

First Edition (April 1990)

This edition applies to Version 1.1 of the IBM AIX XL FORTRAN Compiler/6000 and to all

subsequent releases and modifications until otherwise indicated in new editions. Changes
are periodically made to the information herein; any such changes will be reported in
subsequent revisions.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or imply that only IBM's licensed
program may be used. Any functionally equivalent program may be used instead.

This publication contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

Note to US Government Users: Documentation related to restricted rights. Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM
Corporation.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to:

IBM Canada Ltd
Information Development
Department 849
1150 Eglinton Ave East
North York, Ontario, Canada. M3C 1 H7

IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990. All rights reserved.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this book:

AIX is a trademark of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

RISC System/6000 is a trademark of International Business Machines Corporation.

RT PC and RT are registered trademarks of International Business Machines
Corporation.

Systems Application Architecture and SAA are trademarks of International Business
Machines Corporation.

Preface iii

iv Reference Manual for XL FORTRAN

Contents

Chapter 1. Introduction . • • • • 1
Who Should Use This Manual . 1
How to Use This Book . 1
How to Read the Syntax Diagrams . 1
A Note About Examples . 3
Related Documentation . 3
Industry Standards . 4
XL FORTRAN Extensions . 4
Valid and Invalid XL FORTRAN Programs . 5

Chapter 2. The Language Elements . • 7
Characters . 7
Names . 8

The Scope of a Name . 8
Keywords . 9
Statements . 9

Fixed-Form Input Format . 11
Free-Form Input Format . 12

Tabs . 12
Nonsignificant Blanks . 13
Statement Labels . 13
Order of Statements in a Program Unit . 13
Normal Execution Sequence and Transfer of Control . 14

Chapter 3. Data Types and Constants . • • 15
The Data Types . 15
How Type Is Determined . 16
Constants . 16
Arithmetic Constants . 16

Integer . 17
Real . 17
Complex... 19

Logical Constants . 21
Character Constants . 21
Hexadecimal Constants . 23
Octal Constants . 23
Binary Constants . 24
Hollerith Constants . 24
Use of Hexadecimal, Octal, Binary, and Hollerith Constants . 25

Chapter 4. Variables, Arrays, and Character Substrings . 27
Variables . 27
Arrays . 27
Character Substrings . 30
STATIC and AUTOMATIC Variables and Arrays . 31
Definition Status of a Variable, Array Element, or Character Substring . 31

© Copyright IBM Corp. 1990 Contents v

Reference . 32
Association . 32

Chapter 5. Expressions . • • • . • . 33
Arithmetic . 33
Character . 35
Relational . 36
Logical . 37
Evaluating Expressions . 39

Chapter 6. Specification Statements . • • . • . 43
DIMENSION . 43
EQUIVALENCE . 44
COMMON.. 46
Explicit Type . 48
IMPLICIT . 52
PARAMETER . 53
EXTERNAL . 54
INTRINSIC . 55
SAVE . 55
NAM ELI ST . 56

Chapter 7. DATA Statement... 59
DATA Statement . 59

Implied-DO in a DATA Statement . 60

Chapter 8. Assignment Statements . • . • . 63
Arithmetic Assignment . 63
Logical Assignment . 65
Character Assignment . 66
Typeless Constants in Assignment Statements . 67
Statement Label Assignment (ASSIGN) . 67

Chapter 9. Control Statements . 69
Unconditional GO TO . 69
Computed GO TO . 70
Assigned GO TO . 70
Arithmetic IF . 71
Logical IF . 72
IF Construct - Block IF, ELSE IF, ELSE, and END IF . 73
DO 74
DO WHILE . 76
END DO . 77
CONTINUE . 78
STOP . 78
PAUSE 79
END .. ·.......... 79

Chapter 1 o. Program Units and Procedures . • • • • • 81
Relationships Among Program Units and Procedures . 81
PROGRAM. Statement - Main Program . 82

vi Reference Manual for XL FORTRAN

Functions . 82
Function Reference . 83
Statement Function Statement . 83
FUNCTION Statement - Function Subprogram (External Function) . 84

SUBROUTINE Statement . 86
CALL Statement . 87
ENTRY Statement . 88
RETURN Statement . 90
Arguments . 91
Recursion . 95
BLOCK DATA Statement - Block Data Subprogram . 95

Chapter 11. Input/Output Statements . • • • • • 97
Records . 97
Files . 98
Units . 99
READ, WRITE, and PRINT Statements... 100
OPEN Statement . 106
CLOSE Statement . 108
INQUIRE Statement . 109
BACKSPACE, ENDFILE, and REWIND Statements . 112
IOSTAT Values . 114

Chapter 12. Input/Output Formatting . • . . . • • • 117
Format-Directed Formatting . 117

FORMAT Statement . 117
Format Specification . 117
Character Format Specification . 120

Interaction Between an Input/Output List and a Format Specification . 120
Editing . 121

I (Slash) Editing . 122
: (Colon) Editing . 122

$ (Dollar) Editing . 123
A (Character) Editing . 123
Apostrophe/Double Quotation Mark Editing . 123
BN (Blank Null) and BZ (Blank Zero) Editing . · 124
E (Real with Exponent), D (Double Precision), and Q (Extended Precision) Editing 125
F (Real without Exponent) Editing . 126
G (General) Editing . 127
H Editing . 128
I (Integer) Editing . 129
L (Logical) Editing . 130
P (Scale Factor) Editing . 130
S, SP, and SS (Sign Control) Editing . 131
T, TL, TR, and X (Positional) Editing . 131
Z (Hexadecimal) Editing . 132
0 (Octal) Editing . 133
B (Binary) Editing . 133

List-Directed Formatting . 134
NAMELIST Formatting . 136

NAMELIST Input Data . 136

Contents vii

NAMELIST Output Data . 137

Chapter 13. Debug Lines . 139
Debug Lines . 139

Chapter 14. Compiler Directives... 141
INCLUDE . 141
EJECT . 142
@PROCESS . 143

Appendix A. Intrinsic Functions . 145
Referencing an Intrinsic Function . 145
Intrinsic Function Rules and Restrictions . 146
Intrinsic Functions . 146

Appendix B. XL FORTRAN Run Time Environment . 153
XL FORTRAN Subprograms . 153
Mathematical, Character, and Bit Subprograms . 154

Explicitly Called Subprograms . 154
Implicitly Called Subprograms . 154

Service and Utility Subprograms . 154
Error Handling Support . 156

Compiler Detected Errors . 156
FORTRAN Exception Handling and Traceback Facilities . 157

Appendix C. XL FORTRAN Compiler/6000 Extensions . 159
XL FORTRAN Extensions . 159

Index.. 167

viii Reference Manual for XL FORTRAN

Chapter 1. Introduction

This reference manual describes the IBM AIX XL FORTRAN Compiler/6000 language.
FORTRAN (FORmula TRANslation) is a high-level programming language primarily
designed for applications involving numeric computations. FORTRAN is suited to most
scientific, engineering, and mathematical applications.

The exceptional (XL) family of compilers provides consistency and high performance across
multiple programming languages by sharing the same code optimization technology.

XL FORTRAN is a full implementation of the American National Standards Institute (ANSI)
standard for FORTRAN 77 (ANSI X3.9-1978) with selected VS FORTRAN, RT PC VS
FORTRAN, and RT PC FORTRAN 77 extensions.

The XL FORTRAN compiler conforms to the Systems Application Architecture (SAA)
definition of the FORTRAN language.

Note: Extensions noted in Appendix C, "IBM AIX XL FORTRAN Compiler/6000 Extensions"
are extensions over the language defined in Systems Application Architecture
Common Programming Interface FORTRAN Reference, SC26-4357.

Who Should Use This Manual
Programmers using this manual should possess some knowledge of FORTRAN concepts
and have previous experience in writing FORTRAN application programs.

This manual contains reference information about XL FORTRAN. It is not written as a
tutorial. Therefore, if you do not have any prior FORTRAN knowledge or experience, you
may wish to first obtain any of the tutorial-style FORTRAN books that are available.

How to Use This Book
This book is not intended to be a tutorial, but rather it explains the details of the XL
FORTRAN language. It is designed to be used with the User's Guide for IBM AIX XL
FORTRAN Compiler/6000, SC09-1257-00.

How to Read the Syntax Diagrams
Throughout this book, syntax diagrams use the structure defined below:

• Syntax diagrams are read from left to right and from top to bottom, following the path of
the line.

The - symbol indicates the beginning of the diagram.

The-+ symbol indicates that the syntax is continued on the next line.

The.,___ symbol indicates that the syntax is continued from the previous line.

The--1 symbol indicates the end of the diagram.

Diagrams of syntactical units other than complete statements start with the.,..___ symbol
and end with the-+ symbol.

© Copyright IBM Corp. 1990 Chapter 1. Introduction 1

• Keywords appear in the diagrams in uppercase; for example, OPEN, COMMON, and
END. You must spell them exactly as shown.

Note: You can type keywords in uppercase, lowercase, or mixed case, and the compiler
folds them into lowercase during compilation. However, if you specify the MIXED
compiler option you must enter keywords in lowercase.

• Variables and user-supplied names appear in lowercase italics; for example,
array_element_name. If one of these terms ends in_list it specifies a list of terms. A list is
a nonempty sequence of the terms separated by commas. For example, the term
name_ list specifies a list of the term name.

• Punctuation marks, parentheses, arithmetic operators, and other special characters must
be entered as part of the syntax.

Required and Optional Items
Required items appear on the horizontal line (the main path).

I - STATEMENT- required_item --1

Branching shows two paths through the syntax.

-[

required_choicet J--4
- STATEMENT

required_ choice2

Optional items appear on the lower line of a branched path. The upper line is empty,
indicating that you do not need to code anything for this syntax item.

- STATEMENT -L l....J
optional_item _J

1

Repeatable Items
An arrow returning to the left below a line shows items that you can repeat.

- STATEMENTf repeatable_item -r1
Punctuation on a repeat arrow must be· placed between the repeated items.

- STATEMENTt repeatable_item T

Default Items
A heavy line is the default path. Coding nothing for that item is the same as coding the
default item.

-[

choice 1 }i
- STATEMENT ..

choice_2

2 Reference Manual for XL FORTRAN

Example of a Syntax Diagram
The following example of a fictitious statement shows how to use the syntax:

1 2 3 __ra
- EXAMPLE- char_ constant L

b
(-d-)

.:..__r e (__ 10 11 12

--i__: _J Lg =r name _list --1
f '

Interpret the diagram by following the numbers:

1. This is the start of the diagram.

2. Enter the keyword EXAMPLE.

3. Enter a value for char_ constant.

4. Enter a value for a orb, but not for both.

5. This path is optional.

6. Enter a value for cord, or no value. If you enter a value ford, you must include the
parentheses.

7. The diagram is continued at 8.

8. The diagram is continued from 7.

9. Enter a value for e or f, or no value. If you do not enter a value, the default value e is
used.

10. Enter at least one value for g. If you enter more than one value, you must put a comma
between each. ,

11. Enter the value of at least one name for name_list. If you enter more than one value, you
must put a comma between each.

12. This is the end of the diagram.

A Note About Examples
Examples in this book explain elements of the XL FORTRAN language. They are coded in a
simple style. They do not try to conserve storage, check for errors, achieve fast run times, or
demonstrate all possible uses of a language element.

Related Documentation
You might want to refer to the following publications for additional information:

IBM Publications:

User's Guide for IBM AIX XL FORTRAN Compiler/6000, SC09-1257-00, describes how
to compile, link, and run XL FORTRAN source programs on the IBM AIX RISC
System/6000 computer.

Systems Application Architecture Common Programming Interface FORTRAN Reference,
SC26-4357, describes the FORTRAN component of the common programming interface.

Chapter 1. Introduction 3

Non-IBM Publications:

American National Standard Programming Language FORTRAN, ANSI X3.9-1978

International Standards Organization Programming Language FORTRAN, ISO
1539-1980(E)

Federal Information Processing Standards Publication FORTRAN, FIPS PUB 69

Instrument Society of America Standard: Industrial Computer System FORTRAN
Procedures for Executive Functions, Process Input/Output and Bit Manipulation,
ANSl/ISA S61 .1

Military Standard FORTRAN, DOD Supplement to ANSI X3.9-1978, MIL-STD-1753

ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Industry Standards
XL FORTRAN is designed according to the ANSI standard defined in the American National
Standard Programming Language FORTRAN, ANSI X3.9-1978 (Full ANSI FORTRAN 77).
This standard is adopted by International Standards Organization (ISO) and Federal
Information Processing Standards (FIPS). Conformance to ANSI X3.9-1978 implies
conformance to the following standards:

• International Standards Organization ISO 1539-1980(E), Programming Languages -
FORTRAN.

• Federal Information Processing Standard, FIPS PUB 69, FORTRAN
• ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

In addition, XL FORTRAN partially complies with the FORTRAN Military Standard
(MIL-STD-1753). This is a Department of Defense (DOD) Supplement to ANSI X3.9-1978.
XL FORTRAN provides the following extensions to ANSI FORTRAN 77, defined in the
Military Standard:

• END DO
• DOWHILE
• INCLUDE (with a different syntax)
• IMPLICIT NONE
• Bit field manipulation intrinsic functions:

- Logical operations: IOR, IAND, NOT, IEOR
- Shift operations: ISHFT, ISHFTC
- Bit subfields: IBITS, MVBITS
- Bit processing: BTEST, IBSET, IBCLR

• Octal and hexadecimal bit constants (O'd1 dn' and Z'h1 hn') in DATA
statements.

XL FORTRAN Extensions
The XL FORTRAN language comprises:

• FORTRAN 77:

The full ANSI FORTRAN 77 language (referred to as FORTRAN 77), defined in the
document American National Standard Programming Language FORTRAN, ANSI
X3.9-1978.

4 Reference Manual for XL FORTRAN

• XL FORTRAN extensions:

These extensions are primarily, though not exclusively, selected extensions that have
been commonly available in earlier IBM FORTRAN compilers, and that the VS
FORTRAN, RT PC FORTRAN 77, and RT PC VS FORTRAN compilers currently support.

You can find a list of the XL FORTRAN extensions in Appendix C, "IBM AIX XL FORTRAN
Compiler/6000 Extensions".

Valid and Invalid XL FORTRAN Programs
This manual defines the syntax, semantics, and restrictions you must follow when writing
valid XL FORTRAN programs. The compiler discovers most violations of the XL FORTRAN
language rules, but some syntactic and semantic combinations may not be found: some
because they are detectable only at run time, others for performance reasons. Programs
that contain these undiagnosed combinations are invalid XL FORTRAN programs, whether
or not they run as expected.

Chapter 1. Introduction 5

6 Reference Manual for XL FORTRAN

Chapter 2. The Language Elements

This chapter describes the elements of an XL FORTRAN program:

• Characters
• Names
• Keywords
• XL FORTRAN statements
• Tabs
• Nonsignificant blanks
• Statement labels
• Order of statements
• Execution sequence.

Characters
The XL FORTRAN character set consists of letters, digits, and special characters:

Letters Digits Special Characters

A N a n 0 Blank

B 0 b 0 1 ! Exclamation point

c p c p 2 " Double quotation mark

D a d q 3 $ Currency symbol

E R e r 4 % Percent sign

F s f s 5
,

Apostrophe

G T g t 6 (Left parenthesis

H u h u 7) Right parenthesis

I v i v 8 * Asterisk

J w j w 9 + Plus sign

K x k x , Comma

L y I y - Minus sign

M z m z Decimal point I period

I Slash

Colon

< Less than

= Equal sign

> Greater than

Underscore -
The characters have an order known as a collating sequence. The collating sequence is the
arrangement of characters for a given system that determines their comparison status. XL
FORTRAN uses ASCII (American National Standard Code for Information Interchange) to
determine the ordinal sequence of characters. (See the IBM AIX XL FORTRAN/6000 User's
Guide -Appendix B for a table of the ASCII character set.)

© Copyright IBM Corp. 1990 Chapter 2. Language Elements 7

Names
A name (or symbolic name) is a sequence of 1 to 250 letters or digits, the first of which must
be a letter. XL FORTRAN treats the currency symbol($) and underscore character U as
letters when you use them in a name, and you can use either as the first character. Note that
the use of $ as the first character in external names can cause unpredictable results in AIX
shell procedures, because AIX uses $ as the first character in a shell variable name. Also,
underscore U is reserved for system use and some compiler generated names, so you may
want to avoid using it as your first character.

XL FORTRAN folds all letters in a source program to lowercase unless they are in a
character context. 1

Note: If you specify the MIXED compiler option, XL FORTRAN does not fold the source
program, and symbolic names are distinct if you specify them in a different case.

For example,XL FORTRAN treats

ia Ia iA IA

the same by default, but differently if you specify the MIXED option.

Note: If you specify the MIXED option, you must enter keywords in lowercase.

A name can identify the following items in a program unit:

• An array and the elements of that array
• A variable
• A constant
• A main program
• A statement function
• An intrinsic function
• A function subprogram
• A subroutine subprogram
• An entry in a function or subroutine subprogram
• A block data subprogram
• A common block
• An external user-supplied subprogram that the compiler cannot classify as either a

subroutine or function subprogram name by its usage in that program unit. (See
"EXTERNAL" on page 54 for more information on external subprograms.)

• A NAMELIST name.

The Scope of a Name -
Each name in a program unit has a scope. That scope is either global to an executable
program or local to a program unit, with the following exceptions:

• The name of a common block in a program unit can also be the name of an array, a
statement function, a dummy procedure, a named constant, or a variable. (It cannot be a
variable name that is also an external function name in a function subprogram).

• In a function subprogram, at least one function name (on the FUNCTION or ENTRY
statement) must also be the name of a variable in that function subprogram.

1 A character context means characters within character constants, Hollerith constants, format-item lists in FORMAT
statements, and comments.

8 Reference Manual for XL FORTRAN

Names with global scope are the name of the main program, and the names of all common
blocks, external functions, subroutines, and block data subprograms. All of these names
have the scope of an executable program.

Names with local scope are:

• Names of variables, arrays, constants, statement functions, dummy procedures, intrinsic
functions, and NAMELIST names. These names have a scope of a program unit. (XL
FORTRAN classifies a name that is a dummy argument as a variable, array, or dummy
procedure.)

• Names of variables that appear as dummy arguments in a statement function statement.
These names have a scope of that statement.

• Names of variables that appear as the DO variable of an implied-DO list in a DATA
statement. These names have a scope of the implied-DO list.

Keywords
A keyword is a sequence of characters that, in certain contexts, identifies a language
construct. XL FORTRAN does not reserve any sequence of characters in all contexts. You
can write keywords in uppercase, lowercase, or mixed case, but XL FORTRAN folds them to
lowercase. If you specify the MIXED compiler option, the compiler does not fold the source
program, and you must write keywords in lowercase.

Statements
A FORTRAN statement is a sequence of syntactic items. Statements form program units - a
sequence of statements and optional comment lines that constitute a main program or
subprogram. XL FORTRAN classifies each statement as either executable or
nonexecutable. Executable statements specify actions. Nonexecutable statements describe
attributes, arrangement and initial values of data, contain editing information, specify
statement functions, classify program units, and specify entry points within subprograms.

The following table gives a list of statements, the category to which each belongs, and the
chapter in which it is discussed.

Statement Group Statement Executable or
Nonexecutable

Specification DIMENSION Nonexecutable -
(chapter 6) EQUIVALENCE specifies the

COMMON characteristics and
Explicit Type: arrangement of data

INTEGER, REAL,
DOUBLE PRECISION,
COMPLEX,
DOUBLE COMPLEX,
CHARACTER, LOGICAL,
STATIC, AUTOMATIC

IMPLICIT
PARAMETER
EXTERNAL
INTRINSIC
SAVE
NAME LIST

Chapter 2. Language Elements 9

Statement Group Statement Executable or
Nonexecutable

DATA DATA Nonexecutable -
(chapter 7) specifies the

initial
values of data

Assignment Arithmetic assignment Executable -
(chapter 8) Logical assignment specifies actions

Character assignment
Statement label

assignment (ASSIGN)

Control Unconditional GO TO Executable -
(chapter 9) Computed GO TO specifies actions

Assigned GO TO
Arithmetic IF
Logical IF
Block IF
ELSEl~ELSE,ENDIF
DO, DO WHILE, END DO
CONTINUE
STOP
PAUSE
END
CALL

(discussed in chapter 10)
RETURN

(discussed in chapter 10)

Program unit PROGRAM Nonexecutable -
and procedure Statement function classifies program
(chapter 10) FUNCTION units, specifies

SUBROUTINE statement functions,
ENTRY and specifies entry
BLOCK DATA points within

subprograms

lnpuVoutput READ Executable -
(chapter 11) WRITE specifies actions

PRINT
OPEN
CLOSE
INQUIRE
BACKSPACE
ENDFILE
REWIND

FORMAT FORMAT Nonexecutable -
(chapter 12) contains editing

information

Compiler directive INCLUDE Neither - compiler
(chapter 14) EJECT directives

@PROCESS

Debug statements are lines that have a D in column 1. The compiler treats these statements
as comments unless you specify the DLINES compiler option. (See Chapter 13, "Debug
Lines" for a description of these statements.)

10 Reference Manual for XL FORTRAN

XL FORTRAN accepts source input in either of two formats: fixed-form input format or
free-form input format. You must write each statement according to the source input format
specified by your selected compiler options (FIXED or FREE). The default input format is
FIXED.

Fixed-Form Input Format
In fixed-form input format, each line is a sequence of 72 characters. Columns 73 and
beyond are not significant to the compiler, and you can use them for identification,
sequencing, or any other purpose.

An initial line contains a statement label, if you desire, in columns 1 to 5, a blank or zero in
column position 6, and the characters representing the statement in columns 7 to 72. If there
is no statement label, leave columns 1 to 5 blank.

The text of any statement except the END statement and the EJECT, INCLUDE, and
@PROCESS compiler directives can continue on the following line. A continuation line
contains blanks in columns 1 to 5, and any character in theXL FORTRAN character set other
than a blank or zero in column position 6. XL FORTRAN allows columns 1 to 5 to contain
characters, but the compiler ignores them. You can use up to 99 continuation lines for a
single statement.

If you continue a Hollerith or character constant it will contain blanks from the last column
position to column 72.

CHARSTR="THIS IS A CONTINUED There will be blanks in the
X CHARACTER STRING" string between "CONTINUED" and

"CHARACTER"

A comment indicator (c, c, or*) in column 1 will cause the compiler to treat the line as a
comment line. Comment lines do not affect the executable program and you can use them to
provide documentation. They can have either of two forms:

• c, c, or* in column 1 and, optionally, any characters you can use in a character constant
in columns 2 through 72. (See "Character Constants" on page 21 for a further
description.)

• Blanks in columns 1 through 72.

A comment line must not follow a line to be continued, and you cannot continue it.

Note that a Din column 1 will also cause the compiler to treat the line as a comment line if
you do not specify the DLINES compiler option.

A comment line can appear anywhere in the program unit before the END statement. There
is no restriction on the number of comment lines you can use.

An exclamation point (!) initiates an inline comment except when it appears in a character
context, or if it appears in column 6 (where it is treated as a continuation character). The
comment extends to the end of the source line. An END statement can contain a comment
that you initiate with ! . An @PROCESS compiler directive cannot contain an inline
comment.

c
c This is a fixed-form example
c

DO 10 I=l,10
WRITE(6,*)'this is the index',! with an inline comment

10 CONTINUE

Chapter 2. Language Elements 11

Free-Form Input Format

Tabs

In free-form input format, the first character of the statement (after a label, if there is one)
must be alphabetic. The maximum length of a free-form statement is 6600 characters
(equivalent to 100 fixed-form lines), excluding the continuation characters and the statement
labels. The statement continuation character is a minus sign (-).

An initial line can start in any column position, and can contain (as the leftmost entry on a
line) a statement label. XL FORTRAN ignores leading and imbedded blanks in a statement
label.

The text of any statement, except the END statement and the EJECT, INCLUDE, and
@PROCESS compiler directives can continue on the following line. You indicate a line you
want continued with a minus sign terminating the line. It must be the last nonblank character
that is not part of a comment. The statement text of a continuation line can start in any
column position. You can have up to 99 continuation lines in a single statement.

Note that a D in column 1 will also cause the compiler to treat the line as a comment line if
you do not specify the DUNES compiler option.

A comment line must not follow a line to be continued, and you cannot continue it. It begins
with a double quotation mark(") in column 1, or is a blank line.

An exclamation point (!) initiates an inline comment except when it appears in a character
context. The comment extends to the end of the source line. An END statement can contain
an inline comment that you initiate with ! . An @PROCESS compiler directive cannot contain
an inline comment.

The minus sign for continuation must precede the ! delimiter on continuation lines. You can
intersperse ! commentary with free-form source lines, but you must use the hyphen (-) to
continue any line. If you want to continue a character context, you cannot follow the -
signifying continuation by an inline comment.

"
" This is a free-form example

DO 10 I=l,10
WRITE(6,*)'this is

the index',I
10 CONTINUE

A tab character placed anywhere in columns 1 to 6 will direct the compiler to interpret the
character following as being in column 7. Therefore, you cannot tab continuation lines in
fixed-form input. XL FORTRAN treats any other tab characters, except for those in a
character context, as blanks.

For example, if you assume the@ is the system-generated tab character, then the code
segment:

C@Example of tab input lines
@I=O
lO@CONTINUE

is equivalent to:

C Example .of tab input lines
I=O

10 CONTINUE

after resolution of the tabs.

12 Reference Manual for XL FORTRAN

Nonsignificant Blanks
You can position as many blanks as you want in a statement or comment to improve
readability. You can even imbed blanks within keywords or names, because the compiler
ignores them. If you insert blanks in character or Hollerith constants,XL FORTRAN retains
them and treats them as blanks within the data.

Statement Labels
A statement label is a sequence of one to five digits, one of which must be nonzero, that you
can use to identify statements in a FORTRAN program unit. You can label a fixed-form
statement by placing a statement label anywhere in columns 1 through 5 of its initial line.
The compiler ignores statement labels that appear on continuation lines.

Statement labels on free-format input lines must be the first nonblank characters (digits) on
an initial line. You do not need blanks between the statement label and the first nonblank
character following.

You must not give the same label to more than one statement in a program unit. Blanks and
leading zeros are not significant in distinguishing between statement labels. You can label
any statement, but you can only refer to executable statements and FORMAT statements by
using statement labels. You must place the statement making the reference and the
statement you want to reference in the same program unit. ·

Order of Statements in a Program Unit
In general, the order of statements in a program unit is given in the following diagram.

Comment
Lines

FORMAT
and 3

ENTRY
Statements

PROGRAM, FUNCTION, SUBROUTINE,
or BLOCK DATA5 Statement

IMPLICIT NONE Statement

IMPLICIT
Statements

DATA
Statements

END Statement

Other
Specification
Statements 1

PARAMETER
Statements 2

Statement
Function

4
Statements

Executable
Statements

Chapter 2. Language Elements 13

You should read the table from top to bottom to determine the order in which the statements
must appear in a program unit. The vertical lines in figure delineate statements that you can
intersperse. Horizontal lines delineate statements that you cannot intersperse.

The following items apply to the order of statements:

1. Explicit specification statements that initialize variables or arrays must follow other
specification statements that contain the same variable or array names.

2. Any specification statement that specifies the type of a name of a constant must precede
the PARAMETER statement that defines that name to be a constant. A PARAMETER
statement defining the name of a constant must precede any use of the name.

3. The ENTRY statement cannot appear between a block IF statement and its
corresponding END IF statement, or within the range of a DO.

4. A statement function can reference another statement function that precedes it, but not
follows it.

5. The following statements are not permitted in a BLOCK DATA subprogram: FORMAT,
ENTRY, Executable, and Statement Function Statements.

Normal Execution Sequence and Transfer of Control
Normal execution sequence is the processing of executable statements in the order in which
they appear in a program unit. The normal execution sequence begins with the first
executable statement in a main program. Nonexecutable statements and comment lines do
not affect the normal execution sequence.

A transfer of control is an alteration of the normal execution sequence. Some statements
that you can use to control the execution sequence are:

• Control statements
• The terminal statement of a DO loop
• Input/output statements that contain an error specifier or end-of-file specifier.

When you reference an external procedure, the execution of the program continues with the
first executable statement following the FUNCTION, SUBROUTINE, or ENTRY statement in
the referenced procedure.

In this book, any description of the sequence of events in a specific transfer of control
assumes that no event, such as the occurrence of an error or the execution of a STOP
statement, changes that normal sequence unless otherwise specified.

14 Reference Manual for XL FORTRAN

Chapter 3. Data Types and Constants

This chapter describes:

• The data types
• How type is determined
• Constants and their permitted values
• The form of constants for each type.

The Data Types
A data type has a name, a set of valid values, a means to denote such values (constants),
and a set of operations to manipulate the values. The following table shows each type
statement with its resulting type and its associated storage length.

Type Statement Data Type Default Storage
Length (bytes)

INTEGER*1 integer 1
INTEGER*2 2
INTEGER*4 4
INTEGER 4

REAL*4 real 4
REAL 4
REAL*8 8
DOUBLE PRECISION 8
REAL*16 16

COMPLEX*8 complex 8
COMPLEX 8
COMPLEX*16 16
DOUBLE COMPLEX 16
COMPLEX*32 32

CHARACTER character 1
CHARACTER*n n (where 1 <=n<=500)

LOGICAL*1 logical 1
LOGICAL*2 2
LOGICAL*4 4
LOGICAL 4

Note: Although you can declare extended precision data types (REAL*16 and
COMPLEX*321), XL FORTRAN interprets them as double precision data types
(REAL*8 and COMPLEX*16). (See "Real" on page 17 for further explanation.)

1The form type*length is an abbreviation derived from the type statements. INTEGER*2, for example, has the same
meaning as integer of length 2 bytes.

© Copyright IBM Corp. 1990 Chapter 3. Data Types and Constants 15

How Type Is Determined
Each variable, array, constant, expression, and function has a data type.

XL FORTRAN determines the type of a name in one of three ways:

• Explicitly, by a type statement (see "Explicit Type" on page 48 for a description of explicit
type statements) or, for external functions only, by a type statement or a FUNCTION
statement.

• Implicitly, using the IMPLICIT type statement. (See "IMPLICIT" on page 52 for a
description of the IMPLICIT type statement.)

• Implicitly, by predefined convention. By default (that is, in the absence of an IMPLICIT
type statement), if the first letter of the name is I, J, K, L, M, or N, the type is INTEGER*4.
If the first letter of the name is any other letter($ and_ included), the type is REAL*4.

The IMPLICIT type statement overrides the type as determined by the predefined
convention. Explicit type statements override IMPLICIT statements and the predefined type
specification convention.

XL FORTRAN determines the type of a constant by its form. The discussions of type in the
rest of this chapter describe the form of a constant for each type.

Constants
A constant is a quantity whose value does not change. There are several classes of
constants:

• Arithmetic constants
• Logical constants
• Character constants
• Hexadecimal constants
• Octal constants
• Binary constants
• Hollerith constants.

You can give a name to a constant (create a named constant) using the PARAMETER
statement. (See "PARAMETER" on page 53 for a description of named constants.)

Arithmetic Constants
An arithmetic constant is one of:

• An integer constant
• A real constant
• A complex constant.

An arithmetic constant can be signed or unsigned:

• An unsigned constant is a constant with no leading sign.
• A signed constant is a constant with a leading plus or minus sign.
• An optionally signed constant is a constant that you specify as either signed or unsigned.

Only integer or real constants can be optionally signed.

16 Reference Manual for XL FORTRAN

Integer

Real

XL FORTRAN considers the value zero neither positive nor negative. You can specify zero
as signed or unsigned, and the value of a signed zero is not the same as the value of an
unsigned zero.

An integer constant is a string of decimal digits containing no decimal point and expressing a
whole number.

The form of an integer constant is:

+ digit

An integer constant can be positive, zero, or negative. If unsigned and nonzero, XL
FORTRAN assumes it is positive. Its magnitude must not be greater than the maximum
allowed.

The following table shows the range of values that XL FORTRAN can represent using
integer data types.

Data type Length (bytes) Range of values

INTEGER*1 1 -128 through 127

INTEGER*2 2 -32 768 through 32 767

INTEGER 4 -2 14 7 483 648 through
INTEGER*4 2 147 483 647

If the NOl4 compiler option has been specified, the INTEGER data type will have a default
length of 2 bytes.

XL FORTRAN represents integers internally in two's complement notation, and the leftmost
bit is the sign of the number.

Examples of Integer Constants

0
+91
-173
+2 147 483 647
-2 147 483 648

largest integer value allowed
smallest integer value allowed

The forms of a real constant are:

• A basic real constant
• A basic real constant followed by a real exponent
• An integer constant followed by a real exponent
• A double precision constant.

A basic real constant has an optional sign, an integer part, a decimal point, and a fractional
part in that order. Both the integer part and the fractional part are strings of digits; you can
omit either of these parts, but not both. You can write a basic real constant with more digits
than a processor will use to approximate the value of the constant. XL FORTRAN interprets
a basic real constant as a decimal number.

Chapter 3. Data Types and Constants 17

The forms of a real constant are:

-l[:]1-t- digit T real_ exponent~

-l[: JJ-\W digit;- . t digit J[real_ exponent }1
A real_ exponent is the letter E followed by a signed or unsigned one- or two-digit integer
constant. It denotes a power of 10. The letter E specifies a real constant of type REAL*4.
The form of real_ exponent (a real exponent) is:

-[eE + digit y
digit - digit

The forms of a double precision constant are:

-l[:]1-t- digit T double_exponent ~

-l[+ jl-t-digit T . -\digit}{ doub/e_exponent ~

-l[: JJ-\W digit;- . f digit£ double_ exponent }1
A double_ exponent is the letter o or Q followed by a signed or unsigned one-, two-, or
three-digit integer constant. It denotes a power of 10. The letter o specifies a real constant
of type REAL *8 with length 8 bytes. The letter Q specifies a real constant of type REAL *8
with length 16 bytes.

Note: XL FORTRAN supports the ANSI/IEEE floating-point format by allowing a three-digit
integer constant to follow a double precision real constant exponent letter (that is, o
or Q).

The form of double_ exponent (a double precision exponent) is: DJYC + J-Cf.: digit y d digit - digit

Q - digit - digit - digit

q

18 Reference Manual for XL FORTRAN

Complex

The following table shows the range of values that XL FORTRAN can represent with the real
data types.

Data Type Length Absolute Non-Zero Absolute Maximum
(bytes) Minimum

REAL 4 1 .175494E-38 3.402824E+38
REAL*4

DOUBLE PRECISION 8 2.22507 4D-308 1 . 797693D+308
REAL*8

REAL*16 16 2.22507 4D-308 1 . 797693D+308

Note: XL FORTRAN allows you to define REAL *16 data, but it is processed as REAL *8
data with a storage allocation of 16 bytes to preserve equivalence relationships. This
convention is to allow migration of existing code to the RISC System/6000 computer.
It is recommended that you use REAL*S for all new code. The REAL*S value is kept
in the leftmost 8 bytes of the 16-byte space, and the rightmost 8 bytes are not used
in any calculation but may be altered by data initialization or participate in
unformatted input/output.

XL FORTRAN represents real numbers internally in the ANSI/IEEE binary floating-point
format, which consists of a sign bit (s), a biased exponent (e), and a fraction (f).

bit no. . .. 6 •••• + ..•• 5 •••• + ••.• 4 •••• + •••• 3 •••• + •.•• 2 •••• + •••• 1 •••• + •••• o
REAL*4 seeeeeeeefffffffffffffffffffffff
REAL*8 seeeeeeeeeeeff

This ANSI/IEEE binary floating-point format also provides representations for +infinity,
-infinity, and NaN's (not-a-number). A NaN can be further classified as a quiet NaN (NaNQ)
or signalling NaN (NaNS).

Examples of Real Constants

+O.
-999.999
7.0E+O
7.E3
1. 2D+l23 double precision constant with three-digit exponent

The form of a complex constant is:

-[_
integer_constant L_ -[_integer_ constant L_

- (____r ' ____r) ---i
real_ constant real_ constant

The forms of a double complex constant are:

~nteger_constant~

- (- double_precision_constant - • Lt_ """" real_constant "~'~"' J l--l
double _precision_ constant

~integer_constant ~

- (Lt_ ""'" reat_constant ''""'J , -double_precision_constant- >---i
double _precision_ constant

Chapter 3. Data Types and Constants 19

If the constants of the ordered pair representing the complex constant differ in precision, XL
FORTRAN converts the constant of lower precision to a constant of the higher precision.
(For example, if one constant is real and the other is double precision, the real constant is
converted to a double precision constant).

If the constants of the ordered pair representing the complex constant differ in type, XL
FORTRAN converts the integer constant to a real constant of the same precision as the real
constant. (For example, if one constant is integer and the other is double precision, the
integer constant is converted to a double precision constant).

You can also specify a complex constant using a left parenthesis followed by a pair of real or
integer constant expressions (that is, expressions involving only constants or the names of
constants) separated by a comma and followed by a right parenthesis.

The following table shows the range of values that XL FORTRAN can represent with the
complex data types.

Data Type Length Absolute Non-Zero Absolute Maximum
Minimum

COMPLEX 8 (1.175494E-38, (3.402824E+38,
COMPLEX*8 1 .175494E-38) 3 .402824E +38)

DOUBLE COMPLEX 16 (2.2250740-308, (1. 7976930+308,
COMPLEX*16 2.2250740-308) 1 . 7976930+308)

COMPLEX*32 32 (2.2250740-308, (1. 7976930+308,
2.2250740-308) 1 . 7976930+308)

Note: XL FORTRAN allows you to define COMPLEX*32 data, but it is processed as
COMPLEX*16 data with a storage allocation of 32 bytes to preserve equivalence
relationships. The REAL *8 real part of the complex value is kept in the leftmost 8
bytes (R). The REAL*8 imaginary part of the value (I) is located at a displacement of
16 within the item, and the remaining 16 bytes (x) are not used in any calculation but
may be altered by data initialization or participate in unformatted input/output.

byte no . . •• 6 •••• + •••• 5 •••• + •... 4 •••• + •••• 3 •••• + •••• 2 •••• + •••. 1 •••• + •••• o
COMPLEX*32 RRRRRRRRxxxxxxxxIIIIIIIIxxxxxxxx

Examples of Complex Constants

(3,-1.86)
(~5.0E+03,.16E+02)

(-5.0E+03,.16D+02)

(45Q6,6D45)

(1+1,2+2)

20 Reference Manual for XL FORTRAN

This is the value (-5000.,+16.0)
and both parts are double precision

Both parts are double precision

Use of constant expressions

Logical Constants
A logical constant is a constant that can have a logical value of either true or false.

The form of a logical constant is:

-[

.TRUE. l___i

.FALSE. __JI
You can also use the abbreviations T and F (without the periods) for .TRUE. and .FALSE.
respectively, but only for the initialization of logical variables or logical arrays in _the DATA
statement, in the explicit type statement, or in formatted input.

The following table shows the values that XL FORTRAN can represent using logical data
types.

Data type Length Values Internal (hex)
(bytes) Representation

LOGICAL*1 1 .TRUE. 01
.FALSE. 00

LOGICAL*2 2 .TRUE. 0001
.FALSE. 0000

LOGICAL 4 .TRUE. 00000001
LOGICAL*4 .FALSE. 00000000

If the NOl4 compiler option has been specified, the LOGICAL data type will have a default
length of 2 bytes.

Character Constants
The form of a character constant is an apostrophe ('),followed by a string of characters,
followed by a second apostrophe. The string can consist of any characters capable of
representation in the processor, except the new-line character, because it is interpreted as
the end of the source line. The delimiting apostrophes are not part of the data represented
by the constant. You must represent an apostrophe within the string with two consecutive
apostrophes and no intervening blanks. Blanks embedded between delimiting apostrophes
are significant.

The length of a character constant is the number of characters between the delimiting
apostrophes except that each pair of consecutive apostrophes counts as one character. The
length of a character constant must be greater than zero. Each character requires 1 byte of
storage, and XL FORTRAN uses the ASCII representation.

You can also delimit a character constant with double quotation marks("). You must
represent a double quotation mark character within a character constant delimited by double
quotation marks by using two consecutive double quotation marks (without intervening
blanks). The two consecutive double quotation marks count as one character.

You can place a double quotation mark character within a character constant delimited by
apostrophes to represent a double quotation mark, and an apostrophe character within a
character constant delimited by double quotation marks to represent a single apostrophe.

Chapter 3. Data Types and Constants 21

The form of a character constant is:

-[
'- character_string- ' 1-1
"- character_string- "_J

1

For compatibility with C language usage, XL FORTRAN recognizes the following backslash
escapes in character strings:

Escape Meaning

\n New-line

\t Tab

\b Backspace

\f Form feed

\0 Null

\I Apostrophe
(does not terminate a string)

\II Double quotation mark
(does not terminate a string)

\\ Backslash

\x x, where x is any other character

All backslash characters are one character long.

The maximum length of a character constant depends upon the number of continuation
lines, and the value given in the CHARLEN compiler option.

You can use a character constant as a data initialization value, or in any of the following:

• A character expression
• An assignment statement
• The argument list of a CALL statement or function reference
• An input or output statement
• A FORMAT statement
• A PARAMETER statement
• A PAUSE or STOP statement.

Examples of Character Constants

'0123456789' Character constant of length 10
"ABCDEFGHIJ" Character constant of length 10
'\"\2\'\A567\\\\\'' Character constant of length 10 "2'A567\\'
"\"\2\'\A567\\\\\'" Character constant of length 10 "2'A567\\'

Note: XL FORTRAN provides support for double-byte characters within character
constants, Hollerith constants, and comments. This support is provided through the
DBCS option. Note that if the character string consists of n double-byte characters,
the length of the string is 2n. Assignment of a constant containing double-byte
characters to a variable, substring, or array element which is not large enough to
hold the entire string may result in truncation within a double-byte character.

22 Reference Manual for XL FORTRAN

Hexadecimal Constants
The form of a hexadecimal constant is the character z followed by a hexadecimal number
formed from the digits o through 9 and the letters A through F or a through f, where the
corresponding uppercase and lowercase letters are equivalent. You can use a hexadecimal
constant of this form as a data initialization value for any type of variable or array. There is
no data type corresponding to hexadecimal constants.

An alternative form of a hexadecimal constant is the character z or the character x followed
by, or preceded by, a string within apostrophes or double quotation marks. The string must
be a hexadecimal number formed from the digits o through 9, the letters A through F, and
the letters a through f. You can use a hexadecimal constant of this form in any situation
where you can use a constant of any type, except as the length specification in a type
declaration.

The maximum number of digits you can use in a hexadecimal constant depends upon the
length specification needed for your use. If the length you have specified for the variable is x
bytes, the maximum number of hexadecimal digits is 2x. If the number of digits in the
hexadecimal constant is greater than the maximum,XL FORTRAN truncates the leftmost
hexadecimal digits. If the number of digits is fewer than the maximum, the compiler supplies
hexadecimal zeros on the left.

The form of a hexadecimal constant is:

X }{ ~ hexadeci~al_number ~

Z hexadecimal_ number

'hexadecimal_ number '}{ X

" hexadecimal_ number " Z

Z hexadecimal number

Examples of Hexadecimal Constants

Z'0123456789ABCDEF'
Z"FEDCBA9876543210"
'0123456789ABCDEF'Z
Z'0123456789aBcDeF'
Z0123456789aBcDeF !This form can only be used as an initialization

!value

Octal Constants
The form of an octal constant is the character o followed by, or preceded by, a string within
apostrophes or double quotation marks. The string must be an octal number formed from the
digits o through 7.

The maximum number of digits allowed in an octal constant depends upon the length
specification of the data object you want to represent. If the length specification of the data
object is x bytes, the maximum number of octal digits is 3x (but, because an octal digit
represents 3 bits, and a data object represents a multiple of 8 bits, there may be truncation
of the octal constant if it consists of 3x digits). If the number of bits in the octal constant is
greater than the number of bits in the data object, XL FORTRAN truncates the leftmost bits

Chapter 3. Data Types and Constants 23

from the octal constant. If the number of bits in the octal constant is fewer than the number
of bits in the data object, the compiler supplies zero bits on the left.

You can use an octal constant in any situation where you can use a constant of any type,
except as the length specification in a type declaration. The form of an octal constant is:

t
'octal number '}

.

"oc:al_number " , ;r
-[

octal number

O " octa~ number "

Examples of Octal Constants

0'01234567'
"01234567"0

Binary Constants
The form of a binary constant is the character B followed by, or preceded by, a string within
apostrophes or double quotation marks. The string must be a binary number formed from
the digits o and 1.

The maximum number of digits allowed in a binary constant depends upon the length
specification of the data object you want to represent. If the length specification of the data
object is x bytes, the maximum number of binary digits is Bx. If the number of digits in the
binary constant is greater than the number of bytes required, XL FORTRAN truncates the
leftmost binary digits. If the number of digits is fewer than the number of bytes required, the
compiler supplies binary zeros on the left.

You can use a binary constant in any situation where you can use a constant of any type,
except as the length specification in a type declaration. The form of a binary constant is:

-c:
:.binary_number~}-

8
bmary_number ;r

-[

'binary_number '
8

" binary_ number "

Examples of Binary Constants

B"10101010"
'10101010'8

Hollerith Constants
The form of a Hollerith constant is a nonempty string of characters capable of representation
in the processor and preceded by nH where n is a nonzero unsigned integer constant
representing the number of characters after the H. The number of characters in the string
must be greater than or equal to 1 and less than or equal to 255.

You can use a Hollerith constant in any situation where you can use a constant of any type,
except as the length specification in a type declaration. If the number of characters in the
Hollerith constant is greater than the maximum, XL FORTRAN truncates the rightmost

24 Reference Manual for XL FORTRAN

Hollerith characters. If the number of characters is fewer than the maximum, the compiler
supplies blanks on the right.

The form of a Hollerith ·constant is:

- nHcharacter_string --t
XL FORTRAN also recognizes the backslash escapes in Hollerith constants. If a Hollerith
constant contains a backslash character, n is the number of characters in the internal
representation of the string, not the number of characters in the source string. (For example,
you use 2H\ \\\to represent a Hollerith constant for two backslashes).

Note: XL FORTRAN provides support for double-byte characters within character
constants, Hollerith constants, and comments. This support is provided through the
DBCS option. Note that if the character string consists of n double-byte characters,
the length of the string is 2n. Assignment of a constant containing double-byte
characters to a variable, substring, or array element which is not large enough to
hold the entire string may result in truncation within a double-byte character.

Use of Hexadecimal, Octal, Binary, and Hollerith Constants
Hexadecimal, octal, binary, and Hollerith constants are "typeless" constants. They assume
their data types based on the way in which you use them, and XL FORTRAN does not
convert them before use.

• When you use such a constant with a unary operator, it assumes an INTEGER*4 data
type.

• When you use such a constant with a binary operator, it assumes the data type of the
other operand.

• When you use such a constant in a context that requires a specific data type, it assumes
that data type.

• When you use such a constant as part of a complex constant, it assumes the data type of
the other part of the complex constant. If both parts are typeless constants, the constants
assume the real data type with length sufficient to represent both typeless constants.

• When you use such a constant as an actual argument in an external procedure reference,
it assumes a length of 4 bytes but no data type.

• When you use such a constant as an actual argument in a statement function reference, it
assumes the data type of the corresponding formal argument.

• When you use such a constant as an actual argument in a reference to a specific intrinsic
function, it assumes the data type defined for that function.

• When you use such a constant in any other context, it assumes an INTEGER*4 data type,
with the exception that a Hollerith constant in a format specification assumes a
CHARACTER data type.

Examples of "Typeless" Constants

INT=B'l' Binary constant is integer
RL4=B'l' Binary constant is real
INT= INT + B' 1' Binary constant is integer
RL4=INT + B' 1' Binary constant is integer
INT=RL4 + B'l' Binary constant is real
ARRAY(B'l')=l.O Binary constant is integer

Chapter 3. Data Types and Constants 25

LOGICAL*4 LOG4
LOG4=B'l'

LOGICAL*! LOGl
LOGl=.NOT.B'l'

!Binary constant is LOGICAL*4, LOG4 is .TRUE.

!Binary constant is LOGICAL*!, LOGl is .FALSE.

Note: You can specify all "typeless" constant key letters (X, Z, 0, B, and H) in uppercase or
lowercase. However, if you have specified the MIXED compiler option, you must
specify key letters in lowercase.

26 Reference Manual for XL FORTRAN

Chapter 4. Variables, Arrays, and Character Substrings

Variables

Arrays

This chapter describes:

• Variables
• Arrays
• Character substrings
• Definition status of variables, array elements, and character substrings
• Variable, array element, and character substring references
• Association.

A variable has a name, a type, a length, and a value that can change during program
execution. XL FORTRAN determines the type of a variable by the type of its name. See
"How Type Is Determined" on page 16 for further explanation.

Note that an array element is not the same as a variable, as it is in some other programming
languages.

An array is an ordered, nonempty sequence of data objects. An array has a name, a type,
and a sequence of values. Each element of an array has an identical length and type, and a
value that may change during program execution. XL FORTRAN determines the type of an
array by the type of its name. See "How Type is Determined" on page 16 for further
explanation.

Array Declarators
An array declarator declares the name and size of an array. You must declare every array,
and no array can have more than one array declarator for the same name. An array
declarator can appear in a DIMENSION, COMMON, or explicit type statement.

The form of an array declarator is:

- array_name- (- dimension_declarator_fist-)--1
array_name

is the array name. Each array element has the type and length associated with this
name.

dimension_ declarator
A dimension declarator declares the lower and upper bounds of a dimension. Each
dimension requires one dimension declarator. The minimum number of dimensions
(and therefore dimension declarators) is one. The maximum number of dimensions you
can have is 20.

The form of a dimension declarator is:

~ S upper_dimension_bound -j
lower _dimension _bound - :

© Copyright IBM Corp. 1990 Chapter 4. Variables, Arrays, and Character Substrings 27

lower_ dimension _bound
is an INTEGER*4 arithmetic expression, called a dimension bound expression. If you
do not specify this expression, a value of 1 is assumed.

upper_ dimension_ bound
is one of the following:

• An INTEGER*4 arithmetic expression whose value must be greater than or equal to the
value of the lower dimension bound

• An asterisk if the dimension is the last dimension in an assumed-size array declarator.

A dimension bound expression must not contain a function or an array element reference.
Integer variables can appear in dimension bound expressions only in adjustable array
declarators. A dimension bound expression can also be negative or zero.

Kinds of Array Declarators and Arrays
There are three kinds of array declarators:

• A constant array declarator is one in which every dimension bound expression is an
integer constant expression.

• An adjustable array declarator is one in which at !east one of the dimension bound
expressions contains at least one integer variable name. Any variable name so used must
appear either in a common block or in the same dummy argument list that contains the
array name. An adjustable array declarator declares an adjustable array and its
dimensions are called adjustable dimensions.

• An assumed-size array declarator is one in which the upper dimension bound of the last
dimension is an asterisk.

Examples of Adjustable and Assumed-Size Array Declarators

SUBROUTINE MEASUR(GRIDS,LENGTH,WIDTH,TOTALS)
INTEGER LENGTH,WIDTH,TOTALS
CHARACTER*l GRIDS(LENGTH, WIDTH) !Adjustable array
DIMENSION TOTALS(*) !Assumed-size array

There are two kinds of arrays:

• An actual array is one that you declare with a constant array declarator and whose name
is not a dummy argument. You can declare this kind of array in a DIMENSION statement,
a COMMON statement, or a type statement.

• A dummy array is one that you can declare with constant, adjustable, or assumed-size
array declarators, and whose name must be a dummy argument. You can declare this
kind of array in a DIMENSION statement or a type statement.

Dimensions of an Array
The size of a dimension is the value of the upper dimension bound, minus the value of the
lower dimension bound, plus one. XL FORTRAN does not specify the size of a dimension
that has an upper dimension bound of an asterisk.

The number and size of dimensions in one array declarator can be different from the number
and size of dimensions in another array declarator that you associate by common,
equivalence, or argument association.

28 Reference Manual for XL FORTRAN

Size of an Array
The size of an array (that is, the number of elements in an array) is equal to the product of
the sizes of its dimensions.

The size of an assumed-size array (declared with an asterisk) is equal to the size of its
associated actual argument. For example, if the array declared in the calling routine is:
DIMENSION IARRAYA(6), and the associated assumed-size array is: DIMENSION
IARRAYB (*)' the size of IARRAYB is 6.

Array Elements
An array consists of array elements. You identify an array element by an array element
name, whose form is:

- array_name- (- integer_expr_list-) ~

array_name
is a name.

integer_ expr
is an integer expression called a subscript expression.

The number of subscript expressions must be equal to the number of dimensions in the
array. Subscript expressions can contain arithmetic expressions, function references that do
not change any other value in the same statement, array elements, and mixed-mode
expressions (integer and real only). XL FORTRAN evaluates mixed-mode expressions
within a subscript according to normal FORTRAN rules. If the evaluated expression is real,
the compiler converts it to integer by truncation.

The value of each subscript expression must be greater than or equal to the corresponding
lower dimension bound declared for the array. The value of each subscript expression must
not exceed the corresponding upper dimension bound declared for the array. If the upper
dimension bound is an asterisk, the value of the corresponding subscript expression must be
such that the subscript value does not exceed the size of the actual array.

The subscript value determines the element of the array that you identify by the array
element name. The subscript value depends on the values of the subscript expressions and
on the dimensions of the array. See "Arrangement of Arrays in Storage" below for an
example.

Arrangement of Arrays in Storage
XL FORTRAN stores array elements in ascending storage units in column-major order, as
in the following example of a two-dimensional array declared by array declarator
C(3,0:l):

Array Element Name Element Number

Lowest storage unit C(1,0) 1

C(2,0) 2

C(3,0) 3

C(1, 1) 4

C(2, 1) 5

Highest storage unit C(3, 1) 6

Chapter 4. Variables, Arrays, and Character Substrings 29

Use of Array Names
In a program unit, every appearance of an array name must be qualified by a subscript
except in the following cases:

• In a dummy argument list
• In a COMMON statement
• In a type statement
• In an array declarator
• In an EQUIVALENCE statement (see "EQUIVALENCE" on page 44 for more information)
• In a DATA statement
• In a SAVE statement
• In the list of actual arguments in a reference to an external procedure
• In the list of an input/output statement if the array is not an assumed-size dummy array
• As a unit identifier for an internal file in an input/output statement (if the type of the array

is character, and it is not an assumed-size array)
• As a format identifier in an input/output statement (cannot be an assumed-size array)
• In a NAMELIST statement.

Character Substrings
A character substring is a contiguous portion of a character variable or character array
element. A character substring is identified by a substring reference whose form is:

-C,~::;~~::am]- c-[integer_expr1} :-[integer_expr2} i-i
variable _name

is the name of a character variable.

array_ element_ name
is the name of a character array element.

integer_ exprt and integer_ expr2
specify the leftmost character position and rightmost character position, respectively, of
the substring. Each is an integer expression called a substring expression.

The values of integer_expr1 and integer_expr2 must be such that:

1 <= integer_expr1 <= integer_expr2<= length

where length is the length of the character variable or character array element. If
integer_expr1 is omitted, a value of 1 is implied. If integer_expr2 is omitted, a value of length
is implied.

The length of a character substring is (integer_ expr2 - integer_ expr1 + 1).

A substring expression can contain array element references and function references. Note
that a restriction in the evaluation of expressions prohibits certain side effects. In particular,
evaluation of a function must not alter the value of any other expression within the same
substring name.

For the substring of a character array element, the substring information must be specified
after the subscript information.

30 Reference Manual for XL FORTRAN

STATIC and AUTOMATIC Variables and Arrays
When a variable or array is declared STATIC, it indicates that there is exactly one copy of
the data, and its value is retained between calls. An AUTOMATIC variable or array indicates
that there is one copy of each variable or array for each invocation of the procedure. The
default for XL FORTRAN is STATIC.

Variable names and array names explicitly declared as AUTOMATIC cannot appear in
COMMON (as an item), EQUIVALENCE, DATA, PARAMETER, SAVE, NAMELIST (as an
item), EXTERNAL, or INTRINSIC statements. Variable names and array names explicitly
declared as STATIC cannot appear in COMMON (as an item), or PARAMETER statements.

The same name must not appear in more than one AUTOMATIC or STATIC type statement
within the same program unit, and must not appear in both AUTOMATIC and STATIC type
statements in the same program unit. Dummy argument names, statement function names,
and names of constants must not appear in AUTOMATIC or STATIC type statements.
Noncharacter function names can appear in STATIC or AUTOMATIC statements.

AUTOMATIC variables and arrays cannot be initialized (either with a DATA statement, or
with an explicit type statement).

Definition Status of a Variable, Array Element, or Character
Substring

At any given time during the execution of a program, the definition status of each variable,
array element, or character substring is either defined or undefined:

• If defined, it has a value. The value does not change until the variable, array element, or
character substring becomes undefined or until it is redefined with a different value.

• If undefined, it does not have a predictable value.

A character variable, character array element, or character substring is defined if each of its
substrings of length 1 is defined. A complex variable or complex array element is defined if
each of its parts is defined.

A variable, array element, or character substring must be defined at the time its value is
required. A value can be assigned (thus causing definition) by:

• An assignment statement.

• An explicit type statement if initial values are provided.

• An input statement. Each variable, array element, or character substring in the input list
becomes defined at the time it is assigned a value.

• Some specifiers in an input/output statement.

• A DO statement. The DO variable becomes defined.

• An input/output implied-DO list. The implied-DO variable becomes defined.

• A DATA statement. Initial values are provided.

• An ASSIGN statement.

• Association. Totally associated variables of the same type, array elements of the same
type, or character substrings become defined when any one is defined. (Association is
total when there is one-for-one storage mapping.)

Chapter 4. Variables, Arrays, and Character Substrings 31

A variable, array element, or character substring can become undefined as follows:

• All are undefined at the beginning of the program except for those specified in DATA
statements and explicit type statements where initial values are provided.

• When a variable, array element, or character substring becomes defined, all associated
variables, array elements, and character substrings of different type become undefined.

• An ASSIGN statement causes the specified variable to become undefined as an integer.

• If a reference to a function does not need to be evaluated to determine the value of the
expression in which it appears, any variables, array elements, and character substrings in
common blocks, and any arguments, that the function would have defined, become
undefined.

• A RETURN or END statement causes all variables and arrays to become undefined
except for the following:

- Those in a blank common

- Those initially defined that neither were redefined nor became undefined

- Those specified by SAVE statements

- Those specified in a named common block that appears in at !east one other program
unit that is either directly or indirectly referencing the subprogram.

• An error or end-of-file condition during an input statement causes all of the variables,
array elements, and character substrings specified in the input list to become undefined.

• A direct access input statement that specifies a record that was not previously written
causes all of the variables, array elements, and character substrings in the input list to
become undefined.

• The INQUIRE statement may cause some variables, array elements, or substrings to
become undefined. See "INQUIRE Statement" on page 109.

Reference
A variable, array element, or character substring reference is the appearance of a variable
name, array element name, or character substring name in a statement in a context
requiring its value to be used during program execution. When a reference is made, the
current value of the variable, array element, or character substring is available. Definition of
a variable, array element, or character substring is not considered a reference.

Association
Association exists if the same data item can be identified by different names in the same
program unit, or by the same name or different names in different program units of the same
executable program. The kinds of association are:

• Equivalence association (see page 45)
• Common association (see page 46)
• Entry association (see page 85)
• Argument association (see page 92) .

32 Reference Manual for XL FORTRAN

Chapter 5. Expressions

An expression, when evaluated, produces a value. This chapter describes the four kinds of
expressions and explains how XL FORTRAN evaluates them:

• Arithmetic
• Character
• Relational
• Logical.

Arithmetic
An arithmetic expression (arith_expr), when evaluated, produces a numeric value. The form
of arith_expr is:

-ir . }{ + ~ arith_term --1
[__ anth_expr _ _J--J

The form of arith_term is:

-L -{ I~ arith_factor--1
arith_term * _J--J

The form of arith_factor is:

-arith_primary -[U
** - arith_factor_J

1

An arith_primary {called a primary) is one of the following:

• An unsigned arithmetic constant
• The name of an arithmetic constant
• The name of an arithmetic variable
• The name of an arithmetic array element
• An arithmetic function reference
• An arithmetic expression enclosed in parentheses
• A hexadecimal constant
• An octal constant
• A binary constant
• A Hollerith constant.

The following table shows the available arithmetic operators and the precedence each takes
within an arithmetic expression.

© Copyright IBM Corp. 1990 Chapter 5. Expressions 33

Arithmetic Representing Precedence
Operator

** Exponentiation Highest

* Multiplication Intermediate

I Division Intermediate

+ Addition or identity Lowest

- Subtraction or negation Lowest

XL FORTRAN evaluates the terms from left to right when evaluating an arithmetic
expression containing two or more addition or subtraction operators. For example, 2+3+4 is
the same as (2 + 3) +4 after evaluation.

XL FORTRAN evaluates the factors from left to right when evaluating a term containing two
or more multiplication or division operators. For example, 2 * 3 * 4 is the same as (2 * 3) * 4
after evaluation.

The compiler combines the primaries from right to left when evaluating a factor containing
two or more exponentiation operators. For example, 2 * * 3 * * 4 is the same as 2 * * (3 * * 4)
after evaluation.

The precedence of the operators determines the order of evaluation when XL FORTRAN is
evaluating an arithmetic expression containing two or more operators having different
precedence. For example, in the expression -A**3, the exponentiation operator{**) has
precedence over the negation operator (-). Therefore, XL FORTRAN combines the
operands of the exponentiation operator to form an expression that XL FORTRAN uses as
the operand of the negation operator. Evaluation of the expression -A** 3 is the same as
evaluation of the expression - (A** 3).

Note that XL FORTRAN does not allow expressions containing two consecutive arithmetic
operators, such as A* *-B or A *-B. However, you can use expressions such as A** (-B)
and A* (-B).

Examples of Arithmetic Expressions

Arithmetic Fully Parenthesized
Expression Equivalent

-b**2/2.0 -((b**2)/2.0)

i**j**2 i**0**2)

a/b**2-c (a/(b**2)) - c

Arithmetic Constant Expressions
An arithmetic constant expression is an arithmetic expression in which each primary is an
arithmetic constant, the name of an arithmetic constant, or an arithmetic constant expression
enclosed in parentheses.

An integer constant expression is an arithmetic constant expression in which each constant
or name of a constant is of type integer.

Data Type of an Arithmetic Expression
Because the identity and negation operators operate on a single operand, the type of the
resulting value is the same as the type of the operand.

The following table indicates the resulting type when an arithmetic operator acts upon a pair
of operands.

34 Reference Manual for XL FORTRAN

I*l I*2 !*4 R*4 R*8 X*8 X*l6

I*l I*l !*2 !*4 R*4 R*8 X*8 X*l6

!*2 !*2 I*2 I*4 R*4 R*8 X*8 X*l6

!*4 !*4 !*4 !*4 R*4 R*8 X*8 X*l6

R*4 R*4 R*4 R*4 R*4 R*8 X*8 X*l6

R*8 R*8 R*8 R*8 R*8 R*8 X*l6 X*l6

X*8 X*8 X*8 X*8 X*8 X*l6 X*8 X*l6

X*l6 X*l6 X*l6 X*l6 X*l6 X*l6 X*l6 X*l6

Figure 2. Data Type of an Arithmetic Expression

Notation: T*len, where Tis the data type (I: integer, R: real, X: complex) and fen is the data
length in bytes.

Note that although extended precision real and complex data can be defined, it is always
interpreted as double precision data, since extended precision floating-point data is not
supported on the RISC System/6000 computer. Such data is allocated appropriate storage
to maintain equivalence relationships.

Character
A character expression, when evaluated, produces a result of type character. The form of
char_expr is:

-[=t-- char_primary -j
char _ expr - II

char_primary (called a character primary) is one of the following:

• A character constant
• The name of a character constant
• The name of a character variable
• The name of a character array element
• The name of a character substring
• A character function reference
• A character expression enclosed in parentheses
• A hexadecimal constant
• An octal constant
• A binary constant
• A Hollerith constant.

The only character operator is //, representing concatenation.

Chapter 5. Expressions 35

In a character expression containing one or more concatenation operators, XL FORTRAN
joins the primaries to form one string whose length is equal to the sum of the lengths of the
individual primaries. For example, XL FORTRAN evaluates 'AB' I I 'CD' I I 'EF' as
'ABCDEF'. The length of the resulting string is six bytes.

Parentheses have no effect on the value of a character expression.

Except in a character assignment statement, a character expression must not involve
concatenation of an operand whose length specifier is an asterisk in parentheses (indicating
inherited length) unless the operand is the name of a constant.

Character Constant Expressions
A character constant expression is a character expression in which each character primary
is a character constant, the name of a character constant, or a character constant
expression enclosed in parentheses.

Example of a Character Expression

CHARACTER*7 FIRSTNAME,LASTNAME
c

Relational

FIRSTNAME='Martha'
LASTNAME='Edwards'
WRITE(6,*) LASTNAME//', '//FIRSTNAME
END

Output:'Edwards, Martha'

A relational expression, when evaluated, produces a result of type logical. A relational
expression can appear only within a logical expression. A relational expression can be an
arithmetic relational expression or a character relational expression.

Arithmetic Relational Expressions
An arithmetic relational expression compares the values of two arithmetic expressions. Its
form is:

- arith_ expr1 - relational_ operator - arith _ expr2 --1
arith _ expr1
arith_ expr2

are each an arithmetic expression.

relational_ operator
is any of the following:

Relational Operator Representing

.LT. or < Less than

.LE. or <= Less than or equal to

.EQ. or -- Equal to

.NE. or <> Not equal to

.GT. or > Greater than

.GE. or >= Greater than or equal to

If either arith_exprt or arith_expr2 is of type complex, you can only specify the relational
operators .EQ. or .NE ..

36 Reference Manual for XL FORTRAN

XL FORTRAN interprets an arithmetic relational expression as having the logical value true
if the values of the operands satisfy the relation specified by the operator. If the operands do
not satisfy the specified relation, the expression has the logical value false.

If arith_expr1 and arith_expr2 are of different data types, the value of the relational
expression is the value of the expression:

((arith_expr1) - (arith_expr2)) relational_operator o
where o is of the same type as the expression ((arith_expr1) - (arith_expr2)).

XL FORTRAN always evaluates a relational expression to a LOGICAL*4 result, but you can
convert the result in an assignment statement to a LOGICAL *1 or LOGICAL *2 value.

Example of an Arithmetic Relational Expression

IF (NODAYS .GT. 365) YEARTYPE = 'leapyear'

Character Relational Expressions

Logical

A character relational expression compares the values of two character expressions. Its form
is:

- char_ expr1 - relational_ operator - char_ expr2 -i
char_expr1
char_expr2

are each a character expression.

relational_ operator
is any of the relational operators described under "Arithmetic Relational Expressions"
on page 36.

For operators other than .EQ. and .NE., XL FORTRAN uses the system dependent collating
sequence (determined by the ASCII coded character set) to interpret a character relational
expression. The character expression whose value is lower in the collating sequence is less
than the other expression. XL FORTRAN evaluates the character expressions one character
at a time from left to right. You can also use the lexical intrinsic functions (LGE, LGT, LLE,
and LLT) to compare character strings in ASCII order. For the operators .EQ. and .NE., if the
operands are of unequal length, the shorter will be extended on the right with blanks.

The compiler always evaluates a relational expression to a LOGICAL *4 result, but you can
convert the result to a LOGICAL *1 or LOGICAL *2 value in an assignment statement.

Example of a Character Relational Expression

IF (CHARIN .GT. '0' .AND. CHARIN .LE. '9') CHAR TYPE 'digit'

A logical expression, when evaluated, produces a result of type logical. The form of a logical
expression is:

logical_ disjunct -i

Chapter 5. Expressions 37

The form of a logical_ disjunct is:

-{ }- logical_ term -1
logical_disjunct - .OR.

The form of a logical_term is:

-{ }-- logical_ factor -1
logical_term- .AND.

The form of a logical_factor is:

-c:J- logical_primary -1
.NOT.

logical_primary is one of the following:

• A logical constant
• The name of a logical constant
• The name of a logical variable
• The name of a logical array element
• A logical function reference
• A relational expression
• A logical expression enclosed in parentheses
• A hexadecimal constant
• An octal constant
• A binary constant
• A Hollerith constant.

The logical operators are:

Logical Representing
Operator

.NOT. Logical negation

.AND . Logical conjunction

. OR. Logical inclusive
disjunction

.XOR. Logical exclusive
disjunction

.EQV. Logical equivalence

.NEQV. Logical nonequivalence

Precedence

First (highest)

Second

Third

Fourth (lowest)

Fourth (lowest)

Fourth (lowest)

The precedence of the operators determines the order of evaluation when XL FORTRAN is
evaluating a logical expression containing two or more operators having different
precedence. For example, evaluation of the expression A.OR.B.AND.c is the same as
evaluation of the expression A. OR. (B. AND. c) .

38 Reference Manual for XL FORTRAN

Value of a Logical Expression
Logical negation is evaluated as follows. Assume that x 1 and x2 represent logical values.
Then, if the value of xl is true, the value of .NOT. xl is false; if the value of xl is false, the
value of .NOT. xl is true .

x1 . NOT. x1

true false

false true

Use the following truth table to determine the values of other logical expressions:

x1 x2 . AND. .OR. . XOR . .EQV. .NEQV •

False False False False False True False

False True False True True False True

True False False True True False True

True True True True False True False

Sometimes the compiler does not have to completely evaluate a logical expression to
determine its value. Consider the following logical expression (assume that LFCT is a
function of type logical):

A .LT. B .OR. LFCT(Z)

If A is less than B, XL FORTRAN does not have to evaluate the function reference to
determine that this expression is true.

The compiler always evaluates a logical expression to a LOGICAL *4 result, but you can
convert the result to a LOGICAL *1 or LOGICAL *2 value in an assignment statement.

Logical Constant Expressions
A logical constant expression is a logical expression in which each primary is a logical
constant, the name of a logical constant, a relational expression in which each primary is a
constant expression, or a logical constant expression enclosed in parentheses.

Evaluating Expressions
Precedence of Operators

A logical expression can contain more than one kind of operator. When it does, XL
FORTRAN evaluates the expression from left to right, according to the following precedence
among operators:

Operator Precedence

Arithmetic First

Character Second

Relational Third

Logical Fourth

Chapter 5. Expressions 39

For example, the compiler evaluates the logical expression:

L .OR. A + B .GE. C

where L is of type logical, and A, B, and c are of type real, the same as the logical
expression:

L • OR • ((A + B) • GE • C) •

Summary of Interpretation Rules
The following determines the order in which XL FORTRAN combines primaries using
operators:

1 . Use of parentheses
2. Precedence of the operators
3. Right-to-left interpretation of exponentiations in a factor
4. Left-to-right interpretation of multiplications and divisions in a term
5. Left-to-right interpretation of additions and subtractions in an arithmetic expression
6. Left-to-right interpretation of concatenations in a character expression
7. Left-to-right interpretation of conjunctions in a logical term
8. Left-to-right interpretation of disjunctions in a logical disjunct
9. Left-to-right interpretation of logical equivalences in a logical expression.

Evaluation of Expressions
The compiler evaluates arithmetic, character, relational, and logical expressions according to
the following rules:

• You must define any variable, array element, function, or character substring you
reference as an operand in an expression at the time the reference is made. You must
define an integer operand with an integer value rather than a statement label value. Note
that, if you reference a character string or substring, you must define all of the referenced
characters at the time the reference is made.

You cannot use any integer operation whose result is not mathematically defined in an
executable program. (Examples are dividing by zero and raising a zero valued primary to
a zero valued or negative valued power.) As well, you cannot raise a negative valued
primary to a real or double precision power.

• The invocation of a function reference in a statement does not alter the value of any other
entity within the statement in which the function reference appears. The invocation of a
function in a statement does not alter the value of any entity in common that affects the
value of any other function reference in that statement. When the value of an expression
is true, invocation of a function reference in the expression of a logical IF statement
affects entities in the statement. If a function reference causes definition of an actual
argument of the function, that argument or any associated entities must not appear
elsewhere in the same statement. For example, you cannot use the statements:

A(I) = F(I)

Y = G(X) + X

if the reference to F defines I or the reference to G defines x.

The data type of an expression in which a function reference appears does not affect the
evaluation of the actual arguments of the function, and it is not affected by the evaluation
of the actual arguments of the function, except that the result of a generic function
reference assumes a data type that depends on a data type of its arguments.

• An argument to a statement function reference must not be altered by evaluating that
reference.

40 Reference Manual for XL FORTRAN

• Any occurrence of an array element reference requires the evaluation of its subscript. The
data type of an expression in which a subscript appears does not affect, nor is it affected
by, the evaluation of the subscript.

• Any occurrence of a substring reference requires the evaluation of its substring
expressions. The data type of an expression in which a substring name appears does not
affect, nor is it affected by, the evaluation of the substring expressions.

Chapter 5. Expressions 41

42 Reference Manual for XL FORTRAN

Chapter 6. Specification Statements

Specification statements are nonexecutable statements that describe the characteristics and
arrangement of data. This chapter describes the following specification statements:

• DIMENSION
• EQUIVALENCE
• COMMON
• Explicit Type
• IMPLICIT Type
• PARAMETER
• EXTERNAL
• INTRINSIC
• SAVE
• NAMELIST.

Within a program unit, a name must not appear more than once in the same kind of
specification statement, with these exceptions:

• A name in an EQUIVALENCE statement can appear more than once in the same or in
different EQUIVALENCE statements.

• A common block name can appear more than once in the same or in different COMMON
statements.

• A variable name or array name can appear more than once in the same or in different
NAMELIST statements.

• A name in a PARAMETER statement can appear more than once in the same or in
different PARAMETER statements provided that it is defined only once, and the rest are
references to the named constant.

• The name of a constant can appear in more than one DIMENSION, COMMON,
EQUIVALENCE, or explicit type statement provided that each appearance is a reference
to the named constant.

• A name can appear in two explicit type statements if one, but not both, is an AUTOMATIC
or STATIC statement.

DIMENSION

DIMENSION t array_name - (dim_list) r
array_name

is an array name.

dim
is a dimension bound, that represents the limits for each subscript of the array in the
form:

© Copyright IBM Corp. 1990 Chapter 6. Specification Statements 43

-[J upper_ dimension_ bound -j
lower_dimension_bound- : .

lower_ dimension_bound
is an INTEGER*4 arithmetic expression. If you do not specify this expression, the
default value is 1 .

upper_ dimension_ bound
is an INTEGER*4 arithmetic expression that you: must always specify, and it must be
greater than or equal to lower_dimension_bound, or it is an asterisk.

(See "Arrays" on page 27 for rules about dimension bounds.)

The DIMENSION statement specifies the name and dimensions of an array. You can specify
arrays with a maximum number of 20 dimensions.

Each array_ name in a DIMENSION statement declares that array_ name is an array in that
program unit. You can have only one declaration of the array name as an array in a program
unit. You can also declare array names and their bounds in COMMON statements and
explicit type statements. You can specify the type of an array after it has appeared in a
DIMENSION statement through the use of an explicit type statement. Otherwise, XL
FORTRAN will implicitly define the type. The size of a dimension is equai to the upper bound
minus the lower bound plus one.

In a subprogram, if the array name is a dummy argument, the dimension bound expression
can contain integer variables that must be dummy arguments or variables in a common
block, and the upper bound of the last dimension can be an asterisk.

You cannot use functions or array elements in dimension bound expressions.

Examples of the DIMENSION Statement

DIMENSION A(lO), ARRAY(5,5,5), LIST(l0,100)
DIMENSION ARRAY2 (1: 5, 1: 5, l: 5), LIST2 (I i!1')
DIMENSION B(0:24), C(-4:2), DATA(0:9,-5~4,10)
DIMENSION ARRAY (M*N*J,*)

EQUIVALENCE

I - EQUIVALENCE t (nam~-~
name

is one of the following:

• A variable name that is not a function name.
• An array name.

adjustable array

assumed-size array

• An array element name in which the subscript expressions are integer constants or
names of integer constants. (You cannot use variable or function names, or array
elements as subscript expressions.)

• A character substring name in which the substring expressions are integer constants or
names of integer constants. (You cannot use variable or function names, or array
elements.)

name must not be a dummy argument name, and you cannot declare it as AUTOMATIC.

44 Reference Manual for XL FORTRAN

The EQUIVALENCE statement specifies that two or more variables, arrays, array elements,
or character substrings in a program unit are to share the same storage.

All items named within a pair of parentheses have the same first storage unit, and XL
FORTRAN, therefore, associates them. This is called equivalence association. It may cause
the association of other items as well. (See "Example 2 of an EQUIVALENCE Statement"
below.) There must be at least two names within each set of parentheses.

If you specify an array element in an EQUIVALENCE statement, the number of subscript
quantities must be equal to the number of dimensions in the array. If you specify a
multi-dimensional array using an array element with a single subscript, XL FORTRAN treats
the subscript as a linear element number. In all other cases, XL FORTRAN replaces the
missing subscript with the lower bound of the corresponding dimension of the array. An array
name without a subscript refers to the first element of the array.

For example:

INTEGER*4
REAL*4
EQUIVALENCE

G(2,-1:2,-3:2)
H(3,1:3,2:3)
(G(2),H(l,l)) ! G(2) is G(2,-1,-3)

! H(l,1) is H(l,1,2)

Associated items can be of different data types. If so, the EQUIVALENCE statement does
not cause type conversion. The lengths of associated items do not have to be equal.

An EQUIVALENCE statement cannot cause the compiler to associate the storage
sequences of two different common blocks in the same program unit. It must not specify that
the same storage unit is to occur more than once in a storage sequence. An EQUIVALENCE
statement must not contradict itself or any previously established associations caused by an
EQUIVALENCE statement.

You cannot use an EQUIVALENCE statement with names that both appear in a common
block. You can cause names not in common blocks to share storage with a name in a
common block using the EQUIVALENCE statement. If the variable that you associate to a
variable in a common block, using the EQUIVALENCE statement, is an element of an array,
the implicit association of the rest of the elements of the array can extend the size of the
common block. You cannot extend the size of the common block so that XL FORTRAN adds
elements before the beginning of the established common block.

Example 1 of an EQUIVALENCE Statement

DOUBLE PRECISION A(3)
REAL B(5)
EQUIVALENCE (A,B(3))

The preceding statements associate storage units as follows:

I I
Array A: A(1) A(2)
Arr a y B : I B (1) B(2) B(3) I B(4) B(5) I

Example 2 of an EQUIVALENCE Statement

I
A(3)

This example shows how association of two items can result in further association. The
statements:

CHARACTER A*4,B*4,C(2)*3
EQUIVALENCE (A,C(l)),(B,C(2))

associate storage units as follows:

Chapter 6. Specification Statements 45

I
Variable A: A
Variable B: B
Array C: C(l) C(2)

Because XL FORTRAN associates A and B with c, A and B become associated with each
other.

COMMON

1--l_ J- 1- name_listy
common_block_name J

common _block_ name
is a common block name.

name
is a variable name, array name, or array declarator. You cannot use any of these
names as a dummy argument name, function name, subroutine name, entry name, or
block data subprogram name. Array declarators cannot be assumed size array
declarators.

The COMMON statement specifies common blocks and their contents. A common block is a
storage area that two or more program units can share, allowing them to define and
reference the same data and to share storage units.

If you specify common_block_name, XL FORTRAN declares all variables and arrays
specified in name_list to be in that named common block. If you omit common_block_name,
all variables and arrays that you specify by the following name_list are in a blank common
block.

Within a program unit, a common block name can appear more than once in the same or in
different COMMON statements. Each successive appearance of the same common block
name continues the common block specified by that name. Common block names cannot be
the same as names used in PROGRAM, SUBROUTINE, FUNCTION, ENTRY, or BLOCK
DATA statements.

The variables and arrays in a common block can have different data types. You can mix
character and noncharacter data types within the same common block. Item names in
common blocks can appear in only one COMMON statement in a program unit, and you
cannot duplicate them within the same COMMON statement.

Common Association
Within an executable program, all named common blocks with the same name have the
same first storage unit. There can be one blank common block, and all program units that
refer to blank common refer to the same first storage unit, resulting in the association of
variables and arrays in different program units.

46 Reference Manual for XL FORTRAN

Because association is by storage unit, variables and arrays in a common block can have
different names and types in different program units. Furthermore, if you use a name for a
variable in one program unit, you can also use the same name for an array in another
program unit.

Common Block Storage Sequence
XL FORTRAN assigns storage units for variables and arrays within a common block in the
order that their names appear within the COMMON statement.

You can extend a common block by using an EQUIVALENCE statement, but only by adding
beyond the last entry, not before the first entry. For example, the statements:

COMMON /X/ A,B
REAL C(2)
EQUIVALENCE (B,C)

specify common block x as follows:

I
Variable A: A
Variable B:
Array C:

B
c (1) C(2)

If data is misaligned because of its specification in COMMON, XL FORTRAN can still
process it (for example, in expressions). You can also pass misaligned data as arguments to
subprograms. Note that any use of misaligned data adversely affects the performance of the
program.

Size of a Common Block
The size of a common block is equal to the number of bytes of storage needed to hold all the
variables and arrays in the common block, including any extensions resulting from
equivalence association.

Differences between Named Common Blocks and Blank Common Blocks
The differences between named common blocks and blank common blocks are:

• Within an executable program, there can be more than one named common block but
only one blank common block.

• In all program units of an executable program, named common blocks of the same name
must have the same size, but blank common blocks can have different sizes. (If you
specify blank common blocks with different sizes in different program units, the length of
the longest block becomes the length of the blank common block in the executable
program.)

• You can initially define variables and array elements in a named common block by using
the DATA statement or by the explicit type specification statement in a BLOCK DATA
subprogram. You cannot initially define variables and array elements in a blank common
block.

• Executing a RETURN or END statement may cause entities in named common blocks to
become undefined but never causes entities in blank common to become undefined.

Restriction on Common and Equivalence
An EQUIVALENCE statement cannot cause the storage sequences of two different common
blocks to become associated.

Chapter 6. Specification Statements 4 7

Examples of the COMMON Statement

INTEGER MONTH,DAY,YEAR
COMMON /DATE/ MONTH,DAY,YEAR
REAL*4 R4
REAL*8 RS
CHARACTER*! Cl
COMMON /NOLIGN/ R8,Cl,R4

Explicit Type

!R4 will not be aligned on a
!full-word boundary.

--J ~e_spec _=i_
Li_ . STATIC .. - I' t_ na~~

AUTOMATIC .

type_spec
specifies a data type and is one of the following:

where:

INTEGER

REAL --­

COMPLEX

LOGICAL
DOUBLE PRECISION-------....,

DOUBLE COMPLEX

CHARACTER

DOUBLE COMPLEX
defines double precision complex data. It is an alternative form of
COMPLEX*16.

STATIC indicates that there is exactly one copy of the data, and XL FORTRAN
retains its value between calls. Local variables are STATIC by default.

AUTOMATIC indicates that there is one copy of each variable declared AUTOMATIC for
each invocation of the procedure.

and where:

*len1 is optional and len1 represents one of the permissible length specifications
for its associated type type_spec, as described in "The Data Types" on page
15.

The length len1 can be an unsigned, nonzero, integer constant.

*len2 specifies the length (number of characters between 1 and 32767). It is
optional.

48 Reference Manual for XL FORTRAN

Note: You can specify the CHARLEN compiler option to set the maximum length of the
character data type to a range of 1 through 32767. The default maximum length is
500 characters.

You can express the length *len2 as:

• An unsigned, nonzero, integer constant
• An expression with a positive value that contains integer constants enclosed in

parentheses
• An asterisk enclosed in parentheses.

XL FORTRAN uses the length *len2 immediately following the word CHARACTER as the
length specification of any name in that statement that has no length specification. To
override a length for a particular name, see the alternative forms of name below. If you do
not specify *len2, its default value is 1.

name
is a variable, array, function name, or the name of a constant. It can have the form:

a -L., }{ (d' 1·)}{ 1· . . . /}1 en3 1m_ 1st 11, 12, 13, ... , In

or

a-{ }{ }{/. . . ·1}-i
(dim_list) *len3 11, 12, 13, ... , In

where:

a is variable, array, function name, dummy procedure name, or named
constant.

dim_list is a list of dimension bounds (separated by commas) that you can only
specify for arrays. They represent the limits for each subscript of the array in
the form:

-[OJ- upper_dimension_bound-j
lower_ dimension_ bound - :

lower_ dimension_ bound
is an INTEGER*4 arithmetic expression. If you do not specify this expression, its
default value is 1.

upper_ dimension_ bound
is either an INTEGER*4 arithmetic expression that is greater than or equal to
lower_dimension_bound, or is an asterisk. You must always specify it.

(See "Arrays" on page 27 for rules about dimension bounds.)

*len3 overrides the length as specified in the CHARACTER statement, or as
specified in the initial keyword of the statement.

i1 , i2 , i3 ••• in are optional and represent initial data values.

The explicit type statement:

• Specifies the type and length of variables, arrays, named constants, and user-supplied
functions

• Specifies the dimensions of an array
• Assigns initial data values for variables and arrays.

Chapter 6. Specification Statements 49

The explicit type statement overrides the IMPLICIT statement, which, in turn, overrides the
predefined convention for specifying type.

You can use an explicit type statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in an explicit type specification
statement does not cause the name to lose its intrinsic function property. However, if you
define the name as an array, or subsequently use it as a variable (for example, in an
assignment statement), it loses its intrinsic function property. Also, if you assign an initial
value to the name, it loses its intrinsic function property.

Function and array element names must not appear in an expression for the length
specification. The value of an expression for a length specification must be a positive,
nonzero, integer constant. Any length assigned must be an allowable value for the
associated data type. The length specified (or assigned by default) with an array name is the
length of each element of the array.

If the CHARACTER statement is in a main program, and you specify the length of name as
an asterisk enclosed in parentheses(*) (also known as inherited length), the name must be
the name of a character constant defined in a PARAMETER statement. The character
constant assumes the length of its corresponding expression in the PARAMETER
statement.

If the CHARACTER statement is in a subroutine subprogmm, and the length of name is
inherited, name must be the name of a dummy argument or the name of a character
constant defined in a PARAMETER statement. If name is the name of a dummy argument,
the dummy argument assumes the length of the associated actual argument for each
reference to the subroutine. If name is the name of a character constant, the character
constant assumes the length of its corresponding expression in the PARAMETER
statement.

If the CHARACTER statement is in a function subprogram, and the length of name is
inherited, name must be either the name of a dummy argument, the name of the function in
a FUNCTION or ENTRY statement in the same program unit, or the name of a character
constant defined in a PARAMETER statement. If name is the name of a dummy argument,
the dummy argument assumes the length of the associated actual argument for each
reference to the function. If name is the function name or an entry name, name assumes the
length specified in the calling program unit. If name is the name of a character constant, the
character constant assumes the length of its corresponding expression in the PARAMETER
statement.

You cannot specify the length of a statement function of character type by an asterisk
enclosed in parentheses(*), but you can specify an integer constant expression.

The length specified for a character function in a main program unit that refers to the
function must be an expression involving only integer constants or names of integer
constants. This length must agree with the length specified in the subprogram that specifies
the function, if you do not specify the length in the subprogram as an asterisk enclosed in
parentheses (*).

You cannot assign initial values to dummy arguments, names of constants, function names,
statement functions, and dummy procedure names. You cannot assign initial data to items in
a blank common. For a named common, you can only have initial data in a BLOCK DATA
subprogram. You can assign initial data values to variables or arrays using~ (1~j ~n),
where ~ is a constant or list of constants separated by commas. Each ~ provides initialization
only for the immediately preceding variable or array. You use lists of constants to assign
initial values to array elements.

50 Reference Manual for XL FORTRAN

If you assign initial data values to an array in an explicit specification statement, the
dimension information for the array must be in the explicit specification statement or in a
preceding DIMENSION or COMMON statement.

For CHARACTER and LOGICAL type statements, the data must be of the same type as the
variable or array. For a numeric type statement, the data need not be of the same type as
the variable or array, but must be compatible with the type of the variable. (For example,
integer i/' . TRUE. 'I is invalid.) If it is not of the same type, XL FORTRAN converts the
data to the specified type. You can represent successive occurrences of the same constant
with the form i *constant, where i is the repetition count, as in the DATA statement.

You can use a hexadecimal constant, octal constant, binary constant, or Hollerith constant to
initialize a variable, array element or array of any type, or a character substring. If the
hexadecimal constant is the same string as the name of a constant you defined with a
previous PARAMETER statement, XL FORTRAN recognizes the string as the named
constant, and will assign its value to the item in the explicit type statement.

If the hexadecimal, octal, or binary constant is smaller than the length (in bytes) of the
variable to be initialized, XL FORTRAN adds zeros on the left. If the constant is larger, the
compiler truncates the leftmost hexadecimal, octal, or binary digits. If the Hollerith constant
is smaller than the length (in bytes) of the variable to be initialized, XL FORTRAN adds
blanks on the right. If the constant is larger, the compiler truncates the rightmost Hollerith
characters.

If a typeless constant initializes a complex data type, you use one constant that initializes
both the real and the imaginary parts, and do not enclose the constant in parentheses.

You must initialize list items of type logical with logical constants, but you can use the
abbreviated forms:

• T for .TRUE.

• F for .FALSE.

If you define the abbreviated form of a logical constant as the name of a constant in a
previous PARAMETER statement, and if it occurs as a constant in an expliCit type
statement, it is no longer an abbreviated logical constant, but the name of the constant.

The table in "The Data Types" on page15 lists all of the possible explicit type specifiers, and
the resulting type and length of the data item.

Examples of Explicit Type Statements

CHARACTER*8 ORANGES
DATA ORANGES /'ORANGES '/

SUBROUTINE TEST(VARBL)
CHARACTER*(*) VARBL

REAL

COMPLEX
INTEGER*2
REAL
REAL*8
INTEGER*l

STATIC

TAN /1. 2/ ! TAN loses its intrinsic property

C,D /(2.1,4.7)/, E*l6
ITEM/76/, VALUE
A(5,5)/20*6.9E2,5*1.0/, B(l00)/100*0.0/
MASTER, HOLD, VALUE*4, ITEM(S,5)
BIN_ITEM /B'00001010'/, OCT_ITEM /0'12'/

VAR NAME /1. 0/ ! STATIC data can be initialized

Chapter 6. Specification Statements 51

IMPLICIT

-IMPLICIT t
type_spec
STATIC~ (range_list)

AUTOM.~~==i-r
UNDEFINED H

NONE

type_spec
specifies a data type. The description is in "Explicit Type" on page 48. You can also
specify the type as UNDEFINED.

range
is either a single letter or a range of letters drawn from the XL FORTRAN character set
in alphabetic order. (See "Characters" on page 7.) A range of letters has the form
letter1-letter2, where letter1 is the first letter in the range and letter2 is the last letter in
the range. Specifying a range of letters has the same effect as specifying a list of all
letters in that range. The underscore U follows the currency symbol {$),which follows
the z. Thus, the range Y - _is the same as Y, z, $, _.

The IMPLICIT statement changes or confirms default implicit typing or, with the form
IMPLICIT NONE specified, voids the implicit type rules altogether. See "How Type is
Determined" on page16 for a discussion of the implicit rules.

For all variables, arrays, and function subprogram names that begin with the letter or letters
specified by range_list, and for which you do not explicitly specify a type, XL FORTRAN
gives the type specified by the immediately preceding type_spec. A letter or a range of
letters that you specify as STATIC or AUTOMATIC can also appear in an IMPLICIT
statement for any data type.

If you specify the form IMPLICIT NONE, you must use explicit type statements to specify
data types. The compiler will issue a diagnostic message for each symbolic name that you
use that does not have an explicitly defined data type. When IMPLICIT NONE is specified,
you cannot specify any other IMPLICIT statement in the same program unit, except one
containing STATIC or AUTOMATIC. You can also compile your program with the UNDEF
compiler option to achieve the same effect as an IMPLICIT NONE statement.

IMPLICIT UNDEFINED turns off the implicit data typing defaults for the character or range of
characters specified. When you specify IMPLICIT UNDEFINED, you must declare the data
types of all symbolic names in the program unit that start with a specified character. The
compiler will issue a diagnostic message for each symbolic name that you use that does not
have an explicitly defined data type.

An IMPLICIT statement does not change the data type of an intrinsic function.

Example of the IMPLICIT Statement

IMPLICIT INTEGER (B), COMPLEX (D, K-M), REAL (R-A)

52 Reference Manual for XL FORTRAN

PARAMETER

- PARAMETER - (T constant_name- = -constant_expr T)--t

constant name
is the name of a named constant in this program unit.

constant_ expr
is a constant or a constant expression of integer, real, complex, logical, or character
type.

The PARAMETER statement specifies names for constants. PARAMETER statements must
appear before the use of the named constant. You must define the name only once in a
PARAMETER statement of the program unit. Items appearing in a PARAMETER statement
cannot appear in a STATIC, AUTOMATIC, or COMMON statement.

The type of the name must be defined before its definiti_on in this statement (by IMPLICIT,
explicit type, or predefined convention). You must also previously define the length of a
character name by IMPLICIT or explicit type prior to its use in a PARAMETER statement.
You cannot change the type and length of a name of a constant by subsequent specification
statements, including IMPLICIT statements. If a CHARACTER name has length defined as
(*), it then assumes the length of the result of the expression.

If the name (constant_name) is of character type, the corresponding expression
(constant_ expr) must be a character expression containing only character constants or
names of character constants.

If the name (constant_ name) is of logical type, the corresponding expression
(constant_ expr) must be a logical expression containing only logical constants or names of
logical constants, or a relational expression containing only constants or names of constants.

If the name (constant_ name) is of type integer, real, or complex, the corresponding
expression (constant_ expr) must be an integer, real, or complex expression containing only
constants of these types or names of such constants. Type conversion for arithmetic
constants takes place across the equal sign.

The constant expression cannot be a hexadecimal constant of the form Znn ... nnn or an
abbreviated logical constant, T or F. It can be a hexadecimal constant of the form
X ' nn ••• nn ' , Z ' nn ••• nn ' , X" nn ••• nn", Z "nn ••• nn" , ' nn ••• nn ' X, ' nn ••• nn ' Z,
"nn ••• nn "x, or "nn ••• nn" z, an octal constant, Hollerith constant, or a binary constant.

If the hexadecimal, octal, or binary constant is smaller than the length (in bytes) of the
constant_name to be initialized, XL FORTRAN adds zeros on the left. If the constant is
larger, the compiler truncates the leftmost hexadecimal, octal, or binary digits. If the Hollerith
constant is smaller than the length (in bytes) of the constant_name to be initialized, XL
FORTRAN adds blanks on the right. If the constant is larger, the compiler truncates the
rightmost Hollerith characters.

The constant expression can contain the following intrinsic functions with constant
arguments:

• ABS (for integer and ·real), DABS, IABS, QABS
• IMAG, AIMAG, DIMAG, QIMAG
• MAX, MAXO, AMAXO, MAX1 I AMAX1 I DMAX1 I QMAX1
• MIN, MINO, AMINO, MIN1 I AMIN1' DMIN1 I QMIN1

Chapter 6. Specification Statements 53

• AND, IAND, OR, IOR, XOR, IEOR, NOT
• BTEST, IBSET, IBCLR, ISHFT, LSHIFT, RSHIFT
• CONJG,DCONJG,QCONJG
• All conversion intrinsic functions
• DPROD
• SIGN, ISIGN, DSIGN
• LEN.

You cannot use names of constants in a FORMAT statement or as statement labels. You
can use them as part of a COMPLEX constant.

Examples of the PARAMETER Statement

PARAMETER (TW0=2.0)
PARAMETER (TWICE=TWO)
COMPLEX XCONST
REAL RPART,IPART

Use of (literal) constant.
Use of symbolic constant.

PARAMETER (RPART=l.1,IPART=2.2)
PARAMETER (XCONST = (RPART,IPART+3.3))

EXTERNAL

PARAMETER (MAXlO = MAX(l0,5)) ! use of intrinsic function
CHARACTER*2 BB
PARAMETER (BB=Z'2020') ! initialize to blanks

EXTERNAL:- name_list -1

name

is the name of an external procedure, dummy procedure, or BLOCK DATA
subprogram.

The EXTERNAL statement identifies a symbolic name as an external procedure so that you
can use the name as an actual argument. The EXTERNAL statement must proceed all
statement function definitions and executable statements.

An external procedure name must appear in an EXTERNAL statement in any program unit
that uses the name as an actual argument. The name of any subprogram that you pass as
an argument to another subprogram must appear in an EXTERNAL or INTRINSIC
statement in the calling program unit. The same name cannot appear in both EXTERNAL
and INTRINSIC statements. You can have only one appearance of a symbolic name in all of
the EXTERNAL statements of a program unit.

If an intrinsic function name appears in an EXTERNAL statement in a program unit, the
name becomes the name of a user-defined external procedure. Therefore, you cannot
invoke an intrinsic function of the same name from that program unit.

A statement function name cannot appear in an EXTERNAL statement.

Example of the EXTERNAL Statement

PROGRAM MAIN
EXTERNAL TREES
CALL SAM(TREES)
END

54 Reference Manual for XL FORTRAN

SUBROUTINE SAM(ARG)
CALL ARG()
END

!This results in a call to TREES.

INTRINSIC

SAVE

INTRINSIC- name_list --1

name
is the name of a FORTRAN intrinsic function described in Appendix A, "Intrinsic
Functions".

The INTRINSIC statement identifies a name as an intrinsic function and allows you to use
specific names of intrinsic functions as actual arguments. The INTRINSIC statement is a
specification statement and must precede statement function definitions and executable
statements.

If you use a specific intrinsic function name as an actual argument in a program unit, it must
appear in an INTRINSIC statement in that program unit. Generic names can be in the
INTRINSIC statement, but you cannot pass them as arguments unless they are also specific
names.

The intrinsic function names that you must not use as actual arguments are those for:

• Type conversion: INT, IFIX, IDINT, HFIX, REAL, FLOAT, DFLOAT, SNGL, DREAL,
DBLE, CMPLX, DCMPLX

• Choosing largest and smallest values: MAX, MAXO, AMAX1, DMAX1, QMAX1, AMAXO,
MAX1 I MIN, MINO, AMIN1' DMIN1 I QMIN1' AMINO, MIN1.

A generic or specific function named in an INTRINSIC statement keeps its generic or
specific properties.

A name must not appear in both an EXTERNAL and an INTRINSIC statement in the same
program unit. You cannot use duplicate names in INTRINSIC statements.

Example of the INTRINSIC Statement

INTRINSIC SIN

c Pass intrinsic function name to subroutine
CALL DOIT(0.5,SIN,X)

- SAVE variable_name ----­

array_ name----­

I common_ block_ name I

Chapter 6. Specification Statements 55

variable_name, array_name, common_block_name
is the name of a variable, array, or named common block. You cannot use
AUTOMATIC variables, dummy argument names, procedure names, entry names, or
the names of variables and arrays in a common block.

The SAVE statement specifies the names of variables, arrays, and named common blocks
whose definition status you want to retain after control returns (after executing a RETURN or
END) from the subprogram in which you define the variables, arrays, and named common
blocks.

XL FORTRAN treats a SAVE statement without a list as though it contains the names of all
common items and local variables in the program unit. The appearance of a common block
name in a SAVE statement has the effect of specifying all the entities in that named common
block. You cannot use the same name twice.

Within a function or subroutine subprogram, a variable or array whose name you specify in a
SAVE statement does not become undefined as a result of a RETURN or END statement in
the subprogram. A variable or array in a common block may become undefined or redefined
in another program unit, even though you specify the common block in a SAVE statement.

If a local entity specified in a SAVE statement (and not in a common block) is in a defined
state at the time XL FORTRAN executes a RETURN or END statement in a subprogram,
that entity is defined with the same vaiue at the next reference of that subprogram.

A RETURN statement or an END statement within a subprogram causes all entities within
the subprogram to become undefined except for the following:

• Entities specified by SAVE statements

• Entities in blank common blocks

• Initially defined entities that you do not redefine and do not become undefined

• Entities in named common blocks that appear in the subprogram and appear in at least
one other program unit that is referring, either directly or indirectly, to that subprogram.
The entities in a named common block may become undefined by executing a RETURN
or END statement in another program unit.

NAME LIST

1- NAMELISTr /name/- variable_list r
name

is a NAMELIST name. It is a name, enclosed in slashes, that must not be the same as
a variable or array name, a named constant, or a procedure.

variable
is a variable name or array name.

The NAMELIST statement specifies one or more lists of names for use in READ, WRITE,
and PRINT statements. The list of names belonging to a NAMELIST name ends with the
appearance of another NAMELIST name or the end of the NAMELIST statement. The
NAMELIST statement must precede any statement function definitions and all executable
statements.

56 Reference Manual for XL FORTRAN

A variable name or an array name can belong to one or more NAMELIST lists. Neither a
dummy variable nor a dummy array name can appear in a NAMELIST list. You must declare
a NAMELIST name in a NAMELIST statement, and you can declare it only once. You
cannot have subscripts or substrings in a list.

A NAMELIST name can appear only in input/output statements. The rules for input/output
conversion of NAMELIST data are the same as the rules for data conversion.

See "NAMELIST Input Data" on page 136 for a description of NAMELIST input data.

Chapter 6. Specification Statements 57

58 Reference Manual for XL FORTRAN

Chapter 7. DATA Statement

This chapter describes the DATA statement and the use of an implied DO with a DATA
statement. The DATA statement is a nonexecutable statement that provides initial values for
variables, array elements, arrays, and character substrings.

DATA Statement

- DATA data_ name _list I - initial_ value_ list - I

data_name
is any of the following:

• A variable name
• An array name
• An array element name in which the subscript expressions are integer constant

expressions
• A character substring name in which the substring expressions are integer constant

expressions
• An implied-DO list.

initial_ value
has the form:

___r-r__r constant _}l
L r * __fL constant_name

r
is a nonzero, unsigned, integer constant or the name of such a constant. The form
r*constant or r*constant_name is equivalent tor successive appearances of the
constant or name of constant.

Each data_name_list must specify the same number of items as its corresponding
initial_ value_list. There is a one-to-one correspondence between the items in these two
lists. This correspondence establishes the initial value of each data_name.

Specifying an array name as a data_name is the same as specifying a list of all the elements
in the array in the order XL FORTRAN stored them. Again, there must be a one-to-one
correspondence between the number of items in the array and the number of initial values.

The data type of each data_name and the data type of its corresponding initial_ value must
agree if either is of type logical or character. For type character, definition proceeds
according to the rules for character assignment statements. (See "Character Assignment" on
page 66.) If a data_name is of type integer, real, or complex, its corresponding initial_ value
need not agree in type, although it must be one of the types in that group (integer, real, or
complex). If the types do not agree, XL FORTRAN converts the initial_ value according to the
rules for arithmetic conversion in the figure on page 63.

© Copyright IBM Corp. 1990 Chapter 7. DATA Statement 59

You can use a hexadecimal constant (of the form znn ••• nn, x' nn ••• nn', z 'nn ••• nn',
X"nn ••• nn", Z"nn ••• nn", 'nn .•• nn'X, 'nn ••• nn'Z·, "nn ••• nn"X, or
"nn ••• nn" z), octal constant, binary constant, or Hollerith constant to initialize a variable,
an array element, or an array of any type. You can also use a "typeless" constant to initialize
a substring.

If the hexadecimal, octal, or binary constant is smaller than the length (in bytes) of the
variable, array element, or substring to be initialized, XL FORTRAN adds zeros on the left. If
the constant is larger, the compiler truncates the leftmost hexadecimal, octal, or binary digits.
If the Hollerith constant is smaller than the length (in bytes} of the variable to be initialized,
XL FORTRAN adds blanks on the right. If the constant is larger, the compiler truncates the
rightmost Hollerith characters.

If a typeless constant initializes a complex data type, you use one constant that initializes
both the real and the imaginary parts, and do not enclose the constant in parentheses.

You must initialize list items of type logical with logical constants, but you can use the
abbreviated forms (T for • TRUE • and F for • FALSE •) . If the abbreviated form of the logical
constant is the same string as the name of a constant you defined previously in a
PARAMETER statement, XL FORTRAN recognizes the string as the named constant and
will assign its value to the corresponding list item in the DATA statement.

In a block data subprogram, you can use DATA statements or explicit type statements to
provide an initial value for a variable, array element, or character substring in a named
common block.

A DATA statement cannot provide an initial value for:

• A dummy argument
• A variable, array element, or character substring in a blank common block, including a

variable, array element, or character substring that XL FORTRAN associates with a
variable, array element, or character substring in a blank common block

• A variable in a function subprogram whose name is the same as that of the function
subprogram or an entry in the function subprogram

• A variable declared as AUTOMATIC.

You must not initialize a variable, array element, or character substring more than once in an
executable program. If you associate two or more variables, array elements, or character
substrings, you can only initialize one in a DATA statement.

Implied-DO in a DATA Statement
You can use an implied-DO list in a DATA statement to initialize the elements of an array. Its
form is:

- (- do_object_list - , - variable_name - = -+

~ integer_ exprt - , - integer_ expr2 --r= , _ }) -j
integer_ expr3

do_object
is an array element name, character substring name, or implied-DO list.

variable_ name
is the name of an integer variable called the implied-DO variable.

60 Reference Manual for XL FORTRAN

integer_ expr1 (start)
integer_ expr2 (stop)
integer_expr3 (step)

are each an integer constant expression; the expression can contain implied-DO
variables of other implied-DO lists that have this implied-DO list within their ranges.

The range of an implied-DO list is the list do_ object_list. XL FORTRAN establishes the
iteration count and the values of the implied-DO variable from integer_expr1, integer_expr2,
and integer_expr3, the same as for a DO statement, except thatthe iteration count must be
positive. (See "Executing a DO Statement" on page 75.) When XL FORTRAN executes the
implied-DO list, it specifies the items in the do_object_list once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of the
implied-DO variable.

Each subscript expression in the do_object_list must be an integer constant expression,
except that the expression can contain implied-DO variables of implied-DO lists that have
the subscript expression within their ranges.

Examples of the DATA Statement

INTEGER Z(l00),EVEN_ODD(0:9)
LOGICAL FIRST TIME
DATA FIRST=TIME / .TRUE. /
DATA Z I 100* 0 I

C Implied-DO list
DATA (EVEN_ODD(J),J=0,8,2) I 5 * 0 I

+ ,(EVEN_ODD(J),J=l,9,2) I 5 * 1 I
C Nested example

DIMENSION TDARR(3,4)
DATA ((TDARR(I,J),J=l,4),I=l,3) /12 * 0/

Chapter 7. DATA Statement 61

62 Reference Manual for XL FORTRAN

Chapter 8. Assignment Statements

Assignment statements are executable statements that assign values to variables, array
elements, or character substrings.

This chapter describes the four kinds of assignment statements:

• Arithmetic
• Logical
• Character
• Statement label (ASSIGN).

Arithmetic Assignment

-{ variable name J-
array_ el:ment_name =

variable_ name
array_ element_ name

- arith_ expr -i

is the name of a variable or array element of type integer, real, or complex.

arith_expr
is an arithmetic expression.

The arithmetic assignment statement causes evaluation of an arithmetic expression,
conversion of the resulting value to the type of the variable or array element, and definition
of the variable or array element by assigning that value to it, according to the rules in the
following table.

© Copyright IBM Corp. 1990 Chapter 8. Assignment Statements 63

~
Integer

Real

Double
Precision

Complex

Complex
double
precision

Integer

Assign.

Float and
assign.

DP float
and
assign.

Float and as­
sign to real
part; imagi­
nary part set
to o.

DP float and
assign to real
part; imagi­
nary part set
to o.

Real

Fix and
assign.

Assign.

DP ex­
tend and
assign.

Assign to real
part; imagi­
nary part set
to o.

DP extend
and assign to
real part;
imaginary
part not used.

Double
Precision

Fix and
assign.

Real
assign.

Assign.

Real assign
real part;
imaginary
part set to 0.

Assign to real
part; imagi-
nary part set
to o.

Complex

Fix and as­
sign real part;
imaginary
part not used.

Assign real
part; imagi­
nary part not
used.

DP extend
and assign to
reai part;
imaginary
part not used.

Assign.

DP extend
and assign
real and
imaginary
part.

Figure 3. Conversion Rules for Arithmetic Assignment Statements (a=b)

The following defines the terms used in the figure:

a A variable or array element.

b An arithmetic expression.

Complex
double
p.recision

Fix and as­
sign real .Part;
imaginary
part not used.

Real assign
real part;
imaginary
part not used.

Assign real
part; imagi­
nary part not
used.

Real assign
real and
imaginary
part.

Assign.

Assign Transmit the expression value without change. If the expression value
contains more significant digits than the variable a can hold, the value
assigned to a is unpredictable.

Real assign Transmit to a as much precision of the most significant part of the
expression value as REAL data can contain.

DP assign Transmit to a as much precision of the most significant part of the
expression value as DOUBLE PRECISION data can contain.

64 Reference Manual for XL FORTRAN

Fix

Float

Truncate the fractional portion of the expression value and transform the
result to an integer 4 bytes long. If the expression value contains more
significant digits than a 4-byte integer can hold, the value assigned to the
integer variable is unpredictable.

Transform the integer expression value to a REAL number, retaining in the
process as much precision of the value as a REAL number can contain.

DP float

DP extend

Transform the integer expression value to a DOUBLE PRECISION number.

Extend the real value to a DOUBLE PRECISION number.

The following defines the data types used in the figure:

Integer

Real

INTEGER
INTEGER*1
INTEGER*2
INTEGER*4

REAL
REAL*4

Double Precision DOUBLE PRECISION
REAL*8
REAL*16

Complex COMPLEX
COMPLEX*8

Complex Double Precision DOUBLE COMPLEX
COMPLEX*16
COMPLEX*32

Examples of the Arithmetic Assignment Statement

ESQ = P**2 + M**2
ROOT(l) = (-B + SQRT(B**2 - 4.0*A*C))/(2.0*A)

Logical Assignment

-[variable name j-
array_ e:ment_ name =

variable_ name
array_ element_ name

- logical_ expr -1

is the name of a variable or array element of type logical.

logical_ expr
is a logical expression.

The logical assignment statement causes evaluation of a logical expression and definition of
a variable or array element by assignment of the resulting value to the variable or array
element. The value of the logical expression must be either true or false.

Chapter 8. Assignment Statements 65

Example of the Logical Assignment Statement

LOGICAL INSIDE

REAL R,RMIN,RMAX
INSIDE = (R .GE. RMIN) .AND. (R' .LE. RMAX)

Character Assignment

variable name ~ =
- char_expr ~

array_ element_ name

substring_ name

variable_ name, array_ element_ name, substring_ name
is the name of a variable, array element, or substring of type character.

char_expr
is a character expression.

The character assignment statement causes evaluation of a character expression and
definition of a character variable, character array element, or character substring by
assignment of the resulting value to it.

You cannot reference any of the character positions you want defined in the character
variable, character array element, or character substring by the character expression directly
or through association of variables (using COMMON, EQUIVALENCE, or argument
association).

If the length of the character variable, character array element, or character substring is
greater than the length of the character expression, XL FORTRAN extends the character
expression to the right with blanks until the lengths are equal, and then assigns them. If the
length of the character variable, character array element, or character substring is less than
the character expression, XL FORTRAN truncates the character expression on the right to
match the length of the character variable, character array element, or character substring,
and then assigns it.

You need only define as much of the character expression as is necessary to define the
character variable, character array element, or character substring. For example:

CHARACTER SCOTT*4, DICK*8
SCOTT = DICK

This assignment of DICK to SCOTT requires that you define the substring DICK (1: 4). You
do not have to define the rest of DICK (DICK (s: a)).

If you specify substring_name, XL FORTRAN assigns the character expression only to the
character substring identified by that substring_ name. The definition status of other
character substrings does not change.

66 Reference Manual for XL FORTRAN

Examples of the Character Assignment Statement

CHARACTER*80 LINE, CH*l, SEQ*B

CH= LINE(l:l)
SEQ = LINE(73:80)

~ Typeless Constants in Assignment Statements
You can use typeless constants in arithmetic, logical, and character assignment statements.
If the hexadecimal, octal, or binary constant is smaller than the length (in bytes) of the
variable to be assigned, XL FORTRAN adds zeros on the left. If the constant is larger, the
compiler truncates the hexadecimal, octal, or binary constant on the left. If the Hollerith
constant is smaller than the length (in bytes) of the variable it is to be assigned to, XL
FORTRAN adds blanks on the right. If the constant is larger, the compiler truncates the
rightmost Hollerith characters.

Statement Label Assignment (ASSIGN)

I - ASSIGN- stmt_label - TO- variable_name --1

stmt_label
specifies the statement label of an executable statement or a FORMAT statement in
the program unit containing the ASSIGN statement.

variable_ name
is the name of an INTEGER*4 variable (not an array element).

The ASSIGN statement assigns a statement label to an integer variable. stmt_label must be
a statement label of a statement appearing in the same program unit as the ASSIGN
statement. If stmt_ label is the statement label of an executable statement, you can use
variable_name in an assigned GO TO statement. If stmt_label is the statement label of a
FORMAT statement, you can use variable_name as the format identifier in a READ, WRITE,
or PRINT statement with format control.

You can redefine an integer variable defined with a statement label value with the same or
different statement label value or an integer value. However, you must define the variable
with a statement label value when you reference it in an assigned GO TO statement or as a
format identifier in an inpuVoutput statement.

The value of variable_name is not the integer constant represented by stmt_label, and you
cannot use it as such. To use variable_name as an integer, you must first assign it an integer
value using an arithmetic assignment statement or input statement. You can do this
assignment directly, or through EQUIVALENCE, COMMON, or argument association.

Chapter 8. Assignment Statements 67

Example of the Statement Label Assignment (ASSIGN) Statement

ASSIGN 30 TO LABEL
NUM = 40
GO TO LABEL
NUM = 50

30 ASSIGN 1000 TO IFMT
WRITE(S,IFMT) NUM

1000 FORMAT(1X,I4)

68 Reference Manual for XL FORTRAN

!The value written out is 40.

Chapter 9. Control Statements

Control statements are executable statements that control the execution sequence of a
program.

This chapter describes all the control statements except for CALL and RETURN (which are
described in Chapter 10, "Program Units and Procedures"). The control statements
described in this chapter are:

• Unconditional GO TO
• Computed GO TO
• Assigned GO TO
• Arithmetic IF
• Logical IF
• Block IF, ELSE IF, ELSE, and END IF (grouped in an IF construct)
• DO
• DO WHILE
• END DO
• CONTINUE
• STOP
• PAUSE
• END.

Unconditional GO TO

I - GO TO - stmt_label -i

stmt_label
is the statement label of an executable statement in the same program unit as the
unconditional GO TO.

The unconditional GO TO statement transfers control to the statement identified by
stmt_label. Every subsequent invocation of this GO TO statement results in a transfer to that
same statement.

Any executable statement immediately following this statement must have a statement label;
otherwise, you can never refer to or execute it.

The unconditional GO TO statement cannot be the terminal statement of a DO or DO
WHILE loop.

Note: The GO TO statement can also appear as GOTO.

© Copyright IBM Corp. 1990 Chapter 9. Control Statements 69

Computed GO TO

I- GOTO- (stmt_label._list)-[j- arith _ expr -I
'

stmt_label
is the statement label of an executable statement in the same program unit as the
computed GO TO. The same statement label can appear more than once in
stmt_ label_list.

arith_expr
is an arithmetic expression. If the value of the expression is noninteger, XL FORTRAN
converts it to integer before using it.

Invocation of a computed GO TO statement causes evaluation of arith_expr and use of the
value as an index into stmt_label_list. Control then transfers to the statement whose
statement label you identify by the index. For example, if the value of arith_ expr is 4, control
transfers to the statement whose statement label is fourth in the stmt_label_list, provided
there are at least 4 labels in the list.

If the value of arith_expr is less than 1 or greater than the number of statement labels in the
list, the GO TO statement has no effect (like a CONTINUE statement), and the next
statement is executed.

The computed GO TO statement can be the terminal statement of a DO or DO WHILE loop.

Example of the Computed GO TO Statement

INTEGER NEXT

GO TO (100,200) NEXT
10 PRINT *,'Program transfers here if NEXT does not equal 1 or 2'

100 PRINT *,'Program transfers here if NEXT 1'

200 PRINT *,'Program transfers here if NEXT 2'

Assigned GO TO

- GOTO-
]- (stmUabel._list):J-i

variable_ name
is a variable name of type INTEGER*4 that you have assigned a statement label to in
an ASSIGN statement.

70 Reference Manual for XL FORTRAN

stmt_label
is the statement label of an executable statement in the same program unit as the
assigned GO TO. The same statement label can appear more than once in
stmt_ label_ list.

At the time the assigned GO TO statement is executed, the variable you specify by
variable_name with the value of a statement label must be defined. You must establish this
definition with an ASSIGN statement in the same program unit as the assigned GO TO
statement. The execution of the assigned GO TO statement transfers control to the
statement identified by that statement label.

If stmt_label_list is present, the statement label assigned to the variable specified by
variable_name must be one of the statement labels in the list. If, at the time of the invocation
of the assigned GO TO statement, the current value of variable_name contains an integer
value, assigned directly or through EQUIVALENCE, COMMON, or argument passing, the
result of the GO TO is unpredictable. If the integer variable is a dummy argument in a
subprogram, you must assign it a statement label in the subprogram, and also use it in an
assigned GO TO in that subprogram.

Any executable statement immediately following an assigned GO TO statement must have a
statement label; otherwise, you can never refer to or execute it.

The assigned GO TO cannot be the terminal statement of a DO or DO WHILE loop.

Example of the Assigned GO TO Statement

INTEGER RETURN_LABEL

c Assign the return label and "call" the local procedure
ASSIGN 100 TO RETURN_LABEL
GOTO 9000

100 CONTINUE

9000 CONTINUE
c A "local" procedure.

GOTO RETURN LABEL

Arithmetic IF

- IF- (arith_expr) - stmt_labe/1 - , - stmt_label2 - ,- stmt_label3 --1

arith_expr
is an arithmetic expression of any type except complex.

stmt_ label 1
stmt_ label2
stmt_ label3

are statement labels of executable statements within the same program unit as the IF
statement. The same statement label can appear more than once among the three
statement labels.

Chapter 9. Control Statements 71

The arithmetic IF statement causes evaluation of arith_expr and transfer of control to the
statement identified by stmt_label1, stmt_label2, or stmt_label3, depending on whether the
value of arith_ expr is less than zero, zero, or greater than zero, respectively.

Any executable statement immediately following the arithmetic IF statement must have a
statement label; otherwise, you can never refer to or execute it.

The arithmetic IF cannot be the terminal statement of a DO or DO WHILE loop.

Example of the Arithmetic IF Statement

IF (K-100) 10,20,30
10 PRINT *,'K is less than 100.'

GO TO 40
20 PRINT *,'K equals 100.'

GO TO 40
30 PRINT *,'K is greater than 100.'
40 CONTINUE

Logical IF

I- IF - (logical_expr)- stmt -i

logical_ expr

stmt

is a logical expression.

is any unlabeled executable statement except DO, DO WHILE, END DO, block IF,
ELSE IF, ELSE, END IF, END, or another logical IF.

Execution of a logical IF statement causes evaluation of logical_ expr. If the value of
logical_ expr is true, stmt executes. If the value of logical_ expr is false, stmt does not execute
and the IF statement has no effect (like a CONTINUE statement).

The statement stmt must not have a statement label, but the logical IF containing stmt can
have a statement label. Execution of a function reference in logical_ expr can change the
values of variables, arrays, and array elements in stmt.

Example of the Logical IF Statement

IF (ERR.NE.O) CALL ERROR(ERR)

72 Reference Manual for XL FORTRAN

IF Construct - Block IF, ELSE IF, ELSE, and END IF

IF - (logical_expr)- THEN-[}+
stmt_block

ELSE IF - (logical_expr)- THEN
stmt_block

~ELSE-L y
stmt_block

.,._ END IF -J

logical_ expr
is a logical expression.

stmt_block
is a statement block consisting of zero or more executable statements.

You use an IF construct to control the execution sequence. It is made up of a block IF
statement, an END IF statement, and, optionally, ELSE IF, ELSE, and other executable
statements. The box above shows the statements in an IF construct in their required
sequence.

You can nest IF constructs; that is, any of the statement blocks can contain IF constructs.

The logical expressions in an IF construct are evaluated in the order of their appearance
until it finds a true value, an ELSE statement, or an END IF statement:

• If it finds a true value or an ELSE statement, the statement block immediately following
executes, and the IF construct is complete. The logical expressions in any remaining
ELSE IF statements or ELSE statements of the IF construct are not evaluated. If the
following statement block is empty, no statements execute, and the IF construct is
complete.

• If it finds an END IF statement, no statement blocks execute, and the IF construct is
complete.

You cannot transfer control into an IF construct from outside it. Transfer of control within an
IF construct is permitted within statement blocks, but is not permitted between statement
blocks or to an ELSE IF or ELSE statement.

A block IF, ELSE IF, ELSE, or END IF cannot terminate a DO or DO WHILE loop. You
cannot continue an END IF statement over more than one line so that the first line appears
to be END.

Note: The END IF and ELSE IF statements can also appear as ENDIF and ELSEIF
respectively.

Chapter 9. Control Statements 73

DO

Examples of the IF Construct

c Get a record (containing a command) from the terminal
100 CONTINUE

c Process the command
IF (CMD .EQ. 'RETRY') THEN

IF (LIMIT .GT. FIVE) THEN
c Print retry limit exceeded

CALL STOP
ELSE

CALL RETRY
END IF

ELSE IF (CMD .EQ. 'STOP') THEN
CALL STOP

ELSE IF (CMD .EQ. 'ABORT') THEN
CALL ABORT

ELSE
GO TO 100

END IF

- oo-[-[y variable_ name= arith_exprt. arith_expr2-[.]-i
stmt_label , anth_ expr3

'

stmt_label
is the statement label of the terminal statement, which is the executable statement at
the end of the DO loop.

variable_ name
is the name of an integer, real, or double precision variable called the DO variable.

arith_exprt (start)
arith_ expr2 (stop)
arith_ expr3 (step)

are each an integer, real, or double precision expression.

The DO statement controls the execution of the statements that follow it, up to and including
a specified terminal statement. These statements are called a DO loop.

The terminal statement must follow the DO statement and must be an executable statement.
It cannot be any of the following statements: unconditional GO TO, assigned GO TO,
arithmetic IF, block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, DO, or DO WHILE.
If the terminal statement of a DO loop or DO WHILE loop is a logical IF statement, it can
contain any executable statement except those statements to which the normal restrictions
on the logical IF statement apply. (DO, DO WHILE, END DO, block IF, ELSE IF, ELSE,
ENDIF, END, or another logical IF.)

7 4 Reference Manual for XL FORTRAN

You can use a labeled END DO statement as the terminal statement of a DO loop. If you
omit the optional statement label stmLfabel, the terminal statement of the DO loop must be
an END DO statement.

More than one DO loop can share the same terminal statement if .the terminal statement is
not an END DO statement (labeled or unlabeled).

Range of a DO Loop .
The range of a DO loop consists of all the executable statements following the DO
statement, up to and including the terminal statement. Rules concerning the range of a DO
loop are:

• If a DO statement appears within the range of a DO loop (that is, is nested), you must
contain the range of the nested DO loop entirely within the range of the outer DO loop.

• If a DO statement appears within a statement block of an IF construct, you must contain
the range of the DO loop entirely within that statement block.

• If an IF construct appears within the range of a DO loop, no part of the construct can
appear outside the range.

• You cannot transfer control into the range of a DO loop from outside the range.

• You can only transfer control to a shared terminal statement from the innermost sharing
DO loop.

Active and Inactive DO Loops
A DO loop is either active or inactive. Initially inactive, a DO loop becomes active only when
its DO statement is executed. Once active, the DO loop becomes inactive only when:

• Its iteration count becomes zero.

• A RETURN statement occurs within the range of the DO loop.

• Control transfers to a statement in the same program unit but outside the range of the DO
loop.

• A subroutine invoked from within the DO loop returns, through an alternate return
specifier, to a statement that is outside the range of the DO loop.

• A STOP statement executes or the program stops for any other reason.

When a DO loop becomes inactive, the DO variable retains the last value assigned to it.

Executing a DO Statement
1. XL FORTRAN establishes the initial parameter, m1, the terminal parameter, m2, and the

increment, m3 by evaluating arith_expr1, arith_expr2, and arith_expr3, respectively.
Evaluation includes, if necessary, conversion to the type of the DO variable according to
the rules for arithmetic conversion in the figure on page 64. If you do not specify
arith_expr3, m3 has a value of 1. m3 must not have a value of zero.

2. The DO variable becomes defined with the value of the initial parameter (m1).

3. XL FORTRAN establishes the iteration count, and it is the value of the expression:

MAX (INT ((m2 - m1 + m3) I m3) , 0)

Note that the iteration count is O whenever:

m1 > m2 and m3 > 0, or

m1 < m2 and m3 < 0

Chapter 9. Control Statements 75

At the completion of the DO statement, loop control processing begins.

Loop Control Processing
Loop control processing determines if further execution of the range of the DO loop is
required. The iteration count is tested. If the count is not zero, the first statement in the
range of the DO loop begins execution. If the iteration count is zero, the DO loop becomes
inactive. If, as a result, all of the DO loops sharing the terminal statement of this DO loop are
inactive, normal execution continues with the execution of the next executable statement
following the terminal statement. However, if some of the DO loops sharing the terminal
statement are active, execution continues with incrementation processing.

Execution of the Range
Statements in the range of the DO loop are executed until the terminal statement is reached.
Except by incrementation processing, you cannot redefine the DO variable nor can it
become undefined during execution of the range of the DO loop.

Terminal Statement Execution
Execution of the terminal statement occurs as a result of the normal execution sequence, or
as a result of transfer of control, subject to the restriction that you cannot transfer control into
the range of a DO loop from outside the range. Unless execution of the terminal statement
results in a transfer of control, execution then continues with incrementation processing.

Incrementation Processing
1. The DO variable, the iteration count, and the increment (m3) of the active DO loop whose

DO statement was most recently executed, are selected for processing.

2. The value of the DO variable is incremented by the value of m3 .

3. The iteration count is decremented by 1.

4. Execution continues with loop control processing of the same DO loop whose iteration
count was decremented.

Examples of the DO Statement

DO I = 2, 5
EARLIEST(I) = 0.0
DO 10 J = 1, I-1

IF (NETWORK(J,I) .NE. 0.0)
x EARLIEST(I) = MAX(NETWORK(J,I)+EARLIEST(J), EARLIEST(!))

10 CONTINUE
END DO

DO WHILE

WHILE- (logical_expr)-1

stmLlabel
is the statement label of an executable statement appearing after the DO WHILE
statement in the same program unit, and it denotes the end of the DO WHILE loop.

76 Reference Manual for XL FORTRAN

END DO

logical_ expr
is any logical expression.

This statement indicates that you want the following range of statements, up to and including
a specified terminal statement, to be repeatedly executed for as long as the logical
expression specified in the statement continues to be true.

If you specify a statement label in the DO WHILE statement, you must terminate the DO
WHILE loop with a statement that is labeled with that statement label. You can terminate a
labeled DO WHILE statement with an END DO statement that is labeled with that statement
label, but you cannot terminate it with an unlabeled END DO statement. If you do not specify
a label in the DO WHILE statement, you must terminate the DO WHILE loop with an END
DO statement.

The terminal statement of a DO WHILE loop must be an executable statement. The terminal
statement of a DO WHILE loop must not be an unconditional GO TO, an assigned GO TO,
arithmetic IF, block IF, ELSE IF, ELSE, ENDIF, RETURN, STOP, END, DO or DO WHILE
statement. If the terminal statement of a DO loop is a logical IF statement, it can contain any
executable statement except those statements to which the normal restrictions on the logical
IF statement apply. (DO, DO WHILE, END DO, block IF, ELSE IF, ELSE, ENDIF, END, or
another logical IF).

Nested DO WHILE loops can share the same terminal statement if the terminal statement is
labeled, and it is not an END DO statement.

When the DO WHILE statement is executed, logical_expr is evaluated at the start of each
iteration of the loop. If the value of the expression is true, the statements in the body of the
loop are executed. If the value of the expression is false, control transfers to the statement
following the loop.

Note: The DO WHILE statement can also appear as DOWHILE.

Examples of the DO WHILE Statement

DO 10 WHILE (I .LE. 5)
SUM SUM + INC
I = I + 1

10 END DO

20

LOGICAL FLAGl
DATA FLAGl /.TRUE./
DO 20 WHILE (I .LE. 10)

X(I) = A
I = I + 1

IF (.NOT. FLAGl) STOP

- END DO --1

Statement number is required

You can terminate a DO loop or a DO WHILE loop with the END DO statement.

If you label the END DO statement, you can use it as the terminal statement of a labeled or
unlabeled DO or DO WHILE loop. An END DO statement terminates the innermost DO or
DO WHILE loop only.

Chapter 9. Control Statements 77

If a DO or DO WHILE statement does not specify a statement label, the terminal statement
of the DO or DO WHILE loop must be an END DO statement. The labeled or unlabeled END
DO statement terminates the innermost DO loop only.

You must not continue an END DO statement over more than one line in such a manner that
the initial line appears to be an END statement.

Note: The END DO statement can also appear as ENDDO.

CONTINUE

STOP

I - CONTINUE--1

This statement is an executable control statement that takes no action. You can use it to
designate the end of a DO loop or DO WHILE loop, or to label a position in a program.
Execution of a CONTINUE statement has no effect.

STOP-Lm[char_ constant~
digit_ string------'

char_ constant
is a character constant enclosed in apostrophes or double quotation marks, and
containing alphanumeric and/or special characters.

digit_ string
is a string of one through five digits.

The STOP statement causes the program to stop execution and display char_ constant or
digit_string, if specified. A STOP statement cannot terminate the range of a DO loop or DO
WHILE loop.

When the STOP statement STOP 'here.' is processed, the following appears on the
terminal screen:

STOP here.

If you specify digit_ string, XL FORTRAN sets the return code to MOD(digit_string,256)
because the AIX return code is only 1 byte.

Examples of the STOP Statement

STOP 'Abnormal Termination'
STOP 15

78 Reference Manual for XL FORTRAN

PAUSE

END

PAUSE -l r char_ constant~
l_ digit_string------'

char_ constant
is a character constant enclosed in apostrophes or double quotation marks, and
containing alphanumeric and/or special characters.

digit_ string
is a string of one through five digits.

The PAUSE statement temporarily suspends the execution of a program and displays
char_ constant or digit_string, if you specify either.

When the PAUSE statement PAUSE 'here. ' is processed, the following appears on the
terminal screen:

PAUSE here.

Processing continues when you press the ENTER key.

Examples of the PAUSE Statement

PAUSE 'Insert a diskette into the default drive.'
PAUSE 10

- END---1

The END statement is the final statement in a program unit. It is the only required statement
in a program unit.

The END statement is an executable statement, and you can label it. You cannot continue
an END statement, and no other statement in a program unit can have an initial line that
appears to be an END statement.

An END statement in a main program terminates the execution of the program. An END
statement in a function or subroutine subprogram has the same effect as a RETURN
statement. (See "RETURN Statement" on page 90 for further information.) The last line of
every program unit must be an END statement. An inline comment, initiated by ! , can
appear on the same line as an END statement. Any comment line appearing after an END
statement belongs to the next program unit.

Example of the END statement with an end-of-line comment

END ! the END of the program unit

Chapter 9. Control Statements 79

80 Reference Manual for XL FORTRAN

Chapter 1 O. Program Units and Procedures

This chapter describes:

• Relationships among program units and procedures
• Functions and subroutines
• Arguments
• Recursion
• The PROGRAM, FUNCTION, statement function, SUBROUTINE, CALL, ENTRY,

RETURN, and BLOCK DATA statements.

Relationships Among Program Units and Procedures
A program unit is a sequence of statements and optional comment lines, with the final
statement an END statement. An executable program is a collection of program units
consisting of one main program and zero or more subprograms.

Program unit relationships are illustrated in Figure 4 below.

A procedure can be invoked by a program unit to perform a particular activity. When a
procedure reference is made, the referenced procedure is executed.

Procedure relationships are illustrated in Figure 5 on page 82.

XL FORTRAN allows recursion if you specify the RECUR compiler option. (See 11Recursion"
on page 95.)

Main Program
(can start with a
PROGRAM statement)

Function subprogram
(starts with a
FUNCTION statement)

Program Unit

I

Procedure
subprogram

I

Figure 4. Program Unit Relationships

Subprogram

I
Block data subprogram
(starts with a
BLOCK DATA statement)

Subroutine subprogram
(starts with a
SUBROUTINE statement)

© Copyright IBM Corp. 1990 Chapter 1 O. Program Units and Procedures 81

Intrinsic
function

Procedure

Statement
function

Function subprogram
(starts with a
FUNCTION statement)

Figure 5. Procedure Relationships

External
procedure

I

PROGRAM Statement - Main Program

I - PROGRAM - name -1

name

Subroutine subprogram
(starts with a
SUBROUTINE statement)

is the name of the main program in which this statement appears.

A main program is the program unit that receives control from the system when the
executable program is invoked at run time. A main program can contain any statement
except BLOCK DATA, FUNCTION, SUBROUTINE, or ENTRY. A RETURN statement can
appear in a main program. It has the same effect as a STOP statement. The appearance of
a SAVE statement has no effect.

The PROGRAM statement specifies that a program unit is a main program. The PROGRAM
statement is optional; if specified, it must be the first statement of the main program.

If a PROGRAM statement is not specified, the name of the main program is MAIN. If the
name is specified, it cannot be the same as any other name in this program. The name, if
specified, has no type and is not affected by any specification statements. You cannot refer
to a main program from a subprogram or from itself.

Example of the PROGRAM Statement

PROGRAM SCALE

Functions
A function is a procedure that is invoked by its name in a function reference. It then returns a
value to the point of reference. The three kinds of functions are intrinsic functions (see
Appendix A, "Intrinsic Functions"), statement functions, and external functions (or function
subprograms).

82 Reference Manual for XL FORTRAN

Function Reference
A function reference is used as a primary in an expression to invoke a function. The form of
a function reference is:

I - name - (-L }-- J-1
actual_ argument_ list

name
is the name of an external function, an entry in an external function, a statement
function, or an intrinsic function.

actual_ argument
is an actual argument, described on page 91.

Executing a function reference results in the following order of events:

1. Actual arguments that are expressions are evaluated.
2. Actual arguments are associated with their corresponding dummy arguments.
3. The referenced function is executed.
4. The value of the function (called the function value) is available to the referencing

expression.

Execution of a function reference must not alter the value of any other data item within the
statement in which the function reference appears. However, invocation of a function
reference in the expression of a logical IF statement can affect variables, arrays, and array
elements in the statement that is executed when the value of the expression is true.

The argument list keywords %VAL and %REF are supplied to aid the interlanguage calls by
allowing arguments to be passed by value and reference respectively. (See "%VAL and
%REF" on page 93.)

See "Examples of Statement Function Statements" on page 84 and "Examples of the
FUNCTION Statement" on page 86 for examples of function references.

Statement Function Statement

1- name - (-[dummy_argument_list}-) -
expr--1

name
is the name of the statement function.

dummy_ argument
is a statement function dummy argument. See page 91 for a description of dummy
arguments.

expr
is any arithmetic, logical, or character expression.

A statement function is a single-statement function that is internal to the program unit in
which it is defined. It is defined by a statement function statement and invoked by a function
reference. All statement function definitions must follow the specification statements and
precede the first executable statement of the program unit.

Chapter 10. Program Units and Procedures 83

name determines the data type of the value returned from the statement function. If the data
type of name does not match that of expr, the value of expr is converted to the type of name
in accordance with the rules for assignment statements. See Chapter 8, "Assignment
Statements". If the IMPLICIT NONE statement is used within the program unit, the type of
the statement function must be explicitly declared in an explicit type statement.

An external function reference in expr must not cause the actual argument of the statement
function to become undefined or redefined. The expression expr cannot contain a reference
to the statement function being defined. If the statement function definition is in a
subprogram, expr cannot contain a reference to that subprogram's name o~ the name of any
of its entry points.

The name of a statement function of type character must not have a length specifier of an
asterisk in parentheses. You cannot use name to identify any other entity in the program unit
except a common block, and it must not appear in any specification statement except an
explicit type statement. You cannot use name as an actual argument.

Examples of Statement Function Statements

PARAMETER (PI = 3.14159)
REAL AREA,CIRCUM,R,RADIUS

C Define statement functions AREA and CIRCUM.
AREA(R) = PI * (R**2)
CIRCUM(R) = 2 * PI * R

C Reference the statement functions.
PRINT *,'The area is: ',AREA(RADIUS)
PRINT *,'The circumference is: ',CIRCUM(RADIUS)

FUNCTION Statement - Function Subprogram (External Function)

II FUNCTION- name _II_ <-L }-i-J
L type I L */en I dummy_argument_list

type
specifies the data type of the value that the function subprogram returns. type can be
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX,
LOGICAL, or CHARACTER[*char_len], where char_len is the length specification of
the result of the character function. char_len can have any of the forms allowed in a
CHARACTER type statement (see page 50) , except that an integer constant
expression must not include the name of a constant. The default for char_len is 1. In
the calling program, the length associated with the function name must be the same as
char_len. If a CHARACTER function has a length that is an asterisk, the name cannot
be used in a concatenation except in a character assignment statement. If the name is
of type character, all entry names must be of type character, and the lengths must be
the same. If one length is specified as an asterisk, all lengths must be specified as
asterisks.

name
is the name of the function subprogram. name can appear in a type statement, but in
no other nonexecutable statement.

84 Reference Manual for XL FORTRAN

*Jen
is a positive, nonzero, unsigned integer constant. It represents the permissible length
specifications for its associated type. It can be included only when the type is specified.
It must not be used when DOUBLE PRECISION, or DOUBLE COMPLEX is specified.
*Jen overrides the existing specified length.

dummy_ argument
is a dummy argument, described on page 91.

A function subprogram, or external function, is a program unit that specifies a function. A
function subprogram is invoked by a function reference and returns a value to the invoking
program unit. For the purpose of returning the function value, the function name and any
entry names are considered to be variable names, and a value must be assigned to one of
those names during every invocation of the function. Also, a value can be assigned to one or
more of its dummy arguments for the purpose of returning values. The function or any of its
dummy arguments can be assigned values in any of the following ways:

• As the variable name to the left of the equal sign in an arithmetic, logical, or character
assignment statement

• As the argument of a CALL statement or function reference that will cause a value to be
assigned in the subprogram referenced

• In the list of a READ statement within the subprogram

• As one of the parameters in an INQUIRE statement that is assigned a value within the
subprogram

• As a DO variable or an implied-DO variable in an input/output statement

• As the result of the IOSTAT specification in an input/output statement

• As the result of the NUM specification in an input/output statement.

The first statement of a function subprogram must be a FUNCTION statement. A function
subprogram can contain any statement except another FUNCTION, PROGRAM,
SUBROUTINE, or BLOCK DATA statement.

The name of a function subprogram determines the data type of the value returned from the
subprogram. If the IMPLICIT NONE statement is used within the function subprogram, the
type of the function must be explicitly declared in either the FUNCTION statement or an
explicit type statement. The name of a function must not appear in any other nonexecutable
statement except an explicit type statement.

The variable whose name is the name of the function is associated with any variables whose
names are also entry names. This is called entry association. The definition of any one of
them becomes the definition of all the associated variables having that same type, and is the
value of the function no matter at which entry point it was entered. Such variables are not
required to be of the same type unless the type is character, but the variable whose name is
used to reference the function must be in a defined state when a RETURN or END
statement is executed in the subprogram. An associated variable of a different type must not
become defined during the execution of the function reference, unless an associated
variable of the same type redefines it later during the execution of the subprogram.

Because you can have recursion when the RECUR compiler option is specified, the function
name can be referenced within the function subprogram in a context that requires the
function to be evaluated. If the function name is used as an actual argument, that argument
is a variable and not a procedure name being passed to the subprogram.

Chapter 10. Program Units and Procedures 85

Examples of the FUNCTION Statement

CHARACTER*lO FUNCTION SUFFIX(STR)
CHARACTER*? STR
SUFFIX = STR II 'SUF'
END
FUNCTION VALIDl(ARGl)
COMMON IARGll A
VALIDl = A
END
FUNCTION FNAME(DUMMY)
FNAME 1.0
DUMMY = FNAME
END
REAL FUNCTION CUBE*l6()
COMMON ICOMll A
CUBE = A * A * A
END
FUNCTION FNAME(DUMMY)

!dummy argument can be the same as a
common block name

!not a recursive reference, but a
scalar reference

!recursive reference
IF (DUMMY.LT.10) DUMMY FNAME(DUMMY+l)
FUNCTION RIGHTl(ARGl)

!argument is a variable,
CALL SUB(RIGHTl) not a procedure

Main Program Function Subprogram

PROGRAM MAIN
c Actual args are X2, Xl, XO

REAL ROOT,X2,Xl,XO

c Dummy args are A, B, and C
REAL FUNCTION QUAD(A,B,C)

REAL A,B,C

c 2*(X**2) + 4.S*X + 1
X2 2.0
Xl = 4.5
XO = 1. 0

c Reference function sub.
ROOT = QUAD(X2,Xl,XO)

QUAD= (-B + SQRT(B**2-4*A*C)) I (2*A)
RETURN
END

SUBROUTINE Statement

- SUBROUTINE- name -{ -]- J-1
(-{_dummy_atyument_list)

name
is the name of the subroutine subprogram.

dummy_ argument
is a dummy argument, described on page 91 .

A subroutine subprogram, or subroutine, is a program unit that is invoked by its name or one
of its entry names in a CALL statement.

86 Reference Manual for XL FORTRAN

The first statement of a subroutine subprogram must be a SUBROUTINE statement. A
subroutine subprogram can contain any statement except PROGRAM, FUNCTION, BLOCK
DATA, or another SUBROUTINE statement. The subroutine name cannot appear in any
other statement in the subroutine subprogram, unless recursion has been specified. It must
not be the same as any name in the program unit, the PROGRAM name, a subprogram
name, or common block name in any other program unit of the executable program.

If the RECUR compiler option has been specified, the subroutine name can appear in a
CALL statement within the subroutine subprogram. The subroutine name cannot appear as
an actual argument in a. CALL statement or function reference, because it cannot appear in
an EXTERNAL statement. (See "Recursion" on page 95.)

A subroutine subprogram can use one or more of its dummy arguments to return values to
the invoking program unit. A value can be assigned to one of the dummy arguments during
invocation of the subroutine subprogram in one of the following ways:

• As the variable name to the left of the equal sign in an arithmetic, logical, or character
assignment statement

• As the argument of a CALL statement or function reference that will cause a value to be
assigned in the subprogram referenced

• In the list of a READ statement within the subprogram

• As one of the parameters in an INQUIRE statement that is assigned a value within the
subprogram

• As a DO variable or an implied-DO variable in an input/output statement

• As the result of the IOSTAT specification in an input/output statement

• As the result of the NUM specification in an input/output statement.

Example of the SUBROUTINE Statement

SUBROUTINE FIT(J,E,B)

CALL Statement

- CALL- name -[}- j-1
(-L actua(_argument_list)

name
is the name of a subroutine or an entry in a subroutine subprogram. This name can be
a dummy argument in a FUNCTION, SUBROUTINE, or ENTRY statement.

actual_ argument
is an actual argument, described on page 91.

Executing a CALL statement results in the following order of events:

1. Actual arguments that are expressions are evaluated.
2. Actual arguments are associated with their corresponding dummy arguments.
3. Control transfers to the specified subroutine.
4. The subroutine is executed.
5. Control returns from the subroutine.

Chapter 10. Program Units and Procedures 87

A main program cannot call itself or be called by a subprogram, but a subprogram can refer
to itself directly if the RECUR compiler option is specified. (See "Recursion" on page 95.)

The argument list keywords %VAL and %REF are supplied to aid interlanguage calls by
allowing arguments to be passed by value and reference respectively. (See "%VAL and
%REF" on page 93.)

Examples of the CALL Statement

CALL SUBl
CALL SUBl ()

CALL SUB4(.FALSE.)
CALL SUB4(I.EQ.J)

CALL SUBS(Cl//C2)

CALL SUBB(I,J,*100,*200,*300)

EXTERNAL FUNC
CALL RIGHT2(%REF(FUNC))

COMPLEX XVAR
CALL RIGHT3(%REF(XVAR))

IVARB=6
CALL TPROG(%VAL(IVARB))

ENTRY Statement

subroutine call with no arguments

subroutine call with logical
argument

'subroutine call with character
argument

subroutine call with alternate
returns

procedure name can be passed by
reference

complex argument can be passed
by reference

integer argument can be passed
by value

- ENTRY - name -[}-l
(-Ldummy_argument_lis~)

name
is the name of an entry point in a function subprogram or subroutine subprogram. It is
called an entry name.

dummy_ argument
is a dummy argument, described on page 91.

A function subprogram or subroutine subprogram has a primary entry point that is
established through the SUBROUTINE or FUNCTION statement. The ENTRY statement
establishes an alternate entry point. Therefore, the ENTRY statement cannot appear in a
main program or BLOCK DATA subprogram.

An ENTRY statement can appear anywhere after the FUNCTION or SUBROUTINE
statement, except in a DO loop range, a DO WHILE loop, or within a block IF structure.
ENTRY statements are nonexecutable and do not affect control sequencing during the
execution of a subprogram. In a function subprogram, the entry name must not appear in
any statement preceding the ENTRY statement except in a type statement. ENTRY
statements can appear before the IMPLICIT or PARAMETER statements. The appearance

88 Reference Manual for XL FORTRAN

of an ENTRY statement does not alter the rule that statement functions must precede the
first executable statement.

In a function subprogram, name identifies an external function and can be referenced
(invoked) as an external function from the calling program unit. In a subroutine subprogram,
name identifies a subroutine and can be referenced as a subroutine from the calling program
unit. When the reference is made, execution begins with the first executable statement
following the ENTRY statement.

If the RECUR compiler option is specified, a subprogram can reference any of its ENTRY
names. If the compiler option is not specified, a subprogram must not refer to itself, or any of
its entry points, either directly. (See "Recursion" on page 95.)

The name of an entry in a function subprogram must appear as a variable name in the
function subprogram and you must define it upon exit from the subprogram, when the
function is invoked through that entry. At least one name of the set of all FUNCTION and
ENTRY names must be assigned a value. The name of an entry cannot be a dummy
argument or be in an EXTERNAL statement. The name of an entry cannot appear in a
common block, statement function, DATA statement, or SAVE statement.

In a function subprogram, name can be typed by an explicit type statement or an IMPLICIT
statement. If IMPLICIT NONE has been specified in a function subprogram, the FUNCTION
name and any ENTRY names must be explicitly typed.

If an entry name in a function subprogram is of type character, all entry names in the
subprogram and the name of the subprogram must be of type character. If the length
specifier of an entry named in the function subprogram or the name of the subprogram itself
is an asterisk in parentheses (indicating inherited length), all entry names and the
subprogram name must have a length specifier of an asterisk in parentheses. Otherwise, all
such names must have a length specification of the same integer value.

In a function subprogram of noncharacter type, the entry names, and the function name can
be of different types, and the names are treated as if they appeared in an EQUIVALENCE
statement. ENTRY names within subroutine subprograms cannot be explicitly typed.

Entry into a subprogram associates actual arguments with the dummy arguments of the
referenced ENTRY statement. Therefore, all appearances of these arguments in the
subprogram become associated with actual arguments. You can use argument list keywords
("%VAL and %REF" on page 93) as actual arguments.

A name in the dummy_argument_list must not also appear:

• In an executable statement preceding the ENTRY statement unless it also appears in a
FUNCTION, SUBROUTINE, or ENTRY statement that precedes the executable
statement.

• In the expression of a statement function statement unless the name is also a dummy
argument of the statement function, appears in a FUNCTION or SUBROUTINE
statement, or appears in an ENTRY statement that precedes the statement function
statement.

The number of dummy arguments and their data types in the dummy_argument_list of this
ENTRY statement, or other ENTRY statements, and of the primary entry point, can differ.
The actual arguments for each CALL or function reference must agree in order, type, and
number with the dummy arguments in the SUBROUTINE, FUNCTION, or ENTRY statement
to which it refers. All dummy arguments of the same name in a subprogram, regardless of
their being in an ENTRY, SUBROUTINE, or FUNCTION statement, refer to the same
dummy argument.

Chapter 10. Program Units and Procedures 89

Example of the ENTRY Statement

REAL FUNCTION VOL(RDS,HGT)
PARAMETER (PI = 3.14159)
REAL RDS,HGT
A(RDS) = PI * RDS**2
VOL= A(RDS) * HGT
RETURN
ENTRY AREA(RDS)
AREA = A(RDS)
RETURN
END

RETURN Statement

I - RETURN -{ arith_expr

arith_expr
is any arithmetic expression. If the value of the expression is noninteger, it is converted
to integer before use.

The RETURN statement:

• In a function subprogram, it ends the execution of the subprogram and transfers control
back to the referencing statement. The value of the function is available to the referencing
program unit.

• In a subroutine subprogram, it ends the subprogram and transfers control to the first
executable statement after the CALL statement or to an alternate return point, if one is
specified. (See "Arguments" on page 91 for a description of alternate return points.)

arith_expr can be specified in a subroutine subprogram only and it specifies an alternate
return point. Letting m be the value of arith_expr, if 1 :Sm :S the number of asterisks in the
SUBROUTINE or ENTRY statement, the mth asterisk in the dummy argument list is
selected. Control then returns to the invoking program unit at the statement whose
statement label is specified as the mth alternate return specifier in the CALL statement. For
example, if the value of mis 5, the fifth asterisk in the dummy argument list is selected, and
control returns to the statement whose statement label is specified as the fifth alternate
return specifier in the CALL statement.

If arith_ expr is omitted or if its value (m) is not in the range 1 through the number of asterisks
in the SUBROUTINE or ENTRY statement, a normal return is executed. Control returns to
the invoking program unit at the statement following the CALL statement.

Executing a RETURN statement terminates the association between the dummy arguments
of the subprogram and the current actual arguments. All entities within the subprogram
become undefined except:

• Entities given an initial value in a DATA or explicit specification statement and where
initial values were not changed

• Entities in blank common

• Entities in named common that appear in the subprogram and appear in at least one
other program unit that is referring either directly or indirectly to the subprogram

90 Reference Manual for XL FORTRAN

• Entities specified as STATIC (Recall that all variables are static by default.)

• Entities specified in a SAVE statement.

A subprogram can contain more than one RETURN statement, but it does not require one.
An END statement in a function or subroutine subprogram has the same effect as a
RETURN statement. A RETURN statement in a main program is equivalent to the execution
of a STOP statement.

Arguments
An actual argument appears in the argument list of a procedure reference. An actual
argument in an external function reference can be one of the following:

• An arithmetic, logical, or character expression, excluding a character expression involving
concatenation of an operand whose length specifier is an asterisk in parentheses
(indicating inherited length)

• A variable, array element, array name, or constant
• An intrinsic function name except for those listed under "INTRINSIC" on page 55
• An external procedure name
• A dummy procedure name
• If the actual argument is in a CALL statement, an alternate return specifier, having the

form *stmt_label, where stmt_label is the statement label of an executable statement in
the same program unit as the CALL statement

• An argument list keyword. (See "%VAL and %REF" on page 93.)

An actual argument in a statement function or intrinsic function reference can be one of the
following:

• An arithmetic, logical, or character expression, excluding a character expression involving
concatenation of an operand whose length specifier is an asterisk in parentheses
(indicating inherited length)

• A variable, array element, or constant.

You can also use a "typeless" constant as an actual argument. If the typeless constant is a
hexadecimal, octal, or binary constant, and is smaller than 4 bytes in length, XL FORTRAN
adds zeros on the left. If the constant is larger than 4 bytes, the compiler truncates the
leftmost hexadecimal, octal, or binary digits.

If a Hollerith constant is passed by value, and is smaller than 4 bytes in length, XL
FORTRAN adds blanks on the right. If the constant is larger than 4 bytes, and passed by
value, the compiler truncates the rightmost Hollerith characters. The default for passing
Hollerith constants is as if they are character actual arguments.

A dummy argument appears in the argument list of a procedure. A dummy argument is
specified in a statement function statement, FUNCTION statement, SUBROUTINE
statement, or ENTRY statement. Dummy arguments in statement functions, function
subprograms, and subroutine subprograms indicate the types of actual arguments and
whether each argument is a single value, array of values, procedure, or statement label. A
dummy argument in an external function definition is classified as one of the following:

• A variable name
• An array name
• A procedure name
• An asterisk (in subroutines only, to indicate an alternate return point).

Chapter 10. Program Units and Procedures 91

A dummy argument in a statement function definition is classified as the following:

• A variable name.

A given name can appear only once in a dummy argument list.

A statement function dummy argument name must not be used in any specification
statement except an explicit type statement. A dummy argument name must not be the
same as the procedure name appearing in a FUNCTION, SUBROUTINE, ENTRY, or
statement function statement in the same program unit. The scope of a statement function
dummy argument is the scope of the statement function statement.

A dummy argument name that appears in a FUNCTION or SUBROUTINE statement cannot
appear in an EQUIVALENCE, COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or
NAMELIST statement, except as a common block name.

A character dummy argument of inherited length must not be used as an operand for
concatenation, except in a character assignment statement.

See "Examples of the FUNCTION Statement" on page 86 for an example of arguments.

Association of External Procedure Arguments
Actual arguments are associated with dummy arguments when a function or subroutine is
referenced (invoked). The first actual argument becomes associated with the first dummy
argument, the second actual argument with the second dummy argument, and so forth.
Argument association within a program unit terminates at the invocation of a RETURN or
END statement in the program unit. There is no retention of argument association between
one reference of a subprogram and the next reference of the subprogram. The subprogram
reserves no storage for the dummy argument. It uses the corresponding actual argument for
calculations. Therefore, the value of the actual argument changes when the dummy
argument changes.

Actual arguments must agree in number, order, and type with their corresponding dummy
arguments, except for two cases: a subroutine name has no type and must be associated
with a dummy procedure name, and an alternate return specifier has no type and must be
associated with an asterisk.

Argument association can be carried through more than one level of procedure reference.

If a subprogram reference causes a dummy argument in the referenced subprogram to
become associated with another dummy argument in the referenced subprogram, neither
dummy argument can become defined during that subprogram. For example, if a subroutine
definition is:

SUBROUTINE XYZ (A,B)

and it is referenced by:

CALL XYZ (C,C)

then the dummy arguments A and Beach become associated with the same actual
argument c and, therefore, with each other. Neither A nor B can become defined during the
execution of subroutine XYZ or by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument to become associated with a data
item in a common block in the referenced subprogram or in a subprogram referenced by the
referenced subprogram, neither the dummy argument nor the data item in the common block
can become defined within the subprogram or within a subprogram referenced by the
referenced subprogram.

92 Reference Manual for XL FORTRAN

%VAL and %REF
To call subprograms written in languages other than FORTRAN (for example, user-written C
programs, or AIX system routines), the actual arguments may need to be passed by a
method different from the default method used by FORTRAN. The form of an actual
argument can be changed by using the %VAL and %REF keywords in the argument list of a
CALL statement or function reference. These keywords specify the way the actual argument
should be passed to the subprogram.

The argument list keywords are:

%VAL

%REF

This keyword causes the actual argument to be passed as 32-bit
intermediate values. If the actual argument is an integer that is shorter than
32 bits, it is sign-extended to a 32-bit value. If the actual argument is a
logical that is shorter than 32 bits, it is padded on the left with zeros to a
32-bit value. If the actual argument is of type real or complex with a length
greater than 32 bits, it is passed as multiple 32-bit intermediate values.

This keyword can be used with actual arguments that are CHARACTER*1,
logical, integer, real, or complex expressions. It cannot be used with actual
arguments that are array names, procedure names, or character
expressions of length greater than 1 byte. Hexadecimal, binary, and octal
constants are passed as if they were INTEGER*4. If the actual argument is
a CHARACTER*1, it is padded on the left with zeros to a 32-bit value.

This keyword causes the actual argument to be passed by reference. (The
address of the actual argument is passed.) This is the default for
FORTRAN.

Note that, if the actual argument is of character data type, only the address
of the actual argument is passed, whereas a character actual argument
passed without the %REF function is passed as the address and the length
of the character argument. If such a character argument is being passed to
a C routine, the string must be terminated with a null character, so that the
C routine can determine the length of the string.

Length of Character Arguments
If arguments are of type character, the lengths of the actual arguments must be greater than
or equal to the lengths of the dummy arguments. If an actual argument is longer, only the
leftmost characters are associated with the dummy argument.

If a dummy argument has a length specifier of an asterisk in parentheses, the length of the
dummy argument is "inherited" from the actual argument. The length is inherited because it
is specified outside the program unit containing the dummy argument. If the associated
actual argument is an array name, the length inherited by the dummy argument is the length
of an array element in the associated actual argument array.

Variables As Dummy Arguments
A dummy argument that is a variable name must be associated with an actual argument that
is a variable, array element, substring name, or expression.

You can define a dummy argument that is a variable name within a subprogram if the
associated actual argument is a variable name, array element name, or character substring
name. You must not redefine a dummy argument that is a variable name within a
subprogram if the associated actual argument is a constant, name of a constant, function
reference, expression involving operators, or expression enclosed in parentheses.

Chapter 10. Program Units and Procedures 93

Arrays As Dummy Arguments
A dummy argument that is an array name must be associated with an actual argument that
is an array name, an array element name, or a character substring name.

The size of the actual array must be larger than or equal to the declared size of the dummy
array. The number and size of the dimensions can differ only for arrays of type character.

If an actual argument is a noncharacter array name, the size of the dummy argument array
must not exceed the size of the actual argument array. Each actual argument array element
becomes associated with the dummy argument array element of the same subscript value.

If an actual argument is a noncharacter array element name with a subscript value of asv,
the dummy argument array element with a subscript value of dsv becomes associated with
the actual argument array element that has a subscript value of asv + dsv - 1.

If an actual argument is a character array name, character array element name, or character
substring name and begins at a character storage unit acu of an array, character storage
unit dcu of an associated dummy argument array becomes associated with character
storage unit acu + dcu - 1 of the actual array argument.

Procedures As Dummy Arguments
A dummy argument that is identified as a procedure is called a dummy procedure. A dummy
procedure can only be associated with an actual argument that is an intrinsic function,
external function, subroutine, or another dummy procedure.

The following example illustrates the use of a dummy procedure:

SUBROUTINE ROOTS
EXTERNAL NEG

X QUAD(A,B,C,NEG)

RETURN
END

FUNCTION QUAD(A,B,C,FUNCT)
INTEGER FUNCT

VAL FUNCT(A,B,C)

RETURN
END

FUNCTION NEG(A,B,C)

RETURN
END

Asterisks As Dummy Arguments
A dummy argument that is an asterisk can appear only in the dummy argument list of a
SUBROUTINE statement or an ENTRY statement in a subroutine subprogram. The
corresponding actual argument must be an alternate return specifier.

94 Reference Manual for XL FORTRAN

Recursion
XL FORTRAN allows recursion within your program if you specify the RECUR compiler
option. This means that procedures can call themselves, either directly or through a chain of
other procedures. A main program cannot call itself recursively.

Local variables are static by default, but you can make them automatic by using an
AUTOMATIC statement or an IMPLICIT AUTOMATIC statement.

BLOCK DATA Statement - Block Data Subprogram

I
- BLOCKDATA~

. name

name
is the name of the block data subprogram.

A block data subprogram is a program unit that provides initial values for variables and array
elements in named common blocks.

The first statement of a block data subprogram must be a BLOCK DATA statement. The
only other statements that can appear in a block data subprogram are DIMENSION,
EQUIVALENCE, COMMON, explicit type, IMPLICIT, PARAMETER, SAVE, DATA, END,
and comment lines.

You can have more than one block data subprogram in an executable program, but only one
can be unnamed.

More than one named common block can be initialized in a block data subprogram.

Restrictions on common blocks in block data subprograms are:

• All items in a named common block must appear in the COMMON statement even though
they are not all initialized.

• The same named common block must not be referenced in two different block data
subprograms.

• Only items in named common blocks can be initialized in block data subprograms.

The name, if given, must not be the same as another subprogram, entry, main program, or
common block in the executable program. It also must not be the same as a data item in this
subprogram. DATA statements and explicit type statements initializing items can follow or
precede the definitions of those items in named COMMON statements.

Local variables cannot be declared in a BLOCK DATA subprogram. A variable or array
made equivalent to another variable or array in a common block is considered to be in that
common block.

Chapter 10. Program Units and Procedures 95

96 Reference Manual for XL FORTRAN

Chapter 11. Input/Output Statements

Records

This chapter describes:

• Records
• Files
• Units
• The input/output statements: READ, WRITE, PRINT, OPEN, CLOSE, INQUIRE,

BACKSPACE, ENDFILE, and REWIND
• IOSTAT values.

A record is a sequence of characters or a sequence of values. The three kinds of records
are formatted, unformatted, and endfile.

Formatted Records
A formatted record is a sequence of any ASCII characters. When a formatted record is read,
data values represented by characters are converted to an internal form. When a formatted
record is written, the data to be written is converted from internal form to characters.

If a formatted record is printed using the AIX asa command1 (see Appendix E of the User's
Guide for IBM AIX XL FORTRAN Compiler/6000, SC09-1257-00 for information on this
command), the first character of the record determines vertical spacing and is not printed.
The remaining characters of the record, if any, are printed beginning at the left margin.
Vertical spacing can be specified in a format specification in the form of literal data. Vertical
spacing is as follows:

First Vertical Spacing Before Printing
Character
of Record

Blank One line

0 Two lines

1 To first line of next page

+ No advance

The characters and spacing shown are those defined for print records. If you use any other
character as the first character of the record, it will be ignored. If the print record contains no
characters, spacing is advanced by one line and a blank line is printed. If records are to be
displayed at a terminal, control characters are also employed, but only the characters blank
and zero produce the spacing shown. (The AIX asa command must be used if these print
codes are to be displayed on a terminal.)

Unformatted Records
An unformatted record is a sequence of values in a system dependent form and can contain
both character and noncharacter data or can contain no data. The values are in their internal
form and are not converted in any way when read or written.

1
· Printing can be performed on a printer or on some other device.

© Copyright IBM Corp. 1990 Chapter 11. Input/Output Statements 97

Endfile Records

Files

If it exists, an endfile record is the last record of a file. It can be written by an ENDFILE
statement and has no length.

A file is a sequence of records. The two kinds of files are external and internal. Access to an
external file can be sequential or direct.

External Files
An external file is a file stored on an input/output device such as a disk, tape, or terminal.

An external file is said to exist for a program if it is available to the program for reading or
was created within the program. Creating an external file causes it to exist when it did not
previously. Deleting an external file ends its existence. An external file can exist but contain
no records. All input/output statements can refer to external files that exist, or to external
files that do not exist.

An external file can have a name. The name is system dependent.

Note: A valid AIX file name must have a full path name of total length s2048 characters,
with each file name s256 characters long (though the full path name need not be
specified).

The position of an external file is usually established by the preceding input/output operation.
An external file can be positioned to:

• An initial point, which is the position just before the first record.

• A terminal point, which is the position just after the last record.

• A current record, when the file is positioned within a record. Otherwise, there is no current
record.

• A preceding record, which is the record just before the current file position. A preceding
record does not exist when the file is positioned at its initial point or at the first record of
the file.

• A next record, which is the record just after the current file position. The next record does
not exist when the file is positioned at the terminal point or in the last record of the file.

• An indeterminate position after an error.

External File Access - Sequential or Direct
The two methods of accessing the records of an external file are sequential and direct. The
method is determined when the file is connected to a unit.

A file connected for sequential access contains records in the order they were written. The
records must be either all formatted or all unformatted; the last record of the file must be an
endfile record. The records must not be read or written by direct access input/output
statements during the time the file is connected for sequential access.

The records of a file connected for direct access can be read or written in any order. The
records must be either all formatted or all unformatted; the last record of the file can be an
endfile record if the file was previously connected for sequential access. In this case, the
endfile record is not considered a part of the file when it is connected for direct access. The
records must not be read or written by sequential access input/output statements or read or
written using list-directed formatting during the time the file is connected for direct access.

98 Reference Manual for XL FORTRAN

Each record in a file connected for direct access has a record number that identifies its order
in the file. The record number is an integer value that must be specified when the record is
read or written. Records are numbered sequentially. The first record is number 1. Records
need not be read or written in the order of their record numbers. For example, records 9, 5,
and 11 can be written in that order without writing the intermediate records.

All records in a file connected for direct access must have the same length, which is
specified in the OPEN statement (see "OPEN Statement" on page 106) when the file is
connected.

Records in a file connected for direct access cannot be deleted but can be rewritten with a
new value. A record cannot be read, after the end of the file, unless it is first written.

Internal Files

Units

An internal file is a character variable, character array, character array element, or character
substring.

If an internal file is a character variable, character array element, or character substring, the
file consists of one record with a length equal to that of the variable, array element, or
substring. If an internal file is a character array, each element of the array is a record of the
file, with each record having the same length.

Reading and writing records are accomplished by sequential-access formatted input/output
statements. READ and WRITE are the only input/output statements that can specify an
internal file.

If a WRITE statement writes less than an entire record, blanks fill the remainder of the
record.

An internal file always exists.

A variable, array element, or character substring that is a record of an internal file can
become defined or undefined by means other than an output statement. For example, you
can define it by a character assignment statement.

A unit is a means of referring to an external file. Programs refer to external files by the unit
numbers specified in unit specifiers in input/output statements. See page 101 for the form of
a unit specifier.

Connection of a Unit
The association of a unit with an external file is called a connection. Connection must occur
before the records of the file can be read or written. Connection can occur by preconnection,
which is prior to running the program, or by an OPEN statement.

Units 0, 5, and 6 are preconnected when the program starts:

• Unit 0 is connected to the standard error.

• Unit 5 is connected to the standard input for sequential formatted input/output.

• Unit 6 is connected to the standard output for sequential formatted input/output.

All other units are also preconnected (unit n to a file named fort.n). These files need not
exist and are created if you use their units without first performing an OPEN statement. The
default connection is for sequential formatted input/output.

A file can be connected and not exist, for example, a preconnected new file.

Chapter 11. Input/Output Statements 99

The CLOSE statement disconnects a file from a unit. The file can be connected again within
the same program to the same unit or to a different unit, and the unit can be connected
again within the same program to the same file or to a different file.

READ, WRITE, and PRINT Statements

format
, - io_item_list

(io _control_ list)
- READ io _item_ list

--------name

WRITE - (io_contro(_list)-[J-1
io _item_ list

PRINT -[format -[, - io_item_list;ty

-------name ------

format
is a format identifier, described below under FMT =format.

name
is a NAMELIST name.

io_item
is an input/output list item. An input/output list specifies the data to be transferred. An
input/output list item can be:

• A variable name.
• An array element name.
• A character substring name.
• An array name (cannot be an assumed-size array). The array is treated as if all of

its elements were specified in the order they are arranged in storage.
• (In an output list only.) Any other expression except a character expression involving

concatenation of an operand whose length specifier is an asterisk in parentheses
(indicating inherited length) unless the operand is the name of a constant. A function
must not be referenced within an expression if such a reference causes an input or
output statement to be executed.

• An implied-DO list, described on page 105.

io_control
is a list that must contain one unit specifier, and can also contain one of each of the
other valid specifiers. The valid specifiers are:

100 Reference Manual for XL FORTRAN

[UNIT=] u
is a unit specifier that specifies the unit to be used in the input/output operation. u
is an external unit identifier or internal file identifier.

An external unit identifier refers to an external file. It is one of the following:

• An INTEGER*4 expression whose value is 0 through 99.
• An asterisk, representing standard input or standard output.

Note: Although other input/output statements also allow a unit specifier, only
the READ and WRITE statements allow its value to be an asterisk.

An internal file identifier refers to an internal file. It is the name of a character
variable, character array, character array element, or character substring.

If the optional characters UNIT= are omitted, u must be the first item in
io _control_ list.

[FMT =] format
is a format specifier that specifies the format to be used in the input/output
operation. format is a format identifier, that can be:

• The statement label of a FORMAT statement. {The FORMAT statement is
described on page 117.) The FORMAT statement must be in the same program
unit.

• The name of an INTEGER*4 variable that was assigned the statement label of
a FORMAT statement. The FORMAT statement must be in the same program
unit.

• A character constant delimited by apostrophes or double quotation marks. It
must begin with a left parenthesis and end with a right parenthesis. Only the
format codes described in the FORMAT statement can be used between the
parentheses. Blank characters can precede t,he left parenthesis, or follow the
right parenthesis. An apostrophe or double quotation mark in a constant is
represented by two consecutive apostrophes or double quotation marks
respectively.

• A character variable or character array element that contains character data
whose leftmost character positions constitute a valid format. A valid format
begins with a left parenthesis and ends with a right parenthesis. Only the
format codes described in the FORMAT statement can be used between the
parentheses. Blank characters can precede the left parenthesis, or follow the
right parenthesis. The length of the format identifier must not exceed the length
of the array element.

• The name of a character array. (See "Character Format Specification" on page
120 for more information.) The character array name must contain character
data whose leftmost characters constitute a valid format identifier. The length
of the format identifier can exceed the length of the first array element. The
format specifier is considered the concatenation of all the array elements of the
array in the order given by array element ordering.

• An array name of type integer, real, double precision, logical, complex, or
double complex. The data must be a valid format identifier as described under
character array.

• Any character expression except one involving concatenation of an operand
whose length specifier is an asterisk in parentheses (indicating inherited
length) unless the operand is the name of a constant. (See "Character Format
Specification" on page 120 for more information.)

Chapter 11 . Input/Output Statements 101

• An asterisk, specifying list-directed formatting. (List-directed formatting is
described on page 134 .)

If the optional characters FMT= are omitted, format must be the second item in
io_ control_list, and the first item must be the unit specifier.

REC= integer_ expr
is a record specifier that specifies the number of the record to be read or written
in a file connected for direct access. The REC= specifier is only permitted for
direct input/output. integer_expr is an integer expression whose value is positive.
A record specifier is not valid if formatting is list-directed, if the unit specifier
specifies an internal file, or if an end-of-file specifier is specified. The record
specifier represents the relative position of a record within a file. The relative
position number of the first record is 1.

IOSTAT= ios
is an input/output status specifier that specifies the status of the input/output
operation. ios is the name of a variable or array element of type INTEGER*4.
When the input/output statement containing this specifier finishes execution, ios is
defined with:

• A negative value if an end-of-file condition was encountered and no error
occurred while the input/output statement was executing, or if the READ or
WRITE statement follows the ENDFILE statement.

• A zero value if the input/output operation completes without any errors.

• A positive value if an error occurred during the input/output operation. The
meaning of a positive value is system dependent. (See "IOSTAT Values" on
page 114 for further information.)

ERR= stmt label
is an error specifier that specifies the statement label of an executable statement
in the same program unit to which control is to transfer in the case of an error. If
you do not specify ERR= or IOSTAT=, the program stops when an error is
detected.

END= stmt label
is an end-of-file specifier that specifies a statement label at which the program is
to continue when an endfile record is encountered while a file is being read, and
no error occurred. Coding the ERR parameter suppresses the error message for
end-of-file. This specifier can only be specified in a READ statement that refers
to a unit connected for sequential access. If you stipulate an end-of-file specifier,
you cannot have a record specifier.

NUM= integer_ variable
is a number specifier that specifies the number of bytes of data transmitted from
the elements specified by the input/output list. integer_ variable is the name of a
variable or array element of type INTEGER*4. The NUM= specifier is only
permitted for unformatted input/output. Coding the NUM parameter suppresses
the indication of an error that would occur if the number of bytes represented by
the input/output list is greater than the number of bytes that can be written into
the record. In this case, integer_ variable is set to a value that is the maximum
length record that can be written. Data from remaining input/output list items is
not written into subsequent records.

102 Reference Manual for XL FORTRAN

[NML=] name
is a NAMELIST specifier that specifies the name of a NAMELIST that you have
previously defined. If the optional characters NML= are not specified, the
NAMELIST name must appear as the second parameter in the list. If both NML=
and UNIT= are specified, all the parameters can appear in any order. The NML=
specifier is an alternative to FMT=. Both NML= and FMT= cannot be specified in
the same input/output statement.

A READ statement without io_control_list specified specifies the same unit as a READ
statement with io_control_list specified in which the external unit identifier is an asterisk.

Transfer is made to the statement specified by the ERR= parameter if an error is detected. If
IOSTAT= is specified, a positive integer value is assigned to ios when an error is detected.
The program then continues with the statement specified with the ERR= parameter, if
present, or with the next statement if ERR= is not specified. If the ERR= and IOSTAT=
parameters are both omitted, the program stops if an error is detected. If you do not use the
END= specifier, and the end-of-file is encountered, execution continues at the next
statement.

PRINT format has the same effect as a WRITE (*,format).

Categories of READ, WRITE, and PRINT Statements
A READ or WRITE statement can be a formatted input/output statement or an unformatted
input/output statement. The PRINT statement is a formatted input/output statement.

A formatted input/output statement contains a format identifier and transfers data with editing
(conversion) occurring between the internal form of the data and the character
representation of that data in records. The three methods of formatting are:

• Format-directed formatting, where editing is controlled by edit descriptors in a format
specification. Format specifications are described on page 117.

• List-directed formatting, where editing is controlled by the types and lengths of the data
being read or written. List-directed formatting is described on page 134.

If a formatted READ, WRITE, or PRINT statement has an asterisk as a format identifier,
the statement is a list-directed input/output statement, and a record specifier must not be
present.

• NAMELIST formatting, where editing is controlled by a NAMELIST list. NAMELIST
formatting is described on page 136.

An unformatted input/output statement does not contain a format identifier and transfers data
without performing editing.

A READ or WRITE statement is a direct access input/output statement if it contains a record
specifier, or a sequential access input/output statement if it does not contain a record
specifier.

Executing READ, WRITE, and PRINT Statements
The READ statement obtains data from an external or internal file and places it in internal
storage. Values are transferred from the file to the data items specified by the input list
(io_item_list), if one is specified.

The WRITE statement places data obtained from internal storage into an external or internal
file. The PRINT statement places data obtained from internal storage into an external
file. Values are transferred to the file from the data items specified by the output list
(io_item_list) and format specification, if they are specified. Execution of a WRITE or PRINT
statement for a file that does not exist creates the file, unless an error occurs.

Chapter 11. Input/Output Statements 103

If the io_item_list is omitted (in a PRINT statement), a blank record is transmitted to the
output device unless the FORMAT statement referred to contains as its first specification a
character constant or slashes. In this case, the records indicated by these specifications are
transmitted to the output device.

If a transmission error is detected during a READ or WRITE statement, control is transferred
to the statement specified by ERR=. No indication is given of which record or records could
not be read or written; only that the error occurred during transmission of data. If IOSTAT is
specified, a positive integer value is assigned to ios when the error is detected. If ERR= is
not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not considered
transmission errors. These errors do not cause IOSTAT to be set and transfer will not be
made to the statement specified by ERR=.

File Position Before and After Data Transfer
The FORTRAN standards do not specify the initial position of a file that is explicitly opened
for sequential input/output, so the following conventions have been adopted for XL
FORTRAN:

On an explicit OPEN (by an OPEN statement):

• If the file STATUS is NEW or SCRATCH, the file is positioned at the beginning.

• If STATUS='OLD' is specified, the file is positioned at the end.

- If the next operation is a WRITE, it will append to the file.
- If the next operation is a READ, the file is repositioned to the beginning so that the first

record is read.

The implementation of an implicit OPEN is equivalent to an explicit OPEN with
STATUS='NEW' (that is, the file is positioned at the beginning). Thus:

• If the first input/output operation on the file is a READ, it will read the first record of the
file.

• If the first input/output operation on the file is a WRITE, it will delete the contents of the
file and write at the first record.

Therefore, to append to an existing file, the file must be explicitly opened with an OPEN
statement with STATUS='OLD' specified before a WRITE statement can execute.

If you do not perform an explicit OPEN, the implicit OPEN will open a default file.

A REWIND statement can be used to position a file at its beginning. The preconnected units
5 and 6 are positioned as they come from the program's parent process.

The positioning of a file prior to data transfer depends on the method of access:

• Sequential access for an external file: On input, the file is positioned at the beginning of
the next record. This record becomes the current record. On output, a new record is
created and becomes the last record of the file.

·Sequential access for an internal file: The file is positioned at the beginning of the first
record of the file. This record becomes the current record.

• Direct access: The file is positioned at the beginning of the record specified by the record
specifier. This record becomes the current record.

After data transfer, the file is positioned:

• Beyond the endfile record if an end-of-file condition exists as a result of reading an
endfile record.

104 Reference Manual for XL FORTRAN

• Beyond the last record read or written if no error or end-of-file condition exists. That last
record becomes the preceding record. A record written on a file connected for sequential
access becomes the last record of the file.

If a file is positioned beyond the endfile record, a READ, WRITE, PRINT, or ENDFILE
statement cannot execute. A BACKSPACE or REWIND statement can be used to reposition
the file.

If an error occurs, the position of an external file is indeterminate.

Implied-DO List in a READ, WRITE, or PRINT Statement
An implied-DO list can be used in a READ, WRITE, or PRINT statement to specify the data
to be transferred. Its form is:

- (- do_ object_list - , - variabfe_name = arith _expr1, arith _ expr2 -{ }) -j
, arith _ expr3

do_object
is an input/output list item. (See "io_item" on page 100.)

variable_ name
arith _ expr1
arith _ expr2
arith _ expr3

are as specified for the DO statement. (See page 74.)

The range of an implied-DO list is the list do_object_list. The iteration count and the values
of the DO variable are established from arith _ expr1, arith _ expr2, and arith ~expr3, the same
as for a DO statement. (See "Executing a DO Statement" on page 75.) When the
implied-DO list is executed, the items in the do_object_list are specified once for each
iteration of the implied-DO list, with the appropriate substitution of values for any occurrence
of the DO variable.

In a READ statement, the DO variable or an associated data item must not appear as an
input list item in the do_object_list, but can be read in the same READ statement outside of
the implied-DO list. For example:

READ(3,150) ISIZE,(LIST(I),I=l,ISIZE)
150 FORMAT(l0I7)

In the example, the value of ISIZE is read with the same READ statement but outside of
the implied-DO list of which it is a part. One element of the array LIST is defined with each
iteration of the implied-DO list.

Examples of READ, WRITE, and PRINT Statements
Example of Formatted READ and WRITE Statements

INTEGER LENGTH,WIDTH,DEPTH
CHARACTER*8 CHR TIME

READ(l0,200) LENGTH,WIDTH,DEPTH
200 FORMAT(I5,Il0,Il0)

WRITE(*,'(A,A)') 'The time is:',CHR_TIME(1:8)

Chapter 11. Input/Output Statements 105

Example of Unformatted READ and WRITE Statements

INTEGER DATA_UNIT,SIZE,A(l000),BUFFER(2000)

READ(UNIT=DATA_UNIT) SIZE,(A(J),J=l,SIZE)
WRITE(20) BUFFER

OPEN Statement

I - OPEN - (- open_list -) --4

open_ list
is a list that must contain one unit specifier (UNIT= u) and can also contain one of each
of the other valid specifiers. The valid specifiers are:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose value is not
an asterisk. An external unit identifier refers to an external file that is represented
by an INTEGER*4 expression, whose value is 0 through 99. If the optional
characters UNIT= are omitted, u must be the first item in open_list.

IOSTAT=ios
is an input/output status specifier that specifies the status of the input/output
operation. ios is the name of a variable or array element of type INTEGER*4.
When the input/output statement containing this specifier finishes execution, ios is
defined with a zero value if the input/output operation completed without any
errors, and a positive value if an error occurred during the input/output operation.
If you do not specify ERR= or IOSTAT=, the program stops when an error is
detected. (See "IOSTAT Values" on page 114 for further information.)

ERR= stmt_label
is an error specifier that specifies the statement label of an executable statement
in the same program unit to which control is to transfer in the case of an error. If
you do not specify ERR= or IOSTAT=, the program stops when an error is
detected.

FILE= char_ expr
is a file specifier, that specifies the name of the file to be connected to the
specified unit. char_ expr is a character expression whose value, when any trailing
blanks are removed, is a valid AIX file name. If the file specifier is omitted, the
unit becomes connected to fort.u where u is the unit specified with any leading
blanks removed.

Note: A valid AIX file name must have a full path name of total length s2048
characters, with each file name s256 characters long (though the full path
name need not be specified).

STATUS= char_ expr
specifies the status of the file when it is opened. char_ expr is a character
expression whose value, when any trailing blanks are removed, is one of the
following:

106 Reference Manual for XL FORTRAN

• OLD, to connect an existing file to a unit. If OLD is specified, a file specifier
must be specified, and the file must exist.

• NEW, to create a new file and connect it to a unit. If NEW is specified, a file
specifier must be specified, and the file must not exist.

• SCRATCH, to create and connect a new file that will be deleted when it is
disconnected. SCRATCH must not be specified with a named file (that is,
FILE= char_expr must be omitted).

• UNKNOWN, to connect an existing file, or to create and connect a new file. If
the file exists, it is connected as OLD. If the file does not exist, it is connected
as NEW.

UNKNOWN is the default.

ACCESS= char_expr
specifies the access method for the connection of the file. char_expr is a
character expression whose value, when any trailing blanks are removed, is
either SEQUENTIAL or DIRECT. SEQUENTIAL is the default. If ACCESS is
DIRECT, RECL= must be specified. If ACCESS is SEQUENTIAL, RECL= must
not be specified.

FORM= char_expr
specifies whether the file is connected for formatted or unformatted input/output.
char_expr is a character expression whose value, when any trailing blanks are
removed, is either FORMATTED or UNFORMATTED. If the file is being
connected for sequential access, FORMATTED is the default. If the file is being
connected for direct access, UNFORMATTED is the default.

RECL= integer_ expr
specifies the length of each record in a file being connected for direct access.
integer_expr is an INTEGER*4 expression whose value must be positive. This
specifier must be omitted when a file is being connected for sequential access.

BLANK= char_expr
controls the default interpretation of blanks when using a format specification.
char_expr is a character expression whose value, when any trailing blanks are
removed, is either NULL or ZERO. See "BN (Blank Null) and BZ (Blank Zero)
Editing" on page 124 for descriptions of NULL and ZERO. If BLANK is specified,
you must use FORM= 'FORMATTED'. If BLANK is not specified and you specify
FORM='FORMATTED', NULL is the default.

The OPEN statement can be used to connect an existing external file to a unit, create an
external file that is preconnected, create an external file and connect it to a unit, or change
certain specifiers of a connection between an external file and a unit.

If a unit is connected to a file that exists, an OPEN statement for that unit cannot be
performed. If the file specifier is not included in the OPEN statement, the file to be connected
to the unit is the same as the file to which the unit is connected.

If the file to be connected to the unit does not exist, but is the same as the file to which the
unit is preconnected, the properties specified by the OPEN statement become a part of the
connection.

If the file to be connected to the unit is not the same as the file to which the unit is
connected, the effect is as if a CLOSE statement without a STATUS= char_ expr specifier
had been executed for the unit immediately prior to the execution of the OPEN statement.

If the file to be connected to the unit is the same as the file to which the unit is connected,
only the BLANK= char_ expr specifier can have a value different from the one currently in

Chapter 11. Input/Output Statements 107 ·

effect. Execution of the OPEN statement causes the new value of the BLANK= char_expr
specifier to be in effect. The position of the file is unaffected.

If a file is connected to a unit, an OPEN statement on that file and a different unit cannot be
performed.

Example of the OPEN Statement

CHARACTER*20 FNAME
FNAME = 'INPUT.DAT'
OPEN(UNIT=8,FILE=FNAME,STATUS='NEW' ,FORM='FORMATTED')

CLOSE Statement

I - CLOSE - (- close_list -)-f

close_list
is a list that must contain one unit specifier (UNIT =u) and can also contain one of each
of the other valid specifiers. The valid specifiers are:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose value is not
an asterisk. An external unit identifier refers to an external file that is represented
by an INTEGER*4 expression, whose value is O through 99. If the optional
characters UNIT= are omitted, u must be the first item in close_list.

IOSTAT= ios
is an input/output status specifier that specifies the status of the input/output
operation. ios is the name of a variable or array element of type INTEGER*4.
When the input/output statement containing this specifier finishes executing, ios is
defined with a zero value if the input/output operation completed without any
errors, and a positive value if an error occurred during the input/output operation.
If you do not specify ERR= or IOSTAT =, the program stops when an error is
detected. (See "IOSTAT Values" on page 114 for further information.)

ERR= stmt_label
is an error specifier that specifies the statement label of an executable statement
in the same program unit to which control is to transfer in the case of an error. If
you do not specify ERR= or IOSTAT=, the program stops when an error is
detected.

STATUS= char_expr
specifies the status of the file after it is closed. char_expr is a character
expression whose value, when any trailing blanks are removed, is either KEEP or
DELETE.

• If KEEP is specified for a file that exists, the file will continue to exist after the
CLOSE statement. If KEEP is specified for a file that does not exist, the file will
not exist after the CLOSE statement. KEEP must not be specified for a file
whose status prior to executing the CLOSE statement is SCRATCH.

• If DELETE is specified, the file will not exist after the CLOSE statement.

The CLOSE statement disconnects an external file from a unit.

108 Reference Manual for XL FORTRAN

A CLOSE statement that refers to a unit can occur in any program unit of an executable
program and need not occur in the same program unit as the OPEN statement referring to
that unit. XL FORTRAN will execute a CLOSE statement specifying a unit that does not exist
or has no file connected; the CLOSE statement has no effect in this case.

When an executable program stops for reasons other than an error condition, all units that
are connected are closed. Each unit is closed with status KEEP unless the file status prior to
completion was SCRATCH, in which case the unit is closed with status DELETE. The effect
is as though a CLOSE statement without a STATUS= char_ expr specifier were executed on
each connected unit.

Examples of the CLOSE Statement

CLOSE(l5)
CLOSE(UNIT=l6,STATUS='DELETE')

INQUIRE Statement

I - INQUIRE - (- inquiry_list -)--i

inquiry_list
is a list of inquiry specifiers. In an INQUIRE-by-file statement, inquiry_list must contain
one file specifier (FILE= char_expr), must not contain a unit specifier (UNIT= u), and
can contain at most one of each of the other inquiry specifiers. In an INQUIRE-by-unit
statement, inquiry_list must contain one unit specifier, must not contain a file specifier,
and can contain at most one of each of the other inquiry specifiers. The inquiry
specifiers are:

FILE= char_expr
is a file specifier. It specifies the name of the file about which an INQUIRE-by-file
statement is inquiring. char_ expr is a character expression whose value, when
any trailing blanks are removed, is a valid AIX file name. The named file does not
have to exist, nor does it have to be associated with a unit.

Note: A valid AIX file name must have a full path name of total length ~2048
characters, with each file name :;;256 characters long (though the full path
name need not be specified).

[UNIT=] u
is a unit specifier. It specifies the unit about which an INQUIRE-by-unit statement
is inquiring. u must be an external unit identifier whose value is not an asterisk.
An external unit identifier refers to an external file that is represented by an
INTEGER*4 expression, whose value is O through 99. If the optional characters
UNIT= are omitted, u must be the first item in inquiry_list.

IOSTAT= ios
is an input/output status specifier that specifies the status of the input/output
operation. ios is the name of a variable or array element of type INTEGER*4.
When the input/output statement containing this specifier finishes executing, ios is
defined with a zero value if the input/output operation completed without any
errors, and a positive value if an error occurred during the input/output operation.
(See "IOSTAT Values" on page 114 for further information.)

Chapter 11. Input/Output Statements 109

ERR= stmt_label
is an error specifier that specifies the statement label of an executable statement
in the same program unit to which control is to transfer in the case of an error.

EXIST= ex
indicates if a file or unit exists. ex is a logical variable or logical array element of
length 4 that is assigned the value true or false. For an INQUIRE-by-file
statement, the value true is assigned if the file specified by FILE= char_ expr
exists. The value false is assigned if the file does not exist. For an
INQUIRE-by-unit statement, the value true is assigned if the unit specified by
UNIT= u exists. The value false is assigned if the unit does not exist.

OPENED=od
indicates if a file or unit is connected. od is a logical variable or logical array
element of length 4 that is assigned the value true or false. For an
INQUIRE-by-file statement, the value true is assigned if the file specified by
FILE= char_expr is connected to a unit. The value false is assigned if the file is
not connected to a unit. For an INQUIRE-by-unit statement, the value true is
assigned if the unit specified by UNIT= u is connected to a file. The value false
is assigned if the unit is not connected to a file.

NUMBER=num
indicates the external unit identifier currently associated with the file. num is an
INTEGER*4 variable or array element that is assigned the value of the external
unit identifier of the unit that is currently connected to the file. If there is no unit
connected to the file, num becomes undefined.

NAMED=nmd
indicates if the file has a name. nmd is a logical variable or logical array element
of length 4 that is assigned the value true if the file has a name, or the value
false if the file does not have a name.

NAME= fn
indicates the name of the file. fn is a character variable or character array element
that is assigned the value of the name of the file if the file has a name, or
becomes undefined if the file does not have a name.

ACCESS= char_expr
indicates whether the file is connected for sequential access or direct access.
char_ expr is a character variable or character array element that is assigned the
value SEQUENTIAL if the file is connected for sequential access, or the value
DIRECT if the file is connected for direct access. If there is no connection,
char_ expr becomes undefined.

SEQUENTIAL= seq
indicates if the file is connected for sequential access. seq is a character variable
or character array element that is assigned the value YES if the file can be
accessed sequentially, the value NO if the file cannot be accessed sequentially, or
the value UNKNOWN if it cannot be determined.

DIRECT=dir
indicates if the file is connected for direct access. dir is a character variable or
character array element that is assigned the value YES if the file can be accessed
directly, the value NO if the file cannot be accessed directly, or the value
UNKNOWN if it cannot be determined.

110 Reference Manual for XL FORTRAN

FORM= char_expr
indicates whether the file is connected for formatted or unformatted input/output.
char_ expr is a character variable or character array element that is assigned the
value FORMATTED if the file is connected for formatted input/output, or the value
UNFORMATTED if the file is connected for unformatted input/output. If there is
no connection, char_ expr becomes undefined.

FORMATTED= fmt
indicates if the file can be connected for formatted input/output. fmt is a character
variable or character array element that is assigned the value YES if the file can
be connected for formatted input/output, the value NO if the file cannot be
connected for formatted input/output, or the value UNKNOWN if it cannot be
determined.

UNFORMATTED= unf
indicates if the file can be connected for unformatted input/output. fmt is a
character variable or character array element that is assigned the value YES if
the file can be connected for unformatted input/output, the value NO if the file
cannot be connected for unformatted input/output, or the value UNKNOWN if it
cannot be determined.

RECL= rel
indicates the record length of a file connected for direct access. rel is an
INTEGER*4 variable or array element that is assigned the value of the record
length. If there is no connection or if the connection is not for direct access, rel
becomes undefined.

NEXTREC= nr
indicates where the next record can be read or written on a file connected for
direct access. nr is an INTEGER*4 variable or array element that is assigned the­
value n + 1, where n is the record number of the last record read or written on
the file connected for direct access. If the file is connected but no records were
read or written since the connection, nr is assigned the value 1. If the file is not
connected for direct access or if the position of the file cannot be determined
because of a previous error, nr becomes undefined.

BLANK= char_expr
indicates the default treatment of blanks for a file connected for formatted
input/output. char_ expr is a character variable or character array element that is
assigned the value NULL if all blanks in numeric input fields are ignored (as in
BN editing), or the value ZERO if all nonleading blanks are interpreted as zeros
(as in BZ editing). If there is no connection, or if the connection is not for
formatted input/output, char_expr becomes undefined.

The INQUIRE statement obtains information about:

• The properties of an external file. When the INQUIRE statement is used for this purpose,
the file specifier (FILE= char_expr) must be specified, and the statement is called an
INQUIRE-by-file statement.

• An external file's association with a particular unit. When the INQUIRE statement is used
for this purpose, the unit specifier (UNIT= u) must be specified, and the statement is
called an INQUIRE-by-unit statement.

An INQUIRE statement can be executed before, while, or after a file is associated with a
unit. Any values assigned as the result of an INQUIRE statement are values that are current

Chapter 11. Input/Output Statements 111

at the time the statement is executed. The inquiry_list variables or array elements specified
by EXIST= ex and OPENED= od always become defined.

Execution of an INQUIRE-by-file statement causes definition of the inquiry_list variables
and array elements as follows:

• Variables or array elements specified by NAMED= nmd, NAME= fn, SEQUENTIAL= seq,
DIRECT= dir, FORMATTED= fmt, and UNFORMATTED= unf become defined only if the
value of char_ expr is the name of a file that exists; otherwise, the variables or array
elements become undefined.

• Variables or array elements specified by NUMBER= num, ACCESS= ehar_expr, FORM=
char_expr, RECL= rel, NEXTREC= nr, and BLANK= ehar_expr become defined only if a
variable or array element specified by OPENED= od becomes defined with the value
true.

Execution of an INQUIRE-by-unit statement causes definition of the inquiry_list variables
and array elements specified by NUMBER= num, NAMED= nmd, NAME= fn, ACCESS=
char_expr, SEQUENTIAL= seq, DIRECT= dir, FORM= char_expr, FORMATTED= fmt,
UNFORMATTED= unf, RECL= rel, NEXTREC= nr, and BLANK= char_ expr only if the
specified unit exists and if a file is connected to the unit; otherwise, the variables or array
elements become undefined.

All value assignments are done according to the rules for assignment statements. Note that
no error is given if the value is truncated because the receiving field is too small. The same
variable name or array element must not be specified for more than one parameter in the
same INQUIRE statement, and must not be associated with any other variable or array
element in the list of parameters through EQUIVALENCE, COMMON, or argument passing.

Example of the INQUIRE Statement

INQUIRE(FILE=FILEl,EXIST=F_EX,OPENED=F_OD,NUMBER=F_NUM)

BACKSPACE, ENDFILE, and REWIND Statements

-[
u y

- BACKSPACE
(position_ list)

- ENDFILE -[
u y
(position_ list;

-[
u y

- REWIND
(position _list)

u
is an external unit identifier. The value of u must not be an asterisk.

position_ list
is a list that must contain one unit specifier (UNIT= u) and can also contain one of each
of the other valid specifiers. The valid specifiers are:

112 Reference Manual for XL FORTRAN

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose value is not
an asterisk. An external unit identifier refers to an external file that is represented
by an INTEGER*4 expression, whose value is 0 through 99. If the optional
characters UNIT= are omitted, u must be the first item in position_list.

IOSTAT = ios]
is an input/output status specifier that specifies the status of the input/output
operation. ios is the name of a variable or array element of type INTEGER*4.
When the input/output statement containing this specifier finishes executing, ios is
defined with a zero value if the input/output operation completed without any
errors, and a positive value if an error occurred during the input/output operation.
(See "IOSTAT Values" on page 114 for further information.)

ERR= stmt_label
is an error specifier that specifies the statement label of an executable statement
in the same program unit to which control is to transfer in the case of an error.

External files connected for sequential access can be positioned using BACKSPACE,
ENDFILE, and REWIND statements. Transfer is made to the statement specified by the
ERR= parameter if an error is detected. If IOSTAT= is specified, a positive integer value is
assigned to ios when an error is detected. The program then continues with the statement
specified with the ERR= parameter, if present, or with the next statement if ERR= is not
specified. If the ERR= and IOSTAT= parameters are both omitted, the program stops if an
error is detected.

Each command also has the following effects:

• BACKSPACE positions a file, connected to a specified unit, before the preceding record.
If there is no preceding record, the file position does not change. If the preceding record is
the endfile record, the file is positioned before the endfile record. You cannot backspace
over records that were written using list-directed formatting, or NAMELIST formatting. If
you try, the result is unpredictable. You cannot backspace a file that is connected, but
does not exist. ~

• ENDFILE writes an endfile record as the next record of a file. This record becomes the
last record in the file. If the unit is not connected, an error is detected and transfer is made
to the statement specified by the ERR= stmt_label.

• REWIND positions a file at the beginning of the first record of the file. If the unit is not
connected, an implicit OPEN specifying sequential access is performed to a default file
named fort.n, where n is the value of u with leading zeros removed. If the external file
connected to the specified unit does not exist, the REWIND statement has no effect. If it
does exist, an end-of-file marker is created, if necessary, and the file is positioned at the
beginning of the first record. If the file is already positioned at its initial point, the REWIND
has no effect. The REWIND statement causes a subsequent READ or WRITE statement
referring to u to read data from or write data into the first record of the external file
associated with u.

Examples of the BACKSPACE, ENDFILE, and REWIND Statement

BACKSPACE 15
BACKSPACE (UNIT=15,ERR=99)
ENDFILE 12
ENDFILE (IOSTAT=IOSS,UNIT=ll)
REWIND 9

Chapter 11. Input/Output Statements 113

IOSTAT Values
If the error detected is an input/output error, and IOSTAT was specified on the input/output
statement in error, then the IOSTAT variable will be assigned the following value:

• The negative value of the last 3 digits of the message number, if an end-of-file condition
exists

• The last 3 digits of the message number, in all other cases.

IOSTAT Description
Value

-1 End of file

-2 End of internal file

6 File not found and STATUS=OLD specified in OPEN

7 Incorrect format of list-directed input in file

8 Incorrect format of list-directed input in internal file

9 Data item too long for the internal file

10 Read error on direct file

11 Write error on direct file

12 Read error on sequential file

13 Write error on sequential file

14 Error opening a file

15 Permanent 1/0 error encountered on a file

16 Record number invalid for direct 1/0

17 1/0 statement not allowed for direct file

18 Direct 1/0 statement on a file not open

19 Unformatted 1/0 on formatted file

20 Formatted 1/0 on unformatted file

21 Sequential 1/0 on direct file

22 Direct 1/0 on sequential file

23 File connected to another unit

24 OPEN specifiers don't match file attributes

25 RECL not given on OPEN for direct file

26 Negative record length in OPEN

27 OPEN ACCESS specifier invalid

28 OPEN FORMAT specifier invalid

31 OPEN FILE specifier invalid

35 Recursive 1/0 operation

36 Invalid unit number

38 REWIND error

39 ENDFILE error

40 BACKSPACE error

114 Reference Manual for XL FORTRAN

84 NAMELIST name not found in file

85 NAMELIST name not found in internal file

93 1/0 statement not allowed on error unit

All of these errors will cause the IOSTAT variable to be set if the inpuVoutput status specifier
appears in the inpuVoutput statement. If ERR= or END= has been specified, the program will
then branch to the indicated statement label. If none of these has been specified, the
program will terminate.

Other error messages can be issued by the IBM AIX XL FORTRAN Run Time Environment,
but they will not set the IOSTAT variable. Depending upon the severity of the error, the
program may branch to the location indicated by the ERR= specifier. Error messages that do
not set the IOSTAT value will not cause the program to terminate.

Chapter 11. Input/Output Statements 115

116 Reference Manual for XL FORTRAN

Chapter 12. Input/Output Formatting

Formatted READ, WRITE, and PRINT statements use formatting information to direct the
editing (conversion) between internal data representations and character representations in
formatted records. (See "Formatted Records" on page 97.) This chapter describes the three
methods of formatting:

• Format-directed formatting
• List-directed formatting
• NAMELIST formatting.

Format-Directed Formatting
In format-directed formatting, editing is controlled by edit descriptors in a format
specification. A format specification is specified in a FORMAT statement or as the value of a
character array or character expression in a READ, WRITE, or PRINT statement.

FORMAT Statement
1---=--F_O_R_M_A-~---_--fi-o~-m-a_t__s-pe_c __ --4-----------------------------------

format_ spec
is described below.

When a format identifier (page 101) in a formatted READ, WRITE, or PRINT statement is a
statement label or a statement label assigned to a variable name, the statement label
identifies a FORMAT statement.

The FORMAT statement must have a statement label. You cannot code FORMAT
statements in BLOCK DATA subprograms.

Examples of the FORMAT Statement

990 FORMAT(IS, 2F10.2)
880 FORMAT(IS, Fl0.2, IS)

Format Specification
A format specification (format_spec) has the form:

(-{ formaUtem_listj-) -j

© Copyright IBM Corp. 1990 Chapter 12. Input/Output Formatting 117

A format_item has any of the following forms:

--0- data_edit_desc --j
r

- control_ edit_ desc -1

--0- (format_ item_ list)--j
r

r
is an unsigned, nonzero, integer constant called a repeat specification. The default is 1.

data_ edit_ desc
is a data (or repeatable) edit descriptor. The forms are:

Forms

A
Aw

Ew.d
Ew.dEe
Ew.dDe
Dw.d
Qw.d

Fw.d

Gw.d
Gw.dEe
Gw.dDe

lw
lw.m

Lw

Zw
Zw.m

Ow.m

Bw.m

where:

w

m

d

e

Use See Page

Edits character values 123

Edits real and complex numbers 125
with exponents

Edits real and complex numbers 126
without exponents

Edits integer, real, complex, and 127
logical data fields, with the output
format adapting to the magnitude
of the number

Edits integer numbers 129

Edits logical values 130

Edits hexadecimal values 132

Edits octal values 133

Edits binary values 133

is an unsigned, nonzero, integer constant that specifies the width of a field.

is an unsigned, integer constant that specifies the number of digits to be
printed.

is an unsigned, integer constant that specifies the number of digits to the
right of the decimal point.

is an unsigned, nonzero, integer constant that specifies the number of digits
in the exponent field.

118 Reference Manual for XL FORTRAN

control_ edit_ desc ·
is a control (or nonrepeatable) edit descriptor. The forms are:

Forms

I

'str'
"str"

$

BN

BZ

nHstr

kP

s
SS

SP

Tc

Tlc

TRc

nX

where:

k

c

n

Use See Page

Spe~ifi~s the end of data transfer 122
on the current record

Specifies the end of format control 122
if there are no more items in the
input/output list

Specifies a character string (str) for 123
output

Specifies end-of-record is to be 123
suppressed

Specifies nonleading blanks in 124
numeric input fields are to be
ignored

Specifies nonleading blanks in 124
numeric input fields are to be
interpreted as zeros

Specifies a character string for 128
output

Specifies a scale factor 130

Specifies plus signs are not to be 131
written

Specifies plus signs are to be 131
written

Specifies the absolute position in a 131
record from which, or to which, the
next character is transferred

Specifies the relative position 131
(backward from the current
position in a record) from which, or
to which, the next character is
transferred

Specifies the relative position 131
(forward from the current position
in a record) from which, or to which,
the next character is transferred

Specifies the relative position 131
(forward from the current position
in a record) from which, or to which,
the next character is transferred

is an optionally signed integer constant that specifies the scale factor to be
used.

is an unsigned, nonzero, integer constant that specifies the character
position in a record.

is the number of characters in a literal field.

Chapter 12. Input/Output Formatting 119

Commas separate edit descriptors. You can omit the comma between a P edit descriptor
and an F, E, D, G, or Q edit descriptor immediately following it, before or after a slash edit
descriptor, and before or after a colon edit descriptor. If the comma is omitted in other
circumstances, characters in the format specification are skipped until the next valid format
code is found.

FORMAT specifications can also be given as character constants or character expressions
in input/output statements.

Character Format Specification
When a format identifier (page 101) in a formatted READ, WRITE, or PRINT statement is a
character array name or character expression, the value of the array or expression is a
character format specification. Such a format specification has the form format_ spec,
described on page 117.

If the format identifier is a character array element name, the format specification must be
completely contained within the array element. If the format identifier is a character array
name, the format specification can continue beyond the first element into following
consecutive elements.

Blanks can precede the format specification. Character data can follow the right parenthesis
that ends the format specification, with no effect on the format specification.

Example of Character Format Specification

CHARACTER*l8 CHARVAR

CHARVAR = '(Fl0.2, IS, Fl0.2)'
WRITE(*,CHARVAR) SOLID, LIQUID, GAS

Interaction Between an Input/Output List and a Format
Specification

The beginning of format-directed formatting initiates format control. Each action of format
control depends on the next edit descriptor contained in the format specification and the next
item in the input/output list, if one exists.

If an input/output list specifies at least one item, at least one data (repeatable) edit descriptor
must exist in the format specification. Note that an empty format specification (parentheses
only) can be used only if there are no items in the input/output list. In this case, one input
record is skipped or one output record containing no characters is written.

A format specification is interpreted from left to right except when a repeat specification (r) is
present. A format item preceded by a repeat specification is processed as a list of r format
specifications or edit descriptors identical to the format specification or edit descriptor
without the repeat specification.

One item specified by the input/output list corresponds to each data (repeatable) edit
descriptor. A list item of type complex requires the interpretation of two F, E, D, G, or Q edit
descriptors. There is no item specified by the input/output list that corresponds to each
control (nonrepeatable) edit descriptor. Format control communicates information directly
with the record.

120 Reference Manual for XL FORTRAN

Editing

Format control operates as follows:

1. If a data (repeatable) edit descriptor is encountered, format control processes an
input/output list item, if there is one, or terminates the input/output command if the list is
empty. If the list item processed is type complex, two F, E, D, G, or Q edit descriptors are
processed.

2. If a colon edit descriptor is encountered, format control processes an input/output list
item, if there is one, or terminates the command if the list is empty.

3. If the end of the format specification is reached, format control terminates if the
input/output list is empty, or reverts to the beginning of the format specification terminated
by the last preceding right parenthesis. The following items apply when the latter occurs:

• The reused portion of the format specification must contain at least one data (repeatable)
edit descriptor.

• If reversion is to a parenthesis that is preceded by a repeat specification, the repeat
specification is reused.

• Reversion, of itself, has no effect on the scale factor, on the S, SP, or SS edit descriptors,
or on the BN or BZ edit descriptors.

• If format control reverts, the file is positioned in a manner identical to the way it is
positioned when a slash edit descriptor is processed.

During a read operation, any unprocessed characters of the record are skipped whenever
the next record is read.

It is important to consider the maximum size record allowed on the input/output medium
when defining a FORTRAN record by a FORMAT. For example, if a FORTRAN record is to
be printed, the record should not be longer than the printer's line length. For input, the
FORMAT should not define a FORTRAN record longer than the actual input record for direct
access. For sequential access, the record is assumed to be padded on the right with blanks.

Editing is performed on fields. A field is the part of a record that is read on input or written on
output when format control processes one I, F, E, D, G, Q, L, A, Z, H, 0, B, apostrophe, or
double quotation mark edit descriptor. The field width is the size of the field in characters.

The I, F, E, D, G, and Q edit descriptors are collectively called numeric edit descriptors and
are used to format integer, real, and complex data. The general rules that apply to these edit
descriptors are:

• On input:

- Leading blanks are not significant. The interpretation of other blanks is controlled by
the BLANK= char_expr specifier in the OPEN statement and the BN and BZ edit
descriptors. A field of all blanks is considered to be zero. Plus signs are optional.

- In F, E, D, G, and Q editing, a decimal point appearing in the input field overrides the
portion of an edit descriptor that specifies the decimal point location. The field can have
more digits than can be represented internally.

Chapter 12. Input/Output Formatting 121

• On output:

- Characters are right-justified inside the field. Leading blanks are supplied if the editing
process produces fewer characters than the field width. If the number of characters is
greater than the field width, or if an exponent exceeds its specified length, the entire
field is filled with asterisks.

- A negative value is prefixed with a minus sign. By default, a positive or zero value is
unsigned; it can be prefixed with a plus sign, as controlled by the S, SP, and SS edit
descriptors.

- In XL FORTRAN, a NaN (not a number) is indicated by "NaNQ", "+NaNQ", or "-NaNQ",
and infinity is indicated by "INF", "+INF", or "-INF".

Complex Editing

A complex value is a pair of separate real components. Therefore, complex editing is
specified by a pair of F, E, D, G, a, Z, 0, or B edit descriptors. The first edit descriptor edits
the real part of the number, and the second edit descriptor edits the imaginary part of the
number. The two edit descriptors can be the same or different. One or more control
(nonrepeatable) edit descriptors can be placed between the two edit descriptors, but no data
(repeatable) edit descriptors can appear between them.

I (Slash) Editing
Form:

I

The slash edit descriptor indicates the end of data transfer on the current record.

When you connect a file for input using sequential access, each slash edit descriptor
positions the file at the beginning of the next record.

When you connect a file for output using sequential access, each slash edit descriptor
creates a new record and positions the file to write at the start of the new record.

When you connect a file for input or output using direct access, each slash edit descriptor
increases the record number by one, and positions the file at the beginning of the record that
has that record number.

Examples of Slash Editing on Input

500 FORMAT(F6.2 I 2F6.2)
100 FORMAT(I4 I I4 I I4)

: (Colon) Editing
Form:

The colon edit descriptor terminates format control (which is discussed on page 120) if no
more items are in the input/output list. If more items are in the input/output list when the
colon is encountered, the colon is ignored.

Example of Colon Editing

10 FORMAT(3(:'Array Value' ,Fl0.5)/)

122 Reference Manual for XL FORTRAN

$ (Dollar) Editing
Form:

$

The dollar edit descriptor inhibits an end-of-record for a sequential WRITE statement.
Usually, when the end of a format specification is reached, data transmission of the current
record ceases and the file is positioned so that the next input/output operation processes a
new record. But, if a dollar sign occurs in the format specification, the automatic
end-of-record action is suppressed. Subsequent input/output statements can continue
reading from or writing to the same record.

Example of Dollar Editing

A common use for dollar sign editing is to prompt for a response, and read the answer from
the same line.

WRITE(*,FMT='($,A)')'Enter your age
READ(*,FMT='(BN,I3)')IAGE
WRITE(*,FMT=lOOO)

1000 FORMAT('Enter your height: ',$)
READ(*,FMT='(F6.2)')HEIGHT

A (Character) Editing
Forms:

A

Aw

where:

w is an unsigned, nonzero, integer constant that specifies the width of the
character field, including blanks. If w is not specified, the width of the
character field is the length of the corresponding input/output list item.

The A edit descriptor directs the editing of character values. The A edit descriptor should
correspond to an input/output list item of type character.

On input, if w is greater than or equal to the length (call it Jen) of the input/output list item, the
rightmost Jen characters are taken from the input field. If the specified field width is less than
len, thew characters are left-justified, with Jen-w trailing blanks added.

On output, if w is greater than Jen, the output field consists of w-Jen blanks followed by the
len characters from the internal representation. If w is less than or equal to Jen, the output
field consists of the leftmost w characters from the internal representation.

Apostrophe/Double Quotation Mark Editing
Forms:

' character string '

"character string"

The apostrophe/double quotation mark edit descriptor specifies a character string in an
output format specification. The width of the output field is the length of the character
constant.

Chapter 12. Input/Output Formatting 123

Examples of Apostrophe/Double Quotation Mark Editing

ITIME=S
c

WRITE(*,5) I TIME
5 FORMAT('The value is - ',I2)

WRITE(*,10) I TIME
10 FORMAT(I2,'o''clock')

WRITE(*,'(I2,''o''''clock'')') I TIME
c

WRITE(*,15) I TIME
15 FORMAT("The value is - ",!2)

WRITE(*,20) I TIME
20 FORMAT(I2,"o'clock")

WRITE (*,' (!2, "o' 'clock")') !TIME

BN (Blank Null) and BZ {Blank Zero) Editing
Forms:

BN

BZ

The value is - 8

So'clock
8o'clock

The value is - 8

8o'clock
So'clock

The BN and BZ edit descriptors control the interpretation of nonleading blanks by
subsequently processed I, F, E, D, G, and Q edit descriptors. BN and BZ have effect only on
input.

BN specifies that blanks in numeric input fields are to be ignored, and remaining characters
are to be interpreted as though right-justified. A field of all blanks has a value of zero.

BZ specifies that nonleading blanks in numeric input fields are to be interpreted as zeros.

The initial setting for blank interpretation is determined by the OPEN statement and its
BLANK= char_expr specifier. (See page 106 for syntax.) The initial setting.is determined as
follows:

• If OPEN is not specified, blank interpretation is the same as if BN editing was specified.

• If OPEN is specified but BLANK= char_ expr is not, blank interpretation is the same as if
BN editing were specified.

• If OPEN is specified and BLANK= char_expr is specified, blank interpretation is the same
as if BN editing were specified if the value of char_expr is NULL, or the same as if BZ
editing were specified if the value of char_expr is ZERO.

The initial setting for blank interpretation takes effect at the start of a formatted READ
statement and stays in effect until a BN or BZ edit descriptor is encountered or until format
control finishes. Whenever a BN or BZ edit descriptor is encountered, the new setting stays
in effect until another BN or BZ edit descriptor is encountered, or until format control
terminates.

124 Reference Manual for XL FORTRAN

E (Real with Exponent), D (Double Precision), and Q (Extended
Precision) Editing

Forms:

Ew.d

Ew.dEe

Ew.dDe

Dw.d

Qw.d

where:

w

d

e

is an unsigned, nonzero, integer constant that specifies the width of the
character field.

is an unsigned integer constant that specifies the number of fraction digits
to the right of the decimal point.

is an unsigned, nonzero, integer constant that specifies the number of digits
in the output exponent field. e has no effect on input.

The E, D, and Q edit descriptors direct editing between real and complex numbers in internal
form and their character representations with exponents. An E, D, or Q edit descriptor must
correspond to an input/output list item of type real, or to either part (real or imaginary) of an
input/output list item of type complex.

The form of the input field is the same as for F editing.

The form of the output field for a scale factor of 0 is:

-l[~ JK
0
]- · - digit_string - decimal_ exponent -1

digit_ string
is a digit string whose length is the d most significant digits of the value after rounding.

decimal_ exponent
is a decimal exponent of one of the following forms (z is a digit):

Edit Absolute Value of Form of Exponent
Descriptor Exponent

Ew.d !decimal_ exponent! s 99 E±Z1Z2

Ew.d 99<ldecimal_ exponentls309 ±Z1Z2Z3

Ew.dEe !decimal_ exponent! E±Z1Z2 ... Ze
s(1 Oe)-1

Ew.dDe !decimal_ exponent! E±Z1Z2 ... Ze
s{1 Oe)-1

Dw.d !decimal_ exponent! s 99 D±Z1Z2

Dw.d 99< !decimal_ exponent! s309 ±Z1Z2Z3

Qw.d !decimal_ exponent! s 99 Q±z1z2

Qw.d 99< I decimal_ exponentls309 ±Z1Z2Z3

Chapter 12. Input/Output Formatting 125

The scale factor (k; see page 130) controls decimal normalization. lf-d < ksO, the output
field contains lkl leading zeros and d - lkl significant digits after the decimal point. If 0 < k<
d + 2, the output field contains k significant digits to the left of the decimal point and d - k + 1
significant digits to the right of the decimal point. You cannot use other values of k.

See page 121 for general information about numeric editing.

Note: If the value to be displayed using the real edit descriptor is outside of the range of
representable numbers, XL FORTRAN supports the ANSI/IEEE floating-point format
by displaying the following:

Display Meaning

NaNQ Positive NaN (not-a-number) Quiet
+NaNQ

-NaNQ Negative NaN (not-a-number) Quiet

Na NS Positive NaN Signaling
+NaNS

-NaNS Negative NaN Signaling

INF Positive Infinity
+INF

-INF Negative Infinity

Figure 6. Floating-Point Display

Examples of E, D, and Q Editing on Input

(Assume BN editing is in effect for blank interpretation.)

Input

12.34

.1234E2

2.ElO

Format

E8.4

E8.4

El2.6El

Value

12.34

12.34

2.ElO

Examples of E, D, and Q Editing on Output

Value

1234.56

1234.56

Format

El0.3

010.3

Output

b0.123E+04

b0.1230+04

F (Real without Exponent) Editing
Form:

Fw.d

where:

w

d

is an unsigned, nonzero, integer constant that specifies the width of the
character field.

is an unsigned integer constant that specifies the number of fraction digits
to the right of the decimal point.

The F edit descriptor directs editing between real and complex numbers in internal form and
their character representations without exponents.

126 Reference Manual for XL FORTRAN

The F edit descriptor must correspond to an input/output list item of type real, or to either
part (real or imaginary) of an input/output list item of type complex.

The input field for the F edit descriptor consists of, in order:

1. An optional sign.
2. A string of digits optionally containing a decimal point. If the decimal point is present,. it

overrides the d specified in the edit descriptor. If the decimal point is omitted, the
rightmost d digits of the string are interpreted as following the decimal point and
leading blanks are converted to zeros if necessary.

3. Optionally, an exponent, having one of the forms:
- A signed integer constant
- E, D, or Q followed by zero or more blanks, followed by an optionally signed integer

constant. E, D, and Qare processed identically.

The output field for the F edit descriptor consists of, in order:

1. Blanks if necessary
2. A minus sign if the internal value is negative, or an optional plus sign if the internal

value is zero or positive
3. A string of digits that contains a decimal point and represents the magnitude of the

internal value, as modified by the scale factor in effect and rounded to d fractional
digits.

See page 121 for general information about numeric editing.

Examples of F Editing on Input

(Assume BN editing is in effect for blank interpretation.)

Input

-100

2.9

4.E+2

Format

F6.2

F6.2

F6.2

Value

-1.0

2.9

400.0

Examples of F Editing on Output

Value

+1. 2

.12345

G (General) Editing
Forms:

Gw.d

Gw.dEe

Gw.dDe

where:

w

d

e

Format

F8.4

F8.3

Output

bbl. 2000

bbb0.123

is an unsigned, nonzero, integer constant that specifies the width of the
character field.

is an unsigned integer constant that specifies the number of fraction digits
to the right of the decimal point.

is an unsigned, nonzero, integer constant that specifies the number of digits
in the output exponent field.

Chapter 12. Input/Output Formatting 127

H Editing

The G edit descriptor is similar to the E and F edit descriptors except that the output format
adapts to the magnitude of the number being edited. Thus the G edit descriptor provides a
choice of output formats without requiring the magnitude of the numbers to be known ahead
of time.

The G edit descriptor must correspond to an input/output list item of type real, or to either
part (real or imaginary) of an input/output list item of type complex.

G input editing is the same as for F editing.

On output, the number is converted using either E or F editing, depending on the number.
The field is padded with blanks on the right as necessary. Letting N be the magnitude of the
number, editing is as follows:

• If N < 0.1 or N Ci!!: 1 Qd:

- Gw.d editing is the same as Ew.d editing
- Gw.dEe editing is the same as Ew.dEe editing.

• If N ~0.1 and N < 1 ad:

- Gw.d editing is the same as Fw'.d' editing, where w' = w-4 and d' = d- log10N
- Gw.dEe editing is the same as Fw'.d' editing, where w' = w- (e + 2) and d' = d' -

log10N.

See page 121 for general information about numeric editing.

Examples of G Editing on Output

Value

1234.56

123456.

Form:

nHstr

where:

n

str

Format

Gl2.5

Gl2.5

Output

bbl234.6bbbb

b0.12346E+06

is an unsigned, nonzero, integer constant that specifies the number of
characters following the H, that make up the output field. Blanks are
included in the count of characters.

is a string of any of the characters allowed in a character constant. (See
"Character Constants" on page 21.)

The H edit descriptor specifies a character string and its length in an output format
specification.

If an H edit descriptor occurs within a character constant and includes an apostrophe, it must
be represented by two consecutive apostrophes, which are counted as one character in
specifying n.

If an H edit descriptor occurs within a character constant and includes double quotation
marks, they must be represented by two consecutive double quotation marks, which are
counted as one character in specifying n.

The H edit descriptor must not be used on input.

128 Reference Manual for XL FORTRAN

Examples of H Editing

50 FORMAT(l6HThe value is~ ,I2)
10 FORMAT(I2,7Ho'clock)

WRITE(*,'(I2,7Ho''clock)') ITIME

I (Integer) Editing
Forms:

lw

lw.m

where:

w

m

is an unsigned, nonzero, integer constant that specifies the width of the
field, including blanks, and the optional sign.

is an unsigned integer constant that specifies the minimum number of
integer digits to be written. m must have a value that is less than or equal to
w. m is useful on output only; it has no effect on input.

The I edit descriptor directs editing between integers in internal form and character
representations of integers. The corresponding input/output list item must be of type integer.

The input field for the I edit descriptor must be an optionally signed integer constant, unless
it is all blanks. If all blanks, the input field is considered to be zeros.

The output field for the I edit descriptor consists of, in order:

1. Zero or more leading blanks
2. A minus sign, if the internal value is negative, or an optional plus sign, if the internal

value is zero or positive
3. The magnitude in the form of:

- If mis not specified, an unsigned integer constant without leading zeros
- If mis specified, an unsigned integer constant of at least m digits and, if necessary,

with leading zeros. If the internal value and mare both zero, blanks are written.

See page 121 for general information about numeric editing.

Examples of I Editing on Input

(Assume BN editing is in effect for blank interpretation.)

Input

-123

123456

1234

Format

I6

I7. 5

I4

Value

bb-123

bl23456

1234

Examples of I Editing on Output

Value

-12

12345

Format

I7.6

IS

Output

-000012

12345

Chapter 12. Input/Output Formatting 129

L (Logical) Editing
Form:

Lw

where:

w is an unsigned, nonzero, integer constant that specifies the width of the
character field, including blanks.

The L edit descriptor directs editing between logical values in internal form and their
character representations. The L edit descriptor must correspond to an input/output list item
of type logical.

The input field consists of optional blanks, followed by an optional decimal point, followed by
a T for true or an F for false. Any characters following the Tor Fare accepted on input but
are not acted upon; therefore, the strings • TRUE. and • FALSE. are acceptable input forms.

The output field consists of T or F preceded by w-1 blanks.

Examples of L Editing on Input

Input

t

.false.

Format

L4

L7

Value

true

false

Examples of L Editing on Output

Value

true

false

Format

L4

Ll

P (Scale Factor) Editing
Form:

kP

where:

Output

bbbT

F

k is the scale factor, an optionally signed integer constant representing a
power of ten.

The scale factor, k, applies to all subsequently processed F, E, D, G, and Q edit descriptors
until another scale factor is encountered or until format control terminates. The value of k is
zero at the beginning of each input/output statement.

On input, when an input field using an F, E, D, G, or Q edit descriptor contains an exponent,
the scale factor is ignored. Otherwise, the internal value equals the external value multiplied
by 10(-k).

On output:

• In F editing, the external value equals the internal value multiplied by 1 Qk.

• In E, D, and Q editing, the external decimal field is multiplied by 1 Qk. The exponent is then
reduced by k.

• In G editing, fields are not affected by the scale factor unless they are outside the range
that can use F editing. If the use of E editing is required, the scale factor has the same
effect as with E output editing.

130 Reference Manual for XL FORTRAN

Examples of P Editing on Input

Input

98.765

98.765

.98765E+2

Format

3P,F8.6

-3P,F8.6

3P,F10.5

Value

0.098765E20

98765 .

• 98765E+2

Examples of P Editing on Output

Value

12.34

12.34

12.34

Format

2P,F7.2

-2P,F6.4

2P,E10.3

Output

1234.00

0.1234

b12.34E+OO

S, SP, and SS (Sign Control) Editing
Forms:

s
SP

SS

The S, SP, and SS edit descriptors control the output of plus signs by all subsequently
processed I, F, E, D, G, and Q edit descriptors until another S, SP, or SS edit descriptor is
encountered or until format control terminates.

Sand SS specify that plus signs are not to be written. {They produce identical results.) SP
specifies that plus signs are to be written.

T, TL, TR, and X (Positional) Editing
Forms:

Tc

TLc

TRc

nX

where:

c

n

is an unsigned, nonzero, integer constant.

is an unsigned, nonzero, integer constant.

The T, TL, TR, and X edit descriptors specify the position where the transfer of the next
character to or from a record starts. This position is:

• For Tc, the cth character position.

• For TLc, c characters backward from the current position. If the value of c is greater than
or equal to the current position, the next character accessed is position one of the record.

• For TRc, c characters forward from the current position.

• For nX, n characters forward from the current position.

The TR and X edit descriptors give identical results.

Chapter 12. Input/Output Formatting 131

On input, a TR or X edit descriptor can specify a position beyond the last character of the
record if no characters are transferred from that position.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be
transferred. If characters are transferred to positions at or after the position specified by the
edit descriptor, positions skipped and previously unfilled are filled with blanks. The result is
the same as if the entire record were initially filled wittl__blanks.

On output, a T, TL, TR, or X edit descriptor can result in repositioning so that subsequent
editing with other edit descriptors causes character replacement.

Examples of T, TL, and X Editing on Input

150 FORMAT(I4,T30,I4)
200 FORMAT(F6.2,5X,5(I4,TL4))

Examples of T, TL, TR, and X Editing on Output

50 FORMAT('Colurnn l' ,SX,'Colurnn 14',TR2,'Colurnn 25')
100 FORMAT('aaaaa' ,TL2,'bbbbb',5X,'ccccc',Tl0,'ddddd')

Z (Hexadecimal) Editing
Form:

Zw

Zw.m

where:

w is an unsigned, nonzero, integer constant that specifies the width of the
character field, including blanks.

m is an unsigned integer constant that specifies the minimum number of
hexadecimal digits to be written. m must have a value that is less than or
equal to w. m is useful on output only; it has no effect on input.

The Z edit descriptor directs editing between values of any type in internal form and their
hexadecimal representation. (A hexadecimal digit is one of 0-9 or A-F.)

On input, w hexadecimal digits are edited and form the internal representation for the value
of the input list item. The hexadecimal digits in the input field correspond to the rightmost
hexadecimal digits of the internal representation of the value assigned to the input list item.
m has no effect on input.

The output field contains w hexadecimal digits, including leading zeros. The digits in the
output field correspond to the rightmost w hexadecimal digits of the internal representation. If
m is present, the output field consists of at least m hexadecimal digits, and is zero filled on
the left, if necessary, until there are m hexadecimal digits.

The editing of character data for input or output does not imply blank padding as it does for
A editing.

Examples of Z Editing on Input

Input

oc
7FFF

Format

Z2

Z4

132 Reference Manual for XL FORTRAN

Value

12

32767

Examples of Z Editing on Output

Value

12

-1

0 (Octal) Editing
Form:

Ow

Ow.m

where:

w

m

Format

Z4

z0

Output

oooc
FFFFFFFF

is an unsigned, nonzero, integer constant that specifies the width of the
character field, including blanks.

is an unsigned integer constant that specifies the minimum number of octal
digits to be written. m must have a value that is less than or equal to w. m is
useful on output only; it has no effect on input.

The 0 edit descriptor directs editing between values of any type in internal form and their
octal representation. (An octal digit is one of 0-7)

On input, w octal digits are edited and form the internal representation for the value of the
input list item. The octal digits in the input field correspond to the rightmost octal digits of the
internal representation of the value assigned to the input list item. m has no effect on input.

The output field contains w octal digits, including leading zeros. The digits in the output field
correspond to the rightmost w octal digits of the internal representation. If m is present, the
output field consists of at least m octal digits, and is zero filled on the left, if necessary, until
there are m octal digits.

The editing of character data for input or output does not imply blank padding as it does for
A editing.

Examples of 0 Editing on Input

Input

123

120

Format

03

03

Value

83

80

Examples of 0 Editing on Output

Value

83

80

B (Binary) Editing
Form:

Bw

Bw.m

Format

03

05

Output

123

00120

Chapter 12. Input/Output Formatting 133

where:

w

m

is an unsigned, nonzero, integer constant that specifies the width of the
character field, including blanks.

is an unsigned integer constant that specifies the minimum number of
binary digits to be written. m must have a value that is less than or equal to
w. m is useful on output only; it has no effect on input.

The B edit descriptor directs editing between values of any type in internal form and their
binary representation. (A binary digit is one of O or 1.)

On input, w binary digits are edited and form the internal representation for the value of the
input list item. The binary digits in the input field correspond to the rightmost binary digits of
the internal representation of the value assigned to the input list item. m has no effect on
input.

The output field contains w binary digits, including leading zeros. The digits in the output
field correspond to the rightmost w binary digits of the internal representation. If m is
present, the output field consists of at least m binary digits, and is zero filled on the left, if
necessary, until there are m binary digits.

The editing of character data for input or output does not imply blank padding as it does for
A editing.

Examples of B Editing on Input

Input

111

110

Format

B3

B3

Value

7

6

Examples of B Editing on Output

Value

7

6

Format

B3

BS

Output

111

00110

List-Directed Formatting
In list-directed formatting, editing is controlled by the types and lengths of the data being
read or written. An asterisk format identifier specifies list-directed formatting. For example:

REAL*8 TOTALl, TOTAL2
WRITE(6,*) TOTALl, TOTAL2

Note: List-directed formatting can only be used with sequential files.

The characters in a formatted record processed under list-directed formatting constitute a
sequence of values separated by value separators:

• A value has the form of a constant or null value.
• A value separator is a comma, slash, or blank. A comma or slash can be preceded and

followed by one or more blanks. Blanks in list-directed input records are significant.

134 Reference Manual for XL FORTRAN

List-Directed Input
Input list items in a list-directed READ statement are defined by corresponding values in
records. The form of each input value must be acceptable for the type of the input list item.
An input value is any of the following:

• A value having the form of:

- constant
- r*constant, where r is an unsigned, nonzero, integer constant. This form is equivalent

to r successive appearances of the constant.

constant is an integer, real, double precision, complex, logical, or character constant.

Note: A I in a character constant is not recognized as an escape character.

• A null value, represented by:

- Two successive commas, with zero or more intervening blanks
- A comma followed by a slash, with zero or more intervening blanks
- An initial comma in the record, preceded by zero or more blanks.

More than one null value can be represented by the form r*, where r is an unsigned integer
constant. This form is equivalent to r successive null values.

A character value can be continued in as many records as required.

The end of a record:

• Has the same effect as a blank separator unless the blank is within a character constant
or complex constant.

• Does not cause insertion of a blank or any other character in a character value
• Must not separate two apostrophes representing an apostrophe.

Two or more consecutive blanks are treated as a single blank unless the blanks are within a
character value.

A null value has no effect on the definition status of the corresponding input list item.

A slash marks the end of the input list, and list-directed formatting is terminated. If additional
items remain in the input list when a slash is encountered, it is as if null values had been
specified for those items.

List-Directed Output
List-directed WRITE and PRINT statements produce values. in the order they appear in an
output list. Values are written in a form that is valid for the data type of each output list item.

Logical values are written as T for the value true and F for the value false.

Real values are written as in E or F format editing. (See "E Editing" on page 125 or "F
Editing" on page 126 for more information.) ·

Character values are written as if the A edit descriptor were in effect. Character values
written with list-directed output formatting cannot be read with list-directed input formatting
because apostrophes are not written. You can write out a character value with apostrophes
to allow a FORTRAN program to read it in with list-directed formatting.

Slashes, as value separators, and null values are not written.

Arrays are written in column-major order.

The following table shows the width of the written field for any data type and length. The size
of the record will be the sum of the field widths plus a byte to separate each non-character
field.

Chapter 12. Input/Output Formatting 135
' J

Data Type

integer

real

complex

character

logical

NAMELIST Formatting

NAMELIST Input Data

Length
(bytes)

1
2
4

4
8
16

8
16
32

n

1
2
4

Maximum Field
Width (characters)

4
6
11

17
25
25

37
53
53

n

1
1
1

Input data must be in a special form to be read using a NAMELIST list. The first character in
each record to be read must be blank. The second character in the first record of a group of
data records must be an ampersand(&) immediately followed by the NAMELIST name. The
NAMELIST name must be followed by a blank and must not contain any embedded blanks.
This name is followed by data items separated by commas (a comma after the last item is
optional). The end of a data group is signaled by &END.

Note: NAMELIST formatting can only be used with sequential files.

The form of the data items in an input record is:

• Name = Constant

- The name can be an array element name or a variable name.

- The constant can be integer, real, complex, logical or character. (Logical constants are:
T, • TRUE., F, • FALSE •. If the constants are characters, they must be included
between apostrophes.) Character constants can be included between double quotation
marks.

- Subscripts must be integer constants.

• Array Name= Set of Constants (separated by commas)

- The set of constants consists of the type integer, real, complex, logical or character.

- The number of constants must be less than or equal to the number of elements in the
array.

- Successive occurrences of the same constant can be represented in the form
c*constant, where c is a nonzero integer constant specifying the number of times the
constant is to occur.

The variable names and array names specified in the input file must appear in the
NAMELIST list, but the order is not significant. A name that has been made equivalent to a
name in the input data cannot be substituted for that name in the NAMELIST list. The list
can contain names of items in COMMON but must not contain dummy argument names.

136 Reference Manual for XL FORTRAN

Each data record must begin with a blank followed by a complete variable or array name or
constant. You cannot have embedded blanks in names or constants. Trailing blanks after
integers and exponents are treated as zeros.

NAMELIST Output Data
When output data is written using a NAMELIST list, it is written in a form that can be read
using a NAMELIST list. All variable and array names specified in the NAMELIST list and
their values are written out, each according to its type. Character data is included between
apostrophes. The fields for the data are made large enough to contain all the significant
digits. (See the table on page 135.) The values of a complete array are written out in
column-major order.

Chapter 12. Input/Output ·Formatting 137

138 Reference Manual for XL FORTRAN

Chapter 13. Debug Lines

This chapter describes debug lines.

Debug Lines
You can code the letter o in column 1 of any source program line (fixed-form or free-form
input format) to indicate that the line is debugging code. The handling of debug lines
depends on the DUNES compiler option. If you do not specify DUNES, the compiler
handles such lines as comment lines. If you do specify the DUNES option, the compiler
interprets the o in column 1 as a blank, and handles such lines as lines of source code.

The initial line of a debugging statement can contain a statement label in columns 2 through
5 for fixed-form source, or as the first nonblank characters (digits) following the o for
free-form source.

If you continue a fixed-form debugging statement onto more than one line, every
continuation line must have a o in column 1 and a continuation indicator. If the initial line is
not a debugging line, you can designate any continuation lines as debug lines provided that
the statement is syntactically correct whether or not you specify the DUNES option.

If you continue a free-form debugging statement onto more than one line, only the first line
can have a o in column 1 and any continuation lines are interpreted· as debug lines.

Examples of Debug Lines

D 100 WRITE(6,*) IERROR
D IF (I.EQ.IDEBUG.AND.
D + J.EQ.IDEBUG) WRITE(6,*) IERROR

D +
+

IF (I.EQ.O

© Copyright IBM Corp. 1990

+ IDEBUG
) WRITE(6,*) INFO

Chapter 13. Debug Lines 139

140 Reference Manual for XL FORTRAN

Chapter 14. Compiler Directives

INCLUDE

This chapter describes the compiler directives:

• INCLUDE
• EJECT
• @PROCESS.

name

n

is the name of a group of one or more FORTRAN source statements the compiler is to
insert into the current source program. Under AIX, name need not specify the full path
of the desired file, but it must specify the file extension, if any. The file name should
contain only characters allowable in the character set of XL FORTRAN. (See
"Characters" on page 7 for the XL FORTRAN character set.)

is the value the compiler uses to decide whether to include the file during compilation.
It can be any number from 1 through 255. If you specify n, the compiler includes the file
only if the number appears as a suboption in the Cl (conditional include) compiler
option. If you do not specify n, the compiler always includes the file.

The INCLUDE compiler directive inserts a specified statement or a group of statements into
a program unit. This is a simple insertion function. The compiler does not perform any
replacement or editing.

A feature called conditional INCLUDE provides a means for selectively activating INCLUDE
compiler directives within the FORTRAN source during compilation. You specify the included
files by means of the Cl compiler option.

An INCLUDE compiler directive can appear anywhere in a FORTRAN source file before the
END statement, except in situations where the language requires an executable statement.
(For example, as the trailer of a logical IF statement.) Multiple INCLUDE compiler directives
can appear in the original source program. No other statement can have an initial line that
appears to be an INCLUDE compiler directive.

You must not continue an INCLUDE compiler directive. Also, you cannot continue the first
noncomment line of the included file.

An included file can contain any complete FORTRAN source statements, including other
INCLUDE compiler directives. XL FORTRAN does not allow recursive INCLUDE compiler
directives. An END statement can be part of the included group. The FORTRAN statements
in your included group must be in the same form as the compiling source program
(fixed-form or free-form). After the inclusion of all groups, the resulting FORTRAN program
must follow all of the FORTRAN rules for sequencing of statements.

© Copyright IBM Corp. 1990 Chapter 14. Compiler Directives 141

EJECT

XL FORTRAN treats an INCLUDE compiler directive with the left and right parenthesis
syntax like any other FORTRAN statement. The compiler folds the file name to lowercase
unless the MIXED option is on. XL FORTRAN ignores blanks in the file name. The file name
should not have imbedded left and right parentheses.

For INCLUDE compiler directives with single or double quotation marks, all rules for string
literals apply:

• The compiler does not fold characters within single or double quotation marks.
• It does not ignore blanks.
• Backslash escape characters apply.

The AIX file system locates the file specified by name as follows:

• If the first nonblank character of name is I, name specifies an absolute file name.

• If the first nonblank character is not I, the AIX operating system searches directories in
order of decreasing priority:

- If you specify the -Ipath compiler option, the file path I name is searched for.
- If file path/name is not found:

- AIX searches the current directory for file name.
- AIX searches the resident directory of the compiling source file for file name.
- AIX searches directory /usr I include for file name.

Examples of the INCLUDE Compiler Directive

INCLUDE '/u/userid/dclOl'
INCLUDE '/u/userid/dcl02.inc'
INCLUDE 'userid/dcl03'
INCLUDE (ABCdef)
INCLUDE 'abcDEF'
INCLUDE 'ABCdef'

- EJECT-1

full absolute file name specified
INCLUDE file name has an extension
relative path name specified
includes file abcdef
includes file abcDEF
includes file ABCdef

EJECT is a compiler directive. It directs the compiler to start a new full page of the source
listing. If no source listing has been requested, this statement is ignored.

An EJECT compiler directive can appear anywhere in a FORTRAN source file prior to the
END statement.

You must not continue an EJECT compiler directive. No other statement can have an initial
line that appears to be an EJECT compiler directive.

If a statement label is on the EJECT compiler directive, the compiler discards it. Therefore,
you must not reference any label on an EJECT compiler directive within the program unit.

142 Reference Manual for XL FORTRAN

@PROCESS

- @PROCESS t Ci~] I I

You can use the @PROCESS compiler directive in your source file to modify the options
specified on the command line, or to change the default setting temporarily if no command
line options are in effect.

See the User's Guide for IBM AIX XL FORTRAN Compiler/6000, SC09-1257 for details of
this compiler directive.

Chapter 14. Compiler Directives 143

144 Reference Manual for XL FORTRAN

Appendix A .. Intrinsic Functions

IBM AIX XL FORTRAN Run Time Environment/6000 supplies a number of standard
procedures called intrinsic functions. This appendix describes the intrinsic functions in XL
FORTRAN.

You can reference some intrinsic functions by a generic name, some by a specific name,
and some by both. A generic name does not require a specific argument type and usually
produces a result of the same type as that of the argument, with the exception of type
conversion, nearest integer, and absolute value with a complex argument. Generic names
simplify the referencing of intrinsic functions, because the same function name can be used
with more than one type of argument. The compiler determines the specific function to be
used based on the type of the argument specified.

A specific name requires a specific argument type and produces a result of a specific type.
Only a specific intrinsic function name can be used as an actual argument when the
argument is an intrinsic function. If the actual argument is an intrinsic function for which
INTEGER*2 and INTEGER*4 arguments are allowed, then the INTEGER*4 intrinsic function
is passed to the subprogram. All references to a dummy procedure that is associated with
such an intrinsic function {through argument association) must be references with
INTEGER*4 arguments.

For those intrinsic functions that have more than one argument, all arguments must be of the
same type. If the specific or generic name of an intrinsic function appears in the dummy
argument list of a function, subroutine, or entry statement in a subprogram, XL FORTRAN
does not invoke the intrinsic function. The compiler treats the name as a dummy argument
only. You can specify the data type identified with the symbolic name in the same manner as
variables and arrays.

A name in an INTRINSIC statement must be the specific or generic name of an intrinsic
function.

Note that XL FORTRAN provides some Q {extended precision) functions. If you specify a Q
function in a source program, it will actually result in a call to the corresponding D {double
precision) function.

Referencing an Intrinsic Function
You reference an intrinsic function by using it as a primary in an expression. The result when
you invoke an intrinsic function depends on the values of the actual arguments. The
resulting value is available to the expression that contains the function reference. {See
"Function Reference" on page 83 for the discussion on how to invoke functions.)

The actual arguments that constitute the argument list must agree in order, number, and
type with those required by the definition of the intrinsic function. They can be any
expression of the specified type. An actual argument in an intrinsic function reference can be
any expression except a character expression involving concatenation of an operand whose
length specification is an asterisk in parentheses unless the operand is the symbolic name of
a constant. Actual arguments cannot be names of arrays or procedures.

You can use the specific name of an intrinsic function that appears in an INTRINSIC
statement as an actual argument in an external procedure reference. Do not use the names
of intrinsic functions as actual arguments for type conversion or for choosing the largest and
smallest value.

© Copyright IBM Corp. 1990 Appendix A. Intrinsic Functions 145

Intrinsic Function Rules and Restrictions
• An IMPLICIT statement does not change the type of an intrinsic function.

• Mathematically undefined arguments or arguments that exceed the numeric range of the
processor cause undefined function results.

• If an intrinsic name appears in an INTRINSIC statement, XL FORTRAN assumes that you
really want this name as an intrinsic function regardless of where else the name can be
used.

Definition problems arise when an intrinsic name does not appear in an INTRINSIC
statement.

• You cannot use the intrinsic name (specific or generic) as an intrinsic function if you have
used it previously in one of the following ways:

- In any specification statement other thari an explicit type or INTRINSIC statement
(including statement function definitions and dummy arguments).

- If you dimension it or it has initial data in an explicit type statement.
- As the name of a COMMON block.

• If you define a specific name as in the previous item, you can still use the generic name (if
different) for a function reference.

• If the first usage is as a variable, the name becomes fixed and you can no longer use it as
a function. This restriction applies to both specific and generic names.

• If a specific name becomes fixed in this manner, you can still use the generic name (if
different) as an intrinsic function. If the generic name becomes fixed, you can still use the
specific names associated with the generic as functions.

• If the first usage is as a function, XL FORTRAN treats the name as a function and you
can no longer use it as a variable.

Intrinsic Functions

Intrinsic
Function

Conversion to
type integer

Conversion to
type integer

The following table lists the the intrinsic function, the equation that represents the function
definition,its generic name (if there is one), its specific name, the number of arguments and
the type of argument, and the type of the function value returned by the intrinsic function.

Definition (See Generic Specific Arg. No. Argument Range Fune.
Notes below) Name Name &Type Type

y=(sign of x)*n where INT - 1 1*4 Any integer argument 1*4
n is the largest - 1 1*2 1*4
integer slxl

INT 1 R*4 Any real argument 1*4
IFIX 1 R*4 1*4
IDINT 1 R*8 1*4
IQINT 1 R*8 1*4

For z=x1 +x2 i, INT - 1 X*8 Any complex argument 1*4
Y=INT(x1) - 1 X*16 1*4

y=(sign of x)*n where HFIX 1 R*4 Any real argument 1*2
n is the largest
integer slxl

146 Reference Manual for XL FORTRAN

Intrinsic Definition (See· Generic Specific Arg. No. Argument Range Fune.
Function Notes below) Name Name &Type Type

Conversion to REAL REAL 1 1*4 Any integer argument R*4
type real FLOAT 1 1*4 R*4

FLOAT 1 1*2 R*4

- 1 R*4 Any real argument R*4
SNGL 1 R*8 R*4
SNGLQ 1 R*8 R*4

For z=x1 +x2i, REAL - 1 X*8 Any complex argument R*4
y=REAL(x1)

Conversion to REAL DR EAL 1 X*16 Any complex argument R*8
type double QR EAL 1 X*16 R*8
precision

Conversion to DBLE DFLOAT 1 1*4 Any integer argument R*8
type double DFLOAT 1 1*2 R*8
precision

DBLE 1 R*4 Any real argument R*8
DBLEQ 1 R*8 R*8

For z=x1 +x2i, DBLE - 1 X*8 Any complex argument R*8
y=DBLE(x1) - 1 X*16 R*8

Conversion to QEXT QFLOAT 1 1*4 Any integer argument R*8
type. double QFLOAT 1 1*2 R*8
precision

QEXT 1 R*4 Any real argument R*8
QEXTD 1 R*8 R*8

Conversion to y=x1 +x2i where CMPLX - 1/2 1*4 Any integer argument X*8
type complex x1 =REAL(arg1) - 1/2 1*2 X*8

and
x2=REAL(arg2)

CMPLX 1/2 R*4 Any real argument X*8
- 1/2 R*8 X*8

- 1 X*8 Any complex argument X*8
- 1 X*16 X*8

Conversion to Y=X1 +x2i where DCMPLX - 1/2 1*4 Any integer argument X*16
type double x1 =REAL(arg1) - 1/2 1*2 X*16
complex and

X2= REAL(arg2)

DCMPLX 1/2 R*4 Any real argument X*16
- 1/2 R*8 X*16

- 1 X*8 Any complex argument X*16
- 1 X*16 X*16

Conversion to Y=X1 +x2i where QCMPLX QCMPLX 1/2 R*8 Any real argument X*16
type double x1 =REAL(arg1)
complex and

X2= REAL(arg2)
(y=x1 +Oi if only x1 is
present)

Appendix A. Intrinsic Functions 147

Intrinsic Definition (See Generic Specific Arg. No. Argument Range Fune.
Function Notes below) Name Name &Type Type

Truncation Y=(sign of x)*n where AINT AINT 1 R*4 Any real argument R*4
n is the largest DINT 1 R*8 R*8
integer slxl QINT 1 R*8 R*8

Nearest If xceO, y=(sign of x)*n ANINT ANINT 1 R*4 Any real argument R*4
whole number where n is the largest DNINT 1 R*8 R*8

integer slx+.51
If X<O, y=(sign of x)*n
where n is the largest
integer slx-.51

Nearest If xceO, y=(sign of x)*n NINT NINT 1 R*4 Any real argument 1*4
integer where n is the largest IDNINT 1 R*8 1*4

integer slx+.51
lfx<O, y=(sign of x)*n
where n is the largest
integer slx-.51

Absolute Y=lxl ABS IABS 1 1*4 Any integer argument 1*4
value IABS 1 1*2 1*2

ABS 1 R*4 Any real argument R*4
DABS 1 R*8 R*8
QABS 1 R*8 R*8

Y=lzl=(x12+x22)<1/2> ABS CABS 1 X*B Any complex argument R*4
CD ABS 1 X*16 R*8
CQABS 1 X*16 R*8
ZABS 1 X*16 R*8

Remainder- Y=(sign of x1*x2) MOD MOD 2 1*4 X2;.eO 1*4
ing (modular *(x1-n*x2) where n is MOD 2 1*2 1*2
arithmetic) the largest integer AMOD 2 R*4 R*4

slx1/x21 DMOD 2 R*8 R*8
QMOD 2 R*8 R*8

Transfer of If X2ceO, Y=IX1 I SIGN ISIGN 2 1*4 Any integer argument 1*4
sign If x2<0, Y= -lx1 I ISIGN 2 1*2 1*2

SIGN 2 R*4 Any real argument R*4
DSIGN 2 R*8 R*8
QSIGN 2 R*8 R*8

Positive If X1 >X2, Y=X1-X2 DIM IDIM 2 1*4 Any integer argument 1*4
difference If X1 sx2, y=O IDIM 2 1*2 1*2

DIM 2 R*4 Any real argument R*4
DDIM 2 R*8 R*8
QDIM 2 R*8 R*8

Double preci- Y=X1*X2 DP ROD 2 R*4 Any real argument R*8
sion product

Choosing y=max(x1 , ... Xn) MAX MAXO ce2 1*4 Any integer argument 1*4
largest value MAXO ce2 1*2 1*2

AMAX1 ce2 R*4 Any real argument R*4
DMAX1 ce2 R*B R*8
QMAX1 ce2 R*8 R*8

148 Reference Manual for XL FORTRAN

Intrinsic Definition (See Generic Specific Arg. No. Argument Range Fune.
Function Notes below) Name Name &Type Type

Choosing y=max(x1 , ... Xn) AMAXO 0!:2 1*4 Any integer argument R*4
largest value AMAXO 0!:2 1*2 R*4

MAX1 :!:2 R*4 Any real argument 1*4
MAX1 :!:2 R*8 1*4

Choosing y=min(x1 , ... Xn) MIN MINO 0!:2 1*4 Any integer argument 1*4
smallest MINO 0!:2 1*2 1*2
value

AMIN1 0!:2 R*4 Any real argument R*4
DMIN1 0!:2 R*8 R*8
QMIN1 0!:2 R*8 R*8

Choosing y=min(x1 , ... Xn) AMINO 0!:2 1*4 Any integer argument R*4
smallest AMINO 0!:2 1*2 R*4
value

MIN1 0!:2 R*4 Any real argument 1*4
MIN1 0!:2 R*8 1*4

Imaginary IMAG AIMAG 1 X*8 Any complex argument R*4
part of a DIMAG 1 X*16 R*8
complex QIMAG 1 X*16 R*8

Complex y=x1-x2i for CONJG CONJG 1 X*8 Any complex argument X*8
conjugate argument x1 +x2i DCONJG 1 X*16 X*16

QCONJG 1 X*16 X*16

Square root y=x(1/2) SQRT SQRT 1 R*4 X:i!:O R*4
DSQRT 1 R*8 R*8
QSQRT 1 R*8 R*8

Y=z(1/2) SQRT CSQRT 1 X*8 Any complex argument X*8
CDSQRT 1 X*16 X*16
CQSQRT 1 X*16 X*16
ZSQRT 1 X*16 X*16

Exponential y=eX EXP EXP 1 R*4 xs88.7228 R*4

DEXP 1 R*8 xs709.7828 R*8
QEXP 1 R*8 R*8

y=ez EXP CEXP 1 X*8 x1s88.7228, x2 is any X*8
real argument

CD EXP 1 X*16 x1s709.7828, x2 is any X*16
CQEXP 1 X*16 real argument X*16
ZEXP 1 X*16 X*16

Natural Y=log0 (x) or y=ln x LOG ALOG 1 R*4 X>O R*4
logarithm DLOG 1 R*8 R*S

QLOG 1 R*8 R*S

Y=log0 (z) LOG CLOG 1 X*8 Z¢0+0i X*S
CD LOG 1 X*16 X*16
CQLOG 1 X*16 X*16
ZLOG 1 X*16 X*16

Common Y=log10X LOG10 ALOG10 1 R*4 X>O R*4
logarithm DLOG10 1 R*8 R*S

QLOG10 1 R*8 R*S

Appendix A. Intrinsic Functions 149

Intrinsic Definition (See Generic Specific · Arg. No. Argument Range Fune.
Function Notes below) Name Name &Type Type

Sine y=sin(x) SIN SIN 1 R*4 Any real argument R*4
DSIN 1 R*8 R*8
QSIN 1 R*8 R*8

y=sin(z) SIN CSIN 1 X*8 lx2ls88. 7228, x1 is any X*8
real argument

CDSIN 1 X*16 lx2ls709.7828, X1 is X*16
CQSIN 1 X*16 any real argument X*16
ZSIN 1 X*16 X*16

Cosine y=cos(x) cos cos 1 R*4 Any real argument R*4
DCOS 1 R*8 R*8
QCOS 1 R*8 R*8

Y=Cos(z) cos ccos 1 X*8 lx2ls88. 7228, x1 is any X*8
real argument

cocos 1 X*16 lx2ls709.7828, X1 is X*16
cocos 1 X*16 any real argument X*16
zcos 1 X*16 X*16

Tangent y=tan(x) TAN TAN 1 R*4 Any real argument R*4
DTAN 1 R*8 R*8
QTAN 1 R*8 R*8

Arcsine y=arcsin(x), ASIN ASIN 1 R*4 lxls1 R*4
-rr,/2sysn/2 DASIN 1 R*8 R*8

QARSIN 1 R*8 R*8

Arccosine y=arccos(x), ACOS ACOS 1 R*4 lxls1 R*4
Osysn DACOS 1 R*8 R*8

QARCOS 1 R*8 R*8

Arctangent y=arctan (x) ATAN ATAN 1 R*4 Any real argument R*4
-n/2sysn/2 DATAN 1 R*8 R*8

QATAN 1 R*8 R*8

Arctangent Y= arctan(x1/x2) ATAN2 ATAN2 2 R*4 X1;.eO and X2;.eO R*4
-nsysn DATAN2 2 R*8 R*8

QATAN2 2 R*8 R*8

Hyperbolic Y=(ex-e-X)/2 SINH SINH 1 R*4 lxls89.4159 R*4
sine

DSINH 1 R*8 lxls709. 7828 R*8
QSINH 1 R*8 R*8

Hyperbolic Y=(ex+e-x)/2 COSH COSH 1 R*4 lxls89.4159 R*4
cosine

DCOSH 1 R*8 lxls709. 7828 R*8
QCOSH 1 R*8 R*8

Hyperbolic Y= (ex_e-x)/ (ex+e-x) TANH TANH 1 R*4 Any real argument R*4
tangent DTANH 1 R*8 R*8

QTANH 1 R*8 R*8

Conversion to Position of x in collat- ICHAR 1 C*1 1*4
type integer ing sequence

150 Reference Manual for XLFORTRAN

Intrinsic Definition (See Generic Specific Arg. No. Argument Range Fune.
Function Notes below) Name Name &Type Type

Conversion to Character corre- CHAR 1 1*4 C*1
type spending to position CHAR 1 1*2 C*1
character of x in collating se-

quence

Length Length of x LEN 1 c 1*4

Index of a Location of substring INDEX 2 c 1*4
substring x2 in string x1
Alphanumeric X10tX2 LGE 2 c L*4
greater than Comparison is by
or equal collating sequence

Alphanumeric X1>X2 LGT 2 c L*4
greater than Comparison is by

collating sequence

Alphanumeric X1:s:X2 LLE 2 c L*4
less than or Comparison is by
equal collating sequence

Alphanumeric X1<X2 LLT 2 c L*4
less than Comparison is by

collating sequence

Inclusive or y=or(x1 ,x2) IOR 2 1*4 Any integer argument 1*4
IOR 2 1*2 1*2
OR 2 1*4 1*4
OR 2 1*2 1*2

Logical and y=and(x1 ,x2) IAND 2 1*4 Any integer argument 1*4
IAND 2 1*2 1*2
AND 2 1*4 1*4
AND 2 1*2 1*2

Logical y=not(x1) NOT 1 1*4 Any integer argument 1*4
complement NOT 1 1*2 1*2

Exclusive or y=xor(x1 ,x2) IEOR 2 1*4 Any integer argument 1*4
IEOR 2 1*2 1*2
XOR 2 1*4 1*4
XOR 2 1*2 1*2

Shift y=ishft(x1 ,x2) ISHFT 2 1*4 lx2l:s:32 1*4
operations x1 is shifted x2 bits ISHFT 2 1*2 1*2

right if x2<0 or to left
if X2>0

y=lshft(x1 ,x2) LSHIFT 2 1*4 lx2l:s:32 1*4
x1 is shifted x2 bits LSHIFT 2 1*2 1*2

left

y=rshft(x1 ,x2) RSHIFT 2 1*4 lx2l:s:32 1*4
x1 is shifted x2 bits RSHIFT 2 1*2 1*2

right

Shift y=ishftc(x1 ,x2,x3) I SH FTC 3 1*4 lx2ls32 1*4
operations Rightmost x2 bits of I SH FTC 3 1*2 lx3ls32 1*2

x1 shifted circularly by
X3 bits

Appendix A. Intrinsic Functions 151

Intrinsic
Function

Bit test

Bit set

Bit set

Bit setting

Error function

Error function

Gamma

Log gamma

Definition (See Generic
Notes below) Name

y=btest(x1 ,x2)
y=true if bit x2 of

x1=1 or false if bit x2
Of X1=0

y=bitset(x1 ,x2)
sets bit x2 of x1 to 1

y=bitclear(x1 ,x2)
sets bit x2 of x1 to O

Extracts a subfield of
x3 bits from x1, start-
ing with bit position x2
and extending left for
X3 bits

y=erf(x) ERF

y=1-erf(x) ERFC

y=gamma(x) GAMMA

y= logegamma(x) LGAMMA

Figure 7. Table of Intrinsic Functions

Notes About Definitions:

Specific
Name

BTEST
BTEST

IBSET
IBSET

IBCLR
IBCLR

IBITS
IBITS

ERF
DEAF
QERF

ERFC
DE RFC
QERFC

GAMMA

DGAMMA

ALGAMA

DLGAMA

Arg. No. Argument Range Fune.
&Type Type

3 1*4 O:sx2s31 L*4
3 1*2 L*4

2 1*4 O:sx2:s31 1*4
2 1*2 1*2

2 1*4 O:sx2:s31 1*4
2 1*2 1*2

3 1*4 O:sx2:s31 1*4
3 1*2 O:sx3:s31 1*2

1 R*4 Any real argument R*4
1 R*8 R*8
1 R*8 R*8

1 R*4 Any real argument R*4
1 R*8 R*8
1 R*8 R*8

1 R*4 0<X:s35.Q4QQ R*4

1 R*8 2.3561 D-304sx:s21024 R*8

1 R*4 0<X:s4.0850E36 R*4

1 R*8 2.3561 D-304:sxs21024 R*8

Definitions use familiar mathematical function names, which have familiar mathematical
meanings or are defined below.

The bits in the bit-manipulation functions BTEST, IBSET, and IBCLR are numbered from
right to left, beginning at zero.

The result of a function of type complex is the principal value.

All the bit manipulation and logical functions allow INTEGER*2 arguments, giving an
INTEGER*2 result (except for BTEST, for which the result is LOGICAL*4).

Meanings of symbols:

x

Xj

lxl
sign(x)

y

z

denotes a single argument.

denotes the i-th argument when a function accepts more than one
argument.

denotes the absolute value of x.

is + 1 if x Cl!: O or -1 if x < 0.

denotes a function result.

denotes a complex argument.

152 Reference Manual for XL FORTRAN

Appendix B. XL FORTRAN Run Time Environment

This appendix discusses the various library subprograms, and the error handling support
that XL FORTRAN provides.

XL FORTRAN Subprograms
The XL FORTRAN library contains the following categories of subprograms to provide
various run-time capabilities:

• Input/output operation subprograms
• Data conversion subprograms
• Mathematical, character, and bit subprograms
• Service and utility subroutine subprograms
• Termination subprograms.

Note that the XL FORTRAN compiler provides no extended error handling subprogram
support.

Input/output operation subprograms
FORTRAN language input/output statements are not implemented directly
in the generated code output by the FORTRAN compiler, but instead are
implemented by generated calls to the FORTRAN library. The statements so
supported are:

• READ and WRITE in all their forms:
- Formatted
- Unformatted
- NAMELIST
- List-directed
- Sequential
- Direct access.

• PRINT
• BACKSPACE
• REWIND
• ENDFILE
• OPEN
• CLOSE
• INQUIRE
• FORMAT.

Data conversion subprograms
These subprograms are intrinsic functions, and have been described in
Appendix A.

Mathematical, character, and bit subprograms

© Copyright IBM Corp. 1990

These subprograms make up the intrinsic functions, which the programmer
refers to directly by name, and the notational functions, which are accessed
in response to mathematical notation (for example, exponentiation).

Appendix B. XL FORTRAN Run Time Environment 153

Service and utility subprograms
These subprograms (for example, to obtain time accounting information or
issue an operating system command from FORTRAN) are called by the
programmer directly.

Termination subprograms
The following statements generate calls to these subprograms:

• STOP
• PAUSE.

Mathematical, Character, and Bit Subprograms

Explicitly Called Subprograms
All explicitly called subprograms are FORTRAN intrinsic functions. They have been
described in Appendix A, "Intrinsic Functions".

Implicitly Called Subprograms
The implicitly called subprograms are executed as a result of certain notation appearing in a
FORTRAN source statement. The XL FORTRAN compiler generates the instructions
necessary to call the appropriate subprogram.

These subprograms are used in the following circumstances:

• Division of complex numbers
• Some forms of exponentiation.

Service and Utility Subprograms
The library provides utility services that are available to the FORTRAN programmer. The
subprograms that are subroutines (all but IARGC, MCLOCK, IRAND, and RAND) are
invoked through use of the CALL statement.

The following table lists the available service and utility subprograms, displays the format
you should use for invoking them, and gives a description of the function that each performs.

154 Reference Manual for XL FORTRAN

Subprogram Format Description
Name

ABORT CALL ABORT() The ABORT subroutine terminates the program
that calls it. It truncates all open files to the current
position of the file pointer, closes all open files, and
then stops execution.

FPGETS INCLUDE '/usr/include/fpdc.h' The subroutines FPGETS and FPSETS retrieve
FPSETS and set the status of the floating-point operations,

CALL FPGETS(FPSTAT) respectively. The BLOCK DATA include file fpdc.h
CALL FPSETS(FPSTAT) contains the data declarations (specification

statements) for the two subroutines. The include
file fpdt.h contains the data initializations (data
statements) and must be included in a block data

INCLUDE '/usr/include/fpdc.h' subprogram. FPGETS retrieves the floating-point
INCLUDE '/usr/include/fpdt.h' process status and stores the result in a logical
END array called fpstat. FPSETS sets the floating-point

status equal to the logical array fpstat. This array
contains logical values that enable or disable
system checking for various floating-point errors.

GETARG INTEGER 11 The GETARG subroutine returns a command line
CHARACTER*N C1 argument of the current process. 11 is an integer

argument that specifies which command line
CALL GETARG(l1,C1) argument to return. C1 is an argument of character

type and will contain, upon return from GETARG,
the command line argument. If 11 is equal to 0, the
program name is returned.

GETENV CHARACTER*N C1 The GETENV subroutine returns the character
string value of the specified environment variable

CALL GETENV('env_name',C1) contained in the .profile file of the current directory.
The environment variable is specified through the
first argument, 'env_name' and the character
string value of the environment variable is returned
in the second argument, C1. If no such
environment variable exists, blanks are returned.

IARGC INTEGER 11 The IARGC function returns an integer that
represents the number of arguments following the

11 = IARGC() program name that have been entered on the
command line at run time.

IRAND INTEGER 11 The IRAND and RAND functions generate uniform
RAND REAL R1 random numbers. The IRAND function returns a
SRAND positive integer number greater than 0 and less

CALL SRAND(l1) than or equal to 32768. The RAND function returns
11 = IRAND() a positive real number greater than 0 and less than

1.0. The SRAND subroutine is used to provide the
CALL SRAND(R1) seed value for the random number generator.
R1 =RAND()

MC LOCK INTEGER 11 The MCLOCK function returns time accounting
information about the current process and its child

11 = MCLOCK() processes. The returned value is the sum of the
current process's user time and the user and
system time of all child processes. The unit of
measure is one-sixtieth (1/60) of a second.

Appendix B. XL FORTRAN Run Time Environment 155

Subprogram Format Description
Name

MVBITS INTEGER 11,12,13,14,15 MVBITS is a subroutine that moves 13 bits, starting
at position 12 of argument 11, to position 15 of

CALL MVBITS(l1,12,13,14,15) argument 14 .

SIGNAL INTEGER 11 The SIGNAL subroutine allows a process to
EXTERNAL INTFNC specify a function to be invoked upon receipt of a

specific signal. The first argument 11 specifies the
CALL SIGNAL(l1,INTFNC) signal. The second argument INTFNC specifies

the user-defined procedure to be invoked upon
receipt of the specified signal.

This call to signal is used by the exception handler
to produce the traceback code. SIGTRAP has a

INCLUDE 'fexcp.h' value of 5 to indicate it is input for the tracetrap
CALL SIGNAL(SIGTRAP,xl_trce) instruction. xl_trce is a predefined procedure that

generates the traceback code.

SYSTEM CHARACTER*N C1 The SYSTEM subroutine allows an operating
system command to be issued from FORTRAN.

CALL SYSTEM(C1) It passes the argument C1 to the operating system
as input. The operating system accepts and
executes the command specified by this argument
as if it were typed from a terminal. The current
process pauses until the command is completed
and control is returned from the operating system.

Figure 8. FORTRAN Library: Service and Utility Subprograms

Error Handling Support

Compiler Detected Errors
If the XL FORTRAN compiler detects a source error of severity level S, exception code is
generated in place of the code for the statement in error. At run time, if this point in the
program is reached, the program halts.

The return code at the end of compilation is set to O if the highest severity level of all errors
diagnosed is E, W, L, or I, or less than halt_sev if the HALT compiler option has been
specified. Otherwise, the return code is set to one of the following values:

1

40
41
250

251

252
253
254
255

A severe or unrecoverable error has been detected that is not one of the
others listed here.
An option error has been detected.
A configuration file error has been detected.
An "out of memory" error has been detected. The xlf command cannot
allocate any more memory for its use.
A signal received error has been detected. A fatal error or interrupt signal is
received.
A "file not found" error has been detected.
An input/output error has been detected. Cannot read or write files.
A fork error has been detected. Cannot create a new process.
An execution error has been detected. The error is produced when
executing a process.

156 Reference Manual for XL FORTRAN

FORTRAN Exception Handling and Traceback Facilities
The following cases will cause an exception at run time:

1. Subscript out of bounds if you specify the CHECK option at compile time.

2. Substring out of bounds if you specify the CHECK option at compile time.

3. Fixed point division by zero.

4. The flow of control in the program reaches a location for which a semantic error with
severity level of S was issued when the program was compiled.

Using Traceback Facilities
If your program causes a run-time exception, you can obtain a traceback by having your
program call SIGNAL with SIGTRAP and xi_ tree as parameters at some point before the
exception occurs.

For each routine called, the traceback shows the offset number of the routine in which the
exception occurred. The offset number can be mapped to the source line number by
checking the offset on the listing. (-qlist compiler option will produce a listing.)

The dbx symbolic debugger can also produce a traceback showing the sequence of routine
calls that led to the exception. When you run the program within dbx a specific error
message with the line number of the instruction causing the exception is written to standard
error. Use the where or trace subcommand in dbx to obtain a complete traceback written to
standard error showing the source line number and the sequence of instructions leading up
to the exception.

Example

The following program produces a run-time exception:

PROGRAM TT
CALL A
END

SUBROUTINE A
INCLUDE 'fexcp.h'
DIMENSION A(lO)
CALL SIGNAL(SIGTRAP,xl~trce)
I=ll
A(I)=O
END

If we compile the program above with the CHECK option in effect, then traceback table will
show the following:

off set 34 in procedure A
off set 10 in procedure TT
off set 0 in procedure START

Appendix B. XL FORTRAN Run Time Environment 157

158 Reference Manual for XL FORTRAN

Appendix C. XL FORTRAN Compiler/6000 Extensions

The following list of extensions indicates those items that are changes from SAA FORTRAN.
Some of the items listed here are implementation differences, and some are actual
extensions over SAA.

XL FORTRAN Extensions

Language Syntax

• The XL FORTRAN character set includes the following special characters: " % < >

• XL FORTRAN uses the ASCII collating sequence.

• The maximum length of a name is 250 characters by default.

• Both$ and_ are treated as letters when used in a name, and may be used as the first
character.

• XL FORTRAN allows columns 1 through 5 to contain characters, but they are ignored.

• A statement can have up to 99 continuation lines.

• Ac in column 1 of a fixed-form input line indicates a comment also.

• lnline comments are permitted, and are indicated by ! .

• Free-form input format is permitted.

• Tab characters can be used.

• XL FORTRAN includes the following: DOUBLE COMPLEX, STATIC, AUTOMATIC,
NAMELIST, DO WHILE, END DO, INCLUDE, EJECT, and @PROCESS.

• DATA statements can be interspersed with any specification statements except
IMPLICIT.

Data Types and Constants

• The data types include INTEGER*1, REAL*16, COMPLEX*32, DOUBLE COMPLEX, and
LOGICAL*2.

• XL FORTRAN also allows E or Q to specify a REAL *8 exponent.

• A complex constant can be specified with a pair of real or integer constant expressions
enclosed in parentheses and separated by a comma.

• The abbreviations T and F can be used for .TRUE. and .FALSE. respectively.

• Character constants can also be delimited by double quotation marks.

• XL FORTRAN recognizes a set of backslash escapes for compatibility with the C
language character strings.

• The following constants are included: hexadecimal, octal, binary, and Hollerith.

© Copyright IBM Corp. 1990 Appendix C. XL FORTRAN Compiler/6000 Extensions ·159

Variables and Arrays

• If the first character of a variable name is the underscore L) or the currency symbol ($),
the variable is defined implicitly as a real of length 4.

• The maximum number of dimensions that can be declared is 20.

Expressions

• Arithmetic primaries include:

- Hexadecimal constant
- Octal constant
- Binary constant
- Hollerith constant.

• Character primaries include:

- Hexadecimal constant
- Octal constant
- Binary constant
- Hollerith constant.

• Logical primaries include:

- Hexadecimal constant
- Octal constant
- Binary constant
- Hollerith constant.

• The relational operators include the following: < <= <> > >=

• XL FORTRAN always evaluates a relational expression to a LOGICAL *4 result, but you
can convert the result in an assignment statement to a LOGICAL *1 or LOGICAL *2.

• XL FORTRAN allows the logical operator .XOR. for logical nonequivalence.

Arithmetic Assignment Statement

• XL FORTRAN allows the following data types:

- INTEGER*1
- REAL*16
- COMPLEX*32, DOUBLE COMPLEX.

CALL Statement

• Recursion is allowed if the RECUR compiler option is specified. Procedures can call
themselves, either directly or through a chain of other procedures.

• The argument list keywords % VAL and %REF aid in~erlanguage calls by_ allowing
arguments to be passed by value and reference respectively.

COMMON Statement

• If data is misaligned because of its specification in COMMON, it can still be processed.
Misaligned data can also be passed as arguments to subprograms. Note that any use of
misaligned data will adversely affect the performance of the program.

160 Reference Manual for XL FORTRAN

DATA Statement

• XL FORTRAN allows a hexadecimal, octal, binary, or Hollerith constant to initialize a
variable, array element or array of any type, or a substring.

• If a binary or octal constant initializes a complex data type, one constant is used that
initializes both the real and the imaginary parts. The constant is not enclosed in
parentheses. If the constant is smaller than the length (in bytes) of the entire complex
entity, zeros are added on the left. If the constant is larger, the leftmost bits are truncated.

Debug Lines

• Debug lines.

Dimension Statement

• Arrays with a maximum of 20 dimensions may be specified.

DO Statement

• The terminal statement of a DO loop can be a labeled END DO statement.

• If the optional statement label stn is omitted, the terminal statement of the DO loop must
be an END DO statement.

DO WHILE Statement

• DO WHILE statement.

EJECT Compiler Directive

• EJECT compiler directive.

END DO Statement

• END DO statement.

END Statement

• An end-of-line comment, initiated by ! , can appear on the same line as an END
statement.

ENTRY Statement

• If the RECUR compiler option is specified, a subprogram can reference, either directly or
indirectly, any of its ENTRY names. If the recursion compiler option is not specified, a
subprogram must not refer to itself, or any of its entry points, either directly or indirectly.

• If IMPLICIT NONE has been specified in a function subprogram, the FUNCTION name
and any ENTRY names must be explicitly typed.

EQUIVALENCE Statement

• Any missing subscript is assumed to be the lower bound of the corresponding dimension
of the array.

• An entity declared as AUTOMATIC cannot be used as an argument in an EQUIVALENCE
statement.

Appendix C. XL FORTRAN Compiler/6000 Extensions 161

Explicit Type Statement

• Explicit type statements include:

- INTEGER*1
- REAL*16
- COMPLEX*32, DOUBLE COMPLEX
- LOGICAL*2
- STATIC
- AUTOMATIC.

• XL FORTRAN allows a hexadecimal, octal, binary, or Hollerith constant to initialize a
variable, array element or array of any type, or a substring.

• If a binary or octal constant initializes a complex data type, one constant is used that
initializes both the real and the imaginary parts. The constant is not enclosed in
parenthe.ses. If the constant is smaller than the length (in bytes) of the entire complex
entity, zeros are added on the left. If the constant is larger, the leftmost bits are truncated.

FORMAT Statement

Code Format Description

"literal" Literal data (character constant)

a aQw.d Extended precision data fields (handled as
double precision by XL FORTRAN.)

G aGw.dDe Real, integer, or logical data fields

z aZw.m Hexadecimal data fields

0 aOw.m Octal data fields

B aBw.m Binary data fields

$ $ Suppress end-of-record

• Formatting extreme values

The "extreme values" used in the IEEE binary floating-point system include +infinity,
-infinity and Not-a-Number (NaN). Infinity is the result of floating-point overflow. NaN is
produced by certain invalid operations, such as division by zero.

On the output of nonextreme values, the entire field is filled with asterisks if the field width
as specified by the associated format specifier is inadequate to display the value.

When extreme values are printed in D, E, F, G or Q format, "INF", "-INF" and "NaNQ" are
produced for the internal values +infinity, -infinity and NaN, respectively.

• Commas can be used as value separators in the input record for a formatted read of
noncharacter variables. The commas override the field lengths given in a FORMAT
statement.

• The comma can be omitted between a P format code and an immediately following Q

format code. If the comma is omitted in other circumstances, characters in the format
specification are skipped until the next valid format code is found.

• If the form zw. m is .used on input, the value of m has no effect. If • m is present, the output
field consists of at leas.t m hexadecimal digits, and is zero-filled on the left, if necessary,
until there are ·m hexadecimal digits. · · · · ·

• o format code (octal).

162 Reference Manual for XL FORTRAN

• B format code (binary).

• Character constants can appear in a FORMAT statement enclosed in double quotation
marks.

• Dollar (end-of-record suppression).

FUNCTION Statement

• DOUBLE COMPLEX in a FUNCTION statement specifies a double precision complex
function.

• If the IMPLICIT NONE statement is used within the function subprogram, the type of the
function must be explicitly declared in either the FUNCTION statement or an explicit type
statement.

• Because recursion is allowed, the function name can be referenced within the function
subprogram in a context that requires the function to be evaluated. If the function name is
used as an actual argument, a variable name and not a procedure name is passed to the
subprogram.

• An actual argument can be an argument list keywords (%VAL or %REF).

Computed GO TO Statement

• The expression to be evaluated in a computed GO TO statement can be any arithmetic
expression. If it is noninteger, it is converted to an integer value before use.

• A computed GO TO can be the terminal statement of a DO WHILE loop.

IMPLICIT Type Statement

• The IMPLICIT NONE statement.

• IMPLICIT type includes:

- INTEGER*1
- REAL*16
- COMPLEX*32
- DOUBLE COMPLEX
- LOGICAL*2
- STATIC
- AUTOMATIC
- UNDEFINED.

• A letter or range of letters that is specified as STATIC or AUTOMATIC can also appear in
an IMPLICIT statement for any of the other types, except for AUTOMATIC and STATIC.

• IMPLICIT NONE turns off all implicit data typing defaults. When IMPLICIT NONE is
specified, the data types of all symbolic names in the program unit must be explicitly
declared. The compiler issues a diagnostic message for each symbolic name that is used
but does not appear in an explicit type statement.

• When IMPLICIT NONE is specified, there must be no other IMPLICIT statement in the
same program unit (except that STATIC and AUTOMATIC storage class IMPLICIT
statements can also be specified). IMPLICIT NONE must precede all other specification
statements. Explicit type statements must then be used to specify the data types of all
entities used in the program unit.

Appendix C. XL FORTRAN Compiler/6000 Extensions 163

• IMPLICIT UNDEFINED turns off the implicit data typing defaults for the character or
range of characters specified. When IMPLICIT UNDEFINED is specified, the data types
of all symbolic names in the program unit that start with a character specified as
IMPLICIT UNDEFINED must be explicitly declared. For each symbolic name starting with
a character specified as IMPLICIT UNDEFINED, the compiler issues a diagnostic
message if that symbolic name is used but does not appear in an explicit type statement.

INCLUDE Compiler Directive

• INCLUDE compiler directive.

INQUIRE Statement

• If fn is specified in the INQUIRE statement, it must be a valid AIX file name.

NAMELIST Statement

• NAMELIST statement.

OPEN Statement

• If fn is specified in the OPEN statement, it must be a valid AIX file name. If fn is omitted,
the file name of the file connected to the unit defaults to fort. n, where n is the unit
specified {un), with any leading zeros removed.

PARAMETER Statement

• Names of constants used in the PARAMETER statement can be used as part of a
COMPLEX constant.

• If the name in a PARAMETER statement is an integer type of length 1, the constant value
is an integer constant that occupies 1 byte of storage. If the name in a PARAMETER
statement is of logical type of length 2, the constant value is a logical constant that
occupies 2 byte of storage.

• The constant in a PARAMETER statement can be a hexadecimal constant, an octal
constant, a binary constant, or Hollerith constant.

• The constant expression in a PARAMETER statement can contain an intrinsic function
with constant arguments.

READ Statement

• The character constant, as a format identifier in the READ statement, can also be
delimited by double quotation marks. A double quotation mark in a constant enclosed in
double quotation marks is represented by tWo consecutive double quotation marks.

• The format identifier on a READ statement can be an array name of type double complex.

• If the format identifier of a READ statement starts with a B or o format code, the internal
record number is increased by one but no data is transferred.

• Under AIX, all units are initially preconnected for sequential access.

• If the input/output list is not specified, and the format identifier starts with an A, r, E, F, n,
G, L, Q, z, B, or o format code for the READ statement or is empty, a record is skipped
over.

• The NML option on the READ statement {NAMELIST with external devices).

164 Reference Manual for XL FORTRAN

• The NML option on the READ statement (NAMELIST with internal files).

RETURN Statement

• The optional expression in a RETURN statement can be any arithmetic expression whose
value is converted to integer.

• Entities specified as STATIC do not become undefined on invocation of a RETURN
statement.

• Items declared AUTOMATIC become undefined.

Statement Function Statement

• If the IMPLICIT NONE statement is used within the program unit, the type of the
statement function must be explicitly declared in an explicit type statement.

STOP Statement

• If a string of digits is specified in a STOP statement, the return code is set to
MOD(n, 256) (because the AIX return code is only one byte).

SUBROUTINE Statement

• Because recursion is allowed, the subroutine name specified in a SUBROUTINE
statement can appear in a CALL statement within the subroutine subprogram. The
subroutine name cannot appear as an actual argument in a CALL statement or function
reference, because it cannot appear in an EXTERNAL statement.

WRITE Statement

• The character constant as a format identifier in the WRITE statement can be delimited by
double quotation marks. A double quotation mark in a constant enclosed in double
quotation marks is represented by two consecutive double quotation marks.

• The format identifier on a WRITE statement can be an array name of type double
complex.

• If the list is not specified in a WRITE statement, and the format specification starts with an
A, I, E, F, o, G, L, Q, z, B, or o or is empty, a blank record is written out.

• If the list is not specified in a WRITE statement, and the format specification starts with an
A, I, E, F, o, G, L, Q, z, B, or o or is empty, the record is filled with blank characters and
the relative record number is increased by one.

• The following IBM extension is not available with XL FORTRAN:

- The WRITE statement can be used to write over an end-of-file and extends the
external file. An ENDFILE, BACKSPACE, CLOSE, or REWIND statement will then
reinstate the end-of-file.

• If the length of the record specified in the RECL parameter of the OPEN statement is
smaller than the total amount of data transmitted from the items of the list, as much data
as can fit in the record is written, the internal record number is increased by one, and the
remainder of the data is ignored.

• The NML option on the WRITE statement (NAMELIST with external devices).

• The NML option on the WRITE statement (NAME LIST with internal files).

Appendix C. XL FORTRAN Compiler/6000 Extensions 165

• The NAMELIST names are folded to lowercase when they are written to the internal file,
even if the MIXED compiler option is specified.

Intrinsic Functions

• No Q (extended precision) intrinsic functions are provided. If a Q function is specified in a
source program, the corresponding D (double precision) function will be used.

Argument List Keywords

• %VAL

• %REF.

166 Reference Manual for XL FORTRAN

Symbols
.AND. operator, 38

.EQ. operator, 36

. EQV. operator, 38

.GE. operator, 36

.GT. operator, 36

.LE. operator, 36

. LT. operator, 36

.NE. operator, 36

.NEQV .. operator, 38

.NOT. operator, 38

.OR. operator, 38

.XOR. operator, 38

: {colon) editing, 122

" {double quotation mark) editing, 123

' {apostrophe) editing-, 123

$ {dollar) editing, 123

%REF, 93

%VAL, 93

@PROCESS compiler directive, 143

I (slash) editing, 122

A
A {character) editing, 123

ABS intrinsic function, 148

access
direct, 98

inquiring about, 11 O
sequential, 98

inquiring about, 11 O

ACCESS specifier
of INQUIRE statement, 11 O
of OPEN statement, 107

ACOS intrinsic function, 150

active DO loop, 75

actual argument, 91
specifying procedure names as, 54

actual array, 28

addition operator, 34

adjustable array declarator, 28

© Copyright IBM Corp. 1990

AIMAG intrinsic function, 149

AINT intrinsic function, 148

ALGAMA intrinsic function, 152

ALOG intrinsic function, 149

ALOG10 intrinsic function, 149

alternate entry point, 88

alternate return
point, 91
specifier, 91

AMAXO intrinsic function, 149

AMAX1 intrinsic function, 148

AMINO intrinsic function, 149

AMIN1 intrinsic function, 149

AMOD intrinsic function, 148

AND intrinsic function, 151

ANINT intrinsic function, 148

apostrophe (') editing, 123

argument list keywords
%REF, 93
%VAL, 93

arguments, 91-94

arithmetic assignment statement, 63

arithmetic constant expression, 34

arithmetic constants, 16
complex, 19
double precision, 18
integer, 17
real, 17

arithmetic expressions, 33

arithmetic IF statement, 71

arithmetic operators, 34
addition, 34
division, 34
exponentiation, 34
multiplication, 34
subtraction, 34

arithmetic relational expressions, 36

arrangement of arrays in storage, 29

arrays, 27
arrangement in storage, 29
as dummy arguments, 94
AUTOMATIC, 31
declarators, 27

kinds, 28

Index 167

dimensions, 28
elements, 29
kinds,.28

actual, 28
dummy, 28

size, 29
STATIC, 31
use of names, 30

ASCII coded character set, 7

ASIN intrinsic function, 150

ASSIGN statement, 67

assigned GO TO statement, 70

assignment statements, 63
arithmetic, 63
character, 66
list of, 1 o
logical, 65
statement label (ASSIGN), 67
typeless constants in, 67

association, 32
argument, 92
common, 46
entry, 85
EQUIVALENCE, 45

assumed-size array declarator, 28

asterisk as dummy argument, 91, 94

ATAN intrinsic function, 150

ATAN2 intrinsic function, 150

AUTOMATIC, variables and arrays, 31

AUTOMATIC type specifier, 48

B
B (binary) editing, 133

BACKSPACE statement, 112

binary (8) editing, 133

binary constants, 24

blank common block, 46

blank editing, 124

blank interpretation during formatting, setting, 124

blank null (BN) editing, 124

BLANK specifier
of INQUIRE statement, 111
of OPEN statement, 107

blank zero (BZ) editing, 124

168 Reference Manual for XL FORTRAN

blanks, nonsignificant, 13

BLOCK DATA statement, 95

block data subprogram, 95

block IF statement, 73

BN (blank null) editing, 124

BTEST intrinsic function, 152

BZ (blank zero) editing, 124

c
CABS intrinsic function, 148

CALL statement, 87

CCOS intrinsic function, 150

CDABS intrinsic function, 148

cocos rntrinsic function, 150

CDEXP intrinsic function, 149

CDLOG intrinsic function, 149

CDSIN intrinsic function, 150

CDSQRT intrinsic function, 149

CEXP intrinsic function, 149

CHAR intrinsic function, 151

character (A) editing, 123

character assignment statement, 66

character constant expression, 36

character constants, 21

character expressions, 35

character format specification, 120

character operator, 35

character relational expressions, 37

character set, 7

character substrings, 30

CHARACTER type statement, 48

CLOG intrinsic function, 149

CLOSE statement, 108

CMPLX intrinsic function, 147

collating sequence, 7

colon (:) editing, 122

column-major order, 29

comment line
fixed-form input format, 11
free-form input format, 12
order within a program unit, 14

common asociation, 46

common block, 46-48

COMMON statement, 46

communicating between program units
using arguments, 91
using common blocks, 46

compiler detected errors, 156

compiler directives
@PROCESS, 143
EJECT, 142
INCLUDE, 141
list of, 1 O

complex constants, 19

complex editing, 122

COMPLEX type statement, 48

computed GO TO statement, 70

concatenation operator, 35

CONJG intrinsic function, 149

conjunction, logical, 38

connection of units, 99

constant array declarator, 28

constant expression
arithmetic, 34
character, 36
integer, 34
logical, 39

constants, 16
arithmetic, 16

complex, 19
double precision, 18
integer, 17
real, 17

binary, 24
character, 21
hexadecimal, 23
Hollerith, 24 ·
how data type determined, 16
logical, 21
octal, 23
typeless, 23, 24
use of typeless, 25

construct, IF, 73

CONTINUE statement, 78

control
format, 121
transfer of, 14

control edit descriptors, list of, 119

control statements, 69
arithmetic IF, 71
assigned GO TO, 70 .
block IF, 73
computed GO TO, 70
CONTINUE, 78
DO, 74
DO WHILE, 76
ELSE, 73
ELSE IF, 73
END, 79
END DO, 77
END IF, 73
list of, 1 O
logical IF, 72
PAUSE, 79
STOP, 78
unconditional GO TO, 69

conversion rules, data type, 34

COS intrinsic function, 150

COSH intrinsic function, 150

CQABS intrinsic function, 148

COCOS intrinsic function, 150

CQEXP intrinsic function, 149

CQLOG intrinsic function, 149

CQSIN intrinsic function, 150

CQSQRT intrinsic function, 149

CSIN intrinsic function, 150

CSQRT intrinsic function, 149

D
D (double precision) editing, 125

DABS intrinsic function, 148

DACOS intrinsic function, 150

DASIN intrinsic function, 150

data edit descriptors, list of, 118

DATA statement, 59
implied-DO in a, 60

data type conversion rules, 34

data types, 15

Index 169

DATAN intrinsic function, 150

DATAN2 intrinsic function, 150

DBLE intrinsic function, 147

DBLEQ intrinsic function, 147

DCMPLX intrinsic function, 147

DCONJG intrinsic function, 149

DCOS intrinsic function, 150

DCOSH intrinsic function, 150

DDIM intrinsic function, 148

declarators
array, 27

adjustable, 28
assumed-size, 28
constant, 28
kinds, 28

dimension, 27

default typing, 16

defined status, 31

definition status
of a character substring, 31
of a variable, 31
of an array element, 31

DEAF intrinsic function, 152

DERFC intrinsic function, 152

DEXP intrinsic function, 149

DFLOAT intrinsic function, 147

DGAMMA intrinsic function, 152

digits, 7

DIM intrinsic function, 148

DIMAG intrinsic function, 149

dimension bound expression, 28

dimension declarators, 27

DIMENSION statement, 43

dimensions of an array, 28

DINT intrinsic function, 148

direct access, 98

DIRECT specifier, of INQUIRE statement, 110

directive, compiler
@PROCESS, 143
EJECT, 142
INCLUDE, 141

disjunct, logical, 38

division operator, 34

170 Reference Manual for XL FORTRAN

DLGAMA intrinsic function, 152

DLOG intrinsic function, 149

DLOG10 intrinsic function, 149

DMAX1 intrinsic function, 148

DMIN1 intrinsic function, 149

DMOD intrinsic function, 148

DNINT intrinsic function, 148

DO loop, 74
active, 75
executing a, 75
execution of range, 76
execution of terminal statement, 76
inactive, 75
incrementation processing, 76
loop control processing, 76
range of a, 75

DO statement, 7 4

DO WHILE loop, 77

DO WHILE statement, 76

documentation, related, 3

dollar ($) editing, 123

DOUBLE COMPLEX type statement, 48

double precision (D) editing, 125

double precision constants, 18

DOUBLE PRECISION type statement, 48

double quotation mark (") editing, 123

DPROD intrinsic function, 148

DREAL intrinsic function, 147

DSIGN intrinsic function, 148

DSIN intrinsic function, 150

DSINH intrinsic function, 150

DSQRT intrinsic function, 149

DTAN intrinsic function, 150

DTANH intrinsic function, 150

dummy argument, 92
array as, 94
asterisk as, 94
procedure as, 94
statement function, 83
variable as, 93

dummy array, 28

dummy procedure, 94

E
E (real with exponent) editing, 125

edit descriptors
control (nonrepeatable), 119
data (repeatable), 118
numeric, 121

editing, 121
: (colon), 122
" (double quotation mark), 123
' (apostrophe), 123
$ (dollar), 123
I (slash), 122
A (character), 123
B (binary), 133
BN (blank null), 124
BZ (blank zero), 124
-complex, 122
D (double precision), 125
E (real with exponent), 125
F (real without exponent), 126
G (general), 127
H, 128
I (integer), 129
L (logical), 130
0 (octal), 133
P (scale factor), 130
Q (extended precision), 125
S, SS, and SP (sign control), 131
T, TL, TR, and X (positional), 131
Z (hexadecimal), 132

EJECT compiler directive, 142

elements of an array, 29

ELSE IF statement, 73

ELSE statement, 73

END DO statement, 77

END IF statement, 73

END specifier
of READ statement, 102
of WRITE statement, 102

END statement, 79

endfile records, 98

ENDFILE statement, 112

entry association, 85

entry name, 88

ENTRY statement, 88

EQUIVALENCE
association, 45
restriction on COMMON and, 47

equivalence, logical, 38

EQUIVALENCE statement, 44

ERF intrinsic function, 152

ERFC intrinsic function, 152

ERR specifier
of BACKSPACE statement, 113
of CLOSE statement, 108
of ENDFILE statement, 113
of INQUIRE statement, 11 o
of OPEN statement, 106
of READ statement, 102
of REWIND statement, 113
of WRITE statement, 102

error handling support, 156

errors, compiler detected, 156

exception handling, 157

exclusive disjunction, logical, 38

executable program, 81

executable statements, list of, 1 o
executing a DO loop, 75

executing a DO loop range, 76

executing a DO loop terminal statement, 76

execution sequence, 14

EXIST specifier, of INQUIRE statement, 11 o
EXP intrinsic function, 149

explicit type statements, 48

explicit typing, 16

exponent
double precision, 18
real, 18

exponentiation operator, 34

expression
arithmetic, 33
character, 35
dimension bound, 28
logical, 37
relational, 36
subscript, 29
substring, 30

extended precision (Q) editing, 125

extensions
argument list keyword, 166
arithmetic assignment statement, 160
CALL statement, 160
COMMON statement, 160
computed GO TO statement, 163

Index 171

DATA statement, 161
data types and constants, ~ 59
debug lines, 161
dimension statement, 161
DO statement, 161
DO WHILE statement, 161
EJECT compiler directive, 161
END DO statement, 161
END statement, 161
ENTRY statement, 161
EQUIVALENCE statement, 161
explicit type statement, 162
expressions, 160
FORMAT statement, 162
FUNCTION statement, 163
IMPLICIT type statement, 163
INCLUDE compiler directive, 164
INQUIRE statement, 164
intrinsic functions, 166
language syntax, 159
NAM ELIST statement, 164
OPEN statement, 164
over SAA, 1 , 159
PARAMETER statement, 164
READ statement, 164
RETURN statement, 165
statement function statement, 165
SUBROUTINE statement, 165
variables and arrays, 160
WRITE statement, 165
XL FORTRAN, 4, 159

external files, 98
direct access, 98
sequentialaccess,98

external function, 84

external procedure, 92

EXTERNAL statement, 54

F
F (real without exponent) editing, 126

factor
arithmetic, 33
logical, 38

field, 121

field width, 121

file position ·
after BACKSPACE statement, 113
after REWIND statement, 113
before and after data transfer, 1 04
external file, 98

172 Reference Manual for XL FORTRAN

FILE specifier
of INQUIRE statement, 109
of OPEN statement, 106

files, 98
external, 98

access
direct, 98
sequential, 98

internal, 99

FLOAT intrinsic function, 147

FMT specifier
of PRINT statement, 101
of READ statement, 101
of WRITE statement, 101

FORM specifier
of INQUIRE statement, 111
of OPEN statement, 107

format codes. See edit descriptors

format control, 120

format specification, 117
character, 120
in FORMAT statement, 117
interaction with inpuVoutput list, 120

FORMAT statement, 117

format-directed formatting, 117-134

formatted records, 97

FORMATTED specifier, of INQUIRE statement, 111

formatting, 117
format-directed, 117-134
list-directed, 134-136
NAMELIST, 136-137

FORTRAN extensions, 159

function, 82
external, 82
intrinsic, 145
reference, 83
statement, 83
subprogram, 84
value, 83

FUNCTION statement, 84

G
G (general) editing, 127

GAMMA intrinsic function, 152

general (G) editing, 127

generic name of an intrinsic function, 145

global scope, 9

GO TO statement
assigned, 70
computed, 70
unconditional, 69

H
H editing, 128

hexadecimal (Z) editing, 132

hexadecimal constants, 23

HFIX intrinsic function, 146

Hollerith constants, 24

I
I (integer) editing, 129

IABS intrinsic function, 148

IAND intrinsic function, 151

IBCLR intrinsic function, 152

IBITS intrinsic function, 152

IBSET intrinsic function, 152

!CHAR intrinsic function, 150

identity operator, 34

IDIM intrinsic function, 148

IDINT intrinsic function, 146

IDNINT intrinsic function, 148

IEOR intrinsic function, 151

IF construct, 73

IF statement
arithmetic, 71
block, 73
ELSE, 73
ELSE IF, 73
END IF, 73
logical, 72

IFIX intrinsic function, 146

IMPLICIT type statement, 52

implicit typing, 16

implied-DO
in a DATA statement, 60
variable, 60

inactive DO loop, 75

INCLUDE compiler directive, 141

inclusive disjunction, logical, 38

incrementation processing, 76

INDEX intrinsic function, 151

industry standards, 4

infinity, how indicated with numeric output editing,
126

inherited length
by a dummy argument, 89
by a named constant, 50

initial value, declaring, 59

input format
fixed-form, 11
free-form, 12

input/output statements, list of, 1 O

INQUIRE statement, 109

INT intrinsic function, 146

integer (I) editing, 129

integer constants, 17

INTEGER type statement, 48

interaction between input/output list and format
specification, 120

interlanguage calls, %VAL and %REF, 93

internal files, 99

intrinsic functions, 145
ABS, 148
ACOS, 150
AIMAG, 149
AINT, 148
ALGAMA, 15~
ALOG, 149
ALOG10, 149
AMAXO, 149
AMAX1, 148
AMINO, 149
AMIN1, 149
AMOD, 148
AND, 151
ANINT, 148
ASIN, 150
ATAN, 150
ATAN2, 150
BTEST, 152
CABS, 148
CCOS, 150
CDABS, 148
COCOS, 150

Index 173

CDEXP, 149
CDLOG, 149
CDSIN, 150
CDSQRT, 149
CEXP, 149
CHAR, 151
CLOG, 149
CMPLX, 147
CONJG, 149
COS, 150
COSH, 150
CQABS, 148
CQCOS, 150
CQEXP, 149
CQLOG, 149
CQSIN, 150
CQSQRT, 149
CSIN, 150
CSQRT, 149
DABS, 148
DACOS, 150
DASIN, 150
DATAN, 150
DATAN2, 150
DBLE, 147
DBLEQ, 147
DCMPLX, 147
DCONJG, 149
DCOS, 150
DCOSH, 150
DDIM, 148
DEAF, 152
DERFC, 152
DEXP, 149
DFLOAT, 147
DGAMMA, 152
DIM, 148
DIMAG, 149
DINT, 148
DLGAMA, 152
DLOG, 149
DLOG10, 149
DMAX1, 148
DMIN1, 149
DMOD, 148
DNINT, 148
DPROD, 148
DREAL, 147
DSIGN, 148
DSIN, 150
DSINH, 150
DSQRT, 149
DTAN, 150
DTANH, 150
ERF, 152

17 4 Reference Manual for XL FORTRAN

ERFC, 152
EXP, 149
FLOAT, 147
GAMMA, 152
HFIX, 146
IABS, 148
IAND, 151
IBCLR, 152
IBITS, 152
IBSET, 152
ICHAR, 150
IDIM, 148
IDINT, 146
IDNINT, 148
IEOR, 151
IFIX, 146
INDEX, 151
INT, 146
IOR, 151
IQINT, 146
ISHFT, 151
ISHFTC, 151
ISIGN, 148
LEN, 151
LGE, 151
LGT, 151
list of, 146
LLE, 151
LLT, 151
LSHIFT, 151
MAXO, 148
MAX1, 149
MINO, 149
MIN1, 149
MOD, 148
name in an INTRINSIC statement, 55
NINT, 148
NOT, 151
OR, 151
QABS, 148
QARCOS, 150
QARSIN, 150
QATAN, 150
QATAN2, 150
QCMPLX, 147
QCONJG, 149
QCOS, 150
QCOSH, 150
QDIM, 148
QERF, 152
QERFC, 152
QEXP, 149
QEXT, 147
QEXTD, 147
QFLOAT, 147

QIMAG, 149
QINT, 148
QLOG, 149
QLOG10, 149
QMAX1, 148
QMIN1I149
QMOD, 148
QREAL, 147
QSIGN, 148
QSIN, 150
QSINH, 150
QSQRT, 149
QTAN, 150
QTANH, 150
REAL, 147
referencing, 145
RSHIFT, 151
rules and restrictions, 146
SIGN, 148
SIN, 150
SINH, 150
SNGL, 147
SNGLQ, 147
SQRT, 149
TAN, 150
TANH, 150
XOR, 151
ZABS, 148
ZCOS, 150
ZEXP, 149
ZLOG, 149
ZSIN, 150
ZSQRT, 149

INTRINSIC statement, 55

IOR intrinsic function, 151

IOSTAT specifier
of BACKSPACE statement, 113
of CLOSE statement, 108
of ENDFILE statement, 113
of INQUIRE statement, 109
of OPEN statement, 106
of READ statement, 102
of REWIND statement, 113
of WRITE statement, 102

IOSTAT values, list of, 114

IQINT intrinsic function, 146

ISHFT intrinsic function, 151

ISHFTC intrinsic function, 151

!SIGN intrinsic function, 148

iteration count, 75
in implied-DO list of a DATA statement, 61

K
keywords, 9

L
L (logical) editing, 130

labels, statement, 13

LEN intrinsic function, 151

length, inherited
by a dummy argument, 89
by a named constant, 50

letters, 7

LGE intrinsic function, 151

LGT intrinsic function, 151

list-directed formatting, 134-136

LLE intrinsic function, 151

LLT intrinsic function, 151

local scope, 9

logical (L) editing, 130

logical assignment statement, 65

logical conjunction, 38

logical constants, 21

logical equivalence, 38

logical exclusive disjunction, 38

logical expressions, 37

logical IF statement, 72

logical inclusive disjunction, 38

logical negation, 38

logical nonequivalence, 38

logical operators, 38
.AND., 38
.EQV., 38
.NEQV., 38
.NOT., 38
.OR., 38
.XOR., 38

LOGICAL type statement, 48

loop control processing, 76

lower dimension bound, 28, 44, 49

LSHIFT intrinsic function, 151

Index 175

M
main program, 82

mathematical, character and bit subprograms, 154

MAXO intrinsic function, 148

MAX1 intrinsic function, 149

MINO intrinsic function, 149

MIN1 intrinsic function, 149

MOD intrinsic function, 148

multiplication operator, 34

N
name, 8

array, 27
array element, 29
common block, 46
determining type of, 16
entry, 88
generic function, 145
restriction in specification statements, 43
scope of a, 8
specific function, 145
substring, 30
use of array names, 30
variable, 27

NAME specifier, of INQUIRE statement, 110

named common block, 46

NAMED specifier, of INQUIRE statement, 11 o
NAMELIST formatting, 136-137

NAMELIST statement, 56

negation operator, 39

negation, logical, 38

NEXTREC specifier, of INQUIRE statement, 111

NINT intrinsic function, 148

NML specifier
of READ statement, 103
of WRITE statement, 103

nonequivalence, logical, 38

non executable statements, list of, 10

nonrepeatable edit descriptors, list of, 119

nonsignificant blanks, 13

NOT intrinsic function, 151

NUM specifier
of READ statement, 102

176 Reference Manual for XL FORTRAN

of WRITE statement, 102

NUMBER specifier, of INQUIRE statement, 110

numeric edit descriptors, 121

0
0 (octal) editing, 133

octal (0) editing, 133

octal constants, 23

OPEN statement, 106

OPENED specifier, of INQUIRE statement, 110

operators
arithmetic, 34
character, 35
logical, 38
precedence of, 39
relational, 36

OR intrinsic function, 151

order of statements, 13

p
P (scale factor) editing, 130

PARAMETER statement, 53

PAUSE statement, 79

positonal (T, TL, TR, and X) editing, 131

precedence
of all operators, 39
of arithmetic operators, 34
of logical operators, 38

primary
arithmetic, 33
character, 35
logical, 38

PRINT statement, 100

procedure, 81
dummy, 94
external, 82
reference, 81
subprogram, 81

program, executable, 81

PROGRAM statement, 82

program unit, 81

program unit and procedure statements, list of, 10

publications, 3

Q
Q (extended precision) editing, 125

QABS intrinsic function, 148

QARCOS intrinsic function, 150

QARSIN intrinsic function, 150

QATAN intrinsic function, 150

QATAN2 intrinsic function, 150

QCMPLX intrinsic function, 147

QCONJG intrinsic function, 149

QCOS intrinsic function, 150

QCOSH intrinsic function, 150

QDIM intrinsic function, 148

QERF intrinsic function, 152

QERFC intrinsic function, 152

QEXP intrinsic function, 149

QEXT intrinsic function, 147

QEXTD intrinsic function, 147

QFLOAT intrinsic function, 147

QIMAG intrinsic function, 149

QINT intrinsic function, 148

QLOG intrinsic function, 149

QLOG10 intrinsic function, 149

QMAX1 intrinsic function, 148

QMIN1 intrinsic function, 149

QMOD intrinsic function, 148

QREAL intrinsic function, 147

QSIGN intrinsic function, 148

QSIN intrinsic function, 150

QSINH intrinsic function, 150

QSQRT intrinsic function, 149

QTAN intrinsic function, 150

QTANH intrinsic function, 150

R
range of a DO loop, 75

READ statement, 100

real constants, 17

real editing
E (with exponent), 125

F (without exponent), 126
G (general), 127

REAL intrinsic function, 147

REAL type statement, 48

REC specifier
of READ statement, 102
of WRITE statement, 102

RECL specifier
of INQUIRE statement, 111
of OPEN statement, 107

records, 97
endfile, 98
formatted, 97
unformatted, 97

recursion, 95

reference
function, 83
variable, array element, or character substring,

32

referencing an intrinsic function, 145

related documentation, 3

relational expressions, 36

relational operators, 36
.EQ.,36
.GE.,36
.GT.,36
.LE. 1 36
.LT., 36
.NE., 36

repeat specification, 118

repeatable edit descriptors, list of, 118

return, alternate
point, 91
specifier, 91

RETURN statement, 90

REWIND statement, 112

RSHIFT intrinsic function, 151

rules and restrictions for intrinsic functions, 146

rules for conversion of data type, 34

run time environment, XL FORTRAN, 153

s
S (sign control) editing, 131

SAVE statement, 55

Index 177

scale factor (P) editing, 130

scope
global, 9
local, 9
of a name, 8

sequential access, 98

SEQUENTIAL specifier, of INQUIRE statement,
110

service and utility subprograms, 154

sharing storage
using common blocks, 46
using EQUIVALENCE, 45

sign control (S, SS, and SP) editing, 131

SIGN intrinsic function, 148

SIN intrinsic function, 150

SINH intrinsic function, 150

size
of a common block, 47
of a dimension, 28
of an array, 29

slash (/) editing, 122

SNGL intrinsic function, 147

SNGLQ intrinsic function, 147

SP (sign control) editing, 131

special characters, 7

specific name of an intrinsic function, 145

specification statements, 43
list of, 9

SQRT intrinsic function, 149

SS (sign control) editing, 131

standards, industry, 4

statement, 9
arithmetic assignment, 63
arithmetic IF, 71
ASSIGN, 67
assigned GO TO, 70
assignment, 63
BACKSPACE, 112
BLOCK DATA, 95
block IF, 73
CALL, 87
catagories, 9
character assignment, 66
CLOSE, 108
COMMON, 46
computed GO TO, 70
CONTINUE, 78

178 Reference Manual for XL FORTRAN

DATA, 59
DIMENSION, 43
DO, 74
DO WHILE, 76
ELSE, 73
ELSE IF, 73
END, 79
END DO, 77
END IF, 73
ENDFILE, 112
ENTRY, 88
EQUIVALENCE, 44
explicit type, 48
EXTERNAL, 54
fixed-form input format, 11
FORMAT, 117
free-form input format, 12
FUNCTION, 84
IMPLICIT type, 52
INQUIRE, 109
insignificant blanks, 13
INTRINSIC, 55
labels, 13
logical assignment, 65
logical IF, 72
NAMELIST, 56
OPEN, 106
order of, 13
PARAMETER, 53
PAUSE, 79
PRINT, 100
PROGRAM, 82
READ, 100
RETURN, 90
REWIND, 112
SAVE, 55
statement function, 83
statement label assignment (ASSIGN), 67
STOP, 78
SUBROUTINE, 86
unconditional GO TO, 69
WRITE, 100

statement function dummy argument, 83

statement function statement, 83

statement label assignment (ASSIGN) statement,
67

statement labels, 13

STATIC, varaibles and arrays, 31

STATIC type specifier, 48

STATUS specifier
of CLOSE statement, 108
of OPEN statement, 106

STOP statement, 78

storage sequence
array, 29
common block, 47

storage sharing
using common blocks, 46
using EQUIVALENCE, 45

subprograms
block data, 95
explicity called, 154
function, 84
implicitly called, 154
procedure, 81
subroutine, 86

subroutine, 86

SUBROUTINE statement, 86

subroutine subprogram, 86

subscript
expression, 29
value, 29

substring expression, 30

substrings
character, 30
name, 30

subtraction operator, 34

symbolic name. See name

syntax diagrams
example of, 3
how to read, 1

T
T (positional) editing, 131

tabs, 12

TAN intrinsic function, 150

TANH intrinsic function, 150

term
arithmetic, 33
logical, 38

terminal statement of a DO loop, 74

TL (positional) editing, 131

TR (positional) editing, 131

traceback facilities, 157

transfer of control, 14
in a DO loop, 76

in an IF construct, 73

type
data, 15
how determined, 16

type conversion rules, data, 34

typeless constants
binary, 24
hexadecimal, 23
Hollerith, 24
in assignment statements, 67
octal, 23
use of, 25

u
unconditional GO TO statement, 69

undefined status, 31

unformatted records, 97

UNFORMATTED specifier, of INQUIRE statement,
111

UNIT specifier
of BACKSPACE statement, 113
of CLOSE statement, 108
of ENDFILE statement, 113
of INQUIRE statement, 109
of OPEN statement, 106
of READ statement, 101
of REWIND statement, 113
of WRITE statement, 101

units, 99
connection, 99

upper dimension bound, 28, 44, 49

use of array names, 30

use of typeless constants, 25

using this book, 1

v
value separators, 134

variables, 27
AUTOMATIC, 31
STATIC, 31

w
WRITE statement, 100

Index 179

x
X~osillonaQedWng,131

XL FORTRAN extensions, 4

XL FORTRAN run time environment, 153

XL FORTRAN subprograms, 153

XOR intrinsic function, 151

z
z (hexadecimal) editing, 132

180 Reference Manual for XL FORTRAN

ZABS intrinsic function, 148

ZCOS intrinsic function, 150

ZEXP intrinsic function, 149

ZLOG intrinsic function, 149

ZSIN intrinsic function, 150

ZSQRT intrinsic function, 149

Reader's Comment Form

Language Reference for IBM AIX XL FORTRAN Compiler/6000
SC09-1258-00

Please use this form only to identify publication errors or to request changes in publications. Your
comments assist us in improving our publications. Direct any requests for additional publications, technical
questions about IBM systems, changes in IBM programming support, and so on, to your IBM representative
or to your IBM-approved remarketer. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error), check this box and do
not include your name and address below. If your comment is applicable, we will include it in the next
revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved remarketer to request additional
publications.

Please print

Date-----

Your Name---

Company Name --------------------------------------­

Mailing Address --------------------------------------

Area Code

No postage necessary if mailed in the U.S.A

Ill II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

r---
1 PIO:f PIO:f

I
I
I
I
~ c:
::I
C> c:
0

<
"O

;f
5
:;
()

I
I
I
I
I
I
I
~---
' ede1 pue PIO:f e1deis ioN oa · esee1d ede1 pue PIO:f
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--------- ----- - -- - ---- ------------- ·-
© IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC09-1258-00

SC09-1258-00

