

First Edition (March 1990)

This edition of the User’s Guide for IBM AIX VS COBOL Compiler/6000 applies to Version Number 1.1 of
the IBM AIX VS COBOL Compiler/6000 Licensed Program and to all subsequent releases of these products
until otherwise indicated in new releases or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow dis-
claimer of express or implied warranties in certain transactions; therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or infor-
mation must not be construed to mean that IBM intends to announce such IBM products, programming, or
services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM’s licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

IBM is a registered trademark of International Business Machines Corporation.

©Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

©Copyright Micro Focus, Ltd. 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or disclo-
sure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks apply to this book.

IBM is a registered trademark of International Business Machines Corporation.
RT is a registered trademark of International Business Machines Corporation.
AIX is a trademark of International Business Machines Corporation.

AIX VS COBOL Compiler/6000 is a trademark of International Business
Machines Corporation.

OS/VS COBOL and VS COBOL II are trademarks of International Business
Machines Corporation.

Micro Focus and VS COBOL Workbench are trademarks of Micro Focus.

Micro Focus COBOL,/2, VS COBOL, FILESHARE, LEVEL II COBOL/ET,
Professional COBOL, Professional COBOL/2, and ANIMATOR are trademarks
of Micro Focus.

UNIX is a registered trademark of AT&T.
RM/COBOL is a trademark of Ryan McFarland Corporation.
Microsoft is a trademark of Microsoft Corporation.

Data General is a trademark of Data General Corporation.

Trademarks and Acknowledgements iii

iv User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Book

This book explains how to develop and execute COBOL programs on the IBM AIX
Operating System.

Who Should Read This Book

This book is intended for users who have a good understanding of the COBOL pro-
gramming language. A detailed presentation is provided in the Language Reference.
Users should also be familiar with the IBM AIX Operating System.

How to Use This Book

The following highlighting and notation conventions are used in this book:

Commands, keywords, file names, and keys appear in bold type. Not all com-
mands are case-sensitive. For example, you can type b or B for break.

New terms appear in bold italic type.
Examples appear in monospace type.

Lowercase italics appear when the presence of a variable item is implied, for
which you must substitute a particular value.

ACCEPT dataname FROM CRT
When items are enclosed in braces { }, you must choose only one of the items.

When items are enclosed in square brackets [], you can choose one or none of
the items.

An item followed by an ellipsis . . . may be repeated multiple times.

CALL procedure USING parameter . . .

In text and in command line formats, the symbol <« is used to represent the
Enter or Return key on your keyboard.

How This Book is Organized

This book contains the following information:

Chapter 1, “Introduction” provides an overview of using IBM AIX VS COBOL
on the IBM AIX Operating System.

Chapter 2, “Advice on Writing COBOL Programs” provides information about
how to write AIX VS COBOL programs as efficiently as possible.

Chapter 3, “Device- and File-Handling” describes AIX files and devices as they
appear to AIX VS COBOL programs.

Chapter 4, “The COBOL Interface” describes the cob command, which provides
the user interface to the AIX VS COBOL system.

Chapter 5, “Compiler Options” describes the system-wide compiler options and
their default values.

About This Book V

e Chapter 6, “Native Code Generator Options” describes the Native Code Gener-
ator options and their default values.

* Chapter 7, “Running an AIX VS COBOL Program” describes the procedure for
running an AIX VS COBOL program.

e Chapter 8, “File Sharing in the Multi-User Environment” describes how AIX
VS COBOL provides independent COBOL programs with the ability to share
data files in AIX VS COBOL multiple-user environments.

e Chapter 9, “Advanced Programming Features” describes three advanced pro-
gramming features: library subroutines, Run Time Environment (RTE) subpro-
grams for special features, and the file handler.

¢ Chapter 10, “Configuring Your AIX VS COBOL System” describes how to alter
the default behavior of the AIX VS COBOL ACCEPT and DISPLAY state-
ments.

e Chapter 11, “Debugging Your Program Using ANIMATOR?” describes how to
debug your programs interactively using ANIMATOR.

e Chapter 12, “Designing Display Screens and Programs Using FORMS-2"
describes how to use FORMS-2 to create and edit data entry screens and pro-
grams in interactive mode.

¢ Chapter 13, “Ryan-McFarland COBOL: Conversion Series 3” describes how to
use IBM AIX VS COBOL to process Version 2 RM/COBOL source programs.

¢ Chapter 14, “Data General COBOL: Conversion Series 5” describes how to
migrate from the DGCOBOL environment to an AIX VS COBOL environment.

e Chapter 15, “Error Messages” lists error messages that you may see in syntax
checking, code generation, and system-generated messages.

* Appendix A, “Environment Variables” describes the environment variables you
can set for AIX VS COBOL.

¢ Appendix B, “National Language Suppert” provides information on national
language support.

* Appendix C, “Character Sets and Collating Sequence” contains tables of char-
acter sets and the collating sequence for AIX VS COBOL.

¢ Appendix D, “Packaging Application Programs” explains how to compile appli-
cation programs that will be distributed.

Related Publications

The AIX VS COBOL Compiler/6000 documentation is available in hardcopy publi-
cations only. Softcopy information to support AIX and other licensed programs is
provided with the product. The entire AIX library is available as softcopy on a
CD-ROM. Refer to the operating system documentation for more detailed informa-
tion on the various features of AIX. The following hardcopy documentation is also
available.

Language Reference describes how to compile and execute AIX VS COBOL pro-
grams.

vi User’s Guide for IBM AIX VS COBOL Compiler/6000

Ordering Additional Copies of This Book

To order additional copies of this book (without the program media), use form
number SC23-2178-00.

About This Book Vil

vill User’s Guide for IBM AIX VS COBOL Compiler/6000

Contents

Chapter 1. Introduction 1-1
Contents 1-2
About This Chapter 1-3
Introduction 1-4
AIX VS COBOL System Components 1-4
Compiler 1-5
Native Code Generator 1-5
Run Time Environment 1-5
Linker 1-5
ANIMATOR e 1-5
FORMS-2 . . e 1-5
Static Linking and Dynamic Loading 1-6
Statically Linked Code T 1-6
Dynamically Loaded Code 1-6
Program Development Cycle 1-6
Program Source Conventions 1-7
Checking Out the AIX VS COBOL System with Demonstration Programs 1-8
pi.cbl .. 19
stockl.cbl 1-10
stock2.cbl . . L 1-11
Chapter 2. Advice on Writing COBOL Programs 2-1
Contents 2-2
About This Chapter 2-3
Optimizing COBOL Programs 2-4
Features tobe Used with Care 2-4
Programming Restrictions 2-5
Current Restrictions on the Use of Some SAA Functionality 2-6
Using Intermediate or Native Code 2-7
Optimizing Native Code 2-8
Handling Large Programs, - 2-8
Segmentation (Overlaying) 29
Interprogram Communication (Call and Cancel) 2-9
Calling AIX VS COBOL Subprograms 2-11
Search Sequence for Locating File Name 2-11
Multiple Entry-Points 2-13
Calling Non-COBOL Subprograms 2-15
Cancelling Non-COBOL Subprograms 2-18
Mixing C and COBOL Programs 2-18
Passing the Command Line 2-21
Calling Operating System Functions 2-23
AIX VS COBOL Dialect Flagging and Error Reporting 2-24
Chapter 3. Device- and File-Handling 3-1
Contents e e e 3-2
About This Chapter 3-3
Devices 3-4
File Assignment 3-4
Special Characters in Environment Variables 3-9
AIX VS COBOL Disk File Structure under AIX 3-12
Record-Sequential Files L 3-12

Contents IX

Line-Sequential Files, 3-12

Relative Files 3-12
Indexed Sequential Files 3-13
Library Files 3-16
File Restrictions 3-17
Input-Output Error-Handling (File Status) 3-17
Alternate File Status Table 3-18
Writing Output Directly toa Printer 3-20
Chapter 4. The COBOL Interface 4-1
Contents e 4-2
About This Chapter e 4-3
COBOL Interface Command 4-4
The Development Cycle 4-5
Option Specification 4-7
System-Wide Default Options 4-7
Optional User Default Options 4-7
Command Line Options 4-8
Embedded Source File Options e 4-15
Command Line Conventions 4-16
Command Line Examples 4-17
Chapter 5. Compiler Options 5-1
Contents e 5-2
About This Chapter 5-3
Format of Compiler Options 5-4
Permitted Options S-5
Excluded Combinations 5-23
ANSBS Options 5-24
Default Options 5-24
Mainframe Options 527
SAA OpPLONS e e e 5-27
Options Permitted in $SET Statements 5-28
Compiler Messages 5-29
Listing Format e 5-30
Chapter 6. Native Code Generator Options 6-1
Contents e 6-2
About This Chapter e 6-3
Permitted Options 6-4
Default Options 6-5
Native Code Generator Messages 6-6
Chapter 7. Rumning an AIX VS COBOL Program 7-1
Contents S 7-2
About This Chapter 7-3
Command Line Syntax 7-4
Command Line Examples 7-5
Examples 7-5
Switch Parameters 7-6
Run-Time Switches 7-7
ANIMATOR Switch (A) 7-7
Skip Locked Record Switch (B) 7-7
ANSI COBOL Debug Switch (D) 7-8
COBOL Symbol Switch (&) 7-8

X User’s Guide for IBM AIX VS COBOL Compiler/6000

Error Switch (E) 7-8

Compatibility Check Switch (F) 7-8
Keyboard Interrupt Switch () 7-9
ISAM Files Sequence Check Switch (K) 7-10
Memory Switch (I) e 7-10
Null Switch (N) 7-10
Dynamic Linkage Setup Switch (p) 7-10
File Status Error Switch (Q) 7-11
Reread Locked Record Switch (R) 7-11
Sort Memory Switch (8) 7-12
Sort Switch (S) 7-12
Tab Switch (T) 7-12
Examples e 7-13
Run Time Environment Error Messages 7-13
COBOL Profiler e 7-14
Profiler Directives 7-14
Profiler Qutput 7-15
Chapter 8. File Sharing in the Multi-User Environment 8-1
Contents 8-2
About This Chapter 8-3
A Typical Multi-User Environment 8-4
Including Multi-User Syntax in Your Program 8-4
Facilities for Multi-User AIXVSCOBOL 8-4
Data Locking 8-5
Organization of Shared Files 8-6
The Procedure Division 8-11
File Status 8-11
Demonstration Programs 8-13
Running the Demonstration Programs 8-13
Chapter 9. Advanced Programming Features 9-1
Contents 9-2
About This Chapter 9-3
Library Subroutines 9-4
cobsetjmp and coblongimp L 9-4
cobtidy 9-5
RTE Subprograms 9-5
Put a Character tothe Screen 9-6
Read a Character from the Keyboard 9-7
Split/Join a File Name 9-7
File-Related Operations 9-8
Modifying the Behavior of User Attributes 9-9
Modifying the Behavior of ACCEPT/DISPLAY 9-9
Display Screen Input and Output 9-11
Test Keyboard Status 9-13
Sound the Audible Alarm L oL ... 913
Move the Cursor to a Defined Position 9-13
Pack Byte 9-14
Unpack Byte 9-14
CRT Screen Handling 9-14
The ACCEPT and DISPLAY Statements 9-14
Display Attributes 9-15
Screen Handling From C 9-16
Using Escape Sequences to Send Attribute Information to the Screen 9-19

Contents Xi

File Handler 9-20

Interface to the COBOL File Handler 9-21
Operation Codes Passed in the Second Byte of the First Parameter 9-21
Information Passed in the FCD at Open Time 9-22
Information Passed for Other Operations 922

FCD Information Format 9-23

Key Definitions for Indexed Files 9-25
Global Information 9-25
Key Definitions 9-25
Component Definitions 9-26

CISAM Features i e e 9-26

Chapter 10. Configuring Your AIX VS COBOL System 10-1

Comtents 10-2

About This Chapter 10-3

Introduction 10-4

terminfo 10-5

cobkeymp 10-5

ADISCTRL e 10-5

Keyboard Conversion Process 10-5

keybef Utility 10-6
Specifying and Accessing Multiple or Alternate cobkeymp Files 10-7
Invoking the keybcf Utility e e e e 10-8
Using the keybef Utility 10-9
Maximum Size of keybef Buffers 10-14

adiscf Utility e 10-14
Invoking the adiscf Utility 10-14
Using the adiscf Utility 10-14

Chapter 11. Debugging Your Program Using ANIMATOR 11-1

Contents 11-2

About This Chapter 11-3

Introduction 11-4

Facilities Not Supported by ANIMATOR 11-5

Getting Started 11-5

Running ANIMATOR 11-6
Specifying Directives 11-6
ANIMATOR Directives 11-6
ANIMATOR Display Screen 11-7

Using ANIMATOR Commands 11-8
Help Display Screens 11-9
Animating STOCK1 11-9
Using Break Points 11-11
Examining the Contents of Data Items 11-13
Ending Animation L 11-14
Animating Your Own Programs 11-15
Using the ANIMATOR Switch 11-15
Command Line Switches 11-16
File Searches 11-16
Animating CALLed Programs FO 11-17
0OS/VS COBOL-Style PERFORMS 11-17
Other Remarks about Animation 11-18

Cursor Control Keys 11-18

ANIMATOR Commands 11-19
Help e 11-19

Xii User’s Guide for IBM AIX VS COBOL Compiler/6000

Align . .. 11-20
eXchange 11-20
Where L 11-20
IooKup e 11-21
word-left (<) and word-right (>), ... 11-21
Escape Key 11-21
Letter Commands 11-21
Step . .. e 11-21
GO . 11-22
next-If . .. L 11-22
Perform 11-23
Reset e 11-23
Break 11-24
Env . .. 11-27
QUery . . . e 11-32
Find 11-37
Locate 11-38
Text . . 11-39
Do . 11-40
ANIMATOR Command Summary 11-41
Chapter 12. Designing Display Screens and Programs Using FORMS-2 12-]
Contents 12-2
About This Chapter 12-3
Introduction 12-4
Outputs 12-5
Phases 12-5
Operator Interface 12-6
FORMS-2 Validation 12-7
Initialization Phase 12-16
Initialization Display Screen 101 L. 12-16
Initialization Display Screen 102 12-17
Work Phase e 12-18
Display Screen WO1 Lo 12-18
Work Display Screen 12-19
Work Phase Completion 12-28
Data Descriptions 12-29
Record Name and Data-Name Generation 12-29
Picture Generation 12-30
Editingthe DDS File 12-30
Incorporation of DDS File Contents 12-30
Checkout Program 12-31
Checkout Program Generation 12-31
Checkout Program Compilation 12-31
Checkout Program Running 12-31
Checkout Processing 12-32
Checkout Completion 12-32
Display Screen Image File 12-33
Display Screen Image File Generation 12-33
FORMS-2 Maintenance inieniean. .. 12-33
Printed Forms 12-34
Form Images in the Design Process 12-34
FORMS-2 User Display Screen Generation Example 12-35
Index Program 12-39

Contents Xiii

Index Program Generation 12-40

Index File Generation 12-41
Index Program Compilation 12-41
Index Program Running 12-41
User Index Program Example 12-43
Chapter 13. Ryan-McFarland COBOL: Conversion Series 3 13-1
Contents 13-2
About This Chapter 13-5
Converting RM/COBOL Applications to AIX VSCOBOL 13-6
Submitting RM/COBOL Source Programs to AIX VSCOBOL 13-6
Converting Data Files 13-6
Enhancing Your Converted Application 13-6
Other Considerations for Conversion 13-7
Submitting an RM/COBOL Application to the AIX VS COBOL System ... 13-7
Migrating from the RM/COBOL Environment 13-7
tabx Program 13-8
Source Compatibility 13-9
RM Directive 13-9
SPZERO Option e 13-9
Perform Statements 139
Typesof Data 13-10
COMPUTATIONAL-1 (COMP-1) Data Types 13-10
COMPUTATIONAL-6 (COMP-6) Data Types 13-10
COMPUTATIONAL (COMP) Data Types 13-10
Conversion Problem Solving 13-11
Length of Nonnumeric Literals 13-11
Source Code in Columns 73t0 80 13-12
Reserved Words 13-12
Numbering Segments 13-12
Program Identification and Data-Names 13-13
Column Number Specification 13-13
End-of-File Notification 13-13
HIGH-VALUES e 13-13
Duplicate Paragraph Names 13-14
Display of Input Data in Concealed ACCEPT Fields 13-14
Executable Code Problems 13-14
Trailing Blanks in Line-Sequential Files 13-15
Undefined Results of MOVE and Arithmetic Operations 13-15
Embedded Control Sequences in DISPLAY Statements 13-15
Redefinition of COMPUTATIONAL or COMPUTATIONAL-6 Data
Items e 13-16
ONSIZE ERROR Clause 13-17
Field Wrap-Around 13-17
COMPUTATIONAL-1 Data Items with a Picture Other Than S9(4) . .. 13-18
File and Record Locking, 13-19
Initialization of the WORKING-STORAGE 13-19
Converting Data Files for Use with Converted Programs 13-20
Supported Data File Types e 13-20
COMP/COMPUTATIONAL Data 13-20
COMP-3/COMPUTATIONAL-3 Data 13-21
COMP-6/COMPUTATIONAL-6 Data 13-22
DISPLAY Data e 13-22
Program Modifications Required by convert3 13-23
Running convert3 13-24

XiV User’s Guide for IBM AIX VS COBOL Compiler/6000

Running convert3 in Interactive Mode 13-24

File Details 13-25
PrintFile Name 13-25
Record Type Specification 13-26
Binary Sequential Files 13-28
Generate Program 13-28
Escape 13-29
Running convert3 in BatchMode 13-29
Running convert3 with a Parameter File 13-33
Using the File Conversion Program 13-33
Creating an Executable File Conversion Program 13-34
Running the File Conversion Program 13-34
Indexed Sequential Files with Duplicate Alternate Keys 13-34
convert3 and File Conversion Program Error Messages 13-35
convertd Error Messages 13-35
File Conversion Program Error Messages 13-36
Chapter 14. Data General COBOL: Conversion SeriesS 14-1
Contents 14-2
About This Chapter 14-3
Converting DG Interactive COBOL Applications to AIX VS COBOL 14-4
Submitting Source Programs L. 14-4
Enhancing Converted Applications 14-4
Source Compatibility 14-5
The DG Directive 14-5
Reserved Words 14-5
DG International Character Set 14-5
DG File Status and Other Exception Values 14-6
Calls e 14-6
LINKAGE SECTION Access« . vt vi ittt et 14-6
Arithmetic of Group Level Items 14-6
Run-Time Switches 14-6
Program Identification and Data-Names 14-6
Reformatting a DG Source File 14-6
Using reformS5 14-7
Reformatting Rules 14-7
Converting Data Files for Use with Converted Programs 14-7
Supported Data File Types 14-8
DG DataTypes 14-10
Source File Restrictions 14-11
The File Conversion Process 14-12
Running convertS 14-12
Running convertS in Interactive Mode, 14-13
Running convert5in Batch Mode 14-17
Example Parameter List, 14-19
Running convert5 with a Parameter File 14-20
Using the File Conversion Program 14-20
Creating an Executable File Conversion Program 14-20
Running the File Conversion Program 14-20
Error Messages 14-22
Errors Reported by convertS 14-22
Errors Reported by the Conversion Program 14-23
Chapter 15. Error Messages 15-1
Contents e e e e e e 15-2

Contents XV

About This Chapter, 15-3

Introduction 15-4
Compiler Messages 15-4
Severe Compiler Messages 15-7
Compiler Error Messages 15-40
Compiler Warning Messages 15-43
Compiler Information Messages 15-46
Compiler Flags 15-47
Errors Encountered During Code Generation 15-54
Native Code Generator Messages 15-54
Run Time Environment Errors 15-60
Types of Errors 15-60
Run Time Environment Error Messages 15-62
cob Command Errors 15-85
Appendix A. Environment Variables A-1
Introduction A-3
COBATTR e A-3
COBCPY . . . A-4
COBCTRLCHAR e e A-4
COBDIR e A-4
COBHELP e A-5
COBIDY e A-5
COBLPFORM e . A5
COBOPT e A-6
COBPATH e A-6
COBPRINTER e A-7
COBSW . . A-7
TMPDIR . .. e A-8
Appendix B. National Language Support B-1
Introduction B-3
Features Provided by National Language Support B-3
Compiling Programs with National Language Support B-4
Running Programs with National Language Support B-5
Running Your Program B-5
RTE NLS Initialization B-6
String Comparisons B-6
Class Condition Tests B-6
Indexed Sequential File Operations B-7
Comparisons Performed as Part of SORT or MERGE Statements B-7
The NLS Support Routines B-7
Mixing Programs with and without National Language Support B-8
Appendix C. Character Sets and Collating Sequence C-1
Appendix D. Packaging Application Programs D-1
Introduction D-3
The Run Time Package D-3
Preparing Application Packages D-3
Statically Linkable Native Code (.0) D-3
Dynamically Loadable Native Code (.gnt) D-4
Intermediate Code (.int) D-4
Glossary e G-1

XVi User’s Guide for IBM AIX VS COBOL Compiler/6000

Contents

xvii

xvili User’s Guide for IBM AIX VS COBOL Compiler/6000

Figures

Program Development Cycle 1-7
Sample CALL Tree Structure 2-10
A Hypothetical Multi-User Environment 8-6
FILE-CONTROL Paragraph Syntax for Record and Line-Sequential

Files 8-7
FILE-CONTROL Paragraph Syntax for Relative Files 8-8
FILE-CONTROL Paragraph Syntax for Indexed Sequential Files . . 8-10
Initial Display Screen of the Demonstration Program 8-14
Character Conversion Process 10-6
Main keybef Display Screen L. 10-9
Alter Function Key Options 10-11
Main adisef Command Menu 10-15
Load Option 10-27
ANIMATOR Display Screen 11-7
Example of CALL Statement/PERFORM Level Relationship . .. 11-29
Example Program to Reformat DG Interactive COBOL Relative

Data File 149
An Example Parameter File 14-19

Figures XiX

XX User’s Guide for IBM AIX VS COBOL Compiler/6000

Tables

3-1.
4-1.
5-1.
9-1.
9-2.
10-1.
10-2.
10-3.
11-1.
12-1.
13-1.
14-1.
C-1.

File Name Mapping
Development Cycle of Input File to cob Command
Excluded Combinations of Options
Default File Handlers
Operation Codes Passed in the Second Byte of the First Parameter .
Default ADIS Control Keys
Hexadecimal Sequences for Key Functions Not on Your Keyboard
Default Mappings of ADIS Function Keys
ANIMATOR Command Summary
Cursor Controt Keys
Error Message Identification
Error Message Identification
Character Set and Collating Sequence

Tables

xxi

XXxii User's Guide for IBM AIX VS COBOL cbinpilerjéooo

Chapter 1. Introduction

Chapter 1. Introduction 1-1 "~

Contents

About This Chapter 1-3
Introduction 1-4
AIX VS COBOL System Componentsou..... 1-4
Compiler e 1-5
Native Code Generator 1-5
Run Time Environment 1-5
Linker e 1-5
ANIMATOR e 1-5
FORMS-2 . . . 1-5
Static Linking and Dynamic Loading 1-6
Statically Linked Code 1-6
Dynamically Loaded Code 1-6
Program Development Cycle 1-6
Program Source Conventions 1-7
Checking Out the AIX VS COBOL System with Demonstration Programs 1-8
pi.cbl . e 1-9
stockl.cbl 1-10
stock2.cbl 1-11

1-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

This chapter discusses the components of the IBM AIX VS COBOL Compiler/6000
Version 1.1, and provides a program development cycle overview, installation
instructions, and demonstration programs that illustrate the use of the AIX VS
COBOL compiler.

Chapter 1. Introduction 1-3

Introduction

IBM AIX VS COBOL Compiler/6000 Version 1.1 provides a high performance opti-
mizing compiler that produces object code for execution on the IBM RISC
System/6000 under the AIX Operating System. AIX VS COBOL accepts COBOL
source code as defined by the following standards:

¢ ANSI COBOL X3.23 1985 High
e ANSI COBOL X3.23 1974 High
» IBM SAA Level 1 COBOL

* FIPS PUB 21-2.

Conversion utilities are provided to migrate Data General COBOL and
Ryan-McFarland COBOL source to AIX VS COBOL source.

" In addition, AIX VS COBOL offers these enhanced functions:
¢ Source compatibility with the following:

— IBM AIX PS/2 VS COBOL

~ IBM AIX/RT VS COBOL

— IBM OS/VS COBOL (Release 2.4 and earlier)
— .IBM VS COBOL II (Release 1, December 1984)
— IBM COBOL/2 (Release 1)

— Micro Focus Extensions (Level 4 and earlier)

— Data General Interactive COBOL Revision 1.30
— Ryan-McFarland COBOL 2.0

— Microsoft‘COBOL 1.0 and 2.2

* Automated installation

¢ Optimized code

* Operating system interface library

e Interlanguage linkages with C

* Detailed on-screen messages

¢ Development and débugging énvir‘onment

¢ Interactive design of application screen layouts

¢ National Language Support.

AIX VS COBOL Syst'erkn'Components

The AIX VS COBOL system is a compact, interactive system. The major compo-
nents of the AIX VS COBOL system are as follows:

s. Compiler

¢ Native Code Generator

e Run Time Environment (RTE)
[]

L}

ANIMATOR debugging tool
FORMS-2 screen/program facility.

-1-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

Compiler

The cob command provides access to the compiler, the Native Code Generator, the
cc command and the AIX system linker. Files specified to this command can be any
mixture of COBOL source, intermediate code, native code, linkable object code,
assembler source files or C source files. By default, the cob command converts the
specified files into intermediate code files that are suitable for animation. The cob
command can output native code, intermediate code, or statically linked executable
modules, depending on the options you specify. The AIX system linker is used to
link the object files to the RTE which creates one executable file.

The AIX VS COBOL compiler translates COBOL source code into an intermediate
code. This intermediate code is a sequence of instructions to the machine.

Native Code Generator

The Native Code Generator translates the intermediate code produced by the com-
piler into the native code of the IBM RISC System/6000.

Run Time Environment

Linker

ANIMATOR

FORMS-2

The Run Time Environment (RTE) loads files of intermediate or native code. By
default, the RTE passes native code to the IBM RISC System/6000 processor for
direct execution, although it can execute code interactively. The RTE also acts as
the interface between your COBOL program and such operating system functions as
file and device-handling and memory management.

Note: You may see the phrase Run Time Environment referred to as Run Time
System in various places in the AIX VS COBOL publications. The phrases
are synonymous and are interchangeable. The same holds true for the acro-
nyms RTE and RTS.

The linker links the object files to the RTE and creates one executable file.

ANIMATOR is an interactive tool that allows for quick and easy program debug-
ging. ANIMATOR allows you to do the following:

¢ See in what sequence the statements of your program are executed.
e Halt the program at any time.

* Display the contents of data items and change them.

* Alter the sequence in which statements are executed.

¢ Cause statements to be skipped.

The FORMS-2 package is an extension to the software development system that
enables you to create and edit data entry screens for application programs at a
console.

Chapter 1. Introduction - 1-8

Static Linking and Dynamic Loading
The AIX VS COBOL system allows you to execute statically linked or dynamically
loaded code, both of which can be output by the cob command, depending on the
options specified.

To design COBOL application programs that make the most efficient use of avail-
able memory, use a mixture of static and dynamic modules in your programs.

Statically Linked Code

Statically linked code is in the form of a standard AIX a.out executable object
module that has all of its overlays or other procedures linked into memory. To
execute such modules, specify the name of the executable object module on the AIX
command line. The name of the module that you would specify is dependent upon
how you instructed the cob command to create the module. See Chapter 4, “The
COBOL Interface” for more information.

The advantage of statically linking programs in a multi-user environment is that it
allows users to share programs. It also allows programs to call other programs
within the same suite with the maximum possible speed. Static linking can result in
large executable files; however, the size of available memory on the AIX system
should not be a constraint.

If you want your program to CALL a program that is written in a different lan-
guage, the called program must be statically linked to the AIX VS COBOL RTE.

Dynamically Loaded Code
Dynamically loaded code can be either COBOL intermediate files (.int) or COBOL
native files (.gnt). This code loads modules as needed. Use the cobrun command to
execute dynamically loadable code. See Chapter 7, “Running an AIX VS COBOL
Program” for more information.

Dynamically loaded programs are especially suitable for development environments,
It allows you to debug parts of your program while the rest of it is running, and to

reload the amended part of your code without needing to reload the entire applica-

tion. An advantage of dynamically loaded programs is that they require less avail-

able memory.

Program Development Cycle

Figure 1-1 on page 1-7 illustrates the typical cycle of creating a COBOL source
program and submitting it to the cob command.

The type of program output by the cob command depends upon command line
options specified when you submit your input files. See Chapter 4, “The COBOL
Interface” for full details about available options.

1-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

—» EDIT
COBOL L___D

SOURCE STABLE
INTERMEDIATE
CODE
COMPILE
will it No
run faster as Native
Code?
Testing
Phase !\
4
INTERMEDIATE gg'}ggﬁL%DULE
Q_EE/ Do you AND LINK TO RTS
require any dynamic TO PRODUCE
loading? A STAND-ALONE
EXECUTABLE

COBOL PROGRAM

ANIMATE

Do you
want to link the
program to the
RTS?

GENERATE DYNAMICALLY
LOADABLE NATIVE CODE
FILE

Are
there still
bugs?

GENERATE OBJECT MODULE AND LINK TO RTS TO
PRODUCE PARTIALLY LINKED EXECUTABLE PROGRAM

;

RUN < —

Figure 1-1. Program Development Cycle

Program Source Conventions

The AIX VS COBOL compiler accepts source code from a standard AIX text file (as
created by an AIX editor such as vi). The format of the AIX text file is the same as
for standard COBOL and is described in the Language Reference.

Each line of your COBOL source programs, including the last line, must be termi-
nated by a new line character.

Your COBOL source programs must not contain any control characters (characters
with hexadecimal values 00 to 1F inclusive, or 7F) except the tab character, unless
they are embedded in literal strings. The tab is expanded with spaces to the next
character position that is a multiple of 8.

Chapter 1. Introduction 1-7

Checking Out the AIX VS COBOL System with Demonstration Programs

A number of demonstration programs have been provided. The source code for
these programs is in the following files of the fusr/lpp/COBOL/lib/demo directory:

¢ pi.chl

¢ stockl.chl
¢ stock2.chl
¢ mudemo.cbl
e stockin.chl
¢ stockioa.cbl
o stockiom.chl
¢ stockout.chl

Each file has a specific function to help you verify that your AIX VS COBOL
system is accurately configured to your console, as follows:

File Description

pi.chl This program displays on the screen the mathematical
constant pi to 12 decimal places and is the basic screen
test for AIX VS COBOL DISPLAY.

stockl.chl Do not run this program until you are confident that
pi.cbl is working correctly. It is the test for AIX VS
COBOL ACCEPT, which provides the basic interactive
functions, and indexed-sequential file input-output.

stock2.cbl This program uses a data file created by running
stock1.cbl and is dependent on having run that program
successfully. The source code contains a deliberate error
that does not affect the program’s execution, but pro-
vides an example of an AIX VS COBOL error message.

mudemo.cbl These programs show how the file and record locking
stockin.cbl syntax of AIX VS COBOL allows a number of pro-
stockioa.cbl grams to have simultaneous access to the same set of
stockiom.cbl indexed-sequential files without interfering with one
stockout.cbl another. These programs are explained in Chapter 8,

“File Sharing in the Multi-User Environment.”

The pi.cbl, stockl.cbl, and steck2.cbl programs introduce you to the program devel-
opment cycle. They also indicate how simple COBOL programs can have sophisti-
cated screen and file-handling features.

Copy these programs into one of your work directories before walking through the
examples given in the rest of this section.

1-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

pi.cbl

Type the following command line:
cob -vxP pi.chl <

The cob command recognizes the .chbl file extension and invokes the compiler. Speci-
fying the -v option causes any messages output by cob to be displayed on the screen.
The -x option causes the input file to be processed to a statically linked executable
module. By default, the name of this module is the base name of the first file input
to the cob command. In this case, as there is only one input file, the statically linked
module takes its base name, pi. The -P option forces cob to create a listing file,
pi.dst. Full details on the use of the cob command and its options can be found in
Chapter 4, “The COBOL Interface.”

The first lines displayed immediately tell you that the compiler has been loaded and
is executing.

IBM AIX VS COBOL Compiler/6000 LP

5601-258 (C) Copyright IBM Corp. 1987, 1990
Copyright (C) 1984, 1987 Micro Focus, Ltd.
A1l Rights Reserved

Licensed Materials - Property of IBM
Accepted-verbose

Accepted-list (pi.lst)

Compiling pi.cbl

* % F F X * X X

When the compilation is finished, the compiler reports the results as follows:

* Total messages: 1

* Unrecoverable: 0 Severe: 0
* Errors: 0 Warnings: 0
* Information: 1 Flags: 0

It also outputs a message giving the sizes of the code, the data areas, and the com-
piler dictionary.

Next, the Native Code Generator is invoked. Messages are displayed to tell you that
the Native Code Generator is loaded and is executing.

When code generation is completed, the Native Code Generator outputs a message
giving the sizes of the data and code areas, the literals, and the Native Code Gener-
ator dictionary.

Then, a single executable file (pi) is created, which contains the RTE support
libraries required by the program pi, with pi linked to them.

In addition to the executable file, pi, the compiler generates the following two files:

e pi.lst, which contains the list file
¢ pi.int, which contains the intermediate code.

Chapter 1. Introduction 1-9

Running the Linked RTE

Problem Diagnosis

stock1.cbl

Running stock1

To run pi, enter the name of the file containing the linked RTE, as follows:

pi <
The display screen clears, the cursor appears at the top left, and the pi screen is dis-
played as illustrated below for the final term:

CALCULATION OF PI

NEXT TERM IS 0.000000000000

PI IS 3.141592653589

If the screen is not displayed or is displayed incorrectly, the terminfo entry for your
console type may be incorrect. See Chapter 10, “Configuring Your AIX VS
COBOL System” for further information.

To submit stockl.chl to the cob command and output a single statically linked exe-
cutable module named stockl, enter the following:

cob -vxP stockl.chbl «

This command outputs a listing in the file stockl.lst, and causes the cob command to
display any messages it outputs on the display screen.

After the cob process has finished successfully, you can run the single executable file
stockl it produced by entering:

stockl <

The display screen clears and the following screen is displayed:

STOCK CODE < >
DESCRIPTION < >
UNIT SIZE < >

The program waits for you to enter data through the keyboard using the Tab key,
the Backspace key, and the Return («) key.

Before entering any data, try moving the cursor from data item to data item using
the cursor control keys. Note that AIX VS COBOL does not allow you to position
the cursor outside the bounds of the data to be entered. While entering data, check
the following two functions:

* Left zero-fill, which can be tested using the ‘" on data entered into UNIT SIZE.
Keying 1. should result in 0001.

¢ Return (4-'), to enter your first display screen full of data.
In the following two cases, pressing < will not result in data being written to the
file.

1. When UNIT SIZE is not numeric

2. When a record with this STOCK CODE number already exists on the file.

1-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

Problem Diagnosis

stock2.cbi

Reference to the listing of the source program shows why. The relevant statements
are as follows:

IF CRT-UNIT-SIZE NOT NUMERIC GO TO CORRECT-ERROR.

and
WRITE STOCK-ITEM; INVALID GO TO CORRECT-ERROR.

Case 1 is the result of an explicit test by the programmer for valid data input. Case
2 arises from the fact that the STOCK CODE is being used as the Record key, and

duplicate keys are not permitted in the indexed sequential file to which these records
are being written.

To terminate the run cleanly, you must key spaces into the STOCK CODE field and
press «'. The program tests for this end-of-run signal in the line:

IF CRT-STOCK-CODE = SPACE GO TO END-IT.

Typical problems that may be experienced are as follows:

¢ Cursor fails to move or moves incorrectly, with one or more of the cursor move-
ment keys. If you are using the keys correctly, the terminfo entry for your
console type may be incorrect.

¢ A run-time error may occur if the files STOCK.IT and STOCK.IT.idx, gener-
ated and referenced by stockl, have been damaged; for example, by a previous
run of stockl that was incorrectly terminated. To recover, delete the two files
STOCK.IT and STOCK.IT.idx, and start again with the stockl program.

Compile stock2.cbl using the same command line options used to compile stock1.cbl.
Run the program, and retrieve the records you entered to the file using stockl by

entering into the STOCK CODE field the values you previously used. Again, spaces
in the STOCK CODE field must be used to terminate the run.

Chapter 1. Introduction 1-11

1-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 2. Advice on Writing COBOL Programs

Chapter 2. Advice on Writing COBOL Programs 2-1

Contents

About This Chapter 2-3
Optimizing COBOL Programs 24
Features to be Used with Care 2-4
Programming Restrictions 2-5
Current Restrictions on the Use of Some SAA Functionality 2-6
Using Intermediate or Native Code 2-7
Optimizing Native Code 2-8
Handling Large Programs 2-8
Segmentation (Overlaying) 2-9
Interprogram Communication (Call and Cancel) 29
Calling AIX VS COBOL Subprograms 2-11
Search Sequence for Locating File Name 2-11
Multiple Entry-Points 2-13
Calling Non-COBOL Subprograms 2-15
Cancelling Non-COBOL Subprograms 2-18
Mixing C and COBOL Programs 2-18
Passing the Command Line 2-21
Calling Operating System Functions 2-23
AIX VS COBOL Dialect Flagging and Error Reporting 2-24

2-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

This chapter highlights a number of IBM AIX VS COBOL procedures for which the
AIX VS COBOL system produces particularly efficient code. It also describes a
number of implementation restrictions that you must be aware of when writing AIX
VS COBOL programs. This chapter describes considerations for handling large pro-
grams and explains how to call subprograms written in COBOL and other lan-
guages.

Chapter 2. Advice on Writing COBOL Programs 2-3

Optimizing COBOL Programs

The following information will increase the performance of your COBOL programs:

The CALL statement executes faster when parameters appear in the same order
in the CALL statement as they do in the Procedure Division header and in the
LINKAGE SECTION of the called program.

Place any LINKAGE SECTION items that are not referenced in the Procedure
Division header after those that are.

All parameters are 01 or 77 level items.

Parameter passing is faster when an out-of-line PERFORM statement is a single
section, and if the system is sure that the section is entered and left only under
the control of a PERFORM statement. Try to ensure that any section that is to
be PERFORMed has no jumps in or out of it, or any alterable GO TO state-
ments. You must also ensure that every preceding section is either entered or
left under the control of a PERFORM statement, or finishes with a STOP
RUN. An EXIT PROGRAM statement is not sufficient.

Access to a table is fastest if every occurrence of a given item is aligned in the
same way, and if the length of each entry is a power of 2 or 4. You can achieve
this by placing FILLERSs in the table.

Items in the WORKING-STORAGE SECTION are accessed more quickly than
those in the LINKAGE SECTION.

The fastest type of comparison is a comparison for equality with binary zero.

In complex conditions, you should place first those tests that will give the
quickest decisions or are most likely to be true.

Features to be Used with Care

The following information clarifies a number of features that can be misunderstood
and cause programming errors:

A MOVE operation caused by an INTO phrase in either a READ or RETURN
statement is executed even if the READ or RETURN operation is unsuccessful.

Bound checking on a variable-length table operates if the subscript or index
points outside the maximum length of the table. It does not take into account
the current length of the table (that is, the value of the item specified in the
DEPENDING phrase).

If you attempt a MOVE between two numeric-edited items the result will be
undefined, although no error status is returned.

If you use the DECIMAL POINT IS COMMA clause, you must ensure that any
commas separating two numeric literals are followed by a space. Any commas
which are not followed by a space are treated as decimal points.

The comp option can alter the results of certain arithmetic statements. In partic-
ular, the comp option can alter the result of a SUBTRACT statement. This is
because the comp option allows true unsigned overflow. For example, if you
subtract 1 from 0, where both digits are unsigned comp values, a large positive
number results when the comp option is set on. With the default nocomp, the
result is 1.

2-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

When the OSVS option is set, all statements are treated as a comment until a
DIVISION heading is read. This means copy statements are not recognized
before a DIVISION heading is encountered.

When porting your program, be sure numeric parameters stored in binary
format passed to another language have the correct byte order. AIX VS
COBOL Compiler/6000 byte order is HIGH/LOW.

Programming Restrictions

You should be aware of the following limits while using the AIX VS COBOL
system:

If you are calling COBOL code, you can have a maximum of 59 parameters. If
you are calling C code, you can have a maximum of 254 parameters.

According to the ANSI standard, numbers are limited to 18 significant decimal
digits, and all significant digits are within 18 digits of the decimal point.

In AIX VS COBOL the result of a multiplication or division that is greater than
36 digits gives a SIZE ERROR, as will the result of an addition or subtraction
that is greater than 37 digits.

The maximum number of indexed files that can be open simultaneously is 64.
The maximum indexed sequential record size is § Kbytes.
The maximum number of keys in an indexed sequential file is 64 (63 alternate).

The maximum length of an indexed sequential record key is 120 bytes. If this
limit is exceeded, a run time error message is issued and the program aborts.
The length of all keys cannot exceed 7680 bytes.

The maximum number of parts for a split key is 8.

Maximum nesting of PERFORMS in .int programs is 100. (This does not
apply to .gnt programs.)

The maximum number of file or record locks that may be held depends upon the
system parameter nflocks in the /etc/master file. See the AIX operating system
documentation for details.

If your program contains a CHAIN statement that includes a subscripted item
greater than 8 Kbytes as a USING field, unpredictable results will occur at run
time. The following Native Code Generator error message will be output:

* ILLEGAL INTERMEDIATE CODE
The maximum number of USING parameters per entry point is 62.
The maximum number of nested IF statements in a source program is 64.
The maximum record length is 65 535 bytes.
The ISAM block size is 1 Kbyte.

Chapter 2. Advice on Writing COBOL Programs 2-5

e Where a CHAIN statement or a CALL PROGRAM statement includes USING
parameters which are defined in the Linkage Section or File Section of the
chaining program, results at run time can be unpredictable. Data should be
moved from these sections into Working-Storage items for use as a USING
parameter. The CALL PROGRAM statement refers to Data General Interac-
tive COBOL syntax. The AIX VS COBOL CALL statement is not included in
this restriction.

¢ In order to use reference modification within an IF statement or an EVAL-
UATE statement, the compiler directive esvs must not be set when you compile
your source code under AIX VS COBOL.

e AIX VS COBOL does not support tape. Syntax related to tape manipulation is
supported for compatibility. Such operations will behave as described for non-
reel media.

* In order to be able to WRITE output directly to a printer, you must be a
member of the “system” group. This is due to permissions for the files /dev/Ip0
and /dev/lpl on the AIX file system.

¢ If you call the AIX system routine load from a module that is statically bound
into the RTE, you will not be able to dynamically load .int or .gnt COBOL rou-
tines.

* When running programs compiled with the SIGN = EBCDIC compiler option,
comparisons with numeric literals do not function correctly in .gnt and execut-
able code. :

Current Restrictions on the Use of Some SAA Functionality

The following restrictions apply to the use of some of the functionality found in the
COBOL SAA Reference.

* OPEN WITH NO REWIND should return a file status of 07 when the physical
device is not a tape. This operation currently returns a file status of 00.

¢ If a record key number is too large to be contained in the variable declared as
the relative key, then the WRITE for that record should fail. Currently, that
WRITE will create a record on the file.

* A READ statement with an improper INTO phrase does not currently produce
an error. Given:

FILE SECTION.
FD A.

01 a-1 pic aa.
01 a-2.

02 a-3 pic aa.
WORKING-STORAGE SECTION.
77 A-4 PIC AA.

PROCEDURE DIVISION.

READ A RECORD INTO a-4.

2-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

This should produce an error since the following rules in SAA are not met
regarding when an INTO phrase is allowed:

1. Only one record description is subordinate to the file description entry.

2. All record-names associated with file-name-1 and the data item referenced
by identifier-1 describe a group item or an elementary alphanumeric item.

¢ When a file fills up a file system, the file status code returned is 9/28 (No space
on device) instead of 24. If the file exceeds the ulimit that is set, the file status
will be 9/194 (File size too large).

¢ Currently, the compiler wrongly issues the message 232-S Numeric-edited
picture string too large for an ALPHANUMERIC-EDITED data item larger
than 32767 bytes.

¢ The message 232-S Numeric-edited PICTURE string is too large is issued for
some declarations such as:

77 over-replication-edit PIC 9B(512) VALUE ALL SPACES.

The message text implies that the number of characters in the source file for the
PICTURE specification exceeds the limit of 30 characters. The message should
say that the PICTURE specifies a storage area that is too large for the data
item. For SAA, the maximum number of characters for a data item of type
NUMERIC EDITED is 127.

Using Intermediate or Native Code

If you wish to run your code in an unlinked environment, you can choose whether
you wish the cob command to output intermediate or native code. See Chapter 4,
“The COBOL Interface,” for details of how you can do this.

To maximize performance, compile your programs to native code, since native code
programs execute much faster than intermediate code programs. However, a
program that is I-O bound (that is, spends most of its time moving data to and from
files and devices rather than performing arithmetic) derives less benefit from faster
code generation. Programs that are processor bound (that is, spend most of their
time operating on data rather than transferring it) are likely to increase their run-
time speed significantly as a result of code generation.

Although native code gives better performance than intermediate code, you should
be aware that the native code version of a program takes up more space than its
intermediate code equivalent, since intermediate code is very compact. In fact, the
only difference between intermediate and native code files lies in the code area; the
data areas are identical. Typically, the code area of a native code program is a little
less than twice the size of the code area of the equivalent intermediate code program.

Native code cannot be animated. The ANIMATOR operates only on the interme-
diate code versions of your programs. AIX system debuggers can be used to debug
your native code. See the information on the -g option in Chapter 4, “The COBOL
Interface.”

If your program is divided into a main COBOL program and a number of subpro-

grams called from the main program, some of the programs can be processed to
intermediate code and others to native code. You can mix the two freely.

Chapter 2. Advice on Writing COBOL Programs 2-7

Optimizing Native Code

The following information increases the performance of the COBOL programs com-
piled to native code.

Operations on items of USAGE COMP-X are the fastest types of operations;
operations on items of USAGE COMP are the next fastest type of operation;
operations on items of USAGE DISPLAY the next; while those on items of
USAGE COMP-3 are the slowest.

MOVEs between items of USAGE COMP are faster if you specify notrunc or
trunc “ANSI” rather than trunc. See Chapter 5, “Compiler Options” for details
of these options.

Operations on items which have the same PICTURE, USAGE, and alignment in
memory are very fast. See details on the SYNC clause in Language Reference.

Operations on items are faster if the operands are of nine digits or less.

Performance is improved when operations are used on items of 1, 2, 4 or 8 bytes
in length.

You will find the following statements, phrases, and operations relatively slow:

- MULTIPLY

~ DIVIDE

— Exponentiation

— COMPUTE

— ON SIZE ERROR
— ROUNDED

In particular, decimal operations such as DISPLAY and COMP-3 are slower
because of the computations that are needed for decimal precision.

Specifying the ibmcomp compiler option may speed up many operations,
including complex arithmetic operations, such as COMPUTE statements. See
Chapter 5, “Compiler Options” for details of the ibmcomp option.

Handling Large Programs

The AIX VS COBOL system allows you to execute statically linked or dynamically
loaded code. Statically linked code is a standard AIX a.out executable object
module which has all of its overlays linked into memory. Dynamically loaded code,
either a COBOL intermediate code file or a COBOL native code file, loads its over-
lays as needed.

When designing a COBOL application program that is to be dynamically loaded,
you can make efficient use of the available memory. This chapter describes the ways
in which even quite large applications can make use of limited memory space. These
techniques are:

L J

Segmentation, in which you divide the Procedure Division code into segments.

Interprogram communication, in which you design an application as a set of sepa-
rately compiled programs passing control to one another by means of CALL
statements.

2-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

Segmentation (Overlaying) ,
AIX VS COBOL provides syntax to divide a COBOL program with a large Proce-
dure Division into a COBOL program with a small Procedure Division and a
number of segments containing the remainder of the Procedure Division. This was a
feature on older systems to make effective use of small memory sizes.

The AIX system is a virtual memory system. This means that the operating system
itself has a very robust system of memory management, and that programmers do
not need to manage segments themselves. Nonsegmented code is more efficient in

this environment.

AIX VS COBOL will accept COBOL programs either with or without segmenting
syntax. If you are creating .int code (intermediate code) files to be executed, you
have a choice of using either real or simulated segments (by selecting either the seg
or noseg option during compilation). When segmentation is used, extra intermediate
code files are generated by the AIX VS COBOL system as follows:

filename.inn

where:

filename is the name without the extension of the principal intermediate code file,
and

nn is a segment number that identifies the particular segment.

A separate intermediate code file is generated for each independent segment. Due to
the efficiency of the AIX virtual memory system, when native code is being gener-
ated, either .gnt or .o code, simulated segments will always be used. This means that
for native code, individual, small modules for each segment are not produced.
Instead, the entire program is created as a single large code module. See Chapter 5,
“Compiler Options” for the options to use to determine which kind of code to
produce (.int, .gnt, or .0).

Interprogram Communication (Call and Cancel)
You can design an application as a group of independently compiled subprograms
that pass control to one another by means of the CALL statement. The main pro-
grams and the subprograms in your application can be written in the COBOL lan-
guage or in some other language, such as C. You may mix these programs freely in
an application. However, before you call a non-COBOL subprogram from an AIX
VS COBOL program, you must link it to the COBOL libraries. An intermediate
code program can call a native code program and vice versa.

Figure 2-1 on page 2-10 shows a sample application using interprogram communi-
cation.

Chapter 2. Advice on Writing COBOL Programs 2-9

e
N A
RN

The main program A, which is permanently resident in memory, calls B, C, or H,
which are subsidiary and stand-alone functions within the application. These pro-
grams call other specific functions as follows:

e BecallsD,E, and F

¢ CcallsX, Y, Z, L, or K conditionally
e HecallsK

e K calls M, N, or Q conditionally

¢ L calls M if it needs to

As the functions B, C, and H are stand-alone, they do not need to be permanently
resident in memory together, and can therefore be called as necessary, using the
same physical memory when called. The same applies to their subfunctions in the
tree structure.

The CANCEL statement releases dynamically allocated memory occupied by the
cancelled program and closes any files opened by it. The memory is released to
either the dynamic loader for later use or to the AIX operating system for use by
other processes. This is dependent on the setting of the memory run-time switch.
See “Memory Switch (1)” on page 7-10 for information on that run-time switch.

In the example shown in Figure 2-1, you would plan the use of CALL and
CANCEL so that a frequently called subroutine such as K would be kept in memory
to save load time. However, because it is called by C or H, K cannot be initially
called without C or H in memory. Thus, the larger of C or H should call K initially
so as to allot space. It is also important to avoid overflow of programs. At the level
of X, Y, and Z it does not matter in which order loading takes place; these programs
do not make calls at a lower level.

Called programs that open other files should be left in memory so that files do not
have to be reopened on every call. Note that EXIT PROGRAM does not close files,
but CANCEL does.

The CANCEL statement releases dynamically allocated memory occupied by the
canceled program and closes any files opened by it. The format of this statement is
described in the Language Reference.

The considerations mentioned above about memory usage and load time are only

potentially involved when dynamically loaded modules are used. Even then, the
AIX Operating System can handle any memory management requirements.

2-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

Calling AIX VS COBOL Subprograms

You can call an AIX VS COBOL subprogram by using either of the following
formats of the CALL statement:

CALL "Titeral" USING ...
or
CALL dataname USING ...

For COBOL programs, the literal string or the dataname is the PROGRAM-ID, the
entry-point name, or the base name of the source file (that is, the file name without
any extension). For statically linked modules, the Native Code Generator converts
calls with literal strings to subroutine calls which refer to external symbols. If the
symbol has not been defined when linking is performed, it is assumed to be the name
of a file to be dynamically loaded, provided you specify the -U option on the cob
command line. See Chapter 4, “The COBOL Interface” for details. The AIX VS
COBOL system automatically creates a routine to define the symbol and to load the
associated file if it is entered at run time.

A CALL literal statement to a statically linked program results in the relevant
program being called directly.

When you make a CALL using a literal to represent a user-defined subprogram, the
literal must be numeric and in the range of “01” to “127”. Calls to user-defined
subprograms are supported for compatibility with older code. In some previous
implementations, this was the only method available to call C code programs. You
can now call C code programs by using the name of the C program. Making calls
using numeric literals to represent user-defined subprograms is not recommended.

Calls to user-defined subprograms are only supported for .int code. Neither form of
native code (.gnt or statically bound) will support this method of calling. The mech-
anism for passing parameters using user-defined subprograms is very inefficient. (It
uses calargc and calargv and sets up the parameters on the stack.) Native code is
intended to produce the best performance possible. Therefore, using the user-defined
subprogram method of passing parameters is not appropriate for native code.

When you make a call using a literal to represent a user-defined subprogram, you
must add code to the file “usercall.c”, which is delivered with AIX VS COBOL. Itis
in the SCOBDIR/src directory. This file contains a routine, “xequcall”, which must
be set up to recognize the number of the call you wish to make, and to take the
appropriate action. This is usually just to code a normal call to your C code. There
are more details on “usercall.c” in the comments at the top of that file.

See the Language Reference for more information on CALLs.

Search Sequence for Locating File Name
A CALL literal statement to a dynamically loaded program or a CALL dataname
statement causes the RTE to search for the called program. The search sequence
followed by the RTE to find the named file is as follows:

1. The RTE searches through the entry-points of all COBOL programs which have
already been CALLed but have not yet been CANCELed.

2. If it cannot find the named file, the RTE searches through the entry-points of all
statically linked programs (both COBOL and non-COBOL).

Chapter 2. Advice on Writing COBOL Programs 2-11

3. If it still cannot find the named file, the RTE searches the fixed-disk and tries to
find a suitable file from which the program could be loaded. It searches for the
file directory by directory, then extension by extension in each directory. If you

“ specify a directory path, the RTE searches for the file only in the named direc-

tory.

Before completing the search operation, the RTE splits the required program name
into its component parts: directory, base name, and extension. The RTE does not
use the directory portion of the program name in its search of loaded programs. It
compares the base name with the entry-point names of all loaded programs. If you
specify no extension, the first matching name that the RTE finds is assumed to be
the program you wish to CALL. If you do specify an extension, the extension of the
loaded program must be the same if a match is to be made. Alternate entry-points
to programs are treated as if they had the extension of the file from which they were
loaded.

When the RTE searches the table of programs linked to it, it uses only the base
name of the specified file.

When CALL specifies a file with no path name:

1. The RTE first searches for the named file in the directory from which the calling
program was loaded.

2. If no match is found, the RTE searches the directories specified by the
COBPATH environment variable. (See Appendix A, “Environment Variables.”)

3. If a match is still not found, the RTE searches the directory specified by the
COBDIR environment variable. (See Appendix A, “Environment Variables.”)

If you specify a file extension, the RTE will search only for a file with a matching
extension. However, it is not recommended that you include the extensions .int and
.gnt in the file names you specify to the CALL statement. If you specify a file
without an extension, the RTE uses the following algorithm to search for it:

1. It searches for the named statically linked file in memory.

2. If the file is not linked with the COBOL libraries, the RTE adds the extension
.gnt to the base name of the file and tries to find the corresponding native code
file on fixed-disk.

3. If it cannot find the native code file on fixed-disk, it adds the extension .int to
the base name of the file and searches the fixed-disk for the corresponding inter-
mediate code file.

The RTE always assumes that the first matching program name which it finds is the
program you want to CALL.

If no matching program is found, a run-time error occurs.

Note that if the first character of a file name that is to be dynamically loaded at run
time is “$”, the string of characters from the “$” to the first “{” character is treated
as an AIX environment variable, and is replaced by the value of that variable. See
Chapter 3, “Device- and File-Handling,” for details.

2-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

For example, if the statement:
CALL "$COBDIR/A"

is found in the source program, A is loaded from the path given in COBDIR at run
time.

Muitiple Entry-Points
AIX VS COBOL allows you to define multiple entry-points in a COBOL program
using the ENTRY statement. You can CALL a program either via the main entry-
point (at the start of the Procedure Division) or via one of the points in the program
marked by an ENTRY statement. See the Language Reference for a description of
the ENTRY statement.

Multiple Entry-Points in Dynamically Loaded Programs
You can CALL a dynamically loaded program via an entry-point in the same way
that you would call it via its main entry-point. For example:

Procedure Division using param-1,param-2.
first-para.

entry "other" using param-3,param-4,param-5.

.
.

Using multiple entry-points in programs is regarded in many circles as bad program-
ming practice. If you do use multiple entry-points, avoid entering a program for the
first time via an entry-point other than the main entry-point.

If you compile the above program into an intermediate code file mainprog.int (or
dynamically loaded code file, mainprog.gnt), then you can CALL it via its main
entry-point, as follows:

CALL "mainprog” USING PAR-1,PAR-2.

At some later point CALL the same program via its other entry-point, as follows:
CALL "other" USING PAR-3,PAR-4,PAR-5,

It is recommended that if you do use multiple entry-points, you avoid entering a
program for the first time via an entry-point other than the main entry-point. You
need to be aware of the following features when calling dynamically loaded pro-
grams via entry-points.

When the RTE loads the program called via its main entry-point, it notes the names
of any other entry-points within the program. When you subsequently CALL the
same program via its other entry-point, the RTE can detect that the program con-
taining this entry-point is already loaded, provided that you have not used the
CANCEL statement to release the memory occupied by the program after the first
CALL.

Chapter 2. Advice on Writing COBOL Programs 2-13

If, on the other hand, your first entry to a program is via the entry-point “other”
rather than by the main entry-point, the RTE will not be able to associate the entry-
point “other” with the program mainprog.int, and the RTE will be unable to load the
program. You can solve this problem by creating a link between mainprog.int and
the entry-point “other” using the AIX command In, as follows:

In mainprog.int other.int <

If you are calling via an entry-point in an overlay segment, you must also establish a
link between the intermediate code overlay file and the entry-point. For example, if
you are calling via an entry-point “other” in mainprog.int that is located in a section
with segment number 52, you must create a link as follows:

Tn mainprog.i52 other.i52 <

If you are animating a program that is being entered initially by an entry-point other
than the main entry-point, you must establish a link between the .idy file used by
ANIMATOR and the entry-point. For example:

In mainprog.idy other.idy <

However, you may still experience problems if you want to CALL the program
again later using the main entry-point (rather than “other”). When you CALL a
program via any of its entry-points, the RTE picks up the references to all its other
entry-points. Unless your program has a program name assigned to it in the
PROGRAM-ID paragraph, the main entry-point wiil not have a name associated
with it. The consequence is that if you CALL the above program by:

CALL "other" USING...

and later call the same program again by:
CALL "mainprog" USING...

the RTE, unaware of a main entry-point, does not detect the already loaded
program and loads a duplicate copy. This can cause a severe problem by duplicating
the data in the program.

When the RTE loads a program, it initializes the area of memory holding the
program data so that the data is initially either undefined or has the initial values
assigned to it by the VALUE clauses in the Data Division. If you exit from the
program without CANCELing the memory it occupies, when you reenter the
program its data will be in the state in which the program left it.

If the RTE loads a duplicate copy of the above program because it is not aware that
the program has already been loaded, it will initialize the data in the program. This
means that when you enter the program the second time (via the main entry-point),
the data in the program will reflect none of the changes made to it during the first
entry to the program (via the “other” entry-point).

You can make the RTE aware of the main entry-point of a program that you enter
via another entry-point by including a program name in the PROGRAM-ID para-
graph in the Identification Division of your program. For example:

identification division.
program-id. mainprog.

2-14 User’s Guide for IBM AIX VS COBOL Compiler/6000

Now when you CALL the program, the RTE will be aware of the entry-point
“mainprog”. Consequently, to reenter the program successfully via the main entry-
point after having entered it first via the “other” entry-point, you would have to use:

CALL "MAINPROG" USING...

In order to ensure complete portability of your applications, use only digits and
letters in your PROGRAM-ID and entry-point names. The first character of a
program name (that is, the file name of the source code, PROGRAM-ID, name, and
any ENTRY “...” USING names) must be alphabetic. If it is numeric it may be
converted to an alphabetic character as follows:

0 converts to J
1-9 converts to A-I

This applies only if the digit is in the first character position of the program name.
However, if your program name contains a hyphen, it is converted to zero, regard-
less of its position in the name.

For intermediate code and dynamically loadable native code, the RTE maps the
names of all calls before searching for the program in memory. If the program is
not found in memory, an attempt is made to load it from the filesystem using the
unmapped name. After loading, the program name and entry-point names are held
by the RTE in their mapped format.

For statically bound native code, the PROGRAM-ID, all alternate entry-points, and
all CALL literal names are mapped. The RTE searches for the mapped name in
memory. If it is not found in memory, the RTE searches for the mapped name in
the filesystem. If the mapped name is not found in the filesystem, no attempt is
made to unmap the name and search for it. A statically bound native code CALL
identifier behaves the same as described for intermediate code.

You must not use entirely numeric call names as COBOL PROGRAM-IDs, since
these are reserved for user calls.

Callmg Non-COBOL Subprograms
You can access non-COBOL (C and Assembler) subprograms using the standard
COBOL CALL ... USING statement. The address of each USING parameter is
passed to the argument in the non-COBOL subprogram that has the same ordinal
position in the formal parameter declarations. You must ensure that all formal
parameter declarations are pointers.

Chapter 2. Advice on Writing COBOL Programs 2-15

In the following example, C functions are accessed from a COBOL program.
$ SET 0SVS
*

* Enables reserved word RETURN-CODE which is an
* OSVS special-register
*

WORKING-STORAGE SECTION.

01 STR.
03 STR-TEXT PIC X(10).
03 FILLER PIC X VALUE X "00".

*

* NULL TERMINATE STRING FOR C FUNCTION

*

01 COUNTER PIC 9(8) COMP VALUE ZERO.

PROCEDURE DIVISION.

CALL-C SECTION.
CALL "cfunc" USING STR, COUNTER.
IF RETURN-CODE NOT = ZERO

*

* RETURN-CODE SET FROM RETURN () INC

*

DISPLAY "ERROR"
ELSE

DISPLAY "OK".
STOP RUN.

cfunc (st, c)

char *sts
int *Cy
{

.

.

return (0);

}

2-16 User’s Guide for IBM AIX VS COBOL Compiler/6000

All non-COBOL subprograms you wish to call from COBOL must be statically
linked to the RTE using the cob command. The format of the cob command you
use determines whether all COBOL programs invoked with this RTE, or only the
specified COBOL program, can access the non-COBOL programs linked to it. For
example:

cob -xe "" cprog.c -0 rts <

allows all COBOL programs invoked with rts to access the C functions linked to rts
since the entry-point is null and can be supplied at run time, while:

cob -x cobprog.cbl cprog.c -o cobprog <

allows only the specified COBOL program (cobprog.cbl) and any of its called sub-
programs to access the C functions linked to the RTE. See Chapter 4, “The
COBOL Interface,” for information on the use of the cob command.

When you use the CALL statement from within a COBOL program to access a
non-COBOL module as described above, you must ensure that the COBOL run envi-
ronment is not accidentally damaged. This means you must ensure that:

* The called module preserves the local COBOL run environment (that is, the reg-
isters) according to C calling conventions. Refer to the information on subrou-
tine linkage and system calls in the AIX operating system documentation for
allocation of registers over calls and a definition of which registers should be
preserved and which can be used as work registers.

¢ The global COBOL run environment (that is, data areas allocated by the
COBOL system, such as open file, buffers, and environment variables) should
only be destroyed or altered under the direct control of the COBOL system.
The routine cobtidy() is provided to tidy up the global COBOL run environ-
ment. You can call this routine from non-COBOL modules to empty buffers,
close files, and free any data areas allocated by the COBOL system. Call
cobtidy() when all COBOL modules have been exited and you do not intend to
reenter them. You may use this routine if you wish to close down the COBOL
system but are not yet ready to exit to the operating system -- for example,
before you execute the exec() routine. Do not call cobtidy() directly from
COBOL, as this gives undefined results. See Chapter 9, “Advanced Program-
ming Features,” for more information about cebtidy.

¢ The COBOL run environment (that is, the memory map image of the current
terminal screen) is not aware of any changes to the screen which the
non-COBOL module may make. Also, the stty settings required by the COBOL
run environment may be different from those required by the non-COBOL
module. The non-COBOL module is responsible for saving and restoring the
COBOL run environment. The demo programs call_sys.c and call_sys.cbl illus-
trate how this can be accomplished. All demo programs are located in the
$COBDIR/demo directory.

When you wish to shut down the current COBOL environment and start another,
you should use the CHAIN statement. While you are in the COBOL system but not
within a COBOL module, you should use the cobexit() routine to return to the
operating system.

Chapter 2. Advice on Writing COBOL Programs 2-17

Cancelling Non-COBOL Subprograms

The CANCEL statement has no effect when it references a non-COBOL program.

Mixing C and COBOL Programs

A C program can call a COBOL program in the same way as it would call another
C program. In the following example the COBOL program name is called using the
arguments a and b:

name (a, b);

The following functions are also provided to allow you to mix C and COBOL pro-
grams in an application. Parameters are passed by reference:

cobcancel (name)
char *name;

The above function cancels the COBOL program name previously called. It leaves
the data contained in this program in the initial state as defined for the COBOL
CANCEL verb. See the Language Reference for more information.

cobfunc (name, argc, argv)

char *name;

int argc;

char **argv;

This function has the same effect as specifying the previous two examples. However,
this function, unlike the previous exambple, causes the program to behave as if it had
been called using C function rules, not COBOL CALL rules.

cobexit (exitstatus)
int exitstatus;

This function allows the terminal to be reset if ADIS was used in a called COBOL
program. It also terminates the program’s run in the same way as if a COBOL
STOP RUN statement had been executed.

Example
The following example shows a C program calling a COBOL program. The example
demonstrates how to:

¢ Pass a string from C to COBOL

¢ Pass a number from C to COBOL

¢ How a called COBOL program can keep its data active

o Use the powerful COBOL editing facilities from C

* Animate a COBOL program called from C

¢ Use the symbolic debugger dbx to debug a C program calling COBOL.

2-18 User’s Guide for IBM AIX VS COBOL Compiler/6000

account.cbl

$set 0OSVS
program-id.
account.

data division.
working-storage section.
78 account-name-len value 80.

01 account-name pic x(account-name-len).

01 total pic 9(9) value zero.

01 result pic $$$,$$$,$%9.

tinkage section.

01 strlen pic x(4) comp-5.
01 newname pic x(80).

01 next-item pic x(4) comp-5.

procedure division.
display spaces upon crt.
exit program.

entry "validate" using strlen newname.
if strlen > account-name-len
display "account name exceeds ", account-name-len,
"characters."
move 1 to return-code
else
move newname(l:strlen) to account-name.
exit program.

entry "tally" using next-item.
add next-item to total
on size error
display "numeric overflow"
move 2 to return-code.
exit program.

entry "showaccount".
display spaces upon crt.
display account-name
move total to result.
display result.
exit program.

Chapter 2. Advice on Writing COBOL Programs 2-19

cmain.c

#include <stdio.h>
#define BUFFSZ 80

extern int account();
extern int validate();
extern int tally();
extern int showaccount();
extern void cobexit();
extern int cobprintf();
extern int cobgetch();

/* temp buffer size */

/* Cobol program - initialization */

/* Cobol program - takes account name */
/* Cobol program - increments total */
/* Cobol program - controls displays */
/* close down Cobol system and exit */
/* COBOL display from C */

/* COBOL character get */

main()
{
int status;
Tong num;
char buf[BUFFSZ];
int strlen();

if (status = account())
cobexit(status);

/* Call COBOL to initialise */

cobprintf(“account: “);
get_string(buf);

/* select account code */

num = strien(buf);
if (status = validate(&num, buf))
cobexit(status);

do

{ cobprintf("cost [0 to end]: ");
get_string(buf);
num = atoi(buf); /* tally items */
if (status = tally(&num))

cobexit(status);

} while (num ! = 0);

showaccount ()3 /* display total */

cobexit(status);

}

get_string(buffer)
char buffer[];

{
int=0;
while (((buffer[i] = cobgetch()) != '\n') && i < BUFFSZ)
cobprintf("%c" ,buffer[i++]);
cobprintf("\n");
buffer[i] = 03
}

2-20 User’s Guide for IBM AIX VS COBOL Compiler/6000

If you wish to statically link and run the programs used in the above example you
would type:

cob -x cmain.c account.cbl <

To link the C program, cmain.c, to the COBOL libraries and run the above pro-
grams you would type:

cob -Uo crts cmain.c account.chbl <«
crts

To allow animation of the dynamically loaded COBOL modules you would type:

cob -Uo crts cmain.c account.cbl <
COBSW=+A <

export COBSW <

crts <

To use the symbolic debugger dbx to debug the C program you would type:

cob -gx cmain.c account.chl <
dbx cmain <«

To use the symbolic debugger dbx to debug the C program and animate the COBOL
program, you would type:

cob -gU cmain.c account.cbl <
COBSW=+A «

export COBSW <

dbx cmain <«

Passing the Command Line

The AIX VS COBOL system allows you to call a program and pass the command
line to the main program as a parameter to be accessed via the Linkage Section.
The main program in a run-unit is the first program within it; that is, the one which
is called directly by the AIX system. The command line parameter, in the format
shown below, is passed to the Linkage Section of the main program:

01 CMD-LINE.
02 ARGC PIC 9(4) COMP.
02 ARG.
10 ARGS PIC X OCCURS © TO 65535 DEPENDING ON ARGC.

To be able to access this example parameter, the main program must declare the
above area in its Linkage Section and must have the following Procedure Division
header:

PROCEDURE DIVISION USING CMD-LINE.

This causes the main program to be invoked as though the system program which
had invoked it were a COBOL program calling with a CALL statement of the form:

CALL "program name" USING CMD-LINE.

You can substitute your own names for the items shown in the above example, but
you must use a format which is similar to that shown here.

Chapter 2. Advice on Writing COBOL Programs 2-21

ARGC contains a count of the actual number of occurrences of ARGS, that is, the
number of characters on the command line, and you must not access data beyond
this. It is recommended that you test that the length field contains a non-zero value
which does not exceed the maximum limit of the occurs. You should take care not
to access data beyond the end of the command line (for example, by defining a fixed
length field and then MOVEing it) as this would be an illegal reference, and could
give you a hardware error on some systems.

Consider the following example:
WORKING STORAGE SECTION.

01 ARGV PIC X(20).
01 ARGV-LENGTH PIC 9(4) COMP.
01 ARGV-MAX-LENGTH PIC 9(4) COMP VALUE 20.
01 NEXT-ARGY PIC 9(4) COMP VALUE 1.
LINKAGE SECTION.
01 CMD-PARAM.
03 CMD-LENGTH PIC 9(4) COMP-X.
03 CMD-LINE.
05 CMD-CHAR PIC X OCCURS 1 TO 999 DEPENDING ON CMD-LENGTH.

PROCEDURE DIVISION USING CMD-PARAM.
AQOG SECTION.
IF CMD-LENGTH = 0
DISPLAY "No command line v,
IF CMD-LENGTH > 999
DISPLAY "Command line too tong" STOP RUN.
PERFORM UNTIL NEXT-ARGV > CMD-LENGTH
UNSTRING CMD-LINE DELIMITED BY ALL " " INTO ARGV
COUNT IN ARGV-LENGTH WITH POINTER NEXT-ARGV
IF ARGV-LENGTH > ARGV-MAX-LENGTH
DISPLAY "Argument too long"
ELSE PERFORM PROCESS-ARGV
END-PERFORM.

PROCESS-ARGY.

To ensure that your program is portable, you must use the OCCURS DEPENDING
clause. If you do not use-this clause, characters after the end of the specified
command line length may be accessed, which may give a memory validation error on
some systems.

The length of the command line is held as a two-byte integer which can hold values
larger than the COBOL picture.

2-22 User’s Guide for IBM AIX VS COBOL Compiler/6000

Calling Operating System Functions

The following example shows how parameters can be passed to AIX system service
routines.

* Example of direct calling of C routines from a COBOL program using
* sleep (), an operating system service routine, and getenv(), a general
* library routine.

$set rtncode-size(4)
* Note that the return code size of 4 bytes is required for
* returning a pointer so set the compiler directive. This

* is the default for the AIX VS COBOL system.

working-storage section.
01 errno is external pic 9(9) comp-5.

* errno is the external AIX data item to which the error number
* returned by an AIX system service routine is assigned.

01 sleep-time pic 9(9) comp-5.
01 term pic x{160) value spaces.
01 env-name pic x(100).

linkage section.
01 namebuf pic x(100).
01 return-code2.
05 return-pointer usage is pointer.

Linkage items have no physical storage but the names can

be used to reference addresses given by the SET verb.
Return-code2 is used to reference return-code and redefine it
as a character pointer named as return-pointer.

Return-pointer is then used to dereference the pointer and set
namebuf to point to the character string associated with the
pointer returned by the call to genenv().

EE N T I

procedure division.
get-cobdir section.

set address of return-code2 to address of return-code.
move O to errno.

"getenv()" expects a pointer to an array of characters terminated
by a low-value.

Cobol can pass its parameters by REFERENCE, CONTENT, or VALUE:-

BY REFERENCE will pass to the function the address of the parameter
(in C a PIC X(n) would look 1ike a char*, except it would not be
NULL terminated). ‘

* ¥k % X Xk X *

Chapter 2. Advice on Writing COBOL Programs 2-23

BY CONTENT will pass to the function the address of a temporary data
jtem (to which there is an implied move from the parameters before
the call is made). The only difference between BY CONTENT and BY
REFERENCE is that the called module cannot effect the value of the
‘parameter as seen from the calling module.
BY VALUE will pass to the function the actual value of the data item
rather than its address. BY VALUE should only be used to call non-COBOL
modules (because the PROCEDURE DIVISION USING statement has no way of
specifying that a VALUE parameter is to be expected). Note that if
the size of the parameter being passed exceeds 4 bytes then it will
be passed as if BY REFERENCE has been specified, also any numeric
literals passed in this way will be passed to the called module
as a 4 byte comp numeric in machine byte order (in C as a long on
a 32 bit machine).
EG: .

display "about to sleep".

move 10 to sleep-time.

call "sleep" using by value sleep-time.

display "have had a very nice sleep thanks".

¥ % % * ¥ ¥ % X % ¥ ok X ¥ X %

Now back to demonstrate how to find the value of the environment
variable TERM and display it.

I A .

Ensure that parameter to "getenv()" is NULL terminated.
string "TERM" Tow-values delimited by size into env-name.

call "getenv" using env-name.
if return-code = 0
display "TERM not found"
stop run.

set address of namebuf to return-pointer.
* Function result of "getenv()" is a NULL terminated string. Cobol
* requires SPACE termination.

string namebuf delimited by low-values into term.

display term.
stop run.

AIX VS COBOL Dialect Flagging and Error Reporting

When you select a particular COBOL dialect to use when you compile your
program, for example, vsc2 or mf, the additional reserved words in that dialect are
enabled. When a particular dialect is turned off, for example, novsc2 or nomf, the
reserved words associated uniquely with that dialect are disabled. If a reserved word
is used in some other context in a dialect that is still enabled, all functionality for
that reserved word will still be available, that is, no error will be issued for any use
of that reserved word.

2-24 User's Guide for IBM AIX VS COBOL Compiler/6000

For example, the reserved word ON is used in many contexts. One of these is the
ON statement, which is part of the osvs dialect of COBOL. However, the reserved
word ON is used elsewhere in COBOL, so that even when the option neesvs is used,
all uses of the reserved word ON will be accepted by AIX VS COBOL. For
instance, you will still be able to code the ON statement even when the noosvs option
is used, since the reserved word ON is not unique to the dialect of COBOL that is
disabled.

On the other hand, the reserved word OTHERWISE is unique to the dialect osvs.
Therefore, the option esvs must be set for any syntax using the word OTHERWISE
to be accepted. If the word OTHERWISE is coded and the osvs option is not on,
(either by default or by explicit action), you will get a severe error reported.

Other examples of being able to use syntactic constructions even though they belong
to a dialect that is not selected are:

* Omitting optional reserved words. Since no reserved word is used wrongly,
there is no error to report.

¢ Using syntactic constructions that do not involve reserved words, for example,
reference modification.

You can always determine if you are coding within the bounds of a particular dialect
through the use of flagging. Consider the example discussed above regarding the
reserved word ON. If you wanted to code only to the ANSI 1985 COBOL standard
and you used flag(ans85) on your compilation, the use of the ON statement would
be flagged as being outside of the chosen dialect. The additional examples cited
above would also be flagged if the flagging dialect selected did not allow the syntax
you used.

The choice of a dialect of COBOL should be viewed as a means of enabling or disa-
bling specific reserved words. It will not necessarily report errors for coding outside
of the chosen dialects, unless the syntax used does not exist in any dialect. In order
to keep your coding within a specific dialect or standard, you should use flagging in
addition to the proper dialect options.

See Chapter 5, “Compiler Options” for more information on the available options
and how to set them for compilation.

Most of the time, the error messages reported for your compilation are interspersed
into your source code when seen on the listing. However, some errors cannot be
detected until the entire program has been scanned. Since the AIX VS COBOL
compiler is a one-pass compiler, it is not possible for errors such as these to be
reported interspersed in the source. These errors will be reported at the end of the
source listing. '

Chapter 2. Advice on Writing COBOL Programs 2-25

2-26 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 3. Device- and File-Handling

Chapter 3. Device- and File-Handling 3-1

Contents

About This Chapter 3-3
Devices 34
File Assignment 34
Special Characters in Environment Variables 39
AIX VS COBOL Disk File Structure under AIX 3-12
Record-Sequential Files 3-12
Line-Sequential Files 3-12
Relative Files 3-12
Indexed Sequential Files 3-13
Library Files 3-16
File Restrictions 3-17
Input-Output Error-Handling (File Status) 3-17
Alternate File Status Table 3-18
Writing Output Directly to a Printer 3-20

3-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

This chapter describes some aspects of AIX files and devices as they appear to AIX
VS COBOL programs. In particular, it describes:

* How to use special devices recognized by the RTE

* How to assign files in a program, statically and dynamically, to files and devices
¢ How AIX VS COBOL file structures map onto AIX file structures

* How the COBOL COPY statement operates in an AIX environment

¢ How to handle input-output errors.

Chapter 3. Device- and File-Handling 3-3

Devices

File Assignment

The compiler and the RTE are programmed to use certain devices. A program that
reads from the standard input device stdin will access the standard AIX input. A
program that writes to the standard output device stdout will access the standard
AIX output. A program that writes to the standard error device stderr will access
the standard AIX error output. All AIX VS COBOL utilities write error messages to
error output, and not to standard output. At run time, the RTE recognizes sequen-
tial or line-sequential files opened with these names and directs output to the appro-
priate target. Note that if stdin is line-sequential, the first READ is from the
command line tail.

The system emulates printer channels COl through C12 by line feeds and form feeds.
If you want to write to these channels, set the environment variable COBLPFORM
to define the line numbers on the form. See Appendix A, “Environment Variables,”
for details on how to set this variable. The format consists of a series of numbers
separated by colons, as in the following example:

COBLPFORM = "ls:::2::::::60"

This sets channel 1 to line 1 (the beginning of the page) and channel 12 to line 60.
You can specify only a single line number for each channel. Those channels which
have line number zero; mnemonics S01, S02, CSP; or are undefined, are set to line 1.

Any WRITE BEFORE/AFTER PAGE statements cause positioning at line 1. Each
line that is advanced increases the line number by 1. A request to skip to a line
number less than or equal to the current line causes a new page to begin. The
appropriate number of line feeds are then generated.

Any WRITE BEFORE/AFTER TAB statements generate a form feed and cause any
subsequent skips to a channel number to start a new page.

The AIX VS COBOL system offers three types of file assignments:

¢ Fixed file assignment, in which you assign the internal user file name to a literal
operating system file name when you write the program.

* Dynamic file assignment, in which you assign the internal user file name to a
data item defined within your program. You can store the name of an operating
system file in this variable at run time and assign the internal user file name to
this file.

¢ File name mapping, which allows you to assign files to AIX pipes or to assign the
index and data files of indexed-sequential files to different directories.

In the interest of program portability it is advised not to build the full path names of
files into your programs. You should use logical file names instead.

3-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

Fixed File Assignment
In fixed file assignment, the internal file name is assigned to an external AIX file
name in the FILE CONTROL paragraph of your program. With fixed file assign-
ment, the external file name cannot be changed without recompiling your program.
You do this in the SELECT clause for the file, which has the form:

»»— SELECT — file — ASSIGN L _j E literal T >
TO DISK
L literal j

where file is the internal file name used by your program and literal is the AIX file
name (with or without path qualification) of the corresponding file. For example:

SELECT MYFILE ASSIGN TO "mylib/file3"

associates the file that your program refers to as M YFILE with the file named file3
in directory mylib.

If you use the DISK option in the SELECT clause, you have the choice of specifying
the file name literal either in the SELECT clause or in the FD entry for the file in
the FILE SECTION. For example:

SELECT MYFILE ASSIGN TO DISK "mylib/file3"

has the same effect as the first example. However, you could achieve the same effect
another way:

SELECT MYFILE ASSIGN TO DISK

DATA DIVISION.
FILE SECTION.

FD MYFILE VALUE OF FILE-ID IS "mylib/file3"

If you do not specify a literal with the DISK option in the SELECT clause and do
not specify the VALUE OF FILE-ID clause in the FD entry of the file, the effect is
to assign the internal file name to a file with the same name as the internal file
name. So, if in the above example you were to leave out the VALUE OF FILE-ID
clause in the FD entry, the file MYFILE would be associated with a file with the
AIX file name MYFILE.

Dynamic File Assignment
In dynamic file assignment, you associate the internal file name used by your
program with either of the following:

¢ A data item declared in your program. You can then move a literal value
representing the AIX file name into this data item.

¢ An external file reference. This identifies an AIX environment variable whose
value will be used as the AIX file name.

Chapter 3. Device- and File-Handling 3-5

You do this in the SELECT clause for the file, which has the form:

»— SELECT — file — ASSIGN |__ _J DYNAMIC — data-item
T0 l:EXTERNAL — file-reference —
DISK

where:

data-item is the name of a data item declared in the WORKING-STORAGE
SECTION of your program. You must declare this item as PIC X(rn), where # is the
maximum length of the file name you want to use. If you do not declare this data
item, the compiler declares it for you automatically as PIC X(21).

file-reference is a user-defined name. Before you run a program that contains such a
file assignment, you must ensure that you have declared an environment variable
with the same name as the name that follows EXTERNAL. You must also ensure
that the value of this environment variable includes the file name for the appropriate

file. If the file-reference contains hyphens, only the positions to the right of the
rightmost hyphen have any significance.

If no environment variable is set, the file name used for the AIX file is file-reference.
If you use the DISK option in the SELECT clause, you specify the name of the data
item that holds the file name in the VALUE OF FILE-ID clause in the FD entry of
the file.

The following example shows how to use DYNAMIC:

SELECT MYFILE ASSIGN TO DYNAMIC FILE-NAME
I:)ATA DIVISION.

;IORKING-STORAGE SECTION.

E)l FILE-NAME PIC X(25).

I:JROCEDURE DIVISION.

MOVE "mylib/file3" TO FILE-NAME.
OPEN MYFILE...

3-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

DYNAMIC associates the path and file name my1ib/file3 with the internal file
name myfile. You can achieve the same effect using DISK:

SELECT MYFILE ASSIGN TO DISK

BATA DIVISION.

;ILE SECTION.

;D MYFILE VALUE OF FILE-ID IS FILE-NAME.
&ORKING-STORAGE SECTION.

81 FILE-NAME PIC X(25).

;ROCEDURE DIVISION.

gOVE “mylib/file3" TO FILE-NAME.

OPEN MYFILE...

The following example shows how you can use EXTERNAL:

SELECT MYFILE ASSIGN TO EXTERNAL MYENV
PROCEDURE DIVISION.

OPEN MYFILE...

Before running this program, you would create an AIX environment variable called
dd_MYENYV and give it a value, such as mylib/file3. When you run the program, the
file with the internal file name MYFILE is associated with the AIX file, mylib/file3 (the
current value of the environment variable dd_MYENY).

If you use the EXTERNAL feature, you must be careful how you specify file and
environment names. The file reference that follows EXTERNAL is not a literal in
the usual COBOL sense; the compiler treats it as a user name. One consequence of
this is that if the name following EXTERNAL is in lowercase, the compiler converts
it internally to uppercase. Therefore, when you create the environment variable its
name must be in uppercase.

File Name Mapping
AIX VS COBOL allows file names to be mapped or changed at run time through
environment variables. This allows the physical file name to be changed by the user
each time the COBOL program is run.

This use of environment variables to re-map a file’s name at run time is distinct from
the use of environment variables to associate the name of a file declared
EXTERNAL with a physical file. If both types of environment variables are used,
the one specifying a dd_ name has precedence.

Chapter 3. Device- and File-Handling 3-7

When a file is opened by a COBOL program, the system checks to see if there is an
environment variable defined that will cause a different file to be used. If no envi-
ronment variable is defined for the ASSIGNed file name, substitution does not take
place, and the file is opened as usual.

If an environment variable exists for the ASSIGNed file name, the value of the envi-
ronment variable is used for the physical file name. The environment variable name
searched for is constructed with the first element of the ASSIGNed file name, pre-
fixed with dd_. For example, if you try to open a file named dir/file, the system
searches for the environment variable dd_dir. If you try opening a file named
dirl/dir2|filel, the system searches for dd_dirl. And, if you try opening a file named
filel, the system searches for dd_filel.

After the system finds an environment variable name, it takes the value of that envi-
ronment variable and adds it to the beginning of the remaining elements of the ori-
ginal file name. This name is then the physical file name that the RTE searches for.
Consider the examples in Table 3-1:

Table 3-1. File Name Mapping
File Name Environment Environment
ASSIGNed Variable Variable Physical
in Program Searched for Contents File Name
dir[filel dd_dir d2 d2|filel
dir/filel dd_dir d4 d4/[filel
dir/filel dd_dir d2/d4 d2/dd[file]
dirl|dir2[filel dd_dirl a2 d2/dir2|filel
dirl|dir2/filel dd_dirl a4 d4/dir2|filel
dirl[dir2/file] dd_dirl d2/d4 d2/d4/dir2|filel
filel dd_filel d2 a2

| [dir3/dird|filel dd_ a2 d2/dir3/dird[filel

If you try to open a file whose name begins with the slash (/) character, the system
searches for dd_.

Do not start any file name with the characters cob.

dd_ can be uppercase, lowercase, or mixed case; the RTE recognizes the combina-
tions dd_, DD_, dD_, and Dd_. However, you must be careful not to define multiple
variables for the same file using different case combinations, because the RTE may
select the wrong file name. For example:

SELECT FILE1 ASSIGN TO "mYfile"

3-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

When FILEL1 is opened, the RTE searches for the environment variable dd_mYfile.
If it is defined, as in dd_mYfile = another file, the physical file name another.file is
used for FILE1. Otherwise, mYfile is used as the physical file name.

The rules for file name mapping described above allow you to put all the files con-
nected with one application in the same directory and be certain that the AIX VS
COBOL system will be able to find them all. You achieve this by defining each file
as application-name|file-name and by setting up the environment variable
dd_application, which points to the name of the application directory containing all
these files.

Be aware that if you dynamically change any environment variable names, they are
not accessed again. These environment variables are accessed only at the start of a
run. However, external variables are accessed again.

Special Characters in Environment Variables

Indexed Files

Not all special characters used in COBOL file names can be used in environment
variables. Four characters, the greater-than symbol (>), less-than symbol (<), colon
(:), and ampersand (&), have a special meaning in this context. You cannot map a
filename containing these characters using environment variable logical filename
mapping. These characters are described in the following sections.

A period (.) in an environment variable must be replaced by an underscore () so
that file mapping can proceed. For example, to map the COBOL file file.Ist to the
file my_file.list, define the environment variable as follows:

dd_file_lst=my_file.list

COBOL indexed files are implemented as two files: a data file and an index file.
For example, the COBOL indexed file id_file has a data file named id_file and an
index file named id_file.idx. An environment variable dd_id_file=x has a data file x
and an index file x.idx. If you want to change the names of the data and index files
independently, you must use the ampersand (&) character, as follows:

dd;i d_file="&datafile&indexfile"

In the preceding example, the data file is now named datafile and the index file is
named indexfile. When you use & to rename files, you can place data and index files
in separate directories to increase performance capabilities.
Notes:

1. Double quotation marks (“ ”) must be used with the & character.

2. The & character can only be used with indexed files.

3. You cannot use the & character when specifying multiple paths. (See “Multiple
Files” on page 3-10).

Chapter 3. Device- and File-Handling 3-9

The “$” Character in Filenames

Multiple Files

If the physical filename in your program starts with a “$” character, this forces the
system to attempt to map the specified file. If no mapping exists a “file not found”
condition is returned; the system does not search for the unmapped filename. Con-
sider the following example contents of a SELECT statement:

select filename assign "$filel"

This causes the system to search for the environment variable “dd_filel”. If this is
found the system follows the rules for filename mapping given in the previous
sections. If this is not found, a “file not found” condition is returned; the system
does not attempt to search for “filel”.

You can set up a search path for files that are opened for reading by using colons (:)
to separate alternate paths in a manner similar to the AIX PATH environment vari-
able. For example, the environment variable dd_my_file = “:file1:dir/file2” causes the
COBOL file my_file to use filel if it exists at the time the file is opened. Otherwise,

dir/file2 is used.

Notes:

1. The initial colon is required. If the colon is absent, the program searches for the
file “file1:dir/file2”.

2. Do not use this technique for indexed files. Otherwise, an environment variable
containing colons (;) will be interpreted as a single file name, and the colons will
be interpreted as part of the name of the indexed files.

Warning: This technique works only for files opened for input. If you attempt to
use the technique for files opened for output or for I-O, a fatal RTE error will occur.

Redirection and Pipes

When you are specifying the contents of an environment variable you can use the
following three characters to set up pipes:

* >

¢ <
|
|

The meanings of these characters when used in the value of an environment variable
are described in the remainder of this section. These special characters are only
recognized by the AIX VS COBOL system if they appear at the start of the environ-
ment variable. You cannot use these characters while specifying multiple paths.
You also cannot use these special characters with variable length records, except in
line sequential files that have no record varying syntax in the FD; no multiple 01
level data items; and no RECORDING MODE clause.

The < character defines the specified file as a pipe connected to the standard output
of the given command. The file ASSIGNed within your program must be either
sequential or line sequential, and it must be OPENed for INPUT. Its name can be
only one element long, this is, it must not contain a / character.

3-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

Consider the following example contents of an environment variable named dd_dir:
dd_dir="<1s -1 ..."

This causes every READ in the program of the original ASSIGNed file to return the
value of the next line of the output from the Is —1 command.

The pipe is set up using the AIX popen() library routine.

The > character defines the specified file as a pipe connected to the standard input
of the command. The file ASSIGNed within your program must be either sequential
or line sequential, and it must be OPENed for OUTPUT. Its name can only be one
element long, that is, it must not contain a / character.

Consider the following example contents of an environment variable named dd_dir:
dd_dir=">pr -h Title ..."

This causes every WRITE to the ASSIGNed file in the program to be passed to the
standard input of the pr —h Title command.

The | character defines the specified file as a two-way pipe to the specified process.
The file ASSIGNed within your program must be either sequential or line sequential,
and it must be OPENed for I-O.

Consider the following example contents of an environment variable named dd_file:
dd_file="|proc"

This defines the file file as a two-way pipe to the process “proc”. That is, all the

read operations on that file will read the standard output of the process “proc”,

while all the WRITE operations to that file will write to the standard input of the
process “proc”.

Also consider the following example contents of an environment variable named
dd_UPPERCS:

dd_UPPERCS="{toupper.sh"
Then, create a file called toupper.sh that contains:
tr '[a-z]' '[A-Z]' >out.file

and make this file executable.

After you have done these steps, execute your COBOL program that does a WRITE
to the file that is ASSIGNed to UPPERCS. The shell script toupper.sh receives the
program’s output as input which causes the shell command tr to convert the lower-
case letters to uppercase and write the results to the file out.file.

You receive an error if you attempt to WRITE to a line sequential file or a sequen-
tial file OPENed for I-O unless the file has been mapped using the | character.

As these three characters do have a special meaning in environment variables, if you

wish to reference any file whose name begins with any of these characters, you must
precede the name with a \ character.

Chapter 3. Device- and File-Handling =~ 3-11

AIX VS COBOL Disk File Structure under AIX

AIX VS COBOL offers four types of file organization for use by the COBOL pro-
grammer: record-sequential, line-sequential, relative, and indexed sequential.

Record-Sequential Files

Record-sequential files consist of a series of fixed-length records. The length of a
record-sequential file record is the length of the longest FD entry for the file in the
FILE SECTION of the program.

Normally, the space occupied by a record-sequential file record is the same as the
record length as defined in the FD entry. However, if records are written to the file
using WRITE BEFORE ADVANCING or WRITE AFTER ADVANCING, extra
control characters are written to the file. Programs then will be unable to read the
data correctly.

Line-Sequential Files

Relative Files

Line-sequential files are intended to cater to text (ASCII) files created by text editors
and similar utilities.

A line-sequential file consists of a series of variable-length records, each of which is
terminated by the character hex 0A. From the point of view of a program accessing
a line-sequential file, the file record has a maximum length as specified by the FD
entry of the file in the FILE SECTION. When your program reads a record from a
line-sequential file:

* The record area is padded on the right with spaces if the record is shorter than
the maximum record length.

* The record area is filled if the record is longer than the maximum record length.
Subsequent READs will fill the record area until the record terminator is read.
If the next character after a READ is hex 0A, it is omitted; that is, the READ
will not return a blank line.

In both cases the OA character is stripped from the record; it is not present in the file
record area.

If records are written to a line-sequential file using ADVANCING phrases (except
for BEFORE 1), the records will contain extra device control characters. Such files

cannot be read by a program.

You should store only legal ASCII characters in a line-sequential file.

Relative files allow you to access data randomly by specifying its position within the
file.

A relative file consists of a series of fixed-length records, where the length is given by
the longest FD entry for the file in the FILE SECTION of the program.

Each record is uniquely identified by a record number. The first record in the file is
record number one, the second is record number two, and so on.

3-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

At the end of each relative file record there is a one-byte control field (no* included
in the record length as defined in the FD entry), whose value indicates whether that
record logically exists in the file. This control field can have cither of two values:

* hex 0A
The record exists and can be accessed by a program.
* hex 00

The record has been deleted and cannot be accessed by a program.

When you DELETE a record from a relative file all that happens is that the control
field of the record is changed from OA to 00. The data itself remains in the file in its
original position.

You can read a relative file by declaring it in a program as a sequential file with
record length » + 1 (where n is the record length of the relative file). This will allow
you to read records that have been deleted. If, for security purposes, you need to
ensure that deleted data can never be accessed, you must overwrite the record before
deleting it.

Indexed Sequential Files
An indexed sequential file is implemented as two separate files: the data file and the
key or index file. The data file is in relative file format.

The name that you supply is the name of the data file; the name of the associated
key file is produced by using the extension .idx with the root of the data file name.
For example:

Data File Key File
myfile myfile.idx
clock.fle clock.fle.idx

It is advisable to avoid using the extension .idx in other contexts, and to limit the
data-name portion of the file name to 10 characters or less.

The index is built up as an inverted tree structure that grows in height as records are
added. The number of key file accesses required to locate a randomly selected
record depends primarily on the number of records in the file and the key length.

Faster response times are obtainable when reading the file sequentially, but only if
other indexed sequential operations do not intervene.

The necessity of making regular backup copies of all types of files cannot be empha-
sized too strongly, and this should always be regarded as the main safeguard. There
are situations with indexed sequential files (for example, media corruption) that can
lead to only one of the two files becoming unusable. If the index file is lost in this
way, you can recover data records from just the data file (although not in key
sequence) and thus reduce the time lost due to an error. As an aid to this, all
unused data records are marked as deleted at the relative file level by appending one
byte to each record that contains LOW-VALUES. For undeleted records this byte
contains the character hex 0A.

Chapter 3. Device- and File-Handling 3-13

The recovery operation may therefore be done with a simple COBOL program by
defining the data file as organization sequential access sequential with records defined
as one byte longer than in the indexed sequential file description. The records are
then read sequentially, the data MOVEd from the sequential file record area into the
indexed (sequential) file record area, and written to a new version of the indexed
sequential file. Those records with LOW-VALUES in the last (extra) byte are dis-
carded. Note that this byte (containing line feed characters in a required record) is
not written to the indexed sequential file on recovery because of the record length
discrepancy of one byte in the record definitions.

Another way to recover indexed sequential files that you suspect are corrupt is to use
the bcheck utility. This is described in “The bcheck Utility.”

Indexed Sequential File Format

The bcheck Utility

The size of an indexed sequential file depends on the number of records it contains,
as follows:

m +(n*m) + (K*m) +(F*m)

where:

m is the default block size.

n is the number of keys.

K is 508/(total key length + (8*n)).
F is the number of records/126.

This formula gives the minimum size of the index file in bytes. The value of K is the
number of blocks required to hold the index information. The value of F is the
number of free list blocks required for the file. These blocks are needed only if the
file is fragmented.

You can run the beheck utility to check the consistency of an indexed sequential file.
If the index is found to be corrupt, bcheck can construct a new index for the file.
To run beheck, enter a command of the form:
bcheck [options] file-list €
where options is a string of one or more of the following:

-i Checks the index file only (the default is to check both the .idx and .dat files
that make up an indexed sequential file)

-1 Lists the entries in the index binary tree
-n Answers “no” to all questions

-y Answers “yes” to all questions

file-list is a list of the names of the indexed sequential files to be checked.

3-14 User’s Guide for IBM AIX VS COBOL Compiler/6000

Unless you specify -n or -y, beheck is entirely interactive. Each time it finds an
error, it asks you whether or not to delete the index.

In order for the beheck utility to reconstruct a file, the index file must exist and
cannot be empty. The reconstructed index file produced by beheck is functionally
equivalent to the original file.

For example:

bcheck -n sale.ship.idx <

checks the index file sale.ship.idx. If errors are found, all requests to delete the
corrupt index are answered “no”. If such errors are found, you could then delete
and rebuild the index as follows:

bcheck -y sale.ship.idx <
You should limit the data-name portion of index file names to 10 characters or less.
This is because the bcheck utility removes any .idx extension from a file name, trun-
cates the name to 10 characters, and then adds its own .idx extension.
For example, if you enter the following command:

bcheck -n mustock.dat

bcheck uses mustock.dat as the physical file name and the index file name is con-
verted to mustock.da.idx.. However, if you pass the file mustock.da.idx to becheck:

bcheck -n mustock.da.idx

mustock.da is used for the physical file name, but this file does not exist.

The following error messages may be issued by the bcheck utility.

255 Duplicate record

256 File not open

257 Illegal argument

258 Bad key descriptor (illegal key descriptor)
259 Too many files (too many files open)
260 Corrupted isam file (bad isam file format)
261 Need exclusive access

262 Record or file locked

263 Index already exists (key already exists)

264 Primary index (is primary key)

265 End of file (end/begin of file)

266 Record not found

267 No current record

268 File is in use (file locked)

269 File name is too long

270 Back lock device

271 Can’t allocate memory

272 Bad collating table

275 NLS Language mismatch (wrong language nl_init(Jed)

Chapter 3. Device- and File-Handling 3-15

Library Files
The COBOL COPY statement allows you to specify the name of a file from which
COBOL source programs are read by the compiler when the COPY statement is exe-
cuted. See the Language Reference for a description of how the COPY statement
works. This section is concerned with how the specification of the copy file in the
COPY statement maps onto the AIX file system.

The copy file in a COPY statement is identified as follows:

»— COPY —[: text-name J LOFJ |_ library-name ——_[—N
external-file-name-literal IN library-name-literal

where:

text-name is the name of a file without an extension. The compiler searches for this
file in the current directory. This name will be converted to uppercase before
searching. '

external-file-name-literal is the name of a file in quotation marks. This file name
may have an extension, and may inciude a path name if there is no library name or
library name literal. The case of this name will be exactly as written in the quoted
string.

library-name is a single letter and must be the name of a directory within the current
directory. The compiler searches for the file specified in text-name or external-file-
name-literal within this subdirectory. '

library-name-literal is a path name in quotation marks. The compiler searches for
the file specified in text-name or external-file-name-literal in the context of this path
name.

For example:
COPY prog OF A

is converted to A/PROG (relative to the current directory).
COPY "prog.chl" OF D '

is converted to D/prog.chl (relative to the current directory).

If the system cannot find the required COPY file, it searches for the environment
variable COBCPY. You can use this environment variable to specify a path, or mul-
tiple paths, for COBOL COPY libraries. If multiple paths are specified, the first
character must be a colon. For example:

COBCPY=": fusr/group/sharedcpy: /usr/mydir/mycpy"
See Appendix A, “Environment Variables” for more details on COBCPY.
If the system still cannot find the specified COPY file, then the extension specified
by the osext compiler option is appended to the filename, and a search is made for

that name. The default for the osext option is “.cbl”. See Chapter 5, “Compiler
Options” for information about the osext option.

3-16 User’s Guide for IBM AIX VS COBOL Compiler/6000

File Restrictions

The maximum size of any file you can create is limited by the system parameter
ulimit. You may find that the default limit, as supplied with your AIX system, is not
large enough for your code. However, this limit can be increased by a superuser.

The following remarks indicate some uses of files by AIX VS COBOL:
¢ Each indexed sequential file counts as two files while it is open.

¢ Up to five files may be required while a SORT or MERGE statement is exe-
cuting, depending on the number of records to be sorted. However, in most
cases no files are required at all.

* One file is required for loading an overlay or calling a subprogram. This file
will be open only during execution of the GO TO, PERFORM, or CALL state-
ment that causes the load.

¢ If you are using ANIMATOR, it requires two more open files.

Input-Output Error-Handling (File Status)

If you have specified the STATUS clause in the FILE-CONTROL paragraph ina
program and an error occurs during an operation on the file, the status value
returned will contain a character “9” in the first byte and the error number in binary
(COMP) in the second byte. If the operation is successful, the first byte will contain
“0”. It is your responsibility to check for error conditions and to take appropriate
corrective action or to terminate the program run. See the Language Reference for a
list of file status errors.

If you have not specified the FILE STATUS clause in the FILE-CONTROL para-
graph in a program, file errors with a first byte value of “9” will result in a run-time
error being output.

If you wish to display this status with its correct decimal value, careful redefinition
of data items is required in order to avoid truncation of the value. This is because
the facility that enables the storage of a nonnumeric value greater than decimal 99 as
a hexadecimal value is an extension to the ANSI COBOL standard X3.23 (1974), but
the rules for moving or manipulating such data are restricted by the standard to a
maximum of decimal 99. '

- The example that follows illustrates one method of retrieving the value of status key

2 for display purposes. - Note how truncation has been avoided by redefining the two
status bytes as one numeric data item (length two bytes) capable of storing up to
four decimal digits.

Chapter 3. Device- and File-Handling 3-17

USE Procedures

000010 ENVIRONMENT DIVISION.

000020 INPUT-OUTPUT SECTION.

000030 FILE-CONTROL.

000040 SELECT FILE1

000050 ASSIGN "TST.FIL"

000060 STATUS is FILE1-STAT.

000070 DATA DIVISION.

000080 FILE SECTION.

000090 FD FILEL.

000100 01 F1-REC PIC X(80).
000110 WORKING-STORAGE SECTION.

000120 O1 FILE1-STAT.

000130 02 S1 PIC X.
000140 02 S2 PIC X.
000150 01 STAT-BIN REDEFINES FILE1-STAT PIC 9(4) COMP.
000160 01 DISPLY-STAT.

000170 02 S1-DISPL PIC X.
000180 02 FILLER PIC X(3).
000190 02 S2-DISPL PIC 9999.

000200 PROCEDURE DIVISION.
000210 START-TEST.

000220 OPEN INPUT FILEIL.
000230 IF S1 NOT =9

000240 GO TO END-TEST.
000250 MOVE S1 TO S1-DISPL.
000260 MOVE LOW-VALUES TO S1.
000270 MOVE STAT-BIN TO S2-DISPL.
000280 DISPLAY DISPLY-STAT.
000290 END-TEST.

000300 STOP RUN.

If you declare USE procedures in the DECLARATIVE SECTION to handle input-
output errors, these procedures are only executed if a FILE STATUS data item is
also declared.

Alternate File Status Table '

The AIX VS COBOL system comes supplied with a C source file filestat.c, which
contains tables of the file status values defined by the ANSI 74 and ANSI 85 stand-
ards. We recommend that you not alter these two tables in any way. However, this
file also contains a table giving an alternate set of file status values for those input-
output error conditions which return a value of “9” in the first byte. You can alter
this table if you wish. By default, this alternate set of error numbers is that output
by RM/COBOL. If you want the AIX VS COBOL system to output error messages
from this list, rather than from its standard list of run-time error messages as defined
in Chapter 15, “Error Messages,” you must either:

¢ Compile your program with the RM option set (see Chapter 5, “Compiler
Options” for details)

¢ Specify the +Q run-time switch when you execute your program (see Chapter 7,
“Running an AIX VS COBOL Program” for details).

3-18 User’s Guide for IBM AIX VS COBOL Compiler/6000

If you wish to alter the default table of alternate file status values to a set of values
which conform with the statuses returned in the COBOL dialect of your choice by
editing the file filestat.c in SCOBDIR /src, you must index the table using the second
byte of any status “9” items. The table entry then contains the new value for that
file status in Binary Coded Decimal (BCD) format. Any undefined or unrecognized
status values are mapped onto status “30”: “permanent I-O error”.

Once you have altered the table you must rebuild the RTE so that it uses your
altered version of filestat.c rather than the original version. You can either do this
globally or individually for each RTE; see “Globally Altering File Status Values”
and “Altering File Status Values for Individual Run Time Environments” for details.

Globally Altering File Status Values
To globally rebuild the RTE so that it uses your altered version of filestat.c when
outputting file status error messages, you must first compile your new version of the
module by entering the command:

cc ¢ filestat.c «

As any further Run Time Environments that you build will use the new version o1
filestat.c, we recommend that you keep a copy of the original version.

Once you have compiled your new version of the module, you must replace filestat.o
in the COBOL library by entering:

ar rv Jusr/1pp/COBOL/1ib/coblib/1ibcobol.a filestat.o <«

You must replace fusr/lpp/COBOL/lib/coblib with the correct directory if this is dif-
ferent.

You must then rebuild the RTE using the cob command. For example:
cd /Jusr/1pp/COBOL/1ib <
cob -xvo rts32

See Chapter 4, “The COBOL Interface” for full details on the cob command.

Altering File Status Values for Individual Run Time Environments
You can use the cob command to rebuild a single RTE so that it uses your altered
version of filestat.c when outputting file status error messages. For example, enter:

cc —c filestat.c
Tn filestat.o filestat
cob -xvo rts filestat

As usual, you can include any COBOL or C programs or other object modules in
the command line.

See Chapter 4, “The COBOL Interface” for a fuil description of the cob command.

Chapter 3. Device- and File-Handling 3-19

Writing Output Directly to a Printer
You can code your COBOL program so that it will WRITE output directly to the
printer. The writing will go through the print spooler, which means that the output
will be buffered until the CLOSE statement. At that time, the entire file is released
to the printer.

To get this effect, code the SELECT statement as follows:
SELECT myprfile ASSIGN TO EXTERNAL mypr

The internal and external file names myprfile and mypr are arbitrary names created
by the user. Notice that mypr will be converted to uppercase since it is not a quoted
string. In order to be able to write directly to the printer, EXTERNAL is required
in the SELECT statement. Alternatively, you can compile with the -C compiler
option assign =external to get the same effect as EXTERNAL in the SELECT state-
ment.

To run this program and have the output sent to the printer using the spooler, you
must use an environment variable to redirect the output to the printer device to be
used. This is done as follows:

cob -uv prtr.cbl
dd_MYPR="> /bin/print"
export dd_MYPR

cobrun prtr.gnt

The above setting of the environment variable is for the ksh shell. To set it under
csh, do:

setenv dd_MYPR "> /bin/print"

You can also specify which printer to use in the dd name:
dd_MYPR="> /bin/print 1pl"

This will direct all of the output from the WRITE directly to the chosen printer.

3-20 User’s Guide for IBM AIX VS COBOL Compiler/6000

Example

Identification Division.
Program-id. prtr.
*

* Example to write a file directly to the printer.
*
Environment Division.
Input-Qutput Section.
File-control.
select myprfile assign to EXTERNAL MYPR
organization is 1ine sequential
access is sequential
file status is filestat.

Data Division.
File Section.
FD myprfile.
01 myrec.

02 info pic x(89).
Working-Storage Section.
01 filestat pic xx.
01 mydata pic x.

*
Procedure division.
Action section.

Dummy accept to grab the empty command line to prepare for next
REAL accept.

L N

accept mydata.
display "Starting the print test.".
write-it.
open output myprfile.
move "This " to info.
write myrec.

move "is " to info.
write myrec.
move "my " to info.

write myrec.
move "output" to info.
write myrec.

*

* Show that the writing is delayed until the CLOSE.

*
display "We have written 4 records but none should"
display "have printed yet. MNow hit enter to CLOSE"
display "the file and get the whole file printed.".
accept mydata.

close myprfile.
conclusion.
display "Finished the print test.".

stop run.
end program prtr.

Chapter 3. Device- and File-Handling 3-21

3-22 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 4. The COBOL Interface

Chapter 4. The COBOL Interface 4-1

Contents

About This Chapter .~ e 4-3
COBOL Interface Command 4-4
The Development Cycle 4-5
Option Specification 4-7
System-Wide Default Options 4-7
Optional User Default Options 4-7
Command Line Options 4-8
Embedded Source File Options 4-15
Command Line Conventions 4-16
Command Line Examples 4-17

4-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

The cob command provides the interface to the IBM AIX VS COBOL system. This
chapter describes options to the cob command and how to use the cob command to
compile and link source files to produce an executable module.

Chapter 4. The COBOL Interface 4-3

COBOL Interface Command

The cob command handles all phases involved in the production of an executable
module. These phases range from checking COBOL source syntax to generating
native code object modules and linking them with the COBOL and system libraries.

The result of the cob command can be any combination of statically linked and
dynamically loaded executable files, depending on the input and options used. This
allows flexibility in the development of a COBOL application.

One consideration when writing source code is the compile time involved in getting
the source code into a form that can be debugged. The cob -a option enables fast
compilation to intermediate code suitable for source level debugging on
ANIMATOR. Another consideration is execution speed. Debugged code can be
compiled with cob -u or ceb -x to produce native code, which requires more time to
compile but results in a module that executes faster.

The AIX VS COBOL system is installed in the fusr/lpp/COBOL/lib directory with
the installp procedure. This directory is searched first for the various components
when you issue the cob command, unless the COBDIR environment variable has
been used to change the search directory. See Appendix A, “Environment
Variables” for more information.

The files created by the cob command are placed in the current directory. Any tem-
porary files are created in the system temporary directory, /tmp, unless you set and
export the environment variable TMPDIR and specify a valid path name. See
Appendix A, “Environment Variables” for more information.

The cob command recognizes the following file types:

File Type Description

.cbl, .CBL, or .cob COBOL source text file

.int Intermediate code file

.gnt Dynamically loaded native code file
. C source text file

.0 Object module file

.a Archive file

S Assembler source file

You can force the cob command to recognize files with extensions other than those
listed above by specifying the -k option on the command line. See “Option
Specification” on page 4-7 for more information.

To invoke the cob command type the following on the AIX VS COBOL system:
cob [options] filename <

where:

options is one or more of the options or flags described in “Option Specification” on
page 4-7.

4-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

filename is any mixture of COBOL source, intermediate code, native code, linkable
object code, C source, assembler source, or archive files. These files are recognized
by their extension. Any unrecognized files are saved to be used at link time. The
system assumes that they are either valid linker options or input files.

Any archive files supplied to the cob command are passed to the linker. The entry-
point for a COBOL file is derived by taking the base name of the file without the
extension. If the first character of the entry-point is numeric, it is converted as
follows:

0tod
1 through 9 to A through I

filename must not contain a hyphen. Any hyphens in filename are converted to
Zeros.

The Development Cycle

Use the cob command to do the following:

¢ Check COBOL source file syntax. :

* Generate intermediate code files suitable for interpretation by cobrun.

* Code-generate the resulting intermediate code files into native code.

¢ Link native code with COBOL libraries.

e Output any mixture of statically linked or dynamically loaded executable files.

The type of file created by the cob command depends on the options you specify on
the command line. These are described in “Option Specification” on page 4-7. By
default, the cob command creates a dynamically loadable intermediate code file (with
the extension .int), which is suitable for animation.

The cob command passes each input file through a series of steps. Each step trans-
forms one file type into another file type. These types are characterized by the file
suffixes, and each type is available depending on the options you specify on the
command line.

Table 4-1 on page 4-6 shows the development cycle of an input file to the cob
command.

Chapter 4. The COBOL Interface 4-5

Table 4-1. Development Cycle of Input File to cob Command

Input Output

File Type File Type Action

.cbl .int Checked by compiler

.CBL

.cob

.int .gnt Code generated for dynamic
loading

.int .0 Code generated for static linking

.gnt No further action possible

.S .0 Passed to system assembler

.c .0 Passed to C compiler

.0 [[.0]..] a.out Linked with RTE

File type determines the point in the development cycle at which an input file starts.
The default end point (the point at which the cob command terminates) creates an
intermediate code file suitable for animation from the input COBOL source files. To
process files beyond the intermediate code stage, specify the relevant option to the
cob command (see “Option Specification” on page 4-7).

For example, to obtain a dynamically loadable native code file instead of an inter-
mediate code file, specify -u on the cob command line. Under the -u option, source
files with the extension .cbl are compiled and then code-generated. Files with the
extension .int are just code-generated. The development cycle for a source file
named myfile.cbl given to the cob command with the -u flag specified is as follows:

myfile.cbl — myfile.int — myfile.gnt

To obtain a single, statically linked executable module, specify -x on the cob
command line. Under the -x option, COBOL source files with the extension .cbl are
compiled, code-generated, and then linked with the COBOL libraries to form a
single executable module. The development cycle for a source file named myfile.cbl
given to the cob command with the -x flag specified is as follows:

myfile.cbl — myfile.int — myfile.o — myfile

where myfile is an a.out format file.

If you are producing a dynamically loadable file, any file names with the extension .o
supplied on the cob command line are linked to the dynamic loader to produce a
statically linked RTE library. The RTE library takes the base name of the first
object module file supplied on the command line. A dynamically loadable program
can access any modules in the static RTE library, or any other valid dynamically
loadable program, using the CALL statement.

A statically linked program can access any other statically linked program written in

a language that compiles to AIX a.out and follows C calling conventions. A stat-
ically linked program can also access any valid dynamically loadable program.

4-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

Option Specification
The order in which options are passed to the various AIX VS COBOL tools deter-
mines their precedence, with later options overriding previous options. This is
important if you plan to specify additional options to the defaults of the AIX VS
COBOL system. The higher numbers override previous defaults.

The cob command processes options in the following order:

1. System-wide defaults, as defined in $SCOBDIR/cobopt

2. Optional user defaults, as defined in the COBOPT environment variable
3. Command line options

4. Embedded source file options.

System-Wide Default Options
System-wide default options are defined in the file SCOBDIR/cobopt. This is the file
the cob command reads first when invoked. This file has the following format:

compiler: [[COBOL-COMPILER-OPTION] ...]
ncg: [[NCG-OPTION] ...]

[SET environment-variable=value ...]

[s comment-entry ...]

Notes:

1. Any lines in this file which begin with a semicolon (;) are treated as comment
lines by the cob command.

2. Since the contents of this file affect the operation of the entire AIX VS COBOL
system, you should only alter the file after careful consideration of the effect you
might have on the default COBOL options in your system. '

See Chapter 5, “Compiler Options” and Chapter 6, “Native Code Generator
Options” for complete information on the default compiler and Native Code Gener-
ator options.

Optional User Default Options
Use the COBOPT environment variable to do the following:

e Supply options which supplement or override the system-wide default options
defined in SCOBDIR/cobopt

* Specify the path of a file which contains user options.

When using COBOPT to point to a file which contains user options, that file must
have the same format as SCOBDIR/cobopt. If COBOPT itself contains the options,
it has the following format:

COBOPT="compiler:[[COBOL-COMPILER-OPTION]...]
ncg: [[NCG-OPTIONY...]
[SET environment-variable=value ...]
[; comment-entry ... 1"

Note: You must include the quotation marks. There cannot be any spaces between
the colons following each component name.

Chapter 4. The COBOL Interface 4-7

You can use the SET statement in COBOPT to force the cob command to set the
specified environment variable to the given value. For example:

SET COBCPY=:$COBDIR/srclib:$HOME/mylib::

See Chapter 5, “Compiler Options” and Chapter 6, “Native Code Generator
Options” for complete information on permitted options.

Command Line Options

Options and flags specified on the command line override user default options set up
in COBOPT and the system-wide default options specified in SCOBDIR/cobopt.

The cob command supports the following flags:

Flag

-a

-C
-d symb
~-e epsym

g

-i
-k ext

-1 key

+1 key

-m symb =newsym
-0 filename
-p

-pg

-u

-v

-X

~-A option
-CC option
-C option
-D

-F

+F symb
-L dir

-N option

Description

Compile for animation (default) when no other options are
specified.

Compile to object module (.0).
Dynamically load symb.
Set initial entry-point to epsym.

Create information for symbolic debugger (dbx). Code
source is unaffected.

Compile for unlinked environment (.int).
Recognize extra source COBOL file extensions.

Pass -l key to system linker (1d) maintaining relative
ordering. v

Pass -l key to system linker after all other options.
Map text symb onto newsym.

Specify output file name.

Compile and link with AIX profiling routines.

Compile and link with AIX Berkeley profiling routines.
Compile for unlinked environment (.gnt).

Set verbose mode.

Process to statically linked executable module.

Pass option to assembler (as).

Pass option to C compiler.

Pass option to COBOL compiler.

Show each command line step involved in compilation.
Create an RTE quickly.

Create an RTE quickly and add symb to a linked data table.

Pass -L dir option to system linker changing search algo-
rithm.

Pass option to Native Code Generator.

4-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

-0 Turn optimization on. -

-P Produce COBOL compilation listing file.

-Q option Pass option to system linker (1d).

-S Do not assemble the .s file.

-T Put only text symbols into the “loaded” table.

-U Pass unresolved reference to linker (1d).

-V Report version number.

-W err-level Control error level for cob termination.

-X symb Exclude text symb from the executable output file.

Options and flags specified on the command line override any user default options
set up in COBOPT and the system-wide default options defined in
$COBDIR/cobopt. The following subsections describe each flag.

Compile for Animation (-a)
-a compiles the source file input to the cob command ready for animation. This is
the default end point of the cob command. The cob command outputs intermediate
code files (with the suffix .int) and ANIMATOR files (with the suffix .idy). Both of
these are used by ANIMATOR when you debug your code. See Chapter 11,
“Debugging Your Program Using ANIMATOR” for details on how to use
ANIMATOR. If you supply any .o files to the cob command, they are linked with
the COBOL libraries to form a single executable file. The executable file is the one
you need to use when you run ANIMATOR.

In this way it is possible to animate programs that call, or are called by, programs
written in languages other than COBOL.

For example:
cob -a myfile.chl c.o <

creates the files myfile.int, myfile.idy, and c. The file ¢ contains the RTE and the file
c.0. The command:

cob myfile.cbl c.o <

has the same effect. You do not need to specify -a because by default the cob
command processes each input file as though this flag had been set.

If you then want to animate myfile.int, use the commands:

COBSW=+A
export COBSW
¢ myfile.int

Compile to Statically Linkable Object Module (-c)
-c compiles source text files and code generates them no f'urther than .0 modules. If
you supply intermediate files instead of source files, these files are just code-
generated to statically linkable .0 modules. This flag has an effect only if specified
with the -x or -u options.

Chapter 4. The COBOL Interface 4-9

Dynamically Load symb (-d symb)
: -d symb causes symb to be dynamically loaded if it is referenced. This option allows
certain parts of the RTE to be loaded as necessary rather than to be loaded perma-
nently. The ADIS module is by default dynamically loaded with your program.

Set Initial Entry-Point (-e epsym)
By default, the entry-point address for a statically linked module is the base name of
the first file input to the cob command. This option allows you to override the
default and set the default entry-point address to be that of the symbol epsym. For -
this option to take effect epsym must be defined in a COBOL module. epsym can
also be null, in which case the entry-point address is read from the command line at
run time. If you wish the entry-point to be null, use the command:

cob -xe "" -0 rts

Create Information for Symbolic Debugger (-g)
The compiler creates additional information needed for the use of the symbolic
debugger dbx. This debugger is used to debug native code that has been statically
bound. The dbx debugger can be used for C code or for COBOL code. See the
documentation on dbx on how to use its features.

When using dbx to debug code, you can, for example, do the following actions:

e Set breakpoints

See call tracebacks

Step through source code lines or native instructions
See the declarations of variables

See the value of variables.

When debugging C code, the full features of dbx can be used. When debugging
. COBOL code, all of the features are not implemented. For example, you cannot
evaluate COBOL expressions under dbx.

You can mix the use of dbx with the use of the animator. That is, you can debug
code that is statically bound at the same time as you debug .int code using the
animator. See the example in “Mixing C and COBOL Programs” on page 2-18.

When the -g flag is given, a lookahead optimization feature in the native code gener-
ator is suppressed. This lookahead suppression is needed to make the source line
numbers used by the debugger correspond correctly to the line numbers that the gen-
erated native code references. This effect, combined with the additional code needed
to reference symbolic debug information, will result in reduced performance for code
compiled with -g. This is typical behavior for code compiled for debugging.

Compile for Unlinked Environment (i)
This compiles the source files input to the cob command into dynamically loadable
intermediate code files.

Recognize Extra COBOL Source File Extensions (-k ext)
The cob command recognizes file types which have the following extensions: .cbl,
.CBL, .cob, .int, .gnt, .c, .a, .s and .0. You can submit COBOL source files with
other extensions to the cob command provided you specify -k on the command line
before each of the filenames which has the non-conventional extension.

4-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

Pass -1 key to System Linker Maintaining Relative Ordering (-l key)
-1 key is passed to the system linker (Id) maintaining the relative ordering. The
system linker searches the library libkey.a for any external routines. The system
linker searches a library when its name is encountered, so where you place -l is sig-
nificant. By default, libraries are searched for in SCOBDIR/coblib and then in the
/lib and fusr/lib directories. See “Pass -L dir to System Linker Changing Search
Algorithms (-L dir)” on page 4-13 for details on how you can specify alternative
search paths.

Pass -l key to System Linker after All Other Options (+1 key)
-1 key is passed to the system linker after all other linker options and the COBOL
libraries have been passed to it. The system linker searches the library libkey.a for
any external routines. By default, libraries are searched for in SCOBDIR/coblib and
then in the /lib and /fusr/lib directories. See “Pass -L dir to System Linker Changing
Search Algorithms (-L dir)” on page 4-13 for details on how you can specify alterna-
tive search paths. '

Map symb to newsym (-m symb = newsym)
-m maps unresolved symbol symb to newsym. This creates a routine to satisfy any
references to symb. If this routine is called, control passes to the routine which has
the entry name newsym. newsym must be defined. You could use this flag to
dummy out unwritten optimized routines into one general purpose routine, provided
the calling sequence is the same. For example,

cob -x -m sl=x1 -m s2=x2 myprog.chl mylib.a <

maps the unwritten routines s1() and s2() to the functionally similar x1() and x2()
routines, which must already have been coded. You can also use this option to sub-
stitute your own file handler for indexed file operations, in place of the one supplied
with your AIX VS-COBOL system. You can do this only if your file handler con-
forms to the Callable File Handler Interface standard. See Chapter 9, “Advanced
Programming Features” for details.

Specify Output filename (-o filename)
By default, the name of the final executable module created by the cob command, if
the -x option is specified, is the base name without the suffix of the first file entered
to the cob command. This option allows you to change the name of this module.

Compile and Link with AIX Profiling Routines (-p)
-p prepares the AIX VS COBOL program so that the prof command can generate an
execution profile. The -p causes the compiler to produce code that counts the
number of times each procedure is called. The -p is also passed to the C compiler if
any C source files are specified on the cob command line. If you are using cob to
output a statically linked executable module, this option causes cob to include the
system library libc_p.a instead of libc.a. It also binds in the startup module mert0.0
instead of crt0.0. See the AIX system documentation for more details.

Compile and Link with AIX Berkeley Profiling Routines (-pg)

-pg is similar to the -p option, but the -pg uses the AIX Berkeley Profiling Routines.
It invokes a run time recorder that keeps extensive statistics on the running process.

The -pg is also passed to the C compiler if any C source files are specified on the cob
command line. If you are using cob to output a statically linked executable module,
this option causes cob to include the system library libc_p.a instead of libc.a. It also
binds in the startup module gert0.o instead of crt0.0. See the AIX system documen-
tation for more details.

Chapter 4. The COBOL Interface 4-11

Compile for Unlinked Environment (-u)
-u compiles source text files and code generates them to dynamically loadable native
code. The intermediate code file will be created in the current directory. You can
supply intermediate code files instead of source text files; these are just code-
generated. If you supply any .o files as input files to the cob command, they are
statically linked to the dynamic loader to produce the static RTE library for dynam-
ically loadable files. Dynamically loaded programs can access (via CALL) any of
the modules in the statically linked RTE library and also any other valid dynam-
ically loadable program.

Verbose Module (-v)
-v sends the verbose option to the compiler and the native code generator.

Process to Statically Linked Executable Module (-x)
-x creates a single statically linked executable module from the files input to the cob
command. By default, the name of this module is the base name without the exten-
sion of the first file input to the cob command. You can use this option to produce
a full RTE. For example,

cob -xo rts.new <«

Warning: Do not try to use any other method to create a full RTE.

Pass option to Assembler (-A option)
-A option passes the specified option to the assembler.

Pass option to the COBOL Compiler (-C option)
-C option passes the specified option to the COBOL compiler. Chapter S, “Com-
piler Options” contains full details on the options you may use with this flag.

Pass option to the C Compiler (-CC option)
-CC option passes the specified option to the C compiler. See the AIX commands
documentation for valid -CC options.

Show Each Command Line Step Involved in Compilation (-D)
The -D flag will show a detailed expansion of each step that is taken for the compi-
lation processing. This flag only has effect when it is used with the -v flag. It will
show the exact invocation and the full path names of files and all arguments given to
each of the commands to do COBOL and C compilations, assembly, and binding.

If you give the flag -DDD, the temporary work files that are created as part of com-
pilation processing will not be erased. The cob command will issue a message when
it is finished telling you what the name of the work directory is under /tmp. The
-DDD flag can be used with or without the -v flag. If the -v flag is not used, the
only information shown by the cob command is the name of the temporary work
directory.

~4-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

Create an RTE Quickly (-F)
Allows the fast creation of a statically linked executable module with dynamic load
support. When a statically linked executable module is being produced, all the
entry-points and external data (from both COBOL and C modules) are made avail-
able to dynamically loaded programs. This is achieved by cob creating an entry for
each entry-point and all external data in a “loaded table” — Idrab. If you specify
the -F flag, cob only creates entries for modules named on the command line plus a
default list found in $COBDIR/coblib/cobfsym. Any symbols for objects in archive
files are not included in /dtab if you specify the -F option, which reduces the time
taken to create a statically linked executable module. If a reference from a dynam-
ically loaded module is made to any name which is not in /dtab, then you will receive
RTE error 173:

Called program file not found in drive/directory

See “Create a RTE Quickly and Add symb to a Linked Data Table (+F)” for details
of how to add symbols to /dtab.

You cannot specify this option if you set the -U option.

Create a RTE Quickly and Add symb to a Linked Data Table (+F)
Specifying the +F option has exactly the same effect as specifying the -F option as
described in “Create an RTE Quickly (-F),” with the exception that the +F option
allows you to specify a symbol which you wish to add to the linked data table, Idtab.

You cannot specify this option if you set the -U option.

Pass -L dir to System Linker Changing Search Algorithms (-L dir)
-L dir is passed to the system linker maintaining the relative ordering. This option
changes the search algorithm for libraries which do not have an absolute path name.
By default, cob searches the SCOBDIR/coblib directory first and then the /lib and
fusr/lib directories next, but if you specify this option, cob searches the specified
directory first instead.

Pass option to NCG (-N option)
-N option passes the specified option to the Native Code Generator. Chapter 6,
“Native Code Generator Options” contains full details on the options you may use
with this flag.

Turn Optimization On (-O)
-O enables maximum performance at run time because minimum run-time checks are
carried out. It is recommended that use of this flag be limited to debugged code. At
a minimum this flag passes the nobound option to the compiler and Native Code
Generator.

Produce Listing File (-P)

-P causes the compiler to produce a listing file (with the extension .Ist) for each
COBOL source file.

Chapter 4. The COBOL Interface 4-13

Pass option to System Linker (-Q option)
-Q option passes the specified option to the system linker. When you use the -Q flag
on the cob command line to pass options to the system linker, you must use a sepa-
rate -Q flag for each option. Options that begin with hyphens or have embedded
spaces in them must be enclosed in quotation marks.

Do Not Assemble the .s File (-S)
This option suppresses the assembly of the .s file if the asm NCG option is given. It
will also suppress the binding step if the obj NCG option is given. The combinations
of relevant options and their effects are:

asm noobj -S Produces a .s file but does not assemble it. No .o is produced.
asm obj -S Produces a .s and an .o file. No assembly or binding is done.

noasm obj -S Produces a .o file but does not bind it. No .s file is produced.

Put Only Text Symbols into the “Loaded Table” — /dtab (-T)
-T causes the cob command to put only entry-point symbols into the “loaded table”
— ldtab. External data items are not put into the loaded table if the -T option is set.

Unresolved Reference (-U)
Any unresolved reference found at link time causes the code to call the dynamic
loader to be included with the name of the unresolved symbol. This allows the cob
command to attempt to load and execute any valid dynamically loadable file of that
name that may exist.

Report Version Number (-V)
-V reports the version number of any of the invoked components. This implies that
you have also set the -v (verbose) option.

Control Error Level for cob Termination (-W err-/evel)
-W err-level specifies the level of COBOL compiler error which causes the cob
command to stop processing. err-level is a single alphabetic character representing
the following possible levels of error:

u Unrecoverable
S Severe

e Error

w Warning

i Informational

The cob command terminates if your code contains an error at the specified level or
higher, provided such errors are reported to the cob command by the compiler. This
is dependent upon the setting of the warning compiler option, which controls the
level of error reported by the compiler. For example, if you set the warning option
to force the compiler to report only unrecoverable, severe, and error level errors, and
you set -W to abort the cob command should any errors at the information level (or
above) be reported, only errors in the categories unrecoverable, severe, or error will
actually cause the cob command to terminate.

By default, the cob command terminates if your code contains reported errors in the
severe category or above.

4-14 User’s Guide for IBM AIX VS COBOL Compiler/6000

Exclude symb from the Executable Output File (-X symb)
-X symb excludes the unresolved text symbol symb from the executable output file.
It can be used to satisfy undefined symbols to modules which are not required. This
will allow an executable file to be produced. This option can also be used to exclude
from the RTE those parts of it which the program does not need. Those parts and
the symbols to represent them are:

Symbol Description

ANIM ANIMATOR

DYNLOAD Dynamic loader

INTERPRETER COBOL interpreter for .int code

PROFILE COBOL profiler

RTECALL RTE call by number routines

USERCALL User call support

syms Run Time support for dynamically loaded .gnt files

If you attempt to call any undefined symbol, the following RTE error message
appears:

164 Run Time subprogram not found

When you use the -X flag to exclude certain modules from the executable output file,
the resulting file is not actually any smaller than it would have been if you had not
specified the flag. Setting this flag does ensure that you will receive a meaningful
error message if you attempt to call any excluded module.

Embedded Source File Options
One or more compiler options can be specified within your COBOL source code.
The compiler will use these options each time you compile that code. In order to
embed options within the source code, use the $SET statement. This has the form:

$SET [COBOL-COMPILER-OPTION] ...

where:

COBOL-COMPILER-OPTION can be one or more of the compiler options specified
in Chapter 5, “Compiler Options.” It cannot contain a native code generator
option. Each item in the option list must be separated by spaces. An option list can
be no longer than one line. To specify additional options that exceed the space
available on one line, use another $SET statement, as follows:

$SET noalter bound nocomp list
$SET errlist

To modify a compiler option in a $SET statement by an argument, enclose the argu-
ment within either double quotation marks or parentheses:

»——E "—argument —*
(— argument —)

Chapter 4. The COBOL Interface 4-15

Note that you cannot precede an argument by an equal sign in a $SET statement, as
. you can when you specify argument with a compiler option on the cob command
line or in the SCOBOPT file.

argument can contain spaces if enclosed in quotation marks, but not if enclosed in
parentheses.

Both of the following examples have the same effect: They cause the compiler to
assume all file assignments to data-names will be resolved externally, and to flag fea-
tures in your program which are not in the ANS8S5 dialect of the COBOL language.

¢ $SET assign(external) flag(ans85)
e $SET assign “external” flag “ans85”

$ must be in column 7; if it is not, the compiler will not recognize it and will
produce errors. Failure to place the $ character in column 7 may also “hang” the
compiler. The same is true for any character at the start of a source file which the
compiler does not recognize.

You can specify multiple $SET statements within your source code, and these can
appear anywhere in the code. However, if you want to specify any dialect-
controlling compiler options, for example ans85, these must appear as the first line
of your source code, as shown below:

$ SET ANS85.
IDENTIFICATION DIVISION.

Once you have set a dialect-controlling option at the beginning of your source code,
you cannot unset it later in the program. Refer to “Options Permitted in $SET
Statements” on page 5-28 to know which options are permitted with the $SET state-
ment and where in the source file they are permitted.

Options specified within COBOL source files by means of the $SET command have
the highest precedence of all the options specified to the compiler. They override
those specified on the cob command, with the environment variable COBOPT, and
the system default options as defined in SCOBDIR/cobopt.

Command Line Conventions

4-16

You should observe the following rules while using the cob command:
e All flags must be delimited by the hyphen (-).

¢ Flags which have no arguments can be grouped behind one delimiter. For
example:

cob -Pa pi.chl <

compiles the COBOL source contained in pi.cbl into a file that is suitable for
animation and produces a listing file, pi.lst.

¢ The first argument following a flag must be preceded by at least one space.

User’s Guide for IBM AIX VS COBOL Compiler/6000

o

Groups of arguments following a flag must be separated by at least one space,
and they must be enclosed in quotation marks. For example:

cob -C "Tist noalter" pi.cbl <«
has the same effect as:

cob -C Tist -C noalter pi.chl <
Both pass the list and noalter options to the compiler.
All flags must precede operands.

You may use two hyphens (--) to delimit the end of the flags.

Command Line Examples

The following examples demonstrate how to use the cob command:

cob -a pi.cbl <

This is the default case. It compiles the program in pi.cbl into a file called pi.int,
which is suitable for animation.

cob -x pi.cbl <

The COBOL source file pi.chl is compiled, code-generated, and then linked to
the RTE to form a statically linked a.out format file named pi.

cob -i pi.cbl «

The COBOL source file pi.cbl is compiled for the unlinked environment to
produce an intermediate code file, pi.int.

cob -u pi.cbl <

This command compiles and code generates the program in pi.cbl into a dynam-
ically loadable native code file called pi.gnt.

cob -x -e "" pi.cbl <

This command compiles, code generates and links the program contained in
pi.cbl to form a statically linked executable file named pi. Specifying the -e
option with a null argument ensures that the entry-point is read from the
command line at run time.

See Chapter 7, “Running an AIX VS COBOL Program” for details of the com-
mands you can use to execute the files produced by the above examples of the cob
command.

Chapter 4. The COBOL Interface 4-17

4-18 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 5. Compiler Options

Chapter 5. Compiler Options S-1

Contents T
About This Chapter e 5-3

Format of Compiler Options\ i vt ittt e e 5-4
Permitted Options 5-5
Excluded Combinations 5-23
ANS85Options e 5-24
Default Options 5-24
Mainframe Options e e e 5-27
SAA Options 5-27
Options Permitted in $SET Statements 5-28
Compiler Messages 5-29
Listing Format 5-30

5-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

This chapter details the system-wide default compiler options as defined in
SCOBDIR/cobopt. You can supplement or override these default options by setting
up a user-defined option variable: $COBOPT. Chapter 4, “The COBOL Interface,”
contains full details on the format of these files. You can also override the default
options by using the -C command line flag or a $SET statement. See Chapter 4 for
details.

Throughout this chapter, all references to SCOBOPT refer to the contents of the
COBOPT environment variable, or the file to which it points.

Chapter 5. Compiler Options 5-3

Format of Compiler Options

Compiler options, whether they appear in the system default SCOBLIB/cobept file,
the user-defined options file $§COBOPT, or following the -C flag in the cob
command line, have the general form:

»_—i_—_J_ keyword " — grgument — " ———»«
NO (— argument —) —

=—argument

where:
keyword is one of the keywords described in “Permitted Options” on page 5-5.
no, if specified, switches off the effect of the option, and may adjoin keyword or be

separated from it by one or more spaces. A particular option may be on or off by
default.

argument, where applicable, qualifies the action of the option in some way and may
adjoin keyword or be separated from it by one or more spaces. argument must be
preceded by an equal sign, or it must be enclosed within either double quotation
marks or parentheses.

Compiler options, where they appear in $SET statements, have the general form:

keyword " — grgument — "
F -—[(—argument——):l

where no, keyword, and argument are as described above, with the exception that
argument must be enclosed within either double quotation marks or parentheses; it
cannot be preceded by an equal sign.

Wherever possible, you should use the format of the option that contains an equal
sign before any modifying argument. This is because if you use either of the other
possible formats, you must escape the quotation marks or the parentheses whenever
they might be misinterpreted by the AIX shell. Compiler options whose argument
contains an embedded blank must use the keyword “argument” format to pass the
option to the compiler.

For example, we recommend you use either:

cob -C assign=external -C flag=ans85 pi.chl <

or

cob -C "assign=external flag=ans85" pi.cbl <

5-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

Both of these examples cause the compiler to assume that all file assignments to
data-names will be resolved externally, and to flag features in your program which
are not in the ANSI 85 dialect of the COBOL language. The quotation marks in the
second example are necessary as they inform AIX that all the material within them is
grouped behind the -C flag. If you omit the quotation marks, second and subse-
quent options are ignored. A warning is given to this effect.

Permitted Options

Options must be separated by one or more spaces. Options default to values that

yield the highest performance when appropriate. The following are the permitted

options:

{no] align

align [=integer]

Specifies the byte boundaries on which data items are aligned. 01 and 77
items are aligned on addresses which are multiples of integer.

Default: align = 4
{no] alter

Controls the use of alter statements within the program being compiled.
no alter allows the compiler to operate more efficiently.

Default: alter
[ne] analyze

Is reserved for use with other AIX VS COBOL products that can be
added to the AIX VS COBOL system.

Default: no analyze
[no] anim

Causes the program to be compiled in a manner suitable for animation.
See Chapter 11, “Debugging Your Program Using ANIMATOR” for
more details.

Default: no anim

[no] ans85
ans85 = syntax

Specifies that those reserved words that are specific to the ANSI 85
COBOL standard (other than those in ANSI 74 COBOL) should be
regarded as reserved words. This also alters the behavior of certain state-
ments to conform to the ANSI 85 COBOL standard. See the Language
Reference for details. To ensure full compatibility with the ANSI 85
COBOL standard, you must also set the no optional-file option.

When used with the optional syntax parameter, this option enables ANSI
85 syntax. However, it retains ANSI 74 behavior for those elements of
the COBOL language that occur in both the ANSI 85 and ANSI 74
standards with different behavior. These features are:

¢ Definition of I-O status values

¢ Behavior of the alphabetic class test

¢ Order in which control variables in performs are initialized
¢ Behavior of moves to a variable-length group item.

Default: ans85

Chapter 5. Compiler Options 5-5

assign = {external}
dynamic

Specifies the default value for an ASSIGN clause that does not specify
either external or dynamic.

Default: assign = dynamic
[no] autolock

Causes the default locking for files opened I-O or EXTEND to be auto-
matic rather than exclusive. This option does not appear in the list
produced by the setting option if its state is the same as the writelock
option. If this is the case, the state of the fileshare option in the setting
list also indicates the state of the autoelock and writelock options.

Default: no autolock

[no] bell
bell [=integer]

Defines the character used to cause the bell (the audible warning of the
terminal) to sound. integer is the ASCII character in decimal.

Turning the option off (no bell or bell = 0) causes no bell character to be
set.

Specifying bell with no integer indicates that the character to be used is
the character specified in the terminfo entry for your terminal type. See
the AIX operating system documentation for more details.

" Default: no bell
[no] bound

Specifies that on each table access during execution of intermediate code
the subscript value is checked to ensure that it is within the limits implied
by the associated OCCURS clause. no bound turns off this run-time
checking.

For a constant subscript that is out of bounds, a message will always be
issued at compile time. If the bound option is given, this message will be
an Error; if no bound is given, then this compile-time message will be a
Warning level message.

This option bound is synonymous with the opﬁon check.
Default: no bound
[no] brief

Produces error numbers only on the listing and stderr. The text of error
messages is suppressed.

Default: no brief (unless no error message file can be found)
charset = character-set

Defines the character-set of your environment. All literals and collating
sequences will be handled in the specified character-set, which must be
either ASCII or EBCDIC. ’

’ Default: charset = ASCII

5-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

[no] check

[no] comp

Specifies that on each table access during execution of intermediate code
the subscript value is checked to ensure that is it within the limits implied
by the associated OCCURS clause. no check turns off this run-time
checking.

For a constant subscript that is out of bounds, a message will always be
issued at compile time. If the check option is given, this message will be
an Error; if nocheck is given, then this compile-time message will be a
Warning level message.

This option check is synonymous with the option bound.
Default: ne check

Is supported for compatibility purposes only. Unsigned integer USAGE
COMP items are compiled as COMP-X items, and signed integer
USAGE COMP items are compiled as DECIMAL items.

Default: no comp

[no] coms85

Alters the behavior of communications syntax to be as specified in the
ANSI 85 COBOL standard. See the Language Reference for details.

The syntax for the Communications module can be compiled; however,
the Communications module is not supported at run time.

Default: coms85

[no] confirm

The compiler options specified after this option are echoed to the display
screen.

Default: confirm, but this is visible only if you specified verbose (the -v
flag) to the cob command.

[no] copylbr

This is reserved for use by the AIX VS COBOL system.
Default: no copylbr

[no] copylist [=integer]

Causes the contents of any files named in COPY statements to be listed.
Whatever the state of this option, the name of any copy file open at the
time a page heading is output is listed as part of the heading.

The optional integer, which must be 0 or in the range 50 to 99 inclusive,
allows the selection of particular segments with this option. A 0 means
all root segments. For example:

copylist = 53 causes copylist to be set only in the Identification Division
and in segment 53.

no copylist = 53 causes copylist to be set in segment 53 only.

Default: no copylist

Chapter 5. Compiler Options 5-7

currency-sign = integer

Kanji feature. Causes the compiler to recognize integer as the currency-
sign character. integer must be a 2-digit decimal number specifying the
ASCII value of the currency sign required. Values not allowed in the
CURRENCY-SIGN clause in the Special-Names paragraph are also not
allowed as values for integer. See the Language Reference for a list of
these values. You can override the currency sign specified by this option
by specifying a CURRENCY-SIGN clause within the Special-Names
paragraph of your source code. If you set both the currency-sign and the
nls options when compiling your program, the currency sign specified in
the CURRENCY-SIGN compiler option is overridden by that supplied
by AIX (from an environment variable) during the execution of your
program.

Default: currency-sign=236 (the $ character)

[no] date
date [=string]

date causes the system date to be entered into the comment entry in the
DATE-COMPILED paragraph (if present). To provide your own date,
specify date =string. The date option also causes the system date or
string to be output at the top of each page of the listing.

no date causes spaces to be used in place of date.
Default: date
[no] dbcs

Kanji feature. Causes the compiler to accept charabters of the Double
Byte Character Set (DBCS) for use in ideographic languages such as
Japanese, Chinese, and Korean.

For this option to have effect, you must have installed the DBCS variety
of the AIX VS COBOL compiler. See Chapter 1, “Introduction” for
more information on installing the AIX VS COBOL system.

For the dbes option to have complete effect (all the needed additional
reserved words, for example), you must also use the vsc2 option.

The option dbes cannot be used together with the nls option.

Default in the DBCS-variety of the compiler: dbes
" Default in the non-DBCS-variety of the compiler: nodbes

nodbcssosi
dbessosi(integer) (integer)

Kanji feature. Defines the 2 characters used as the shift-out and shift-in
delimiters in DBCS literals. The 2 integers are the ASCII codes, given in
decimal, of the characters. If shift-out and shift-in characters are speci-
fied, each DBCS literal must have the shift-out character immediately
after the opening quotation mark and the shift-in character immediately
before the closing quotation mark. They act as additional delimiters to
the literal, and are not part of its value. If nodbcssosi is specified, then
no shift-out and shift-in characters are needed or recognized in the DBCS
literals.

i

\ :
5-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

If dbcssosi is specified, then the two integer parameters are required.
Default in the non-DBCS variety of the compiler: nodbcssosi
Default in the DBCS variety of the compiler: nodbcssosi

[no] defaultbyte
defaultbyte [=integer]

Initializes the Data Division to the specified byte; by default this is to
spaces.

Default: defaultbyte = 32

[no] dg
Specifies that those reserved words and features specific to the Data
General Interactive COBOL language are enabled. See the Language
Reference for details.

Defauit: no dg

[no] directives
directives = | “filename”
(filename)

Enables you to load preset options from the file named in filename. If
you specify this option on the cob command line, it must be the last
option on the line. If you specify it in a $SET statement, it must be at
the beginning of your source file. See Chapter 4, “The COBOL
Interface” for details. Options within the file specified by filename must
be separated by a space, and no option can be broken across two lines.
The options are read from the file until the end-of-file (EOF) is reached
or another directives option is specified. You can specify more than one
options file in a program by specifying directives = filename within an
options file or by writing more than one $SET statement at the beginning
of your program. If you specify directives within an options file, the
compiler switches to the new options file, but does not return to the ori-
ginal options file. The setting of the directives option does not appear in
the list produced by the setting option.

Default: no directives

[no] echo
Causes error lines and flags to be echoed to stderr. Each error message
shows the source line of the error, the error number, and (unless brief is
set) an explanatory message.

Default: echo

[no] echoall
Ensures that a full listing is sent to stdout, if the list or print option is
specified.

Default: no echoall

[no] errlist
Causes the listing to be restricted to those COBOL lines containing
syntax errors or flags, together with associated error messages.

Default: no errlist

Chapter 5. Compiler Options 5-9

[no] errq
Asks whether you want compilation to stop or continue when an error
occurs.

Default: no errq

[no] filecase
Specifies whether the compiler is to be case-sensitive. no filecase means
that the compiler is sensitive to case. It is recommended that you do not
alter the default setting of this option since it has been set up for your
AIX environment.

Defauilt: no filecase

[no] fileshare _
Has the same effect as specifying both the autolock and writelock
options. It is provided for compatibility with earlier FILESHARE pro-
ducts. It is recommended that you do not use it in new programs.

Default: no fileshare

[no] flag

ans74
ans85
mf
osvs
saa
vsc2

flag =

Causes the compiler to flag every feature used in the program that is
outside a given dialect. These dialects are:

ans74 Full implementation of ANSI standard X3.23 - 1974 COBOL.
ans85 Full implementation of ANSI standard X3.23 - 1985 COBOL.

mf Micro Focus COBOL extensions.

0Svs As for ans74, plus features taken from IBM OS/VS COBOL
syntax. (See the Language Reference for details.)

saa Full implementation of IBM System Application Architecture
definition of COBOL.

vsc2 As for ans74, plus features taken from IBM VS COBOL I1

syntax. (See the Language Reference for details.)

The message output by the compiler lists the dialect in which the feature
you have used would be acceptable.

Default: no flag
[no] flagq

Specifies whether you want the compiler to terminate its run should it
output a flag.

Default: no flagq

5-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

[no} flagstd

»»— flagstd — = m -y >
T E T Ead fad e BT

Causes ANSI 85 language level certification flags to be output as the
source program is checked. Flags are issued to the selected COBOL
subset, optional modules, and obsolete elements arguments of the flagstd
option.

If the flagstd is set, it must include at least one of the following 3 argu-
ments:

m ANSI 85 defined Minimum COBOL subset
i ANSI 85 defined Intermediate COBOL subset
h ANSI 85 defined High COBOL subset

Optionally, you may narrow the scope of flagging by adding any of the
following arguments. These arguments may be in any order but must be
separated by at least one space.

cl Communications optional module level 1
¢2 Communications optional module level 2
dl Debug optional module level 1

d2 Debug optional module level 2

sl Segmentation optional module level 1

s2 Segmentation optional module level 2

r Report Writer optional module

0 All Obsolete language elements

Note that the flag and flagstd options provide similar functionality and
thus only one may be used at any time.

Default: noflagstd

[no] form
form =integer

Specifies the number of lines per page of the listing. integer must be at
least 3 and not greater than 255.

A form feed character is always produced at the head of the listing file,
unless no form is used. no form specifies that no form feed characters or
page headings are produced anywhere in the listing.

If the listing is directed to stdout (by use of the list option), interpretation
of the form feed character is dependent on the type of your display
screen.

Default: form =60

Chapter 5. Compiler Options 5-11 -

[no] ibmcomp

Causes data items with USAGE COMP to be compiled in IBM synchro-
nized (SYNC) format. This improves performance at the cost of
increasing the required memory by a small amount. (See the Language
Reference for details.)

Default: no ibmcomp

[no] {ibm-ms }

pcl

Specifies that those reserved words and features that are specific to the
IBM-Microsoft COBOL Language are enabled under AIX VS COBOL.
See the Language Reference for details. Note that ibm-ms and pel are
Synonymous.

The ibm-ms option provides compatibility with Microsoft COBOL 1.0.
See also the option ms(2) for compatibility with Microsoft COBOL 2.2.

Default: no ibm-ms

[no] int
int [=file-name]

Specifies the file to be used to hold the intermediate code output by the
compiler. If the specified file already exists, it is overwritten. This
filename may include a path.

no int suppresses the production of an intermediate code file (the com-
piler is used for syntax checking only).

(1314

Note that if file-name is specified without a “.” extension, then an exten-
sion must be added later, or the Run Time Environment (RTE) will be
unable to find the file and will respond with an error. The RTE assumes
that an intermediate code file has the extension .int.

You cannot specify this option in a $SET statement.

Default: the compiler adds .int to the source file name, replacing any
existing file name extension. The intermediate code file is written to the
same directory as the source file. ;

linkcount = integer

Specifies the maximum number of LINKAGE SECTION items, external
data items, and external files allowed in the compilation of nested pro-
grams.

integer must not be less than the total number of LINKAGE SECTION
items, external data items, and external files in the compilation after the
end of the first LINKAGE SECTION, external data item, or external
file, whichever appears first.

Default: linkcount = 64

5-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

[no] {list 1
print j

{list } [= destination |
print

Specifies the destination of the listing file. If an existing file is specified it
is overwritten. You can omit destination, in which case the listing is
directed to stdout. If destination is stdout, the listing is directed to stdout.
Note that list and print are synonymous.

Provided that the listing facility is turned on (by specifying either the -P
or the list option on the cob command line, or by specifying the list
option in $COBOPT) you can repeatedly use the $SET statement to set
this facility on or off for specified portions of your source code. Include
a $SET NOLIST statement at the start of the portion of source code for
which you do not wish a listing to be produced. A $SET LIST statement
later in your source code will turn the listing facility back on. The
resulting list file will not contain a listing of the code contained within
the two $SET statements.

Default: no list

{ listwidth

Iw } = integer

Sets the width of the listing. integer is the number of character positions
across the listing page; the value must be in the range 72 to 132.

Default: listwidth = 80
[no] mfcomment

Specifies whether those lines within COBOL source programs which
contain an asterisk (*) in column 1, or a form feed character in columns
1 and 2 followed by an asterisk, are processed by the compiler and
appear in the list file. If you set mfcomment, such lines are ignored by
the compiler and will not appear within the list file. If you set
nomfcomment, these lines are processed by the compiler and appear
within the list file. If ANIMATOR is invoked for programs input to the
cobol process with nomfcomment specified, the results will be unpredict-
able.

Default: mfcomment

Chapter 5. Compiler Options 5-13

[no] mf [level]
mf [level] = integer

Specifies that those reserved words that are specific to Micro Focus
extensions to the ANSI 74 COBOL standard should be regarded as
reserved words. integer is used to specify which version of Micro Focus
COBOL is to be treated in this way, as follows:

1 Professional COBOL

2 As 1 plus additional features in VS COBOL Workbench, Version
1.2

3 As 2 plus additional features in VS COBOL Workbench, Version
1.3; VS COBOL Workbench, Version 2.0; Professional COBOL
Version 2.0; and VS COBOL Version 1.5

4 As 3 plus additional features in Micro Focus COBOL/2 and Profes-
sional COBOL/2

Default: mf [level] = 4
[no] ms(2)

Specifies that those reserved words and features that are specific to the
IBM-Microsoft COBOL language are enabled under AIX VS COBOL.
See the Language Reference for details.

The ms(2) option provides compatibility with Microsoft COBOL 2.2. See
also the option ibm-ms for compatibility with Microsoft COBOL 1.0.

Default: no ms(2)
native [= collating-sequence]

Specifies the default collating sequence to be used for comparisons.
collating-sequence must be either ASCII or EBCDIC.

Default: native = ASCII

[no] nestcall
Indicates whefher the source program includes nested programs.
Default: nestcall

[no] nls

Specifies that special National Language Support (NLS) operations are
to be done for the following:

* Explicit string comparisons, class condition tests, and numeric editing
¢ Key comparisons performed on indexed sequential files
* Comparisons performed as part of SORT or MERGE operations.

Selecting nonls causes normal operations for these comparisons.

See Appendix B, “National Language Support” for more details on
using the NLS facility.

The option-nls cannot be used together with the dbes option.

Default: nonls

5-14 User’s Guide for IBM AIX VS COBOL Compiler/6000

[no] odeslide

Determines the location of the second of two data items in the same
group, where the first has an OCCURS DEPENDING ON clause and
the second follows the first but is not subordinate to it. When you set
odoslide, the second item is located immediately after the current size of
the OCCURS DEPENDING ON table. If you set no odoslide, the
second item is located after the maximum size of the OCCURS
DEPENDING ON table.

Default: no odoslide
[no] oldcopy

Causes the COPY statement to operate according to the ANSI 68
COBOL standard (see the Language Reference for details).

Default: no oldcopy

[noJoldfileio
This is for use by the AIX VS COBOL system.
Default: no oldfileio

[no] oldindex

Causes indexes to be generated as subscripts. This option allows IBM
OS/VS COBOL comparisons of index data items with arithmetic
expressions. It is turned off by default because it may reduce the per-
formance of code.

Default: no oldindex
[no] oldvsc2

When used with the vsc2 option, this alters certain features from the
ANSI 85 COBOL standard to make them compatible with Issue 1 of
IBM VS COBOL II. This means that:

¢ No explicit scope delimiter is allowed in a statement without a condi-
tional phrase (for example, AT END, ON SIZE ERROR).

¢ The word ALSO in an EVALUATE statement can be omitted.

* The CLASS clause in the SPECIAL-NAMES paragraph is not
allowed.

¢ Conditional phrases with NOT (for example, NOT AT END, NOT
ON SIZE ERROR) are not allowed.

Default: no oldvsc2
[no] optional-file

Causes the compiler to treat all SELECT statements in files opened for
1-O or EXTEND as if they were OPTIONAL. Under ANSI 85 standard
COBOL, SELECT statements are treated by default as NOT
OPTIONAL. To ensure complete compatibility with the ANSI 85
standard you must thus specify both the ans85 and the no optional-file
options.

Default: no optional-file

Chapter 5. Compiler Options 5-15

[no] osext
osext=ext

Causes the compiler to search by default for a file name with the speci-
fied extension. This will only affect the search for COPY files. ext can
be up to 3 characters long. Use this option with caution.

Default: osext = cbl
[no] osvs

Specifies whether those reserved words that are specific to OS/VS
COBOL language extensions should be treated as reserved words. This
also alters the behavior of certain statements in the OS/VS COBOL lan-
guage (for example, COPY). See the Language Reference for details.
Note that no bounds checking is carried out on subscripts for programs
compiled with this option set.

Default: no osvs .
override(reserved-word) = = (user-defined-word)

Changes the COBOL reserved word to the specified user-defined word.
See the Language Reference for a list of words which are reserved in the
COBOL language. Although you should precede arguments to options
with an equal sign when you specify them on the cob command line or in
$COBOPT, you cannot do this with the override option. You must
enclose both the reserved word and its replacement in parentheses. There
must be one space before the first equal sign and another after the
second, although there must not be a space between them. This option
does not appear in the list produced by the setting option.

If you set this option in your source code using the $SET mechanism,
there is only one equal sign between the old and the new word.

Default: no change of reserved words takes place.

mf
perform-type = {osvs
rm

Causes PERFORM statements to behave as in the specified language:

mf The AIX VS COBOL standard type of PERFORM statement.
: See the Language Reference for details.
0SVS The IBM OS/VS COBOL type of PERFORM statement.

Under IBM OS/VS COBOL all the exit points of the
PERFORM statements currently being executed are active
simultaneously, unlike AIX VS COBOL type PERFORM
statements which are strictly nested so only the exit point of
the innermost PERFORM statement is active. Thus, under
0S/VS COBOL, if control reaches any of the exit points of
the current PERFORM statement, a return jump will occur.
Under AIX VS COBOL, if control reaches any of the exit
points of the outer levels of the current PERFORM, these will
be ignored.

5-16 User’s Guide for IBM AIX VS COBOL Compiler/6000

m The rm type of PERFORM statement. See Chapter 13,
“Ryan-McFarland COBOL: Conversion Series 3” for details.

Default: perform-type = mf
[no] profile

Allows the compiler to include code in your program to produce detailed
performance statistics each time you run the program. See Chapter 7,
“Running an AIX VS COBOL Program” for a description of the profile
facility.

Default: no profile
[no] qual

no qual prohibits qualified data-names or procedure names in the
program being compiled. This allows the compiler to operate more effi-
ciently.

Default: qual

[no] query

Prompts you to supply the path name for a COPY file when the compiler
is unable to find it. By default, this condition causes the compiler to
output a severe compiler message. See Chapter 15, “Error Messages”
for full details on compiler messages.

You are prompted as follows:
FILE BELOW NOT FOUND - Stop run Retry Continue Alter path

test.chl
Respond by entering one of the following:
S Terminate the compilation with errors.

R Retry to copy the file. Before typing R, you can place the copy file
where the computer is searching for it so that it is found.

C Continue the compilation without including the specified copy file.

A Prompts you with Please input new path name. Respond by speci-
fying the path in which the COPY file resides. If a correct path
name is specified, the compiler prints 0K and continues compilation.
Otherwise, copy prompting starts over.

Default: no query
recmode = format

Determines the format of all the files in your source program unless you
have specified a different format for a file in the FD statement. format
can be either F, to denote fixed-length records, or V, to denote variable-
length records.

Default: recmode = F

~ Chapter 5. Compiler Options ~ 5-17

[no] ref

Causes four-digit location addresses to be included on the right-hand side
of the listing file. Note that you may need a listing with location
addresses in order to identify the locations reported in RTE error mes-
sages.

Default: no ref
remove = reserved-word

Disables the specified reserved word, allowing you to use it as a user-
defined word within your source code. Note that if you wish to disable
more than one reserved word you must specify a separate remove option
for each word.

You can only remove words which are already enabled. For example, if
you wish to disable the reserved word ACTUAL, you can only remove it
if the osvs option has already been specified. This is because ACTUAL
is a reserved word in the IBM OS/VS COBOL language and is only
treated as a reserved word by AIX VS COBOL if the osvs option is set.

You must specify the remove option after any other options that affect
reserved words have been specified. For example, if you specify the
remove option in the cobopt file, you cannot specify any dialect-
controlling options on the cob command line, since these are processed
after options found in cobopt. See Chapter 4, “The COBOL Interface”
for details on the order in which options are processed. This option does
not appear in the list output by using the setting option.

You cannot use remove to remove the reserved words used to name and
reference special registers from the reserved word list.

Default: No reserved words are removed.
[no] reseq

Causes the compiler to generate COBOL line sequence numbers, starting
at 1, in increments of 1.

Default: no reseq
[no] retrylock

Specifies that a record found to be locked is retried until the record is
released. This option is only effective if the +R and +Q run-time
switches are set. See Chapter 7, “Running an AIX VS COBOL
Program” for details on these switches.
Default: noretrylock

[no] rewrite-lIs

Specifies whether rewrite of line-sequential files is permitted. If you use
this facility it is your responsibility to ensure that the record written is
the same size as the one replaced.

Default: rewrite-Is

5-18 User’s Guide for IBM AIX VS COBOL Compiler/6000

[no] rm
rm = ansi

Changes the behavior of certain features so that they are compatible with
RM/COBOL V2.0. If the ansi option is specified, these features behave
as they do when a program is compiled in that system with the ANSI
switch set. See the Language Reference for details.

Setting the rm option causes the table of alternate file status values
described in the "RM Appendix” of the Language Reference to be used in
file operations. By default, this table contains the status “9” file status
values returned by RM/COBOL.

Setting rm automatically sets the notrunc, oldindex, nooptional-file,
retrylock, align=2, and sequential =line options. It also causes compiler
behavior as if your program contained the syntax:

sign trailing separate
for signed numeric data items, and
lock mode is automatic
for each file with no explicit locking syntax.

Setting rm = ansi automatically sets the notrunc, oldindex, nooptional-file,
retrylock, align =2, and sequential = record options. It also causes com-
piler behavior as if your program contained the syntax:

sign trailing included
for signed numeric data items, and
lock mode is automatic
for each file with no explicit locking syntax.

Setting norm automatically sets the trunc = ansi, nooldindex, nooptional-
file, noretrylock, align =8, and sequential =record options. ‘It also causes
compiler behavior as if your program contained the syntax:

sign trailing included

for signed numeric data items. It does not set any locking for those files
which have no explicit locking specified.

Note: See also the option perform-type.

Default: Each of the options set by this one has its own default value.
See the individual entries for each option in this chapter.

Chapter 5. Compiler Options 5-19

rtncode-size = integer

Specifies the size of the RETURN-CODE special register and its align-
ment in the computer memory. integer can be either 2 or 4. A value of
2 implies a data description of PIC S9(4) COMP for a register of 2 bytes
which is aligned on a 2-byte boundary. A value of 4 implies a data
description of PIC S9(9) COMP for a register of 4 bytes which is aligned
on a 4-byte boundary.

If a program with a 4-byte return code returns control to a program with
a 2-byte return code, binary truncation of the return code will take place.
If a program with a 2-byte return code returns control to a program with
a 4-byte return code, the top two bytes of the return code will be unde-
fined.

Default: rtncode-size = 4

[no] rw
Specifies whether those reserved words that are specific to the ANSI
COBOL standard Report Writer module should be treated as reserved
words. See the Language Reference for details.
Default: rw

[no] seg

no seg causes the compiler to ignore segmentation by treating all section
numbers as if they were zero. A monolithic program is produced.

Default: no seg
[no] seqchk

Checks the sequence numbers in columns one to six and flags lines whose
sequence numbers are out of order.

Default: no seqchk

record }

sequential = {line

Causes all files whose organization is implicitly or explicitly sequential to
default to either record-sequential (a standard sequential file) or line-
sequential. See Chapter 3, “Device- and File-Handling” for more infor-
mation on file structures.

Default: sequential = record
[no] setting

Causes the compiler to include a list of the current settings of the
majority of the compiler options in the listing file Ist. The settings of a
few options are not shown in this list. See the descriptions of the indi-
vidual options to determine which these are.

Default: no setting

5-20 User’s Guide for IBM AIX VS COBOL Compiler/6000

sign = convention

Indicates whether included signs for numeric display fields are to be
interpreted according to the ASCII or EBCDIC convention.

Default: sign = ASCII
[no] struct

Is reserved for use by COBOL products which can be added to the AIX
VS COBOL system. Do not change its setting.

Default: no struct

[no] supff
Suppresses form feed characters in the output listing. This only has an
effect with the list option.
Default: no supff

[no] time
Can only be used with the date option. Where date inserts the system
date into the source program and listing, time adds the current system
time.
Default: time

[no] trace
Specifies whether the ready trace and reset trace syntax should be
enabled. ready trace and reset trace cause code to be inserted at each
paragraph and section heading to display the name of that paragraph or
section each time it is executed at run time. See the Language Reference
for details.
Default: no trace

{no] trunc

trunc = ANSI

Controls the behavior of data moved into USAGE COMP items. trunc
truncates decimal values to the number of digits specified by the
PICTURE clause. no trunc iruncates binary values to the capacity of the
allocated memory (for small systems). trunc = ANSI truncates the
decimal values of data moved by nonarithmetic statements to the number
of digits specified by the PICTURE clause. For moves involving arith-
metic statements when the size error condition occurs, if you specify
trunc = ANSI but no on size error phrase, the value stored in the usage
comp item is undefined.

Default: trunc = ANSI
[no] verbose

Sends messages output by the compiler concerning accepted options and
the size of the code and data areas of your programs to stdout.

Default: no verbose

Chapter 5. Compiler Options 5-21

[no] vsc2
vsc2 = integer

Specifies that those reserved words that are specific to the IBM VS
COBOL II language extensions should be treated as reserved words. See
the Language Reference for details. It also enables or disables subscript
array bound checking.

The possible values for integer are:
1 VS COBOL II Release 1.0
This replaces the options oldvsc2 and vsc2.

* No explicit scope delimiter is allowed in a statement without a
conditional phrase (AT END, ON SIZE ERROR, and so on).

¢ The word ALSO in an EVALUATE statement can be omitted.

e The CLASS and SYMBOLIC CHARACTERS clauses in the
SPECIAL-NAMES paragraph are not allowed.

* Conditional phrases with NOT (NOT AT END, NOT ON
SIZE ERROR, and so on) are not allowed.

2 VS COBOL II Release 2.0

¢ The CLASS and SYMBOLIC CHARACTERS clauses in the
SPECIAL-NAMES paragraph are not allowed.

¢ Conditional phrases with NOT (NOT AT END, NOT ON
SIZE ERROR, and so on) are not allowed.

¢ When used in conjunction with the flag = vsc2 it provides
similar functionality to the VS COBOL II Release 2.

e Also sets the compiler option dbes=1.
3 VS COBOL II Release 3.0

¢ When used in conjunction with the flag=vsc2 it provides
similar functionality to the VS COBOL II Release 3.

Notes:
1. ans85 status codes are used when vsc2 =3 option is selected.

2. Do not use the noans85 option after specifying vse2=3
since this will turn off some of the ans85 behavior sup-
ported by vsc2=3.

¢ The CLASS and SYMBOLIC CHARACTERS clauses in the
SPECIAL-NAMES paragraph are not allowed.

¢ Conditional phrases with NOT (NOT AT END, NOT ON
SIZE ERROR, and so on) are not allowed.

¢ Also sets the compiler option dbes=2.
When vsc2 is specified without integer, vsc2=3 is assumed.

Default: no vsc2

5-22 User’s Guide for IBM AIX VS COBOL Compiler/6000

warning = integer

Controls the level of compiler error messages output by the compiler.
integer must be 1, 2, or 3. Unrecoverable-level and Severe-level errors
are always output. Specifying integer as 1 causes Error-level errors to be
output; 2 causes Error- and Warning-level errors to be output; and 3
causes all five levels of error messages to be output (Unrecoverable,
Severe, Error, Warning, and Informational).

Default: warning = 3
[no] writelock

Causes WRITE and REWRITE statements to acquire a record lock
when the program is locking multiple records in a file (see Chapter 8,
“File Sharing in the Multi-User Environment™). This option does not
appear in the list produced by the setting option if its state is the same as
the autolock option. If this is the case, the state of the fileshare option
shown in the setting list also indicates the state of the autolock and
writelock options.

Default: no writelock
[no] xref

Produces a cross-referenced listing, consisting of a list of all data items in
alphabetical order and an associated sequence number, which shows the
line where the item is defined. This reference number is marked with a
#. Further sequence numbers show each time the item is used. The
listing also shows the data item type and the length (in bytes) of group
items. The listing continues with a similar description of paragraph
names.

Default: no xref
[no] zeroseq
Causes zero suppression in the sequence numbers in columns one to six.

Default: no zeroseq

Excluded Combinations
Certain options may not be used in combination with other options. Table 5-1 on
page 5-24 shows the options that are excluded if the option shown adjacent in the
left-hand column is specified.

Chapter 5. Compiler Options - 5-23

Table 5-1. Excluded Combinations of Options
Option Excluded Options
nolist list
print
[no] form
reseq
copylist
errlist
[no] ref
echoall
errlist reseq
copylist
[no] ref
ANSB85 Options
The ANS85 options are as follows:
* ans85
¢ coms85
¢ nestcall
* nooptional-file
* trunc = ansi
Default Options
The default compiler options set by cob are as follows:
o align=4
¢ alter
¢ noanalyze
* noanim
* ans85

* assign=dynamic
¢ noautolock
¢ nobell
e nobound
* nobrief
e charset=ASCII
® nocomp
* coms85
¢ confirm
¢ nocopylbr
¢ nocopylist
* currency-sign=236
¢ date
¢ nodbcs
. ¢ nodbcssosi
¢ defaultbyte =32
* nodg
¢ nodirectives
¢ echo

5-24 User’s Guide for IBM AIX VS COBOL Compiler/6000

noechoall
noerrlist
noerrq
nofilecase
nofileshare
noflag

noflagq
noflagstd

form =60
noibmcomp
noibm-ms
int=filename.int
linkcount = 64
nolist

listwidth = 80
mfcomment
mfflevel]=4
noms(2)

native = ASCII
nestcall

nonls
noodoslide
nooldcopy
nooldfileio
nooldindex
nooldvsc2
nooptional-file
osext=cbl
NOOoSVs
perform-type =mf
noprofile

qual

noquery
recmode=F
noref

noreseq
noretrylock
rewrite-Is
norm
rtncode-size =4
W

noseg
noseqchk
sequential = record
nosetting

sign = ASCII
nostruct
nosupff

time

notrace
trunc=ansi

Chapter 5. Compiler Options

5-25

¢ noverbose
¢ novsc2

¢ warning=3
¢ nowritelock
¢ noxref

* nozeroseq

5-26 User’s Guide for IBM AIX VS COBOL Compiler/6000

You can override the above default compiler options by any of the following:
e An entry in the file SCOBDIR/cobopt.

¢ An entry in the environment variable SCOBOPT, or in the file to which this
environment variable points.

» Specifying -C on the cob command line.

¢ Embedding parameters in the COBOL source code.

For example, in the SCOBDIR/cobopt file, the entry:
compiler: nolist nobell <

passes the options nolist and nobell to the compiler. The same effect would be
achieved if you entered either of the following cob command lines:

cob -C "nolist nobell" filelist «
or
cob -C nolist -C nobell filelist <

Entries in the $COBOPT environment variable (or the file it points to) override the
system-wide default compiler options found in SCOBDIR/cobopt, while options spec-
ified on the command line override entries in both SCOBDIR/cobept and
$COBOPT. Parameters in the source code override all of the above.

Mainframe Options
If you want the AIX VS COBOL system to emulate the mainframe environment, set
the following compiler options. These options depend on the mainframe facilities
used.

¢ sequential = line
e assign = external
e ibmcomp

o defaultbyte = 48
¢ native = EBCDIC
¢ OSVS

® notrunc

SAA Options
If you want the AIX VS COBOL system to provide support for the SAA definition
of COBOL, you should set the following options:

e ysc2
e nomf
o flag(saa)

Chapter 5. Compiler Options 5-27

Options Permitted in $SET Statements
You can imbed certain compiler options within your source code in $SET state-
ments. In the following list the entry “any” specifies that a particular compiler
option can be specified in any $SET statement regardless of its position within your
source code; “initial” specifies that a particular compiler option can be specified only
in a $SET statement which appears at the start of your source code; while “not
available” specifies that a particular compiler option cannot be specified in any

$SET statement.

align Initial

alter Initial
analyze Not available
anim Not available
ans85 Initial

assign Initial
autolock Initial

bell Initial

bound Initial

brief Any

charset g’ Not available
comp * Initial
coms85 Initial
confirm Not available
copylib Not available
copylist Any
currency-sign Initial

date

Not available

dbcs Initial
dbcssosi Any
defaultbyte Initial

dg Initial
directives Any

echo Any

echoall Any

errlist Not available
errq Any

filecase Not available
fileshare Initial

flag Any

flagq Any

flagstd Any

form Any
ibmcomp Initial
ibm-ms Initial

int Not available
linkcount Initial

list Any

listwidth Any
micomment Any
mfi[level] Initial

ms(2) Initial

native Initial
nestcall Initial

nls Not available
odoslide Initial

5-28 User’s Guide for IBM AIX VS COBOL Compiler/6000

oldcopy Any

oldfileio Initial
oldindex Initial
oldvsc2 Initial
optional-file Initial

osext Any

0Svs Initial
override Initial
perform-type Initial

profile Not available
qual Any

query Any

recmode Initial

ref Any

remove Initial

reseq Initial
retrylock Any
rewrite-lIs Not available
rm Initial
rtncode-size Initial

W Initial

seg Initial
seqchk Any
sequential Initial

setting Not available
sign Initial

struct Not available
supff Any

time Not available
trace Any

trunc Initial
verbose Not available
vsc2 Initial
warning Any
writelock Initial

xref Not available
zeroseq Any

Compiler Messages
If you specify the verbese flag (-v) on the cob command line, each compiler option is
acknowledged by the compiler on a separate line and is either accepted, rejected, or
ignored. Options that are ignored are those which are not applicable to your envi-
ronment. After all the options have been acknowledged, the compiler opens its files
and starts to compile. At this point it displays the message: ’

* Compiling file-name

If any file fails to open correctly, the compiler displays:
Open fail : file-name
The compilation is aborted, returning control to AIX. 0Open fail results, for

example, if the source file is located in another directory, or if the file name was
typed incorrectly.

Chapter 5. Compiler Options 5-29

Listing Format

When the compilation completes successfully, the compiler displays a message which
gives the total number of compiler error messages reported by the compiler, and the
sizes of the code and data areas and the compiler dictionary. See “Listing Format”

for details. '

The dictionary size information does not include the overheads of the virtual
memory mechanism, and so the dictionary file is likely to be larger than the statistic
given here.

The general layout of the list file is as follows:

* IBM AIX VS COBOL Compiler/6000 LP <date><time> Page n
* <file-name>)
<list of options>

1 Statement 1

n Statement n

* IBM AIX VS COBOL Compiler/6000 LP

* 5601-258 (c) COPYRIGHT IBM CORP. 1987, 1990
* Copyright (c) 1984, 1987 Micro Focus, Ltd

* A1l Rights Reserved

* Licensed Material - Property of IBM

* Last Error on page : nn

*

* Total messages: n

* Unrecoverable: n Severe: n

* Errors: ‘ n Warnings: n

* Informational: n Flags: n

* Data = nnnnn Code = nnnnn Dictionary = nnnnn

If no options were specified, the list of options is replaced by the message:

No Options Selected

Note that if you specify the ref option during compilation, a hexadecimal value
denoting the address of each data-name or PROCEDURE statement appears to the
right of the page. Addresses of data-names are relative to the start of the data area,
while addresses of procedures (that is, sections and paragraphs) are relative to the
start of the code area. There is some overhead at the start of the data area and a
few bytes of initialization code at the start of the procedure area for each SELECT
statement. ,

The sequence following ref is the compiler reference number.

A syntax error is marked in the listing by an error line with the following format:

nnnnnn illegal statement
*% nnn_N*********... ...*****
(nnnn)**

** id# message-text

where:

nnnnnn is the sequence number of the erroneous line.

5-30 User’s Guide for IBM AIX VS COBOL Compiler/6000

nnn is the compiler error number.

N is a single alphabetic character representing the category of the severity of the
error.

The asterisks following the error number indicate the character position of the error
in the preceding erroneous source line. The asterisks at the end of the line simply
highlight the error line.

The compiler may not echo an erroneous line to the terminal. Check the previous
line if there is any doubt.

The number nnnn in parentheses at the end of the line indicates the page of the
listing on which the previous error occurred. This enables you to trace back from
one error to the previous error. However, this feature assumes that you used the
copylist option; if this is not the case, the page numbers reported are incorrect.

The line following the compiler error number has the text of the error message. At
the beginning of each message is the AIX VS COBOL component identifier. This
component number is 1103 for compiler error messages.

Compiler error messages are split into the following five categories:

Unrecoverable Indicates a fatal error.

Severe Indicates an error that the compiler was unable to correct.
Compilation continues, but the statement at fault is not com-
piled.

Error Indicates an error which the compiler has attempted to correct.

Warning Flags a statement that although syntactically correct may

contain a possible error.

Informational Draws your attention to something in your source code you
should be aware of.

An unrecoverable error always causes the compiler to stop running, outputting the
relevant error message once it does. However, by default, any other level of error
causes processing of the cob command to terminate once an intermediate code file
has been produced. If the compiler reports any Severe-level compiler errors, you can
override these by using the -W option with the cob command, or by setting the
warning compiler option. See Chapter 4, “The COBOL Interface” for details. The
message given at the close of the compiler’s run, provided it is not terminated by an
unrecoverable error, indicates both the total number and the category of the errors
which occurred.

You will not be able to run or code-generate intermediate code programs which
contain any Unrecoverable-level errors. You will have to correct these errors and
resubmit your source code to the compiler using the cob command.

You can run programs which contain Severe-level errors only if you set the E run-
time switch to on. See Chapter 7, “Running an AIX VS COBOL Program” for full
details of how you may do this. If the E run-time switch is set off (-E), attempting
to run intermediate code programs which contain Severe-level errors will give a run-
time error, and the program run will terminate.

Chapter 5. Compiler Options 5-31

Flagging

The default setting of the E run-time switch is -E; that is, you will not be able to run
programs that contain Severe-level compiler errors. If you wish to do so you must
explicitly set and export the COBSW environment variable to +E (see Chapter 4,
“The COBOL Interface” for details).

You will not be able to produce object code from intermediate code programs which
contain Severe-level errors. Attempting to do so will result in a Native Code Gener-
ator error.

You can animate programs with Severe-level errors regardless of the setting of the E
run-time switch. If you animate such a program with the -E switch setting, a run-
time error is reported, but animation does not terminate.

You can animate, run, and produce object files from intermediate code files which
contain Error-, Warning-, and Informational-level errors, regardless of the setting of
the E run-time switch. However, you may wish to correct these errors first.

A full list of compiler error messages together with recovery hints can be found in
Chapter 15, “Error Messages.”

Flagging can be used to ensure portability of the COBOL syntax you have used in
your program. If you use syntax that is outside the dialect of COBOL that you have
selected in the flag option, it will produce a flagging message on the listing. ’

A flag is marked in the listing by a flagging line with the following format:

nnnnnn flagged feature
** npn-level--=-=---- .ee = (nnan)--
** id# flag-text

where:
nnnnnn is the sequence number of the flagged line.
nnn is the flag number.

level represents the level at which the feature is flagged, using the following acro-
nyms:

MF Micro Focus COBOL extensions
OSVS IBM OS/VS COBOL extensions
VSC2 IBM VS COBOL II extensions

ANS74 ANSI COBOL Standard X3.23, 1974
ANSS5 ANSI COBOL Standard X3.23, 1985

LOW GSA ANSI Low level
L-I GSA ANSI Low-intermediate level
H-I GSA ANSI High-intermediate level
HIGH GSA ANSI High level

The flagged feature is pinpointed at the position of the end of the line of characters
beneath the flagged line. The dashes at the end of the line simply highlight the flag-
ging line.

5-32 User’s Guide for IBM AIX VS COBOL Compiler/6000

The number in parentheses at the end of the line indicates the page of the listing on
which the previous flag occurred. This enables you to trace back from one flag to
the previous one. However, this feature assumes that the copylist option has been
used; if this is not the case, the page numbers reported are incorrect.

The line following the flag number and level has the text of the flag message. At the
beginning of each message is the AIX VS COBOL component identifier. This com-
ponent number is 1103 for flagging messages.

A program in which flags are indicated can still be run. Further details can be
found in Chapter 15, “Error Messages.”

If the compiler detects an error in a data declaration, it may skip some subsequent

data declarations, with the result that error messages are produced when references
are made to data items whose declarations have been skipped.

Chapter 5. Compiler Options 5-33

5-34 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 6. Native Code Generator Options

Chapter 6. Native Code Generator Options 6-1

Contents

About This Chapter 6-3
Permitted Options 6-4
Default Options e 6-5
Native Code Generator Messages oo v i vt it e o 6-6

6-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

This section describes the system-wide default Native Code Generator options. You
can supplement or override these default options by modifying the
$COBDIR/cobopt supplied with your compiler, setting up your variable, SCOBOPT,
or by using the -N option on the cob command line. Chapter 4, “The COBOL
Interface” contains details on how to do this.

Throughout this chapter all references to SCOBOPT refer to the contents of the
COBOPT environment variable, or the file to which it points.

Chapter 6. Native Code Generator Options 6-3

Permitted Options
The available Native Code Generator (NCG) options are:
[no] asm [=filename]

Suppresses or requests an assembler listing of the intermediate file being
generated. The assembly file is placed in:

progname. S
where:

progname is the name of the program being code-generated. This name
may be overridden by the inclusion of a filename in the command line.
The filename may include a path. If the filename is specified with this
option, the tmpdir option is ignored.

Default: no asm
[no] boundopt

Specifies whether array access optimization is enabled. Noboundopt turns
off array access optimizations and so allows you to access elements that
are outside the array (this will increase execution time). If the vsc2 or
osvs compiler option is set at compile time, the default is noboundopt.

If the picture clause for a subscript has more digits than required for the
table being indexed, boundopt may cause the compiler to use only the
least significant bytes of the subscript. This reduces the amount of data
used, and could adversely affect programs which access table elements
outside of the declared size.

Default: boundopt
[no] check

Specifies checking of run-time limit violations (for example, PERFORM
stack, table bounds). nocheck suppresses limit checking and so allows
overwriting of data areas (reducing execution time). If the vsc2 or osvs
compiler options are set at compile time, the default is nocheck.

Default: check
[no] list [=filename]

Suppresses or requests the NCG error listing file. The listing may be sent
to stderr, or may be overridden by including a filename in the command -
line.

Default: list
[no] Inkalign

Specifies that linkage records in a USING statement are 01 or 77 level
items (they are aligned according to the compiler align option, as
described in Chapter 5, “Compiler Options”).

Note: This option may reduce the time needed to access a linkage item,
but no checks are made to ensure that the items are aligned (your
program could access data incorrectly).

Default: nolnkalign

6-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

[no] obj [=filename]

Suppresses or requests production of a native object file of the interme-
diate file being generated. The object file is placed in:

progname. 0
where:

progname is the name of the program being code-generated. This name
may be overridden by the inclusion of a filename in the command line.
The filename may include a path. If the filename is specified with this
option, the tmpdir option is ignored.

Default: obj
{no] spzero

Causes spaces to be treated as zeros in numeric display fields. This
option requires overhead at run time and so may reduce performance.
Use the +F COBSW for equivalent function in the .int code.

Default: nospzero
{no] sysprof

Causes AIX system profiling code to be added to the COBOL generated
native code. See the AIX system documentation for more information
on the AIX system profiler.

Default: nosysprof
tmpdir = path

Sets the temporary directory path to be path. This must specify only a
path; it cannot include the file name.

Default: Undefined
(no] verbose

Sends messages to the screen output by the Native Code Generator con-
cerning accepted options and the size of your program’s code and data
areas.

Default: noverbose

Default Options

The default options can be overridden either by an entry in the file SCOBOPT or by
using the -N flag on the cob command line, The following entry in the SCOBOPT
file:

ncg:nocheck
passes the option necheck to the Native Code Generator. An alternative way of
achieving the same effect is the cob command line:

cob -N nocheck file list <
Entries in the SCOBOPT file override the system-wide default Native Code Gener-

ator options. Options specified to the cob command line override entries in both
SCOBDIR/cobopt and SCOBOPT.

Chapter 6. Native Code Generator Options 6-5

Native Code Generator Messages

If you specify the verbose option (-v) on the cob command line, each option is
acknowledged by the Native Code Generator on a separate line and is either
accepted, rejected, or ignored. After all the options have been acknowledged, the
Native Code Generator opens its files and starts processing the file.

6-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 7. Running an AIX VS COBOL Program

Chapter 7. Running an AIX VS COBOL Program 7-1

Contents

About This Chapter e 7-3
Command Line Syntax 7-4
Command Line Examples 7-5
Examples e e 7-5
Switch Parameters 7-6
Run-Time Switches 7-7
ANIMATOR Switch (A) 7-7
Skip Locked Record Switch (B) 7-7
ANSI COBOL Debug Switch (D) 7-8
COBOL Symbol Switch (€) 7-8
Error Switch (E) e 7-8
Compatibility Check Switch (F) 7-8
Keyboard Interrupt Switch i) L. 79
ISAM Files Sequence Check Switch (K) 7-10
Memory Switch (1) 7-10
Null Switch (N) e 7-10
Dynamic Linkage Setup Switch (p) 7-10
File Status Error Switch (Q) 7-11
Reread Locked Record Switch (R) 7-11
Sort Memory Switch (s) 7-12
Sort Switch (S) e 7-12
Tab Switch (T) e 7-12
Examples 7-13
Run Time Environment Error Messages 7-13
COBOL Profiler e 7-14
Profiler Directives 7-14
Profiler OQutput e 7-15

7-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

This chapter describes how to run a program compiled with the AIX VS COBOL
compiler. The chapter includes a description of the COBSW switches, which allow
you to alter the way your program is run. Also included is a description of the
format of run-time error messages. This section finishes with a description of the

COBOL profiler facility, which can be used to produce statistics on the run-time per-
formance of your program.

Chapter 7. Running an AIX VS COBOL Program 7-3

Command Line Syntax

You can run a statically-linked module output by the cob command by entering a
command line of the form:

file-name [porameter-list] <€

where file-name is the name of the a.out module output by the cob command and
parameter-list is an optional list of parameters to be passed to AIX VS COBOL.
EBach parameter is a string, separated from adjoining parameters by one or more
spaces. These parameters can be read by the module in either of the following ways:

e If a program linked into the module opens file stdin (console input) for input,
with ORGANIZATION LINE SEQUENTIAL, the first READ from this file
accesses the program parameters in the command line.

* ACCEPT FROM CONSOLE also reads from stdin, so the first ACCEPT
FROM CONSOLE will also access the program parameters.

Note: ACCEPT without a FROM clause is, by default, ACCEPT FROM
CONSOLE, unless CONSOLE IS CRT is specified in the
SPECIAL-NAMES paragraph. ACCEPT FROM CRT does not access
program parameters.

You can run dynamically loadable programs created by using the cob command by
entering a command line of the form:

cobrun [option] [switch] filename [parameter-list]
where:
option is one of the two following options that can be passed to the cobrun
command:

-h is a help option that displays a usage banner on the screen; no other action is
taken by the cobrun command if the -h option is given.

-y is a verbose option that shows the built command line that is being executed by
the cobrun command in order to process your requested run.

switch is an option list of switches. See “Switch Parameters” on page 7-6 for details
on what these switches can be.

filename is the name of the .int or .gnt file output by the cob command. If both .int
and .gnt versions of the file exist and you do not specify an explicit file extension in

the cobrun command, the .gnt version is the one that is run.

parameter-list is an optional list of parameters to be passed to your COBOL
program. Parameter lists are described in more detail earlier in this section.

7-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

Command Line Examples

This section shows examples of command lines.

Examples
For a full description of the effect of the cob command in the following examples,
see Chapter 4, “The COBOL Interface.”

1. To execute the statically linked module pi, in which the generated version of the
program pi is linked to the COBOL libraries, enter the following:

cob -x pi.chl <
pi
2. To execute the intermediate code file pi.int, which is the default output of the
cob command, enter the following:

cob pi.cbl <«
cobrun pi.int <

3. To animate the intermediate code contained in the file pi.int output by the cob
command, enter the following:

cob -a pi.cbl <

anim pi.int
If you set the A switch in the COBSW environment variable, the same effect can
be achieved by entering the following commands:

cob -a pi.chl €
cobrun pi.int <

4. To execute the generated code in the file pi.gnt output, using the cob command,
enter the following:

cob -u pi.cbl <
cobrun pi.gnt <

5. To execute the statically linked executable file named pi, which is output by the
cob command, enter the following:

cob -x -e"" pi.cbl <

pi pi <
Specifying the -e option with a null argument on the cob command line ensures
that the entry point is read from the command line at run time. Since the entry
point is supplied at run time, you can use the static module pi to execute any

intermediate or native code file. For example, to run the file myfile.int, enter the
following command:

pi myfile <

where myfile could be a free-standing intermediate or native code program, or
could call the statically linked pi module.

Chapter 7. Running an AIX VS COBOL Program 7-5

Switch Parameters

You can set certain switches when you execute files output, using the cob command.
These switches can be any of the following:

¢ Run-time switches

¢ ANIMATOR switch (A)

e Skip locked record switch (B)

¢ ANSI COBOL debug switch (D)
e COBOL symbol switch (e)

¢ Error switch (E)

e Compatibility check switch (F)

¢ Keyboard interrupt switch (i)

o ISAM files sequence check switch (K)
* Memory switch (1)

¢ Null switch (N)

* Dynamic linkage setup switch (p)
e RM file status error switch (Q)

* Reread locked record switch (R)
* Sort memory switch (s)

¢ Sort switch (S)

¢ Tab switch (T)

To specify any of these switches, set the environment variable COBSW to those
which you require. Each switch you want to set to on must be preceded by a ‘+’
sign. Each switch that you wish to set to off must be preceded by a ‘—’ sign.

If your program does not require any of the above switches; you do not need to set
COBSW. In this case, the default values of the switches will apply.

Note: The use of ‘+° or ‘—’ is significant for these switches, but the values are used
only to delimit the run-time options. If you are running the “sh” shell, you
will need to export COBSW after you set it, as follows:

export COBSW

You can also include run-time switches in the cobrun command line as follows:

cobrun [switch] filename [parameter-list] <

where:
switch is an optional list of the run-time switches listed above.
filename is the name of the .int or .gnt file output by the cob command.

parameter-list is the optional list of parameters to be passed to AIX VS COBOL.

7-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

Run-Time Switches
By default, all run-time switches are set to off. AIX VS COBOL provides a facility
that allows you to control events in a program at run time by setting or unsetting up
to nine run-time switches in the SPECIAL-NAMES paragraph of your program (see
the Language Reference for details).

To set a run-time switch to on, set the COBSW environment variable as follows:
COBSW=+n

where 7 is in the range 0 to 8.

You can specify switches in any order, but each individual switch must be preceded
by a sign. For example:

COBSW=+1+4

sets the run-time switches as follows:

0 Off
1 On
2 Off
3 Off
4 On
5 Off
6 Off
7 Off
8 Off
ANIMATOR Switch (A)

By default, this switch is set to off. If you wish to animate intermediate code output
by the cob command, you can do so using the anim command (see Chapter 11,
“Debugging Your Program Using ANIMATOR”), which automatically sets the
ANIMATOR switch to on. To use the cobrun command to execute intermediate
code, but still have ANIMATOR invoked, set the COBSW environment variable to
the ANIMATOR switch as follows:

COBSW=+A

If you animate your program using COBSW = +A when COBPATH is set, the .cbl
files must be in the same directory as the .int files.

Skip Locked Record Switch (B)
By default, this switch is set to off. If you attempt a READ operation on an ISAM
file opened for INPUT or I-O and the record is found to be locked, the file position
indicator remains pointing to that record. Subsequent READs then attempt the read
operation again until the record is found to be unlocked. However, if the Skip
Locked Record Switch is set to ON, if a READ operation tries to access a record
that is locked, then the file position indicator is moved to the next record in the file.
Since the record was locked, an I-O status “record locked” is returned for that

READ.

Chapter 7. Running an AIX VS COBOL Program 7-7

To set this switch to on, set the COBSW environment variable to the Skip Locked
Record Switch as follows:

COBSW=+B

This switch only has effect for files with sequential access.

ANSI COBOL Debug Switch (D)

By default, this switch is set to off. If your program is to use the ANSI COBOL
debug facility (see Language Reference), set the COBSW environment variable to the
ANSI COBOL debug switch, as follows:

COBSW=+D

COBOL Symbol Switch (e)

Error Switch (E)

Setting this switch off causes the RTE to search only for COBOL programs or
symbols to satisfy CALL operations or EXTERNAL data items. The RTE will not
search for any C programs or symbols if you set this switch off.

By default, this switch is set on, that is, the RTE does not search for C programs
and symbols. If you wish to turn it off, you must set the COBSW environment vari-
able as follows:

COBSW=-e

The method used to avoid finding C programs and symbols is that the RTE will not
look up that name in the file “ldtab.s”. This is a file that is created during a compi-
lation where such names are collected for resolution. The RTE does the lookup for
names in this file. Therefore, if the code that handles the CALL does not go
through the RTE, finding C programs and symbols cannot be avoided by using this
switch. The —e switch will only have effect if the calling program is a dynamically
loaded COBOL program, that is, a .gnt or .int code file. If the COBOL program is
statically bound, then a CALL to C code (which must also be statically bound) will
have no need to go through the RTE, and so finding the C program or symbol will
not be avoided.

By default, this switch is set to off. If you try to run intermediate code programs
which contain S-level compiler errors, you will receive a run-time error. See
Chapter 15, “Error Messages” for more information about these errors. To execute
intermediate code output by the cob command, which contains S-level compiler
errors, set the COBSW environment variable to the Error switch as follows:

COBSW=-+E

Compatibility Check Switch (F)

By default, this switch is set to on. The switch enables or disables various checks at
run time to allow programs that would usually fail at run time with run-time error
163 to run successfully. Run-time error 163 is output for a number of error condi-
tions, all of which are described in Chapter 15, “Error Messages.” Most of these
conditions are cases where intermediate code versions and generated code versions of
the same source program produce different effects at run time. To suppress the
checking for these error conditions, set this switch to off, as follows:

COBSW=-F

7-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

For example, one of the checks enabled or disabled by the compatibility check
switch is the numeric field check. If this switch is set to on when the RTE loads a
numeric item into one of its numeric registers, the RTE will check the loaded value
to see if the value contains a nonnumeric character. If this is the case, run-time
error 163 is output.

Consider the following short program:

WORKING-STORAGE SECTION.
01 VAR PIC 9.

PROCEDURE DIVISION.
IF VAR = O DISPLAY "ZERO"
ELSE DISPLAY "NON-ZERO".

The variable VAR is not initialized with a VALUE clause and so contains space (hex
20). If you try to run this program with the compatibility switch set to on (the
default setting), the RTE checks for a nonnumeric character in the numeric field and
the program fails with run-time error 163.

If you run the intermediate code version of this program with the compatibility
switch suppressed, the RTE masks out the top four bits of the value in VAR. This
makes the comparison true, and the program displays “ZERO”. However, if you
then run the generated code version of this program with the compatibility switch
suppressed, the RTE performs a byte by byte comparison between the value of VAR
(hex 20) and zero (hex 00). In this case, the comparison yields the result false, and
the program displays “NON-ZERO”.

The following table summarizes the results of running the intermediate and native
code versions of the above program with the two settings of the compatibility check

switch:

—F +F
.int Displays “ZERO” Fails with RTE error 163
.gnt Displays “NON-ZERO” Displays “NON-ZERO”

If an intermediate code file needs the F switch suppressed (that is, —F set) to run
successfully, you must set the SPZERO Native Code Generator option if you want
to generate your code and obtain the same results. See Chapter 6, “Native Code
Generator Options” for details.

Keyboard Interrupt Switch (i)
By default, this switch is set to on. The AIX VS COBOL system allows you to
enable or disable keyboard interrupts by setting or unsetting the interrupt switch at
run time. If you want keyboard interrupts to be disabled, set this switch to off as
shown below: '

COBSW=—1

Chapter 7. Running an AIX VS COBOL Program 7-9

ISAM Files Sequence Check Switch (K)

By default, this switch is set to off. The AIX VS COBOL system allows you to
enable or disable sequence-checking of indexed keys in ISAM files. This switch
allows you to specify if records can be written in any order to ISAM files opened in
sequential mode, or if these records must be written in key sequence. You can set
this switch to on by entering the following:

COBSW=+K

Memory Switch ()

Null Switch (N)

By default, the Run Time Environment performs logical CANCELSs unless all the
available memory has been used up. As far as your program is concerned, the
behavior of logical and real CANCELSs is identical, but logical CANCELs are faster.
A logical CANCEL flushes all file buffers but does not free any memory after using
it. If you do not set the size of the available memory, the RTE requests the
maximum amount possible from the operating system. Set the size of the available
memory by setting the memory switch at run time.

COBSW=—1 integer
where integer is the size of the available memory in bytes.

If you want all CANCELSs to be “real,” set this switch to:
COBSW=-10

By defauit, when the RTE requires memory space it checks that the new request
does not exceed the available memory. If the new request exceeds available memory,
the memory that should have been freed by any CANCEL is freed, and the RTE
repeats its request for memory. The RTE loads programs that have been logically
canceled in preference to reloading from fixed-disk.

By default, the null switch is set to on, as follows:
COBSW=-+N

When a program writes records to a line-sequential file, the default action in cases
where a record contains control characters (all characters with ASCII code less than
or equal to hex 1B) is to add a null character (hex 00) before each control character.
Similarly, on reading a record from a line-sequential file, the default action is to strip
these null characters from control characters.

If you wish control characters to be written and read in the same way as other char-
acters, set this switch to off, as shown below:

COBSW=-N

Dynamic Linkage Setup Switch (p)

If you set the p run-time switch off as follows:
COBSW=~p

the RTE will set up COBOL parameters (tha* is, Linkage Section items) on demand.
By default, this switch is set on which causes the RTE to set up the addressability
for all the Linkage Section items in a program when it is called.

7-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

You may find that setting the —p run-time switch for subprograms with large linkage
areas gives improved run-time performance, since the linkage setup is done the first
time an item is accessed. Thus, if an item is not accessed, no setup is performed for
it.

File Status Error Switch (Q)
By default, this switch is set to off, as follows:

COBSW=-Q

By setting the file status error switch to on, all status 9 file errors reported in your
code are mapped, by means of an internal RTE table, to a status which conforms
with the statuses returned in the COBOL dialect of your choice. Any undefined or
unrecognized status values are mapped onto status 30, permanent I-O error. See the
Language Reference for full details on file status errors.

If you want file status errors to be mapped to the values in this alternate table, set
this switch to on, as follows:

COBSW=+Q
The defaults in this alternate table are the file status values used in RM COBOL.

The contents of the internal RTE table that allows this mapping to be performed are
as follows:

unsigned char alt_Stat[256];

The table is indexed by the second byte of any status 9 file errors. Any entry is
interpreted as a two-digit binary coded decimal (BCD) number, which is converted
to two ASCII digits. This number is stored in place of the original file status. If
you want to alter this table, you can do so by patching or by supplying a C routine
to alter certain table entries at run time. See “Alternate File Status Table” on
page 3-18 for more details on using an alternate file status table. :

Reread Locked Record Switch (R)

By default, this switch is set to off. You can set it to on as follows:
COBSW=+R

If a read is attempted on a file of any organization that is OPEN for INPUT or I-O
and has no file status item declared, and the record is found to be locked, the READ
is attempted again until the record becomes available (provided the switch is set to
on).

Note: This feature makes possible a situation in which two applications cannot
proceed because each is trying to access a record locked by the other. Should
this situation occur, you will probably have to kill the process.

This behavior is also available on files with file status items declared (but no declar-
atives) providing you set the retrylock compiler option when you compile your
program. In this case you must also set the +Q run-time switch when you run such
programs.

If this switch is set to off, if a READ is attempted on a record which is locked, the
READ is not attempted again.

Chapter 7. Running an AIX VS COBOL Program 7-11

Sort Memory Switch (s)

Sort Switch (S)

Tab Switch (T)

The Sort Memory switch sets the size to allocate for internal workspace to be used
for sorting files.

The default size is equal to the size of 1000 records.

To override the default, set this switch as follows:
COBSW=+snnnn

where nnnn is the number of bytes to be allocated for the sorting workspace. The
sort workspace is not allocated until the actual sorting operations begin. When the
SORT is complete, the workspace is returned to the system.

Setting this switch will affect the performance of your application.

e If the size allocated is too small for your application, then many work files will
be created. The management of these multiple files will reduce performance.

e If the size allocated is too large for the amount of real memory installed on your
system, then the system may thrash as it tries to manage that sort file work-
space.

When it is necessary to set this switch, the user must consider the actual needs of the
application to estimate a reasonable value for the size of this sort workspace. A
possible estimation method would be to use a reasonable multiple of the logical
record size_’for the sort file. Setting the value very large will not always be optimal.

By default, this switch is set to on. You can set it to off as follows:
COBSW=—S

The S switch forces all SORT statements within your source code to list duplicates in
the order in which they appear in the input stream. If this switch is set to off, dupli-
cates are not guaranteed to be in any particular order, even if the SORT... WITH
DUPLICATES IN ORDER statement is used. The benefit of setting the sort switch
to off is that this allows the Run Time Environment to use a faster sorting algo-
rithm.

By default, this switch is set to off. When a program writes records to a line-
sequential file, the default action is to expand tab characters and output multiple
spaces in the record as they occur. You can cause multiple spaces to be replaced by
tab characters by setting the tab switch to on, as follows:

COBSW=+T
On input, tab characters are always expanded to spaces.

When the tab switch is set on, the REWRITE clause does not work correctly on
line-sequential files containing tab characters. The tab characters expand when you
READ the record. This makes the record to be rewritten longer than the record to
be read. The record you rewrite must be the same length as the record you read.

7-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

Examples

Switches can be separated by spaces, although spaces are not required. However, do
not include a space between the sign (‘+’ or ‘—’") and its associated switch., If you do
include spaces between the switches, then you must quote the entire string so it will
be accepted by the AIX shell as a single environment variable.

1. COBSW=+D+T

This enables the ANSI COBOL debug switch and replaces multiple spaces in
line-sequential files with tab characters.

2. COBSW=+0—1

This sets run-time switch 0 to on and disables keyboard interrupts.

Run Time Environment Error Messages

Run Time Environment errors are reported by the Run Time Environment (RTE)
and may occur when you are running the compiler, ANIMATOR, the Native Code
Generator, or one of your own COBOL programs. An RTE error is returned on a
program that is syntactically correct but has problems during the actual running of
the intermediate code.

RTE error messages are output by the operating system in the following form:

action error: file 'filename'
error code: 999, pc=nnnnnnnn, call=m, seg=x
999 id# message-text

where:

action is what the RTE was doing at the time the message was caused (for example,
execution, load, or write).

filename is the name of the file on which the RTE was operating.

999 is the RTE message number. Possible message numbers are listed in
Chapter 15, “Error Messages.”

nnnnnnnn is a hexadecimal number giving the address of the program counter.

m is a number that is used internally to identify the program that is in error. This is
1 for a main program or greater than 1 for a subprogram.

x is a number that identifies the segment containing the error when .int code is exe-
cuted and the seg option was used. x will be 0 if the error is in the root, or from 51
to 99 if the error is in an overlay. If noseg was used for .int or .gnt code, x will
always be 0. x has no meaning for statically bound code.

id# will appear at the beginning of each RTE message. For RTE messages, this AIX
VS COBOL component identifier is 1203.

message-text is text associated with the message number. The possible message texts
are listed in Chapter 15, “Error Messages.”

Chapter 7. Running an AIX VS COBOL Program 7-13

COBOL Profiler

The COBOL profiler is a facility that lets you obtain detailed statistics on the run-
time performance of a COBOL program.

When you submit a COBOL source program to the cob command, you can specify
the profile compiler option (see Chapter 5, “Compiler Options™). This option causes
the compiler to include code in your program to produce performance statistics each
time you run the compiled program. Each time you run a program that was sub-
mitted to the cob command with the profile option set, a file is produced called:

name.ipf

where name is the program name if intermediate code was executed, or the first
entry-point name if native code was executed. This file contains the performance
statistics for that run of the program in a compact form. To convert this compact
form of the performance statistics to a readable format, use the cobprof program.

The cobprof command creates a file called:

name .prf

where name is the name of the program. This file contains the performance report
for that run of the program.

To run cobprof, use a command line of the form:
cobprof file-list [+directive-list] <

where:

file-list is a list of files containing compact profiler output. Specify only the root
(that is, program) names; do not use the .ipf file extension. File names should be
separated by one or more spaces.

directive-list is an optional list of directives that control the operation of cobprof.
The following section describes each of these directives.

Profiler Directives
Profiler directives should be separated by one or more spaces.

The profiler directives are:

alpha Performance statistics are output in alphabetic order by paragraph name.
If you do not specify alpha, statistics are output in descending order of
the total percentage time spent in each paragraph.

all A full performance profile is output. If you do not specify all, no statis-
tics are produced for sections or paragraphs that are not entered or
PERFORMed during execution of the program.

form “integer”
Specifies the assumed page size for the listing file. The default is 60 lines.
The value of integer must be within the range of 3 to 9999.

When you enter this directive, you must escape the double quotes by
typing a \ in front of them. Parenthesis also may be used in place of the
quotes, but they also must be escaped.

7-14 User’s Guidé for IBM AIX VS COBOL Compiler/6000

list [“destination”]
Specifies where the listing is to be produced. If you do not specify list at
all, the output is produced in file name.prf, where name is the first name
in file-list in the command line.

If you specify list on its own, the output is sent to the console. In this
case, page heading and line feeds are omitted.

If you specify list with a filename, the output is written to that file.
Specifying list on its own automatically sets the verbose option.

When you enter this directive, you must escape the the double quotes by
typing a \ in front of them. Parenthesis also may be used in place of the
quotes, but they also must be escaped.

[noJverbose
Displays messages output by PROFILER on the screen. The default is
noverbose.

wide This allows lines in the profiler output to be up to 131 characters wide.

If you do not specify wide, lines are truncated to 79 characters.

Profiler Output

When you run cobprof with the +verbose directive you will see the following:

IBM AIX VS COBOL Compiler/6060 LP

5601-258 (C) Copyright IBM Corp. 1987, 1990
Profiler V2.0

Copyright (c) 1984, 1987 Micro Focus Ltd.
A1l Rights Reserved

Licensed Materials - Property of IBM

* name-1

* name-n
where each name is one of the names in file-list in the command line.

For example, if you submit the demonstration program steckl to the cob command
with the profile directive, run stockl, using cobrun, and then enter:

cobprof stockl +LIST <

Chapter 7. Running an AIX VS COBOL Program 7-15

The output will be in the following format:
* IBM AIX VS COBOL Compiler/6000 LP

* 5601-258 (C) Copyright IBM Corp. 1987, 1990

* Profiler V2.0

* Copyright (c) 1985 Micro Focus Ltd.

* A1l Rights Reserved

* Licensed Material - Property of IBM

* stockl

Total time: 1120 milliseconds. Module called once.
%time time entries ms/entry paragraph

51.43 576 11 52 CORRECT-ERROR
25.71 288 1 288 SR1

17.14 192 1 192 END-IT

5.71 64 3 21 NORMAL-INPUT

0.00 0 1 0 INITIAL(UNNAMED) PARAGRAPH

For each section and paragraph in the program, the following information is given:
* % time
The total percentage of execution time spent in that section or paragraph
¢ time
The total time (in milliseconds) spent in that section or paragraph
* entries
The number of times the section or paragraph was entered
* ms/entries
The average time (in milliseconds) per entry to the section or paragraph.

Note: The product of the average time and the number of entries should equal the
total time spent in the section or paragraph. However, because all three
values are truncated, there may be a slight discrepancy. The output also
includes the total execution time (in milliseconds).

The INITIAL (UNNAMED) PARAGRAPH in the program is the initialization
code executed before the user part of the program is entered.

7-16 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 8. File Sharing in the Multi-User Environment

Chapter 8. File Sharing in the Multi-User Environment 8-1

Contents

- About This Chapter 8-3
A Typical Multi-User Environment 8-4
Including Multi-User Syntax in Your Program 84
Facilities for Multi-User AIXVSCOBOL v 8-4

Data Locking 8-5
Organization of Shared Files 8-6
The Procedure Division 8-11
File Status 8-11
Demonstration Programs 8-13
Running the Demonstration Programs 8-13

8-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

AIX VS COBOL provides the ability for independent COBOL programs to share

data files in its multi-user environment. Each program that uses shared files can

have access to those files with file security maintained in a predictable and control-
. lable manner.

You specify file sharing with COBOL syntax in your program. See the Language
Reference for details of this syntax. See “Including Multi-User Syntax in Your
Program” on page 8-4 and “Organization of Shared Files” on page 8-6 for further
information on COBOL syntax for the various types of file organization.

If you run AIX VS COBOL within a single-user environment, this multi-user syntax
is accepted by the compiler, although the multi-user syntax has no effect when you
run your programs. This allows you to develop applications designed for use within
multi-user environments in a single-user environment.

Chapter 8. File Sharing in the Multi-User Environment 8-3

A Typical Multi-User Environment

Using AIX VS COBOL, you can lock either a single record, a group of records, or a
whole file. When data is locked by one program, no other program can delete or
change that data.

If the program locks the whole file (called an exclusive lock), no other program can
access that file. If your program locks records (either single record locks or multiple
record locks), the file can be shared with other programs. Other programs may also
lock records in the same file. Each program can lock a single record or multiple
records. Any program can access any data that is not locked by another program.

Your program can open several data files at the same time and can specify locking
for each data file opened. However, your program is allowed only one type of
locking for each file, as follows:

¢ Locking the whole file
* Locking a single record
¢ Locking multiple records.

When you do not explicitly specify locking in your program, files opened as I-O,
OUTPUT, or EXTEND acquire an exclusive lock by default. That is, the whole file
is locked by your program. If your program opens the file for INPUT, the file
becomes shareable, and your program cannot hold record locks on the file. Other
programs can open the file for INPUT or I-O in a shareable mode. This default
locking is used for each file that your program opens when no LOCK MODE syntax
is included in your program.

Including Multi-User Syntax in Your Program

All of the syntax that is used to make data files shareable is part of the ANSI 1985
Standard X3.23.

Existing programs written without multi-user syntax can be modified to make them
suitable for use in a shared file environment. If you require default locking, submit
your original source programs to the cob command. For any other kind of locking,
add the required syntax to your source program before submitting it to the cob
command. If your program does not already contain a status item, you must declare
one in your program and add any code you require to handle specific status infor-
mation. When a file status data item is included in your program and the program
tries to read a file, a status is returned in this data item. The value in this data item
tells you whether the operation was successful (see Chapter 3, “Device- and File-
Handling” and the Language Reference).

Facilities for Multi-User AIX VS COBOL

By using the compiler options autolock or fileshare, you can change the default
locking to automatic locking of single records without any extra syntax in your
program. It is recommended that new programs explicitly specify the required lock
mode in the SELECT statement.

8-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

Data Locking

You can obtain more sophisticated locking on a single record or a group of records
if you include extra syntax in your program. Depending on the organization of the
shared files, there are different syntax and programming considerations. The
sections that follow describe how to program for shared sequential or line-sequential
files, relative files, and indexed sequential files.

There are three types of data locking:

¢ Automatic locking
* Manual locking
* Exclusive locking.

These data locking mechanisms can be used in the following manner:;

Automatic Locks a single record or multiple records. Automatic single record
locks mean that when the program reads a record from a file
opened for 1-O, that record is automatically locked until the
program next accesses that file. For files that have been opened for
INPUT, records are never locked. Files opened for OUTPUT
cannot support automatic locking and always hold an exclusive lock
on the whole file.

Your program cannot access a file in automatic (shareable) mode if
another program has already opened the file in the exclusive mode.

You can lock records using automatic muitiple record locks. The
records are locked automatically as they are read and are not
released until a CLOSE, UNLOCK or COMMIT statement is exe-
cuted. When the writelock or fileshare compiler options are speci-
fied, WRITE and REWRITE statements also acquire a record lock
when you are locking multiple records.

Manual Locks a single record or multiple records. Manual record locking is
similar to automatic, except that you must explicitly lock the record
when it is read. That is, you must specify READ WITH LOCK
(single records) or READ WITH KEPT LOCK (multiple records)
to acquire a lock. As with automatic, only files opened for I-O can
acquire record locks. In addition, with multiple records, WRITE
and REWRITE statements also acquire a lock if you have specified
the writelock or fileshare compiler option.

Exclusive Locks the entire file as soon as your program executes an OPEN
statement on the file. Your program cannot open a file in exclusive
mode if another program is already accessing the file. To obtain an
exclusive lock on a file, you must have READ and WRITE permis-
sions for that file. With exclusive data locking, the file remains
locked until it is closed. If your program opens a data file for
OUTPUT, this implies an exclusive lock on the file.

In a multi-user environment, each program can open more than one data file, and
each program may have access to the same data files. A file that is shareable can be
accessed by one or more programs, each locking one or more records in the file.
Figure 8-1 on page 8-6 shows a hypothetical multi-user environment.

Chapter 8. File Sharing in the Multi-User Environment 8-5

Complete file
locked by
Program 1

One record locked
by Program 1,
multiple
records locked
by Program 2

Program 1 Program 2

Multipie records
locked by
Programs

1and2

Program 3 l l Program 4

One record locked
by each Program

Figure 8-1. A Hypothetical Multi-User Environment

Organization of Shared Files

Depending on the organization of the shared files, there are different syntax and pro-
gramming considerations. The sections that follow describe how to program for

sequential, relative, and indexed sequential files.

Record-Sequential and Line-Sequential Files

When your program uses record-sequential files, you can lock individual records or
whole files. You cannot lock groups of records. When your program uses line-
sequential files, there is no record locking at all, only file locking. This is because
line-sequential files contain variable-length records, and therefore cannot be opened

as I-0O.

8-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

The FILE-CONTROL paragraph for record-sequential and line-sequential files is as

follows:
»»—— SELECT — filename — ASSIGN ~[——~]——["external-filename-literal” -_—I->
- T0 file-identifier
»——ORGANIZATION—‘:—_J—ESEQUENTIAL _j >
IS LINE-SEQUENTIAL

v

»»—— ACCESS SEQUENTIAL
L MODE IS _

»—— | 0CK EXCLUSIVE >
L—MODE IS—, }:AUTOMATIC—
MANUAL ———

> STATUS —————_—’— data-name —»=
‘— FILE —J L 1s

Figure 8-2. FILE-CONTROL Paragraph Syntax for Record and Line-Sequential Files

Each time your program accesses a file with an OPEN, READ, or READ WITH
LOCK statement, the file locking you have specified is taken into account. This
means that:

e When you specify LOCK MODE IS EXCLUSIVE, the whole file is locked from
the time your program opens the file unless the file has been opened for INPUT.
If the whole file is locked, other programs will still be able to access the file and
to read it, provided they have both READ and WRITE access to the file, but
the exclusive lock will prevent other programs from modifying the file.

¢ When you specify LOCK MODE IS AUTOMATIC, a single record is locked as
the program reads it.

¢ When you specify LOCK MODE IS MANUAL, single records are locked as the
program executes a READ WITH LOCK on them.

¢ When you do not specify a LOCK MODE IS clause, the default locking is used.
Files opened for INPUT are shareable. Files opened for OUTPUT, I-O, or
EXTEND are exclusive.

Relative Files
When your program uses relative files, you can lock whole files, single records, or
groups of records. The FILE-CONTROL paragraph for relative files is shown in
Figure 8-3 on page 8-8.

Chapter 8. File Sharing in the Multi-User Environment 8-7

»»— SELECT — filename — ASSIGN _[___—_[—["external-filename-literal” —_—r
TO file-identifier
»»— ORGANIZATION ~T—j— RELATIVE >
1S

v

»— ACCESS
[MODE IS —J
»»———— SEQUENTIAL |__ >
RELATIVE |__ __l data-name-1
KEY IS
—— RANDOM RELATIVE dota-name-1
L DYNAMIC L— KEY IS —!
»»— O0CK —>
l— MODE IS —-!
MANUAL >
AUTOMATIC —-J LOCK ON L _J L RECORD
WITH MULTIPLE RECORDS
EXCLUSIVE

»

> STATUS data- e
P I W s

Figure 8-3. FILE-CONTROL Paragraph Syntax for Relative Files

You can lock several records simultaneously using the WITH LOCK ON MUL-
TIPLE RECORDS clause. If you receive the following RTE message,

213 Too many locks.

you must close the file or execute a COMMIT statement or an UNLOCK statement
to release these records.

Both manual and automatic locking can be performed on files with both single
record locking and multiple record locking.

Each time a file is accessed with an OPEN, READ, READ WITH LOCK, READ
WITH KEPT LOCK, WRITE, or REWRITE statement, the file locking you have
specified is taken into account. This means that:

* When you specify LOCK MODE IS EXCLUSIVE, the whole file is locked from
the time your program opens the file unless the file was opened for INPUT. If
the whole file is locked, other programs will still be able to access the file and to
read it, provided they have both READ and WRITE access to the file. The
exclusive lock will prevent programs from modifying the file in any way.

¢ When you specify LOCK MODE IS AUTOMATIC, a single record is locked as
the program reads it.

8-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

¢ When you specify LOCK MODE IS AUTOMATIC WITH LOCK ON MUL-
TIPLE RECORDS, multiple records are locked as your program executes
READ statements. Records remain locked until one of the following occurs:

— The file is closed.
— A COMMIT statement is executed.
— An UNLOCK statement is executed.

* When you specify LOCK MODE IS MANUAL, single records are locked as
your program executes a READ WITH LOCK on the record.

* When you specify LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE
RECORDS, multiple records are locked as your program executes READ
WITH KEPT LOCK statements. Records remain locked until one of the fol-
lowing occurs:

— The file is closed.
— A COMMIT statement is executed.
— An UNLOCK statement is executed.

¢ When you do not specify a LOCK MODE IS clause, the default locking is used.
Files opened for INPUT are shareable. Files opened for OUTPUT or for I-O
are exclusive.

When your program is locking multiple records, you can also acquire a record lock
on a WRITE or REWRITE statement. To do this, you must specify the writelock
or fileshare compiler option when you submit your program. See Chapter 5, “Com-
piler Options™ for details on these options.

Unless you explicitly include the WITH LOCK ON MULTIPLE RECORDS clause,
single record locks are assumed when the lock is automatic or manual.

Indexed Sequential Files

With indexed sequential files, you can lock whole files, single records, or groups of
records. The FILE-CONTROL paragraph for indexed sequential files is as follows:

Chapter 8. File Sharing in the Multi-User Environment 8-9

»»— SELECT — filename — ASSIGN _L___TT "external-fi lename-literaﬂ"
T0 file-identifier ———

»>—— ORGANIZATION —L_—:J—‘ INDEXED >
IS

v

»— ACCESS L __J SEQUENTIAL
MODE IS !: DYNAMIC —
RANDOM ————

v

»— 1 0CK
L MODE IS]

MANUAL .
AUTOMATIC - B LOCK ON T RecoR -

WITH— MULTIPLE RECORDS
EXCLUSIVE

v

»»— RECORD L __J data-name-1

KEY IS

—
o

 {

l

L ALTERNATE RECORD ————'—j— data-name-2
L KEY IS L WITH DUPLICATES “]

STATUS data-name —>4
L— FILE ——I L 1S ——J

Figure 8-4. FILE-CONTROL Paragraph Syntax for Indexed Sequential Files

Y

As with relative files, use the WITH LOCK ON RECORD clause to specify single
record locking and the WITH LOCK ON MULTIPLE RECORDS clause to specify
multiple record locking. You can lock single or multiple records in either manual or
automatic lock mode.

You can OPEN an indexed sequential file only if you have WRITE permission to
the index portion of the file.

8-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

The Procedure Division

File Status

Generally, COBOL programs designed to be run in a multi-user environment do not
require any extra consideration in the Procedure Division. One exception to this is
when you are checking the file status for a lock condition (see “File Status™). Other
instances where you need to use a different syntax in your Procedure Division are as
follows:

¢ The COMMIT statement

This statement releases record locks on all records in all the files the program
has opened. This includes SEQUENTIAL, RELATIVE, and INDEXED files,
with automatic or manual locking on single and multiple records. The
COMMIT statement has no effect on exclusive files.

¢ The UNLOCK statement

The statement UNLOCK filename releases all record locks your program has
acquired on the specified file. You may use this statement only for files that are
shareable.

¢ The READ statement

With shareable files opened for I-O whose LOCK MODE is manual, you must
include the WITH LOCK phrase (for single record locks) or the WITH KEPT
LOCK phrase (for multiple record locks).

Additionally, with shareable files with multiple record locking, the REWRITE and
WRITE statements may also lock the record that is acquired. REWRITE and
WRITE statements lock records if the writelock or fileshare compiler option is speci-
fied. For more information, see Chapter 5, “Compiler Options.”

In a multi-user environment, the file status item set up with the FILE STATUS IS
dataname clause in the FILE-CONTROL paragraph is used to check the status of a
file operation. This section explains how to interpret the status codes returned in
dataname.

The dataname you specify must be a two character alphanumeric data item. The
first character of dataname is called status key 1. This character reports on the
success or failure of an input-output operation on a file. The second character of
dataname is status key 2. If any further information is available, it is returned in
status key 2. Redefine the status key 2 as a PIC 9(4) COMP item so that this data
item can hold the error message numbers.

See the Language Reference for the values that may be returned in these status keys.
See Chapter 15, “Error Messages” for a list of the run-time errors.

Additionally, where status key 1 contains the value 9 (operating system error
message), status key 2 can contain any of the following values that are specific to a
multi-user environment:

65 Locked file. Another program has already locked the file to the exclu-
sion of other programs.

68 Locked record. Another program has already locked the record.

213 Too many locks. The program has already acquired the maximum

number of locks on the file. You must execute a COMMIT, UNLOCK,
or CLOSE statement to release record locks before continuing.

Chapter 8. File Sharing in the Multi-User Environment 8-11

Test specifically for these conditions in your program. Also, check for status codes,
and decide what action you want your program to take upon finding the various
status codes.

If another program has already locked the record your program wants to acquire, an
attempted WRITE, REWRITE, or DELETE operation will fail.

If your program attempts to read a record already locked by another program, a
lock status (error 68) is returned in the file status data-item. However, valid data is
also returned. When a sequential read finds a record lock, the current record pointer
is not updated. The START... KEY IS GREATER THAN statement can be used
to skip over locked records in relative or indexed files.

If your program finds a lock on a record that you are attempting to START, the
record lock is ignored, and the current record pointer is updated.

Handling a File or Record Lock
Whenever your program tries to access a file that has been exclusively opened by
another program, you must wait until the other program has closed the file before
you can access the data in the file.

When your program finds a record lock, you must wait until that record has been
released before your program can access it. In the case of a program that has locked
multiple records, you must wait until the other program executes a COMMIT or
UNLOCK statement, or closes the file.

If a READ is attempted on a file which is OPEN for INPUT or I-O and has no file
status item declared, and the record is found to be locked, the READ operation is
attempted again at one second intervals until the record becomes available, if you
have set the R (Reread Locked Record) run-time switch on. See Chapter 7,
“Running an AIX VS COBOL Program” for details.

Note: This feature makes possible a situation in which two applications cannot
proceed because each is trying to access a record locked by the other. Should
this situation occur, you will probably have to kill the process.

Sharing Files on Multi-User Systems

See your Language Reference for more information about how files are shared
between users in a multi-user environment.

8-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

Demonstration Programs

Your AIX VS COBOL software includes several programs that show how to write
programs to run in a shared file environment. The demonstration programs are as

follows:

mudemo.cbl

stockin.cbl
stockioa.cbl
stockiom.cbl

stockout.cbl

The COBOL source for the controlling program. This program dis-
plays information and presents the program with a choice of access
and input modes. Depending on the program’s choice, one of the
four subprograms may be called.

The COBOL source for the subprogram that demonstrates opening
a shared data file for input only.

The COBOL source for the subprogram that demonstrates opening
a shared data file for I-O, and with automatic record locking.

The COBOL source for the subprogram that demonstrates opening
a shared data file for I-O, and with manual record locking.

The COBOL source for the subprogram that demonstrates opening
a shared data file for output only.

Running the Demonstration Programs
After you install the AIX VS COBOL software as described in Chapter 1,
“Introduction,” submit the demonstration programs to the COBOL process using the
following command:

cob -x mudemo.cbl stockin.cbl stockout.cbl stockioa.cbl stockiom.cble

Move the resulting executable module mudemo, the base name of the first file input
to the cob command, to an area where users on both terminals can access it. Make
sure that both users are accessing the same file.

To run the multi-user demonstration programs, enter the following on both

terminals:
mudemo <

Chapter 8. File Sharing in the Multi-User Environment 8-13

Both screens display the initial screen shown in Figure 8-5.

s=s=mz=s=ss=s=s== Date dd/mm/yy
|BM AIX VS COBOL Time hh:mm

This is a demonstration program for use with VS COBOL. The program
demanstrates how mulfi-user VS COBOL can lock both records and files.
The program allows an indexed file to be opened in a number of
modes, which demonstrate the ltocking facility. For more information
on locking refer to the Language Reference Manual.

1. Input 2. 1-0 Lock Mode Automatic 3. !-0 Lock Mode Manual 4. Output 5. Exit

INPUT CHOICE [0]

Figure 8-5. Initial Display Screen of the Demonstration Program

When the initial screen is displayed, each operator chooses the access and lock
modes by pressing the number associated with the required mode, then pressing <.

Set up the multi-user environment by creating a data file that the two operators can
share. One operator must create this file by selecting choice 4 to open the file for
output. This display screen shows a “Stock Control System” with stock code, stock
description, stock held, and cost per unit. The bottom of the display screen shows
the open and lock modes, what the last operation was, whether the last operation
was successful, and the file status. Again, there is a choice of operations for the
program to perform.

Enter data in the following fields:

¢ Stock code

* Stock description

¢ Stock held

¢ Cost per unit fields.

Use the tab key to move from one field to the next.

Write the data into the data file mustock.DAT by writing the record. To do this,
operator 1 selects option 1 (write record) and press <. Write five or six more
records, and then close the file by selecting option 2 (Exit) and pressing <.

8-14 User’s Guide for IBM AIX VS COBOL Compiler/6000

While program 1 is creating a file to share, program 2 can try to access the data file
mustock.DAT. Program 2 will fail to gain access to this file, because opening a file
for output locks the file exclusively. Program 2 will receive a file locked status.

After user 1 creates the mustock.DAT file, both users can access the data file at the
same time.

If user 1 selects option 2, I-O Lock Mode Automatic on the initial display screen,
and accesses the first record, then the first record in the data file mustock.DAT is
locked by program 1, and remains locked until program 1 accesses the file again.
Program 2 can access any other record in the file by choosing to open the file for
I-O Lock Mode Automatic or for Input.

Program 2 may try to access the first record, but receives a file status of Record
locked and the access is unsuccessful. However, the data will be returned.

Try the various combinations of locking and access for yourself so you become
familiar with the way AIX VS COBOL locks data.

Chapter 8. File Sharing in the Multi-User Environment 8-15

8-16 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 9. Advanced Programming Features

Chapter 9. Advanced Programming Features 9-1

Contents

About This Chapter 9-3
Library Subroutines 9-4
cobsetjmp and coblongjmp 9-4
cobtidy e 9-5
RTE Subprograms 9-5
Put a Character to the Screen 9-6
Read a Character from the Keyboard 9-7
Split/Joina File Name 9-7
File-Related Operations 9-8
Modifying the Behavior of User Attributes 9-9
Modifying the Behavior of ACCEPT/DISPLAY 9-9
Display Screen Input and Qutput 9-11
Test Keyboard Status 9-13
Sound the Audible Alarm 9-13
Move the Cursor to a Defined Position 9-13
Pack Byte 9-14
Unpack Byte 9-14
CRT Screen Handling 9-14
The ACCEPT and DISPLAY Statements 9-14
Display Attributes 9-15
Screen Handling From C 9-16
Using Escape Sequences to Send Attribute Information to the Screen 9-19
File Handler 9-20
Interface to the COBOL File Handler 9-21
Operation Codes Passed in the Second Byte of the First Parameter 9-21
Information Passed in the FCD at Open Time 9-22
Information Passed for Other Operations 9-22
FCD Information Format 9-23
Key Definitions for Indexed Files 9-25
Global Information 9-25
Key Definitions 9-25
Component Definitions 9-26
CISAM Features 9-26

9-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

IBM AIX VS COBOL provides the following advanced programming features:

¢ Library subroutines

¢ Run Time Environment (RTE) subprograms (for performing special functions)
e CRT screen handling

File handler.

[]

This chapter describes these features.

Chapter 9. Advanced Programming Features 9-3

Library Subroutines

This section describes the library routines provided with your AIX VS COBOL
system.

cobsetjmp and coblongjmp

Example

The library routines cobsetjmp and coblongjmp are provided with the AIX VS
COBOL system. These routines provide functions similar to the C routines setjmp
and longjmp (see the AIX Operating System documentation) for details of setjmp and
longjmp). These library routines provide a non-local GO TO to use in error-
handling and exception-handling.

cobsetjmp saves the environment of the current COBOL program in the buffer pro-
vided by the USING parameter, and returns immediately with the status flag set to
0. A subsequent call to coblongjmp from somewhere else in the program that called
cobsetjmp, or from one of the program’s subprograms, causes execution to be
resumed at the point immediately after the call to cebsetjmp.

Note: Before calling coblongjmp, the status flag in the buffer may be set to a non-
zero value. This allows the value to be tested after the cobsetjmp call.

The compiler option nonestcall must be set to use these library routines. It is recom-
mended that you set this option in your program source with the $SET statement.

cobsetjmp and coblongjmp can only be used in native code.

A typical use of the cobsetjmp and the coblongjmp routines is as follows:

01 err-buf.
02 err-stat pic 9(8) comp.
02 err-env pic X(N).

procedure division.
p-00.
call "cobsetjmp" using err-buf.
if err-stat not equal 0
perform error-handling.
go to main-loop.

main-Tloop.
perform get-operator-input.
perform process~-input.
perform create-report.
go to main-Toop.

process-input.
if 'something went wrong'

move 5 to err-stat
call "coblongjmp" using err-buf.

9-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

Restrictions

cobtidy

Format

Usage

where the value of N is based on the sizeof (jmpbuf) field found in the setjmp.h file in
the /usr/include directory. The value of N should be the value of the sizeof (jmpbuf)
field plus 20.

When using these routines, the following restrictions apply:

¢ coblongjmp must be called from the same or lower level CALL/PERFORM hier-
archy as was cobsetjmp. In the intervening time, control must not be returned to
a higher level.

» If coblongjmp returns control to a CALL level that differs from the one used by
cobsetjmp, programs exited by this mechanism appear to have been exited
normally and may be CALLed again later in the program run.

¢ coblongjmp cannot be used if a CHAIN has been made since cobsetjmp was last
CALLed. '

The cobtidy library routine closes all files opened by the AIX VS COBOL system,
and frees all the memory it has used.

The format of cobtidy is as follows:
void cobtidy();

The cobtidy routine can only be called from non-COBOL modules. It can be used to
ensure that all COBOL file buffers are flushed and closed when the COBOL system
is not to be re-entered. Applications normally use the COBOL verb CHAIN if the
current COBOL environment will be closed, and another created. To exit from a
non-COBOL module in the AIX VS COBOL system to the operating system, you
must use the cobexit function.

RTE Subprograms

Included in the RTE are a number of subprograms that you can call from an AIX
VS COBOL program. These provide functions that are not available in the COBOL
language itself.

Note: Use these routines sparingly and with caution. They are not compatible with
every language extension listed in the Language Reference.
RTE subprograms are called by a CALL statement in the following form:
CALL X "ph" USING porameter-list
where hh is a two-digit hexadecimal code that identifies the RTE subprogram, and
parameter-list is a list of the data items in your program to be passed as parameters

(the number and type of parameters depend on the particular RTE subprogram you
are calling).

Chapter 9. Advanced Programming Features 9-5

In the following descriptions of the calls to these subprograms, the arguments are
described to give the correct size of the data object when the ibmcomp option is not
used. In that case, those objects will be 1 byte in size. If the ibmcomp option is
used, however, that object would be 2 bytes in size and the call to the RTE subpro-
gram would fail. To adapt these descriptions for use with the ibmcomp option,
change

PIC 99 COMP to PIC X

You can give a value to these items with a hex specification, e.g.,
VALUE x"02"

to set the value to 2. See the Language Reference for a discussion of the ibmcomp
option and its effect on data object sizes.

Currently supported RTE subprograms are as follows:

Code Description

82 Put a character to the screen

83 Read a character from the screen

8C Split a filename

8D Join a filename

91 A number of miscellaneous routines mainly connected with file-related
operations

A7 A number of routines that affect the behavior of user attributes

AF A number of routines that affect the behavior of ACCEPT/DISPLAY

statements in a program

B7, B8 A number of routines that provide several functions for handling
memory-mapped display screens

D9 Test the keyboard status

ES Sound the audible alarm

E6 Move the cursor to a specified position
F4 Pack byte

F5 Unpack byte

Put a Character to the Screen
The subprogram with call code X“82” allows you to display a character on the
screen. A call to this subprogram has the form:

CALL X"82" USING character

where character is a PIC X field containing the character to be displayed at the
current cursor position. The cursor moves one position to the right. If the initial
position of the cursor is in the last column of a line, the subsequent position of the
cursor is dependent on the terminal you are using.

9-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

Read a Character from the Keyboard
The subprogram with call code X“83” accepts a character from the keyboard. A call
to this subprogram has the form:

CALL X"83" USING character

where character is a PIC X field that contains the character that is returned.

Split/Join a File Name
The subprograms with the call codes X“8C” and X“8D” allow you to separate the
standard file names into their component parts, or to join the parts to make a
standard file name. The component parts of a file name are the directory (for
example, /usr/demo), the name itself (for example, prog), and the file extension (for
example, cbl) which together form the file specification (for example,
Jusr/demo/prog.cbl). A call to this subprogram has the form:

CALL X"8C" USING filespec,directory,filename,extension

to split a file name or:

CALL X"8D" USING filespec,directory,filename,extension

to join a file, where:

¢ filespec is a PIC X field of variable length, but not less than 101 bytes, con-
taining the full file specification

* directory is a PIC X field of variable length, but not less than 101 bytes, con-
taining the directory pathname

* filename is a PIC X field of variable length, but not less than 15 bytes, con-
taining the name of the file

o extension is a PIC X field of variable length, but not less than 15 bytes, con-
taining the file name extension.

The split subprogram takes the string found in filespec and stores its component
parts in directory, filename, and extension.

The join subprogram takes the strings found in directory, filename, and extension and
combines then to form a complete file specification which it stores in filespec.

The AIX VS COBOL system uses these two subprograms to:

¢ Produce default listing and intermediate code file names from the source file
name

¢ Produce overlay names
* Produce file names for segments and their inter-segment reference files.

The values allowed in filespec, directory, filename, and extension must conform to the
standards described in the documentation supplied with the AIX operating system,
and each data item must end with a space character. You must ensure that the area
allocated within the WORKING-STORAGE section for each data item is not less
than the minimum length given above.

Chapter 9. Advanced Programming Features 9-7

File-Related Operations
The RTE subprogram with call code X“91” provides access to seven RTE subpro-
grams. A call to this subprogram has the following form:

CALL X"91" USING result, function, file

where result is the name of a PIC 99 COMP field in which a status code is returned.
A zero status code indicates that the call was successful; a nonzero code indicates
that the call failed for some reason. For function 18, file is the name of a group
item that identifies the file on which the subprogram is to operate. This group item
is declared as follows:

01 FILE.
02 NAME-SIZE PIC 99 COMP.

*

* THE NUMBER OF CHARACTERS IN NAME
*
02 FILE-NAME PIC X(n).

* THE NAME ITSELF

For functions 46 through 53, file is the name of the file descriptor (FD) of the file
the subprogram is using. function is the name of a PIC 99 COMP field whose value
indicates which of the seven RTE subprograms controlled by this call code is to be
called. The possible values are as follows:

Value Description

18 Delete the file.

46 Set the null switch on for the file.

47 Set the null switch off for the file.

48 Set the tab switch on for the file.

49 Set the tab switch off for the file.

52 Use 2-byte record terminators for line-sequential and relative files.
53 Use 1-byte record terminators for line-sequential and relative files.

Functions 46 through 49 apply only to line-sequential files. When you run an AIX
VS COBOL program, you can set switches in the COBSW environment variable that
determine how control characters and tab characters are treated in line-sequential file
records read or written by the program. These functions allow you to override the
COBSW switch settings for particular files within the program. See Chapter 7,
“Running an AIX VS COBOL Program” for a description of the null and tab
switches.

When your program writes records to a line-sequential or relative file, the default is
to include a 1-byte record terminator, value hexadecimal 0A (line feed). You can
alter this default for particular files by using function 52, which causes a 2-byte
record terminator to be used; this has the value hexadecimal 0DOA (carriage return -
line feed). Use function 53 to restore the default of 1-byte terminators.

9-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

Modifying the Behavior of User Attributes

The RTE subprogram with call code X“A7” invokes the cursor’s display screen-
handling system and gives access to a number of RTE subprograms that affect the
behavior of the user attribute. When enabled, the user attribute causes all of the
characters shown on the display screen to have the same (specified) attribute. See
Chapter 10, “Configuring Your AIX VS COBOL System” for further details on the
cursor’s display screen-handling system and the user attribute.

A call to this subprogram has the following form:

CALL X"A7" USING function, parameter
where function is the name of a PIC 99 COMP field whose value indicates which of
the RTE subprograms controlled by this call code is to be called. parameter is the
name of a PIC 99 COMP field whose value depends on the value of function.

The function field may take any of the following values:

Value Description

6 Read the current user attribute contained in parameter.

7 Set the current user attribute, which is held in parameter.

16 Turn the user attribute on or off. parameter can contain one of two
values:

¢ (to turn the user attribute on
¢ 1 to turn the user attribute off.

The user attribute is initially disabled. Once enabled, some of the methods you can
use to show text on the display screen (such as DISPLAY...UPON CONSOLE,
display screen input-output subprograms, and the ADIS subprogram) use this attri-
bute. The ANSI form of the DISPLAY statement (DISPLAY...UPON CONSOLE)
uses the user attribute only if one of the other DISPLAY methods has been used
previously. DISPLAY SPACE UPON CONSOLE clears the display screen to the
user attribute for each display screen position.

Modifying the Behavior of ACCEPT/DISPLAY
The RTE subprogram with call code X“AF” gives access to a number of RTE sub-

programs that affect the behavior of ACCEPT and DISPLAY statements in a
program. ACCEPT and DISPLAY statements are handled by a part of the RTE
called ADIS.

A call to this subprogram has the following form:
CALL X"AF" USING function,parameter
where function is the name of a PIC 99 COMP field whose value indicates which of

the RTE subprograms controlled by this call code is to be called. parameter is the
name of a data item whose size and type depends on the value of function.

Chapter 9. Advanced Programming Features 9-9

The function field may take any of the following values:
Value Description

1 Allow individual user function keys, or a series of consecutive user func-
tion keys, to be enabled or disabled at run time. You must have already
set up the actual key codes for the user functions with the keybcf utility.
See Chapter 10, “Configuring Your AIX VS COBOL System” for
details. parameter is a group item consisting of the following four data
items:

* A PIC 99 COMP field that contains 0 to disable user function keys,
or 1 to enable them.

¢ A PIC X field whose value must be 1.

¢ A PIC 99 COMP field that contains the number of the first function
key to be enabled or disabled. This number is defined with the
keybcef utility. See Chapter 10, “Configuring Your AIX VS COBOL
System” for details.

¢ A PIC 99 COMP field that specifies the number of consecutive func-
tion keys that are to be enabled or disabled. These numbers are
defined with the keybcf utility.

18 Display a character to the display screen at the current cursor position.
parameter is the name of a PIC X item containing the character to be
displayed.

22 Sound the terminal alarm. parameter is the name of a PIC X item that

can contain any value.

27 Get a character from the keyboard. parameter is the name of a 3-byte
group item declared in the form of a CONSOLE status data item (see the
Language Reference). A keystroke is read from the keyboard, and
parameter is updated as follows:

Byte 1 Meaning

1 The second byte contains the number of a user-defined func-
tion key, in binary (in the range 1 to 127). See Chapter 10,
“Configuring Your AIX VS COBOL System” for more
details on function keys.

2 The second byte contains the number of an ADIS function
key, in binary (in the range 1 to 127). See Chapter 10, “Con-
figuring Your AIX VS COBOL System” for more details on
function keys.

3 The second byte contains the ASCII code of the keyed char-
acter.
9 The second byte contains one of the following error codes:
8 A disabled character has been keyed and byte 3
contains the character.
9 An invalid keystroke (more than one byte) has
occurred.

This subprogram also causes the cursor’s display screen-handling system to be
invoked. See Chapter 10, “Configuring Your AIX VS COBOL System” for more
information.

9-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

The RTE subprogram with the call code “_raw_display” gives access to an addi-
tional RTE subprogram that affects the behavior of DISPLAY statements in a
program.

A call to this subprogram has the following form:
CALL "_raw_display" USING function

where function is the name of a PIC 99 COMP field whose value indicates which
DISPLAY mode you wish to be in.

The function field may take any of the following values:
Value Description

0 Normal mode. All non-printable characters are converted to spaces prior
to writing them to the screen. This is the default mode.

1 Raw mode. Non-printable characters are allowed. The raw mode does a
direct write to stdout, bypassing the AIX VS COBOL screen interface
package completely.

Use of raw mode is not recommended. Use of this mode causes all optimization
features of the screen handling module to be bypassed, thereby degrading the per-
formance of screen output. Hardcoding of escape sequences is never recommended
for portable, maintainable programs in which a variety of terminals are to be used.
The AIX VS COBOL system cannot guarantee the future support of hardcoded
escape sequence programming, nor guarantee a consistent result for escape sequences
or combinations of escape sequences that are hardcoded. Please refer to “Using
Escape Sequences to Send Attribute Information to the Screen” on page 9-19 for
more information.

Raw mode allows the ability to write escape sequences directly to the screen (stdout)
bypassing the AIX VS COBOL screen interface package completely. This mode
might be useful when you want to send an escape sequence to a terminal to enable
an auxiliary port but do not want to modify the terminal screen. In this case, you
should call _raw_display passing a 0 in the function parameter to go back into the
normal mode immediately after the DISPLAY statement.

Display Screen Input and Output |
The RTE subprograms with call codes X“B7” and X“B8” give access to a number of
RTE subprograms that control display screen input and output. These subprograms
cause the cursor’s display screen-handling system to be invoked.

You should not use the X“B7” run time environment call in conjunction with ATX
VS COBOL ACCEPT and DISPLAY statements that also specify attributes. This is
because you can cause semantic inconsistencies as to whether text ACCEPTed or
DISPLAYed by these statements should complement, override, or be overridden by
attributes placed on the screen map by the X“B7” call.

Thus, where you use X“B7” calls to specify attributes, any ACCEPT and DISPLAY
statements used to place text on the area of the screen affected by these calls only
appears in the attribute specified by these calls if no other ACCEPT or DISPLAY
statements have been executed that also specify any attributes. Otherwise, the effect
is undefined.

Chapter 9. Advanced Programming Features 9-11

A call to the X“B7” subprogram has the following form:
CALL X"B7" USING function, parameter, buffer

where function is the name of a PIC 99 COMP data item whose value indicates
which of the RTE subprograms controlled by this call code is to be called.

parameter is a group item consisting of the following three data items:

e A PIC 9(4) COMP field showing the length of the data to be read or written.

¢ A PIC 9(4) COMP field giving the start position on the display screen. Top left
is position 1 and 81 is the start of the next line, assuming an 80-column display.

e A PIC 9 (4) COMP field showing the start position in the buffer, starting from
position 1.

buffer is the COBOL data area. Itis a PIC X (n) field and may be as large or as
small as you require in order to write your data. function may take any of the fol-
lowing values:

Value Description

0 Read a string of characters from the display screen.

1 Write a string of characters to the display screen.

2 Read a string of attributes from the display screen.

3 Write a string of attributes to the display screen.

4 Clear a specified string of consecutive character positions to spaces.

5 Clear a specified string of consecutive character positions to normal attri-
butes.

6 Write a specified character to a string of consecutive character positions.

7 Write a specified attribute to a string of consecutive character positions.

The RTE subprogram with call code X“B8” gives access to a number of other sub-
programs that affect display screen input and output.

A call to the X “B8” subprogram has the following form:
CALL X"B8" USING function, parameter, text-buffer, attribute-buffer

where function is the name of a PIC 99 COMP data item whose value indicates
which of the RTE subprograms controlled by this call code is to be called.

parameter is a group item consisting of three data items:
¢ A PIC 9(4) COMP field showing the length of the data to be read or written.
* A PIC 9(4) COMP field giving the start position on the display screen.

s A PIC 9(4) COMP field showing the start position in the buffer, starting from
position 1.

9-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

Jfunction may take any of the following values:

Value Description

0 Read strings of text and attributes from the display screen.

1 Write strings of text and attributes to the display screen.

2 Swap the text and attributes on the display screen with those in the text

and attribute buffers, respectively.

Test Keyboard Status

You can use the RTE subprogram with call code X“D9” to determine whether there

is a character waiting to be read from the keyboard. The call of this subprogram
has the following form:

CALL X"D9" USING parameter

where parameter is the name of a PIC 99 COMP item. The subprogram returns a
zero value in parameter if there is no character waiting to be read. The subprogram
returns a non-zero value if there is a character waiting to be read.

You must use the syntax CONSOLE IS CRT in the SPECIAL-NAMES paragraph
for this call to have effect.

Although this subprogram does not invoke the curses display screen-handling system,
its effect is undefined if it is invoked.

Sound the Audible Alarm

The subprogram with call code X“E5” causes the audible alarm (the CRT bell) to
sound. A call to this subprogram has the form:

CALL X"E5"

Move the Cursor to a Defined Position

The subprogram with call code X“E6” positions the cursor at the specified screen
position. A call to this subprogram has the form:

CALL X"E6" USING result,parameter

where result is not used and parameter is a 01 level item containing:

02 ROW-NUMBER PIC 99 COMP.
02 COLUMN-NUMBER PIC 99 COMP.

The value of ROW-NUMBER must be in the range 1 to 25, and the value of
COLUMN-NUMBER must be in the range 1 to 80.

Chapter 9. Advanced Programming Features 9-13

Pack Byte

Unpack Byte

- The subprogram with call code X“F4” takes eight 1-byte fields from an array, and

uses the least significant bit of each byte to form a 1-byte field. The first occurrence
of the array becomes the most significant bit of the new byte (bit 7). A call to this
subprogram has the form:

CALL X"F4" USING byte,array

where byte is a PIC 99 COMP field that contains the new byte and array is a PIC 99
COMP OCCURS 8 field that contains the eight bytes to be packed.

The subprogram with the call code X“F5” is similar to the pack byte subprogram,
except that a 1-byte field is unpacked to form eight 1-byte fields. Each bit of the
byte is moved to the corresponding occurrence in the array, so that bit 6 of the ori-
ginal byte is moved to the 6th occurrence within the array. A call to this subpro-
gram has the form:

CALL X"F5" USING byte,array

where byte is a PIC 99 COMP field containing the byte to be unpacked, and array is
a PIC 99 COMP OCCURS 8 field that contains the unpacked bits.

CRT Screen Handling

The AIX VS COBOL system supports three different formats of the the ACCEPT
and DISPLAY statements:

¢ ANSI COBOL ACCEPT and DISPLAY
¢ Screen item ACCEPT and DISPLAY
¢ Data item ACCEPT and DISPLAY

Both the screen and the data item ACCEPT and DISPLAY statements use the
COBOL screen handling routine for screen input-output. The ANSI ACCEPT and
DISPLAY statements use this routine only if a screen or data item ACCEPT
occurred previously. Once this routine has been invoked, all terminal input-output is
controlled with it. It changes your terminal mode and automatically clears the
screen on the first output operation.

Your AIX VS COBOL system comes with a demonstration program that uses screen
handling features. This program is scdemol.cbl in the SCOBDIR /demo directory.

The AIX VS COBOL system also supports calls, designed to be used from a C
program, which allow you to mix the output from a C program with ACCEPT and
DISPLAY statements.

These features are described in the following sections.

The ACCEPT and DISPLAY Statements

The ANSI COBOL ACCEPT and DISPLAY statements supported by AIX VS
COBOL are the standard ANSI ACCEPT and DISPLAY statements, with minor
extensions. These statements allow for up to one line of data to be read into
memory from the console, and for one line to be displayed, at a time.

9-14 User’s Guide for IBM AIX VS COBOL Compiler/6000

The other two formats of the ACCEPT and DISPLAY statements supported by AIX
VS COBOL are Micro Focus extensions to the COBOL language, to make it fully
interactive. They allow full screens of data to be displayed or accepted into memory
using single statements. '

The screen item ACCEPT and DISPLAY statements allow you to display non-
scrolling forms, which consist of areas of the screen defined in detail in a part of the
Data Division named the Screen Section. Data is moved automatically between
screen areas and data items.

The data item ACCEPT and DISPLAY statements allow you to display data items,
which consist of non-scrolling forms. At run time, data can be entered into these
forms. The areas of screen to be used in these statements are defined in the state-
ments themselves.

The Language Reference contains detailed specifications of the above formats of the
ACCEPT and DISPLAY statements.

Note: Tt is illegal to try to display control characters.

Display Attributes
Whenever a text character is displayed on the screen, it has an attribute (that is, a
character or byte of information) associated with it. The way the character is dis-
played depends upon its attribute byte. AIX VS COBOL RTE allows characters to
be displayed on the screen with a number of display attributes.

The attributes available to you are dependent on the terminal you are using and the
terminfo entry for that terminal. They could include high or low intensity, underline,
reverse video, or blinking options. If you wish, you can alter the value of the attri-
bute byte and so alter the way characters are displayed on the screen. You can do
so by amending either the screen attribute or the user attribute. You can do this by
using the screen control RTE subprograms described in this chapter.

The screen attribute allows you to specify an attribute that is associated with each’
character position on the screen. You can define areas of the screen as having dif-
ferent attributes. Whenever a character is displayed on the screen, it has the attri-
butes associated with that position.

The user attribute is associated with a whole screen. All of the characters displayed
on the screen take that attribute. Once a program has set the user attribute it is
enabled through the whole of that run, although another program within the same
suite may change the attribute. The user attribute overrides any screen attributes
you may have defined.

The Structure of the Attribute Byte
The following list shows the structure of the screen and user attribute byte:

Bit 0 Highlight

Bit 1 Underline
Bit 2 Reverse video
Bit 3 Blink

Bit4 to 7 Must be set to 0

Chapter 9. Advanced Programming Features 9-15

Each bit indicates one type of attribute. You can set these bits by using the RTE
subprograms with call codes X“A7”, X“B7”, and X“B8”. If you wish you can set
several bits to give a combination of attributes. The attributes available to you and
how they may be combined is dependent on the type of terminal you are using.

Highlighting
By default, the behavior of ACCEPT and DISPLAY operations that use high inten-
sity attributes is as follows:

e Highlighted text appears in high intensity mode for terminals which support a
high intensity attribute but no low intensity attribute. This is as specified in
terminfo.

¢ Highlighted text appears in normal mode for terminals which support low inten-
sity mode (as specified in terminfo) and which use this low intensity mode as the
default mode for unhighlighted text. :

For more details on terminfo, see Chapter 10, “Configuring Your AIX VS COBOL
System.” The AIX VS COBOL system assumes that low intensity and high intensity
space characters cannot be distinguished from normal spaces, and so the RTE will
attempt some optimization because of this. This is particularly effective on terminals
which support low intensity mode.

You can change the behavior of the high and low intensity attributes by setting the
COBATTR environment variable:

COBATTR=n

where n can be any of the following values:
0 Default action, as specified above.

1 Always use the terminfo high intensity mode for highlighting; never attempt to
use low intensity mode.

2 High and low intensity space characters are not assumed to be the same as
normal mode space characters.

3 As for 1 and 2 above.

Screen Handling From C
The RTE subprograms with the call codes X“B7” and X“B8” allow you to perform
screen handling operations from COBOL. However, the AIX VS COBOL system
also supports some additional screen-handling routines which can be used from C
programs. These allow the RTE and run-time support libraries to handle output
from both C programs called from COBOL programs, and from
ACCEPT/DISPLAY operations performed by the calling COBOL programs.
Normally, if any screen-handling is carried out outside of the control of COBOL (for
example, under the control of C), COBOL is not aware of the output of that screen-
handling operation when control returns to COBOL. The effect of subsequent
screen-handling operations could thus be undefined. The routines described below
enable you to avoid this problem.

For screen output that uses called C routines and ACCEPT/DISPLAY operations,
you must ensure that you explicitly position the cursor before the cobprinf() or
DISPLAY statement. In C you use the cobmove() routine and in COBOL you use
the DISPLAY...AT statement.

9-16 User’s Guide for IBM AIX VS COBOL Compiler/6000

cobmove Routine

cobaddch Routine

The routines currently supported are:

* cobmove
¢ cobaddch
e cobaddstr
¢ cobaddstrc
¢ cobprintf
® cobscroll
¢ cobclear
¢ cobgetch
* coblines
® cobcols

These routines are described in the following sections.

When using any of these routines, you must include the header file cobscreen.h,
which is provided with the AIX VS COBOL system software. This file defines the
attributes you can use, the type (cobchtype), and declares any external functions
which the routine needs.

For those routines where attributes are aliowed, you can use the bit-wise OR oper-
ator to combine any of the attributes defined in the cobscreen.h file. These attributes
are listed below:

Attribute Description
A_NORMAL Normal, no attribute
A_BOLD Bold or highlight
A_UNDER Underline
A_REVERSE Reverse video
A_BLINK Blink

This routine moves the virtual cursor to the specified line and column on the screen.
It has the form:

void cobmove(y,x)
int y,x;

where y is the number of the line to which the virtual cursor is to be moved, and x is
the number of the column to which the virtual cursor is to be moved.

This routine displays the specified character on the screen at the current virtual
cursor position. It has the form:

void cobaddch(ch)
cobchtype ch;

where ch is the required character. This may include attributes.

Chapter 9. Advanced Programming Features 9-17

cobaddstr Routine

cobaddstrc Routine

cobprintf Routine

cobscroll Routine

cobclear Routine

This routine displays the specified string on the screen at the current virtual cursor
position. It has the form:

int cobaddstr(s)
cobchtype *s;

where s is the required string which can be up to 255 characters long. This may
include attributes, but cannot include any control characters other than “\n”
(newline).

This routine displays the specified string on the screen at the current virtual cursor
position. It has the form:

int cobaddstrc(c)
char *c;

where ¢ is the required string which can be up to 255 characters long. This can only
contain ordinary characters; it cannot include attributes. The routine uses the
normal attribute. It cannot include any control characters other than “\n” (newline).

This routine displays the specified formatted string on the screen at the current
virtual cursor position. It has the form:

int cobprintf(fmt)
char *fmt;

where fmt is the required string in printf() style, which can be up to 255 characters
long in its extended form. This can only contain ordinary characters; it cannot
include attributes. It cannot include any control characters other than “\n”
(newline).

This routine returns the number of arguments output, or if an error condition arises,
it returns the value “-1”.

This routine scrolls the screen display up one line, starting and finishing at the speci-
fied lines. It has the form:

void cobscroll (top,bot)
int top,bot;

where fop is the first line to be scrolled up one line and bot is the last line to be
scrolled up one line.

This routine clears the screen display and positions the virtual cursor at line 0,
column 0. It has the form:

void cobclear()

9-18 User’s Guide for IBM AIX VS COBOL Compiler/6000

cobgetch Routine

coblines Routine

cobcols Routine

This routine gets a character from the keyboard. It has the form:
int cobgetch()

This routine returns the number of lines on the screen. It has the form:

int coblines()

This routine returns the number of columns on the screen. It has the form:

int cobcois()

Using Escape Sequences to Send Attribute Information to the

Screen

AIX VS COBOL will allow the use of raw escape sequences to send attribute infor-
mation to the screen. This is to support some older programs that may have had no
other means of indicating attributes. This method of coding is not recommended for
newer code.

In order to be able to use escape sequences to send information to the screen, you
must set the COBCTRLCHAR environment variable:

COBCTRLCHAR=y
export COBCTRLCHAR

When this environment variable is set, all optimization features of the screen han-
dling module will be bypassed. Without these optimization techniques, screen
output will be noticeably slower. Also, if escape sequences are used to handle attri-
butes, some screen management may need to be done by the user programs. Since
these raw escape sequences are outside of the AIX VS COBOL screen handling
module, the effects created by them are not known to the COBOL screen handling
module.

The hardcoding of escape sequences is never recommended for portable, maintain-
able programs in which a variety of terminals are to be used. The terminfo mech-
anism for terminal access is fully supported by AIX VS COBOL to allow terminal
selection flexibility.

AIX VS COBOL cannot guarantee the future support of hardcoded escape sequence
programming, nor guarantee a consistent result for escape sequences or combina-
tions of escape sequences that are hardcoded.

It is recommended that the following syntax be used for attribute handling:

SCREEN SECTION.

01 screen-name.
LINE xxx
COoL YYY
HIGHLIGHT . . .

or
DISPLAY data-item LINE xxx POSITION yyy REVERSE HIGH . . .

Chapter 9. Advanced Programming Features 9-19

To display special graphic characters to the screen, it is recommended that the
Screen Input and Output internal RTE subprograms named X“B7” and X“B8” be
used. These are documented in\ “Display Screen Input and Output” on page 9-11.

File Handler

You can create a run time environment (RTE) that is linked to your file handler(s)
rather than the default file handler(s) supplied with the AIX VS COBOL system.
The default file handlers for the various types of file organization and record format
are shown in Table 9-1.

Table 9-1. Default File Handlers
Default File Handler Default File Handler

File Type Fixed-Length Records Variable-Length Records
line-sequential Isfile Isfilev

sequential sqfile sqfilev

indexed ixfile ixfilev

relative rifile rifilev

sort csort csortv

The file handler(s) you link to the RTE in preference to any of the default file han-
dlers in Table 9-1 must conform to the format of the file handler interface. See
“Interface to the COBOL File Handler” on page 9-21 for format information.

To link your own file handler(s) to the RTE, use the -m option on the cob command
line. See Chapter 5, “Compiler Options” for information on this command.

After compiling your new file handler so that it exists as a .o file, consider the fol-
lowing examples. This example,

Tn newix.o newix <«
cob -xo0 rts32 newix -m ixfile=newix «

creates an RTE that uses the user-defined file handler “newix” for all fixed-length
records indexed file operations.

The following example is similar to the previous example, except that “newix” can
handle both fixed- and variable-length records.

In newix.o newix <«
cob -xo rts32 newix -m ixfile=newix -m ixfilev=newix <

Note: If you do not specify a mapping for the file handler(s) as illustrated in the
above examples, the default file handlers shown in Table 9-1 are those used
by the RTE.

9-20 User’s Guide for IBM AIX VS COBOL Compiler/6000

Interface to the COBOL File Handler

Any file handler(s) that you link to the RTE in preference to the default file
handler(s) must conform to the interface rules given in the rest of this chapter.

The file handler is invoked through a simple call with two parameters.

The first of these parameters describes the action required and consists of two bytes,
the first of which is currently always X‘FA’. The second byte describes the opera-
tion to be performed.

The second parameter is a parameter block, known as a File Control Description
(FCD), through which all other relevant information is passed.

The offsets given in the following sections are from the base of this FCD with the
first byte having an offset of 0.

For a detailed description of these fields, see “FCD Information Format” on
page 9-23. Unless otherwise noted, a reference to a sequential file includes files with
the organization LINE-SEQUENTIAL.

Operation Codes Passed in the Second Byte of the First Parameter
Table 9-2 shows a list of operation codes. The value corresponding to the required
operation is passed in the second byte of the first parameter to the file handler. The
effect of the instruction on the file handler is also listed.

Table 9-2 (Page 1 of 2). Operation Codes Passed in the Second Byte of the First

Parameter
Value Effect of Instruction File Type
00 OPEN in INPUT mode Any
01 OPEN in OUTPUT mode Any
02 OPEN in I-O mode Any
03 OPEN in EXTEND mode Any
04 OPEN in INPUT mode with NO REWIND Sequential
05 OPEN in OUTPUT mode with NO REWIND Sequential
08 OPEN in INPUT mode REVERSED Sequential
80 CLOSE Any
81 CLOSE WITH LOCK Any
82 CLOSE WITH NO REWIND Sequential
84 CLOSE REEL/UNIT Sequential
85 CLOSE REEL/UNIT FOR REMOVAL Sequential
86 CLOSE REEL/UNIT WITH NO REWIND Sequential
8C READ PREVIOUS WITH NO LOCK Indexed/relative
8D Sequential READ WITH NO LOCK Any
8E Random READ WITH NO LOCK Indexed/relative
D8 Sequential READ WITH LOCK Any
D9 Sequential READ WITH KEPT LOCK Any
DA Random READ WITH LOCK Indexed/relative
DB Random READ WITH KEPT LOCK Indexed/relative
DC COMMIT Any
DD ROLLBACK Any
DE READ PREVIOUS WITH LOCK Indexed/relative
DF READ PREVIOUS WITH KEPT LOCK Indexed/relative
El WRITE BEFORE Sequential

Chapter 9. Advanced Programming Features 9-21

Table 9-2 (Page 2 of 2). Operation Codes Passed in the Second Byte of the First

Parameter
Value Effect of Instruction
E2 WRITE AFTER
E3 WRITE BEFORE TAB
E4 WRITE AFTER TAB
ES WRITE BEFORE PAGE
E6 WRITE AFTER PAGE
E8 START with no key value
E9 START with key value
EB START with key not less than value
EC WRITE BEFORE mnemonic name
ED WRITE AFTER mnemonic name
F2 WRITE AFTER POSITIONING
F3 WRITE
F4 REWRITE
F5 Sequential READ
F6 Random READ
F7 DELETE
F8 DELETE file
F9 READ PREVIOUS
FE START with key less than value
FF START with key less than value or equal

Information Passed in the FCD at Open Time
Information passed to the file handler:

File organization Offset 5
File access mode Offset 6
File name length Offset 11
Lock mode flags Offset 24
Other flags Offset 25
Maximum record length Offset 38
Minimum record length Offset 50
Recording mode (fixed/variable) Offset 47
File name pointer Offset 60
For indexed files only:

Key definition block pointer Offset 64
File format (C-ISAM/level II/current) Offset 34
Information returned by the file handler:

Status Offset 0
Handle Offset 28
Open mode Offset 7

Information Passed for Other Operations
Information passed to the file handler:

Handle

Current record length

Record pointer

Offset 28
Offset 48

File Type

Sequential
Sequential Only
Sequential Only
Sequential Only
Sequential Only
Indexed/relative
Indexed/relative
Indexed/relative
Sequential
Sequential
Sequential

Any

Any

Any
Indexed/relative
Indexed/relative
Any
Indexed/relative
Indexed/relative
Indexed/relative

(WRITE and REWRITE on

variable-length files)

Offset 56

9-22 User’s Guide for IBM AIX VS COBOL Compiler/6000

For sequential files only:

Line count
For relative files only:

Relative key

For indexed files only:

Key identifier
Key length

Offset 52 (WRITE AFTER n)

Offset 43 (RANDOM or DYNAMIC
without NEXT)

Offset 52 (START or random READ)
Offset 54 (START only)

Information returned by the file handler:

Status
Current record length

For relative files only:

Relative key

Offset 0
Offset 48 (READ on variable-length
files)

Offset 43 (SEQUENTI L access or
READ NEXT)

FCD Information Format

The following figure shows the offset, size, and description of the FCD information

formats.

Offset Size
0 1

1 1

2

4 1

5 1

6 1

Description

First user status byte -- values as defined by
ANSI

Second user status byte -- values as defined by
ANSI unless the first status byte=9

Reserved

Reserved

File organization indicator:

0 = Line-sequential
1 = Sequential

2 = Indexed

3 = Relative

Passed at OPEN time
User status indicator and access mode:
128 = User has declared a status field
0 = Sequential access mode
4 = Random access mode
8 = Dynamic access mode
Passed at OPEN time

Chapter 9. Advanced Programming Features

9-23

Offset Size Description

7 1 File open mode (set at OPEN and CLOSE time):
128 = Closed (initial state)
0 = Open input
1 = Open output

2 = Open I-O
3 = Open extend
8 3 Reserved
11 2 File name length
Passed at OPEN time
13 11 Reserved
24 1 Lock mode flags for shareable files:

Bit 7 Set if lock on multiple records

Bit 6 Set if WRITELOCK enabled

Bit 5 Reserved

Bit 4 Reserved

Bit 3 Reserved

Bit 2 Set if lock mode MANUAL

Bit 1 Set if lock mode AUTOMATIC

Bit 0 Set if lock mode EXCLUSIVE

Passed at OPEN time
25 1 Other flags:

Bit 7 Set if OPTIONAL file (open input)

Bit 6 Reserved

Bit 5 Set if NOT OPTIONAL (open I-O and
extend)

Bit 4 Set if file name is EXTERNAL

Bit 3 Reserved

Bit 2 Reserved

Bit I Set if MULTIPLE REEL file
(sequential only)

Bit 0 Set if LINE ADVANCING file
(sequential only)

Passed at OPEN time
26 2 Reserved
28 4 Handle
32 1 Reserved
33 1 Flags
High order bit ‘0000000’ indicates ANSI
behavior
0 = ANS74
1 = ANS8S
Passed at OPEN time
34 i File format type
0 = current
1 = c-isam
2 = level I1 V2
Passed at OPEN time
35 3 Reserved
38 2 Maximum record length
Passed at OPEN time
40 3 Reserved
43 4 Relative record number

9-24 User’s Guide for IBM AIX VS COBOL Compiler/6000

Offset

47

48
50

52

54

56
60

64

68

Size

4

32

Description

Recording mode:
0 = Fixed
1 = Variable
Passed at OPEN time
Current record length
Minimum record length
Passed at OPEN time
Key identifier (indexed files)
Line count (line sequential files)
Effective key length (used only with
START on indexed files)
Pointer to record area
Pointer to file name
Passed at OPEN time
Pointer to key definition area
Passed at OPEN time
Reserved

Key Definitions for Indexed Files

All key definitions come immediately after the global information and before any
component definitions. They contain pointers to the relevant component definitions
in the form of offsets from the structure base.

Global Information

Key Definitions

2 bytes
1 byte
1 byte
1 byte
1 byte
2 bytes
2 bytes
4 bytes

2 bytes
2 bytes
1 byte

Length of key definition block
Reserved for version number
Reserved for index format
Reserved for integrity level
Reserved for tuning flags

Number of keys

Reserved for reserved index areas
Reserved for index record length

Component count

Offset to first component definition for this key

Key flags

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

Reserved

Reserved

Reserved

Set if prime key
Reserved

Reserved

Set if sparse key

Set if password supplied

Chapter 9. Advanced Programming Features

9-25

1 byte Compression flags

bit 7 Reserved
bit 6 Reserved
bit 5 Reserved
bit 4 Reserved
bit 3 Reserved
bit 2 Set if compression of trailing spaces
bit 1 Set if compression of identical leading characters
bit 0 Set if compression of following duplicates
1 byte Sparse character (key suppressed if whole key contains this value)

1 byte Reserved
8 bytes Password

Component Definitions
1 byte Component flags (reserved - currently 0)
1 byte Component type (reserved - currently 0)
4 bytes Component offset
4 bytes Component length

CISAM Features

The RTE uses a version of CISAM that has been modified to meet the needs of AIX
VS COBOL record locking requirements. This version of CISAM is embedded in
the mfisam.o module, found in the COBOL library libcobol.a. You cannot access or
use this modified version of CISAM except from a COBOL program that uses the
standard COBOL file-handling syntax.

If you have access to a standard version of CISAM, you may wish to use that in
place of the modified version supplied with your AIX VS COBOL system. An
object module, cixfile.o, is supplied with AIX VS COBOL in the archive libcobol.a.
This provides an interface between the AIX VS COBOL system and the standard
CISAM. In order to link the standard CISAM with a COBOL program, use the +1
flag on the cob command line to specify that cob is to use the standard CISAM
library (which is probably named libisam.a). You must also specify the -m flag on
the cob command line to map the symbol “ixfile” onto the CISAM interface
“cixfile”. cixfile.o contains the necessary external references to the CISAM libraries
to ensure that they are included in the resulting executable file, in preference to the
AIX VS COBOL modified libraries.

Note that you must specify the +1 flag on the cob command line. If you specify the
normal library inclusion flag -, the standard CISAM libraries are not included in the
executable file.

You can also build a version of animator that has your own version of CISAM
linked to it. In this case, you cannot animate your programs using the anim
command; you must run them with the + A run-time switch set. See “Run-Time
Switches” on page 7-7 for details on the run-time switches.

Consider the following examples:

* cob -x progl.cbl prog2.cbl prog3.chi <

compiles and links progl.cbl, prog2.cbl, and prog3.cbl with the modified version
of CISAM supplied with your AIX VS COBOL system in libcobol.a.

9-26 User’s Guide for IBM AIX VS COBOL Compiler/6000

e cob -x progl.cbl prog2.cbl prog3.chl -m ixfile=cixfile +Iisam <

compiles and links progl.cbl, prog2.cbl, and prog3.cbl with the standard version
of CISAM found in libisam.a.

e cob -xo rts32 -e "* -m ixfile=cixfile +lisam ¢

outputs an RTE that you can use to run intermediate and unlinked native code
files with the standard version of CISAM. For example, to run the intermediate
code file progl.int using the standard CISAM libraries, enter:

rts32 progl.int <

You need to be aware of the following differences between the standard CISAM
libraries and the modified version supplied with the AIX VS COBOL system.

» The standard CISAM does not support WRITE and REWRITE operations
acquiring locks, but the modified CISAM does.

* The standard CISAM does not support the READ WITH NO LOCK statement;
it treats this as a normal READ operation. However, the modified CISAM does
support this operation.

¢ The standard CISAM does not support the creation of data and index files in
separate directories, but the modified CISAM does. Therefore, the I option of
COBCAP and the & option of logical filename mapping using environment vari-
ables will not work with the standard CISAM.

* The modified CISAM has a maximum record length of 8 Kbytes. The standard
CISAM imposes a lower maximum record length. Check your CISAM doc-
umentation for specific details.

Chapter 9. Advanced Programming Features 9-27

9-28 User’s Guide for IBM AIX VS COBOL Compiler/6000

Chapter 10. Configuring Your AIX VS COBOL System

Chapter 10. Configuring Your AIX VS COBOL System 10-1-

Contents

About This Chapter 10-3
Introduction L 10-4
terminfo 10-5
cobkeymp e e 10-5
ADISCTRL e 10-5
Keyboard Conversion Process 10-5
keybef Utility 10-6
Specifying and Accessing Multiple or Alternate cobkeymp Files 10-7
Invoking the keybef Utility, 10-8
Using the keybef Utility 10-9
Maximum Size of keybef Buffers 10-14
adiscf Utility 10-14
Invoking the adiscf Utility 10-14
Using the adiscf Utility 10-14

10-2 User’s Guide for IBM AIX VS COBOL Compiler/6000

About This Chapter

Your IBM AIX VS COBOL software is supplied with the default configuration tai-
lored for your system. This chapter describes the information you must have to alter
the default behavior of the AIX VS COBOL extensions to the ACCEPT and
DISPLAY statements as described in the Language Reference. Do not attempt to
alter the default behavior of the AIX VS COBOL extensions to the ACCEPT and
DISPLAY statements unless you have system administrator authority.

Chapter 10. Configuring Your AIX VS COBOL System 10-3

Introduction

The Run Time Environment (RTE) module that provides extended ACCEPT and
DISPLAY facilities is called ADIS. The configuration information needed before
these facilities can function correctly is provided in the following three databases:

e terminfo
¢ cobkeymp
¢ ADISCTRL.

The information provided in these three databases allows ADIS to translate the
machine-specific character codes it receives from your keyboard into a terminal inde-
pendent code. ADIS then maps this terminal independent code to AIX VS COBOL
system program code.

10-4 User’s Guide for IBM AIX VS COBOL Compiler/6000

terminfo

The terminfo database is the AIX terminal description database. It provides the
RTE with information concerning the terminal you are using. You must ensure that
an entry exists within terminfo for your particular terminal, and that the TERM
environment variable is set to the name of that terminal. See the AIX Operating
System documentation for a full description of terminfo.

cobkeymp

Entries in the cobkeymp database map control characters and terminfo codes onto a
standard set of function keys that the ADIS ACCEPT/DISPLAY module can recog-
nize. You can set up your own cobkeymp database using the keybef utility. See
“keybef Utility” on page 10-6 for further details. If you do not set up your own
cobkeymp database, the AIX VS COBOL system uses a set of internal defaults for its
functions.

ADISCTRL

The ADISCTRL database is the configuration file for the AIX VS COBOL ADIS
ACCEPT/DISPLAY module. It specifies the editing functions to be used by the
ADIS function keys, You can alter the entries in this database using the adiscf
utility. See “adiscf Utility” on page 10-14 for further details.

Information held in both the terminfo and the cobkeymp databases is terminal spe-
cific. Both define, to the ADIS ACCEPT/DISPLAY module, the hexadecimal
sequences a terminal sends when any particular key is pressed.

The information held in the ADISCTRL database is terminal independent. It
defines, to the ADIS ACCEPT/DISPLAY module, the action to be taken when a
keystroke is recognized as a function key.

Keyboard Conversion Process

Figure 10-1 on page 10-6 shows how ADIS translates the machine-specific character
codes it receives from your keyboard into editing commands.

Chapter 10. Configuring Your AIX VS COBOL System 10-5

Bl the terminal B thertE
n The handling sends the
keyboard library (curses) iBM
sends sends AIX character
terminal characters or or the
dependent function function
characters keycodes keycode
AIX
. Screen or
TERMINAL P o > ADis user
library program
Bl e RTE ' O mere * B Apis reads ADIS sends
translates maps the the characters
characters AlX iBM to your
sent from the characters character screen, or
keyboard or function or the character
into machine keycodes onto function codes to
independent a set of keycode and your
codes ... functions used translates program
by ADIS. it into
It reads a editing
description commands
... using of these
data read functions from
from terminfo, the cobkeymp
the AIX database,
terminal or if no such ... using
description file exists it data read
database. takes a set of from
This provides internal ADISCTRL,
information default values the ADIS
on your configuration
terminal database
type. You
do not
need to terminfo cobkeymp ADISCTRL
alter this database database database
database
Fal fa
Allows Aliows
keybef- | youto adiscf |youto
utility change Uﬁlify change
cobkeymp ADISCTRL

Figure 10-1. Character Conversion Process

keybcf Utility

A set of internal default values for how the RTE interprets control characters and
keystroke mnemonics is provided with your AIX VS COBOL system software.
These default values are contained in the cobkeymp file. See Table 10-1 on

page 10-7 for a list of these defaults.

To change any of the default values, use the keybef utility to set up your own
cobkeymp file. This contains your own set of keystrokes that you wish to perform
for each function.

You do not need to create a different cobkeymp file for each terminal type on your
system. Instead, try to ensure that your cobkeymp file is suitable for as many dif-
ferent types of terminals as possible. All terminal-specific decoding is done by the
RTE using the terminfo database. However, you may have to supply alternative
keystrokes for terminals not having special function keys.

10-6 User’s Guide for IBM AIX VS COBOL Compiler/6000

If you wish to edit the cobkeymp file located in the SCOBDIR directory, you must
have superuser authority to update this file. It is recommended that you make a
copy of the original cobkeymp file for safe keeping prior to editing this file.

In addition to the COBOL keybef mapping of keys, the AIX VS COBOL system by
default does not map a carriage return (hex 0D) to a newline (hex 0A) on input.
Earlier versions of AIX VS COBOL by default did map a carriage return to a
newline. If you do not use the AIX system default terminfo files, then you need to
make sure your terminfo files are correct based on the new default.

Specifying and Accessing Multiple or Alternate cobkeymp Files

You can create multiple cobkeymp files. By default, a user-specified cobkeymp file
must exist in the directory where it will be used for the running of the user program.
To use a cobkeymp file from another directory to run a program, you must use the
dd_ style file name mapping as described in “File Name Mapping” on page 3-7.
This method can also be used to select from several different cobkeymp files that you
have defined.

For example, you could create two cobkeymp files:
Ju/test/cobkeymp

and
/u/other/test/cobkeymp

Then, if you want to run a program. “mycode.cbl”, you could do the following:

cob mycode.cbl
dd_cobkeymp=/u/test/cobkeymp
export dd_cobkeymp

cobrun mycode.int

This would find and use the /u/test/cobkeymp keyboard configuration.

Table 10-1 (Page 1 of 2). Default ADIS Control Keys

ADIS Function

Key Number Meaning RT Default Key

00 Terminate Accept Enter Keyboard
Enter Keypad
Ctrl+M
Ctrl+1J

01 Terminate Program Ctrl+D

02 Carriage Return

03 Cursor Left Left arrow

04 Cursor Right Right Arrow

05 Cursor Up Up arrow

06 Cursor Down Down Arrow

07 Move to start of screen Home

08 Move to next tab stop undefined

09 Move to previous tab stop undefined

Chapter 10. Configuring Your AIX VS COBOL System

10-7

Table 10-1 (Page 2 of 2). Default ADIS Control Keys

ADIS Function

Key Number Meaning RT Default Key

10 Move to end of screen End
Ctrl+0

11 Move to next field Ctrl+ N
Tab
Ctrl+1

12 Move to previous field Ctrl+P
Shift Tab
Ctrl+L

13 Change case of character Ctrl+F

14 Rubout character Backspace
shift + Backspace
Ctrl+H

15 Retype rubout character Ctrl+R

16 Insert single character Insert
shift + Insert

17 Delete character Delete

18 Restore deleted character Ctrl+U

19 Clear to end of field Ctrl + Delete

20 Clear Field Ctrl+X

21 Clear to end of screen Ctrl+ End

22 Clear screen Ctrl +Home

23 Set Insert mode Ctrl + Insert

24 Set Replace mode undefined

25 Reset field to its original value Ctrl +A

26 Move to start of field Ctrl +W

Invoking the keybcf Utility

To set up your own cobkeymp file using the keybef utility, type the command line:

keybcf <

The RTE searches for a cobkeymp file, first in the current directory and then in the
COBOL system directory, SCOBDIR. If RTE finds a cobkeymp file, it uses the
values given there. However, if RTE does not find a cobkeymp file, it uses the
default values. If a cobkeymp file already exists, you are asked if you want to edit it.

In order to change the system cobkeymp file (that is, the one located in $COBDIR),

you must have superuser authority.

10-8 User’s Guide for IBM AIX VS COBOL Compiler/6000

Using the keybcf Utility

keybef is menu-driven. Once keybef is invoked, it displays the initial menu, as
shown in Figure 10-2.

ADIS Keyboard Configuration Program V1.3
The following options are available:

Review existing function key definitions.
Alter function key definitions.

Save function key definitions.

Exit.

~ W =

Enter number of apfion required

Figure 10-2. Main keybef Display Screen

To select the option of your choice, press its associated number. The submenu for
that function is then displayed.

Review Existing Function Key Definitions

Enter a 1 on the main keybef display screen to see a submenu in which you are
prompted to choose the set of function keys you want to review. You can review the

following currently defined lists:
e ADIS function key list
¢ ANIMATOR function key list
¢ User function key list
¢ Compatibility function key list.

Chapter 10. Configuring Your AIX VS COBOL System 10-9

The ADIS function key list defines the keys that carry out specified functions when
you are executing a COBOL program in ACCEPT mode. ANIMATOR and
COBOL system programs use the ANIMATOR function key list. It describes the
mappings of control and terminfo codes onto various special operation keys. The
user function key list defines the mapping of control and terminfo codes onto user
function keys. During an ACCEPT operation, the user function key table is
searched before the ADIS function key table is searched. The user function keys are
initially enabled. To disable these function keys during the execution of a program,
you must first disable them by CALLing the X“AF” subprogram. See Chapter 9,
“Advanced Programming Features” for more information.

The compatibility function key list defines the mapping of control and terminfo
codes onto user keys defined in a dialect of COBOL other than AIX VS COBOL. If
you want function keys to return values that are compatible with other dialects of
COBOL, alter the compatibility function key list rather than the user function key
list. By default, the compatibility function key list is configured for compatibility
with Ryan McFarland COBOL Version 2.0, under UNIX.

The CRT STATUS clause allows you to ascertain which function key was used to
end an ACCEPT operation. See the Language Reference for information on how to
use this clause.

To select an option, press its associated number. Once you have entered the number
of the list you want to review, the hexadecimal values of all the currently defined
function keys in that list are displayed. Press any key to move from one display
screen to the next. At the end of the list, press any key to return to the review
submenu.

Alter Function Key Definitions
Enter a 2 on the main keybef menu to see a submenu from which you can choose a
set of function keys to alter. As with the review submenu, you can select the ADIS,
ANIMATOR, user, or compatibility key lists. Figure 10-3 on page 10-11 shows the
format of the display screen as it appears after you have made your selection.

10-10 User’s Guide for IBM AIX VS COBOL Compiler/6000

ADIS/ANIMATOR/User/Compatihitity Function Key List
Function nn

Enter regquired key sequence:

I=Insert, D=Detete, X=Hexadecimal Input, Space=Skip, G=Quif

Figure 10-3. Alter Function Key Options
Note: #n is the hexadecimal value of the key assigned to that function.

Each function in the function key list you selected is displayed individually, as shown
in Figure 10-3. To cycle from one function to the next without altering the key
defined for each function, press the Space bar. To replace any keys currently
defined in one of the lists, press the new key(s) that will perform that function: Any
keys used (pressed) must be defined in terminfo. Once you have entered the new
keys, the program automatically cycles to the next function. There is a pause before
the program cycles to the next function. To retain a currently defined function key,
and add another key to perform the same function, press I before you enter the
required key. If you want to delete a defined function key from a list, press D;
keybef automatically cycles to the next function.

To enter new function keys, do either of the following:

* Press the actual key(s) you want to perform a certain function.
* Enter the hexadecimal sequence for the key(s).

Normally, you enter new function keys by pressing the actual key to which the func-
tion is to be assigned. However, you may need to define keys that are not on the
keyboard you are using but are available on the one on which your program will
run. You can do this by entering the hexadecimal sequences for the keys you want
to define.

Chapter 10. Configuring Your AIX VS COBOL System 10-11

To enter a hexadecimal sequence, press X. The word Hex appears at the bottom
right of your display screen, indicating that the program is expecting hexadecimal
input. If you enter an invalid hexadecimal sequence, you receive an error when you
try to cycle to the next function and are prompted to enter a valid sequence.

To determine valid hexadecimal sequences, you can refer to the AIX Operating
System documentation, to the terminfo file on your system, and to Table 10-2. The
AIX Operating System documentation regarding keyboards gives the strings that are
returned by each of the possible key states. If the returned string for a particular
key state is a hexadecimal value, you can directly enter that value as the hexadecimal
sequence representing the key you wish to define.

However, if the returned string begins with an ESC, refer to your terminfo source
file, normally found in the fusr/lib/terminfo directory. The standard IBM terminfo
source file is named ibm.ti. For a key state that has a returned string starting with
an ESC to be valid, the key state needs to be related to a capability in your terminfo
file, and the referenced capability needs to be one that is defined in Table 10-2.

The terminfo source file relates capabilities to particular key states. To determine if
a particular key state represents a valid hexadecimal sequence for keybef, locate your
terminal type and then the particular ESC sequence in your terminfo source file.
Note that the short capability name appears to the left of the equals sign. If this
short capability name appears in Table 10-2, the FF XX YY number associated with
this name is a valid hexadecimal sequence and can be entered as the required key
sequence.

For example, suppose you want to use the left arrow key (key number 79) to carry
out the cursor left function. First, refer to the information on keyboards in the AIX
Operating System documentation to find that key 79 returns the string type and note
that kcubl is the short capability name equated to this escape sequence. Next, look
in Table 10-2 and find that keubl, key_left, gives the valid key sequence FF 01 04.
Then enter this hexadecimal sequence in keybcf.

Alternatively, if you press the left arrow key on your keyboard, the system enters
these three bytes for you.

You can return to the Alter submenu at any time by pressing Q. Entering 5 on this
submenu returns you to the main keybef menu.

Table 10-2 (Page 1 of 2). Hexadecimal Sequences for Key Functions Not
on Your Keyboard

Capability Name Variable Key Sequence

kcudl KEY_DOWN FF 01 02

kcuul KEY_UP FF 01 03

kcubl KEY_LEFT FF 01 04

kcufl KEY_RIGHT FF 01 05

khome KEY_HOME FF 01 06

kbs KEY_BACKSPACE FF 01 07

kf0 KEY_FO0 1B

10-12 User’s Guide for IBM AIX VS COBOL Compiler/6000

Table 10-2 (Page 2 of 2). Hexadecimal Sequences for Key Functions Not
on Your Keyboard
Capability Name Variable ’ Key Sequence
kfl KEY_F1 FF 01 81
kf10 KEY_F10 FF 01 8A
kf2 KEY_F2 FF 01 82
kf3 KEY_F3 FF 01 83
kf4 KEY_F4 FF 01 84
kS KEY_F5 | FF 01 85
kf6 KEY_F6 FF 01 86
kf7 KEY_F7 FF 01 87
kf8 KEY_F8 FF 01 88
k9 KEY_F9 FF 01 89
kd11 KEY DL FF 01 08
kill KEY _IL FF 01 09
kdchl KEY_DC FF 01 0A
kichl KEY IC FF 01 0B
krmir KEY_EIC FF 01 0C
kelr KEY_CLEAR FF 01 0D
ked KEY_EOS FF 01 OE
kel KEY_EOL FF 01 OF
kind KEY_SF FF 01 10
kri KEY_SR FF 01 11
knp KEY_NPAGE FF 01 12
kpp KEY PPAGE FF 01 13
khts KEY_STAB FF 01 14
kctab KEY_CTAB FF 01 15
ktbe KEY_CATAB FF 01 16
k11 KEY LL FF 01 1B

Save Function Key Definitions _
To save any alterations you have made to any of the function lists, press 3 on the
main keybef menu. This saves the amended function lists in a cobkeymp file.

Chapter 10. Configuring Your AIX VS COBOL System 10-13.

Exit

Press 4 on the main keybcf menu to return to the main AIX VS COBOL system.

Maximum Size of keybcf Buffers

The keybef buffers hold the key definitions for all four key lists: the ADIS key list,
the Animator key list, the user key list, and the compatibility key list. The total size
of all the keys defined must not exceed 768 bytes.

The compatibility key list is an alternative user key list, which can be selected using
adiscf. The intended use of this alternative user key list is for compatibility with
other COBOL dialects, such as RM.

If you are unlikely to use this alternative key list, you could delete the key defi-
nitions, freeing space to define the keys in the user key list. This would give you
more space to define keys if you need it.

adiscf Utility

ADISCTRL is the configuration database for the ADIS module. It can hold up to a
maximum of 16 configurations, any of which are available to you. An entry at the
start of the ADISCTRL file determines which configuration ADIS uses.

You can alter any of the configurations held in the ADISCTRL database using the
configuration utility adiscf. This program is designed around a hierarchy of menus.
These menus appear at the bottom of your display screen and list the options avail-
able to you at any time. You select the option you require by pressing a single key
(often a function key) on your keyboard.

Invoking the adiscf Utility

To invoke adiscf, enter the command line:
adiscf <«

The RTE searches for an ADISCTRL database, first in the current directory and
then in the COBOL system directory, $COBDIR. If one exists, adiscf reads in the
configuration currently selected for use by ADIS.

If you want to alter the file, first copy it to your own directory. Otherwise, any
alterations you make will affect the environments of all of the users on your system.
If an ADISCTRL file does not exist, the following message is shown on your display
screen:

ADISCTRL does not exist - Defaults used

adiscf has a set of default values built into it. These are used if ADISCTRL does
not exist.

Using the adiscf Utility

Once you have invoked adiscf, the initial menu is displayed, as shown in Figure 10-4
on page 10-15.

10-14 User’s Guide for IBM AIX VS COBOL Compiler/6000

ADISCF--Standard-Configuration ---
F1=Help F2=Aiter F3=Load Fé4=Save FS5-Delete F6=Choose Escape

Figure 10-4. Main adiscf Command Menu

The line above the line showing available menu options lists information that identi-
fies the menu you are on and the configuration currently loaded (the standard con-
figuration in this case). Each menu contains a similar information line.

To select the option you require from the main menu, press the relevant function key

or letter:

FlorH

F2or A
F3orL

F4 or S

FS5orD
Fé6 or C

Escape

Help facility (available on each menu). It shows a display screen with
information on the facilities of the current menu.

Alters the currently loaded configuration file.

Loads a particular configuration file from the ADISCTRL database into
memory. You must load a configuration before you can alter it.

Saves the new configuration file you have written in the ADISCTRL
database.

Deletes a configuration from the ADISCTRL database.
Chooses the configuration to be used by ADIS.

Escapes from the adiscf utility and returns to the ATX VS COBOL
system. If you have changed a configuration file since it was last saved,
you are asked to confirm that you wish to leave the adiscf program
without saving your changes in the ADISCTRL database.

Chapter 10. Configuring Your AIX VS COBOL System 10-15

Alter Option

Once you select an option, adiscf displays a submenu for that particular option.
Most of these menus have the following form:

ADISCF--Name--==~-=-~ Value========m=mmmmmmmmmeen

where Name is the name of the particular submenu (for example,
Alter-CRT-Under-Highlighting), and Value is the value currently selected for that
feature (for example, Underline).

The following sections describe the submenus available to you when you select one
of the options from the main menu.

Select the Alter option by pressing F2 or A on the Main Configuration menu to alter
all, or part, of a configuration. By pressing the appropriate function key on the
Alter Configuration menu, you can change the following:

e The way your programs display text when you use the CRT-UNDER phrase
* One or all of the ACCEPT/DISPLAY options

* TAB stops

* Indicator texts

e Message texts

* Positions at which indicator and message texts are displayed

¢ ADIS key mappings.

The following sections give details on how you can change these features. See the
Language Reference for a description of free-format and fixed-format fields.

Altering CRT-UNDER-HIGHLIGHTING Options

Pressing F2 or C on the Alter Configuration menu displays a submenu that allows
you to alter the type of highlighting used with the DISPLAY...UPON
CRT-UNDER statement, the DISPLAY...WITH UNDERLINE statement, or when
the UNDERLINE clause is used in the display screen section.

The following list gives the key you press to select each option:

F2orl Intensity; text appears bold
F3 or U Underscore (the default); text is underlined
F4 or R Reverse video; text appears in reverse video
F5 or B Blink; text appears blinking.

Press Escape to return to the Alter Configuration menu. Some terminals do not
support bold and blink. Your particular terminal may not function with these
options.

Altering ACCEPT-DISPLAY Options

Pressing F3 or A on the Alter Configuration menu displays a submenu that allows
you to specify how you want the cursor to behave, and what you want the fields to
look like during an ACCEPT operation. You can choose to alter individual options
or all the available options.

10-16 User’s Guide for IBM AIX VS COBOL Compiler/6000

Press F2 or A to alter all of the ACCEPT/DISPLAY options. A description of each
option and its current value is displayed, with one option per display. Press < to
move from one display screen to the next. To change the value of an option, type
the number of your choice at the relevant prompt on each display screen. You can
alter as few or as many options as you wish. ‘

Press F3 or I to alter individual ACCEPT/DISPLAY options. This displays a list of
the available options with a number next to each. Press F2 or/N to toggle to the
next page of options. Type the number of the option you want to alter, or move the
cursor to the relevant line, either by using the keys configured to move the cursor up
or down a line, or by typing /U to move the cursor up or /D to move the cursor
down. Press € to select the option you want. A description of that option and its
current value is then displayed. To alter the value of an option, type the number of
your choice at the prompt and press «'.

The following is a list of the ACCEPT/DISPLAY options you can change:
¢ User function keys enable/disable

Allows you to disable or enable the user function keys. These are usually the
function keys on your keyboard. You can choose the following:

1. Disables all user function keys. If you press a user function key during an
ACCEPT, it is treated as an invalid key.

2. The default. Enables all user function keys. If you press a user function
key during an ACCEPT, the ACCEPT is terminated.

* Range of data keys accepted

Allows you to specify which characters are to be allowed during input to an
ACCEPT. You are prompted to enter the number of the option you require.

1. Characters with ASCII codes in the range 0 to 127 are allowed.
2. Characters with ASCII codes in the range 0 to 255 are allowed.
3. Characters with ASCII codes in the range 32 to 127 are allowed.
4

. The default. Characters with ASCII codes in the range 32 to 255 are
allowed.

Note: Even if you enable characters within the range 0 to 31 (that is, you
choose either option 1 or 2), you may still not be able to enter some of
these characters into a field. This is because some of these characters
may form the start of some key sequences generated by function or
cursor keys. If these keys are enabled, they have priority over the data
keys.

¢ Prompt character

Allows you to specify the character to be displayed in the empty part of the field
during an ACCEPT. The system displays the selected character in all portions
of the field into which you have not yet entered data. The selected character
also indicates the extent of the field. This prompt character is used for all
picture types except PIC G.

Chapter 10. Configuring Your AIX VS COBOL System 10-17

* Prompt character used in PIC N fields

Allows you to specify the character to be displayed in the empty part of a PIC G
field during an ACCEPT. (PIC N is the same as PIC G in AIX VS COBOL.
PIC N was part of an alternate implementation of DBCS support.)

¢ Pre-display of fields before an ACCEPT

Allows you to specify whether you want the contents of data fields to be dis-
played automatically before an ACCEPT statement. If you do not specify auto-
matic display of data fields before an ACCEPT statement, the display screen
remains as it is. You can choose between the following options:

1. Pre-display of numeric-edited fields with numeric editing enabled (when the
cursor moves into them). No other pre-display occurs.

2. Pre-display of numeric fields with numeric editing enabled (when the cursor
moves into them). No other pre-display occurs.

3. Pre-display of all fields immediately before data is accepted into the field.
4. The default. Pre-display of all fields before any data entry is allowed.
¢ ACCEPT in a SECURE field

Allows you to specify how you want the cursor to behave, and what you want
the field to look like, during an ACCEPT into a SECURE field. Possible
options are as follows:

1. The default. No character display is shown on the display screen as each
character is entered, but the cursor advances to the next character position.

2. An asterisk (*) is displayed as each character is entered, and the cursor
advances to the next character position.

3. A space is displayed as each character is entered, and the cursor advances to
the next character position.

¢ Auto-skip between fields

Allows you to specify whether you want the cursor to move to the next field
automatically when the current field is full. This applies only to multiple data
fields within one ACCEPT statement. The available options are as follows:

1. No auto-skip. You must press an explicit field-tab or cursor key (other than
rubout) to move to the next field.

2. The default. Auto-skip enabled. If the current field is full, any cursor
movement, or pressing a character key, causes the cursor to move to the
next field.

Note: This option has no effect on display screen section ACCEPT operations.
Auto-skip is off by default for these operations. You can turn this
option on by specifying the AUTO phrase in your source program.

¢ Termination of an ACCEPT
Allows you to specify which actions terminate an ACCEPT, as follows:
1. The default. Pressing the terminate accept key.
2. Pressing the next field key when the cursor is in the last field of an accept.

3. Typing or retyping a data character in the last available character position
of an accept (provided auto-skip between fields is enabled).

10-18 User’s Guide for IBM AIX VS COBOL Compiler/6000

Note: This option controls only normal termination. Function keys still termi-
nate an ACCEPT, if they are enabled.

Validation control if ACCEPT is terminated by a function key

Allows you to specify whether validation clauses must be satisfied, when termi-
nating an ACCEPT using a function key. You can choose between the
following:

1. The default. No validation takes place.
2. Normal validation criteria must be satisfied for the current field.
End of field effects

Allows you to specify how you want the cursor to behave, if you attempt to type
data once a field is full. You can select one of the following options:

1. The cursor moves beyond the end of the field, and overtyping is rejected.
2. The cursor stays at the end of the field, and overtyping is rejected.

3. The default. The cursor stays at the end of the field, and overtyping is
allowed.

Field overflow buffers enable/disable

Allows you to specify whether data is to be saved in an overflow buffer when
displaced from the end of a field.

1. The default. Displaced data is saved in an overflow buffer.
2. Displaced data is not saved in an overflow buffer.
Auto-restore during rubout in replacement editing mode

Allows you to specify the action of the rubout key in free-format fields, when in
replacement editing mode.

1. The default. Auto-restore is enabled. Previously overtyped characters are
restored, as characters are deleted.

2. Auto-restore is disabled. Deleted characters are replaced by the filler char-
acter.

Accepts into numeric-edited fields

Allows you to specify how you want numeric-edited fields to look during an
ACCEPT, as follows:

1. Input is accepted as for alphanumeric fields and is normalized to remove
illegal characters on exit from the field.

2. Same as for option 1; however, you can enter only digits, signs, decimal
points, or commas.

3. The default. Fields up to 32 characters long are accepted in formatted
mode. Characters other than digits, signs, and decimal points are rejected.
Fields are reformatted to show the editing symbols as data is entered. Fields
longer than 32 characters are accepted as for option 1.

4. Same as for option 3, with the exception that fields longer than 32 charac-
ters are accepted as for option 2.

Chapter 10. Configuring Your AIX VS COBOL System 10-19

10-20

¢ Accepts into nonedited numeric fields

Allows you to specify how you want nonedited numeric fields to look during an
ACCEPT, as follows:

1. The default. Unsigned and embedded signed nonedited numeric fields with
a V in their PIC clauses are treated as though they were a PIC 9(m) field
followed by a PIC 9(n) field. Fields with separate signs are treated as
though they were PIC S9(m + n).

2. Same as for option 1 except that fields with a V in the PIC clause are
treated as PIC S9(m + n).

3. All nonedited numeric fields are treated as alphanumeric fields.

Note: If you specify a nonzero SIZE clause, all nonedited numeric fields are
treated as free-format fields, regardless of the setting of this option.

¢ Enable/Disable auto-clear or pre-clear

Allows you to specify how you want a field to appear when the cursor first
enters it, as follows:

1. The default. No pre-clear or auto-clear takes place.

2. Pre~clear mode. The field is cleared to spaces or zeroes. Pressing the Undo
key restores the original contents of the field.

3. Auto-clear mode. If the first keystroke made after the cursor enters a new
field is a valid data character, the field is cleared to spaces or zeroes before
processing the character. An invalid data character turns auto-clear mode
off. Press the Undo key to restore the original contents of the field.

4. Same as for option 2, except that pressing the Undo key does not restore the
original contents of the field.

¢ Force a field to be updated if it is not altered

Allows you to specify how you want the contents of a field to appear if you
leave the field without altering it, as follows:

1. The default. The data item is not updated if the field is not altered.

2. The data item is élways updated, even if the field is not altered. This option
has effect only under either of the following conditions:

— The field is numeric or numeric-edited and the original data item did not
contain any numeric data

— The field is right justified and the original contents of the field were not.
¢ Note end of field

Allows you to specify if ADIS notes the position of the last character entered
into a field:

1. The default. ADIS does not note the position of the last character.

2. ADIS notes the position of the last character entered into a field during an
ACCEPT.

This option applies only if the prompt character is disabled.

User’s Guide for IBM AIX VS COBOL Compiler/6000

RM/COBOL-style numeric data entry

Allows you to specify if you want your system to emulate RM/COBOL-style
entry of numeric data items, as follows:

1. The default. The standard IBM entry of numeric data items is enabled.
2. The RM/COBOL style of numeric and numeric-edited data entry is enabled.

Restrict maximum size of a field

Allows you to specify if the size of ACCEPT fields is restricted to one line, as
follows:

1. The default. Fields are not restricted to one line.
2. Fields are restricted to one line.

Control cursor positioning after an ACCEPT

Allows you to control where the cursor is placed at the end of an ACCEPT
operation, as follows:

1. The default. The cursor is moved to the next character position following
the end of the current field.

2. The cursor is left at its current position.
Control behavior of UPDATE phrases

Allows you to specify if a CONVERT clause is implied if you specify an
UPDATE phrase, as follows:

1. The default. The CONVERT clause is not implied.
2. The CONVERT clause is implied.

This option is provided to enable you to emulate the behavior of RM/COBOL,
Versions 2.0 and 2.1.

Selection of the function key list to be used

Allows you to specify which function key list your system will use to map
control and terminfo codes onto user function keys, as follows:

1. The default. The standard IBM user function key list.

2. The compatibility function key list. The list supplied with the AIX VS
COBOL system is the RM/COBOL function key list, but you may alter this
for compatibility with any supported dialect of COBOL.

Control action of the COLUMN + n clause

Controls the location of the field in a SCREEN SECTION accept or display
when COLUMN + 1 is used, as follows:

1. The default. The field will be positioned immediately following the previous
field if COLUMN + 1 is used.

2. There will be a one-character gap between this field and the preceding field
if COLUMN + 1 is used.

Chapter 10. Configuring Your AIX VS COBOL System 10-21

¢ Control the default color for SCREEN SECTION accepts or displays

Allows you to specify whether the current default screen color or white-on-black
is used when no color is specified, as follows:

1. The default. The current default screen color is used when no color is speci-
fied.

2. White-on-black is used when no color is specified.
¢ Control of whether cursor left/right keys can exit a field

Allows you to control whether pressing a right or left arrow key should be able
to exit an input field, as follows:

1. The default. At the start or end of a field, the cursor left/right keys move to
the previous or next field, if there is one.

2. The cursor left and cursor right keys cannot move the cursor out of the
field.

¢ Left justification of free format edited numerics

Allows you to control whether free format edited numeric fields are left-justified
as they are entered, as follows:

1. The default. The field is not left-justified.

2. The field switch is left-justified, provided RM numeric handling is switched
off.

¢ Control action of Kanji modifier characters Daku-On and Han-Daku-On during an
accept

Allows you to control whether Daku-On and Han-Daku-On act as modifier
characters or not.

Press Escape to return to the Alter Configuration menu.

Altering Tab Stop Options
Press F4 or T on the Alter Configuration menu to display a submenu that allows
you to set a maximum of 80 tab stops. This submenu displays a ruler at the top of
the display screen on which the current positions of tab stops are shown by the letter
T. Use the Cursor Left and Cursor Right keys to move the cursor along the ruler.
Press one of the following keys to perform the function of your choice:

F2orS Set tab stop

Sets a tab stop at the current cursor position. T is displayed to show the
new tab stop.

F3or D Delete tab stop

Deletes any existing tab stop. T, which shows the tab stop position, is
also deleted.

F4 or F Finish editing tab stops

Saves the changes you have made to the positions of the tab stops.

Press Escape to return to the Alter Configuration menu.

10-22 User’s Guide for IBM AIX VS COBOL Compiler/6000

Altering Indicators

Altering Messages

Pressing F5 or I on the Alter Configuration menu displays a submenu which allows
you to alter the text displayed by ADIS during an ACCEPT operation to indicate
various conditions. The text for each message can be up to 32 characters long.
Type your own message, then press <! to make the change.

Press one of the following keys to select the message you want to alter:
F2 or1 Insert/replace

Allows you to create your own messages for the insert/replace indicators
and the clear insert/replace indicators.

F3 or O Off-end-of-field

Allows you to create your own messages for the off-end-of-field and
clear-off-end-of-field indicators.

Fd4or A Auto-clear

Allows you to create your own messages for the auto-clear and clear-
auto-clear indicators.

Note: A limited amount of space in a configuration is available for message texts
for indicators. If the new messages you create are too large to fit into the
amount of space you have left in your configuration, an audible warning is
emitted.

If you receive this warning, you must write a shorter message.

After you have successfully entered your messages, press Escape to return to the
Alter Configuration menu.

Press F6 or M on the Alter Configuration menu to display a submenu that allows
you to alter the text of messages displayed by ADIS during an ACCEPT operation,
to indicate various error conditions. You can choose to alter all the available
options or individual ones.

Press F2 or A to alter all of the messages. The current text of each message