control Register bit 4 to one:

mtfsb1 4
Now bit 4 of the Floating Point Status and Control
Register is set to 1.

2. To set the Floating Point Status and Control Register Overflow Exception Bit (bit 3) to one
and set Condition Register Field 1 to reflect the result of the operation:

mtfsb1. 3
Now bit 3 of the Floating Point Status and Control
Register is set to 1.

5-178 Assembler Language Reference

mtfsb1

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding The Floating Point Status and Control Reg ister on page 1-12.

Chapter 5. Instruction Set 5-179

mtfsbO

mtfsbO (Move To FPSCR Bit 0) Instruction

Purpose
Sets a specified Floating Point Status and Control Register bit to zero.

Syntax
mtfsbO BT

mtfsbO. BT

63 BT /II III 70

o 6 11 16 21 31

Description
The mtfsbO instruction sets the Floating Point Status and Control Register bit specified by
BTto zero.

The mtfsbO instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

mtfsbO

mtfsbO.

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 1

None

FX,FEX,VX,OX

The two syntax forms of the mtfsbO instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating
Point Exception (FX), Floating Point Enabled Exception (FEX), Floating Invalid Operation
Exception (VX), and Floating Point Overflow Exception (OX) bits in Condition Register Field
1.

Note: Bits 1-2 cannot be explicitly set or reset.

Parameters
BT Specifies Floating Point Status and Control Register bit set by operation.

Examples
1. To set the Floating Point Status and Control Register Floating Point Overflow Exception

Bit (bit 3) to zero:

mtfsbO 3
Now bit 3 of the Floating Point status and Control
Register is o.

5-180 Assembler Language Reference

mtfsbO

2. To set the Floating Point Status and Control Register Floating Point Overflow Exception
Bit (bit 3) to zero and set Condition Register Field 1 to reflect the result of the operation:

mtfsbO. 3
Now bit 3 of the Floating Point Status and control
Register is o.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding The Floating Point Status and Control Register on page 1-12.

Chapter 5. Instruction Set 5-181

mtspr

mtspr (Move To Special Purpose Register) Instruction

Purpose
Copies the contents of a general purpose register into a special purpose register.

Syntax·
mtspr SPR,RS

31 RS SPR III 467 Rc

o 6 11 16 21 31

Description
The mtspr instruction copies the contents of the source General Purpose Register RS into
the target Special Purpose Register SPR.

The Special Purpose Register identifier SPR can have any of the values specified in the
following table.

SPR
00000
00001
01000
01001

Register
MQ
XER
LR
CTR

All other combinations are reserved.

The mtspr instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
SPR Specifies target special purpose register for operation.

RS Specifies source general purpose register for operation.

Extended Mnemonics
Four extended mnemonic move from special purpose register instructions are based on the
mtspr (Move to Special Purpose Register) instruction. The second parameter is encoded in
the instruction, and the RTfield is moved to the encoded special purpose register. The
programmer explicitly specifies RT, and the extended mnemonic specifies the special
purpose register.

Syntax Parameters

mtmq RT

mtxer RT

mtlr RT

mtctr RT

5-182 Assembler Language Reference

Description

Move to MQ

Move to XER

Move to LR

Move to CTR

Examples
1. To copy the contents of GPR 5 into the Link Register:

Assume GPR 5 holds OxlOOO OOFF.
mtspr 8,5
The Link Register now holds OxlOOO OOFF.

Implementation Specifics

mtspr

This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Move To/From System Registers Instructions on page 1-11.

Chapter 5. Instruction Set 5-183

mul

mul (Multiply) Instruction

Purpose

Syntax

Multiplies the contents of two general purpose registers and stores the result in a general
purpose register.

mul RT,RA,RB

mul. RT,RA,RB

mulo RT,RA,RB

mulo. RT,RA,RB

31 RT RA RS IOEI 107 Rc

0 6 11 16 21 22 31

Description
The mul instruction multiplies the contents of General Purpose Register RA and General
Purpose Register RB and stores bits 0-31 of the result in the target General Purpose
Register RT and bits 32-63 of the result in the MQ Register.

The mul instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

mul a None 0 None

mul. a None 1 LT,GT,EQ

mula SO,OV 0 None

mula. SO,OV LT,GT,EQ

The four syntax forms of the mul instruction never affect the Carry bit (CA) in the Fixed Point
Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction sets the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register to 1 if the product is greater than 32 bits. If the syntax form sets the
Record (Rc) bit to 1, then the Less Than (LT) zero, Greater Than (GT) zero and Equal To
(EQ) zero bits in Condition Register Field 0 reflect the result in the low order 32 bits of the
MQ Register.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

5-184 Assembler Language Reference

Examples

mul

1. To multiply the contents of GPR 4 by the contents of GPR 10 and store the result in GPR
6 and the MQ register:

Assume GPR 4 contains OxOOOO 0003.
Assume GPR 10 contains OxOOOO 0002.
mul 6,4,10
MQ register now contains OxOOOO 0006.
GPR 6 now contains OxOOOO 0000.

2. To multiply the contents of GPR 4 by the contents of GPR 10, store the result in GPR 6
and the MQ register, and set Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxOOOO 4500.
Assume GPR 10 contains Ox8000 7000.
mUle 6,4,10
MQ register now contains Ox1E30 0000.
GPR 6 now contains OxFFFF 0080.
Condition Register Field 0 now contains Ox4.

3. To multiply the contents of GPR 4 by the contents of GPR 10, store the result in GPR 6
and the MQ register, and set the Summary Overflow and Overflow bits in the Fixed Point
Exception Register to reflect the result of the operation:

Assume GPR 4 contains OxOOOO 4500.
Assume GPR 10 contains Ox8000 7000.
Assume XER = O.
mulo 6,4,10
MQ register now contains Ox1E30 0000.
GPR 6 now contains OxFFFF 0080.
XER now contains OxcOOO 0000.

4. To multiply the contents of GPR 4 by the contents of GPR 10, store the result in GPR 6
and the MQ register, and set the Summary Overflow, Overflow, and Carry bits in the
Fixed Point Exception Register and Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxOOOO 4500.
Assume GPR 10 contains Ox8000 7000.
Assume XER = O.
mulo. 6,4,10
MQ register now contains Ox1E30 0000.
GPR 6 now contains OxFFFF 0080.
Condition Register Field 0 now contains Ox5.
XER now contains OxcOOO 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-185

muli

muli (Multiply Immediate) Instruction

Purpose

Syntax

Multiplies the contents of a general purpose register by a 16-bit signed integer and stores
the result in a general purpose register.

mull RT, RA, 51

12 RT RA 51

o 6 11 16 31

Description
The muli instruction multiplies the contents of General Purpose Register RA by a 16-bit
signed integer and stores bits 32-63 of the result in the target General Purpose Register RT.
The contents of the MQ Register are undefined.

The muli instruction has one syntax form and does not affect Condition Register Field 0 or
the Fixed Point Exception Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RA

51 Specifies 16-bit signed integer for operation.

1. To multiply the contents of GPR 4 by 10 and place the result in GPR 6:

Assume GPR 4 holds OxOOOO 3000.
muli 6,4,10
GPR 6 now holds Ox0001 EOOO.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-186 Assembler Language Reference

muls

muls (Multiply Short) Instruction

Purpose

Syntax

Multiplies the contents of two general purpose registers and stores the result in a general
purpose register.

Description
The muls intruction multiplies the contents of General Purpose Register RA and General
Purpose Register RB and stores bits 32-63 of the result in the target General Purpose
Register RT. The contents of the MQ Register are undefined.

The muls instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

muls 0 None 0 None

muls. 0 None LT,GT,EQ

mulso SO,OV 0 None

mulso. SO,OV 1 LT,GT,EQ

The four syntax forms of the muls instruction never affect the Carry bit (CA) in the Fixed
POint Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction sets the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register to 1 if the product is greater than 32 bits. If the syntax form sets the
Record (Rc) bit to 1, then the Less Than (LT) zero, Greater Than (GT) zero, and Equal To
(EQ) zero bits in Condition Register Field 0 reflect the result in the low order 32 bits of the
MQ Register.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-187

muls

Examples
1. To multiply the contents of GPR 4 by the contents of GPR 10 and store the result in GPR

6:

Assume GPR 4 holds OxOOOO 3000.
Assume GPR 10 holds OxOOOO 7000.
muls 6,4,10
GPR 6 now holds Ox1500 0000.

2. To multiply the contents of GPR 4 by the contents of GPR 10, store the result in GPR 6,
and set and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OxOOOO 4500.
Assume GPR 10 holds OxOOOO 7000.
muls. 6,4,10
GPR 6 now holds Ox1E30 0000.
Condition Register Field 0 now contains Ox4.

3. To multiply the contents of GPR 4 by the contents of GPR 10, store the result in GPR 6,
and set the Summary Overflow and Overflow bits in the Fixed Point Exception Register to
reflect the result of the operation:

Assume GPR 4 holds OxOOOO 4500.
Assume GPR 10 holds Ox0007 0000.
Assume XER = O.
mulso 6,4,10
GPR 6 now holds OxE300 0000.
XER now contains OxcOOO 0000

4. To multiply the contents of GPR 4 by the contents of GPR 10, store the result in GPR 6,
and set the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception
Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OxOOOO 4500.
Assume GPR 10 holds Ox7FFF FFFF.
Assume XER = O.
mu 1 so • 6, 4 , 10
GPR 6 now holds OxFFFF B800.
XER now contains OxcOOO 0000
Condition Register Field 0 now contains Ox9.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-188 Assembler Language Reference

nabs

nabs (Negative Absolute) Instruction

Purpose

Syntax

Negates the absolute value of the contents of a general purpose register and stores the
result in a general purpose register.

nabs RT,RA

nabs. RT,RA

nabso RT,RA

nabso. RT,RA

31 RT RA III I OEI 488 Rc

0 6 11 16 21 22 31

Description
The nabs instruction places the negative absolute value of the contents of General Purpose
Register RA into the target General Purpose Register RT.

The nabs instruction has four syntax forms. Each syntax form has a different effect on
Cqndition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

nabs 0 None 0 None

nabs. 0 None 1 LT,GT,EQ,SO

nabso SO,OV 0 None

nabso. SO,OV LT,GT,EQ,SO

The four syntax forms of the nabs instruction never affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
Summary Overflow (SO) bit is unchanged and the Overflow (OV) bit is set to zero. If the
syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,
Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field O.

Parameters
RT

RA

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-189

nabs

Examples
1. To take the negative absolute value of the contents of GPR 4 and store the result in GPR

6:

Assume GPR 4 contains OxOOOO 3000.
nabs 6,4
GPR 6 now contains OxFFFF 0000.

2. To take the negative absolute value of the contents of GPR 4, store the result in GPR 6,
and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFFF FFFF.
nabs. 6,4
GPR 6 now contains OxFFFF FFFF.

3. To take the negative absolute value of the contents of GPR 4, store the result in GPR 6,
and set the Overflow bit in the Fixed Point Exception Register to 0:

Assume GPR 4 contains OxOOOO 0001.
nabso 6,4
GPR 6 now contains OxFFFF FFFF.

4. To take the negative absolute value of the contents of GPR 4, store the result in GPR 6,
set Condition Register Filed 0 to reflect the result of the operation, and set the Overflow
bit in the Fixed Point Exception Register to 0:

Assume GPR 4 contains Ox8000 0000.
nabso 6,4
GPR 6 now contains Ox8000 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-190 Assembler Language Reference

nand

nand (NAND) Instruction

Purpose

Syntax

Logically complements the result of ANDing the contents of two general purpose registers
and stores the result in a general purpose register.

nand RA,RS,RB

nand. RA,RS,RB

31 RS RA RS 476 Rc

o 6 11 16 21 31

Description
The nand instruction ANDs the contents of General Purpose Register RS with the contents
of General Purpose Register RB and stores the complement of the result in the target
General Purpose Register RA.

The nand instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

nand

nand.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EO,SO

The two syntax forms of the nand instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less
Than (LT) zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO)
bits in Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Examples

RS

RB

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

1. To complement the result of ANDing the contents of GPR 4 and GPR 7 and store the
result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 7 contains Ox789A 789B.
nand 6,4,7
GPR 7 now contains OxEFFF CFFF.

Chapter 5. Instruction Set 5-191

nand

2. To complement the result of ANDing the contents of GPR 4 and GPR 7, store the result
in GPR 6, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 7 contains Ox789A 789B.
nand. 6,4,7
GPR 6 now contains OxCFFF CFFF.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-192 Assembler Language Reference

neg

neg (Negate) Instruction

Purpose

Syntax

Changes the arithmetic sign of the contents of a general purpose register and places the
result in a general purpose register.

neg RT,RA

neg. RT,RA

nego RT,RA

nego. RT,RA

31 RT RA III I OEI 104 Rc

0 6 11 16 21 22 31

Description
The neg instruction adds 1 to the one's complement of the contents of a General Purpose
Register RA and stores the result in General Purpose Register RT.

If General Purpose Register RA contains the most negative number (Le., Ox8000 0000), the
result of the instruction is the most negative number and signals the Overflow bit in the Fixed
Point Exception Register if OE is 1 .

The neg instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

neg 0 None 0 None

neg. 0 None 1 LT,GT,EQ,SO

nego 1 SO,OV 0 None

nego. SO,OV LT,GT,EQ,SO

The four syntax forms of the neg instruction never affect the Carry bit (CA) in the Fixed Point
Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT

RA

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-193

neg

Examples
1. To negate the contents of GPR 4 and store the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
neg 6,4
GPR 6 now contains Ox6FFF 0000.

2. To negate the contents of GPR 4, store the result in GPR 6, and set Condition Register
Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox789A 789B.
neg. 6,4
GPR 6 now contains Ox8765 8765.

3. To negate the contents of GPR 4, store the result in GPR 6, and set the Fixed Point
Exception Register Summary Overflow and Overflow bits to reflect the result of the
operation:

Assume GPR 4 contains Ox9000 3000.
nego 6,4
GPR 6 now contains Ox6FFF 0000.

4. To negate the contents of GPR 4, store the result in GPR 6, and set Condition Register
Field 0 and the Fixed Point Exception Register Summary Overflow and Overflow bits to
reflect the result of the operation:

Assume GPR 4 contains Ox8000 0000.
nego. 6,4
GPR 6 now contains Ox8000 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-194 Assembler Language Reference

nor

nor (NOR) Instruction

Purpose

Syntax

Logically complements the result of ORing the contents of two general purpose registers and
stores the result in a general purpose register.

nor RA,RS,RB

nor. RA,RS,RB

31 RS RA RS 124 I Rc I
0 6 11 16 21 31

Description
The nor instruction ORs the contents of General Purpose Register RS with the contents of
General Purpose Register RB and stores the complemented result in General Purpose
Register RA.

The nor instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

nor

nor.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT, EO,SO

The two syntax forms of the nor instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Examples

RS

RB

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

1. To NOR the contents of GPR 4 and GPR 7 and store the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 7 contains Ox789A 789B.
nor 6,4,7
GPR 7 now contains Ox0765 8764.

Chapter 5. Instruction Set 5-195

nor

2. To NOR the contents of GPR 4 and GPR 7, store the result in GPR 6, and set Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 7 contains Ox789A 789B.
nor. 6,4,7
GPR 6 now contains Ox0761 8764.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-196 Assembler Language Reference

or

or (OR) Instruction

Purpose

Syntax

Logically ORs the contents of two general purpose registers and stores the result in a
general purpose register.

or

or.

o

31

6

RA,RS,RB

RA,RS,RB

RS

11

RA RS 444 Rc

16 21 31

Description
The or instruction ORs the contents of General Purpose Register RS with the contents of
General Purpose Register RB and stores the result in General Purpose Register RA.

The or instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

or

or.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the or instruction never affect the Fixed Point Exception Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,
Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies source general purpose register for operation.

1. To OR the contents of GPR 4 and GPR 7 and store the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 7 contains Ox789A 789B.
or 6,4,7
GPR 6 now contains OxF89A 789B.

Chapter 5. Instruction Set 5-197

or

2. To OR the contents of GPR 4 and GPR 7, load the result in GPR 6, and set Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 7 contains Ox789A 789B.
or. 6,4,7
GPR 6 now contains OxF89E 789B.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-198 Assembler Language Reference

orc

orc (OR With Complement) Instruction

Purpose

Syntax

Logically ORs the contents of a general purpose register with the complement of the
contents of a general purpose register and stores the result in a general purpose register.

orc

orc.

o

31

6

RA,RS,RB

RA,RS,RB

RS

11

RA RB 412 Rc

16 21 31

Description
The orc instruction ORs the contents of General Purpose Register RS with the complement
of the contents of General Purpose Register RB and stores the result in General Purpose
Register RA.

The orc instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field o.

Syntax
form

orc

orc.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT, EO,SO

The two syntax forms of the orc instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies source general purpose register for operation.

1. To OR the contents of GPR 4 with the complement of the contents of GPR 7 and store
the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 7 contains Ox789A 789B, whose
complement is Ox8765 8764.
orc 6,4,7
GPR 7 now contains Ox9765 B764.

Chapter 5. Instruction Set 5-199

ore

2. To OR the contents of GPR 4 with the complement of the contents GPR 7, store the
result in GPR 6, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 7 contains Ox789A 789B, whose
complement is Ox8765 8764.
orc. 6,4,7
GPR 7 now contains OxB765 B764.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-200 Assembler Language Reference

oril

oril (OR Immediate Lower) Instruction

Purpose

Syntax

OR's the lower 16 bits of the contents of a general purpose register with a 16-bit unsigned
integer and stores the result in a general purpose register.

oril RA,RS,VI

24 RS RA UI

o 6 11 16 31

Description
The oril instruction ORs the contents of General Purpose Register RS with the
concatenation of x'OOOO' and a 16-bit unsigned integer VI and places the result in General
Purpose Register RA.

The oril instruction has one syntax form and does not affect Condition Register Field 0 or
the Fixed Point Exception Register.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Examples

RS

VI

Specifies source general purpose register for operation.

Specifies 16-bit unsigned integer for operation.

1. To OR the lower 16 bits of the contents of GPR 4 with Ox0079 and store the result in
GPR6:

Assume GPR 4 contains Ox9000 3000.
oril 6,4,Ox0079
GPR 6 now contains Ox9000 3079.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

Chapter 5. Instruction Set 5-201

oriu

oriu (OR Immediate Upper) Instruction

Purpose

Syntax

OR's the upper 16 bits of the contents of a general purpose register with a 16-bit unsigned
integer and stores the result in a general purpose register.

oriu RA,RS,UI

25 RS RA UI

o 6 11 16 31

Description
The oriu instruction DRs the contents of General Purpose Register RS with the
concatenation of a 16-bit unsigned integer UI and x'OOOO' and stores the result in General
Purpose Register RA.

The oriu instruction has one syntax form and does not affect Condition Register Field 0 or
the Fixed Point Exception Register.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Examples

RS

UI

Specifies source general purpose register for operation.

Specifies 16-bit unsigned integer for operation.

1. To OR the upper 16 bits of the contents of GPR 4 with Ox0079and store the result in GPR
6:

Assume GPR 4 contains Ox9000 3000.
oriu 6,4,Ox0079
GPR 6 now contains Ox9079 3000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-202 Assembler Language Reference

rlimi

rlimi (Rotate Left Immediate Then Mask Insert) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a specified number of bits and
stores the result in a general purpose register under the control of a generated mask.

rlimi RA,RS,SH,MB,ME

rlimi. RA,RS,SH,MB,ME

rliml RA,RS,SH,BM

rlimi. RA,RS,SH,BM

20 RS RA SH

o 6 11 16 21 26 31

Description
The rlimi instruction rotates the contents of the source General Purpose Register RS left SH
bits and stores the rotated data in General Purpose Register RA under control of a 32-bit
generated mask defined by the values in Mask Begin (MB) and Mask End (ME).

• If a mask bit is one, the instruction places the associated bit of rotated data in General
Purpose Register RA; if a mask bit is zero, the General Purpose Register RA bit remains
unchanged.

• If the MB value is less than the ME value + 1, then the mask bits between and including
the starting point and the end point are set to ones. All other bits are set to zeros.

• If the MB value is the same as the ME value + 1 , then all 32 mask bits are set to ones.

• If the MB value is greater than the ME value + 1 , then all of the mask bits between and
including the ME value + 1 and the MB value -1 are set to zeros. All other bits are set to
ones.

BM may also be used to specify the mask for this instruction. The assembler will generate
the MB and ME parameters from BM.

The rlimi instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

rlimi None None 0 None

rlimi. None None LT,GT, EO,SO

The two syntax forms of the rlimi instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Chapter 5. Instruction Set 5-203

rlimi

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

SH

MB

ME

BM

Specifies shift value for operation.

Specifies begin value of mask for operation.

Specifies end value of mask for operation.

Specifies value of 32-bit mask.

1. To rotate the contents of GPR 4 to the left 2 bits and store the masked result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 6 contains OxOOOO 0003.
rlimi 6,4,2,0,OxlD
GPR 6 now contains Ox4000 C003.
Under the same conditions
rlimi 6,4,2,OxFFFFFFFC
will produce the same result.

2. To rotate the contents of GPR 4 to the left 2 bits, store the masked result in GPR 6, and
set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox789A 789B.
Assume GPR 6 contains Ox3000 0003.
rlimi. 6,4,2,0,OxlA
GPR 6 now contains OxE269 E263.
CRF 0 now contains Ox8.
Under the same conditions
rlimi. 6,4,2,OxFFFFFFEO
will produce the same result.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Rotate Instructions on page 1-9.

5-204 Assembler Language Reference

rlinm

rlinm (Rotate Left Immediate Then AND With Mask) Instruction

Purpose

Syntax

ANDs a generated mask with the result of rotating the contents of a general purpose register
left by a specified number of bits.

rlinm RA,RS,SH,MB,ME

rlinm. RA,RS, SH,MB, ME

rlinm RA,RS, SH, BM

rlinm. RA,RS,SH,BM

21 RS RA SH

o 6 11 16 21 26 31

Description
The rlinm instruction rotates the contents of the source General Purpose Register RS left
SH bits, ANDs the rotated data with a 32-bit generated mask defined by the values in Mask
Begin (MB) and Mask End (ME), and stores the result in General Purpose Register RA.

• If the MB value is less than the ME value + 1, then the mask bits between and including
the starting pOint and the end point are set to ones. All other bits are set to zeros.

• If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

• If the MB value is greater than the ME value + 1, then all of the mask bits between and
including the ME value +1 and the MB value -1 are set to zeros. All other bits are set to
ones.

BM may also be used to specify the mask for this instruction. The assembler will generate
the MB and ME parameters from BM.

The rlinm instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

rlinm

rlinm.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the rlinm instruction never affect the Fixed Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less
Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO)
bits in Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Chapter 5. Instruction Set 5-205

rlinm

RS

SH

MB

ME

BM

Specifies source general purpose register for operation.

Specifies shift value for operation.

Specifies begin value of mask for operation.

Specifies end value of mask for operation.

Specifies value of 32-bit mask.

Extended Mnemonics

Examples

Four extended mnemonic shift instructions are based on the rlinm (Rotate Left Immediate
Then AND With Mask) instruction.

Syntax Parameters

sli RA, RS, SH

sli. RA,RS,SH

sri RA,RS,SH

sri. RA,RS,SH

Description

Shifts RS to the left SH positions and places the
result in RA.

Shifts RS to the left SH positions, places the result
in RA, and affects Condition Register Field O.

Shifts RS to the right SH positions and places the
result in RA.

Shifts RS to the right SH positions, places the result
in RA, and affects Condition Register Field O.

1. To rotate the contents of GPR 4 to the left 2 bits and AND the result with a mask of 29
ones:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 6 contains OxFFFF FFFF.
rlinm 6,4,2,O,OxlD
GPR 6 now contains Ox4000 COOO.
Under the same conditions
rlinm 6,4,2,OxFFFFFFFC
will produce the same result.

2. To rotate the contents of GPR 4 to the left 2 bits, AND the result with a mask of 29 ones,
and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 6 contains OxFFFF FFFF.
rlinm. 6,4,2,0,OxlD
GPR 6 now contains OxCOIO COOo.
CRF 0 now contains Ox8.
Under the same conditions
rlinm. 6,4,2,OxFFFFFFFC
will produce the same result.

Implementation Specifics
This instruction is part of Application Development Too/kit in A/X Base.

Related Information
Understanding Fixed Point Rotate Instructions on page 1-9.

5-206 Assembler Language Reference

rlmi

rlmi (Rotate Left Then Mask Insert) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits in a general
purpose register and stores the result in a general purpose register under the control of a
generated mask.

rlmi RA,RS, RB,MB, ME

rlmi. RA,RS,RB,MB,ME

rlmi RA,RS,RB,BM

rlmi. RA,RS,RB,BM

22 RS RA RB MB I ME I Rc

0 6 11 16 21 26 31

Description
The rlmi instruction rotates the contents of the source General Purpose Register RS left the
number of bits specified by bits 27-31 of General Purpose Register RB and stores the
rotated data in General Purpose Register RA under control of a 32-bit generated mask
defined by the values in Mask Begin (MB) and Mask End (ME).

• If a mask bit is one, the instruction places the associated bit of rotated data in General
Purpose Register RA; if a mask bit is zero, the General Purpose Register RA bit remains
unchanged.

• If the MB value is less than the ME value + 1, then the mask bits between and including
the starting point and the end point are set to ones. All other bits are set to zeros.

• If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

• If the MB value is greater than the ME value + 1 , then all of the mask bits between and
including the ME value + 1 and the MB value -1 are set to zeros. All other bits are set to
ones.

BM may also be used to specify the mask for this instruction. The assembler will generate
the MB and ME parameters from BM.

The rlmi instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

rlmi

rlmi.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the rlmi instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (L T)

Chapter 5. Instruction Set 5-207

rlmi

zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB

MB

ME

BM

Specifies general purpose register that contains number of bits for rotation
of data.

Specifies begin value of mask for operation.

Specifies end value of mask for operation.

Specifies value of 32-bit mask.

1. To rotate the contents of GPR 4 by the value contained in bits 27-31 in GPR 5 and store
the masked result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO 0002.
Assume GPR 6 contains OxFFFF FFFF.
rlmi 6,4,5,0,OxlD
GPR 6 now contains Ox4000 C003.
Under the same conditions
rlmi 6,4,5,OxFFFFFFFC
will produce the same result.

2. To rotate the contents of GPR 4 by the value contained in bits 27-31 in GPR 5, store the
masked result in GPR 6, and set Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO 0002.
GPR 6 is the target register and contains OxFFFF FFFF.
rlmi. 6,4,5,O,OxlD
GPR 6 now contains OxCOIO C003.
CRF 0 now contains Ox8.
Under the same conditions
rlmi. 6,4,5,OxFFFFFFFC
will produce the same result.

Implementation Specifics
This instruction is part of Application Development Toolkit inAIX Base.

Related Information
Understanding Fixed Point Rotate Instructions on page 1-9.

5-208 Assembler Language Reference

rlnm

rlnm (Rotate Left Then AND With Mask) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits specified in a
general purpose register, ANDs the the rotated data with the generated mask, and stores the
result in a general purpose register.

rlnm RA,RS,RB,MB,ME

rlnm. RA,RS,RB,MB,ME

rlnm RA,RS,SH,BM

rlnm. RA,RS,SH,BM

23 RS RA RS MB I ME IRe I
0 6 11 16 21 26 31

Description
The rlnm instruction rotates the contents of the source General Purpose Register RS left the
number of bits specified by bits 27-31 of General Purpose Register RB, ANDs the rotated
data with a 32-bit generated mask defined by the values in Mask Begin (MB) and Mask End
(ME), and stores the result in General Purpose Register RA.

• If the MB value is less than the· ME value + 1, then the mask bits between and including
the starting point and the end point are set to ones. All other bits are set to zeros.

• If the MB value is the same as the ME value + 1 , then all 32 mask bits are set to ones.

• If the MB value is greater than the ME value + 1, then all of the mask bits between and
including the ME value + 1 and the MB value -1 are set to zeros. All other bits are set to
ones.

BM may also be used to specify the mask for this instruction. The assembler will generate
the MB and ME parameters from BM.

The rlnm instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

rlnm

rlnm.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EO,SO

The two syntax forms of the rlnm instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Chapter 5. Instruction Set 5-209

rlnm

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB

MB

ME

BM

Specifies general purpose register that contains number of bits for rotation
of data.

Specifies begin value of mask for operation.

Specifies end value of mask for operation.

Specifies value of 32-bit mask.

1. To rotate the contents of GPR 4 two bits to the left, AND the result with a mask of 29
ones, and store the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO 0002.
Assume GPR 6 contains OxFFFF FFFF.
rlnm 6,4,5,0,OxlD
GPR 6 now contains Ox4000 cooo.
Under the same conditions
rlnm 6,4,5,OxFFFFFFFC
will produce the same result.

2. To rotate GPR 4 two bits to the left, AND the result with a mask of 29 ones, store the
result in GPR 6, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO 0002.
Assume GPR 6 contains OxFFFF FFFF.
rlnm. 6,4,5,0,OxlD
GPR 6 now contains OxCOIO COOO.
CRF 0 now contains Ox8.
Under the same conditions
rlnm. 6,4,5,OxFFFFFFFC
will produce the same result.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Rotate Instructions on page 1-9.

5-210 Assembler Language Reference

rrib

rrib (Rotate Right And Insert Bit) Instruction

Purpose

Syntax

Rotates bit 0 in a general purpose register right by a number of bits specified by a general
purpose register and stores the rotated bit in a general purpose register.

rrib

rrib.

o

31

6

RA,RS,RB

RA,RS,RB

RS

11

RA RS 537 Rc

16 21 31

Description
The rrib instruction rotates bit 0 of the source General Purpose Register RS right the
number of bits specified by bits 27-31 of General Purpose Register RB and stores the
rotated bit in General Purpose Register RA.

The rrib instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

rrib None None 0 None

rrib. None None 1 LT,GT, EO,SO

The two syntax forms of the rrib instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (L T)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies general purpose register that contains the number of bits for
rotation of data.

1. To rotate bit 0 of GPR 5 to the right 4 bits and store its value in GPR 4:

Assume GPR 5 contains OxOOOO 0000.
Assume GPR 6 contains OxOOOO 0004.
Assume GPR 4 contains OxFFFF FFFF.
rrib 4,5,6
GPR 4 now contains OxF7FF FFFF.

Chapter 5. Instruction Set 5-211

rrib

2. To rotate bit 0 of GPR 5 to the right 4 bits, store its value in GPR 4, and set Condition
Register Field a to reflect the result of the operation:

Assume GPR 5 contains OxB004 3000.
Assume GPR 6 contains OxOOOO 0004.
Assume GPR 4 contains OxOOOO 0000.
rrib. 4,5,6
GPR 4 now contains Ox0800 0000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Rotate Instructions on page 1-9.

5-212 Assembler Language Reference

sf

sf (Subtract From) Instruction

Purpose

Syntax

Subtracts the contents of a general purpose register from the contents of a general purpose
register and places the result in a general purpose register.

sf RT,RA,RB

sf. RT,RA,RB

sfo RT,RA,RB

sfo. RT,RA,RB

31 RT RA RS I OEI 8 Rc

0 6 11 16 21 22 31

Description
The sf instruction adds the ones complement of the contents of General Purpose Register
RA and one to the contents of General Purpose Register RB and stores the result in the
target General Purpose Register RT.

The sf instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sf 0 CA 0 None

sf. 0 CA 1 LT,GT,EQ,SO

sfo 1 SO,OV,CA 0 None

sfo. 1 SO,OV,CA LT,GT,EQ,SO

The four syntax forms of the sf instruction always affect the Carry bit (CA) in the Fixed Point
Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1 , the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-213

sf

Examples
1. To subtract the contents of GPR 4 from the contents of GPR 10, store the result in GPR

6, and set the Carry bit to reflect the result of the operation:

Assume GPR 4 contains Ox8000 7000.
Assume GPR 10 contains Ox9000 3000.
sf 6,4,10
GPR 6 now contains OxOFFF COOo.

2. To subtract the contents of GPR 4 from the contents of GPR 10, store the result in GPR
6, and set Condition Register Field ° and the Carry bit to reflect the result of the
operation:

Assume GPR 4 contains OxOOOO 4500.
Assume GPR 10 contains Ox8000 7000.
sf. 6,4,10
GPR 6 now contains Ox8000 2BOO.

3. To subtract the contents of GPR 4 from the contents of GPR 10, store the result in GPR
6, and set the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception
Register to reflect the result of the operation:

Assume GPR 4 contains Ox8000 0000.
Assume GPR 10 contains OxOOOO 4500.
sfo 6,4,10
GPR 6 now contains Ox8000 4500.

4. To subtract the contents of GPR 4 from the contents of GPR 10, store the result in GPR
6, and set the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception
Register and Condition Register Field ° to reflect the result of lile operation:

Assume GPR 4 contains Ox8000 0000.
Assume GPR 10 contains OxOOOO 7000.
sf 0.6,4,10
GPR 6 now contains Ox8000 7000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-214 Assembler Language Reference

sfe

sfe (Subtract From Extended) Instruction

Purpose

Syntax

Adds the one's complement of the contents of a general purpose register to the sum of a
general purpose register and the value of the Fixed Point Exception Register Carry bit and
stores the result in a general purpose register.

sfe RT,RA,RB

sfe. RT,RA,RB

sfeo RT,RA,RB

sfeo. RT,RA,RB

31 RT RA RS IOEI 136 IRe I
0 6 11 16 21 22 31

Description
The sfe adds the value of the Fixed Point Exception Register Carry bit, the contents of
General Purpose Register RB, and the one's complement of the contents of General
Purpose Register RA and stores the result in the target General Purpose Register RT.

The sfe instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field a and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sfe a CA 0 None

sfe. a CA 1 LT,GT,EQ,SO

sfeo 1 SO,OV,CA a None

sfeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the sfe instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field a.

Parameters
RT

RA

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-215

sfe

Examples
1. To add the one's complement of the contents of GPR 4, the contents of GPR 10, and the

value of the Fixed Point Exception Register Carry bit and store the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 10 contains Ox8000 7000.
Assume the Carry bit is one.
sfe 6,4,10
GPR 6 now contains OxFOOO 4000.

2. To add the one's complement of the contents of GPR 4, the contents of GPR 10, and the
value of the Fixed Point Exception Register Carry bit, store the result in GPR 6, and set
Condition Register field 0 to reflect the result of the operation:

Assume GPR 4 contains OxOOOO 4500.
Assume GPR 10 contains Ox8000 7000.
Assume the Carry bit is zero.
sfe.6,4,10
GPR 6 now contains Ox8000 2AFF.

3. To add the one's complement of the contents of GPR 4, the contents of GPR 10, and the
value of the Fixed Point Exception Register Carry bit, store the result in GPR 6, and set
the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception Register to
reflect the result of the operation:

Assume GPR 4 contains Ox8000 0000.
Assume GPR 10 contains OxEFFF FFFF.
Assume the Carry bit is one.
sfeo 6,4,10
GPR 6 now contains Ox6FFF FFFF.

4. To add the one's complement of the contents of GPR 4, the contents of GPR 10, and the
value of the Fixed Point Exception Register Carry bit, store the result in GPR 6, and set
the Summary Overflow, Overflow, and Carry bits in the Fixed Point Exception Register
and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox8000 0000.
Assume GPR 10 contains OxEFFF FFFF.
Assume the Carry bit is zero.
sfeo. 6,4,10
GPR 6 now contains Ox6FFF FFFE.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-216 Assembler Language Reference

sfi

sfi (Subtract From Immediate) Instruction

Purpose

Syntax

Subtracts the contents of a general purpose register from a 16-bit signed integer and places
the result in a general purpose register.

sfi RT,RA,51

8 RT RA 81

o 6 11 16 31

Description
The sfi instruction adds the one's complement of the contents of General Purpose Register
RA, 1, and a 16-bit signed integer 51 and places the result in the target General Purpose
Register RT.

• When 51 is -1 , this instruction places the one's complement of the contents of General
purpose Register RA in General Purpose Register RT.

The sfi instruction has one syntax form and does not affect Condition Register Field O. This
instruction always affects the Carry bit in the Fixed Point Exception Register.

Parameters
RT Specifies target general purpose register where result of operation is stored.

Examples

RA

51

Specifies source general purpose register for operation.

Specifies 16-bit signed integer for operation.

1. To subtract the contents of GPR 4 from the signed integer OxOOOO 7000 and store the
result in GPR 6:

Assume GPR 4 holds Ox9000 3000.
sfi 6,4,Ox00007000
GPR 6 now holds Ox7000 4000.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-217

sfme

sfme (Subtract From Minus One Extended) Instruction

Purpose
Adds the one's complement of a general purpose register to -1 with carry.

Syntax

Description
The sfme instruction adds the one's complement of the contents of General Purpose
Register RA, the Carry Bit of the Fixed Point Exception Register, and x' FFFFFFFF' and
places the result in the target General Purpose Register RT.

The sfme instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sfme 0 CA 0 None

sfme. 0 CA 1 LT,GT,EQ,SO

sfmeo SO,OV,CA 0 None

sfmeo. 1 SO,OV,CA LT,GT,EQ,SO

The four syntax forms of the sfme instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the
instruction effects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1 , the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in C<?ndition Register Field O.

Parameters
RT

RA

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

5-218 Assembler Language Reference

Examples

sfme

1. To add the one's complement of the contents of GPR 4, the Carry bit of the Fixed Point
Excpetion Register, and x'FFFFFFFF' and store the result in PGR 6:

Assume GPR 4 contains Ox9000 3000.
Assume the Carry bit is set to one.
sfme 6,4
GPR 6 now contains Ox6FFF CFFF.

2. To add the one's complement of the contents of GPR 4, the Carry bit of the Fixed Point
Excpetion Register, and x'FFFFFFFF', store the result in GPR 6, and set Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume the Carry bit is set to zero.
sfme. 6,4
GPR 6 now contains Ox4FFB CFFE.

3. To add the one's complement of the contents of GPR 4, the Carry bit of the Fixed Point
Excpetion Register, and x'FFFFFFFF', store the result in GPR 6, and set the Fixed Point
Exception Register to reflect the result of the operation:

Assume GPR 4 contains OxEFFF FFFF.
Assume the Carry bit is set to one.
sfmeo 6,4
GPR 6 now contains OxlOOO 0000.

4. To add the one's complement of the contents of GPR 4, the Carry bit of the Fixed Point
Excpetion Register, and x'FFFFFFFF', store the result in GPR 6, and set Condition
Register Field 0 and the Fixed Point Exception Register to reflect the result of the
operation:

Assume GPR 4 contains OxEFFF FFFF.
Assume the Carry bit is set to zero.
sfmeo. 6,4
GPR 6 now contains OxOFFF FFFF.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-219

sfze

sfze (Subtract From Zero Extended) Instruction

Purpose

Syntax

Adds the one's complement of the contents of a general purpose register, the Carry bit in the
Fixed Point Exception Register, and zero and places the result in a second general purpose
register.

sfze RT,RA

sfze. RT,RA

sfzeo RT,RA

sfzeo. RT,RA

31 RT RA III I OEI 200 IRe I
0 6 11 16 21 22 31

Description
The sfze instruction adds the one's complement of the contents of General Purpose
Register RA, the Carry bit of the Fixed Point Exception Register, and x'OOOOOOOO' and stores
the result in the target General Purpose Register RT.

The sfze instruction has four syntax forms. Each syntax form has a different effect on
Condition Register Field 0 and the Fixed Point Exception Register.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sfze 0 CA 0 None

sfze. 0 CA 1 LT,GT,EQ,SO

sfzeo 1 SO,OV,CA 0 None

sfzeo. 1 SO,OV,CA LT,GT,EQ,SO

The four syntax forms of the sfze instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Overflow Exception (OE) bit to 1 , the
instruction effects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field O.

Parameters
RT

RA

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

5-220 Assembler Language Reference

Examples

sfze

1. To add the one's complement of the contents of GPR 4, the Carry bit, and zero and store
the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume the Carry bit is set to one.
sfze 6,4
GPR 6 now contains Ox6FFF 0000.

2. To add the one's complement of the contents of GPR 4, the Carry bit, and zero, store the
result in GPR 6, and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume the Carry bit is set to one.
sfze. 6,4
GPR 6 now contains Ox4FFB 0000.

3. To add the one's complement of the contents of GPR 4, the Carry bit, and zero, store the
result in GPR 6, and set the Fixed Point Exception Register to reflect the result of the
operation:

Assume GPR 4 contains OxEFFF FFFF.
Assume the Carry bit is set to zero.
sfzeo 6,4
GPR 6 now contains OxlOOO 0000.

4. To add the one's complement of the contents of GPR 4, the Carry bit, and zero, store the
result in GPR 6, and set Condition Register Field 0 and the Fixed Point Exception
Register to reflect the result of the operation:

Assume GPR 4 contains Ox70FB 6500.
Assume the Carry bit is set to zero.
sfzeo 6,4
GPR 6 now contains Ox8F04 9AFF.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Arithmetic Instructions on page 1-8.

Chapter 5. Instruction Set 5-221

si

si (Subtract Immediate) Instruction

Purpose

Syntax

Subtracts the value of a signed integer from the contents of a gener~1 purpose register and
places the result in a general purpose register.

si RT,RA,S/NT

12 RT RA 81

o 6 11 16 31

Description
The si instruction subtracts the 16-bit signed integer S/NTfrom the contents of General
Purpose Register RA and stores the result into the target General Purpose Register RT.
This instruction has the same effect as the ai instruction used with a negative SINT. The
assembler negates S/NT and places this value (S~ in the machine instruction.

ai RT,RA,-SINT

The si instruction has one syntax form and can set the Carry Bit of the Fixed Point Exception
Register; it never affects Condition Register Field O.

Parameters

Examples

RT Specifies target general purpose register for operation.

RA Specifies specifies source general purpose register for operation.

S/NT Specifies 16-bit signed integer for operation.

5/ Specifies negative of SINT.

1. To subtract OxFFFF F800 from the contents of GPR 4, store the result in GPR 6, and set
the Carry bit in the Fixed Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains OxOOOO 0000
si 6,4,OxFFFFF800
GPR 6 now contains OxOOOO 0800
This instruction has the same effect as
ai 6,4,-OxFFFFF800.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The ai (Add Immediate) instruction.

Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-222 Assembler Language Reference

si.

si. (Subtract Immediate and Record) Instruction

Purpose

Syntax

Subtracts the value of a signed integer from the contents of a general purpose register and
places the result in a second general purpose register.

si. RT,RA,S/NT

13 RT RA 51

o 6 11 16 31

Description
The si. instruction subtracts the 16-bit signed integer S/NTfrom the contents of General
Purpose Register RA and stores the result into the target General Purpose Register RT.
This instruction has the same effect as the ai. instruction used with a negative SINT. The
assembler negates SINT and places this value (S~ in the machine instruction.

ai. RT,RA,-SINT

The si. instruction has one syntax form and can set the Carry Bit of the Fixed Point
Exception Register. This instruction also affects the Less Than (LT) zero, Greater Than (GT)
zero, Equal To (EQ) zero, or Summary Overflow (SO) bit in Condition Register Field O.

Parameters

Examples

RT Specifies target general purpose register for operation.

RA Specifies specifies source general purpose register for operation.

S/NT Specifies 16-bit signed integer for operation.

S/ Specifies negative of S/NT.

1. To subtract OxFFFF FaOO from the contents of GPR 4, store the result in GPR 6, and set
the Carry bit in the Fixed Point Exception Register and Condition Register Field 0 to
reflect the result of the operation:

Assume GPR 4 contains OxEFFF FFFF.
si. 6,4,OxFFFFFSOO
GPR 6 now contains OxFOOO 07FF.
This instruction has the same effect as
ai. 6,4,-OxFFFFFSOO.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Chapter 5. Instruction Set 5-223

si.

Related Information
The ai. (Add Immediate and Record) instruction.

Understanding Fixed Point Arithmetic Instructions on page 1-8.

5-224 Assembler Language Ref~rence

sl

sl (Shift Left) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits and places the
masked result in another general purpose register.

sl

sl.

o

31

6

RA,RS,RB

RA,RS,RB

RS

11

RA RB 24 Rc

16 21 31

Description
The sl instruction rotates the contents of the source General Purpose Register RS left N
bits, where N is the shift amount specified in bits 27-31 of General Purpose Register RB,
and stores the logical AND of the rotated word and the generated mask in General Purpose
Register RA.

• If bit 26 of register RB is zero, then a mask of 32-N ones followed by N zeros is
generated.

• If bit 26 of register RB is one, then a mask of all zeros is generated.

The sl instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field o.

Syntax
form

sl

sl.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the sl instruction never affect the Fixed Point Exception Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,
Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-225

sl

Examples
1. To rotate the contents of GPR 4 to the left 15 bits and store the result of ANDing the

rotated data with a generated mask in GPR 6:

Assume GPR 5 contains OxOOOO 002F.
Assume GPR 4 contains OxFFFF FFFF.
sl 6,4,5
GPR 6 now contains OxOOOO 0000.

2. To rotate the contents of GPR 4 to the left 5 bits, store the result of ANDing the rotated
data with a generated mask in GPR 6, and set Condition Register Field 0 to reflect the
result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO 0005.
sl. 6,4,5
GPR 6 now contains Ox0086 0000.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-226 Assembler Language Reference

sle

sle (Shift Left Extended) Instruction

Purpose

Syntax

Shifts the contents of a general purpos~ register left by a number of bits and places a copy
of the rotated data in the MQ register and the result in a general purpose register.

sle RA,RS,RB

sle. RA,RS,RB

31 RS RA RB 153 IRe I
0 6 11 16 21 31

Description
The sle instruction rotates the contents of the source General Purpose Register RS left N
bits, where N is the shift amount specified in bits 27-31 of General Purpose Register RB,
and stores the rotated word in the MQ register and the logical AND of the rotated word and
the generated mask in General Purpose Register RA. The mask consists of 32 minus N
ones followed by N zeros.

The sle instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sl None None 0 None

sl. None None LT,GT,EQ,SO

The two syntax forms of the sle instruction never affect the Fixed Point Exception Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,
Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-227

sle

Examples
1. To rotate the contents of GPR 4 to the left 4 bits, place a copy of the rotated data in the

MQ Register, and place the result of ANDing the rotated data with a mask into GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO 0004.
sle 6,4,5
GPR 6 now contains Ox0003 0000.
The MQ Register now contains Ox0003 0009.

2. To rotate the contents of GPR 4 to the left 4 bits, place a copy of the rotated data in the
MQ Register, place the result of ANDing the rotated data with a mask into GPR 6, and
set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO 0004.
sle. 6,4,5
GPR 6 now contains Ox0043 0000.
The MQ Register now contains Ox0043 OOOB.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-228 Assembler Language Reference

sleq

sleq (Shift Left Extended with MQ) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits, merges the result
with the contents of the MQ register under control of a mask, and places the rotated word in
the MQ Register and the masked result in a general purpose register.

sleq RA,RS,RB

sleq. RA,RS,RB

31 RS RA RB 217 Rc

o 6 11 16 21 31

Description
The sleq instruction rotates the contents of the source General Purpose Register RS left N
bits, where N is the shift amount specified in bits 27-31 of General Purpose Register RB,
merges the rotated word with the contents of the MQ register under control of a mask, and
stores the rotated word in the MQ Register and merged word in General Purpose Register
RA. The mask consists of 32 minus N ones followed by N zeros.

The sleq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

sleq

sleq.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the sleq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-229

sleq

Examples
1. To rotate the contents of GPR 4 to the left 4 bits, merge the rotated data with the contents

of the MQ register under a generated mask, and place the rotated word in the MQ
register and the result in GPR 6 :

Assume GPR4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO 0004.
Assume the MQ Register contains OxFFFF FFFF.
sleg 6,4,5
GPR 6 now contains Ox0003 OOOF.
The MQ register now contains Ox0003 0009.

2. To rotate the contents of GPR 4 to the left 4 bits, merge the rotated data with the contents
of the MQ register under a generated mask, place the rotated word in the MQ register
and the result in GPR 6, and set Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO 0004.
Assume the MQ Register contains OxFFFF FFFF.
sleg. 6,4,5
GPR 6 now contains Ox0043 OOOF.
The MQ register now contains Ox0043 OOOB.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-230 Assembler Language Reference

sliq

sliq (Shift Left Immediate with MQ) Instruction

Purpose

Syntax

Shifts the contents of a general purpose register left by a number of bits in an immediate
value, and places the rotated contents in the MQ Register and the result in a general
purpose register.

sliq RA,RS,SH

sliq. RA,RS,SH

31 RS RA SH 184 I Rc I
0 6 11 16 21 31

Description
The sliq instruction rotates the contents of the source General Purpose Register RS left N
bits, where N is the shift amount specified by SH, and stores the rotated word in the MQ
Register and the logical AND of the rotated word and the generated mask in General
Purpose Register RA. The mask consists of 32 minus N ones followed by N zeros.

The sliq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

sliq

sliq.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the sliq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA

RS

SH

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies immediate value for shift amount.

Chapter 5. Instruction Set 5-231

sliq

Examples
1. To rotate the contents of GPR 4 to the left 20 bits, AND the rotated data with a generated

mask, and place the rotated word into the MQ Register and the result in GPR 6:

Assume GPR 4 contains Ox1234 5678.
sliq 6,4,Ox14
GPR 6 now contains Ox6780 0000.
MQ Register now contains Ox6781 2345.

2. To rotate the contents of GPR 4 to the left 16 bits, AND the rotated data with a generated
mask, place the rotated word into the MQ Register and the result in GPR 6, and set
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains Ox1234 5678.
sliq. 6,4,Ox10
GPR 6 now contains Ox5678 0000.
The MQ Register now contains Ox5678 1234.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related -Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-232 Assembler Language Reference

slliq

slliq (Shift Left Long Immediate With MQ) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits in an immediate
value, merges the result with the contents of the MQ Register under control of a mask, and
places the rotated word in the MQ Register and the masked result in another general
purpose register.

slliq RA,RS,SH

slliq. RA,RS,SH

31 RS RA SH 248 Rc

o 6 11 16 21 31

Description
The slliq instruction rotates the contents of the source General Purpose Register RS left N
bits, where N is the shift amount specified in SH, merges the result with the contents of the
MQ register, and stores the rotated word in the MQ register and the final result in General
Purpose Register RA. The mask consists of 32 minus N ones followed by N zeros.

The slliq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

slliq

slliq.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the slliq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1 , the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field o.

Parameters
RA

RS

SH

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies immediate value for shift amount.

Chapter 5. Instruction Set 5-233

slliq

Examples
1. To rotate the contents of GPR 4 to the left 3 bits, merge the rotated data with the contents

of the MQ register under a generated mask, and place the rotated word in the MQ
Register and the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume the MQ Register contains OxFFFF FFFF.
slliq 6,4,Ox3
GPR 6 now contains Ox8001 8007.
The MQ Register now contains Ox8001 8004.

2. To rotate the contents of GPR 4 to the left 4 bits, merge the rotated data with the contents
of the MQ register under a generated mask, place the rotated word in the MQ Register
and the result in GPR 6, and set Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxB004 3000.
Assume the MQ Register contains OxFFFF FFFF.
slliq. 6,4,Ox4
GPR 6 now contains Ox0043 OOOF.
The MQ Register contains Ox0043 OOOB.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-234 Assembler Language Reference

sllq

sllq (Shift Left Long with MQ) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits specified in a
general purpose register, merges either the rotated data or a word of zeros with the contents
of the MQ Register, and places the result in general purpose register.

sllq RA, RS, RB

sllq. RA,RS,RB

31 RS RA RS 216 Rc

o 6 11 16 21 31

Description
The sllq instruction rotates the contents of the source General Purpose Register RS left N
bits, where N is the shift amount specified in bits 27-31 of General Purpose Register RB.
The merge depends on the value of bit 26 in General Purpose Register RB.

• If bit 26 of General Purpose Register RB is zero, then a mask of N zeros followed by 32
minus N ones is generated. The rotated word is then merged with the contents of the MQ
Register under control of this generated mask

• If bit 26 of General Purpose Register RB is one, then a mask of N ones followed by 32
minus N zeros is generated. A word of zeros is then merged with the contents of the MQ
Register under control of this generated mask

The resulting merged word is stored in General Purpose Register RA. The MQ Register is
not altered.

The sllq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field o.

Syntax
form

sllq

sllq.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the sllq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (L T)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA

RS

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5--235

sllq

Examples

RB Specifies source general purpose register for operation.

1. To rotate the contents of GPR 4 to the left 4 bits, merge a word of zeros with the contents
of the MQ register under a mask, and place the merged result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO 0024.
Assume MQ Register contains OxABCD EFAB.
sllq 6,4,5
GPR 6 now contains OxABCD EFAO.
The MQ Register remains unchanged.

2. To rotate the contents of GPR 4 to the left 4 bits, merge the rotated data with the contents
of the MQ register under a mask, place the merged result in GPR 6, and set Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO 0004.
Assume MQ Register contains OxFFFF FFFF.
sllq. 6,4,5
GPR 6 now contains Ox0043 OOOF.
The MQ Register remains unchanged.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-236 Assembler Language Reference

slq

slq (Shift Left with MQ) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits specified in a
general purpose register, places the rotated word in the MQ Register, and places the logical
AND of the rotated word and a generated mask in a general purpose register.

slq RA,RS,RB

slq. RA,RS,RB

31 RS RA RS 152 IRe I
0 6 11 16 21 31

Description
The slq instruction rotates the contents of the source General Purpose Register RS left N
bits, where N is the shift amount specified in bits 27-31 of General Purpose Register RB,
and stores the rotated word in the MQ Register. The mask depends on bit 26 of General
Purpose Register RB.

• If bit 26 of General Purpose Register RB is zero, then a mask of 32 minus Nones
followed by N zeros is generated.

• If bit 26 of General Purpose Register RB is one, then a mask of all zeros is generated.

This instruction then stores the logical AND of the rotated word and the generated mask in
General Purpose Register RA.

The slq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

slq

slq.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the slq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (L T)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Fieid O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-237

slq

Examples
1. To rotate the contents of GPR 4 to the left 4 bits, place the rotated word in the MQ

Register, and place logical AND of the rotated word and the generated mask in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO 0024.
slq 6,4,5
GPR 6 now contains OxOOOO 0000.
The MQ Register now contains Ox0003 0009.

2. To rotate the contents of GPR 4 to the left 4 bits, place the rotated word in the MQ
Register, place logical AND of the rotated word and the generated mask in GPR 6, and
set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO 0004.
slq. 6,4,5
GPR 6 now contains Ox0043 0000.
The MQ Register now contains Ox0043 OOOB.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-238 Assembler Language Reference

sr

sr (Shift Right) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits and places the
masked result in a general purpose register.

sr RA,RS,RB

sr. RA,RS,RB

31 RS RA RB 536 IRe I
0 6 11 16 21 31

Description
The sr instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified in bits 27-31 of General Purpose
Register RB, and stores the logical AND of the rotated word and the generated mask in
General Purpose Register RA.

• If bit 26 of register RB is zero, then a mask of N zeros followed by 32-N ones is
generated.

• If bit 26 of register RB is one, then a mask of all zeros is generated.

Thesr instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field O.

Syntax
form

sr

sr.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT, EO,SO

The two syntax forms of the sr instruction never affect the Fixed Point Exception Register. If
the syntax form sets the Record (Rc) bit to 1 , the instruction affects the Less Than (LT) zero,
Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in Condition
Register Field O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-239

sr

Examples
1. To rotate the contents of GPR 4 to the left 28 bits and store the result of ANDing the

rotated data with a generated mask in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO 0024.
sr 6,4,5
GPR 6 now contains OxOOOO 0000.

2. To rotate the contents of GPR 4 to the left 28 bits, store the result of ANDing the rotated
data with a generated mask in GPR 6, and set Condition Register Field 0 to reflect the
result of the operation:

Assume GPR 4 contains OxB004 3001.
Assume GPR 5 contains OxOOOO 0004.
sr. 6,4,5
GPR 6 now contains OxOBOO 4300.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-240 Assembler Language Reference

sra

sra (Shift Right Algebraic) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits, merges the
rotated data with a word of 32 sign bits from that register under control of a generated mask,
and places the result in a general purpose register.

sra

sra.

o

31

6

RA,RS,RB

RA,RS,RB

RS

11

RA RS 792 Rc

16 21 31

Description
The sra instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified in bits 27-31 of General Purpose
Register RB, and merges the rotated word with a word of 32 sign bits from General Purpose
Register RS under control of a generated mask. A word of 32 sign bits is generated by
taking the sign bit of a general purpose register and repeating it 32 times to make a full
word. This word can be either OxOOOO 0000 or OxFFFF FFFF depending on the value of the
general purpose register.

The mask depends on the value of bit 26 in General Purpose Register RB.

• If bit 26 of General Purpose Register RB is zero, then a mask of N zeros followed by 32
minus N ones is generated.

• If bit 26 of General Purpose Register RB is one, then a mask of all zeros is generated.

The merged word is placed in General Purpose Register RA.This instruction then ANDs the
rotated data with the complement of the generated mask, ORs the 32-bit result together,
and ANDs the bit result with bit 0 of General Purpose Register RS to produce the Carry bit
(CA).

The sra instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

sra

sra.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

CA

CA

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT, EO,SO

The two syntax forms of the sra instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
effects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary
Overflow (SO) bits in Condition Register Field O.

Chapter 5. Instruction Set 5-241

sra

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies source general purpose register for operation.

1. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, store the result in GPR 6, and set the Carry bit in the
Fixed Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO 0024.
sra 6,4,5
GPR 6 now contains OxFFFF FFFF.

2. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, store the result in GPR 6, and set the Carry bit in the
Fixed Point Exception Register and Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO 0004.
sra. 6,4,5
GPR 6 now contains OxFBOO 4300.
Condition Register Field 0 now contains Ox8.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The aze (Add To Zero Extended) instruction.

Understanding Fixed Point Shift Instructions on page 1-10.

5-242 Assembler Language Reference

srai

srai (Shift Right Algebraic Immediate) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register a specified number of bits to the left,
merges the rotated data with a word of 32 sign bits from that register under control of a
generated mask, and places the result in a general purpose register.

srai RA,RS,SH

srai. RA,RS,SH

31 RS RA SH 824 Rc

o 6 11 16 21 31

Description
The srai instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified by SH, merges the rotated data with a
word of 32 sign bits from General Purpose Register RS under control of a generated mask,
and stores the merged result in General Purpose Register RA. A word of 32 sign bits is
generated by taking the sign bit of a general purpose register and repeating it 32 times to
make a full word. This word can be either OxOOOO 0000 or OxFFFF FFFF depending on the
value of the general purpose register. The mask consists of N zeros followed by 32 minus N
ones.

This instruction then ANDs the rotated data with the complement of the generated mask,
ORs the 32-bit result together, and ANDs the bit result with bit 0 of General Purpose
Register RS to produce the Carry bit (CA).

The srai instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

srai

srai.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

CA

CA

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT, EO,SO

The two syntax forms of the srai instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary
Overflow (SO) bits in Condition Register Field o.

Parameters
RA

RS

SH

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies immediate value for shift amount.

Chapter 5. Instruction Set 5-243

srai

Examples
1. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits

under control of a genera·ted mask, store the result in GPR 6, and set the Carry bit in the
Fixed Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains Ox9000 3000.
srai 6,4,Ox4
GPR 6 now contains OxF900 0300.

2. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, place the result in GPR 6,' and set the Carry bit in the
Fixed Point Exception Register and Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxB004 3000.
srai. 6,4,Ox4
GPR 6 now contains OxFBOO 4300.
Condition Register Field 0 now contains Ox8.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The aze (Add To Zero Extended) instruction.

Understanding Fixed Point Shift Instructions on page 1-10.

5-244 Assembler Language Reference

sraiq

sraiq (Shift Right Algebraic Immediate With MO) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a specified number of bits, merges
the rotated data with a word of 32 sign bits from that general purpose register under control
of a generated mask, and places the rotated word in the MQ Register and the merged result
in a general purpose register.

sraiq RA,RS,SH

sraiq. RA,RS,SH

31 RS RA SH 952 Rc

o 6 11 16 21 31

Description
The sraiq instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified by SH, merges the rotated data with a
word of 32 sign bits from General Purpose Register RS under control of a generated mask,
and stores the rotated word in the MQ Register and the merged result in General Purpose
Register RA. A word of 32 sign bits is generated by taking the sign bit of a general purpose
register and repeating it 32 times to make a full word. This word can be either OxOOOO 0000
or OxFFFF FFFF depending on the value of the general purpose register. The mask consists
of N zeros followed by 32 minus Nones.

This instruction then ANDs the rotated data with the complement of the generated mask,
ORs the 32-bit result together, and ANDs the bit result with bit 0 of General Purpose
Register RS to produce the Carry bit (CA).

The sraiq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sraiq None CA 0 None

sraiq. None CA LT,GT,EQ,SO

The two syntax forms of the sraiq instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary
Overflow (SO) bits in Condition Register Field O.

Parameters
RA

RS

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-245

sraiq

Examples

SH Specifies immediate value for shift amount.

1. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, store the result in GPR 6, and set the Carry bit in the
Fixed Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains Ox9000 3000.
sraiq 6,4,Ox4
GPR 6 now contains OxF900 0300.
MQ now contains Ox0900 0300.

2. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, store the result in GPR 6, and set the Carry bit in the
Fixed Point Exception Register and Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OxB004 3000.
sraiq. 6,4,Ox4
GPR 6 now contains OxFBOO 4300.
MQ now contains OxOBOO 4300.
Condition Register Field 0 now contains Ox8.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The aze (Add To Zero Extended) instruction.

Understanding Fixed Point Shift Instructions on page 1-10.

5-246 Assembler Language Reference

sraq

sraq (Shift Right Algebraic With MO) Instruction

Purpose

Syntax

Rotates a general purpose register a specified number of bits to the left, merges the result
with a word of 32 sign bits from that general purpose register under control of a generated
mask, and places the rotated word in the MQ Register and the merged result in a general
purpose register.

sraq RA,RS,RB

sraq. RA,RS,RB

31 RS RA RS 920 IRe I
0 6 11 16 21 31

Description
The sraq instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified in bits 27-31 of General Purpose
Register RB. The instruction then merges the rotated data with a word of 32 sign bits from
General Purpose Register RS under control of a generated mask and stores the merged
word in General Purpose Register RA. The rotated word is stored in the MQ Register. The
mask depends on the value of bit 26 in General Purpose Register RB.

• If bit 26 of General Purpose Register RB is zero, then a mask of N zeros followed by 32
minus N ones is generated.

• If bit 26 of General Purpose Register RB is one, then a mask of all zeros is generated.

A word of 32 sign bits is generated by taking the sign bit of a general purpose register and
repeating it 32 times to make a full word. This word can be either OxOOOO 0000 or OxFFFF
FFFF depending on the value of the general purpose register.

This instruction then ANDs the rotated data with the complement of the generated mask,
ORs the 32-bit result together, and ANDs the bit result with bit 0 of General Purpose
Register RS to produce the Carry bit (CA).

The sraq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sraq None CA 0 None

sraq. None CA 1 LT,GT,EQ,SO

The two syntax forms of the sraq instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
effects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary
Overflow (SO) bits in Condition Register Field O.

Chapter 5. Instruction Set 5-247

sraq

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies source general purpose register for operation.

1. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, place the result in GPR 6 and the rotated word in the
MQ Register, and set the Carry bit in the Fixed Point Exception Register to reflect the
result of the operation:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 7 contains OxOOOO 0024.
sraq 6,4,7
GPR 6 now contains OxFFFF FFFF.
The MQ Register now contains Ox0900 0300.

2. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, place the result in GPR 6 and the rotated word in the
MQ Register, and set the Carry bit in the Fixed Point Exception Register and Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 7 contains OxOOOO 0004.
sraq. 6,4,7
GPR 6 now contains OxFBOO 4300.
The MQ Register now contains OxOBOO 4300.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The aze (Add To Zero Extended) instruction.

Understanding Fixed Point Shift Instructions on page 1-10.

5-248 Assembler Language Reference

sre

sre (Shift Right Extended) Instruction

Purpose

Syntax

Shifts the contents of a general purpose register right by a number of bits and places a copy
of the rotated data in the MQ register and the result in a general purpose register.

sre

sre.

o

31

6

RA,RS,RB

RA,RS,RB

RS

11

RA RB 665 Rc

16 21 31

. Description
The sre instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified in bits 27-31 of General Purpose
Register RB, and stores the rotated word in the MQ register and the logical AND of the
rotated word and a generated mask in General Purpose Register RA. The mask consists of
N zeros followed by 32 minus Nones.

The sre instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sre None None 0 None

sre. None None 1 LT,GT,EQ,SO

The two syntax forms of the sre instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-249

sre

Examples
1. To rotate the contents of GPR 4 to the left 20 bits, place a copy of the rotated data in the

MQ Register, and place the the result of ANDing the rotated data with a mask into GPR
6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 5 contains OxOOOO OOOC.
sre 6,4,5
GPR 6 now contains Ox0009 0003.
The MQ Register now contains OxOO~9 0003.

2. To rotate the contents of GPR 4 to the left 17 bits, place a copy of the rotated data in the
MQ Register, place the the result of ANDing the rotated data with a mask into GPR 6,
and set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 5 contains OxOOOO OOOF.
sre. 6,4,5
GPR 6 now contains OxOOOl 6008.
The MQ Register now contains Ox6001 6008.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-250 Assembler Language Reference

srea

srea (Shift Right Extended Algebraic) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits, places a copy of
the rotated data in the MQ Register, merges the rotated word and a word of 32 sign bits from
the general purpose register under control of a mask, and places the result in a general
purpose register.

srea RA,RS,RB

srea. RA,RS,RB

31 RS RA RS 921 IRe I
0 6 11 16 21 31

Description
The sre instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified in bits 27-31 of General Purpose
Register RB, stores the rotated word in the MQ Register, and merges the rotated word and a
word of 32 sign bits from General Purpose Register RS under control of a generated mask.
A word of 32 sign bits is generated by taking the sign bit of a general purpose register and
repeating it 32 times to make a full word. This word can be either OxOOOO 0000 or OxFFFF
FFFF depending on the value of the general purpose register. The mask consists of N zeros
followed by 32 minus N ones. The merged word is stored in General Purpose Register RA.

This instruction then AN Ds the rotated data with the complement of the generated mask,
ORs together the 32-bit result, and ANDs the bit result with bit 0 of General Purpose
Register RSto produce the Carry bit (CA).

The srea instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

srea

srea

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

CA

CA

Record
bit (Rc)

o

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the srea instruction always affect the Carry bit (CA) in the Fixed
Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary
Overflow (SO) bits in Condition Register Field O.

Parameters
RA

RS

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-251

srea

Examples

RB Specifies source general purpose register for operation.

1. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, place the rotated word in the MQ Register and the
result in GPR 6, and set the Carry bit in the Fixed Point Exception Register to reflect the
result of the operation:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 7 contains OxOOOO 0004.
srea 6,4,7
GPR 6 now contains OxF900 0300.
The MQ Register now contains Ox0900 0300.

2. To rotate the contents of GPR 4 to the left 28 bits, merge the result with 32 sign bits
under control of a generated mask, place the rotated word in the MQ Register and the
result in GPR 6, and set the Carry bit in the Fixed Point Exception Register and Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 7 contains OxOOOO 0004.
srea. 6,4,7
GPR 6 now contains OxFBOO 4300.
The MQ Register now contains OxOBOO 4300.
Condition Register Field 0 now contains Ox8.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The aze (Add To Zero Extended) instruction.

Understanding Fixed Point Shift Instructions on page 1-10.

5-252 Assembler Language Reference

sreq

sreq (Shift Right Extended With MQ) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits, merges the result
with the contents of the MQ Register under control of a generated mask, and places the
rotated word in the MQ Register and the merged result in a general purpose register.

sreq RA,RS,RB

sreq. RA,RS,RB

31 RS RA RB 729 IRe I
0 6 11 16 21 31

Description
The sreq instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified in bits 27-31 of General Purpose
Register RB, merges the rotated word with the contents of the MQ register under a
generated mask, and stores the rotated word in the MQ Register and the merged word in
General Purpose Register RA. The mask consists of N zeros followed by 32 minus Nones.

The sreq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Reg ister Field 0

sreq None None 0 None

sreq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sreq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-253

sreq

Examples
1. To rotate the contents of GPR 4 to the left 28 bits, merge the rotated data with the

contents of the MQ register under a generated mask, and place the rotated word in the
MQ register and the result in GPR 6 :

Assume GPR 4 contains Ox9000 300F.
Assume GPR 7 contains OxOOOO 0004.
Assume the MQ Register contains OxEFFF FFFF.
sreq 6,4,7
GPR 6 now contains OxE900 0300.
The MQ Register now contains OxF900 0300.

2. To rotate the contents of GPR 4 to the left 28 bits, merge the rotated data with the
contents of the MQ register under a generated mask, place the rotated word in the MQ
register and the result in GPR 6, and set Condition Register Field 0 to reflect the result of
the operation:

Assume GPR 4 contains OxBOO 300F.
Assume GPR 18 contains OxOOOO 0004.
Assume the MQ Register contains OxEFFF FFFF
sreq. 6,4,18
GPR 6 now contains OxEBOO 0300.
The MQ Register now contains OxFBOO 0300.
Condition Register Field 0 now contains Ox8.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-254 Assembler Language Reference

sriq

sriq (Shift Right Immediate With MQ) Instruction

Purpose

Syntax

Shifts the contents of a general purpose register right by a number of bits and places the
rotated contents in the MQ Register and the result in a general purpose register.

sriq RA,RS,SH

sriq. RA,RS,SH

Extended mnemonics are also provided.

31 RS RA SH 696 Rc

o 6 11 16 21 31

Description
The sriq instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified by SH, and stores the rotated word in the
MQ Register and the logical AND of the rotated word and the generated mask in General
Purpose Register RA. The mask consists of N zeros followed by 32 minus Nones.

The sriq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

sriq None None 0 None

sriq. None None LT,GT,EQ,SO

The two syntax forms of the sriq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA

RS

SH

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies value for shift amount.

Chapter 5. Instruction Set 5-255

sriq

Examples
1. To rotate the contents of GPR 4 to the left 20 bits, AND the rotated data with a generated

mask, and place the rotated word into the MQ Register and the result in GPR 6:

Assume GPR 4 contains Ox9000 300F.
sriq 6,4,OxC
GPR 6 now contains Ox0009 0003.
The MQ Register now contains OxOOF9 0003.

2. To rotate the contents of GPR 4 to the left 12 bits, AND the rotated data with a generated
mask, place the rotated word into the MQ Register and the result in GPR 6, and set
Condition Register Field 0 to reflect the result of the operation:

AssumeGPR 4 contains OxBOOO 300F.
sriq. 6,4,Ox14
GPR 6 now contains OxOOOO OBOO.
The MQ Register now contains Ox0300 FBOO.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-256 Assembler Language Reference

srliq

srliq (Shift Right Long Immediate With MQ) Instruction

Purpose

Syntax

Rotates the contents of a general purpose register left by a number of bits, merges the result
with the contents of the MQ Register under control of a generated mask, and places the
result in another general purpose register.

srliq RA,RS,SH

srliq. RA,RS,SH

31 RS RA SH 760 Rc

o 6 11 16 21 31

Description
The srliq instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified by SH, merges the result with the
contents of the MQ Register under control of a generated mask, and stores the rotated word
in the MQ Register and the merged result in General Purpose Register RA. The mask
consists of N zeros followed by 32 minus Nones.

The srliq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

srliq None None 0 None

srliq. None None 1 LT,GT,EQ,SO

The two syntax forms of the srliq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA

RS

SH

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies value for shift amount.

Chapter 5. Instruction Set 5-257

srUq

Examples
1. To rotate the contents of GPR 4 to the left 28 bits, merge the rotated data with the

contents of the MQ Register under a generated mask, and place the rotated word in the
MQ Register and the result in GPR 6:

Assume GPR 4 contains Ox9000 300F.
Assume the MQ Register contains Ox1111 1111.
srliq 6,4,Ox4
GPR' 6 now contains Ox1900 0300.
The MQ Register now contains OxF900 0300.

2. To rotate the contents of GPR 4 to the left 28 bits, merge the rotated data with the
contents of the MQ Register under a generated mask, place the rotated word in the MQ
Register and the result in GPR 6, and set Condition Register Field 0 to reflect the result
of the operation:

Assume GPR 4 contains OxB004 3000
Assume the MQ Register contains OxFFFF FFFF.
srliq. 6,4,Ox4
GPR 6 now contains OxFBOO 4300.
The MQ Register contains OxOBOO 4300.
Condition Register Field 0 now contains Ox8.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-258 Assembler Language Reference

srlq

srlq (Shift Right Long With MQ) Instruction

Purpose
Rotates the contents of a general purpose register left by a number of bits, merges either the
rotated data or a word of zeros with the contents of the MQ Register under control of a
generated mask, and places the result in a general purpose register.

Description
The srlq instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified in bits 27-31 of General Purpose
Register RB. The merge depends on the value of bit 26 in General Purpose Register RB.

• If bit 26 of General Purpose Register RB is zero, then a mask of N zeros followed by 32
minus N ones is generated. The rotated word is then merged with the contents of the MQ
Register under control of this generated mask

• If bit 26 of General Purpose Register RB is one, then a mask of N ones followed by 32
minus N zeros is generated. A word of zeros is then merged with the contents of the MO
Register under control of this generated mask

The merged word is stored in General Purpose Register RA. The MQ Register is not altered.

The srlq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field o.

Syntax
form

srlq

srlq.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the srlq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field o.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-259

srlq

Examples
1. To rotate the contents of GPR 4 to the left 28 bits, merge a word of zeros with the

contents of the MQ register under a mask, and place the merged result in GPR 6:

Assume GPR 4 contains Ox9000 300F.
Assume GPR 8 contains OxOOOO 0024.
Assume the MQ Register contains OxFFFF FFFF.
srlq 6,4,8
GPR 6 now contains OxOFFF FFFF.
The MQ Register remains unchanged.

2. To rotate the contents of GPR 4 to the left 28 bits, merge the rotated data with the
contents of the MQ register under a mask, place the merged result in GPR 6, and set
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 8 contains OxOOOOO 0004.
Assume the MQ Register contains OxFFFF FFFF.
srlq. 6,4,8
GPR 6 now holds OxFBOO 4300.
The MQ Register remains unchanged.
Condition Register Field 0 now contains Ox8.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-260 Assembler Language Reference

srq

srq (Shift Right with MQ) Instruction

Purpose

Syntax'

Rotates the contents of a general purpose register left by a number of bits, places the
rotated word in the MQ Register, and places the logical AND of the rotated word and a
generated mask in a general purpose register.

srq

srq.

o

31

6

RA,RS,RB

RA,RS,RB

RS

11

RA RS 664 Rc

16 21 31

Description
The srq instruction rotates the contents of the source General Purpose Register RS left 32
minus N bits, where N is the shift amount specified in bits 27-31 of General Purpose
Register RB, and stores the rotated word in the MQ Register. The mask depends on bit 26 of
General Purpose Register RB.

• If bit 26 of General Purpose Register RB is zero, then a mask of N zeros followed by 32
minus N ones is generated.

• If bit 26 of General Purpose Register RB is one, then a mask of all zeros is generated.

This instruction then stores the logical AND of the rotated word and the generated mask in
General Purpose Register RA.

The srq instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax
form

srq

srq.

Overflow
Exception (OE)

None

None

Fixed Point
Exception Register

None

None

Record
bit (Rc)

o
1

Condition
Register Field 0

None

LT,GT,EQ,SO

The two syntax forms of the srq instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT)
zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA

RS

RB

Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Specifies source general purpose register for operation.

Chapter 5. Instruction Set 5-261

srq

Examples
1. To rotate the contents of GPR 4 to the left 28 bits, place the rotated word in the MQ

Register, and place logical AND of the rotated word and the generated mask in GPR 6:

Assume GPR 4 holds Ox9000 300F.
Assume GPR 25 holds OxOOOO 00024.
srq 6,4,25
GPR 6 now holds OxOOOO 0000.
The MQ Register now holds OxF900 0300.

2. To rotate the contents of GPR 4 to the left 28 bits, place the rotated word in the MQ
Register, place logical AND of the rotated word and the generated mask in GPR 6, and
set Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OxBOOO 300F.
Assume GPR 25 holds OxOOOO 0004.
srq. 6,4,8
GPR 6 now holds OxOBOO 0300.
The MQ Register now holds OxFBOO 0300.
Condition Register Field 0 now contains Ox4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Shift Instructions on page 1-10.

5-262 Assembler Language Reference

st

st (Store) Instruction

Purpose
Stores a word of data from a general purpose register into a specified location in memory.

Syntax
st RS,D(RA)

36 RS RA D

o 6 11 16 31

Description
The st instruction stores a word from General Purpose Register RS into a word of storage
addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If alignment checking is disabled, Le., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The st instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RS Specifies source general purpose register of stored data.

Examples

D

RA

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Specifies source general purpose register for EA calculation.

1. To store the contents of GPR 6 into a location in memory:

.csect data[rw]
buffer: .10ng 0,0
Assume GPR 6 contains Ox9000 3000.
Assume GPR 5 contains the address of buffer •
• csect text[pr]
st 6,4(5)
Ox9000 3000 is now stored at the address buffer+4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Chapter 5. Instruction Set 5-263

st

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

5-264 Assembler Language Reference

stb

stb (Store Byte) Instruction

Purpose
Stores a byte of data from a general purpose register into a specified location in memory.

Syntax
stb RS,D(RA)

38 RS RA D

o 6 11 16 31

Description
The stb instruction stores bits 24-31 of General Purpose Register RS into a byte of storage
addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

The stb instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS Specifies source general purpose register of stored data.

Examples

o

RA

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Specifies source general purpose register for EA calculation.

1. To store bits 24-31 of GPR 6 into a location in memory:

.csect data[rw]
buffer: .long 0
Assume GPR 4 contains address of csect data[rw].
Assume GPR 6 contains OxOOOO 0060 .
• csect text[pr]
stb 6,buffer(4)
Ox60 is now stored at the address of buffer.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

Chapter 5. Instruction Set 5-265

stbrx

stbrx (Store Byte Reverse Indexed) Instruction

Purpose

Syntax

Stores a byte-reversed word of data from a general purpose register into a specified
location in memory.

stbrx RS,RA,RB

31 RS RA RS 662

o 6 11 16 21 31

Description
The stbrx instruction stores a byte-reversed word from General Purpose Register RS into a
word of storage addressed by the effective address (EA).

• Bits 24-31 of GPR RS are stored into bits 00-07 of the word in storage addressed by EA.

• Bits 16-23 of GPR RS are stored into bits 08-15 of the word in storage addressed by EA .

• Bits 08-15 of GPR RS are stored into bits 16-23 of the word in storage addressed by EA.

• Bits 00-07 of GPR RS are stored into bits 24-31 of the word in storage addressed by EA.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stbrx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS

RA

RB

Specifies source general purpose register of stored data.

Specifies source general purpose register for EA calculation.

Specifies source general purpose register for EA calculation.

5-266 Assembler Language Reference

Examples
1. To store a byte-reverse word from GPR 6 into a location in memory:

.csect data[rw]
buffer: .long 0
Assume GPR 4 contains the address of buffer.
Assume GPR 9 contains OxOOOO 0000.
Assume GPR 6 contains Ox1234 5678 •
• csect text[pr]
stbrx 6,4,9
Ox7856 3412 is now stored at the address of buffer.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

stbrx

Chapter 5. Instruction Set 5-267

stbu

stbu (Store Byte With Update) Instruction

Purpose

Syntax

Stores a byte of data from a general purpose register into a specified location in memory
and possibly places the address in a general purpose register.

stbu RS,O(RA)

39 RS RA o

o 6 11 16 31

Description
The stbu instruction stores bits 24-31 of the source General Purpose Register RS into the
byte in storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
0, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If RA does not equal 0 and the storage access does not cause an Alignment Interrupt,
then the effective address is stored in General Purpose Register RA.

The stbu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RS Specifies source general purpose register of stored data.

Examples

o

RA

16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

Specifies source general purpose register for EA calculation and possible
address update.

1. To store bits 24-31 of GPR 6 into a location in memory and place the address in GPR 16:

.csect data[rw]
buffer: .long 0
Assume GPR 6 contains OxOOOO 0060.
Assume GPR 16 contains the address of csect data[rw] •
• csect text[pr]
stbu 6,buffer(16)
GPR 16 now contains the address of buffer.
Ox60 is stored at the address of buffer.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

5-268 Assembler Language Reference

stbu

Related Information
Understanding Fixed Point Store with Update Instructions on page 1-7.

Chapter 5. Instruction Set 5-269

stbux

stbux (Store Byte With Update Indexed) Instruction

Purpose

Syntax

Stores a byte of data from a general purpose register into a specified location in memory
and possibly places the address in a general purpose register.

stbux RS, RA, RB

31 RS RA RS 247

o 6 11 16 21 31

Description
The stbux instruction stores bits 24-31 of the source General Purpose Register RS into the
byte in storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
the contents of General Purpose Register RB, if RA is not O. If RA is 0, then the effective
address (EA) is the contents of RB.

• If RA does not equal 0 and the storage access does not cause an Alignment Interrupt,
then the effective address is stored in General Purpose Register RA.

The stbux instruction exists only in one syntax form and does not affect the Fixed Point
Exception Register or Condition Register Field O.

Parameters
RS Specifies source general purpose register of stored data.

Examples

RA

RB

Specifies source general purpose register for EA calculation and possible
address update.

Specifies source general purpose register for EA calculation.

1. To store the contents of GPR 6 into a location in memory and place the address in GPR
4:

.csect data[rw]
buffer: .long 0
Assume GPR 6 contains OxOOOO 0060.
Assume GPR 4 contains OxOOOO 0000.
Assume GPR 19 contains the address of buffer •
• csect text[pr]
stbux 6,4,19
Buffer now contains Ox60.
GPR 4 contains the address of buffer.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

5-270 Assembler Language Reference

stbux

Related Information
Understanding Fixed Point Store with Update Instructions on page 1-7.

Chapter 5. Instruction Set 5-271

stbx

stbx (Store Byte Indexed) Instruction

Purpose
Stores a byte from a general purpose register into a specified location in memory.

Syntax
stbx RS,RA,RB

31 RS RA RB 215 Rc

o 6 11 16 21 31

Description
The stbx instruction stores bits 24-31 from General Purpose Register RS into a byte of
storage addressed by the effective address (EA). The contents of General Purpose Register
RS are unchanged.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
the contents of General Purpose Register RB, if RA is not O. If RA is 0, then the effective
address (EA) is the contents of RB.

The stbx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS Specifies source general purpose register of stored data.

Specifies source general purpose register for EA calculation.

Examples

RA

RB Specifies source general purpose register for EA calculation.

1. To store bits 24-31 of GPR 6 into a location in memory:

.csect data[rw]
buffer: .long °
Assume GPR 4 contains the address of buffer.
Assume GPR 6 contains Ox4865 6C6F •
. csect text[pr]
stbx 6,0,4
buffer now contains Ox6F.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

5-272 Assembler Language Reference

stfd

stfd (Store Floating Point Double) Instruction

Purpose
Stores a double word of data in a specified location in memory.

Syntax
stfd FRS,O(RA)

54 FRS RA o

o 6 11 16 31

Description
The stfd instruction stores the contents of Floating Point Register FRS into the doubleword
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
0, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is O.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the three low order bits of the effective address are ignored.

• If alignment checking is enabled, and the three low order bits are not b'OOO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stfd instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters

Examples

FRS Specifies source floating pOint register of stored data.

o 16-bit signed two's complement integer sign extended to 32 bits for EA
calcu lation.

RA Specifies source general purpose register for EA calculation.

1. To store the contents of FPR 6 into a location in memory:

.csect data[rw]
buffer: .long 0,0
Assume FPR 6 contains Ox4865 6C6C 6F20 776F.
Assume GPR 4 contains the address of csect data[rw] •
. csect text[pr]
stfd 6,buffer(4)
buffer now contains Ox4865 6C6C 6F20 776F.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Chapter 5. Instruction Set 5-273

stfd

Related Information
Understanding Floating Point Store Instructions on page 1-13.

5-274 Assembler Language Reference

stfdu

stfdu (Store Floating Point Double With Update) Instruction

Purpose

Syntax

Stores a double word of data in a specified location in memory and possibly places the
address in a general purpose register.

stfdu FRS,D(RA)

55 FRS RA o

o 6 11 16 31

Description
The stfdu instruction stores the contents of Floating Point Register FRS into the doubleword
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If RA does not equal 0 and the storage access does not cause Alignment Interrupt or a
Data Storage Interrupt, then the effective address is stored in General Purpose Register
RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the three low order bits of the effective address are ignored.

• If alignment checking is enabled, and the three low order bits are not b'OOO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stfdu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
FRS Specifies source floating point register of stored data.

D 16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation and possible
address update.

Chapter 5. Instruction Set 5-275

stfdu

Examples
1. To store the double word contents of FPR 6 into a location in memory and store the

address in GPR 4:

.csect data[rw]
buffer: .long 0,0
Assume FPR 6 contains Ox4865 6C6C 6F20 776F.
GPR 4 contains the address of csect data[rw] •
• csect text[pr]
stdfu 6,buffer(4)
buffer now contains Ox4865 6C6C 6F20 776F.
GPR 4 now contains the address of buffer.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Store Instructions on page 1-13.

5-276 Assembler Language Reference

stfdux

stfdux (Store Floating Point Double With Update Indexed)
Instruction

Purpose

Syntax

Stores a double word of data in a specified location in memory and possibly places the
address in a general purpose register.

stfdux FRS,RA,RB

31 FRS RA RB 759

o 6 11 16 21 31

Description
The stfdux instruction stores the contents of Floating Point Register FRS into the
doubleword storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB, if RA is not O. If RA is 0, then the effective address (EA) is
the contents of RB.

• If RA does not equal 0 and the storage access does not cause Alignment Interrupt or a
Data Storage Interrupt, then the effective address is stored in General Purpose Register
RA .

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the three low order bits of the effective address are ignored.

• If alignment checking is enabled, and the three low order bits are not b'OOO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stfdux instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
FRS Specifies source floating point register of stored data.

RA Specifies source general purpose register for EA calculation and possible
address update.

RB Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-277

stfdux

Examples
1. To store the contents of FPR 6 into a location in memory and store the address in GPR 4:

.csect data[rw]
buffer: .long 0,0,0,0
Assume FPR 6 contains Ox9000 3000 9000 3000.
Assume GPR 4 contains OxOOOO OOOS.
Assume GPR 5 contains the address of buffer •
• csect text[pr]
stfdux 6,4,5

. # buffer+S now contains Ox9000 3000 9000 3000.
GPR 4 now contains the address of buffer+S.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Store Instructions on page 1-13.

5-278 Assembler Language Reference

stfdx

stfdx (Store Floating Point Double Indexed) Instruction

Purpose
Stores a double word of data in a specified location in memory.

Syntax
stfdx FRS, RA, RB

31 FRS RA RS 727

o 6 11 16 21 31

Description
The stfdx instruction stores the contents of Floating Point Register FRS into the doubleword
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of General Purpose Register RB .

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the three low order bits of the effective address are ignored .

• If alignment checking is enabled, and the three low order bits are not b'OOO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stfdx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters

Examples

FRS Specifies source floating point register of stored data.

RA Specifies source general purpose register for EA calculation.

RB Specifies source general purpose register for EA calculation.

1. To store the contents of FPR 6 into a location in memory addressed by GPR 5 and GPR
4:

.csect data[rw]
buffer: .long 0,0,0,0
Assume FPR 6 contains Ox4865 6C6C 6F20 776F.
Assume GPR 4 contains OxOOOO 0008.
Assume GPR 5 contains the address of buffer •
• csect text[pr]
stfdx 6,4,5
Ox4865 6C6C 6F20 776F is now stored at the
address buffer+8.

Chapter 5. Instruction Set 5-279

stfdx

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Store Instructions on page 1-13.

5-280 Assembler Language Reference

stfs

stfs (Store Floating Point Single) Instruction

Purpose
Stores a word of data from a floating point register into a specified location in memory.

Syntax
stfs FRS,O(RA)

52 FRS RA D

o 6 11 16 31

Description
The stfs instruction converts the contents of Floating Point Register FRS to single precision
and stores the result into the word of storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
0, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is O.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored .

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stfs instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters

Examples

FRS Specifies floating point register of stored data.

o 16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation.

1. To store the single-precision contents of FPR 6 into a location in memory:

.csect data[rw]
buffer: .long 0
Assume FPR 6 contains Ox4865 6C6C 6F20 776F.
Assume GPR 4 contains the address of csect data[rw] •
• csect text[pr]
stfs 6,buffer(4)
buffer now contains Ox432B 6363.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Chapter 5. Instruction Set 5-281

stfs

Related Information
Understanding Floating Point Store Instructions on page 1-13.

5-282 Assembler Language Reference

stfsu

stfsu (Store Floating Point Single With Update) Instruction

Purpose

Syntax

Stores a word of data from a floating point register into a specified location in memory and
possibly places the address in a general purpose register.

stfsu FRS,O(RA)

53 FRS RA o

o 6 11 16 31

Description
The stfsu instruction converts the contents of Floating Point Register FRS to single
precision and stores the result into the word of storage addressed by the effective address
(EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
0, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is O. .

• If RA does not equal 0 and the storage access does not cause Alignment Interrupt or
Data Storage Interrupt, then the effective address is stored in General Purpose Register
RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stfsu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters

Examples

FRS Specifies floating point register of stored data.

o 16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation and possible
address update.

1. To store the single-precision contents of FPR 6 into a location in memory and store the
address in GPR 4:

.csect data[rw]
buffer: .long 0

Chapter 5. Instruction Set 5-283

stfsu

Assume FPR 6 contains Ox4865 6C6C 6F20 776F.
Assume GPR 4 contains the address of csect data[rw) •
• csect text[pr]
stfsu 6,buffer(4)
GPR 4 now contains the address of buffer.
buffer now contains Ox432B 6363.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Store Instructions on page 1-13.

5-284 Assembler Language Reference

stfsux

stfsux (Store Floating Point Single With Update Indexed)
Instruction

Purpose

Syntax

Stores a word of data from a floating point register into a specified location in memory and
possibly places the address in a general purpose register.

stfsux FRS,RA,RB

31 FRS RA RS 695 Rc

o 6 11 16 21 31

Description
The stfsux instruction converts the contents of Floating Point Register FRS to single
precision and stores the result into the word of storage addressed by the effective address
(EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB, if RA is not O. If RA is 0, then the effective address (EA) is
the contents of RB.

• If RA does not equal 0 and the storage access does not cause Alignment Interrupt or
Data Storage Interrupt, then the effective address is stored in General Purpose Register
RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stfsux instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
FRS Specifies floating point register of stored data.

RA Specifies source general purpose register for EA calculation and possible
address update.

RB Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-285

stfsux

Examples
1. To store the single-precision contents of FPR 6 into a location in memory and store the

address in GPR 5:

.csect data[rw]
buffer: .long 0,0,0,0
Assume GPR 4 contains OxOOOO 0008.
Assume GPR 5 contains the address of buffer.
Assume FPR 6 contains Ox4865 6C6C 6F20 776F .
• csect text[pr]
stfsux 6,5,4
GPR 5 now contains the address of buffer+8.
buffer+8 contains Ox432B 6363.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Floating Point Store Instructions on page 1-13.

5-286 Assembler Language Reference

stfsx

stfsx (Store Floating Point Single Indexed) Instruction

Purpose
Stores a word of data from a floating point register into a specified location in memory.

Syntax
stfsx FRS,RA,RB

31 FRS RA RB 663

o 6 11 16 21 31

Description
The stfsx instruction converts the contents of Floating Point Register FRS to single
precision and stores the result into the word of storage addressed by the effective address
(EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB, if RA is not O. If RA is 0, then the effective address (EA) is
the contents of RB.

• If alignment checking is pisabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stfsx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters

Examples

FRS Specifies source floating point register of stored data.

RA Specifies source general purpose register for EA calculation.

RB Specifies source general purpose register for EA calculation.

1. To store the single-precision contents of FPR 6 into a location in memory:

.csect data[rw]
buffer: .long °
Assume FPR 6 contains Ox4865 6C6C 6F20 776F.
Assume GPR 4 contains the address of buffer •
• csect text[pr]
stfsx 6,0,4
buffer now contains Ox432B 6363.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Chapter 5. Instruction Set 5-287

stfsx

Related Information
Understanding Floating Point Store I nstructions on page 1-13.

5-288 Assembler Language Reference

sth

sth (Store Half) Instruction

Purpose

Syntax

Stores a halfword of data from a general purpose register into a specified location in
memory.

sth RS,D(RA)

44 RS RA D

o 6 11 16 31

Description
The sth instruction stores bits 16-31 of General Purpose Register RS into the halfword of
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The sth instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RS Specifies source general purpose register of stored data.

Examples

D 16-bit signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation.

1. To store bits 16-31 of GPR 6 into a location in memory:

.csect data[rw]
buffer: .long 0
Assume GPR 4 contains the address of csect data[rw].
Assume GPR 6 contains Ox9000 3000 .
. csect text[pr]
sth 6,buffer(4)
buffer now contains Ox3000.

Chapter 5. Instruction Set 5-289

sth

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

5-290 Assembler Language Reference

sthbrx

sthbrx (Store Half Byte Reverse Indexed) Instruction

Purpose

Syntax

Stores a halfword of data from a general purpose register into a specified location in memory
with the two bytes reversed.

sthbrx RS,RA,RB

31 RS RA RS 918 Rc

o 6 11 16 21 31

Description
The sthbrx instruction stores bits 16-31 of General Purpose Register RS into the halfword
of storage addressed by the effective address (EA).

• Bits 24-31 of register RS are stored into bits 00-07 of the halfword in storage addressed
by EA.

• Bits 16-23 of register RS are stored into bits 08-15 of the word in storage addressed by
EA.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The sthbrx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RS

RA

RB

Specifies source general purpose register of stored data.

Specifies source general purpose register for EA calculation.

Specifies source general purpose register for EA calculation .

. Chapter 5. Instruction Set ~291

sthbrx

Examples
1. To store the halfword contents of GPR 6 with the bytes reversed into a location in

memory:

.csect data[rw]
buffer: .long °
Assume GPR 6 contains Ox9000 3456.
Assume GPR 4 contains the address of buffer •
• csect text[pr]
sthbrx 6,0,4
buffer now contains Ox5634.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

5-292 Assembler Language Reference

sthu

sthu (Store Half With Update) Instruction

Purpose

Syntax

Stores a halfword of data from a general purpose register into a specified location in memory
and possibly places the address in a general purpose register.

sthu RS,O(RA)

45 RS RA D

o 6 11 16 31

Description
The sthu instruction stores bits 16-31 of General Purpose Register RS into the halfword of
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
0, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is O.

• If RA does not equal 0 and the storage access does not cause an Alignment Interrupt or a
Data Storage Interrupt, then the effective address is placed into register RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The sthu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS

o

RA

Specifies source general purpose register of stored data.

16-bit signed two's complement integer sign extended to 32 bits for EA
calcu lation.

Specifies source general purpose register for EA calculation and possible
address update.

Chapter 5. Instruction Set 5-293

sthu

Examples
1. To store the halfword contents of GPR 6 into a memory location and store the address in

GPR4:

.csect data[rw]
buffer: .long 0
Assume GPR 6 contains Ox9000 3456.
Assume GPR 4 contains the address of csect data[rw] ..
• csect text[pr]
sthu 6,buffer(4)
buffer now contains Ox3456
GPR 4 contains the address of buffer.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store with Update Instructions on page 1-7.

5-294 Assembler Language Reference

sthux

sthux (Store Half With Update Indexed) Instruction

Purpose

Syntax

Stores a halfword of data from a general purpose register into a specified location in memory
and possibly places the address in a general purpose register.

sthux RS,RA,RB

31 RS RA RB 439 Rc

o 6 11 16 21 31

Description
The sthux instruction stores bits 16-31 of General Purpose Register RS into the halfword of
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If RA does not equal 0 and the storage access does not cause an Alignment Interrupt or a
Data Storage Interrupt, then the effective address is placed into register RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The sthux instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS

RA

RB

Specifies source general purpose register of stored data.

Specifies source general purpose register for EA calculation and possible
address update.

Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-295

sthux

Examples
1. To store the halfword contents of GPR 6 into a memory location and store the address in

GPR4:

.csect data[rw]
buffer: .10ng 0,0,0,0
Assume GPR 6 contains Ox9000 3456.
Assume GPR 4 contains OxOOOO 0007.
Assume GPR 5 contains the address of buffer .
• csect text[pr]
sthux 6,4,5
buffer+Ox07 contains Ox3456.
GPR 4 contains the address of buffer+Ox07.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store with Update Instructions on page 1-7.

5-296 Assembler Language Reference

sthx

sthx (Store Half Indexed) Instruction

Purpose

Syntax

Stores a halfword of data from a general purpose register into a specified location in
memory.

sthx RS,RA,RB

31 RS RA RS 407 Rc

o 6 11 16 21 31

Description
The sthx instruction stores bits 16-31 of General Purpose Register RS into the halfword of
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not o. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the low order bit of the effective address is ignored.

• If alignment checking is enabled, and the low order bit is not b'O', then the hardware
attempts to perform the unaligned storage access. If the hardware cannot perform the
unaligned storage access, an Alignment Interrupt is generated.

The sthx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS Specifies source general purpose register of stored data.

Examples

RA

RB

Specifies source general purpose register for EA calculation.

Specifies source general purpose register for EA calculation.

1. To store halfword contents of GPR 6 into a location in memory:

.csect data[rw]
buffer: .long °
Assume GPR 6 contains Ox9000 3456.
Assume GPR 5 contains the address of buffer .
. csect text[pr]
sthx 6,0,5
buffer now contains Ox3456.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Chapter 5. Instruction Set 5-297

sthx

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

5-298 Assembler Language Reference

stm

stm (Store Multiple) Instruction

Purpose
Stores the contents of consecutive registers into a specified memory location.

Syntax
stm RS,O(RA)

47 RS RA D

o 6 11 16 31

Description
The stm instruction stores N consecutive words from General Purpose Register RS through
General Purpose Register 31. Storage starts at the effective address (EA). N is a register
number equal to 32 minus RS.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
0, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is O .

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stm instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS Specifies source general purpose register of stored data.

Examples

o 16-bit Signed two's complement integer sign extended to 32 bits for EA
calculation.

RA Specifies source general purpose register for EA calculation.

1. To store the contents of GPR 29 through GPR 31 into a location in memory:

.csect data[rw]
buffer: .long 0,0,0
Assume GPR 29 contains Ox1000 2200.
Assume GPR 30 contains Ox1000 3300.
Assume GPR 31 contains Ox1000 4400 •
• csect text[pr]
stm 29,buffer(4)
Three consecutive words in storage beginning at the address
of buffer are now Ox1000 2200 1000 3300 1000 4400.

Chapter 5. Instruction Set ·5-299

stm

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

S-:-300 Assembler Language Reference

stsi

stsi (Store String Immediate) Instruction

Purpose
Stores consecutive bytes from consecutive registers into a specified location in memory.

Syntax
stsi RS,RA,NB

31 RS RA NB 725

o 6 11 16 21 31

Description
The stsi instruction stores N consecutive bytes starting with the leftmost byte in register RS
at the effective address (EA) from General Purpose Register RS through register RS + NR-
1.

The effective address (EA) is the contents of General Purpose Register RA if RA is not O. If
RA is 0, then the effective address (EA) is O.

• NB is the byte count.

• RS is the starting register.

• N is NB, which is the number of bytes to store. If NB is 0, then N is 32.

• NR is ceiling(N/4), which is the number of registers to store data from.

• The contents of the MQ Register are undefined.

The stsi instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RS Specifies source general purpose register of stored data.

Specifies source general purpose register for EA calculation.

Specifies byte count for EA calculation.

Examples

RA

NB

1. To store the bytes contained in GPR 6 to GPR 8 into a location in memory:

.csect data[rw]
buffer: .10ng 0,0,0
Assume GPR 4 contains the address of buffer.
Assume GPR 6 contains Ox4865 6C6C.
Assume GPR 7 contains Ox6F20 776F.
Assume GPR 8 contains Ox726C 6421 •
• csect text[pr]
stsi 6,4,12
buffer now contains Ox4865 6C6C 6F20 776F 726C 6421.

Chapter 5. Instruction Set 5-301

stsi·

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point String Instructions on page 1-8.

S-:-302 Assembler Language Reference

stsx

stsx (Store String Indexed) Instruction

Purpose
Stores consecutive bytes from consecutive. registers into a specified location in memory.

Syntax
stsx RS, RA, RB

31 RS RA RB 661 Rc

a 6 11 16 21 31

Description
The stsx instruction stores N consecutive bytes starting with the leftmost byte in register RS
at the effective address (EA) from General Purpose Register RS through register RS + NR-
1.

The effective address (EA) is the sum of the contents of General Purpose Register RA and
the contents of General Purpose Register RB if RA is not O. If RA is 0, then effective address
(EA) is the contents of RB.

• XER25-31 contain the byte count.

• RS is the starting register.

• Nis XER25-31, which is the number of bytes to store.

• NR is ceiling(N/4), which is the number of registers to store data from.

• The contents of the MQ Register are undefined.

The stsx instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field o.

Parameters
RS

RA

RB

Specifies source general purpose register of stored data.

Specifies source general purpose register for EA calculation.

Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-303

stsx

Examples
1. To store the bytes contained in GPR 6 to GPR 7 into the specified bytes of a location in

memory:

.csect data[rw]
buffer: .long 0,0,0
Assume GPR 5 contains OxOOOO 0007.
Assume GPR 4 contains the address of buffer.
Assume GPR 6 contains Ox4865 6C6C.
Assume GPR 7 contains Ox6F20 776F.
The Fixed Point Exception Register bits 25-31 contain 6 .
. csect text[pr]
stsx 6,4,5
buffer+Ox7 now contains Ox4865 6C6C 6F20.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point String Instructions on page 1-8.

5-304 Assembler language Reference

stu

stu (Store With Update) Instruction

Purpose

Syntax

Stores a word of data from a general purpose register into a specified location in memory
and possibly places the address in a general purpose register.

stu RS,D(RA)

37 RS RA o

o 6 11 16 31

Description
The stu instruction stores the contents of General Purpose Register RS into the word of
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
D, a 16-bit signed two's complement integer sign extended to 32 bits, if RA is not O. If RA is
0, then the effective address (EA) is D.

• If RA is not 0 and the storage access does not cause an Alignment Interrupt or a Data
Storage Interrupt, then EA is placed into register RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stu instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS

D

RA

Specifies general purpose register of stored data.

16-bit signed two's complement integer sign extended to 32 bits for EA
calcu lation.

Specifies source general purpose register for EA calculation and possible
address update.

Chapter 5. Instruction Set 5-305

stu

Examples
1. To store the contents of GPR 6 into a location in memory:

.csect data[rw]
buffer: .long 0
Assume GPR 4 contains the address of csect data[rw].
Assume GPR 6 contains Ox9000 3000 .
• csect text[pr]
stu 6,buffer(4)
buffer now contains Ox9000 3000.
GPR 4 contains the address of buffer.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base .

. Related Information
Understanding Fixed Point Store with Update Instructions on page 1-7.

5-306 Assembler Language Reference

stux

stux (Store with Update Indexed) Instruction

Purpose

Syntax

Stores a word of data from a general purpose register into a specified location in memory
and possibly places the address in a general purpose register.

stux RS, RA, RB

31 RS RA RS 183 Rc

o 6 11 16 21 31

Description
The stux instruction stores the contents of General Purpose Register RS into the word of
storage addressed by the effective address (EA).

The effective address (EA) is the sum of the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If RA is not 0 and the storage access does not cause an Alignment Interrupt or a Data
Storage Interrupt, then EA is placed into register RA.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stux instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
RS

RA

RB

Specifies source general purpose register of stored data.

Specifies source general purpose register for EA calculation and possible
address update.

Specifies source general purpose register for EA calculation.

Chapter 5. Instruction Set 5-307

stux

Examples
1. To store the contents of GPR 6 into a location in memory:

.csect data[rw]
buffer: .long 0,0
Assume GPR 4 contains OxOOOO 0004.
Assume GPR 23 contains the address of buffer.
Assume GPR 6 contains Ox9000 3000 •
• csect text[pr]
stux 6,4,23
buffer+4 now contains Ox9000 3000.
GPR 4 now contains the address of buffer+4.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Store with Update Instructions on page 1-7.

5-308 Assembler Language Reference

stx

stx (Store Indexed) Instruction

Purpose
Stores a word of data from a general purpose register into a specified location in memory.

Syntax
stx RS,RA,RB

31 RS RA RB 151

o 6 11 16 21 31

Description
The stx instruction stores the contents of General Purpose Register RS into the word of
storage addressed by the effective address (EA).

The effective address (EA) is the sum o'l the contents of General Purpose Register RA and
General Purpose Register RB if RA is not O. If RA is 0, then the effective address (EA) is the
contents of RB.

• If alignment checking is disabled, i.e., the alignment bit (AL) in the Machine Status
Register (MSR) is 0, then the two low order bits of the effective address are ignored.

• If alignment checking is enabled, and the two low order bits are not b'OO', then the
hardware attempts to perform the unaligned storage access. If the hardware cannot
perform the unaligned storage access, an Alignment Interrupt is generated.

The stx instruction has one syntax form and does not affect the Fixed Point Exception
Register Condition Register Field O.

Parameters
RS Specifies source general purpose register of stored data.

Specifies source general purpose register for EA calculation.

Examples

RA

RB Specifies source general purpose register for EA calculation.

1. To store the contents of GPR 6 into a location in memory:

.csect data[pr]
buffer: .long °
Assume GPR 4 contains the address of buffer.
Assume GPR 6 contains Ox4865 6C6C •
• csect text[pr]
stx 6,0,4
Buffer now contains Ox4865 6C6C.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Chapter 5. Instruction Set 5-309

stx

Related Information
Understanding Fixed Point Store Instructions on page 1-7.

5-310 Assembler Language Reference

svc

svc (Supervisor Call) Instruction

Purpose
Generates a Supervisor Call interrupt.

Syntax
svc LEV, FL 1, FL2
svcl LEV,FL 1,FL2

17 /1/ /1/ I FLI I LEV FL2 I SA I LK I
0 6 11 16 20 27 30 31

svca SV
svcla SV

17 /1/ /1/ SV I SA I LK

0 6 11 16 30 31

Description
The svc instruction generates a Supervisor Call interrupt and places bits 16-31 of the svc
instruction into bits 0-15 of the Count Register and bits 16-31 of the Machine Status
Register into bits 16-31 of the Count Register.

• If the SVC Absolute bit (SA) is set to zero, the instruction fetch and execution continues at
one of the 128 offsets, b'1'11 LEV Ilb'OOOOO', to the base effective address indicated by the
setting of the IP bit of the Machine State Register. FL 1 and FL2fieids could be used for
passing data to the SVC routine but are ignored by hardware.

• If the SVC Absolute bit (SA) is set to one, then instruction fetch and execution continues a
the offset, x'1 FEO', to the base effective address indicated by the setting of the IP bit of
the Machine State Register.

• If the Link bit (LK) is set to one, the effective address of the instruction following the svc
instruction is placed in the Link Register.

Note: To insure correct operation, an svc instruction must be preceded by an unconditional
branch or a condition register instruction without an intervening conditional branch. If
a useful instruction cannot be scheduled as specified, a no-op version of the cror
instruction can be used.

cror BT,BA,BB No-op when BT = BA = BB

The svc instruction has four syntax forms. Each syntax form affects the Machine State
Register.

Syntax form Link bit (LK) SVC Absolute bit Machine State Register
(SA) bits

svc 0 0 EE,PR,FE set to zero

Chapter 5. Instruction Set 5-311

svc

svcl

svca

svcla

1

o
o
1

EE,PR,FE set to zero

EE,PR,FE set to zero

EE,PR,FE set to zero

The four syntax forms of the svc instruction never affect the FP, ME, AL, IP, IR, or DR bits of
the Machine State Register. The EE, PR, and FE bits of the Machine State Register are
always set to zero. The Fixed Point Exception Register and Condition Register Field 0 are
unaffected by the svc instruction.

Parameters
LEV Specifies execution address.

FL 1 Specifies field for optional data passing to SVC routine.

FL2 Specifies field for optional data passing to SVC routine.

SV Specifies field for optional data passing to SVC routine.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The cror (Condition Register OR) instruction.

Branch Processor Overview on page 1-3.

5-312 Assembler Language Reference

t (Trap) Instruction

Purpose
Generates a program interrupt when a specified condition is true.

Syntax
t TO,RA,RB

31 TO RA RS 4

o 6 11 16 21

Description

Rc

31

The t instruction compares the contents of General Purpose Register RA with the contents
of General Purpose Register RB, ANDs the compare results with TO, and generates a trap
type Program Interrupt if the result is not O.

The TO bit conditions are defined as follows.

TO bit

6

7

8

9

10

ANDed with Condition

Compares Less Than

Compares Greater Than

Compares Equal

Compares Logically Less Than

Compares Logically Greater Than

t

The t instruction has one syntax form and does not affect the Fixed Point Exception Register
or Condition Register Field o.

Parameters
TO

RA

RB

Specifies TO bits which are ANOed with compare results.

Specifies source general purpose register for compare.

Specifies source general purpose register for compare.

Extended Mnemonics
Eleven extended mnemonic trap instructions are based on the t (Trap) instruction. They are
provided for commonly used traps.

Syntax Parameters Description

tit RA,RB Trap if RA < RB

tgt RA,RB Trap if RA > RB

teq RA,RB Trap if RA = RB

tilt RA,RB Trap if RA logically < RB

tlgt RA,RB Trap if RA logically> RB

Chapter 5. Instruction Set 5-313

t

Examples

tie RA,RB Trap if RA < or = RB

tge RA,RB Trap if RA > or = RB

tne RA,RB Trap if RA not = RB

tile RA,RB Trap if RA logically < or = RB

tlge RA,RB Trap if RA logically> or = RB

tine RA,RB Trap if RA logically not = RB

. 1. To generate a trap type Program Interrupt:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 7 contains Ox789A 789B.
t OxlO,4,7
A trap type Program Interrupt occurs.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Trap Instructions on page 1-4.

5-314 Assembler Language Reference

ti (Trap Immediate) Instruction

Purpose
Generates a program interrupt when a specified condition is true.

Syntax
ti TO,RA,SI

03 TO RA 51

o 6 11 16 31

Description
The ti instruction compares the contents of General Purpose Register RA with the
sign-extended 51 field, ANDs the compare results with TO, and generates a trap type
Program Interrupt if the result is not O.

The TO bit conditions are defined as follows.

TO bit

6

7

8

9

10

ANDed with Condition

Compares Less Than

Compares Greater Than

Compares Equal

Compares Logically Less Than

Compares Logically Greater Than

The ti instruction has one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O.

Parameters
TO

RA

51

Specifies TO bits which are ANDed with compare results.

Specifies source general purpose register for compare.

Specifies sign extended value for compare.

Extended Mnemonics
Eleven extended mnemonic trap instructions are based on the ti (Trap Immediate)
instruction. They are provided for commonly used traps.

Syntax Parameters Description

tlti RA,SI Trap if RA < 81

tgti RA,SI Trap if RA> 81

teqi RA,SI Trap if RA = 81

tllti RA,SI Trap if RA logically < 51

tlgti RA,SI Trap if RA logically> 51

ti

Chapter 5. Instruction Set 5-315

ti

Examples

tlei RA,51 Trap if RA <.or = 51

tgei RA,51 Trap if RA > or = 51

tnei RA,51 Trap if RA not = 51

tllei RA,51 Trap if RA logically < or = 51

tlgei RA,51 Trap if RA logically> or = 51

tlnei RA,51 Trap if RA logically not = 51

1. To generate a Program Interrupt:

Assume GPR 4 holds OxOOOO 0010.
ti Ox4,4,Ox10
A trap type Program Interrupt occurs.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Trap Instructions on page 1-4.

5-316 Assembler Language Reference

xor

xor (XOR) Instruction

Purpose

Syntax

XORs the contents of two general purpose registers and places the result in a general
purpose register.

xor
xor.

o

31

6

RA,RS,RB
RA,RS,RB

RS

11

RA RB 316 Rc

16 21 31

Description
The xor instruction XORs the contents of General Purpose Register RS with the contents of
General Purpose Register RB and stores the result in General Purpose Register RA.

The xor instruction has two syntax forms. Each syntax form has a different effect on
Condition Register Field O.

Syntax Overflow Fixed Point Record Condition
form Exception (OE) Exception Register bit (Rc) Register Field 0

xor None None 0 None

xor. None None 1 LT,GT, EO,SO

The two syntax forms of the xor instruction never affect the Fixed Point Exception Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (L T)
zero, Greater Than (GT) zero, Equal To (EO) zero, and Summary Overflow (SO) bits in
Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

RB Specifies source general purpose register for operation.

1. To XOR the contents of GPR 4 and GPR 7 and store the result in GPR 6:

Assume GPR 4 contains Ox9000 3000.
Assume GPR 7 contains Ox789A 789B.
xor 6,4,7
GPR 6 now contains OxE89A 489B.

Chapter 5. Instruction Set 5-317

xor

2. To XOR the contents of GPR 4 and GPR 7,store the result in GPR 6, and set Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxB004 3000.
Assume GPR 7 contains Ox789A 789B.
xor. 6,4,7
GPR 6 now contains OxC89E 489B.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-318 Assembler Language Reference

xoril

xoril (XOR Immediate Lower) Instruction

Purpose

Syntax

XORs the lower 16 bits of a general purpose register with a 16-bit unsigned integer and
places the result in a general purpose register.

xoril RA,RS,UI

I 26 RS RA UI

0 6 11 16 31

Description
The xoril instruction XORs the contents of General Purpose Register RS with the
concatenation of x'OOOO' and a 16-bit unsigned integer UI and stores the result in General
Purpose Register RA.

The xoril instruction has only one syntax form and does not affect the Fixed Point Exception
Register or Condition Register Field O. . .

Parameters
RA Specifies target general purpose register where result of operation is stored.

Examples

RS

UI

Specifies source general purpose register for operation.

Specifies 16-bit unsigned integer for operation.

1. To XOR GPR 4 with OxOOOO 5730, placing the result in GPR 6:

Assume GPR 4 contains Ox7B41 92CO.
xoril 6,4,Ox5730
GPR 6 now contains Ox7B41 C5FO.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

Chapter 5. Instruction Set 5-319

xoriu

xoriu (XOR Immediate Upper) Instruction

Purpose

Syntax

XORs the upper 16 bits of a general purpose register with a 16-bit unsigned integer and
places the result in a general purpose register.

xoriu RA,RS,VI

27 RS RA UI

o 6 11 16 31

Description
The xoriu instruction XORs the contents of General Purpose Register RS with the
concatenation of a 16-bit unsigned integer VI and Ox'OOOO' and stores the result in General
Purpose Register RA.

The xoriu instruction has only one syntax form and does not affect the Fixed Point
Exception Register or Condition Register Field O.

Parameters
RA Specifies target general purpose register where result of operation is stored.

Specifies source general purpose register for operation.

Examples

RS

VI Specifies 16-bit unsigned integer for operation.

1. To XOR GPR 4 with Ox0079 0000 and store the result in GPR 6:

Assume GPR 4 holds Ox9000 3000.
xoriu 6,4,Ox0079
GPR 6 now holds Ox9079 3000.

,Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Fixed Point Logical Instructions on page 1-9.

5-320 Assembler Language Reference

Chapter6.Pseudo-ops

Chapter 6. PseudCH:>ps 6-1

Pseudo-ops Overview
A pseudo-operation, commonly called a pseudo-op, is an instruction to the assembler that
does not generate any machine code. The assembler resolves pseudo-ops during assembly,
unlike machine instructions, which are resolved only at runtime. Pseudo-ops are sometimes
called assembler instructions, assembler operators, or assembler directives.

In general, pseudo-ops give the assembler information about data alignment, block and
segment definition, and base register assignment. The RiSe System/SOOO assembler also
supports pseudo-ops that give the assembler information about floating point constants and
symbolic debugger information (dbx).

While they do not generate machine code, the following pseudo-ops can change the
contents of the assembler's location counter:

.align Pseudo-op

.byte Pseudo-op

.comm Pseudo--op

.csect Pseudo-op

.double Pseudo-op

.dsect Pseudo--op

· float Pseudo-op

.Icomm Pseudo-op

.long Pseudo-op

.org Pseudo-op

.short Pseudo-op

.space Pseudo-op

.string Pseudo-op

· vbyte Pseudo-op

Pseudo-ops can be related according to functionality into the following groups:

• Data alignment

• Data definition

• Storage definition

• Addressing within a source module (Base Registers)

• Direct addressing

• Assembler section definition

• External symbol definition

• Symbol table entries for debuggers

6-2 Assembler Language Reference

Data Alignment
The following pseudo-op is used in the data or text section of a program:

.align Pseudo-op

Data Definition
The following pseudo-ops are used for data definition:

.byte Pseudo-op

.double Pseudo-op

. float Pseudo-op

.long Pseudo-op

.short Pseudo-op

.string Pseudo-op

. vbyte Pseudo-op

In most instances these pseudo-ops create data areas to be used by a program .

. csect data[rw]
greeting: .long 'H,'O,'W,'D,'Y

.csect text[pr]
Assume GPR 5 contains the address of
csect data[rw].

1m 11, greeting(5)

Storage Definition
The following pseudo-ops define or map storage:

.dsect Pseudo-op

.space Pseudo-op

Addressing
The following pseudo-ops assign or dismiss a register as a base register:

.drop Pseudo-op

.using Pseudo-op

Assembler Section Definition
The following pseudo-ops define the sections of an assembly language program:

.comm Pseudo-op

.csect Pseudo-op

.Icomm Pseudo-op

.tc Pseudo-op

.toc Pseudo-op

Chapter 6. Pseudo-ops 6-3

External Symbol Definition
The following pseudo-ops define a variable as a global variable or an external variable
(variables defined in external modules):

.extern Pseudo-op

.globl Pseudo-op

Support for Calling Conventions
The following pseudo-op defines a debug traceback tag for performing trace backs when
debugging programs:

.tbtag Pseudo-op

Symbol Table Entries for Debuggers
The following pseudo-ops provide additional information which is required by the symbolic
debugger (dbx):

.bb Pseudo-op

.bc Pseudo-op

.bf Pseudo-op

.bi Pseudo-op

.bs Pseudo-op

.eb Pseudo-op

.ec Pseudo-op

.ef Pseudo-op

.ei Pseudo-op

.es Pseudo-op

. file Pseudo-op

.function Pseudo-op

.line Pseudo-op

.stabx Pseudo-op

.xline Pseudo-op

Miscellaneous
Other pseudo-ops set the value of the current location counter (.org Pseudo-op), give a
value and type to a label (.set Pseudo-op) , create a synonym or alias for an illegal or
undesirable name (.rename Pseudo-op), define a symbol as the TOC of another module
(.tocof Pseudo-op), provide type checking information (.hash Pseudo-op), or provide file
and line number information (.xline Pseudo-op).

Notational Conventions
White space is required unless otherwise specified. A space may optionally occur after a
comma. White space may consist of one or more white spaces.

6-4 Assembler Language Reference

Some examples of pseudo-ops may not use labels. However, with the exception of .csect,
you can put a label in front of a pseudo-op statement just as you would for a machine
instruction statement.

The following notational conventions are used to describe pseudo-ops:

Name Any valid label.

Register A General Purpose Register. Register is an expression that evaluates
to an integer between 0 and 31 inclusive.

Number An expression that evaluates to an integer.

Expression Unless otherwise noted, Expression signifies a relocatable constant or
absolute expression.

FloatingConstant A floating point constant.

StringConstant A string constant.

[] Brackets enclose optional operands except in the .csect pseudo-op
and .tc pseudo-op which require brackets in syntax.

Chapter 6. Pseudo--ops 6-5

6-6 Assembler Language Reference

.align

.align Pseudo-op

Purpose
Advances the current location counter until a boundary specified by Number is reached.

Syntax
.align Number

Description
The .align pseudo-op is normally used in a control section (csect) which contains data.

If the Number parameter evaluates to 0, alignment occurs on a byte boundary. If the Number
parameter evaluates to 1, alignment occurs on a halfword boundary. If the Number
parameter evaluates to 2, alignment occurs on a word boundary. If the Number parameter
evaluates to 3, alignment occurs on a doubleword boundary.

If the location counter is not aligned as specified by Number, the assembler advances the
current location counter until the Numberlow-order bits are filled with the value 0 (zero).

If the .align pseudo-op is used within a .csect pseudo-opof type [PRJ or [GL] which
indicates a section containing instructions, alignment occurs by padding with nop, or no
operation, instructions. In this instance, the no operation instruction is equivalent to a branch
to the following instruction. If the align amount is less than a fullword, the padding consists of
zeros.

Parameters
Number Specifies an expression that evaluates to the integer value of 0 (zero), 1, 2,

or 3.

Example

aligned

cont:

Implementation Specifics

.csect progdata[RW]

.byte 1
Location counter now at odd number

.align 1

Location counter is now at the next
halfword boundary •

. byte 3,4

.align 2 # Insure that the label cont
and the .long pseudo---op are

on a full word boundary •

• long 5004381

This pseudo-op is part of Application Development Toolkit in AIX Base.

Chapter 6. Pseudo-ops 6-7

.align

Related Information
The .byte pseudo-op, .comm pseudo-op, .csect pseudo-op, .double pseudo-op, .float
pseudo....:op, .long pseudo-op, .short pseudo-op.

Pseudo-ops Overview on page 6-2 .

6-8 Assembler Language Reference

.bb Pseudo-op

Purpose

.bb

Identifies the beginning of an inner block and provides information specific to the beginning
of an inner block.

Syntax
.bb Number

Description
The .bb pseudo-op provides symbol table information necessary for the use of the symbolic
debugger and has no other effect on assembly.

This pseudo-op is customarily inserted by a compiler.

Parameters
Number Specifies the line number in the original source file on which the inner block

begins.

Example
.bb 5

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .eb pseudo-op.

Pseudo-ops Overview on page 6-2 .

Chapter 6. Pseudo-ops 6-9

.bc

.be Pseudo-op

Purpose

Syntax

Identifies the beginning of a common block and provides information specific to the
beginning of a common block.

.be StringConstant

Description
The .be pseudo-op provides symbol table information necessary for the use of the symbolic
debugger and has no other effect on assembly.

This pseudo-op is customarily inserted by a compiler.

Parameters

Example

StringConstant Represents the symbol name of the common block as defined in the original
source file.

.be "commonblock"

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .ee pseudo-op.

Pseudo-ops Overview on page 6-2 .

6-1 0 Assembler Language Reference

.bf Pseudo-op

Purpose

.bf

Identifies the beginning of a function and provides information specific to the beginning of a
function.

Syntax
.bf Number

Description
The .bf pseudo-op provides symbol table information necessary for the use of the symbolic
debugger and has no other effect on assembly.

This pseudo-op is customarily inserted by a compiler.

Parameters
Number Represents the absolute line number in the original source file on which the

function begins.

Example
.bf 5

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .ef pseudo-op.

Pseudo-ops Overview on page 6-2 .

Chapter 6. Pseudo-ops 6-11

.bi

.bi Pseudo-op

Purpose

Syntax

Identifies the beginning of an included file and provides information specific to the beginning
of an included file.

.bi StringConstant

Description
The .bi pseudo-op provides symbol table information necessary for the use of the symbolic
debugger and has no other effect on assembly.

This pseudo-op is customarily inserted by a compiler.

Parameters
StringConstant Represents the name of the original source file.

Example
.bi "file.s"

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The.eiPseudo-op.

Pseudo-ops Overview on page 6-2 .

6-12 Assembler Language Reference

.bs Pseudo-op

Purpose

.bs

Identifies the beginning of a static block and provides information specific to the beginning of
a static block.

Syntax
.bs Name

Description
The .bs pseudo-op provides symbol table information necessary for the use of the symbolic
debugger and has no other effect on assembly.

This pseudo-op is customarily inserted by a compiler.

Parameters
Name Represents the symbol name of the static block as defined in the original

source file.

Example
.lcomm cgdat, Ox2b4
.csect .text[PR]
.bs cgdat

.stabx "ONE:l=Ci2,O,4;",Ox254~133,O

.stabx "TWO:S2=G5TW01:3=Cc5,O,5;,O,40;;",Ox258,133,8
.es

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .comm pseudo-op, .es pseudo-op, .Icomm pseudo-op.

Pseudo-ops Overview on page 6-2 .

Chapter 6. Pseudo-ops 6-13

·byte

.byte Pseudo-op

Purpose
Assembles the values represented by Expression into consecutive bytes.

Syntax
.byte Expression(, Expression ...]

Description
The .byte pseudo-op changes an Expression or a number of Expressions into consecutive
bytes of data. ASCII character constants (for example, 'X) and string constants (for example,
"Hello, world") can also be assembled using .byte. Each letter will be assembled into
consecutive bytes. However, an Expression cannot contain externally defined symbols, and
if an Expression is longer than one byte, it will be truncated on the left.

Parameters
Expression Value which is assembled into consecutive bytes by instruction.

Example

mine:

.set olddata,OxCC

.csect data[rw]

.byte Ox3F,Ox7+0xA,olddata,OxFF

Load GPR 3 with the address of csect data[rw] .
. csect text[pr]
1 3,mine(4)

GPR 3 now holds Ox3Fll CCFF.
Character constants can be represented in
several ways:

.csect data[rw]

.byte uHello, world u

• byte 'H,' e, ' 1, ' 1, '0, ' , " " w, '0, ' r , ' 1, 'd

Both of the .byte statements will produce
Ox4865 6C6C 6F2C 2077 6F72 6C64.

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .string Pseudo-op, .vbyte Pseudo-op.

Pseudo-ops Overview on page 6-2 .

6-14 Assembler Language Reference

.comm

.comm Pseudo-op

Purpose

Syntax

Defines an uninitialized block of storage called a common block which can be common to
more than one module.

.comm Name,Expression[,Numbet'j

Description
The .comm pseudo-op initializes a block of data called Name when the size, which is
defined in bytes in Expression, of the block is known but the block is not to be initialized
locally. In other words, the block may not be initialized or may be initialized in another
module.

Several modules can share the common block. If any of those modules have an external
Control Section (csect) with the same name and a different storage class, then the common
block is assumed to be initialized and becomes that other Control Section. Otherwise, the
block is a Control Section of storage class RW (Read Write) and storage type CM
(Common). At load time, the space for CM Control Sections is created in the .bss section at
the end of the .data section.

If more than one uninitialized common block with the same name is found at bind time,
space is reserved for the largest one.

A common block can be aligned by using Number, which is specified as the log base 2 of the
alignment desired. For example, an alignment of 8 (or doubleword) would be 3 and an
alignment of 2048 would be 11. This is similar to the argument for the .align pseudo-op.

Parameters
Name Specifies the relocatable name of the common block.

Example

Expression Specifies the absolute expression which gives length of common block
Name in bytes.

Number Specifies the optional alignment of common block Name.

.comm proc,5120

proc is an uninitialized common block of
storage 5120 bytes long which is
globally visible.
Assembler SourceFile A contains:

.comm st,1024
Assembler SourceFile B contains:

.globl st[RW]

.csect st[RW]

.long 1

.long 2

Using st in the above two programs refers to
Control Section st in Assembler SourceFile B.

Chapter 6. Pseudo-ops 6-15

.comm

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .align pseudo-op, .csect pseudo-op, .globl pseudo-op, .Icomm pseudo-op, .long
pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-16 Assembler Language Reference

.csect

.csect Pseudo-op

Purpose

Syntax

Groups code and/or data into a Control Section and gives that Control Section a name, a
storage class, and an alignment.

.csect Qua/name[, Numbelj

where Qua/name = [Name][[StorageC/ass]]

Note: The bold-faced brackets containing StorageC/ass are part of the syntax and do not
specifiy optional parameters.

Description
The .csect pseudo-op groups code and/or data into a Control Section and gives that
Control Section a name, a storage class, and an alignment.

• If no Name is specified in the .csect pseudo-op, then the Control Section is unnamed .

• If no StorageC/ass is specified in the .csect pseudo-op, then the [PRJ StorageC/ass is
the default.

Each Control Section has a storage class associated with it that is specified in the
qualification part of Qua/name. The storage class determines the object data section,
specifically the .text, .data, or .bss section, in which the Control Section is grouped. The
.text section contains read only data. The .data and .bss sections contain read write data.

The storage class also indicates what kind of data should be contained within the Control
Section. Many of the storage classes listed have specific implementation and convention
details. In general, instructions can be contained within csects of storage class PRo
Modifiable data can be contained within csects of storage class RW.

A csect Control Section is of one of the following storage classes:

. text Section Storage Classes
PR Program Code

Identifies the sections that provide executable instructions for the module.

RO Read Only Data
Identifies the sections that contain constants that are not modified during
execution.

DB Debug Table
Identifies a class of sections that has the same characteristics as read only data.

GL Glue Code
Identifies a section that has the same characteristics as Program Code. This type
of section has code to interface with a routine in another module. Part of the
interface code requirement is to maintain TOC addressability across the call.

XO Extended Op
Identifies a section of code that is to be treated as a pseudo machine instruction.

Chapter 6. Pseudo--ops 6-17

.csect

SV SVC
Identifies a section of code that is to be treated as a supervisor call.

TB Traceback Table
Identifies a section that contains data associated with a traceback table.

TI Traceback Index
Identifies a section that contains data associated with a traceback index .

. data Section Storage Classes
TCO TOC Anchor used only by the predefined TOC symbol

Identified the special symbol TOC. Used only for the TOC anchor.

TC TOC Entry
Identifies data that will reside in the TOC.

UA Unknown Type
Identifies a section that contains data of an unknown storage class.

RW Read Write Data
Identifies a section that contains data that is known to require change during
execution.

OS Descriptor
Identifies a function descriptor. This information is used to describe function
pointers in languages such as C and FORTRAN .

. bss Section Storage Classes
BS BSS class

Identifies a section that contains uninitialized read write data.

UC Unnamed FORTRAN Common
Identifies a section that contains read write data.

• All of the Control Sections with the same Qua/name are grouped together, and a section
can be continued with a .csect statement with the same Qua/name. Two Control Sections
can have the same Name and different classes.

• A Control Section is relocated as a body.

• Control Sections with no Name are identified with their class, and there can be an
unnamed Control Section of each class. They are specified with a Qua/name that only
has a storage class (for instance, .csect [RW] has the Qua/name [RW]).

• If no .csect pseudo-op is specified before any instructions appear, then an unnamed
Program Code [PRJ Control Section is assumed.

• You cannot use .csect to define a Control Section of type CM (Common). Control
Sections defined with the .csect Pseudo-op are of type SO (Section Definition). To define
type CM Control Sections, you must use the .comm and .Icomm pseudo-ops.

• Number is specified as the log base 2 of the desired alignment. For example, an
alignment of 8 (or doubleword) would be 3 and an alignment of 2048 would be 11. This is
similar to the argument for the .align pseudo-op. Alignment occurs at the beginning of
the .csect. Each element of the .csect is not individually aligned.

6-18 Assembler Language Reference

·csect

• Do not label .csect statements. The .csect may be referred to as its Qua/name, and
labels may be placed on individual elements of the .csect.

Parameters
Number Specifies an expression that evaluates to an integer from 0 to 31 inclusive.

Example

Qua/name Specifies a Name and StorageC/ass for the Control Section. If Name not
given, the csect is identified with its StorageC/ass. If StorageC/ass not
given, the csect defaults to storage class [PRJ.

A csect of name proga with Program Code Storage Class •
• csect proga[PR]
lh 30,Ox64(5)
A csect of name pdata_ with Read Only Storage Class •
. csect pdata_[RO]

11: .long Ox7782
12 : • byte ' a, , b, , c , , d, , e
.csect [RW],3 # An unnamed csect with Read Write

• float -5

Storage Class and doubleword
alignment .

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .comm pseudo-op, .globl pseudo-op, .lcomm pseudo-oPe

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-19

.double

.double Pseudo-op

Purpose
Stores a double floating-point constant at the next fullword location.

Syntax
.double FloatingConstant

Description
The .double pseudo-op stores a double floating-point constant at the next fullword location.
Fullword alignment occurs if necessary.

Parameters

Example

FloatingConstant Specifies the double floating-point constant to be assembled.

.double 3.4

.double -77

.double 134E12

.double 5e300

.double 0.45

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .float pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-20 Assembler Language Reference

.drop Pseudo-op

Purpose
Stops using a specified register as a base register.

Syntax
.drop Number

Description

.drop

The .drop pseudo-op stops a program from using register Number as a base register in
operations. The .drop pseudo-op does not have to precede the .uslng pseudo-op when
changing the base address, and the .drop pseudo-op does not have to appear at the end of
a program.

Parameters
Number Specifies an expression that evaluates to an integer from 0 to 31 inclusive.

Example
.using _subrA,5

• drop 5

Register 5 can now be used for addressing
with displacements calculated
relative to subrA.

.using does not load GPR 5 with the address
of _subrA. The program must contain the
appropriate code to ensure this at runtime •

Stop using Register 5 •
• using subrB,5

- # Now the assembler calculat.es
displacements relative to subrB

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .using Pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-21

.dsect

.dsect Pseudo-op

Purpose
Identifies the beginning or the continuation of a dummy control section.

Syntax
.dsect Name

Description

Example

The .desct pseudo-op identifies the beginning or the continuation of a dummy control
section. Actual data declared in a dummy control section is ignored; only the location
counter is incremented. All labels in a dummy section are considered to be offsets relative to
the beginning of the dummy section. A .dsect that has the same name as a previous .dsect
is a continuation of that dummy section.

The .dsect pseudo-op can declare a data template which can then be used to map out a
block of storage. The .dsect pseudo-op can also be used with the .using pseudo-op.

.dsect datal
1 Fullword

dl: .long °
10 Halfwords

d2: .short 0,0,0,0,0,0,0,0,0,0
15 bytes

d3: .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
.align 3 #Align to a double word.

d4: .space 64 #Space 64 bytes
.csect main[PR]
.using datal,7
1 5,d2
This will actually load
the contents of the
effective address calculated
by adding the offset d2 to
that in GPR 7 into GPR 5.

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .csect pseudo-op, .using pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-22 Assembler Language Reference

.eb Pseudo-op

Purpose

.eb

Identifies the end of an inner block and provides additional information specific to the end of
an inner block.

Syntax
.eb Number

Description
The .eb pseudo-op identifies the end of an inner block and provides symbol table
information necessary for the use of the symbolic debugger.

This pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters
Number Specifies a line number in the original source file on which the inner block

ends.

Example
.eb 10

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .bb pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-23

.ec

.ec Pseudo-op

Purpose

Syntax

Identifies the end of a common block and provides additional information specific to the end
of a common block.

.ee

Description

Example

The .ee pseudo-op identifies the end of a common block and provides symbol table
information ntcessary for the use of the symbolic debugger.

This pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

.be "eommonbloek"

.ee

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .be pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-24 Assembler Language Reference

.ef Pseudo-op

Purpose

.ef

Identifies the end of a function and provides additional information specific to the end of a
function.

Syntax
.ef Number

Description
The .ef pseudo-op identifies the end of a function and provides symbol table information
necessary for the use of the symbolic debugger.

This pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters
Number Specifies a line number in the original source file on which the function

ends.

Example
.ef 10

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .bf pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseud()-{)ps 6-25

.ei

.ei Pseudo-op

Purpose

Syntax

Identifies the end of an included file and provides additional information specific to the end of
an included file.

.ei

Description

Example

The .ei pseudo-op identifies the end of an included file and provides symbol table
information necessary for the use of the symbolic debugger.

This pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

.ei "file.s"

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .bi pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-26 Assembler Language Reference

.es

.es Pseudo-op

Purpose

Syntax

Identifies the end of a static block and provides additional information specific to the end of a
static block.

.es

Description

Example

The .es pseudo-op identifies the end of a static block and provides symbol table information
necessary for the use of the symbolic debugger.

This pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

.lcomm cgdat, Ox2b4

.csect .text[PR]

.bs cgdat

.stabx "ONE:l=Ci2,O,4;",Ox254,133,O

.stabx "TWO:S2=G5TWOl:3=cc5,O,5;,O,40;;",Ox258,133,8
.es

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .bs pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-27

.extern

.extern Pseudo-op

Purpose
Identifies a symbol defined in another source module.

Syntax
.extern Name

Description
The .extern instruction identifies Name as a symbol defined in another source module, and
Name becomes an external symbol. Any external symbols used in the current assembly that
are not defined in the current assembly must be declared with an .extern statement. If a
symbol defined locally appears in an .extern statement, then it is like using that symbol in a
.globl statement. If a symbol not defined locally appears in a .globl statement, then it is like
using that symbol in and .extern statement. An undefined symbol will be flagged as an error.

Parameters
Name Specifies an operand which is an external symbol and can be a Qua/name.

Specifies a Name and StorageC/ass for the Control Section.

Example

Qua/name

.extern proga[PR]

.toe
T.proga: .te proga[TC],proga[PR]

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .csect pseudo-op, .globl pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-28 Assembler Language Reference

.file Pseudo-op

Purpose
Identifies a source file name.

Syntax
. file StringConstant

Description

·file

The .file psuedo-op provides symbol table information necessary for the use of the symbolic
debugger and linkage editor.

This pseudo-op is customarily inserted by a compiler and has no other effect on assembly.

Parameters
StringConstant Specifies the file name of the original source file.

Example
.file "main.e"

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .function pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-29

·float

.float Pseudo-op

Purpose
Stores a floating-point constant at the next fullword location.

Syntax
. float FloatingConstant

Description
The .float stores a floating-point constant at the next fullword location. Fullword alignment
occurs if necessary.

Parameters

Example

FloatingConstant Specifies floating point constant to be assembled.

.float 3.4

.float -77

.float 134E-12

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .double pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-30 Assembler Language Reference

.function

.function Pseudo-op

Purpose
Identifies a function and provides additional information specific to the function.

Syntax
.function Name, Expression 1, Expression2, Expression3

Description
The .function pseudo-op identifies a function and provides symbol table information
necessary for the use of the symbolic debugger.

This pseudo-op is customarily inserted by a compiler and has no other effect on assembly.

Parameters

Example

Name Represents the function Name and should be defined as a symbol or control
section Qua/name in the current assembly.

Expression 1 Represents the top of the function.

Expression2 Represents the storage class of the function.

Expression3 Represents the type of the function.

Qua/name Specifies a Name and StorageC/ass for the Control Segment.

.globl .hello[pr]

.csect .hello[pr]

. function .hello[pr],L.lB,16,044
L.IB:

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .bf pseudo-op, .ef pseudo-op, . file pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-31

.globl

.globl Pseudo-op

Purpose
Makes a symbol globally visible to the linker .

. globl Name

Description
The .globl pseudo-op makes the symbol Name globally visible to the linker and available to
any file that is linked to the file in which the .globl pseudo-op occurs.

• If the .globl pseudo-op is not used for a symbol, then that symbol is, unless otherwise
effected, only visible within the current assembly, and not to other modules that may later
be linked to the current assembly. Alternately, the .extern pseudo-op can be used to
effect visibility.

• If Name is defined in the current assembly, its type and value arise from that definition,
not the .globl definition.

• The binder maps all common segments with the same name into the same memory. If the
name is declared .globl and defined in one of the segments, this has the same effect as
declaring the common symbols to be .globl in all segments. In this way, common memory
can be initialized.

Parameters

Example

Name Represents any label or symbol that is defined locally and requires external
visibility.

main:
.globl main

.csect data[rw]

.globl data[rw]

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .comm pseudo-op, .extern pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-32 Assembler Language Reference

.hash

.hash Pseudo-op

Purpose
Associates a hash value with an external symbol.

Syntax
.hash Name,StringConstant

Description
The .hash pseudo-op associates a hash value with an external symbol. Hash values are
generated by compilers of strongly typed languages. The hash code for a symbol can only
be set once in an assembly.

Parameters

Example

Name Represents a symbol. Because this should be an external symbol, Name
should appear in an .extern or .global statement.

StringConstant Represents characters that represent a hexadecimal hash code and must
be in the set [O-9A-F] or [O-9a-F].

.hash a[pr],nffOa2cc12365de30 n

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .extern pseudo-op, .globl pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-33

·Icomm

.lcomm Pseudo-op

Purpose
Defines a local uninitialized block of storage.

Syntax
.Icomm Name 1 , Expressior4" Name2j

Description
The .Icomm instruction defines a local uninitialized block of storage called a local common
(LC) section. At runtime, this storage block will be reserved when the local common (LC)
section is allocated at the end of the .data section. This storage block is for uninitialized
data.

Use .lcomm with local uninitialized data. This means that the data will probably not be
accessed outside the local assembly.

• The symbol Name1 is a label at the top of the local uninitialized block of storage. The
location counter for this local common (LC) section is incremented by Expression. A
specific local common (LC) section can be specified by the Name2 operand. Otherwise
an unnamed section is used.

Parameters
Name 1 Represents a relocatable symbol. The symbol Name1 is a label at the top of

the local uninitialized block of storage. Name 1 does not appear in the
symbol table unless it is the operand of a .globl statement.

Example

Expression Represents an absolute expression that is defined in the first pass of the
assembler. The Expression expression also increments the location counter
for the local common (LC) section.

Name2 Represents a Control Section name that has storage class BS and storage
type eM. The Name2 operand allows the programmer to specify the BS
Control Section for the allocated storage. If a specific local common (LC)
section is not specified by the Name2 operand, an unnamed section is
used.

.lcomm buffer,S120
Can refer to this SK
of storage as "buffer" •

• lcomm b3,4,proga
b3 will be a label in a csect of class BS
and type CM with name "proga".

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

6-34 Assembler Language Reference

.Icomm

Related Information
The .comm pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-35

.line

.line Pseudo-op

Purpose
Identifies a line number and provides additional information specific to the line number.

Syntax
.line Number

Description
The .line pseudo-op identifies a line number and provides symbol table information
necessary for the use of the symbolic debugger.

This pseudo-op is customarily'inserted by a compiler and has no other effect on assembly.

Parameters
Number Represents a line number of the original source file.

Example
.globl .hello[pr]
.csect .hello[pr]
.align 1
• function .hello[pr],L.lB,16,044
.stabx "hello:f-l",O,142,O
.bf 2
.line 1
.line 2

,

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .bf pseudo-op, .function pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-36 Assembler Language Reference

.long Pseudo-op

Purpose
Assembles expressions into consecutive fullwords.

Syntax
.Iong Expression[, Expression, ...]

Description

.long

The .Iong pseudo-op assembles expressions into consecutive fullwords. Fullword alignment
occurs as necessary.

Parameters
Expression Represents any expression to be assembled into fullwords.

Example
.long 24,3,fooble-333,O

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .byte pseudo-op, .short pseudo-op, • vbyte pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-37

.org

.org Pseudo-op

Purpose
Sets the value of the current location counter.

Syntax
.org Expression

Description
The .org pseudo-op sets the value of the current location counter to Expression. This
pseudo-op can also decrement a location counter. The assembler is Control Section
oriented; therefore, absolute expressions or expressions which cause the location counter to
go outside of the current Control Section are not allowed.

Parameters
Expression Represents the value of the current location counter.

Example
Assume assembler location counter is Oxl14 •
• orq $+100
#Skip 100 decimal byte (Ox64 bytes).

Assembler location counter is now Ox178.

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .space pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-38 Assembler Language Reference

·rename

.rename Pseudo-op

Purpose
Creates a synonym or alias for an illegal or undesirable name.

Syntax
.rename Name,StringConstant

Description
The .rename pseudo-op changes Name to StringConstant for all external references at the
end of assembly. Internal references to the local assembly are made to Name. The
externally visible Name is StringConstant. The .rename pseudo-op is useful in referencing
symbol names that are otherwise illegal in the assembler syntax.

Parameters

Example

Name Represents a symbol. To be externally visible, Name must appear in an
.extern or .globl statement.

StringConstant Represents value which Name is changed to at end of assembly.

.rename toc_of_er,II#ER"
• rename a [pr] , II $PR"

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .extern pseudo-op, .globl pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-39

.set

.set Pseudo-op

Purpose
Sets a symbol equal to an expression in both type and value.

Syntax
.set Name, Expression

Description
The .set pseudo-op sets the symbol Name equal to the expression Expression in type and in
value. Using .set may help to avoid errors with a frequently used expression. Equate the
expression to a symbol, then refer to the symbol rather than the expression. To change the
value of the expression, only change it within the .set statement. However, reassembling the
program is necessary since .set assignments occur only at assembly time.

The expression Expression can only refer to symbols within the same Control Section. The
symbols do not have to be within the Control Section where the .set appears, only in the
same Control Section as other symbols in the expression.

Parameters
Name Represents a symbol which may be used before its definition in a .set

statement; forward references are allowed within a module.

Example

Expression Refers to symbols within the same Control Section. The symbols do not
have to be within the Control Section where the .set appears, only in the
same Control Section as other symbols in the expression. It can also refer
to a register number but not the contents of the register at runtime. The
Expression parameter cannot be an undefined external expression.

.set ap,14 # Assembler assigns value 14
to the symbol ap ----- ap

lil ap,2

is absolute.

Assembler substitutes value 14
for the symbol.
Note that ap is a register
number in context
as IiI's operand.

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
Understanding Expressions on page 2-12.

Pseudo-Ops Overview on page 6-2.

6-40 Assembler Language Reference

.short Pseudo-op

Purpose
Assembles expressions into consecutive halfwords.

Syntax
.short Expression[, Expression, ...]

Description

.short

The .short pseudo-op assembles Expressions into consecutive halfwords. Halfword
alignment occurs as necessary.

Parameters
Expression Represents expressions which the instruction assembles into halfwords.

Expression cannot refer to the contents of any register, and if Expression is
longer than a halfword, it is truncated on the left.

Example
.short 1,Ox4444,fooble-333,O

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .byte pseudo-op, .Iong pseudo-op, .vbyte pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-41

.space

.space Pseudo-op

Purpose
Skips a specified number of bytes in the output file and fills them with binary zeros.

Syntax
.space Number

Description
The .space skips a number of bytes, specified by Number, in the output file and fills them
with binary zeros. The .space pseudo-op may be used to reserve a chunk of storage in a
Control Section.

Parameters
Number Represents an absolute expression that specifies the number of bytes to

skip.

Example
.csect data[rw]
.space 444

foo: # foo currently located at offset OxlBC within
csect data[rw].

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
Pseudo-Ops Overview on page 6-2.

6-42 Assembler Language Reference

.stabx Pseudo-op

Purpose
Provides additional information required by the debugger.

Syntax
.stabx StringConstant, Expression 1, Expression2, Expression3

Description

.stabx

The .stabx pseudo-op provides additional information required by the debugger. The
assembler places the StringConstant argument, which provides required Stabstring
information for the debugger, in the .debug section.

This pseudo-op is customarily inserted by a compiler.

Parameters
StringConstant Provides required Stabstring information to the debugger.

Represents the symbol value of the character string.

Represents the storage class of the character string.

Represents the symbol type of the character string.

Example

Expression 1

Expression2

Expression3

.stabx "INTEGER:t2=-1",O,140,4

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .function pseudo-op.

Pseudo-Ops Overview on page 6-2.

See "dbx Stabstring Grammar (C, COBOL, Pascal, FORTRAN, and Modula-2)" in the a.out
File Format article in Files Reference.

Chapter 6. Pseudo-ops 6-43

.string

.string Pseudo-op

Purpose

Syntax

Assembles character values into consecutive bytes and terminates the string with a null
character.

.string StringConstant

Description
The .string pseudo-op assembles the character values represented by StringConstant into
consecutive bytes and terminates the string with a null character.

Parameters

Example

StringConstant Represents a string of character values assembled into consecutive
bytes.

mine: .string "Hello, world!"
This produces
Ox48656C6C6F2C20776F726C642100.

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .byte pseudo-op, . vbyte pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-44 Assembler Language Reference

.tbtag

.tbtag Pseudo-op

Purpose

Syntax

Defines a debug traceback tag that can be used to perform tracebacks when debugging
programs.

.tbtag Expression 1, Expression2, Expression3, Expression4, Expression5, Expres sio
n6,Expression 7, Expression8(,Expression9, Expression 10, Expression 11, Expr
ession 12, Expression 13, Expression 14, Expression 15, Expression 16]

Description
The .tbtag pseudo-op defines a traceback tag by assembling the Expressions into
consecutive bytes, words, and halfwords, depending on field requirements. Traceback
information is customarily inserted· by a compiler.

Parameters
Expression 1

Expression2

Expression3

Expression4

Expression4

Expression5

Expression6

Expression 7

Expression8

Expression9

Expression 10

Expression 11

Expression 12

Expression 13

Expression 14

Expression 15

FORMAT_TYPE

LANG_I DENT

IS_GL,IS_EPROL,SHORT _ TB, Byte
INT _PROC,HAS_CTL,
MILLCODE,FP _PRESENT,
LOG_ABORT

INT _HANDLER, NAME_PRESENT,
SPARE,CL_D'S_'NV,SAVES_CR,
SAVES_LR

INT _HANDLER, NAME_PRESENT,
SPARE,CL_D'S_'NV,SAVES_CR,
SAVES_LR

STORES_BC,SPARE,FP _SAVED

SPARE,SPARE,GP _SAVED

PARMCNTFX

PARMCNTFL,PARMCNTV

PARMTYPE

CODELEN

HAND_MASK

CTL_'NFO

CTL_INFO_DISP

NAME_LENGTH

NAME

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Word

Word

Word

Word

Word

Halfword

Byte

Chapter 6. Pseudo-ops 6-45

.tbtag

Expression 16 Byte

Example
.tbtag 1,O,Oxff,O,O,16

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .byte pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-46 Assembler Language Reference

.tc

.te Pseudo-op

Purpose

Syntax

Assembles expressions into a TOC entry.

.te [Name][TC), Expression[, Expression, ...]

Note: The bold-faced brackets containing TC are part of the syntax and do not specifiy
optional parameters.

Description
The .te pseudo-op assembles Expressions into a TOe entry. A .te statement can only
appear inside the scope of a .toe pseudo-op. A TOC entry can be relocated as a body. TOe
entry statements can have local labels, which will be relative to the beginning of the entire
TOC as declared by the first .toe statement. Addresses contained in the TOe entry can be
accessed using these local labels and the TOC Register GPR 2.

TOC entries that contain only one address are subject to being combined by the binder. This
can occur if the TOe entries have the same name and reference the same csect (symbol).
Be careful when coding TOC entries that reference non-zero offsets within a csect. To
prevent unintended combining of TOC entries, unique names should be assigned to TOC
entries that reference different offsets within a csect.

Parameters
Name Specifies name of the TOC entry created. The StorageClass is TC for TOC

entires. Name[TC) can be used to refer to the TOe entry where appropriate.

Example

Expression Specifies symbol or expression which goes into TOe entry.

.toc
Create three TOC entries, the first
with the name proga, the second
with the name progb, and the last
unnamed.

T.proga:
T.progb:
T.progax:

.tc proga[TC],progr[RW],dataA

.tc progb[TC],proga[PR],progb[PR]

.tc proga[TC],dataB

.tc [TC],dataB

.csect proga[PR]

A .csect should precede any statements following a
.toc/.tc section which do not belong in the TOC.

1 5,T.proga(2) # The address of progr[RW]
is loaded into GPR 5.

1 5,T.progax(2) # The address of progr[RW]
is loaded into GPR 5.

1 5,T.progb+4(2) # The address of progb[PR]
is loaded into GPR 5.

Chapter 6. Pseudo-ops 6-47

.tc

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .csect pseudo-op, .toc pseudo-op, .tocof pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-48 Assembler Language Reference

.toc

.toc Pseudo-op

Purpose
Defines the table of contents of a module.

Syntax
.toc

Description

Example

The .toc pseudo-op defines the table of contents (TOe) anchor of a module. Entries in the
TOe section can be declared with .tc pseudo-op within the scope of the .toc pseudo-op.
The .toc pseudo-op has scope similar to that of a .csect pseudo-op. The TOe can be
continued throughout the assembly wherever a .toc appears.

.toc
Create two TOC entries. The first
entry, named proga, is of type TC
and contains the address of
proga[RW] and dataA.

The second entry, named progb, is of type TC
and contains the address of
progb[PR] and progc[PR].
T.proga: .tc proga[TC],proga[RW],dataA
T.progb: .tc progb[TC],progb[PR],progc[PR]

.csect proga[RW]
A .csect should precede any statements following a
.toc/.tc section which do not belong in the TOC .
. long TOC[tcO]
The address of the TOC for this module is placed in
a fullword.

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The .tc pseudo-op, .tocof pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-49

·tocof

. tocof Pseudo-op

Purpose

Syntax

Allows for the definition of a local symbol as the table of contents of an external symbol so
that the local symbol can be used in expressions.

.tocof Name1,Name2

Description
The .tocof pseudo-op makes Name2 globally visible to the linker and marks Name 1 as the
table of contents (TOC) of another module that contains the symbol Name2. This allows the
definition of a local symbol as the TOC of an external symbol so that the local symbol can be
used in expressions or to refer to the TOC of another module, usually in a .tc statement.
This pseudo-op generates a Relocation Dictionary entry (RLD) that causes this data to be
initialized to the address of the TOC external symbols. The .tocof pseudo-op can be used
for inter-module calls that require the caller to first load up the address of the called module's
TOC before transferring control.

Parameters
Name 1 Specifies a local symbol that acts as the TOC of a module that contains

Name2. The symbol Name1 should appear in .tc statements.

Example

Name2

tocbeg: .toc

Specifies an external symbol that exists within a modual that contains a
TOC.

apb: .tc [tc],pb,tpb
This is an unnamed TOC entry
that contains two addresses:
the address of pb and
the address of the TOC
containing pb •
. tocof tpb,pb
.set always,Ox14
.csect [PRJ
.using tocbeg,rtoc
I 14,apb
Load R14 with the address
of pb.
I rtoc,apb+4
Load the TOC register with the
address pb's TOC.
mtspr Ir,14
Move to Link Register.
bcr always,O
Branch Conditional Register branch
address is contained in the Link
register.

6-50 Assembler Language Reference

.tocof

Implementation Specifics
This instruction is part of Application Development Toolkit in AIX Base.

Related Information
The .te pseudo-op, .toe pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-51

.using

.using Pseudo-op

Purpose
Assigns a base register number.

Syntax
.using Expression, Register

Description
The .using pseudo-op bases relocatable expressions from Register, assuming that Register
contains the relocatable program address of Expression at runtime.

With the information given in the .using pseudo-op, the assembler converts each
relocatable expression (or implicit address) to a base register number plus a displacement.
The linker later assigns the final addresses.

The .using pseudo-op does not load the specified register; the programmer must guarantee
that this value is actually in the base Register at runtime.

Symbol names do not have to be previously defined.

The .using pseudo-op only affects instructions with based addresses (that is, the loads and
stores).

The .using pseudo-op can be issued on the csect name and all the labels in the csect are
referenced via the using register. Other types of external symbols are not allowed {.extern}.

Parameters
Register Represents the register number for relocatable expressions. It must be

absolute and must evaluate to an integer from 0 to 31 inclusive.

Example

Expression Specifies a label or an expression involving a label that represents the
displacement or relative offset into the program. It must be relocatable but
cannot be an absolute symbol. The Expression parameter can be an
external symbol if the symbol is a csect or TOC entry defined within the
assembly.

.csect data[rw]

.long OxO,oxo
dl: .long Ox25
A read/write csect contains the label dl .
• csect text[pr]
.using data[rw],12
1 4,dl
This will actually load the contents of
the effective address, calculated by
adding the address dl to the address in
GPR 12, into GPR 4.

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

6-52 Assembler Language Reference

.using

Related Information
The .csect pseudo-op, .drop pseudo-op.

Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-53

·vbyte

. vbyte Pseudo-op

Purpose
Assembles the value represented by an expression into consecutive bytes.

Syntax
.vbyte Number, Expression

Description
The. vbyte pseudo-op assembles the value represented by the Expression into consecutive
Number bytes.

Parameters
Number Specifies a number of consecutive bytes. Number must range between 1 .

and 4.

Example

Expression Specifies a value that is assembled into consecutive bytes. The Expression
parameter cannot contain externally defined symbols, and if Expression is
longer than Number bytes, it will be truncated on the left.

.csect data[RW]
mine: .vbyte 3,Ox37CCFF
This pseudo-op also accepts character constants .
. vbyte l,fc

Load GPR 4 with address of .csect data[RW] .
• csect text[PR]
1 3,mine(4)
GPR 3 now holds Ox37CCFF.

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
The .byte pseudo-op.

Pseudo-Ops Overview on page 6-2.

6-54 Assembler Language Reference

.xline Pseudo-op

Purpose
Represents a line number.

Syntax
.xline Number 1 ,StringConstan~, Number2J

Description

.xline

The .xline pseudo-op provides additional file and line number information to the assembler.
Number2 can be used to generate .bi and .ei type entries for use by symbolic debuggers.
This pseudo-op is customarily inserted by the M4 macroprocessor.

Parameters

Example

Number 1 Represents the line number of the original source file.

StringConstant Represents the filename of the original source file.

Number2 Represents the C_BINCL and C_EINCL classes that indicate the
beginning and ending of an included file.

.xline 1,uhello.cu ,108

.xline 2,uhello.c"

Implementation Specifics
This pseudo-op is part of Application Development Toolkit in AIX Base.

Related Information
Pseudo-Ops Overview on page 6-2.

Chapter 6. Pseudo-ops 6-55

6-56 Assembler Language Reference

Appendix A. Opcode and Mnemonic Tables

Appendix A. Opcode and Mnemonic Tables A-1

Instruction Set, Indexed by Primary Opcode

Primary Extended
Mnemonic Instruction Format Opcode Opcode

ti Trap Immediate D 03

muli Multiply Immediate D 07

sfi Subtract From Immediate D 08

dozi Difference Or Zero Immediate D 09

cmpli Compare Logical Immediate D 10

cmpi Compare Immediate D 11

ai Add Immediate D 12

ai. Add Immediate And Record D 13

cal Compute Address Lower D 14

cau Compute Address Upper D 15

bc[I][a] Branch Conditional B 16

svc[l][a] Supervisor Call SC 17

b[l][a] Branch I 18

crand Condition Register AND XL 19 257

crandc Condition Register AND With Complement XL 19 129

creqv Condition Register Equivalent XL 19 289

crnand Condition Register NAND XL 19 225

crnor Condition Register NOR XL 19 33

cror Condition Register OR XL 19 449

crorc Condition Register OR With Complement XL 19 417

crxor Condition Register XOR XL 19 193

bcc[l] Branch Conditional To Count Register XL 19 528

bcr[l] Branch Conditional Register XL 19 16

mcrf Move Condition Register Field XL 19 0

rlimi[.] Rotate Left Immediate Then Mask Insert M 20

rlinm[.] Rotate Left Immediate Then AND With M 21
Mask

rlmi[.] Rotate Left Then Mask Insert M 22

rlnm[.] Rotate Left Then AN D With Mask M 23

oril OR Immediate Lower D 24

oriu OR Immediate Upper D 25

xoril XOR Immediate Lower D 26

xoriu XOR Immediate Upper D 27

A-2 Assembler Language Reference

Primary Extended
Mnemonic Instruction Format Opcode Opcode

andil. AND Immediate Lower D 28

andiu. AND Immediate Upper D 29

a[o][.] Add XO 31 10

abs[o][.] Absolute XO 31 360

ae[o][.] Add Extended XO 31 138

ame[o][.] Add To Minus One Extended XO 31 234

and[.] AND X 31 28

andc[.] AND With Complement X 31 60

aze[o][.] Add To Zero Extended XO 31 202

cax[o][.] Compute Address XO 31 266

cmp Compare X 31 0

cmpl Compare Logical X 31 32

cntlz[.] Count Leading Zeroes X 31 26

div[o][.] Divide XO 31 331

divs[o][.] Divide Short XO 31 363

doz[o][.] Difference Or Zero XO 31 264

eqv[.] Equivalent X 31 284

exts[.] Extend Sign X 31 922

Ibrx Load Byte Reverse Indexed X 31 534

Ibzux Load Byte And Zero With Update Indexed X 31 119

Ibzx Load Byte And Zero Indexed X 31 87

Ifdux Load Floating-Point Double With Update X 31 631
Indexed

Ifdx Load Floating-Point Double Indexed X 31 599

Ifsux Load Floating-Point Single With Update X 31 567
Indexed

Ifsx Load Floating-Point Single Indexed X 31 535

Ihaux Load Half Algebraic With Update Indexed X 31 375

Ihax Load Half Algebraic Indexed X 31 343

Ihbrx Load Half Byte Reverse Indexed X 31 790

Ihzux Load Half And Zero With Update Indexed X 31 311

Ihzx Load Half And Zero Indexed X 31 279

Iscbx[.] Load String And Compare Byte Indexed X 31 277

lsi Load String Immediate X 31 597

Appendix A. Qpcode and Mnemonic Tables A-3

Primary Extended
Mnemonic Instruction Format Opcode Opcode

Isx Load String Indexed X 31 533

lux Load With Update Indexed X 31 55

Ix Load Indexed X 31 23

maskg[.] Mask Generate X 31 29

maskir[.] Mask Insert From Register X 31 541

mcrxr Move To Condition Register From XER X 31 512

mfcr Move From Condition Register X 31 19

mfmsr Move From Machine State Register X 31 83

mfspr Move From Special Purpose Register X 31 339

mtspr Move To Special Purpose Register X 31 467

mul[o][.] Multiply XO 31 107

muls[o][.] Multiply Short XO 31 235

mtcrf Move To Condition Register Fields XFX 31 144

nabs[o][.] Negative Absolute XO 31 488

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR With Complement X 31 412

rrib[.] Rotate Right And Insert Bit X 31 537

sf[o][.] Subtract From XO 31 8

sfe[o][.] Subtract From Extended XO 31 36

sfme[o][.] Subtract From Minus One Extended XO 31 232

sfze[o][.] Subtract From Zero Extended XO 31 200

sl[.] Shift Left X 31 24

sle[.] Shift Left Extended X 31 153

sleq[.] Shift Left Extended With MQ X 31 217

sliq[.] Shift Left Immediate With MQ X 31 184

slliq[.] Shift Left Long Immediate With MQ X 31 248

sllq[.] Shift Left Long With MQ X 31 216

slq[.] Shift Left With MQ X 31 152

sr[.] Shift Right X 31 536

sra[.] Shift Right Algebraic X 31 792

srai[.] Shift Right Algebraic Immediate X 31 824

sraiq[.] Shift Right Algebraic Immediate With MQ X 31 952

sraq[.] Shift Right Algebraic With MQ X 31 920

A-4 Assembler Language Reference

Primary Extended
Mnemonic Instruction Format Opcode Opcode

sre[.] Shift Right Extended X 31 665

srea[.] Shift Right Extended Algebraic X 31 921

sreq[.] Shift Right Extended With MQ X 31 729

sriq[.] Shift Right Immediate With MQ X 31 696

srliq[.) Shift Right Long Immediate With MQ X 31 760

srlq[.] Shift Right Long With MQ X 31 728

srq[.] Shift Right With MQ X 31 664

stbrx Store Byte Reverse Indexed X 31 662

stbux Store Byte With Update Indexed X 31 247

stbx Store Byte Indexed X 31 215

stfdux Store Floating-Point Double With Update X 31 759
Indexed

stfdx Store Floating-Point Double Indexed X 31 727

stfsux Store Floating-Point Single With Update X 31 695
Indexed

stfsx Store Floating-Point Single Indexed X 31 663

sthbrx Store Half Byte Reverse Indexed X 31 918

sthux Store Half With Update Indexed X 31 439

sthx Store Half Indexed X 31 407

stsi Store String Immediate X 31 725

stsx Store String Indexed X 31 661

stux Store With Update Indexed X 31 183

stx Store Indexed X 31 151

t Trap X 31 4

xor[.] XOR X 31 316

I Load D 32

lu Load With Update D 33

Ibz Load Byte And Zero D 34

Ibzu Load Byte And Zero With Update D 35

st Store D 36

stu Store With Update D 37

stb Store Byte D 38

stbu Store Byte With Update D 39

1hz Load Half And Zero D 40

Appendix A. Opcode and Mnemonic Tables A-5

Primary Extended
Mnemonic Instruction Format Opcode Opcode

Ihzu Load Half And Zero With Update D 41

Iha Load Half Algebraic D 42

Ihau Load Half Algebraic With Update D 43

sth Store Half D 44

sthu Store Half With Update D 45

1m Load Multiple D 46

stm Store Multiple D 47

Ifs Load Floating-Point Single D 48

Ifsu Load Floating-Point Single With Update D 49

Ifd Load Floating-Point Double D 50

Ifdu Load Floating-Point Double With Update D 51

stfs Store Floating-Point Single D 52

stfsu Store Floating-Point Single With Update D 53

stfd Store Floating-Point Double D 54

stfdu Store Floating-Point Double With Update D 55

fa[.] Floating Add A 63 21

fabs[.] Floating Absolute Value X 63 264

fcmpo Floating Compare Ordered X 63 32

fcmpu Floating Compare Unordered X 63 0

fd[.] Floating Divide A 63 8

fm[.] Floating Multiply A 63 5

fma[.] Floating Multiply Add A 63 29

fmr[.] Floating Move Register X 63 72

fms[.] Floating Multiply Subtract A 63 28

fnabs[.] Floating Negative Absolute Value X 63 136

fneg[.] Floating Negate X 63 40

fnma[.] Floating Negative Multiply Add A 63 31

fnms[.] Floating Negative Multiply Subtract A 63 30

frsp[.] Floating Round To Single Precision X 63 12

fs[.] Floating Subtract A 63 20

mcrfs Move To Condition Register From FPSCR X 63 64

mffs[.] Move From FPSCR X 63 583

mtfsbO[.] Move To FPSCR Bit 0 X 63 70

mtfsb1 [.] Move To FPSCR Bit 1 X 63 38

mtfsf[.] Move To FPSCR Fields XFL 63 711

mtfsfi[.] Move To FPSCR Field Immediate X 63 134

A-6 Assembler Language Reference

Instruction Set, Indexed by Mnemonic

Primary Extended
Mnemonic Instruction Format Opcode Opcode

a[o][.] Add XO 31 10

abs[o][.] Absolute XO 31 360

ae[o][.] Add Extended XO 31 138

ai Add Immediate D 12

ai. Add Immediate And Record 0 13

ame[o][.] Add To Minus One Extended XO 31 234

and[.] AND X 31 28

andc[.] AND With Complement X 31 60

andil. AND Immediate Lower D 28

andiu. AND Immediate Upper D 29

aze[o][.] Add To Zero Extended XO 31 202

b[l][a] Branch I 18

bc[l][a] Branch Conditional B 16

bcc[l] Branch Conditional To Count Register XL 19 528

bcr[l] Branch Conditional Register XL 19 16

cal Compute Address Lower D 14

cau Compute Address Upper D 15

cax[o][.] Compute Address XO 31 266

cmp Compare X 31 0

cmpi Compare Immediate D 11

cmpl Compare Logical X 31 32

cmpli Compare Logical Immediate D 10

cntlz[.] Count Leading Zeroes X 31 26

crand Condition Register AND XL 19 257

crandc Condition Register AN D With Complement XL 19 129

creqv Condition Register Equivalent XL 19 289

crnand Condition Register NAND XL 19 225

crnor Condition Register NOR XL 19 33

cror Condition Register OR XL 19 449

crorc Condition Register OR With Complement XL 19 417

crxor Condition Register XOR XL 19 193

div[o][.] Divide XO 31 331

Appendix A. Opcode and Mnemonic Tables A-7

Primary Extended
Mnemonic Instruction Format Opcode Opcode

divs[o)[.] Divide Short XO 31 363

doz[o][.] Difference Or Zero XO 31 264

dozi Difference Or Zero Immediate D 09

eqv[.] Equivalent X 31 284

exts[.] Extend Sign X 31 922

fa[.] Floating Add A 63 21

fabs[.] Floating Absolute Value X 63 264

fcmpo Floating Compare Ordered X 63 32

fcmpu Floating Compare Unordered X 63 0

fd[.] Floating Divide A 63 8

fm[.] Floating Multiply A 63 5

fma[.] Floating Multiply Add A 63 29

fmr[.] Floating Move Register X 63 72

fms[.] Floating Multiply Subtract A 63 28

fnabs[.] Floating Negative Absolute Value X 63 136

fneg[.] Floating Negate X 63 40

fnma[.] Floating Negative Multiply Add A 63 31

fnms[.] Floating Negative Multiply Subtract A 63 30

frsp[.] Floating Round To Single Precision X 63 12

fs[.] Floating Subtract A 63 20

I Load D 32

Ibrx Load Byte Reverse Indexed X 31 534

Ibz Load Byte And Zero D 34

Ibzu Load Byte And Zero With Update D 35

Ibzux Load Byte And Zero With Update Indexed X 31 119

Ibzx Load Byte And Zero Indexed X 31 87

Ifd Load Floating-Point Double D 50

Ifdu Load Floating-Point Double With Update D 51

Ifdux Load Floating-Point Double With Update X 31 631
Indexed

Ifdx Load Floating-Point Double Indexed X 31 599

Ifs Load Floating-Point Single D 48

Ifsu Load Floating-Point Single With Update D 49

A-a Assembler Language Reference

Primary Extended
Mnemonic Instruction Format Opcode Opcode

Ifsux Load Floating-Point Single With Update X 31 567
Indexed

Ifsx Load Floating-Point Single Indexed X 31 535

Iha Load Half Algebraic 0 42

Ihau Load Half Algebraic With Update 0 43

Ihaux Load Half Algebraic With Update Indexed X 31 375

Ihax Load Half Algebraic Indexed X 31 343

Ihbrx Load Half Byte Reverse Indexed X 31 790

1hz Load Half And Zero 0 40

Ihzu Load Half And Zero With Update 0 41

Ihzux Load Half And Zero With Update Indexed X 31 311

Ihzx Load Half And Zero Indexed X 31 279

1m Load Multiple 0 46

Iscbx[.] Load String And Compare Byte Indexed X 31 277

lsi Load String Immediate X 31 597

Isx Load String Indexed X 31 533

lu Load With Update 0 33

lux Load With Update Indexed X 31 55

Ix Load Indexed X 31 23

maskg[.] Mask Generate X 31 29

maskir[.] Mask Insert From Register X 31 541

mcrf Move Condition Register Field XL 19 0

mcrfs Move To Condition Register From FPSCR X 63 64

mcrxr Move To Condition Register From XER X 31 512

mfcr Move From Condition Register X 31 19

mffs[.] Move From FPSCR X 63 583

mfmsr Mo~e From Machine State Register X 31 83

mfspr Move From Special Purpose Register X 31 339

mtcrf Move To Condition Register Fields XFX 31 144

mtfsbO[.] Move To FPSCR Bit 0 X 63 70

mtfsb1 [.] Move To FPSCR Bit 1 X 63 38

mtfsf[.] Move To FPSCR Fields XFL 63 711

mtfsfi[.] Move To FPSCR Field Immediate X 63 134

Appendix A. Opcode and Mnemonic Tables A-9

Primary Extended
Mnemonic Instruction Format Opcode Opcode

mtspr Move To Special Purpose Register X 31 467

mul[o][.] Multiply XO 31 107

muli Multiply Immediate D 07

muls[o][.] Multiply Short XO 31 235

nabs[o][.] . Negative Absolute XO 31 488

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR With Complement X 31 412

oril OR Immediate Lower D 24

oriu OR Immediate Upper D 25

rlimi[.] Rotate Left Immediate Then Mask Insert M 20

rlinm[.] Rotate Left Immediate Then AND With M 21
Mask

rlmi[.] Rotate Left Then Mask Insert M 22

rlnm[.] Rotate Left Then AND With Mask M 23

rrib[.] Rotate Right And Insert Bit X 31 537

sf[o][.] Subtract From XO 31 8

sfe[o][.] Subtract From Extended XO 31 36

sfi Subtract From Immediate D 08

sfme[o][.] Subtract From Minus One Extended XO 31 232

sfze[o][.] Subtract From Zero Extended XO 31 200

sl{.] Shift Left X 31 24

·sle[.] Shift Left Extended X 31 153

sleq[.] Shift Left Extended With MQ X 31 217

sliq[.] Shift Left Immediate With MQ X 31 184

slliq[.] Shift Left Long Immediate With MQ X 31 248

sllq[.] Shift Left Long With MQ X 31 216

slq[.] Shift Left With MQ X 31 152

sr[.] Shift Right X 31 536

sra[.] Shift Right Algebraic X 31 792

srai[.] Shift Right Algebraic Immediate X 31 824

A-1 0 Assembler Language Reference

Primary Extended
Mnemonic Instruction Format Opcode Opcode

sraiq[.] Shift Right Algebraic Immediate With MQ X 31 952

sraq[.] Shift Right Algebraic With MQ X 31 920

sre[.] Shift Right Extended X 31 665

srea[.] Shift Right Extended Algebraic X 31 921

sreq[.] Shift Right Extended With MQ X 31 729

sriq[.] Shift Right Immediate With MQ X 31 696

srliq[.] Shift Right Long Immediate With MQ X 31 760

srlq[.] Shift Right Long With MQ X 31 728

srq[.] Shift Right With MQ X 31 664

st Store D 36

stb Store Byte D 38

stbrx Store Byte Reverse Indexed X 31 662

stbu Store Byte With Update D 39

stbux Store Byte With Update Indexed X 31 247

stbx Store Byte Indexed X 31 215

stfd Store Floating-Point Double D 54

stfdu Store Floating-Point Double With Update D 55

stfdux Store Floating-Point Double With Update X 31 759
Indexed

stfdx Store Floating-Point Double Indexed X 31 727

stfs Store Floating-Point Single D 52

stfsu Store Floating-Point Single With Update D 53

stfsux Store Floating-Point Single With Update X 31 695
Indexed

stfsx Store Floating-Point Single Indexed X 31 663

sth Store Half D 44

sthbrx Store Half Byte Reverse Indexed X 31 918

sthu Store Half With Update D 45

sthux Store Half With Update Indexed X 31 439

sthx Store Half Indexed X 31 407

stm Store Multiple D 47

stsi Store String Immediate X 31 725

stsx Store String Indexed X 31 661

stu Store With Update D 37

Appendix A. Opcode and Mnemonic Tables A-11

Primary Extended
Mnemonic Instruction Format Opcode Opcode

stux Store With Update Indexed X 31 183

stx Store Indexed X 31 151

svc[l][a] Supervisor Call SC 17

t Trap X 31 4

ti Trap Immediate D 03

xor[.] XOR X 31 316

xoril XOR Immediate Lower D 26

xoriu XOR Immediate Upper D 27

A-12 Assembler Language Reference

Index

Symbols
.bb pseudo-op, 6-9
.bc pseudo-op, 6-10
.bf pseudo-op, 6-11
.bipseudo-op, 6-12
.bs pseudo-op, 6-13
.byte pseudo-op, 6-14
.comm pseudo-op, 6-15-6-16
.csectpseudo-op, 6-17-6-19
.double pseudo-op, 6-20
.drop pseudo-op, 6-21
.dsectpseudo-op, 6-22
.eb pseudo-op, 6-23
.ec pseudo-op, 6-24
.efpseudo-op, 6-25
.eipseudo-op, 6-26
.es pseudo-op, 6-27
.extern pseudo-op, 6-28
· file pseudo-op, 6-29
· float pseudo-op, 6-30
.function pseudo-op, 6-31
.globl pseudo-op, 6-32
.hash pseudo-op, 6-33
.iusing pseudo-op, 6-52-6-53
.line pseudo-op, 6-36
.long pseudo-op, 6-37
.org pseudo-op, 6-38
.rename pseudo-op, 6-39
.set pseudo-op, 6-40
.short pseudo-op, 6-41
.space pseudo-op, 6-42
.string pseudo-op, 6-44
· tbtag pseudo-op, 6-45-6-46
.tc pseudo-op, 6-47-6-48
· toc pseudo-op, 6-49
.tocof pseudo-op, 6-50-6-51
.xline pseudo-op, 6-55

A
a (Add) instruction, 5-2-5-3
abs (Absolute) instruction, 5-4-5-5
address

calculating by adding two general purpose
registers, using cax (Compute Address)
instruction, 5-34-5-35

calculating from an offset less than 32K, using
cal (Compute Address Lower) instruction,
5-32

calculating from an offset more than 32K, using
cau (Compute Address Upper) instruction,
5-33

ae (Add Extended) instruction, 5-6-5-7

ai (Add Immediate) instruction, 5-8
ai. (Add Immediate and Record) instruction, 5-9
alias, creating for an illegal name in the assembler

syntax, using .rename pseudo-op, 6-39
ame (Add to Minu One Extended) instruction,

5-10-5-11
and (AND) instruction, 5-12-5-13
andc (AND With Complement) instruction,
5-14-5-15

andil. (AND Immediate Lower) instruction, 5-16
andiu. (AND Immediate Upper) instruction, 5-17
assembler directives. See pseudo-op
assembler instructions. See pseudo-op
assembler operators. See pseudo-op
assembler syntax, creating an alias for an illegal

name in the, using .rename pseudo-op, 6-39
aze (Add to Zero Extended) instruction, 5-18-5-19

B
b (Branch) instruction, 5-20-5-21
base register

assigning a number for a, using .using
pseudo-op, 6-52-6-53

stopping use of register as a, using .drop
pseudo-op, 6-21

bb (Branch on Condition Register Bit) instruction,
5-22-5-24

bc (Branch Conditional) instruction, 5-25-5-27
bcc (Branch Conditional to Count Register)

instruction, 5-28-5-29
bcr (Branch Conditional Register) instruction,
5-30-5-31

C
cal (Compute Address Lower) instruction, 5-32
cau (Compute Address Upper) instruction, 5-33
cax (Compute Address) instruction, 5-34-5-35
character values, assembling into consecutive bytes,

using .string pseudo-op, 6-44
cmp (Compare) instruction, 5-36-5-37
cmpl (Compare Logical) instruction, 5-40-5-41
cmpli (Compare Logical Immediate) instruction,

5-42-5-43
cntlz (Count Leading Zeros) instruction, 5-44
common block

defining, using .comm pseudo-op, 6-15-6-16
identifying the beginning of a, using .bc

pseudo-op, 6-10
identifying the end of a, using .ec pseudo-op,

6-24

Index X-1

Condition Register
copying bit 3 from the Fixed Point Exception

Register into, using mcrxr (Move To Condition
Register From XER) instruction, 5-165

copying general purpose register contents int~,
using mtcrf (Move To Condition Register
Fields) instruction, 5-172-5-173

copying Summary Overflow bit from the Fixed
Point Exception Register into, using mcrxr
(Move To Condition Register From XER)
instruction, 5-165

copying the Carry bit from the Fixed Point
Exception Register into, using mcrxr (Move To
Condition Register From XER) instruction,
5-165

copying the Overflow bit from the Fixed Point
Exception Register into, using mcrxr (Move To
Condition Register From XER) instruction,
5-165

placing the complemented result of ORing two
condition bits in a, using crnor (Condition
Register NOR) instruction, 5-49

Condition Register bit
placing ANDing and the complement in a

Condition Register bit, using crandc
(Condition Register AND with Complement)
instruction, 5-46

placing complemented result of ANDing two
Condition Register bits in a, using crnand
(Condition Register NAND) instruction, 5-48

placing complemented result of XORing two
Condition Register bits in a, using creqv
(Condition Register Equivalent) instruction,
5-47

placing the result of ANDing two, using crand
(Condition Register AND) instruction, 5-45

placing the result of ORing and the
complement of a Condition Register bit in a,
using crorc (Condition Register OR with
Complement) instruction, 5-51

placing the result of ORing two Condition
Register bits in a, using cror (Condition
Register OR) instruction, 5-50

placing the result of XORing two Condition
Register bits in a, using crxor (Condition
Register XOR) instruction, 5-52

Condition Register Field, copying the contents from
one into another, using mcrf (Move Condition
Register Field) instruction, 5-162

Control Section
giving a storage class to, using .csect

pseudo-op, 6-17-6-19
giving an alignment to, using .csect pseudo-op,
6-17-6-19

grouping code into, using .csect pseudo-op,
6-17-6-19

grouping data into, using .csect pseudo-op,
6-17-6-19

naming, using .csect pseudo-op, 6-17-6-19

X-2 Assembler Language Reference

Count Register, branching conditionally to the
address in, using bcc (Branch Conditional to Count
Register) instruction, 5-28-5-29

crand (Condition Register AND) instruction, 5-45
crandc (Condition Register AND with Complement)

instruction, 5-46
creqv (Condition Register Equivalent) instruction,

5-47
crnand (Condition Register NAND) instruction, 5-48
crnor (Condition Register) instruction, 5-49
cror (Condition Register OR) instruction, 5-50
crorc (Condition Register OR with Complement)

instruction, 5-51
crxor (Condition Register XOR) instruction, 5-52

D
debug traceback tag, defining, using .tbtag

pseudo-op, 6-45-6-46
debugger, providing information to, using .stabx

pseudo-op, 6-43
div (Divide) instruction, 5-53-5-55
divs (Divide Short) instruction, 5-56-5-57
double floating-point constant, storing at the next

fullword location, using .double pseudo-op, 6-20
double precision floating point

adding a 64-bit operand to the result of
multiplying two operands, using fma (Floating
Multiply Add) instruction, 5-77-5-78

dividing one 64-bit operand by another, using
fd (Floating Divide) instruction, 5-73-5-74

multiplying two 64-bit operands, using fm
(Floating Multiply) instruction, 5-75-5-76

multiplying two 64-bit operands then adding to
one 64-bit operand, using fnma (Floating
Negative Multiply Add) instruction,
5-87-5-88

multiplying two 64-bit operands then
subtracting one 64-bit operand, using fnms
(Floating Negative Multiply Subtract)
instruction, 5-89-5-91

rounding a 64-bit to single precision, using frsp
(Floating Round to Single Precision)
instruction, 5-92-5-94

subtracting one 64-bit operand from another,
using fs (Floating Subtract) instruction,
5-95-5-96

subtracting one 64-bit operand from the result
of multiplying two 64-bit operands, using fms
(Floating Multiply Subtract) instruction, 5-81

doz (Difference or zero) instruction, 5-58-5-59
dozi (Difference of Zero Immediate) instruction, 5-60
dummy control section

identifying the beginning of a, using dsect
pseudo-op,6-22

identifying the continuation of, using dsect
pseudo-op, 6-22

E
eqv (Equivalent) instruction, 5-61-5-62
Expression values, assembling into consecutive

bytes, 6-14
expressions

assembling into a TOC entry, using .tc
pseudo-op,6-47-6-48

assembling into consecutive bytes the value
represented by, using . vbyte pseudo-op, 6-54

assembling into consecutive fullwords, using
.long pseudo-op, 6-37

assembling into consecutive halfwords, using
.short pseudo-op, 6-41

facilitating the of local symbols in, using .tocof
pseudo-op, 6-50-6-51

setting a symbol equal in type and value, using
.setpseudo-op, 6-40

exts (Extend Sign) instruction, 5-63-5-64

F
fa (Floating Add) instruction, 5-65-5-66
fabs (Floating Absolute Value) instruction,
5-67-5-68

fcmpo (Floating Compare Ordered) instruction,
5-69-5-70

fcmpu (Floating Compare Unordered) instruction,
5-71-5-72

fd (Floating Divide) instruction, 5-73-5-74
Floating Point Register

adding two 64-bit double precision floating
point operands, using fa (Floating Add)
instruction, 5-65-5-66

comparing the contents of two
using fcmpo (Floating Compare Ordered)

instruction, 5-69-5-70
using fcmpu (Floating Compare Unordered)

instruction, 5-71-5-72
converting contents to single precision

using stfs (Store Floating Point Single)
instruction, 5-281-5-282

using stfsu (Store Floating Point Single
With Update) instruction, 5-283-5-284

using stfsux (Store Floating Point Single
With Update Indexed) instruction,
5-285-5-286

using stfsx (Store Floating Point Single
Indexed) instruction, 5-287-5-288

copying contents into Floating Point Status and
Control Register into, using mtfsf (Move To
FPSCR Fields) instruction, 5-174-5-175

loading a converted floating point double
precision number into a

using Ifs (Load Floating Point Single)
instruction, 5-115-5-116

using Ifsu (Load Floating Point Single With
Update) instruction, 5-117-5-118

using Ifsux (Load Floating Point Single With
Update Indexed) instruction,
5-119-5-120

loading a doubleword of data from memory into
a

using Ifd (Load Floating Point Double)
instruction, 5-107-5-108

using Ifdu (Load Floating Point Double With
Update) instruction, 5-109-5-110

using Ifdx (Load Floating Point Double
Indexed) instruction, 5-113-5-114

moving the contents of one to another, using
fmr (Floating Move Register) instruction,
5-79-5-80

negating the absolute contents of, using fnabs
(Floating Negative Absolute Value) instruction,
5-83-5-84

negating the contents of, using fneg (Floating
Negate) instruction, 5-85-5-86

placing doubleword of data from memory into,
using Ifdux (Load Floating Point Double With
Update I ndexed) instruction, 5-111-5-112

storing contents into double word storage,
using stfd (Store Floating Point Double)
instruction, 5-273-5-274

storing contents into doubleword storage, using
stfdu (Store Floating Point Double With
Update) instruction, 5-275-5-276

storing contents into the doubleword storage,
using stfdux (Store Floating Point Double With
Update Indexed) instruction, 5-277-5-278

storing in the doubleword storage, using stfdx
(Store Floating Point Double Indexed)
instruction, 5-279-5-280

storing the absolute value of contents of a
Floating Point register in a, using fabs
(Floating Absolute Value) instruction,
5-67-5-68

Floating Point Status and Control Register
copying an immediate value into a field of,

using mtfsfi (Move To FPSCR Field
Immediate) instruction, 5-176-5-177

copying the Floating Point Register contents
into, uSing mtfst (Move To FPSCR Fields)
instruction, 5-174-5-175

filling the upper 32 bits with ones after loading,
using mffs (Move From FPSCR) instruction,
5-167-5-168

loading contents into a Floating Point Register,
using mffs (Move From FPSCR) instruction,
5-167-5-168

setting a specified bit to one, using mtfsb 1
(Move To FPSCR Bit 1) instruction,
5-178-5-179

setting a specified bit to zero, using mtfsbO
(Move To FPSCR Bit) instruction,
5-180-5-181

Index X-3

Floating Point Status and Control Register field,
copying the bits into the Condition Register, using
mcrfs (Move To Condition Register From FPSCR)
instruction, 5-163-5-164

floating-point constant, storing at the next fullword
location, using .float pseudo-op, 6-30

fm (Floating Multiply) instruction, 5-75-5-76
fma (Floating Multiply Add) instruction, 5-77-5-78
fmr (Floating Move Register) instruction,
5-79-5-80

fms (Floating Multiply Subtract) instruction,
5-81-5-82

fnabs (Floating Negative Absolute Value) instruction,
5-83-5-84

fneg (Floating Negate) instruction, 5-85-5-86
fnma (Floating Negative Multiply Add) instruction,

5-87-5-88
fnms (Floating Negative Multiply Subtract)

instruction, 5-89-5-91
frsp (Floating Round to Single Precision) instruction,
5-92-5-94

function

H

identifying, using .function pseudo-op, 6-31
identifying the beginning of, using .bf

pseudo-op, 6-11
identifying the end of, using .ef pseudo-op,

6-25

hash value, associating with an external symbol,
using .hash pseudo-op, 6-33

I
included file

identifying the beginning of, using .bi
pseudo-op, 6-12

identifying the end of, using .ei pseudo-op,
6-26

inner block
identifying the beginning of an, using .bb

pseudo-op, 6-9
identifying the end of, using .eb pseudo-op,

6-23
Interrupt, generating when a condition is true, using

ti (Trap Immediate) instruction, 5-315-5-316
interrupt, generating when a condition is true, using t

(Trap) instruction, 5-313-5-314
interrupts, supervisor call, generating an interrupt,

using svc (Supervisor Call) instruction,
5-311-5-312

L
I (Load) instruction, 5-97-5-98
Ibrx (Load Byte Reverse Indexed) instruction,
5-99-5-100

Ibz (Load Byte And Zero) instruction, 5-101
Ibzux (Load Byte and Zero With Update Indexed)

instruction, 5-104-5-105

X-4 Assembler Language Reference

Ibzx (Load Byte And Zero Indexed) instruction,
5-106

Icomm pseudo-op, 6-34-6-35
leading zeros, placing in a general purpose register,

using cntlz (Count Leading Zeros) instruction, 5-44
Ifd (Load Floating Point Double) instruction,
5-107-5-108

Ifdu (Load Floating Point Double With Update)
instruction, 5-1 09-5-11 0

Ifdux (Load Floating Point Double With Update
Indexed) instruction, 5-111-5-112

Ifdx (Load Floating Point Double Indexed)
instruction, 5-113-5-114

Ifs (Loading Floating Point Single) instruction,
5-115-5-116

Ifsu (Load Floating Point Single With Update)
instruction, 5-117-5-118

Ifsux (Load Floating -Point Single With Update
Indexed) instruction, 5-119-5-120

Ifsx (Load Floating Point Single Indexed) instruction,
5-121-5-122

Iha (Load Half Algebraic) instruction, 5-123-5-124
Ihau (Load Half Algebraic With Update) instruction,
5-125-5-126

Ihaux (Load Half Algebraic With Update Indexed)
instruction, 5-127-5-128

Ihax (Load Half Algebraic Indexed) instruction,
5-129-5-130

Ihbrx (Load Half Byte Reverse Indexed) instruction,
5-131-5-132

1hz (Load Half And Zero) instruction, 5-133-5-134
Ihzu (Load Half And Zero With Update) instruction,
5-135-5-136

Ihzux (Load Half And Zero With Update Indexed)
instruction, 5-137-5-138

Ihzx (Load Half And Zero Indexed) instruction,
5-139-5-140

iii (Load Immediate Lower) instruction, 5-141
line

number, identifying, using .Iine pseudo-op,
6-36

representing the number of a, using .xline
pseudo-op, 6-55

Link Register, branching conditionally to an address
in the, using bcr (Branch Conditional Register)
instruction, 5-30-5-31

linker, making a symbol globally visible to the, using
.globl pseudo-op, 6-32

liu (Load Immediate Upper) instruction, 5-142
1m (Load Multiple) instruction, 5-143-5-144
local common section, defining, using .lcomm

pseudo-op, 6-34-6-35
local symbol, facilitating use in expressions, using

.tocof pseudo-op, 6-50-6-51
location counter

advancing until a specified boundery is
reached, using .align pseudo-op, 6-7-6-8

setting the value of the, using .org pseudo-op,
6-38

Iscbx (Load String And Compare Byte Indexed)
instruction, 5-145-5-147

lsi (Load String Immediate) instruction,
5-148-5-149

Isx (Load String Indexed) instruction, 5-150-5-151
lu (Load With Update) in$truction, 5-152-5-153
lux (Load With Update Indexed) instruction,

5-154-5-155
Ix (Load I ndexed) instruction, 5-156-5-157

M
Machine State Register, copying the contents into a

general purpose register, using mfmsr (Move From
Machine State Register) instruction, 5-169

maskg (Mask Generate) instruction, 5-158-5-159
maskir (Mask Insert From Register) instruction,
5-160-5-161

masks, generating instance of ones and zeros, using
maskg (Mask Generate) instruction, 5-158-5-159

mcrf (Move Condition Register Field) instruction,
5-162

mcrfs (Move To Condtion Register From FPSCR)
instruction, 5-163-5-164

mcrxr (Move From Condition Register Frpm XER)
instruction, 5-165

memory
loading a byte of data from

using Ibz (Load Byte and Zero) instruction,
5-101

using Ibzu (Load Byte And Zero With
Update) instruction, 5-102-5-103

using Ibzux (Load Byte And Zero With
Update Indexed) instruction,
5-104-5-105

loading a byte of data into, Ibzx (Load Byte And
Zero Indexed) instruction, 5-106

loading a byte-reversed halfword of data from,
using Ihbrx (Load Half Byte Reverse Indexed)
instruction, 5-131-5-132

loading a byte-reversed word of data from,
using Ibrx (Load Byte Reverse Indexed)
instruction, 5-99-5-100

loading a doubleword of data from
using Ifd (Load Floating Point Double)

instruction, 5-107-5-108
using Ifdu (Loading Floating Point Double

With Update) instruction, 5-109-5-110
using Ifdux (Load Floating Point Double

With Update Indexed) instruction,
5-111-5-112

using Ifdx (Load Floating Point Double
Indexed) instruction, 5-113-5-114

loading a floating point single precision number
from

using Ifsu (Load Floating Point Single With
Update) instruction, 5-117-5-118

using Ifsx (Load Floating Point Single
Indexed) instruction, 5-121-5-122

loading a floating point single precision number
into

using Ifs (Load Floating Point Single)
instruction, 5-115-5-116

using Ifsux (Load Floating Point Single With
Update Indexed) instruction,
5-119-5-120

loading a halfword of data from
using Iha (Load Half Algebraic) instruction,
5-123-5-124

using Ihau (Load Half Algebraic With
Update) instruction, 5-125-5-126

using Ihaux (Load Half Algebraic With
Update Indexed) instruction,
5-127-5-128

using Ihax (Load Half Algebraic Indexed)
instruction, 5-129-5-130

using 1hz (Load Half And Zero) instruction,
5-133-5-134

using Ihzu (Load Half And Zero With
Update) instruction, 5-135-5-136

using Ihzux (Load Half And Zero With
Update Indexed) instruction,
5-137-5-138

using Ihzx (Load Half And Zero Indexed)
instruction, 5-139-5-140

loading a word of data from
using I (Load) instruction, 5-97-5-98
using lu (Load With Update) instruction,
5-152-5-153

using lux (Load With Update Indexed)
instruction, 5-154-5-155

using Ix (Load Indexed) instruction,
5-156-5-157

loading consecutive bytes from
using lsi (Load String Immediate)

instruction, 5-148-5-149
using Isx (Load String Indexed) instruction,
5-150-5-151

setting the remaining 24 bits after loading into,
Ibzx (Load Byte And Zero Indexed)
instruction, 5-106

setting the remaining 24 bits to 0 after loading
from

using Ibz (Load Byte And Zero) instruction,
5-101

using Ibzux (Load Byte And Zero With
Update Indexed) instruction,
5-104-5-105

setting the remaining 24 bits to 0 after loading
in, using Ibzu (Load Byte And Zero With
Update) instruction, 5-102-5-103

mfcr (Move From Condition Register) instruction,
5-166

mffs (Move From FPSCR) instruction,
5-167-5-168

Index X-5

mfmser (Move From Machine State Register)
instruction, 5-169

mfspr (Move From Special Purpose Register)
instruction, 5-170-5-171

mtcrf (Move To Condition Register Fields)
instruction, 5-172-5-173

mtfsb 1 (Move To FPSCR Bit 1) instruction,
5-178-5-179

mtfsbO (Move To FPSCR Bit) instruction,
5-180-5-181

mtfsf (Move To FPSCR Fields) instruction,
5-174-5-175

mtfsfi (Move To FPSCR Field Immediate) instruction,
5-176-5-177

mtspr (Move To Special Purpose Register)
instruction, 5-182-5-183

mul (Multiply) instruction, 5-184-5-185
muli (Multiply Immediate) instruction, 5-186
muls (Multiply Short) instruction, 5-187-5-188

N
nabs (Negative Absolute) instruction, 5-189-5-190
nand (NAND) instruction, 5-191-5-192
neg (Negate) instruction, 5-193-5-194
nor (NOR) instruction, 5-195-5-196

o
or (OR) instruction, 5-197-5-198
orc (OR With Complement) instruction,
5-199-5-200

oril (OR Immediate Lower) instruction, 5-201
oriu (OR Immediate Upper) instruction, 5-202
output file, skipping a specified number of bytes in

the, using .space pseudo-op, 6-42
p

program, generating an interrupt
using t (Trap) instruction, 5-313-5-314
using ti (Trap Immediate) instruction,

5-315-5-316
pseudo-op

addressing, use in, 6-3-6-6
calling conventions, use in, 6-4
data alignment, use for, 6-3-6-6
defining sections, use in, 6-3-6-6
external symbols, use in defining, 6-4-6-6
functions, relationship to, 6-2
functions of, 6-2
map storage, use in, 6-3
notational conventions for, 6-4
providing information required by symbolic

debugger, 6-4
pseudo-operation. See pseudo-op

X-6 Assembler Language Reference

R
registers

general purpose
adding complement from -1 with carry,

using sfme (Subtract From Minus One
Extended) instruction, 5-218-5-219

adding contents to the value of the Carry
bit, using ae (Add Extended) instruction,
5-6-5-7

adding contents with 16-bit signed integer
using ai (Add Immediate) instruction,
5-8

using ai. (Add Immediate and Record)
instruction, 5-9 .

adding contents with Carry bit and -1,
using ame (Add to Minus One Extended)
instruction, 5-10-5-11

adding the complement of the contents with
the Carry and zero, using sfze (Subtract
From Zero Extended) instruction,
5-220-5-221

adding the contents of, using a (Add)
Instruction, 5-2-5-3

adding zero and the value of the Carry bit
to the contents of, 5-18-5-19

ANDing a generated mask with the rotated
contents of

using rlinm (Rotate Left Immediate
Then AND With Mask) instruction,
5-205-5-206

using rlnm (Rotate Left Then AND With
Mask) instruction, 5-209-5-210

ANDing contents with the complement of
another, 5-14-5-15

ANDing logically the contents of, using the
and (AND) instruction, 5-12-5-13

ANDing the least significant 16 bits with
16-bit unsigned integer, using andil. (AND
Immediate Lower) instruction, 5-16

ANDing the most 16bits with a 16-bit
unsigned integer, using andiu. (AND
Immediate Upper) instruction, 5-17

changing the arithmetic sign of the contents
of, using neg (Negate) instruction,
5-193-5-194

comparing contents logically, using cmpl
(Compare Logical) instruction,
5-40-5-41

comparing contents with a value
algebraically, using cmpi (Compare
Immediate) instruction, 5-38-5-39

comparing contents with an unsigned
integer logically, using cmpli (Compare
Logical Immediate) instruction,
5-42-5-43

comparing the contents algebraically, using
cmp (Compare) instruction, 5-36-5-37

computing the difference between the
contents and a signed 16-bit integer,
using doz (Difference or Zero Immediate)
instruction, 5-60

computing the difference between the
contents of two, using doz (Difference or
zero) instruction, 5-58-5-59

copying bit 0 of the halfword into the
remaining 16 bits

using Iha (Load Half Algebraic)
instruction, 5-123-5-124

using Ihax (Load Half Algebraic
Indexed) instruction, 5-129-5-130

copying bit 0 of the halfword into the
remaining 16 bits of the

using Ihau (Load Half Algebraic With
Update) instruction, 5-125-5-126

using Ihaux (Load Half Algebraic With
Update Indexed) instruction,
5-127-5-128

copying Condition Register contents into,
using mfcr (Move From Condition
Register) instruction, 5-166

copying contents into a special purpose
register, using mtspr (Move To Special
Purpose Register) instruction,
5-182-5-183

copying contents into the Condition
Register, using mtcrf (Move To Condition
Register Fields) instruction,
5-172-5-173

copying special purpose register contents
into, using mfspr (Move From Special
Purpose Register) instruction,
5-170-5-171

copying the Machine State Register
contents into, using mfmsr (Move From
Machine State Register) instruction,
5-169

dividing by the contents by the contents of
another general purpose register, using
divs (Divide Short) instruction,
5-56-5-57

dividing general purpose register contents
by the contents of a, 5-53-5-55

generating a mask of ones and zeros for
loading into, using maskg (Mask
Generate) instruction, 5-158-5-159

inserting contents of one into another under
bit mask control, maskir (Mask Insert
From Register) instruction, 5-160-5-161

loading a 16-bit signed integer into a, using
Iii (Load Immediate Lower) instruction,
5-141

loading a 16-bit unsigned integer into the
upper half of, using liu (Load Immediate
Upper) instruction, 5-142

loading a word of data from memory into a,
using lu (Load With Update) instruction,
5-152-5-153

loading a word of data into, using Ix (Load
Indexed) instruction, 5-156-5-157

loading a wording of data into a, using lux
(Load With Update Indexed) instruction,
5-154-5-155

loading consecutive bytes from memory
into consecutive

using lsi (Load String Immediate)
instruction, 5-148-5-149

using Isx (Load String Indexed)
instruction, 5-150-5-151

loading consecutive bytes into, using Iscbx
(Load String And Compare Byte Indexed)
instruction, 5-145-5-147

loading consecutive words into more than
one, using 1m (Load Multiple) instruction,
5-143-5-144

logically complementing the result of
ANDing the contents of two, using nand
(NAND) instruction, 5-191-5-192

logically complementir;; t"e result of ~Ring
the contents of two, L: ::J nor (NOR)
instruction, 5-195-5-196

logically ~Ring the content of two, using or
(OR) instruction, 5-197-5-198

logically ~Ring the contents with the
complement of the contents of, using orc
(OR With Complement) instruction,
5-199-5-200

merging a word of zeros with the MQ
Register contents, using srlq (Shift Right
Long With MQ) instruction, 5-259-5-260

merging rotated contents with a word of 32
sign bits

using sra (Shift Right Algebraic)
instruction, 5-241-5-242

using srai (Shift Right Algebraic
Immediate) instruction,
5-243-5-244

using sraiq (Shift Right Algebraic
Immediate With MQ) instruction,
5-245-5-246

using sraq (Shift Right Algebraic With
MQ) instruction, 5-247-5-248

merging rotated contents with the MQ
Register contents

using sreq (Shift Right Extended With
MQ) instruction, 5-253-5-254

Index X-7

using srliq (Shift Right Long Immediate
With MQ) instruction, 5-257-5-258

merging the rotated contents results with
the MQ Register contents, using slliq
(Shift Left Long Immediate With MQ)
instruction, 5-233-5-234

merging the rotated contents with the MQ
Register contents, using srlq (Shift Right
Long With MQ) instruction, 5-259-5-260

multiplying the contents by a 16-bit signed
integer, using muli (Multiply Immediate)
instruction, 5-186

multiplying the contents of two, using mul
(Multiply) instruction, 5-184-5-185

multiplying the contents of two into, using
muls (Multiply Short) instruction,
5-187-5-188

negating the absolute value of, using nabs
(Negative Absolute) instruction,
5-189-5-190

ORing the lower 16 bits of the contents with
a 16-bit unsigned integer, using oril (OR
Immediate Lower) instruction, 5-201

ORing the upper 16 bits of the contents
with a 16-bit unsigned integer, using oriu
(OR Immediate Upper) instruction, 5-202

placing a copy of rotated contents in the
MQ Register, using srea (Shift Right
Extended Algebraic) instruction,
5-251-5-252

placing a copy of rotated data in the MQ
register, using sle (Shift Left Extended)
instruction, 5-227-5-228

placing rotated contents in the MQ Register
using sliq (Shift Left Immediate with

MQ) instruction, 5-231-5-232
using slq (Shift Left with MQ)

instruction, 5-237-5-238
using sriq (Shift Right Immediate With

MQ) instruction, 5-255-5-256
placing the absolute value of the contents

ina, using abs (Absolute) instruction,
5-4-5-5

placing the logical AND of the rotated
contents in, using srq (Shift Right With
MQ) instruction, 5-261-5-262

placing the number of leading zeros in a,
5-44

placing the rotated contents in the MQ
Register, using srq (Shift Right With MQ)
instruction, 5-261-5-262

rotating contents left
merging with masked MQ Register

contents, using sleq (Shift Left
Extended with MQ) Instruction,
5-229-5-230

using sl (Shift Left) instruction,
5-225-5-226

X-8 Assembler Language Reference

using sle (Shift Left Extended)
instruction, 5-227-5-228

using sliq (Shift Left Immediate with
MQ) instruction, 5-231-5-:-232

using slliq (Shift Left Long Immediate
With MQ) instruction, 5-233-5-234

using sllq (Shift Left Long with MQ)
instruction, 5-235-5-236

using slq (Shift Left with MQ)
instruction, 5-237-5-238

using sr (Shift Right) instruction,
5-239-5-240

using sra (Shift Right Algebraic)
instruction, 5-241-5-242

using srai (Shift Right Algebraic
Immediate) instruction,
5-243-5-244

using sraiq (Shift Right Algebraic
Immediate With MQ) instruction,
5-245-5-246

using sraq (Shift Right Algebraic With
MQ) instruction, 5-247-5-248

using sre (Shift Right Extended)
instruction, 5-249-5-250

using srea (Shift Right Extended
Algebraic) instruction, 5-251-5-252

using sreq (Shift Right Extended With
MQ) instruction, 5-253-5-254

using sriq (Shift Right Immediate With
MQ) instruction, 5-255-5-256

using srliq (Shift Right Long Immediate
With MQ) instruction, 5-257-5-258

using srlq (Shift Right Long With MQ)
instruction, 5-259-5-260

using srq (Shift Right With MQ)
instruction, 5-261-5-262

rotating the bit 0 right, using rrib (Rotate
Right And Insert Bit) instruction,
5-211-5-212

rotating the contents left
using rlimi (Rotate Left Immediate

Then Mask Insert) instruction,
5-203-5-204

using rlmi (Rotate Left Then Mask
Insert) instruction, 5-207-5-208

using rlnm (Rotate Left Then AND With
Mask) instruction, 5-209-5-210

setting remaining 16 bits to 0 in a, using
Ihbrx (Load Half Byte Reverse Indexed)
instruction, 5-131-5-132

setting the remaining 16 bits to zero after
loading, using Ihzx (Load Half And Zero
Indexed) instruction, 5-139-5-140

setting the remaining 16 bits to zero in,
using Ihzux (Load Half And Zero With
Update Indexed) instruciton,
5-137-5-138

setting the remaining 26 puts to zero after
loading, using Ihzu (Load Half And Zero
With Update) instruction, 5-135-5-136

storing a byte into memory, using stbx
(Store Byte Indexed) instruction, 5-272

storing a byte of data in memory, using stb
(Store Byte) instruction, 5-265

storing a byte of data into memory, using
stbux (Store Byte With Update Indexed)
instruction, 5-270-5-271

storing a byte-reversed word of data into
memory, using stbrx (Store Byte Reverse
Indexed) instruction, 5-266-5-267

storing a halfword of data into memory
using sth (Store Half) instruction,
5-289-5-290

using sthu (Store Half With Update)
instruction, 5-293-5-294

using sthux (Store Half With Update
Indexed) instruction, 5-295-5-296

using sthx (Store Half Indexed)
instruction, 5-297-5-298

storing a halfword of data with two bytes
reversed into memory, using sthbrx (Store
Half Byte Reverse Indexed) instruction,
5-291-5-292

storing a word into memory, using st
(Store) instruction, 5-263-5-264

storing a word of data into memory
using stu (Store With Update)

instruction, 5-305-5-306
using stux (Store with Update Indexed)

instruction, 5-307-5-308
using stx (Store Indexed) instruction,
5-309-5-310

storing byte into memory with the address
in a, using stbu (Store Byte With Update)
instruction, 5-268-5-269

storing consecutive bytes from consecutive
registers into memory

using stsi (Store String Immediate)
instruction, 5-301-5-302

using stsx (Store String Indexed)
instruction, 5-303-5-304

storing the contents of consecutive
registers into memory, using stm (Store
Multiple) instruction, 5-299-5-300

subtracting contents from the sum of a,
using sfe (Subtract From Extended),
5-215-5-216

subtracting the contents of one from
another, using sf (Subtract From)
instruction, 5-213-5-214

subtracting the value of a signed integer
from the contents of,'using si (Subtract
Immediate) instruction, 5-222

subtracting value of a signed integer from
the contents of, using si. (Subtract

Immediate and Record) instruction,
5-223-5-224

XORing the contents and 16-bit unsigned
integer, using xoril (XOR Immediate
Lower) instruction, 5-319

XORing the contents of, using eqv
(Equivalent) instruction, 5-61-5-62

XORing the contents of two, using xor
(XOR) instruction, 5-317-5-318

XORing the upper 16 bits with a 16-bit
unsigned integer, using xoriu (Immediate
Upper) instruction, 5-320

general purposes, setting the remaining 16 bits
to 0 after loading, using 1hz (Load Half And
Zero) instruction, 5-133-5-134

subtracting the contents from a 16-bit signed
integer, using sfi (Subtract From Immediate)
instruction, 5-217

rlimi (Rotate Left Immediate Then Mask Insert)
instruction, 5-203-5-204

rlinm (Rotate Left Immediate Then AND With Mask)
instruction, 5-205-5-206

rlmi (Rotate Left Then Mask Insert) instruction,
5-207-5-208

rlnm (Rotate Left Then AND With Mask) instruction,
5-209-5-210

rrib (Rotate Right And Insert Bit) instruction,
5-211-5-212

S
sf (Subtract From) instruction, 5-213-5-214
sfe (Subtract From Extended) instruction,
5-215-5-216

sfi (Subtract From Immediate) instruction, 5-217
sfme (Subtract From Minus One Extended)

instruction, 5-218-5-219
sfze (Subtract From Zero Extended) instruction,
5-220-5-221

si (Subtract Immediate) instruction, 5-222
si. (Subtract Immediate and Record) instruction,

5-223-5-224
signed integer, extending 16-bit to 32 bits, using exts

(Extend Sign) instruction, 5-63-5-64
sl (Shift Left) instruction, 5-225-5-226
sle (Shift Left Extended) instruction, 5-227-5-228
sleq (Shift Left Extended with MQ) instruction,

5-229-5-230
sliq (Shift Left Immediate with MQ) instruction,

5-231-5-232
slliq (Shift Left Long Immediate With MQ) instruction,

5-233-5-234
sllq (Shift Left Long with MQ) instruction,
5-235-5-236

slq (Shift Left with MQ) instruction, 5-237-5-238
source file, identifying the name of a, using . file

pseudo-op, 6-29

Index X-9

source module, identifying a symbol defined in
another, using .extern pseudo-op, 6-28

special purpose register
copying general purpose register contents into,

using mtspr (Move To Special Purpose
Register) instruction, 5-182-5-183

copying the contents into a general purpose
register, using mfspr (Move From Special
Purpose Register) instruction, 5-170-5-171

sr (Shift Right) instruction, 5-239-5-240
sra (Shift Right Algebraic) instruction, 5-241-5-242
srai (Shift Right Algebraic Immediate) instruction,

5-243-5-244
sraiq (Shift Right Algebraic Immediate With MO)

instruction, 5-245-5-246
sraq (Shift Right Algebraic With MO) instruction,

5-247-5-248
sre (Shift Right Extended) instruction, 5-249-5-250
srea (Shift Right Extended Algebraic) instruction,

5-251-5-252
sreq (Shift Right Extended With MO) instruction,

5-253-5-254
sriq (Shift Right Immediate With MO) instruction,

5-255-5-256
srliq (Shift Right Long Immediate With MO)

instruction, 5-257-5-258
srlq (Shift Right Long With MO) instruction,
5-259-5-260

srq (Shift Right With MO) instruction, 5-261-5-262
st (Store) instruction, 5-263-5-264
stabx pseudo-op, 6-43
static block

identifying the beginning of a, using .bs
pseudo-op, 6-13

identifying the end of a, using .es pseudo-op,
6-27

stb (Store Byte) instruction, 5-265
stbrx (Store Byte Reverse Indexed) instruction,

5-266-5-267
stbu (Store Byte With Update) instruction,
5-268-5-269

stbux (Store Byte With Update Indexed) instruction,
5-270-5-271

stbx (Store Byte Indexed) instruction, 5-272
stfd (Store Floating Point Double) instruction,
5-273-5-274

stfdu (Store Floating Point Double With Update)
instruction, 5-275-5-276

stfdux (Store Floating Point Double With Update
Indexed) instruction, 5-277-5-278

stfdx (Store Floating Point Double Indexed)
instruction, 5-279-5-280

X-10 Assembler Lanauaae Reference

stfs (Store Floating Point Single) instruction,
5-281-5-282

stfsu (Store Floating Point Single With Update)
instruction, 5-283-5-284

stfsux (Store Floating Point Single With Update
Indexed) instruction, 5-285-5-286

stfsx (Store Floating Point Single Indexed)
instruction, 5-287-5-288

sth (Store Half) instruction, 5-289-5-290
sthbrx (Store Half Byte Reverse Indexed) instruction,
5-291-5-292

sthu (Store Half With Update) instruction,
5-293-5-294

sthux (Store Half With Update Indexed) instruction,
5-295-5-296

sthx (Store Half Indexed) instruction, 5-297-5-298
stm (Store Multiple) instruction, 5-299-5-300
string, terminating, using .string pseudo-op, 6-44
stsi (Store String Immediate) instruction,
5-301-5-302

stsx (Store String Indexed) instruction,
5-303-5-304

stu (Store With Update) instruction, 5-305-5-306
stux (Store With Update Indexed) instruction,

5-307-5-308
stx (Store Indexed) instruction, 5-309-5-310
svc (Supervisor Gall) Instruction, 5-311-5-312

T
t (Trap) instruction, 5-313-5-314
table of contents. See TOC
target address

branching based on value of Condition Register
bit, using bb (Branch on Condition Register
Bit) instruction, 5-22-5-24

branching conditionally to, using bc (Branch
Conditional) instruction, 5-25-5-27

branching to, using b (Branch) instruction,
5-20-5-21

ti (Trap Immediate) instruction, 5-315-5-316
TOC, defining in a module, using .toc pseudo-op,

6-49

V
vbyte pseudo-op, 6-54

X
xor (XOR) instruction, 5-317-5-318
xoril (XOR) Immediate Lower) instruction, 5-319
xoriu (Immediate Upper) instruction, 5-320

Reader's Comment Form

Assemble Langauge Reference
SC23-2197-00

Please use this form only to identify publication errors or to request changes in
publications. Your comments assist us in improving our publications. Direct any requests for
additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may
use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

o If your comment does not need a reply (for example, pointing out a typing error), check this
box and do not include your name and address below. If your comment is applicable, we
will include it in the next revision of the manual.

o If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved remarketer to request
additional publications.

Please print

Date -----
Your Name --____________________________________ __

Company Name ______________________________________ __

Mailing Address ----------------------------------

PhoneNo.~--~~-----------------
Area Code

No postage necessary if mailed in the U.S.A

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

,---
I PIO:! PIO:!

I
I
I
I
b
c::
::i
C> c::

..Q «
"0
"0 u.
o
'5
(.)

I
I
I
I
I
I
I
I
I
I
I
I
-r---~--.

I adel pue PIO:! aldelS lON 00 aseald adel pue PIO:!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

---------- ----- ---- - ---- - - ------------ ,-

@ IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2197 -00

5C23-2L97-00 ,

