

First Edition (April 1990)

This edition applies to Version 1 .1 of the IBM AIX XL FORTRAN Compiler/6000 and to all
subsequent releases and modifications until otherwise indicated in new editions. Changes
are periodically made to the information herein; any such changes will be reported in
subsequent revisions.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or imply that only IBM's licensed
program may be used. Any functionally equivalent program may be used instead.

This publication contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

Note to US Government Users: Documentation related to restricted rights. Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM
Corporation.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to:

IBM Canada Ltd
Information Development
Department 849
1150 Eglinton Ave East
North York, Ontario, Canada. M3C 1 H7

IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

©Copyright International Business Machines Corporation 1990. All rights reserved.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this book:

AIX is a trademark of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

RISC System/6000 is a trademark of International Business Machines Corporation.

RT PC and RT are registered trademarks of International Business Machines
Corporation.

Systems Application Architecture and SAA are trademarks of International Business
Machines Corporation.

Preface Iii

iv User's Guide for XL FORTRAN

Contents

Chapter 1. Introduction . • • . 1
Who Should Use This Manual . 1
How to Use This Book . 1
How This Book is Organized . 1
How to Read the Syntax Diagrams . 3
A Note About Examples . 5
Related Documentation . 5

Chapter 2. The IBM AIX XL FORTRAN Compiler/6000 . • • . 7
Features of the XL FORTRAN Compiler . 7

Language Support . 7
Compiler Features . 7
Compiler Options . 7
Symbolic Debugger (dbx) Support . 8
Source Code Conformance Flagging . 8
Generated Code Optimization . 8
OJJline Compiler Help . 8
Migration Characteristics . 8

System Configuration . 8
Compiler Installation . 8
Entering FORTRAN Source Programs . 9
FORTRAN Source Files . 9

The XL FORTRAN Character Set . 9
Names . 9
Keywords . 9
Statements . 9
Tabs . 11
Nonsignificant Blanks . 11
Statement Labels . 11

Chapter 3. Compiling, Linking, and Running Programs • . 13
Invoking The Compiler . 13

Environment Variables . 14
Configuration File . 14
Input Files . 16
Output Files . 16

Compiler Options '. 16
Specifying Options on the Command Line . 17
Specifying Options in the Source File . 17
Summary of the XL FORTRAN Compiler Options . 18
Conflicting Options . 23
Detailed Descriptions of the Options . 23

Invoking the Linkage Editor . 29
Running the Program . 30

FORTRAN Exception Handling . 30

© Copyright IBM Corp. 1990 Contents v

The XL FORTRAN Run Time Environment . • 31
AIX Shared Libraries . 32

Chapter 4. Input/Output . • . 33
File Formats . 33
File Names . 33
Preconnected Files . 34
File Positioning ... · 34

Chapter 5. Optimization . • • • • . . • • • • • • . 35
Optimization Levels . 35

Optimization Techniques . 35
Debugging Optimized Code . 37
Increasing Optimization of Your Program . 37

Optimization Recommendations . 37
Programming Recommendations . 37

Chapter 6. Problem Determination . • • . • • . 43
Error Messages . 43

Environment Variables . 43
Compile-Time Messages . 44
Run-Time Messages .. 45

Compiler Listings . 46
The Symbolic Debugger . 51

Chapter 7. lnterlanguage Calls . • • • . . • . • . • • . . 53
Programming Conventions . 53
Programming Tips . 54
Corresponding Data Types . 54
Character Variable Types . 55
How Arrays Are Stored . 56
%VAL and %REF . 56
Subroutine Linkage Convention . 57

Register Usage . 57
Stack . 58
Parameter Passing . 60
Prolog/Epilog . 63
Traceback..... 64
Type Encoding/Checking . 64

Sample Program - FORTRAN Calling C . 64

Appendix A. Sample Program . • • . • . • . • . . . 67
Source File . 67
Sample Listing . 67
Output Produced 68

Appendix B. ASCII/EBCDIC Character Set • • • . . . • • • . • • . • . • . 69

Appendix C. FORTRAN Specific AIX Commands • • • • • • . . • • . • • • • • 77
asa Command . 77
fsplit Command . 77

vi User's Guide for XL FORTRAN

Appendix D. XL FORTRAN Internal Limits • • . . • . . • . • • • . • • . . • . . • . • • • . • • . • . • • • • • • • • • 79

Appendix E. Migration Considerations . • • • • . . . • . . • • . . • . • • . . . • . . • . . . • • • 81
Compatibility with the ANSI Standard . 81
Compatibility with SAA FORTRAN . 81
Compatibility with RT PC FORTRAN 77 . 81
Compatibility with VS FORTRAN (S/370) . 81
Compatibility with RT PC VS FORTRAN . 84

Appendix F. Single Precision Floating Point Overflow • . . • • • . . • . . • . . • • . . • . . . • • . . • • • • • • . . 85
The frsp Instruction . 85
Effects of Compiler Option XFLAG=DD24 . 85

G.lossary . • • • • • . • . • • . • . • • • • . . • . . • . . • • . . • . • . • • . . • . . • • • . . . • . • • • . . • • 87

Index . • . • • . • • • . • . . • • . • . • • • . • . . • . . • . . • • . • • . • • . . . • . • • • • . . • • . . . • . • • • . . • • • . • • . • 95

Contents vii

viii User's Guide for XL FORTRAN

Chapter 1. Introduction

This user's guide describes the IBM AIX XL FORTRAN Compiler/6000, and explains how to
compile, link, and run programs written in XL FORTRAN. FORTRAN (FORmula
TRANslation) is a high-level programming language primarily designed for applications
involving numeric computations. FORTRAN is suited to most scientific, engineering, and
mathematical applications.

The exceptional (XL) family of compilers provides consistency and high performance across
multiple programming languages by sharing the same code optimization technology.

The XL FORTRAN compiler, Version 1.1, compiles programs written using the American
National Standards Institute (ANSI) FORTRAN Language with selected RT PC VS
FORTRAN and RT PC FORTRAN 77 extensions. The American National Standard
Programming Language FORTRAN, ANSI X3.9-1978, details the ANSI FORTRAN
language.

The XL FORTRAN compiler conforms to the Systems Application Architecture (SAA)
definition of the FORTRAN language.

Note: Language extensions noted in this guide are extensions to the FORTRAN definition
in Systems Application Architecture Common Programming Interface FORTRAN
Reference, SC26-4357.

Who Should Use This Manual
This manual is for people who want to use the XL FORTRAN compiler, who are familiar with
the IBM AIX Version 3 for RISC System/6000, and who have some previous programming
experience. If you are not familiar with the operating system, refer to AIX General Concepts
and Procedures for IBM RISC System/6000, SC23-2202.

How to Use This Book
This book is not intended as a tutorial, but rather it explains the details for using the XL
FORTRAN compiler. The manual is organized according to the steps necessary to compile,
link, and run a program, and deals with more advanced topics in the later chapters.

If you have not used a compiler on the IBM AIX RISC System/6000 computer before, you
might find it useful to read the first three chapters of this book before you proceed. After you
become familiar with the system and the compiler, you can use this manual as a handy
reference.

How This Book is Organized
The following diagram depicts the path that the XL FORTRAN compiler takes when you
invoke it. The diagram also shows the location of related details within this guide.

©Copyright IBM Corp. 1990 Chapter 1. Introduction 1

Chapter 2

Install the
Compiler

Create the
Source File

Chapter 3

Configuration
File

/etc/xlf .cfg

Input Files
. f

Assembler
File
.s

Object File
.o

Libraries

User Library
Files

(optional)

Executable
File

a.out

1--

i---

...,__

~

2 User's Guide for XL FORTRAN

--

....... --....

_ ..

_ ... --

Source File
.f

Compile
or Assemble

AIX Linker
Id

Run the
Program

..

Object File
.o

Optional
Listing

.1st

Executable
File

a.out

Possible
Output

How to Read the Syntax Diagrams
Throughout this book, syntax diagrams use the structure defined below:

• Syntax diagrams are read from left to right and from top to bottom, following the path of
the line.

The - symbol indicates the beginning of the diagram.

The-+ symbol indicates that the syntax is continued on the next line.

The.,.....__ symbol indicates that the syntax is continued from the previous line.

The --1 symbol indicates the end of the diagram.

Diagrams of syntactical units other than complete statements start with the.,.....__ symbol
and end with the -+ symbol.

• Keywords appear in the diagrams in uppercase; for example, OPEN, COMMON, and
END. You must spell them exactly as shown.

Note: You can type keywords in uppercase, lowercase, or mixed case, and the compiler
folds them into lowercase during compilation. However, if you specify the MIXED
compiler option you must enter keywords in lowercase.

• Variables and user-supplied names appear in lowercase italics; for example,
array_elemenLname. If one of these terms ends in_/ist it specifies a list of terms. A list is
a nonempty s-equence of the terms separated by commas. For example, the term
name_list specifies a list of the term name.

• Punctuation marks, parentheses, arithmetic operators, and other special characters must
be entered as part of the syntax.

Required and Optional Items
Required items appear on the horizontal line (the main path).

I - STATEMENT - required_item --1

Branching shows two paths through the syntax.

-{

required_choice1 }-i
-STATEMENT

required_ Choice2

Optional items appear on the lower line of a branched path. The upper line is empty,
indicating that you do not need to code anything for this syntax item.

- STATEMENT -{_ _J-i ~ptional_item

Chapter 1. Introduction 3

Repeatable Items
An arrow returning to the left below a line shows items that you can repeat.

- STATEMENTf repeatable_ item~

Punctuation on a repeat arrow must be placed between the repeated items.

- STATEMENTt repeatable_item T
Default Items

A heavy line is the default path. Coding nothing for that item is the same as coding the
default item.

-[
choice 1~

-STATEMENT
choice_2

Example of a Syntax Diagram
The following example of a fictitious statement shows how to use the syntax:

1 2 3 _ra
- EXAMPLE- char_ constant L

b
--c---

{-d-)
:.__r-: e L_ 10 11 12

~ _J Lg~ name_list-i
f '

Interpret the diagram by following the numbers:

1. This is the start of the diagram.

2. Enter the keyword EXAMPLE.

3. Enter a value for char_ constant.

4. Enter a value for a orb, but not for both.

5. This path is optional.

6. Enter a value for cord, or no value. If you enter a value ford, you must include the
parentheses.

7. The diagram is continued at 8.

8. The diagram is continued from 7.

9. Enter a value fore or f, or no value. If you do not enter a value, the default value e is
used.

1 O. Enter at least one value for g. If you enter more than one value, you must put a comma
between each.

11. Enter the value of at least one name for name_list. If you enter more than one value, you
must put a comma between each.

12. This is the end of the diagram.

4 User's Guide for XL FORTRAN

A Note About Examples
Examples in this book explain elements of the XL FORTRAN language. They are coded in a
simple style. They do not try to conserve storage, check for errors, achieve fast run times, or
demonstrate all possible uses of a language element.

Related Documentation
You might want to refer to the following publications for additional information:

IBM Publications:

Reference Manual for IBM AIX XL FORTRAN Compiler/6000, SC09-1258-00, describes
the XL FORTRAN programming language as implemented on the IBM AIX RISC
System/6000 computer.

Systems Application Architecture Common Programming Interface FORTRAN Reference,
SC26-4357, describes the FORTRAN component of the common programming interface.

Non-IBM Publications:

American National Standard Programming Language FORTRAN, ANSI X3.9-1978

International Standards Organization Programming Language FORTRAN, ISO
1539-1980 (E)

Federal Information Processing Standards Publication FORTRAN, FIPS PUB 69

Instrument Society of America Standard: Industrial Computer System FORTRAN
Procedures for Executive Functions, Process Input/Output and Bit Manipulation,
ANSl/ISA S61.1

Military Standard FORTRAN, DOD Supplement to ANSI X3.9-1978, MIL-STD-1753

ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Chapter 1. Introduction 5

6 User's Guide for XL FORTRAN

Chapter 2. The IBM AIX XL FORTRAN Compiler/6000

This chapter discusses the XL FORTRAN compiler features and summarizes the items to
keep in mind when entering your FORTRAN source program. For details of the XL
FORTRAN language refer to the Reference Manual for IBM AIX XL FORTRAN
Compiler/6000, SC09-1258.

The XL FORTRAN language comprises:

• FORTRAN 77:

- The full ANSI FORTRAN 77 language (referred to as FORTRAN 77), defined in the
document American National Standard Programming Language FORTRAN, ANSI
X3.9-1978.

• The XL FORTRAN language extensions are primarily (though not exclusively):

- IBM extensions specified in Systems Application Architecture FORTRAN Release 1.

- Selected other extensions commonly available in earlier IBM FORTRAN compilers,
and that the VS FORTRAN, RT PC FORTRAN 77, and RT PC VS FORTRAN
compilers currently support.

Features of the XL FORTRAN Compiler
The XL FORTRAN compiler is an IBM Licensed Program that operates within the IBM AIX
Version 3 for RISC System/6000 environment. The XL FORTRAN compiler supports all
RISC System/6000 computer hardware configurations.

Language Support
The language level supported by XL FORTRAN is based on the ANSI FORTRAN 77
definition.

XL FORTRAN is also based on SAA FORTRAN, defined in the Systems Application
Architecture Common Programming Interface FORTRAN Reference, SC26-4357. The
Reference Manual for IBM AIX XL FORTRAN Compiler/6000, SC09-1258 outlines the
extensions to SAA FORTRAN.

Compiler Features
The XL FORTRAN compiler provides the following support for engineering and scientific
application development:

• Highly optimized object code
• VS FORTRAN, RT PC VS FORTRAN, and RT PC FORTRAN 77 compatibility (with some

exceptions)
• Descriptive diagnostics
• dbx debugger support.

Compiler Options
You can invoke the compiler using the xlf command and control its actions with compiler
options. The compiler sets the return code to indicate the completion status of the program
compilation, and can also provide timing and resource usage data. For a discussion of
compiler options and invocation refer to "Compiler Options" on page 16.

©Copyright IBM Corp. 1990 Chapter 2. The IBM AIX XL FORTRAN Compiler/6000 7

The compiler output listing has optional sections controlled by the compiler options you
select. By default, XL FORTRAN produces no listing. A description of the listing format is in
"Compiler Listings" on page 46.

Symbolic Debugger (dbx) Support
The XL FORTRAN compiler generates debug information tables compatible with dbx giving
you use of the symbolic debugger for your FORTRAN programs.

Note: XL FORTRAN supports full source-level debugging with no optimization in effect.
There is no guarantee that symbolic debugging can take place at the higher
optimization level.

Source Code Conformance Flagging
If you specify the appropriate compiler option, the compiler flags XL FORTRAN source
statements for conformance to the following FORTRAN language definitions:

• Full ANSI FORTRAN 77 (FIPS option)
• IBM Systems Application Architecture FORTRAN (SAA option).

Generated Code Optimization
The XL FORTRAN compiler gives you the ability to control the optimization of generated
code through compiler options. See "Compiler Options" on page 16 for further information.

Online Compiler Help
The XL FORTRAN compiler provides online help that lists available command line options.
Invoke this online help by using the xlf command with no arguments.

Migration Characteristics
The XL FORTRAN compiler aids migration by providing source code compatibility with
various existing compilers, but it does not provide object code compatibility. See Appendix E,
"Migration Considerations" for further information.

Also, the XL FORTRAN compiler provides two compiler options to allow you to flag (with
warning messages) features that do not conform to certain FORTRAN definitions. See the
"Source Code Conformance Flagging" section above for more information about this feature.

System Configuration
The XL FORTRAN compiler, its generated object programs, and the XL FORTRAN library
run on all RISC System/6000 computer hardware configurations under IBM AIX Version 3 for
RISC System/6000.

Compiler Installation
You install the compiler by using the AIX installp command while logged on as root or while
in superuser mode. See the AIX Commands Reference for IBM RISC System/6000,
SC23-2199 for the details of this command.

There is a file called /usr/lpp/xlf/DOC/README.xlf that you should examine for
supplemental details. See the Installation Instructions for IBM AIX XL FORTRAN
Compiler/6000 for further information about installation.

8 User's Guide for XL FORTRAN

Entering FORTRAN Source Programs

A variety of text editors are available to use under IBM AIX Version 3 for RISC System/6000.
You can use any one of these to create FORTRAN source programs. You must create the
source program with a suffix of .f.

For a complete description of the XL FORTRAN language and its structure, see the
Reference Manual for IBM AIX XL FORTRAN Compiler/6000, SC09-1258.

FORTRAN Source Files
The following sections give information you need to enter your source files.

The XL FORTRAN Character Set

Names

Keywords

The XL FORTRAN character set consists of the letters A-Z, the letters a-z, the digits 0-9,
and the following special characters:

Blank $ % * + I < >

The characters are arranged in a collating sequence. The collating sequence is the
arrangement of characters for a given system that determines their comparison status. XL
FORTRAN uses ASCII (American National Standard Code for Information Interchange) to
determine the ordinal sequence of characters. See Appendix B, "ASCII/EBCDIC Character
Set" for the complete ASCII character set.

A name (or symbolic name) is a sequence of 1 to 250 letters or digits, the first of which must
be a letter. XL FORTRAN treats the currency symbol ($)and underscore character U as
letters when you use them in a name, and you can use either one as the first character. Note
that the use of $ as the first character in external names can cause unpredictable results in
AIX shell procedures, because AIX uses $ as the first character in a shell variable name.
Also, underscore U is reserved for system use and some compiler generated names, so
you may want to avoid using it as your first character.

XL FORTRAN folds all letters in a source program from uppercase to lowercase unless they
are in a character context1. If you specify the MIXED compiler option, XL FORTRAN does
not fold the source program, and symbolic names are distinct if you specify them in a
different case.

A keyword is a sequence of characters that, in certain contexts, identifies a language
construct. XL FORTRAN does not reserve any sequence of characters in all contexts. You
can write keywords in uppercase, lowercase, or mixed case, but XL FORTRAN folds them to
lowercase. If you specify the MIXED compiler option, the compiler does not fold the source
program, and you must write keywords in lowercase.

Statements
A FORTRAN statement is a sequence of syntactic items. Statements form program units - a
sequence of statements and optional comment lines that constitute a main program or

1 A character context means characters within character constants, Hollerith constants, format-item lists in FORMAT
statements, and comments.

Chapter 2. The IBM AIX XL FORTRAN Compiler/6000 9

subprogram. You must write each statement according to the source input format specified
by your selected compiler options (FIXED or FREE). The default input format is FIXED.

Fixed-Form Input Format
In fixed-form input format, each line is a sequence of 72 characters. Columns 73 and
beyond are not significant to the compiler, and you can use them for identification,
sequencing, or any other purpose.

An initial line contains a statement label, if you desire, in columns 1 to 5, a blank or zero in
column position 6, and the characters representing the statement in columns 7 to 72. If there
is no statement label, leave columns 1 to 5 blank.

The text of any statement except the END statement and the EJECT, INCLUDE, and
@PROCESS compiler directives can continue on the following line. A continuation line
contains blanks in columns 1 to 5, and any character in the XL FORTRAN character set
other than a blank or zero in column position 6. XL FORTRAN allows columns 1 to 5 to
contain characters, but the compiler ignores them. You can use up to 99 continuation lines
for a single statement.

A comment indicator (c, c, or*) in column 1 will cause the compiler to treat the line as a
comment. Comment lines do not affect the executable program, and you can use them to
provide documentation. They can have either of two forms:

• c, c, or* in column 1 and, optionally, any characters you can use in a character constant
in columns 2 through 72

• Blanks in columns 1 through 72.

Note that a o in column 1 will also cause the compiler to treat the line as a comment line if
you do not specify the DLINES compiler option.

A comment line can appear anywhere in the program unit before the END statement. There
is no restriction on the number of comment lines you can use.

An exclamation point (!) initiates an inline comment except when it appears in a character
context, or if it appears in column 6 (where it is treated as a continuation character). The
comment extends to the end of the source line. An END statement can contain a comment
that you initiate with an exclamation point(!). An @PROCESS compiler directive cannot
contain an inline comment.

c
c This is a fixed-form example
c

DO 10 I=l,10
WRITE(6,*)'this is the index',! with an inline comment

10 CONTINUE

Free-Form Input Format
In free-form input format, the first character of the statement (after a label, if there is one)
must be alphabetic. The maximum length of a free-form statement is 6600 characters
(equivalent to 100 fixed-form lines), excluding the continuation characters and the statement
labels. The statement continuation character is a minus sign (-) and it appears at the end of
every line to be continued.

An initial line can start in any position, and can contain (as the leftmost entry on a line) a
statement label. XL FORTRAN ignores leading and imbedded blanks in a statement label.

The text of any statement, except the END statement and the EJECT, INCLUDE, and
@PROCESS compiler directives can continue on the following line. You indicate a line you
want continued with a minus sign terminating the line. It must be the last nonblank character

10 User's Guide for XL FORTRAN

Tabs

that is not part of a comment. The statement text of a continuation line can start in any
position. You can have up to 99 continuation lines in a single statement.

A comment line cannot be continued, and must not follow a continued line. It begins with a
double quotation mark (")in column 1, or is a blank line.

An exclamation point (!) initiates an inline comment except when it appears in a character
context. The comment extends to the end of the source line, and XL FORTRAN processes it
as if it were blank characters (including the delimiter). An END statement can contain an
inline comment that you initiate with ! . An @PROCESS compiler directive cannot contain
an inline comment.

The minus sign for continuation must precede the ! delimiter on continuation lines. You can
intersperse ! commentary with free-form source lines, but you must use the - to continue
any line. If you want to continue a character context, you cannot follow the - signifying
continuation by an inline comment.

"
" This is a free-form example

DO 10 I=l,10
WRITE(6,*)'this is

the index',!
10 CONTINUE

A tab character placed anywhere in columns 1 to 6 will tab to column 7. Therefore, you
cannot tab continuation lines in fixed-form input. XL FORTRAN treats any other tab
characters, except for those in a character context, as blanks.

For example, if you assume the @ is the system-generated tab character, the code segment:

C@Example of tab input lines
@I=O
lO@CONTINUE

is equivalent to:

C Example of tab input lines
I=O

10 CONTINUE

after resolution of the tabs.

Nonsignificant Blanks
You can position as many blanks as you want in a statement or comment to improve
readability. You can even imbed blanks within keywords or names, because the compiler
ignores them. XL FORTRAN retains blanks inserted in character or Hollerith constants, and
treats them as blanks within the data.

Statement Labels
A statement label is a sequence of one to five digits, one of which must be nonzero, that you
can use to identify statements in a FORTRAN program unit. You can label a fixed-form
statement by placing a statement label anywhere in columns 1 through 5 of its initial line.
The compiler ignores statement labels that appear on continuation lines.

Statement labels on free-format input lines must be the first nonblank characters (digits) on
an initial line. You do not need blanks between the statement label and the first nonblank
character following.

Chapter 2. The IBM AIX XL FORTRAN Coi'npiler/6000 11

You must not give the same label to more than one statement in a program unit. Blanks and
leading zeros are not significant in distinguishing between statement labels. You can label
any statement, but you can only refer to executable statements and FORMAT statements
using statement labels. You must place the statement making the reference and the
statement you want to reference in the same program unit.

12 User's Guide for XL FORTRAN

Chapter 3. Compiling, Linking, and Running Programs

After you create the source file, there are three phases to preparing and running the
program:

1 . Compiling
2. Linking
3. Running.

This chapter discusses the details of using the XL FORTRAN compiler. It outlines how to
invoke the compiler, how to specify the available compiler options, how to invoke the linkage
editor, and how to run your compiled program.

Note: Before using this compiler, it is important that the programmer first read the
descriptions of the compiler options to understand the correct operation and
limitations of this product.

Invoking The Compiler

- xlf

To compile a source program, use the xlf command, which has the form:

L j- input_files
cmd _line_ opts cmd _line_ opts input_ files

You can specify cmd_line_opts in the following ways:

• -qoption.
• Option flags (usually a single letter preceded by-).

All options specified on the command line are in effect for all specified source files. (See
"Specifying Options on the Command Line" on page 17 for the syntax.)

A description of input_files is in "Input Files" on page 16.

The flags and options you can use appear in the tables starting at "Summary of the XL
FORTRAN Compiler Options" on page 18.

The xlf command invokes the XL FORTRAN compiler. It compiles the FORTRAN source
files, sends any .s files to the assembler, and then links the resulting object files with any
object files and any libraries specified on the command line in the order indicated. It then
produces a single executable file called a.out by default. You can use the -o flag to specify
an alternative name for the resulting executable file.

The xlf command executes the following sequence of programs. Each program executes,
and then sends the results to the next step in the sequence.

1. The process may call xlfentry (the compiler).

The compiler consists of the following four phases:

• Phase 1 : Front end parsing and semantics handling
• Phase 2: Optimization

© Copyright I BM Corp. 1990 Chapter 3. Compiling, Linking, and Running Programs 13

• Phase 3: Register Allocation
• Phase 4: Final Assembly.

2. The process calls the assembler for .s files, if needed.

3. It then calls the linkage editor Id (if you have not specified the -c compiler option).

Environment Variables
The message catalogs must be installed before the compiler will compile your program.
Before you invoke the compiler, the following two environment variables must be set and
exported:

LANG

NLSPATH

Specifies the national language for message and help files.

Specifies the path name of message and help files.

You can set the environment variable from the Bourne shell, Korn shell, or the C shell. To
determine which shell is in use, issue the AIX echo command:

echo $SHELL

The Bourne shell path is /bin/ sh, Korn shell is /bin/ksh, and C shell is /bin/ csh.

To set the environment variables from the Bourne or Korn shell, use the following
commands:

LANG=En US
NLSPATH=/usr/lpp/rnsg/%L/%N:/usr/lpp/rnsg/En_US/%N
export LANG NLSPATH

To set the variables system wide, so all users will have access to them, add the lines above
to the file /etc/profile. To set them for a specific user only, add them to the file .profile in the
user's home directory. This will set the environment variables the next time the user logs in.

To set the environment variables from the C shell, use the following commands:

setenv LANG En US
setenv NLSPATH /usr/lpp/rnsg/%L/%N:/usr/lpp/rnsg/En_US/%N

In the C shell, you cannot set environment variables system wide. To set them for a specific
user only, add the lines above to the file .cshrc in the user's home directory. This will set the
environment variables the next time the user logs in.

En_ us is the national language code for United States English. You can substitute any
other valid national language code for En_ us provided the message catalogs associated
have been installed.

These environment variables are initialized when the Operating System is installed, and may
be different from the ones that you want to use with the compiler. To determine the national
language code in use, issue the AIX echo command:

echo $LANG
echo $NLSPATH

Configuration File
The configuration file is a file that specifies information that the compiler uses when you
invoke it. The default configuration file is provided at installation and stored as /etc/xlf .cfg.

The configuration file contains the following attributes:

use Values for attributes are taken from the named stanza in addition to the
default stanza DEFLT.

14 User's Guide for XL FORTRAN

crt

mcrt

gcrt

xlf

xlfopt

as

asopt

Id

Id opt

Path name of the object file passed as the first parameter to the linkage
editor.

Path name of the object file passed as the first parameter to the link editor if
you have specified the -p option.

Path name of the object file passed as the first parameter to the link editor if
you have specified the -pg option.

The absolute file name of the compiler.

List of options that if seen on the command line, are directed to the
compiler.

The absolute file name of the assembler.

List of options that if seen on the command line, are directed to the
assembler.

The absolute file name of the linkage editor.

List of options that if seen on the command line, are directed to the linkage
editor.

options A string of option flags, separated by commas, to be processed by xlf as if
these options were entered on the command line.

fsuffix

osuffix

ssuffix

The suffix for FORTRAN source programs. The default is f.

The suffix for object files. The default is o.

The suffix for assembler files. The default is s.

libraries Flags separated by commas to be passed to the linkage editor. It specifies
the libraries used by the linkage editor at link-edit time for both profiling and
non-profiling.

libraries2 Flags separated by commas to be passed to the linkage editor. It specifies
the libraries used by the linkage editor at link-edit time. It should only
include libraries for which the profiled version exists in the "proflibs" stanza.

proflibs Flags separated by commas to be passed to the linkage editor when
profiling flags are specified. It specifies the profiling libraries used by the
linkage editor at link-edit time. It should only include libraries for which the
non-profiled version exists in the "libraries2" stanza.

The following is a typical configuration file:

* The "libraries2" stanza should ONLY include libraries for which
* profiled versions exist in the "proflibs" stanza - all others go
* in "libraries".

* standard xlf compiler

xlf: use
crt
mcrt
gcrt
libraries
libraries2
proflibs

= DEFLT
/lib/crtO.o

= /lib/mcrtO.o
/lib/gcrtO.o
-lxlf
-lc,-lm
-lc_p,-lm_p

* common definitions

Chapter 3. Compiling, Linking, and Running Programs 15

Input Files

DEFLT: xlf
as
ld

= /usr/lpp/xlf/bin/xlfentry
= /bin/as
= /bin/ld

options = -estart,-T512,-H512

The input files to xlf are:

• Source Files - .f

All .f files are source files for compilation. The xlf command sends all source files to the
compiler in the order in which they appear. If it cannot find a specified source file, XL
FORTRAN produces an error message and the xlf command proceeds to the next file if
one exists.

• Object Files - .o

All .o files are object files. The xlf command sends all .o files to the linkage editor Id at
link-edit time unless you specify the -c option. After it compiles all the source files, the
compiler link-edits the resulting .o files with any .o files that you specify in the input file
list, and produces a single executable output file.

• Assembler Files - .s

The xlf command sends all the .s files to the assembler (as). The assembler output is
object files that are sent to the linkage editor at link time.

Output Files
The output files produced include the following:

• Executable Files - a.out

If you do not specify the-c compiler option, XL FORTRAN produces an executable file in
the current directory. Its default name is a.out. If you want to name the executable file
explicitly, use the compiler option flag -ofilename. If you specify -c, XL FORTRAN does
not produce an executable file.

• Object Files - filename.o

If you do specify the -c compiler option, the XL FORTRAN compiler produces an object
file for each of the .f source files, and the assembler produces an object file for each of
the .s source files. No executable file is produced. The object files have the same prefix
name as the source file, and appear in the current directory.

• Listing Files - filename.1st

By default, no listing is produced unless you specify one or more listing-related compiler
options. The listing file has the same file name as the source prefix, but with an extension
of .1st. XL FORTRAN places listing files in the current directory.

Compiler Options
XL FORTRAN provides compiler options to change any of the compiler's default settings.
You can specify options on the command line, and they remain in effect for all compilation
units in the file, unless the compiler directive @PROCESS overrides them. Any options that
you can specify on the command line can also appear in the configuration file, and remain in
effect for all compilations unless the command line or compiler directive options override
them.

16 User's Guide for XL FORTRAN

Refer to "Summary of the XL FORTRAN Compiler Options" on page 18 and "Detailed
Descriptions of the FORTRAN Options" on page 23 for a description of these options.

Specifying Options on the Command Line
There are two methods for specifying compiler options on the command line:

• -qoption

- -qoption_keyword-[1--J
=~O~t~

You can specify options on the command line using the -qoption format. You can have
multiple -qoptions in the same command line, but they must be separated by blanks.
Option keywords can appear in either uppercase or lowercase, but you must specify the
-q in lowercase. You can specify any-qoption before or after the file name.

For example:

xlf -qlist -qcharlen=lOOO file. f
xlf file. f -qFIPS -qSTAT

Some of the listed options allow you to specify suboptions. These suboptions are
indicated on the command line with an equal sign following the-qoption_keyword.
Suboptions must be separated with a colon (:).

• Single and Multi-letter Flags

The FORTRAN, C, and Pascal compilers use a number of common conventional flags.
These flags are single letters and the XL FORTRAN compiler supports them. Each
language has its own set of flags also.

XL FORTRAN also supports flags directed to the AIX Id command. XL FORTRAN passes
on those flags directed to Id at link time. All single letter flags are case sensitive.

The following items apply for command line options:

• You can specify flags that do not take arguments without separating blanks (with the
exception of -pg which could be confused as -p and -g).

For example:

xlf -Ocv file. f

has the same effect as

xlf -o -c -v file. f

You cannot run the -o flag together with other flags, because the -o option requires an
argument.

xlf -otest -cv test. f

• You cannot specify flags such as -qlist on the command line without separating blanks.
(For example, -qlistqsource is not valid.)

• Command line options can also follow the file name.

Specifying Options in the Source File
You can use the @PROCESS compiler directive in the source file to modify the options
specified on the command line and in the configuration file, or to change the default setting
temporarily if no command line or configuration file options are in effect.

Chapter 3. Compiling, Linking, and Running Programs 17

The syntax of this compiler directive is:

1-@PROCESS ~

@PROCESS can start in column 1 of the source statement, and you can specify options in
columns 9 through 72. If the compiler directive does not start in column 1, it must start at or
after column 7 in fixed-form, simHar to other FORTRAN statements. In free-form input
format, the @PROCESS compiler directive can start in any column. Do not place a
statement label on the @PROCESS compiler directive. You cannot specify an inline
comment on the @PROCESS compiler directive.

Separate options in the statement with commas or blanks. Option settings you designate
with the @PROCESS compiler directive are effective only for the compilation unit in which
the statement appears. If the file has more than one compilation unit, the option setting is
reset to the configuration file setting, to the command line setting, or to the default setting
before compiling the next unit.

You can place the @PROCESS compiler directive anywhere before the END statement. You
cannot use it in a continuation line. The SOURCE and NOSOURCE options are the only
options that can appear in an @PROCESS compiler directive that occurs after the first
statement of the program unit. All other options are only valid when they appear before the
first statement of the program unit.

Summary of the XL FORTRAN Compiler Options
The following tables show the compiler options available in the XL FORTRAN compiler that
you can enter in the FORTRANsource code using the @PROCESS compiler directive, on
the command line using the -q flags and the single or multi-letter flags, or in the
configuration file.

The tables show:

• The option syntax for the @PROCESS compiler directive.

(The uppercase letters in the option keyword represent the valid abbreviation for the
option keyword. For example: OPT is a valid abbreviation for OPTimize.)

• The equivalent -q form on the command line, or the corresponding single letter flag, if
there is one.

• The default value of that option if you do not specify it on the command line, in an
@PROCESS compiler directive, or in the configuration file.

• A brief description of the option's effect during compilation.

A detailed description for each compiler option follows the tables.

Note: Before using this compiler, it is important that the programmer first read the
descriptions of the compiler options to understand the correct operation and
limitations of this product.

18 User's Guide for XL FORTRAN

Options Describing the Input to the Compiler

Compiler option Command line flag Default Description
(@PROCESS Syntax)

FREE -k FIXED Specifies format of input source
FIXED program.

MIXED -U NOMIXED Specifies case sensitivity.
NOMIXED

DUNES -D NOD LINES Specifies whether lines with a D
NODLINES in column 1 will be compiled or

treated as comments.

UN DEF -u NOUNDEF Indicates implicit typing of
NOUN DEF variable names.

CHARLEN(num) -qcharlen=num CHAR LEN (500) Sets maximum character
variable and character constant
length. (1 to 32767)

Cl (num1, num2, ... numn) -qci=num1 :num2: ... :numn no default value Activates the specified
INCLUDE compiler directives.

14 -qi4 14 Determines how the compiler
NOl4 -qnoi4 interprets INTEGER and

LOGICAL specifications and
FUNCTION statements in
which a length is not specified.

DPC -qdpc NOD PC Specifies how the compiler
NOD PC interprets basic real constants.

ONETRIP -1 NOONETRIP Specifies whether DO loops in
NOONETRIP the compiled program will be

executed at least once if
reached.

BK_SIZE(num) -NBnum BK_SIZE(50) Specifies the internal compiler
CN_SIZE(num) -NCnum CN_SIZE(1024) table sizes. The value num is
ST _SIZE(num) -NDnum ST _SIZE(2048) used to calculate the size of the
NA_SIZE(num) -NNnum NA_ SIZE(32768) table.
PD_SIZE(num) -NPnum PD_SIZE(50)
AUX_SIZE(num) -NAnum AUX_SIZE(8192)
TKQ_ SIZE(num) -NQnum TKQ_SIZE(10000)
TKA_SIZE(num) -NTnum TKA_SIZE(20000)
SPILLsize(num) -NSnum SPILLsize(512)

-N

DBCS -qdbcs NODBCS Indicates whether character
NODBCS -qnodbcs and Hollerith constants can

contain DBCS characters.

-Fconfig_ fn -FI etc/xlf. cfg Names an alternative configu-
-Fconfig_ fn:stanza ration file for the compiler.

-Bprefix Constructs substitute compiler,
assembler, or linkage editor
program names.

-tprograms Applies the -B flag prefix to the
designated programs (c, a, I).

Chapter 3. Compiling, Linking, and Running Programs 19

-Wprogram, option1, Gives the listed options to the
option2 , . . . optionn compiler program program.

-ldir Determines search path if file
name in the INCLUDE compiler
directive does not start with an
absolute path.

Options Affecting the Compiler Object Code to be Produced

Compiler option Command line flag Default Description
(@PROCESS Syntax)

OBJect -qobj OBJect Specifies whether an
NOOBJect -qnoobj object file will be

produced.

CHECK -C NOCHECK Specifies whether run
NOCHECK time checking of array

bounds and character
substring expressions will
be performed.

RECUR -qrecur NORECUR Specifies whether
NORECUR -qnorecur subprograms may be

called recursively.

OPTimize -0 NOOPTimize Specifies whether code
NOOPTimize optimization during

compilation is to be
performed.

EXTCHK -qextchk NOEXTCHK Specifies whether type
NOEXTCHK -qnoextchk checking information will

be set up for external
names.

EXTNAME -qextname NOEXTNAME Specifies whether
NOEXTNAME -qnoextname compiler generated

external names will be
postfixed with an
underscore.

IEEE(Near) -yn IEEE(Near) Indicates rounding mode
IEEE(Minus) -ym of constant floating-point
IEEE(Plus) -yp expressions at compile
IEEE(Zero) -yz time.

RNDSNGL -qrndsngl NORNDSNGL Specifies whether
NORNDSNGL -qnorndsngl REAL *4 floating-point

expressions will be
rounded to single
precision.

ARM -qrrm NORRM Specifies run-time
NOR RM rounding mode.

FOLD -qfold FOLD Specifies whether
NO FOLD -qnofold constant floating-point

expressions are to be
evaluated at compile
time.

20 User's Guide for XL FORTRAN

MAF -qmaf MAF Specifies whether
NOMAF -qnomaf multiply-add instructions

will be generated.

DBG -g NOD BG Specifies whether debug
NOD BG information will be

generated for use by dbx.

XFLAG=DD24 -qxflag=dd24 If all single precision
floating point overflows
must be detected, use
this option. See the
detailed description of
this option.

Options Describing the Compiler Output

Compiler option Command line flag Default Description
(@PROCESS Syntax)

FIPS -qfips NOFIPS Specifies whether
NOFIPS -qnofips flagging of full ANSI

FORTRAN 77 standard
language will take place.

SAA -qsaa NOSAA Specifies whether SAA
NO SAA -qnosaa FORTRAN standard

language flagging will
take place.

SOURCE -qsource NOSOURCE Specifies whether a
NOSOURCE -qnosource source listing will be

produced.

XREF -qxref NOXREF Specifies whether a
NOXREF -qnoxref cross-reference listing is
XREF(FULL) -qxref=full to be produced.

ATTR -qattr NOATTR Specifies whether an
NOATTR -qnoattr attribute listing will be
ATTR(FULL) -qattr=full produced.

LIST -qlist NOLIST Specifies whether an
NOLIST -qnolist object listing is to be

produced.

LISTOPT -qlistopt NOLISTOPT Specifies whether the
NOLISTOPT -qnolistopt settings of all options are

to be displayed in the
listing.

STATs -qstat NOSTATs Specifies whether table
NOSTATs -qnostat size and timing statistics

will be reported in the
listing.

PHSINFO -qphsinfo NOPHSINFO Specifies whether phase
NOPHSINFO -qnophsinfo timing information will be

displayed at the terminal.

FLAG (sev1 ,sev2) -qflag=sev1 :sev2 FLAG{L,L) Specifies severity level of
-w diagnostic messages to

be reported.

Chapter 3. Compiling, Linking, and Running Programs 21

HALT(sev) -qhalt=sev HALT(U) Stops the compiler after
the first phase depending
on the severity of compile
messages.

-c compile and link-edit Requests that the object
file not be sent to the
linkage-editor.

-Q+names no inlining Specifies whether
-Q-names subroutine inlining is to
-Q be performed.
-Q!

-qnoprint listing suppression Requests listing
suppression.

Options Used for Debugging

Compiler option Command line flag Default Description
(@PROCESS Syntax)

-v no verbose Generates compiler
progress information.

-# no trace Displays the same
information as in -v
without invoking the
compiler.

-p no profiling Sets up the object file for
-pg profiling.

Options Used for the Linkage Editor

Compiler option Command line flag Default Description
(@PROCESS Syntax)

-on a me a.out Specifies a name for the
object module.

-Ikey libraries listed in xlf .cfg Searches the specified
are searched library file.

-Ldir standard directories Looks in dir for files
specified by the -1 keys.

22 User's Guide for XL FORTRAN

Conflicting Options
The following table shows:

• Compiler options which conflict
• The resolution which is performed by the compiler when such options are specified at any

given level.

Option Conflicting Options Options Assumed

Fl PS/SAA FLAG(N,N) where N=S, E, or Q FLAG(N,N)

HALT OBJ HALT

HALT NOOBJ NOOBJ

-qnoprint XREF/ATTR/SOURCE/LISTOPT/LIST/STAT -qnoprint

XREF XREF(FULL) XREF(FULL)

ATTA ATTR(FULL) ATTR(FULL)

-p -pg Last option specified

If more than one variation of the same option is specified (with the exception of XREF and
ATTR listed above), then the setting of the option specified last will be assumed.

If a command line flag is valid for more than one compiler program (for example, compiler,
linkage editor, assembler), you must specify it in xlfopt, ldopt, or asopt in the
configuration file. The command line flags must appear in the order that they are to be
directed to the appropriate compiler program.

Detailed Descriptions of the Options
The following information shows the details associated with the compiler options described
in the previous tables. All options displayed in capitals can be used with the @PROCESS
compiler directive within your FORTRAN source program. You can specify options shown in
lowercase directly on the command line. The default value of that option if it is not specified
in the configuration file, on the command line, or in an @PROCESS compiler directive is
underlined.

Options Describing the Input to the Compiler

FREE I .EIXE.D I -k

FREE or FIXED indicates whether the input source program is in free format or in fixed
format.

MIXED I NOMIXED 1-U

MIXED specifies case sensitivity. If MIXED is specified, the source is not folded and
identifiers are case sensitive. You must enter keywords in lowercase or XL FORTRAN treats
them as identifiers. If NOMIXED is specified, the source is folded to lowercase.

CLINES I NODLINES I -D

If DUNES is specified, the lines that have a D in column 1 are compiled. If NODLINES or
nothing is specified, those lines are treated as comments.

UNDEF I NOUNDEF 1-u

UNDEF specifies no implicit typing of variable names. It has the same effect as the
IMPLICIT NONE statement. NOUNDEF specifies implicit typing.

Chapter 3. Compiling, Linking, and Running Programs 23

CHARLEN(num I .500) I -qcharlen=num

CHARLEN specifies the maximum length permitted for any CHARACTER variable,
CHARACTER array element, CHARACTER function name, CHARACTER entry name,
CHARACTER named constant, or CHARACTER literal string (up to 32767).

Cl(num1,num2, ... numn) l-qci=num1:num2: ... :numn

Cl specifies the identification numbers of the INCLUDE files to be processed (where
1 <=numn<=255 and 1 <=n<=255). The set of identification numbers recognized is the union
of all identification numbers specified on all occurrences of the Cl option.

~ I NOl4 I -qi4 I -qnoi4

These options specify how the compiler interprets INTEGER and LOGICAL specification
statements and FUNCTION statements in which a length is not specified. This option is to
assist migration from 16-bit machines. The default is 14, which causes the compiler to
interpret INTEGER and LOGICAL specifications as INTEGER*4 and LOGICAL *4
respectively. If NOl4 is specified, the compiler interprets INTEGER and LOGICAL
specifications as INTEGER*2 and LOGICAL *2 respectively.

Integer constants in the range -32768 to 32767 are interpreted as having length 2 when
NOl4 is specified and length 4 otherwise. When NOl4 is specified, such integer constants
must not be passed to dummy arguments of type INTEGER*4 without being explicitly
defined as INTEGER*4 in a PARAMETER statement.

Logical constants .TRUE. and .FALSE. are interpreted as having length 2 when NOl4 is
specified and length 4 otherwise. When NOl4 is specified, such logical constants must not
be passed to dummy arguments of type LOGICAL *4 without being explicitly defined as
LOGICAL*4 in a PARAMETER statement. When N014 is specified, logical expressions
have type size equal to the largest type size of its operands. If 14 is specified, all logical
expressions have type LOGICAL *4.

DPC I NODPC 1-qdpc

When DPC is specified, all basic real constants (for example, 1.1) are treated as double
precision constants.

ONETRIP I NOONETRIP j -1

-Ntnum

ONETRIP specifies that DO loops in the compiled program are to be executed at least once,
if reached, even if the iteration count is 0. This option provides compatibility with ANSI
FORTRAN 66, whereas in ANSI FORTRAN 77, DO loops are not performed if the iteration
count is 0. If NOONETRIP is specified, DO loops will not be executed if the iteration count is
0.

Specifies the internal compiler table sizes. The value t indicates the type of the table. The
value num is used to calculate the size of the table. The default table sizes for each type are:

B 50
c 1024
D 2048
N 32768
p 50
A 8192
a 10000
T 20000
s 512

Maximum number of nested IF or DO blocks.
Maximum number of constants.
Maximum number of variables.
Maximum number of bytes to store the names of variables.
Maximum number of subprograms.
Maximum number of dictionary auxiliary table entries.
Maximum number of tokens in the source file.
Maximum number of bytes to store the tokens.
Maximum number of spill variables.

24 User's Guide for XL FORTRAN

-N without any arguments specifies that help information for the -Ntnum option should be
displayed.

DBCS I NODBCS I -qdbcs I -qnodbcs

Indicates to the compiler whether character and Hollerith constants can contain Double Byte
Character Set (DBCS) characters.

-Fconfig_fn 1-Fconfig_fn:stanza 1-Fletclx/tcfg

-Bprefix

-tprograms

The configuration file specifies the location of various files required by the compiler. A default
configuration file {/etc/xlf .cfg) is supplied at installation time. This option allows an
alternative configuration file to be specified. It also specifies what stanza to use within the
configuration file. (See "Configuration File" on page 14 for more information.)

This option is used to construct substitute compiler, assembler, or linkage editor program
names. prefix defines part of a path name to the new programs. To form the complete path
name for each program, xlf adds prefix to the standard program names. The standard
program names for the compiler, assembler, and linkage editor are xlfentry, as, and Id
respectively.

Applies the -B flag prefix to the designated programs. programs can be one or more of c, a,
or I corresponding to compiler, assembler, and linkage editor respectively.

-Wprogram,option1 ,option2 , ... optionn

-ldir

Gives the listed options to the compiler program program. program is c, a, or I
corresponding to compiler, assembler, and linkage editor respectively. Valid compiler options
are the @PROCESS options listed in "Summary of the XL FORTRAN Compiler Options" on
page 18. For more information on the valid assembler and linkage editor options see the AIX
Commands Reference for IBM RISC System/6000, SC23-2199.

Specifies the search path if the file name in the INCLUDE compiler directive does not start
with an absolute path. dir must be a valid path name (for example /u/dir or /tmp or ./subdir).
The compiler appends a I to the dir and then concatenates with the file name before making
a search. If more than one -I option is specified in the command line, files are searched in
the order of the dir as they appear on the command line.

Options Affecting the Compiler Object Code to be Produced

OBJect I NOOBJect I -qobj I -qnoobj

Specifies whether or not you want an object file produced. If NOOBJect is specified, only
the first phase of the compiler is completed. See "Invoking the Compiler" on page 13 for
information on the compiler phases.

CHECKINOCHECKl-C

CHECK specifies that run-time checking of array bounds and character substring
expressions is to be performed. NOCHECK turns this checking off.

RECUR I NORECUR 1-qrecur 1-qnorecur

If the RECUR option is specified for a subprogram, that subprogram may call itself
recursively. If a subprogram is to be called recursively at any point in the program, the
RECUR option must be specified for that subprogram.

Chapter 3. Compiling, Linking, and Running Programs 25

OPTimize I NOOPTimize I -0

Specifies whether code optimization is to be performed during the compilation.

NOOPT

OPT

Performs no optimization of generated code.

Performs optimization using some or all of the following techniques:

• Value numbering
• Straightening
• Common expression elimination
• Code motion
• Reassociation and strength reduction
• Constant propagation
• Store motion
• Dead store elimination
• Dead code elimination
• lnlining (if the -Q compiler option is specified)
• Global register allocation
• Instruction scheduling.

EXTCHK I NOEXTCHK I -qextchk I -qnoextchk

EXTCHK specifies that type checking information is to be set up for common blocks and
procedure references, to be later used by Id for the purpose of detecting mismatches across
compilation units. EXTCHK verifies that actual arguments agree in type, passing mode, and
class. It also checks actual and dummy arguments and attributes for agreement and verifies
that declarations of common blocks are consistent.

EXTNAME I NOEXINAME 1-qextname 1-qnoextname

EXTNAME specifies that all compiler generated external names, with the exception of main
program names, are postfixed with an underscore. The EXTNAME option is to aid in porting
RT code to the RISC System/6000 computer if it contains the following:

• C, Assembler, or Pascal routines, referenced from FORTRAN, that contain an underscore
at the end of the routine name

• C, Assembler, or Pascal routines, calling FORTRAN routine that contains an underscore
at the end of the routine name

• Subroutines or functions in FORTRAN source code that are named main, MAIN, or with
system command or subroutine names

• C, Assembler, or Pascal external or global data items that are shared with a FORTRAN
routine that contains an underscore at the end of the data name.

IEEE(Nur I Minus I Plus I Zero)l -yn 1-ym I -yp 1-yz

Specifies the rounding of constant floating-point expressions at compile time:

n
m
p
z

round to nearest
round toward minus infinity
round toward plus infinity
round toward zero.

RNDSNGL I NOBNDSNGL 1-qrndsngl 1-qnorndsngl

Specifies strict adherence to the IEEE standard in that the result of each single precision
floating-point operation will be rounded to single precision.

26 User's Guide for XL FORTRAN

RRM I NORRM 1-qrrm

Specifies the run-time rounding mode. This option is used if the run-time rounding mode is
round to +infinity, -infinity, or is not known.

EO.LD I NOFOLD I -qfold 1-qnofold

FOLD specifies that constant floating-point expressions are to be evaluated at compile time.

MAE I NOMAF I -qmaf 1-qnomaf

Specifies whether or not the compiler is to generate multiply-add instructions. Multiply-add
instructions may affect the precision of floating-point intermediate results, by giving better
performance and better accuracy.

DBG I NODBG I -g

Specifies that debug information is to be generated for use by the symbolic debugger.

XFLAG=DD24 I -qxflag=dd24

Generates floating point no-op instructions to cause detection of overflow in rounding
floating point intermediate results to single precision. See Appendix F, "Single Precision
Floating Point Overflow" for more information.

Options Describing the Compiler Output

FIPS I NOFIPS I -qfips 1-qnofips

Specifies whether or not Full ANSI FORTRAN 77 standard language flagging is to be
performed.

SAA I NOSAA I -qsaa I -qnosaa

Specifies whether or not SAA FORTRAN standard language flagging is to be performed.

SOURCE I NOSOURCE 1-qsource 1-qnosource

Specifies whether or not the source listing is to be produced. Specifying SOURCE as an
option implies that a listing will be produced, unless -qnoprint is specified. No listing is
produced by default. Parts of the source can be selectively printed by using SOURCE and
NOSOURCE throughout the program.

XREF I NOXBEF I XBEF(FULL) 1-qxref 1-qnoxref 1-qxref=full

Specifies whether or not a cross-reference listing is to be produced. If only XREF is
specified, only identifiers that are used will be reported. If XREF(FULL) is specified, all
identifiers that appear in the program, whether used or not, will be reported. Both XREF and
XREF(FULL) imply that a listing will be produced, unless -qnoprint is specified. No listing is
produced by default.

ATTA I NOATTR I ATTR(FULL) 1-qattr 1-qnoattr 1-qattr=full

Specifies that an attribute listing is to be produced (consisting of the attributes of names). If
only ATTR is specified, only identifiers that are referenced will be reported. If ATTR(FULL) is
specified, all identifiers, whether referenced or not, will be reported. Both ATTA and
ATTR(FULL) imply that a listing will be produced unless -qnoprint is specified. No listing is
produced by default.

LIST I NOLIST I -qlist I -qnolist

Specifies whether or not an object code listing is to be produced. LIST implies that a listing
will be produced, unless -qnoprint is specified. No listing is produced by default.

Chapter 3. Compiling, Linking, and Running Programs 27

LISTOPT I NOLISTOPI I -qlistopt I -qnolistopt

Specifies whether or not the settings of all options are to be displayed as part of the listing.
(The default is to display the settings of specified options only.) LISTOPT implies that a
listing will be produced, unless -qnoprint is specified. No listing is produced by default.

STATs I NOSTATs I -qstat I -qnostat

Specifies whether or not table size statistics and timing statistics are to be reported as part
of the listing. STAT implies that a listing will be produced, unless -qnoprint is specified. No
listing is produced by default.

PHSINFO I NOPHSINFO 1-qphsinfo 1-qnophsinfo

Specifies whether or not phase timing information is to be displayed.

FLAG(sev1,sev2) I ELAG(L,L) I -qflag=sevt:sev2 j -w

Specifies the severity level of diagnostic messages to be reported:

sevt: message level reported on listing
sev2: message level reported on terminal.

where sev1/sev2 is I, L,W, E, S, or Q meaning informational, language, warning, error, or
severe error, and Q means do not report any messages at all.

Both sevt and sev2 must be specified. Messages of the specified severity level or higher will
be reported. When -w is specified on the command line, it is equivalent to specifying
FLAG(E,E) (that is, warning and informational messages will be suppressed).

HALI(sev) I HALT(U) j -qhalt=sev

-c

Stops the compiler after the first phase if the maximum severity of messages encountered at
compile time equals or exceeds the specified severity.

sev is I, L, W, E, S, or U meaning informational, language, warning, error,
severe error, or unrecoverable error.

Does not send the completed object file to the Id command for link-editing. With this flag,
the output is a .o file for each source file.

-Q+names I -Q-names I -Q I ::GI

-qnoprint

lnlining is performed if possible. Instead of the normal subprogram call, inline code is
produced for references to subprograms that are fewer than 100 intermediate instructions,
and are in the same file as the calling program. +names and -names specify the names of
subprograms that are and are not, respectively, to be inlined. The -Q flag without any list will
cause all appropriate subprograms to be inlined. -Q! causes no inlining to be done. OPT
must be specified for inlining to take effect. If inlining has been specified, the following
options cannot be specified in an @PROCESS statement unless that statement occurs
before the first compilation unit: OBJect, HALT, MAF, RNDSNGL, LIST, PHSINFO, and the
table size options.

Suppresses the production of listings. If there are any options specified that cause a listing
to be produced, the -qnoprint option sends the listing file to /dev/null, which effectively
overrides all listing options.

28 User's Guide for XL FORTRAN

Options Used for Debugging

-v

-#

-p I-pg

Instructs the compiler to generate information on the progress of the compilation.

Displays the same information as with -v without invoking the compiler.

Sets up the object file for profiling.

-p prepares the program so that the AIX prof command can generate a run-time profile.
The compiler produces code that counts the number of times each routine is called. If
programs are sent to Id, the compiler replaces the startup routine with one that calls the
monitor subroutine at the start and writes a mon.out file when the program ends normally.
You can use the prof command to generate a n,m-time profile.

-pg is like -p, but invokes a run-time recording mechanism that keeps more extensive
statistics and produces a gmon.out file when the program ends normally. You can then use
the gprof command to generate a run-time profile.

For more information on profiling, the Id, prof, and gprof commands, see the AIX
Commands Reference for IBM RISC System/6000, SC23-2199.

Options Used for the Linkage Editor

-oname 1.a.....o..ut

-Ikey

-Ldir

The following are common Id options that can be specified in the xlf command. Other Id
options can also be specified.

Specifies a name for the object module. This is an Id option, so conflicts are handled by Id.

Searches the specified library file, where key selects the file libkey.a. This is an Id option, so
conflicts are handled by Id.

Looks in dir for files specified by the -I keys. This is an Id option, so conflicts are handled by
Id.

Invoking the Linkage Editor
If you specify -c as a compiler option, XL FORTRAN only compiles the source program and
creates an object file. To perform the linkage editor phase, invoke the linker using the Id
command, or issue the xlf command a second time without the -c option and specifying the
desired object file (.o) names.

Note: See the AIX Commands Reference for IBM RISC System/6000, SC23-2199. for a
description of the linkage editor and link-edit flags.

Chapter 3. Compiling, Linking, and Running Programs 29

Running the Program
You can run the program by entering the path name and file name of the executable object
file and any desired run-time parameters on the command line. If the -oname compiler
option has been specified, the file name will be name. The default file name is a.out.

The following environment variables are recognized at run time:

• xrf_messages

If xrf_messages is set to "no", run-time messages are suppressed. If you do not set it or
you specify anything else, run-time messages are issued to standard error.

• TMPDIR

lhis environment variable allows you to choose a directory to place any temporary files
that may be created when when opening a file whose STATUS='SCRATCH'. If TMPDIR
has not been set, temporary files will be placed in /tmp.

The following is an example of how to set environment variables:

• From the C shell: setenv xrf_rnessages no
setenv TMPDIR /u/joe/ternp

• From the Bourne shell: xrf_rnessages=no
TMPDIR=/u/joe/ternp

export xrf _rnessages TMPDIR

See "Environment Variables" on page 43 for more information. Also, for more information on
a.out see the AIX Commands Reference for IBM RISC System/6000, SC23-2199.

FORTRAN Exception Handling
The following cases will cause an exception at run time:

1 . Fixed-point division by zero

2. Character substring expression out of bounds if you specify the CHECK option at compile
time

3. Array subscript out of bounds if you specify the CHECK option at compile time

4. The flow of control in the program reaches a location for which a semantic error with
severity of S was issued when the program was compiled.

If you call SIGNAL (CALL SIGNAL (SIGTRAP' xl_trce)) to install the default exception
handler before the exception occurs, a diagnostic message and a traceback showing the
offset number of each routine called leading to the exception are written to standard error
after the exception occurs. If the exception handler is not installed, a core image file is
produced.

You can then use the dbx symbolic debugger to determine the error. dbx provides a specific
error message describing the cause of the exception. The dbx where subcommand or dbx
trace subcommand provides a complete traceback showing the FORTRAN source line
number and the sequence of instructions leading to the exception. See the AIX Commands
Reference for RISC System/6000, SC23-2199 for information about the dbx debugger.

30 User's Guide for XL FORTRAN

The XL FORTRAN Run Time Environment
Object code produced by the XL FORTRAN compiler may call several run-time
subprograms. The XL FORTRAN Run Time Environment includes a library of run-time
subprograms (libxlf.a) and also facilities for producing run-time diagnostic messages in the
national language appropriate for your system. Normally, you cannot run object code
produced by the FORTRAN compiler without the FORTRAN Run Time Environment.

External Names in the Run Time Environment
Run-time subprograms are collected into libraries. When you use the xlf command without
the -c option, the compiler invokes the linkage editor and gives it the names of the libraries
that contain run-time subprograms called by FORTRAN object code.

The names of these run-time subprograms are external symbols. When object code
produced by the FORTRAN compiler calls a run-time subprogram, the .o object code file
contains an external symbol reference to the name of the subprogram. A library contains an
external symbol definition for the subprogram. The linkage editor resolves the run-time
subprogram call with the subprogram definition.

You should avoid using names in your XL FORTRAN program that conflict with names of
run-time subprograms. Conflict can arise under two conditions:

• The name of subroutine, function, or common block defined in a FORTRAN has the same
name as a library subprogram.

• The FORTRAN program calls a subroutine or function with the same name as a library
subprogram but does not supply a definition for the called subroutine or function.

Avoiding the Use of Run-Time Subprogram Names

If you define a subroutine, function, or common block with the same name as a run-time
subprogram, your definition of that name may be used in place of the run-time subprogram,
or it may cause a link-edit error. To avoid conflicts with the names of the external symbols in
the XL FORTRAN library, the names you use should not begin with the underscore U or the
number sign (#), and should not be names that are the same as the service and utility
subprograms that are provided in the library. (See Appendix B of the Reference Manual for
IBM AIX XL FORTRAN Compiler/6000 for a list of these subprograms.) You. should also
avoid naming a subroutine or function main since XL FORTRAN defines an entry point main
to start your program.

Object code produced by the XL FORTRAN compiler can call some run-time routines from
libraries other than the XL FORTRAN Run Time Environment.

References to Undefined Run-Time Subprogram Names

You should not leave names of subroutines or functions undefined. If your FORTRAN code
calls a subroutine or function without defining it, the linkage editor will attempt to resolve the
reference in the XL FORTRAN Run Time Environment or in any of the other libraries that XL
FORTRAN uses for run-time routines. Resolution by the linkage editor may appear to be
successful but the program result may be unpredictable.

Note: XL FORTRAN uses some subprograms from the C (libc.a) and mathematics
(libm.a) libraries. Each of these libraries contains several subprograms with common
spellings. (For example, read and write.)

Chapter 3. Compiling, Linking, and Running Programs 31

AIX Shared Libraries
The run-time library included in the XL FORTRAN Run Time Environment is an AIX shared
library. Shared libraries are processed by the linkage editor to resolve all references to
external names. This limits the possibility of problems between user-defined subroutine and
function names and the names·of any routines that are called by run-time subprograms.

For example, when you invoke the FORTRAN PAUSE statement, the XL FORTRAN
compiler generates a call to the run-time subroutine #PAUSECHR. This run-time
subprogram in turn calls AIX system routines to write the given character constant to
standard output. All calls within #PAUSECHR are resolved within the XL FORTRAN Run
Time Environment and other libraries. This allows a FORTRAN program to define and call a
routine with the same name as any of the system routines called by #PAUSECHR, and that
name will not conflict with any calls in #PAUSECHR.

The description of the Id command in the AIX Commands Reference for RISC System/6000,
SC23-2199 contains further details about creating and using shared libraries.

32 User's Guide for XL FORTRAN

Chapter 4. Input/Output

The following chapter discusses support for the IBM AIX Version 3 for RISC System/6000
file system by the XL FORTRAN compiler and Run Time Environment.

File Formats
XL FORTRAN implements files in the following manner:

• Sequential unformatted files:

The requirements on these files make it unlikely that you will read or write them by any
means other than FORTRAN input/output. A 4-byte integer containing the length of the
record precedes and follows each record.

• Sequential formatted files:

The XL FORTRAN input/output system breaks sequential formatted files into records
while reading, by using each new-line character as a record separator.

On output, the input/output system writes a new-line character at the end of each record.
Programs can also write new-line characters for themselves. This practice is not
recommended, because the effect is that the single record that appears to be written is
treated as more than one record when being read or back spaced over.

• Direct files:

XL FORTRAN simulates direct files with AIX files containing a single record, whose length
is a multiple of the record length of the file. You must specify, in an OPEN statement, the
record length (RECL) of the direct file. XL FORTRAN uses this record length to
distinguish records from each other.

For example, the third record of a direct file of record length 100 bytes would start at byte
200 of the single record of an AIX file and end at byte 299.

If the length of the record of a direct file is greater than the total amount of data you want
to write to the record, XL FORTRAN pads the record on the right with blanks (X'20').

File Names
A valid AIX file name must have a full path name of total length <=2048 characters, with
each file name being <=256 characters long (though you need not specify the full path
name).

You must specify a valid AIX file name in such places as:

• The FILE= specifier of the INQUIRE statement
• The FILE= specifier of the OPEN statement
• The INCLUDE compiler directive.

©Copyright IBM Corp. 1990 Chapter 4. Input/Output 33

Preconnected Files
The system preconnects units 0, 5, and 6 when a program starts:

• Unit 0 is the standard error
• Unit 5 is the standard input for sequential formatted input/output
• Unit 6 is the standard output for sequential formatted input/output.

All other units are also preconnected when run time begins. Unit n is connected to a file
named fort.n. These files need not exist, and XL FORTRAN does not create them unless
you use their units. The default connection is for sequential formatted input/output.

Note: Because unit O is preconnected for standard error, you cannot use it for the following
statements: OPEN, CLOSE, ENDFILE, BACKSPACE, REWIND, and direct
input/output.

File Positioning
ANSI X3.9-1978 does not specify the initial position of a file that is explicitly opened for
sequential input/output. Therefore, XL FORTRAN has adopted the following conventions.

On an explicit OPEN (by an OPEN statement):

• If the file STATUS is NEW or SCRATCH, the file is positioned at the beginning.

• If STATUS= 'OLD' is specified, the file is positioned at the end.

- If the next operation is WRITE, the next record is appended to the file.
- If the next operation is READ, the file is repositioned to the beginning so that the first

record is read.

• If STATUS = 'UNKNOWN' is specified, and the file exists, the file is positioned as if
STATUS = 'OLD' were specified. Otherwise, the file is positioned as if STATUS = 'NEW'
were specified.

The implementation of implicit OPEN is equivalent to an explicit OPEN with STATUS =
'NEW' (that is, the file is positioned at the beginning).

• If the first input/output operation on the file is READ, it will read the first record of the file.
• If the first input/output operation on the file is WRITE, it will overwrite the first record of the

file.

Therefore, to append to an existing file, the file must be explicitly opened with an OPEN
statement with STATUS= 'OLD' specified before the WRITE statement is performed.

34 User's Guide for XL FORTRAN

Chapter 5. Optimization

The following chapter discusses optimization techniques used by XL FORTRAN. It also
outlines some programming techniques that you can employ to take advantage of the
optimization features of the compiler.

Optimization Levels
Optimization requires additional compile time, but usually results in reduced run time.

XL FORTRAN allows you to select whether or not you want optimization to be performed at
compile time. The NOOPT compiler option {which is the default) disables the optimization of
your program. The OPT option performs the optimization techniques outlined below:

• Value numbering
• Straightening
• Common expression elimination
• Code motion
• Reassociation and st.rength reduction
• Constant propagation
• Store motion
• Dead store elimination
• Dead code elimination
• lnlining (if the -Q compiler option is specified)
• Global register allocation
• Instruction scheduling.

NOOPT is the recommended level of optimization for a program you are debugging, or
compiling to check syntax. It provides the fastest compile time, but the least efficient run
time. The compiler may perform some minor optimizations.

OPT performs control and data flow analysis for the entire program unit. This analysis allows
optimizations such as common expression elimination, strength reduction, code motion, and
global register assignment. Particular attention is paid to innermost loops and to subscript
address calculations. Variables are retained in registers where possible to eliminate
unnecessary loads and stores.

Optimization does not move any code out of a loop that might cause an exception unless the
exception will occur anyway. For example, in the loop:

DO 10 J=l,N
IF (K.NE.O) M(J)=N/K

10 CONTINUE

code evaluating the expression N /K could be moved outside the loop, because it is invariant
for each iteration of the loop. However, it will not be moved because K could be 0.

Optimization Techniques
Several techniques are used by the optimizer:

Value Numbering

Value numbering involves local constant propagation, local expression elimination, and
folding several instructions into a single instruction.

©Copyright IBM Corp. 1990 Chapter 5. Optimization 35

Straightening

Straightening is rearranging the program code to minimize branching logic and to combine
physically separate blocks of code.

Common Expression Elimination

In common expressions the same value is recalculated in a subsequent expression. The
duplicate expression can be eliminated by using the previous value. This is done even for
intermediate expressions within expressions. For example, if your program contains the
following statements:

10 A=C+D

20 F=C+D+E

the common expression c+o is saved from its first evaluation at statement 10, and is used at
statement 2 o in determining the value of F.

Code Motion

If variables used in a computation within a loop are not altered within the loop, it may be
possible to perform the calculation outside of the loop and use the results within the loop.

Reassociation

Reassociation rearranges the sequence of calculations in a subscript expression producing
more candidates for common expression elimination.

Strength Reduction

Less efficient instructions are replaced with more efficient ones. For example, in array
addressing, an add instruction replaces a multiply.

Constant Propagation

Constants used in an expression are combined and new ones generated. Some mode
conversions are done and compile-time evaluation of some intrinsic functions takes place.

Store Motion

Store motion moves store instructions out of existing loops.

Dead Store Elimination

The compiler eliminates stores when the value stored is never referred to again. For
example, if two stores to the same location have no intervening load, the first store is
unnecessary, and is therefore removed.

Dead Code Elimination

The compiler may eliminate code for calculations found to be unnecessary. Other
optimization techniques may cause code to become dead.

lnlining

lnlining causes all program units within a single source file to be compiled at one time. It
replaces subprogram calls with the actual code of the subprogram.

36 User's Guide for XL FORTRAN

Global Register Allocation

Variables and expressions are allocated to available hardware registers by coloring.

Instruction Scheduling

Reorders instructions to minimize execution time.

Debugging Optimized Code
Debugging optimized programs presents special problems. Changes made by optimization
can be confusing.

Use debugging techniques that rely on examining values in storage with caution. A common
expression evaluation may have been deleted or moved. Note that variables may have been
assigned to a register, and will not appear in storage.

Programs that appear to work properly when compiled with no optimization may fail when
compiled with OPT. This is often caused by program variables that have not been initialized.
If a program that worked with NOOPT fails when compiled with OPT, it is a good idea to look
at the cross-reference listing. Check for variables that are fetched but never set, and for
program logic that allows a variable to be used before being set.

Optimized code can fail if a FORTRAN program contains invalid code. For example, if the
FORTRAN program passes an actual argument that also appears in a common block in the
called routine, or if two or more dummy arguments are associated with the same actual
argument.

Increasing Optimization of Your Program
The following section contains suggestions on how to use the optimization features.

Optimization Recommendations
• Use NOOPT during program development for syntax checking, testing, and debugging

purposes. Debugging programs with dbx is straightforward, with none of the side effects
of optimization.

• Use OPT once a program has been debugged. If the program is to be run more than
once, or if the program takes more than a few CPU seconds to run, the optimization
savings at run time may exceed the cost of compiling with OPT in effect.

• More virtual storage, system page space, and longer compilation times are required for
optimization. Depending on the complexity and number of loops in the program
(opportunities for optimization), and the number of identifiable elementary expressions,
the compilation time may increase greatly. You may have to compile larger or complex
programs with NOOPT if they fail to compile with OPT because of storage exhaustion.

Programming Recommendations
The following section contains programming suggestions to take advantage of the
optimization features.

Input/Output
Optimization has little effect on the run time of input/output statements. Here are some
guidelines to improve input/output run-time performance:

Chapter 5. Optimization 37

Variables

• Unformatted inpuVoutput takes less processing time and uses less storage than formatted
inpuVoutput. Unformatted inpuVoutput also maintains the precision of the data items
being processed.

• Use an implied DO in inpuVoutput statements instead of a DO loop containing the
inpuVoutput statement. For example:

10

DIMENSION A(200)
WRITE(3) (A(I),I=l,100)

is more efficient than:

DIMENSION A(200)
DO I=l,100

WRITE (3) (A (I))
END DO

If the entire array is to be read or written in the storage order, use the array name without
the implied DO adjusting the format appropriately. For example:

DIMENSION A(200)
WRITE(3,10) (A(I),I=l,200)
FORMAT (I '' 10F6. 2)

! This writes the contents of A.

• Certain variables cannot always be optimized:

- Variables in input statements and in CALL statement argument lists are less likely to
be optimized.

- Variables in common blocks cannot be optimized across subroutine calls.

Do not use DO loop indexes in any of the above ways.

• Each reference to a variable in a common block requires that the address of the common
block be in a register. This is the basis for the following recommendations:

- Minimize the number of common blocks. Group concurrently referenced variables into
the same common block. For example:

COMMON /X/ A
COMMON /Y/ B
COMMON /Z/ c
A=B+C Three registers required

COMMON /QI A,B,C
A=B+C ! One register required

- Place scalar variables before arrays in a given common block. For example:

COMMON /Z/ X(SOOOO),Y
X(l)=Y Two registers required

COMMON /Z/ Y,X(SOOOO)
X(l)=Y One register required

- Place small arrays before large ones. All the scalar variables and the first few arrays
can then be addressed through one address constant. The subsequent larger arrays
probably each need a separate address constant.

- Assign frequently referenced scalar variables in a common block to a local variable.
References to the local variable will not require the common block address to be in a
register. Be sure to assign the value back to the common block variable at the end of
processing.

38 User's Guide for XL FORTRAN

• REAL *8 values are handled more efficiently than REAL *4 values.

• Items that are incorrectly aligned in common blocks adversely affect the performance of
the program.

Subroutine Arguments
• Entry into a subprogram associates actual arguments with the dummy arguments in the

referenced subprogram or ENTRY statement. Therefore, all appearances of these
arguments in the whole subprogram become associated with actual arguments. New
values will not be transmitted for arguments not listed in the ENTRY statement.

The only way to guarantee that you will get the current value of an argument is to have
the argument listed on the ENTRY statement through which you invoke the subprogram.

• Large numbers of actual arguments can be dealt with more efficiently if they are in
common blocks.

Constant Operands

Arrays

Expressions

• Define constant operands as local variables. The compiler recognizes only local variables
as having a constant value. (Operands in common or in an argument list can change, and
cannot be optimized as fully.)

• Expand some smaller arrays to match the dimensions of the arrays they interact with. If
the arrays in a subprogram, block of code, loop, or nest of loops have the same shape,
the compiler calculates one subscript and uses it for all the arrays. The compiler can
maintain one index for all the arrays defined as having the same dimensions.

• Subscripting of adjustable dimensioned arrays requires additional indexing computations.
Using an adjustable dimensioned array as a dummy argument, requires an additional
calculation on each entrance into the subprogram. To lessen the amount of extra
processing, use the following technique:

- If indexing can be varied in the low-order dimensions, make the adjustable dimensions
of an array the high-order dimensions. This reduces the number of computations
needed for indexing the array, as shown:

SUBROUTINE EXEC(Z,N)
REAL*S Z(9,N)
Z(I,S)=A

SUBROUTINE EXEC(Z,N)
REAL*S Z(N,9)
Z(S,I)=A

! Computation not required

Computation (I*N) required

• Initialize large arrays using a DO loop. You get faster overall run time and use less
storage than if you initialize using a DATA statement. For example, the following
statements:

DOUBLE PRECISION A(SOOO)
DATA A/5000*1.0DO/

generate 40000 bytes of object module information. The 5000 copies of 1 • o are placed in
the object module, placed in the load module, and fetched into storage when you run the
program.

• If components of an expression are duplicate expressions, code them either at the left
end of the expression, or within parentheses. For example:

Chapter 5. Optimization 39

A=B*(X*Y*Z)
C=X*Y*Z*D
E=F+(X+Y)
G=X+Y+H

A=B*X*Y*Z
C=X*Y*Z*D
E=F+X+Y
G=X+Y+H

Duplicates recognized

No duplicates recognized

The compiler can recognize X*Y* z and X+Y as duplicate expressions because they're
either coded in parentheses or coded at the left end of the expression.

• When components of an expression in a loop are constant, code the expressions either at
the left end of the expression, or within parentheses. If c, D, and E are constant and v, w,
and x are variable, the following examples show the difference in evaluation:

Critical Loops

V*W*X*(C*D*E)
C+D+E+V+W+X

V*W*X*C*D*E
V+W+X+C+D+E

! Constant expressions recognized

Constant expressions not recognized

• If your program contains a short, heavily-referenced DO loop, consider expanding the

Conversions

code to be a straight sequence of statements. For example:

A(l)=B(K+l)*C(M+l)
A(2)=B(K+2)*C(M+2)
A(3)=B(K+3)*C(M+3)
A(4)=B(K+4)*C(M+4)
A(S)=B(K+S)*C(M+S)

would run faster than:

DO I=l,5
A(I)=B(K+I)*C(M+I)

END DO

• Avoid forcing the compiler to convert numbers between integer and floating-point internal
representations. Conversions require several instructions, including some double
precision floating-point arithmetic. For example:

X=l.O
DO 10 I=l,9

A(I)=A(I)*X
X=X+l. 0

10 CONTINUE

10

DO 10 I=l,9
A(I)=A(I)*I

CONTINUE

! No conversions needed

Multiple conversions needed

When you must use mixed-mode arithmetic, code the fixed-point and floating-point
arithmetic in separate computations as much as possible.

Arithmetic Constructions
• In subtraction operations, if only the negative is required, change the subtraction

operations into additions, as follows:

. 40 User's Guide for XL FORTRAN

Z=-2.0
DO 10 I=l,9

A(I)=A(I)+z*B(I)

Efficient

10 CONTINUE

10

DO 10 I=l,9
A(I)=A(I)-2.0*B(I)

CONTINUE

Inefficient

• In division operations, do the following:

IF Statements

- For constants, use the following construction:

X*(l.0/3.0)

rather than the construction X/3. o. Note that division by a constant of an exact power
of 2 is changed to a multiplication by the reciprocal power by the compiler. For
example, X/2. o is changed to X*O. s.

- For a variable used as a denominator in several places, use the same technique.

• Use a block or logical IF statement rather than an arithmetic IF statement. If you must use
an arithmetic IF statement, try to make the next statement one of the branch destinations.

• In block or logical fF statements, if your tests involve a series of .AND. or .OR. operators,
try to:

- Put the simplest tested conditions in the leftmost positions.
- Put complex conditions (such as tests involving function references) in the rightmost

positions.
- Put tests most likely to be decisive in the leftmost positions.

Chapter 5. Optimization 41

42 User's Guide for XL FORTRAN

Chapter 6. Problem Determination

This chapter describes some methods you can use for debugging your programs:

• Error messages
• Compiler listings
• The symbolic debugger.

Error Messages
The following sections discuss environment variables, compile-time messages, and
run-time messages.

Environment Variables
The message catalogs must be installed and the environment variables LANG and
NLSPATH must be set to a language for which the message catalog has been installed
before the compiler will execute. See "Environment Variables" on page 14 for more
information.

If the following message is issued during compilation, there has been an error opening the
appropriate message catalog:

Error occurred while initializing the message system in file:
msgf ile

where msgfile is the name of the message catalog that the compiler was unable to open.
This message is only issued in English.

You should then verify that the message catalogs and the environment variables are in place
and correct. If the message catalog or environment variables are not correct, compilation
can continue, but all non-diagnostic messages will be suppressed and the following
message will be issued instead:

No message text for msgno

where msgno is the XL FORTRAN internal message number. This message is only issued in
English.

If the following message is issued during run time, there has been an error opening the
run-time message catalog:

1525-100 An error occurred while opening the message catalog
xrfmsg.cat. The program will continue but only the error message
numbers will be displayed.

This message is only issued in English. You should then verify that the message catalogs
and the environment variables are in place and correct. If the message catalog or
environment variables are not correct, execution can continue, but only the error message
numbers will be displayed.

To determine which XL FORTRAN message catalogs are installed on your system, list all of
the file names using the following commands:

/usr/lpp/msg/1anguage-code/xlf*.cat (compile-time messages)
/usr/lpp/msg/1anguage-code/xrfmsg.cat (run-time messages)

where language-code is one of the national language codes.

© Copyright IBM Corp. 1990 Chapter 6. Problem Determination 43

Compile-Time Messages
XL FORTRAN displays compile-time diagnostic messages on the terminal (standard error),
and in the source listing, if you request a listing using the LIST, SOURCE, XREF, ATTR,
LISTOPT, or STATs compiler option. You can also control the diagnostic messages issued,
according to their severity, using the FLAG option. The maximum number of errors that can
be issued per source line is 100.

In addition to the diagnostic message issued, the source line and a pointer to the position in
the source line at which the error was detected is printed or displayed, if you specify the
SOURCE compiler option. If NOSOURCE is in effect, the file number (if it is an include file),
the line number, and column position of the error are displayed with the message.

The return code at the end of compilation is set to O if the highest severity level of all errors
diagnosed is E, W, L, or I, or less than halt_sev if the HALT compiler option has been
specified. Otherwise, the return code is set to one of the following values:

1

40
41
250

251

252
253
254
255

A severe or unrecoverable error has been detected that is not one of the
others listed here.
An option error has been detected.
A configuration file error has been detected.
An out-of-memory error has been detected. The xlf command cannot
allocate any more memory for its use.
A signal received error has been detected. A fatal error or interrupt signal is
received.
A file-not-found error has been detected.
An inpuVoutput error has been detected. Cannot read or write files.
A fork error has been detected. Cannot create a new process.
An error has been detected while executing a process.

The format of a compile-time diagnostic message is:

15cc-nnn 'message text'

Where:

15

cc

nnn

'message text'

indicates an XL FORTRAN compiler message.

is the component number, as follows:
11-20 indicates a FORTRAN specific message.
00 indicates a code generation or optimization message.
01 indicates an XL common message.

is the message number.

is the text describing the error.

The severity levels of the messages are:

(U) Unrecoverable error Internal compiler error. This error should be reported to
your IBM service representative.

(S) Severe error

44 User's Guide for XL FORTRAN

- Conditions exist which cannot be corrected by the
compiler. An object file is produced; however, you are
advised not to attempt to run the program.

-An internal compiler table has overflowed. Processing
of the program is discontinued and no object file is
produced. This error condition can typically be
corrected through the use of an option.

- An include file does not exist. Processing of the
program is discontinued and no object file is produced.

(E) Error

(W) Warning

(L) Language

(I) Informational

Run-Time Messages

Conditions exist which can be corrected by the compiler
with some degree of confidence that the program will run
correctly.

Warning message.

Language level message: FIPS or SAA warning
message.

Note to the programmer concerning conditions found
during compilation.

The format of a run-time diagnostic message is:

1525-nnn 'message text'

Where:

1525

nnn

'message text'

indicates an XL FORTRAN run-time message.

is the message number.

is the text describing the error.

You can investigate errors that occur during the execution of a program using the symbolic
debugger dbx which is available on the IBM AIX RISC System/6000.

Error messages will be issued during execution of a program if:

• An input/output error is detected.
• An exception error is detected, and a call to SIGNAL to install the default exception

handler was specified before the exception occurred. A run-time exception will occur in
the following cases:
- An array subscript or character substring expression is out of range the CHECK

compiler option was specified at compile time.
- The flow of control in the program reaches a location for which a semantic error with

severity of S was issued when the program was compiled
- A fixed-point division by zero occurs.

Input/Output Errors
If the error detected is an input/output error, and you have specified
IOSTAT =integer_ variable on the input/output statement in error, the IOSTAT variable will be
assigned the following value:

• The negation of the message number if an end-of-file condition exists
• The message number in all other cases.

If you have installed the XL FORTRAN run-time message file on the system on which the
program is executing, then a message number and message text is issued to the terminal
(standard error). If this run-time message file is not installed on the system, only the
message number appears.

Run-Time Exceptions
For run-time exception errors, if you have installed the exception handler before the
exception occurs, a message and a traceback is displayed. dbx can then be used to
examine the location of the exception.

Chapter 6. Problem Determination 45

The exception handler supplied to perform these functions is called xl_trce. To install the
exception handler use the following command sequence in your FORTRAN source:

include 'fexcp.h' !definitions for exception handler
call signal(SIGTRAP,xl~trce) !install exception handler

Compiler Listings
The listing produced by the compiler (if you specify the appropriate compiler option) consists
of a combination of the following sections:

• Header Section
• Options Section
• Source Section (optional)
• Attribute and Cross-Reference Section (optional)
• Object Section (optional)
• File Table Section
• Compilation Statistics Section (optional)
• Compilation Unit Epilogue Section
• Compilation Epilogue Section.

A heading identifies each major section of the listing. Greater than symbols precede the
section heading so that you can easily locate the beginning of a section.

>>>>> section name

The following is a simple programming example to demonstrate the sections of a listing:

IBM AIX XL FORTRAN Compiler/6000 Version 01.01.0000.0000 ~- user16.f 12/28/89
12:50:24

>>>>> OPTIONS SECTION <<<<<
*** Options In Effect ***

LIST SOURCE STATS
XREF(FULL)

>>>>> SOURCE SECTION <<<<<
1 I PROGRAM MAIN
2 I INTEGER I
3 I DO 10 I=l,10
4 I WRITE (6 , *) I
5 jlO CONTINUE
6 I STOP
7 I END

>>>>> ATTRIBUTE AND CROSS REFERENCE SECTION <<<<<

IDENTIFIER
NAME
i
main

>>>>> OBJECT SECTION <<<<<

FILE
0
0

DEF
LINE

2
1

CROSS REFERENCE
COL
15 0-3.13@ 0-4.21
15

GPR's set/used: ss-s ssss ssss s~- -~- -~- -~- --ss

46 User's Guide for XL FORTRAN

FPR's set/used: ssss ssss ssss ss~
CR's set/used: ss~ ~ss

01 000000 PDEF main
01 000000
01 000000 mf spr 7C08
01 000004 stm BFCl
01 000008 st 9001
01 oooooc stu 9421
01 000010 1 83E2
31 000014 cal 3860
31 000018 st 907F

02A6
FFFS
0008
FFCO
0008
0001
0000

1
2
1
1
1
1
1

PROC
-MFSPR
-STM
-ST
-STU
L
LI
ST

CL.O:
41 OOOOlC cal 3860 0006 1 LI
41 000020 bl 4BFF FFEl 0 CALL

rO=LR
(rl,-8)=r30-r31
(rl,8)=r0
rl=(rl,-64)
r31=.&main$(r2,0)
r3=1.
i(r31,0)=r3

r3=6

r3=#LDSO,l,r3,#LDSO",cr0",crl",cr6",cr7",r0",r4"-rl2",fp0"-fpl3",mq"
41 000024 cror 4DEF 7B82 0
41 000028 1 807F 0000 1 L r3=i (r31, 0)
41 00002C bl 4BFF FFDS 0 CALL

r3=#LDINTO,l,r3,#LDINTO",cr0",crl",cr6",cr7",r0",r4"-rl2",fp0"-fpl3",mq"
41 000030 cror 4DEF 7B82 0
41 000034 cal 3860 0000 1 LI r3=0
41 000038 cal 38AO 0001 1 LI r5=1
41 00003C oril 60A4 0000 1 LR r4=rS
41 000040 bl 4BFF FFCl 0 CALL

r3=#E0,3,r3,r4,rS,#EO",cr0",crl",cr6",cr7",r0",r4"-rl2",fp0"-fpl3",mq"
41 000044 cror 4DEF 7B82 O

?10:
SI 000048 1 807F 0000 1 L
SI 00004C ai 3063 0001 2 AI
SI OOOOSO st 907F 0000 1 ST
SI OOOOS4 cmpi 2C83 OOOA 1 C
SI OOOOS8 be 408S FFC4 3 BF

CL.1:
61 OOOOSC cal 3BCO 0000 1 LI
61 000060 oril 63C3 0000 1 LR
61 000064 bl 4BFF FF9D 0 CALL

r3=i (r31, 0)
r3=r3,1
i(r31,0)=r3
crl=r3,10
CL.O,crl,Ox2/gt

r30=0
r3=r30

r3=#ATESTOP,l,r3,#ATESTOP",cr0",crl",cr6",cr7",r0",r4"-rl2",fp0"-fpl3",m
q"

61 000068 cror 4DEF 7B82 0
71 00006C bl 4BFF FF95 0 CALL

#CLOSEALL,0,#CLOSEALL",crO",crl",cr6",cr7",r0",r3"-rl2",fp0"-fpl3",mq"
71 000070 cror 4DEF 7B82 0
71 000074 oril 63C3 0000 1 LR r3=r30

CL.2:
71 000078 PEND
71 000078 1 8001 0048 1 -L rO=(rl,72)
71 00007C ai 3021 0040 1 -AI rl=rl,64
71 000080 mtspr 7C08 03A6 1 -MTS PR LR=rO
71 000084 lm BBCl FFF8 2 -LM r30-r3l=(rl,-8)
71 000088 bcr 4E80 0020 2 -RET LR

Straight-line exec time 31
00000c Tag Tables
00000c 00000000
000090 00012041
000094 80020001
000098 0000000c
00009C 0004

main

Chapter 6. Problem Determination 47

OOOOA8 Constant Area Starts Here
OOOOA8 000ACC50
OOOOAC

Instruction count is 35

End Of Code Csect

** main === End of Compilation 1 ---

>>>>> FILE TABLE SECTION <<<<<

FILE CREATION
FILE NO

0
FILENAME
user16.f

DATE
12/28/89

TIME
12:49:36

>>>>> COMPILATION STATISTICS SECTION <<<<<

Compiler table statistics
Procedure list .••.•••..••.•..•..•.•.....••••..
Computation .••.•..•••.•...........•....•.....•
Symbolic register •••••.••.••.••.•.••...•...•..
Dictionary ••••.••.•.••..•.•.•.••.•.......•....
Integer value ..••.••.•••••..•..•.•.........•.•
Real value
Procedure descriptor .••••.•...••..•.•••....•.•
Name and constant ••.••.••.•.•..••.•........•..
Constant .•.•••.........•.••.....•.............

>>>>> COMPILATION EPILOGUE SECTION <<<<<

FORTRAN Summary of Diagnosed Conditions

Used
256
312
137

60
154

0
1

565
4

TOTAL UNRECOVERABLE
(U)

SEVERE
(S)

ERROR
(E)

WARNING
(W)

0 0 0 0 0

FROM
FILE LINE

Total
261888
524287

4097
2049
2049
1025

50
32768

1024

INFORMATIONAL
(I)

0

Source records read....................................... 7
Compilation start ••••••.•.••.•.•••.....•.•••..• 12/28/89 12:50:24
Compilation end ••••.•.••.••.•..•....••.•.••..•. 12/28/89 12:50:24
E 1 a p s ed time • • . • • . • • • . • • • • • • • • • . . • • . . • 0 0 : 0 O : 0 0
Total cpu time.. 0. 800
Virtual cpu time.. o·.ooo

1501-510 Compilation successful for file user16.f.
1501-543 Object file created.

Another listing is shown in Appendix A, "Sample Program".

48 User's Guide for XL FORTRAN

Header Section
The listing file has a header section containing the following:

• A compiler identifier consisting of:
- Compiler name
- Version number
- Release number
- Modification number.

• Source file name
• Date of compilation
• Time of compilation.

It is the first line in the listing and appears only once in the file. The header section is always
present in a listing.

Options Section
The options section is always present in a listing, and is repeated for each compilation unit.
This section indicates the specified options that are in effect for the compilation unit. This
information is useful when you have conflicting options. Finally, if you specify the LISTOPT
compiler option, this section lists the settings for all options.

Source Section
The source section contains the input source lines with a line number and, optionally, a file
number. The file number indicates the source file (or include file) that the source line has
come from. All main file source lines (those that are not from an include file) do not have the
file number printed. Each include file has a file number associated with it and source lines
from include files have that file number printed. The file number appears on the left, the line
number appears to its right, and the text of the source line is to the right of the line number.
XL FORTRAN numbers lines relative to each file. The source lines and the numbers
associated with it appear only if the SOURCE compiler option is in effect. Parts of the source
can be selectively printed by using SOURCE or NOSOURCE throughout the program.

The source section also contains error messages interspersed with the code, as they would
appear on the terminal (standard error) during compilation. If NOSOURCE is in effect, and
you request a listing, the source section contains only messages. If there are no messages,
the source section will be empty.

Error Messages

If the SOURCE option is in effect, the error messages are interspersed with the source
listing. The error messages generated during the compilation process contain:

• The source line
• A line of indicators which point to the columns that are in error
• The error message which consists of:

- The 4-digit component number
- The number of the error message
- The severity level of the message
- The text describing the error.

For example:

2 equivalence (i,j,i)
............................ a.

a - 1514-092: (E) Sarne name appears more than once in an equivalence
group.

Chapter 6. Problem Determination 49

If the NOSOUACE option is in effect, the error messages are all that appear in the source
section, and they contain:

• The line number and column position of the error (and the file number if the line in error is
in an INCLUDE file)

• The error message which consists of:
- The 4-digit component number
- The number of the error message
- The severity of the message
- The text of the error.

For example:

3.15 1513-039: (S) Number of arguments is not permitted for
INTRINSIC function abs.

Attribute and Cross-Reference Section
This section provides information about the variables used in the compilation unit. It is
present if the XAEF or ATTA compiler option is in effect. Depending on the options in effect,
this section contains all or part of the following information about the variables used in the
compilation unit:

• Name of the symbolic variable
• Attributes of the variable (if ATTA is in effect). Attribute information includes the type and

the storage class of the variable, relative address of the variable, dimensions of the
variable (if an array), and the alignment of the variable (if ATTA is in effect).

• File, line, and column numbers on which you define a variable and coordinates to indicate
where you have referenced or modified the variable. If the variable is initialized, the
coordinates are marked with a *. If the variable is set, the coordinates are marked with a
@ _. If the variable is referenced, the coordinates are not marked.

Storage class may be one of the following:

Program
Function
Subroutine
Entry
External Subprogram
Static
BSS
Common
Common block
NAM ELI ST
Automatic
Reference Parameter
Value Parameter.

Type may be one of the following:

Logical
Integer
Real
Complex
Character.

If you specify the FULL suboption with XAEF or ATTA,XL FORTRAN reports all variables in
the compilation unit. If you do not specify this suboption, only the variables you actually use
appear.

50 User's Guide for XL FORTRAN

Object Section
XL FORTRAN produces this section only when the LIST compiler option is in effect. It
contains the object code listing, which shows the source line number, the instruction offset in
hexadecimal, the assembler mnemonic of the instruction, and the hexadecimal value of the
instruction. On the right side, it also shows the cycle time of the instruction and the
intermediate language of the compiler. Finally, the total cycle time (straight-line execution
time) and the total number of machine instructions produced is displayed. This section is
repeated for each compilation unit.

File Table Section
This section contains a table showing the file number and file name for each main source file
and include file used. It also lists the line number of the main source file at which the include
file is referenced. This section is always present.

Compilation Statistics Section
This section appears in the listing only if the STATs compiler option is in effect. It provides
compilation statistics, such as various compiler table sizes and usage.

Compilation Unit Epilogue Section
This is the last section of the listing for each compilation unit. It contains the diagnostics
summary, and indicates whether or not the unit compiled successfully. The compilation unit
epilogue section is not present in the listing if the file contains one compilation unit.

Compilation Epilogue Section
The above sections are repeated for each compilation unit when more than one compilation
unit is present. At completion, XL FORTRAN presents a summary of the compilation in
terms of number of source records read, compilation start, compilation end, total compilation
time, total cpu time, and virtual cpu time. This section is always present in a listing.

The Symbolic Debugger
XL FORTRAN supports the dbx symbolic debugger. See the AIX Commands Reference for
IBM RISC System/6000, SC23-2199 for detailed information.

Chapter 6. Problem Determination 51

52 User's Guide for XL FORTRAN

Chapter 7. lnterlanguage Calls

XL FORTRAN permits you to call subroutines written in other languages from your program.
This chapter assumes you are familiar with the syntax of the languages you will be using,
and gives details on how to perform interlanguage calls from your FORTRAN program.

Programming Conventions
XL FORTRAN has adopted the following conventions to allow or assist interlanguage calls:

• Programs and symbolic names are folded to lowercase by default.

• Both the underscore U and currency symbol($) are valid characters in names, and you
can use either as the first character of a name.

Note: Names that begin with _ are reserved names in C and in the XL FORTRAN library.
It is recommended that you do not use _ as the first character of a name. Also,
using the$ as the first character in external names can cause problems, because
AIX uses $ as the first character in a shell variable name.

• Names can be up to 250 characters long.

• There are two common parameter passing modes: by value and by reference. (These are
explained in detail for FORTRAN in "%VAL and %REF" on page 56.)

For compatibility with C language usage, XL FORTRAN uses the following backslash
escapes in character strings:

Escape Meaning

\n New-line

\t Tab

\b Backspace

\f Form feed

\0 Null

\' Apostrophe (does not terminate a string)

\" Double quotation mark (does not terminate a string)

\\ Backslash

\x x, where xis any other character.

Figure 2. Backslash Escapes

If you are porting your application from the RT, and your application makes use of
interlanguage calls, the EXTNAME compiler option may be necessary. See "Options
Affecting the Compiler Object Code to be Produced" on page 25 for information about this
option.

©Copyright IBM Corp. 1990 Chapter 7. lnterlanguage Calls 53

Programming Tips
The following describes programming tips for writing XL FORTRAN procedures which
interact with routines written in other languages:

• Character data:

C functions expect that strings are terminated by the null character. XL FORTRAN does
not append the null character to the end of character literals. It is the programmer's
responsibility to concatenate the null character to the end of any character data which is
passed to C routines.

• Floating-point functions and arguments:

In C, an implicit conversion takes place for float values which are passed as arguments
on a call to a C function having no prototype visible, and the called C function expects that
all incoming float arguments have been converted to double. As XL FORTRAN does not
perform a conversion on REAL *4 quantities passed by value, it is recommended that
REAL*4 values not be passed as arguments to C functions that are not declared as
function prototypes.

• Input/Output:

To improve performance, the XL FORTRAN run-time library has its own buffers and its
own handling of these buffers. Therefore, it is not recommended that XL FORTRAN
routines and routines of other languages perform input/output on the same data files
within the same executable program. However, if such mixing of input/output is required,
the data file should be both opened and explicitly closed within XL FORTRAN routines
before any input/output operations are performed on that file by routines written in another
language. If any XL FORTRAN routines contain WRITE statements, and these routines
are used in an executable program in which the main program is not written in XL
FORTRAN, then the programmer must explicitly CLOSE the data file in an XL FORTRAN
routine to ensure that the buffers are flushed.

These restrictions do not apply to READ or WRITE statements using logical units 5 or 6,
which are preconnected to standard in and standard out, or to PRINT statements.

Corresponding Data Types
The following table indicates the data types available in theXL FORTRAN, Pascal, and C
languages.

FORTRAN Data Types Pascal Data Types C Data Types

INTEGER*1 PACKED -128 .. 127 signed char

INTEGER*2 PACKED -32768 .. 32767 signed short

INTEGER*4 INTEGER signed int

REAL SHORTREAL float
REAL*4

REAL*8 REAL double
DOUBLE PRECISION

REAL*16

COMPLEX structure of 2 floats
COMPLEX*8

54 User's Guide for XL FORTRAN

COMPLEX*16 structure of 2 doubles
DOUBLE COMPLEX

COMPLEX*32

LOGICAL*1 PACKED 0 .. 255 unsigned char

LOGICAL*2 PACKED 0 .. 65535 unsigned short

LOGICAL*4 unsigned int

CHARACTER CHAR char

CHARACTER*n PACKED ARRAY[1 .. n] char[n]
OF CHAR

Dimensioned variable ARRAY

Figure 3. Correspondence of Data Types among FORTRAN, Pascal, and C

Character Variable Types
Most numeric data types have counterparts across languages but there are some
differences between the data types. The most difficult aspect of interlanguage calls is
passing character, string, or text variables between languages.

The only character type in FORTRAN is CHARACTER, which is stored as a set of
contiguous bytes, one character per byte. The length of a FORTRAN character variable or
character array element is determined at compile time and is therefore static. Character
lengths are returned by the FORTRAN intrinsic function LEN.

When you pass a FORTRAN character data item as a parameter, the address of the
beginning of the character is passed along with a parameter that is the length of the
character string. The parameter is added to the end of the declared parameter list.

Pascal's character-variable data types are STRING, PACKED ARRAY-()F CHAR,
GSTRING, and PACKED ARRAY OF GCHAR. The STRING data type has a 4 byte string
length aligned on a double word boundary followed by a set of contiguous bytes, one
character per byte. The dynamic length of the string can be determined using the LENGTH
function. Packed arrays of CHAR, like FORTRAN's CHARACTER type, are stored as a set
of contiguous bytes, one character per byte.

Character strings in Care typically stored as arrays of the type char. The char data type
stores one character per byte; therefore, an array of char is stored exactly like a FORTRAN
CHARACTER variable or a Pascal PACKED ARRAY OF CHAR. When an array of char is
used to represent a character string in C, the end of the string is indicated by the null
character.

Chapter 7. lnterlanguage Calls 55

How Arrays Are Stored
XL FORTRAN stores array elements in ascending storage units in column-major order. C
and Pascal store array elements in row-major order. The following example shows how a
two-dimensional array declared by A(3,2) in FORTRAN, C, and Pascal is stored:

FORTRAN Pascal C Element
Element Element Name

Name Name

Lowest storage unit A(1, 1) A[1, 1] A[O,O]

A(2, 1) A[1,2] A[O, 1]

A(3, 1) A[2, 1] A[1,0]

A(1,2) A[2,2] A[1, 1]

A(2,2) A[3, 1] A[2,0]

Highest storage unit A(3,2) A[3,2] A[2, 1]

%VAL and %REF
To call subprograms written in languages other than FORTRAN (for example, user-written C
programs, or AIX system routines), the actual arguments may need to be passed by a
method different from the default method used by FORTRAN. The form of an actual
argument can be changed by using the %VAL and %REF keywords in the argument list of a
CALL statement or function reference. These keywords specify the way the actual argument
should be passed to the subprogram.

The argument list keywords are:

%VAL This keyword can be used with actual arguments that are CHARACTER*1,
logical, integer, real, or complex expressions. It cannot be used with actual
arguments that are array names, procedure names, or character
expressions of length greater than 1 byte. Hexadecimal, binary, octal, and
Hollerith constants are passed as if they were of the type INTEGER*4. If the
actual argument is a CHARACTER*1, it is padded on the left with zeros to a
32-bit value.

%REF

This keyword causes the actual argument to be passed as 32-bit
intermediate values. If the actual argument is an integer that is shorter than
32 bits, it is sign-extended to a 32-bit value. If the actual argument is a
logical that is shorter than 32 bits, it is padded on the left with zeros to a
32-bit value. If the actual argument is of type real or complex with a length
greater than 32 bits, it is passed as multiple 32-bit intermediate values.

This keyword causes the actual argument to be passed by reference. (The
address of the actual argument is passed.) This is the default for
FORTRAN.

Note that, if the actual argument is of character data type, only the address
of the actual argument is passed, whereas a character actual argument
passed without the %REF function is passed as the address and the length
of the character argument. If such a character argument is being passed to
a C routine, the string must be terminated with a null character, so that the
C routine can determine the length of the string.

56 User's Guide for XL FORTRAN

Subroutine Linkage Convention
The "subroutine linkage convention" describes the machine state at subroutine entry and
exit. This scheme allows routines that are compiled separately in the same or different
languages to be linked and executed when called. The information on Subroutine Linkage
and System Calls in the User's Guide for IBM AIX XL FORTRAN Compiler/6000 is the base
reference on this topic, and should be consulted for further details.

The linkage convention for the IBM AIX XL FORTRAN Compiler/6000 provides a fast and
efficient subroutine linkage by passing parameters in registers, taking full advantage of the
large number of floating-point registers (FPRs) and general-purpose registers (GPRs), and
minimizing the saving and restoring of registers on subroutine entry and exit. The linkage
convention allows for parameter passing and return values to be in FPRs, GPRs, or both.
(GPRs are also referred to as registers.)

Register Usage
If a register is not designated as saved during the call, its contents may be changed during
the call. Conversely, if a register is saved, its contents must be preserved across the call.
The following table lists registers and their functions.

Register Preserved Use
Across Calls

0 no Stack pointer.

1 yes TOC pointer.

2 yes

3 no 1st word of arg list; return value 1.

4 no 2nd word of arg list; return value 2.

5 no 3rd word of arg list; return value 3.

6 no 4th word of arg list; return value 4.

7 no 5th word of arg list; return value 5.

8 no 6th word of arg list; return value 6.

9 no 7th word of arg list; return value 7.

10 no 8th word of arg list; return value 8.

11 no DSA pointer to internal procedure (Env).

12 no

13-31 yes

Figure 4. General Purpose Register Usage

Chapter 7. lnterlanguage Calls 57

Stack

The following table lists floating-point registers and their functions. The floating-point
registers are double precision (64 bits).

Register Preserved Use
Across Calls

0 no

1 no FP parameter 1 , function return 1 .

2 no FP parameter 2, function return 2.

13 no FP parameter 13, function return 13.

14-31 yes

Figure 5. Floating-Point Register Usage

The following table lists special purpose register conventions.

Register Preserved Use
Across Cal Is

Condition register
Bits 0-7 (CRO,CR1) no
Bits 8-19 (CR2,CR3,CR4) yes
Bits 20-23 (CR5) yes Reserved for system use. Never set or

changed.
Bits 24-31 (CR6,CR7) no

Link register no

Count register no

MQ register no

XER register no

FPSCR register no

Figure 6. Special Purpose Register Usage

The stack is a portion of storage that is used to hold local storage, register save areas,
parameter lists, and call chain data. The stack grows from higher addresses to lower
addresses. A stack pointer register (register 1) is used to mark the current "top" of the stack.

A stack frame is the portion of the stack used by a single procedure. You can consider the
input parameters as being part of the current stack frame. In a sense, each output argument
belongs to both the caller's and the callee's stack frames. In either case, the stack frame
size is best defined as the difference between the caller's stack pointer and the callee's.

The storage map of a typical stack frame is shown below.

In this diagram, the current routine has acquired a stack frame which allows it to call other
functions. If no calls are made, and there are no local variables or temps, then the function
need not allocate a stack frame. It can still use the register save area at the top of the
caller's stack frame, if needed.

The stack frame is double word aligned. The FPR save area and the parameter area (P1,
P2, ... , Pn) are also double word aligned. Other areas require word alignment only.

58 User's Guide for XL FORTRAN

Link area

Low
Addresses

IBM AIX
I
I

RUN-TIME STACK
XL FORTRAN Compiler/6000

Stack grows at
this end.

1------
Callee's stack
pointer

Space for Pl-PS

-> o I
4 I
s

12-16
20

is always reserved

-S*nfprs-4*ngprs ->
save

-S*nfprs ->

Caller's stack -> 0
pointer 4

s
12-16

20

Space for Pl-PS 24
is always reserved

High
Addresses

Back chain
Saved CR
Saved LR
Reserved
SAVED TOC

Pl

Pn

Callee's
stack
area

Caller's GPR
save area

max 19 words

Caller's FPR
save area

max lS dblwds

Back chain
Saved CR
Saved LR
Reserved
Saved TOC

Pl

Pn

Caller's
stack
area

<-- LINK AREA (callee)

OUTPUT ARGUMENT AREA
<-- (Used by callee to

construct argument
list)

<-- LOCAL STACK AREA

(Possible word wasted
for alignment.)

Rf irst Rl3 for full
save

R31

Ff irst

F31

Fl4 for a
full save

<-- LINK AREA (caller)

INPUT PARAMETER AREA
<--(Callee's input

parameters found
here. Is also

caller's arg area.)

This area consists of six words, and is at offset zero from the caller's stack pointer on entry
to a procedure. The first word contains the caller's back chain (stack pointer). The second
word is where the callee saves the Condition Register (CR) if needed. The third word is
where the callee's PROLOG code saves the Link Register if necessary. The fourth word is
reserved for the SET JMP, LONGJMP processing, and the fifth word is reserved for future
use. The last word (word 6) is reserved for use by the Global Linkage routines which are
used when calling out-of-module routines (for example, in shared libraries).

Input Parameter Area
This is a contiguous piece of storage reserved by the calling program to represent the
register image of the input parameters of the callee. The input parameter area is double
word aligned, and is located on the stack directly following the caller's link area. This area is

Chapter 7. lnterlanguage Calls 59

at least 8 words in size. If more than 8 words of parameters are expected, they would have
been stored as register images starting at positive offset 56 from the incoming stack pointer.

Register Save area
This area is double word aligned, and provides the space needed to save all non-volatile
FPRs and GPRs used by the callee program. The FPRs are saved next to the link area. The
GP Rs are saved above the FPRs (in lower addresses). The called function may save the
registers here even if it does not need to allocate a new stack frame. The system defined
stack floor includes the maximum possible save area (18*8 for FPRs + 19*4 for GPRs).
Locations at a numerically lower address than stack floor should not be accessed.

A callee needs only to save the non-volatile registers that it actually uses. Register 31 is
always saved in the highest addressed word of the particular save area.

Local stack area
This is the space allocated by the callee procedure for local variables, and temporaries.

Output Parameter Area
The parameter area (P1 ... Pn) must be large enough to hold the largest parameter list of all
procedures called from the procedure that owns this stack frame.

This area is at least 8 words long regardless of the length or existence of any argument list.
If more than 8 words are being passed, an extension list is constructed beginning at offset
56 from the current stack pointer.

Parameter Passing
The IBM AIX RISC System/6000 linkage convention takes advantage of the large number of
registers available. The linkage convention passes arguments in both GPRs and FPRs. The
GPRs and FPRs available for argument passing are specified in two fixed lists: R3-R10 and
FP1-FP13.

When there are more argument words than available parameter GPRs and FPRs the
remaining words are passed in storage on the stack. The values in storage are the same as
if they were in registers. Space for more than 8 words of arguments (float and non-float)
must be reserved on the stack even if all the arguments were passed in registers.

The size of the parameter area is sufficient to contain all the arguments passed on any call
statement from a procedure associated with the stack frame. Although not all the arguments
for a particular call actually appear in storage, it is convenient to consider them as forming a
list in this area, each one occupying one or more words.

For call by reference (as in FORTRAN), the address of the parameter is passed in a register.
The following refers to call by value, as in C or as in FORTRAN when %VAL is used. For
purposes of their appearance in the list, arguments are classified as floating-point values or
nonfloating-point values:

• Each nonfloating-point scalar argument requires one word and appears in that word
exactly as it would appear in a GPR. It is right justified, if language semantics specify, and
is word aligned.

• Each floating-point value occupies one word, while float double occupies two successive
words in the list.

• Structure values appear in successive words as they would anywhere in storage,
satisfying all appropriate alignment requirements. Structures are aligned to a fullword and
occupy (sizeof (struct x) +3) I 4 fullwords with any padding at the end. A structure
which is smaller than a word will be left justified within its word or register. Larger

60 User's Guide for XL FORTRAN

structures can occupy multiple registers, and may be passed partly in storage and partly
in registers.

• Other aggregate values are passed "val-by-ref', that is, the compiler actually passes their
address and arranges for a copy to be made in the invoked program.

• A procedure or function pointer is passed as a pointer to the routine's function descriptor;
its first word contains its entry point address. (See "Pointers to Functions" on page 62 for
more information.)

Argument passing rules (by value)
Following is an example of a call to a function:

f(%val(ll), %val(l2), %val(l3), %val(dl), %val(fl),
%val(cl), %val(d2), %val(sl), %val(cx2))

where: 1 denotes integer*4 (full word integer)
d denotes real*S (double precision)
f denotes real*4 (real)
s denotes integer*2 (half word integer)
c denotes character (one character)
ex denotes complex*l6 (double complex)

STORAGE MAPPING OF
. WILL BE PASSED IN: PARM AREA ON THE STACK

R3 0 11

R4 4 12

RS 8 13

12
FPl (R6,R7 unused) dl

16

FP2 (RS unused) 20 fl

R9 24 l/!ll!!lll!!lll cl <-

28
FP3 (RlO unused) d2

32

STACK 36 //!ll!!!ll sl <-

FP4 (8 bytes 40
reserved in cx2 (real)
stack) 44

FPS (8 bytes 48
reserved in cx2 (imaginary)
stack) S2

From the above illustration we state the following rules:

right justified (if
language sematics
specify)

right justified (if
language semantics
specify)

• The parameter list is a conceptually contiguous piece of storage containing a list of words.
For efficiency, the first 8 words of the list are not actually stored in the space reserved for
them, but passed in GPR3-GPR 10. Further, the first 13 floating-point value parameters

Chapter 7. lnterlanguage Calls 61

are not stored in the space reserved for them or passed in GPRs, but are passed in
FPR1-FPR13.

• If the called procedure wishes to treat the parameter list as a contiguous piece of storage
(for example, if the address of a parameter is taken in C) then the parameter registers are
stored in the space reserved for them in the stack.

• A register image is stored on the stack.

• The argument area (P1 ... Pn) must be large enough to hold the largest parameter list.

Function Calls
A routine has two symbols associated with it: a function descriptor (name) and an entry point
(.name). When a call is made to a routine, the compiler branches to the name point directly.
Excluding the loading of parameters (if any) in the proper registers, calls to functions are
expanded by compilers to the following two instruction sequence:

BL .foe # Branch to foe
CROR 15,15,15 #Special NOP

The linkage editor will do one of 2 things when it sees a BL:

1. If foe is imported (not in the same module), then the linkage editor will change the BL to
• foe to a BL to • glink (global linkage routine) off oo, and insert the • glink into the
module. Also, if a NOP instruction (CROR 15 , 15, 15) immediately follows the BL
instruction, the linkage editor will replace the NOP instruction with the LOAD instruction
L R2, 2 0 (Rl).

2. If foe is bound in the same module as its caller, and a LOAD instruction
(L R2, 2 o (Rl)) immediately follows the BL instruction, then it will replace the LOAD
instruction with a NOP (CROR 15, 15, 15).

Note: For any export, the linkage editor will insert the procedure's descriptor into the
module.

Pointers to functions
Function pointer is the name given to a data type whose values range over procedure
names. Variables of this type appear in several programming languages such as C and
FORTRAN. In FORTRAN, a dummy argument that appears in an EXTERNAL statement is a

· function pointer. Support is provided for the use of function pointers in contexts such as the
target of a call statement or an actual argument of such a statement.

A function pointer is a fullword quantity that is the address of a function descriptor. The
function descriptor is a three word object. The first word contains the address of the entry
point of the procedure, the second word has the address of the TOC of the module in which
the procedure is bound, and the third word is the environment pointer for languages such as
Pascal, and PL/I. There is only one function descriptor per entry point. It is bound into the
same module as the function it identifies if the function is external. The descriptor has an
external name, which is the same as the function name but with a different storage class that
uniquely identifies it. It is this descriptor name that is used in all import or export operations.

Function values
Functions return their values according to type:

• INTEGER and LOGICAL of any length are returned (right justified) in R3.

• Floating-point values are returned in FP1-FP13.

• A single or double complex value is returned in FP1 and FP2.

62 User's Guide for XL FORTRAN

Stack Floor

• Character strings are returned in a buffer allocated by the caller. The address and the
length of this buffer are passed in R3 and R4 respectively as hidden parameters. This
means that the first explicit parameter word will be in RS and that all subsequent
parameters are moved to the next word.

The stack floor is a system defined address below which the stack may not grow. All
programs in the system must avoid accessing locations in the stack segment that are below
the stack floor.

There are other system invariants related to the stack that must be maintained by all
compilers and assemblers, These are:

• No data is saved or accessed from an address lower than the stack floor.

• The stack pointer is always valid. When the stack frame size is more than 32767 bytes,
care must be taken to ensure that its value is changed in a single instruction. This
ensures that there is no timing window in which a signal handler would either overlay the
stack data, or erroneously appear to overflow the stack segment.

Stack Overflow
The linkage convention for IBM AIX XL FORTRAN Compiler/6000 requires no explicit inline
check for overflow. The operating system uses a storage protect mechanism to detect stores
past the end of the stack segment.

Prolog/Epilog
On entry to a procedure, some or all of the following steps may have to be done:

1 . Save the link register at offset 8 from the stack pointer if necessary.

2. If any of the CR bits 8-19 (CR2, CR3, CR4) are used then save the CR at displacement
4 from the current stack pointer.

3. Save any non-volatile FPRs used by this procedure in the caller's FPR save area. There
is a set of routines named _savef14, _savef15, ... _savef31 which may be used.

4. Save all non-volatile GPRs used by this procedure in the caller's GPR save area.

5. Store back chain and decrement stack pointer by the size of the stack frame. Note that if
a stack overflow occurs, it will be known immediately when the store of the back chain is
done.

On exit from a procedure, some or all of the following steps may have to be performed:

1. Restore all GPRs saved.

2. Restore stack pointer to the value it had on entry.

3. Restore link register if necessary.

4. Restore bits 8-19 of the CR if necessary.

5. If any FPRs were saved then restore them using _restfn where n is the first FPR to be
restored.

6. Return to caller.

Chapter 7. lnterlanguage Calls 63

Traceback
The compiler supports the traceback mechanism, which is required by the IBM AIX Version
3 for RISC System/6000 symbolic debugger in order to unravel the call or return stack. Each
module has a traceback table in the text segment at the end of its code. This table contains
information about the module including the type of module as well as stack frame and
register information.

Type Encoding/Checking
Early error detection (prior to execution) is a key objective of the AIX Linkage Convention.
Execution time errors are hard to find, and a good number of them are caused by
mismatching subroutine interfaces or conflicting data definition. To help uncover such errors
early, a scheme has been defined by which compilers will encode information about all
external symbols (data and programs). This information will then be checked at bind or load
time for consistency if the EXTCHK option has been specified.

Sample Program - FORTRAN Calling C
The following example is to illustrate how program units written in different languages can be
combined to create a single program. It also shows the methods used for parameter passing
between FORTRAN and C subroutines with different data types as arguments.

PROGRAM EXAMPLE
INTEGER*4 Il, I3, !4, !6, IRET, CFUNCl, CFUNC3, CFUNC4, CFUNCS
INTEGER*4 IARGl /1/
INTEGER*2 IARG2 /2/
INTEGER*l IARG3 /3/
CHARACTER*l CHAR_ARGl /'a'/, CHAR_ARG2 /'b'/
REAL*8 R_ARGl /1.0/, R_ARG2 /2.0/, R_ARG3 /3.0/, CFUNC2, R2
COMPLEX*l6 CX_ARGl /(1.0,1.0)/, CX_ARG2/(l.0,2.0)/,

+ CX_ARG3 /(3.0,3.0)/
LOGICAL*4 LARGl /T/, LARG2 /F/, LARG3 /F/

C call C function using integer arguments
Il = CFUNCl(IARGl, %VAL(IARG2), %REF(IARG3), %VAL(X"0004"))

c
c call c function using real arguments

R2 = CFUNC2(R_ARG1, %VAL(R_ARG2), %REF(R_ARG3), %VAL(4.0D0))
c
c call c function using complex arguments

!3 = CFUNC3(%VAL(CX_ARG2), %VAL((5.0DO, 6.0DO)))
c
c call c functions using logical arguments

!4 = CFUNC4(LARG1, %VAL(LARG2), %REF(LARG3), %VAL(.TRUE.))
c
c call c functions using character arguments

!6 = CFUNC5(%VAL(CHAR_ARG1), %REF(CHAR_ARG2), %VAL('c'))
c
C check values returned

IF ((Il.NE. 1) .OR. (R2.NE.l.O) .ORe (I3.NE.l) .OR. (I4.NE.1)
+ • OR. (I 6. NE. 1)) PRINT *, "PROGRAM NOT CORRECT"

END

64 User's Guide for XL FORTRAN

/* C Program
/* C function that receives integer values
cfuncl(ivarl, ivar2, ivar3, ivar4)
int *ivarl, ivar4;
short ivar2;
char *ivar3;
{
int retval;

}

if (*ivarl!=l 11 ivar2!=2 11 *ivar3!=3 11 ivar4!=4)
{

retval = -1;
}
else retval = 1;
return(retval);

*/
*/

/* C function that receives real values */
cfunc2(rvarl, rvar2, rvar3, rvar4)
double *rvarl, rvar2, *rvar3, rvar4;
{
double retval;

if (*rvarl! =1. 0 11 rvar2 ! =2. 0 11 *rvar3 ! =3. 0 11 rvar4 ! =4. 0)
{

}

retval=-1. OeO;
}
else retval = 1.0;
return(retval);

/* c function that receives FORTRAN complex values as real */
cfunc3(rvarl, rvar2, rvar3, rvar4)
double rvarl, rvar2, rvar3, rvar4;
{
int retval;

}

if (rvarl! =1. 0 11 rvar2 ! =2. 0 11 rvar3 ! =5. 0 11 rvar4 ! =6. 0)
retval=-1;

else retval = 1;
return(retval);

/* C function that receives FORTRAN logical values */
cfunc4(lvarl, lvar2, lvar3, lvar4)
int *lvarl, lvar2, *lvar3, lvar4;
{
int retval;

if (*lvarl!=OxOl I I lvar2!=0x00 I I *lvar3!=0x00 I I lvar4!=0x01)
retval = -1;

else retval = 1;
return(retval);

}
/* C function that receives FORTRAN character values
cfuncS(chvarl, chvar2, chvar3)
char chvarl, *chvar2, chvar3;
{
int retval;

}

if (chvarl!='a' I I *chvar2!='b' I I chvar3!='c')
retval = -1;

else retval = 1;
return(retval);

*/

Chapter 7. lnterlanguage Calls 65

66 User's Guide for XL FORTRAN

Appendix A. Sample Program

The following sections outline a sample program, the listing it would produce with the
SOURCE compiler option specified, and the output from running the program.

Source File
PROGRAM CALCULATE

c
c Program to calculate the sum of up to n values of x**3
c where negative values are ignored.
c Stop if the sum is negative.
c

READ(S,*) N
SUM=O
DO 10 I=l,N

READ(S,*) X
IF (X.GE.0) THEN

Y=X**3
IF (SUM.GE.0) THEN

SUM=SUM+Y
ELSE

GOTO 20
END IF

END IF
10 CONTINUE
20 CONTINUE

WRITE(6,*) 'This is the sum:' ,SUM
STOP
END

Sample Listing
If you specify the SOURCE compiler option, XL FORTRAN produces the following listing:

IBM AIX XL FORTRAN Compiler/6000 Version 01.01.0000.0000 ~- user20.f 11/26/03
05:42:40

>>>>> OPTIONS SECTION <<<<<
*** Options In Effect ***

SOURCE

>>>>> SOURCE SECTION <<<<<
1 I PROGRAM CALCULATE
2 le
3 le Program to calculate the sum of up to n values of x**3
4 le where negative values are ignored.
5 le Stop if the sum is negative.
6 le
7 I READ(S,*) N
8 I SUM=O
9 I DO 10 I= 1 'N

10 I READ(S,*) x
11 I IF (X.GE.O) THEN

© Copyright IBM Corp. 1990 Appendix A. Sample Program 67

12 I Y=X**3
13 I IF (SUM.GE.0) THEN
14 I SUM=SUM+Y
15 I ELSE
16 I GOTO 20
17 I END IF
18 I END IF
19 110 CONTINUE
20 120 CONTINUE
21 I WRITE(6,*) 'This is the sum:', SUM
22 I STOP
23 I END

** calculate End of Compilation 1

>>>>> FILE TABLE SECTION <<<<<

FILE CREATION
FILE NO

0
FILENAME
user20.f

DATE
07/17/89

>>>>> COMPILATION EPILOGUE SECTION <<<<<

FORTRAN Summary of Diagnosed Conditions

TOTAL

0

UNRECOVERABLE
(u)

0

SEVERE
(s)

0

ERROR
(E)

0

TIME
23:24:55

WARNING
(W)

0

FROM
FILE LINE

INFORMATIONAL
(I)

0

Source records read....................................... 23
Compilation start .•....••.•.••.•••••••.•.•.•.•• 11/26/03 05:42:40
Compilation end .•.•••.•••.•••...•.•.•••.•••••.. 11/26/03 05:42:40
Elapsed time ••.•.•.•..•.••.•.•...••.•..•••••••.•••.•...•.. 00: 00: 00
Total cpu time................ . • • • • . • • . . • • . • . . • . . • • • . 0. 300
Virtual cpu time.. 0.400

1501-510 Compilation successful for file user20.f.
1501-543 Object file created.

Output Produced
Given the input 5 3 7 2 2 -4 19 6, the following output would appear when the sample
program runs: 68376. 00000

68 User's Guide for XL FORTRAN

Appendix B. ASCII/EBCDIC Character Set

Decimal
Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Hex

XL FORTRAN uses the ASCII character set as its collating sequence.

This appendix lists the standard ASCII and EBCDIC characters in numerical order with the
corresponding decimal and hexadecimal values. The table indicates the control characters
with "ctrl-" notation. For example, the horizontal tab (HT) appears as "ctrl-I", which you
enter by simultaneously pressing the ctrl key and I key.

Control ASCII Meaning EBCDIC Meaning
Value Character Symbol Symbol

00 Ctr I-@ NUL null NUL null

01 Ctr I-A SOH start of heading SOH start of heading

02 Ctrl-B STX start of text STX start of text

03 Ctrl-C ETX end of text ETX end of text

04 Ctrl-D EQT end of transmission SEL select

05 Ctrl-E ENQ enquiry HT horizontal tab

06 Ctrl-F ACK acknowledge RNL required new-line

07 Ctrl-G BEL bell DEL delete

08 Ctrl-H BS backspace GE graphic escape

09 Ctrl-1 HT horizontal tab SPS superscript

OA Ctrl-J LF line feed APT repeat

OB Ctrl-K VT vertical tab VT vertical tab

oc Ctrl-L FF form feed FF form feed

OD Ctrl-M CR carriage return CR carriage return

OE Ctrl-N so shift out so shift out

OF Ctrl-0 SI shift in SI shift in

10 Ctrl-P DLE data link escape DLE data link escape

11 Ctrl-Q DC1 device control 1 DC1 device control 1

12 Ctrl-R DC2 device control 2 DC2 device control 2

13 Ctrl-S DC3 device control 3 DC3 device control 3

14 Ctrl-T DC4 device control 4 RES/ restore/enable
ENP presentation

15 Ctrl-U NAK negative acknowledge NL new-line

16 Ctrl-V SYN synchronous idle BS backspace

17 Ctrl-W ETB end of transmission block POC program-operator
communications

18 Ctrl-X CAN cancel CAN cancel

19 Ctrl-Y EM end of medium EM end of medium

1A Ctrl-Z SUB substitute UBS unit backspace

18 Ctr I-[ESC escape CU1 customer use 1

@ Copyright IBM Corp. 1990 Appendix B. ASCII/EBCDIC Character Set 69

Decimal Hex Control ASCII Meaning EBCDIC Meaning
Value Value Character Symbol Symbol

28 1C Ctrl-\ FS file separator IFS interchange file separator

29 10 Ctrl-] GS group separator IGS interchange group
separator

30 1E Ctrl-" RS record separator IRS interchange record
separator

31 1F Ctrl-_ us unit separator IUS/ITB interchange unit
separator I intermediate
transmission block

32 20 SP space OS digit select

33 21 ! exclamation point sos start of significance

34 22 " straight double quotation FS field separator
mark

35 23 # number sign wus word underscore

36 24 $ dollar sign BYP/INP bypass/inhibit
presentation

37 25 % percent sign LF line feed

38 26 & ampersand ETB end of transmission block

39 27 ' apostrophe ESC escape

40 28 (left parenthesis SA set attribute

41 29) right parenthesis

42 2A * asterisk SM/SW set model switch

43 2B + addition sign CSP control sequence prefix

44 2C I comma MFA modify field attribute

45 20 - subtraction sign ENQ enquiry

46 2E period ACK acknowledge

47 2F I right slash BEL bell

48 30 0

49 31 1

50 32 2 SYN synchronous idle

51 33 3 IR index return

52 34 4 pp presentation position

53 35 5 TRN

54 36 6 NBS numeric backspace

55 37 7 EQT end of transmission

56 38 8 SBS subscript

57 39 9 IT indent tab

58 3A colon RFF required form feed

59 3B
'

semicolon CU3 customer use 3

60 3C < less than DC4 device control 4

61 30 = equal NAK negative acknowledge

70 User's Guide for XL FORTRAN

Decimal Hex Control ASCII Meaning EBCDIC Meaning
Value Value Character Symbol Symbol

62 3E > greater than

63 3F ? question mark SUB substitute

64 40 @ at symbol SP space

65 41 A

66 42 B

67 43 c
68 44 D

69 45 E

70 46 F

71 47 G

72 48 H

73 49 I

74 4A J ¢ cent

75 4B K period

76 4C L < less than

77 40 M (left parenthesis

78 4E N + addition sign

79 4F 0 I logical or

80 50 p & ampersand

81 51 a
82 52 R

83 53 s
84 54 T

85 55 u
86 56 v
87 57 w
88 58 x
89 59 y

90 5A z ! exclamation point

91 58 [left bracket $ dollar sign

92 5C \ left slash * asterisk

93 50 1 right bracket) right parenthesis

94 5E I\ hat, circumflex semicolon I

95 5F - underscore .., logical not

96 60 I grave - subtraction sign

97 61 a I right slash

98 62 b

99 63 c

Appendix B. ASCII/EBCDIC Character Set 71

Decimal Hex Control ASCII Meaning EBCDIC Meaning
Value Value Character Symbol Symbol

100 64 d

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j I split vertical bar

107 68 k
'

comma

108 6C I % percent sign

109 60 m underscore -
110 6E n > greater than

111 6F 0 ? question mark

112 70 p

113 71 q l

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w
120 78 x

121 79 y I grave

122 7A z colon

123 78 { left brace # number sign

124 7C I logical or @ at symbol

125 70 } right brace ' apostrophe

126 7E - similar, tilde = equal

127 7F DEL delete " straight double quotation
mark

128 80

129 81 a

130 82 b

131 83 c

132 84 d

133 85 e

134 86 f

135 87 g

136 88 h

72 User's Guide for XL FORTRAN

Decimal Hex Control ASCII Meaning EBCDIC Meaning
Value Value Character Symbol Symbol

137 89 i

138 SA

139 SB

140 SC

141 SD

142 SE

143 SF

144 90

145 91 j

146 92 k

147 93 I

14S 94 m

149 95 n

150 96 0

151 97 p

152 9S q

153 99 r

154 9A

155 9B

156 9C

157 90

15S 9E

159 9F

160 AO

161 A1 - similar, tilde

162 A2 s

163 A3 t

164 A4 u

165 A5 v

166 A6 w

167 A7 x

168 AS y

169 A9 z

170 AA

171 AB

172 AC

173 AD

174 AE

Appendix B. ASCII/EBCDIC Character Set 73

Decimal Hex Control ASCII Meaning EBCDIC Meaning
Value Value Character Symbol Symbol

175 AF

176 BO

177 B1

178 B2

179 B3

180 B4

181 BS

182 B6

183 B7

184 BB

185 B9

186 BA

187 BB

188 BC

189 BO

190 BE

191 BF

192 co { left brace
193 C1 A
194 C2 B

195 C3 c
196 C4 D

197 cs E

198 C6 F

199 C7 G

200 ca H

201 C9 I

202 CA

203 CB

204 cc
205 CD

206 CE

207 CF

208 DO } right brace

209 D1 J

210 D2 K

211 D3 L

212 D4 M

7 4 User's Guide for XL FORTRAN

Decimal Hex Control ASCII Meaning EBCDIC Meaning
Value Value Character Symbol Symbol

213 05 N

214 06 0

215 07 p

216 08 a
217 09 R

218 DA

219 DB

220 DC

221 DD

222 DE

223 OF

224 EO \ left slash

225 E1

226 E2 s
227 E3 T

228 E4 u
229 ES v
230 E6 w
231 E7 x
232 ES y

233 E9 z
234 EA

235 EB

236 EC

237 ED

238 EE

239 EF

240 FO 0
241 F1 1
242 F2 2

243 F3 3
244 F4 4
245 F5 5
246 F6 6
247 F7 7
248 F8 8
249 F9 9

250 FA. I vertical line

Appendix B. ASCII/EBCDIC Character Set 75

-
Decimal Hex Control ASCII Meaning EBCDIC Meaning
Value Value Character Symbol Symbol

251 FB

252 FC

253 FD

254 FE

255 FF EO eight ones

76 User's Guide for XL FORTRAN

Appendix C. FORTRAN Specific AIX Commands

You can use the following two IBM AIX Version 3 for RISC System/6000 commands with XL
FORTRAN files.

asa Command
The asa command interprets the output of FORTRAN programs that use ASA carriage
control characters.

-asa~
~-

The asa command processes either the files whose names are given as arguments, or the
standard input stream, if no file name is supplied. The first character of each line is assumed
to be a control character. The control characters and their meanings are:

First Character Vertical Spacing before Printing
of Record

Blank Single new-line before printing (blank character).

0 Double new-line before printing.

1 New page before printing.

+ Overprint previous line.

Lines beginning with characters other than the defined control characters are treated as if
they begin with a blank character. If any such lines appear, an appropriate diagnostic
appears on standard error. The first character of a line is not printed.

Executing the asa command causes the first line of each input file to start on a new page.

To correctly view the output of FORTRAN programs which use ASA carriage control
characters, you can use the asa command as a filter. For example, the following pipe:

a.out I asa > lpr

directs the output produced by the program a. out, properly formatted and paginated, to the
line printer lpr.

FORTRAN output sent to the file myfile can be viewed using the following form of the asa
command: asa myfile.

fsplit Command
The fsplit command splits specified FORTRAN source program files into several files.

-fspllt ~ file -j
option

©Copyright IBM Corp. 1990 Appendix C. FORTRAN Specific AIX Commands 77

The fsplit command splits the specified files into separate files, with one procedure per file.
A procedure in this context includes the following program segments:

• Block data
• Function
• Program
• Subroutine.

The naming conventions for the resulting files are as follows:

• If the program or subprogram is explicitly named name, the resulting file is name.f. For
example, if you use the fsplit command on the following program:

c

program splitup

call split2

stop
end

subroutine split2

return
end

the resulting files are splitup. f and split2. f.

• If you have an unnamed block data subprogram, the resulting file will be blockdata1 .f.

• If you do not have a program or subprogram statement, the resulting file will be main.f.

You can specify one of the following options in the command line:

Option Meaning

f Input files are FORTRAN language files. This option is the default.

s Strip FORTRAN input lines to 72 or fewer characters, and remove trailing blanks.

78 User's Guide for XL FORTRAN

Appendix D. XL FORTRAN Internal Limits

The following table lists the internal XLFORTRAN compiler limits. The numbers within
parentheses in the table correspond to the notes which follow the table.

Language Feature Limit

Maximum length of a free-form statement 6600

Maximum number of symbolic names in a program unit (1)

Maximum Hollerith constant length 255

Maximum number of computed GOTO statement numbers 999

Maximum DO loop and implied DO loop nesting level (2)

Maximum block IF statement nesting level (2)

Maximum number of nested INCLUDE compiler directives 16

Maximum number of parentheses groups in a format 500

Maximum numeric format field width 2000

Maximum character format field width 32767

Maximum number of times a format code can be repeated 32767

Figure 7. Internal FORTRAN Compiler Limits

Notes on compiler limits:

1 . The number of symbolic names is limited by the size of the dictionary. The default
dictionary size is 2048, but may be modified through the ST_SIZE option.

2. The maximum DO loop and block IF nesting level has a default value of 50, but may be
modified through the BK_SIZE option.

© Copyright IBM Corp. 1990 Appendix D. XL FORTRAN Internal Limits 79

80 User's Guide for XL FORTRAN

Appendix E. Migration Considerations

This appendix outlines some items for consideration if you are porting source code to XL
FORTRAN. The XL FORTRAN compiler provides no object code compatibility on the IBM
AIX RISC System/6000 computer, so you must recompile any source code before it can be
run.

Compatibility with the ANSI Standard
XL FORTRAN is fully compatible with the ANSI X3.9-1978 standard (Full ANSI FORTRAN
77). If you specify the FIPS compiler option, all features which are extensions to the ANSI
standard are flagged with a warning message.

Compatibility with SAA FORTRAN
XL FORTRAN is fully compatible with SAA FORTRAN Release 1.0. If you specify the SAA
compiler option, all features which are extensions to SAA FORTRAN Release 1.0 are
flagged with a warning message.

Compatibility with RT PC FORTRAN 77
XL FORTRAN is source code compatible with RT PC FORTRAN 77 with the exception that
character constants outside DATA statements are not followed by a null character as they
are in RT PC FORTRAN 77. The purpose of this feature is to provide compatibility with the C
language. XL FORTRAN allows you to append the null character to character constants.

Compatibility with VS FORTRAN (S/370)
This section lists the major differences between XL FORTRAN and VS FORTRAN, both in
terms of the language specification and the implementation.

Language differences
Extended precision data types

XL FORTRAN handles any extended precision real or complex data as double precision real
or complex data respectively, since the IBM AIX RISC System/6000 computer does not
support extended precision floating point data. Such data is allocated appropriate storage
(16 and 32 bytes respectively) to maintain equivalence relationships.

Floating-point representation

XL FORTRAN uses the ANSI/IEEE binary floating-point representation. This results in
different ranges of representable values for real data:

©Copyright IBM Corp. 1990 Appendix E. Migration Considerations 81

Compiler Data Length Absolute Absolute Precision
(bytes) minimum maximum

XL Real 4 0.117 549 4 E- 37 0.340 282 4 E+ 39 Approximately 8
decimal digits

vs Real 4 0.539 760 5 E- 78 0.723 700 5 E+ 76 Approximately 6
decimal digits

XL Real 8 0.222 507 4 0-307 0.179 769 3 0+309 Approximately 17
decimal digits

vs Real 8 0.539 760 5 0- 78 0. 723 700 6 0+ 76 Approximately 15
decimal digits

XL Real 16 0.222 507 4 0-307 0.179 769 3 0+309 Approximately 17
decimal digits

vs Real 16 0.539 760 5 Q- 78 0.723 700 6 Q+ 76 Approximately 32
decimal digits

Note: Ranges specified are for normalized real values.

Keyed access input/output

The IBM AIX RISC System/6000 computer does not provide the facilities required for keyed
access input/output. Therefore, XL FORTRAN does not include the VS FORTRAN
statements for keyed access input/output:

- READ with keyed access
- WRITE with keyed access
- REWRITE.

Asynchronous input/output

XL FORTRAN does not provide the asynchronous input/output statements:

- Asynchronous READ
- Asynchronous WRITE
- WAIT.

Note also that VS FORTRAN only provides asynchronous 1/0 under MVS.

BLANK specifier

XL FORTRAN assumes a default of 'NULL' for the BLANK specifier when reading from a
unit for which an OPEN statement was not specified. The default for VS FORTRAN is
'ZERO'.

INCLUDE statement

XL FORTRAN allows apostrophes and quotation marks as delimiters (as well as
parentheses).

82 User's Guide for XL FORTRAN

Debug statements

XL FORTRAN does not include the VS FORTRAN debug statements:

- AT
- DEBUG
- END DEBUG
- DISPLAY
- TRACE OFF
- TRACE ON.

Backslash in character and Hollerith constants

For compatibility with C language usage, XL FORTRAN treats the backslash as an escape
character. Two consecutive backslashes within a character or Hollerith constant represent
the backslash character.

Hexadecimal constants: truncation

The truncation of hexadecimal constants by XL FORTRAN is always on the left, but in VS
FORTRAN the truncation is on the left for numeric data and on the right for character data.
For example:

CHARACTER C /Z4122/

INTEGER*2 I /ZOOOOOl/

Intrinsic functions

'A' (EBCDIC) in VS FORTRAN,
'B' (ASCII) in XL FORTRAN
1 in VS FORTRAN, 1 in XL FORTRAN

XL FORTRAN does not provide the following intrinsic functions:

- COTAN
- Extended precision intrinsic functions.

Extended error handling su~routines

XL FORTRAN does not provide the extended error handling subroutines available in VS
FORTRAN:

- ERRMON
- ERRSAV
- ERRSET
- ERRSTR
- ERRTRA.

Service and utility subprograms

XL FORTRAN does not provide the seNice and utility subprograms available in VS
FORTRAN:

- DVCHK
- OVERFL
- DUMP/PDUMP
- CDUMP/CPDUMP
- EXIT
- SDUMP
- XUFLOW.

Appendix E. Migration Considerations 83

Implementation differences
Character passing to subprograms

Characters are passed in two words, one containing the address of the string and the other
containing the length. The words containing the lengths of character arguments appear after
all words containing addresses. This facilitates interlanguage calls.

For example:

CHARACTER Cl,C2
INTEGER Il,I2
CALL SUBR(Cl,Il,C2,I2)

In the above example, the call to SUBR would result in the following parameter list being set
up:

addr(Cl),addr(Il),addr(C2),addr(I2),len(Cl),len(C2)

VS FORTRAN uses a shadow parameter to pass the length of the string. Only the register
containing the address appears in the call.

Normalization by adding zero

x = x + 0

This assignment is eliminated through optimization performed by the XL FORTRAN compiler
back end. In contrast, VS FORTRAN interprets this assignment as a request to normalize
the floating-point number x.

Compatibility with RT PC VS FORTRAN
The XL FORTRAN compiler is source code compatible with RT PC VS FORTRAN, except
for:

• Mode compiler options (IBM, R1, AN, VX)
• The following feature of R1 mode:

- Character constants outside DATA statements are followed by a null character.
• The following features of VX mode:

- BYTE data type
- VIRTUAL statement
- Extended range of a DO loop
- TYPE and ACCEPT statements
- Logicals or integers in arithmetic or logical expressions
- Q edit-descriptor for character count editing
- NAMELIST statement allowed anywhere before use
- 'rn record number specifier in direct input/output statements
- Certain intrinsic functions (for example, trigonometric degree functions).

84 User's Guide for XL FORTRAN

Appendix F. Single Precision Floating Point Overflow

The following information is based on the IBM RISC System/6000 hardware technical
reference manual description of floating point arithmetic .. It describes an error in the
implementation of the frsp (floating round to single precision) instruction which may affect
some single precision floating point results. The XFLAG=DD24 compiler option generates
instructions to avoid the error as described here.

The frsp Instruction
The Floating Round to Single Precision (frsp or frsp.) instruction may produce incorrect
results when all of the following conditions are met:

1. The frsp is dependent on a previous floating point arithmetic operation. Dependent
means that it uses the target register of the arithmetic operation as the source register.

2. Less than two nondependent floating point arithmetic operations occur between the frsp
and the operation on which it is dependent.

3. The magnitude of the double precision result of the arithmetic operation is less than
2**128 before rounding.

4. The magnitude of the double precision result after rounding is exactly 2**128.

If the error occurs, the magnitude of the result placed in the target register is 2**128:

X'47F0000000000000' or X'C7F0000000000000'

This is not a valid single precision value. A single precision store of this value will store the
same value, plus or minus infinity, as if the frsp had executed correctly. But the result in the
target register is the double precision representation of 2**128.

Effects of Compiler Option XFLAG=DD24
One way to avoid this error is to insure that two nondependent floating point operations are
placed between a floating point arithmetic operation and the dependent round to single
precision. The target registers for these operations should not be the same register that is a
source register for the frsp.

If you use the XFLAG=DD24 option, the compiler detects the first two conditions above that
are necessary for this error. The compiler inserts two no-op lrfl instructions between the
nondependent floating point operation and the dependent frsp. That eliminates one of the
conditions necessary for the error.

The XFLAG=DD24 option only affects the results of floating point calculations where the
magnitude of the double precision result is less than 2**128, the result is rounded to single
precision, and the magnitude of the rounded result is exactly 2**128. The effect of the
XFLAG=DD24 option is that the rounded result is always treated as a single precision
infinity, and not as a valid double precision value 2**128.

The extra no-op lrfl instructions inserted by the XFLAG=DD24 option may degrade the
performance of the compiled program. These extra lrfl instructions are most likely to be
inserted if you compile with the OPT and -qrndsngl compiler options.

©Copyright IBM Corp. 1990 Appendix F. Single Precision Floating Point Overflow 85

86 User's Guide for XL FORTRAN

Glossary

This is a glossary of commonly used terms in the User's

Guide for IBM AIX XL FORTRAN Compiler/6000 and the
Reference Manual for IBM AIX XL FORTRAN
Compiler/6000. It includes definitions developed by the
American National Standards Institute (ANSI) and entries
from the IBM Dictionary of Computing, SC20-1699.

alphabetic character
A letter or other symbol, excluding digits, used in a
language. Usually the uppercase and lowercase letters A
through Z plus other special symbols (such as $ and _)
allowed by a particular language.

alphanumeric
Pertaining to a character set that contains letters, digits,
and usually other characters, such as punctuation marks
and mathematical symbols.

American National Standard Code for Information
Interchange (ASCII)
The code developed by ANSI for information interchange
among data processing systems, data communication
systems, and associated equipment. The ASCII character
set consists of 7-bit control characters and symbolic
characters.

American National Standards Institute (ANSI)
An organization sponsored by the Computer and
Business Equipment Manufacturers Association through
which accredited organizations create and maintain
voluntary industry standards.

argument
A parameter passed between a calling routine and a
called routine.

arithmetic constant
A constant of type integer, real, double precision, or
complex.

arithmetic expression
One or more arithmetic operators and arithmetic
primaries, the evaluation of which produces a numeric
value. An arithmetic expression can be an unsigned
arithmetic constant, the name of an arithmetic constant,
or a reference to an arithmetic variable, array element, or
function reference, or a combination of such primaries
formed by using arithmetic operators and parentheses.

arithmetic operator
A symbol that directs a compiler to perform an arithmetic
operation. The arithmetic operators for XL FORTRAN
are:
+

*
I
**

addition
subtraction
multiplication
division
exponentiation

©Copyright IBM Corp. 1990

array
A variable that contains an ordered group of data objects.
All objects in an array have the same data type.

array declarator
The part of a statement that describes an array used in a
program unit. It indicates the name of the array, the
number of dimensions it contains, and the size of each
dimension. An array declarator may appear in a
DIMENSION, COMMON, or explicit type statement.

array element
A single data item in an array, identified by the array
name followed by one or more integer expressions called
subscript expressions indicating its position in the array.

array name
The name of an ordered set of data items.

assignment statement
An operation that assigns stores the value of the right
operand in the storage location of the left operand.

binary
Pertaining to a system of numbers to the base two; the
binary digits are O and 1.

binary constant
A constant that is made of one or more binary digits.

blank common
An unnamed common block.

block data subprogram
A subprogram headed by a BLOCK DATA statement and
used to initialize variables in named common blocks.

character constant
A string of one or more alphabetic characters enclosed in
single or double quotation marks.

character expression
A character constant or variable, a character array
element, a character substring, a character valued
function reference, or a sequence of them separated by
the concatenation operator, with optional parentheses.

character operator
A symbol which represents an operation, such as
concatenation (//).,to be performed on character data.

character string
A sequence of consecutive characters.

character substring
A contiguous portion of a character string.

character type
A data type that consists of alphanumeric characters.
See also data type.

collating sequence
The sequence in which characters are ordered within the
computer for sorting, combining, or comparing. The
collating sequence for IBM AIX Version 3 for RISC
System/6000 is ASCII.

Glossary 87

comment
A language construct for the inclusion of text in a
program that has no impact on the execution of the
program.

common block
A storage area that may be referred to by a calling
program and one or more subprograms.

compilation time
The time during which a source program is translated
from a high-level language to a machine language
program.

compilation unit
A portion of the computer program that is sufficiently
complete to be compiled correctly.

compile
To translate a program written in a high-level
programming language into a machine language
program.

compiler
A program that translates instructions written in a
high-level programming language into machine
language.

compiler directive
A statement that controls what the compiler does rather
than what the user program does.

complex constant
An ordered pair of real or integer constants separated by
a comma and enclosed in parentheses. The first constant
of the pair is the real part of the complex number; the
second is the imaginary part.

complex number
A number consisting of a ordered pair of real numbers,
expressible in the form a+bi, where a and bare real
numbers and i squared equals minus one.

complex type
In XL FORTRAN, a data type that represents the values
of complex numbers. The value is expressed as an
ordered pair of real data items separated by a comma
and enclosed in parentheses. The first item represents
the real part of the complex number; the second
represents the imaginary part.

connected unit
In XL FORTRAN, a unitthat is connected to a file in one
of three ways: explicitly via the OPEN statement to a
named file, implicitly via an OPEN statement to an
unnamed file, or implicitly by a READ or WRITE
statement to a unit for which no OPEN statement has
been specified.

constant
A data item with a value that does not change. Contrast
with variable. The four classes of constants specify
numbers (arithmetic), truth values (logical), character
data (character), and untyped data (hexadecimal, octal,

88 User's Guide for XL FORTRAN

and binary).

continuation line
A line of a source statement into which characters are
entered when the source statement cannot be contained
on the previous line or lines.

control statement
A statement that is used to alter the continuous
sequential invocation of statements; a control statement
may be a conditional statement, such as IF, or an
imperative statement such as STOP.

data
1. A representation of facts or instructions in a form

suitable for communication, interpretation, or
processing by human or automatic means.

2. In FORTRAN, data includes constants, variables,
arrays, and character strings.

data item
A unit of data to be processed. Includes constants,
variables, array elements, or character strings.

data type
The properties and internal representation that
characterize data and functions. The basic types are
integer, real, complex, logical, double precision, and
character

debug
To detect, locate, and remove mistakes from a program.

default value
A value stored in the system that is used when no other
value is specified.

digit
A character that represents a non-negative integer. For
example, any of the numerals from 0 through 9.

DO loop
A range of statements invoked repetitively by a DO
statement. See also range of a DO loop.

DO variable
A variable, specified in a DO statement, that is initialized
or increased prior to each occurrence of the statement or
statements within a DO range. It is used to control the
number of times the statements within the range are
executed. See also range of a DO loop.

double precision constant
A processor approximation to the value of a real number
that occupies 8 consecutive bytes of storage and may
assume a positive, negative, or zero value. The precision
is greater than that of type real.

dimension
The attribute of size given to arrays and tables

dummy argument
A variable within a subprogram or statement function
definition with which actual arguments from the calling
program or function reference are positionally associated.
Dummy arguments are defined in a SUBROUTINE or
FUNCTION statement, or in a statement function
definition.

EBCDIC
Extended binary-coded decimal interchange code. A
code developed for the representation of textual data.
EBCDIC consists of a set of 256 eight-bit characters.

edit
1. To modify the form or format of data; for example, to

insert or remove characters such as for dates or
decimal points.

2. To check the accuracy of information that has been
entered, and to indicate if an error is found.

embedded blanks
Blanks that are surrounded by any other characters.

executable program
A program that can be executed as a self-contained
procedure. It consists of a main program and, optionally,
one or more subprograms or non-FORTRAN-defined
external procedures, or both.

executable statement
A statement that causes an action. to be taken by the
program; for example, to calculate, to test conditions, or
to alter normal sequential execution.

existing file
A file that has been defined and, conceptually, resides on
the storage medium.

existing unit
A valid unit number that is system specific.

exponent
A number, indicating to which power another number (the
base) is to be raised.

expression
A language construct for computing a value from one or
more operands, such as literals, identifiers, array
references, and function calls.

external routine
A procedure or function called from outside the program
in which the routine is defined.

field
An area in a record used to contain a particular category
of data.

file
A sequence of records. If the file is located in internal
storage, it is an internal file; if it is on an input/output
device, it is an external file.

floating-point constant
A constant representation of a floating-point number
expressed as an optional sign followed by one or more
digits an including a decimal number. See also
floating-point number.

floating-point number
A real number represented by a pair of distinct numerals.
The real number is the product of the fractional part, one
of the numerals, and a value obtained by raising the
implicit floating-point base to a power indicated by the
second numeral. ;

fold
To translate the lowercase characters of a character
string into uppercase.

format
1 . A defined arrangement of such things as characters,

fields, and lines, usually used for displays, printouts,
or files.

2. To arrange such things as characters, fields, and
lines.

formatted data
Data that is transferred between main storage and an
input/output device according to a specified format. See
also list-directed data and unformatted data.

FORTRAN (FORmula TRANslation)
A high-level programming language used primarily for
scientific, engineering, and mathematical applications.

function
A routine that returns the value of a single variable and
that usually has a single exit. See also, function
subprogram, intrinsic function, and statement
function.

function reference
The appearance of an intrinsic function name or a user
function name in an expression.

function subprogram
In XL FORTRAN, a subprogram headed by a FUNCTION
statement.

hexadecimal
Pertaining to a system of numbers to the base sixteen;
hexadecimal digits range from O (zero) through 9 (nine)
and A (ten) through F (fifteen).

hexadecimal constant
A constant, usually starting with special characters, that
contains only hexadecimal digits.

Hollerith constant
A string of any characters capable of representation in
the processor and preceded with nH, where n is the
number of characters in the string.

implied DO
An indexing specification (similar to a DO statement, but
without specifying the word DO) with a list of data
elements, rather than a set of statements, as its range.

Glossary 89

input
Data to be processed.

input/output (1/0)
Pertaining to either input or output, or both.

input/output list
A list of variables in an input or output statement
specifying which data is to be read or which data is to be
written. An output list may also contain a constant, an
expression involving operators or function references, or
an expression enclosed in parentheses.

integer
A positive or negative whole number or zero.

integer constant
A string of decimal digits containing no decimal point.

integer expression
An arithmetic expression whose values are of integer
type.

integer type
An arithmetic data type that consists of integer values.

intrinsic function
In XL FORTRAN, a function that is supplied with the run
time environment that performs mathematical, character,
bit manipulation, or logical operations.

1/0
See input/output.

1/0 list
See input/output list.

keyword
A specified sequence of characters that are significant to
the compiler in a particular context. No sequence of
characters is reserved in all contexts.

length specification
A source language specification of the number of bytes to
be occupied by a variable or an array element.

letter
An uppercase or lowercase character from the set A
through Z.

link-editing
To create a loadable computer program by means of a
linkage editor.

linkage
The part of the program that passes control and
parameters between separate portions of the computer
program.

linkage editor
A program that resolves cross-references between
separately compiled or assembled object modules and
then assigns final addresses to create a single
relocatable load module. If a single object module is
linked, the linkage editor simply makes it relocatable.

90 User's Guide for XL FORTRAN

list-directed
An input/output specification that uses a data list instead
of a FORMAT specification.

list-directed data
Data that is transferred between main storage and an
input/output device according to the length and type of
variables in the input/output list. See also formatted data
and unformatted data.

literal
A symbol or a quantity in a source program that is itself
data, rather than a reference to data.

logical constant
A constant with a value of either true or false.

logical expression
An expression consisting of logical operators and/or
relational operators that can be evaluated to a value of
either true or false.

logical operator
A symbol that represents an operation on logical
expressions:
.NOT.
.AND.
.OR.
.EQV.
.NEQV.
.XOR.

logical primary

(logical negation)
(logical conjunction)
(logical union)
(logical equivalence)
(logical nonequivalence)
(logical nonequivalence)

A primary that can have the value true or false.

logical type
A data type that contains values true and false.

looping
A sequence of instructions performed repeatedly until an
ending condition is reached. Usually controlled by a DO
statement.

main
The default name given to a main program by the
compiler if the main program was not named by the
programmer.

main program
The first program unit to receive control when a program
is run. Contrast with subprogram.

message
An error indication, or any brief information that a
program writes to standard error or a queue.

name
A sequence of 1 to 250 letters or digits, the first of which
must be a alphabetic, that identifies a data object.

named common
A separate common block consisting of variables, and
arrays, and given a name.

nest
To incorporate a structure or structures of some kind into
a structure of the same kind. For example, to nest one
loop (the nested loop) within another loop (the nesting
loop); to nest one subroutine (the nested subroutine)
within another subroutine (the nesting subroutine).

nested DO
A DO loop or DO statement whose range is entirely
contained within the range of another DO statement.

nonexecutable program unit
A block data subprogram.

nonexecutable statement
A statement that describes the characteristics of a
program unit, of data, of editing information, or of
statement functions, but does not cause any action to be
taken by the program.

nonexisting file
A file which does not physically exist on any accessible
storage medium.

numeric
Pertaining to any of the digits O through 9.

numeric character
Synonym for digit.

numeric constant
A constant that expresses an integer, real, or complex
number.

octal
Pertaining to a system of numbers to the base eight; the
octal digits range from 0 (zero) through 7 (seven).

octal constant
A constant that is made of octal digits.

one-trip DO-loop
A DO loop that is executed at least once, if reached, even
if the iteration count is equal to 0.

output
The result of processing data.

pad
To fill unused positions in a field or character string with
dummy data, usually zeros or blanks.

parameter
A variable that is given a constant value for a specified
application and that either is used as input or controls the
actions of the procedure or program.

preconnected file
A unit or file that was defined at installation time. For
example, standard input and standard output are
preconnected files.

predefined convention
The implied type and length specification of a data item,
based on the initial character of its name when no explicit
specification is given. The initial characters I through N

imply type integer of length 4; the initial characters A
through H, 0 through Z, $, and _ imply type real of length
4.

primary
An irreducible unit of data; a single constant, variable,
array element, function reference, or expression enclosed
in parentheses.

procedure
A sequenced set of statements that can be used at one
or more points in one or more computer programs, that is
usually given one or more input parameters and returns
one or more output parameters. A procedure consists of
subroutines, external functions, statement functions, and
intrinsic functions.

program
1 . A sequence of instructions suitable for processing by

a computer. Processing can include the use of an
assembler, compiler, interpreter, or translator to
prepare the program for execution. See source
program.

2. To design, write, and test computer programs.

program unit
A main program or a subprogram.

random access
An access method in which records can be read from,
written to, or removed from a file in any order.

range of a DO loop
Those statements that physically follow a DO statement,
up to and including the statement specified by the DO
statement as being the last to be executed.

real constant
A string of decimal digits that expresses a real number. A
real constant must contain a decimal point, a decimal
exponent, or both.

real number
A number, containing a decimal point, stored in
fixed-point or floating-point format.

real type
An arithmetic data type that can approximate the values
of real numbers.

record
An aggregate that consists of data objects, possibly with
different attributes, that usually have identifiers attached
to them.

relational expression
An expression that consists of an arithmetic or character
expression, followed by a relational operator, followed by
another arithmetic or character expression. The result is
a value that is true or false.

Glossary 91

relational operator
The words or symbols used to express a relational
condition or a relational expression:
• GT. greater than
.GE. greater than or equal to
.LE. less than or equal to
.EQ. equal to
.NE. not equal to

relative record number
A number th~t specifies the location of a record in relation
to a base position in the file containing it.

run
To cause a program, utility, or other machine function to
be performed.

scale factor
A number indicating the location of the decimal point in a
real number (and, on input, if there is no exponent, the
magnitude of the number).

scope
The portion of a program within which a declaration
applies.

sequential access
An access method in which records are read from,
written to, or removed from a file based on the logical
order of the records in the file.

source program
A set of instructions that are written in a programming
language and that must be translated to machine
language before the program can be executed.

specification statement
One of the set of statements that provides the compiler
with information about the data used in the source
program. In addition, the statement supplies information
required to allocate data storage.

statement
A language construct that represents a step in a
sequence of actions or a set of declarations. Statements
fall into two broad classes: executable and
non executable.

statement function
A name, followed by a list of dummy arguments, that is
equated to an arithmetic, logical, or character expression,
and which can be used as a substitute for the expression
throughout the program.

statement function definition
A statement that defines a statement function. Its form is
a statement function, followed by an equal sign(=),
followed by an arithmetic, logical, or character
expression.

statement label
A number from one through five decimal digits that is
used to identify a statement. Statement labels can be
used to transfer control, to define the range of a DO, or to

92 User's Guide for XL FORTRAN

--··-----------~~--

refer to a FORMAT statement.

statement number
See statement label .

subprogram
In XL FORTRAN, a subprogram that has a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first
statement. Contrast with main program.

subroutine
A sequenced set of statements that can be used in one
or more computer programs and at one or more points in
a computer program. See also function subprogram
and statement function.

subscript
A subscript quantity or set of subscript quantities,
enclosed in parentheses and used with an array name to
identify a particular array element.

subscript quantity
In XL FORTRAN, a component of a subscript. A subscript
quantity is an integer or real constant, variable, or
expression.

substring
A part of a character string.

symbolic name
In a programming language, a unique name used to
represent an entity such as a file or data item. See also
name.

syntax
The rules for the construction of a statement.

System Application Architecture (SAA) FORTRAN
A superset of the ANSI X3.9 - 1978 FORTRAN 77
standard.

type declaration
The specification of the type and, optionally, the length of
a constant, variable, array, or function using an explicit
type specification statement. Contrast with predefined
convention.

unformatted record
A record that is transmitted unchanged between internal
and external storage. See also formatted record and
list-directed data.

unit
A means of referring to a file to use input/output
statements. A unit can be connected or not connected to
a file. If connected, it refers to a file. The connection is
symmetric: that is, if a unit is connected to a file, the file is
connected to the unit.

unit identifier
The number that specifies an external unit or internal file.
The number can be one of the following:
1. An integer expression whose value must be zero or

positive.
2. An asterisk (*) that corresponds to unit 5 for input or

unit 6 for output.
3. The name of a character array, character array

element, or character substring for an internal file.

variable
1. A quantity that can assume any of a given set of

values.
2. A data item, identified by a name, that is not a named

constant, array, or array element, and that can
assume different values at different times during
program execution.

zero suppression
The substitution of blanks for leading zeros in a number.
For example, 00057 becomes 57 when using zero
suppression.

Glossary 93

94 User's Guide for XL FORTRAN

Symbols
@PROCESS compiler directive, 17

A
argument list built-in functions, 56

asa command, 77

ASCII character set, 69

ASCII coded character set, determines collating
sequence,9

c
character set, 9

collating sequence, 9

command line options, 17

compiler directive, @PROCESS, 17

compiler features, 7

compiler installation, 8

compiler listings, 46
attribute and cross reference section, 50
compilation epilogue section, 51
compilation statistics section, 51
compilation unit epilogue section, 51
file table section, 51
header section, 49
object section, 51
options section, 49
source section, 49

error messages, 49

compiler options, summary, 18

compiler services, 7

compiling, 13
invocation, 13
options, 8, 16

configuration file, 14

configuration, system, 8

conflicting options, 23

conformance flagging, 8

D
debugger, symbolic (dbx), 8

digit, 9

© Copyright IBM Corp. 1990

E
EBCDIC character set, 69

editing, 9

entering source, 9

environment variables, 14, 43

error messages, 43
compile time, 44
run time, 45

F
features, compiler, 7

file formats, 33

file names, 33

file positioning, 34

formats, file, 33

FORTRAN specific AIX commands
asa command, 77
fsplit command, 77

fsplit command, 77

H
help, online, 8

I
input files, 16

input format
fixed-form, 10
free-form, 1 O

insignificant blanks, 11

installing the compiler, 8

interlanguage calls, 53
%VAL and %REF, 56
character variable types, 55
corresponding data types, 54
how arrays are stored, 56
linkage conventions, 57
programming conventions, 53
programming tips, 54
sample program, 64

internal limits, 79

invoking the compiler, 13

Index 95

K
keywords, 9

L
label, statement, 11

language support, 7

letter, 9

linking, 29

M
migration, 8

migration considerations, 81

N
names, 9

0
online help, 8

optimization, 8

optimization levels, 35

options, compiler, 18

options, details, 23

organization of book, 1

output files, 16

p
preconnected files, 34

96 User's Guide for XL FORTRAN

R
related documentation, 5

running the program, 30

s
sample listing, 67

sample program, 67
output produced, 68
source file, 67

sequence, collating, 9

single precision floating point overflow, 85

source file options, 17

special character, 9

statement label, 11

statements, 9

summary of compiler options, 18

symbolic debugger (dbx), 8

symbolic name. See names

syntax diagram
example of, 4
how to read, 3

system configuration, 8

T
tabs, 11

u
using this book, 1

Reader's Comment Form

Jser's Guide for IBM AIX XL FORTRAN Compiler/6000
)COS-1257-00

>tease use this form only to identify publication errors or to request changes in publications. Your
~omments assist us in improving our publications. Direct any requests for additional publications, technical
1uestions about IBM systems, changes in IBM programming support, and so on, to your IBM representative
>r to your IBM-approved remarketer. You may use this form to communicate your comments about this
>ublication, its organization, or subject matter, with the understanding that IBM may use or distribute
vhatever information you supply in any way it believes appropriate without incurring any obligation to you.

J If your comment does not need a reply (for example, pointing out a typing error), check this box and do
not include your name and address below. If your comment is applicable, we will include it in the next
revision of the manual.

J If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

>tease contact your IBM representative or your IBM-approved remarketer to request additional
>u blications.

Please print

Date-----

Your Name----------------------
Company Name---------------------­

Mailing Address ----------------------

Area Code

~o postage necessary if mailed in the U.S.A

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

r---
11 PIO.::I PIO.::I

I
I
I
I
~
c:

::::i
O'>
c:
0

<
'O

~
! (5
:;
()

r----------~--
ade.i pue p10.:1 a1dets tON oa asea1d ade.l pue PIO.:I

--------- ----- - -- - ---- ------------- ·-
© IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC09-1257-00

5[09-1257-00

I

